
The Open Group Standard

Additional APIs for the Base Specifications Issue 8, Part 1

Unapproved Draft, Subject to Change

Sanity
Revie

w

ii The Open Group Standard (2021)

Copyright © 2021, The Open Group
The Open Group hereby authorizes you to use this document for any purpose, PROVIDED THAT any copy of this document, or any
part thereof, which you make shall retain all copyright and other proprietary notices contained herein.
This document may contain other proprietary notices and copyright information.
Nothing contained herein shall be construed as conferring by implication, estoppel, or otherwise any license or right under any patent
or trademark of The Open Group or any third party. Except as expressly provided above, nothing contained herein shall be construed
as conferring any license or right under any copyright of The Open Group.
Note that any product, process, or technology in this document may be the subject of other intellectual property rights reserved by The
Open Group, and may not be licensed hereunder.
This document is provided “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. Some jurisdictions do not allow the exclusion of implied warranties, so the
above exclusion may not apply to you.
Any publication of The Open Group may include technical inaccuracies or typographical errors. Changes may be periodically made to
these publications; these changes will be incorporated in new editions of these publications. The Open Group may make
improvements and/or changes in the products and/or the programs described in these publications at any time without notice.
Should any viewer of this document respond with information including feedback data, such as questions, comments, suggestions, or
the like regarding the content of this document, such information shall be deemed to be non-confidential and The Open Group shall
have no obligation of any kind with respect to such information and shall be free to reproduce, use, disclose, and distribute the
information to others without limitation. Further, The Open Group shall be free to use any ideas, concepts, know-how, or techniques
contained in such information for any purpose whatsoever including but not limited to developing, manufacturing, and marketing
products incorporating such information.
If you did not obtain this copy through The Open Group, it may not be the latest version. For your convenience, the latest version of
this publication may be downloaded at www.opengroup.org/library.

The Open Group Standard
Additional APIs for the Base Specifications Issue 8, Part 1
ISBN: TBA
Document Number: TBA

Published by The Open Group, <Month Year>.
Comments relating to the material contained in this document may be submitted to:

The Open Group, Apex Plaza, Forbury Road, Reading, Berkshire, RG1 1AX, United Kingdom
or by electronic mail to:

ogspecs@opengroup.org

Unapproved Draft, Subject to Change

Sanity
Revie

w

Additional APIs for the Base Specifications Issue 8, Part 1 iii

Contents
1 Introduction ... 1

1.1 Scope ... 1
1.2 Relationship to Other Formal Standards ... 1

2 Application Program Interfaces .. 2
2.1 Change Bars .. 2
2.2 Reference Pages .. 2

Unapproved Draft, Subject to Change

Sanity
Revie

w

iv The Open Group Standard (2021)

Preface

The Open Group

The Open Group is a global consortium that enables the achievement of business objectives
through technology standards. Our diverse membership of more than 800 organizations includes
customers, systems and solutions suppliers, tools vendors, integrators, academics, and
consultants across multiple industries.

The mission of The Open Group is to drive the creation of Boundaryless Information Flow™
achieved by:

• Working with customers to capture, understand, and address current and emerging
requirements, establish policies, and share best practices

• Working with suppliers, consortia, and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies

• Offering a comprehensive set of services to enhance the operational efficiency of
consortia

• Developing and operating the industry’s premier certification service and encouraging
procurement of certified products

Further information on The Open Group is available at www.opengroup.org.

The Open Group publishes a wide range of technical documentation, most of which is focused
on development of Standards and Guides, but which also includes white papers, technical
studies, certification and testing documentation, and business titles. Full details and a catalog are
available at www.opengroup.org/library.

This Document

This document has been prepared by The Open Group Base Working Group. The Open Group
Base Working Group is considering submitting a number of additional APIs to the Austin Group
as input to the Issue 8 revision of the Base Specifications.

This document contains the first set of these APIs.

Unapproved Draft, Subject to Change

Sanity
Revie

w

Additional APIs for the Base Specifications Issue 8, Part 1 v

Trademarks
ArchiMate, DirecNet, Making Standards Work, Open O logo, Open O and Check Certification
logo, Platform 3.0, The Open Group, TOGAF, UNIX, UNIXWARE, and the Open Brand X logo
are registered trademarks and Boundaryless Information Flow, Build with Integrity Buy with
Confidence, Commercial Aviation Reference Architecture, Dependability Through Assuredness,
Digital Practitioner Body of Knowledge, DPBoK, EMMM, FACE, the FACE logo, FHIM
Profile Builder, the FHIM logo, FPB, Future Airborne Capability Environment, IT4IT, the IT4IT
logo, O-AA, O-DEF, O-HERA, O-PAS, Open Agile Architecture, Open FAIR, Open Footprint,
Open Process Automation, Open Subsurface Data Universe, Open Trusted Technology Provider,
OSDU, Sensor Integration Simplified, SOSA, and the SOSA logo are trademarks of The Open
Group.

All other brands, company, and product names are used for identification purposes only and may
be trademarks that are the sole property of their respective owners.

Unapproved Draft, Subject to Change

Sanity
Revie

w

vi The Open Group Standard (2021)

Acknowledgements
The Open Group gratefully acknowledges the contribution of the following in the development
of this document:

• The Open Group Base Working Group

• The Austin Group

The Open Group gratefully acknowledges the following reviewers who participated in the
Company Review of this document:

• Eric Blake

• Geoff Clare

• Mike Crowe

• Chris Frost

• Jens Kjærby

• Curtis Smith

• Dennis Wölfing

Unapproved Draft, Subject to Change

Sanity
Revie

w

Additional APIs for the Base Specifications Issue 8, Part 1 1

1 Introduction

1.1 Scope

The purpose of this document is to define a set of additional APIs for inclusion in the Issue 8
revision of the Base Specifications of the Single UNIX Specification.

The additional APIs proposed by participants in the Austin Group that The Open Group has
agreed to sponsor are as follows:

dladdr()
getentropy()
getlocalename_l()
memmem()
posix_getdents()
ppoll()
pthread_cond_clockwait()
pthread_mutex_clocklock()
pthread_rwlock_clockrdlock()
pthread_rwlock_clockwrlock()

qsort_r()
reallocarray()
sem_clockwait()
sig2str()
str2sig()
strlcat()
strlcpy()
wcslcat()
wcslcpy()

1.2 Relationship to Other Formal Standards

This Standard is being forwarded to the Austin Group for consideration as input to the Issue 8
revision of the Base Specifications.

Unapproved Draft, Subject to Change

Sanity
Revie

w

2 The Open Group Standard (2021)

2 Application Program Interfaces

The following pages are extracted from a complete draft of the Base Specifications in which the
proposed changes have been applied, with change bars showing the differences from Issue 8
draft 1.1. Only pages with technical changes are included – editorial changes such as additions
to SEE ALSO and CHANGE HISTORY sections have been omitted (unless they appear on the
same page as a technical change). The complete draft is also being made available for reference.

2.1 Change Bars

Changed lines are marked with a '|' in the right-hand margin, new lines with a '+', and deleted
lines with a '-'.

Note that sometimes the placement of change bars is slightly inaccurate. In particular, changes
may extend into a line following a set of change-barred lines. Also, changes within tables do not
have change bars.

2.2 Reference Pages

The reference pages for the new functions and related header additions follow.

Unapproved Draft, Subject to Change

Sanity
Revie

w

General Concepts Memory Synchronization

4.13 Memory Synchronization

Applications shall ensure that access to any memory location by more than one thread of control
(threads or processes) is restricted such that no thread of control can read or modify a memory
location while another thread of control may be modifying it. Such access is restricted using
functions that synchronize thread execution and also synchronize memory with respect to other
threads. The following functions synchronize memory with respect to other threads:

fork()
pthread_barrier_wait()
pthread_cond_broadcast()
pthread_cond_clockwait()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_create()
pthread_join()
pthread_mutex_clocklock()
pthread_mutex_lock()
pthread_mutex_timedlock()

pthread_mutex_trylock()
pthread_mutex_unlock()
pthread_spin_lock()
pthread_spin_trylock()
pthread_spin_unlock()
pthread_rwlock_clockrdlock()
pthread_rwlock_clockwrlock()
pthread_rwlock_rdlock()
pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()
pthread_rwlock_tryrdlock()
pthread_rwlock_trywrlock()

pthread_rwlock_unlock()
pthread_rwlock_wrlock()
sem_clockwait()
sem_post()
sem_timedwait()
sem_trywait()
sem_wait()
semctl()
semop()
wait()
waitpid()

The pthread_once() function shall synchronize memory for the first call in each thread for a given
pthread_once_t object. If the init_routine called by pthread_once() is a cancellation point and is
canceled, a call to pthread_once() for the same pthread_once_t object made from a cancellation
cleanup handler shall also synchronize memory.

The pthread_mutex_lock() function need not synchronize memory if the mutex type is |
PTHREAD_MUTEX_RECURSIVE and the calling thread already owns the mutex. The
pthread_mutex_unlock() function need not synchronize memory if the mutex type is
PTHREAD_MUTEX_RECURSIVE and the mutex has a lock count greater than one.

Unless explicitly stated otherwise, if one of the above functions returns an error, it is unspecified
whether the invocation causes memory to be synchronized.

Applications may allow more than one thread of control to read a memory location
simultaneously.

4.14 Pathname Resolution

Pathname resolution is performed for a process to resolve a pathname to a particular directory
entry for a file in the file hierarchy. There may be multiple pathnames that resolve to the same
directory entry, and multiple directory entries for the same file. When a process resolves a
pathname of an existing directory entry, the entire pathname shall be resolved as described
below. When a process resolves a pathname of a directory entry that is to be created immediately
after the pathname is resolved, pathname resolution terminates when all components of the path
prefix of the last component have been resolved. It is then the responsibility of the process to
create the final component.

Each filename in the pathname is located in the directory specified by its predecessor (for
example, in the pathname fragment a/b, file b is located in directory a). Pathname resolution
shall fail if this cannot be accomplished. If the pathname begins with a <slash>, the predecessor
of the first filename in the pathname shall be taken to be the root directory of the process (such
pathnames are referred to as ``absolute pathnames’’). If the pathname does not begin with a
<slash>, the predecessor of the first filename of the pathname shall be taken to be either the
current working directory of the process or for certain interfaces the directory identified by a file

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 91

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

Unapproved Draft, Subject to Change

Sanity
Revie

w

<dirent.h> Headers

NAME
dirent.h — format of directory entries

SYNOPSIS
#include <dirent.h>

DESCRIPTION
The internal format of directories is unspecified.

The <dirent.h> header shall define the following type:

DIR A type representing a directory stream. The DIR type may be an incomplete type.

It shall also define the structure dirent which shall include the following members:

ino_t d_ino File serial number. -
char d_name[] Filename string of entry. -

and the structure posix_dent which shall include the following members: |

ino_t d_ino File serial number. |
reclen_t d_reclen Length of this entry, including trailing |

padding if necessary. See posix_getdents(). |
unsigned char d_type File type or unknown-file-type indication. |
char d_name[] Filename string of this entry. |

The array d_name in each of these structures is of unspecified size, but shall contain a filename of |
at most {NAME_MAX} bytes followed by a terminating null byte.

The <dirent.h> header shall define the ino_t, reclen_t, size_t, and ssize_t types as described in +
<sys/types.h>. +

The <dirent.h> header shall define the following symbolic constants for the file types and +
unknown-file-type indicator returned in the d_type member of the posix_dent structure. The +
values shall be distinct and shall be suitable for use in #if preprocessing directives: +

DT_BLK Block special. +

DT_CHR Character special. +

DT_DIR Directory. +

DT_FIFO FIFO special. +

DT_LNK Symbolic link. +

DT_REG Regular. +

DT_SOCK Socket. +

DT_UNKNOWN +
Unknown file type. +

TYM The implementation may implement message queues, semaphores, shared memory objects or +
typed memory objects as distinct file types. The following macros shall be provided to represent +
these types. The values shall be distinct from each other and from the above symbolic constants +
beginning with DT_, except when a distinct file type is not implemented, in which case the +
corresponding constant shall have a value that is never returned in d_type by posix_getdents(). +
The values shall be suitable for use in #if preprocessing directives: +

DT_MQ Message queue. +

216 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

7540

7541

7542

7543

7544

7545

7546

7547

7548

7549

7550

7551

7552

7553

7554

7555

7556

7557

7558

7559

7560

7561

7562

7563

7564

7565

7566

7567

7568

7569

7570

7571

7572

7573

7574

7575

7576

7577

7578

7579

Unapproved Draft, Subject to Change

Sanity
Revie

w

Headers <dirent.h>

DT_SEM Semaphore. +

DT_SHM Shared memory object. +

TYM DT_TMO Typed memory object. +

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int alphasort(const struct dirent **, const struct dirent **);
int closedir(DIR *);
int dirfd(DIR *);
DIR *fdopendir(int);
DIR *opendir(const char *);
ssize_t posix_getdents(int, void *, size_t, int); +
struct dirent *readdir(DIR *);
int readdir_r(DIR *restrict, struct dirent *restrict,

struct dirent **restrict);
void rewinddir(DIR *);
int scandir(const char *, struct dirent ***,

int (*)(const struct dirent *),
int (*)(const struct dirent **,
const struct dirent **));

XSI void seekdir(DIR *, long);
long telldir(DIR *);

APPLICATION USAGE
None.

RATIONALE
Information similar to that in the <dirent.h> header is contained in a file <sys/dir.h> in 4.2 BSD
and 4.3 BSD. The equivalent in these implementations of struct dirent from this volume of
POSIX.1-202x is struct direct. The filename was changed because the name <sys/dir.h> was also
used in earlier implementations to refer to definitions related to the older access method; this
produced name conflicts. The name of the structure was changed because this volume of
POSIX.1-202x does not completely define what is in the structure, so it could be different on
some implementations from struct direct.

The posix_dent structure was based on existing structures used by traditional getdents() +
functions, but the name was changed because the existing structures differed in name and in +
their members. Some used the dirent structure but this is not required to include a d_type +
member, which is the main advantage of using posix_getdents() over readdir(). The d_reclen +
member was included, even though some implementations return fixed-length entries and +
therefore do not need it, as almost all existing code that used getdents() used d_reclen to iterate +
through the returned entries. Implementations that return fixed-length entries can simply set +
d_reclen to that length in posix_getdents(). The type reclen_t for d_reclen was introduced, instead +
of using unsigned short, so as not to create a requirement that {NAME_MAX} cannot be greater +
than (a value somewhat smaller than) {SHRT_MAX}. +

Implementations are encouraged to define a DT_FORCE_TYPE symbolic constant for use in the +
flags argument to posix_getdents(). See the RATIONALE for posix_getdents(). +

The name of an array of char of an unspecified size should not be used as an lvalue. Use of:

sizeof(d_name)

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 217

7580

7581

7582

7583

7584

7585

7586

7587

7588

7589

7590

7591

7592

7593

7594

7595

7596

7597

7598

7599

7600

7601

7602

7603

7604

7605

7606

7607

7608

7609

7610

7611

7612

7613

7614

7615

7616

7617

7618

7619

7620

7621

7622

7623

7624

Unapproved Draft, Subject to Change

Sanity
Revie

w

<dirent.h> Headers

is incorrect; use:

strlen(d_name)

instead.

The array of char d_name cannot be assumed to have a fixed size. Implementations may define |
the d_name array in the dirent and posix_dent structures to have size 1, or size greater than |
{NAME_MAX}, or use a flexible array member, but in all cases the actual number of characters |
used for d_name is at least the length of the filename string including the terminating NUL byte. |

FUTURE DIRECTIONS
A future version of this standard may add a DT_FORCE_TYPE symbolic constant for use as |
described in the RATIONALE for posix_getdents().

SEE ALSO
<sys/types.h>

XSH alphasort(), closedir(), dirfd(), fdopendir(), posix_getdents(), readdir(), rewinddir(), seekdir(), +
telldir()

CHANGE HISTORY
First released in Issue 2.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Issue 6
The Open Group Corrigendum U026/7 is applied, correcting the prototype for readdir_r().

The restrict keyword is added to the prototype for readdir_r().

Issue 7
The alphasort(), dirfd(), and scandir() functions are added from The Open Group Technical
Standard, 2006, Extended API Set Part 1.

The fdopendir() function is added from The Open Group Technical Standard, 2006, Extended API
Set Part 2.

Austin Group Interpretation 1003.1-2001 #110 is applied, clarifying the definition of the DIR
type.

POSIX.1-2008, Technical Corrigendum 1, XBD/TC1-2008/0039 [291], XBD/TC1-2008/0040 [291],
XBD/TC1-2008/0041 [291], and XBD/TC1-2008/0042 [206] are applied. +

Issue 8 +
Austin Group Defect 697 is applied, adding posix_getdents().

218 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

7625

7626

7627

7628

7629

7630

7631

7632

7633

7634

7635

7636

7637

7638

7639

7640

7641

7642

7643

7644

7645

7646

7647

7648

7649

7650

7651

7652

7653

7654

7655

7656

Unapproved Draft, Subject to Change

Sanity
Revie

w

Headers <dlfcn.h>

NAME
dlfcn.h — dynamic linking

SYNOPSIS
#include <dlfcn.h>

DESCRIPTION
The <dlfcn.h> header shall define the Dl_info_t structure type, which shall include at least the +
following members: +

const char *dli_fname Pathname of mapped object file. +
void *dli_fbase Base of mapped address range. +
const char *dli_sname Symbol name or null pointer. +
void *dli_saddr Symbol address or null pointer. +

The <dlfcn.h> header shall define at least the following symbolic constants for use in the
construction of a dlopen() mode argument:

RTLD_LAZY Relocations are performed at an implementation-defined time.

RTLD_NOW Relocations are performed when the object is loaded.

RTLD_GLOBAL All symbols are available for relocation processing of other modules.

RTLD_LOCAL All symbols are not made available for relocation processing by other
modules.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int dladdr(const void *restrict, Dl_info_t *restrict); +
int dlclose(void *);
char *dlerror(void);
void *dlopen(const char *, int);
void *dlsym(void *restrict, const char *restrict);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XSH dladdr(), dlclose(), dlerror(), dlopen(), dlsym() +

CHANGE HISTORY
First released in Issue 5.

Issue 6
The restrict keyword is added to the prototype for dlsym().

Issue 7
The <dlfcn.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants. +

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 219

7657

7658

7659

7660

7661

7662

7663

7664

7665

7666

7667

7668

7669

7670

7671

7672

7673

7674

7675

7676

7677

7678

7679

7680

7681

7682

7683

7684

7685

7686

7687

7688

7689

7690

7691

7692

7693

7694

7695

7696

Unapproved Draft, Subject to Change

Sanity
Revie

w

Headers <limits.h>

Other Invariant Values

The <limits.h> header shall define the following symbolic constants:

{GETENTROPY_MAX} +
The maximum value of the length argument in calls to the getentropy() function. +
Minimum Acceptable Value: 256

{NL_ARGMAX}
Maximum value of n in conversion specifications using the "%n$" sequence in calls to the
printf() and scanf() families of functions.
Minimum Acceptable Value: 9

XSI {NL_LANGMAX}
Maximum number of bytes in a LANG name.
Minimum Acceptable Value: 14

{NL_MSGMAX}
Maximum message number.
Minimum Acceptable Value: 32 767

{NL_SETMAX}
Maximum set number.
Minimum Acceptable Value: 255

{NL_TEXTMAX}
Maximum number of bytes in a message string.
Minimum Acceptable Value: {_POSIX2_LINE_MAX}

{NSIG_MAX}
Maximum possible return value of sysconf (_SC_NSIG). See XSH sysconf(). The value of
{NSIG_MAX} shall be no greater than the number of signals that the sigset_t type (see
<signal.h>) is capable of representing, ignoring any restrictions imposed by sigfillset() or
sigaddset().

XSI {NZERO}
Default process priority.
Minimum Acceptable Value: 20

APPLICATION USAGE
None.

RATIONALE
A request was made to reduce the value of {_POSIX_LINK_MAX} from the value of 8 specified
for it in the POSIX.1-1990 standard to 2. The standard developers decided to deny this request
for several reasons:

• They wanted to avoid making any changes to the standard that could break conforming
applications, and the requested change could have that effect.

• The use of multiple hard links to a file cannot always be replaced with use of symbolic
links. Symbolic links are semantically different from hard links in that they associate a
pathname with another pathname rather than a pathname with a file. This has
implications for access control, file permanence, and transparency.

• The original standard developers had considered the issue of allowing for
implementations that did not in general support hard links, and decided that this would
reduce consensus on the standard.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 271

9402

9403

9404

9405

9406

9407

9408

9409

9410

9411

9412

9413

9414

9415

9416

9417

9418

9419

9420

9421

9422

9423

9424

9425

9426

9427

9428

9429

9430

9431

9432

9433

9434

9435

9436

9437

9438

9439

9440

9441

9442

9443

9444

9445

Unapproved Draft, Subject to Change

Sanity
Revie

w

<locale.h> Headers

CX The <locale.h> header shall contain at least the following macros representing bitmasks for use
with the newlocale() function for each supported locale category:

LC_COLLATE_MASK
LC_CTYPE_MASK
LC_MESSAGES_MASK
LC_MONETARY_MASK
LC_NUMERIC_MASK
LC_TIME_MASK

In addition, a macro to set the bits for all categories set shall be defined:

LC_ALL_MASK

The <locale.h> header shall define LC_GLOBAL_LOCALE, a special locale object descriptor
used by the duplocale() and uselocale() functions.

The <locale.h> header shall define the locale_t type, representing a locale object.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

CX locale_t duplocale(locale_t);
void freelocale(locale_t);
const char *getlocalename_l(int, locale_t); +
struct lconv *localeconv(void);

CX locale_t newlocale(int, const char *, locale_t);
char *setlocale(int, const char *);

CX locale_t uselocale (locale_t);

APPLICATION USAGE
None.

RATIONALE
It is suggested that each category macro name for use in setlocale() have a corresponding macro
name ending in _MASK for use in newlocale().

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 8 (on page 153), <stddef.h>

XSH duplocale(), freelocale(), getlocalename_l(), localeconv(), newlocale(), setlocale(), uselocale() +

CHANGE HISTORY
First released in Issue 3.

Included for alignment with the ISO C standard.

Issue 6
The lconv structure is expanded with new members (int_n_cs_precedes, int_n_sep_by_space,
int_n_sign_posn, int_p_cs_precedes, int_p_sep_by_space, and int_p_sign_posn) for alignment
with the ISO/IEC 9899: 1999 standard.

Extensions beyond the ISO C standard are marked.

276 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

9612

9613

9614

9615

9616

9617

9618

9619

9620

9621

9622

9623

9624

9625

9626

9627

9628

9629

9630

9631

9632

9633

9634

9635

9636

9637

9638

9639

9640

9641

9642

9643

9644

9645

9646

9647

9648

9649

9650

9651

Unapproved Draft, Subject to Change

Sanity
Revie

w

Headers <poll.h>

NAME
poll.h — definitions for the poll() function

SYNOPSIS
#include <poll.h>

DESCRIPTION
The <poll.h> header shall define the pollfd structure, which shall include at least the following
members:

int fd The following descriptor being polled.
short events The input event flags (see below).
short revents The output event flags (see below).

The <poll.h> header shall define the following type through typedef:

nfds_t An unsigned integer type used for the number of file descriptors.

The implementation shall support one or more programming environments in which the width
of nfds_t is no greater than the width of type long. The names of these programming
environments can be obtained using the confstr() function or the getconf utility.

The <poll.h> header shall define the sigset_t type as described in <signal.h>. +

The <poll.h> header shall define the timespec structure as described in <time.h>. +

The <poll.h> header shall define the following symbolic constants, zero or more of which may
be OR’ed together to form the events or revents members in the pollfd structure:

POLLIN Data other than high-priority data may be read without blocking.

POLLRDNORM Normal data may be read without blocking.

POLLRDBAND Priority data may be read without blocking.

POLLPRI High priority data may be read without blocking.

POLLOUT Normal data may be written without blocking.

POLLWRNORM Equivalent to POLLOUT.

POLLWRBAND Priority data may be written.

POLLERR An error has occurred (revents only).

POLLHUP Device has been disconnected (revents only).

POLLNVAL Invalid fd member (revents only).

The significance and semantics of normal, priority, and high-priority data are file and device-
specific.

The following shall be declared as functions and may also be defined as macros. Function |
prototypes shall be provided.

int poll(struct pollfd [], nfds_t, int);
int ppoll(struct pollfd [], nfds_t, const struct timespec *restrict, +

const sigset_t *restrict); +

Inclusion of the <poll.h> header may make visible all symbols from the headers <signal.h> and +
<time.h>.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 303

10565

10566

10567

10568

10569

10570

10571

10572

10573

10574

10575

10576

10577

10578

10579

10580

10581

10582

10583

10584

10585

10586

10587

10588

10589

10590

10591

10592

10593

10594

10595

10596

10597

10598

10599

10600

10601

10602

Unapproved Draft, Subject to Change

Sanity
Revie

w

<pthread.h> Headers

int pthread_atfork(void (*)(void), void (*)(void),
void(*)(void));

int pthread_attr_destroy(pthread_attr_t *);
int pthread_attr_getdetachstate(const pthread_attr_t *, int *);
int pthread_attr_getguardsize(const pthread_attr_t *restrict,

size_t *restrict);
TPS int pthread_attr_getinheritsched(const pthread_attr_t *restrict,

int *restrict);
int pthread_attr_getschedparam(const pthread_attr_t *restrict,

struct sched_param *restrict);
TPS int pthread_attr_getschedpolicy(const pthread_attr_t *restrict,

int *restrict);
int pthread_attr_getscope(const pthread_attr_t *restrict,

int *restrict);
TSA TSS int pthread_attr_getstack(const pthread_attr_t *restrict,

void **restrict, size_t *restrict);
TSS int pthread_attr_getstacksize(const pthread_attr_t *restrict,

size_t *restrict);
int pthread_attr_init(pthread_attr_t *);
int pthread_attr_setdetachstate(pthread_attr_t *, int);
int pthread_attr_setguardsize(pthread_attr_t *, size_t);

TPS int pthread_attr_setinheritsched(pthread_attr_t *, int);
int pthread_attr_setschedparam(pthread_attr_t *restrict,

const struct sched_param *restrict);
TPS int pthread_attr_setschedpolicy(pthread_attr_t *, int);

int pthread_attr_setscope(pthread_attr_t *, int);
TSA TSS int pthread_attr_setstack(pthread_attr_t *, void *, size_t);
TSS int pthread_attr_setstacksize(pthread_attr_t *, size_t);

int pthread_barrier_destroy(pthread_barrier_t *);
int pthread_barrier_init(pthread_barrier_t *restrict,

const pthread_barrierattr_t *restrict, unsigned);
int pthread_barrier_wait(pthread_barrier_t *);
int pthread_barrierattr_destroy(pthread_barrierattr_t *);

TSH int pthread_barrierattr_getpshared(
const pthread_barrierattr_t *restrict, int *restrict);

int pthread_barrierattr_init(pthread_barrierattr_t *);
TSH int pthread_barrierattr_setpshared(pthread_barrierattr_t *, int);

int pthread_cancel(pthread_t);
int pthread_cond_broadcast(pthread_cond_t *);
int pthread_cond_clockwait(pthread_cond_t *restrict, +

pthread_mutex_t *restrict, clockid_t, +
const struct timespec *restrict); +

int pthread_cond_destroy(pthread_cond_t *);
int pthread_cond_init(pthread_cond_t *restrict,

const pthread_condattr_t *restrict);
int pthread_cond_signal(pthread_cond_t *);
int pthread_cond_timedwait(pthread_cond_t *restrict,

pthread_mutex_t *restrict, const struct timespec *restrict);
int pthread_cond_wait(pthread_cond_t *restrict,

pthread_mutex_t *restrict);
int pthread_condattr_destroy(pthread_condattr_t *);
int pthread_condattr_getclock(const pthread_condattr_t *restrict,

306 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

10671

10672

10673

10674

10675

10676

10677

10678

10679

10680

10681

10682

10683

10684

10685

10686

10687

10688

10689

10690

10691

10692

10693

10694

10695

10696

10697

10698

10699

10700

10701

10702

10703

10704

10705

10706

10707

10708

10709

10710

10711

10712

10713

10714

10715

10716

10717

10718

10719

10720

10721

10722

Unapproved Draft, Subject to Change

Sanity
Revie

w

Headers <pthread.h>

clockid_t *restrict);
TSH int pthread_condattr_getpshared(const pthread_condattr_t *restrict,

int *restrict);
int pthread_condattr_init(pthread_condattr_t *);
int pthread_condattr_setclock(pthread_condattr_t *, clockid_t);

TSH int pthread_condattr_setpshared(pthread_condattr_t *, int);
int pthread_create(pthread_t *restrict, const pthread_attr_t *restrict,

void *(*)(void*), void *restrict);
int pthread_detach(pthread_t);
int pthread_equal(pthread_t, pthread_t);
void pthread_exit(void *);

