
ADL Translation System User’s Guide:

Getting Started With ADLT

Document Release 2.0

For Use with ADLT System Release 2.0, February 1998

COPYRIGHT AND LICENSE NOTICE

Copyright © 1997-1998 The Open Group

Copyright © 1994 - 1996 Sun Microsystems Inc.

Copyright © 1994 - 1996 Information-technology Promotion Agency, Japan

This technology has been developed as part of a collaborative project among the
Information-technology Promotion Agency, Japan (IPA), X/Open Company Ltd. and
Sun Microsystems Laboratories.

Permission to use, copy, modify and distribute this software and documentation for any purpose and without fee is hereby
granted in perpetuity, provided that this COPYRIGHT AND LICENSE NOTICE appears in its entirety in all copies of the
software and supporting documentation. Certain ideas and concepts contained in the software are protected by pending patents
of Sun Microsystems,. Sun hereby grants a limited license to use these patents, if any issued, only in this implementation of the
software and documentation and in derivatives thereof prepared in accordance with the permission granted herein.

The names The Open Group, Sun Microsystems. and Information-technology Promotion Agency, Japan (IPA) shall not be
used in advertising or publicity pertaining to distribution of the software and documentation without specific, written prior per-
mission.

ANY USE OF THE SOFTWARE AND DOCUMENTATION SHALL BE GOVERNED BY CALIFORNIA LAW. THE
OPEN GROUP, SUN MICROSYSTEMS, INC. AND IPA MAKE NO REPRESENTATIONS OR WARRANTIES
ABOUT THE SUITABILITY OF THE SOFTWARE OR DOCUMENTATION FOR ANY PURPOSE. THEY ARE
PROVIDED “AS IS” WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. X/OPEN, SUN MICRO-
SYSTEMS, INC. AND IPA SEVERALLY AND INDIVIDUALLY DISCLAIM ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE AND DOCUMENTATION, INCLUDING THE WARRANTIES OF MERCHANTABILITY,
DESIGN, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
IN NO EVENT SHALL X/OPEN, SUN MICROSYSTEMS, INC. OR IPA BE LIABLE FOR ANY SPECIAL, INDI-
RECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA, OR PROFITS, WHETHER IN ACTION ARISING OUT OF CONTRACT, NEGLI-
GENCE, PRODUCT LIABILITY, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE OR DOCUMENTATION.

Trademarks

Sun™, Sun Microsystems®, the Sun logo®, Solaris®, SunOS™ are trademarks or registered
trademarks of Sun Microsystems, Inc.

UNIX® is a registered trademark in the USA and other countries licensed exclusively through
X/Open™.

X/Open™ is a trademark of the X/Open Company Limited.

v

Contents

Preface . vii

Part 1 —A First Look at ADLT

1. Overview . 3

What is ADLT? . 3

Generating Tests with ADLT . 6

Generating Documentation with ADLT 10

2. Setting Up the Implementation . 13

The Default Implementation File Structure 13

3. A First Test . 15

The Java-Language Module . 15

The ADL File . 17

Looking at the Natural-Language Specification (NLS) 23

Auxiliary Functions . 24

The TDD File . 25

Generating Tests. 28

vi ADL Translation System User’s Guide—February 1998

Factories and Relinquish Functions. 31

Making the Test Program . 32

Building the Test Program . 32

Running the Test Program . 32

4. A First Look at Documentation . 33

The Role of the Natural Language Dictionary 33

Part 2 —Effective Use of ADLT

5. The Structure of the Test Suite . 39

Overview of ADLT Files . 40

Importing and Referencing Specification Files 46

Organizing the Test Suite . 58

6. Using ADLT with TET . 63

Mappings Between ADLT and TET . 63

Directory Structure and Required Files. 65

Environment/Configuration Variables 65

Generating Test Programs for TET . 66

7. Customizing the Test Program . 69

Glossary . 73

Index . IX-1

vii

Preface

ADLT (Assertion Definition Language Translator) is a test compiler. It accepts
inputs in the form of specifications; it can generate a test of any procedure
which can be called from a variety of languages, including Java, C++, and
ANSI C.

