
IT Infrastructure Architecture

Building Blocks

Ramesh Radhakrishnan, Sun Professional Services

Rakesh Radhakrishnan, Sun Professional Services

May 2004



Please
Recycle

Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, California 95045 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://
www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the US and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the Far and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95045 Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans
les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

Sun, Sun Microsystems, le logo Sun, Sun BluePrints, et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service,
de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de
fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC
sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.



IT Infrastructure Architecture
Building Blocks

This article introduces building blocks for architecting IT infrastructures to provide

web services. The primary audience for this article is a beginning/junior architect

who has at least one year of experience with infrastructure platforms. This article

recommends properties and criteria for evaluating and selecting the building blocks

that best fit your environments. Examples throughout this article and a use-case

scenario at the end apply the information and recommendations to realistic

environments.

The article covers the following topics:

■ “Defining Architecture Frameworks, Building Blocks, Architecture Patterns, and

Design Patterns” on page 2

■ “Providing or Outsourcing Services” on page 3

■ “Using Building Blocks” on page 4

■ “Assessing Building Block Properties” on page 5

■ “Using Hard Architectural Building Blocks” on page 6

■ “Using Soft Architectural Building Blocks” on page 12

■ “Considering a Use Case Scenario” on page 19

■ “Building Blocks and Sun's N1 Architecture” on page 22

■ “About the Authors” on page 23

■ “Related Resources” on page 24

■ “Ordering Sun Documents” on page 24

■ “Accessing Sun Documentation Online” on page 25
1



Defining Architecture Frameworks,
Building Blocks, Architecture Patterns,
and Design Patterns

To explain where building blocks fit among other architecture concepts, in this

section we define the terms IT architecture framework, building blocks, architecture

patterns, and design patterns in the context of IT infrastructure architecture.

IT architecture framework refers to a concept and organizing principle that

addresses and aligns technologies prevalent in application development, application

middleware, management tools, networking, computing, and storage. The

framework includes common architectures in each one of these areas and shows the

synergies between these architectures.

Building blocks extend the concept of a framework to architect an IT environment. A

building block approach helps categorize the components of building an IT

architecture into hard, soft, and connector building blocks. Hard building blocks are

a combination of software and hardware, which can further be divided into systemic

and application tier building blocks. Soft building blocks are software entities like

Enterprise Java Beans (EJBs). Connector building blocks are the glue that connects all

the components. Building blocks and architectures using building blocks might use

one or more architecture patterns.

Architecture patterns are well known ways to put together building blocks in an IT

environment. An architecture pattern can address an entire layer of an IT

architecture for a given service. As an example, a storage area network (SAN)

architectural pattern can address the architecture for the storage infrastructure layer,

and a message bus architecture is a pattern for architecting the application

infrastructure layer.

Design patterns address problems with a layer and do not have to be an architecture

for the entire layer. For example, the VLAN/VNET pattern is a design pattern

within the network infrastructure layer that plays a key role in the design of a

network that offers virtualization capabilities. Another example is the N+1 HA

pattern, which is a design pattern within the compute infrastructure layer that plays

a key role in the design of a HA cluster.

For architects working in large IT environments, their focus is typically on

standardization, consolidation, efficiency, discipline, cost reduction, and total cost of

ownership. And, of course, key to their success is meeting business requirements,

increasing revenues, and satisfying both internal and external customers. By using

building blocks, architecture patterns, and design patterns in architecture

frameworks, less experienced architects can achieve their objectives.
2 IT Infrastructure Architecture Building Blocks • April 2003



Even when using existing products to build a system, architects are often faced with

too many choices and possible combinations. This article offers a way for you to

apply order to the often chaotic process of evaluating and selecting technologies to

architect systems for web services.

Providing or Outsourcing Services

One of the early considerations for architecting a system is to decide whether to

provide services internally or to outsource them. You may have some of the

following as your requirements:

■ Plan ahead to accommodate new web services and other related technologies

■ Improve service levels such as availability, scalability, security, efficiency,

flexibility, and performance

■ Reduce total cost of ownership

■ Improve ease of deploying new services

Whether your enterprise provides or outsources services, or chooses a combination

approach, we suggest that you require services to be based on open and industry

standards.
Providing or Outsourcing Services 3



Using Building Blocks

Extending the concept of building blocks to architecting an IT environment for web

services, we propose that most IT environments can be standardized using some or

all of the architectural building blocks addressed in this article.