TCT int pthread_getcpuclockid(pthread_t, clockid_t *);
TPS int pthread_getschedparam(pthread_t, int *restrict,

struct sched_param *restrict);
void *pthread_getspecific(pthread_key_t);
int pthread_join(pthread_t, void **);
int pthread_key_create(pthread_key_t *, void (*)(void*));
int pthread_key_delete(pthread_key_t);
int pthread_mutex_clocklock(pthread_mutex_t *restrict, clockid_t, +

const struct timespec *restrict); +
int pthread_mutex_consistent(pthread_mutex_t *);
int pthread_mutex_destroy(pthread_mutex_t *);

RPP|TPP int pthread_mutex_getprioceiling(const pthread_mutex_t *restrict,
int *restrict);

int pthread_mutex_init(pthread_mutex_t *restrict,
const pthread_mutexattr_t *restrict);

int pthread_mutex_lock(pthread_mutex_t *);
RPP|TPP int pthread_mutex_setprioceiling(pthread_mutex_t *restrict, int,

int *restrict);
int pthread_mutex_timedlock(pthread_mutex_t *restrict,

const struct timespec *restrict);
int pthread_mutex_trylock(pthread_mutex_t *);
int pthread_mutex_unlock(pthread_mutex_t *);
int pthread_mutexattr_destroy(pthread_mutexattr_t *);

RPP|TPP int pthread_mutexattr_getprioceiling(
const pthread_mutexattr_t *restrict, int *restrict);

MC1 int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *restrict,
int *restrict);

TSH int pthread_mutexattr_getpshared(const pthread_mutexattr_t *restrict,
int *restrict);

int pthread_mutexattr_getrobust(const pthread_mutexattr_t *restrict,
int *restrict);

int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict,
int *restrict);

int pthread_mutexattr_init(pthread_mutexattr_t *);
RPP|TPP int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *, int);
MC1 int pthread_mutexattr_setprotocol(pthread_mutexattr_t *, int);
TSH int pthread_mutexattr_setpshared(pthread_mutexattr_t *, int);

int pthread_mutexattr_setrobust(pthread_mutexattr_t *, int);
int pthread_mutexattr_settype(pthread_mutexattr_t *, int);
int pthread_once(pthread_once_t *, void (*)(void));
int pthread_rwlock_destroy(pthread_rwlock_t *);

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 307

10723

10724

10725

10726

10727

10728

10729

10730

10731

10732

10733

10734

10735

10736

10737

10738

10739

10740

10741

10742

10743

10744

10745

10746

10747

10748

10749

10750

10751

10752

10753

10754

10755

10756

10757

10758

10759

10760

10761

10762

10763

10764

10765

10766

10767

10768

10769

10770

10771

10772

10773

10774

Unapproved Draft, Subject to Change

Sanity
Revie

w

<pthread.h> Headers

int pthread_rwlock_init(pthread_rwlock_t *restrict,
const pthread_rwlockattr_t *restrict);

int pthread_rwlock_clockrdlock(pthread_rwlock_t *restrict, +
clockid_t, const struct timespec *restrict); +

int pthread_rwlock_clockwrlock(pthread_rwlock_t *restrict, +
clockid_t, const struct timespec *restrict); +

int pthread_rwlock_rdlock(pthread_rwlock_t *);
int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict,

const struct timespec *restrict);
int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict,

const struct timespec *restrict);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *);
int pthread_rwlock_trywrlock(pthread_rwlock_t *);
int pthread_rwlock_unlock(pthread_rwlock_t *);
int pthread_rwlock_wrlock(pthread_rwlock_t *);
int pthread_rwlockattr_destroy(pthread_rwlockattr_t *);

TSH int pthread_rwlockattr_getpshared(
const pthread_rwlockattr_t *restrict, int *restrict);

int pthread_rwlockattr_init(pthread_rwlockattr_t *);
TSH int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *, int);

pthread_t
pthread_self(void);

int pthread_setcancelstate(int, int *);
int pthread_setcanceltype(int, int *);

TPS int pthread_setschedparam(pthread_t, int,
const struct sched_param *);

int pthread_setschedprio(pthread_t, int);
int pthread_setspecific(pthread_key_t, const void *);
int pthread_spin_destroy(pthread_spinlock_t *);
int pthread_spin_init(pthread_spinlock_t *, int);
int pthread_spin_lock(pthread_spinlock_t *);
int pthread_spin_trylock(pthread_spinlock_t *);
int pthread_spin_unlock(pthread_spinlock_t *);
void pthread_testcancel(void);

The following may be declared as functions, or defined as macros, or both. If functions are
declared, function prototypes shall be provided.

pthread_cleanup_pop()
pthread_cleanup_push()

Inclusion of the <pthread.h> header shall make symbols defined in the headers <sched.h> and
<time.h> visible.

308 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

10775

10776

10777

10778

10779

10780

10781

10782

10783

10784

10785

10786

10787

10788

10789

10790

10791

10792

10793

10794

10795

10796

10797

10798

10799

10800

10801

10802

10803

10804

10805

10806

10807

10808

10809

10810

10811

10812

10813

10814

Unapproved Draft, Subject to Change

Sanity
Revie

w

Headers <semaphore.h>

NAME
semaphore.h — semaphores

SYNOPSIS
#include <semaphore.h>

DESCRIPTION
The <semaphore.h> header shall define the sem_t type, used in performing semaphore
operations. The semaphore may be implemented using a file descriptor, in which case
applications are able to open up at least a total of {OPEN_MAX} files and semaphores.

The <semaphore.h> header shall define the timespec structure as described in <time.h>.

The <semaphore.h> header shall define the symbolic constant SEM_FAILED which shall have
type sem_t *.

The <semaphore.h> header shall define O_CREAT and O_EXCL as described in <fcntl.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int sem_clockwait(sem_t *restrict, clockid_t, +
const struct timespec *restrict); +

int sem_close(sem_t *);
int sem_destroy(sem_t *);
int sem_getvalue(sem_t *restrict, int *restrict);
int sem_init(sem_t *, int, unsigned);
sem_t *sem_open(const char *, int, ...);
int sem_post(sem_t *);
int sem_timedwait(sem_t *restrict, const struct timespec *restrict);
int sem_trywait(sem_t *);
int sem_unlink(const char *);
int sem_wait(sem_t *);

Inclusion of the <semaphore.h> header may make visible symbols defined in the <fcntl.h> and
<time.h> headers.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<fcntl.h>, <sys/types.h>, <time.h>

XSH sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(), sem_post(),
sem_timedwait(), sem_trywait(), sem_unlink()

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The <semaphore.h> header is marked as part of the Semaphores option.

The Open Group Corrigendum U021/3 is applied, adding a description of SEM_FAILED.

The sem_timedwait() function is added for alignment with IEEE Std 1003.1d-1999.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 321

11165

11166

11167

11168

11169

11170

11171

11172

11173

11174

11175

11176

11177

11178

11179

11180

11181

11182

11183

11184

11185

11186

11187

11188

11189

11190

11191

11192

11193

11194

11195

11196

11197

11198

11199

11200

11201

11202

11203

11204

11205

11206

11207

11208

Unapproved Draft, Subject to Change

Sanity
Revie

w

Headers <signal.h>

The sigval union shall be defined as:

int sival_int Integer signal value.
void *sival_ptr Pointer signal value.

The <signal.h> header shall declare the SIGRTMIN and SIGRTMAX macros, which shall expand
to positive integer expressions with type int, but which need not be constant expressions. These
macros specify a range of signal numbers that are reserved for application use and for which the
realtime signal behavior specified in this volume of POSIX.1-202x is supported. The signal
numbers in this range do not overlap any of the signals specified in the following table.

The range SIGRTMIN through SIGRTMAX inclusive shall include at least {RTSIG_MAX} signal
numbers. The value of SIGRTMAX shall be less than the value returned by sysconf (_SC_NSIG).

It is implementation-defined whether realtime signal behavior is supported for other signals. +

The <signal.h> header shall define the following symbolic constant. The value shall be suitable +
for use in #if preprocessing directives: +

SIG2STR_MAX Maximum size of a signal name returned by sig2str(), including the +
terminating null byte. +

The <signal.h> header shall define the following macros that are used to refer to the signals that
occur in the system. Signals defined here begin with the letters SIG followed by an uppercase
letter. The macros shall expand to positive integer constant expressions with type int and

CX distinct values less than the value of {NSIG_MAX} defined in <limits.h>. The value 0 is
reserved for use as the null signal (see kill()). Additional implementation-defined signals may
occur in the system.

The ISO C standard only requires the signal names SIGABRT, SIGFPE, SIGILL, SIGINT,
SIGSEGV, and SIGTERM to be defined. An implementation need not generate any of these six

CX signals, except as a result of explicit use of interfaces that generate signals, such as raise(), kill(),
the General Terminal Interface (see Section 11.1.9, on page 185), and the kill utility, unless
otherwise stated (see, for example, XSH Section 2.8.3.3, on page 491).

The following signals shall be supported on all implementations (default actions are explained
below the table):

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 325

11291

11292

11293

11294

11295

11296

11297

11298

11299

11300

11301

11302

11303

11304

11305

11306

11307

11308

11309

11310

11311

11312

11313

11314

11315

11316

11317

11318

Unapproved Draft, Subject to Change

Sanity
Revie

w

<signal.h> Headers

CX In addition, the following signal-specific information shall be available:

Signal Member Value

SIGILL void * si_addr Address of faulting instruction.
SIGFPE

SIGSEGV void * si_addr Address of faulting memory reference.
SIGBUS

SIGCHLD pid_t si_pid Child process ID.
int si_status If si_code is equal to CLD_EXITED, then si_status holds the exit

value of the process; otherwise, it is equal to the signal that
caused the process to change state. The exit value in si_status
shall be equal to the full exit value (that is, the value passed to
_exit(), _Exit(), or exit(), or returned from main()); it shall not
be limited to the least significant eight bits of the value.

uid_t si_uid Real user ID of the process that sent the signal.

For some implementations, the value of si_addr may be inaccurate.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

CX int kill(pid_t, int);
XSI int killpg(pid_t, int);
CX void psiginfo(const siginfo_t *, const char *);

void psignal(int, const char *);
int pthread_kill(pthread_t, int);
int pthread_sigmask(int, const sigset_t *restrict,

sigset_t *restrict);
int raise(int);

CX int sig2str(int, char *); +
int sigaction(int, const struct sigaction *restrict,

struct sigaction *restrict);
int sigaddset(sigset_t *, int);

XSI int sigaltstack(const stack_t *restrict, stack_t *restrict);
CX int sigdelset(sigset_t *, int);

int sigemptyset(sigset_t *);
int sigfillset(sigset_t *);
int sigismember(const sigset_t *, int);
void (*signal(int, void (*)(int)))(int);

CX int sigpending(sigset_t *);
int sigprocmask(int, const sigset_t *restrict, sigset_t *restrict);
int sigqueue(pid_t, int, union sigval);
int sigsuspend(const sigset_t *);
int sigtimedwait(const sigset_t *restrict, siginfo_t *restrict,

const struct timespec *restrict);
int sigwait(const sigset_t *restrict, int *restrict);
int sigwaitinfo(const sigset_t *restrict, siginfo_t *restrict);
int str2sig(const char *restrict, int *restrict); +

CX Inclusion of the <signal.h> header may make visible all symbols from the <time.h> header.

330 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

11461

11462

11463

11464

11465

11466

11467

11468

11469

11470

11471

11472

11473

11474

11475

11476

11477

11478

11479

11480

11481

11482

11483

11484

11485

11486

11487

11488

11489

11490

11491

11492

11493

11494

11495

11496

11497

11498

11499

11500

11501

11502

11503

11504

11505

Unapproved Draft, Subject to Change

Sanity
Revie

w

<stdlib.h> Headers

int putenv(char *);
void qsort(void *, size_t, size_t, int (*)(const void *,

const void *));
CX void qsort_r(void *, size_t, size_t, int (*)(const void *, +

const void *, void *), void *); +
int rand(void);

XSI long random(void);
void *realloc(void *, size_t);

CX void *reallocarray(void *, size_t, size_t); +
XSI char *realpath(const char *restrict, char *restrict);

unsigned short *seed48(unsigned short [3]);
CX int setenv(const char *, const char *, int);
OB XSI void setkey(const char *);
XSI char *setstate(char *);

void srand(unsigned);
XSI void srand48(long);

void srandom(unsigned);
double strtod(const char *restrict, char **restrict);
float strtof(const char *restrict, char **restrict);
long strtol(const char *restrict, char **restrict, int);
long double strtold(const char *restrict, char **restrict);
long long strtoll(const char *restrict, char **restrict, int);
unsigned long strtoul(const char *restrict, char **restrict, int);
unsigned long long

strtoull(const char *restrict, char **restrict, int);
int system(const char *);

XSI int unlockpt(int);
CX int unsetenv(const char *);

size_t wcstombs(char *restrict, const wchar_t *restrict, size_t);
int wctomb(char *, wchar_t);

CX Inclusion of the <stdlib.h> header may also make visible all symbols from <fcntl.h>, <limits.h>,
<math.h>, <stddef.h>, and <sys/wait.h>.

APPLICATION USAGE
None.

RATIONALE
The ISO C standard requires that exit(EXIT_FAILURE) returns ``unsuccessful termination
status’’ to the host environment. In a POSIX host environment this means that the lower 8 bits of
EXIT_FAILURE must have at least one bit set. The standard developers decided to further
restrict the allowed values for the following reasons:

• Exit statuses of 126, 127, and greater than 128 are ambiguous in certain circumstances
because they have special meanings in the shell (see XCU Section 2.8.2, on page 2321).

• The xargs utility quits when a command execution exits with status 255 (see XCU xargs).

• Calling exit() with a value greater than 255 or less than 0 is something that only programs
which are specifically designed to have their exit status obtained by waitid() should do
(since it does not truncate the exit status to 8 bits). ``Pure ISO C’’ programs that call
exit(EXIT_FAILURE) do not meet this design criterion.

356 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

12398

12399

12400

12401

12402

12403

12404

12405

12406

12407

12408

12409

12410

12411

12412

12413

12414

12415

12416

12417

12418

12419

12420

12421

12422

12423

12424

12425

12426

12427

12428

12429

12430

12431

12432

12433

12434

12435

12436

12437

12438

12439

12440

12441

12442

12443

Unapproved Draft, Subject to Change

Sanity
Revie

w

Headers <string.h>

NAME
string.h — string operations

SYNOPSIS
#include <string.h>

DESCRIPTION
CX Some of the functionality described on this reference page extends the ISO C standard.

Applications shall define the appropriate feature test macro (see XSH Section 2.2, on page 460) to
enable the visibility of these symbols in this header.

The <string.h> header shall define NULL and size_t as described in <stddef.h>.

CX The <string.h> header shall define the locale_t type as described in <locale.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

XSI void *memccpy(void *restrict, const void *restrict, int, size_t);
void *memchr(const void *, int, size_t);
int memcmp(const void *, const void *, size_t);
void *memcpy(void *restrict, const void *restrict, size_t);

CX void *memmem(const void *, size_t, const void *, size_t); +
void *memmove(void *, const void *, size_t);
void *memset(void *, int, size_t);

CX char *stpcpy(char *restrict, const char *restrict);
char *stpncpy(char *restrict, const char *restrict, size_t);
char *strcat(char *restrict, const char *restrict);
char *strchr(const char *, int);
int strcmp(const char *, const char *);
int strcoll(const char *, const char *);

CX int strcoll_l(const char *, const char *, locale_t);
char *strcpy(char *restrict, const char *restrict);
size_t strcspn(const char *, const char *);

CX char *strdup(const char *);
char *strerror(int);

CX char *strerror_l(int, locale_t);
int strerror_r(int, char *, size_t);
size_t strlcat(char *restrict, const char *restrict, size_t); +
size_t strlcpy(char *restrict, const char *restrict, size_t); +
size_t strlen(const char *);
char *strncat(char *restrict, const char *restrict, size_t);
int strncmp(const char *, const char *, size_t);
char *strncpy(char *restrict, const char *restrict, size_t);

CX char *strndup(const char *, size_t);
size_t strnlen(const char *, size_t);
char *strpbrk(const char *, const char *);
char *strrchr(const char *, int);

CX char *strsignal(int);
size_t strspn(const char *, const char *);
char *strstr(const char *, const char *);
char *strtok(char *restrict, const char *restrict);

CX char *strtok_r(char *restrict, const char *restrict, char **restrict);
size_t strxfrm(char *restrict, const char *restrict, size_t);

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 359

12501

12502

12503

12504

12505

12506

12507

12508

12509

12510

12511

12512

12513

12514

12515

12516

12517

12518

12519

12520

12521

12522

12523

12524

12525

12526

12527

12528

12529

12530

12531

12532

12533

12534

12535

12536

12537

12538

12539

12540

12541

12542

12543

12544

12545

12546

12547

12548

Unapproved Draft, Subject to Change

Sanity
Revie

w

Headers <sys/types.h>

pthread_t Used to identify a thread. +

reclen_t Used for directory entry lengths.

size_t Used for sizes of objects.

ssize_t Used for a count of bytes or an error indication.

suseconds_t Used for time in microseconds.

time_t Used for time in seconds.

timer_t Used for timer ID returned by timer_create().

uid_t Used for user IDs.

All of the types shall be defined as arithmetic types of an appropriate length, with the following
exceptions:

pthread_attr_t
pthread_barrier_t
pthread_barrierattr_t
pthread_cond_t
pthread_condattr_t
pthread_key_t
pthread_mutex_t
pthread_mutexattr_t
pthread_once_t
pthread_rwlock_t
pthread_rwlockattr_t
pthread_spinlock_t
pthread_t
timer_t

Additionally:

• mode_t shall be an integer type.

• dev_t shall be an integer type.

• nlink_t, uid_t, gid_t, and id_t shall be integer types.

• blkcnt_t and off_t shall be signed integer types.

• fsblkcnt_t, fsfilcnt_t, reclen_t, and ino_t shall be defined as unsigned integer types. +

• size_t shall be an unsigned integer type.

• blksize_t, pid_t, and ssize_t shall be signed integer types.

CX • clock_t shall be an integer or real-floating type. time_t shall be an integer type.

The type ssize_t shall be capable of storing values at least in the range [−1, {SSIZE_MAX}].

XSI The type suseconds_t shall be a signed integer type capable of storing values at least in the
range [−1, 1 000 000].

The implementation shall support one or more programming environments in which the widths
of blksize_t, pid_t, size_t, ssize_t, and suseconds_t are no greater than the width of type long.
The names of these programming environments can be obtained using the confstr() function or
the getconf utility.

There are no defined comparison or assignment operators for the following types:

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 397

13725

13726

13727

13728

13729

13730

13731

13732

13733

13734

13735

13736

13737

13738

13739

13740

13741

13742

13743

13744

13745

13746

13747

13748

13749

13750

13751

13752

13753

13754

13755

13756

13757

13758

13759

13760

13761

13762

13763

13764

13765

Unapproved Draft, Subject to Change

Sanity
Revie

w

<unistd.h> Headers

int dup2(int, int);
int dup3(int, int, int);
void _exit(int);

OB XSI void encrypt(char [64], int);
int execl(const char *, const char *, ...);
int execle(const char *, const char *, ...);
int execlp(const char *, const char *, ...);
int execv(const char *, char *const []);
int execve(const char *, char *const [], char *const []);
int execvp(const char *, char *const []);
int faccessat(int, const char *, int, int);
int fchdir(int);
int fchown(int, uid_t, gid_t);
int fchownat(int, const char *, uid_t, gid_t, int);

SIO int fdatasync(int);
int fexecve(int, char *const [], char *const []);
pid_t _Fork(void);
pid_t fork(void);
long fpathconf(int, int);

FSC int fsync(int);
int ftruncate(int, off_t);
char *getcwd(char *, size_t);
gid_t getegid(void);
int getentropy(void *, size_t); +
uid_t geteuid(void);
gid_t getgid(void);
int getgroups(int, gid_t []);

XSI long gethostid(void);
int gethostname(char *, size_t);
char *getlogin(void);
int getlogin_r(char *, size_t);
int getopt(int, char * const [], const char *);
pid_t getpgid(pid_t);
pid_t getpgrp(void);
pid_t getpid(void);
pid_t getppid(void);
pid_t getsid(pid_t);
uid_t getuid(void);
int isatty(int);
int lchown(const char *, uid_t, gid_t);
int link(const char *, const char *);
int linkat(int, const char *, int, const char *, int);

XSI int lockf(int, int, off_t);
off_t lseek(int, off_t, int);

XSI int nice(int);
long pathconf(const char *, int);
int pause(void);
int pipe(int [2]);
int pipe2(int [2], int);
int posix_close(int, int);
ssize_t pread(int, void *, size_t, off_t);
ssize_t pwrite(int, const void *, size_t, off_t);

436 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

15234

15235

15236

15237

15238

15239

15240

15241

15242

15243

15244

15245

15246

15247

15248

15249

15250

15251

15252

15253

15254

15255

15256

15257

15258

15259

15260

15261

15262

15263

15264

15265

15266

15267

15268

15269

15270

15271

15272

15273

15274

15275

15276

15277

15278

15279

15280

15281

15282

15283

15284

15285

Unapproved Draft, Subject to Change

Sanity
Revie

w

Headers <wchar.h>

int fputws(const wchar_t *restrict, FILE *restrict);
int fwide(FILE *, int);
int fwprintf(FILE *restrict, const wchar_t *restrict, ...);
int fwscanf(FILE *restrict, const wchar_t *restrict, ...);
wint_t getwc(FILE *);
wint_t getwchar(void);
size_t mbrlen(const char *restrict, size_t, mbstate_t *restrict);
size_t mbrtowc(wchar_t *restrict, const char *restrict, size_t,

mbstate_t *restrict);
int mbsinit(const mbstate_t *);

CX size_t mbsnrtowcs(wchar_t *restrict, const char **restrict,
size_t, size_t, mbstate_t *restrict);

size_t mbsrtowcs(wchar_t *restrict, const char **restrict, size_t,
mbstate_t *restrict);

CX FILE *open_wmemstream(wchar_t **, size_t *);
wint_t putwc(wchar_t, FILE *);
wint_t putwchar(wchar_t);
int swprintf(wchar_t *restrict, size_t,

const wchar_t *restrict, ...);
int swscanf(const wchar_t *restrict,

const wchar_t *restrict, ...);
wint_t ungetwc(wint_t, FILE *);
int vfwprintf(FILE *restrict, const wchar_t *restrict, va_list);
int vfwscanf(FILE *restrict, const wchar_t *restrict, va_list);
int vswprintf(wchar_t *restrict, size_t,

const wchar_t *restrict, va_list);
int vswscanf(const wchar_t *restrict, const wchar_t *restrict,

va_list);
int vwprintf(const wchar_t *restrict, va_list);
int vwscanf(const wchar_t *restrict, va_list);

CX wchar_t *wcpcpy(wchar_t *restrict, const wchar_t *restrict);
wchar_t *wcpncpy(wchar_t *restrict, const wchar_t *restrict, size_t);
size_t wcrtomb(char *restrict, wchar_t, mbstate_t *restrict);

CX int wcscasecmp(const wchar_t *, const wchar_t *);
int wcscasecmp_l(const wchar_t *, const wchar_t *, locale_t);
wchar_t *wcscat(wchar_t *restrict, const wchar_t *restrict);
wchar_t *wcschr(const wchar_t *, wchar_t);
int wcscmp(const wchar_t *, const wchar_t *);
int wcscoll(const wchar_t *, const wchar_t *);

CX int wcscoll_l(const wchar_t *, const wchar_t *, locale_t);
wchar_t *wcscpy(wchar_t *restrict, const wchar_t *restrict);
size_t wcscspn(const wchar_t *, const wchar_t *);

CX wchar_t *wcsdup(const wchar_t *);
size_t wcsftime(wchar_t *restrict, size_t,

const wchar_t *restrict, const struct tm *restrict);
CX size_t wcslcat(wchar_t *restrict, const wchar_t *restrict, +

size_t); +
size_t wcslcpy(wchar_t *restrict, const wchar_t *restrict, +

size_t); +
size_t wcslen(const wchar_t *);

CX int wcsncasecmp(const wchar_t *, const wchar_t *, size_t);
int wcsncasecmp_l(const wchar_t *, const wchar_t *, size_t,

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 447

15664

15665

15666

15667

15668

15669

15670

15671

15672

15673

15674

15675

15676

15677

15678

15679

15680

15681

15682

15683

15684

15685

15686

15687

15688

15689

15690

15691

15692

15693

15694

15695

15696

15697

15698

15699

15700

15701

15702

15703

15704

15705

15706

15707

15708

15709

15710

15711

15712

15713

15714

15715

Unapproved Draft, Subject to Change

Sanity
Revie

w

General Information The Compilation Environment

Complete
Header Prefix Suffix Name

<aio.h> aio_, lio_, AIO_, LIO_
<arpa/inet.h> inet_
<ctype.h> to[a-z], is[a-z]
<dlfcn.h> RTLD_, dli_
<dirent.h> d_, DT_
<fcntl.h> l_

XSI <fmtmsg.h> MM_
<fnmatch.h> FNM_

XSI <ftw.h> FTW
<glob.h> gl_, GLOB_
<grp.h> gr_
<limits.h> _MAX, _MIN

XSI <math.h> M_
MSG <mqueue.h> mq_, MQ_
XSI <ndbm.h> dbm_, DBM_

<netdb.h> ai_, h_, n_, p_, s_
<net/if.h> if_, IF_
<netinet/in.h> in_, ip_, s_, sin_, INADDR_, IPPROTO_

IP6 in6_, in6addr_, s6_, sin6_, IPV6_
<netinet/tcp.h> TCP_
<nl_types.h> NL_
<poll.h> pd_, ph_, ps_, POLL
<pthread.h> pthread_, PTHREAD_
<pwd.h> pw_
<regex.h> re_, rm_, REG_
<sched.h> sched_, SCHED_
<semaphore.h> sem_, SEM_

CX <signal.h> sa_, si_, sigev_, sival_, uc_, BUS_, CLD_,
FPE_, ILL_, SA_, SEGV_, SI_, SIGEV_,

XSI ss_, sv_, SS_, TRAP_
<stdlib.h> str[a-z]
<string.h> str[a-z], mem[a-z], wcs[a-z]

XSI <sys/ipc.h> ipc_, IPC_ key, pad, seq
<sys/mman.h> shm_, MAP_, MCL_, MS_,

PROT_
XSI <sys/msg.h> msg, MSG_[A-Z] msg
XSI <sys/resource.h> rlim_, ru_, PRIO_, RLIMIT_, RUSAGE_

<sys/select.h> fd_, fds_, FD_

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 463

16135

16136

16137

16138

16139

16140

16141

16142

16143

16144

16145

16146

16147

16148

16149

16150

16151

16152

16153

16154

16155

16156

16157

16158

16159

16160

16161

16162

16163

16164

16165

16166

16167

16168

16169

16170

16171

16172

16173

16174

Unapproved Draft, Subject to Change

Sanity
Revie

w

General Information Signal Concepts

_Exit()
_Fork()
_exit()
abort()
accept()
accept4()
access()
aio_error()
aio_return()
aio_suspend()
alarm()
be16toh()
be32toh()
be64toh()
bind()
cfgetispeed()
cfgetospeed()
cfsetispeed()
cfsetospeed()
chdir()
chmod()
chown()
clock_gettime()
close()
connect()
creat()
dup()
dup2()
dup3()
execl()
execle()
execv()
execve()
faccessat()
fchdir()
fchmod()
fchmodat()
fchown()
fchownat()
fcntl()
fdatasync()
fexecve()
ffs()
fstat()
fstatat()
fsync()
ftruncate()
futimens()
getegid()
geteuid()
getgid()
getgroups()
getpeername()

getpgrp()
getpid()
getppid()
getsockname()
getsockopt()
getuid()
htobe16()
htobe32()
htobe64()
htole16()
htole32()
htole64()
htonl()
htons()
kill()
le16toh()
le32toh()
le64toh()
link()
linkat()
listen()
longjmp()
lseek()
lstat()
memccpy()
memchr()
memcmp()
memcpy()
memmove()
memset()
mkdir()
mkdirat()
mkfifo()
mkfifoat()
mknod()
mknodat()
ntohl()
ntohs()
open()
openat()
pause()
pipe()
pipe2()
poll()
ppoll()
pread()
pselect()
pthread_kill()
pthread_self()
pthread_setcancelstate()
pthread_sigmask()
pwrite()
raise()

read()
readlink()
readlinkat()
recv()
recvfrom()
recvmsg()
rename()
renameat()
rmdir()
select()
sem_post()
send()
sendmsg()
sendto()
setegid()
seteuid()
setgid()
setpgid()
setregid()
setreuid()
setsid()
setsockopt()
setuid()
shutdown()
sig2str()
sigaction()
sigaddset()
sigdelset()
sigemptyset()
sigfillset()
sigismember()
siglongjmp()
signal()
sigpending()
sigprocmask()
sigqueue()
sigsuspend()
sleep()
sockatmark()
socket()
socketpair()
stat()
stpcpy()
stpncpy()
strcat()
strchr()
strcmp()
strcpy()
strcspn()
strlcat()
strlcpy()
strlen()
strncat()

strncmp()
strncpy()
strnlen()
strpbrk()
strrchr()
strspn()
strstr()
strtok_r()
symlink()
symlinkat()
tcdrain()
tcflow()
tcflush()
tcgetattr()
tcgetpgrp()
tcgetwinsize()
tcsendbreak()
tcsetattr()
tcsetpgrp()
tcsetwinsize()
time()
timer_getoverrun()
timer_gettime()
timer_settime()
times()
umask()
uname()
unlink()
unlinkat()
utimensat()
utimes()
va_arg()
va_copy()
va_end()
va_start()
wait()
waitpid()
wcpcpy()
wcpncpy()
wcscat()
wcschr()
wcscmp()
wcscpy()
wcscspn()
wcslcat()
wcslcpy()
wcslen()
wcsncat()
wcsncmp()
wcsncpy()
wcsnlen()
wcspbrk()
wcsrchr()

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 481

16894

16895

16896

16897

16898

16899

16900

16901

16902

16903

16904

16905

16906

16907

16908

16909

16910

16911

16912

16913

16914

16915

16916

16917

16918

16919

16920

16921

16922

16923

16924

16925

16926

16927

16928

16929

16930

16931

16932

16933

16934

16935

16936

16937

16938

16939

16940

16941

16942

16943

16944

16945

16946

Unapproved Draft, Subject to Change

Sanity
Revie

w

Threads General Information

If a thread is detached, its thread ID is invalid for use as an argument in a call to pthread_detach()
or pthread_join().

