

The Open Group Standard

Additional APIs for the Base Specifications Issue 8, Part 2

ii The Open Group Standard (2022)

Copyright © 2022, The Open Group

The Open Group hereby authorizes you to use this document for any purpose, PROVIDED THAT any copy of this document, or any

part thereof, which you make shall retain all copyright and other proprietary notices contained herein.

This document may contain other proprietary notices and copyright information.

Nothing contained herein shall be construed as conferring by implication, estoppel, or otherwise any license or right under any patent

or trademark of The Open Group or any third party. Except as expressly provided above, nothing contained herein shall be construed
as conferring any license or right under any copyright of The Open Group.

Note that any product, process, or technology in this document may be the subject of other intellectual property rights reserved by The

Open Group, and may not be licensed hereunder.

This document is provided “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, OR NON-INFRINGEMENT. Some jurisdictions do not allow the exclusion of implied warranties, so the
above exclusion may not apply to you.

Any publication of The Open Group may include technical inaccuracies or typographical errors. Changes may be periodically made to

these publications; these changes will be incorporated in new editions of these publications. The Open Group may make
improvements and/or changes in the products and/or the programs described in these publications at any time without notice.

Should any viewer of this document respond with information including feedback data, such as questions, comments, suggestions, or

the like regarding the content of this document, such information shall be deemed to be non-confidential and The Open Group shall

have no obligation of any kind with respect to such information and shall be free to reproduce, use, disclose, and distribute the

information to others without limitation. Further, The Open Group shall be free to use any ideas, concepts, know-how, or techniques

contained in such information for any purpose whatsoever including but not limited to developing, manufacturing, and marketing
products incorporating such information.

If you did not obtain this copy through The Open Group, it may not be the latest version. For your convenience, the latest version of

this publication may be downloaded at www.opengroup.org/library.

The Open Group Standard

Additional APIs for the Base Specifications Issue 8, Part 2

ISBN: TBA

Document Number: C22x

Published by The Open Group, <Month> 2022

Comments relating to the material contained in this document may be submitted to:

The Open Group, Apex Plaza, Forbury Road, Reading, Berkshire, RG1 1AX, United Kingdom

or by electronic mail to:

ogspecs@opengroup.org

http://www.opengroup.org/library
mailto:ogspecs@opengroup.org

Additional APIs for the Base Specifications Issue 8, Part 2 iii

Contents

1 Introduction ... 1

1.1 Scope ... 1
1.2 Relationship to Other Formal Standards ... 1

2 Application Program Interfaces .. 2

2.1 Change Bars .. 2
2.2 Reference Pages .. 2

iv The Open Group Standard (2022)

Preface

The Open Group

The Open Group is a global consortium that enables the achievement of business objectives

through technology standards. Our diverse membership of more than 870 organizations includes

customers, systems and solutions suppliers, tools vendors, integrators, academics, and

consultants across multiple industries.

The mission of The Open Group is to drive the creation of Boundaryless Information Flow™

achieved by:

 Working with customers to capture, understand, and address current and emerging

requirements, establish policies, and share best practices

 Working with suppliers, consortia, and standards bodies to develop consensus and

facilitate interoperability, to evolve and integrate specifications and open source

technologies

 Offering a comprehensive set of services to enhance the operational efficiency of

consortia

 Developing and operating the industry’s premier certification service and encouraging

procurement of certified products

Further information on The Open Group is available at www.opengroup.org.

The Open Group publishes a wide range of technical documentation, most of which is focused

on development of Standards and Guides, but which also includes white papers, technical

studies, certification and testing documentation, and business titles. Full details and a catalog are

available at www.opengroup.org/library.

This Document

This document has been prepared by The Open Group Base Working Group. The Open Group

Base Working Group is considering submitting a number of additional APIs to the Austin Group

as input to the Issue 8 revision of the Base Specifications.

This document contains the second set of these APIs.

http://www.opengroup.org/
http://www.opengroup.org/library

Additional APIs for the Base Specifications Issue 8, Part 2 v

Trademarks

ArchiMate, DirecNet, Making Standards Work, Open O logo, Open O and Check Certification

logo, Platform 3.0, The Open Group, TOGAF, UNIX, UNIXWARE, and the Open Brand X logo

are registered trademarks and Boundaryless Information Flow, Build with Integrity Buy with

Confidence, Commercial Aviation Reference Architecture, Dependability Through Assuredness,

Digital Practitioner Body of Knowledge, DPBoK, EMMM, FACE, the FACE logo, FHIM

Profile Builder, the FHIM logo, FPB, Future Airborne Capability Environment, IT4IT, the IT4IT

logo, O-AA, O-DEF, O-HERA, O-PAS, Open Agile Architecture, Open FAIR, Open Footprint,

Open Process Automation, Open Subsurface Data Universe, Open Trusted Technology Provider,

OSDU, Sensor Integration Simplified, SOSA, and the SOSA logo are trademarks of The Open

Group.

All other brands, company, and product names are used for identification purposes only and may

be trademarks that are the sole property of their respective owners.

vi The Open Group Standard (2022)

Acknowledgements

The Open Group gratefully acknowledges the contribution of the following in the development

of this document:

 The Open Group Base Working Group

 The Austin Group

The Open Group gratefully acknowledges the following reviewers who participated in the

Company Review of this document:

 TBA

Additional APIs for the Base Specifications Issue 8, Part 2 1

1 Introduction

1.1 Scope

The purpose of this document is to define a set of additional APIs for inclusion in the Issue 8

revision of the Base Specifications of the Single UNIX
®
 Specification.

The additional APIs proposed by participants in the Austin Group that The Open Group has

agreed to sponsor are as follows:

Header

<libintl.h>

Functions

bind_textdomain_codeset()

bindtextdomain()

dcgettext()

dcgettext_l()

dcngettext()

dcngettext_l()

dgettext()

dgettext_l()

dngettext()

dngettext_l()

getresgid()

getresuid()

gettext()

gettext_l()

ngettext()

ngettext_l()

setresgid()

setresuid()

textdomain()

Utilities

gettext

msgfmt

ngettext

readlink

realpath

timeout

xgettext

1.2 Relationship to Other Formal Standards

This Standard is being forwarded to the Austin Group for consideration as input to the Issue 8

revision of the Base Specifications.

2 The Open Group Standard (2022)

2 Application Program Interfaces

The following pages are extracted from a complete draft of the Base Specifications in which the

proposed changes have been applied, with change bars showing the differences from Issue 8

Draft 2.1. Only pages with technical changes are included – editorial changes such as additions

to SEE ALSO and CHANGE HISTORY sections have been omitted (unless they appear on the

same page as a technical change). The complete draft is also being made available for reference.

As a consequence of the change to NLSPATH in XBD Section 8.2, a change will also need to be

made to the NLSPATH description on all existing utility reference pages. These changes are not

included here but will be made during the preparation of Issue 8 Draft 3.

2.1 Change Bars

Changed lines are marked with a '|' in the right-hand margin, new lines with a '+', and deleted

lines with a '-'.

Note that sometimes the placement of change bars is slightly inaccurate. In particular, changes

may extend into a line following a set of change-barred lines. Also, changes within tables do not

have change bars.

2.2 Reference Pages

The reference pages for the new header, function, and utility additions, and pages with related

changes follow.

Dot Definitions

3.106 Dot

In the context of naming files, the filename consisting of a single <period> character ('.').

Note: In the context of shell special built-in utilities, see dot in XCU Section 2.14 (on page 2382).

Pathname Resolution is defined in detail in Section 4.14 (on page 93).

3.107 Dot-Dot

The filename consisting solely of two <period> characters ("..").

Note: Pathname Resolution is defined in detail in Section 4.14 (on page 93).

3.108 Dot-Po File +

See Portable Messages Object Source File in Section 3.257 (on page 65).

3.109 Double-Quote Character

The character '"', also known as <quotation-mark>.

Note: The ``double’’ adjective in this term refers to the two strokes in the character glyph.
POSIX.1-202x never uses the term ``double-quote’’ to refer to two apostrophes or quotation-
marks.

3.110 Downshifting

The conversion of an uppercase character that has a single-character lowercase representation
into this lowercase representation.

3.111 Driver

A module that controls data transferred to and received from devices.

Note: Drivers are traditionally written to be a part of the system implementation, although they are
frequently written separately from the writing of the implementation. A driver may contain
processor-specific code, and therefore be non-portable.

3.112 Effective Group ID

An attribute of a process that is used in determining various permissions, including file access
permissions; see also Section 3.161 (on page 51).

3.113 Effective User ID

An attribute of a process that is used in determining various permissions, including file access
permissions; see also Section 3.394 (on page 84).

44 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

Definitions Message Catalog

3.197 Message Catalog

In the context of providing natural language messages to the user, a file or storage area
containing program messages, command prompts, and responses to prompts for a particular
native language, territory, and codeset.

3.198 Message Catalog Descriptor

In the context of providing natural language messages to the user, a per-process unique value
used to identify an open message catalog. A message catalog descriptor may be implemented
using a file descriptor.

3.199 Message Queue

In the context of programmatic message passing, an object to which messages can be added and
removed. Messages may be removed in the order in which they were added or in priority order.

3.200 Messages Object +

A file containing message identifiers and translations in an unspecified format. Used by the +
gettext family of functions and the gettext and ngettext utilities for internationalization and +
localization of programs and scripts. Messages objects have the filename suffix .mo, and can be +
created by the msgfmt utility. +

See also Section 3.374 (on page 81).

3.201 Mode

A collection of attributes that specifies a file’s type and its access permissions.

Note: File Access Permissions are defined in detail in Section 4.6 (on page 90).

3.202 Monotonic Clock

A clock measuring real time, whose value cannot be set via clock_settime() and which cannot
have negative clock jumps.

3.203 Mount Point

Either the system root directory or a directory for which the st_dev field of structure stat differs
from that of its parent directory.

Note: The stat structure is defined in detail in <sys/stat.h>.

3.204 Multi-Character Collating Element

A sequence of two or more characters that collate as an entity. For example, in some coded

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 57

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

Definitions Pipe

3.252 Pipe

An object identical to a FIFO which has no links in the file hierarchy.

Note: The pipe() function is defined in detail in the System Interfaces volume of POSIX.1-202x.

3.253 Polling

A scheduling scheme whereby the local process periodically checks until the pre-specified
events (for example, read, write) have occurred.

3.254 Portable Character Set

The collection of characters that are required to be present in all locales supported by
conforming systems.

Note: The Portable Character Set is defined in detail in Section 6.1 (on page 105).

This term is contrasted against the smaller portable filename character set; see also Section 3.256.

3.255 Portable Filename

A filename consisting only of characters from the portable filename character set.

Note: Applications should avoid using filenames that have the <hyphen-minus> character as the first
character since this may cause problems when filenames are passed as command line
arguments.

3.256 Portable Filename Character Set

The set of characters from which portable filenames are constructed.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . _ -

The last three characters are the <period>, <underscore>, and <hyphen-minus> characters,
respectively. See also Section 3.245 (on page 63).

3.257 Portable Messages Object Source File (or Dot-Po File) +

A text file containing messages and directives. A portable messages object source file can be +
compiled into a messages object by the msgfmt utility. +

Note: By convention, portable messages object source files have filenames ending with the .po suffix. +
Utility descriptions in this standard frequently use dot-po file as a shorthand for portable +
messages object source file (even though the .po suffix need not be included in the filename). +
Template portable messages object source files can be created from C-language source files by +
the xgettext utility. +

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 65

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

Definitions System Process

3.368 System Process

An object other than a process executing an application, that is provided by the system and has a
process ID.

3.369 System Reboot

See System Boot defined in Section 3.362 (on page 80).

3.370 System-Wide

Pertaining to events occurring in all processes existing in an implementation at a given point in
time.

3.371 Tab Character (<tab>)

A character that in the output stream indicates that printing or displaying should start at the
next horizontal tabulation position on the current line. It is the character designated by '\t' in
the C language. If the current position is at or past the last defined horizontal tabulation
position, the behavior is unspecified. It is unspecified whether this character is the exact
sequence transmitted to an output device by the system to accomplish the tabulation.

3.372 Terminal (or Terminal Device)

A character special file that obeys the specifications of the general terminal interface.

Note: The General Terminal Interface is defined in detail in Chapter 11 (on page 185).

3.373 Text Column

A roughly rectangular block of characters capable of being laid out side-by-side next to other
text columns on an output page or terminal screen. The widths of text columns are measured in
column positions.

3.374 Text Domain +

A named collection of messages objects (one messages object per supported language) for +
internationalization and localization purposes. A text domain is often named after the +
application or library that provides the collection, but may have a more general name if it is +
intended to be shared by multiple applications or libraries. +

Note: The use of text domains is defined in detail in the descriptions of the bindtextdomain() and +
gettext family of functions in the System Interfaces volume of POSIX.1-202x. +

3.375 Text File

A file that contains characters organized into zero or more lines. The lines do not contain NUL

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 81

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

Chapter 7

Locale

7.1 General

A locale is the definition of the subset of a user’s environment that depends on language and
cultural conventions. It is made up from one or more categories. Each category is identified by
its name and controls specific aspects of the behavior of components of the system. Category
names correspond to the following environment variable names:

LC_CTYPE Character classification and case conversion.

LC_COLLATE Collation order.

LC_MONETARY Monetary formatting.

LC_NUMERIC Numeric, non-monetary formatting.

LC_TIME Date and time formats.

LC_MESSAGES Formats of informative and diagnostic messages and interactive responses.

The standard utilities in the Shell and Utilities volume of POSIX.1-202x shall base their behavior
on the current locale, as defined in the ENVIRONMENT VARIABLES section for each utility.
The behavior of some of the C-language functions defined in the System Interfaces volume of
POSIX.1-202x shall also be modified based on a locale selection. The locale to be used by these
functions can be selected in the following ways:

1. For functions such as isalnum_l() that take a locale object as an argument, a locale object
can be obtained from newlocale() or duplocale() and passed to the function.

2. For functions that do not take a locale object as an argument, the current locale for the
thread can be set by calling uselocale() or the global locale for the process can be set by
calling setlocale(). Such functions shall use the current locale of the calling thread if one
has been set for that thread; otherwise, they shall use the global locale.

3. Some functions, such as catopen() and those related to text domains, may reference +
various environment variables and a locale category of a specific locale to access files they +
need to use.

Locales other than those supplied by the implementation can be created via the localedef utility,
provided that the _POSIX2_LOCALEDEF symbol is defined on the system. Even if localedef is
not provided, all implementations conforming to the System Interfaces volume of POSIX.1-202x
shall provide one or more locales that behave as described in this chapter. The input to the
utility is described in Section 7.3 (on page 116). The value that is used to specify a locale when
using environment variables shall be the string specified as the name operand to the localedef
utility when the locale was created. The strings "C" and "POSIX" are reserved as identifiers for
the POSIX locale (see Section 7.2, on page 116). When the value of a locale environment variable
begins with a <slash> ('/'), it shall be interpreted as the pathname of the locale definition; the
type of file (regular, directory, and so on) used to store the locale definition is implementation-
defined. If the value does not begin with a <slash>, the mechanism used to locate the locale is
implementation-defined.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 115

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

Environment Variables Internationalization Variables

8.2 Internationalization Variables

This section describes environment variables that are relevant to the operation of
internationalized interfaces described in POSIX.1-202x.

Users may use the following environment variables to announce specific localization
requirements to applications. Applications can retrieve this information using the setlocale()
function to initialize the correct behavior of the internationalized interfaces. The descriptions of
the internationalization environment variables describe the resulting behavior only when the
application locale is initialized in this way. The use of the internationalization variables by
utilities described in the Shell and Utilities volume of POSIX.1-202x is described in the
ENVIRONMENT VARIABLES section for those utilities in addition to the global effects
described in this section.

LANG This variable shall determine the locale category for native language, local
customs, and coded character set in the absence of the LC_ALL and other LC_*
(LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC,
LC_TIME) environment variables. This can be used by applications to determine
the language to use for error messages and instructions, collating sequences, date
formats, and so on.

LANGUAGE +
The LANGUAGE environment variable shall be examined to determine the +
messages object to be used for the gettext family of functions or the gettext and +

XSI ngettext utilities if NLSPATH is not set or the evaluation of NLSPATH did not lead +
to a suitable messages object being found. The value of LANGUAGE shall be a list +
of locale names separated by a <colon> (':') character. If LANGUAGE is set to a +
non-empty string, each locale name shall be tried in the specified order and if a +
messages object is found, it shall be used for translation. If a locale name has the +
format language[_territory][.codeset][@modifier], additional searches of locale names +
without .codeset (if present), without _territory (if present), and without @modifier (if +
present) may be performed; if .codeset is not present, additional searches of locale +
names with an added .codeset may be performed. If locale names contain a <slash> +
('/') character, or consist entirely of a dot (".") or dot-dot ("..") character +
sequence, or are empty the behavior is implementation defined and they may be +
ignored for security reasons. +

The locale names in LANGUAGE shall override the locale name associated with +
the ``active category’’ of the current locale or, in the case of functions with an _l +
suffix, the provided locale object, and the language-specific part of the default +
search path for messages objects, unless the locale name that would be overridden +
is C or POSIX. For the dcgettext(), dcgettext_l(), dcngettext(), and dcngettext_l() +
functions, the active category is specified by the category argument; for all other +
gettext family functions and for the gettext and ngettext utilities, the active category +
is LC_MESSAGES. +

For example, if: +

• The LC_MESSAGES environment variable is "de_DE" (and LC_ALL is unset) +
and setlocale(LC_ALL, "") has been used to set the current locale +

• The LANGUAGE environment variable is "fr_FR:it" +

• Messages objects are by default searched for in /gettextlib +

then the following pathnames are tried in this order by gettext family functions that +
have neither a category argument nor an _l suffix until a valid messages object is +
found: +

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 157

5433

5434

5435

5436

5437

5438

5439

5440

5441

5442

5443

5444

5445

5446

5447

5448

5449

5450

5451

5452

5453

5454

5455

5456

5457

5458

5459

5460

5461

5462

5463

5464

5465

5466

5467

5468

5469

5470

5471

5472

5473

5474

5475

5476

5477

5478

5479

5480

Internationalization Variables Environment Variables

• /gettextlib/fr_FR/LC_MESSAGES/textdomain.mo +

• (Optionally) /gettextlib/fr/LC_MESSAGES/textdomain.mo +

• (Optionally) the above two pathnames with added .codeset elements +

• /gettextlib/it/LC_MESSAGES/textdomain.mo +

• (Optionally) the above pathname with added .codeset elements +

• /gettextlib/de_DE/LC_MESSAGES/textdomain.mo +

LC_ALL This variable shall determine the values for all locale categories. The value of the
LC_ALL environment variable has precedence over any of the other environment
variables starting with LC_ (LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, LC_TIME) and the LANG environment variable.

LC_COLLATE
This variable shall determine the locale category for character collation. It
determines collation information for regular expressions and sorting, including
equivalence classes and multi-character collating elements, in various utilities and
the strcoll() and strxfrm() functions. Additional semantics of this variable, if any,
are implementation-defined.

LC_CTYPE This variable shall determine the locale category for character handling functions,
such as tolower(), toupper(), and isalpha(). This environment variable determines
the interpretation of sequences of bytes of text data as characters (for example,
single as opposed to multi-byte characters), the classification of characters (for
example, alpha, digit, graph), and the behavior of character classes. Additional
semantics of this variable, if any, are implementation-defined.

LC_MESSAGES
This variable shall determine the locale category for processing affirmative and
negative responses and the language and cultural conventions in which messages
should be written. It also affects the behavior of the catopen() function in
determining the message catalog. Additional semantics of this variable, if any, are
implementation-defined. The language and cultural conventions of diagnostic and
informative messages whose format is unspecified by POSIX.1-202x should be
affected by the setting of LC_MESSAGES.

LC_MONETARY
This variable shall determine the locale category for monetary-related numeric
formatting information. Additional semantics of this variable, if any, are
implementation-defined.

LC_NUMERIC
This variable shall determine the locale category for numeric formatting (for
example, thousands separator and radix character) information in various utilities
as well as the formatted I/O operations in printf() and scanf() and the string
conversion functions in strtod(). Additional semantics of this variable, if any, are
implementation-defined.

LC_TIME This variable shall determine the locale category for date and time formatting
information. It affects the behavior of the time functions in strftime(). Additional
semantics of this variable, if any, are implementation-defined.

XSI NLSPATH This variable shall contain a sequence of templates to be used by catopen() when |
attempting to locate message catalogs, and by the gettext family of functions when |
locating messages objects. Each template consists of an optional prefix, one or

158 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

5481

5482

5483

5484

5485

5486

5487

5488

5489

5490

5491

5492

5493

5494

5495

5496

5497

5498

5499

5500

5501

5502

5503

5504

5505

5506

5507

5508

5509

5510

5511

5512

5513

5514

5515

5516

5517

5518

5519

5520

5521

5522

5523

5524

5525

5526

Environment Variables Internationalization Variables

more conversion specifications, and an optional suffix. |

The conversion specification descriptions below refer to a ``currently active text |
domain’’. The currently active text domain is, in decreasing order of precedence: |

• The domain parameter of the gettext family of functions or the gettext and |
ngettext utilities |

• The text domain bound by the last call to textdomain() when using a gettext |
family function, or the TEXTDOMAIN environment variable when using the |
gettext and ngettext utilities |

• The default text domain |

Conversion specifications consist of a '%' symbol, followed by a single-letter |
keyword. The following conversion specifications are currently defined:

%N The value of the name parameter passed to catopen() or the currently active |
text domain of the gettext family of functions and the gettext and ngettext |
utilities (see above).

%L The locale name given by the value of the active category (see LANGUAGE |
above) in either the current locale or, in the case of functions with an _l suffix, |
the provided locale object.

%l The language element of the locale name that would result from a %L |
conversion.

%t The territory element of the locale name that would result from a %L |
conversion.

%c The codeset element of the locale name that would result from a %L conversion. |

%% A single '%' character.