For example, you could treat a database server as a resource tier building block. (The

resource tier is usually comprised of a data store or connectivity to a legacy system.)

Resource tiers are application tiers; see TABLE 1 on page 6 for a list of application

tiers. In large enterprises, especially service providers, there are many business units

and each business unit typically owns a database server. Many of these database

servers are designed and configured differently, managed by different groups of

people, and maintained and tuned separately. This approach results in a significant

management challenge as well as higher costs associated with deploying and

maintaining these servers.

Using a dramatically different approach, you could think of these same database

servers as building blocks, meaning that multiple database servers are created out of

the same hardware, OS, patches, RDBMS, etc. The only differences necessary would

be a few configuration, customization, and optimization variances, based on unique

business requirements of the business units.

To determine what variances are needed, you could obtain the following information

from each business unit:

■ How many current users and what is the growth rate?

■ Is usage pattern OLTP, DSS, or both?

■ Security requirements?

■ Current size requirements and growth rate?

■ Names of the application database administrators who work with the business

units to create and change data.

■ Tables within the database based on business requirements.

■ Any special optimization requirements.

Now, you could centralize all the database servers so they can be maintained by one

group of administrators.

In this article, we describe each type of building block and their subcategories. Also,

we provide guidance on what properties to look for when evaluating and selecting

building blocks.

In this article, we divide the architectural building blocks into two primary types:

■ Hard architectural building blocks

■ Soft architectural building blocks
4 IT Infrastructure Architecture Building Blocks • April 2003



Assessing Building Block Properties

What are the essential properties to look for when evaluating and selecting

architectural building blocks? Although your environment may require additional

properties, we recommend the following as a start:

■ Scalable horizontally—It is possible to replicate the building block multiple times

to scale the level of service it provides. For example, if a directory server can

support up to 10,000 users, additional LDAP slaves can be deployed when the

number of users have reached about 9000.

■ Standards based—The building block is able to support many different kinds of

applications. For example, an Oracle RDBMS server can be built as an

architectural building block and any application that uses a database can use it.

■ Customization—The building block can be used to deploy new applications with

minimal customizing. For example, a security server such as the Checkpoint

Firewall-I can be used to deploy new applications.

■ Reusable—Soft service building blocks can be reused to build other applications.

For example, a group of Enterprise Java Beans (EJBs) can be used to enable order

entry processing.

■ Portable—Soft building blocks are easily portable to other platforms.

■ Integrable—The building blocks have standardized interfaces that make them

easy to integrate with other architectural components.

■ Asynchronous—Ideally, the result of using a building block allows for

asynchronous communication. Building blocks facilitate communication by

setting standards for interfaces and establishing common communications flows.

Some examples are JMS and MDBs, which are described later in this article.
Assessing Building Block Properties 5



Using Hard Architectural Building
Blocks

Hard building blocks are a combination of software and hardware components. We

view them essentially as servers that consist of either a combination of all the

infrastructure layers and one application tier, or a subset of all the infrastructure

layers and one application tier.

The hard building blocks are subdivided into the following building block

categories:

■ Systemic components

■ Application tiers

TABLE 1 lists examples of hard building blocks for both systemic components and

application tiers.

TABLE 1 Sample Hard Building Blocks

Systemic
Components

Application Tiers

Resource Integration Business Presentation Client

Security servers Database

servers

EAI

servers

Application

servers

Portal

servers

Cell

Phones

Load balancing

servers

Legacy

systems

Directory

servers

Calendar

servers

Web servers Pagers

Certificate

servers

Directory

servers

Wireless

servers

Mail

servers

Caching

servers

PDAs

Monitoring

servers

FTP

servers

EII severs Vending

machines

WAP

servers

Web

browsers
6 IT Infrastructure Architecture Building Blocks • April 2003



Systemic Building Blocks

Systemic building blocks create systemic qualities such as scalability, manageability,

availability, reliability, and security. Systemic qualities are pervasive across all the

application tiers and all infrastructure layers described in 3D Methodology (3DM)

architectures. Examples of systemic building blocks are load balancers, certificate

servers, firewall servers, and monitoring servers.

