

CONFORMANCE TEST SUITE USER MANUAL

for Testing Interface and Application Code against the FACETM Technical Standard 3.1

CTS Version 3.1.0

NAVAIR Public Release 2021-24

Distribution Statement A –“Approved for public release; distribution is unlimited”

GTRI Document No. FACE100124 CTS Version 3.1.0, 11/30/2020 User Manual Copyright © 2020, Georgia Tech Applied

Research Corporation. This software, authored by Georgia Tech Research Institute under a contract awarded to and

managed by Georgia Tech Applied Research Corporation, was funded by the U.S. Government under Contract No. 19-

0044-21 and the U.S. Government has unlimited rights in this software. An “unlimited rights” license means that the U.S.

Government can use, modify, reproduce, release or disclose computer software in whole or in part, in any manner, and for

any purpose whatsoever, and to have or authorize others to do so.

Developed under Contract No. 19-0044-21 awarded to the Georgia Tech Applied Research Corporation (GTARC) by the

U.S. Government for the Georgia Tech Research Institute (GTRI) and Institute for Software Integrated Systems (ISIS),

Vanderbilt University. GTARC and Vanderbilt University disclaim all warranties with regard to this software, including all

implied warranties of merchantability and fitness for a particular use or purpose, validity of any intellectual property rights

or claims, or noninfringement of any third-party intellectual property rights. In no event shall GTARC or Vanderbilt

University be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use,

data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the

use or performance of this software.

Future Airborne Capability Environment (FACE) Reference Architecture, 2012 The Open Group. FACE is a trademark of

The Open Group in the United States and other countries.

Georgia Tech Research Institute acknowledges The Open Group for permission to include text/figures derived from its

copyrighted Future Airborne Capability Environment (FACE) Reference Architecture. FACE is a trademark of The Open

Group in the United States and other countries.

iii

Table of Contents

1 Introduction ... 1

1.1 Context .. 1

1.2 Tools Contained in the Test Suite ... 1

1.2.1 UsmIDLGenerator/DIG (Datamodel IDL Generator) ... 1

1.2.2 Ideal ... 2

1.2.3 DMVT (Data Model Validation Tool) .. 2

1.2.4 FACE Conformance Application .. 3

1.2.5 Conformance Testing Workflow ... 3

2 Installation ... 5

2.1 Installation on Linux (CentOS 7/RHEL 7) ... 5

2.1.1 User Prerequisites .. 5

2.1.2 System Requirements .. 5

2.1.3 Language-specific Prerequisites .. 5

2.1.4 Installation of CTS .. 9

2.1.5 Running CTS ... 10

2.2 Installation on Windows (Windows 10).. 11

2.2.1 User Prerequisites .. 11

2.2.2 System Requirements .. 11

2.2.3 Language-specific Prerequisites .. 12

2.2.4 Detailed Instructions for Installing Prerequisites .. 12

2.2.5 Installation of CTS .. 20

3 Building the Sample Projects and Toolchains ... 22

3.1 Build Flags .. 22

3.2 Linux generation ... 23

3.3 Windows generation .. 24

3.3.1 Regarding Failing Test Results and Shared Data Model .. 25

4 Theory of Operation .. 26

4.1 Introduction to Methodology .. 26

4.2 Target Linker Method ... 27

4.3 Host Linker Method .. 28

4.4 Additional Methodology Information ... 28

4.4.1 OSS Testing Methodology .. 28

4.4.2 Java Testing Methodology .. 28

5 Toolchain Configuration Files .. 29

5.1 Introduction ... 29

5.2 Toolchain Files List ... 29

5.3 Building a Toolchain File .. 30

5.3.1 General Tab ... 30

5.3.2 File Extensions Tab ... 31

5.3.3 Tools Tab .. 32

5.3.4 Compiler Specific Tab .. 34

5.3.5 Notes Tab .. 38

6 Project Configuration Files ... 39

6.1 Project Configuration Builder Interface .. 40

6.1.1 General Tab ... 40

6.1.2 Data Model Tab ... 42

6.1.3 Gold Standard Libraries Tab ... 42

6.1.4 Objects/Libraries Tab .. 43

6.1.5 Notes Tab .. 47

6.1.6 Project Info Tab ... 48

7 Testing a UoC ... 50

7.1 Overview ... 50

7.2 Testing a PCS, TSS, PSSS, or IOSS UoC ... 50

7.2.1 Test Procedures ... 50

7.3 Testing an Operating System (OSS) UoC ... 54

7.3.1 What the User Must Provide ... 54

7.3.2 Test Procedures ... 54

7.4 Testing a Data Model .. 60

7.4.1 What the User Must Provide ... 60

7.4.2 Test Procedures ... 60

7.5 Considerations ... 61

7.5.1 Testing an Ada Segment ... 61

7.5.2 Testing a Java Segment ... 61

7.6 Viewing Test Suite Results ... 61

8 References ... 64

Appendix A Using the CTS via Command line Interface (CLI) ... 65

Appendix B Glossary... 67

Appendix C Constraints... 68

Appendix D Issues ... 69

Appendix E Acknowledgments ... 70

List of Figures

Figure 1-1. The workflow of FACE development and conformance testing. ... 3

Figure 2-1. The system properties interface. ... 13

Figure 2-2. The environment variables interface. ... 13

Figure 2-3. The new system variable interface. .. 14

Figure 2-4. Input values in the system variable dialogue. ... 14

Figure 2-5. The environment variables dialogue. ... 15

Figure 2-6. The PATH variable dialogue, with the JAVA_HOME environment variable outlined in red. 16

Figure 2-7. They Python 2.7 environment variable near the top of the list, with the variable is outlined in red. 17

Figure 2-8. The msys64 path declarations, with variables are outlined in red. ... 18

Figure 2-9. Ant environment variable. .. 19

Figure 2-10. Pointing the system path to the relevant Ant directories, with the variables are outlined in red. 20

Figure 2-11. The CTS home screen. ... 21

Figure 4-1. Linked source code interfaces matching and not matching the FACE Technical Standard. 26

Figure 4-2. The target linker GUI, found in the Toolchain Configuration Builder’s Tools tab. ... 27

Figure 5-1. The Toolchain Files List. .. 29

Figure 5-2. The Toolchain Configuration Builder with the General tab selected. .. 30

Figure 5-3. The Toolchain Configuration Builder with the File Extensions tab selected. .. 31

Figure 5-4. The Toolchain Configuration Builder with the Tools tab selected... 32

Figure 5-5. The Toolchain Configuration Builder with the Tools tab selected... 33

Figure 5-6. The Toolchain Configuration Builder with the Tools tab selected... 34

Figure 5-7. The Toolchain Configuration Builder, with the Compiler Specific tab selected.. 35

Figure 5-8. The Toolchain Configuration Builder with the Compiler Specific tab selected... 37

Figure 5-9. The Allowed Definition editor. .. 38

Figure 5-10. The Project Configuration Builder, with the Notes tab selected. ... 38

Figure 6-1. The Project Files List. .. 39

Figure 6-2. The Project Configuration Builder with the General tab selected. ... 40

Figure 6-3. The Project Configuration Builder with the Data Model tab selected. ... 42

Figure 6-4. The Project Configuration Builder with the Gold Standard Libraries tab selected. ... 43

Figure 6-5. The Project Configuration Builder with the Objects/Libraries tab selected. .. 44

Figure 6-6. The Project Configuration Builder with the Objects/Libraries tab selected. .. 45

Figure 6-7. The Project Configuration Builder with the Objects/Libraries tab selected. .. 45

Figure 6-8. The Project Configuration Builder with the Objects/Libraries tab selected. .. 46

Figure 6-9. The Project Configuration Builder with the Objects/Libraries tab selected. .. 47

Figure 6-10. The Project Configuration Builder with the Objects/Libraries tab selected. .. 47

file:///C:/Users/DavisJR/Documents/FACE100124%20_CTS%203.1.0%20SUM.docx%23_Toc58940918
file:///C:/Users/DavisJR/Documents/FACE100124%20_CTS%203.1.0%20SUM.docx%23_Toc58940919
file:///C:/Users/DavisJR/Documents/FACE100124%20_CTS%203.1.0%20SUM.docx%23_Toc58940921
file:///C:/Users/DavisJR/Documents/FACE100124%20_CTS%203.1.0%20SUM.docx%23_Toc58940924
file:///C:/Users/DavisJR/Documents/FACE100124%20_CTS%203.1.0%20SUM.docx%23_Toc58940926
file:///C:/Users/DavisJR/Documents/FACE100124%20_CTS%203.1.0%20SUM.docx%23_Toc58940927
file:///C:/Users/DavisJR/Documents/FACE100124%20_CTS%203.1.0%20SUM.docx%23_Toc58940928
file:///C:/Users/DavisJR/Documents/FACE100124%20_CTS%203.1.0%20SUM.docx%23_Toc58940930
file:///C:/Users/DavisJR/Documents/FACE100124%20_CTS%203.1.0%20SUM.docx%23_Toc58940932
file:///C:/Users/DavisJR/Documents/FACE100124%20_CTS%203.1.0%20SUM.docx%23_Toc58940935
file:///C:/Users/DavisJR/Documents/FACE100124%20_CTS%203.1.0%20SUM.docx%23_Toc58940936

Figure 6-11. The Project Configuration Builder with the Notes tab selected. .. 48

Figure 6-12. The Project Configuration Builder with the Project Info tab selected. ... 48

Figure 7-1. The GSL generation button. ... 51

Figure 7-2. The Project Configuration Builder, with the Objects/Libraries tab selected. ... 52

Figure 7-3. The Project Configuration Builder with the General tab selected. ... 54

Figure 7-4. The Project Configuration Builder with the Gold Standard Libraries tab selected. ... 55

Figure 7-5. The Project Configuration Builder with the Objects/Libraries tab selected. .. 56

Figure 7-6. The GSL generation button. ... 57

Figure 7-7. The Project Configuration Builder with the Objects/Library tab selected, within the Configuration subtab. 59

Figure 7-8. A TSS's project configuration with the Data Model tab selected. .. 60

Figure 7-9. A successful conformance test message. .. 62

Figure 7-10. An example conformance test report. ... 62

Figure 7-11. A conformance test report scrolled to show report contents. ... 63

List of Tables

Table 2-1. The minimum requirements to run the CTS. ... 5

Table 2-2. Dependencies that are required to successfully install the CTS on a Linux-based system...................................... 5

Table 2-3. Dependencies required for testing UoCs within the CTS. ... 6

Table 2-4. The minimum requirements to run on Windows. .. 11

Table 2-5. The prerequisites needed to install CTS on a Windows system. ... 11

Table 2-6. UoC Testing Dependencies for Windows 10. ... 12

Table 3-1. A list of all possible flags in executing the testUtility.py script. ... 22

Table 4-1. Language standard that the CTS supports for a specific language. ... 27

Table 4-2. Compiler flags for Non-OSS tests. .. 28

Table 4-3. Linker flags for Non-OSS tests. ... 28

Table 5-1. The list of intrinsic types that map to FACE’s exact types. ... 36

Table 7-1. OSS Tests based on language and profile. ... 56

Table A-1. The available flags to use with executing the CTS via CLI. ... 66

i

Preface

Using this Guide

This Guide is intended to show the user how to install and effectively use the CTS.