An empty string shall be substituted if the specified value is not currently defined. |
The separators <underscore> ('_') and <period> ('.') shall not be included in |
the %t and %c conversion specifications.

Templates defined in NLSPATH are separated by <colon> characters (':'). A |
leading, trailing, or two adjacent <colon> characters ("::") shall be equivalent to |
specifying %N.

Since <colon> is a separator in this context, directory names that might be used in |
NLSPATH should not include a <colon> character. |

Example 1, for an application that uses catopen() but does not use the gettext family |
of functions: |

NLSPATH="/system/nlslib/%N.cat" |

indicates that catopen() should look for all message catalogs in the directory |
/system/nlslib, where the catalog name should be constructed from the name |
argument (replacing %N) passed to catopen(), with the suffix .cat. |

Example 2, for an application that uses the gettext family of functions but does not |
use catopen(): |

NLSPATH="/usr/lib/locale/fr/LC_MESSAGES/%N.mo" |

indicates that the gettext family of functions (and the gettext and ngettext utilities) |
should look for all messages objects in the directory |
/usr/lib/locale/fr/LC_MESSAGES, where the messages object’s name should be |

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 159

5527

5528

5529

5530

5531

5532

5533

5534

5535

5536

5537

5538

5539

5540

5541

5542

5543

5544

5545

5546

5547

5548

5549

5550

5551

5552

5553

5554

5555

5556

5557

5558

5559

5560

5561

5562

5563

5564

5565

5566

5567

5568

5569

Internationalization Variables Environment Variables

constructed from the currently active text domain (replacing %N), with the suffix |
.mo. |

Example 3, for an application that uses catopen() but does not use the gettext family |
of functions:

NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

indicates that catopen() should look for the requested message catalog in name, |
name.cat, and /nlslib/localename/name.cat, where localename is the locale name given |
by the value of the LC_MESSAGES category of the current locale.

Example 4, for an application that uses the gettext family of functions but does not +
use catopen(): +

NLSPATH="/usr/lib/locale/%L/%N.mo:/usr/lib/locale/fr/%N.mo" +

indicates that the gettext family of functions (and the gettext and ngettext utilities) +
should look for all messages objects first in +
/usr/lib/locale/localename/textdomain.mo, and if not found there, then try in +
/usr/lib/locale/fr/textdomain.mo, where localename is the locale name given by the +
value of the active category in the current locale or provided locale object. +

Example 5, for an application that uses catopen() and the gettext family of +
functions: +

NLSPATH="/usr/lib/locale/%L/%N.mo:/system/nlslib/%L/%N.cat" +

indicates that the gettext family of functions (and the gettext and ngettext utilities) +
should look for all messages objects in /usr/lib/locale/localename/textdomain.mo, +
where localename is the locale name given by the value of the active category in the +
current locale or provided locale object. Also, catopen() should look for all message +
catalogs in the directory /system/nlslib/localename/name.cat, (assuming that +
/usr/lib/locale/localename/name.mo is not a message catalog). In this scenario, +
catopen() ignores all files that are not valid message catalogs while traversing +
NLSPATH. Furthermore, the gettext family of functions and the gettext and ngettext +
utilities ignore all files that are not valid messages objects found while traversing +
NLSPATH. +

Users should not set the NLSPATH variable unless they have a specific reason to
override the default system path. Setting NLSPATH to override the default system |
path may produce undefined results in the standard utilities other than gettext and |
ngettext, and in applications with appropriate privileges. |

Specifying a relative pathname in the NLSPATH environment variable should be |
avoided without a specific reason, including the use of a leading, trailing, or two |
adjacent <colon> characters, since it may result in messages objects being searched |
for in a directory relative to the current working directory of the calling process; if |
the process calls the chdir() function, the directory searched for may also be |
changed. |

TEXTDOMAIN |
Specify the text domain name that the gettext and ngettext utilities use during the |
search for messages objects. This is identical to the messages object filename |
without the .mo suffix. |

TEXTDOMAINDIR |
Specify the pathname to the root directory of the messages object hierarchy the |
gettext and ngettext utilities use during the search for messages objects. If present, it |

160 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

5570

5571

5572

5573

5574

5575

5576

5577

5578

5579

5580

5581

5582

5583

5584

5585

5586

5587

5588

5589

5590

5591

5592

5593

5594

5595

5596

5597

5598

5599

5600

5601

5602

5603

5604

5605

5606

5607

5608

5609

5610

5611

5612

5613

5614

5615

Environment Variables Internationalization Variables

XSI shall replace the default root directory pathname. NLSPATH has precedence over |
TEXTDOMAINDIR.

The environment variables LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, LC_TIME, and NLSPATH provide for the support of
internationalized applications. The standard utilities shall make use of these environment
variables as described in this section and the individual ENVIRONMENT VARIABLES sections
for the utilities. If these variables specify locale categories that are not based upon the same
underlying codeset, the results are unspecified.

The values of locale categories shall be determined by a precedence order; the first condition met
below determines the value:

1. If the LC_ALL environment variable is defined and is not null, the value of LC_ALL shall
be used.

2. If the LC_* environment variable (LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, LC_TIME) is defined and is not null, the value of the
environment variable shall be used to initialize the category that corresponds to the
environment variable.

3. If the LANG environment variable is defined and is not null, the value of the LANG
environment variable shall be used.

4. If the LANG environment variable is not set or is set to the empty string, the
implementation-defined default locale shall be used.

If the locale value is "C" or "POSIX", the POSIX locale shall be used and the standard utilities
behave in accordance with the rules in Section 7.2 (on page 116) for the associated category.

If the locale value begins with a <slash>, it shall be interpreted as the pathname of a file that was
created in the output format used by the localedef utility; see OUTPUT FILES under localedef.
Referencing such a pathname shall result in that locale being used for the indicated category.

XSI If the locale value has the form:

language[_territory][.codeset]

it refers to an implementation-provided locale, where settings of language, territory, and codeset
are implementation-defined.

LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, and LC_TIME are
defined to accept an additional field @modifier, which allows the user to select a specific instance
of localization data within a single category (for example, for selecting the dictionary as opposed
to the character ordering of data). The syntax for these environment variables is thus defined as:

[language[_territory][.codeset][@modifier]]

For example, if a user wanted to interact with the system in French, but required to sort German
text files, LANG and LC_COLLATE could be defined as:

LANG=Fr_FR
LC_COLLATE=De_DE

This could be extended to select dictionary collation (say) by use of the @modifier field; for
example:

LC_COLLATE=De_DE@dict

An implementation may support other formats.

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 161

5616

5617

5618

5619

5620

5621

5622

5623

5624

5625

5626

5627

5628

5629

5630

5631

5632

5633

5634

5635

5636

5637

5638

5639

5640

5641

5642

5643

5644

5645

5646

5647

5648

5649

5650

5651

5652

5653

5654

5655

5656

5657

<libintl.h> Headers

NAME
libintl.h — international messaging +

SYNOPSIS +
#include <libintl.h> +

DESCRIPTION +
The <libintl.h> header may define the macro TEXTDOMAINMAX. If defined, it shall have the +
same value as {TEXTDOMAIN_MAX} in <limits.h>. +

The following shall be declared as functions and may also be defined as macros. Function +
prototypes shall be provided. +

char *bindtextdomain(const char *, const char *); +
char *bind_textdomain_codeset(const char *, const char *); +
char *dcgettext(const char *, const char *, int); +
char *dcgettext_l(const char *, const char *, int, locale_t); +
char *dcngettext(const char *, const char *, const char *, +

unsigned long int, int); +
char *dcngettext_l(const char *, const char *, const char *, +

unsigned long int, int, locale_t); +
char *dgettext(const char *, const char *); +
char *dgettext_l(const char *, const char *, locale_t); +
char *dngettext(const char *, const char *, const char *, +

unsigned long int); +
char *dngettext_l(const char *, const char *, const char *, +

unsigned long int, locale_t); +
char *gettext(const char *); +
char *gettext_l(const char *, locale_t); +
char *ngettext(const char *, const char *, unsigned long int); +
char *ngettext_l(const char *, const char *, +

unsigned long int, locale_t); +
char *textdomain(const char *); +

+APPLICATION USAGE +
None. +

RATIONALE +
Some historical implementations defined TEXTDOMAINMAX in this header. This standard +
instead defines {TEXTDOMAIN_MAX} in <limits.h>. This was done to allow the maximum +
length of a text domain name to vary depending on the filesystem type used to store message +
catalogs. Implementations are allowed to continue to define TEXTDOMAINMAX in this header +
as an extension to the standard (see XSH Section 2.2.2, on page 467). +

FUTURE DIRECTIONS +
None. +

SEE ALSO +
XSH gettext , bindtextdomain() +

CHANGE HISTORY +
First released in Issue 8. +

+

264 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

9068

9069

9070

9071

9072

9073

9074

9075

9076

9077

9078

9079

9080

9081

9082

9083

9084

9085

9086

9087

9088

9089

9090

9091

9092

9093

9094

9095

9096

9097

9098

9099

9100

9101

9102

9103

9104

9105

9106

9107

9108

9109

9110

9111

Headers <limits.h>

{PIPE_BUF}
Maximum number of bytes that is guaranteed to be atomic when writing to a pipe.
Minimum Acceptable Value: {_POSIX_PIPE_BUF}

ADV {POSIX_ALLOC_SIZE_MIN}
Minimum number of bytes of storage actually allocated for any portion of a file.
Minimum Acceptable Value: Not specified.

ADV {POSIX_REC_INCR_XFER_SIZE}
Recommended increment for file transfer sizes between the
{POSIX_REC_MIN_XFER_SIZE} and {POSIX_REC_MAX_XFER_SIZE} values.
Minimum Acceptable Value: Not specified.

ADV {POSIX_REC_MAX_XFER_SIZE}
Maximum recommended file transfer size.
Minimum Acceptable Value: Not specified.

ADV {POSIX_REC_MIN_XFER_SIZE}
Minimum recommended file transfer size.
Minimum Acceptable Value: Not specified.

ADV {POSIX_REC_XFER_ALIGN}
Recommended file transfer buffer alignment.
Minimum Acceptable Value: Not specified.

{SYMLINK_MAX}
Maximum number of bytes in a symbolic link.
Minimum Acceptable Value: {_POSIX_SYMLINK_MAX}

{TEXTDOMAIN_MAX} +
Maximum length of a text domain name, not including the terminating null byte. +
Minimum Acceptable Value: {_POSIX_NAME_MAX} − 3 +

XSI Minimum Acceptable Value: {_XOPEN_NAME_MAX} − 3

Runtime Increasable Values

The magnitude limitations in the following list shall be fixed by specific implementations. An
application should assume that the value of the symbolic constant defined by <limits.h> in a
specific implementation is the minimum that pertains whenever the application is run under
that implementation. A specific instance of a specific implementation may increase the value
relative to that supplied by <limits.h> for that implementation. The actual value supported by a
specific instance shall be provided by the sysconf() function.

{BC_BASE_MAX}
Maximum obase values allowed by the bc utility.
Minimum Acceptable Value: {_POSIX2_BC_BASE_MAX}

{BC_DIM_MAX}
Maximum number of elements permitted in an array by the bc utility.
Minimum Acceptable Value: {_POSIX2_BC_DIM_MAX}

{BC_SCALE_MAX}
Maximum scale value allowed by the bc utility.
Minimum Acceptable Value: {_POSIX2_BC_SCALE_MAX}

{BC_STRING_MAX}
Maximum length of a string constant accepted by the bc utility.
Minimum Acceptable Value: {_POSIX2_BC_STRING_MAX}

Vol. 1: Base Definitions, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 269

9288

9289

9290

9291

9292

9293

9294

9295

9296

9297

9298

9299

9300

9301

9302

9303

9304

9305

9306

9307

9308

9309

9310

9311

9312

9313

9314

9315

9316

9317

9318

9319

9320

9321

9322

9323

9324

9325

9326

9327

9328

9329

9330

9331

9332

<unistd.h> Headers

_PC_PIPE_BUF
_PC_PRIO_IO
_PC_REC_INCR_XFER_SIZE
_PC_REC_MAX_XFER_SIZE
_PC_REC_MIN_XFER_SIZE
_PC_REC_XFER_ALIGN
_PC_SYMLINK_MAX
_PC_SYNC_IO
_PC_TEXTDOMAIN_MAX +
_PC_TIMESTAMP_RESOLUTION
_PC_VDISABLE

The <unistd.h> header shall define the following symbolic constants for sysconf():

_SC_2_C_BIND
_SC_2_C_DEV
_SC_2_CHAR_TERM
_SC_2_FORT_RUN
_SC_2_LOCALEDEF
_SC_2_SW_DEV
_SC_2_UPE
_SC_2_VERSION
_SC_ADVISORY_INFO
_SC_AIO_LISTIO_MAX
_SC_AIO_MAX
_SC_AIO_PRIO_DELTA_MAX
_SC_ARG_MAX
_SC_ASYNCHRONOUS_IO
_SC_ATEXIT_MAX
_SC_BARRIERS
_SC_BC_BASE_MAX
_SC_BC_DIM_MAX
_SC_BC_SCALE_MAX
_SC_BC_STRING_MAX
_SC_CHILD_MAX
_SC_CLK_TCK
_SC_CLOCK_SELECTION
_SC_COLL_WEIGHTS_MAX
_SC_CPUTIME
_SC_DELAYTIMER_MAX
_SC_EXPR_NEST_MAX
_SC_FSYNC
_SC_GETGR_R_SIZE_MAX
_SC_GETPW_R_SIZE_MAX
_SC_HOST_NAME_MAX
_SC_IOV_MAX
_SC_IPV6
_SC_JOB_CONTROL
_SC_LINE_MAX
_SC_LOGIN_NAME_MAX
_SC_MAPPED_FILES
_SC_MEMLOCK
_SC_MEMLOCK_RANGE

438 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

15290

15291

15292

15293

15294

15295

15296

15297

15298

15299

15300

15301

15302

15303

15304

15305

15306

15307

15308

15309

15310

15311

15312

15313

15314

15315

15316

15317

15318

15319

15320

15321

15322

15323

15324

15325

15326

15327

15328

15329

15330

15331

15332

15333

15334

15335

15336

15337

15338

15339

15340

<unistd.h> Headers

pid_t getpid(void);
pid_t getppid(void);

XSI int getresgid(gid_t *, gid_t *, gid_t *); +
int getresuid(uid_t *, uid_t *, uid_t *); +
pid_t getsid(pid_t);
uid_t getuid(void);
int isatty(int);
int lchown(const char *, uid_t, gid_t);
int link(const char *, const char *);
int linkat(int, const char *, int, const char *, int);

XSI int lockf(int, int, off_t);
off_t lseek(int, off_t, int);

XSI int nice(int);
long pathconf(const char *, int);
int pause(void);
int pipe(int [2]);
int pipe2(int [2], int);
int posix_close(int, int);
ssize_t pread(int, void *, size_t, off_t);
ssize_t pwrite(int, const void *, size_t, off_t);
ssize_t read(int, void *, size_t);
ssize_t readlink(const char *restrict, char *restrict, size_t);
ssize_t readlinkat(int, const char *restrict, char *restrict, size_t);
int rmdir(const char *);
int setegid(gid_t);
int seteuid(uid_t);
int setgid(gid_t);
int setpgid(pid_t, pid_t);

XSI int setregid(gid_t, gid_t);
int setresgid(gid_t, gid_t, gid_t); +
int setresuid(uid_t, uid_t, uid_t); +
int setreuid(uid_t, uid_t);
pid_t setsid(void);
int setuid(uid_t);
unsigned sleep(unsigned);

XSI void swab(const void *restrict, void *restrict, ssize_t);
int symlink(const char *, const char *);
int symlinkat(const char *, int, const char *);

XSI void sync(void);
long sysconf(int);
pid_t tcgetpgrp(int);
int tcsetpgrp(int, pid_t);
int truncate(const char *, off_t);
char *ttyname(int);
int ttyname_r(int, char *, size_t);
int unlink(const char *);
int unlinkat(int, const char *, int);
ssize_t write(int, const void *, size_t);

The <unistd.h> header shall declare the following external variables:

extern char *optarg;
extern int opterr, optind, optopt;

442 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 1: Base Definitions, Issue 8

15484

15485

15486

15487

15488

15489

15490

15491

15492

15493

15494

15495

15496

15497

15498

15499

15500

15501

15502

15503

15504

15505

15506

15507

15508

15509

15510

15511

15512

15513

15514

15515

15516

15517

15518

15519

15520

15521

15522

15523

15524

15525

15526

15527

15528

15529

15530

15531

15532

15533

15534

General Information The Compilation Environment

Complete
Header Prefix Suffix Name

<aio.h> aio_, lio_, AIO_, LIO_
<arpa/inet.h> inet_
<ctype.h> to[a-z], is[a-z]
<dlfcn.h> RTLD_, dli_
<dirent.h> d_, DT_
<fcntl.h> l_

XSI <fmtmsg.h> MM_
<fnmatch.h> FNM_

XSI <ftw.h> FTW
<glob.h> gl_, GLOB_
<grp.h> gr_
<libintl.h> TEXTDOMAINMAX
<limits.h> _MAX, _MIN

XSI <math.h> M_
MSG <mqueue.h> mq_, MQ_
XSI <ndbm.h> dbm_, DBM_

<netdb.h> ai_, h_, n_, p_, s_
<net/if.h> if_, IF_
<netinet/in.h> in_, ip_, s_, sin_, INADDR_,

IPPROTO_
IP6 in6_, in6addr_, s6_, sin6_, IPV6_

<netinet/tcp.h> TCP_
<nl_types.h> NL_
<poll.h> pd_, ph_, ps_, POLL
<pthread.h> pthread_, PTHREAD_
<pwd.h> pw_
<regex.h> re_, rm_, REG_
<sched.h> sched_, SCHED_
<semaphore.h> sem_, SEM_

CX <signal.h> sa_, si_, sigev_, sival_, uc_, BUS_,
CLD_, FPE_, ILL_, SA_, SEGV_, SI_,
SIGEV_,

XSI ss_, sv_, SS_, TRAP_
<stdlib.h> str[a-z]
<string.h> str[a-z], mem[a-z], wcs[a-z]

XSI <sys/ipc.h> ipc_, IPC_ key, pad, seq
<sys/mman.h> shm_, MAP_, MCL_, MS_,

PROT_
XSI <sys/msg.h> msg, MSG_[A-Z] msg
XSI <sys/resource.h> rlim_, ru_, PRIO_, RLIMIT_,

RUSAGE_
<sys/select.h> fd_, fds_, FD_

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 469

16366

16367

16368

16369

16370

16371

16372

16373

16374

16375

16376

16377

16378

16379

16380

16381

16382

16383

16384

16385

16386

16387

16388

16389

16390

16391

16392

16393

16394

16395

16396

16397

16398

16399

16400

16401

16402

16403

16404

16405

16406

16407

16408

16409

Threads General Information

2.9.5.2 Cancellation Points

Cancellation points shall occur when a thread is executing the following functions:

accept()
accept4()
aio_suspend()
clock_nanosleep()
close()
connect()
creat()
fcntl()†
fdatasync()
fsync()
lockf()††
mq_receive()
mq_send()
mq_timedreceive()
mq_timedsend()
msgrcv()
msgsnd()
msync()

nanosleep()
open()
openat()
pause()
poll()
ppoll()
pread()
pselect()
pthread_cond_clockwait()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_join()
pthread_testcancel()
pwrite()
read()
readv()
recv()
recvfrom()

recvmsg()
select()
send()
sendmsg()
sendto()
sigsuspend()
sigtimedwait()
sigwait()
sigwaitinfo()
sleep()
tcdrain()
wait()
waitid()
waitpid()
write()
writev()

A cancellation point may also occur when a thread is executing the following functions:

access()
bindtextdomain()
catclose()
catopen()
chmod()
chown()
closedir()
closelog()
ctermid()
dcgettext()
dcgettext_l()
dcngettext()
dcngettext_l()
dgettext()
dgettext_l()
dlclose()
dlopen()
dngettext()

dngettext_l()
dprintf()
endhostent()
endnetent()
endprotoent()
endservent()
faccessat()
fchmod()
fchmodat()
fchown()
fchownat()
fclose()
fcntl()†††
fflush()
fgetc()
fgetpos()
fgets()
fgetwc()

fgetws()
fmtmsg()
fopen()
fpathconf()
fprintf()
fputc()
fputs()
fputwc()
fputws()
fread()
freopen()
fscanf()
fseek()
fseeko()
fsetpos()
fstat()
fstatat()
ftell()

† When the cmd argument is F_SETLKW.

†† When the function argument is F_LOCK.

††† For any value of the cmd argument. +

510 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

18104

18105

18106

18107

18108

18109

18110

18111

18112

18113

18114

18115

18116

18117

18118

18119

18120

18121

18122

18123

18124

18125

18126

18127

18128

18129

18130

18131

18132

18133

18134

18135

18136

18137

18138

18139

18140

18141

18142

18143

18144

18145

General Information Threads

ftello() +
futimens()
fwprintf()
fwrite()
fwscanf()
getaddrinfo()
getc()
getc_unlocked()
getchar()
getchar_unlocked()
getcwd()
getdelim()
getgrgid_r()
getgrnam_r()
gethostid()
gethostname()
getline()
getlogin_r()
getnameinfo()
getpwnam_r()
getpwuid_r()
gettext()
gettext_l()
getwc()
getwchar()
glob()
iconv_close()
iconv_open()
link()
linkat()
lio_listio()
localtime_r()
lockf()
lseek()
lstat()
mkdir()
mkdirat()
mkdtemp()
mkfifo()
mkfifoat()
mknod()
mknodat()

mkstemp()
mktime()
ngettext()
ngettext_l()
opendir()
openlog()
pathconf()
perror()
popen()
posix_fadvise()
posix_fallocate()
posix_getdents()
posix_madvise()
posix_openpt()
posix_spawn()
posix_spawnp()
posix_typed_mem_open()
printf()
psiginfo()
psignal()
pthread_rwlock_clockrdlock()
pthread_rwlock_clockwrlock()
pthread_rwlock_rdlock()
pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()
pthread_rwlock_wrlock()
ptsname()
ptsname_r()
putc()
putc_unlocked()
putchar()
putchar_unlocked()
puts()
putwc()
putwchar()
readdir_r()
readlink()
readlinkat()
remove()
rename()
renameat()

rewind()
rewinddir()
scandir()
scanf()
seekdir()
sem_clockwait()
sem_timedwait()
sem_wait()
semop()
sethostent()
setnetent()
setprotoent()
setservent()
stat()
strerror_l()
strerror_r()
strftime()
strftime_l()
symlink()
symlinkat()
sync()
syslog()
tmpfile()
tmpnam()
ttyname_r()
tzset()
ungetc()
ungetwc()
unlink()
unlinkat()
utimensat()
utimes()
vdprintf()
vfprintf()
vfwprintf()
vprintf()
vwprintf()
wcsftime()
wordexp()
wprintf()
wscanf()

In addition, a cancellation point may occur when a thread is executing any function that this
standard does not require to be thread-safe but the implementation documents as being thread-
safe. If a thread is cancelled while executing a non-thread-safe function, the behavior is
undefined.