Using load balancing as an example, let’s evaluate it as a systemic building block.

Load balancing optimizes performance and increases capacity through horizontal

scaling. Load balancing needs to be achieved across:

■ Many of the application tiers, such as the web server in the presentation tier and

the database server in the resource tier.

■ Infrastructure layers, such as at the network and the upper platform layers.

We can achieve load balancing by using commercial off the shelf (COTS) software or

hardware with pre-built software or firmware. We look for the following properties

in a load balancing solution:

■ Redirects a connection if a target server fails.

■ Shares load across several target servers.

■ Provides a highly scalable solution. For example, manages thousands of

connections per hour.

■ Provides a highly available solution. For example, administrators can add or

remove building blocks.

■ Runs without any interruptions to the services using load balancing.

■ Allows different load-sharing algorithms to be selected by users.

■ Provides redundancy, in the event of a failure.

■ Provides a secure and easily manageable user interface. For example, provides a

secure socket layer (SSL) web browser-based management interface.

■ Aids in providing session persistence between a client and a server.

■ Enhances a systemic quality in multiple tiers of an application service, such as the

presentation, business, and resource tiers.

■ Provides a highly secure solution, such as prevention of Denial of Service (DoS)

attacks.

A firewall server is an important building block to introduce security within a

service. In addition to being used for creating DMZs and filtering traffic specific to a

zone, it supports application-specific protocols within incoming requests. As an

example, if a new application is introduced within a network with the expectation of

incoming requests using SIP as the protocol, a firewall building block with support

for SIP can be deployed.
Using Hard Architectural Building Blocks 7



Application Tier Building Blocks

Application tier building blocks are specific to a single tier and enhance the systemic

qualities in a single tier. Examples of application tier building blocks are database

servers, directory servers, mail servers, web servers, and web browsers.

The application tier building blocks are subdivided into the following categories:

■ Resource

■ Integration

■ Business

■ Presentation

■ Client services

Example 1

Using a directory server as an example, let’s evaluate it as an integration tier

building block. A directory server stores user profiles. If an enterprise has several

services, and if the services use applications that comply with the Lightweight

Directory Access Protocol (LDAP), then each compliant application does not need to

store a separate set of user profiles. All user profiles can be stored in a group of

directory servers that all services and applications access for authentication and

authorization. We look for the following properties in a directory server solution:

■ Complies with the open standard LDAP.

■ Facilitates a loosely coupled architecture. For example, allows chaining,

replication, and distribution.

■ Helps lower the cost of managing and synchronizing multiple application-specific

directories.

■ Allows for adding, deleting, and updating user profiles for most applications

used within the enterprise.

■ Provides application programming interfaces (APIs) to develop cross-platform

applications.

■ Provides security and enables corporate-wide security.

■ Allows very high scalability, especially for extranets.

■ Allows logical partitioning. For example, it allows storing data in multiple

databases. This property allows for partitioning (or splitting) the master LDAP

logical directory information tree (DIT) in a large LDAP environment into

multiple smaller DITs.

■ Enables developing solutions that are interoperable in heterogeneous

environments.
8 IT Infrastructure Architecture Building Blocks • April 2003



■ Integrates with other building blocks such as application servers, web servers,

calendar servers, and certificate servers.

■ Is easy to monitor, administer, and manage.

■ Enables development of asynchronous applications. For example, if an

application updates the LDAP master when a user changes her password, then it

should not verify the password immediately by doing a read operation. If the

application does this, then the LDAP master does not have enough time to update

the local replicas and authentication could fail. The application should send the

update to the LDAP master, trust the LDAP master to do its job, and forget about

it. This expectation is typical in an asynchronous operation.