Further, this Guide contains “code blocks.” A code block may contain specific commands to be run via command line or

code changes to a file. In the case of multiple commands being executed in order, each direction will have their own code

block. The syntax of a code block looks like:

[direction to do command]

[any direction or notes that would be required after the command]

Example:

Install gcc/g++ from yum package:

This is necessary for compiling C/C++/Ada projects.

[the command to be executed]

sudo yum install gcc gcc-c++ gcc-gnat

1

1 Introduction

The Conformance Test Suite (CTS) tests Units of Conformance (UoCs) and data models that meet a subset of the

requirements in the FACE™ Technical Standard, Edition 3.1 [1]. All requirements the CTS is required to test are defined in

the Conformance Verification Matrix (CVM), provided by the FACE Consortium. All types of UoCs may be tested with the

CTS, including:

1. Portable Components Segment (PCS) UoCs

2. Platform Specific Services Segment (PSSS) UoCs

3. Transport Services Segment (TSS) UoCs

4. I/O Services Segment (IOSS) UoCs

5. Operating System Segment (OSS) UoCs

Testing procedures for each segment are listed in the sections contained in this user manual.

1.1 Context

There are two versions of the CTS: CTS 2.X and CTS 3.X (where X is a number that defines the version of the standard and

version of the CTS released. For example, CTS 3.1.0 represents supporting the 3.1 edition of the Technical Standard and is

the initial release of the CTS). Version 2.X is developed by Vanderbilt University, and version 3.X is developed by GTRI.

Use of developed code for the FACE Technical Standard, Edition 2.X cannot currently be tested with CTS 3.X, and developed

code for the FACE Technical Standard, Edition 3.X cannot be tested with 3.X. This document refers to version 3.X of the

CTS and will henceforth be referred to as “the CTS” unless otherwise delineated.

1.2 Tools Contained in the Test Suite

The CTS is comprised of multiple, separate tools which work together to test software components against the FACE

Technical Standard. There are four tools contained in the CTS: the UsmIDLGenerator/DIG (Data Model to IDL Generator),

Ideal, DMVT (Data Model Validation Tool), and FACE Conformance Application. The CTS uses each of these tools to

produce a conformance test result, as shown in Figure 1-1 below.

Using the CTS GUI allows for a user-friendly approach for FACE development and conformance testing, however, each of

these tools can be invoked separately via command line if needed. Although the CTS graphical user interface (GUI) is the

method in which users of the CTS are expected to use, it is beneficial for the user to know how to invoke the underlying CTS

tools at a command line level and understand how these tools work together to test for conformance. Instructions on how to

invoke each tool with command line-commands are detailed in Section 1.2.1, Section 1.2.2, Section 1.2.3, Section 1.2.4, and

Table A-1.

1.2.1 UsmIDLGenerator/DIG (Datamodel IDL Generator)

The UsmIDLGenerator/DIG is developed by ISIS (Institute for Software Integrated Systems)/Vanderbilt University. The tool

generates the IDL for the platform data types associated with a named template or Unit of Portability (UoP) in a FACE USM

(UoP Supplied Model). Used at CTS runtime, the UsmIDLGenerator/DIG is used to generate datatype IDL files which are

then compiled into source code for the language that the candidate UoC is written.

IDL (Interface Definition Language) is a standard written by the OMG (Object Management Group). A definition from the

OMG states, “IDL is a descriptive language used to define data types and interfaces in a way that is independent of the

programming language or operating system/processor platform. The IDL specifies only the syntax used to define the data

types and interfaces [1].” Used in the FACE Technical Standard, IDL is used to describe FACE Interfaces in a language-

agnostic way. FACE Interfaces described via IDL include the TSS API and IOSS API, among others.

2

To be used, the UsmIDLGenerator/DIG requires a valid installation of Java and Python 2.7 to successfully run. Although the

tool is intended to be invoked by the FACE Conformance Application, the generator may be invoked by directing a command

prompt to the root directory of the user’s installation of the CTS and executing:

1.2.2 Ideal

Ideal is a tool that is developed by GTRI. Ideal is a translator that maps IDL interfaces to a FACE supported software

language: Ada, Java, C99, and C++03. Ideal may also be used to generate language specific code from the data model, which

may be used to begin UoC development.

Although Ideal is intended to be invoked by the FACE Conformance Application, it may be invoked directly from the

command line. Ideal can only be directly invoked by directing a command prompt to the root directory of the user’s

installation of the CTS and executing:

A full list of command line options can be found by passing the script only the “-h” flag, when executed. A verbose output

can be given by adding the “--verbose” flag. Sample .idl files are located at “face_conformance_app/ideal/sample_idl.”

1.2.3 DMVT (Data Model Validation Tool)

The DMVT is developed by ISIS/Vanderbilt University. The tool takes the FACE Consortium written Shared Data Model

(SDM) and the user developed USM as inputs and tests the USM for FACE conformance. The SDM is available for download

on The Open Group’s website. Both the SDM and USM are stored with the file extension “.face.”

The DMVT sends/receives messages to the CTS via Transmission Control Protocol (TCP) with messages defined in protobuf

format. The DMVT may be used by pointing a terminal to the root directory of the user’s installation of the CTS, and

executing the following:

The DMVT may be invoked by executing the DAConformanceTest.jar file:

cd UsmIDLgen

 java -jar UsmIDLgen_v31-2020.7.1.jar -out [IDL output directory] -uop [UoP name] -usm [USM location] -view
[platform view name]

cd face_conformance_app/ideal

 python ideal.py -I [location of folder that contains .idl] -c [IDL compiler, see README.md] [output dir] -- [target .idl file]

cd DMVT

java -jar DAConformanceTest_v31-2020.7.1.jar -usm [usm location] -sdm [sdm location] -l

[logfile location]

3

1.2.4 FACE Conformance Application

The FACE Conformance Application developed by GTRI includes the front-end GUI, backend processes to test for FACE

conformance, and the generation of the FACE conformance report after a UoC is tested.

The CTS GUI provides a means to configure the user’s UoC parameters into a FACE project configuration file (PCFG/.pcfg)

and toolchain configuration file (TCFG/.tcfg). More information about project configuration and toolchain configuration files

is found in the “Project Configuration Files” section and the “Toolchain Configuration Files,” section respectively.

After the PCFG/TCFG files are provided, the CTS links interfaces of either the user-supplied header files or the user-supplied

object files. The CTS is intended for use from the GUI but may be invoked via the command line. To use the CTS from the

command line, more information may be found in Appendix A. All instructions in this Guide use the CTS GUI aside from

Appendix A.

Each of these tools rely on each other for the CTS to provide accurate conformance test results. Figure 1-1 provides details

of a high-level workflow diagram on how each of the CTS’s contained tools interact with one another. The figure also details

an example for intended UoC development and UoC conformance testing process.

1.2.5 Conformance Testing Workflow

Figure 1-1. The workflow of FACE development and conformance testing.

By following the numerical arrows, starting at 1, the user can see the process of developing a UoC and passing it through the

CTS. Instruction on how to test a specific UoC is contained within this user manual in “Project Configuration Files” section.

To further explain Figure 1-1, information below details what a user must do to successfully use the CTS in an example

workflow:

4

1. The user must create or import a toolchain configuration file for the user’s specific compiler/linker/archiver tools,

either from scratch or basing it off one of the sample toolchains. The user must also create or import The Project

Configuration file by specifying the profile, segment, interfaces the UoC implements and interfaces it uses, and the

USM and corresponding SDM locations (if appropriate).

2. The user must click on the “Generate GSLs/Interface” button in the toolbar.

3. The USM’s location is taken from the configured project configuration file. The USM is parsed for TSS Typed

interfaces and/or Life Cycle Management (LCM) Stateful interfaces and be sent to the UsmIDLGen/DIG tool.

4. The UsmIDLGen/DIG tool translates the data structures and typed interfaces based on the USM to IDL.

5. Ideal generates the IDL into interface headers (C/C++/Ada spec files/Java) files based on the UoC programming

language. These files will be placed into a subfolder of the project folder as the “Gold Standard” folder (the relative

of the subfolder is include/FACE). This process also generates a text file in this location with all the include paths

the user should use to compile their code for conformance.

6. The user gathers the generated text file

7. Based on the CTS Factory Functions header (the generated text file), the user writes their implementation code (called

Factory Functions) that implements each interface being provided by the UoC from these generated interfaces created

in Step 5.

a. Implement each UoC interface based on the language constraints:

i. For C++ and Java, the implementation is a derived class for each interface being provided. The

base/abstract class is the interface class provided in the Gold Standard Library subfolder

include/FACE as generated by the CTS.

ii. For C and Ada, one must create implementations of the functions/procedures.

b. Next, for each FACE interface that the UoC is to “use” (access), the user must also implement the Injectable

interface for that interface.

8. The user adds the Factory Functions to the .pcfg file in the Objects/Libraries tab

9. The user compiles their UoC code using the generated headers or spec files or Java files (depending on language)

and the include paths (compiler paths or class paths) provided in the generated text file.

10. The user adds the object code to the CTS and runs the Conformance test by pressing the “Test UoC Conformance”

button.

11. The FACE Conformance Application invokes the DMVT/DAVT, sending the USM and SDM location

12. The DMVT validates the USM based on the SDM and sends back the result.

13. The FACE Conformance Application:

a. Tests source files for injectables that are generated.

b. Compiles CTS Factory Functions using the user-provided Factory Functions file.

c. Tests files (generated and CTS-provided) are compiled and linked with the UoC object(s), CTS Factory

Functions, and GSL libraries into a series of executables (that never are run, as the CTS only tests to see if a

UoC correctly links with the test executables) .

d. Link test is performed with limited GSL libraries to test for inter-UoC restricted calls.

14. A PDF conformance report is generated based on the results of step 13. The PDF report contains all test logs and

stack traces to those logs so the user can alter the UoC if there are any failures.

5

2 Installation

2.1 Installation on Linux (CentOS 7/RHEL 7)

2.1.1 User Prerequisites

To successfully install the CTS, the user must have root permission to access network-based repositories (such as “yum”),

package installation privileges, and privileges to change file permissions (via “chmod”).

Note: These permissions are necessary, as some dependencies are not installed by default. It is acknowledged that the CTS installation

process is not optimized for installation on government machines or on machines that restrict installation.

2.1.2 System Requirements

Before installation, check the system requirements below to ensure the test suite will run on the user’s designated machine.

The CTS has been developed and tested on CentOS 7. It is highly recommended to use this version of Linux for the installation

of this version of the CTS, as using other distributions will have varying results.

Table 2-1. The minimum requirements to run the CTS.

Minimum Requirements

Operating

System

CentOS 7, Red Hat Enterprise Linux (RHEL) 7

HDD/SDD 3 GB

RAM 4 GB

An Internet connection

For setting up under virtual machine, make sure that the allocated drive has at least 15GB. Doing so will give the VM enough

space to install its operating system, all of prerequisites, and the CTS itself.

Table 2-2. Dependencies that are required to successfully install the CTS on a Linux-based system.

System Dependency

Python 2.7 installation, with:

• zlib - a Python compression library

• setuptools - a package used to help install and

uninstall other Python packages

Google Protocol Buffers version 2.6.0

Java 1.8 JDK

Any PDF viewer

2.1.3 Language-specific Prerequisites

The following section lists dependencies that UoCs written in a specific language require.