An implementation shall not introduce cancellation points into any other functions specified in
this volume of POSIX.1-202x.

The side-effects of acting upon a cancellation request while suspended during a call of a function
are the same as the side-effects that may be seen in a single-threaded program when a call to a
function is interrupted by a signal and the given function returns [EINTR]. Any such side-

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 511

18146

18147

18148

18149

18150

18151

18152

18153

18154

18155

18156

18157

18158

18159

18160

18161

18162

18163

18164

18165

18166

18167

18168

18169

18170

18171

18172

18173

18174

18175

18176

18177

18178

18179

18180

18181

18182

18183

18184

18185

18186

18187

18188

18189

18190

18191

18192

18193

18194

18195

18196

bindtextdomain() System Interfaces

NAME
bindtextdomain, bind_textdomain_codeset, textdomain — text domain manipulation functions +

SYNOPSIS +
#include <libintl.h> +

char *bindtextdomain(const char *domainname, const char *dirname); +
char *bind_textdomain_codeset(const char *domainname, +

const char *codeset); +
char *textdomain(const char *domainname); +

DESCRIPTION +
The textdomain() function shall set or query the name of the current text domain of the calling +
process. The application shall ensure that the domainname argument is either a null pointer +
(when querying), an empty string, or a string that, when used by the gettext family of functions +
to construct a pathname to a messages object, results in a valid pathname. For portable +
applications, it should only contain characters from the portable filename character set. +

The text domain setting made by the last successful call to textdomain() shall remain in effect +
across subsequent calls to setlocale(), uselocale(), and the gettext family of functions. +

Applications should not use text domains whose names begin with the strings "SYS_" or +
"libc". These prefixes are reserved for implementation use. +

The current setting of the text domain can be queried without affecting the current state of the +
domain by calling textdomain() with domainname set to a null pointer. Calling textdomain() with a +
domainname argument of an empty string shall set the text domain to the default domain, +
"messages". +

The bindtextdomain() function shall set or query the binding of a text domain to a dirname that is +
used by the gettext family of functions to construct a pathname to a messages object in the text +
domain: +

• If domainname is a null pointer or an empty string, bindtextdomain() shall make no changes +
and return a null pointer without changing errno. +

• Otherwise, if dirname is a non-empty string: +

— If domainname is not already bound, bindtextdomain() shall bind the text domain +
specified by domainname to the pathname pointed to by dirname and return the bound +
directory pathname on success or a null pointer on failure. +

— If domainname is already bound, bindtextdomain() shall replace the existing binding +
with the pathname pointed to by dirname and return the bound directory pathname +
on success or a null pointer on failure. On failure, the existing binding shall remain +
unchanged. +

It is unspecified whether the bindtextdomain() function performs pathname resolution on +
dirname, or whether that is done by the gettext family of functions. +

• Otherwise, if dirname is a null pointer: +

— If domainname is bound, the function shall return the bound directory pathname. +

— If domainname is not bound, the function shall return the implementation-defined +
default directory pathname used by the gettext family of functions. +

• Otherwise, dirname is an empty string and the behavior is unspecified. +

If a text domain is bound to a relative pathname and the current working directory is changed +
after the binding is established, the pathnames used by the gettext family of functions to locate +

612 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21422

21423

21424

21425

21426

21427

21428

21429

21430

21431

21432

21433

21434

21435

21436

21437

21438

21439

21440

21441

21442

21443

21444

21445

21446

21447

21448

21449

21450

21451

21452

21453

21454

21455

21456

21457

21458

21459

21460

21461

21462

21463

21464

21465

System Interfaces bindtextdomain()

messages objects for that text domain are unspecified. +

The bind_textdomain_codeset() function shall set or query the binding of a text domain to the +
output codeset used by the gettext family of functions for message strings retrieved from +
messages objects for the text domain specified by domainname: +

• If domainname is a null pointer or an empty string, bind_textdomain_codeset() shall make no +
changes and return a null pointer without changing errno. +

• Otherwise, if codeset is a non-empty string: +

— If domainname is not already bound, bind_textdomain_codeset() shall bind the text +
domain specified by domainname to the codeset pointed to by codeset and return the +
newly bound codeset on success or a null pointer on failure. +

— If domainname is already bound, bind_textdomain_codeset() shall replace the existing +
binding with the codeset pointed to by codeset and return the newly bound codeset +
on success or a null pointer on failure. On failure, the existing binding shall remain +
unchanged. +

The application shall ensure that the codeset argument, if non-empty, is a valid codeset +
name that can be used as the tocode argument of the iconv_open() function, and that in the +
codeset it specifies, the <NUL> character corresponds to a single null byte. +

• Otherwise, if codeset is a null pointer: +

— If domainname is bound, the function shall return the bound codeset. +

— If domainname is not bound, the function shall return the implementation-defined +
default codeset used by the gettext family of functions. +

• Otherwise, codeset is an empty string and the behavior is unspecified. +

If codeset is a null pointer and domainname is a non-empty string, bind_textdomain_codeset() shall +
return the current codeset for the named domain, or a null pointer if a codeset has not yet been +
set. The bind_textdomain_codeset() function can be called multiple times. If successfully called +
multiple times with the same domainname argument, the last such call shall override the setting +
made by the previous such call. +

RETURN VALUE +
The return value from a successful textdomain() call shall be a pointer to a string containing the +
current setting of the text domain. If domainname is a null pointer, textdomain() shall return a +
pointer to the string containing the current text domain. If textdomain() was not previously +
called and domainname is a null string, the name of the default text domain shall be returned. +
The name of the default text domain shall be the string "messages". If textdomain() fails, a null +
pointer shall be returned and errno shall be set to indicate the error. +

For bindtextdomain() return values see the DESCRIPTION. When bindtextdomain() is called with +
a non-empty domainname and returns a null pointer, it shall set errno to indicate the error. When +
bindtextdomain() returns a pathname for a bound text domain, the return value shall be a pointer +
to a copy of the dirname string passed to the bindtextdomain() call that created the binding. The +
returned string shall remain valid until the next successful call to bindtextdomain() with a non- +
empty dirname and same domainname. The application shall ensure that it does not modify the +
returned string. +

A call to the bind_textdomain_codeset() function with a non-empty domainname argument shall +
return one of the following: +

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 613

21466

21467

21468

21469

21470

21471

21472

21473

21474

21475

21476

21477

21478

21479

21480

21481

21482

21483

21484

21485

21486

21487

21488

21489

21490

21491

21492

21493

21494

21495

21496

21497

21498

21499

21500

21501

21502

21503

21504

21505

21506

21507

21508

bindtextdomain() System Interfaces

• The currently bound codeset name for that text domain if codeset is a null pointer +

• The newly bound codeset if codeset is non-empty +

• A null pointer without changing errno if no codeset has yet been bound for that text +
domain +

The application shall ensure that it does not modify the returned string. A subsequent call to +
bind_textdomain_codeset() with a non-empty domainname argument might invalidate the returned +
pointer or overwrite the string content. The returned pointer might also be invalidated if the +
calling thread is terminated. If bind_textdomain_codeset() fails, a null pointer shall be returned +
and errno shall be set to indicate the error. +

ERRORS +
For the conditions under which bindtextdomain()—if it performs pathname resolution—fails and +
may fail, refer to open(). +

In addition, the textdomain(), bindtextdomain(), and bind_textdomain_codeset() functions may fail +
if: +

[ENOMEM] Insufficient memory available. +

+EXAMPLES +
See the examples for gettext . +

APPLICATION USAGE +
A text domainname is limited to {TEXTDOMAIN_MAX} bytes. +

Application developers are responsible for ensuring that the text domain used is not used by +
other applications. To minimize the chances of collision, developers can prefix text domains with +
their company or application name (or both) and an underscore. For example, if your +
application name was "foo" and you wanted to use the text domain "errors", you could +
instead use the text domain "foo_errors". Note that if an application can be installed with a +
configurable name, a text domain prefix based on the application name should change with the +
application name. +

Specifying a relative pathname to the bindtextdomain() function should be avoided, since it may +
result in messages objects being searched for in a directory relative to the current working +
directory of the calling process; if the process calls the chdir() function, the directory searched for +
may also be changed. +

Since pathname resolution of dirname might not be performed by bindtextdomain(), but could be +
performed later by the gettext family of functions, and since the latter have no way to report an +
error, applications should verify, using for example stat(), that the directory is accessible if this is +
desired. +

RATIONALE +
Although the return type of these functions ought to be const char *, it is char * to match +
historical practice. +

Pathname resolution of the dirname argument passed to bindtextdomain() may be performed by +
bindtextdomain() itself or by the gettext family of functions. If pathname resolution fails in one of +
the gettext family of functions, it is neither allowed to modify errno nor to return an error, but if +
pathname resolution fails in bindtextdomain(), it is required to report an error and set errno just +
like open() does. +

Historically, bindtextdomain() did not perform pathname resolution. However, the standard +
developers decided to allow this as an option so that future implementations can, if desired, +
open a file descriptor for that directory in bindtextdomain() and then use that file descriptor with +

614 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

21509

21510

21511

21512

21513

21514

21515

21516

21517

21518

21519

21520

21521

21522

21523

21524

21525

21526

21527

21528

21529

21530

21531

21532

21533

21534

21535

21536

21537

21538

21539

21540

21541

21542

21543

21544

21545

21546

21547

21548

21549

21550

21551

21552

21553

System Interfaces bindtextdomain()

openat() in the gettext family of functions. +

The dirname parameter to bindtextdomain() may need to be copied to avoid the possibility of the +
application releasing the memory used by the argument while the gettext family of functions +
may still need to reference it. +

When bindtextdomain() is called with a non-empty domainname and an empty dirname, historical +
implementations of the gettext family of functions use the empty string for the dirname part of +
the messages object pathname, resulting in an absolute pathname of the form +
/localename/categoryname/textdomainname.mo. The standard developers did not believe this +
behavior to be useful. Using the empty dirname case as a way to remove an existing binding +
seemed to be a more useful behavior, and would be consistent with the behavior of textdomain(). +
However, because no historical implementations behave this way, the behavior is left +
unspecified. +

Some implementations set errno to [EAGAIN] to signal memory allocation failures that might +
succeed if retried and [ENOMEM] for failures that are unlikely to ever succeed, for example due +
to configured limits. Section 2.3 (on page 475) permits this behavior; when multiple error +
conditions are simultaneously true there is no precedence between them. +

FUTURE DIRECTIONS +
A future version of this standard may require implementations to prefix implementation- +
provided text domains with either "SYS_" or a prefix related to the implementor’s company +
name to avoid namespace collisions. +

A future version of this standard may require bindtextdomain() to remove any binding for +
domainname when called with a non-empty domainname and an empty dirname. +

SEE ALSO +
gettext , iconv_open(), setlocale(), uselocale() +

XBD <libintl.h>, <limits.h> +

XCU msgfmt , xgettext +

CHANGE HISTORY +
First released in Issue 8. +

+

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 615

21554

21555

21556

21557

21558

21559

21560

21561

21562

21563

21564

21565

21566

21567

21568

21569

21570

21571

21572

21573

21574

21575

21576

21577

21578

21579

21580

21581

21582

catopen() System Interfaces

NAME
catopen — open a message catalog

SYNOPSIS
#include <nl_types.h>

nl_catd catopen(const char *name, int oflag);

DESCRIPTION
The catopen() function shall open a message catalog and return a message catalog descriptor.
The name argument specifies the name of the message catalog to be opened. If name contains a
'/', then name specifies a pathname for the message catalog. Otherwise, the environment
variable NLSPATH is used with name substituted for the %N conversion specification (see XBD
Chapter 8, on page 155); if NLSPATH exists in the environment when the process starts, then if
the process has appropriate privileges, the behavior of catopen() is undefined. If NLSPATH does
not exist in the environment, or if a message catalog cannot be found in any of the components
specified by NLSPATH, then an implementation-defined default path shall be used. This default
may be affected by the setting of LC_MESSAGES if the value of oflag is NL_CAT_LOCALE, or

XSI the LANG environment variable if oflag is 0. When searching NLSPATH, catopen() shall ignore +
any files it finds that are not valid message catalog files.

A message catalog descriptor shall remain valid in a process until that process closes it, or a
successful call to one of the exec functions. A change in the setting of the LC_MESSAGES
category may invalidate existing open catalogs.

If a file descriptor is used to implement message catalog descriptors, the FD_CLOEXEC flag
shall be set; see <fcntl.h>.

If the value of the oflag argument is 0, the LANG environment variable is used to locate the
catalog without regard to the LC_MESSAGES category. If the oflag argument is
NL_CAT_LOCALE, the LC_MESSAGES category is used to locate the message catalog (see XBD
Section 8.2, on page 157).

RETURN VALUE
Upon successful completion, catopen() shall return a message catalog descriptor for use on
subsequent calls to catgets() and catclose(). Otherwise, catopen() shall return (nl_catd) −1 and set
errno to indicate the error.

ERRORS
The catopen() function may fail if:

[EACCES] Search permission is denied for the component of the path prefix of the
message catalog or read permission is denied for the message catalog.

[EMFILE] All file descriptors available to the process are currently open.

[ENAMETOOLONG]
The length of a component of a pathname is longer than {NAME_MAX}.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname resolution of a
symbolic link produced an intermediate result with a length that exceeds
{PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

[ENOENT] The name argument contains a '/' and does not name an existing message |
XSI catalog, the name argument does not contain a '/' and searching NLSPATH (if |

set) and then the implementation-defined default path for a message catalog |

636 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

22136

22137

22138

22139

22140

22141

22142

22143

22144

22145

22146

22147

22148

22149

22150

22151

22152

22153

22154

22155

22156

22157

22158

22159

22160

22161

22162

22163

22164

22165

22166

22167

22168

22169

22170

22171

22172

22173

22174

22175

22176

22177

22178

22179

22180

System Interfaces catopen()

with that name failed, one or more files exist but all are of an invalid format, |
or the name argument points to an empty string.

[ENOMEM] Insufficient storage space is available.

[ENOTDIR] A component of the path prefix of the message catalog names an existing file
that is neither a directory nor a symbolic link to a directory, or the pathname
of the message catalog contains at least one non-<slash> character and ends
with one or more trailing <slash> characters and the last pathname
component names an existing file that is neither a directory nor a symbolic
link to a directory.

EXAMPLES
None.

APPLICATION USAGE
Some implementations of catopen() use malloc() to allocate space for internal buffer areas. The
catopen() function may fail if there is insufficient storage space available to accommodate these
buffers.

Conforming applications must assume that message catalog descriptors are not valid after a call
to one of the exec functions.

Application developers should be aware that guidelines for the location of message catalogs
have not yet been developed. Therefore they should take care to avoid conflicting with catalogs
used by other applications and the standard utilities.

To be sure that messages produced by an application running with appropriate privileges cannot
be used by an attacker setting an unexpected value for NLSPATH in the environment to confuse
a system administrator, such applications should use pathnames containing a '/' to get defined
behavior when using catopen() to open a message catalog.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catclose(), catgets()

XBD Chapter 8 (on page 155), <fcntl.h>, <nl_types.h>,

CHANGE HISTORY
First released in Issue 2.

Issue 7
Austin Group Interpretation 1003.1-2001 #143 is applied.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The catopen() function is moved from the XSI option to the Base.

POSIX.1-2008, Technical Corrigendum 1, XSH/TC1-2008/0045 [324] is applied.

POSIX.1-2008, Technical Corrigendum 2, XSH/TC2-2008/0054 [645], XSH/TC2-2008/0055 [497],
and XSH/TC2-2008/0056 [497] are applied.

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 637

22181

22182

22183

22184

22185

22186

22187

22188

22189

22190

22191

22192

22193

22194

22195

22196

22197

22198

22199

22200

22201

22202

22203

22204

22205

22206

22207

22208

22209

22210

22211

22212

22213

22214

22215

22216

22217

22218

22219

22220

System Interfaces dcgettext()

NAME
dcgettext, dcgettext_l, dcngettext, dcngettext_l, dgettext, dgettext_l — message handling |
functions |

SYNOPSIS |
#include <libintl.h> |

char *dcgettext(const char *domainname, const char *msgid, |
int category); |

char *dcgettext_l(const char *domainname, const char *msgid, |
int category, locale_t locale); |

char *dcngettext(const char *domainname, const char *msgid, |
const char *msgid_plural, unsigned long int n, |
int category); |

char *dcngettext_l(const char *domainname, const char *msgid, |
const char *msgid_plural, unsigned long int n, |
int category, locale_t locale); |

char *dgettext(const char *domainname, const char *msgid); |
char *dgettext_l(const char *domainname, const char *msgid, |

locale_t locale); |

DESCRIPTION |
Refer to gettext . |

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 727

25023

25024

25025

25026

25027

25028

25029

25030

25031

25032

25033

25034

25035

25036

25037

25038

25039

25040

25041

25042

System Interfaces dngettext()

NAME
dngettext, dngettext_l — message handling functions |

SYNOPSIS |
#include <libintl.h> |

char *dngettext(const char *domainname, const char *msgid, |
const char *msgid_plural, unsigned long int n); |

char *dngettext_l(const char *domainname, const char *msgid, |
const char *msgid_plural, unsigned long int n, |
locale_t locale); |

DESCRIPTION |
Refer to gettext . |

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 747

25654

25655

25656

25657

25658

25659

25660

25661

25662

25663

25664

fpathconf() System Interfaces

NAME
fpathconf, pathconf — get configurable pathname variables

SYNOPSIS
#include <unistd.h>

long fpathconf(int fildes, int name);
long pathconf(const char *path, int name);

DESCRIPTION
The fpathconf() and pathconf() functions shall determine the current value of a configurable limit
or option (variable) that is associated with a file or directory.

For pathconf(), the path argument points to the pathname of a file or directory.

For fpathconf(), the fildes argument is an open file descriptor.

The name argument represents the variable to be queried relative to that file or directory.
Implementations shall support all of the variables listed in the following table and may support
others. The variables in the following table come from <limits.h> or <unistd.h> and the
symbolic constants, defined in <unistd.h>, are the corresponding values used for name.