■ Integrates with applications that are LDAP compliant. The applications should

use the LDAP protocol, which is the open standard for directory lookups.

FIGURE 1 shows how a directory server building block, with the properties listed

previously, would be used to create a corporate-wide directory strategy. This

approach uses the directory server as a building block to provide an integrated

authentication and authorization mechanism.

FIGURE 1 Example Showing the Use of Directory Server Building Block (The LDAP
Master and Replicas are the Building Blocks.)

LDAP
multi-master

LDAP
multi-master

replica

LDAP
consumer

replica

A
pp

lic
at

io
n

en
vi

ro
nm

en
t

A

LDAP
consumer

replica

A
pp

lic
at

io
n

en
vi

ro
nm

en
t

B

LDAP
consumer

replica

A
pp

lic
at

io
n

en
vi

ro
nm

en
t

C

R
ep

lic
at

io
n 

V
LA

N
 A

R
ep

lic
at

io
n 

V
LA

N
 B

R
ep

lic
at

io
n 

V
LA

N
 C
Using Hard Architectural Building Blocks 9



You could use this building block to achieve the same strategy on corporate

extranets. Very high levels of scalability are required for extranets, and some of the

properties described previously support the required scalability. As shown in

FIGURE 1, user profiles for all application environments are stored in the LDAP

multi-master server and are pushed out to the local replicas in each environment.

The local replicas help keep the performance of the applications at an optimum

level. Updates from each application environment are sent directly to an LDAP

multi-master. The multi-master allows for seamless failover for the LDAP write-

master server. For performance and scalability reasons, we believe that it is better to

use additional building blocks (such as load balancers) for protection, as shown in

the previous figure.

You could also configure a directory server to serve multiple roles, for example, as a

building block for both the integration and resource tiers.

Example 2

Let’s consider another application tier building block example. The application

server can be used out-of-the-box or customized for specific applications. The

application server typically has an EJB container with several EJBs that execute the

business logic for various services. Many custom EJBs are available commercially,

and you can use them with the application server building block.

This building block is a key part of architecting most IT environments. For many

engineers, when they write an application to take care of a set of complex business

problems, it is typically hard for them to focus on other functionality in the

application, like making it highly available, highly scalable, highly secure, etc. They

would rather focus on developing the core business logic within the application. The

application server as a building block becomes very useful to these engineers,

because it frees them to repeatedly write code for “middleware” functions such as:

■ Resource pooling

■ Transaction processing

■ Threading

■ Caching

■ Security

■ Load balancing

■ Remote method invocation (RMI)

■ Availability (transparent fail-over)

■ System management

■ Caching

■ Logging

FIGURE 2 shows an example of using an application server as a building block.
10 IT Infrastructure Architecture Building Blocks • April 2003



FIGURE 2 Example Application Server as a Building Block

Clients

Load
balancing
switches

Web server
farm

Remote services

Messaging system or
other legacy systems

Redundant
application

server
Hard blocks

EJB container

JSPs
and

servlets

Connectors
Using Hard Architectural Building Blocks 11



Using Soft Architectural Building Blocks

These building blocks are software components only. Evaluating, selecting, and

creating soft building blocks is an important part of architecting an IT environment.

Soft building blocks are subdivided into the following building blocks to support the

important architectural concept of “separation of concerns:”

■ Services

■ Connectors

■ Presentations

TABLE 2 Sample Soft Building Blocks

Services Connectors Presentations

Internet bill presentment

and payment (IBPP)

Java Naming and Directory

Interface (JNDI)

HTML pages

Payment processing Java database connectors

(JDBC)

Java server pages (JSP)

Order entry Java messaging service

(JMS)

Java servlets

Provisioning Java Native Interface (JNI)

Remote service Remote method invocation

(RMI-IIOP)

Employee services (for

example, human resources

and payroll)

Java API for XML parsing

(JAXP)

Customer resource

management (CRM)

Java connector architecture

(JCA)

Enterprise resource

planning (ERP)
12 IT Infrastructure Architecture Building Blocks • April 2003



Service Building Blocks

Service building blocks are most commonly EJBs corresponding to each business

requirement. The EJB building blocks enable rapid and simplified development of

distributed, transactional, secure, and portable applications. The EJBs are fully

deployable units.