The input specifications processed by ADLT are in three parts:

• Specifications of the behavior of the procedure being tested.

• Specifications of the required test data.

• Specifications of the testing process.

In addition, ADLT can produce natural-language translations of the formal
specifications. These translations can be produced with no additional input
beyond the two listed above. The user can improve the quality of the generated
documents by furnishing a natural language dictionary (NLD) to guide the
translation process.

The ADL Translator User’s Guide is designed to give a quick start in the use of
ADLT. It gives a concentrated look at the process of generating tests and
documentation using ADLT.

Who Should Use This Book
This manual is designed to be used by a senior software engineer who is
interested in learning to use ADLT to produce automated tests and documents.

viii ADL Translator User’s Guide—February 1998

The manual assumes that the reader has the following technical background:

• several years of experience writing software usingone of the supported
languages

• extensive experience working in a UNIX software development
environment

• familiarity with testing concepts such as white and black box testing, and
equivalence partitioning

• familiarity with the Test Environment Toolkit (although this document
provides adequate information to use ADL and TET without such
familiarity)

How This Book Is Organized
This manual is organized in two parts, each with several chapters, plus a
glossary and five indices, as listed below:

Part 1 - A First Look at ADLT

This part of the document provides an introduction to the ADLT system. It
contains the following chapters:

Chapter 1, “Overview,” gives a very short summary of the steps in the ADLT
testing process.

Chapter 2, “Setting Up the Implementation,” briefly describes the default file
structure of the implementation to be tested using ADLT.

Chapter 3, “A First Test,” demonstrates the use of ADLT to specify and test a
very simplified piece of Java code—a sample banking module.

Chapter 4,“A First Look at Documentation,” demonstrates the use of ADLT to
produce documentation for the simple banking module introduced in Chapter
3.

Part 2 - Effective Use of ADLT

This part of the document provides a more in-depth look at ADLT, offering
information necessary to creating real-world test suites. It contains the
following chapters:

Preface ix

Chapter 5, “The Structure of the Test Suite,” shows how to combine the
elements of ADLT specifications and code into a test suite.

Chapter 6, “Using ADLT with TET,” describes how to execute the ADLT test
program using the Test Environment Toolkit (TET) test harness.

Chapter 7, “Customizing the Test Program,” lists the ways the user may
modify the default behavior of ADLT. It directs the reader to sections of the
ADL Translator Programmer’s Guide, which gives detailed descriptions of
customization features.

Additional Information and Appendices

Glossary - contains definitions of important ADLT terms.

Related Books
More information about ADLT can be found in the following documents:

• ADL Language Reference Manual for ANSI C Programmers - Provides a formal
description of the ADL language framework and its specialization as ADL
for C.

• ADL Language Reference Manual for C++ Programmers - Provides a formal
description of the ADL language framework and its specialization as ADL
for C++.

• ADL Language Reference Manual for Java Programmers - Provides a formal
description of the ADL language framework and its specialization as ADL
for Java.

• ADL Language Reference Manual for Java/IDL Programmers - Provides a formal
description of the ADL language framework and its specialization as ADL
for Java when used in conjunction with the OMG’s Interface Definition
Language.

• ADLT Design Specification - Describes the internal and external design of
ADLT.

x ADL Translator User’s Guide—February 1998

Other Sources of Information
Users should see the file RELEASE_NOTES, supplied with the ADLT system
distribution, for information about installation, environment variables,
internationalization, and details about the implementation status of ADLT
features.