Variable Value of name Requirements

{FILESIZEBITS} _PC_FILESIZEBITS 4, 7
{LINK_MAX} _PC_LINK_MAX 1
{MAX_CANON} _PC_MAX_CANON 2
{MAX_INPUT} _PC_MAX_INPUT 2
{NAME_MAX} _PC_NAME_MAX 3, 4
{PATH_MAX} _PC_PATH_MAX 4, 5
{PIPE_BUF} _PC_PIPE_BUF 6
{POSIX2_SYMLINKS} _PC_2_SYMLINKS 4
{POSIX_ALLOC_SIZE_MIN} _PC_ALLOC_SIZE_MIN 10
{POSIX_REC_INCR_XFER_SIZE} _PC_REC_INCR_XFER_SIZE 10
{POSIX_REC_MAX_XFER_SIZE} _PC_REC_MAX_XFER_SIZE 10
{POSIX_REC_MIN_XFER_SIZE} _PC_REC_MIN_XFER_SIZE 10
{POSIX_REC_XFER_ALIGN} _PC_REC_XFER_ALIGN 10
{SYMLINK_MAX} _PC_SYMLINK_MAX 4, 9
{TEXTDOMAIN_MAX} _PC_TEXTDOMAIN_MAX 3, 4
_POSIX_CHOWN_RESTRICTED _PC_CHOWN_RESTRICTED 7
_POSIX_NO_TRUNC _PC_NO_TRUNC 3, 4
_POSIX_VDISABLE _PC_VDISABLE 2
_POSIX_ASYNC_IO _PC_ASYNC_IO 8
_POSIX_FALLOC _PC_FALLOC 8
_POSIX_PRIO_IO _PC_PRIO_IO 8
_POSIX_SYNC_IO _PC_SYNC_IO 8
_POSIX_TIMESTAMP_RESOLUTION _PC_TIMESTAMP_RESOLUTION 1

902 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

30747

30748

30749

30750

30751

30752

30753

30754

30755

30756

30757

30758

30759

30760

30761

30762

30763

30764

30765

30766

30767

30768

30769

30770

30771

30772

30773

30774

30775

30776

30777

30778

30779

30780

30781

30782

30783

30784

30785

getresgid() System Interfaces

NAME
getresgid — get real group ID, effective group ID, and saved set-group-ID |

SYNOPSIS |
XSI #include <unistd.h> |

int getresgid(gid_t *rgid, gid_t *egid, gid_t *sgid); |
|

DESCRIPTION |
The getresgid() function shall store the real group ID, effective group ID, and saved set-group-ID |
of the calling process in the locations pointed to by the arguments rgid, egid, and sgid, |
respectively. |

RETURN VALUE |
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to |
indicate the error. |

ERRORS |
No errors are defined. |

|EXAMPLES |
None. |

APPLICATION USAGE |
None. |

RATIONALE |
None. |

FUTURE DIRECTIONS |
None. |

SEE ALSO |
exec , getegid(), geteuid(), getgid(), getresuid(), getuid(), setegid(), seteuid(), setgid(), setregid(), |
setresgid(), setresuid(), setreuid(), setuid() |

XBD <unistd.h> |

CHANGE HISTORY |
First released in Issue 8. |

|
|

1088 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37100

37101

37102

37103

37104

37105

37106

37107

37108

37109

37110

37111

37112

37113

37114

37115

37116

37117

37118

37119

37120

37121

37122

37123

37124

37125

37126

37127

37128

37129

System Interfaces getresuid()

|
|

|

NAME |
getresuid — get real user ID, effective user ID, and saved set-user-ID |

SYNOPSIS |
XSI #include <unistd.h> |

int getresuid(uid_t *ruid, uid_t *euid, uid_t *suid); |
|

DESCRIPTION |
The getresuid() function shall store the real user ID, effective user ID, and saved set-user-ID of |
the calling process in the locations pointed to by the arguments ruid, euid, and suid, respectively. |

RETURN VALUE |
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to |
indicate the error. |

ERRORS |
No errors are defined. |

|EXAMPLES |
None. |

APPLICATION USAGE |
None. |

RATIONALE |
None. |

FUTURE DIRECTIONS |
None. |

SEE ALSO |
exec , getegid(), geteuid(), getgid(), getresgid(), getuid(), setegid(), seteuid(), setgid(), setregid(), |
setresgid(), setresuid(), setreuid(), setuid() |

XBD <unistd.h> |

CHANGE HISTORY |
First released in Issue 8. |

|

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 1089

37130

37131

37132

37133

37134

37135

37136

37137

37138

37139

37140

37141

37142

37143

37144

37145

37146

37147

37148

37149

37150

37151

37152

37153

37154

37155

37156

37157

37158

System Interfaces gettext

NAME
dgettext, dgettext_l, dcgettext, dcgettext_l, gettext, gettext_l, ngettext, ngettext_l, dngettext, |
dngettext_l, dcngettext, dcngettext_l — message handling functions |

SYNOPSIS |
#include <libintl.h> |

char *dgettext(const char *domainname, const char *msgid); |
char *dgettext_l(const char *domainname, const char *msgid, |

locale_t locale); |
char *dcgettext(const char *domainname, const char *msgid, |

int category); |
char *dcgettext_l(const char *domainname, const char *msgid, |

int category, locale_t locale); |
char *dngettext(const char *domainname, const char *msgid, |

const char *msgid_plural, unsigned long int n); |
char *dngettext_l(const char *domainname, const char *msgid, |

const char *msgid_plural, unsigned long int n, |
locale_t locale); |

char *dcngettext(const char *domainname, const char *msgid, |
const char *msgid_plural, unsigned long int n, |
int category); |

char *dcngettext_l(const char *domainname, const char *msgid, |
const char *msgid_plural, unsigned long int n, |
int category, locale_t locale); |

char *gettext(const char *msgid); |
char *gettext_l(const char *msgid, locale_t locale); |
char *ngettext(const char *msgid, const char *msgid_plural, |

unsigned long int n); |
char *ngettext_l(const char *msgid, const char *msgid_plural, |

unsigned long int n, locale_t locale); |

DESCRIPTION |
The gettext() function shall: |

• attempt to locate a suitable messages object (described in detail below) for the |
LC_MESSAGES category in the current locale, and for the current text domain (see |
bindtextdomain()), containing the string identified by msgid, |

• retrieve the string identified by msgid from the messages object, |

• convert the string to the output codeset if necessary (described in detail below), and |

• return the result. |

If the locale name in effect is "POSIX" or "C" (i.e. the name associated with the LC_MESSAGES |
locale category in the current locale), or if no suitable messages object exists, or if no string |
identified by msgid exists in the messages object, or if an error occurs, msgid shall be returned. |

The dgettext() function shall be equivalent to gettext(), except domainname shall be used instead |
of the current text domain to locate the messages object. |

The dcgettext() function shall be equivalent to dgettext(), except the locale category identified by |
category shall be used instead of LC_MESSAGES. |

The ngettext() function shall be equivalent to gettext(), except: |

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 1105

37628

37629

37630

37631

37632

37633

37634

37635

37636

37637

37638

37639

37640

37641

37642

37643

37644

37645

37646

37647

37648

37649

37650

37651

37652

37653

37654

37655

37656

37657

37658

37659

37660

37661

37662

37663

37664

37665

37666

37667

37668

37669

37670

37671

37672

gettext System Interfaces

• The string to retrieve shall be identified by a combination of msgid and n (see msgfmt). |

• If the locale name in effect is "POSIX" or "C", or if no suitable messages object exists, or if |
no string identified by the combination of msgid and n exists in the messages object, or if an |
error occurs, the return value shall be msgid if n is 1, otherwise msgid_plural. |

The dngettext() function shall be equivalent to ngettext(), except domainname shall be used |
instead of the current text domain to locate the messages object. |

The dcngettext() function shall be equivalent to dngettext(), except the locale category identified |
by category shall be used instead of LC_MESSAGES. |

The *_l() functions shall be equivalent to their counterparts without the _l suffix, except locale |
shall be used instead of the current locale. If locale is the special locale object |
LC_GLOBAL_LOCALE or is not a valid locale object handle, the behavior is undefined. |

The application shall ensure that the msgid and msgid_plural arguments are strings. If either |
msgid or msgid_plural is an empty string, or contains characters not in the portable character set, |
the results are unspecified. If the category argument is LC_ALL, the results are unspecified. |

The location of the messages object shall be determined according to the following criteria, |
stopping when the first messages object is found: |

XSI 1. If the NLSPATH environment variable is set to a non-empty string, an NLSPATH search |
shall be performed as described in XBD Section 8.2 (on page 157). If NLSPATH identifies |
more than one template to use, each template in turn shall be used until a valid messages |
object is found. |

2. If the LANGUAGE environment variable is set to a non-empty string, a LANGUAGE |
search shall be performed as described below. If LANGUAGE identifies more than one |
directory to search, each directory shall be searched until a valid messages object is found. |

3. A single-locale search shall be performed as described below. |

XSI For the NLSPATH search and the single-locale search, the single locale name used to locate the |
messages object shall be the locale name associated with the selected locale category from the |
current locale, or the provided locale object if calling one of the *_l() functions; additional |
searches of locale names without .codeset (if present), without _territory (if present), and without |
@modifier (if present) may be performed. |

For the LANGUAGE search, the value of the LANGUAGE environment variable shall be a list of |
one or more locale names separated by a <colon> (':') character. Each locale name shall be |
tried in the specified order. If a messages object for the locale does not exist, or cannot be |
opened, or is unsuitable for implementation-defined reasons (such as security), the next locale |
name (if any) shall be tried. If: |

• a messages object for the locale can be opened but cannot be processed without error, or |

• the messages object does not contain a string identified by msgid, or msgid and n for the |
ngettext functions, |

it is unspecified whether the next locale name (if any) is tried. In all other cases, the messages |
object for the locale shall be used. |

For each locale name in LANGUAGE, or if LANGUAGE is not set or is empty, or no suitable |
messages object is found in processing LANGUAGE, the pathname used to locate the messages |
object shall be dirname/localename/categoryname/textdomainname.mo, where: |

1106 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37673

37674

37675

37676

37677

37678

37679

37680

37681

37682

37683

37684

37685

37686

37687

37688

37689

37690

37691

37692

37693

37694

37695

37696

37697

37698

37699

37700

37701

37702

37703

37704

37705

37706

37707

37708

37709

37710

37711

37712

37713

37714

System Interfaces gettext

• The dirname part is the dirname argument of the most recent successful call to |
bindtextdomain() that had textdomainname as the domainname argument; any trailing <slash> |
characters in dirname shall be discarded. If a successful call to bindtextdomain() has not |
been made for textdomainname, an implementation-defined default directory shall be used. |

• For the LANGUAGE search, the localename part is each locale name from LANGUAGE in |
turn; if a locale name has the format language[_territory][.codeset][@modifier], additional |
searches of locale names without .codeset (if present), without _territory (if present), and |
without @modifier (if present) may be performed; if .codeset is not present, additional |
searches of locale names with an added .codeset may be performed. For the single-locale |
search, the localename part is the name of the current locale, or the locale specified in an |
*_l() function call, for the category named by categoryname. Spellings of codeset names are |
not standardized, and implementations may attempt to use different commonly known |
spellings, for example "utf8" and "UTF-8". |

• The categoryname part is the string "LC_MESSAGES" if gettext(), dgettext(), ngettext(), or |
dngettext() is called, or the locale category name corresponding to the category argument to |
dcgettext() or dcngettext(). Likewise for the *_l() variants of all these functions. |

• For gettext(), gettext_l(), ngettext(), and ngettext_l(), the textdomainname part is the text |
domain set by the last successful call to textdomain(). For dgettext(), dcgettext(), |
dngettext(), dcngettext(), and the *_l() variants of these functions, textdomainname is the text |
domain specified by the domainname argument. The domainname argument shall be |
equivalent in syntax and meaning to the domainname argument to textdomain(), except that |
the selection of the text domain shall affect only the dgettext(), dcgettext(), dngettext(), and |
dcngettext() function calls and their *_l() variants. If the domainname argument is a null |
pointer, the text domain set by the last successful call to textdomain() shall be used. For all |
of these functions, if a successful call to textdomain() has not been made the default text |
domain "messages" shall be used. |

Resolution of the messages object pathname shall be performed the first time one of the gettext |
family of functions is called for a given combination of dirname, localename, categoryname, and |
textdomainname. It is unspecified whether the pathname is re-resolved if the combination has |
been used before in a call to one of the gettext family of functions. If bindtextdomain() performs |
pathname resolution of its dirname argument, only the part of the messages object pathname |
after dirname shall be resolved by the gettext family of functions. |

When one of the gettext family of functions returns a message string that was found in a |
messages object, it shall convert the codeset of the message string to the output codeset if a |
codeset is specified in the messages object (see msgfmt) and the output codeset is not the same as |
that codeset. If a successful call to bind_textdomain_codeset() has been made with the text domain |
of the messages object as the domainname argument and a non-null codeset argument, the output |
codeset shall be the codeset argument from the most recent such call. Otherwise, the output |
codeset shall be the codeset of characters in the current locale, or the provided locale object if |
calling one of the *_l() functions, as specified by the LC_CTYPE category of the locale. The |
conversion shall be performed as if by a call to iconv() using a conversion descriptor returned by |
iconv_open(<output codeset>, <messages object codeset>), except that if the return value of iconv() |
would be greater than zero, the non-identical conversions performed by the gettext family of |
functions need not be the same as those that such an iconv() call would perform. If an error |
prevents the codeset conversion from being performed, the gettext family of functions shall |
behave as if no message string was found in the messages object. If at least one non-identical |
conversion is performed that results in a fallback character (one that does not provide any |
information about the character it was converted from, for example, a <question-mark> or |
``replacement-character ’’), the gettext family of functions may behave as if no message string was |

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 1107

37715

37716

37717

37718

37719

37720

37721

37722

37723

37724

37725

37726

37727

37728

37729

37730

37731

37732

37733

37734

37735

37736

37737

37738

37739

37740

37741

37742

37743

37744

37745

37746

37747

37748

37749

37750

37751

37752

37753

37754

37755

37756

37757

37758

37759

37760

37761

37762

37763

gettext System Interfaces

found in the messages object. |

RETURN VALUE |
The gettext(), gettext_l(), dgettext(), dgettext_l(), dcgettext(), and dcgettext_l() functions shall |
return the message string described in DESCRIPTION if successful. Otherwise, they shall return |
msgid. |

The ngettext(), ngettext_l(), dngettext(), dngettext_l(), dcngettext(), and dcngettext_l() functions |
shall return the message string described in DESCRIPTION if successful. Otherwise, msgid shall |
be returned if n is equal to 1, or msgid_plural if n is not equal to 1. |

The application shall ensure that it does not modify the returned string. A subsequent call to a |
gettext family function shall not overwrite or invalidate the returned string. The returned string |
may be invalidated by a subsequent call to bind_textdomain_codeset(), bindtextdomain(), |
setlocale(), or textdomain() in the same process, except for calls that only query values. The |
returned string shall not be invalidated by a subsequent call to uselocale(). |

ERRORS |
The gettext family of functions shall not modify errno. If an error occurs these functions shall |
return a string as described in RETURN VALUE. |

|EXAMPLES |
The example code below assumes the following: |

• The implementation-defined default directory is /system/gettextlib. |

• The following locales are available on the target system: en_US, en_GB, de_DE. The |
codeset used for all of these locales is UTF-8. |

• The en_AU locale is not available on the target system. |

• The target system supports conversion from ISO/IEC 8859-1 to UTF-8. |

• The codeset used for the POSIX locale is ASCII. |

• The target system does not support conversion from ISO/IEC 8859-1 to ASCII. |

Furthermore, the following .mo files (and only the following .mo files) are installed: |

• /system/gettextlib/en_US/LC_MESSAGES/mail.mo |

• /messagecatalogs/example/en_US/LC_MESSAGES/mail.mo |

These are compiled from a portable messages object source file (dot-po file) with the following |
ISO/IEC 8859-1 encoded contents (see the EXTENDED DESCRIPTION of the msgfmt utility for a |
description of the dot-po file format): |

msgid "" |
msgstr "" |
"Content-Type: text/plain; charset=ISO_8859-1\n" |
"Plural-Forms: nplurals=4; plural= n==1?0: (n>1&&n<10)?1: (n==0)?2:3;\n" |
msgid "recipient" |
msgid_plural "recipients" |
msgstr[0] "1 recipient" |
msgstr[1] "2 to 9 recipients" |
msgstr[2] "no recipients" |
msgstr[3] "more than 9 recipients" |

/system/gettextlib/de_DE/LC_MESSAGES/mail.mo is compiled from a dot-po file with the |
following ISO/IEC 8859-1 encoded contents: |

1108 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37764

37765

37766

37767

37768

37769

37770

37771

37772

37773

37774

37775

37776

37777

37778

37779

37780

37781

37782

37783

37784

37785

37786

37787

37788

37789

37790

37791

37792

37793

37794

37795

37796

37797

37798

37799

37800

37801

37802

37803

37804

37805

37806

System Interfaces gettext

msgid "" |
msgstr "" |
"Content-Type: text/plain; charset=ISO_8859-1\n" |
"Plural-Forms: nplurals=4; plural= n==1?0: (n>1&&n<5)?1: (n==0)?2:3;\n" |
msgid "recipient" |
msgid_plural "recipients" |
msgstr[0] "1 Empfänger" |
msgstr[1] "2 bis 4 Empfänger" |
msgstr[2] "keine Empfänger" |
msgstr[3] "mehr als 4 Empfänger" |

/messagecatalogs/example/en_GB/LC_MESSAGES/mail.mo is compiled from a dot-po file |
with the following ISO/IEC 8859-1 encoded contents: |

msgid "" |
msgstr "" |
"Content-Type: text/plain; charset=ISO_8859-1\n" |
"Plural-Forms: nplurals=4; plural= n==1?0: (n>1&&n<5)?1: (n==0)?2:3;\n" |
msgid "recipient" |
msgid_plural "recipients" |
msgstr[0] "1 recipient" |
msgstr[1] "2 to 4 recipients" |
msgstr[2] "no recipients" |
msgstr[3] "5 or more recipients" |

/messagecatalogs/example2/en_US/LC_MESSAGES/othermail.mo is not a suitable messages |
object file or is a suitable messages object file that does not contain the msgid "recipient". |

The following example demonstrates the interactions between bindtextdomain(), |
bind_textdomain_codeset(), textdomain(), and the gettext family of functions. |

unsigned long n_recipients; |
// strdup() is used to prevent default_domain from being invalidated by |
// a future call to bindtextdomain() |
const char *default_domain = strdup(bindtextdomain("mail", NULL)); |
setlocale(LC_MESSAGES, "POSIX"); |
setlocale(LC_CTYPE, "POSIX"); |

n_recipients = 1; |
// The following outputs "recipient" with the same encoding as the |
// "recipient" argument to ngettext(): |
printf("%s\n", ngettext("recipient", "recipients", n_recipients)); |

n_recipients = 3; |
// The following outputs "recipients" with the same encoding as the |
// "recipients" argument to ngettext(): |
printf("%s\n", ngettext("recipient", "recipients", n_recipients)); |

setlocale(LC_MESSAGES, "en_US"); |
setlocale(LC_CTYPE, "en_US"); |
textdomain("mail"); |

n_recipients = 1; |
// The following outputs "1 recipient", encoded in UTF-8: |
printf("%s\n", ngettext("recipient", "recipients", n_recipients)); |

n_recipients = 3; |

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 1109

37807

37808

37809

37810

37811

37812

37813

37814

37815

37816

37817

37818

37819

37820

37821

37822

37823

37824

37825

37826

37827

37828

37829

37830

37831

37832

37833

37834

37835

37836

37837

37838

37839

37840

37841

37842

37843

37844

37845

37846

37847

37848

37849

37850

37851

37852

37853

gettext System Interfaces

// The following outputs "2 to 9 recipients", encoded in UTF-8: |
printf("%s\n", ngettext("recipient", "recipients", n_recipients)); |

setlocale(LC_MESSAGES, "en_GB"); |
setlocale(LC_CTYPE, "en_GB"); |
bindtextdomain("mail", "/messagecatalogs/example/"); |

n_recipients = 3; |
// The following outputs "2 to 4 recipients", encoded in UTF-8: |
printf("%s\n", ngettext("recipient", "recipients", n_recipients)); |

setlocale(LC_MESSAGES, "en_US"); |
setlocale(LC_CTYPE, "en_US"); |
textdomain("othermail"); |
bindtextdomain("othermail", "/messagecatalogs/example2/"); |

n_recipients = 3; |
// The following outputs "recipients" with the same encoding as the |
// "recipients" argument to ngettext(): |
printf("%s\n", ngettext("recipient", "recipients", n_recipients)); |

// Because there is no locale named en_AU on the system, en_US is used: |
setenv("LANGUAGE", "en_AU:en_US:en_GB", 1); |
setlocale(LC_MESSAGES, ""); |
setlocale(LC_CTYPE, ""); |
bindtextdomain("mail", default_domain); |

// The following outputs "2 to 9 recipients", encoded in UTF-8: |
printf("%s\n", dngettext("mail", "recipient", "recipients", 3)); |

textdomain("mail"); |
bind_textdomain_codeset("mail", "UTF-8"); |
setlocale(LC_MESSAGES, "de_DE"); |
setlocale(LC_CTYPE, "de_DE"); |
// Clear the LANGUAGE environment variable, otherwise it would take |
// precedence over the locale set above, and en_US would continue to |
// be used. |
setenv("LANGUAGE", "", 1); |

n_recipients = 1; |
// The following outputs "1 Empfänger", encoded in UTF-8: |
printf("%s\n", ngettext("recipient", "recipients", n_recipients)); |

bind_textdomain_codeset("mail", "ASCII"); |
setlocale(LC_CTYPE, "POSIX"); |

n_recipients = 1; |
// The following outputs "recipient" with the same encoding as the |
// "recipient" argument to ngettext() - remember, the system is assumed |
// to not support conversion from ISO/IEC 8859-1 to ASCII: |
printf("%s\n", ngettext("recipient", "recipients", n_recipients)); |

free(default_domain); |

1110 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37854

37855

37856

37857

37858

37859

37860

37861

37862

37863

37864

37865

37866

37867

37868

37869

37870

37871

37872

37873

37874

37875

37876

37877

37878

37879

37880

37881

37882

37883

37884

37885

37886

37887

37888

37889

37890

37891

37892

37893

37894

37895

System Interfaces gettext

APPLICATION USAGE |
These functions do not impose a limit on message length. Note that translated strings typically |
have a different length than the input strings, possibly much longer, and applications using |
these translations in formatted text (for example, aligned columns for a table) should take that |
into account. |

The dcgettext(), dcgettext_l(), dcngettext(), and dcngettext_l() functions are useful to retrieve |
locale-specific strings for a category other than LC_MESSAGES. For example, they can be used |
to obtain a time format string from the LC_TIME category; because the locale setting of LC_TIME |
and LC_MESSAGES can be different, using the other gettext family functions in such a case |
might cause an undesired result. All of the functions in the gettext family of functions, except |
dcgettext(), dcgettext_l(), dcngettext(), and dcngettext_l(), search for messages objects only in the |
LC_MESSAGES category. |

Implementations typically, but are not required to, mmap() the messages object file the first time |
one of the gettext family of functions is called, and keep that map in place until it is no longer |
expected to be used. For example, a successful call to bindtextdomain() will typically cause the |
next call to one of the gettext family of functions to munmap() the previous file and mmap() the |
new file. Applications should not rely on this behavior, however: the implementation is allowed |
to cache previously used maps, or not use mmap() at all and reopen the file each time one of the |
gettext family of functions is called. |

The msgid and msgid_plural arguments are typically in (US) English. The arguments are always |
used in the POSIX or C locale, and when a gettext family function encounters an error, so they |
should not be abstract message identifiers (for example, "message 123") and they should only |
use characters in the portable character set (to avoid outputting byte sequences that are not valid |
characters in the current output codeset). If the xgettext utility is used to extract the msgid and |
msgid_plural arguments from C source files into a template dot-po file, the arguments must be |
string literals in order for the resulting file to be useful to translators. |

The strings returned by the gettext family of functions are not guaranteed to contain only |
characters that are valid in the current output codeset. In particular, byte sequences that do not |
form valid characters can occur when: |

• The msgid or msgid_plural arguments use characters outside the portable character set. |

• The messages object file does not specify a character set and uses characters outside the |
portable character set. |

The strings returned by the gettext family of functions are guaranteed to remain valid until |
invalidated as described in the RETURN VALUE section. This includes strings that are created |
by codeset conversion; those strings are freed by the implementation, not the application. Thus, |
it is safe to call gettext family functions multiple times in situations such as: |

printf("%s %s\n", gettext("foo"), gettext("bar")); |

RATIONALE |
Although the return type of these functions ought to be const char *, it is char * to match |
historical practice. |

