
Open Source: A Boundaryless Information Architecture
Draft 0.1 2003-10-17

Author
Michael Tiemann, CTO Red Hat

Abstract
The goal of a Boundaryless Organization is to improve corporate performance
by reducing hierarchy, changing organizational structure, altering boundaries,
and overcoming barriers within the organization. Open Source software
development model not only mirrors the Boundaryless organization model, but it
can actually act as the catalyst for a company's Boundaryless transformation.

This paper will describe the parallels between the Boundaryless model derived
by GE and the consultants they hired (Ron Ashkenas et al) and and the
Boundaryless models observed within the Linux development community (and
specifically Red Hat). It will then describe a seventh business model to add to
The Open Group's current six reference business models. Finally, it will discuss
some specific examples of how open source software may facilitate or function
as components of the Reference Architecture that The Open Group has
proposed as part of its vision to support Boundaryless Information Flow.

Copyright ©2002 Red Hat, Inc.

Table of Contents
Software's Enemy: The External Boundary...3
Users as Innovators: An Attack on External Boundaries.................................4
Boundaryless Bazaars...6
Technologies Enabling Open Source Information Flow...................................7
Red Hat's Boundaryless Experiences..8
Open Source: A Seventh Boundaryless Information Flow Architecture.....10

Open Soure: A Boundaryless Information Architecture 2

Software's Enemy: The External
Boundary
The concept of a "Boundaryless Organization" turns on its head many
long- and dearly-held notions of the traditional organization. Whereas
the traditional organization used boundaries to separate people, tasks,
processes, and places, the Boundaryless Organization recognizes that
such boundaries do not have intrinsic business value, and may in fact be
detrimental. And like any new paradigm, it takes more than a little
discipline and commitment to keep from backsliding to the historic
patterns of the past.

The traditional software industry is predicated on the notion of
developing proprietary technologies and then licensing those
technologies under very restrictive terms--a strong and intrinsic
external boundary. But this boundary brought with it certain problems
never examined from the traditional paradigm:

� investment-driven innovation was often frustrated by lack of
(possible) standards and strategic behavior of other companies;

� it was maddeningly difficult to identify, hire, train, and retain
qualified programmers;

� with rapidly changing technologies and long development and QA cycles
it was virtually impossible to meet customer requirements (especially
quality and deployability requirements) in any consistent fashion.

While traditional software companies may suffer the ill effects of other
boundary conditions (vertical, horizontal, global), the industry's
inability to consider, let alone solve, the external boundary problem
has become increasingly apparent. Indeed, it may well be the case that
when a company cannot bring itself to solve a fundamental external
boundary problem, it will be unable to solve many other boundary
problems as well.

The open source software paradigm, typified by the GNU General Public
License (GPL), is a broadside attack on the external boundary problem
intrinsic to the traditional software model. Whereas proprietary
software licenses provide some limited permissions while claiming "All
Rights Reserved", the GPL provides quite liberal rights and only one
restriction. The rights--to read, modify, and share source code--make
it possible for innovation anywhere, anytime, by anyone. The one
restriction the GPL puts in place is that no additional restrictions
(such as the restriction against commercial use) can be applied when
selling, or sharing, otherwise distributing such software. No more
radical than the notion of a Boundaryless Organization, the GPL is no

Open Soure: A Boundaryless Information Architecture 3

less radical, either.

Users as Innovators: Removing External
Boundaries

Open Source software is not the only movement making short work of
external boundaries. In the scholarly work "Customers and Innovators: A
New Way to Create Value" by Stefan Thomke and Eric von Hippel (published
in the Harvard Business Review, April 2002, see
http://userinnovation.mit.edu/papers/2.pdf for a downloadable copy),
Thomke and von Hippel identify a number of companies in industries as
diverse as food products, plastics, silicon technologies, and computer
manufacturing who achieved remarkable results by redefining their
external boundaries and rearchitecting their product development process
to leverage that change.

They observed that the traditional model of product innovation made
product R&D a costly and inexact science. In their words:

In a nutshell, product development is often difficult because the "need"
information (what the customer wants) resides with the customer, and the
"solution" information (how to satisfy those needs) lies with the
manufacturer. Traditionally, the onus has been on manufacturers to
collect the need information through various means, including market
research and information gathered from the field. The process can be
costly and time-consuming because customer needs are often complex,
subtle, and fast changing. Frequently, customers don't fully understand
their needs until they try out prototypes to explore exactly what does,
and doesn't, work (referred to as "learning by doing").

[...]

With the customers-as-innovators approach, a supplier provides customers
with tools so that they can design and develop the application-specific
part of a product on their own. This shifts the location of the
supplier-customer interface, and the trial-and-error iterations
necessary for product development are now carried out by the customer
only. The result is greatly increased speed and effectiveness.