6

Table 2-3. Dependencies required for testing UoCs within the CTS.

Language Language Dependency

C GCC/G++ version 4.8 or higher

C++ GCC/G++ version 4.8 or higher

Ada GNAT for GCC version 4.8 or higher

Java Java JDK 1.8

Java Linux alternatives utility package (if more than 1

version of Java is installed)

Java Ant 1.9.0 or higher

Java Qt 5.1.1

Java Browser (if not installing on the command line, which

is recommended)

Details on how to install these dependencies are contained in the following sections. It is important that the user attempt to

install the CTS on a machine with at least the minimum specifications as stated in Table 2-1. The following subsections will

guide the user on how to install each of these prerequisites.

2.1.3.1 GCC/G++ 4.8.5

Install gcc/g++ from yum package:

This is necessary for C/C++/Ada projects and for building and installing the Protocol Buffers library, as described below.

This command will also install required dependencies for the gcc, gcc-c++, and gcc-gnat packages.

2.1.3.2 Python 2.7

Python 2.7.5 is installed by default on CentOS 7/RHEL 7.

2.1.3.3 Protocol Buffers 2.6

Protocol Buffers is a third party library used to define, read, and write the format of messages between the CTS backend

(Python), CTS frontend (Java), and the project/toolchain files (PCFG/TCFGs). It is also used to define the message format

for messages between the backend and DMVT/DAVT and UsmIdlGenerator/DIG. The protobuf files are used during the

main build to generate Python code and Java libraries for reading and writing messages, project files, and toolchain files.

Download protobuf-2.6.0.tar.gz from location https://github.com/google/protobuf/releases/tag/v2.6.0:

Unzip protocobuf-2.6.0.tar.gz:

sudo yum install gcc gcc-c++ gcc-gnat

wget https://github.com/protocolbuffers/protobuf/releases/download/v2.6.0/protobuf-2.6.0.tar.gz --no-check-certificate

https://github.com/google/protobuf/releases/tag/v2.6.0
https://github.com/protocolbuffers/protobuf/releases/download/v2.6.0/protobuf-2.6.0.tar.gz

7

Navigate to the protobuf-2.6.0 folder and install Protocol Buffers:

A successful installation will result in the command line saying something like:

make[3]: Leaving directory `/home/<user>/protobuf-2.6.0/src'

make[2]: Leaving directory `/home/<user>/protobuf-2.6.0/src'

make[1]: Leaving directory `/home/<user>/protobuf-2.6.0/src'

Add the shared libraries folder to the search path as the root user and reload cache of the dynamically linked libraries, so

protocol buffers can be used by all users of the machine that it is being installed on:

2.1.3.4 Java 8 JDK

The user must install Java 8 JDK. The best way to do this is download via browser, as the user needs to accept the license

agreement before they can download. The user may download from the url:

https://www.oracle.com/java/technologies/javase/javase8u211-later-archive-downloads.html. It is recommended to

download the “Linux x64” .rpm file of the latest version of Java 8 for a quick install.

The user must navigate to the directory where they downloaded the rpm and execute the following commands.

tar -xvf protobuf-2.6.0.tar.gz

cd protobuf-2.6.0

 ./configure

 make

 sudo make install

sudo su

 echo “/usr/local/lib” > /etc/ld.so.conf.d/local.conf

 exit

 sudo ldconfig

sudo yum install jdk-8uXXX-linux-x64.rpm

https://www.oracle.com/java/technologies/javase/javase8u211-later-archive-downloads.html

8

Optional note: If the user has different major versions of Java present on their installation system, the ‘alternatives’ utility may be used.

The utility allows the user to use different versions of applications in their environment. By default, it is installed in most Linux

distributions. If it is not installed, the user must install it via the normal means for installing packages for their Linux distribution. Then,

the user must initialize both the “java” and “javac” to the alternatives package. It is important to include both, as “java” is used to execute

Java bytecode, and “javac” is used to compile Java programs.

If the user executes…

…they should see a selection that contains their installation of Java.

If the user executes…

…they should see a selection that contains the location of their installation’s Java compiler.

2.1.3.5 Ant 1.9.x

Execute the following command to install Ant:

Note: The default installation version for Ant may be different than 1.9 for the user’s system. Check the package version in yum before

installing. This prerequisite is only required to build sample UoCs for Java. The user can exclude the Java UoCs when building sample

UoCs if desired.

2.1.3.6 Qt 5.1.1

Download qt-linux-opensource-5.1.1-x86_64-offline.run from location https://download.qt.io/archive/qt/5.1/5.1.1/

Execute the following commands to start the installer:

sudo /usr/sbin/alternatives --install /usr/bin/java java /usr/java/jdk1.8.0_XXX/bin/java 2000

 sudo /usr/sbin/alternatives --install /usr/bin/javac javac /usr/java/jdk1.8.0_XXX/bin/javac 2000

sudo alternatives --config java

sudo alternatives --config javac

sudo yum install ant

wget https://download.qt.io/archive/qt/5.1/5.1.1/qt-linux-opensource-5.1.1-x86_64-offline.run --no-check-certificate

chmod 777 qt-linux-opensource-5.1.1-x86_64-offline.run

 ./qt-linux-opensource-5.1.1-x86_64-offline.run

https://download.qt.io/archive/qt/5.1/5.1.1/qt-linux-opensource-5.1.1-x86_64-offline.run
https://download.qt.io/archive/qt/5.1/5.1.1/

9

When prompted by the installer for an install directory, enter:

At the end of installation, the user will be prompted with an interface informing them of success. To check if the user has

installed Qt correctly, the user must execute:

If the returning value contains a version number, the user has installed Qt successfully. If it was not installed successfully,

the user will be shown an error message.

2.1.4 Installation of CTS

To install the CTS, simply extract the archive file (zip or tar.gz) to a folder somewhere where the user has

read/write/executable access.

2.1.4.1 Environment Variables

The user must also setup environment variables to correctly hook in with the proper supporting tools. Ensure the environment

variable “JDK8_HOME” is defined to point to the base directory of the JDK 8 installation. It is recommended to add this to

the user’s permanent environment or via terminal startup script at ~/.bashrc. It must be defined and exported.

Open ~/.bashrc:

To set the correct version of Java, the user must set a JAVA_HOME variable to reflect the version of Java the user is currently

using. The user must set the JAVA_HOME variable to the JDK8_HOME variable anytime they need to run the CTS GUI.

Save, exit the terminal, and start a different terminal. The user will now have Java 8, and Qt5.1.1 as a dependency. To test if

the environment variables were set successfully, the user may execute:

This provides the user with what was set to the specified environment variable.

/opt/Qt5.1.1

qmake --version

sudo nano ~/.bashrc

 export JDK8_HOME=/usr/java/jdk1.8.0_XXX

 export PATH=$PATH:/opt/Qt5.1.1/5.1.1/gcc_64/bin

export JAVA_HOME=$JDK8_HOME

echo $<variable name>

10

2.1.5 Running CTS

The current version of Java in the PATH must be set to Java 8 before running the CTS. Ensure that this setup is correct by

running:

Check that this is a Java 8 version, not the OpenJDK1.8 version. Open JDK is not supported as it does not provide JavaFX,

which the CTS GUI uses. If it is the OpenJDK version (or is not Java 8 at all), execute:

When prompted, enter the number corresponding to the JDK 1.8.

Next, ensure that javac is set to use the Java 8 JDK by executing the following commands:

When prompted, enter the number corresponding to the JDK 1.8.

2.1.5.1 Launching CTS

Navigate to the top-level directory of the CTS installation, and execute:

To produce a verbose output in the execution terminal:

java -version

sudo alternatives --config java

sudo alternatives --config javac

./run_CTS_GUI.py

./run_CTS_GUI.py -v

11

2.2 Installation on Windows (Windows 10)

2.2.1 User Prerequisites

To successfully install the CTS, the user must have administrator and software installation privileges.

Note: These permissions are necessary, as some dependencies are not installed by default. It is acknowledged that the CTS

installation process is not optimized for installation on government machines or on machines that restrict installation.

2.2.2 System Requirements

The minimum requirements for installation of the CTS on Windows are shown below.

Table 2-4. The minimum requirements to run on Windows.

Minimum Requirements

Operating

System

Windows 10

HDD/SDD 25 GB

RAM 8 GB

An Internet connection

The processor and graphics card are not included in Table 2-4, as the CTS is not processor or graphically intensive.

Table 2-5 represents an overview of the prerequisites needed to install and execute the CTS. Please carefully follow the

instructions in “Detailed Instructions for Installing Prerequisites” for installing each.

Table 2-5. The prerequisites needed to install CTS on a Windows system.

System Requirements

Python 2.7 with zlib and setuptools support

Java 1.8 SDK

Any PDF viewer

12

2.2.3 Language-specific Prerequisites

The following section lists dependencies that UoCs written in a specific language require. The installation of each dependency

will be detailed in the “Detailed Instructions for Installing Prerequisites” for the user’s operating system, contained in this

document.

Table 2-6. UoC Testing Dependencies for Windows 10.

Language Language

Dependency

msys2.0 package

C/C++/Ada msys 2.0 mingw-w64-x86_64-toolchain

C/C++/Ada msys 2.0 base-devel

C/C++/Ada msys 2.0 msys2-devel

C/C++/Ada msys 2.0 make

Java Java JDK 1.8

Java Ant 1.9.0 or

higher

Java Qt 5.1.1

The language dependency for C/C++/Ada requires msys2 to install some required software packages. Msys2 is a software

distribution package and building platform for Windows, intended to provide a POSIX compatibility layer that Windows

distributions do not provide. It provides a bash shell and the ability to build native windows applications using the MinGW-

w64 toolchains.

2.2.4 Detailed Instructions for Installing Prerequisites

In the sections below, instructions are provided for obtaining and installing each prerequisite.

It is recommended to install the CTS on a machine with at least the minimum specifications stated in Table 2-4.

2.2.4.1 Java JDK 8

Download or acquire JDK 8 version 151 (“8u151”) from Oracle for Windows 64 bit and run the installer.

https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html

The best way to do this is via a browser, as you need to accept the license agreement. This version is licensed under the

Oracle Binary Code License Agreement.

Next, create a SYSTEM-level environment variable JDK8_HOME set to the folder where you installed JDK8. To do this,

the user must press the start button on their keyboard and type “environment variables.” Select “Edit the system environment

variables.” When the GUI pops up, the user must select “Environment Variables” near the bottom of the GUI.

13

The environment variables button is located after the startup and recovery section. In the Environment Variables interface,

add a “System variable” at the lower half. Select “new”.

Figure 2-1. The system properties interface.

Figure 2-2. The environment variables interface.

14

The user must select the "New" button in the System Variables section in order to add a new system variable.

Finally, the user must set the variable name to ‘JDK8_HOME’ and the variable value to the folder where the user installed

JDK 8 (example: C:\Program Files\Java\jdk1.8.0_151). The user must name the Java variable, "JDK8_HOME." The variable

value is wherever the user installed Java 8.

Figure 2-3. The new system variable interface.

2.2.4.1.1 Using multiple versions of Java

JDK 8 is required to launch the CTS. As there might be multiple installations of different versions of Java on a user’s system,

it is in the user’s best interest to set an interchangeable environment variable on their machine. The manipulation of the

environment variable allows multiple versions of Java to exist together and the user to switch between them. The user must

name the variable, "JAVA_HOME." The variable references another system variable. In this case, Java 8.