What Typographic Changes and Symbols Mean
The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output; short code
samples

Edit your .login file.
Use ls -a to list all files.
system% You have mail.
module sample {
};

AaBbCc123 What you type, contrasted with
on-screen computer output

system% su
Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Syntax samples are enclosed in boxes and may display the following:

AaBbCc123 Reserved words and syntax
samples

syntax sample

AaBbCc12 Terms that you expand or
instantiate

module module_identifier

Preface xi

[AaBbCc12] Optional terms [options]

AaBbCc12* Terms that can be repeated as
needed

repeat*

"AaBbCc12" Syntax description characters
that are part of the language

"[" bracketed_term "]"

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Examples

xii ADL Translator User’s Guide—February 1998

Part 1 — A First Look at ADLT

3

Overview 1

This chapter gives a high-level view of the ADLT system. It describes the steps
involved in using ADLT to generate both tests and documentation.

What is ADLT?
ADLT is a system that assists in the functional testing of software components.
It is a compiler that generates test programs based upon formal functional and
test-data specifications. ADLT-generated test programs call the components
under test to determine if they meet their specifications. A component is
defined to be any collection of routines callable; for example, a subroutine
library or an operating system interface.

In addition to the specification inputs, the ADLT-generated test program
depends upon the implementation of the components to be tested (either
source or executable code), the ADLT library, and some user-written test
support code. The support code is written using a framework generated by
ADLT; the framework is derived from the user ’s input specifications.

ADLT’s goal is to automate, as much as possible, current best practices in unit
and subsystem testing. It is specifically designed with the following objectives:

• Testing interfaces to independently-invoked functions

ADLT tests functions. It is designed to explore all points in the function’s
input space that the test designer has specified as important or significant.
Each invocation of the function with a set of input parameters constitutes an
ADLT “test instance.”

4 ADL Translation System User’s Guide—February 1998

1

• Testing the relationship among functions

It is possible to describe the relationship among the elements of a
component (e.g. a subsystem). ADLT will generate tests that exercise the
elements of the component across each point in the input space that the test
designer has specified.

• Black box testing

While ADLT does provide ways for the test program to have access to the
internals of the function under test, ADLT is designed to test the interface to
the function in a black-box manner. The goal is to specify the inputs with
which the function is invoked, and the state of the system after the function
completes execution.

• Functional testing

ADLT evaluates the functionality of the function under test against its
specified behavior. ADLT is not specifically designed for stress testing,
although the large number of test instances automatically generated by
ADLT can place some measure of stress on the function under test.

• Providing a “test compiler”

ADLT provides a method whereby the test designer specifies the intended
behavior of the function under test and the characteristics of important data
inputs. ADLT’s role is then to compile those engineering notations into
source code that can test the function. The ADLT-generated source code is
linked with the implementation of the function under test—along with
libraries supplied by ADLT, the system, and the user—to create the
executable test program.

While ADLT focuses on automated test generation, the system also helps
automate other parts of the software development process:

• Documentation

The ADL Translator generates documentation of the software components
under test. It produces documents describing the generated tests, as well as
natural-language versions of the functional specification.

• Development of new software components

Overview 5

1

ADLT helps in the implementation of new software by generating header
files containing declarations of the elements in the specified
component—the constituent functions, variables, constants, and type
definitions. Since ADL specifications are not embedded in the components
to be tested or documented, ADLT can be used with either new software or
existing, already-compiled components.

What ADLT Is Not

While ADLT is a powerful unit-testing tool, it cannot do all tasks associated
with testing. ADLT was specifically designed not to be a test harness or
debugger. ADLT relies upon the Test Environment Toolkit (TET) test harness to
provide test management, building, execution, and clean-up structure.

Figure 1-1 High-level view of ADLT test generation.