Some service building blocks take care of a single business requirement and others

satisfy multiple business requirements. Note that the EJB building block is not a

complete solution; you have to use several EJB building blocks with hard building

blocks, such as an application server, to create a complete solution. A typical use of

service building blocks is for web services. FIGURE 3 shows an example of EJBs as

part of a complete solution.

FIGURE 3 EJB Service Blocks As Part of a Solution
Using Soft Architectural Building Blocks 13



TABLE 3 lists functions of sample service building blocks.

TABLE 3 List of Functions of Sample Service Building Blocks

Services Function

Internet bill presentment and

payment (IBPP)

Allows customers to view, store, and pay bills via the

Internet. Presenting bills over the IBPP integrates bill

presentment and payment into a single service.

Payment processing Handles electronic payment transactions.

Order entry Handles all the accounting and record keeping

functions necessary to effectively process online orders

entered by customers.

Provisioning Ensures that the inventory levels are maintained, and

keeps the inventory records up-to-date.

Remote service Provides any of the other services offered externally

and referred to by the UDDI registry.

Employee services Provides human resource services like employee

relationship, 401K, and payroll management.

CRM Provides customer call centers and allows self service

over the Internet for customers. CRM is a meta

category encompassing many of the other services.

ERP Provides HR, payroll, and accounts payable services

used by employee services personnel.
14 IT Infrastructure Architecture Building Blocks • April 2003



Connector Building Blocks

Connector building blocks are soft blocks that are typically used to connect the

resource tier to other services. For example, a Java Database Connector (JDBC) is a

connector building block. It is an open standard API used to connect a service or EJB

to any database. These building blocks connect services to legacy systems, databases,

and other services.

TABLE 4 lists the functions of connector building blocks.

The JMS API connects to message oriented middleware (MOM) services such as

JMQ and MQSeries. A client can use JMS to connect directly to a MOM service as

shown in FIGURE 4.

TABLE 4 Functions of Connector Building Blocks

Connector Function

Java Naming and Directory

Interface (JNDI)

Services (EJB components) connect with directory

servers in the integration tier using JNDI.

Java Database Connectors (JDBC) Services (EJBs) in the business tier request data in a

database via the JDBC connector and return the

response via JDBC. There are specific JDBCs for

different RDBMS vendors.

Java Messaging Service (JMS) Services (EJBs) use JMS to communicate with existing

message oriented middleware (MOMs), such as

MQSeries.

Java Native Interface (JNI) Provides interface for writing java native methods and

embedding Java Virtual Machine (JVM) into native

applications. JNI is required for situations where

existing libraries or code written in another language

has to be accessed from a Java program.

Remote Method Invocation (RMI-

IIOP)

Presentation Tier soft blocks like JSP use RMI/IIOP to

communicate with services (EJB components).

Java API for XML Parsing (JAXP) An API used by EJBs in the business tier and servlets

in the presentation tier when performing interactions

with other services on the internet (B2B interactions).

Java Connector Architecture (JCA) JCA is an important connector block used to integrate

with existing applications. Connectors are already

available for SAP/R3, CICS, VSAM datastore,

PeopleSoft, etc.
Using Soft Architectural Building Blocks 15



FIGURE 4 Using JMS API as a Connector Building Block

The advantages of using JMS are as follows:

■ Allows asynchronous messaging, which results in loosely coupled systems.

■ Clients are not tied to a single server.

■ Systems developed using JMS are more resilient to failures.

■ Systems developed using JMS are more extensible, allowing development of

additional features.

■ Provides an effective means of transmitting events between applications.

The JMS connector block can connect EJBs directly to MOM services. This approach

provides great advantages of being able to integrate EJBs with JMS. The architectural

advantages of integrating EJBs with JMS are as follows:

■ EJBs become part of a loosely coupled system.

■ Clients become non-blocking clients. For example, they do not have to wait for

the result of a request before going on to other activities.