Figure 2-4. Input values in the system variable dialogue.

15

Create a SYSTEM level environment variable JAVA_HOME set to the value: %JDK8_HOME%.

Figure 2-5. The environment variables dialogue.

The user must add “%JAVA_HOME%\bin” to the path and move it to the top of the list. The result is listed in Figure 2-6,

and outlined in red.

16

Figure 2-6. The PATH variable dialogue, with the JAVA_HOME environment variable outlined in red.

2.2.4.2 Python 2.7

The CTS backend (conformance tests, logic, etc.) runs Python 2.7, and thus must be installed by the user.

Download and install Python 2.7.x 64 bit for Windows by going to https://www.python.org/downloads/release/python-2715/.

It is recommended to download the installer, rather than install manually.

Navigate to the “Environment Variables” menu, as done for the Java 8 installation. The user must add the Python installation

folder to their SYSTEM environment path variable at the top of the list (ex C:\Python27).

https://www.python.org/downloads/release/python-2715/

17

2.2.4.3 MSYS2 (for C/C++/Ada samples only)

MSYS2 is a development environment that provides better interoperability between Unix-like installations with native

Windows software. The CTS depends on POSIX to process C/C++/Ada applications, and Windows does not include POSIX.

Thus, MSYS2 is required for the CTS to run on a Windows operating system.

If the user is operating a 32-bit architecture, download MSYS2 from https://www.msys2.org/ . Download the “msys2-i686”

executable. If the user is operating a 64-bit architecture, download the “msys-x86_64” executable.

After obtaining the executable, run the executable. Follow the prompts. The installation directory must be “C:\msys64,”

which is the path the CTS looks for when executed.

After installing, open a MSYS2 MINGW 64-bit terminal (or 32-bit, depending on the user’s machine) by pressing the start

key and searching for “mingw.” The application should be at the top of the start menu.

In the terminal, update the package database and core system packages.

If needed, close the terminal and launch the terminal again. The user can finish updating the package database and core

system packages by executing:

Figure 2-7. They Python 2.7 environment variable near the top of the list, with the variable is outlined in red.

pacman -Syu

https://www.msys2.org/

18

If there are additional problems with the initial MSYS2 installation, it is recommended to consult the MSYS2 detailed

installation guide at https://github.com/msys2/msys2/wiki/MSYS2-installation.

Install several additional required packages via pacman:

The user will be prompted to select configuration for the packages that pacman was asked to install. Select “default - install

all,” and confirm with “Y”.

Open file “C:\msys64\msys2_shell.cmd” and edit line “rem set MSYS2_PATH_TYPE=inherit” by removing 'rem', which

will look like the following when done:

The same way that an environment variable was added to the path in Java 8, and Python 2.7 installations, the user must add

MSYS2 to their environment’s path. MSYS2’s environment variable also must be near the top. The user must set both

“C:\msys64\mingw64\bin” and “C:\msys64\usr\bin” as environment variables.

Figure 2-8. The msys64 path declarations, with variables are outlined in red.

pacman -Su

pacman -S mingw-w64-x86_64-toolchain base-devel msys2-devel make

set MSYS2_PATH_TYPE=inherit

https://github.com/msys2/msys2/wiki/MSYS2-installation

19

2.2.4.4 Ant 1.9.x

Download the binary installer for Apache Ant 1.9.x from the Apache website:

https://ant.apache.org/bindownload.cgi

Extract the binary zip file contents to “C:\Program Files\”. This should create a folder such as “C:\Program Files\apache-ant-

1.9.9” (depending on exact version of 1.9.x that is downloaded). Ant is precompiled, and no installer needs to be run to have

Ant properly work.

Next, the user must create a SYSTEM level environment variable ANT_HOME set to the folder where the user installed Ant

1.9.9 (example: C:\Program Files\apache-ant-1.9.9).

Figure 2-9. Ant environment variable.

20

Finally, the user must add “%ANT_HOME%” and “%ANT_HOME\bin% to their SYSTEM-level PATH variable, near the

top.

2.2.4.5 Qt 5.1.1

Obtain the Qt 5.1.1 installer from the Qt website:

http://download.qt.io/archive/qt/5.1/5.1.1/

Download the offline Windows installer:

qt-windows-opensource-5.1.1-msvc2010-x86-offline.exe

Open the installer and follow the prompts and select all default settings.

2.2.5 Installation of CTS

To install the CTS, extract the distributable archive to a folder on the user computer. It is recommended to use the location

“C:\CTS\conformancetestsuite” or another short path on the main drive. Do not use a directory under C:\Users\ or on the

desktop. Windows path length limits will cause errors with the CTS.

2.2.5.1 Installation Variance for Windows Cygwin/GCC Toolchains

To test an Operating System Segment UoC that provides a Cygwin GCC C/C++ toolchain hosted on Windows for

conformance please use the installation variance as described below.

1. Remove MSYS2 from the PATH environment variable.

Figure 2-10. Pointing the system path to the relevant Ant directories, with the variables are outlined in red.

21

• C:\msys64\mingw64\bin

• C:\msys64\usr\bin

2. Add Cygwin as bundled in the product to the PATH environment variable.

• %CYGHOME%\bin, where %CYGHOME% is the full path to the root Cygwin directory.

Start CTS from the command line, rather than the installed desktop icon that invokes an MSYS2 shell script. The

instructions are documented in Test Suite Command Line Options section of this document.

2.2.5.2 Launching CTS

The user can start the CTS by running the run_CTS_GUI.py script in the root directory of their installation of the CTS from

the command line.

This will launch the conformance main menu as shown in Figure 2-11.

python run_CTS_GUI.py

Figure 2-11. The CTS home screen.

22

3 Building the Sample Projects and Toolchains

Optionally, the user may generate CTS-provided sample projects and generate toolchain files using an included python script.

These must be generated using the testUtility.py script, found in the [root directory of CTS]/sample directory.

Sample projects and toolchains are provided for each FACE segment.

• For TSS segments, the UoC name is assumed to be "UOPName."

• For IOSS segments, the UoC name is assumed to be "UOPName."

• For PCS, the UoP name is taken from the sample data model and is set to "UoP1"

• For PSSS, the UoP name is "UoP2" (also per the sample data model).

Folders under the 'sample' directory are as follows:

• projects - contains sample projects for all languages.

• toolchains - sample toolchains.

• datamodels - sample data model used by sample projects.

3.1 Build Flags

Generating all samples at once may not be feasible for the user. Luckily, the testUtility.py script allows for flags that delimit

sample generation based on language, profile, FACE segment, and others.

To avoid longer build times, it is recommended that the user may want to set their build flags to build one language at a time

(“-c”, “-p”, “-a”, and “-j”).

Table 3-1. A list of all possible flags in executing the testUtility.py script.

Flag Usage

-h, --help Shows the help message and lists all possible flags.

-w, --windows Running this script on Windows

-a, --ada Enables Ada

-c, --c Enable C

-p, --cpp Enable C++

-j, --java Enable Java

-y, --pcs Generate PCS Test

-s, --psss Generate PSSS Test

23

Flag Usage

-t, --tss Generate TSS Test

-i, --ios Generate IOSS Test

-o, --oss Generate OSS Test

--general Generate General Purpose OS Segment Profile

--safety_base Generate Safety Base OS Segment Profile

--safety_ext Generate Safety Extended OS Segment Profile

--security Generate Security OS Segment Profile

-e, --projects Generate project (PCFG) files from all PCFG templates found in each language directory

-l, --toolchains Generate toolchain files and generate toolchain-related files from all TCFG templates found in

each language directory

-g, --build_gsls Build all GSLs (Gold Standard Libraries) for each enabled language into build_GSL subdir of

tests/uops/[lang] (only necessary for running OSS project files which reference the GSLs in this

directory)

-u, --build_uocs Build UoPs/UoCs for each enabled language

-r, --run Run all project (PCFG) files in each language directory

-q, --quick Run steps --projects, --build_uocs, and --run for enabled languages

-n, --gen_only Runs steps --projects, --toolchains, --build_gsls, and --build_uocs for enabled languages

These flags may be mixed and matched. For example, if the user chooses to generate only C/C++ and profiles

General/Security the user can use this command to build C/C++ samples and generated files for the profiles General/Security

samples:

3.2 Linux generation

Navigate to the top-level directory of CTS. Then, navigate to the “sample” subdirectory:

python testUtility.py --gen_only -cp --general --security

cd sample

24

If the user chooses to generate sample tests for all provided languages (C, C++, Ada, and Java) they can use this command

to generate all samples project configuration files, toolchain configuration files, gold standard libraries, and build the

generated UoCs:

Note: Users should expected longer time to generate all the possible project & toolchain configurations.

3.3 Windows generation

Set the JAVA_HOME variable to JDK 8 in order to be able to build the Java sample projects.

 (This is not required if only the C/C++/Ada samples will be generated).

IMPORTANT: Open a Windows command prompt. All sample generation must be in the Windows command prompt.

Navigate to the top-level directory of CTS. Then, navigate to the “sample” subdirectory:

If the user chooses to generate sample tests for all provided languages (C, C++, Ada, and Java) they can use this command

to build all samples and generated files for the samples:

WARNING: Generating all sample project and toolchain configurations will take a long time (about 2.5 hours). The user

should use at their own discretion.

A successful generation of the samples will result in no errors from the generation logs and populated folders under the

'sample' directory:

• projects - contains sample projects for all languages. Source code for C/C++/Ada is stored alongside the project.

• toolchains - sample toolchains.

• datamodels - sample data model used by sample projects.

Note: The testUtility.py script generates project files for the CTS (files with extension .pcfg) from templates. These templates are not

native CTS projects. They are used only for the sample projects, since the project file requires an absolute path as the base directory for

the project. The testUtility.py script generates the project files using the user’s system's path to the CTS. The template files (files with

extension .pcfgtemplate) are not complete CTS files and cannot be opened with the CTS GUI.

The samples provided are configured for a GCC / GNAT based toolchain. In order to use a different toolchain, modify

toolchain configuration template file (files with extension .tcfgtemplate) for the desired language with a text editor. Then, re-

run testUtility.py with “-e -l” flags to regenerate the toolchain configurations:

On Windows:

python testUtility.py --gen_only

export JAVA_HOME=$JDK8_HOME

cd C:\CTS\conformancetestsuite\sample

python testUtility.py --gen_only

25

On Linux:

There are some sample OSS projects that are included with Linux but are not included with the Windows distribution. This

difference is some of the sample OSS projects (C and C++) for Windows fails due to MINGW not being FACE conformant.

3.3.1 Regarding Failing Test Results and Shared Data Model

Part of the full conformance test is a test of the data model provided by the project, where applicable. Part of the data model

test involves testing of the SDM, which is not included in the CTS distribution. Therefore, for all sample projects, the USM

is used for both the USM and SDM. Because of this, the SDM portion of the data model test will fail. Since the data model

test fails, the overall test result is marked as failed in the test report and the CTS. However, if the user examines the report,

they can that see the rest of the test results are shown separately as PASS.