Formal Specification
of Software Component

(ADL File)

ADLT

Formal Test Data
Description
(TDD File)

Test Code
Data Factory

and
Auxiliary Functions

Implementation
of

Functions Under Test

Test Program

Programmer-Supplied
File

ADLT-Generated
File Executable File

6 ADL Translation System User’s Guide—February 1998

1

Generating Tests with ADLT
The programmer specifies the behavior of the software component with the
ADL file, and describes test data with the TDD file. Using the ADL and TDD
files as inputs, ADLT generates test program code. The programmer then
compiles the generated code, as well as programmer-supplied test data factory
and any auxiliary functions, which are described below. To create the ADLT test
program, the programmer links in the implementation of the function under
test, along with libraries not shown in this high-level illustration. The linked
component is the executable test program.

Here are the steps involved in using ADLT to generate tests:

1. Specify the component in the ADL file.
Using Assertion Definition Language (ADL) for the target programming
language (e.g. ADL for Java), the engineer describes the functions that make
up a software component to be tested. The specification includes not only
the signatures of the constituent functions (along with the variables and
constants they use), but also lists of assertions describing their intended
behavior. In ADL, each element that makes up the software component
should be grouped into a single specification file.

To check the specification, the engineer can now use ADLT to generate a
natural-language version of the ADL module. See the next section,
“Generating Documentation with ADLT,” for more information.

2. Write any auxiliary functions used in the ADL specification (or locate
them in existing libraries).
An auxiliary function is any function that is used in an ADL specification to
describe the workings of a function under test but which is implemented
separately from the module being specified. An auxiliary function may be
one written especially for testing purposes, or it may be one that already
resides in a library. For example, a standard UNIX system call may appear
in ADL assertions about a function; such a system call, because it is
implemented separately from the module being specified, may be referenced
in the ADL file.

Auxiliary functions may be implemented in-line, in the ADL specification
described above. Alternately, the function implementations may reside in
separate source or object files.

Overview 7

1

3. Describe test data and designate tests in the TDD file.
The engineer next describes the test data to be used in the ADLT-generated
test. Test data may be specified both literally (by a list of actual values) and
symbolically (by a list of abstract properties which take on symbolic values).
The test data descriptions are placed in files called TDD files. TDD files also
contain test clauses, which are TDD statements directing ADLT to generate a
specific test on a specific function or collection of functions.

4. Run the ADLT compiler.
The ADLT compiler takes the ADL and TDD files as inputs. The program
parses the inputs, performs a series of translations, and produces output
files in the user ’s chosen programming language. The outputs include a
compilable source files, makefiles, and files that help TET control the test
execution. Many of these output files will eventually become part of the
generated test program.

5. Write factory functions.
Factory functions are programmer-written functions that provide instances of
data elements to be used in the test. Factory functions transform datasets
(symbolic or literal descriptions of data collections) specified in TDD files
into actual program values to be used in ADLT-generated tests.

Relinquish functions are also programmer-written functions. They relinquish
any resources allocated by a corresponding factory function. If the factory
function created a new instance of a classby calling new, for example, the
relinquish function would normally return those resources to the system.

If the TDD specification included only literal descriptions of test variables
(see Step 3), the user does not have to supply factory functions. The
generated test program converts the literals into programming values of the
specified type; those values are then used as inputs to the function under
test. Therefore, if all test data are specified literally, the user may omit this
step.

6. Write or locate the implementations of the functions under test.
If ADLT is being used to specify new software modules, now is the time to
implement the functions. If the system is being used to test already-
compiled functions, the user simply needs to locate the directory and/or
library in which the functions reside.

8 ADL Translation System User’s Guide—February 1998

1

7. Make the test programs (one for each TDD test directive).
The ADLT compiler (step 4, above) generates makefiles to help testers
compile and link the various elements that comprise the ADLT test
program. The test program elements include: the test source code generated
by ADLT; implementations of the functions under test; implementations of
factory, relinquish, and auxiliary functions; and libraries supplied by ADLT,
TET, and the user.

Overview 9

1

8. Run the tests and examine the test result reports.
The user now runs the test program made in step 7, above. The test program
gets data instances from the provide functions, passes them to the function
under test, then evaluates the behavior of the function against its behavior
specified in ADL assertions. Once the test run is complete, the test results
can be reviewed either in summary or in detail using the tetrep program.