■ Enables n-ary communications. For example, a client can request something that

it wants from n number of servers, rather than depend on one server.

Also, JMS allows clients to communicate with Message Driven Beans (MDBs) a

special type of EJB building block. MDBs are decoupled from clients. The clients can

communicate with MDBs through the JMS API. The MDBs were created mainly to

enable messaging. An MDB is invoked by an EJB container within an application

server when the server receives a JMS message. Messages are received in message

queues or “topics,” and MDBs are message queue listeners or receivers who read

from message queues.

The JDBC building block connects business tier building blocks to the resource tier.

Connection pooling is an important architectural property of this building block.

Establishing and cleaning up connections to a database can be very time consuming

for an application, slowing its performance. Instead of creating new connections as
16 IT Infrastructure Architecture Building Blocks • April 2003



needed, it is better for a system to use an existing pool of connections that are held

open and available at all times. Connection pooling can be used between the

presentation and business tiers too. COTS connection pooling building blocks are

available from Silver Stream and WebLogic. FIGURE 5 shows connection pooling

between the business and resource tiers.

FIGURE 5 Sample Connection Pooling Between Tiers
Using Soft Architectural Building Blocks 17



Presentation Building Blocks

Presentation building blocks are soft blocks in the presentation tier. These building

blocks run within hard blocks such as web servers, portal servers, etc., in the

presentation tier.

TABLE 5 lists functions of presentation building blocks.

Java servlets and Java server pages (JSP) provide a simplified and fast way to create

dynamic web content. JSP allows fast development of server and platform-

independent web based applications. JSP and servlets are widely used for

developing web-based interactive applications. JSP and servlets run within web

servers and application server hard building blocks. When a user makes a request

from an enterprise web site, the servlets create the information that the user

requests, sometimes calling other entities such as the EJBs. The JSP and servlets are

generally stored in containers within the web server.

Some architectural advantages of Java servlets and JSPs are as follows:

■ Modularity

■ Platform independence

■ Enhanced performance

■ Separation of logic from the design and actually displaying information

■ Extensibility

■ Administration and ease of use

■ Scalability

■ Available as “ready to use” building blocks

Note – “Ready to use” building blocks in this case refers to items such as Apache

Web Server, SunONE Web Server containers, BEA WebLogic application server, IBM

WebSphere application server, and SunONE application server containers.

TABLE 5 Functions of Presentation Building Blocks

Presentation Function

HTML pages Displays static web pages.

Java server pages (JSP) Pulls information from session objects and creates

HTML web pages for displaying results.

Java servlets Routes device independent requests from client tier

(devices, browsers etc) to business tier (for example,

EJBs in the application server).
18 IT Infrastructure Architecture Building Blocks • April 2003



Considering a Use Case Scenario

Using a realistic example of purchasing a book from an online book store, let’s apply

a set of business functional requirements to architect a solution for a use case

scenario. For this use case scenario, we use both hard and soft building blocks,

described earlier in this article.

TABLE 6 Use Case Scenario: Purchasing a Book Online

Description Anyone with Internet access can browse a catalog at this book

store and purchase a book.

Actor(s) Purchaser

Assumptions The purchaser is a registered user of this online book store. She is

using a new credit card, and her credit information has to be

verified. The purchaser has just been authenticated and authorized

to use this feature.

Steps • Purchaser searches for a book by author’s name and book title.

• System searches the inventory and displays the book details,

including price.

• Purchaser clicks “Buy” option and a form is displayed

requesting credit card information.

• Purchaser enter credit card information and clicks “Send.”

• System displays a message confirming the purchase order

confirmation number.

• System sends an email to the purchaser confirming the order

and order number.

• Purchaser expects to receive the book in “x” number of days,

per the order confirmation email.

Variations Several variations are possible such as the book is out of stock,

unavailable at this store, out of print, or not matching the author’s

name entered. The purchaser is suggested to search based on title

only, etc.
Considering a Use Case Scenario 19



Assuming that the purchaser is authenticated and authorized using other building

blocks (such as directory servers and identity servers), a Java servlet within the web

server building block sends a search request to the catalog service EJB in an

application server building block. The catalog service EJB in turn requests a

provisioning service block (could be an EJB) to check for the requested book in the

inventory.