Though "Customers as Innovators" never mentions the term Boundaryless
Organization, they spend considerable time analyzing a case study from GE
plastics which clearly exhibits Boundaryless behavior.

GE Plastics does not design or manufacture plastic products but sells

Open Soure: A Boundaryless Information Architecture 4

resins to those that do, and the properties of those resins must
precisely match that of both the end product (a cell phone, for
instance) as well as the process used to manufacture that product. With
the formation of the Polymerland division in 1998, GE Plastics allowed
customers to order plastics on-line and later took the step of making 30
years of its in-house knowledge available on a Web site. Registered
users were given access to company data sheets, engineering expertise,
and simulation software. Customers could use that knowledge and
technology to conduct their own trial-and-error experiments to
investigate, for example, how a certain grade of plastic with a speci c
amount of a particular type of reinforcement would ow into and ll a
mold. The approximate cost of bringing such sophisticated tools on-line:
$5 million.

[...]

Today, the Web site attracts about a million visitors per year who are
automatically screened for potential sales; that information accounts
for nearly one-third of all new customer leads, thus fueling much of GE
Plastic's growth. And because the cost of acquiring new business has
decreased, GE Plastics can now go after smaller customers it might have
ignored in the past. Specifically, the sales threshold at which a
potential customer becomes attractive to GE's field marketing has
dropped by more than 60%. The on-line tools have also enabled GE
Plastics to improve customer satisfaction at a lower cost. Before the
Web site, GE Plastics received about 500,000 customer calls every year.
Today, the availability of on-line tools has slashed that number in
half.

GE's leap of insight was the realization that the proprietary knowledge
they'd kept from their customers was keeping their business from
performing to its potential. And GE's act of courage, which was to
invest significant money to transfer their proprietary knowledge to
their customers, thereby cutting through the external boundary they so
successfully maintained, turned a decent business into a truly valuable
one.

To this point we have focused on just one boundary: the external
boundary. We have referenced examples showing that proprietary
knowledge (including proprietary software) is not intrinsically
valuable. Rather, value is a function of what the customer actually
gets. When external boundaries (which are necessarily created by
proprietary information) prevent the customer from getting what they
need, value is created by eliminating those boundaries. We shall now
examine the other three boundaries: vertical, horizontal, and global, in
the context of the open source and free software movements.

Open Soure: A Boundaryless Information Architecture 5

Boundaryless Bazaars

For the sake of this paper, we shall imagine that open source projects
are organizations. After all, they do have leaders, developers,
evangelists (marketing), customers (users), and they experience many of
the same challenges and pitfalls of traditional
organizations--competition, communication issues, resource constraints,
etc. common to "real" organizations. Indeed, one of the seminal books
on the nature of open source projects, The Cathedral and the Bazaar, by
Eric Raymond, observed most early open source projects were just as
rigidly maintained as any traditional software development project!
These were the Cathedral-style projects, many of which were very
successful, such as the GNU tools and utilities and sendmail.

Linux came out of nowhere, and turned the conventional (!?) open source
wisdom on its ear. Quoting Raymond:

Linus Torvalds's style of development - release early and often,
delegate everything you can, be open to the point of promiscuity - came
as a surprise. No quiet, reverent cathedral-building here - rather, the
Linux community seemed to resemble a great babbling bazaar of differing
agendas and approaches (aptly symbolized by the Linux archive sites,
who'd take submissions from anyone) out of which a coherent and stable
system could seemingly emerge only by a succession of miracles.

The fact that this bazaar style seemed to work, and work well, came as a
distinct shock. As I learned my way around, I worked hard not just at
individual projects, but also at trying to understand why the Linux
world not only didn't fly apart in confusion but seemed to go from
strength to strength at a speed barely imaginable to cathedral-builders.

The technologies that enable open source are fairly basic compared with
more complex workflow models found in traditional software development
organizations. For example, sophisticated groupware applications are
replaced with email and the broadcast medium of developer mailing lists.
Sophisticated email management databases are obviated by a technique
invented by Linus Torvalds: when his mail file gets to large, he just
deletes it and starts from scratch. After all, if something is so
important that somebody can be bothered to send it again, they will.
(This certainly gives new meaning to the notion of Boundaryless
Information Flow!)

But, as Eric Raymond observed, beneath such apparent madness lay a deep

Open Soure: A Boundaryless Information Architecture 6

and remarkably effective method: a forest of source code repositories,
labeled, coordinated, and managed by maintainers, accessible to any and
all with the ability to access and test the code under a such a variety
of conditions as to actually exceed imagination. The technologies that
make this possible are worth examination.