Figure 1-2 High-level view of ADLT documentation generation.

Formal Specification
of Software Component

(ADL File)

ADLT

Formal Test Data
Description
(TDD File)

Module Documentation
(Natural Language

Specification)

Programmer-Supplied
File

ADLT-Generated
File

Executable

Natural Language
Dictionary

(NLD)

Test Documentation
(Test Specification)

Optional Programmer-
Supplied File

10 ADL Translation System User’s Guide—February 1998

1

Generating Documentation with ADLT

ADLT generates documentation of both the software components (as specified
in ADL) and of the generated test. The system can generate all documentation
from the ADL and TDD files. The user can improve the quality of the
generated documents by supplying the Natural Language Dictionary (NLD).

ADLT can be used to generate two types of documentation:

• The Natural Language Specification (NLS)

The NLS is a natural-language description of each function under test. It
contains a natural-language version of the ADL specification.

• The Test Specification (TS)

The TS is a natural-language description of the tests that can be generated
by ADLT. It describes the functions under test, the assertions about their
behavior, and the symbolic and/or literal values over which the test will be
run.

Here are the steps involved in using ADLT to generate documentation:

1. Specify the module in the ADL file.
If this step has not already been performed for testing purposes (see the
Section , “Generating Tests with ADLT,” on page 6), the engineer now
creates the ADL specification of the functions to be documented.

2. Describe test data and designate tests in the TDD file.
If this step has not already been performed for testing purposes (see the
Section , “Generating Tests with ADLT,” on page 6), the engineer creates the
TDD file describing the data to be used in tests.

3. Create the Natural Language Dictionary (optional).
The Natural Language Dictionary (NLD) is a glossary of translations for the
elements that make up ADL assertions. ADLT uses these translations to
augment natural language descriptions that appear in the generated Natural
Language Specifications and Test Specifications. ADLT can produce
documentation without the input of the NLD, but the generated documents
will be more mechanical and less “natural” than those produced with the
assistance of the NLD. For more details, see Chapter 4, “A First Look at
Documentation.”

Overview 11

1

4. Run the ADLT compiler.
The program can be run with a switch requesting only the NLS, only the TS,
or both documents.

Notice that ADLT can produce documentation using only the inputs needed
for testing purposes. With only the ADL file as input, ADLT can produce a
default Natural Language Specification; with the input of both ADL and TDD
files, ADLT can produce a default Test Specification. ADLT generates makefiles
to assist in the generation of test programs and documents. See “Generating
Tests with ADLT” on page 6.

With the use of the optional NLD, ADLT can be used as a document-generation
system. ADLT natural-language specifications are derived from a formal
language, which makes the generated documents more rigorous and less
ambiguous than specifications created originally in a natural language such as
English. The generated documents can therefore be viewed as the primary
outputs of the ADLT system, or as documentation to be used in tandem with
test generation.

12 ADL Translation System User’s Guide—February 1998

1

13

Setting Up the Implementation 2

ADLT can be used to specify and test already-compiled implementations of
software components. The system does not mandate any specific structure for
the implementation.

However, there is a default implementation file structure assumed by ADLT,
which is reflected in some of the emitted files. If the implementation uses this
default file structure, the process of introducing ADLT will be simplified; the
user will not have to customize any of the emitted files.

The Default Implementation File Structure
Here is how the default implementation file structure is derived from the
specification:

• The Module Name

The module is the ADL unit of specification of a software component. The
definition of the elements that comprise the component is up to the test
designer. The module should consist of variables, constants, type definitions,
and functions that are related for the purposes of specification, development,
testing, and/or documentation. In general, the concept of the ADLT module is
roughly equivalent to the contents of a C header file or a Java Class.