The gettext family of functions is frequently used in reporting errors. In fact, it is possible to have |
an application that attempts to create an error message that combines a translated string via |
gettext() with an error string provided by strerror(). The standard requires that the gettext family |
of functions does not modify errno, so that an application need not worry about complications of |
providing sequencing points to capture a stable value of errno prior to the translation of the error |
message, and so that the user will still get a somewhat useful string (even if it is the untranslated |
original string) on any failure. |

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 1111

37896

37897

37898

37899

37900

37901

37902

37903

37904

37905

37906

37907

37908

37909

37910

37911

37912

37913

37914

37915

37916

37917

37918

37919

37920

37921

37922

37923

37924

37925

37926

37927

37928

37929

37930

37931

37932

37933

37934

37935

37936

37937

37938

37939

37940

37941

37942

gettext System Interfaces

There are no wide character equivalents for these functions; historically no implementation is |
known to exist, and the multi-byte message returned from these functions can, in most instances, |
be converted to wide characters by the application if desired. |

Some historical gettext implementations returned the translated string from the messages object |
without codeset conversion if iconv_open() fails. This is considered to be a bug in those |
implementations. |

FUTURE DIRECTIONS |
None. |

SEE ALSO |
bindtextdomain(), catopen(), iconv(), setlocale(), uselocale() |

XBD <libintl.h>, <limits.h> |

XCU gettext , msgfmt , xgettext |

CHANGE HISTORY |
First released in Issue 8. |

|

1112 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

37943

37944

37945

37946

37947

37948

37949

37950

37951

37952

37953

37954

37955

37956

37957

System Interfaces ngettext()

NAME
ngettext, ngettext_l — message handling functions |

SYNOPSIS |
#include <libintl.h> |

char *ngettext(const char *msgid, const char *msgid_plural, |
unsigned long int n); |

char *ngettext_l(const char *msgid, const char *msgid_plural, |
unsigned long int n, locale_t locale); |

DESCRIPTION |
Refer to gettext . |

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 1407

47012

47013

47014

47015

47016

47017

47018

47019

47020

47021

setresgid() System Interfaces

NAME
setresgid — set real group ID, effective group ID, and saved set-group-ID |

SYNOPSIS |
XSI #include <unistd.h> |

int setresgid(gid_t rgid, gid_t egid, gid_t sgid); |
|

DESCRIPTION |
The setresgid() function shall set the real group ID, effective group ID, and saved set-group-ID of |
the calling process to the values specified by rgid, egid, and sgid, respectively. |

If an argument is −1, the corresponding ID shall not be changed. |

Only a process with appropriate privileges can set the real group ID, effective group ID, and |
saved set-group-ID to any valid value. |

A non-privileged process can set its real group ID, effective group ID, and saved set-group-ID, |
each to one of the values that it currently holds in its real group ID, effective group ID, or saved |
set-group-ID. |

The real group ID, effective group ID, and saved set-group-ID can be set to different values in |
the same call. |

Any supplementary group IDs of the calling process shall remain unchanged. |

RETURN VALUE |
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to |
indicate the error, and none of the IDs shall be changed. |

ERRORS |
The setresgid() function shall fail if: |

[EINVAL] The value of the rgid, egid, or sgid argument is invalid or out-of-range. |

[EPERM] The calling process does not have appropriate privileges and an attempt was |
made to change the real group ID, effective group ID, or saved set-group-ID to |
a value that is not currently present in one of those IDs. |

|EXAMPLES |
None. |

APPLICATION USAGE |
None. |

RATIONALE |
None. |

FUTURE DIRECTIONS |
None. |

SEE ALSO |
exec , getegid(), geteuid(), getgid(), getresgid(), getresuid(), getuid(), setegid(), seteuid(), setgid(), |
setregid(), setresuid(), setreuid(), setuid() |

XBD <unistd.h> |

1894 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

61783

61784

61785

61786

61787

61788

61789

61790

61791

61792

61793

61794

61795

61796

61797

61798

61799

61800

61801

61802

61803

61804

61805

61806

61807

61808

61809

61810

61811

61812

61813

61814

61815

61816

61817

61818

61819

61820

61821

System Interfaces setresgid()

CHANGE HISTORY |
First released in Issue 8. |

|
|

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 1895

61822

61823

61824

setresuid() System Interfaces

|
|

|

NAME |
setresuid — set real user ID, effective user ID, and saved set-user-ID |

SYNOPSIS |
XSI #include <unistd.h> |

int setresuid(uid_t ruid, uid_t euid, uid_t suid); |
|

DESCRIPTION |
The setresuid() function shall set the real user ID, effective user ID, and saved set-user-ID of the |
calling process to the values specified by ruid, euid, and suid, respectively. |

If an argument is −1, the corresponding ID shall not be changed. |

Only a process with appropriate privileges can set the real user ID, effective user ID, and saved |
set-user-ID to any valid value. |

A non-privileged process can set its real user ID, effective user ID, and saved set-user-ID, each to |
one of the values that it currently holds in its real user ID, effective user ID, or saved set-user-ID. |

The real user ID, effective user ID, and saved set-user-ID can be set to different values in the |
same call. |

RETURN VALUE |
Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to |
indicate the error, and none of the IDs shall be changed. |

ERRORS |
The setresuid() function shall fail if: |

[EINVAL] The value of the ruid, euid, or suid argument is invalid or out-of-range. |

[EPERM] The calling process does not have appropriate privileges and an attempt was |
made to change the real user ID, effective user ID, or saved set-user-ID to a |
value that is not currently present in one of those IDs or an attempt was made |
to change the real user ID to a value not permitted by the implementation. |

|EXAMPLES |
None. |

APPLICATION USAGE |
None. |

RATIONALE |
None. |

FUTURE DIRECTIONS |
None. |

SEE ALSO |
exec , getegid(), geteuid(), getgid(), getresgid(), getresuid(), getuid(), setegid(), seteuid(), setgid(), |
setregid(), setresgid(), setreuid(), setuid() |

XBD <unistd.h> |

CHANGE HISTORY |
First released in Issue 8. |

|

1896 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 2: System Interfaces, Issue 8

61825

61826

61827

61828

61829

61830

61831

61832

61833

61834

61835

61836

61837

61838

61839

61840

61841

61842

61843

61844

61845

61846

61847

61848

61849

61850

61851

61852

61853

61854

61855

61856

61857

61858

61859

61860

61861

61862

61863

61864

61865

System Interfaces textdomain()

NAME
textdomain — text domain manipulation function |

SYNOPSIS |
#include <libintl.h> |

char *textdomain(const char *domainname); |

DESCRIPTION |
Refer to bindtextdomain(). |

Vol. 2: System Interfaces, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 2135

69197

69198

69199

69200

69201

69202

69203

Utilities command

STDOUT
When the −v option is specified, standard output shall be formatted as:

"%s\n", <pathname or command>

When the −V option is specified, standard output shall be formatted as:

"%s\n", <unspecified>

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
When the −v or −V options are specified, the following exit values shall be returned:

0 Successful completion.

>0 The command_name could not be found or an error occurred.

Otherwise, the following exit values shall be returned:

126 The utility specified by command_name was found but could not be invoked.

127 An error occurred in the command utility or the utility specified by command_name could not
be found.

Otherwise, the exit status of command shall be that of the simple command specified by the
arguments to command.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
This utility is required to be intrinsic. See Section 1.7 (on page 2336) for details.

The order for command search allows functions to override regular built-ins and path searches.
This utility is necessary to allow functions that have the same name as a utility to call the utility
(instead of a recursive call to the function).

The system default path is available using getconf; however, since getconf may need to have the
PA TH set up before it can be called itself, the following can be used:

command -p getconf PATH

There are some advantages to suppressing the special characteristics of special built-ins on
occasion. For example:

command exec > unwritable-file

does not cause a non-interactive script to abort, so that the output status can be checked by the
script.

The command, env, nohup, time, timeout, and xargs utilities have been specified to use exit code 127 +
if an error occurs so that applications can distinguish ``failure to find a utility’’ from ``invoked
utility exited with an error indication’’. The value 127 was chosen because it is not commonly
used for other meanings; most utilities use small values for ``normal error conditions’’ and the
values above 128 can be confused with termination due to receipt of a signal. The value 126 was

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 2583

84828

84829

84830

84831

84832

84833

84834

84835

84836

84837

84838

84839

84840

84841

84842

84843

84844

84845

84846

84847

84848

84849

84850

84851

84852

84853

84854

84855

84856

84857

84858

84859

84860

84861

84862

84863

84864

84865

84866

84867

84868

Utilities env

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PA TH Determine the location of the utility, as described in XBD Chapter 8 (on page 155).
If PA TH is specified as a name=value operand to env, the value given shall be used in
the search for utility.

ASYNCHRONOUS EVENTS
Default.

STDOUT
If no utility operand is specified, each name=value pair in the resulting environment shall be
written in the form:

"%s=%s\n", <name>, <value>

If the utility operand is specified, the env utility shall not write to standard output.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If utility is invoked, the exit status of env shall be the exit status of utility; otherwise, the env
utility shall exit with one of the following values:

0 The env utility completed successfully.

1−125 An error occurred in the env utility.

126 The utility specified by utility was found but could not be invoked.

127 The utility specified by utility could not be found.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The command, env, nice, nohup, time, timeout, and xargs utilities have been specified to use exit +
code 127 if an error occurs so that applications can distinguish ``failure to find a utility’’ from
``invoked utility exited with an error indication’’. The value 127 was chosen because it is not
commonly used for other meanings; most utilities use small values for ``normal error
conditions’’ and the values above 128 can be confused with termination due to receipt of a
signal. The value 126 was chosen in a similar manner to indicate that the utility could be found,
but not invoked. Some scripts produce meaningful error messages differentiating the 126 and
127 cases. The distinction between exit codes 126 and 127 is based on KornShell practice that
uses 127 when all attempts to exec the utility fail with [ENOENT], and uses 126 when any
attempt to exec the utility fails for any other reason.

Historical implementations of the env utility use the execvp() or execlp() functions defined in the
System Interfaces volume of POSIX.1-202x to invoke the specified utility; this provides better
performance and keeps users from having to escape characters with special meaning to the shell.
Therefore, shell functions, special built-ins, and built-ins that are only provided by the shell are
not found by this type of env implementation. However, env can be implemented as a shell built-
in, in which case it may be able to execute shell functions and built-ins. An application wishing
to ensure execution of a non-built-in utility can use exec in a subshell for this purpose.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 2685

88560

88561

88562

88563

88564

88565

88566

88567

88568

88569

88570

88571

88572

88573

88574

88575

88576

88577

88578

88579

88580

88581

88582

88583

88584

88585

88586

88587

88588

88589

88590

88591

88592

88593

88594

88595

88596

88597

88598

88599

88600

88601

88602

88603

Utilities gettext

NAME
gettext, ngettext — retrieve text string from messages object +

SYNOPSIS +
gettext [-e|-E] [-d textdomain] [textdomain] msgid +

gettext [-e|-E] [-n] -s [-d textdomain] msgid... +

ngettext [-e|-E] [-d textdomain] [textdomain] msgid msgid_plural n +

DESCRIPTION +
The gettext and ngettext utilities shall write to standard output the message string(s) that would +
result from the following calls to functions defined in the System Interfaces volume of +
POSIX.1-202x: +

if (textdomainname == NULL || textdomainname[0] == ’\0’) +
message_string = msgid; +

else { +
setlocale(LC_ALL, ""); +
if (textdomaindir != NULL) +

bindtextdomain(textdomainname, textdomaindir); +
if (msgid_plural == NULL) +

message_string = dgettext(textdomainname, msgid); +
else +

message_string = dngettext(textdomainname, msgid, msgid_plural, n);+
} +

where: +

• The textdomaindir variable is a string containing the value of the TEXTDOMAINDIR +
environment variable, if set and not empty, or is NULL otherwise. +

• The textdomainname variable is a string containing the text domain name obtained from, in +
decreasing order of precedence: +

— The optional operand textdomain, if present +

— The −d textdomain option, if specified +

— The TEXTDOMAIN environment variable, if set and not empty +

If the text domain name cannot be obtained from these sources, the textdomainname +
variable is NULL. +

• If the −s option of gettext is not specified and for the ngettext utility, the msgid variable is a +
string containing: +

— The value of the msgid operand, if the −E option is specified +

— The value of the msgid operand with C-language escape sequences processed (see +
below), if the −e option is specified +

— The value of the msgid operand with C-language escape sequences optionally +
processed (see below), otherwise +

• If the −s option of gettext is specified, the msgid variable is a string containing: +

— The value of each msgid operand in turn, if the −E option is specified or neither the −e +
nor the −E option is specified +

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 2829

94098

94099

94100

94101

94102

94103

94104

94105

94106

94107

94108

94109

94110

94111

94112

94113

94114

94115

94116

94117

94118

94119

94120

94121

94122

94123

94124

94125

94126

94127

94128

94129

94130

94131

94132

94133

94134

94135

94136

94137

94138

gettext Utilities

— The value of each msgid operand in turn with C-language escape sequences +
processed (see below), if the −e option is specified +

• For the gettext utility, the msgid_plural variable is NULL. For the ngettext utility, the +
msgid_plural variable is a string containing: +

— The value of the msgid_plural operand, if the −E option is specified +

— The value of the msgid_plural operand with C-language escape sequences processed +
(see below), if the −e option is specified +

— The value of the msgid_plural operand with C-language escape sequences optionally +
processed (see below), otherwise +

• For the gettext utility, the n variable is 1 (one). For the ngettext utility the n variable is the n +
operand, parsed as an integer as if by using the strtoul() function with a base argument of +
10. +

When C-language escape sequences are processed, they shall be processed as specified for +
character string literals in the ISO C standard, except that universal-character-name escape +
sequences need not be supported. Implementations may also support a <backslash> 'c' escape +
sequence; if supported, the '\c' and all characters following it shall be removed and, if the −s +
option is specified, the behavior shall be as if the −n option is also specified. +

For the ngettext utility, and for the gettext utility if the −s option is not specified, the resulting +
message string shall be written to standard output. If the −s option of gettext is specified, the +
resulting message string for each msgid shall be written to standard output with consecutive +
message strings separated by a single <space> character and, if the −n option is not specified, a +
<newline> shall be written after the last message string. If the −s and −n options are specified, +
the trailing <newline> shall be omitted. +

Under conditions where the textdomainname variable in the above code would be NULL, these +
utilities may write a diagnostic message to standard error and exit with non-zero status. +

OPTIONS +
These utilities shall conform to XBD Section 12.2 (on page 201). +

The following options shall be supported: +

−d textdomain +
Retrieve the translated message from the domain textdomain, if textdomain is not +
specified as an operand. +

−e Process C-language escape sequences in msgid and msgid_plural operands. +

−E Do not process C-language escape sequences in msgid and msgid_plural operands. +

The gettext utility shall also support the following options: +

−n Modify the behavior of the −s option such that a <newline> is not appended to the +
output. +

−s Separate the message strings obtained from each msgid operand with <space> +
characters in the output, and (if −n is not also specified) append a <newline> to the +
output. +

If neither of the mutually exclusive −e and −E options is specified, it is unspecified which is the +
default, except that if the −s option of gettext is specified then −E shall be the default. +

2830 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

94139

94140

94141

94142

94143

94144

94145

94146

94147

94148

94149

94150

94151

94152

94153

94154

94155

94156

94157

94158

94159

94160

94161

94162

94163

94164

94165

94166

94167

94168

94169

94170

94171

94172

94173

94174

94175

94176

94177

94178

94179

Utilities gettext

OPERANDS +
The following operands shall be supported: +

textdomain A text domain name used to retrieve the translated message. This shall override +
the specification by the −d option, if present. +

msgid A key to retrieve the translated message. +

msgid_plural A default plural if no corresponding plural message can be found. +

n A non-negative decimal integer to be used as the n argument to dngettext() (see the +
DESCRIPTION). +

STDIN +
Not used. +

INPUT FILES +
The input files are messages object files (see msgfmt). +

ENVIRONMENT VARIABLES +
The following environment variables shall affect the execution of gettext and ngettext: +

LANG Provide a default value for the internationalization variables that are unset or null. +
(See XBD Section 8.2 (on page 157) for the precedence of internationalization +
variables used to determine the values of locale categories.) +

XSI LANGUAGE Determine the location of messages objects if NLSPATH is not set or the evaluation +
of NLSPATH did not lead to a suitable messages object being found. +

LC_ALL If set to a non-empty string value, override the values of all the other +
internationalization variables. +

LC_MESSAGES +
Determine the locale name used to locate messages objects, and the locale that +
should be used to affect the format and contents of diagnostic messages written to +
standard error. +

XSI NLSPATH Determine the location of messages objects and message catalogs. +

TEXTDOMAIN +
Specify the text domain name. (See XBD Section 3.374 (on page 81).) +

TEXTDOMAINDIR +
XSI Specify the pathname to the messages object hierarchy. NLSPATH shall have +

precedence over TEXTDOMAINDIR. +

ASYNCHRONOUS EVENTS +
Default. +

STDOUT +
See DESCRIPTION. +

STDERR +
The standard error shall be used only for diagnostic messages. +

OUTPUT FILES +
None. +

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 2831

94180

94181

94182

94183

94184

94185

94186

94187

94188

94189

94190

94191

94192

94193

94194

94195

94196

94197

94198

94199

94200

94201

94202

94203

94204

94205

94206

94207

94208

94209

94210

94211

94212

94213

94214

94215

94216

94217

94218

gettext Utilities

EXTENDED DESCRIPTION +
None. +

EXIT STATUS +
The following exit values shall be returned: +

0 Successful completion. +

>0 An error occurred. +

CONSEQUENCES OF ERRORS +
Default. +

+APPLICATION USAGE +
Since it is unspecified which of the −e or −E options is the default, except when the −s option of +
gettext is specified, portable applications need to ensure that −e, −E, or (for gettext) −s is specified +
whenever a msgid or msgid_plural operand contains, or might contain, a <backslash> character. +

Note that, unless the −s option of gettext is specified without −n, the message(s) written to +
standard output are not followed by a <newline>. (Therefore the output only ends with a +
<newline> if the last message ends with one.) +

Both msgid and msgid_plural should be properly quoted for the shell. +

EXAMPLES +
The following examples assume that the following portable messages object source file (dot-po +
file) has been compiled to a valid file mail.mo by the msgfmt utility. See the EXTENDED +
DESCRIPTION section of the msgfmt utility for a description of the dot-po file format. +

msgid "" +
msgstr "" +
"Content-Type: text/plain; charset=utf-8\n" +
"Plural-Forms: nplurals=4; plural=n==1?0: (n>1&&n<=10)?1: (n==0)?2:3;\n" +

msgid "recipient" +
msgid_plural "recipients" +
msgstr[0] "1 recipient" +
msgstr[1] "2 to 10 recipients" +
msgstr[2] "no recipients" +
msgstr[3] "more than 10 recipients" +

msgid "%d attachment\n" +
msgid_plural "%d attachments\n" +
msgstr[0] "1 (%d) attachment\n" +
msgstr[1] "2 to 10 (%d) attachments\n" +
msgstr[2] "no (%d) attachments\n" +
msgstr[3] "more than 10 (%d) attachments\n" +

They also assume that mail.mo is installed in the directory that gettext and ngettext search for the +
current locale. See the OPTIONS and ENVIRONMENT VARIABLES sections above and the +
description of gettext() for details on how this search is performed. +

The command +

ngettext -d mail recipient recipients 0 +

will write "no recipients". +

The command +

2832 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

94219

94220

94221

94222

94223

94224

94225

94226

94227

94228

94229

94230

94231

94232

94233

94234

94235

94236

94237

94238

94239

94240

94241

94242

94243

94244

94245

94246

94247

94248

94249

94250

94251

94252

94253

94254

94255

94256

94257

94258

94259

94260

94261

Utilities gettext

ngettext -d mail recipient recipients 1 +

will write "1 recipient". +

The command +

ngettext -d mail recipient recipients 5 +

will write "2 to 10 recipients". +

The command +

ngettext -d mail recipient recipients 11 +

will write "more than 10 recipients". +

The command +

ngettext -d mail Call Calls 1 +

will write "Call". Note that "Call" is not in the messages object. +

The command +

ngettext -d mail Call Calls 0 +

will write "Calls". +

The command +

ngettext -d mail Call Calls 10 +

will write "Calls". +

The command +

ngettext -ed mail "%d attachment\n" "%d attachments\n" 1 +

will write the same as +

printf "1 (%%d) attachment\n" +

(i.e. "1 (%d) attachment" followed by a <newline> character). The output of ngettext can be +
used as a format string for printf. +

The command +

printf "$(ngettext -ed mail "%d attachment\n" "%d attachments\n" 1)" 10 +

will write the same as +

printf "1 (%d) attachment\n" 10 +

(i.e. "1 (10) attachment" followed by a <newline> character). +

The command +

ngettext -e -d mail "\tsubject\n" "\tsubjects\n" 0 +

will write the same as +

printf "\tsubjects\n" +

(i.e. a <tab> character, followed by "subjects" followed by a <newline> character). Note that +
"\tsubject\n" is not in the messages object. +

The command +

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 2833

94262

94263

94264

94265

94266

94267

94268

94269

94270

94271

94272

94273

94274

94275

94276

94277

94278

94279

94280

94281

94282

94283

94284

94285

94286

94287

94288

94289

94290

94291

94292

94293

94294

94295

94296

gettext Utilities

printf "%s\n" "$(ngettext -E -d mail "subject" "subjects" 0)" +

will write the same as +

printf "subjects\n" +

(i.e. "subjects" followed by a <newline> character). Note that "subject" is not in the +
messages object. +