Technologies Enabling Open Source
Information Flow

The most basic technology required is that of a source code repository.
Though this has long been CVS (for which Brian Berliner recently
received a STUG award, see http://www.usenix.org/directory/stug.html), a
new technology called BitKeeper, which interoperates with CVS, has
become the new favorite of some developers. Regardless of one's choice
of tool, the most important feature is the ability to communicate, at
the source code level, set of changes that implement a feature, fix a
bug, or otherwise represent a unit of change against some reproducible
reference point. This is what makes it possible to actually participate
in the development of Linux (and other bazaar-style) code development.

Bug (and feature) tracking software serves two roles for open source
developers. The first (and most obvious) is that it provides a
framework for linear progress. The second is that it provides points of
entry for would-be developers, testers, and users. Many of the most
prolific open source contributors began by reading bug reports and
deciding one day "hey, I bet I can fix that!". Bugzilla, developed by
Netscape and now maintained by Red Hat, has become a standard (see
https://bugzilla.redhat.com/bugzilla/index.cgi).

Of course any given source code requires a suite of tools for
developing, building, and testing the code. Because open source permits
the direct observation of specific bugs, it is not mandatory to use the
same build tools that others do: properly diagnosed, a bug is a bug, no
matter how it came to be observed. While most developers tend to use
the same tools for efficiency of development, few developers are willing
to exclude alternative tools for the sake of conformity. In particular,
everybody has a different favorite code editor, and most would be loath
to accept an authoring environment that forced conformity to one editor
or another.

Because there is little consistency in build environments from one
developer to the next (and because it is very difficult to encourage,
let alone enforce such consistency), packaging becomes an all-important
technology. Early on, Red Hat popularized RPM, the RPM Package Manager.

Open Soure: A Boundaryless Information Architecture 7

Whatever the diversity in build environments, RPM (and subsequent
technologies like Kickstart, PXE-boot, and Red Hat Enterprise Network)
makes it possible to achieve consistency of installation, which is
essential to effect any sort of operational standard. RPM goes well
beyond mere installation: it supports digital signatures, package
building/re-building, package testing, dependency analysis, remote
operations, and more. See http://rpm.redhat.com/ for more information.

Above this level of basic technology is the process of open source
development. While different projects differ in their details, all
project processes are ultimately defined by their "maintainers". There
are over 200 people listed in the MAINTAINERS file of the Linux kernel.
A Linux kernel maintainer (see http://lwn.net/Articles/3521/) is the
final arbiter of what code goes into the main source tree and what gets
tossed out. These maintainers have an architectural role, an aesthetic
role, a feature and functionality role, and serve to mediate discussions
that inevitably cross technical boundaries. The maintainers are loosely
organized as a hierarchy, with Linus Torvalds being the BP (Big
Penguin). Wonderful features have been vetoed by the BP, and sometimes
the BP reverses himself when he concedes to the logic of a superior
argument and/or implementation. For a great example, see "New Scalable
Scheduler: http://kt.zork.net/kernel-traffic/kt20020114_150.html#4".

To my knowledge, no single company employs more than 10% of these
maintainers, and most of the companies that employ the largest number of
maintainers (Red Hat and SuSE, for example) are competitors in the
market. However, when a maintainer is doing their job, the question of
market competition is secondary to the question of technical excellence.
This discipline has resulted in such product integrity that despite
billions invested in Linux by the very actors who fragmented Unix, Linux
has not fragmented. The technical results--performance, scalability,
cost benefits, etc., speak for themselves. Linux has not fragmented,
despite the pundits' dire warnings, precisely because it was legally
impossible to create the kind of barriers that were so intractable in
the world of proprietary Unix.

When innovation occurred in Unix, competitors were forced either to play catch
up or declare to the market that the approach in question was somehow deeply
flawed and that an alternative must be developed. This naturally, rapidly, and
repeatedly led to fragmentation that all but destroyed the economic value of
Unix.

When innovation occurred in Linux, consensus or criticism occurred first in the
arena of the vendor-neutral forum of kernel.org. This is not to say that vendor
opinions weren't considered: Red Hat (and others) would frequently say “If you
do this, it will make it difficult for us to do XYZ.” As long as XYZ was seen as

Open Soure: A Boundaryless Information Architecture 8

valuable (as opposed to, for example, killing competition), debate would
continue until everybody was as happy as they could be.

Technically speaking, Linux hasn't fragmented (the technical term is forked),
although there are many branches. A branch is a version of the code that is
isolated from the mainstream so that developers can focus on a specific set of
problems without being distracted by too many external variables. When a
problem is sufficiently well solved on a branch, the branch's maintainer can then
submit the solution to the mainstream kernel, where it can be integrated and
made available broadly.

Whereas the open source paradigm takes natural aim at a single
boundary--the external boundary--the Bazaar-like nature of Linux
development shatters all barriers--vertical, horizontal, external, and
global. What remains is unfettered innovators working at the speed of
thought.