2.9.3 Thread Mutexes

A thread that has blocked shall not prevent any unblocked thread that is eligible to use the same
processing resources from eventually making forward progress in its execution. Eligibility for
processing resources is determined by the scheduling policy.

A thread shall become the owner of a mutex, m, when one of the following occurs:

• It calls pthread_mutex_clocklock(), pthread_mutex_lock(), pthread_mutex_timedlock(), or |
pthread_mutex_trylock() with m as the mutex argument and the call returns zero or
[EOWNERDEAD].

• It calls pthread_mutex_setprioceiling() with m as the mutex argument and the call returns -
[EOWNERDEAD].

• It calls pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait() with m as +
the mutex argument and the call returns zero or certain error numbers (see
pthread_cond_timedwait()). -

The thread shall remain the owner of m until one of the following occurs:

• It executes pthread_mutex_unlock() with m as the mutex argument

• It blocks in a call to pthread_cond_clockwait(), pthread_cond_timedwait(), or +
pthread_cond_wait() with m as the mutex argument. -

The implementation shall behave as if at all times there is at most one owner of any mutex.

A thread that becomes the owner of a mutex is said to have ``acquired’’ the mutex and the mutex
is said to have become ``locked’’; when a thread gives up ownership of a mutex it is said to have
``released’’ the mutex and the mutex is said to have become ``unlocked’’.

A problem can occur if a process terminates while one of its threads holds a mutex lock.
Depending on the mutex type, it might be possible for another thread to unlock the mutex and
recover the state of the mutex. However, it is difficult to perform this recovery reliably.

Robust mutexes provide a means to enable the implementation to notify other threads in the
event of a process terminating while one of its threads holds a mutex lock. The next thread that
acquires the mutex is notified about the termination by the return value [EOWNERDEAD] from
the locking function. The notified thread can then attempt to recover the state protected by the
mutex, and if successful mark the state protected by the mutex as consistent by a call to
pthread_mutex_consistent(). If the notified thread is unable to recover the state, it can declare the
state as not recoverable by a call to pthread_mutex_unlock() without a prior call to
pthread_mutex_consistent().

Whether or not the state protected by a mutex can be recovered is dependent solely on the
application using robust mutexes. The robust mutex support provided in the implementation
provides notification only that a mutex owner has terminated while holding a lock, or that the
state of the mutex is not recoverable.

500 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

17706

17707

17708

17709

17710

17711

17712

17713

17714

17715

17716

17717

17718

17719

17720

17721

17722

17723

17724

17725

17726

17727

17728

17729

17730

17731

17732

17733

17734

17735

17736

17737

17738

17739

17740

17741

17742

17743

Unapproved Draft, Subject to Change

Sanity
Revie

w

Threads General Information

2.9.5.2 Cancellation Points

Cancellation points shall occur when a thread is executing the following functions:

accept()
accept4()
aio_suspend()
clock_nanosleep()
close()
connect()
creat()
fcntl()†
fdatasync()
fsync()
lockf()††
mq_receive()
mq_send()
mq_timedreceive()
mq_timedsend()
msgrcv()
msgsnd()
msync()

nanosleep()
open()
openat()
pause()
poll()
ppoll()
pread()
pselect()
pthread_cond_clockwait()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_join()
pthread_testcancel()
pwrite()
read()
readv()
recv()
recvfrom()

recvmsg()
select()
send()
sendmsg()
sendto()
sigsuspend()
sigtimedwait()
sigwait()
sigwaitinfo()
sleep()
tcdrain()
wait()
waitid()
waitpid()
write()
writev()

A cancellation point may also occur when a thread is executing the following functions: -

access()
asctime_r()
catclose()
catopen()
chmod()
chown()
closedir()
closelog()
ctermid()
ctime_r()
dlclose()
dlopen()
dprintf()
endhostent()
endnetent()
endprotoent()
endservent()
faccessat()
fchmod()
fchmodat()
fchown()

fchownat()
fclose()
fcntl()†††
fflush()
fgetc()
fgetpos()
fgets()
fgetwc()
fgetws()
fmtmsg()
fopen()
fpathconf()
fprintf()
fputc()
fputs()
fputwc()
fputws()
fread()
freopen()
fscanf()
fseek()

fseeko()
fsetpos()
fstat()
fstatat()
ftell()
ftello()
futimens()
fwprintf()
fwrite()
fwscanf()
getaddrinfo()
getc()
getc_unlocked()
getchar()
getchar_unlocked()
getcwd()
getdelim()
getgrgid_r()
getgrnam_r()
gethostid()
gethostname()

† When the cmd argument is F_SETLKW.

†† When the function argument is F_LOCK.

††† For any value of the cmd argument.

504 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

17869

17870

17871

17872

17873

17874

17875

17876

17877

17878

17879

17880

17881

17882

17883

17884

17885

17886

17887

17888

17889

17890

17891

17892

17893

17894

17895

17896

17897

17898

17899

17900

17901

17902

17903

17904

17905

17906

17907

17908

17909

17910

17911

17912

17913

Unapproved Draft, Subject to Change

Sanity
Revie

w

General Information Threads

getline()
getlogin_r()
getnameinfo()
getpwnam_r()
getpwuid_r()
getwc()
getwchar()
glob()
iconv_close()
iconv_open()
link()
linkat()
lio_listio()
localtime_r()
lockf()
lseek()
lstat()
mkdir()
mkdirat()
mkdtemp()
mkfifo()
mkfifoat()
mknod()
mknodat()
mkstemp()
mktime()
opendir()
openlog()
pathconf()
perror()
popen()
posix_fadvise()
posix_fallocate()
posix_getdents()
posix_madvise()

posix_openpt()
posix_spawn()
posix_spawnp()
posix_typed_mem_open()
printf()
psiginfo()
psignal()
pthread_rwlock_clockrdlock()
pthread_rwlock_clockwrlock()
pthread_rwlock_rdlock()
pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()
pthread_rwlock_wrlock()
ptsname()
ptsname_r()
putc()
putc_unlocked()
putchar()
putchar_unlocked()
puts()
putwc()
putwchar()
readdir_r()
readlink()
readlinkat()
remove()
rename()
renameat()
rewind()
rewinddir()
scandir()
scanf()
seekdir()
sem_clockwait()
sem_timedwait()

sem_wait()
semop()
sethostent()
setnetent()
setprotoent()
setservent()
stat()
strerror_l()
strerror_r()
strftime()
strftime_l()
symlink()
symlinkat()
sync()
syslog()
tmpfile()
tmpnam()
ttyname_r()
tzset()
ungetc()
ungetwc()
unlink()
unlinkat()
utimensat()
utimes()
vdprintf()
vfprintf()
vfwprintf()
vprintf()
vwprintf()
wcsftime()
wordexp()
wprintf()
wscanf()

In addition, a cancellation point may occur when a thread is executing any function that this -
standard does not require to be thread-safe but the implementation documents as being thread-
safe. If a thread is cancelled while executing a non-thread-safe function, the behavior is
undefined.

An implementation shall not introduce cancellation points into any other functions specified in
this volume of POSIX.1-202x.

The side-effects of acting upon a cancellation request while suspended during a call of a function
are the same as the side-effects that may be seen in a single-threaded program when a call to a
function is interrupted by a signal and the given function returns [EINTR]. Any such side-
effects occur before any cancellation cleanup handlers are called. For functions that are explicitly
required not to return when interrupted (for example, pclose()), if a thread is canceled while
executing the function, the behavior is undefined.

Whenever a thread has cancelability enabled and a cancellation request has been made with that
thread as the target, and the thread then calls any function that is a cancellation point (such as
pthread_testcancel() or read()), the cancellation request shall be acted upon before the function
returns. If a thread has cancelability enabled and a cancellation request is made with the thread

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 505

17914

17915

17916

17917

17918

17919

17920

17921

17922

17923

17924

17925

17926

17927

17928

17929

17930

17931

17932

17933

17934

17935

17936

17937

17938

17939

17940

17941

17942

17943

17944

17945

17946

17947

17948

17949

17950

17951

17952

17953

17954

17955

17956

17957

17958

17959

17960

17961

17962

17963

17964

Unapproved Draft, Subject to Change

Sanity
Revie

w

Data Types General Information

2.11.1 Defined Types

All of the data types used by various functions are defined by the implementation. The
following table describes some of these types. Other types referenced in the description of a
function, not mentioned here, can be found in the appropriate header for that function.

Defined Type Description

cc_t Type used for terminal special characters.
clock_t Integer or real-floating type used for processor times, as defined in

the ISO C standard.
clockid_t Used for clock ID type in some timer functions.
dev_t Integer type used for device numbers.
DIR Type representing a directory stream.
div_t Structure type returned by the div() function.
FILE Structure containing information about a file.
glob_t Structure type used in pathname pattern matching.
fpos_t Type containing all information needed to specify uniquely every

position within a file.
gid_t Integer type used for group IDs.
iconv_t Type used for conversion descriptors.
id_t Integer type used as a general identifier; can be used to contain

at least the largest of a pid_t, uid_t, or gid_t.
ino_t Unsigned integer type used for file serial numbers.
key_t Arithmetic type used for XSI interprocess communication.
ldiv_t Structure type returned by the ldiv() function.
mode_t Integer type used for file attributes.
mqd_t Used for message queue descriptors.
nfds_t Integer type used for the number of file descriptors.
nlink_t Integer type used for link counts.
off_t Signed integer type used for file sizes.
pid_t Signed integer type used for process and process group IDs.
pthread_attr_t Used to identify a thread attribute object.
pthread_cond_t Used for condition variables.
pthread_condattr_t Used to identify a condition attribute object.
pthread_key_t Used for thread-specific data keys.
pthread_mutex_t Used for mutexes.
pthread_mutexattr_t Used to identify a mutex attribute object.
pthread_once_t Used for dynamic package initialization.
pthread_rwlock_t Used for read-write locks.
pthread_rwlockattr_t Used for read-write lock attributes.
pthread_t Used to identify a thread.
ptrdiff_t Signed integer type of the result of subtracting two pointers.
reclen_t Unsigned integer type used for directory entry lengths.
regex_t Structure type used in regular expression matching.
regmatch_t Structure type used in regular expression matching.
rlim_t Unsigned integer type used for limit values, to which objects of

type int and off_t can be cast without loss of value.
sem_t Type used in performing semaphore operations.
sig_atomic_t Possibly volatile-qualified integer type of an object that can be

accessed as an atomic entity, even in the presence of asynchronous
interrupts.

sigset_t Integer or structure type of an object used to represent sets

522 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

18595

18596

18597

18598

18599

18600

18601

18602

18603

18604

18605

18606

18607

18608

18609

18610

18611

18612

18613

18614

18615

18616

18617

18618

18619

18620

18621

18622

18623

18624

18625

18626

18627

18628

18629

18630

18631

18632

18633

18634

18635

18636

18637

18638

18639

18640

18641

18642

18643

18644

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces bind()

NAME
bind — bind a name to a socket

SYNOPSIS
#include <sys/socket.h>

int bind(int socket, const struct sockaddr *address,
socklen_t address_len);

DESCRIPTION
The bind() function shall assign a local socket address address to a socket identified by descriptor
socket that has no local socket address assigned. Sockets created with the socket() function are
initially unnamed; they are identified only by their address family.

The bind() function takes the following arguments:

socket Specifies the file descriptor of the socket to be bound.

address Points to a sockaddr structure containing the address to be bound to the
socket. The length and format of the address depend on the address family of
the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

The socket specified by socket may require the process to have appropriate privileges to use the
bind() function.

If the address family of the socket is AF_UNIX and the pathname in address names a symbolic
link, bind() shall fail and set errno to [EADDRINUSE].

If the socket address cannot be assigned immediately and O_NONBLOCK is set for the file
descriptor for the socket, bind() shall fail and set errno to [EINPROGRESS], but the assignment
request shall not be aborted, and the assignment shall be completed asynchronously. Subsequent
calls to bind() for the same socket, before the assignment is completed, shall fail and set errno to
[EALREADY].

When the assignment has been performed asynchronously, pselect(), select(), poll(), and ppoll() |
shall indicate that the file descriptor for the socket is ready for reading and writing.

RETURN VALUE
Upon successful completion, bind() shall return 0; otherwise, −1 shall be returned and errno set
to indicate the error.

ERRORS
The bind() function shall fail if:

[EADDRINUSE] The specified address is already in use.

[EADDRNOTAVAIL]
The specified address is not available from the local machine.

[EAFNOSUPPORT]
The specified address is not a valid address for the address family of the
specified socket.

[EALREADY] An assignment request is already in progress for the specified socket.

[EBADF] The socket argument is not a valid file descriptor.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 601

21037

21038

21039

21040

21041

21042

21043

21044

21045

21046

21047

21048

21049

21050

21051

21052

21053

21054

21055

21056

21057

21058

21059

21060

21061

21062

21063

21064

21065

21066

21067

21068

21069

21070

21071

21072

21073

21074

21075

21076

21077

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces connect()

NAME
connect — connect a socket

SYNOPSIS
#include <sys/socket.h>

int connect(int socket, const struct sockaddr *address,
socklen_t address_len);

DESCRIPTION
The connect() function shall attempt to make a connection on a connection-mode socket or to set
or reset the peer address of a connectionless-mode socket. The function takes the following
arguments:

socket Specifies the file descriptor associated with the socket.

address Points to a sockaddr structure containing the peer address. The length and
format of the address depend on the address family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

If the socket has not already been bound to a local address, connect() shall bind it to an address
which, unless the socket’s address family is AF_UNIX, is an unused local address.

If the initiating socket is not connection-mode, then connect() shall set the socket’s peer address,
and no connection is made. For SOCK_DGRAM sockets, the peer address identifies where all
datagrams are sent on subsequent send() functions, and limits the remote sender for subsequent
recv() functions. If the sa_family member of address is AF_UNSPEC, the socket’s peer address
shall be reset. Note that despite no connection being made, the term ``connected’’ is used to
describe a connectionless-mode socket for which a peer address has been set.

If the initiating socket is connection-mode, then connect() shall attempt to establish a connection
to the address specified by the address argument. If the connection cannot be established
immediately and O_NONBLOCK is not set for the file descriptor for the socket, connect() shall
block for up to an unspecified timeout interval until the connection is established. If the timeout
interval expires before the connection is established, connect() shall fail and the connection
attempt shall be aborted. If connect() is interrupted by a signal that is caught while blocked
waiting to establish a connection, connect() shall fail and set errno to [EINTR], but the connection
request shall not be aborted, and the connection shall be established asynchronously.

If the connection cannot be established immediately and O_NONBLOCK is set for the file
descriptor for the socket, connect() shall fail and set errno to [EINPROGRESS], but the connection
request shall not be aborted, and the connection shall be established asynchronously. Subsequent
calls to connect() for the same socket, before the connection is established, shall fail and set errno
to [EALREADY].

When the connection has been established asynchronously, pselect(), select(), poll(), and ppoll() |
shall indicate that the file descriptor for the socket is ready for writing.

The socket in use may require the process to have appropriate privileges to use the connect()
function.

RETURN VALUE
Upon successful completion, connect() shall return 0; otherwise, −1 shall be returned and errno
set to indicate the error.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 681

23556

23557

23558

23559

23560

23561

23562

23563

23564

23565

23566

23567

23568

23569

23570

23571

23572

23573

23574

23575

23576

23577

23578

23579

23580

23581

23582

23583

23584

23585

23586

23587

23588

23589

23590

23591

23592

23593

23594

23595

23596

23597

23598

Unapproved Draft, Subject to Change

Sanity
Revie

w

dladdr() System Interfaces

+
+

+

NAME +
dladdr — get information relating to an address +

SYNOPSIS +
#include <dlfcn.h> +

int dladdr(const void *restrict addr, Dl_info_t *restrict dlip); +

DESCRIPTION +
The dladdr() function shall determine whether the address specified by addr is located within the +
address range occupied by a mapped object. The mapped objects examined shall include any +
executable object files that have previously been loaded by a call to dlopen() and for which +
dlclose() has not subsequently been called, and any shared library files that were loaded as +
dependencies of the executable file from which the current process image was loaded; they may +
also include any executable object files that have previously been loaded by a call to dlopen() +
and for which dlclose() has subsequently been called, the executable file from which the current +
process image was loaded, and implementation-defined additional mapped objects (for +
example, all regular files mapped using mmap() might be included). If the specified address is +
within the mapped address range of one of these mapped objects and the object contains a +
symbol table, the symbol table shall be searched for a symbol (a function identifier or a data +
object identifier) that has the largest address less than or equal to the specified address. +

If the address specified by addr is within the mapped address range of one of the examined +
mapped objects, the structure pointed to by dlip shall be populated as follows: +

• The value of the dli_fname member shall be set to point to the pathname of the mapped +
object. (This might no longer resolve to the file that was mapped, for example if it was a +
link that has subsequently been removed or renamed.) +

• The value of the dli_fbase member shall be set to the base of the address range occupied by +
the mapped object. +

• The value of the dli_sname member shall be set to point to the name of the symbol that has +
the largest address less than or equal to the specified address, or to a null pointer if no such +
symbol was found. +

• If dli_sname is set to a null pointer, the value of the dli_saddr member shall also be set to a +
null pointer. Otherwise, if dli_sname names a function identifier, dli_saddr shall be set to the +
address of the function converted from type pointer to function to type pointer to void; +
otherwise, dli_saddr shall be set to the address of the data object named by dli_sname +
converted from a pointer to the type of the data object to a pointer to void. +

RETURN VALUE +
Upon successful completion, a non-zero value shall be returned. If the specified address is not +
located within the address range occupied by an examined mapped object, or if an error occurs, +
zero shall be returned. More detailed diagnostic information shall be available through dlerror(). +

ERRORS +
No errors are defined. +

722 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

24808

24809

24810

24811

24812

24813

24814

24815

24816

24817

24818

24819

24820

24821

24822

24823

24824

24825

24826

24827

24828

24829

24830

24831

24832

24833

24834

24835

24836

24837

24838

24839

24840

24841

24842

24843

24844

24845

24846

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces dladdr()

+EXAMPLES +
None. +

APPLICATION USAGE +
The Dl_info_t members may point to addresses within the mapped object. These pointers can +
become invalid if the object is unmapped (for example, loaded executable objects may be +
unloaded by dlclose()). +

If dli_sname names a function identifier, the value of dli_saddr can be converted back to type +
pointer to function using a cast in the manner shown in the dlsym() EXAMPLES section. Note +
that this conversion is not defined by the ISO C standard. This standard requires this conversion +
to work correctly on conforming implementations. +

RATIONALE +
None. +

FUTURE DIRECTIONS +
None. +

SEE ALSO +
dlclose(), dlerror(), dlopen(), dlsym() +

XBD <dlfcn.h> +

CHANGE HISTORY +
First released in Issue 8. +

+

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 723

24847

24848

24849

24850

24851

24852

24853

24854

24855

24856

24857

24858

24859

24860

24861

24862

24863

24864

24865

24866

Unapproved Draft, Subject to Change

Sanity
Revie

w

drand48() System Interfaces

assert(xsubi[1] == 10728);
assert(xsubi[2] == 27921);
assert(nrand48(xsubi) == 754104482);
assert(xsubi[0] == 6828);
assert(xsubi[1] == 28997);
assert(xsubi[2] == 23013);
assert(nrand48(xsubi) == 609453945);
assert(xsubi[0] == 58183);
assert(xsubi[1] == 3826);
assert(xsubi[2] == 18599);
assert(nrand48(xsubi) == 1878644360);
assert(xsubi[0] == 36678);
assert(xsubi[1] == 44304);
assert(xsubi[2] == 57331);
assert(nrand48(xsubi) == 2114923686);
assert(xsubi[0] == 58585);
assert(xsubi[1] == 22861);
assert(xsubi[2] == 64542);

}
}

APPLICATION USAGE
These functions should be avoided whenever non-trivial requirements (including safety) have to |
be fulfilled, unless seeded using getentropy().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getentropy(), initstate(), rand() +

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 5
A note indicating that the drand48(), lrand48(), and mrand48() functions need not be reentrant is
added to the DESCRIPTION.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

Issue 7
Austin Group Interpretation 1003.1-2001 #156 is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0083 [743] is applied.

Issue 8
Austin Group Defect 1107 is applied, clarifying how the return value is calculated from X i for
each function. +

Austin Group Defect 1134 is applied, adding getentropy(). |

738 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

25353

25354

25355

25356

25357

25358

25359

25360

25361

25362

25363

25364

25365

25366

25367

25368

25369

25370

25371

25372

25373

25374

25375

25376

25377

25378

25379

25380

25381

25382

25383

25384

25385

25386

25387

25388

25389

25390

25391

25392

25393

25394

25395

25396

Unapproved Draft, Subject to Change

Sanity
Revie

w

fork() System Interfaces

possible for the system to conform to the intent of this volume of POSIX.1-202x.

The [EAGAIN] error exists to warn applications that such a condition might occur. Whether it
occurs or not is not in any practical sense under the control of the application because the
condition is usually a consequence of the user’s use of the system, not of the application’s code.
Thus, no application can or should rely upon its occurrence under any circumstances, nor
should the exact semantics of what concept of ``user ’’ is used be of concern to the application
developer. Validation writers should be cognizant of this limitation.

There are two reasons why POSIX programmers call fork(). One reason is to create a new thread
of control within the same program (which was originally only possible in POSIX by creating a
new process); the other is to create a new process running a different program. In the latter case,
the call to fork() is soon followed by a call to one of the exec functions.

The general problem with making fork() work in a multi-threaded world is what to do with all
of the threads. There are two alternatives. One is to copy all of the threads into the new process.
This causes the programmer or implementation to deal with threads that are suspended on
system calls or that might be about to execute system calls that should not be executed in the
new process. The other alternative is to copy only the thread that calls fork(). This creates the
difficulty that the state of process-local resources is usually held in process memory. If a thread
that is not calling fork() holds a resource, that resource is never released in the child process
because the thread whose job it is to release the resource does not exist in the child process.

When a programmer is writing a multi-threaded program, the first described use of fork(),
creating new threads in the same program, is provided by the pthread_create() function. The
fork() function is thus used only to run new programs, and the effects of calling functions that
require certain resources between the call to fork() and the call to an exec function are undefined.

The addition of the forkall() function to the standard was considered and rejected. The forkall()
function lets all the threads in the parent be duplicated in the child. This essentially duplicates
the state of the parent in the child. This allows threads in the child to continue processing and
allows locks and the state to be preserved without explicit pthread_atfork() code. The calling
process has to ensure that the threads processing state that is shared between the parent and
child (that is, file descriptors or MAP_SHARED memory) behaves properly after forkall(). For
example, if a thread is reading a file descriptor in the parent when forkall() is called, then two
threads (one in the parent and one in the child) are reading the file descriptor after the forkall().
If this is not desired behavior, the parent process has to synchronize with such threads before
calling forkall().

When forkall() is called, threads, other than the calling thread, that are in functions that can
return with an [EINTR] error may have those functions return [EINTR] if the implementation
cannot ensure that the function behaves correctly in the parent and child. In particular, |
pthread_cond_clockwait(), pthread_cond_timedwait(), and pthread_cond_wait() need to return in |
order to ensure that the condition has not changed. These functions can be awakened by a
spurious condition wakeup rather than returning [EINTR].

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), exec , fcntl(), pthread_atfork(), semop(), signal(), times()

XBD Section 4.13 (on page 91), <sys/types.h>, <unistd.h>

886 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

30202

30203

30204

30205

30206

30207

30208

30209

30210

30211

30212

30213

30214

30215

30216

30217

30218

30219

30220

30221

30222

30223

30224

30225

30226

30227

30228

30229

30230

30231

30232

30233

30234

30235

30236

30237

30238

30239

30240

30241

30242

30243

30244

30245

Unapproved Draft, Subject to Change

Sanity
Revie

w

free() System Interfaces

NAME
free — free allocated memory

SYNOPSIS
#include <stdlib.h>

void free(void *ptr);

DESCRIPTION
CX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-202x defers to the ISO C standard.

The free() function shall cause the space pointed to by ptr to be deallocated; that is, made
available for further allocation. If ptr is a null pointer, no action shall occur. Otherwise, if the
argument does not match a pointer earlier returned by a function in POSIX.1-202x that allocates

CX memory as if by malloc(), or if the space has been deallocated by a call to free(), realloc(), or |
reallocarray(), the behavior is undefined.

Any use of a pointer that refers to freed space results in undefined behavior.

CX The free() function shall not modify errno if ptr is a null pointer or a pointer previously returned
as if by malloc() and not yet deallocated.

RETURN VALUE
The free() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
There is now no requirement for the implementation to support the inclusion of <malloc.h>.

Because the free() function does not modify errno for valid pointers, it is safe to use it in cleanup
code without corrupting earlier errors, such as in this example code:

// buf was obtained by malloc(buflen)
ret = write(fd, buf, buflen);
if (ret < 0) {

free(buf);
return ret;

}

However, earlier versions of this standard did not require this, and the same example had to be
written as:

// buf was obtained by malloc(buflen)
ret = write(fd, buf, buflen);
if (ret < 0) {

int save = errno;
free(buf);
errno = save;
return ret;

}

920 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

31485

31486

31487

31488

31489

31490

31491

31492

31493

31494

31495

31496

31497

31498

31499

31500

31501

31502

31503

31504

31505

31506

31507

31508

31509

31510

31511

31512

31513

31514

31515

31516

31517

31518

31519

31520

31521

31522

31523

31524

31525

31526

31527

Unapproved Draft, Subject to Change

Sanity
Revie

w

getentropy() System Interfaces

|
|

|

NAME |
getentropy — fill a buffer with random bytes |

SYNOPSIS |
#include <unistd.h> |

int getentropy(void *buffer, size_t length); |

DESCRIPTION |
The getentropy() function shall write length bytes of data starting at the location pointed to by |
buffer. The output shall be unpredictable high quality random data, generated by a |
cryptographically secure pseudo-random number generator. The maximum permitted value for |
the length argument is given by the {GETENTROPY_MAX} symbolic constant defined in |
<limits.h>. |

A successful call to getentropy() shall always provide the requested number of bytes of entropy. |

RETURN VALUE |
Upon successful completion, getentropy() shall return 0; otherwise, −1 shall be returned and |
errno set to indicate the error. |

ERRORS |
The getentropy() function shall fail if: |

[EINVAL] The value of length is greater than {GETENTROPY_MAX}. |

The getentropy() function may fail if: |

[ENOSYS] The system does not provide the necessary source of entropy. |

|EXAMPLES |
None. |

APPLICATION USAGE |
The intended use of this function is to create a seed for other pseudo-random number |
generators. |

RATIONALE |
The getentropy() function is not a cancellation point. (See Section 2.9.5.2 (on page 504).) |

FUTURE DIRECTIONS |
None. |

SEE ALSO |
drand48(), initstate(), rand() |

XBD <limits.h>, <unistd.h> |

CHANGE HISTORY |
First released in Issue 8. |

|

1018 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

34913

34914

34915

34916

34917

34918

34919

34920

34921

34922

34923

34924

34925

34926

34927

34928

34929

34930

34931

34932

34933

34934

34935

34936

34937

34938

34939

34940

34941

34942

34943

34944

34945

34946

34947

Unapproved Draft, Subject to Change

Sanity
Revie

w

getlocalename_l() System Interfaces

|
|

|

NAME |
getlocalename_l — get a locale name from a locale object |

SYNOPSIS |
CX #include <locale.h> |

const char *getlocalename_l(int category, locale_t locobj); |
|

DESCRIPTION |
The getlocalename_l() function shall return the locale name for the given locale category of the |
locale object locobj, or of the global locale if locobj is the special locale object |
LC_GLOBAL_LOCALE. |

The category argument specifies the locale category to be queried. If the value is LC_ALL or is |
not a supported locale category value (see setlocale()), getlocalename_l() shall fail. |

The behavior is undefined if the locobj argument is neither the special locale object |
LC_GLOBAL_LOCALE nor a valid locale object handle. |

RETURN VALUE |
Upon successful completion, getlocalename_l() shall return a pointer to a string containing the |
locale name; otherwise, a null pointer shall be returned. |

If locobj is LC_GLOBAL_LOCALE, the returned string pointer might be invalidated or the string |
content might be overwritten by a subsequent call in the same thread to getlocalename_l() with |
LC_GLOBAL_LOCALE; the returned string pointer might also be invalidated if the calling |
thread is terminated. Otherwise, the returned string pointer and content shall remain valid until |
the locale object locobj is used in a call to freelocale() or as the base argument in a successful call to |
newlocale(). |

ERRORS |
No errors are defined. |

|EXAMPLES |

Determining the locale name for a category of the current locale |

The following example shows how to obtain the locale name for the LC_NUMERIC category of |
the current thread-local locale, or of the global locale if no thread-local locale is in use. |

#include <locale.h> |
... |
const char *name; |
locale_t loc = uselocale(NULL); |
name = getlocalename_l(LC_NUMERIC, loc); |

APPLICATION USAGE |
None. |

RATIONALE |
Historical versions of getlocalename_l() did not handle the special locale object |
LC_GLOBAL_LOCALE, requiring that applications used setlocale(category, NULL) to query the |
global locale if uselocale(NULL) returned LC_GLOBAL_LOCALE. However, since setlocale() is |
not required to be thread-safe (even when the only concurrent calls are ones that query the |
locale), this method was problematic for multi-threaded processes. This standard requires that |
getlocalename_l(category, LC_GLOBAL_LOCALE) queries the global locale in a thread-safe |
manner, for example by returning a pointer to a thread-local internal buffer instead of a process- |
wide internal buffer. |

1038 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

35541

35542

35543

35544

35545

35546

35547

35548

35549

35550

35551

35552

35553

35554

35555

35556

35557

35558

35559

35560

35561

35562

35563

35564

35565

35566

35567

35568

35569

35570

35571

35572

35573

35574

35575

35576

35577

35578

35579

35580

35581

35582

35583

35584

35585

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces getlocalename_l()

FUTURE DIRECTIONS |
None. |

SEE ALSO |
freelocale(), newlocale(), setlocale(), uselocale() |

XBD Chapter 7 (on page 113), <locale.h> |

CHANGE HISTORY |
First released in Issue 8. |

|

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1039

35586

35587

35588

35589

35590

35591

35592

35593

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces initstate()

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
After initialization, a state array can be restarted at a different point in one of two ways:

1. The initstate() function can be used, with the desired seed, state array, and size of the
array.

2. The setstate() function, with the desired state, can be used, followed by srandom() with
the desired seed. The advantage of using both of these functions is that the size of the
state array does not have to be saved once it is initialized.