14 ADL Translation System User’s Guide—February 1998

2

The designer groups the elements together into a specification unit and gives
that unit some descriptive or already-existing name—the module identifier.
The module identifier thenceforth determines several of the default file names
expected by the ADLT system. These naming conventions are language
dependent. The JavaLanguage, for example, does the following:

The ADL specification of a component named module must be placed in a file
named module.adl . The default Java-language implementation of that module
is a source file named module.java and a bytecode file named module.class.

• A Source File Named module.java

ADLT expects to find the Java-language implementation of the module in a
source file named module.java and a bytecode file named module.class . This
source file should contain the Java implementations of the functions, variables,
and constants that make up the software component under specification. This
file implements the ADL specification.

15

A First Test 3

This chapter provides an example of the ADLT testing process. It does not
discuss all the features of ADLT. The goal is to give an overview of the inputs
the engineer must provide to the ADLT system and a feel for the ADLT testing
process.

The chapter uses a simple banking module—the “Hello, world!” example of
ADLT testing in the Java programming language.

The Java-Language Module
Here is the Java-language class to be specified and tested using ADLT. This
class implements three methods:

• deposit - increases the balance in the account by the given amount

• withdraw - decreases the balance in the account by the given amount

• bank - a constructor that creates a new account

Java-Language Source File
public class bank {

 final public int MAX = 100;

 protected long acct_number;

 protected long balance;

 public bank(long acct, long bal)

16 ADL Translation System User’s Guide—February 1998

3

 {

 acct_number = acct;

 balance = bal;

 }

 public long get_account_number()

 {

 return acct_number;

 }

 public long get_balance()

 {

 return balance;

 }

 public long deposit(long amt)

 {

 if (amt < 0) {

 return -1;

 }

 balance += amt;

 return balance;

 }

 public long withdraw(long amt)

 {

 if (amt < 0) {

 return -1;

 }

 if (balance - amt < 0) {

 return -2;

 }

 if (amt > MAX) {

 return -3;

 }

 balance -= amt;

 return balance;

 }

}

Code Example 3-1 Implementation source file bank.java

A First Test 17

3

The ADL File

Figure 3-1 An annotated example of an ADL file: bank.adl

adlclass bank {
 long deposit(long amt) {
 semantics
 [abnormal = (return < 0);
 normal = (return >= 0);] {

 amt < 0 <:> return == -1;
 if (abnormal) {
 unchanged (get_balance());
 }
 if (normal) {
 get_balance() == @get_balance() + amt;
 return == get_balance();
 }
 }
 }

 long withdraw(long amt) {
 semantics
 [abnormal = (return < 0);] {

 (amt < 0) <:> (return == -1);
 @(get_balance() < amt) <:> (return == -2);
 (amt > bank.MAX) <:> (return == -3);
 if (abnormal) {
 unchanged (get_balance());
 }
 if (normal) {
 get_balance() == @get_balance() - amt;
 return == get_balance();
 }
 }
 }
}

Module Identifier and Base
Name for ADL File bank.adl

Function Declaration

Assertions About
Abnormal Outcomes

Assertion About
Normal Outcomes

Function Declaration

Call-State OperatorImplication Operator Exception Operator--> @ <:>

Descriptions of
Outcomes

Single Assertion

18 ADL Translation System User’s Guide—February 1998

3

Illustrated Features of ADL

In general, ADL follows the syntax of the target language (in this case Java).
Experienced programmers should find it relatively easy to read and
understand the meaning of the statements in the ADL file above.

However, the sample ADL file contains some differences between Java and
ADL, as well as some of the new language elements and concepts introduced
in ADL:
1. ADL specifications can be partial

The ADL file does not have to specify every element in the Java-language
implementation of the module. The sample ADL file does not mention the
Java method get_account_number , for example, which is part of the
implementation. Also, the assertions for withdraw are fairly extensive,
whereas there is only a single assertion for deposit. It is up to the
engineer to decide what should be specified and to what depth.