Red Hat's Boundaryless Experiences

Breaking down barriers and creating great technology is all well and
good, but those alone are not enough to create or sustain a
profit-making organization. Red Hat has created a profitable business
based on open source software that exhibits a number of boundaryless
features.

Red Hat was fortunate to be a small company when it decided to orient
its core processes to serving customers and then orient its work around
these core processes. While Red Hat does have a hierarchy and does have
several independent groups all working in their respective areas, the
fact that customers get source code (and the freedom to modify that
source as they choose) forces Red Hat to keep vertical and horizontal
barriers low. Red Hat also has offices in 20+ countries, and again, the
open source model makes it impossible for Red Hat to limit how customers
use or deploy our software (regardless of geography). This forces Red
Hat to focus on value, not boundaries, as the defining feature of the
business.

Can other companies profit from the value shift that Red Hat has
leveraged in its open source business? Back to Thomke and von Hippel:

Perhaps the most important lesson to be learned from GE Plastics is that
a company that adopts the customers-as innovators approach must adapt
its business accordingly. Furthermore, we've found that because the
value that tool kits generate tends to migrate, a company must

Open Soure: A Boundaryless Information Architecture 9

continually reposition itself to capture that value.

[...]

In other words, one long-term result of customer tool kits is that
manufacturers lose a portion of the value they have traditionally
delivered. But if the conditions are ripe for the technology to emerge
in a given industry and if customers will benefit from it and our
research shows that they will then suppliers really don't have a choice.

Red Hat's recent financial reports (see "Red Hat Delivers Strong
Operating Performance in Second Quarter",
http://www.corporate-ir.net/ireye/ir_site.zhtml?ticker=RHAT&script=410&layout=-
6&item_id=450143)
prove that open source is a strong foundation for building a profitable
business that can grow profitably. But managing that business is not
easy, and boundaryless information flow is crucial to our success.
Herein is a strawman of a seventh business model for The Open Group's
Boundaryless Information Flow Reference Architecture.

Open Source: A Seventh Boundaryless
Information Flow Architecture
This section follows the format of the six models presently described in the Open
Group's working document “Boundaryless Information Flow Reference
Architecture” (see http://www.opengroup.org/cio/ReferenceArc-Final1.pdf).

Scope

The scope of boundarylessness required for the Open Source business
model exists across the participating organization and the community and
includes:

� Project maintainers and developers
� Third parties (ISVs and possibly hardare OEMs) using or packaging

project components
� User-Innovators

Objectives

The objectives of this form of boundarylessness are:

� Continued support of rapid and robust innovation

Open Soure: A Boundaryless Information Architecture 10

� Maintenance of standards (APIs, ABIs, packaging, monitoring, security, etc)
� Growth of the community
� Explicit facilitation of Open Source Architecture (see below)

Constraints

The entire implementation must be open source, preferably GPL. This does not
mean there cannot be competing non-OSS implementations, but no part of the
implementation can require technology that is not open source. Most open
source developers refuse to use proprietary software, especially as a long-term
solution. Therefore, to achieve community adoption, the Reference Architecture
must itself be open source.

Additional Considerations (The Open Source Architecture)

This model is primarily motivated to give additional process support to
a community of people already working together very successfully. The
goal of the model, therefore, is to enhance and standardize what already
exists, and to make it easier to work more consistently when possible.
In particular, to support system-level functionality like integrated
security, system virtualization, and to enable enterprise system
management, new architectural standards must be defined and implemented
broadly across thousands of systems, at little to zero incremental
cost to individual projects.

An historical success of this kind has been the internationalization and
addition of accessibility (Section 508) to many open source
applications. The internationalization and accessibility infrastructure
became an architectural feature that was, once defined, reasonable to
integrate with existing applications and became "free" for new
applications.

The Boundaryless model for open source businesses must address the issue
of facilitating architectural implementations and enhancements to enable
other broad-based features as well.

A second consideration is that many open source projects are already
quite boundaryless: developers have no traditional business
relationships (such as employee-manager, contractor-company, etc.) and
are often so geographically remote that they often do not meet in real
life, nor even communicate except via the asynchronous processes of
email and/or code releases. Reputations, all-important among open
source developers, are rarely portable to more formal business contexts,

Open Soure: A Boundaryless Information Architecture 11

leading to an unintended boundary between those who produce and those
who could market and/or better use what is produced. Reputation systems
that can provide a meaningful currency across widely varying contexts
may lead to greater efficiency by lowering secondary boundary effects
induced by the utter boundarylessness of open source development.

Key Common System Architectures

� Workflow management
� Messaging
� Information
� User Interface and Ontology
� Collaborative Work
� Repuatation Systems

Open Soure: A Boundaryless Information Architecture 12