Although some implementations of random() have written messages to standard error, such
implementations do not conform to POSIX.1-202x.

Issue 5 restored the historical behavior of this function.

Threaded applications should use erand48(), nrand48(), or jrand48() instead of random() when
an independent random number sequence in multiple threads is required.

These functions should be avoided whenever non-trivial requirements (including safety) have to |
be fulfilled, unless seeded using getentropy().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
drand48(), getentropy(), rand() +

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

In the DESCRIPTION, the phrase ``values smaller than 8’’ is replaced with ``values greater than
or equal to 8, or less than 32’’, ``size<8’’ is replaced with ``8≤size <32’’, and a new first paragraph
is added to the RETURN VALUE section. A note is added to the APPLICATION USAGE
indicating that these changes restore the historical behavior of the function.

Issue 6
In the DESCRIPTION, duplicate text ``For values greater than or equal to 8 . . .’’ is removed.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/30 is applied, removing rand_r() from the
list of suggested functions in the APPLICATION USAGE section.

Issue 7
The type of the first argument to setstate() is changed from const char * to char *.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0179 [743] is applied. +

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1127

38372

38373

38374

38375

38376

38377

38378

38379

38380

38381

38382

38383

38384

38385

38386

38387

38388

38389

38390

38391

38392

38393

38394

38395

38396

38397

38398

38399

38400

38401

38402

38403

38404

38405

38406

38407

38408

38409

38410

38411

Unapproved Draft, Subject to Change

Sanity
Revie

w

memmem() System Interfaces

|
|

|

NAME |
memmem — find a byte subsequence in a byte sequence |

SYNOPSIS |
CX #include <string.h> |

void *memmem(const void *haystack, size_t haystacklen, |
const void *needle, size_t needlelen); |

|

DESCRIPTION |
The memmem() function shall locate the first occurrence of byte sequence needle of length |
needlelen in byte sequence haystack of length haystacklen. |

RETURN VALUE |
Upon successful completion, memmem() shall return a pointer to the the first byte of the located |
byte sequence in haystack, or a null pointer if the byte sequence is not found. |

If needlelen is zero, the function shall return haystack. |

If haystacklen is less than needlelen, the function shall return a null pointer. |

ERRORS |
No errors are defined. |

|EXAMPLES |
None. |

APPLICATION USAGE |
None. |

RATIONALE |
This function is similar to strstr(), except that NUL bytes may be included in either needle or |
haystack. |

FUTURE DIRECTIONS |
None. |

SEE ALSO |
memchr(), strstr() |

XBD <string.h> |

CHANGE HISTORY |
First released in Issue 8. |

|

1288 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

43075

43076

43077

43078

43079

43080

43081

43082

43083

43084

43085

43086

43087

43088

43089

43090

43091

43092

43093

43094

43095

43096

43097

43098

43099

43100

43101

43102

43103

43104

43105

43106

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces poll()

NAME
poll, ppoll — input/output multiplexing +

SYNOPSIS
#include <poll.h>

int poll(struct pollfd fds[], nfds_t nfds, int timeout);
int ppoll(struct pollfd fds[], nfds_t nfds, +

const struct timespec *restrict timeout, +
const sigset_t *restrict sigmask); +

DESCRIPTION
The ppoll() function provides applications with a mechanism for multiplexing input/output |
over a set of file descriptors. For each member of the array pointed to by fds, ppoll() shall |
examine the given file descriptor for the event(s) specified in events. The number of pollfd
structures in the fds array is specified by nfds. The ppoll() function shall identify those file |
descriptors on which an application can read or write data, or on which certain events have
occurred.

The poll() function shall be equivalent to the ppoll() function, except as follows: +

• For the poll() function, the timeout period is given in milliseconds in an argument of type +
int, whereas for the ppoll() function the timeout period is given in seconds and +
nanoseconds via an argument of type pointer to struct timespec. A timeout of −1 for poll() +
shall be equivalent to passing a null pointer for the timeout for ppoll(). +

• The poll() function has no sigmask argument; it shall behave as ppoll() does when sigmask is +
a null pointer. +

The fds argument specifies the file descriptors to be examined and the events of interest for each
file descriptor. It is a pointer to an array with one member for each open file descriptor of
interest. The array’s members are pollfd structures within which fd specifies an open file
descriptor and events and revents are bitmasks constructed by OR’ing a combination of the
following event flags:

POLLIN Data other than high-priority data may be read without blocking.

POLLRDNORM Normal data may be read without blocking.

POLLRDBAND Priority data may be read without blocking.

POLLPRI High-priority data may be read without blocking.

POLLOUT Normal data may be written without blocking.

POLLWRNORM Equivalent to POLLOUT.

POLLWRBAND Priority data may be written.

POLLERR An error has occurred on the device or stream. This flag is only valid in the
revents bitmask; it shall be ignored in the events member.

POLLHUP A device has been disconnected, or a pipe or FIFO has been closed by the last
process that had it open for writing. Once set, the hangup state of a FIFO shall
persist until some process opens the FIFO for writing or until all read-only file
descriptors for the FIFO are closed. This event and POLLOUT are mutually-
exclusive; a stream can never be writable if a hangup has occurred. However,
this event and POLLIN, POLLRDNORM, POLLRDBAND, or POLLPRI are
not mutually-exclusive. This flag is only valid in the revents bitmask; it shall be
ignored in the events member.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1413

47102

47103

47104

47105

47106

47107

47108

47109

47110

47111

47112

47113

47114

47115

47116

47117

47118

47119

47120

47121

47122

47123

47124

47125

47126

47127

47128

47129

47130

47131

47132

47133

47134

47135

47136

47137

47138

47139

47140

47141

47142

47143

47144

47145

Unapproved Draft, Subject to Change

Sanity
Revie

w

poll() System Interfaces

POLLNVAL The specified fd value is invalid. This flag is only valid in the revents member;
it shall ignored in the events member.

The significance and semantics of normal, priority, and high-priority data are file and device-
specific.

If the value of fd is less than 0, events shall be ignored, and revents shall be set to 0 in that entry on
return from poll() or ppoll(). |

In each pollfd structure, poll() or ppoll() shall clear the revents member, except that where the +
application requested a report on a condition by setting one of the bits of events listed above,
poll() or ppoll() shall set the corresponding bit in revents if the requested condition is true. In +
addition, poll() or ppoll() shall set the POLLHUP, POLLERR, and POLLNVAL flag in revents if +
the condition is true, even if the application did not set the corresponding bit in events.

The timeout argument controls how long the poll() or ppoll() function shall wait before timing |
out. If the timeout argument is positive for poll() or not a null pointer for ppoll(), it specifies a |
maximum interval to wait for the poll to complete. If the specified time interval expires without |
any of the defined events having occurred, the function shall return. If the timeout argument is |
−1 for poll() or a null pointer for ppoll(), then the call shall block indefinitely until at least one |
descriptor meets the specified criteria or until the call is interrupted. To effect a poll, the |
application shall ensure that the timeout argument for poll() is 0, or for ppoll() is not a null |
pointer and points to a zero-valued timespec structure.

Implementations may place limitations on the maximum timeout interval supported. All |
implementations shall support a maximum timeout interval of at least 31 days for ppoll(). If the |
timeout argument specifies a timeout interval greater than the implementation-defined |
maximum value, the maximum value shall be used as the actual timeout value. Implementations |
may also place limitations on the granularity of timeout intervals. If the requested timeout |
interval requires a finer granularity than the implementation supports, the actual timeout |
interval shall be rounded up to the next supported value.

The poll() and ppoll() functions shall not be affected by the O_NONBLOCK flag. |

The poll() and ppoll() functions shall support regular files, terminal and pseudo-terminal |
devices, FIFOs, pipes, and sockets. The behavior of poll() and ppoll() on elements of fds that refer +
to other types of file is unspecified.

Regular files shall always poll TRUE for reading and writing.

A file descriptor for a socket that is listening for connections shall indicate that it is ready for
reading, once connections are available. A file descriptor for a socket that is connecting
asynchronously shall indicate that it is ready for writing, once a connection has been established.

Provided the application does not perform any action that results in unspecified or undefined
behavior, the value of the fd and events members of each element of fds shall not be modified by -
poll() or ppoll(). |

If sigmask is not a null pointer, the ppoll() function shall replace the signal mask of the caller by |
the set of signals pointed to by sigmask before examining the descriptors, and shall restore the |
signal mask of the calling thread before returning. If a signal is unmasked as a result of the |
signal mask being altered by ppoll(), and a signal-catching function is called for that signal |
during the execution of the ppoll() function, and SA_RESTART is clear for the interrupting |
signal, then |

• If none of the defined events have occurred on any selected file descriptor, ppoll() shall |
immediately fail with the [EINTR] error after the signal-catching function returns. |

1414 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47146

47147

47148

47149

47150

47151

47152

47153

47154

47155

47156

47157

47158

47159

47160

47161

47162

47163

47164

47165

47166

47167

47168

47169

47170

47171

47172

47173

47174

47175

47176

47177

47178

47179

47180

47181

47182

47183

47184

47185

47186

47187

47188

47189

47190

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces poll()

• If one or more of the defined events have occurred, it is unspecified whether ppoll() |
behaves the same as if none of the events had occurred (failing with [EINTR] as above) or |
behaves the same as if it was not interrupted (returning the total number of pollfd |
structures that have selected events). |

If a thread is canceled during a ppoll() call, it is unspecified whether the signal mask in effect |
when executing the registered cleanup functions is the original signal mask or the signal mask |
installed as part of the ppoll() call. |

RETURN VALUE |
Upon successful completion, a non-negative value shall be returned. A positive value shall |
indicate the total number of pollfd structures that have selected events (that is, those for which
the revents member is non-zero). A value of 0 shall indicate that the call timed out and no file |
descriptors have been selected. Upon failure, −1 shall be returned and errno set to indicate the |
error.

ERRORS
The poll() and ppoll() functions shall fail if: |

[EAGAIN] The allocation of internal data structures failed but a subsequent request may
succeed.

[EINTR] A signal was caught during poll() or ppoll(). |

[EINVAL] The nfds argument is greater than {OPEN_MAX}.

The ppoll() function shall fail if: +

[EINVAL] An invalid timeout interval was specified. +

EXAMPLES
None.

APPLICATION USAGE
Other than the difference in the precision of the requested timeout, the following ppoll() call: |

ready = ppoll(&fds, nfds, tmo_p, &sigmask); |

is equivalent to atomically executing the following calls: |

sigset_t origmask; |
int timeout; |

timeout = (tmo_p == NULL) ? -1 : |
(tmo_p->tv_sec * 1000 + tmo_p->tv_nsec / 1000000); |

pthread_sigmask(SIG_SETMASK, &sigmask, &origmask); |
ready = poll(&fds, nfds, timeout); |
pthread_sigmask(SIG_SETMASK, &origmask, NULL); |

RATIONALE
The POLLHUP event does not occur for FIFOs just because the FIFO is not open for writing. It
only occurs when the FIFO is closed by the last writer and persists until some process opens the
FIFO for writing or until all read-only file descriptors for the FIFO are closed. +

Code which wants to avoid the ambiguity of the signal mask for thread cancellation handlers +
can install an additional cancellation handler which resets the signal mask to the expected value: +

void cleanup(void *arg) +
{ +

sigset_t *ss = (sigset_t *) arg; +

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1415

47191

47192

47193

47194

47195

47196

47197

47198

47199

47200

47201

47202

47203

47204

47205

47206

47207

47208

47209

47210

47211

47212

47213

47214

47215

47216

47217

47218

47219

47220

47221

47222

47223

47224

47225

47226

47227

47228

47229

47230

47231

47232

47233

Unapproved Draft, Subject to Change

Sanity
Revie

w

poll() System Interfaces

pthread_sigmask(SIG_SETMASK, ss, NULL); +
} +
int call_ppoll(struct pollfd fds[], nfds_t nfds, +

const struct timespec *restrict timeout, +
const sigset_t *restrict sigmask) +

{ +
sigset_t oldmask; +
int result; +
pthread_sigmask(SIG_SETMASK, NULL, &oldmask); +
pthread_cleanup_push(cleanup, &oldmask); +
result = ppoll(fds, nfds, timeout, sigmask); +
pthread_cleanup_pop(0); +
return result; +

} +

FUTURE DIRECTIONS
None.

SEE ALSO
pselect(), read(), write()

XBD <poll.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The description of POLLWRBAND is updated.

Issue 6
Text referring to sockets is added to the DESCRIPTION.

Functionality relating to the XSI STREAMS Option Group is marked.

The Open Group Corrigendum U055/3 is applied, updating the DESCRIPTION of
POLLWRBAND.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/66 is applied, correcting the spacing in
the EXAMPLES section.

Issue 7
Austin Group Interpretation 1003.1-2001 #209 is applied, clarifying the POLLHUP event.

The poll() function is moved from the XSI option to the Base.

Functionality relating to the XSI STREAMS option is marked obsolescent.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0249 [623] and XSH/TC2-2008/0250
[683] are applied.

Issue 8
Austin Group Defect 1263 is applied, adding ppoll(). +

Austin Group Defect 1330 is applied, removing obsolescent interfaces. |

1416 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47234

47235

47236

47237

47238

47239

47240

47241

47242

47243

47244

47245

47246

47247

47248

47249

47250

47251

47252

47253

47254

47255

47256

47257

47258

47259

47260

47261

47262

47263

47264

47265

47266

47267

47268

47269

47270

47271

47272

47273

Unapproved Draft, Subject to Change

Sanity
Revie

w

posix_getdents() System Interfaces

|
|

|

NAME |
posix_getdents — read directory entries |

SYNOPSIS |
#include <dirent.h> |

ssize_t posix_getdents(int fildes, void *buf, size_t nbyte, int flags); |

DESCRIPTION |
The posix_getdents() function shall attempt to read directory entries from the directory associated |
with the open file descriptor fildes and shall place information about the directory entries and the |
files they refer to in posix_dent structures in the buffer pointed to by buf, up to a maximum of |
nbyte bytes. The number of posix_dent structures populated in buf may be fewer than the |
number that will fit in nbyte bytes, but shall be at least one if nbyte is greater than the size of the |
posix_dent structure plus {NAME_MAX} and fildes is not currently at end-of-file. |

The application shall ensure that buf is aligned suitably to point to a posix_dent structure. The |
alignment needed shall not be more restrictive than the alignment provided by malloc(). Strictly |
conforming applications shall ensure that the value of flags is zero; other applications can set it to |
a value constructed by a bitwise-inclusive OR of implementation-defined bitwise-distinct flag |
values. |

Each posix_dent structure returned in buf shall be located at an address that satisfies the |
implementation’s alignment requirements for the posix_dent structure and shall be populated |
as follows: |

• The value of the d_ino member shall be set to the file serial number of the file named by the |
d_name member. |

• The value of the d_reclen member shall be set to the number of bytes occupied by this entry |
in buf, including any padding bytes needed before the next entry, if any. If this is the last |
entry in buf, d_reclen shall include any padding bytes needed to make the address of this |
entry plus d_reclen bytes satisfy the alignment requirements for the posix_dent structure. |

• The value of the d_type member shall be set to indicate the file type of the named file, if the |
file type can be determined without needing to use the file serial number to obtain the |
file’s metadata; otherwise it may be set to DT_UNKNOWN. If the file type is determined |
and it is one of the file types defined in this standard, the value of d_type shall be DT_BLK, |
DT_CHR, DT_DIR, DT_FIFO, DT_LNK, DT_REG, DT_SOCK, DT_MQ, DT_SEM, |

TYM DT_SHM, or DT_TMO (see <dirent.h>). If it is determined but is not a standard file type, |
the value of d_type shall not equal any of those listed here. |

• The d_name member shall be a filename string, and (if not dot or dot-dot) shall contain the |
same byte sequence as the last pathname component of the string used to create the |
directory entry, plus the terminating NUL byte. |

If the d_name member names a symbolic link, the values of the d_ino and d_type members shall |
be set to the values for the symbolic link itself. |

The posix_getdents() function shall start reading at the current file offset in the open file |
description associated with fildes. On successful return, the file offset shall be incremented to |
point to the directory entry immediately following the last entry whose information was |
returned in buf, or to point to end-of-file if there are no more directory entries. On failure, the |
value of the file offset is unspecified. The current file offset can be set and retrieved using lseek() |
on the open file description associated with fildes. The behavior is unspecified if lseek() is used |
to set the file offset to a value other than zero or a value returned by a previous call to lseek() on |
the same open file description. |

1430 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47780

47781

47782

47783

47784

47785

47786

47787

47788

47789

47790

47791

47792

47793

47794

47795

47796

47797

47798

47799

47800

47801

47802

47803

47804

47805

47806

47807

47808

47809

47810

47811

47812

47813

47814

47815

47816

47817

47818

47819

47820

47821

47822

47823

47824

47825

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces posix_getdents()

The posix_getdents() function shall not return directory entries containing empty names. If |
entries for dot or dot-dot exist, a sequence of calls that reads from offset zero to end-of-file shall |
return one entry for dot and one entry for dot-dot; otherwise, they shall not be returned. |

Upon successful completion, posix_getdents() shall mark for update the last data access |
timestamp of the directory. |

If fildes is a file descriptor associated with a directory stream opened using fdopendir() or |
opendir(), the behavior is unspecified. |

If posix_getdents() is called concurrently with an operation that adds, deletes, or modifies a |
directory entry, the results from posix_getdents() shall reflect either all of the effects of the |
concurrent operation or none of them. If a sequence of calls to posix_getdents() is made that reads |
from offset zero to end-of-file and a file is removed from or added to the directory between the |
first and last of those calls, whether the sequence of calls returns an entry for that file is |
unspecified. |

RETURN VALUE |
Upon successful completion, either a non-negative integer shall be returned indicating the |
number of bytes occupied by the posix_dent structures placed in buf or 0 shall be returned |
indicating the end of the directory was reached without any directory entries being placed in buf. |
Otherwise, −1 shall be returned and errno shall be set to indicate the error. |

ERRORS |
The posix_getdents() function shall fail if: |

[EBADF] The fildes argument is not a valid file descriptor open for reading. |

[EINVAL] The nbyte argument is not large enough to contain the information to be |
returned about the directory entry located at the current file offset. |

[ENOENT] The current file offset is not located at a valid directory entry. |

[ENOTDIR] The fildes argument is associated with a non-directory file. |

[EOVERFLOW] One of the values in a structure to be placed in buf cannot be represented |
correctly. |

The posix_getdents() function may fail if: |

[EIO] A physical I/O error has occurred. |

[ENOMEM] Insufficient memory was available to fulfill the request. |

|EXAMPLES |
This example function lists the files in a specified directory with their file serial number and file |
type. If the file type is not available from posix_getdents(), it is obtained using fstatat(). |

#include <dirent.h> |
#include <fcntl.h> |
#include <stdio.h> |
#include <stdlib.h> |
#include <sys/stat.h> |
#include <unistd.h> |

#define ENTBUFSIZ 10240 |

int list_dir(const char *dirnam) |
{ |

int fd = open(dirnam, O_RDONLY | O_DIRECTORY); |

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1431

47826

47827

47828

47829

47830

47831

47832

47833

47834

47835

47836

47837

47838

47839

47840

47841

47842

47843

47844

47845

47846

47847

47848

47849

47850

47851

47852

47853

47854

47855

47856

47857

47858

47859

47860

47861

47862

47863

47864

47865

47866

47867

47868

Unapproved Draft, Subject to Change

Sanity
Revie

w

posix_getdents() System Interfaces

if (fd == -1) |
return -1; |

char *buf = malloc(ENTBUFSIZ); |
if (buf == NULL) |
{ |

close(fd); |
return -1; |

} |

ssize_t bytesinbuf; |
for(;;) |
{ |

ssize_t nextent = 0; |

bytesinbuf = posix_getdents(fd, buf, ENTBUFSIZ, 0); |
if (bytesinbuf <= 0) |

break; |

do { |
const char *ftype; |
struct posix_dent *entp = (void *)&buf[nextent]; |
if (entp->d_type == DT_UNKNOWN) |
{ |

struct stat stbuf; |
if (fstatat(fd, entp->d_name, &stbuf, |

AT_SYMLINK_NOFOLLOW) == -1) |
ftype = "?"; |

else |
ftype = S_ISBLK(stbuf.st_mode) ? "b" : |

S_ISCHR(stbuf.st_mode) ? "c" : |
S_ISDIR(stbuf.st_mode) ? "d" : |
S_ISFIFO(stbuf.st_mode) ? "p" : |
S_ISLNK(stbuf.st_mode) ? "l" : |
S_ISREG(stbuf.st_mode) ? "r" : |
S_ISSOCK(stbuf.st_mode) ? "s" : |
S_TYPEISMQ(&stbuf) ? "mq" : |
S_TYPEISSEM(&stbuf) ? "sem" : |
S_TYPEISSHM(&stbuf) ? "shm" : |

#ifdef S_TYPEISTMO |
S_TYPEISTMO(&stbuf) ? "tmo" : |

#endif |
"?"; |

} |
else |
{ |

ftype = entp->d_type == DT_BLK ? "b" : |
entp->d_type == DT_CHR ? "c" : |
entp->d_type == DT_DIR ? "d" : |
entp->d_type == DT_FIFO ? "p" : |
entp->d_type == DT_LNK ? "l" : |
entp->d_type == DT_REG ? "r" : |
entp->d_type == DT_SOCK ? "s" : |
entp->d_type == DT_MQ ? "mq" : |

1432 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47869

47870

47871

47872

47873

47874

47875

47876

47877

47878

47879

47880

47881

47882

47883

47884

47885

47886

47887

47888

47889

47890

47891

47892

47893

47894

47895

47896

47897

47898

47899

47900

47901

47902

47903

47904

47905

47906

47907

47908

47909

47910

47911

47912

47913

47914

47915

47916

47917

47918

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces posix_getdents()

entp->d_type == DT_SEM ? "sem" : |
entp->d_type == DT_SHM ? "shm" : |

#ifdef DT_TMO |
entp->d_type == DT_TMO ? "tmo" : |

#endif |
"?"; |

} |

printf("%ld\t%s\t%s\n", (long)entp->d_ino, ftype, |
entp->d_name); |

nextent += entp->d_reclen; |

} while (nextent < bytesinbuf); |
} |

close(fd); |
free(buf); |
return bytesinbuf; |

} |

APPLICATION USAGE |
If an array of posix_dent structures (which is only possible on implementations where d_name is |
not a flexible array member) is used to provide the storage for buf in order to satisfy the |
alignment requirement, it should be noted that the number of array elements used to size the |
array may bear little or no relation to the number of directory entries that can be stored in it. It is |
recommended that the number of elements is calculated from the desired size in bytes, for |
example: |

#define DESIREDSIZE 10240 |
struct posix_dent buf[DESIREDSIZE / sizeof(struct posix_dent) + 1]; |
size_t nbyte = sizeof buf; |

When posix_getdents() is called with a buf that is not type char *, it is important to note that |
d_reclen is a byte count and therefore any pointer arithmetic involved in calculating the start of |
the next entry needs to use a char * pointer. |

On implementations where directory entries in a directory take up more space than the |
corresponding posix_dent structures in buf, a call to posix_getdents() may read nbyte bytes from |
the directory, resulting (in most cases) in the actual number of bytes placed in buf being less than |
nbyte. |

One advantage of posix_getdents() is that it provides the file type of each directory entry (if |
available), whereas readdir() only does so on implementations that have the file type as a non- |
standard additional member of the dirent structure. Knowing the file type can greatly reduce the |
number of fstatat() calls that need to be made when traversing the file hierarchy. |

Whether or not a file’s type can be determined without needing to use the file serial number to |
obtain the file’s metadata may vary across the different file system types supported by an |
implementation. Therefore applications should not assume that if d_type contains known file |
types (i.e. not DT_UNKNOWN) for entries in a given directory then it will also contain known |
file types for entries in subdirectories of that directory or in its parent. |

Since the d_reclen value for the last entry in buf includes padding to satisfy alignment |
requirements, applications can grow the buffer and call posix_getdents() again to append to it |
without needing to perform an alignment calculation. |

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1433

47919

47920

47921

47922

47923

47924

47925

47926

47927

47928

47929

47930

47931

47932

47933

47934

47935

47936

47937

47938

47939

47940

47941

47942

47943

47944

47945

47946

47947

47948

47949

47950

47951

47952

47953

47954

47955

47956

47957

47958

47959

47960

47961

47962

47963

Unapproved Draft, Subject to Change

Sanity
Revie

w

posix_getdents() System Interfaces

RATIONALE |
The posix_getdents() function was derived from existing getdents() functions but the name was |
changed because the existing getdents() functions differed in various ways, in particular the type |
of the second argument (structure pointer or void *), the members of the populated structures, |
and the error numbers used for some conditions. The name change also provided an |
opportunity to add a flags argument to provide for future extensibility. |

Implementations are encouraged to include support for a DT_FORCE_TYPE flag which, when |
that bit is set in flags, causes posix_getdents() to look up the file type if it can not be obtained from |
the directory entry. This will allow applications that need to know the file type of every directory |
entry to keep the cost of these lookups to the minimum needed to obtain the type at the file |
system level, without the additional overhead of making a call to fstatat() for every file (that has |
d_type equal to DT_UNKNOWN). |

Some existing getdents() or similar functions return directory entry structures for deleted |
directory entries in buf, marked with a special value of one of the structure members to |
distinguish them from non-deleted entries. This behavior is not allowed for posix_getdents(), |
although the data from a deleted directory entry may be present in buf in the form of extra |
padding on the end of the previous entry. |

FUTURE DIRECTIONS |
A future version of this standard may add a DT_FORCE_TYPE flag as described in |
RATIONALE. |

SEE ALSO |
fdopendir(), fstatat(), lseek(), readdir() |

XBD <dirent.h> |

CHANGE HISTORY |
First released in Issue 8. |

|

1434 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

47964

47965

47966

47967

47968

47969

47970

47971

47972

47973

47974

47975

47976

47977

47978

47979

47980

47981

47982

47983

47984

47985

47986

47987

47988

47989

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces ppoll()

|
|

NAME |
ppoll — input/output multiplexing |

SYNOPSIS |
#include <poll.h> |

int ppoll(struct pollfd fds[], nfds_t nfds, |
const struct timespec *restrict timeout, |
const sigset_t *restrict sigmask); |

DESCRIPTION |
Refer to poll(). |

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1495

49675

49676

49677

49678

49679

49680

49681

49682

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces pselect()

of the pselect() call.