If the book is available, the catalog service sends a JMS request to a known credit

verification service. To receive asynchronous JMS messages, the credit verification

service must be made up of MDBs.

If the credit verification service is unavailable, the JMS request queries a well-known

Universal Description Discovery and Integration (UDDI) registry service for more

information about a reliable local credit verification service. The UDDI registry

sends a JMS message back to the catalog service EJB, with detailed information

about the credit verification service EJB running on a remote application server

building block.

The JMS interactions are asynchronous. FIGURE 6 below shows the interactions

between the local and remote service building blocks. It demonstrates how these

building blocks work together; it does not show details about redundancy,

scalability, security, etc. A real-world architecture would use load balancers,

certificate servers, directory servers, and other features like platform clustering and

session state management to achieve higher levels of systemic qualities.

Nonfunctional or
Issues

Must update inventory data after this transaction.

Related Use Cases Authenticate and authorize a purchaser.

Priority Critical

TABLE 6 Use Case Scenario: Purchasing a Book Online(Continued)

Description Anyone with Internet access can browse a catalog at this book

store and purchase a book.
20 IT Infrastructure Architecture Building Blocks • April 2003



FIGURE 6 Interactions Between Local and Remote Service Blocks

Application server
Business tier

Hard building block

Catalog service
Soft

building block

Web server
Presentation tier

Hard building block

User request
from a web browser

to purchase a 
book

Java servlet
Presentation tier

Soft building block

Application server
Business tier

Hard building block

Provisioning service
Soft building block

Remote application server
Business tier

Hard building block

Credit verification
 service

Soft building block

Remote application server
Business tier

Hard building block

Alternate credit
verification service
Soft building block

Remote UDDI
registry service

A synchronous JMS
request/response
Considering a Use Case Scenario 21



Building Blocks and Sun's N1
Architecture

N1 is Sun's new approach to the datacenter that redefines the meaning of a system.

With N1, Sun becomes a provider of networked systems built from Internet-attached

components. N1 virtualizes compute, network, and storage resources. It automates

systems operations and manages services instead of servers. N1 uses the concepts

associated with building blocks, system service containers, and application service

containers; it aligns these containers, taking into account an application’s affinity to

certain hard building blocks.

The following are the advantages of understanding the building block approach if

you are planning to adopt N1 architecture and products.

■ N1 uses architecture building blocks, patterns, and frameworks with software to

virtualize all compute, network, and storage resources.

■ Understanding the building block approach helps you while implementing N1 in

your IT environment. N1 software displays the building blocks available to you.

You then use those building blocks to create a service based on well-known

architectural patterns.

■ You can put these building blocks together using the N1 Provisioning Server

(NPS) software, which is GUI based. N1 puts the building blocks together for you

behind-the-scenes, using techniques such as soft cabling (physically wire-once

and rewire logically, as needed).
22 IT Infrastructure Architecture Building Blocks • April 2003



About the Authors

Ramesh Radhakrishnan has been an IT Architect and Consultant at Sun

Microsystems for the past three years. He conducts availability and architecture

assessments, and he designs IT environments for several of Sun’s mission-critical

customers. Before joining Sun, he worked as a system administrator, IT consultant,

and ClearCase Consultant. He has a master’s degree in Computer Science from Old

Dominion University. Over the years, he has gained experience in the areas of

backup and recovery architecture, disaster recovery architecture, and IT processes,

along with many other IT infrastructure management areas. Ramesh is currently part

of a team developing an architecture basics course for Sun engineers.

Rakesh Radhakrishnan is a Sr. Technical IT Architect with Sun Professional Services.