For the sample projects, the expected result is PASS for all sample projects except for the C_OSS_POSIX.pcfg and

CPP_OSS_CPP03.pcfg tests on Linux and all the C and C++ OSS tests on Windows. (This is because both Linux and

Windows are not FACE Conformant).

python2 testUtility.py --gen_only -e -l

python testUtility.py --gen_only -e -l

26

4 Theory of Operation

For C, C++, and Ada code, conformance is determined by integrating targeted testing code with corresponding conformant

test code. User applications will be linked with FACE test interfaces. Customer interface libraries will be linked against by

FACE test applications. The test interfaces provide all possible function calls, data types, and constants available to the

customer code. The test applications utilize all possible function calls, data types, and constants that should exist in the

customer code. The test applications are compiled using the customer's header files or spec files (for C/C++/Ada) and then

linked against both the customer's code and the test libraries that contain the function calls, data types, and constants allowed

by the FACE Technical Standard for a given OS Profile. If the compile and link pass, the customer code is conformant with

respect to the requirements tested. If the compile or link fail, the customer code is not conformant. Errors are included in the

test output.

Figure 4-1. Linked source code interfaces matching and not matching the FACE Technical Standard.

The test only determines conformance with respect to function signature. The test neither proves nor disproves correctness

of functionality. Additionally, for testing the existence of abstract interfaces, the test does not determine if the customer code

implements the interface, only that the abstract interface is defined correctly in the customer's headers or spec files. For

testing existence of non-abstract interfaces, the test determines if the interface is defined in the customer code. For testing

use of non-abstract interfaces, the test determines if the interface used by the supplier's code is an allowed interface. It will

only pass if that interface is allowed either as an interface defined by the FACE Technical Standard, or allowed per the FACE

OS Profile.

4.1 Introduction to Methodology

Two methods of performing the link test exist. One uses the target linker. The other uses the host linker. The target linker is

the linker used to produce an executable targeting the embedded system. The host linker is the linker used to produce an

executable targeting the development system where the CTS runs. Each method has its own advantages.

The target linker method is advantageous in that a project's existing build infrastructure can be reused during conformance

testing. Additionally, any conditionally compiled code based on hardware architecture which is reflected in the compiler and

27

linker will be included in the conformance testing. The disadvantage is that conformance testing authority must know the

details of the target linker.

The host linker is advantageous in that its usage details are preselected in the conformance tool. Its disadvantage is that

conditionally compiled code based on hardware architecture which is reflected in the compiler and linker may not be included

in conformance testing. Additionally, the project's build infrastructure would need to be modified to make use of the host

compiler and linker.

4.2 Target Linker Method

If the user chooses the target linker method, they must provide the conformance tool details about their build tools. The user

must provide the path to and name of the compiler, linker, and archiver for their build tools. Additionally, the user must

provide compiler flags, linker flags, and archiver flags to provide correct behavior. The flags must instruct the tools to ignore

any system included code such as standard headers and libraries. The flags must also select the correct target language

standard. Table 4-1, Table 4-2, and Table 4-3 provide the minimum set of equivalences the user must provide. These should

be added when using the target linker method.

Table 4-1 contains flags that are used to let the compiler know what language to compile.

Table 4-1. Language standard that the CTS supports for a specific language.

Language ISO Language Standard GNU Tools Example

C ISO C 1999 -std=c99

Figure 4-2. The target linker GUI, found in the Toolchain Configuration Builder’s Tools tab.

28

C++ ISO C++ 2003 -std-c++03 (or c++0x on some compilers)

Ada ISO Ada 1995 -std=-gnat95

Ada ISO Ada 2012 -std=-gnat12

Table 4-2. Compiler flags for Non-OSS tests.

Purpose Flag

disable bundled headers -nostdinc (or -nostdinc++)

disable built-in functions -fno-builtin

Table 4-3. Linker flags for Non-OSS tests.

Purpose Flag

disable Built-in Libraries -nodefaultlibs -nostartfiles

4.3 Host Linker Method

If the user chooses the host linker method, they must alter their project's build system to use the host's build tools and

recompile. The user must be mindful of any conditionally compiled code based on architecture or compiler.

4.4 Additional Methodology Information

When the user builds their project, they must alter their compiler flags to include the conformance tool's Gold Standard

Libraries (GSL) directory for IOSS, TSS, and OSS headers. Details on how to achieve this is described above in the Target

Linker Method section.

4.4.1 OSS Testing Methodology

Unlike the other segments, to test the OSS using CTS, the system libraries and include files will need to be used.

The user will want to specify the language standard, but they will not want to disable the headers and built in functions and

libraries. The user will also need to specify the location of include files and libraries to be used in the system test, either by

compiler and linker option flags, or by selecting include paths and libraries via the configuration GUI as described in the

Testing an Operating System (OSS) Segment section below.

4.4.2 Java Testing Methodology

The Java testing methodology differs greatly from the methodology for C, C++, and Ada. This is due to the standardized data

format of Java's .class files allowing these files to be universally queried for information.

PCS and PSS segment class files are queried for their dependencies such as any classes, methods, or fields necessary to

execute. These dependencies are compared against a white list as defined by the standard. Violations are reported as errors.

OSS, TSS, and IOSS segment class files are queried for their capabilities such as classes, methods, and fields as well as

attributes for each. These are compared against a minimum list as defined by the standard. Any omissions or incorrect

definitions are reported as errors. Additionally, native methods are flagged as warnings to inspect.

29

5 Toolchain Configuration Files

5.1 Introduction

A toolchain configuration file (TCFG, .tcfg, toolchain file, toolchain) contains information to configure and compile CTS-

test objects. A toolchain configuration file also contains information about how to link with a user supplied UoC, given the

UoC target environment. This information provides an environment where the CTS can configure the correct environment to

use information stored in the Project Configuration file. The toolchain configuration file ending is .tcfg.

Toolchain configuration files are generated with string template (http://www.stringtemplate.org/), a freely available template

library for generating source code.

5.2 Toolchain Files List

The Toolchain Files List can be accessed by selecting the File > Toolchains option from the navigation bar.

Figure 5-1. The Toolchain Files List.

The following options are available either by default or when the user selects a toolchain from the list view:

• New – Opens the toolchain editor for creation of a new toolchain from scratch.

• Import – Provides a file browser dialog to allow the user to find and select one or more existing toolchain file(s)

and allow it to be copied to the “Toolchain Files Directory” displayed above the list view. (Note that this option

is different from the Project Files List's Import function because the user is making a copy of an existing toolchain

from another location to the working directory location. If the user intends on modifying a toolchain that is not

located in the working toolchain directory, then it is best to change the working toolchain directory to be that of

the directory from which the toolchain resides in.)

• Open – Opens the currently selected toolchain from the list view into the toolchain editor.

http://www.stringtemplate.org/

30

• Remove – Removes the currently selected toolchain from the list view. (Note that this option does not delete the

toolchain, but removes it from the list view only.)

• Clone – Creates a copy of the currently selected toolchain and saves it to the “Toolchain Files Directory”.

• Change – This opens a directory browser dialog to allow the user to change the directory to search for and display

all available toolchains in this toolchain list view.

Further, the user may define a “Toolchain Files Directory”, a directory for the CTS to detect TCFG files to automatically

import into the toolchain file list.

5.3 Building a Toolchain File

The subsequent sections detail how to build a toolchain file and what each toolchain option means. To begin, the user must

click the "Create a Toolchain Configuration" button on the home page of the GUI.

5.3.1 General Tab

The user must select the programming language the UoCs this toolchain are targeted towards. The language must be the same

as the candidate UoC(’s) language it was programmed in.

Next, the user must select the type of segment that the toolchain utilized by. The user must select either

“IOSS/PCS/PSSS/TSS” or “OSS”, as the process for testing for conformance for OSS segments are different.

Figure 5-2. The Toolchain Configuration Builder with the General tab selected.

31

The user must then define the OSS profile(s) that the candidate UoC(s) satisfy. There may be more than one profile that is

supported by a UoC, and the user must select all that are applicable.

The “PATH addition” section allows the user to include any libraries a UoC may need while being built or archived. The

user may add file paths that include these library locations. For example, on Linux-based systems if the user has installed

gcc, including “/usr/bin”, it is required to allow the toolchain to recognize the path of the compiler.

The “Environment Variables Additions” section allows the user to define an environment variable name and value. In the

sample projects that are generated by the CTS, the environment variables are “dummy” and “hello” with values “123” and “

world,” respectively.

5.3.2 File Extensions Tab

Figure 5-3. The Toolchain Configuration Builder with the File Extensions tab selected.

The user must define each of the file extensions that their UoC(s) use:

• Choose the extension of the header/source files.

o The extension should be the extension used by the programming language that the segment uses.

• The user may choose the extension used for object files and libraries by the compiler

32

The user may choose to include the extension used for executable files by the compiler. (Leave blank for no

extension.)

5.3.3 Tools Tab

Figure 5-4. The Toolchain Configuration Builder with the Tools tab selected.

The user has a choice on which compiler they want to use to test their UoC(s), which must be defined in the toolchain

configuration file.

The “Compiler” section allows for the user to define the compiler executable needed to invoke the compiler to build, execute,

and archive. As stated in the “Theory of Operation” section, the user has an option on how they want their UoC tested, as

defined in “Target Linker Method” and “Host Linker Method” sections. According to their choice, the user might define the

toolchain configuration file differently.

The user must first define the compiler executable in the “Executable” field. It is recommended to specify the exact compiler,

not the compiler collection if possible (i.e. g++ over gcc, if constructing a toolchain for C++). Further, the user may click the

ellipsis button on the right of the Executable field to provide an absolute path to the compiler.

33

There are also fields to define processor-specific flags and an output flags that a UoC might need to successfully compile,

execute, and archive located below the “Executable” field as shown in Figure 5-4.

Note: For Ada segments, the user can choose a binder to use during the build procedure.

Note: If the user is using a sample toolchain, the symbol "FACE_GENERAL_PURPOSE_PROFILE" is defined as a flag. This flag is

used by the compiler specific "allowed definitions" code and must be set if using these toolchains. More information about “allowed

definitions” is contained in Section 5.3.4.

As a part of the compilation process, UoCs may have external libraries linked to it. The “Linker” section provides an area

where the user may use the “Executable” field to produce the linking executable or use the ellipsis button to define an absolute

path. The CTS also provides a field to define processor specific flags, an output flag, and specific library paths to be included

in the linking process.

The “Archiver” section allows the user to define an archiver executable to create, modify, or extract code from archives. The

CTS provides fields to provide flags to customize exactly how the user’s UoC will be archived, as shown in Figure 5-5.

Finally, the user must add a toolchain template file (with file extension .stg) by clicking the ellipsis button. The toolchain

template files contain templates that are used to format toolchain-related commands for compilers.

After selecting the template and defining the various toolchain commands/flags above, the user may click the refresh button

next to the “Template Output” header in Figure 5-6 to show the example commands the CTS will use based on the commands

the user has configured and the selected template.

Figure 5-5. The Toolchain Configuration Builder with the Tools tab selected.

34

Note: Without the toolchain template file, the toolchain will be invalid. Toolchain templates for each FACE supported language can be

found in the datafiles/stringtemplate folder of the CTS.

5.3.4 Compiler Specific Tab

There is compiler specific information that will be needed to conduct conformance tests. The “Compiler Specific” tab allows

the user to further define compiler parameters needed to successfully test a UoC within the CTS. This information is stored

in the compilerSpecific subdirectory.

Figure 5-6. The Toolchain Configuration Builder with the Tools tab selected.