RETURN VALUE
Upon successful completion, the pselect() and select() functions shall return the total number of
bits set in the bit masks. Otherwise, −1 shall be returned, and errno shall be set to indicate the
error.

FD_CLR(), FD_SET(), and FD_ZERO() do not return a value. FD_ISSET() shall return a non-
zero value if the bit for the file descriptor fd is set in the file descriptor set pointed to by fdset, and
0 otherwise.

ERRORS
Under the following conditions, pselect() and select() shall fail and set errno to:

[EBADF] One or more of the file descriptor sets specified a file descriptor that is not a
valid open file descriptor.

[EINTR] The function was interrupted by a signal.

If SA_RESTART has been set for the interrupting signal, it is implementation-
defined whether the function restarts or returns with [EINTR].

[EINVAL] An invalid timeout interval was specified.

[EINVAL] The nfds argument is less than 0 or greater than FD_SETSIZE.

EXAMPLES
None.

APPLICATION USAGE
The use of select() and pselect() requires that the application construct the set of file descriptors |
to work on each time through a polling loop, and is inherently limited from operating on file |
descriptors larger than FD_SETSIZE. Also, the amount of work to perform scales as nfds |
increases, even if the number of file descriptors selected within the larger set remains the same. |
Thus, applications may wish to consider using poll() and ppoll() instead, for better scaling.

RATIONALE
In earlier versions of the Single UNIX Specification, the select() function was defined in the
<sys/time.h> header. This is now changed to <sys/select.h>. The rationale for this change was
as follows: the introduction of the pselect() function included the <sys/select.h> header and the
<sys/select.h> header defines all the related definitions for the pselect() and select() functions.
Backwards-compatibility to existing XSI implementations is handled by allowing <sys/time.h>
to include <sys/select.h>.

Code which wants to avoid the ambiguity of the signal mask for thread cancellation handlers
can install an additional cancellation handler which resets the signal mask to the expected value.

void cleanup(void *arg)
{

sigset_t *ss = (sigset_t *) arg;
pthread_sigmask(SIG_SETMASK, ss, NULL);

}

int call_pselect(int nfds, fd_set *readfds, fd_set *writefds,
fd_set errorfds, const struct timespec *timeout,
const sigset_t *sigmask)

{
sigset_t oldmask;
int result;

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1501

49836

49837

49838

49839

49840

49841

49842

49843

49844

49845

49846

49847

49848

49849

49850

49851

49852

49853

49854

49855

49856

49857

49858

49859

49860

49861

49862

49863

49864

49865

49866

49867

49868

49869

49870

49871

49872

49873

49874

49875

49876

49877

49878

49879

49880

Unapproved Draft, Subject to Change

Sanity
Revie

w

pthread_cond_broadcast() System Interfaces

NAME
pthread_cond_broadcast, pthread_cond_signal — broadcast or signal a condition

SYNOPSIS
#include <pthread.h>

int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_signal(pthread_cond_t *cond);

DESCRIPTION
These functions shall unblock threads blocked on a condition variable.

The pthread_cond_broadcast() function shall unblock all threads currently blocked on the
specified condition variable cond.

The pthread_cond_signal() function shall unblock at least one of the threads that are blocked on
the specified condition variable cond (if any threads are blocked on cond).

If more than one thread is blocked on a condition variable, the scheduling policy shall determine
the order in which threads are unblocked. When each thread unblocked as a result of a
pthread_cond_broadcast() or pthread_cond_signal() returns from its call to pthread_cond_clockwait(), |
pthread_cond_timedwait(), or pthread_cond_wait(), the thread shall own the mutex with which it +
called pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait(). The thread(s) |
that are unblocked shall contend for the mutex according to the scheduling policy (if applicable),
and as if each had called pthread_mutex_lock().

The pthread_cond_broadcast() or pthread_cond_signal() functions may be called by a thread
whether or not it currently owns the mutex that threads calling pthread_cond_clockwait(), |
pthread_cond_timedwait(), or pthread_cond_wait() have associated with the condition variable |
during their waits; however, if predictable scheduling behavior is required, then that mutex shall
be locked by the thread calling pthread_cond_broadcast() or pthread_cond_signal().

The pthread_cond_broadcast() and pthread_cond_signal() functions shall have no effect if there are
no threads currently blocked on cond.

The behavior is undefined if the value specified by the cond argument to pthread_cond_broadcast()
or pthread_cond_signal() does not refer to an initialized condition variable.

RETURN VALUE
If successful, the pthread_cond_broadcast() and pthread_cond_signal() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
The pthread_cond_broadcast() function is used whenever the shared-variable state has been
changed in a way that more than one thread can proceed with its task. Consider a single
producer/multiple consumer problem, where the producer can insert multiple items on a list
that is accessed one item at a time by the consumers. By calling the pthread_cond_broadcast()
function, the producer would notify all consumers that might be waiting, and thereby the
application would receive more throughput on a multi-processor. In addition,
pthread_cond_broadcast() makes it easier to implement a read-write lock. The
pthread_cond_broadcast() function is needed in order to wake up all waiting readers when a
writer releases its lock. Finally, the two-phase commit algorithm can use this broadcast function
to notify all clients of an impending transaction commit.

1556 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51397

51398

51399

51400

51401

51402

51403

51404

51405

51406

51407

51408

51409

51410

51411

51412

51413

51414

51415

51416

51417

51418

51419

51420

51421

51422

51423

51424

51425

51426

51427

51428

51429

51430

51431

51432

51433

51434

51435

51436

51437

51438

51439

51440

51441

51442

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces pthread_cond_broadcast()

It is not safe to use the pthread_cond_signal() function in a signal handler that is invoked
asynchronously. Even if it were safe, there would still be a race between the test of the Boolean
pthread_cond_wait() that could not be efficiently eliminated.

Mutexes and condition variables are thus not suitable for releasing a waiting thread by signaling
from code running in a signal handler.

RATIONALE
If an implementation detects that the value specified by the cond argument to
pthread_cond_broadcast() or pthread_cond_signal() does not refer to an initialized condition
variable, it is recommended that the function should fail and report an [EINVAL] error.

Multiple Awakenings by Condition Signal

On a multi-processor, it may be impossible for an implementation of pthread_cond_signal() to
avoid the unblocking of more than one thread blocked on a condition variable. For example,
consider the following partial implementation of pthread_cond_wait() and pthread_cond_signal(),
executed by two threads in the order given. One thread is trying to wait on the condition
variable, another is concurrently executing pthread_cond_signal(), while a third thread is already
waiting.

pthread_cond_wait(mutex, cond):
value = cond->value; /* 1 */
pthread_mutex_unlock(mutex); /* 2 */
pthread_mutex_lock(cond->mutex); /* 10 */
if (value == cond->value) { /* 11 */

me->next_cond = cond->waiter;
cond->waiter = me;
pthread_mutex_unlock(cond->mutex);
unable_to_run(me);

} else
pthread_mutex_unlock(cond->mutex); /* 12 */

pthread_mutex_lock(mutex); /* 13 */

pthread_cond_signal(cond):
pthread_mutex_lock(cond->mutex); /* 3 */
cond->value++; /* 4 */
if (cond->waiter) { /* 5 */

sleeper = cond->waiter; /* 6 */
cond->waiter = sleeper->next_cond; /* 7 */
able_to_run(sleeper); /* 8 */

}
pthread_mutex_unlock(cond->mutex); /* 9 */

The effect is that more than one thread can return from its call to pthread_cond_clockwait(), |
pthread_cond_timedwait(), or pthread_cond_wait() as a result of one call to pthread_cond_signal(). |
This effect is called ``spurious wakeup’’. Note that the situation is self-correcting in that the
number of threads that are so awakened is finite; for example, the next thread to call
pthread_cond_wait() after the sequence of events above blocks.

While this problem could be resolved, the loss of efficiency for a fringe condition that occurs
only rarely is unacceptable, especially given that one has to check the predicate associated with a
condition variable anyway. Correcting this problem would unnecessarily reduce the degree of
concurrency in this basic building block for all higher-level synchronization operations.

An added benefit of allowing spurious wakeups is that applications are forced to code a

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1557

51443

51444

51445

51446

51447

51448

51449

51450

51451

51452

51453

51454

51455

51456

51457

51458

51459

51460

51461

51462

51463

51464

51465

51466

51467

51468

51469

51470

51471

51472

51473

51474

51475

51476

51477

51478

51479

51480

51481

51482

51483

51484

51485

51486

51487

51488

51489

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces pthread_cond_timedwait()

NAME
pthread_cond_clockwait, pthread_cond_timedwait, pthread_cond_wait — wait on a condition +

SYNOPSIS
#include <pthread.h>

int pthread_cond_clockwait(pthread_cond_t *restrict cond, +
pthread_mutex_t *restrict mutex, clockid_t clock_id, +
const struct timespec *restrict abstime); +

int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

DESCRIPTION
The pthread_cond_clockwait(), pthread_cond_timedwait(), and pthread_cond_wait() functions shall |
block on a condition variable. The application shall ensure that these functions are called with
mutex locked by the calling thread; otherwise, an error (for PTHREAD_MUTEX_ERRORCHECK
and robust mutexes) or undefined behavior (for other mutexes) results.

These functions atomically release mutex and cause the calling thread to block on the condition
variable cond; atomically here means ``atomically with respect to access by another thread to the
mutex and then the condition variable’’. That is, if another thread is able to acquire the mutex
after the about-to-block thread has released it, then a subsequent call to pthread_cond_broadcast()
or pthread_cond_signal() in that thread shall behave as if it were issued after the about-to-block
thread has blocked.

Upon successful return, the mutex shall have been locked and shall be owned by the calling
thread.

If mutex is a robust mutex where an owner terminated while holding the lock and the state is
recoverable, the mutex shall be acquired even though the function returns [EOWNERDEAD].

When using condition variables there is always a Boolean predicate involving shared variables
associated with each condition wait that is true if the thread should proceed. Spurious wakeups
from the pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait() functions |
may occur. Since the return from pthread_cond_clockwait(), pthread_cond_timedwait(), or |
pthread_cond_wait() does not imply anything about the value of this predicate, the predicate
should be re-evaluated upon such return.

When a thread waits on a condition variable, having specified a particular mutex to the |
pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait() operation, a dynamic
binding is formed between that mutex and condition variable that remains in effect as long as at
least one thread is blocked on the condition variable. During this time, the effect of an attempt
by any thread to wait on that condition variable using a different mutex is undefined. Once all
waiting threads have been unblocked (as by the pthread_cond_broadcast() operation), the next
wait operation on that condition variable shall form a new dynamic binding with the mutex
specified by that wait operation. Even though the dynamic binding between condition variable
and mutex may be removed or replaced between the time a thread is unblocked from a wait on
the condition variable and the time that it returns to the caller or begins cancellation cleanup, the
unblocked thread shall always re-acquire the mutex specified in the condition wait operation
call from which it is returning.

A condition wait (whether timed or not) is a cancellation point. When the cancelability type of a
thread is set to PTHREAD_CANCEL_DEFERRED, a side-effect of acting upon a cancellation
request while in a condition wait is that the mutex is (in effect) re-acquired before calling the first

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1563

51637

51638

51639

51640

51641

51642

51643

51644

51645

51646

51647

51648

51649

51650

51651

51652

51653

51654

51655

51656

51657

51658

51659

51660

51661

51662

51663

51664

51665

51666

51667

51668

51669

51670

51671

51672

51673

51674

51675

51676

51677

51678

51679

51680

51681

51682

51683

51684

Unapproved Draft, Subject to Change

Sanity
Revie

w

pthread_cond_timedwait() System Interfaces

cancellation cleanup handler. The effect is as if the thread were unblocked, allowed to execute up
to the point of returning from the call to pthread_cond_clockwait(), pthread_cond_timedwait(), or |
pthread_cond_wait(), but at that point notices the cancellation request and, instead of returning to |
the caller, starts the thread cancellation activities, which includes calling cancellation cleanup |
handlers.

A thread that has been unblocked because it has been canceled while blocked in a call to |
pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait() shall not consume any
condition signal that may be directed concurrently at the condition variable if there are other
threads blocked on the condition variable.

The pthread_cond_timedwait() function shall be equivalent to pthread_cond_wait(), except that an
error is returned if the absolute time specified by abstime passes (that is, system time equals or
exceeds abstime) before the condition cond is signaled or broadcasted, or if the absolute time
specified by abstime has already been passed at the time of the call. When such timeouts occur,
pthread_cond_timedwait() shall nonetheless release and re-acquire the mutex referenced by mutex,
and may consume a condition signal directed concurrently at the condition variable.

The condition variable shall have a clock attribute which specifies the clock that shall be used by |
pthread_cond_timedwait() to measure the time specified by the abstime argument. The
pthread_cond_timedwait() function is also a cancellation point.

The pthread_cond_clockwait() function shall be equivalent to pthread_cond_timedwait(), except that +
the absolute time specified by abstime is measured against the clock indicated by clock_id rather +
than the clock specified in the condition variable’s clock attribute. Implementations shall +
support passing CLOCK_REALTIME and CLOCK_MONOTONIC to pthread_cond_clockwait() as +
the clock_id argument. +

If a signal is delivered to a thread waiting for a condition variable, upon return from the signal
handler the thread resumes waiting for the condition variable as if it was not interrupted, or it
shall return zero due to spurious wakeup.

The behavior is undefined if the value specified by the cond or mutex argument to these
functions does not refer to an initialized condition variable or an initialized mutex object,
respectively.

RETURN VALUE
Except for [ETIMEDOUT], [ENOTRECOVERABLE], and [EOWNERDEAD], all these error
checks shall act as if they were performed immediately at the beginning of processing for the
function and shall cause an error return, in effect, prior to modifying the state of the mutex
specified by mutex or the condition variable specified by cond.

Upon successful completion, a value of zero shall be returned; otherwise, an error number shall
be returned to indicate the error.

ERRORS
These functions shall fail if:

[EAGAIN] The mutex is a robust mutex and the system resources available for robust
mutexes owned would be exceeded.

[ENOTRECOVERABLE]
The state protected by the mutex is not recoverable.

[EOWNERDEAD]
The mutex is a robust mutex and the process containing the previous owning
thread terminated while holding the mutex lock. The mutex lock shall be
acquired by the calling thread and it is up to the new owner to make the state

1564 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51685

51686

51687

51688

51689

51690

51691

51692

51693

51694

51695

51696

51697

51698

51699

51700

51701

51702

51703

51704

51705

51706

51707

51708

51709

51710

51711

51712

51713

51714

51715

51716

51717

51718

51719

51720

51721

51722

51723

51724

51725

51726

51727

51728

51729

51730

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces pthread_cond_timedwait()

consistent.

[EPERM] The mutex type is PTHREAD_MUTEX_ERRORCHECK or the mutex is a
robust mutex, and the current thread does not own the mutex.

The pthread_cond_clockwait() and pthread_cond_timedwait() functions shall fail if: |

[ETIMEDOUT] The time specified by abstime has passed. -

[EINVAL] The abstime argument specified a nanosecond value less than zero or greater
than or equal to 1000 million, or the clock_id argument passed to |
pthread_cond_clockwait() is invalid or not supported.

These functions may fail if:

[EOWNERDEAD]
The mutex is a robust mutex and the previous owning thread terminated
while holding the mutex lock. The mutex lock shall be acquired by the calling
thread and it is up to the new owner to make the state consistent.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications that have assumed that non-zero return values are errors will need updating for
use with robust mutexes, since a valid return for a thread acquiring a mutex which is protecting
a currently inconsistent state is [EOWNERDEAD]. Applications that do not check the error
returns, due to ruling out the possibility of such errors arising, should not use robust mutexes. If
an application is supposed to work with normal and robust mutexes, it should check all return
values for error conditions and if necessary take appropriate action.

RATIONALE
If an implementation detects that the value specified by the cond argument to |
pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait() does not refer to an
initialized condition variable, or detects that the value specified by the mutex argument does not |
refer to an initialized mutex object, it is recommended that the function should fail and report an
[EINVAL] error.

Condition Wait Semantics

It is important to note that when pthread_cond_clockwait(), pthread_cond_timedwait(), and |
pthread_cond_wait() return without error, the associated predicate may still be false. Similarly,
when pthread_cond_clockwait() or pthread_cond_timedwait() returns with the timeout error, the +
associated predicate may be true due to an unavoidable race between the expiration of the
timeout and the predicate state change.

The application needs to recheck the predicate on any return because it cannot be sure there is
another thread waiting on the thread to handle the signal, and if there is not then the signal is
lost. The burden is on the application to check the predicate.

Some implementations, particularly on a multi-processor, may sometimes cause multiple
threads to wake up when the condition variable is signaled simultaneously on different
processors.

In general, whenever a condition wait returns, the thread has to re-evaluate the predicate
associated with the condition wait to determine whether it can safely proceed, should wait
again, or should declare a timeout. A return from the wait does not imply that the associated

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1565

51731

51732

51733

51734

51735

51736

51737

51738

51739

51740

51741

51742

51743

51744

51745

51746

51747

51748

51749

51750

51751

51752

51753

51754

51755

51756

51757

51758

51759

51760

51761

51762

51763

51764

51765

51766

51767

51768

51769

51770

51771

51772

51773

51774

Unapproved Draft, Subject to Change

Sanity
Revie

w

pthread_cond_timedwait() System Interfaces

predicate is either true or false.

It is thus recommended that a condition wait be enclosed in the equivalent of a ``while loop’’
that checks the predicate.

Timed Wait Semantics

An absolute time measure was chosen for specifying the timeout parameter for two reasons.
First, a relative time measure can be easily implemented on top of a function that specifies
absolute time, but there is a race condition associated with specifying an absolute timeout on top
of a function that specifies relative timeouts. For example, assume that clock_gettime() returns
the current time and cond_relative_timed_wait() uses relative timeouts:

clock_gettime(CLOCK_REALTIME, &now)
reltime = sleep_til_this_absolute_time -now;
cond_relative_timed_wait(c, m, &reltime);

If the thread is preempted between the first statement and the last statement, the thread blocks
for too long. Blocking, however, is irrelevant if an absolute timeout is used. An absolute timeout
also need not be recomputed if it is used multiple times in a loop, such as that enclosing a
condition wait.

For cases when the system clock is advanced discontinuously by an operator, it is expected that
implementations process any timed wait expiring at an intervening time as if that time had
actually occurred. +

Choice of Clock +

Care should be taken to decide which clock is most appropriate when waiting with a timeout. +
The system clock CLOCK_REALTIME, as used by default with pthread_cond_timedwait(), may be +
subject to jumps forwards and backwards in order to correct it against actual time. +
CLOCK_MONOTONIC is guaranteed not to jump backwards and must also advance in real +
time, so using it via pthread_cond_clockwait() or pthread_condattr_setclock() may be more +
appropriate.

Cancellation and Condition Wait

A condition wait, whether timed or not, is a cancellation point. That is, the functions +
pthread_cond_clockwait(), pthread_cond_timedwait(), and pthread_cond_wait() are points where a -
pending (or concurrent) cancellation request is noticed. The reason for this is that an indefinite
wait is possible at these points—whatever event is being waited for, even if the program is
totally correct, might never occur; for example, some input data being awaited might never be
sent. By making condition wait a cancellation point, the thread can be canceled and perform its
cancellation cleanup handler even though it may be stuck in some indefinite wait.

A side-effect of acting on a cancellation request while a thread is blocked on a condition variable
is to re-acquire the mutex before calling any of the cancellation cleanup handlers. This is done in
order to ensure that the cancellation cleanup handler is executed in the same state as the critical
code that lies both before and after the call to the condition wait function. This rule is also
required when interfacing to POSIX threads from languages, such as Ada or C++, which may
choose to map cancellation onto a language exception; this rule ensures that each exception
handler guarding a critical section can always safely depend upon the fact that the associated
mutex has already been locked regardless of exactly where within the critical section the
exception was raised. Without this rule, there would not be a uniform rule that exception
handlers could follow regarding the lock, and so coding would become very cumbersome.

1566 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51775

51776

51777

51778

51779

51780

51781

51782

51783

51784

51785

51786

51787

51788

51789

51790

51791

51792

51793

51794

51795

51796

51797

51798

51799

51800

51801

51802

51803

51804

51805

51806

51807

51808

51809

51810

51811

51812

51813

51814

51815

51816

51817

51818

Unapproved Draft, Subject to Change

Sanity
Revie

w

pthread_cond_timedwait() System Interfaces

Timed Condition Wait

The pthread_cond_clockwait() and pthread_cond_timedwait() functions allow an application to give |
up waiting for a particular condition after a given amount of time. An example follows:

(void) pthread_mutex_lock(&t.mn);
t.waiters++;
clock_gettime(CLOCK_MONOTONIC, &ts); |
ts.tv_sec += 5;
rc = 0;
while (! mypredicate(&t) && rc == 0)

rc = pthread_cond_clockwait(&t.cond, &t.mn, |
CLOCK_MONOTONIC, &ts); |

t.waiters--;
if (rc == 0 || mypredicate(&t))

setmystate(&t);
(void) pthread_mutex_unlock(&t.mn);

By making the timeout parameter absolute, it does not need to be recomputed each time the
program checks its blocking predicate. If the timeout was relative, it would have to be
recomputed before each call. This would be especially difficult since such code would need to
take into account the possibility of extra wakeups that result from extra broadcasts or signals on
the condition variable that occur before either the predicate is true or the timeout is due. Using |
CLOCK_MONOTONIC rather than CLOCK_REALTIME means that the timeout is not |
influenced by the system clock being changed.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_broadcast()

XBD Section 4.13 (on page 91), <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_cond_timedwait() and pthread_cond_wait() functions are marked as part of the
Threads option.

The Open Group Corrigendum U021/9 is applied, correcting the prototype for the
pthread_cond_wait() function.

The DESCRIPTION is updated for alignment with IEEE Std 1003.1j-2000 by adding semantics
for the Clock Selection option.

The ERRORS section has an additional case for [EPERM] in response to IEEE PASC
Interpretation 1003.1c #28.

The restrict keyword is added to the pthread_cond_timedwait() and pthread_cond_wait()
prototypes for alignment with the ISO/IEC 9899: 1999 standard.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/89 is applied, updating the
DESCRIPTION for consistency with the pthread_cond_destroy() function that states it is safe to
destroy an initialized condition variable upon which no threads are currently blocked.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/90 is applied, updating words in the
DESCRIPTION from ``the cancelability enable state’’ to ``the cancelability type’’.

1568 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51859

51860

51861

51862

51863

51864

51865

51866

51867

51868

51869

51870

51871

51872

51873

51874

51875

51876

51877

51878

51879

51880

51881

51882

51883

51884

51885

51886

51887

51888

51889

51890

51891

51892

51893

51894

51895

51896

51897

51898

51899

51900

51901

51902

51903

Unapproved Draft, Subject to Change

Sanity
Revie

w

pthread_condattr_getclock() System Interfaces

NAME
pthread_condattr_getclock, pthread_condattr_setclock — get and set the clock selection
condition variable attribute

SYNOPSIS
#include <pthread.h>

int pthread_condattr_getclock(const pthread_condattr_t *restrict attr,
clockid_t *restrict clock_id);

int pthread_condattr_setclock(pthread_condattr_t *attr,
clockid_t clock_id);

DESCRIPTION
The pthread_condattr_getclock() function shall obtain the value of the clock attribute from the
attributes object referenced by attr.

The pthread_condattr_setclock() function shall set the clock attribute in an initialized attributes
object referenced by attr. If pthread_condattr_setclock() is called with a clock_id argument that
refers to a CPU-time clock, the call shall fail.

The clock attribute is the clock ID of the clock that shall be used to measure the timeout service of
pthread_cond_timedwait(). The default value of the clock attribute shall refer to the system clock. |
The clock attribute shall have no effect on the pthread_cond_clockwait() function.

The behavior is undefined if the value specified by the attr argument to
pthread_condattr_getclock() or pthread_condattr_setclock() does not refer to an initialized condition
variable attributes object.

RETURN VALUE
If successful, the pthread_condattr_getclock() function shall return zero and store the value of the
clock attribute of attr into the object referenced by the clock_id argument. Otherwise, an error
number shall be returned to indicate the error.

If successful, the pthread_condattr_setclock() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_condattr_setclock() function may fail if:

[EINVAL] The value specified by clock_id does not refer to a known clock, or is a CPU-
time clock.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the attr argument to
pthread_condattr_getclock() or pthread_condattr_setclock() does not refer to an initialized condition
variable attributes object, it is recommended that the function should fail and report an
[EINVAL] error.

1572 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

51993

51994

51995

51996

51997

51998

51999

52000

52001

52002

52003

52004

52005

52006

52007

52008

52009

52010

52011

52012

52013

52014

52015

52016

52017

52018

52019

52020

52021

52022

52023

52024

52025

52026

52027

52028

52029

52030

52031

52032

52033

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces pthread_mutex_destroy()

NAME
pthread_mutex_destroy, pthread_mutex_init — destroy and initialize a mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr);
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

DESCRIPTION
The pthread_mutex_destroy() function shall destroy the mutex object referenced by mutex; the
mutex object becomes, in effect, uninitialized. An implementation may cause
pthread_mutex_destroy() to set the object referenced by mutex to an invalid value.

A destroyed mutex object can be reinitialized using pthread_mutex_init(); the results of otherwise
referencing the object after it has been destroyed are undefined.

It shall be safe to destroy an initialized mutex that is unlocked. Attempting to destroy a locked
mutex, or a mutex that another thread is attempting to lock, or a mutex that is being used in a |
pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait() call by another thread,
results in undefined behavior.

The pthread_mutex_init() function shall initialize the mutex referenced by mutex with attributes
specified by attr. If attr is NULL, the default mutex attributes are used; the effect shall be the
same as passing the address of a default mutex attributes object. Upon successful initialization,
the state of the mutex becomes initialized and unlocked.

See Section 2.9.9 (on page 508) for further requirements.

Attempting to initialize an already initialized mutex results in undefined behavior.

In cases where default mutex attributes are appropriate, the macro
PTHREAD_MUTEX_INITIALIZER can be used to initialize mutexes. The effect shall be
equivalent to dynamic initialization by a call to pthread_mutex_init() with parameter attr
specified as NULL, except that no error checks are performed.

The behavior is undefined if the value specified by the mutex argument to
pthread_mutex_destroy() does not refer to an initialized mutex.

The behavior is undefined if the value specified by the attr argument to pthread_mutex_init()
does not refer to an initialized mutex attributes object.

RETURN VALUE
If successful, the pthread_mutex_destroy() and pthread_mutex_init() functions shall return zero;
otherwise, an error number shall be returned to indicate the error.

ERRORS
The pthread_mutex_init() function shall fail if:

[EAGAIN] The system lacked the necessary resources (other than memory) to initialize
another mutex.

[ENOMEM] Insufficient memory exists to initialize the mutex.

[EPERM] The caller does not have the privilege to perform the operation.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1605

53021

53022

53023

53024

53025

53026

53027

53028

53029

53030

53031

53032

53033

53034

53035

53036

53037

53038

53039

53040

53041

53042

53043

53044

53045

53046

53047

53048

53049

53050

53051

53052

53053

53054

53055

53056

53057

53058

53059

53060

53061

Unapproved Draft, Subject to Change

Sanity
Revie

w

pthread_mutex_destroy() System Interfaces

The pthread_mutex_init() function may fail if:

[EINVAL] The attributes object referenced by attr has the robust mutex attribute set
without the process-shared attribute being set.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
If an implementation detects that the value specified by the mutex argument to
pthread_mutex_destroy() does not refer to an initialized mutex, it is recommended that the
function should fail and report an [EINVAL] error.

If an implementation detects that the value specified by the mutex argument to
pthread_mutex_destroy() or pthread_mutex_init() refers to a locked mutex or a mutex that is
referenced (for example, while being used in a pthread_cond_clockwait(), |
pthread_cond_timedwait(), or pthread_cond_wait() call) by another thread, or detects that the value |
specified by the mutex argument to pthread_mutex_init() refers to an already initialized mutex, it
is recommended that the function should fail and report an [EBUSY] error.

If an implementation detects that the value specified by the attr argument to
pthread_mutex_init() does not refer to an initialized mutex attributes object, it is recommended
that the function should fail and report an [EINVAL] error.

Alternate Implementations Possible

This volume of POSIX.1-202x supports several alternative implementations of mutexes. An
implementation may store the lock directly in the object of type pthread_mutex_t. Alternatively,
an implementation may store the lock in the heap and merely store a pointer, handle, or unique
ID in the mutex object. Either implementation has advantages or may be required on certain
hardware configurations. So that portable code can be written that is invariant to this choice, this
volume of POSIX.1-202x does not define assignment or equality for this type, and it uses the
term ``initialize’’ to reinforce the (more restrictive) notion that the lock may actually reside in the
mutex object itself.

Note that this precludes an over-specification of the type of the mutex or condition variable and
motivates the opaqueness of the type.