2. The ADL module
The ADL unit of specification is the module . The module is any set of
functions, variables, and constants which the engineer considers to be
related for the purposes of specification and testing. Typically, a module is
defined by one class file in Java, or one header file in C or C++.

There can be only one module per ADL file. ADLT requires that the base
name of the ADL file be the same as the module name; the file suffix should
be .adl . The name of the ADL file is therefore module.adl .

Note – ADLT requires that the implementation of the functions specified or
referenced in the ADL file be in the CLASSPATH or the ADLT-specified
incpath.

By default, ADLT also expects to find the Java-language implementation of the
elements declared in module.adl in a source file named module.java or the
bytecode file module.class .

3. ADL semantics
ADL contains the reserved word semantics , which appears following the
function signature. The reserved word introduces a block of bindings (see
item 8, below) followed by a list of assertions about the function. In general,
ADL assertions are boolean expressions that describe the state of the system
immediately after the function under test completes execution; that is, in the

A First Test 19

3

return state of the function (see item 6, below, for ways to reference values
in the call state). For a function to pass an ADLT test, every assertion must
evaluate to TRUE. Not all functions in the ADL file are required to have
semantic descriptions; however, if they do, they are called annotated
functions; that is, functions annotated by semantics.

4. ADL expressions
Java, C++, and C-language statements are terminated by semi-colons. In
ADL, statements in the semantics block are also terminated with semi-
colons.

5. ADL group expressions enclosed within braces
In ADL, expressions can be grouped within braces. Such groupings are
called group expressions. In the sample ADL file, the statement following the
normal reserved word is enclosed within the braces. The braces enclose a
list of expressions. For the function withdraw in the sample file, the list
consists of a single element.

6. ADL call-state operator; the built-in function unchanged
In general, ADL assertions are boolean expressions that describe the state of
the system immediately after the function under test completes execution
(in the return state). However, the language also provide two means to refer
to values in the call state, or state before the function under test is evaluated,
of the function:

the call-state operator (@), a unary operator, which tells ADLT to evaluate
the expression in the call state of the function

the built-in function unchanged , which returns TRUE if the value of its
argument is the same in the call and return states of the function, else
FALSE.

7. ADL reserved word return
The reserved word return refers to the return value of the currently
annotated function. This reserved word should not be confused with the
Java-language statement. In ADL, return is not an imperative statement
but a reference to a value.

8. ADL Bindings
ADL uses the binding operator (define), which is not found in Java, C, nor
C++. A binding is a mapping of an expression to an identifier. When that
identifier is used in other expressions, it is replaced with the expression and
the expression is evaluated in the context of the assertion. The user can

20 ADL Translation System User’s Guide—February 1998

3

create any number of bindings. However, if any bindings are used within a
group expression (that is, within any list of ADL expressions enclosed
within braces), then the bindings must be the first statements in the list.

9. Normal and Abnormal completion evaluation
The reserved word abnormal should be bound to an expression that
characterizes the way the function tells the caller that it has encountered
some problem during execution—a file can’t be opened, for example, or a
communication line broke its transmission. The ADL reserved word normal
should be bound to an expression that characterizes the normal workings of
the function—the way the function tells the caller that no errors, anomalies,
etc., have occurred. In UNIX system calls, for example, the usual binding for
normal would be a return value of zero, and the binding for abnormal
would be a -1 return value. Note that the ADL abnormal operator and ADL
normal operator depend upon these bindings for their correct operation.

10. ADL implication operators --> , <-- , and <->
AD introduces three implication operators. The first, is the true implication
operator --> , which may be pronounced as “left-hand side implies right-
hand side.”

Second is the reverse implication operator <--- , which simply reveres the
order of implication (“right-hand side implies left-hand side”). Next is the
logical equivalence operator <-> , which is used when the left- and right-
hand sides should both be TRUE or both be FALSE simultaneously. For the
formal definitions of these operators, language reference manual for your
target language.