35

Figure 5-7. The Toolchain Configuration Builder, with the Compiler Specific tab selected.

For C and C++ testing, the exact size types must be configured according to the user’s target OS. This is done through the

Compiler Specific section on Figure 5-7. The user must consult their compiler’s system definitions to get the operating

system’s defined intrinsic types. The user must then add the intrinsic types in their respective fields to create a typedef

mapping between the intrinsic type and FACE exact type needed for testing.

Note: Mapping exact types is not required if the toolchain is intended for Ada or Java.

36

Table 5-1. The list of intrinsic types that map to FACE’s exact types.

Exact Type Description

FACE_int8_t 8-bit signed integer

FACE_int16_t 16-bit signed integer

FACE_int32_t 32-bit signed integer

FACE_int64_t 64-bit signed integer

FACE_uint8_t 8-bit unsigned integer

FACE_uint16_t 16-bit unsigned integer

FACE_uint32_t 32-bit unsigned integer

FACE_uint64_t 64-bit unsigned integer

FACE_size_t Unsigned integer type of the result of sizeof()

In the “NULL Definition” section, the user must define what NULL means for their target operating system, as compilers

may define NULL differently. The NULL type must be configured according to the system-defined value for “NULL”. This

may be done by entering the null TYPES in the null definition, as shown in Figure 5-8.

37

Figure 5-8. The Toolchain Configuration Builder with the Compiler Specific tab selected.

The user may add allowed definitions in the “Allowed Definitions” section, shown in Figure 5-9. By adding an allowed

definition, the user lets the compiler know what the UoC uses outside of the OSS’s boundaries. By default, an allowed

definition must define an entry point. For example, if the UoC the toolchain is intended for is an IOSS or TSS, the user must

define device driver calls as an allowed definition. Furthermore, there may also be compiler specific built-in

functions/methods that cause linker errors even when compiling and linking against the OS GSL (i.e. __main,

__stack_chk_fail) that the user must add as an allowed definition. When a UoC is compiled and linked, the allowed definitions

must be included.

To write an allowed definition, the user needs to add a function stub and a simple function body, since these conformance

test objects are never actually executed. This allows for the link test to return with errors. An example of an allowed definition

is shown in Figure 5-9. The compiler specific source file is also included in the conformance report to show any functions

that were used. Compiler specific methods must be reported to the Verification Authority (VA) (and are included in the CTS

results).

There may be valid graphics related calls that are not called out specifically in the Technical Standard. If the user is creating

a UoC with a graphical component, the user must utilize the “OpenGL Definition” section by checking the “OpenGL”

checkbox. Then, the user must select what version(s) of OpenGL they are using and link the EGL API, GL2 API, and KHR

API platform header files. These headers define specific function declarations and type definitions for the CTS’s use for

testing graphical interfaces within the UoC(s).

To add an allowed definition, the user must click the “+” button on the left of the allowed definitions pane. When the "+" is

pressed, the user can write definitions directly within the CTS. The user must add the code to the header and source tabs by

editing the text area.

38

Figure 5-9. The Allowed Definition editor.

5.3.5 Notes Tab

The user has the ability, if needed, to take unique notes on a certain toolchain. This allows the user to quickly notate specific

functionality that the toolchain contains and is shown to the user on the main “Toolchain File List” interface, in the far-right

column.

Figure 5-10. The Project Configuration Builder, with the Notes tab selected.

39

6 Project Configuration Files

The project configuration file contains all UoC object paths, dependencies, and settings in order to accurately test a UoC for

conformance within the CTS. By defining a project configuration file within the CTS, a .pcfg file is created with the user’s

selected options. This .pcfg file is used by other tools contained in the CTS to test a UoC for conformance.

Figure 6-1. The Project Files List.

The Project Files List can be accessed by selecting the File from the navigation bar, and “Projects” from the dropdown. This

view represents a working sandbox view of project files that have been created or recently edited. Selecting a project from

this list view will provide access to the following options:

• New – Opens a new file dialog to create an empty project from scratch.

• Import – Provides a file browser dialog to allow the user to find an existing project file and allow it to be added

to the list view.

• Open – Opens the currently selected project from the list view.

40

• Remove – Removes the currently selected project from the list view. (Note that this option does not delete the

project but removes it from the list view only)

• Clone – Creates a copy of the currently selected project and saves it at the same location as the original

• Test Project – Executes the test procedure on the currently selected project.

6.1 Project Configuration Builder Interface

The following subsections detail each option available to the user in the Project Configuration builder. Sections 7.2 and 7.3

explain how to set the project configuration file for a specific UoC type (PCS, PSSS, TSS, IOSS, and OSS) through the CTS.

Unlike toolchain configuration files, one project configuration file is defined for every FACE UoC.

Upon opening a project configuration file within the CTS, the user will see the Project Configuration Builder interface.

6.1.1 General Tab

Figure 6-2. The Project Configuration Builder with the General tab selected.

For project configuration files to construct file paths, the user must define a base directory in the “Base Directory” field. All

files that are then selected within the project configuration file containing a relative path to the absolute file, based on this

base directory. For example, if the user declared their base directory to be “/home/user/CTS,” and decided wanted to select

a toolchain file located at /home/user/CTS/test-toolchain.tcfg, the toolchain path will be just “test-toolchain.tcfg.”

41

The user must then select the FACE UoC segment the UoC is, the language the UoC is programmed in, and OSS profile that

the UoC reflects.

In FACE UoC development, the type of partition must be defined. The user must select a type of partition the UoC will

execute from. There are options for POSIX, ARINC653, and POSIX ARINC653.

• ARINC 653: For an OSS UoC providing ARINC 653 APIs, this indicates the UoC provides all the required

ARINC 653 APIs for the selected profile in the FACE Technical Standard 3.1 (further inputs are required in the

Objects/Libraries tab as described later). For all other UoCs, this indicates the UoC may use any of those ARINC

653 APIs provided by another OSS UoC as required by the standard.

• POSIX: For an OSS UoC providing POSIX APIs, this indicates the UoC provides all the required POSIX APIs

for the selected profile in the FACE Technical Standard 3.1 (further inputs are required in the Objects/Libraries

tab as described later). For all other UoCs, this indicates the UoC may use any of those POSIX APIs provided by

another OSS UoC as required by the standard.

• POSIX ARINC 653: For an OSS UoC providing POSIX and ARINC 653 APIs, this indicates the UoC provides

all the required POSIX APIs for the selected profile in the FACE Technical Standard 3.1, and the subset of

required ARINC 653 APIs that an OSS UoC in a POSIX environment can provide as defined in the FACE

Technical Standard, Edition 3.1 (further inputs are required in the Objects/Libraries tab as described later). For

all other UoCs, this indicates the UoC may use any of those POSIX APIs or the subset of ARINC 653 APIs

provided by another OSS UoC in a POSIX environment as required by the standard.

If the user’s UoC uses the multi-process APIs provided by the FACE OSS profile, the user must check “Multi Process APIs.”

If the user has selected ARINC653 or POSIX ARINC653 as their target partition type, the “ARINC653 Part 1 Version”

section will be available for selection. This defines which ARINC 653 partition version the UoC is targeted towards.

The user has the option to select what OpenGL APIs the UoC uses, if at all.

Finally, the user must input the toolchain configuration file the candidate UoC must be compiled with (Section 5 contains

more information about toolchain configuration files), and a UoP name. For PCS and PSSS UoCs, this name must match the

name given to it in the data model they will be using.

42

6.1.2 Data Model Tab

Figure 6-3. The Project Configuration Builder with the Data Model tab selected.

The Data Model tab allows the user to provide the location of the SDM and USM. The ellipses buttons at the right of each

input field allows the user to provide an absolute path via file dialogue.

In case the user decided to define every entity as unique in their USM, they must check “Entity Uniqueness” under the USM

field. If the user decided to define every observable as unique in the USM, they must check “Observable Uniqueness” under

the USM field.

Finally, the user may select what UoP model corresponds to the UoC under test. The dropdown list will be automatically

populated when a valid USM is entered in the USM field. Once a UoP model is selected, the “Associated Views” section

will automatically populate with the relevant views for that UoC.

6.1.3 Gold Standard Libraries Tab

The GSL tab allows the user to specify the location the GSLs will be generated.

43

Figure 6-4. The Project Configuration Builder with the Gold Standard Libraries tab selected.

The user must use the ellipses button on the right of the “GSL Directory” field to select a path for the GSLs to be generated.

6.1.4 Objects/Libraries Tab

The Object/Libraries tab allows the user to define a UoC’s dependencies, either object file or source code location, and select

the FACE Interfaces that a candidate UoC uses/provides.

44

Figure 6-5. The Project Configuration Builder with the Objects/Libraries tab selected.

The CTS has no knowledge of how the object files ‘include’ a header, so the user must define all locations that an invoked

header is used from. In the VA process, the user must supply these headers to the VA along with the respective file structure

as defined in the project configuration file.

The user must supply both the paths of the directories and the absolute path of the files that must be included for the UoC.

45

Figure 6-6. The Project Configuration Builder with the Objects/Libraries tab selected.

As per Section 4.2, the user may provide object files for conformance testing. In the “Provide Segment Objects/Libraries”

section, the user may select the object files for the UoC under test. This section of the Objects/Libraries interface is shown in

Figure 6-6. Alternately, the user may choose to provide source files to generate Objects/Libraries from source as explained

in Section 4.3. The section that allows the user to define the location of their source files is show in Figure 6-7.

Figure 6-7. The Project Configuration Builder with the Objects/Libraries tab selected.

46

Figure 6-8. The Project Configuration Builder with the Objects/Libraries tab selected.

The user must specify the absolute path of their concrete implementation of Factory Functions for their UoC. More

information about Factory Functions and how the user creates a Factory Functions for specific UoC types can be found in

Sections 7.2.1.3 and 7.3.2.1.2.

The user must select any interfaces used in the candidate UoC. It is important to note that there is a difference between a

“provided” interface and a “used” interface. If the user provides a “used” interface, the user must supply an injectable for that

interface.

The section to define Life Cycle Management (LCM) interface implementations are shown in Figure 6-8. If the user supplies

an LCM Stateful interface, for PCS/PSSS UoCs, the associated datatypes must be modeled in the USM. The CTS will pull

those in order to generate the Stateful interface. For TSS and IOSS UoCs, since USM is not required, the user must give the

CTS information on the LCM Stateful interface via the “Reported Type Name” field, “Reported Type Data Model Name”

field, “Request Type Name” field, and the “Request Type Data Model Name” field. Each of the Stateful interfaces provides

a mechanism to transition a UoC between states. However, the Reported and Requested types are typically a different list of

potential states, thus resulting in two different enumerated datatypes. The Reported state includes all potential states that a

UoC can be in. The Requested state includes the states that an external agent can request a state change to.

The section to define used FACE Interfaces is shown in Figure 6-9. For used Stateful interfaces, the user must provide the

interfaces that the UoC is going to use to transition another UoC.

The section to define used LCM Stateful interfaces is shown in

Figure 6-10. Here, the user must provide the interfaces that the UoC is going to use to transition another UoC.

47

Figure 6-9. The Project Configuration Builder with the Objects/Libraries tab selected.

Figure 6-10. The Project Configuration Builder with the Objects/Libraries tab selected.