An implementation is permitted, but not required, to have pthread_mutex_destroy() store an
illegal value into the mutex. This may help detect erroneous programs that try to lock (or
otherwise reference) a mutex that has already been destroyed.

Tradeoff Between Error Checks and Performance Supported

Many error conditions that can occur are not required to be detected by the implementation in
order to let implementations trade off performance versus degree of error checking according to
the needs of their specific applications and execution environment. As a general rule, conditions
caused by the system (such as insufficient memory) are required to be detected, but conditions
caused by an erroneously coded application (such as failing to provide adequate
synchronization to prevent a mutex from being deleted while in use) are specified to result in
undefined behavior.

A wide range of implementations is thus made possible. For example, an implementation

1606 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53062

53063

53064

53065

53066

53067

53068

53069

53070

53071

53072

53073

53074

53075

53076

53077

53078

53079

53080

53081

53082

53083

53084

53085

53086

53087

53088

53089

53090

53091

53092

53093

53094

53095

53096

53097

53098

53099

53100

53101

53102

53103

53104

53105

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces pthread_mutex_destroy()

particular, it can happen at most as many times as there are statically allocated synchronization
objects. Dynamically allocated objects would still be initialized via pthread_mutex_init() or
pthread_cond_init().

Finally, if none of the above optimization techniques for out-of-line allocation yields sufficient
performance for an application on some implementation, the application can avoid static
initialization altogether by explicitly initializing all synchronization objects with the
corresponding pthread_*_init() functions, which are supported by all implementations. An
implementation can also document the tradeoffs and advise which initialization technique is
more efficient for that particular implementation.

Destroying Mutexes

A mutex can be destroyed immediately after it is unlocked. However, since attempting to
destroy a locked mutex, or a mutex that another thread is attempting to lock, or a mutex that is
being used in a pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait() call by |
another thread, results in undefined behavior, care must be taken to ensure that no other thread
may be referencing the mutex.

Robust Mutexes

Implementations are required to provide robust mutexes for mutexes with the process-shared
attribute set to PTHREAD_PROCESS_SHARED. Implementations are allowed, but not required,
to provide robust mutexes when the process-shared attribute is set to
PTHREAD_PROCESS_PRIVATE.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_getprioceiling(), pthread_mutexattr_getrobust(), pthread_mutex_lock(),
pthread_mutex_timedlock(), pthread_mutexattr_getpshared()

XBD <pthread.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Threads Extension.

Issue 6
The pthread_mutex_destroy() and pthread_mutex_init() functions are marked as part of the
Threads option.

The pthread_mutex_timedlock() function is added to the SEE ALSO section for alignment with
IEEE Std 1003.1d-1999.

IEEE PASC Interpretation 1003.1c #34 is applied, updating the DESCRIPTION.

The restrict keyword is added to the pthread_mutex_init() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

Issue 7
Changes are made from The Open Group Technical Standard, 2006, Extended API Set Part 3.

The pthread_mutex_destroy() and pthread_mutex_init() functions are moved from the Threads
option to the Base.

The [EINVAL] error for an uninitialized mutex or an uninitialized mutex attributes object is
removed; this condition results in undefined behavior.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1609

53199

53200

53201

53202

53203

53204

53205

53206

53207

53208

53209

53210

53211

53212

53213

53214

53215

53216

53217

53218

53219

53220

53221

53222

53223

53224

53225

53226

53227

53228

53229

53230

53231

53232

53233

53234

53235

53236

53237

53238

53239

53240

Unapproved Draft, Subject to Change

Sanity
Revie

w

pthread_mutex_timedlock() System Interfaces

NAME
pthread_mutex_clocklock, pthread_mutex_timedlock — lock a mutex +

SYNOPSIS
#include <pthread.h>

int pthread_mutex_clocklock(pthread_mutex_t *restrict mutex, +
clockid_t clock_id, const struct timespec *restrict abstime); +

int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

DESCRIPTION
The pthread_mutex_clocklock() and pthread_mutex_timedlock() functions shall lock the mutex |
object referenced by mutex. If the mutex is already locked, the calling thread shall block until the
mutex becomes available as in the pthread_mutex_lock() function. If the mutex cannot be locked
without waiting for another thread to unlock the mutex, this wait shall be terminated when the
specified timeout expires.

The timeout shall expire when the absolute time specified by abstime passes, as measured by the
clock on which timeouts are based (that is, when the value of that clock equals or exceeds
abstime), or if the absolute time specified by abstime has already been passed at the time of the
call.

For pthread_mutex_timedlock(), the timeout shall be based on the CLOCK_REALTIME clock. For |
pthread_mutex_clocklock(), the timeout shall be based on the clock specified by the clock_id |
argument. The resolution of the timeout shall be the resolution of the clock on which it is based. |
Implementations shall support passing CLOCK_REALTIME and CLOCK_MONOTONIC to |
pthread_mutex_clocklock() as the clock_id argument.

Under no circumstance shall the function fail with a timeout if the mutex can be locked
immediately. The validity of the abstime parameter need not be checked if the mutex can be
locked immediately.

RPI|TPI As a consequence of the priority inheritance rules (for mutexes initialized with the
PRIO_INHERIT protocol), if a timed mutex wait is terminated because its timeout expires, the
priority of the owner of the mutex shall be adjusted as necessary to reflect the fact that this
thread is no longer among the threads waiting for the mutex.

If mutex is a robust mutex and the process containing the owning thread terminated while
holding the mutex lock, a call to pthread_mutex_clocklock() or pthread_mutex_timedlock() shall +
return the error value [EOWNERDEAD]. If mutex is a robust mutex and the owning thread
terminated while holding the mutex lock, a call to pthread_mutex_clocklock() or +
pthread_mutex_timedlock() may return the error value [EOWNERDEAD] even if the process in
which the owning thread resides has not terminated. In these cases, the mutex is locked by the
thread but the state it protects is marked as inconsistent. The application should ensure that the
state is made consistent for reuse and when that is complete call pthread_mutex_consistent(). If
the application is unable to recover the state, it should unlock the mutex without a prior call to
pthread_mutex_consistent(), after which the mutex is marked permanently unusable.

If mutex does not refer to an initialized mutex object, the behavior is undefined.

RETURN VALUE
If successful, the pthread_mutex_clocklock() and pthread_mutex_timedlock() functions shall return |
zero; otherwise, an error number shall be returned to indicate the error.

1620 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

53518

53519

53520

53521

53522

53523

53524

53525

53526

53527

53528

53529

53530

53531

53532

53533

53534

53535

53536

53537

53538

53539

53540

53541

53542

53543

53544

53545

53546

53547

53548

53549

53550

53551

53552

53553

53554

53555

53556

53557

53558

53559

53560

53561

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces pthread_mutex_timedlock()

ERRORS
The pthread_mutex_clocklock() and pthread_mutex_timedlock() functions shall fail if: |

[EAGAIN] The mutex could not be acquired because the maximum number of recursive
locks for mutex has been exceeded.

[EAGAIN] The mutex is a robust mutex and the system resources available for robust
mutexes owned would be exceeded.

[EDEADLK] The mutex type is PTHREAD_MUTEX_ERRORCHECK and the current
thread already owns the mutex.

[EINVAL] The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT and the calling thread’s priority is higher than
the mutex’ current priority ceiling.

[EINVAL] The process or thread would have blocked, and either the abstime parameter |
specified a nanoseconds field value less than zero or greater than or equal to |
1 000 million, or the pthread_mutex_clocklock() function was passed an invalid |
or unsupported clock_id value.

[ENOTRECOVERABLE]
The state protected by the mutex is not recoverable.

[EOWNERDEAD]
The mutex is a robust mutex and the process containing the previous owning
thread terminated while holding the mutex lock. The mutex lock shall be
acquired by the calling thread and it is up to the new owner to make the state
consistent.

[ETIMEDOUT] The mutex could not be locked before the specified timeout expired.

The pthread_mutex_clocklock() and pthread_mutex_timedlock() functions may fail if: |

[EDEADLK] A deadlock condition was detected.

[EOWNERDEAD]
The mutex is a robust mutex and the previous owning thread terminated
while holding the mutex lock. The mutex lock shall be acquired by the calling
thread and it is up to the new owner to make the state consistent.

This function shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
Applications that have assumed that non-zero return values are errors will need updating for
use with robust mutexes, since a valid return for a thread acquiring a mutex which is protecting
a currently inconsistent state is [EOWNERDEAD]. Applications that do not check the error
returns, due to ruling out the possibility of such errors arising, should not use robust mutexes. If
an application is supposed to work with normal and robust mutexes, it should check all return
values for error conditions and if necessary take appropriate action.

RATIONALE
Refer to pthread_mutex_lock().

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1621

53562

53563

53564

53565

53566

53567

53568

53569

53570

53571

53572

53573

53574

53575

53576

53577

53578

53579

53580

53581

53582

53583

53584

53585

53586

53587

53588

53589

53590

53591

53592

53593

53594

53595

53596

53597

53598

53599

53600

53601

53602

Unapproved Draft, Subject to Change

Sanity
Revie

w

pthread_mutexattr_gettype() System Interfaces

NAME
pthread_mutexattr_gettype, pthread_mutexattr_settype — get and set the mutex type attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict attr,
int *restrict type);

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

DESCRIPTION
The pthread_mutexattr_gettype() and pthread_mutexattr_settype() functions, respectively, shall get
and set the mutex type attribute. This attribute is set in the type parameter to these functions. The
default value of the type attribute is PTHREAD_MUTEX_DEFAULT.

The type of mutex is contained in the type attribute of the mutex attributes. Valid mutex types
include:

PTHREAD_MUTEX_NORMAL
PTHREAD_MUTEX_ERRORCHECK
PTHREAD_MUTEX_RECURSIVE
PTHREAD_MUTEX_DEFAULT

The mutex type affects the behavior of calls which lock and unlock the mutex. See
pthread_mutex_lock() for details. An implementation may map PTHREAD_MUTEX_DEFAULT
to one of the other mutex types.

The behavior is undefined if the value specified by the attr argument to
pthread_mutexattr_gettype() or pthread_mutexattr_settype() does not refer to an initialized mutex
attributes object.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_gettype() function shall return zero and store
the value of the type attribute of attr into the object referenced by the type parameter. Otherwise,
an error shall be returned to indicate the error.

If successful, the pthread_mutexattr_settype() function shall return zero; otherwise, an error
number shall be returned to indicate the error.

ERRORS
The pthread_mutexattr_settype() function shall fail if:

[EINVAL] The value type is invalid.

These functions shall not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
It is advised that an application should not use a PTHREAD_MUTEX_RECURSIVE mutex with
condition variables because the implicit unlock performed in a pthread_cond_clockwait(), |
pthread_cond_timedwait(), or pthread_cond_wait() call may not actually release the mutex (if it had |
been locked multiple times). If this happens, no other thread can satisfy the condition of the
predicate.

1638 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54163

54164

54165

54166

54167

54168

54169

54170

54171

54172

54173

54174

54175

54176

54177

54178

54179

54180

54181

54182

54183

54184

54185

54186

54187

54188

54189

54190

54191

54192

54193

54194

54195

54196

54197

54198

54199

54200

54201

54202

54203

Unapproved Draft, Subject to Change

Sanity
Revie

w

pthread_rwlock_timedrdlock() System Interfaces

NAME
pthread_rwlock_clockrdlock, pthread_rwlock_timedrdlock — lock a read-write lock for reading +

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_clockrdlock(pthread_rwlock_t *restrict rwlock, +
clockid_t clock_id, const struct timespec *restrict abstime); +

int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abstime);

DESCRIPTION
The pthread_rwlock_clockrdlock() and pthread_rwlock_timedrdlock() functions shall apply a read |
lock to the read-write lock referenced by rwlock as in the pthread_rwlock_rdlock() function.
However, if the lock cannot be acquired without waiting for other threads to unlock the lock,
this wait shall be terminated when the specified timeout expires. The timeout shall expire when
the absolute time specified by abstime passes, as measured by the clock on which timeouts are
based (that is, when the value of that clock equals or exceeds abstime), or if the absolute time
specified by abstime has already been passed at the time of the call.

For pthread_rwlock_timedrdlock(), the timeout shall be based on the CLOCK_REALTIME clock. |
For pthread_rwlock_clockrdlock(), the timeout shall be based on the clock specified by the clock_id |
argument. The resolution of the timeout shall be the resolution of the clock on which it is based. |
Implementations shall support passing CLOCK_REALTIME and CLOCK_MONOTONIC to |
pthread_rwlock_clockrdlock() as the clock_id argument. |

Under no circumstances shall the function fail with a timeout if the lock can be acquired
immediately. The validity of the abstime parameter need not be checked if the lock can be
immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread blocked on a read-
write lock via a call to pthread_rwlock_clockrdlock() or pthread_rwlock_timedrdlock(), upon return +
from the signal handler the thread shall resume waiting for the lock as if it was not interrupted.

The calling thread may deadlock if at the time the call is made it holds a write lock on rwlock.
The results are undefined if this function is called with an uninitialized read-write lock.

RETURN VALUE
The pthread_rwlock_clockrdlock() and pthread_rwlock_timedrdlock() functions shall return zero if |
the lock for reading on the read-write lock object referenced by rwlock is acquired. Otherwise, an
error number shall be returned to indicate the error.

ERRORS
The pthread_rwlock_clockrdlock() and pthread_rwlock_timedrdlock() functions shall fail if: |

[ETIMEDOUT] The lock could not be acquired before the specified timeout expired.

The pthread_rwlock_clockrdlock() and pthread_rwlock_timedrdlock() functions may fail if: |

[EAGAIN] The read lock could not be acquired because the maximum number of read
locks for lock would be exceeded.

[EDEADLK] A deadlock condition was detected or the calling thread already holds a write
lock on rwlock.

[EINVAL] The abstime nanosecond value is less than zero or greater than or equal to 1 000 |
million, or the pthread_rwlock_clockrdlock() function was passed an invalid or |
unsupported clock_id value.

This function shall not return an error code of [EINTR].

1654 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54555

54556

54557

54558

54559

54560

54561

54562

54563

54564

54565

54566

54567

54568

54569

54570

54571

54572

54573

54574

54575

54576

54577

54578

54579

54580

54581

54582

54583

54584

54585

54586

54587

54588

54589

54590

54591

54592

54593

54594

54595

54596

54597

54598

54599

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces pthread_rwlock_timedrdlock()

EXAMPLES
None.

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in XBD
Section 3.260 (on page 66).

RATIONALE
If an implementation detects that the value specified by the rwlock argument to +
pthread_rwlock_clockrdlock() or pthread_rwlock_timedrdlock() does not refer to an initialized read-
write lock object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlock_rdlock(), pthread_rwlock_timedwrlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock()

XBD Section 3.260 (on page 66), Section 4.13 (on page 91), <pthread.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/102 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
The pthread_rwlock_timedrdlock() function is moved from the Timeouts option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this condition results
in undefined behavior.

Issue 8
Austin Group Defect 592 is applied, removing text relating to <time.h> from the SYNOPSIS and
DESCRIPTION sections. +

Austin Group Defect 1216 is applied, adding pthread_rwlock_clockrdlock(). |

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1655

54600

54601

54602

54603

54604

54605

54606

54607

54608

54609

54610

54611

54612

54613

54614

54615

54616

54617

54618

54619

54620

54621

54622

54623

54624

54625

54626

Unapproved Draft, Subject to Change

Sanity
Revie

w

pthread_rwlock_timedwrlock() System Interfaces

NAME
pthread_rwlock_clockwrlock, pthread_rwlock_timedwrlock — lock a read-write lock for writing +

SYNOPSIS
#include <pthread.h>

int pthread_rwlock_clockwrlock(pthread_rwlock_t *restrict rwlock, +
clockid_t clock_id, const struct timespec *restrict abstime); +

int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abstime);

DESCRIPTION
The pthread_rwlock_clockwrlock() and pthread_rwlock_timedwrlock() functions shall apply a write |
lock to the read-write lock referenced by rwlock as in the pthread_rwlock_wrlock() function.
However, if the lock cannot be acquired without waiting for other threads to unlock the lock,
this wait shall be terminated when the specified timeout expires. The timeout shall expire when
the absolute time specified by abstime passes, as measured by the clock on which timeouts are
based (that is, when the value of that clock equals or exceeds abstime), or if the absolute time
specified by abstime has already been passed at the time of the call.

For pthread_rwlock_timedwrlock(), the timeout shall be based on the CLOCK_REALTIME clock. |
For pthread_rwlock_clockwrlock(), the timeout shall be based on the clock specified by the clock_id |
argument. The resolution of the timeout shall be the resolution of the clock on which it is based. |
Implementations shall support passing CLOCK_REALTIME and CLOCK_MONOTONIC to |
pthread_rwlock_clockwrlock() as the clock_id argument. |

Under no circumstances shall the function fail with a timeout if the lock can be acquired
immediately. The validity of the abstime parameter need not be checked if the lock can be
immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread blocked on a read-
write lock via a call to pthread_rwlock_clockwrlock() or pthread_rwlock_timedwrlock(), upon return +
from the signal handler the thread shall resume waiting for the lock as if it was not interrupted.

The calling thread may deadlock if at the time the call is made it holds the read-write lock. The
results are undefined if this function is called with an uninitialized read-write lock.

RETURN VALUE
The pthread_rwlock_clockwrlock() and pthread_rwlock_timedwrlock() functions shall return zero if |
the lock for writing on the read-write lock object referenced by rwlock is acquired. Otherwise, an
error number shall be returned to indicate the error.

ERRORS
The pthread_rwlock_clockwrlock() and pthread_rwlock_timedwrlock() functions shall fail if: |

[ETIMEDOUT] The lock could not be acquired before the specified timeout expired.

The pthread_rwlock_clockwrlock() and pthread_rwlock_timedwrlock() functions may fail if: |

[EDEADLK] A deadlock condition was detected or the calling thread already holds the
rwlock.

[EINVAL] The abstime nanosecond value is less than zero or greater than or equal to 1 000 |
million, or the pthread_rwlock_clockwrlock() function was passed an invalid or |
unsupported clock_id value.

This function shall not return an error code of [EINTR].

1656 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

54627

54628

54629

54630

54631

54632

54633

54634

54635

54636

54637

54638

54639

54640

54641

54642

54643

54644

54645

54646

54647

54648

54649

54650

54651

54652

54653

54654

54655

54656

54657

54658

54659

54660

54661

54662

54663

54664

54665

54666

54667

54668

54669

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces pthread_rwlock_timedwrlock()

EXAMPLES
None.

APPLICATION USAGE
Applications using this function may be subject to priority inversion, as discussed in XBD
Section 3.260 (on page 66).

RATIONALE
If an implementation detects that the value specified by the rwlock argument to +
pthread_rwlock_clockwrlock() or pthread_rwlock_timedwrlock() does not refer to an initialized read-
write lock object, it is recommended that the function should fail and report an [EINVAL] error.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_rwlock_destroy(), pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock()

XBD Section 3.260 (on page 66), Section 4.13 (on page 91), <pthread.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/103 is applied, updating the ERRORS
section so that the [EDEADLK] error includes detection of a deadlock condition.

Issue 7
The pthread_rwlock_timedwrlock() function is moved from the Timeouts option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this condition results
in undefined behavior.

Issue 8
Austin Group Defect 592 is applied, removing text relating to <time.h> from the SYNOPSIS and
DESCRIPTION sections. +

Austin Group Defect 1216 is applied, adding pthread_rwlock_clockwrlock(). |

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1657

54670

54671

54672

54673

54674

54675

54676

54677

54678

54679

54680

54681

54682

54683

54684

54685

54686

54687

54688

54689

54690

54691

54692

54693

54694

54695

54696

Unapproved Draft, Subject to Change

Sanity
Revie

w

qsort() System Interfaces

NAME
qsort, qsort_r — sort a table of data +

SYNOPSIS
#include <stdlib.h>

void qsort(void *base, size_t nel, size_t width,
int (*compar)(const void *, const void *));

CX void qsort_r(void *base, size_t nel, size_t width, +
int (*compar)(const void *, const void *, void *), void *arg); +

DESCRIPTION
CX For qsort(): The functionality described on this reference page is aligned with the ISO C +

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-202x defers to the ISO C standard.

The qsort() function shall sort an array of nel objects, the initial element of which is pointed to by
base. The size of each object, in bytes, is specified by the width argument. If the nel argument has
the value zero, the comparison function pointed to by compar shall not be called and no
rearrangement shall take place.

The application shall ensure that the comparison function pointed to by compar does not alter the
contents of the array. The implementation may reorder elements of the array between calls to the
comparison function, but shall not alter the contents of any individual element.

When the same objects (consisting of width bytes, irrespective of their current positions in the
array) are passed more than once to the comparison function, the results shall be consistent with
one another. That is, they shall define a total ordering on the array.

The contents of the array shall be sorted in ascending order according to a comparison function.
The compar argument is a pointer to the comparison function, which is called with two
arguments that point to the elements being compared. The application shall ensure that the
function returns an integer less than, equal to, or greater than 0, if the first argument is
considered respectively less than, equal to, or greater than the second. If two members compare
as equal, their order in the sorted array is unspecified. |

CX The qsort_r() function shall be identical to qsort() except that the comparison function compar |
takes a third argument. The arg opaque pointer passed to qsort_r() shall in turn be passed as the |
third argument to the comparison function. |

RETURN VALUE |
These functions shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared. +

If the compar callback function requires any additional state outside of the items being sorted, it +
can only access this state through global variables, making it potentially unsafe to use qsort() +
with the same compar function from separate threads at the same time. The qsort_r() function +
was added with the ability to pass through arbitrary arguments to the comparator, which avoids +
the need to access global variables and thus making it possible to safely share a stateful +

1702 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

55818

55819

55820

55821

55822

55823

55824

55825

55826

55827

55828

55829

55830

55831

55832

55833

55834

55835

55836

55837

55838

55839

55840

55841

55842

55843

55844

55845

55846

55847

55848

55849

55850

55851

55852

55853

55854

55855

55856

55857

55858

55859

55860

55861

55862

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces qsort()

comparator across threads.

RATIONALE
The requirement that each argument (hereafter referred to as p) to the comparison function is a
pointer to elements of the array implies that for every call, for each argument separately, all of
the following expressions are non-zero:

((char *)p - (char *)base) % width == 0
(char *)p >= (char *)base
(char *)p < (char *)base + nel * width

FUTURE DIRECTIONS
None.

SEE ALSO
alphasort()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
The normative text is updated to avoid use of the term ``must’’ for application requirements.

IEEE Std 1003.1-2001/Cor 1-2002, item XSH/TC1/D6/49 is applied, adding the last sentence to
the first non-shaded paragraph in the DESCRIPTION, and the following two paragraphs. The
RATIONALE is also updated. These changes are for alignment with the ISO C standard. +

Issue 8 +
Austin Group Defect 900 is applied, adding the qsort_r() function. |

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1703

55863

55864

55865

55866

55867

55868

55869

55870

55871

55872

55873

55874

55875

55876

55877

55878

55879

55880

55881

55882

55883

55884

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces rand()

keystr[len++] = c;
}

keystr[len] = '\0';
printf("%s Element%0*ld\n", keystr, elementlen, i);
len = 0;

}

Generating the Same Sequence on Different Machines

The following code defines a pair of functions that could be incorporated into applications
wishing to ensure that the same sequence of numbers is generated across different machines.

static unsigned long next = 1;
int myrand(void) /* RAND_MAX assumed to be 32767. */
{

next = next * 1103515245 + 12345;
return((unsigned)(next/65536) % 32768);

}

void mysrand(unsigned seed)
{

next = seed;
}

APPLICATION USAGE
These functions should be avoided whenever non-trivial requirements (including safety) have to |
be fulfilled, unless seeded using getentropy().

The drand48() and random() functions provide much more elaborate pseudo-random number
generators.

RATIONALE
The ISO C standard rand() and srand() functions allow per-process pseudo-random streams
shared by all threads. Those two functions need not change, but there has to be mutual-
exclusion that prevents interference between two threads concurrently accessing the random
number generator.

With regard to rand(), there are two different behaviors that may be wanted in a multi-threaded
program:

1. A single per-process sequence of pseudo-random numbers that is shared by all threads
that call rand()

2. A different sequence of pseudo-random numbers for each thread that calls rand()

This is provided by the modified thread-safe function based on whether the seed value is global
to the entire process or local to each thread.

This does not address the known deficiencies of the rand() function implementations, which
have been approached by maintaining more state. In effect, this specifies new thread-safe forms
of a deficient function.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1707

55971

55972

55973

55974

55975

55976

55977

55978

55979

55980

55981

55982

55983

55984

55985

55986

55987

55988

55989

55990

55991

55992

55993

55994

55995

55996

55997

55998

55999

56000

56001

56002

56003

56004

56005

56006

56007

56008

56009

56010

56011

Unapproved Draft, Subject to Change

Sanity
Revie

w

realloc() System Interfaces

NAME
realloc, reallocarray — memory reallocators |

SYNOPSIS
#include <stdlib.h>

void *realloc(void *ptr, size_t size);
CX void *reallocarray(void *ptr, size_t nelem, size_t elsize); +

DESCRIPTION
CX For realloc(): The functionality described on this reference page is aligned with the ISO C +

standard. Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-202x defers to the ISO C standard.

The realloc() function shall deallocate the old object pointed to by ptr and return a pointer to a
new object that has the size specified by size. The contents of the new object shall be the same as
that of the old object prior to deallocation, up to the lesser of the new and old sizes. Any bytes in
the new object beyond the size of the old object have indeterminate values. If the size of the
space requested is zero, the behavior shall be implementation-defined: either a null pointer is
returned, or the behavior shall be as if the size were some non-zero value, except that the
behavior is undefined if the returned pointer is used to access an object. If the space cannot be
allocated, the object shall remain unchanged.

CX The reallocarray() function shall be equivalent to the call realloc(ptr, nelem * elsize) +
except that overflow in the multiplication shall be an error. +

CX If ptr is a null pointer, realloc() or reallocarray() shall be equivalent to malloc() for the specified |
size.

If ptr does not match a pointer earlier returned by a function in POSIX.1-202x that allocates |
memory as if by malloc(), or if the space has previously been deallocated by a call to free(), |

CX realloc(), or reallocarray(), the behavior is undefined. |

CX The order and contiguity of storage allocated by successive calls to realloc() or reallocarray() is |
unspecified. The pointer returned if the allocation succeeds shall be suitably aligned so that it
may be assigned to a pointer to any type of object and then used to access such an object in the
space allocated (until the space is explicitly freed or reallocated). Each such allocation shall yield
a pointer to an object disjoint from any other object. The pointer returned shall point to the start
(lowest byte address) of the allocated space. If the space cannot be allocated, a null pointer shall
be returned.

RETURN VALUE
CX Upon successful completion, realloc() and reallocarray() shall return a pointer to the (possibly |
CX moved) allocated space. If size is 0, or either nelem or elsize is 0, then either:

CX • A null pointer shall be returned and, if ptr is not a null pointer, errno shall be set to an
implementation-defined value.

• A pointer to the allocated space shall be returned, and the memory object pointed to by ptr
shall be freed. The application shall ensure that the pointer is not used to access an object.

CXCX If there is not enough available memory, realloc() and reallocarray() shall return a null pointer |
CXCX and set errno to [ENOMEM]. If realloc() or reallocarray() returns a null pointer and errno has |

been set to [ENOMEM], the memory referenced by ptr shall not be changed.

1726 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

56680

56681

56682

56683

56684

56685

56686

56687

56688

56689

56690

56691

56692

56693

56694

56695

56696

56697

56698

56699

56700

56701

56702

56703

56704

56705

56706

56707

56708

56709

56710

56711

56712

56713

56714

56715

56716

56717

56718

56719

56720

56721

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces realloc()

ERRORS
CX The realloc() and reallocarray() functions shall fail if: |

CX [ENOMEM] Insufficient memory is available.

CX The reallocarray() function shall fail if: +

[ENOMEM] The calculation nelem * elsize would overflow. +

EXAMPLES
None.

APPLICATION USAGE
The description of realloc() has been modified from previous versions of this standard to align
with the ISO/IEC 9899: 1999 standard. Previous versions explicitly permitted a call to realloc(p, 0) |
to free the space pointed to by p and return a null pointer. While this behavior could be
interpreted as permitted by this version of the standard, the C language committee has indicated |
that this interpretation is incorrect. Applications should assume that if realloc() returns a null
pointer, the space pointed to by p has not been freed. Since this could lead to double-frees,
implementations should also set errno if a null pointer actually indicates a failure, and
applications should only free the space if errno was changed.

RATIONALE
None.

FUTURE DIRECTIONS
This standard defers to the ISO C standard. While that standard currently has language that
might permit realloc(p, 0), where p is not a null pointer, to free p while still returning a null |
pointer, the committee responsible for that standard is considering clarifying the language to
explicitly prohibit that alternative.

SEE ALSO
calloc(), free(), malloc()

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 6
Extensions beyond the ISO C standard are marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

• In the RETURN VALUE section, if there is not enough available memory, the setting of
errno to [ENOMEM] is added.

• The [ENOMEM] error condition is added.