The command +

gettext -s -d mail "recipient" +

will write "1 recipient" followed by a <newline> character. +

The command +

gettext -s -n -d mail "recipient" +

will write "1 recipient" without a <newline> character. +

RATIONALE +
Historical implementations did not support the '\a' C-language escape sequence. This +
standard requires it to be supported for consistency with other utilities that support the table in +
XBD Chapter 5 (on page 101). +

Unlike other standard utilities, the behavior of gettext and ngettext is not undefined when +
NLSPATH overrides the system default path; see XBD Section 8.2 (on page 157). This is so that +
applications can use these utilities to obtain message strings from messages objects in other +
locations. However, it also means that they need to be implemented in such a way that they do +
not do anything that would result in undefined behavior when they need to write a diagnostic +
message. In particular, they should not use a string obtained from a message catalog or a +
messages object as a format string (or should only do so after checking that the string contains +
the correct conversions). +

FUTURE DIRECTIONS +
None. +

SEE ALSO +
msgfmt , printf +

XBD Chapter 7 (on page 115), Chapter 8 (on page 155), Section 12.2 (on page 201) +

XSH gettext , iconv(), setlocale() +

CHANGE HISTORY +
First released in Issue 8. +

+

2834 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

94297

94298

94299

94300

94301

94302

94303

94304

94305

94306

94307

94308

94309

94310

94311

94312

94313

94314

94315

94316

94317

94318

94319

94320

94321

94322

94323

94324

94325

94326

94327

94328

msgfmt Utilities

NAME
msgfmt — create messages objects from portable messages object source files |

SYNOPSIS |
msgfmt [-cfSv] [-D dir] [-o outputfile] pathname... |

DESCRIPTION |
The msgfmt utility shall create messages object files from portable messages object source files |
(dot-po files). |

A dot-po file contains messages to be output by system commands or by applications. The |
messages in these files should be able to be translated to any language supported by the system. |

The msgfmt utility shall interpret message strings for output as characters according to the |
codeset specified in the dot-po file or, if not present, the current setting of the LC_CTYPE locale |
category. |

OPTIONS |
The msgfmt utility shall conform to XBD Section 12.2 (on page 201). |

The following options shall be supported: |

−c If this option and −v are both specified, msgfmt shall detect and diagnose input file |
abnormalities which might represent translation errors. The msgid and msgstr |
strings shall be compared. It shall be considered abnormal if one string starts or |
ends with a <newline> while the other does not. Also, if the flag c-format appears |
in a "#," comment for a msgid directive (see EXTENDED DESCRIPTION), it shall |
be considered abnormal if the strings do not have the same number of '%' |
conversion specifiers, or if corresponding conversion specifiers take different |
argument types (see XSH fprintf(), on page 909). If an abnormality is detected, the |
exit status shall be non-zero and a diagnostic message shall be output. Additional |
checks beyond those described here may also be performed. These checks may |
produce diagnostics or informational messages and need not affect the exit status. |
If −c is specified without −v or −v is specified without −c, the behavior is |
unspecified. |

−D dir Add dir to the list of directories to search for input files. |

−f Use fuzzy entries in output. If this option is not specified, fuzzy entries shall not be |
included in the output. |

−o outputfile |
Specify the name of an output file to be used instead of the default filename(s) |
specified in EXTENDED DESCRIPTION. All domain domainname directives in the |
dot-po file(s) shall be ignored. |

−S Append the suffix .mo to each generated messages object filename if it does not |
have this suffix. |

−v See −c. |

OPERANDS |
The following operand shall be supported: |

pathname A pathname of a dot-po file. |

3024 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

101620

101621

101622

101623

101624

101625

101626

101627

101628

101629

101630

101631

101632

101633

101634

101635

101636

101637

101638

101639

101640

101641

101642

101643

101644

101645

101646

101647

101648

101649

101650

101651

101652

101653

101654

101655

101656

101657

101658

101659

101660

Utilities msgfmt

STDIN |
Not used. |

INPUT FILES |
The input files shall be text files in the format described in EXTENDED DESCRIPTION. |

ENVIRONMENT VARIABLES |
The following environment variables shall affect the execution of msgfmt: |

LANG Provide a default value for the internationalization variables that are unset or null. |
(See XBD Section 8.2 (on page 157) for the precedence of internationalization |
variables used to determine the values of locale categories.) |

XSI LANGUAGE Determine the location of messages objects if NLSPATH is not set or the evaluation |
of NLSPATH did not lead to a suitable messages object being found. |

LC_ALL If set to a non-empty string value, override the values of all the other |
internationalization variables. |

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as |
characters (for example, single-byte as opposed to multi-byte characters in |
arguments and input files). |

LC_MESSAGES |
Determine the locale name used to locate messages objects, and the locale that |
should be used to affect the format and contents of diagnostic messages written to |
standard error. |

XSI NLSPATH Determine the location of messages objects and message catalogs. |

ASYNCHRONOUS EVENTS |
Default. |

STDOUT |
Not Used. |

STDERR |
The standard error shall be used for diagnostic messages and may also be used for warning |
messages. If the −c and −v options are specified, additional unspecified informational messages |
may be written to standard error. |

OUTPUT FILES |
The format of the created messages object files is unspecified. |

EXTENDED DESCRIPTION |
The msgfmt utility shall accept portable messages object source files (dot-po files) in the |
following format. |

A dot-po file contains zero or more lines, with each non-blank line containing a comment, a |
statement, or a statement continuation. A comment has an unquoted <number-sign> ('#') as |
the first non-<blank> character and ends with the next <newline> character. A statement |
continuation is a double-quoted string on a line by itself, optionally preceded and/or followed |
by <blank> characters, and the string shall be concatenated with the string on the previous |
statement line. If a comment occurs between a statement and a statement continuation, the |
behavior is unspecified. All other comments, except for comments beginning with <number- |
sign><comma> ("#,"), and blank lines shall be ignored. |

The format of a statement is: |

directive value |

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 3025

101661

101662

101663

101664

101665

101666

101667

101668

101669

101670

101671

101672

101673

101674

101675

101676

101677

101678

101679

101680

101681

101682

101683

101684

101685

101686

101687

101688

101689

101690

101691

101692

101693

101694

101695

101696

101697

101698

101699

101700

101701

101702

101703

101704

msgfmt Utilities

The directive starts at the first non-<blank> character of the line and is separated from the value |
by one or more <blank> characters. The value consists of a double-quoted string optionally |
followed by <blank> characters. Zero or more statement continuation lines (see above) can |
follow the statement. The following directives shall be supported: |

domain domainname |
msgid message_identifier |
msgid_plural untranslated_string_plural |
msgstr message_string |
msgstr[index] message_string |

A dot-po file consists of zero or more sections. Each section specifies the messages to be |
processed in a domain. The first directive in each section shall be a domain directive (except for |
the first section which shall behave as if |

domain "messages" |

had been specified if the first directive is not a domain directive). |

The behavior of the domain directive is affected by the options used. See OPTIONS for the |
behavior when the −o option is specified. If the −o option is not specified, all data obtained from |
the non-domain directives in a dot-po section shall be output to the messages object file named |
domainname.mo when the −S option is specified. When the −S option is not specified, it is |
implementation-defined whether domainname or domainname.mo is used. |

If multiple domain directives specify the same domainname, the sections shall be processed as if |
there was only one section that starts with a domain domainname statement which contained the |
statements of the sections, in the same order, excluding all but the first domain domainname |
statement. |

Within each section, there can be a header. A header is identified by having a msgid directive |
with the empty string ("") as the message_identifier immediately followed by a statement |
containing a msgstr directive. The message_string in this msgstr statement in a header shall be |
treated specially. If message_string contains a specification of the form: |

"nplurals=count; plural=expression" |

then count indicates the number of plural forms for messages in that domain, and expression is a |
C-language expression that evaluates to an unsigned integer value which determines the |
msgstr[index] directive to be used. The value of expression is used as the index value. The |
variable n in expression is assigned the value of the n argument to the ngettext(), ngettext_l(), |
dngettext(), dngettext_l(), dcngettext(), and dcngettext_l() functions or of the n operand of the |
ngettext utility before expression is evaluated. The application shall ensure that expression |
evaluates to a non-negative value less than count for all n that can be supplied by the |
aforementioned functions and utility. |

If message_string in the header contains a specification of the form: |

"charset=codeset" |

then codeset indicates the codeset to be used to encode the message strings in this section’s |
domain (overriding LC_CTYPE). If the output string’s codeset is different from the message |
string’s codeset, codeset conversion from the message string’s codeset to the output string’s |
codeset shall be performed by the gettext family of functions and by the gettext and ngettext |
utilities. See XSH gettext and gettext . The output string’s codeset shall be determined by the |
current or specified locale’s codeset. |

3026 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

101705

101706

101707

101708

101709

101710

101711

101712

101713

101714

101715

101716

101717

101718

101719

101720

101721

101722

101723

101724

101725

101726

101727

101728

101729

101730

101731

101732

101733

101734

101735

101736

101737

101738

101739

101740

101741

101742

101743

101744

101745

101746

101747

101748

Utilities msgfmt

Note: It is the responsibility of translators to ensure that the characters they enter into message strings |
in a dot-po file are encoded in the codeset specified in the header. |

If a header is present in a section, the application shall ensure that the header is provided by the |
first msgid directive in that section. |

After the header, if present, zero or more messages are identified by a msgid directive with a |
message_identifier that is not an empty string. Each of these directives start a subsection that is |
used to get a translated message from the gettext family of functions and from the gettext and |
ngettext utilities. If the message_identifier string is the string identified by the gettext family of |
functions msgid argument or by the gettext and ngettext utility msgid operand, this subsection |
specifies how that translation is to be processed. |

If there is only a singular form for the given message_identifier, the application shall ensure that |
the statement containing the msgid directive is immediately followed by a msgstr directive. |

If there are plural forms for the given message_identifier and the header for this section exists and |
contains an |

"nplurals=count; plural=expression" |

specification, the application shall ensure that the statement containing the msgid directive is |
immediately followed by a msgid_plural directive and that each statement containing a |
msgid_plural directive is followed by count statements containing msgstr[index] directives, |
starting with msgstr[0] and ending with msgstr[count−1] in monotonically increasing order. If a |
header for this section does not exist or does not contain an |

"nplurals=count; plural=expression" |

specification, the application shall ensure that no msgid_plural or msgstr[index] directives are |
used in this section. |

For example, if the header’s message_string contains the specification: |

"nplurals=2; plural= n == 1 ? 0 : 1" |

there are two forms in the domain; msgstr[0] is used if n is equal to 1, otherwise msgstr[1] is |
used. For another example, if the header’s message_string contains: |

"nplurals=3; plural= n == 1 ? 0 : n == 2 ? 1 : 2" |

there are three forms in the domain; msgstr[0] is used if n is equal to 1, msgstr[1] is used if n is |
equal to 2, otherwise msgstr[2] is used. |

C-language escape sequences in strings shall be processed as specified for character string |
literals in the ISO C standard, except that universal-character-name escape sequences need not be |
supported. |

Comments in a dot-po file can be in one of the following formats: |

#: reference |
#. utility-added-comments |
#, flag |
#translator-comments (where translator-comments does not begin with '.', ':' or ',') |

A #: reference comment indicates the location(s) of the msgid string in the source files, in |

pathname1:linenumber1 [pathname2:linenumber2 ...] |

format. They can be added, as might "#." prefixed additional comments of unspecified format, |
by the xgettext utility. All comments that do not begin with "#," are informative only and shall |
be silently ignored by the msgfmt utility. In "#," comments the following values for flag can be |

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 3027

101749

101750

101751

101752

101753

101754

101755

101756

101757

101758

101759

101760

101761

101762

101763

101764

101765

101766

101767

101768

101769

101770

101771

101772

101773

101774

101775

101776

101777

101778

101779

101780

101781

101782

101783

101784

101785

101786

101787

101788

101789

101790

101791

msgfmt Utilities

specified: |

fuzzy This flag indicates that the msgstr string might not be a correct translation at this |
point in time. Only the translator can judge if the translation requires further |
modification or is acceptable as is. Once satisfied with the translation, the |
translator should remove this fuzzy flag. If this flag is specified, the msgfmt utility |
shall not generate the entry for the next following msgid in the output message |
catalog, unless the −f option is specified. If other flag comments are specified |
between fuzzy and the msgid, the behavior is unspecified. |

c-format |
no-c-format The c-format flag indicates that the next following msgid string contains a printf() |

format string. When the c-format flag is given and the −c and −v options are |
specified, the msgfmt utility shall perform additional tests to check the validity of |
the translation (see OPTIONS); these additional tests may also be performed if |
neither c-format nor no-c-format is given. When the no-c-format flag is given for a |
string, no additional checks shall be performed for the string. When both the c- |
format and the no-c-format flags are given, the last flag specified takes precedence. |

EXIT STATUS |
The following exit values shall be returned: |

0 Successful completion. |

>0 An error occurred. |

CONSEQUENCES OF ERRORS |
The msgfmt utility need not continue processing later pathname operands when an error |
condition that affects the exit status is detected. It is unspecified whether a messages object file is |
written when checks performed for the −c and −v options fail. |

|APPLICATION USAGE |
The xgettext utility can be used to create template dot-po files from C-language source files. |

Installing messages object files for the POSIX or C locale is not recommended, since they may be |
ignored for the sake of efficiency. |

The first section for each domain in a dot-po file should include a header containing a |

"charset=codeset" |

specification. If this specification is omitted, message conversions in the gettext family of |
functions and in the gettext and ngettext utilities may fail. |

The msgid_plural directive’s untranslated_string_plural string comes from the msgid_plural |
arguments in calls to the ngettext(), ngettext_l(), dngettext(), dngettext_l(), dcngettext(), and |
dcngettext_l() functions when a prototype dot-po file is created by the xgettext utility. These |
strings (and the msgid_plural operands in calls to the ngettext utility) can provide context when a |
translator is modifying a template dot-po file into a dot-po file for a specific language. These |
functions and the ngettext utility do not try to match the msgid_plural arguments or operands |
with anything in a messages object file; they only match the msgid arguments and operands. |

Unlike shell command language strings, double-quoted strings in dot-po files cannot contain a |
literal <newline> character. |

3028 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

101792

101793

101794

101795

101796

101797

101798

101799

101800

101801

101802

101803

101804

101805

101806

101807

101808

101809

101810

101811

101812

101813

101814

101815

101816

101817

101818

101819

101820

101821

101822

101823

101824

101825

101826

101827

101828

101829

101830

101831

101832

Utilities msgfmt

EXAMPLES |
In this example, module1.po and module2.po are portable messages object source files. |

$ cat module1.po |
default domain "messages" |
msgid "" |
msgstr "charset=utf-8" |
msgid "msg 1" |
msgstr "msg 1 translation" |
|
domain "help_domain" |
msgid "" |
msgstr "charset=utf-8" |
msgid "help 2" |
msgstr "help 2 translation" |
|
domain "error_domain" |
msgid "" |
msgstr "charset=utf-8" |
msgid "error 3" |
msgstr "error 3 translation" |

$ cat module2.po |
default domain "messages" |
msgid "" |
msgstr "charset=utf-8" |
msgid "mesg 4" |
msgstr "mesg 4 translation" |
|
domain "error_domain" |
msgid "" |
msgstr "charset=utf-8" |
#, c-format |
msgid "error 5 %s" |
msgstr "error 5 translation %s" |
|
domain "window_domain" |
msgid "" |
msgstr "charset=utf-8" |
msgid "window 6" |
msgstr "window 6 translation" |

$ cat module3.po |
default domain "messages" |
header will be used for the whole output file in the third example |
msgid "" |
msgstr "charset=utf-8" |
msgid "info 0" |
msgstr "info 0 translation" |

$ cat opt_debug.po |
|
domain "debug_domain" |
msgid "debug 8" |

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 3029

101833

101834

101835

101836

101837

101838

101839

101840

101841

101842

101843

101844

101845

101846

101847

101848

101849

101850

101851

101852

101853

101854

101855

101856

101857

101858

101859

101860

101861

101862

101863

101864

101865

101866

101867

101868

101869

101870

101871

101872

101873

101874

101875

101876

101877

101878

101879

101880

101881

101882

msgfmt Utilities

msgstr "debug 8 translation" |

The following command will produce the output files messages.mo, help_domain.mo, and |
error_domain.mo: |

$ msgfmt -S module1.po |

The following command will produce the output files messages.mo, help_domain.mo, |
error_domain.mo, and window_domain.mo: |

$ msgfmt -S module1.po module2.po |

The following command will produce the output file hello.mo: |

$ msgfmt -o hello.mo module3.po opt_debug.po |

RATIONALE |
Some implementations are less strict about the format of dot-po files and simply treat all |
occurrences of one or more white space characters as a separator. The format described in this |
standard is accepted by all known implementations. |

In some implementations, duplicate msgid directives within a domain are ignored, and only an |
entry for the first msgid directive and the following msgid, msgid_plural, msgstr, or |
msgstr[index] directives is created. However, some implementations consider duplicate msgid |
directives within a domain to be an error and do not produce output at all. Consequently this |
standard does not specify the behavior of msgfmt if duplicate msgid directives are encountered |
within one domain. |

FUTURE DIRECTIONS |
None. |

SEE ALSO |
gettext , xgettext |

XSH fprintf(), gettext |

CHANGE HISTORY |
First released in Issue 8. |

|

3030 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

101883

101884

101885

101886

101887

101888

101889

101890

101891

101892

101893

101894

101895

101896

101897

101898

101899

101900

101901

101902

101903

101904

101905

101906

101907

101908

101909

Utilities ngettext

NAME
ngettext — retrieve text string from messages object |

SYNOPSIS |
ngettext [-e|-E] [-d textdomain] [textdomain] msgid msgid_plural n |

DESCRIPTION |
Refer to gettext . |

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 3041

102281

102282

102283

102284

102285

102286

Utilities nice

PA TH Determine the search path used to locate the utility to be invoked. See XBD
Chapter 8 (on page 155).

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
If utility is invoked, the exit status of nice shall be the exit status of utility; otherwise, the nice
utility shall exit with one of the following values:

1-125 An error occurred in the nice utility.

126 The utility specified by utility was found but could not be invoked.

127 The utility specified by utility could not be found.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The only guaranteed portable uses of this utility are:

nice utility
Run utility with the default higher or equal nice value.

nice −n <positive integer> utility
Run utility with a higher nice value.

On some implementations they have no discernible effect on the invoked utility and on some
others they are exactly equivalent.

Historical systems have frequently supported the <positive integer> up to 20. Since there is no
error penalty associated with guessing a number that is too high, users without access to the
system conformance document (to see what limits are actually in place) could use the historical 1
to 20 range or attempt to use very large numbers if the job should be truly low priority.

The nice value of a process can be displayed using the command:

ps -o nice

The command, env, nice, nohup, time, timeout, and xargs utilities have been specified to use exit +
code 127 if an error occurs so that applications can distinguish ``failure to find a utility’’ from
``invoked utility exited with an error indication’’. The value 127 was chosen because it is not
commonly used for other meanings; most utilities use small values for ``normal error
conditions’’ and the values above 128 can be confused with termination due to receipt of a
signal. The value 126 was chosen in a similar manner to indicate that the utility could be found,
but not invoked. Some scripts produce meaningful error messages differentiating the 126 and
127 cases. The distinction between exit codes 126 and 127 is based on KornShell practice that
uses 127 when all attempts to exec the utility fail with [ENOENT], and uses 126 when any

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 3043

102329

102330

102331

102332

102333

102334

102335

102336

102337

102338

102339

102340

102341

102342

102343

102344

102345

102346

102347

102348

102349

102350

102351

102352

102353

102354

102355

102356

102357

102358

102359

102360

102361

102362

102363

102364

102365

102366

102367

102368

102369

102370

102371

nohup Utilities

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

XSI NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

PA TH Determine the search path that is used to locate the utility to be invoked. See XBD
Chapter 8 (on page 155).

ASYNCHRONOUS EVENTS
The nohup utility shall take the standard action for all signals except that SIGHUP shall be
ignored.

STDOUT
If the standard output is not a terminal, the standard output of nohup shall be the standard
output generated by the execution of the utility specified by the operands. Otherwise, nothing
shall be written to the standard output.

STDERR
If the standard output is a terminal, a message shall be written to the standard error, indicating
the name of the file to which the output is being appended. The name of the file shall be either
nohup.out or $HOME/nohup.out.

OUTPUT FILES
Output written by the named utility is appended to the file nohup.out (or $HOME/nohup.out),
if the conditions hold as described in the DESCRIPTION.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

126 The utility specified by utility was found but could not be invoked.

127 An error occurred in the nohup utility or the utility specified by utility could not be
found.

Otherwise, the exit status of nohup shall be that of the utility specified by the utility operand.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The command, env, nice, nohup, time, timeout, and xargs utilities have been specified to use exit +
code 127 if an error occurs so that applications can distinguish ``failure to find a utility’’ from
``invoked utility exited with an error indication’’. The value 127 was chosen because it is not
commonly used for other meanings; most utilities use small values for ``normal error
conditions’’ and the values above 128 can be confused with termination due to receipt of a
signal. The value 126 was chosen in a similar manner to indicate that the utility could be found,
but not invoked. Some scripts produce meaningful error messages differentiating the 126 and
127 cases. The distinction between exit codes 126 and 127 is based on KornShell practice that
uses 127 when all attempts to exec the utility fail with [ENOENT], and uses 126 when any
attempt to exec the utility fails for any other reason.