He works in the Communication Market Area -Professional Services Organization

and has led multiple IT Architecture, Architecture Assessment, and Architecture

Workshop projects for telecommunication and service provider customers like Telcel

(Mexico), Telefonica (Argentina), Verizon, Cingular, Southwestern Bell

Communications (SBC), and American Online Time Warner (AOL TW). He is an

active member of the Global PS Architecture Council and Service Technology

Council. Also, he is the Chair for S1onN1 working group, defining a patent pending

technology (container alignment engine) based on current and future advances in

application containers and system containers. Rakesh is a frequent speaker at both

Sun and Industry Conferences (SuperG, SunNetwork, JavaONE, OMG, CMG, etc.)

and has presented/published more than 12 papers at these conferences.
About the Authors 23



Related Resources

Publications
■ Dot-Com and Beyond: Breakthrough Internet Based Architectures and Methodologies, by

Sun Microsystems Press/Prentice Hall PTH, ISBN 0-13-062297-4, June 2001.

■ Maier, Mark W. and Rechtin, Eberhardt, The Art of Systems Architecting, CRC

Press, 2nd edition, ISBN 0849304407, June 2000.

■ “Take a 3D Approach to Architecture Design,” by Sun Professional Services.Com

Consulting, Sun Microsystems, Inc., Sun Journal, Volume 5, No. 1:

http://www.sun.com/executives/sunjournal/v5n1/feature2.html

■ Cockroft, Adrian and Walker, Bill, Capacity Planning for Internet Services, Sun

BluePrints, Sun Microsystems, Prentice Hall, 1st edition, ISBN 0130894028,

January 2001.

■ “Overview of Solaris Patch System Testing and Performance Regression Testing

Overview,” SunSolve, Sun Microsystems, Inc: http://sunsolve.sun.com .

Click on the Patch Portal link.

Web Sites
■ Application tier building blocks: http://wwws.sun.com/software/

product_categories/application_integration_messaging.html

■ Enterprise Java Beans: http://java.sun.com/products/ejb/docs10.html

■ Soft building blocks: http://java.sun.com/blueprints

■ SunONE architecture: http://sunonedev.sun.com/platform/
architecture/

Ordering Sun Documents

The SunDocsSM program provides more than 250 manuals from Sun Microsystems,

Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase

documentation sets or individual manuals through this program.
24 IT Infrastructure Architecture Building Blocks • April 2003



t:
Accessing Sun Documentation Online

The docs.sun.com web site enables you to access Sun technical documentation

online. You can browse the docs.sun.com archive or search for a specific book title

or subject. The URL is http://docs.sun.com/

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site a
http://www.sun.com/blueprints/online.html
Accessing Sun Documentation Online 25


	IT Infrastructure Architecture Building Blocks
	Ramesh Radhakrishnan, Sun Professional Services
	Rakesh Radhakrishnan, Sun Professional Services
	May 2004
	IT Infrastructure Architecture Building Blocks

	Defining Architecture Frameworks, Building Blocks, Architecture Patterns, and Design Patterns
	Providing or Outsourcing Services
	Using Building Blocks
	Assessing Building Block Properties
	Using Hard Architectural Building Blocks
	TABLE�1 Sample Hard Building Blocks
	Systemic Building Blocks
	Application Tier Building Blocks
	Example 1
	FIGURE�1 Example Showing the Use of Directory Server Building Block (The LDAP Master and Replicas...

	Example 2
	FIGURE�2 Example Application Server as a Building Block



	Using Soft Architectural Building Blocks
	TABLE�2 Sample Soft Building Blocks
	Service Building Blocks
	FIGURE�3 EJB Service Blocks As Part of a Solution
	TABLE�3 List of Functions of Sample Service Building Blocks

	Connector Building Blocks
	TABLE�4 Functions of Connector Building Blocks
	FIGURE�4 Using JMS API as a Connector Building Block
	FIGURE�5 Sample Connection Pooling Between Tiers

	Presentation Building Blocks
	TABLE�5 Functions of Presentation Building Blocks


	Considering a Use Case Scenario
	TABLE�6 Use Case Scenario: Purchasing a Book Online�
	FIGURE�6 Interactions Between Local and Remote Service Blocks

	Building Blocks and Sun's N1 Architecture
	About the Authors
	Related Resources
	Publications
	Web Sites

	Ordering Sun Documents
	Accessing Sun Documentation Online