Issue 7
POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0495 [400], XSH/TC1-2008/0496 [400],
XSH/TC1-2008/0497 [400], and XSH/TC1-2008/0498 [400] are applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0309 [526] and XSH/TC2-2008/0310
[526,688] are applied. +

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1727

56722

56723

56724

56725

56726

56727

56728

56729

56730

56731

56732

56733

56734

56735

56736

56737

56738

56739

56740

56741

56742

56743

56744

56745

56746

56747

56748

56749

56750

56751

56752

56753

56754

56755

56756

56757

56758

56759

56760

56761

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces sem_init()

NAME
sem_init — initialize an unnamed semaphore

SYNOPSIS
#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned value);

DESCRIPTION
The sem_init() function shall initialize the unnamed semaphore referred to by sem. The value of
the initialized semaphore shall be value. Following a successful call to sem_init(), the semaphore |
can be used in subsequent calls to sem_clockwait(), sem_destroy(), sem_post(), sem_timedwait(),
sem_trywait(), and sem_wait(). This semaphore shall remain usable until the semaphore is |
destroyed. An unnamed semaphore may be implemented using a file descriptor.

If the pshared argument has a non-zero value, then the semaphore is shared between processes;
in this case, any process that can access the semaphore sem can use sem for performing |
sem_clockwait(), sem_destroy(), sem_post(), sem_timedwait(), sem_trywait(), and sem_wait() |
operations.

If the pshared argument is zero, then the semaphore is shared between threads of the process; any
thread in this process can use sem for performing sem_clockwait(), sem_destroy(), sem_post(), |
sem_timedwait(), sem_trywait(), and sem_wait() operations. |

See Section 2.9.9 (on page 508) for further requirements.

Attempting to initialize an already initialized semaphore results in undefined behavior.

RETURN VALUE
Upon successful completion, the sem_init() function shall initialize the semaphore in sem and
return 0. Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
The sem_init() function shall fail if:

[EINVAL] The value argument exceeds {SEM_VALUE_MAX}.

[ENOSPC] A resource required to initialize the semaphore has been exhausted, or the
limit on semaphores ({SEM_NSEMS_MAX}) has been reached.

[EPERM] The process lacks appropriate privileges to initialize the semaphore.

The sem_init() function may fail if:

[EMFILE] All file descriptors available to the process are currently open.

[ENFILE] The maximum allowable number of files is currently open in the system.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1793

58787

58788

58789

58790

58791

58792

58793

58794

58795

58796

58797

58798

58799

58800

58801

58802

58803

58804

58805

58806

58807

58808

58809

58810

58811

58812

58813

58814

58815

58816

58817

58818

58819

58820

58821

58822

58823

58824

58825

58826

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces sem_open()

NAME
sem_open — initialize and open a named semaphore

SYNOPSIS
#include <semaphore.h>

sem_t *sem_open(const char *name, int oflag, ...);

DESCRIPTION
The sem_open() function shall establish a connection between a named semaphore and a process.
A named semaphore may be implemented using a file descriptor. Following a call to sem_open()
with semaphore name name, the process may reference the semaphore associated with name |
using the address returned from the call. This semaphore can be used in subsequent calls to |
sem_clockwait(), sem_close(), sem_post(), sem_timedwait(), sem_trywait(), and sem_wait(). The |
semaphore remains usable by this process until the semaphore is closed by a successful call to
sem_close(), _exit(), or one of the exec functions.

The oflag argument controls whether the semaphore is created or merely accessed by the call to
sem_open(). The following flag bits may be set in oflag:

O_CREAT This flag is used to create a semaphore if it does not already exist. If O_CREAT is
set and the semaphore already exists, then O_CREAT has no effect, except as noted
under O_EXCL. Otherwise, sem_open() creates a named semaphore. The O_CREAT
flag requires a third and a fourth argument: mode, which is of type mode_t, and
value, which is of type unsigned. The semaphore is created with an initial value of
value. Valid initial values for semaphores are less than or equal to
{SEM_VALUE_MAX}.

The user ID of the semaphore shall be set to the effective user ID of the process.
The group ID of the semaphore shall be set to the effective group ID of the process;
however, if the name argument is visible in the file system, the group ID may be set
to the group ID of the containing directory. The permission bits of the semaphore
are set to the value of the mode argument except those set in the file mode creation
mask of the process. When bits in mode other than the file permission bits are
specified, the effect is unspecified.

After the semaphore named name has been created by sem_open() with the
O_CREAT flag, other processes can connect to the semaphore by calling
sem_open() with the same value of name.

O_EXCL If O_EXCL and O_CREAT are set, sem_open() fails if the semaphore name exists.
The check for the existence of the semaphore and the creation of the semaphore if it
does not exist are atomic with respect to other processes executing sem_open() with
O_EXCL and O_CREAT set. If O_EXCL is set and O_CREAT is not set, the effect is
undefined.

If flags other than O_CREAT and O_EXCL are specified in the oflag parameter, the
effect is unspecified.

The name argument points to a string naming a semaphore object. It is unspecified whether the
name appears in the file system and is visible to functions that take pathnames as arguments.
The name argument conforms to the construction rules for a pathname, except that the
interpretation of <slash> characters other than the leading <slash> character in name is
implementation-defined, and that the length limits for the name argument are implementation-
defined and need not be the same as the pathname limits {PATH_MAX} and {NAME_MAX}. If
name begins with the <slash> character, then processes calling sem_open() with the same value of
name shall refer to the same semaphore object, as long as that name has not been removed. If

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1795

58849

58850

58851

58852

58853

58854

58855

58856

58857

58858

58859

58860

58861

58862

58863

58864

58865

58866

58867

58868

58869

58870

58871

58872

58873

58874

58875

58876

58877

58878

58879

58880

58881

58882

58883

58884

58885

58886

58887

58888

58889

58890

58891

58892

58893

58894

58895

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces sem_timedwait()

NAME
sem_clockwait, sem_timedwait — lock a semaphore +

SYNOPSIS
#include <semaphore.h>

int sem_clockwait(sem_t *restrict sem, clockid_t clock_id, +
const struct timespec *restrict abstime); +

int sem_timedwait(sem_t *restrict sem,
const struct timespec *restrict abstime);

DESCRIPTION
The sem_clockwait() and sem_timedwait() functions shall lock the semaphore referenced by sem as |
in the sem_wait() function. However, if the semaphore cannot be locked without waiting for
another process or thread to unlock the semaphore by performing a sem_post() function, this
wait shall be terminated when the specified timeout expires.

The timeout shall expire when the absolute time specified by abstime passes, as measured by the
clock on which timeouts are based (that is, when the value of that clock equals or exceeds
abstime), or if the absolute time specified by abstime has already been passed at the time of the
call.

For sem_timedwait(), the timeout shall be based on the CLOCK_REALTIME clock. For |
sem_clockwait(), the timeout shall be based on the clock specified by the clock_id argument. The |
resolution of the timeout shall be the resolution of the clock on which it is based. |
Implementations shall support passing CLOCK_REALTIME and CLOCK_MONOTONIC to |
sem_clockwait() as the clock_id argument.

Under no circumstance shall the function fail with a timeout if the semaphore can be locked
immediately. The validity of the abstime need not be checked if the semaphore can be locked
immediately.

RETURN VALUE
The sem_clockwait() and sem_timedwait() functions shall return zero if the calling process |
successfully performed the semaphore lock operation on the semaphore designated by sem. If
the call was unsuccessful, the state of the semaphore shall be unchanged, and the functions shall |
return a value of −1 and set errno to indicate the error.

ERRORS
The sem_clockwait() and sem_timedwait() functions shall fail if: |

[EINVAL] The process or thread would have blocked, and either the abstime parameter |
specified a nanoseconds field value less than zero or greater than or equal to |
1 000 million, or the sem_clockwait() function was passed an invalid or |
unsupported clock_id value.

[ETIMEDOUT] The semaphore could not be locked before the specified timeout expired.

The sem_clockwait() and sem_timedwait() functions may fail if: |

[EDEADLK] A deadlock condition was detected.

[EINTR] A signal interrupted the function. |

[EINVAL] The sem argument does not refer to a valid semaphore.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1801

59036

59037

59038

59039

59040

59041

59042

59043

59044

59045

59046

59047

59048

59049

59050

59051

59052

59053

59054

59055

59056

59057

59058

59059

59060

59061

59062

59063

59064

59065

59066

59067

59068

59069

59070

59071

59072

59073

59074

59075

59076

Unapproved Draft, Subject to Change

Sanity
Revie

w

sem_timedwait() System Interfaces

EXAMPLES
The program shown below operates on an unnamed semaphore. The program expects two
command-line arguments. The first argument specifies a seconds value that is used to set an
alarm timer to generate a SIGALRM signal. This handler performs a sem_post() to increment the |
semaphore that is being waited on in main() using sem_clockwait(). The second command-line |
argument specifies the length of the timeout, in seconds, for sem_clockwait(). |

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <semaphore.h>
#include <time.h>
#include <assert.h>
#include <errno.h>
#include <signal.h>

sem_t sem;

static void
handler(int sig)
{

int sav_errno = errno;
static const char info_msg[] = "sem_post() from handler\n";
write(STDOUT_FILENO, info_msg, sizeof info_msg - 1);
if (sem_post(&sem) == -1) {

static const char err_msg[] = "sem_post() failed\n";
write(STDERR_FILENO, err_msg, sizeof err_msg - 1);
_exit(EXIT_FAILURE);

}
errno = sav_errno;

}

int
main(int argc, char *argv[])
{

struct sigaction sa;
struct timespec ts;
int s;

if (argc != 3) {
fprintf(stderr, "Usage: %s <alarm-secs> <wait-secs>\n",

argv[0]);
exit(EXIT_FAILURE);

}

if (sem_init(&sem, 0, 0) == -1) {
perror("sem_init");
exit(EXIT_FAILURE);

}

/* Establish SIGALRM handler; set alarm timer using argv[1] */

sa.sa_handler = handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
if (sigaction(SIGALRM, &sa, NULL) == -1) {

1802 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

59077

59078

59079

59080

59081

59082

59083

59084

59085

59086

59087

59088

59089

59090

59091

59092

59093

59094

59095

59096

59097

59098

59099

59100

59101

59102

59103

59104

59105

59106

59107

59108

59109

59110

59111

59112

59113

59114

59115

59116

59117

59118

59119

59120

59121

59122

59123

59124

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces sem_timedwait()

perror("sigaction");
exit(EXIT_FAILURE);

}

alarm(atoi(argv[1]));

/* Calculate relative interval as current time plus
number of seconds given argv[2] */

if (clock_gettime(CLOCK_MONOTONIC, &ts) == -1) { |
perror("clock_gettime");
exit(EXIT_FAILURE);

}
ts.tv_sec += atoi(argv[2]);

printf("main() about to call sem_clockwait()\n"); |
while ((s = sem_clockwait(&sem, CLOCK_MONOTONIC, &ts)) == -1 && |

errno == EINTR) |
continue; /* Restart if interrupted by handler */

/* Check what happened */

if (s == -1) {
if (errno == ETIMEDOUT)

printf("sem_clockwait() timed out\n"); |
else

perror("sem_clockwait"); |
} else

printf("sem_clockwait() succeeded\n"); |

exit((s == 0) ? EXIT_SUCCESS : EXIT_FAILURE);
}

APPLICATION USAGE
Applications using these functions may be subject to priority inversion, as discussed in XBD
Section 3.260 (on page 66).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sem_post(), sem_trywait(), semctl(), semget(), semop(), time()

XBD Section 3.260 (on page 66), <semaphore.h>, <time.h>

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

IEEE Std 1003.1-2001/Cor 2-2004, item XSH/TC2/D6/120 is applied, updating the ERRORS
section so that the [EINVAL] error becomes optional.

Issue 7
The sem_timedwait() function is moved from the Semaphores option to the Base.

Functionality relating to the Timers option is moved to the Base.

An example is added.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1803

59125

59126

59127

59128

59129

59130

59131

59132

59133

59134

59135

59136

59137

59138

59139

59140

59141

59142

59143

59144

59145

59146

59147

59148

59149

59150

59151

59152

59153

59154

59155

59156

59157

59158

59159

59160

59161

59162

59163

59164

59165

59166

59167

Unapproved Draft, Subject to Change

Sanity
Revie

w

sig2str() System Interfaces

|
|

|

NAME |
sig2str, str2sig — translate between signal names and numbers |

SYNOPSIS |
CX #include <signal.h> |

int sig2str(int signum, char *str); |
int str2sig(const char *restrict str, int *restrict pnum); |

|

DESCRIPTION |
The sig2str() function shall translate the signal number specified by signum to a signal name and |
shall store this string in the location specified by str. The application shall ensure that str points |
to a location that can store the string including the terminating null byte. The symbolic constant |
SIG2STR_MAX defined in <signal.h> gives the maximum number of bytes required. |

If signum is equal to 0, the behavior is unspecified. |

If signum is equal to one of the symbolic constants listed in the table of signal numbers in |
<signal.h>, the stored signal name shall be the name of the symbolic constant without the SIG |
prefix. |

If signum is equal to SIGRTMIN or SIGRTMAX, the stored string shall be "RTMIN" or "RTMAX", |
respectively. |

If signum is between SIGRTMIN+1 and (SIGRTMIN+SIGRTMAX)/2 inclusive, the stored string |
shall be of the form "RTMIN+n", where n is the shortest decimal representation of the value of |
signum−SIGRTMIN. |

If signum is between (SIGRTMIN+SIGRTMAX)/2 + 1 and SIGRTMAX−1 inclusive, the stored |
string shall be either of the form "RTMIN+n" or of the form "RTMAX−m", where n is the shortest |
decimal representation of the value of signum−SIGRTMIN and m is the shortest decimal |
representation of the value of SIGRTMAX−signum. |

If signum is a valid, supported signal number, is either less than SIGRTMIN or greater than |
SIGRTMAX, and is not equal to one of the symbolic constants listed in the table of signal |
numbers in <signal.h>, the stored string shall uniquely identify the signal number signum in an |
unspecified manner. |

The str2sig() function shall translate the signal name in the string pointed to by str to a signal |
number and shall store this value in the location specified by pnum. |

If str points to a string containing the name of one of the symbolic constants listed in the table of |
signal numbers in <signal.h>, without the SIG prefix, the stored signal number shall be equal to |
the value of the symbolic constant. |

If str points to the string "RTMIN" or "RTMAX", the stored value shall be equal to SIGRTMIN or |
SIGRTMAX, respectively. |

If str points to a string of the form "RTMIN+n", where n is a decimal representation of a number |
between 1 and SIGRTMAX−SIGRTMIN−1 inclusive, the stored value shall be equal to |
SIGRTMIN+n. |

If str points to a string of the form "RTMAX−n", where n is a decimal representation of a number |
between 1 and SIGRTMAX−SIGRTMIN−1 inclusive, the stored value shall be equal to |
SIGRTMAX−n. |

If str points to a string containing a decimal representation of a valid, supported signal number, |
the value stored in the location pointed to by pnum shall be equal to that number. |

1892 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

61660

61661

61662

61663

61664

61665

61666

61667

61668

61669

61670

61671

61672

61673

61674

61675

61676

61677

61678

61679

61680

61681

61682

61683

61684

61685

61686

61687

61688

61689

61690

61691

61692

61693

61694

61695

61696

61697

61698

61699

61700

61701

61702

61703

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces sig2str()

If str points to a string containing a decimal representation of the value 0 and the string was not |
returned by a previous successful call to sig2str() with a signum argument of 0, the behavior is |
unspecified. |

If str points to a string returned by a previous successful call to sig2str(signum,str), the value |
stored in the location pointed to by pnum shall be equal to signum. |

If str points to a string that does not meet any of the above criteria, str2sig() shall store a value in |
the location pointed to by pnum if and only if it recognizes the string as an additional |
implementation-dependent form of signal name. |

RETURN VALUE |
If signum is a valid, supported signal number (that is, one for which kill() does not return −1 |
with errno set to [EINVAL]), the sig2str() function shall return 0; otherwise, if signum is not equal |
to 0, it shall return −1. |

If str2sig() stores a value in the location pointed to by pnum, it shall return 0; otherwise, it shall |
return −1. |

ERRORS |
No errors are defined. |

|EXAMPLES |
None. |

APPLICATION USAGE |
None. |

RATIONALE |
Historical versions of these functions translated a signum value 0 to "EXIT" (and vice versa), so |
that they could be used by the shell for the trap utility. When adding the functions to this |
standard, the standard developers felt that they should be aimed at more general-purpose use, |
and consequently requiring this behavior did not seem appropriate and so the behavior in this |
case has been made unspecified. |

FUTURE DIRECTIONS |
None. |

SEE ALSO |
kill(), sigaction(), strsignal() |

XBD <signal.h> |

CHANGE HISTORY |
First released in Issue 8. |

|

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1893

61704

61705

61706

61707

61708

61709

61710

61711

61712

61713

61714

61715

61716

61717

61718

61719

61720

61721

61722

61723

61724

61725

61726

61727

61728

61729

61730

61731

61732

61733

61734

61735

61736

61737

Unapproved Draft, Subject to Change

Sanity
Revie

w

str2sig() System Interfaces

|
|

NAME |
str2sig — translate between signal names and numbers |

SYNOPSIS |
CX #include <signal.h> |

int str2sig(const char *restrict str, int *restrict pnum); |
|

DESCRIPTION |
Refer to sig2str(). |

1962 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

63653

63654

63655

63656

63657

63658

63659

Unapproved Draft, Subject to Change

Sanity
Revie

w

strlcat() System Interfaces

|
|

|

NAME |
strlcat, strlcpy — size-bounded string concatenation and copying |

SYNOPSIS |
CX #include <string.h> |

size_t strlcat(char *restrict dst, const char *restrict src, |
size_t dstsize); |

size_t strlcpy(char *restrict dst, const char *restrict src, |
size_t dstsize); |

|

DESCRIPTION |
The strlcpy() and strlcat() functions copy and concatenate strings, stopping when either a NUL |
terminator in the source string is encountered or the specified full size of the destination buffer is |
reached. They NUL terminate the result if there is room. The application should ensure that |
room for the NUL terminator is included in dstsize. |

The strlcpy() function shall copy not more than dstsize − 1 bytes from the string pointed to by src |
to the array pointed to by dst; a NUL byte in src and bytes that follow it shall not be copied. A |
terminating NUL byte shall be appended to the result, unless dstsize is 0. If copying takes place |
between objects that overlap, the behavior is undefined. |

The strlcat() function shall append not more than dstsize − strlen(dst) − 1 bytes from the string |
pointed to by src to the end of the string pointed to by dst; a NUL byte in src and bytes that |
follow it shall not be appended. The initial byte of src shall overwrite the NUL byte at the end of |
dst. A terminating NUL byte shall be appended to the result, unless its location would be at or |
beyond dst + dstsize. If copying takes place between objects that overlap, the behavior is |
undefined. |

The strlcpy() and strlcat() functions shall not change the setting of errno on valid input. |

RETURN VALUE |
Upon successful completion, the strlcpy() function shall return the length of the string pointed to |
by src; that is, the number of bytes in the string, not including the terminating NUL byte. |

Upon successful completion, the strlcat() function shall return the initial length of the string |
pointed to by dst plus the length of the string pointed to by src. |

No return values are reserved to indicate an error. |

ERRORS |
No errors are defined. |

|EXAMPLES |
The following example detects truncation while combining a path prefix (including trailing |
<slash>) and a filename to produce a portable pathname: |

char *prefix, *filenam, pathnam[_POSIX_PATH_MAX]; |

if (strlcpy(pathnam, prefix, sizeof pathnam) >= sizeof pathnam || |
strlcat(pathnam, filenam, sizeof pathnam) >= sizeof pathnam) |

{ |
// truncation occurred |
... |

} |

This code ensures there is room for the NUL terminator by: |

1996 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

64871

64872

64873

64874

64875

64876

64877

64878

64879

64880

64881

64882

64883

64884

64885

64886

64887

64888

64889

64890

64891

64892

64893

64894

64895

64896

64897

64898

64899

64900

64901

64902

64903

64904

64905

64906

64907

64908

64909

64910

64911

64912

64913

64914

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces strlcat()

• Calling strlcpy() with a non-zero dstsize argument. |

• Only calling strlcat() if the return value of strlcpy() indicated that truncation did not occur. |

APPLICATION USAGE |
The return value of the strlcpy() and strlcat() functions follows the same convention as |
snprintf(); that is, they return the total length of the string they tried to create. If the return value |
is greater than or equal to dstsize, the output string has been truncated. |

RATIONALE |
None. |

FUTURE DIRECTIONS |
None. |

SEE ALSO |
fprintf(), strlen(), strncat(), strncpy(), wcslcat() |

XBD <string.h> |

CHANGE HISTORY |
First released in Issue 8. |

|

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 1997

64915

64916

64917

64918

64919

64920

64921

64922

64923

64924

64925

64926

64927

64928

64929

64930

Unapproved Draft, Subject to Change

Sanity
Revie

w

System Interfaces wcslcat()

|
|

|

NAME |
wcslcat, wcslcpy — size-bounded wide string concatenation and copying |

SYNOPSIS |
CX #include <wchar.h> |

size_t wcslcat(wchar_t *restrict dst, const wchar_t *restrict src, |
size_t dstsize); |

size_t wcslcpy(wchar_t *restrict dst, const wchar_t *restrict src, |
size_t dstsize); |

|

DESCRIPTION |
The wcslcpy() and wcslcat() functions copy and concatenate wide strings, stopping when either a |
terminating null wide-character code in the source wide string is encountered or the specified |
full size (in wide-character codes) of the destination buffer is reached. They null terminate the |
result if there is room. The application should ensure that room for the terminating null wide- |
character code is included in dstsize. |

The wcslcpy() function shall copy not more than dstsize − 1 wide-character codes from the wide |
string pointed to by src to the array pointed to by dst; a terminating null wide-character code in |
src and wide-character codes that follow it shall not be copied. A terminating null wide- |
character code shall be appended to the result, unless dstsize is 0. If copying takes place between |
objects that overlap, the behavior is undefined. |

The wcslcat() function shall append not more than dstsize − wcslen(dst) − 1 wide-character codes |
from the wide string pointed to by src to the end of the wide string pointed to by dst; a |
terminating null wide-character code in src and wide-character codes that follow it shall not be |
appended. The initial wide-character code of src shall overwrite the null wide-character code at |
the end of dst. A terminating null wide-character code shall be appended to the result, unless its |
location would be at or beyond dst + dstsize. If copying takes place between objects that overlap, |
the behavior is undefined. |

The wcslcpy() and wcslcat() functions shall not change the setting of errno on valid input. |

RETURN VALUE |
Upon successful completion, the wcslcpy() function shall return the length of the wide string |
pointed to by src; that is, the number of wide-character codes in the wide string, not including |
the terminating null wide-character code. |

Upon successful completion, the wcslcat() function shall return the initial length of the wide |
string pointed to by dst plus the length of the wide string pointed to by src. |

No return values are reserved to indicate an error. |

ERRORS |
No errors are defined. |

|EXAMPLES |
None. |

APPLICATION USAGE |
The return value of the wcslcpy() and wcslcat() functions follows the same convention as |
snprintf(); that is, they return the total length (in wide-character codes) of the wide string they |
tried to create. If the return value is greater than or equal to dstsize, the output wide string has |
been truncated. |

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 2207

71081

71082

71083

71084

71085

71086

71087

71088

71089

71090

71091

71092

71093

71094

71095

71096

71097

71098

71099

71100

71101

71102

71103

71104

71105

71106

71107

71108

71109

71110

71111

71112

71113

71114

71115

71116

71117

71118

71119

71120

71121

71122

71123

71124

Unapproved Draft, Subject to Change

Sanity
Revie

w

wcslcat() System Interfaces

RATIONALE |
None. |

FUTURE DIRECTIONS |
None. |

SEE ALSO |
fprintf(), strlcat(), wcslen(), wcsncat(), wcsncpy() |

XBD <wchar.h> |

CHANGE HISTORY |
First released in Issue 8. |

|

2208 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

71125

71126

71127

71128

71129

71130

71131

71132

71133

71134

Unapproved Draft, Subject to Change

Sanity
Revie

w

General Information Rationale for System Interfaces

POSIX.1b is a software, source-level standard and most of the benefits of the alternate
representation are enjoyed by hardware implementations of clocks and algorithms. It was
felt that mandating this format for POSIX.1b clocks and timers would unnecessarily
burden the application developer with writing, possibly non-portable, multiple precision
arithmetic packages to perform conversion between binary fractions and integral units
such as nanoseconds, milliseconds, and so on.

Rationale for the Monotonic Clock

For those applications that use time services to achieve realtime behavior, changing the value of
the clock on which these services rely may cause erroneous timing behavior. For these
applications, it is necessary to have a monotonic clock which cannot run backwards, and which
has a maximum clock jump that is required to be documented by the implementation.
Additionally, it is desirable (but not required by POSIX.1-202x) that the monotonic clock
increases its value uniformly. This clock should not be affected by changes to the system time;
for example, to synchronize the clock with an external source or to account for leap seconds.
Such changes would cause errors in the measurement of time intervals for those time services
that use the absolute value of the clock.

One could argue that by defining the behavior of time services when the value of a clock is
changed, deterministic realtime behavior can be achieved. For example, one could specify that
relative time services should be unaffected by changes in the value of a clock. However, there are
time services that are based upon an absolute time, but that are essentially intended as relative
time services. For example, pthread_cond_timedwait() uses an absolute time to allow it to wake
up after the required interval despite spurious wakeups. Although sometimes the
pthread_cond_timedwait() timeouts are absolute in nature, there are many occasions in which they
are relative, and their absolute value is determined from the current time plus a relative time
interval. In this latter case, if the clock changes while the thread is waiting, the wait interval will
not be the expected length. If a pthread_cond_timedwait() function were created that would take a
relative time, it would not solve the problem because to retain the intended ``deadline’’ a thread
would need to compensate for latency due to the spurious wakeup, and preemption between
wakeup and the next wait.

The solution is to create a new monotonic clock, whose value does not change except for the
regular ticking of the clock, and use this clock for implementing the various relative timeouts
that appear in the different POSIX interfaces, as well as allow pthread_cond_timedwait() to choose
this new clock for its timeout. A new clock_nanosleep() function is created to allow an application
to take advantage of this newly defined clock. Notice that the monotonic clock may be
implemented using the same hardware clock as the system clock.

Relative timeouts for sigtimedwait() and aio_suspend() have been redefined to use the monotonic
clock, if present. The alarm() function has not been redefined, because the same effect but with
better resolution can be achieved by creating a timer (for which the appropriate clock may be
chosen).

The pthread_cond_timedwait() function has been treated in a different way, compared to other
functions with absolute timeouts, because it is used to wait for an event, and thus it may have a
deadline, while the other timeouts are generally used as an error recovery mechanism, and for
them the use of the monotonic clock is not so important. Since the desired timeout for the
pthread_cond_timedwait() function may either be a relative interval or an absolute time of day
deadline, a new initialization attribute has been created for condition variables to specify the
clock that is used for measuring the timeout in a call to pthread_cond_timedwait(). In this way, if
a relative timeout is desired, the monotonic clock will be used; if an absolute deadline is
required instead, the CLOCK_REALTIME or another appropriate clock may be used. For |
condition variables, this capability is also available by passing CLOCK_MONOTONIC to the |

3526 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

121068

121069

121070

121071

121072

121073

121074

121075

121076

121077

121078

121079

121080

121081

121082

121083

121084

121085

121086

121087

121088

121089

121090

121091

121092

121093

121094

121095

121096

121097

121098

121099

121100

121101

121102

121103

121104

121105

121106

121107

121108

121109

121110

121111

121112

121113

121114

121115

121116

Unapproved Draft, Subject to Change

Sanity
Revie

w

Rationale for System Interfaces General Information

pthread_cond_clockwait() function. Similarly, CLOCK_MONOTONIC can be specified when |
calling pthread_mutex_clocklock(), pthread_rwlock_clockrdlock(), pthread_rwlock_clockwrlock(), and |
sem_clockwait(). |

It was later found necessary to add variants of almost all interfaces that accept absolute timeouts |
that allow the clock to be specified. This is because, despite the claim in the previous paragraph, |
it is not possible to safely use a CLOCK_REALTIME absolute timeout even to prevent errors |
when the system clock is warped by a potentially large amount. A ``safety timeout’’ of a minute |
on a call to pthread_mutex_timedlock() could actually mean that the call would return |
ETIMEDOUT early without acquiring the lock if the system clock is warped forwards |
immediately prior to or during the call. On the other hand, a short timeout could end up being |
arbitrarily long if the system clock is warped backwards immediately prior to or during the call. |
These problems are solved by the new clockwait and clocklock variants of the existing timedwait |
and timedlock functions. These variants accept an extra clockid_t parameter to indicate the clock |
to be used for the wait. The clock ID is passed rather than using attributes as previously for |
pthread_cond_timedwait() in order to allow the ISO/IEC 14882: 2011 standard (C++11) and later to |
be implemented correctly. C++ requires that the clock to use for the wait is not known until the |
time of the wait call, so it cannot be supplied during creation. The new functions are |
pthread_cond_clockwait(), pthread_mutex_clocklock(), pthread_mutex_clockrdlock(), |
pthread_mutex_clockwrlock(), and sem_clockwait(). It is expected that mq_clockreceive() and |
mq_clocksend() functions will be added in a future version of this standard.