3056 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

102772

102773

102774

102775

102776

102777

102778

102779

102780

102781

102782

102783

102784

102785

102786

102787

102788

102789

102790

102791

102792

102793

102794

102795

102796

102797

102798

102799

102800

102801

102802

102803

102804

102805

102806

102807

102808

102809

102810

102811

102812

102813

102814

102815

Utilities readlink

NAME
readlink — display the contents of a symbolic link |

SYNOPSIS |
readlink [-n] file |

DESCRIPTION |
If the file operand names a symbolic link, the readlink utility shall not follow the symbolic link |
when resolving file and shall write the contents of the symbolic link to standard output. If the −n |
option is not specified, the output to standard output shall be followed by a <newline> |
character. |

If file does not name a symbolic link, readlink shall write a diagnostic message to standard error |
and exit with non-zero status. |

OPTIONS |
The readlink utility shall conform to XBD Section 12.2 (on page 201). |

The following option shall be supported: |

−n Do not output a trailing <newline> character. |

OPERANDS |
The following operand shall be supported: |

file A pathname of a symbolic link to be read. |

STDIN |
Not used. |

INPUT FILES |
None. |

ENVIRONMENT VARIABLES |
The following environment variables shall affect the execution of readlink: |

LANG Provide a default value for the internationalization variables that are unset or null. |
(See XBD Section 8.2 (on page 157) for the precedence of internationalization |
variables used to determine the values of locale categories.) |

LC_ALL If set to a non-empty string value, override the values of all the other |
internationalization variables. |

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as |
characters (for example, single-byte as opposed to multi-byte characters in |
arguments and input files). |

LC_MESSAGES |
Determine the locale that should be used to affect the format and contents of |
diagnostic messages written to standard error. |

XSI NLSPATH Determine the location of messages objects and message catalogs. |

ASYNCHRONOUS EVENTS |
Default. |

STDOUT |
See DESCRIPTION. |

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 3153

106666

106667

106668

106669

106670

106671

106672

106673

106674

106675

106676

106677

106678

106679

106680

106681

106682

106683

106684

106685

106686

106687

106688

106689

106690

106691

106692

106693

106694

106695

106696

106697

106698

106699

106700

106701

106702

106703

106704

106705

readlink Utilities

STDERR |
The standard error shall be used only for diagnostic messages. |

OUTPUT FILES |
None. |

EXTENDED DESCRIPTION |
None. |

EXIT STATUS |
The following exit values shall be returned: |

0 Successful completion. |

>0 An error occurred. |

CONSEQUENCES OF ERRORS |
Default. |

|APPLICATION USAGE |
None. |

EXAMPLES |
None. |

RATIONALE |
The readlink utility was added because using ls −l to obtain the contents of a symbolic link is |
difficult if the output includes more than one occurrence of the string " -> ". |

The −f option found in many implementations was not included, as the realpath utility provides |
equivalent functionality with a choice of behaviors. |

FUTURE DIRECTIONS |
None. |

SEE ALSO |
ln , ls , realpath |

XBD Chapter 8 (on page 155), Section 12.2 (on page 201) |

XSH readlink() |

CHANGE HISTORY |
First released in Issue 8. |

|
|

3154 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

106706

106707

106708

106709

106710

106711

106712

106713

106714

106715

106716

106717

106718

106719

106720

106721

106722

106723

106724

106725

106726

106727

106728

106729

106730

106731

106732

106733

106734

106735

Utilities realpath

|
|

|

NAME |
realpath — resolve a pathname |

SYNOPSIS |
realpath [-E|-e] file |

DESCRIPTION |
The realpath utility shall canonicalize the pathname specified by the file operand as follows: |

If a call to the realpath() function with the specified pathname as its first argument would |
succeed, the canonicalized pathname shall be the pathname that would be returned by that |
realpath() call. Otherwise: |

• If the −e option is specified, the canonicalization shall fail. |

• If the −E option is specified, then if a call to the realpath() function with the specified |
pathname as its first argument would encounter an error condition other than [ENOENT], |
the canonicalization shall fail; if the call would encounter an [ENOENT] error, realpath shall |
expand all symbolic links that would be encountered in an attempt to resolve the specified |
pathname using the algorithm specified in XBD Section 4.14 (on page 93), except that any |
trailing <slash> characters that are not also leading <slash> characters shall be ignored. If |
this expansion succeeds and the path prefix of the expanded pathname resolves to an |
existing directory, the canonicalized pathname shall be the expanded pathname. In all |
other cases, the canonicalization shall fail. If the expanded pathname is not empty, does not |
begin with a <slash>, and has exactly one pathname component, it shall be treated as if it |
had a path prefix of "./". |

• If no options are specified, realpath shall canonicalize the specified pathname in an |
unspecified manner such that the resulting absolute pathname does not contain any |
components that refer to files of type symbolic link and does not contain any components |
that are dot or dot-dot. |

Upon successful canonicalization, realpath shall write the canonicalized pathname, followed by a |
<newline> character, to standard output. |

If canonicalization fails, or the canonicalized pathname is empty, nothing shall be written to |
standard output, a diagnostic message shall be written to standard error, and realpath shall exit |
with non-zero status. |

OPTIONS |
The realpath utility shall conform to XBD Section 12.2 (on page 201). |

The following options shall be supported: |

−E Do not treat it as an error if attempting to resolve the last component of the |
canonicalized form of the file operand results in an [ENOENT] error condition. |

−e Tr eat it as an error if attempting to resolve the last component of the canonicalized |
form of the file operand results in an [ENOENT] error condition. |

Specifying more than one of the mutually-exclusive options −E and −e shall not be considered an |
error. The last option specified shall determine the behavior of the utility. |

OPERANDS |
The following operand shall be supported: |

file A pathname to be canonicalized. |

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 3155

106736

106737

106738

106739

106740

106741

106742

106743

106744

106745

106746

106747

106748

106749

106750

106751

106752

106753

106754

106755

106756

106757

106758

106759

106760

106761

106762

106763

106764

106765

106766

106767

106768

106769

106770

106771

106772

106773

106774

106775

106776

106777

realpath Utilities

STDIN |
Not used. |

INPUT FILES |
None. |

ENVIRONMENT VARIABLES |
The following environment variables shall affect the execution of realpath: |

LANG Provide a default value for the internationalization variables that are unset or null. |
(See XBD Section 8.2 (on page 157) for the precedence of internationalization |
variables used to determine the values of locale categories.) |

LC_ALL If set to a non-empty string value, override the values of all the other |
internationalization variables. |

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as |
characters (for example, single-byte as opposed to multi-byte characters in |
arguments and input files). |

LC_MESSAGES |
Determine the locale that should be used to affect the format and contents of |
diagnostic messages written to standard error. |

XSI NLSPATH Determine the location of messages objects and message catalogs. |

ASYNCHRONOUS EVENTS |
Default. |

STDOUT |
See DESCRIPTION. |

STDERR |
The standard error shall be used only for diagnostic messages. |

OUTPUT FILES |
None. |

EXTENDED DESCRIPTION |
None. |

EXIT STATUS |
The following exit values shall be returned: |

0 Successful completion. |

>0 An error occurred. |

CONSEQUENCES OF ERRORS |
Default. |

3156 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

106778

106779

106780

106781

106782

106783

106784

106785

106786

106787

106788

106789

106790

106791

106792

106793

106794

106795

106796

106797

106798

106799

106800

106801

106802

106803

106804

106805

106806

106807

106808

106809

106810

106811

Utilities realpath

|APPLICATION USAGE |
If neither the −e nor the −E option is specified, some implementations behave as if −e had been |
specified and others as if −E had been specified, but there are also implementations where the |
behavior differs from both of these. For example, the mksh shell has an internal implementation |
of realpath that canonicalizes /dir/regular_file/.. to /dir, whereas the realpath() function would |
return an [ENOTDIR] error in this case. Portable applications should always specify either −e or |
−E. |

EXAMPLES |
None. |

RATIONALE |
The realpath utility was added in preference to a −f option found in some implementations of the |
readlink utility because it allows the application to specify whether or not a missing final |
component is to be treated as an error. |

The behavior with the −E option when file does not resolve (with symbolic links followed) to an |
existing file is not the same as simply calling realpath() with the path prefix of the file operand |
and writing the resulting pathname, a <slash>, and the last component of file to standard output. |
For example, if /tmp/nofile does not exist, and file is A/B where A is an existing directory and B |
is a symbolic link to /tmp/nofile, realpath with −E will output /tmp/nofile, but if B is a symbolic |
link to /tmp/nofile/foo, realpath with −E will treat this as an error. In both cases |
realpath("A/B") would fail with errno set to [ENOENT]. Even though realpath("A") |
would succeed, in neither case is anything ending /B the result. |

Trailing <slash> characters (that follow a non-<slash>) are handled differently with −E than with |
−e. With −e they are handled as for the realpath() function. With −E they are sometimes |
effectively ignored, and they are never included in the output. For example, if /tmp/nofile does |
not exist and /tmp/regfile is an existing regular file: |

$ realpath -E /tmp/nofile/ |
/tmp/nofile |
$ realpath -E /tmp/regfile/ |
realpath: /tmp/regfile/: Not a directory |

Although the behavior of the realpath utility is specified by reference to the realpath() function, |
which is part of the XSI option, non-XSI implementations that do not support realpath() are |
nevertheless required to implement realpath in accordance with the requirements described in |
this standard for realpath(). |

FUTURE DIRECTIONS |
None. |

SEE ALSO |
ln , ls , pwd , readlink |

XBD Chapter 8 (on page 155), Section 12.2 (on page 201) |

XSH Section 2.3 (on page 475), realpath() |

CHANGE HISTORY |
First released in Issue 8. |

|

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 3157

106812

106813

106814

106815

106816

106817

106818

106819

106820

106821

106822

106823

106824

106825

106826

106827

106828

106829

106830

106831

106832

106833

106834

106835

106836

106837

106838

106839

106840

106841

106842

106843

106844

106845

106846

106847

106848

106849

106850

106851

106852

106853

Utilities time

127 The utility specified by utility could not be found.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The command, env, nice, nohup, time, timeout, and xargs utilities have been specified to use exit +
code 127 if an error occurs so that applications can distinguish ``failure to find a utility’’ from
``invoked utility exited with an error indication’’. The value 127 was chosen because it is not
commonly used for other meanings; most utilities use small values for ``normal error
conditions’’ and the values above 128 can be confused with termination due to receipt of a
signal. The value 126 was chosen in a similar manner to indicate that the utility could be found,
but not invoked. Some scripts produce meaningful error messages differentiating the 126 and
127 cases. The distinction between exit codes 126 and 127 is based on KornShell practice that
uses 127 when all attempts to exec the utility fail with [ENOENT], and uses 126 when any
attempt to exec the utility fails for any other reason.

EXAMPLES
It is frequently desirable to apply time to pipelines or lists of commands. This can be done by
placing pipelines and command lists in a single file; this file can then be invoked as a utility, and
the time applies to everything in the file.

Alternatively, the following command can be used to apply time to a complex command:

time sh -c 'complex-command-line'

RATIONALE
When the time utility was originally proposed to be included in the ISO POSIX-2: 1993 standard,
questions were raised about its suitability for inclusion on the grounds that it was not useful for
conforming applications, specifically:

• The underlying CPU definitions from the System Interfaces volume of POSIX.1-202x are
vague, so the numeric output could not be compared accurately between systems or even
between invocations.

• The creation of portable benchmark programs was outside the scope this volume of
POSIX.1-202x.

However, time does fit in the scope of user portability. Human judgement can be applied to the
analysis of the output, and it could be very useful in hands-on debugging of applications or in
providing subjective measures of system performance. Hence it has been included in this
volume of POSIX.1-202x.

The default output format has been left unspecified because historical implementations differ
greatly in their style of depicting this numeric output. The −p option was invented to provide
scripts with a common means of obtaining this information.

In the KornShell, time is a shell reserved word that can be used to time an entire pipeline, rather
than just a simple command. The POSIX definition has been worded to allow this
implementation. Consideration was given to invalidating this approach because of the historical
model from the C shell and System V shell. However, since the System V time utility historically
has not produced accurate results in pipeline timing (because the constituent processes are not
all owned by the same parent process, as allowed by POSIX), it did not seem worthwhile to
break historical KornShell usage.

The term utility is used, rather than command, to highlight the fact that shell compound
commands, pipelines, special built-ins, and so on, cannot be used directly. However, utility
includes user application programs and shell scripts, not just the standard utilities.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 3265

110894

110895

110896

110897

110898

110899

110900

110901

110902

110903

110904

110905

110906

110907

110908

110909

110910

110911

110912

110913

110914

110915

110916

110917

110918

110919

110920

110921

110922

110923

110924

110925

110926

110927

110928

110929

110930

110931

110932

110933

110934

110935

110936

110937

110938

110939

Utilities timeout

NAME
timeout — execute a utility with a time limit |

SYNOPSIS |
timeout [-fp] [-k time] [-s signal_name] duration utility [argument...] |

DESCRIPTION |
The timeout utility shall execute the utility named by the utility operand, with arguments |
supplied as the argument operands (if any), in a child process. If the value of the duration |
operand is non-zero and the child process has not terminated after the specified time period, |
timeout shall send the signal specified by the −s option, or the SIGTERM signal if −s is not given. |

If the −f option is specified, the signal shall be sent only to the child process. Otherwise, it is |
implementation defined which one of the following methods is used to signal additional |
processes: |

• The timeout utility ensures it is a process group leader before creating the child process |
which executes the utility, in which case it shall send the signal to its process group. |

• The timeout utility arranges for any descendents of the child process that are orphaned to |
have their parent process changed to the timeout utility, in which case the signal shall be |
sent to the child process and all of its descendents. |

If the subsequent wait status of the child process shows that it was stopped by a signal, a |
SIGCONT signal shall also be sent in the same manner as the first signal; otherwise, a SIGCONT |
signal may be sent in the same manner. |

If the −k option is specified, and the child process created to execute the utility still has not |
terminated after the time period specified by the time option-argument has elapsed since the first |
signal was sent, timeout shall send a SIGKILL signal in the same manner as the first signal. If |
timeout receives a signal and propagates it to the child process (see ASYNCHRONOUS EVENTS |
below), this shall be treated as the first signal. |

OPTIONS |
The timeout utility shall conform to XBD Section 12.2 (on page 201). |

The following options shall be supported: |

−f Only time out the utility itself, not its descendents. |

−k time Send a SIGKILL signal if the child process created to execute the utility has not |
terminated after the time period specified by time has elapsed since the first signal |
was sent. The value of time shall be interpreted as specified for the duration |
operand (see OPERANDS below). |

−p Always preserve (mimic) the wait status of the executed utility, even if the time |
limit was reached. |

−s signal_name |
Specify the signal to send when the time limit is reached, using one of the symbolic |
names defined in the <signal.h> header. Values of signal_name shall be recognized |
in a case-independent fashion, without the SIG prefix. By default, SIGTERM shall |
be sent. |

OPERANDS |
The following operands shall be supported: |

duration The maximum amount of time to allow the utility to run, specified as a decimal |
number with an optional decimal fraction and an optional suffix, which can be: |

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 3267

110958

110959

110960

110961

110962

110963

110964

110965

110966

110967

110968

110969

110970

110971

110972

110973

110974

110975

110976

110977

110978

110979

110980

110981

110982

110983

110984

110985

110986

110987

110988

110989

110990

110991

110992

110993

110994

110995

110996

110997

110998

110999

111000

111001

timeout Utilities

s seconds |

m minutes |

h hours |

d days |

If a decimal fraction is present, the application shall ensure that it is separated from |
the units by a <period>. If no suffix is present, the value shall specify seconds. |

If the value is zero, timeout shall not enforce a time limit. |

utility The name of a utility that is to be executed. If the utility operand names any of the |
special built-in utilities in Section 2.14 (on page 2382), the results are undefined. |

argument Any string to be supplied as an argument when executing the utility named by the |
utility operand. |

STDIN |
Not used. |

INPUT FILES |
None. |

ENVIRONMENT VARIABLES |
The following environment variables shall affect the execution of timeout: |

LANG Provide a default value for the internationalization variables that are unset or null. |
(See XBD Section 8.2 (on page 157) for the precedence of internationalization |
variables used to determine the values of locale categories.) |

LC_ALL If set to a non-empty string value, override the values of all the other |
internationalization variables. |

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as |
characters (for example, single-byte as opposed to multi-byte characters in |
arguments and input files). |

LC_MESSAGES |
Determine the locale that should be used to affect the format and contents of |
diagnostic messages written to standard error. |

XSI NLSPATH Determine the location of messages objects and message catalogs. |

PA TH Determine the search path that is used to locate the utility to be executed. See XBD |
Section 8.3 (on page 162). |

ASYNCHRONOUS EVENTS |
The default behavior specified in Section 1.4 (on page 2328) shall apply, except that: |

• The timeout utility shall ignore SIGTTIN and SIGTTOU signals. |

• The timeout utility may alter the disposition of SIGALRM if the inherited disposition was |
for it to be ignored. |

• If the signal specified with the −s option, or any signal whose default action is to terminate |
the process, is delivered to the timeout utility, then unless the signal is SIGKILL or |
SIGSTOP, the timeout utility shall immediately send the same signal to the process or |
processes to which it would send a signal when the time limit is reached. If the delivered |
signal is SIGALRM, timeout may behave as if the time limit had been reached instead of |
sending SIGALRM. |

3268 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

111002

111003

111004

111005

111006

111007

111008

111009

111010

111011

111012

111013

111014

111015

111016

111017

111018

111019

111020

111021

111022

111023

111024

111025

111026

111027

111028

111029

111030

111031

111032

111033

111034

111035

111036

111037

111038

111039

111040

111041

111042

111043

Utilities timeout

• If the −f option is not specified, then if timeout sends a signal to its process group, it shall |
briefly change the disposition of that signal to ignored while it sends the signal, so that it |
does not receive the signal itself. |

With the single exception of the signal specified with the −s option, or SIGTERM if −s is not |
used, all signal dispositions inherited by the utility specified by the utility operand shall be the |
same as the disposition that timeout inherited. |

STDOUT |
Not used. |

STDERR |
The standard error shall be used only for diagnostic messages. |

OUTPUT FILES |
None. |

EXTENDED DESCRIPTION |
None. |

EXIT STATUS |
If the −p option is not specified and the time limit was reached: |

• If the −k option was not specified or the utility terminated before the time period specified |
by the time option-argument elapsed since the first signal was sent, the exit status shall be |
124. |

• If the −k option was specified and the SIGKILL signal was sent, it is unspecified whether |
the exit status is 124 or the behavior is as if the −p option was specified. |

Otherwise, if the executed utility terminated by exiting, the exit status of timeout shall be that of |
the utility; if the utility was terminated by a signal, timeout shall terminate itself with the same |
signal while ensuring that a core image is not created. |

If an error occurs, the following exit values shall be returned: |

125 An error other than the two described below occurred. |

126 The utility specified by utility was found but could not be executed. |

127 The utility specified by utility could not be found. |

CONSEQUENCES OF ERRORS |
Default. |

|APPLICATION USAGE |
Unlike the kill utility, the −s option of timeout is not required to accept the symbolic name 0 to |
represent signal value zero. |

When the value of duration is zero, timeout does not time out the utility, but it does still perform |
signal propagation (including to descendents of the utility if −f is not specified). |

Regardless of locale, the <period> character (the decimal-point character of the POSIX locale) is |
the decimal-point character recognized in the duration operand and the time option-argument. |

The command, env, nice, nohup, time, timeout, and xargs utilities have been specified to use exit |
code 127 if a utility to be invoked cannot be found, so that applications can distinguish ``failure |
to find a utility’’ from ``invoked utility exited with an error indication’’. The value 127 was |
chosen because it is not commonly used for other meanings; most utilities use small values for |
``normal error conditions’’ and the values above 128 can be confused with termination due to |
receipt of a signal. The value 126 was chosen in a similar manner to indicate that the utility could |

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 3269

111044

111045

111046

111047

111048

111049

111050

111051

111052

111053

111054

111055

111056

111057

111058

111059

111060

111061

111062

111063

111064

111065

111066

111067

111068

111069

111070

111071

111072

111073

111074

111075

111076

111077

111078

111079

111080

111081

111082

111083

111084

111085

111086

timeout Utilities

be found, but not invoked. Some scripts produce meaningful error messages differentiating the |
126 and 127 cases. The distinction between exit codes 126 and 127 is based on KornShell practice |
that uses 127 when all attempts to exec the utility fail with [ENOENT], and uses 126 when any |
attempt to exec the utility fails for any other reason. The timeout utility extends these special exit |
codes to 125 and 124, with the meanings described in EXIT STATUS. A timeout exit status below |
124 can only result from passing through the exit status of the executed utility. |

EXAMPLES |
None. |

RATIONALE |
Some timeout implementations make themselves a process group leader (when −f is not used) in |
order to be able to send signals to descendents of the child process. However, using this method |
means that any descendents which change their process group do not receive the signal. To |
ensure all descendents receive the signal, some implementations instead make use of a feature |
whereby descendents that are orphaned have their parent process changed to the timeout |
utility—that is, timeout becomes their ``reaper ’’—together with the ability of a reaper to send a |
signal to all of its descendents. |

Some historical timeout implementations exited with status 128+signal_number when the child |
process was terminated by a signal before the time limit was reached (or when −p was used). |
This is reasonable when timeout is invoked from a shell which sets $? to 128+signal_number, but |
not all shells do that. In particular, the KornShell sets $? to 256+signal_number and so an exit |
status of 128+signal_number from timeout would be misleading. In order to avoid any possible |
ambiguity, this standard requires that timeout mimics the wait status of the child process by |
terminating itself with the same signal. When it does this it needs to ensure that it does not |
create a core image, otherwise it could overwrite one created by the invoked utility. |

The timeout utility ignores SIGTTIN and SIGTTOU so that if the utility it executes reads from or |
writes to the controlling terminal and this generates a SIGTTIN or SIGTTOU for the process |
group, timeout will not be stopped by the signal and can still time out the utility. |

Some historical timeout implementations always set the disposition for SIGTTIN and SIGTTOU |
in the child process to default, even if these signals were inherited as ignored. This could result |
in processes being stopped unexpectedly. Likewise, they did not ensure that for signals they |
caught, the disposition inherited by the executed utility was the same as the disposition that was |
inherited by timeout. This meant that, for example, if timeout was used in a script that was run |
with nohup, the utility executed by timeout would unexpectedly not be protected from SIGHUP. |
This standard requires that all signal dispositions inherited by the utility specified by the utility |
operand are the same as the disposition that timeout inherited, with the single exception of the |
signal that timeout sends when the time limit is reached, which needs to be inherited as default |
in order for the timeout to take effect (without resorting to SIGKILL if −k is specified). |

Some historical timeout implementations only propagated a subset of the signals whose default |
action is to terminate the process to the child process if one was delivered to the timeout utility. |
Propagating these signals is beneficial, as otherwise termination of the timeout utility by a signal |
results in the utility it executed being left running indefinitely (unless it also received the signal, |
for example a terminal-generated SIGINT). There is no reason to select a subset of these signals |
to be propagated, therefore this standard requires them all to be propagated (except SIGKILL, |
which cannot). In the event that a user wants to prevent the utility being timed out, sending |
timeout a SIGKILL can be used for this purpose. |

3270 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

111087

111088

111089

111090

111091

111092

111093

111094

111095

111096

111097

111098

111099

111100

111101

111102

111103

111104

111105

111106

111107

111108

111109

111110

111111

111112

111113

111114

111115

111116

111117

111118

111119

111120

111121

111122

111123

111124

111125

111126

111127

111128

111129

111130

111131

Utilities timeout

FUTURE DIRECTIONS |
None. |

SEE ALSO |
kill |

XBD Chapter 8 (on page 155), Section 12.2 (on page 201), <signal.h> (on page 329) |

CHANGE HISTORY |
First released in Issue 8. |

|

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 3271

111132

111133

111134

111135

111136

111137

111138

111139

Utilities xargs

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 All invocations of utility returned exit status zero.