6.1.5 Notes Tab

The user may add notes to uniquely identify a certain project configuration. Anything the user writes will show in the Project

File List for quick selection.

48

Figure 6-11. The Project Configuration Builder with the Notes tab selected.

6.1.6 Project Info Tab

Figure 6-12. The Project Configuration Builder with the Project Info tab selected.

49

The Project Info tab provides information about the project configuration file that has been defined in other sections of the

Project Configuration Builder. The user cannot edit any of these sections, rather, they may edit other sections. Changes in

other sections are reflected in the overall project. Figure 6-12 shows the Project Info tab for the Project Configuration Builder

that does not have any options selected, and thus does not have any project information except the detected OS version.

50

7 Testing a UoC

7.1 Overview

The user must provide the following inputs to the CTS:

• The project's object files (C/C++/Ada) or class/jar files (Java). Alternatively, source files can be provided, and the

CTS will build them into object or class files using the toolchain configuration.

• The project's header files (C/C++) or spec files (Ada).

• The project's USM.

• The project's toolchain file.

7.2 Testing a PCS, TSS, PSSS, or IOSS UoC

The following subsections use PCS UoC test as an example to detail the steps on how to test a UoC.

7.2.1 Test Procedures

The following subsections will provide instructions to successfully generate a valid project configuration file for a PCS UoC.

More information about each option is found in the subsections of Section 6.1.

7.2.1.1 Providing Project Context

• Successfully install the CTS.

• Import or create The Project Configuration file.

• Navigate to the project configuration builder.

• Fill in all options for

o Base Directory

o Select “PCS” as segment

o The Language the candidate UoC was written in

o The OSS profile the candidate UoC was intended

o The partition type the UoC was intended

▪ Enable POSIX multi process APIs if required

▪ If ARINC653 or POSIX ARINC653 was selected for partition type, select what ARINC653 version

is required

o If the UoC contains graphics API calls, select from the OpenGL dropdown

o Add the targeted toolchain path

o Set the UoP name

• Select the Data Model tab to display the data model information below.

o Set the path to the SDM and USM. This directory is relative to the base directory set in the General tab.

• Select the Gold Standard Libraries tab to display the options below.

o Set the directory where the GSLwill be generated and stored for the test. This directory is relative to the base

directory set in the General tab.

• Select the Objects/Libraries tab to display the portable components information options shown below. For C/C++

projects, use the list boxes to add the include files and include paths (if applicable) for the concrete interface

implementations provided by the UoC. All 'include files' must exist in one of the 'include paths'. Any files included

by the concrete implementation of Factory Functions must exist in one of the Include Paths specified. More details

about Factory Functions are found in Section 7.2.1.3. More information about all options in the Object/Libraries tab

are detailed in Section 6.1.4.

o If the user is providing object files for their UoC (as per Section 4.2), before providing the user’s object or

library files, they must build them against the Gold Standard Library headers. The CTS will generate the

51

FACE headers for any interface the UoC uses so that the user can build their source code against those. Skip

selecting the UoC's object files until the user has generated the GSLs and FACE headers and has built their

UoC code against these headers. Therefore, skip the section on selecting object files for now.

o Scroll down and select any of the FACE Interfaces the UoC implements. If the Life Cycle Management

(LCM) Stateful interface is implemented and the project is an IOSS or TSS project, enter the datamodel

name and datatype name of the reported and request datatype. For PSSS and PCS projects, the datatypes are

defined by the architecture model selected.

o Scroll down and select the FACE Interfaces that are used by the UoC. The UoC must provide an Injectable

interface for each FACE Interface it uses. By specifying the candidate UoC “uses” a given interface, it

indicates that it implements an Injectable Interface for that interface, and this will be tested by the CTS.

o Scroll down and enter the information regarding any FACE Life Cycle Management Stateful interfaces that

are used by the UoC. If none are used, leave this section blank. Multiple Life Cycle Management Stateful

interfaces may be used by a UoC. The required information for each Stateful interface are:

▪ the data model and datatype name of the reported datatype

▪ the data model and datatype name of the request datatype

*Note: For TSS UoCs implementing either the TPM or CSP capabilities and they need to access device drivers,

please ensure that the device driver code is included/added to the compiler specific code section within the toolchain

configuration as calling driver code from TSS TPM or CSPs will need to be inspected.

7.2.1.2 Generating the Gold Standard Libraries

In order to build the user’s source code, the user will need FACE interface headers for any interfaces the UoC uses. For

example, for a PCS the user will need any TSS headers the UoC code uses, as standardized in the FACE Technical Standard.

The CTS will generate these headers for the user. Click the Generate GSLs Button in the upper left corner of the window as

shown below to generate the FACE headers as well as the GSL.

Figure 7-1. The GSL generation button.

If providing objects for the user’s UoC, the user may now build their objects using the FACE headers generated into the GSL

directory’s ‘include/FACE’ subdirectory. Examine the contents of this directory to see the standardized header names of all

non-OSS FACE Interfaces. Note that for C/C++ all FACE headers should be included with the relative path starting from the

FACE directory, for example: "FACE/IOSS/Analog.hpp" The include directories to be used are described in a generated

README file in the GSL directory. OSS include directories are listed and are in specific subfolders of the CTS folder

goldStandardLibraries. When the user builds their object code for a UoC, the user will need to include these subfolders and

include any FACE headers as "FACE/[name of header file]". (Note that the headers in this subdirectory are deleted each time the

test is run, so do not store any project files in this directory.)

52

The GSL libraries will be generated into the GSL Directory. The user may wish to use the GSLs during development to check

that their code builds against them, but there is no need to include them in their CTS project. The CTS will rebuild the

appropriate GSLs when the user runs the conformance test and links them as part of the test.

In the “Provide Segment Objects/Libraries” section of the Objects/Libraries tab, the user must enter the full pathnames of the

project's object and/or library files. The user may add each object file. The user may also choose the directory where object

files are located. All object files in the directory specified as well as object files in subdirectories will be chosen. A

combination of directories and object/library files may be specified.

Figure 7-2. The Project Configuration Builder, with the Objects/Libraries tab selected.

7.2.1.3 Factory Functions

FACE Interfaces, including Injectable Interfaces, are empty declarations. In order to properly test the user’s code against the

FACE CTS, the user must provide a file that contains a concrete implementation for each interface needed for the UoC

provided. This is called a “Factory Function.”

Note: Once the user creates their Factory Function declaration and the user runs the conformance test, a test file declares a pointer to a

FACE interface. Then, the CTS instantiates it by calling the Factory Function implementation that the user provided. Once instantiation

is complete, it calls each method defined in the interface to ensure complete adherence to the interface.

53

7.2.1.3.1 Generation

To determine which factory functions are necessary, the user must generate the GSL for their project. After generation, the

user must find a generated header/spec file named, “CTS_Factory_Functions” in the generated subfolder 'build/GSL/include',

which will contain required interfaces.

7.2.1.3.2 Providing a Factory Function Implementation

The user must take note of the “CTS_Factory_Functions” file that was generated by the GSLs. The user must provide a file

that implements each of these functions. The following paragraphs detail what the user must do per each language the user’s

UoC implements.

For C/C++, this file (CTS_Factory_Functions .h or .hpp) will contain the declarations of all expected factory functions that

the CTS requires for testing the user’s UoC. The implementation for each function must instantiate the corresponding concrete

class and return a pointer to that object (the return type will be a pointer to the FACE ‘abstract’ class). Returning a null pointer

is not acceptable. This source file must be provided with the user’s project and will be reviewed to ensure it instantiates the

user’s UoC's concrete class for that interface.

For Ada, this will generate a spec file (.ads) cts_factory_functions.ads which has the procedures the user must implement in

the source file. The source file for Ada must be named "cts_factory_functions.adb" and implement each of these procedures,

returning a concrete version of each type as an access type. In the text field labeled "Source file with factory functions for

interfaces provided (C/C++/Ada only)", use the '...' button to the right to browse for the source file. Any header files included

by the source file must exist in one of the Include Paths specified above.

For Java, a source file named CTS_Factory_Functions.java will be generated in the factory/ subfolder (package subfolder).

The user must fill in the implementation of each function, add any imports, and add this to the user’s project in the CTS in

this file field. Note that this file will NOT be overwritten so if the interfaces the UoC uses have changed, the user must delete

their file in order to regenerate a new one with the new set of functions to implement.

7.2.1.4 Validating and Testing a Project

1. Select to verify that the Project Configuration File is valid.

2. Click the button at the top of the screen to test the segment. (This may take a few minutes). The

results will be written to a PDF file. The directory of the results file will be in the directory of the project configuration

file. This directory path will be listed in the "Output File Location" of the Conformance Test Results page.

54

7.3 Testing an Operating System (OSS) UoC

The following subsections will detail how to test an OSS with the CTS.

7.3.1 What the User Must Provide

• The OS's include path.

• The target OS object files.

Figure 7-3. The Project Configuration Builder with the General tab selected.

7.3.2 Test Procedures

7.3.2.1 Providing Project Context

• Successfully install the CTS.

• Import or create the project configuration file.

• Navigate to the project configuration builder.

• Select the Gold Standard Libraries tab to display the options below.

55

Figure 7-4. The Project Configuration Builder with the Gold Standard Libraries tab selected.

• Set the directory where the GSL will be generated and stored for the test. This directory is relative to the base

directory set in the General tab.

• Select the Objects/Libraries tab.

a The user must check each OS API they wish to test. Notice their options are now editable.

b For each OS API under test, place any specific compiler flags that are needed. General compiler flags can

be specified under the Build tab. These flags should be unique to the OS API under test.

c For each OS API under test, place any specific linker flags that are needed. General linker flags can be

specified under the Build tab. These flags should be unique to the OS API under test.

d For each OS API under test, enter any directories that should be in the include path for each OS API interface.

e For each OS API under test, enter the full pathnames to any header files associated with the interface. These

files must be in one of the directories specified under 'compiler paths' (include paths). Any files included by the

Factory Functions (see next few steps in this tutorial) must exist in one of the Include Paths specified.

56

Figure 7-5. The Project Configuration Builder with the Objects/Libraries tab selected.

Table 7-1. OSS Tests based on language and profile.

Language/Profile ARINC

653

C Std

Library

C++

Std

Library

HMFM Java Khronus

Group

EGL 1.4

OpenGL

ES 2.0

OpenGL

SC 2.0

POSIX Configuration LCM

C/GP X X X X X X X X

C/SB, C/SE X X X X X X X

C/S X X X X X X

C++/All X X X X

Ada/All X X X X

Java/GP X X X

Table 7-1’s “Language/Profile” column contains acronyms. These acronyms are defined as:

• GP: General Purpose

• SB: Safety Base

• SE: Safety Extended

57

• S: Security

• All: All profiles

7.3.2.1.1 Generating Gold Standard Libraries

In order to build the user’s source code, the user will need FACE interface headers for any interfaces the UoC uses.

For example, for a PCS the user will need any TSS headers the UoC code uses, as standardized in the FACE Technical

Standard. The CTS will generate these headers for the user. Click the Generate GSLs Button in the upper left corner

of the window as shown below to generate the FACE headers as well as the GSL.

Figure 7-6. The GSL generation button.