The nanosleep() function has not been modified with the introduction of the monotonic clock.
Instead, a new clock_nanosleep() function has been created, in which the desired clock may be
specified in the function call.

• History of Resolution Issues

Due to the shift from relative to absolute timeouts in IEEE Std 1003.1d-1999, the
amendments to the sem_timedwait(), pthread_mutex_timedlock(), mq_timedreceive(), and
mq_timedsend() functions of that standard have been removed. Those amendments
specified that CLOCK_MONOTONIC would be used for the (relative) timeouts if the
Monotonic Clock option was supported.

Having these functions continue to be tied solely to CLOCK_MONOTONIC would not
work. Since the absolute value of a time value obtained from CLOCK_MONOTONIC is
unspecified, under the absolute timeouts interface, applications would behave differently
depending on whether the Monotonic Clock option was supported or not (because the
absolute value of the clock would have different meanings in either case).

Two options were considered:

1. Leave the current behavior unchanged, which specifies the CLOCK_REALTIME
clock for these (absolute) timeouts, to allow portability of applications between
implementations supporting or not the Monotonic Clock option.

2. Modify these functions in the way that pthread_cond_timedwait() was modified to
allow a choice of clock, so that an application could use CLOCK_REALTIME when
it is trying to achieve an absolute timeout and CLOCK_MONOTONIC when it is
trying to achieve a relative timeout.

It was decided that the features of CLOCK_MONOTONIC are not as critical to these
functions as they are to pthread_cond_timedwait(). The pthread_cond_timedwait() function is
given a relative timeout; the timeout may represent a deadline for an event. When these
functions are given relative timeouts, the timeouts are typically for error recovery
purposes and need not be so precise.

Therefore, it was decided that these functions should be tied to CLOCK_REALTIME and

Part B: System Interfaces Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 3527

121117

121118

121119

121120

121121

121122

121123

121124

121125

121126

121127

121128

121129

121130

121131

121132

121133

121134

121135

121136

121137

121138

121139

121140

121141

121142

121143

121144

121145

121146

121147

121148

121149

121150

121151

121152

121153

121154

121155

121156

121157

121158

121159

121160

121161

121162

121163

121164

Unapproved Draft, Subject to Change

Sanity
Revie

w

General Information Rationale for System Interfaces

Supported Threads Functions

On POSIX-conforming systems, the following symbolic constants are always conforming:

_POSIX_READER_WRITER_LOCKS
_POSIX_THREADS

Therefore, the following threads functions are always supported:

pthread_atfork()
pthread_attr_destroy()
pthread_attr_getdetachstate()
pthread_attr_getguardsize()
pthread_attr_getschedparam()
pthread_attr_init()
pthread_attr_setdetachstate()
pthread_attr_setguardsize()
pthread_attr_setschedparam()
pthread_cancel()
pthread_cleanup_pop()
pthread_cleanup_push()
pthread_cond_broadcast()
pthread_cond_clockwait()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_condattr_destroy()
pthread_condattr_getpshared()
pthread_condattr_init()
pthread_condattr_setpshared()
pthread_create()
pthread_detach()
pthread_equal()
pthread_exit()
pthread_getspecific()
pthread_join()
pthread_key_create()
pthread_key_delete()

pthread_kill()
pthread_mutex_destroy()
pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_unlock()
pthread_mutexattr_destroy()
pthread_mutexattr_getpshared()
pthread_mutexattr_gettype()
pthread_mutexattr_init()
pthread_mutexattr_setpshared()
pthread_mutexattr_settype()
pthread_once()
pthread_rwlock_destroy()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_tryrdlock()
pthread_rwlock_trywrlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
pthread_rwlockattr_destroy()
pthread_rwlockattr_getpshared()
pthread_rwlockattr_init()
pthread_rwlockattr_setpshared()
pthread_self()
pthread_setcancelstate()
pthread_setcanceltype()
pthread_setspecific()
pthread_sigmask()
pthread_testcancel()
sigwait()

3546 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

122004

122005

122006

122007

122008

122009

122010

122011

122012

122013

122014

122015

122016

122017

122018

122019

122020

122021

122022

122023

122024

122025

122026

122027

122028

122029

122030

122031

122032

122033

122034

122035

122036

122037

122038

122039

Unapproved Draft, Subject to Change

Sanity
Revie

w

General Information Rationale for System Interfaces

pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_unlock()

to take account of the new mutex attribute type and to specify behavior which was
declared as undefined in POSIX.1c. How a calling thread acquires or releases a mutex now
depends upon the mutex type attribute.

The type attribute can have the following values:

PTHREAD_MUTEX_NORMAL
Basic mutex with no specific error checking built in. Does not report a deadlock error.

PTHREAD_MUTEX_RECURSIVE
Allows any thread to recursively lock a mutex. The mutex must be unlocked an equal
number of times to release the mutex.

PTHREAD_MUTEX_ERRORCHECK
Detects and reports simple usage errors; that is, an attempt to unlock a mutex that is
not locked by the calling thread or that is not locked at all, or an attempt to relock a
mutex the thread already owns.

PTHREAD_MUTEX_DEFAULT
The default mutex type. May be mapped to any of the above mutex types or may be
an implementation-defined type.

Normal mutexes do not detect deadlock conditions; for example, a thread will hang if it
tries to relock a normal mutex that it already owns. Attempting to unlock a mutex locked
by another thread, or unlocking an unlocked mutex, results in undefined behavior. Normal
mutexes will usually be the fastest type of mutex available on a platform but provide the
least error checking.

Recursive mutexes are useful for converting old code where it is difficult to establish clear
boundaries of synchronization. A thread can relock a recursive mutex without first
unlocking it. The relocking deadlock which can occur with normal mutexes cannot occur
with this type of mutex. However, multiple locks of a recursive mutex require the same
number of unlocks to release the mutex before another thread can acquire the mutex.
Furthermore, this type of mutex maintains the concept of an owner. Thus, a thread
attempting to unlock a recursive mutex which another thread has locked returns with an
error. A thread attempting to unlock a recursive mutex that is not locked returns with an
error. Never use a recursive mutex with condition variables because the implicit unlock
performed by pthread_cond_clockwait(), pthread_cond_timedwait(), or pthread_cond_wait() -
will not actually release the mutex if it had been locked multiple times.

Errorcheck mutexes provide error checking and are useful primarily as a debugging aid. A
thread attempting to relock an errorcheck mutex without first unlocking it returns with an
error. Again, this type of mutex maintains the concept of an owner. Thus, a thread
attempting to unlock an errorcheck mutex which another thread has locked returns with
an error. A thread attempting to unlock an errorcheck mutex that is not locked also returns
with an error. It should be noted that errorcheck mutexes will almost always be much
slower than normal mutexes due to the extra state checks performed.

The default mutex type provides implementation-defined error checking. The default
mutex may be mapped to one of the other defined types or may be something entirely
different. This enables each vendor to provide the mutex semantics which the vendor feels
will be most useful to their target users. Most vendors will probably choose to make
normal mutexes the default so as to give applications the benefit of the fastest type of

3548 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Part B: System Interfaces

122084

122085

122086

122087

122088

122089

122090

122091

122092

122093

122094

122095

122096

122097

122098

122099

122100

122101

122102

122103

122104

122105

122106

122107

122108

122109

122110

122111

122112

122113

122114

122115

122116

122117

122118

122119

122120

122121

122122

122123

122124

122125

122126

122127

122128

122129

122130

Unapproved Draft, Subject to Change

Sanity
Revie

w

Portability Capabilities Portability Considerations (Informative)

Unsatisfied Requirements

Detailed control of common device classes, specifically magnetic tape, is not provided.

D.2.5 Bounded (Realtime) Response

The realtime signal functions sigqueue(), sigtimedwait(), and sigwaitinfo() provide queued signals
and the prioritization of the handling of signals.

The SCHED_FIFO, SCHED_SPORADIC, and SCHED_RR scheduling policies provide control
over processor allocation.

The semaphore functions sem_clockwait(), sem_close(), sem_destroy(), sem_getvalue(), sem_init(), +
sem_open(), sem_post(), sem_timedwait(), sem_trywait(), sem_unlink(), and sem_wait() provide
high-performance synchronization.

The memory management functions provide memory locking for control of memory allocation,
file mapping for high performance, and shared memory for high-performance interprocess
communication. The Message Passing option provides for interprocess communication without
being dependent on shared memory.

The timers functions clock_getres(), clock_gettime(), clock_settime(), nanosleep(), timer_create(),
timer_delete(), timer_getoverrun(), timer_gettime(), and timer_settime() provide functionality to
manipulate clocks and timers and include a high resolution function called nanosleep() with a
finer resolution than the sleep() function.

The timeout functions — pthread_mutex_clocklock(), pthread_mutex_timedlock(), +
pthread_rwlock_clockrdlock(), pthread_rwlock_clockwrlock(), pthread_rwlock_timedrdlock(),
pthread_rwlock_timedwrlock(), sem_clockwait(), and sem_timedwait() — the Typed Memory +
Objects option and the Monotonic Clock option provide further facilities for applications to use
to obtain predictable bounded response.

D.2.6 Operating System-Dependent Profile

POSIX.1-202x makes no distinction between text and binary files. The values of EXIT_SUCCESS
and EXIT_FAILURE are further defined.

Unsatisfied Requirements

None known, but the ISO C standard may contain some additional options that could be
specified.

D.2.7 I/O Interaction

POSIX.1-202x defines how each of the ISO C standard stdio functions interact with the POSIX.1
operations, typically specifying the behavior in terms of POSIX.1 operations.

3652 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Part D: Portability Considerations

126192

126193

126194

126195

126196

126197

126198

126199

126200

126201

126202

126203

126204

126205

126206

126207

126208

126209

126210

126211

126212

126213

126214

126215

126216

126217

126218

126219

126220

126221

126222

126223

Unapproved Draft, Subject to Change

Sanity
Revie

w

Subprofiling Option Groups Subprofiling Considerations (Informative)

rintl(), round(), roundf(), roundl(), scalbln(), scalblnf(), scalblnl(), scalbn(), scalbnf(),
scalbnl(), signbit(), sin(), sinf(), sinh(), sinhf(), sinhl(), sinl(), sqrt(), sqrtf(), sqrtl(), tan(),
tanf(), tanh(), tanhf(), tanhl(), tanl(), tgamma(), tgammaf(), tgammal(), trunc(), truncf(),
truncl()

POSIX_C_LANG_SUPPORT: General ISO C Library
abs(), asctime(), atof(), atoi(), atol(), atoll(), bsearch(), calloc(), ctime(), difftime(), div(),
feclearexcept(), fegetenv(), fegetexceptflag(), fegetround(), feholdexcept(), feraiseexcept(),
fesetenv(), fesetexceptflag(), fesetround(), fetestexcept(), feupdateenv(), free(), gmtime(),
imaxabs(), imaxdiv(), isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(),
isprint(), ispunct(), isspace(), isupper(), isxdigit(), labs(), ldiv(), llabs(), lldiv(), localeconv(),
localtime(), malloc(), memchr(), memcmp(), memcpy(), memmove(), memset(), mktime(),
qsort(), rand(), realloc(), setlocale(), snprintf(), sprintf(), srand(), sscanf(), strcat(), strchr(),
strcmp(), strcoll(), strcpy(), strcspn(), strerror(), strftime(), strlen(), strncat(), strncmp(),
strncpy(), strpbrk(), strrchr(), strspn(), strstr(), strtod(), strtof(), strtoimax(), strtok(), strtol(),
strtold(), strtoll(), strtoul(), strtoull(), strtoumax(), strxfrm(), time(), tolower(), toupper(),
tzname, tzset(), va_arg(), va_copy(), va_end(), va_start(), vsnprintf(), vsprintf(), vsscanf()

POSIX_C_LANG_SUPPORT_R: Thread-Safe General ISO C Library
asctime_r(), ctime_r(), gmtime_r(), localtime_r(), qsort_r(), strerror_r(), strtok_r() +

POSIX_C_LANG_WIDE_CHAR: Wide-Character ISO C Library
btowc(), iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswctype(), iswdigit(), iswgraph(),
iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit(), mblen(), mbrlen(),
mbrtowc(), mbsinit(), mbsrtowcs(), mbstowcs(), mbtowc(), swprintf(), swscanf(), towctrans(),
towlower(), towupper(), vswprintf(), vswscanf(), wcrtomb(), wcscat(), wcschr(), wcscmp(),
wcscoll(), wcscpy(), wcscspn(), wcsftime(), wcslen(), wcsncat(), wcsncmp(), wcsncpy(),
wcspbrk(), wcsrchr(), wcsrtombs(), wcsspn(), wcsstr(), wcstod(), wcstof(), wcstoimax(),
wcstok(), wcstol(), wcstold(), wcstoll(), wcstombs(), wcstoul(), wcstoull(), wcstoumax(),
wcsxfrm(), wctob(), wctomb(), wctrans(), wctype(), wmemchr(), wmemcmp(), wmemcpy(),
wmemmove(), wmemset()

POSIX_C_LANG_WIDE_CHAR_EXT: Extended Wide-Character ISO C Library
mbsnrtowcs(), wcpcpy(), wcpncpy(), wcscasecmp(), wcsdup(), wcslcat(), wcslcpy(), +
wcsncasecmp(), wcsnlen(), wcsnrtombs()

POSIX_C_LIB_EXT: General C Library Extension
fnmatch(), getentropy(), getopt(), getsubopt(), memmem(), optarg, opterr, optind, optopt, +
reallocarray(), stpcpy(), stpncpy(), strcasecmp(), strdup(), strfmon(), strlcat(), strlcpy(), +
strncasecmp(), strndup(), strnlen()

POSIX_CLOCK_SELECTION: Clock Selection
clock_nanosleep(), pthread_condattr_getclock(), pthread_condattr_setclock()

POSIX_DEVICE_IO: Device Input and Output
FD_CLR(), FD_ISSET(), FD_SET(), FD_ZERO(), clearerr(), close(), fclose(), fdopen(), feof(),
ferror(), fflush(), fgetc(), fgets(), fileno(), fopen(), fprintf(), fputc(), fputs(), fread(), freopen(),
fscanf(), fwrite(), getc(), getchar(), open(), perror(), poll(), ppoll(), printf(), pread(), pselect(), +
putc(), putchar(), puts(), pwrite(), read(), scanf(), select(), setbuf(), setvbuf(), stderr, stdin,
stdout, ungetc(), vfprintf(), vfscanf(), vprintf(), vscanf(), write()

POSIX_DEVICE_IO_EXT: Extended Device Input and Output
dprintf(), fmemopen(), open_memstream(), vdprintf()

POSIX_DEVICE_SPECIFIC: General Terminal
cfgetispeed(), cfgetospeed(), cfsetispeed(), cfsetospeed(), ctermid(), isatty(), tcdrain(), tcflow(),
tcflush(), tcgetattr(), tcgetwinsize(), tcsendbreak(), tcsetattr(), tcsetwinsize(), ttyname()

3670 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Part E: Subprofiling Considerations

126793

126794

126795

126796

126797

126798

126799

126800

126801

126802

126803

126804

126805

126806

126807

126808

126809

126810

126811

126812

126813

126814

126815

126816

126817

126818

126819

126820

126821

126822

126823

126824

126825

126826

126827

126828

126829

126830

126831

126832

126833

126834

126835

126836

126837

126838

126839

126840

Unapproved Draft, Subject to Change

Sanity
Revie

w

Subprofiling Considerations (Informative) Subprofiling Option Groups

POSIX_DEVICE_SPECIFIC_R: Thread-Safe General Terminal
ttyname_r()

POSIX_DYNAMIC_LINKING: Dynamic Linking
dladdr(), dlclose(), dlerror(), dlopen(), dlsym() +

POSIX_FD_MGMT: File Descriptor Management
dup(), dup2(), dup3(), fcntl(), fgetpos(), fseek(), fseeko(), fsetpos(), ftell(), ftello(), ftruncate(),
lseek(), rewind()

POSIX_FIFO: FIFO
mkfifo()

POSIX_FIFO_FD: FIFO File Descriptor Routines
mkfifoat(), mknodat()

POSIX_FILE_ATTRIBUTES: File Attributes
chmod(), chown(), fchmod(), fchown(), umask()

POSIX_FILE_ATTRIBUTES_FD: File Attributes File Descriptor Routines
fchmodat(), fchownat()

POSIX_FILE_LOCKING: Thread-Safe Stdio Locking
flockfile(), ftrylockfile(), funlockfile(), getc_unlocked(), getchar_unlocked(), putc_unlocked(),
putchar_unlocked()

POSIX_FILE_SYSTEM: File System
access(), chdir(), closedir(), creat(), fchdir(), fpathconf(), fstat(), fstatvfs(), getcwd(), link(),
mkdir(), mkostemp(), mkstemp(), opendir(), pathconf(), posix_getdents(), readdir(), remove(), +
rename(), rewinddir(), rmdir(), stat(), statvfs(), tmpfile(), tmpnam(), truncate(), unlink()

POSIX_FILE_SYSTEM_EXT: File System Extensions
alphasort(), dirfd(), getdelim(), getline(), mkdtemp(), scandir()

POSIX_FILE_SYSTEM_FD: File System File Descriptor Routines
faccessat(), fdopendir(), fstatat(), linkat(), mkdirat(), openat(), renameat(), unlinkat(),
utimensat()

POSIX_FILE_SYSTEM_GLOB: File System Glob Expansion
glob(), globfree()

POSIX_FILE_SYSTEM_R: Thread-Safe File System
readdir_r()

POSIX_I18N: Internationalization
catclose(), catgets(), catopen(), iconv(), iconv_close(), iconv_open(), nl_langinfo()

POSIX_JOB_CONTROL: Job Control
setpgid(), tcgetpgrp(), tcsetpgrp(), tcgetsid()

POSIX_MAPPED_FILES: Memory Mapped Files
mmap(), munmap()

POSIX_MEMORY_PROTECTION: Memory Protection
mprotect()

POSIX_MULTI_CONCURRENT_LOCALES: Multiple Concurrent Locales
duplocale(), freelocale(), getlocalename_l(), isalnum_l(), isalpha_l(), isblank_l(), iscntrl_l(), +
isdigit_l(), isgraph_l(), islower_l(), isprint_l(), ispunct_l(), isspace_l(), isupper_l(),
iswalnum_l(), iswalpha_l(), iswblank_l(), iswcntrl_l(), iswctype_l(), iswdigit_l(), iswgraph_l(),
iswlower_l(), iswprint_l(), iswpunct_l(), iswspace_l(), iswupper_l(), iswxdigit_l(), isxdigit_l(),

Part E: Subprofiling Considerations Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 3671

126841

126842

126843

126844

126845

126846

126847

126848

126849

126850

126851

126852

126853

126854

126855

126856

126857

126858

126859

126860

126861

126862

126863

126864

126865

126866

126867

126868

126869

126870

126871

126872

126873

126874

126875

126876

126877

126878

126879

126880

126881

126882

126883

126884

Unapproved Draft, Subject to Change

Sanity
Revie

w

Subprofiling Option Groups Subprofiling Considerations (Informative)

newlocale(), strcasecmp_l(), strcoll_l(), strfmon_l(), strncasecmp_l(), strxfrm_l(), tolower_l(),
toupper_l(), towctrans_l(), towlower(), towupper(), uselocale(), wcscasecmp_l(), wcscoll_l(),
wcsncasecmp_l(), wcsxfrm_l(), wctrans_l(), wctype_l()

POSIX_MULTI_PROCESS: Multiple Processes
_Exit(), _exit(), assert(), atexit(), clock(), execl(), execle(), execlp(), execv(), execve(), execvp(),
exit(), fork(), getpgrp(), getpgid(), getpid(), getppid(), getsid(), setsid(), sleep(), times(), wait(),
waitid(), waitpid()

POSIX_MULTI_PROCESS_FD: Multiple Processes File Descriptor Routines
fexecve()

POSIX_NETWORKING: Networking
accept(), accept4(), bind(), connect(), endhostent(), endnetent(), endprotoent(), endservent(),
freeaddrinfo(), gai_strerror(), getaddrinfo(), gethostent(), gethostname(), getnameinfo(),
getnetbyaddr(), getnetbyname(), getnetent(), getpeername(), getprotobyname(),
getprotobynumber(), getprotoent(), getservbyname(), getservbyport(), getservent(),
getsockname(), getsockopt(), htonl(), htons(), if_freenameindex(), if_indextoname(),
if_nameindex(), if_nametoindex(), inet_addr(), inet_ntoa(), inet_ntop(), inet_pton(), listen(),
ntohl(), ntohs(), recv(), recvfrom(), recvmsg(), send(), sendmsg(), sendto(), sethostent(),
setnetent(), setprotoent(), setservent(), setsockopt(), shutdown(), socket(), sockatmark(),
socketpair()

POSIX_PIPE: Pipe
pipe(), pipe2()

POSIX_ROBUST_MUTEXES: Robust Mutexes
pthread_mutex_consistent(), pthread_mutexattr_getrobust(), pthread_mutexattr_setrobust()

POSIX_REALTIME_SIGNALS: Realtime Signals
sigqueue(), sigtimedwait(), sigwaitinfo()

POSIX_REGEXP: Regular Expressions
regcomp(), regerror(), regexec(), regfree()

POSIX_RW_LOCKS: Reader Writer Locks
pthread_rwlock_clockrdlock(), pthread_rwlock_clockwrlock(), pthread_rwlock_destroy(), +
pthread_rwlock_init(), pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(),
pthread_rwlock_timedwrlock(), pthread_rwlock_tryrdlock(), pthread_rwlock_trywrlock(),
pthread_rwlock_unlock(), pthread_rwlock_wrlock(), pthread_rwlockattr_destroy(),
pthread_rwlockattr_init(), pthread_rwlockattr_getpshared(), pthread_rwlockattr_setpshared()

POSIX_SEMAPHORES: Semaphores
sem_clockwait(), sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(), +
sem_post(), sem_timedwait(), sem_trywait(), sem_unlink(), sem_wait()

POSIX_SHELL_FUNC: Shell and Utilities
pclose(), popen(), system(), wordexp(), wordfree()

POSIX_SIGNAL_JUMP: Signal Jump Functions
siglongjmp(), sigsetjmp()

POSIX_SIGNALS: Signals
abort(), alarm(), kill(), pause(), raise(), sigaction(), sigaddset(), sigdelset(), sigemptyset(),
sigfillset(), sigismember(), signal(), sigpending(), sigprocmask(), sigsuspend(), sigwait()

POSIX_SIGNALS_EXT: Extended Signals
psignal(), psiginfo(), sig2str(), str2sig(), strsignal() +

3672 Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. Part E: Subprofiling Considerations

126885

126886

126887

126888

126889

126890

126891

126892

126893

126894

126895

126896

126897

126898

126899

126900

126901

126902

126903

126904

126905

126906

126907

126908

126909

126910

126911

126912

126913

126914

126915

126916

126917

126918

126919

126920

126921

126922

126923

126924

126925

126926

126927

126928

126929

Unapproved Draft, Subject to Change

Sanity
Revie

w

Subprofiling Considerations (Informative) Subprofiling Option Groups

POSIX_SINGLE_PROCESS: Single Process
confstr(), environ, errno, getenv(), setenv(), sysconf(), uname(), unsetenv()

POSIX_SPIN_LOCKS: Spin Locks
pthread_spin_destroy(), pthread_spin_init(), pthread_spin_lock(), pthread_spin_trylock(),
pthread_spin_unlock()

POSIX_SYMBOLIC_LINKS: Symbolic Links
lchown(),11 lstat(), readlink(), symlink()

POSIX_SYMBOLIC_LINKS_FD: Symbolic Links File Descriptor Routines
readlinkat(), symlinkat()

POSIX_SYSTEM_DATABASE: System Database
getgrgid(), getgrnam(), getpwnam(), getpwuid()

POSIX_SYSTEM_DATABASE_R: Thread-Safe System Database
getgrgid_r(), getgrnam_r(), getpwnam_r(), getpwuid_r()

POSIX_THREADS_BASE: Base Threads
pthread_atfork(), pthread_attr_destroy(), pthread_attr_getdetachstate(),
pthread_attr_getschedparam(), pthread_attr_init(), pthread_attr_setdetachstate(),
pthread_attr_setschedparam(), pthread_cancel(), pthread_cleanup_pop(), pthread_cleanup_push(),
pthread_cond_broadcast(), pthread_cond_clockwait(), pthread_cond_destroy(), +
pthread_cond_init(), pthread_cond_signal(), pthread_cond_timedwait(), pthread_cond_wait(),
pthread_condattr_destroy(), pthread_condattr_init(), pthread_create(), pthread_detach(),
pthread_equal(), pthread_exit(), pthread_getspecific(), pthread_join(), pthread_key_create(),
pthread_key_delete(), pthread_kill(), pthread_mutex_clocklock(), pthread_mutex_destroy(), +
pthread_mutex_init(), pthread_mutex_lock(), pthread_mutex_timedlock(),
pthread_mutex_trylock(), pthread_mutex_unlock(), pthread_mutexattr_destroy(),
pthread_mutexattr_init(), pthread_once(), pthread_self(), pthread_setcancelstate(),
pthread_setcanceltype(), pthread_setspecific(), pthread_sigmask(), pthread_testcancel()

POSIX_THREADS_EXT: Extended Threads
pthread_attr_getguardsize(), pthread_attr_setguardsize(), pthread_mutexattr_gettype(),
pthread_mutexattr_settype()

POSIX_TIMERS: Timers
clock_getres(), clock_gettime(), clock_settime(), nanosleep(), timer_create(), timer_delete(),
timer_getoverrun(), timer_gettime(), timer_settime()

POSIX_USER_GROUPS: User and Group
getegid(), geteuid(), getgid(), getgroups(), getlogin(), getuid(), setegid(), seteuid(), setgid(),
setuid()

POSIX_USER_GROUPS_R: Thread-Safe User and Group
getlogin_r()

POSIX_WIDE_CHAR_DEVICE_IO: Device Input and Output
fgetwc(), fgetws(), fputwc(), fputws(), fwide(), fwprintf(), fwscanf(), getwc(), getwchar(),
putwc(), putwchar(), ungetwc(), vfwprintf(), vfwscanf(), vwprintf(), vwscanf(), wprintf(),
wscanf()

XSI_C_LANG_SUPPORT: XSI General C Library
a64l(), daylight, drand48(), erand48(), ffs(), ffsl(), ffsll(), getdate(), hcreate(), hdestroy(),
hsearch(), initstate(), insque(), jrand48(), l64a(), lcong48(), lfind(), lrand48(), lsearch(),
memccpy(), mrand48(), nrand48(), random(), remque(), seed48(), setstate(), signgam,

11. The lchown() function also depends on POSIX_FILE_ATTRIBUTES.

Part E: Subprofiling Considerations Copyright © 2001-2020, IEEE and The Open Group. All rights reserved. 3673

126930

126931

126932

126933

126934

126935

126936

126937

126938

126939

126940

126941

126942

126943

126944

126945

126946

126947

126948

126949

126950

126951

126952

126953

126954

126955

126956

126957

126958

126959

126960

126961

126962

126963

126964

126965

126966

126967

126968

126969

126970

126971

126972

126973

126974

126975

Unapproved Draft, Subject to Change

Sanity
Revie

w

	The Open Group Standard
	Contents
	Preface
	Trademarks
	Acknowledgements
	1. Introduction
	1.1 Scope
	1.2 Relationship to Other Formal Standards

	2. Application Program Interfaces
	2.1 Change Bars
	2.2 Reference Pages
	4.13 Memory Synchronization
	4.14 Pathname Resolution
	<dirent.h>
	<dlfcn.h>
	<limits.h>
	<locale.h>
	<poll.h>
	<pthread.h>
	<semaphore.h>
	<signal.h>
	<stdlib.h>
	<string.h>
	<sys/types.h>
	<unistd.h>
	<wchar.h>
	2.2.2 The Name Space
	2.4.3 Signal Actions
	2.9.3 Thread Mutexes
	2.9.5.2 Cancellation Points
	2.11.1 Defined Types
	bind()
	connect()
	dladdr()
	drand48()
	fork()
	free()
	getentropy()
	getlocalename_l()
	initstate()
	memmem()
	poll()
	posix_getdents()
	ppoll()
	pselect()
	pthread_cond_broadcast()
	pthread_cond_timedwait()
	pthread_cond_timedwait()
	pthread_condattr_getclock()
	pthread_mutex_destroy()
	pthread_mutex_destroy()
	pthread_mutex_timedlock()
	pthread_mutexattr_gettype()
	pthread_rwlock_timedrdlock()
	pthread_rwlock_timedwrlock()
	qsort()
	rand()
	realloc()
	sem_init()
	sem_open()
	sem_timedwait()
	sig2str()
	strlcat()
	wcslcat()
	B.2.8.5 Clocks and Timers
	B.2.9 Threads
	D.2 Portability Capabilities
	E.1 Subprofiling option Groups