1-125 A command line meeting the specified requirements could not be assembled, one or
more of the invocations of utility returned a non-zero exit status, or some other error
occurred.

126 The utility specified by utility was found but could not be invoked.

127 The utility specified by utility could not be found.

CONSEQUENCES OF ERRORS
If a command line meeting the specified requirements cannot be assembled, the utility cannot be
invoked, an invocation of the utility is terminated by a signal, or an invocation of the utility exits
with exit status 255, the xargs utility shall write a diagnostic message and exit without
processing any remaining input.

APPLICATION USAGE
The 255 exit status allows a utility being used by xargs to tell xargs to terminate if it knows no
further invocations using the current data stream will succeed. Thus, utility should explicitly exit
with an appropriate value to avoid accidentally returning with 255.

Note that since input is parsed as lines, <blank> characters separate arguments, and
<backslash>, <apostrophe>, and double-quote characters are used for quoting, if xargs is used to
bundle the output of commands like find dir −print or ls into commands to be executed,
unexpected results are likely if any filenames contain <blank>, <newline>, or quoting characters.
This can be solved by using find to call a script that converts each file found into a quoted string
that is then piped to xargs, but in most cases it is preferable just to have find do the argument
aggregation itself by using −exec with a '+' terminator instead of ';'. Note that the quoting
rules used by xargs are not the same as in the shell. They were not made consistent here because
existing applications depend on the current rules. An easy (but inefficient) method that can be
used to transform input consisting of one argument per line into a quoted form that xargs
interprets correctly is to precede each non-<newline> character with a <backslash>. More
efficient alternatives are shown in Example 2 and Example 5 below.

On implementations with a large value for {ARG_MAX}, xargs may produce command lines
longer than {LINE_MAX}. For invocation of utilities, this is not a problem. If xargs is being used
to create a text file, users should explicitly set the maximum command line length with the −s
option.

The command, env, nice, nohup, time, timeout, and xargs utilities have been specified to use exit +
code 127 if an error occurs so that applications can distinguish ``failure to find a utility’’ from
``invoked utility exited with an error indication’’. The value 127 was chosen because it is not
commonly used for other meanings; most utilities use small values for ``normal error
conditions’’ and the values above 128 can be confused with termination due to receipt of a
signal. The value 126 was chosen in a similar manner to indicate that the utility could be found,
but not invoked. Some scripts produce meaningful error messages differentiating the 126 and
127 cases. The distinction between exit codes 126 and 127 is based on KornShell practice that
uses 127 when all attempts to exec the utility fail with [ENOENT], and uses 126 when any
attempt to exec the utility fails for any other reason.

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 3421

116531

116532

116533

116534

116535

116536

116537

116538

116539

116540

116541

116542

116543

116544

116545

116546

116547

116548

116549

116550

116551

116552

116553

116554

116555

116556

116557

116558

116559

116560

116561

116562

116563

116564

116565

116566

116567

116568

116569

116570

116571

116572

116573

116574

116575

Utilities xgettext

NAME
xgettext — extract gettext call strings from C-language source files (DEVELOPMENT) |

SYNOPSIS |
CD xgettext [-j] [-n] [-d default-domain] [-K keyword-spec]... |

[-p pathname] file... |

xgettext -a [-n] [-d default-domain] [-p pathname] |
[-x exclude-file] file... |

|

DESCRIPTION |
The xgettext utility shall automate the creation of portable messages object source files (dot-po |
files). A dot-po file shall contain copies of string literals that are found in C-language source |
code in files specified by file operands. The dot-po file can be used as input to the msgfmt utility, |
to produce a messages object file that can be used by applications. |

The xgettext utility shall write msgid argument strings that are passed as string literals in |
gettext(), gettext_l(), ngettext(), and ngettext_l() calls in C-language source code to the default |
output file; this file shall be named messages.po unless it is changed by the −d option. The |
xgettext utility shall also write msgid argument strings that are passed as string literals in |
dcgettext(), dcgettext_l(), dcngettext(), dcngettext_l(), dgettext(), dgettext_l(), dngettext(), and |
dngettext_l() calls either to the default output file or to the output file domainname.po where |
domainname is the first parameter to the call; it is implementation-defined which of those output |
files is used. A msgid directive shall precede each msgid argument string. For the functions that |
have a msgid_plural argument, a msgid_plural directive followed by that argument string shall |
also be written directly after the corresponding msgid directive. A msgstr directive or |
msgstr[index] directives with an empty string shall be written after the corresponding msgid or |
msgid_plural directive, respectively. The function names that xgettext searches for can be |
changed using the −K option. |

The first directive in each created dot-po file shall be a domain directive giving the associated |
domain name, except that this directive is optional in the default output file. |

If the −p pathname option is specified, xgettext shall create the dot-po files in the pathname |
directory. Otherwise, the dot-po files shall be created in the current working directory. |

The msgid values shall be in the same order that the strings are extracted from each file and |
subsections with duplicate msgid values shall be written to the dot-po files as comment lines. |

OPTIONS |
The xgettext utility shall conform to XBD Section 12.2 (on page 201). |

The following options shall be supported: |

−a Extract all strings, not just those found in calls to gettext family functions. Only one |
dot-po file shall be created. |

−d default-domain |
Name the default output file default-domain.po instead of messages.po. |

−j Join messages from C-language source files with existing dot-po files. For each |
dot-po file that xgettext writes messages to, if the file does not exist, it shall be |
created. New messages shall be appended but any subsections with duplicate |
msgid values except the first (including msgid values found in an existing dot-po |
file) shall either be commented out or omitted in the resulting dot-po file; if |
omitted, a warning message may be written to standard error. Domain directives |
in the existing dot-po files shall be ignored; the assumption is that all previous |

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 3425

116690

116691

116692

116693

116694

116695

116696

116697

116698

116699

116700

116701

116702

116703

116704

116705

116706

116707

116708

116709

116710

116711

116712

116713

116714

116715

116716

116717

116718

116719

116720

116721

116722

116723

116724

116725

116726

116727

116728

116729

116730

116731

116732

116733

116734

116735

xgettext Utilities

msgid values belong to the same domain. The behavior is unspecified if an existing |
dot-po file was not created by xgettext or has been modified by another application. |

−K keyword-spec |
Specify an additional keyword to be looked for: |

• If keyword-spec is an empty string, this shall disable the use of default |
keywords for the gettext family of functions. |

• If keyword-spec is a C identifier, xgettext shall look for strings in the first |
argument of each call to the function or macro keyword-spec. |

• If keyword-spec is of the form id:argnum then xgettext shall treat the argnum-th |
argument of a call to the function or macro id as the msgid argument, where |
argnum 1 is the first argument. |

• If keyword-spec is of the form id:argnum1,argnum2 then xgettext shall treat |
strings in the argnum1-th argument and in the argnum2-th argument of a call |
to the function or macro id as the msgid and msgid_plural arguments, |
respectively. |

For all mentioned forms, the application shall ensure that if argnum2 is given, it is |
not equal to argnum1. All numeric values shall be converted as specified in item 6 |
in XBD Section 12.1 (on page 199). |

−n Add comment lines to the output file indicating pathnames and line numbers in |
the source files where each extracted string is encountered. These lines shall |
appear before each msgid directive. Such comments should have the format: |

#: pathname1:linenumber1 [pathname2:linenumber2...] |

−p pathname |
Create output files in the directory specified by pathname instead of in the current |
working directory. |

−x exclude-file |
Specify a file containing strings that shall not be extracted from the input files. The |
format of exclude-file is identical to that of a dot-po file. However, only statements |
containing msgid directives in exclude-file shall be used. All other statements shall |
be ignored. |

OPERANDS |
The following operand shall be supported: |

file A pathname of an input file containing C-language source code. If '-' is specified |
for an instance of file, the standard input shall be used. |

STDIN |
The standard input shall not be used unless a file operand is specified as '-'. |

INPUT FILES |
The input files specified as file operands shall be C-language source files. The input file specified |
as the option-argument for the −x option shall be a dot-po file in the format specified as input for |
the msgfmt utility. |

ENVIRONMENT VARIABLES |
The following environment variables shall affect the execution of xgettext: |

3426 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

116736

116737

116738

116739

116740

116741

116742

116743

116744

116745

116746

116747

116748

116749

116750

116751

116752

116753

116754

116755

116756

116757

116758

116759

116760

116761

116762

116763

116764

116765

116766

116767

116768

116769

116770

116771

116772

116773

116774

116775

116776

116777

Utilities xgettext

LANG Provide a default value for the internationalization variables that are unset or null. |
(See XBD Section 8.2 (on page 157) for the precedence of internationalization |
variables used to determine the values of locale categories.) |

XSI LANGUAGE Determine the location of messages objects if NLSPATH is not set or the evaluation |
of NLSPATH did not lead to a suitable messages object being found. |

LC_ALL If set to a non-empty string value, override the values of all the other |
internationalization variables. |

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as |
characters (for example, single-byte as opposed to multi-byte characters in |
arguments and input files). |

LC_MESSAGES |
Determine the locale name used to locate messages objects, and the locale that |
should be used to affect the format and contents of diagnostic messages written to |
standard error. |

XSI NLSPATH Determine the location of messages objects and message catalogs. |

ASYNCHRONOUS EVENTS |
Default. |

STDOUT |
The standard output shall not be used. |

STDERR |
The standard error shall be used for diagnostic messages and may be used for warning |
messages. |

OUTPUT FILES |
The output files shall be dot-po files in the format specified as input for the msgfmt utility. It is |
unspecified whether each output file includes a header (msgid "") before the content derived |
from the input C-language source files. |

EXTENDED DESCRIPTION |
None. |

EXIT STATUS |
The following exit values shall be returned: |

0 Successful completion. |

>0 An error occurred. |

CONSEQUENCES OF ERRORS |
Default. |

|APPLICATION USAGE |
Implementations differ as to whether they write all output to the default output file or split the |
output into separate per-domain files. Portable applications can either ensure that each C- |
language source file contains calls to gettext family functions for only a single domain, or force |
all output to be to the default output file by using the −K option to override the default |
keywords. |

Some implementations of xgettext are not able to extract cast strings (unless −a is used), for |
example casts of literal strings to (const char *). Use of a cast is unnecessary anyway, since the |
prototypes in <libintl.h> already specify this type. |

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 3427

116778

116779

116780

116781

116782

116783

116784

116785

116786

116787

116788

116789

116790

116791

116792

116793

116794

116795

116796

116797

116798

116799

116800

116801

116802

116803

116804

116805

116806

116807

116808

116809

116810

116811

116812

116813

116814

116815

116816

116817

116818

116819

116820

xgettext Utilities

The xgettext utility is not required to handle C preprocessor directives. Therefore if, for example, |
calls to gettext family functions are wrapped by macros, they might not be found unless the −K |
option is used to tell xgettext to look for the macro calls. |

EXAMPLES |
Example 1 |

The following example shows how −K can be used to force all output to be to the default output |
file: |

xgettext -K "" -K gettext:1 -K dgettext:2 -K dcgettext:2 \ |
-K ngettext:1,2 -K dngettext:2,3 -K dcngettext:2,3 source.c |

By overriding the default keywords using the −K option as above, the xgettext utility is directed |
to ignore the domainname arguments to the dgettext(), dcgettext(), dngettext(), and dcngettext() |
functions. Thus, the utility treats the functions as their respective equivalent without the d prefix, |
ignoring the domainname argument and writing generated output to the default output file, |
messages.po. Additional −K options would be needed for the variants of the functions with an |
_l suffix if they are used. |

Example 2 |

If the source uses a macro definition such as: |

#define i18n gettext |

the use of: |

xgettext -K i18n:1 source.c |

will pick up msgid values from a line such as: |

fprintf(stdout, i18n("The value is %s"), value1); |

RATIONALE |
The −K option is based on the −k option of GNU xgettext; the only difference is that GNU’s −k |
takes an optional option-argument whereas −K in this standard has a mandatory option- |
argument in order to comply with the syntax guidelines. |

The standard developers considered including functionality equivalent to the −c, −m, and −M |
options in existing implementations. However, those letters could not be used as the syntax |
differed between implementations. The usual solution of adding an uppercase equivalent of |
lowercase options with the standard syntax instead was not possible, for obvious reasons for −m |
and −M, and as −C was already in use for another purpose in one implementation. |

The −s option is not included as it has been deprecated in at least one implementation because it |
has been found to deprive translators of valuable context. |

FUTURE DIRECTIONS |
A future version of this standard may change the description of the −n option to use ``shall’’ |
instead of ``should’’. |

SEE ALSO |
gettext , msgfmt |

XBD Chapter 8 (on page 155), Section 12.2 (on page 201) |

XSH gettext |

3428 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Vol. 3: Shell and Utilities, Issue 8

116821

116822

116823

116824

116825

116826

116827

116828

116829

116830

116831

116832

116833

116834

116835

116836

116837

116838

116839

116840

116841

116842

116843

116844

116845

116846

116847

116848

116849

116850

116851

116852

116853

116854

116855

116856

116857

116858

116859

116860

Utilities xgettext

CHANGE HISTORY |
First released in Issue 8. |

|

Vol. 3: Shell and Utilities, Issue 8 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 3429

116861

116862

116863

Subprofiling Considerations (Informative) Subprofiling Option Groups

POSIX_DEVICE_SPECIFIC_R: Thread-Safe General Terminal
ttyname_r()

POSIX_DYNAMIC_LINKING: Dynamic Linking
dladdr(), dlclose(), dlerror(), dlopen(), dlsym()

POSIX_FD_MGMT: File Descriptor Management
dup(), dup2(), dup3(), fcntl(), fgetpos(), fseek(), fseeko(), fsetpos(), ftell(), ftello(), ftruncate(),
lseek(), rewind()

POSIX_FIFO: FIFO
mkfifo()

POSIX_FIFO_FD: FIFO File Descriptor Routines
mkfifoat(), mknodat()

POSIX_FILE_ATTRIBUTES: File Attributes
chmod(), chown(), fchmod(), fchown(), umask()

POSIX_FILE_ATTRIBUTES_FD: File Attributes File Descriptor Routines
fchmodat(), fchownat()

POSIX_FILE_LOCKING: Thread-Safe Stdio Locking
flockfile(), ftrylockfile(), funlockfile(), getc_unlocked(), getchar_unlocked(), putc_unlocked(),
putchar_unlocked()

POSIX_FILE_SYSTEM: File System
access(), chdir(), closedir(), creat(), fchdir(), fpathconf(), fstat(), fstatvfs(), getcwd(), link(),
mkdir(), mkostemp(), mkstemp(), opendir(), pathconf(), posix_getdents(), readdir(), remove(),
rename(), rewinddir(), rmdir(), stat(), statvfs(), tmpfile(), tmpnam(), truncate(), unlink()

POSIX_FILE_SYSTEM_EXT: File System Extensions
alphasort(), dirfd(), getdelim(), getline(), mkdtemp(), scandir()

POSIX_FILE_SYSTEM_FD: File System File Descriptor Routines
faccessat(), fdopendir(), fstatat(), linkat(), mkdirat(), openat(), renameat(), unlinkat(),
utimensat()

POSIX_FILE_SYSTEM_GLOB: File System Glob Expansion
glob(), globfree()

POSIX_FILE_SYSTEM_R: Thread-Safe File System
readdir_r()

POSIX_I18N: Internationalization
bind_textdomain_codeset(), bindtextdomain(), catclose(), catgets(), catopen(), dcgettext(), +
dcgettext_l(), dcngettext(), dcngettext_l(), dgettext(), dgettext_l(), dngettext(), dngettext_l(), +
gettext(), gettext_l(), iconv(), iconv_close(), iconv_open(), ngettext(), ngettext_l(), |
nl_langinfo(), textdomain()

POSIX_JOB_CONTROL: Job Control
setpgid(), tcgetpgrp(), tcsetpgrp(), tcgetsid()

POSIX_MAPPED_FILES: Memory Mapped Files
mmap(), munmap()

POSIX_MEMORY_PROTECTION: Memory Protection
mprotect()

Part E: Subprofiling Considerations Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. 3749

129690

129691

129692

129693

129694

129695

129696

129697

129698

129699

129700

129701

129702

129703

129704

129705

129706

129707

129708

129709

129710

129711

129712

129713

129714

129715

129716

129717

129718

129719

129720

129721

129722

129723

129724

129725

129726

129727

129728

129729

129730

129731

Subprofiling Option Groups Subprofiling Considerations (Informative)

POSIX_WIDE_CHAR_DEVICE_IO: Device Input and Output
fgetwc(), fgetws(), fputwc(), fputws(), fwide(), fwprintf(), fwscanf(), getwc(), getwchar(),
putwc(), putwchar(), ungetwc(), vfwprintf(), vfwscanf(), vwprintf(), vwscanf(), wprintf(),
wscanf()

XSI_C_LANG_SUPPORT: XSI General C Library
a64l(), daylight, drand48(), erand48(), ffs(), ffsl(), ffsll(), getdate(), hcreate(), hdestroy(),
hsearch(), initstate(), insque(), jrand48(), l64a(), lcong48(), lfind(), lrand48(), lsearch(),
memccpy(), mrand48(), nrand48(), random(), remque(), seed48(), setstate(), signgam,
srand48(), srandom(), strptime(), swab(), tdelete(), tfind(), timezone, tsearch(), twalk()

XSI_DBM: XSI Database Management
dbm_clearerr(), dbm_close(), dbm_delete(), dbm_error(), dbm_fetch(), dbm_firstkey(),
dbm_nextkey(), dbm_open(), dbm_store()

XSI_DEVICE_IO: XSI Device Input and Output
fmtmsg(), readv(), writev()

XSI_DEVICE_SPECIFIC: XSI General Terminal
grantpt(), posix_openpt(), ptsname(), unlockpt()

XSI_FILE_SYSTEM: XSI File System
basename(), dirname(), lockf(), mknod(), nftw(), realpath(), seekdir(), sync(), telldir()

XSI_GENERAL_TERMINAL_R: XSI Thread-Safe General Terminal
ptsname_r()

XSI_IPC: XSI Interprocess Communication
ftok(), msgctl(), msgget(), msgrcv(), msgsnd(), semctl(), semget(), semop(), shmat(), shmctl(),
shmdt(), shmget()

XSI_MATH: XSI Maths Library
j0(), j1(), jn(), y0(), y1(), yn()

XSI_MULTI_PROCESS: XSI Multiple Process
getpriority(), getrlimit(), getrusage(), nice(), setpriority(), setrlimit()

XSI_SIGNALS: XSI Signal
killpg(), sigaltstack()

XSI_SINGLE_PROCESS: XSI Single Process
gethostid(), putenv()

XSI_SYSTEM_DATABASE: XSI System Database
endpwent(), getpwent(), setpwent()

XSI_SYSTEM_LOGGING: XSI System Logging
closelog(), openlog(), setlogmask(), syslog()

XSI_THREADS_EXT: XSI Threads Extensions
pthread_attr_getstack(), pthread_attr_setstack()

XSI_USER_GROUPS: XSI User and Group
endgrent(), endutxent(), getgrent(), getresgid(), getresuid(), getutxent(), getutxid(), +
getutxline(), pututxline(), setgrent(), setregid(), setresgid(), setresuid(), setreuid(), setutxent() +

XSI_WIDE_CHAR: XSI Wide-Character Library
wcswidth(), wcwidth()

3752 Copyright © 2001-2022, IEEE and The Open Group. All rights reserved. Part E: Subprofiling Considerations

129820

129821

129822

129823

129824

129825

129826

129827

129828

129829

129830

129831

129832

129833

129834

129835

129836

129837

129838

129839

129840

129841

129842

129843

129844

129845

129846

129847

129848

129849

129850

129851

129852

129853

129854

129855

129856

129857

129858

129859

129860

129861

	Title Page
	Contents
	Preface
	Trademarks
	Acknowledgements
	1 Introduction
	1.1 Scope
	1.2 Relationship to Other Formal Standards

	2 Application Program Interfaces
	2.1 Change Bars
	2.2 Reference Pages
	Definitions
	Locale
	Internationalization Variables
	Headers
	<libintl.h>
	<limits.h>
	<unistd.h>

	System Interfaces
	Compilation Environment
	Threads
	bindtextdomain()
	catopen()
	dcgettext()
	dngettext()
	fpathconf()
	getresgid()
	getresuid()
	gettext
	ngettext()
	setresgid()
	setresuid()
	textdomain()

	Utilities
	command
	env
	gettext
	msgfmt
	ngettext
	nice
	nohup
	readlink
	realpath
	time
	timeout
	xargs
	xgettext

	Subprofiling Considerations