If providing objects for the user’s UoC, the user may now build their objects using the FACE headers generated into

the GSL directory’s ‘include/FACE’ subdirectory. Examine the contents of this directory to see the standardized header

names of all non-OSS FACE Interfaces. Note that for C/C++ all FACE headers should be included with the relative

path starting from the FACE directory, for example: "FACE/IOSS/Analog.hpp" The include directories to be used are

described in a generated README file in the GSL directory. OSS include directories are listed and are in specific

subfolders of the CTS folder goldStandardLibraries. When the user builds their object code for a UoC, the user will

need to include these subfolders and include any FACE headers as "FACE/[name of header file]". Note that the headers

in this subdirectory are deleted each time the test is run, so do not store any project files in this directory.

The GSL libraries will be generated into the GSL Directory. The user may wish to use the GSLs during development

to check that their code builds against them, but there is no need to include them in their CTS project. The CTS will

rebuild the appropriate GSLs when the user runs the conformance test and links them as part of the test.

In the “Provide Segment Objects/Libraries” section of the Objects/Libraries tab, the user must enter the full pathnames

of the project's object and/or library files. The user may add each object file. The user may also choose the directory

where object files are located. All object files in the directory specified as well as object files in subdirectories will be

chosen. A combination of directories and object/library files may be specified.

7.3.2.1.2 Factory Functions

FACE Interfaces, including Injectable Interfaces, are empty declarations. In order to properly test the user’s code for FACE

Conformance, the user must provide a file that contains a concrete implementation for each interface needed for the UoC

provided. This is called a “Factory Function.”

Once the user creates their Factory Function declaration and the user runs conformance test within the CTS, a test file declares

a pointer to a FACE interface. Then, the CTS instantiates it by calling the Factory Function implementation that the user

provided. Once that is complete, it calls the methods defined in the interface to ensure complete adherence to the interface.

58

7.3.2.1.2.1 Generation

To determine which factory functions are necessary, the user must generate the GSLfor their project. After generation, the

user must find a generated header/spec file named, “CTS_Factory_Functions” in the generated subfolder 'build/GSL/include',

which will contain required interfaces.

7.3.2.1.2.2 Providing a Factory Function Implementation

The user must take note of the “CTS_Factory_Functions” file that was generated by the GSLs. The user must provide a file

that implements each of these functions. The following paragraphs detail what the user must do per each language the user’s

UoC implements.

For C/C++, this file will contain the declarations of all expected factory functions that the CTS requires for testing the user’s

UoC. The user must provide a source file that implements each of these functions. The implementation for each function

must instantiate the corresponding concrete class and return a pointer to that object (the return type will be a pointer to the

FACE base class). Returning a null pointer is not acceptable. This source file must be provided with the user’s project and

will be reviewed to ensure it instantiates the UoC's concrete class for that interface.

For Ada, this will generate a spec file (.ads) cts_factory_functions.ads which has the procedures the user must implement in

the source file. The source file for Ada must be named "cts_factory_functions.adb" and implement each of these procedures,

returning a concrete version of each type as an access type. In the text field labeled "Source file with factory functions for

interfaces provided (C/C++/Ada only)", use the '...' button to the right to browse for the source file. Any header files included

by the source file must exist in one of the Include Paths specified above. An example for a C++ project is shown below.

For Java, a source file named CTS_Factory_Functions.java will be generated in the factory/ subfolder (package subfolder).

The user must fill in the implementation of each function, add any imports, and add this to the user’s project in the CTS in

this file field. Note that this file will NOT be overwritten so if the interfaces the UoC uses have changed, the user must delete

their file in order to regenerate a new one with the new set of functions to implement.

59

Figure 7-7. The Project Configuration Builder with the Objects/Library tab selected, within the Configuration subtab.

7.3.2.2 Validating and Testing a Project

4. Select to verify that the Project Configuration File is valid.

5. Click the button at the top of the screen to test the segment. (This may take a few minutes). The results will

be

written to a PDF file. The directory of the results file will be in the directory of the project configuration file. This directory

path will be listed in the "Output File Location" of the Conformance Test Results page.

6. The result will be pass or fail if the OS supplies the necessary calls based on the profile.

60

7.4 Testing a Data Model

The following sections detail how to test a USM with the CTS.

7.4.1 What the User Must Provide

• The UoC data model file

Figure 7-8. A TSS's project configuration with the Data Model tab selected.

7.4.2 Test Procedures

• Install and launch the CTS.

• Import or create the project configuration file.

• Navigate to the project configuration builder.

• Assure that the PCS/PSS/TSS is selected in the General tab of the Project Configuration Builder. PCS/PSSS/TSS

UoC types are the only UoC types that require data models.

• Select the SDM the USM will be tested against.

• Select the USM to be tested.

• Optionally, select the conditional Object Constraint Language (OCL) constraints governing USM and DSDM

content:

o Select the Entity Uniqueness checkbox to define that the Entity is unique in a Conceptual Data Model. An

Entity is unique if the set of its Characteristics is different from other Entities' in terms of type, lowerBound,

upperBound, and path (for Participants).

61

o Select the Observable Uniqueness checkbox to define that the Entity does not compose the same Observable

more than once.

1. The CTS will analyze the USM file, determining its validity and the Units of Portability found in the data model file.

2. The user may see data types associated with a UoP.

3. Select the Units of Portability to use with the segment under test.

4. Click the Test Data Model button:

The results will be written to a PDF file. The directory of the PDF results will be in the directory of the project configuration

file. This directory path will be listed in the "Output File Location" of the Conformance Test Results page.

7.5 Considerations

7.5.1 Testing an Ada Segment

Testing an Ada segment requires a small variation in the testing procedures from C and C++. According to the Technical

Standard, Ada Runtime Libraries are allowed, but if the Runtime Library is packaged with the UoP, it must only use standard

POSIX calls allowed according to the profile/partition. If the Ada Runtime Libraries are part of the logical OSS, the use of

the Ada Runtime Libraries is verified via Inspection. To perform the link test for a packaged Ada Runtime Library, the user

must include the Ada Runtime Library as part of their object/library files. Additionally, the user must compile the correct

Gold Standard POSIX library to include as part of their object library files. Since the CTS only supports compilation for one

language at a time, the user must build the POSIX libraries before proceeding with Ada testing. This can be done by changing

the user’s configuration from Ada to C, with the correct C compiler options, and generate the GSLas described below. Once

the libraries have been built, change the configuration back to Ada, add the POSIX and Runtime libraries to the user’s segment

configuration and proceed with the test. The test suite does generate Ada gold standard HMFM and ARINC 653 libraries.

7.5.2 Testing a Java Segment

Testing a Java segment is very different from testing procedures from other languages. Since Java is inspected directly instead

of using a link test, there is not an option to generate gold libraries in Java. For each test, Java Class Paths are used instead

of object/library files. Include paths are not used under Java tests. Under most systems, javac should be used as the compiler

and jar should be used as the archiver. The object file extension should be set to class in the project's toolchain file.

7.6 Viewing Test Suite Results

Once the run Conformance test button is pressed, the CTS will conduct the conformance test and the results will be stored

in PDF format. The file will be named FACEConformanceTest_Name_of_PCFG.pdf in the same directory as the pcfg file

tested. All log files generated in the test will also be found in the log directory, although the same log files are found inside

the PDF report. Some sample CTS results can be found from below figures.

62

Figure 7-9. A successful conformance test message.

Figure 7-10. An example conformance test report.

63

Figure 7-11. A conformance test report scrolled to show report contents.

64

8 References

[1] The Open Group, "FACE TECHNICAL STANDARD, EDITION 3.1," 2020. [Online]. Available:

https://publications.opengroup.org/.

[2] The Object Management Group, "Interface Definition Language," March 2018. [Online]. Available:

https://www.omg.org/spec/IDL/About-IDL/.

65

Appendix A Using the CTS via Command line Interface (CLI)

There are several options the user may use when running the test suite start-up python script (conformance_test.py).

If the test suite is launched with a configuration file listed, the test suite will run without the GUI and save the results to the

log directory listed in the configuration. The CTS will exit with a return code of 0 if the segment(s) under test is conformant.

It will return 1 if the segment(s) fails conformance. This would be useful for automated testing of segments without user

interaction.

Multiple configuration files can be passed to run by test suite, but it is important to have different log directories in each

configuration file, otherwise the test results would be overwritten by subsequent tests.

The usage statement from the start-up script is shown below.

The user must be in the root directory of their CTS installation. Then, point to the face_conformance_app file:

Then, execute the conformance_test.py script with their required flags and config file(s):

cd face_conformance_app

python conformance_test.py [flag] [config file 1] [config file 2] …

66

Table A-1. The available flags to use with executing the CTS via CLI.

Flag Description

-h, --help Show this help message and exit.

-p PORT_VALUE, --port=PORT_VALUE Used in coordination with the CTS_GUI. Port used to

communicate with GUI supplied socket server.

-t, --time_stamp Generates a time stamp to be added to the report filename

(assuring unique test run names).

-r REPORT_FILENAME, -

report_filename=REPORT_FILENAME

Full path to the conformance test report PDF file. Default

filename is

FACEConformanceTest_SEGMENT_PROJECT_NAME.pdf in

the same directory as the segment project file.

-v, --verify Verifies that The Project Configuration Builder is valid for

running conformance tests. Return code is 0 if valid, and 1 if

invalid. Saves a log (PROJECT_CONFIG_NAME.ver_log) to

the same directory as the configuration file and sends the results

to stdout.

-f, --disable_pdf Disables PDF writer

-g --gold Build GSLs for given project.

-d --datamodel Test only data model.

-a ALL_GSL_DEST, --allgold=ALL_GSL_DEST Build all GSLs to specified directory

-o ALL_GSL_PROFILE, --

profile=ALL_GSL_PROFILE

Profile of GSLs to build specified directory, only important with

-a. If not given, all profiles used.

-i, --interfaces Create folder of interfaces only (C/C++only as of this version -

these are the header files for the project)

67

Appendix B Glossary

Acronym Acronym Meaning

CR Change request

CTS Conformance Test Suite

CVM Conformance Verification Matrix

DSDM Domain-Specific Data Model

FACE Future Airborne Capability Environment

GTARC Georgia Tech Applied Research Institute

GTRI Georgia Tech Research Institute

GSL Gold Standard Library

IOSS Input/Output (I/O) Services Segment

LCM Life Cycle Management

OCL Object Constraint Language

OS Operating System

OSS Operating System Segment

PCS Portable Components Segment

PSSS Platform Specific Services Segment

SDM Shared Data Model.

TOG The Open Group

TSS Transport Services Segment

UoC Unit of Conformance

UoP Unit of Portability

USM UoP Supplied Model

VA Verification Authority

68

Appendix C Constraints

POSIX and ARINC interface testing is performed on functions only. Data types and constants are not tested comprehensively.

A POSIX or ARINC conformance test should be used to fully test those aspects.

69

Appendix D Issues

Any issue found concerning the CTS should be reported to https://ticketing.facesoftware.org.

https://ticketing.facesoftware.org/

70

Appendix E Acknowledgments

The CTS utilizes the following freely distributable software packages:

Software Package Details

stringtemplate 3.1 http://www.stringtemplate.org/

Author: Benjamin Niemann

License: BSD

Protocol Buffers - Google’s data interchange format http://code.google.com/p/protobuf/

Copyright 2008 Google Inc. All rights reserved.

License: New BSD

http://www.stringtemplate.org/
http://code.google.com/p/protobuf/