11. ADL exception operator
The exception operator (<:>) is used for assertions about exceptional function
outcomes. The exception operator is used to specify conditions that should
be TRUE when an exception occurs—the sorts of outcomes usually listed in
the “Errors” section of a man page. For a formal definition of the exception
operator, see the language reference manual for your target language.

12. ADL normal operator
The reserved word normal is a reserved word that evaluates to a boolean. It
is used in the example above to conditionally evaluate assertions only when
the function under test behaved normally. Similarly, the abnormal reserved
word is used for the opposite purpose.

A First Test 21

3

What to Place in ADL Assertions

The ADL function declaration begins with the function signature, something
available in any source file. The semantics section then augments
information about the interface to the function. The assertions describe those
aspects of the function which are important to the reader—anyone who is
trying to use, understand, and/or test the function being specified.

The “important” aspects of the function which are candidates for ADL
assertions include:

• constraints on input parameters

• constraints on parameters whose value is set by the function (output
parameters)

• expected return values, including use of return values to characterize the
normal and exception outcomes of the function

• significant conditions that should be true after the function has completed
execution

• examples of outputs based on representative inputs

The last candidates for assertions—examples—do not necessarily create good
tests; however, examples can be very useful in documenting and explaining the
function interface to a human reader.

What Not to Place in ADL Assertions

Ideally, assertions describe an interface to a function. A single ADL
specification can potentially be used to specify and test multiple
implementations. Therefore, assertions should not contain details about the
internals of the function.

In general, do not write assertions containing:

• constraints on the method of implementation (unless such constraints are
part of the interface)

Details about the inner workings of the implementation are best placed in
auxiliary functions. In the sample ADL file, for example, any logic about how
balances are stored is kept “hidden” behind the interface to the auxiliary
function balance . If the implementation later changes the way account

22 ADL Translation System User’s Guide—February 1998

3

balances are stored (in a database rather than in an array, for example), the
ADL specification can survive the change. Only the auxiliary function needs to
be rewritten to reflect the changes in the implementation.

Parsing the ADL File

It is good practice to use the ADLT compiler to parse the ADL file before
proceeding with the rest of the test.

To parse the sample ADL file, first ensure that there is a .class file for the
sample bank implementation, then enter the command:

adlt bank.adl

A First Test 23

3

The command tells ADLT to parse the ADL file. If the file parses correctly,
ADLT generates all outputs dependent upon ADL input. The ADL-dependent
output files are shown in the illustration below (in the case of Java, there is
only one). (All output files are discussed later, in the section entitled “Program
Inputs and Outputs” on page 29.”)

Figure 3-2 Outputs of ADLT dependent upon input of the ADL file.

Looking at the Natural-Language Specification (NLS)
To verify that the functions in the ADL file are correctly specified, you may
wish to use ADLT to generate the default natural-language specification file
(NLS). The NLS contains a natural-language version of the ADL specification.
(See Chapter 4, “A First Look at Documentation,” for more details.)

To generate the NLS, enter the following command:

adlt -nls bank.adl

adlt -adl bank.adl

Assertion-Checking

bank.adl

bankACO.java

ADL File

module bank;

Function Source
and Header Files

24 ADL Translation System User’s Guide—February 1998

3

Auxiliary Functions
The next step is to supply an implementation of any auxiliary function or
functions which were referenced in the ADL file and not defined in-line. In the
case of Java, this can be done in any source file/bytecode file that is available
in the CLASSPATH.

A First Test 25

3

The TDD File

Figure 3-3 An annotated example of TDD file named bankTest.tdd .

public tddclass bankTest {

 dataset int ACCOUNTS = { 1, 99 };

 dataset int BALANCES = { 0, 100, 1001 };

 dataset int DEPOSITS = { -1, 0, 3, 1000 };

 dataset int WITHDRAWS = { -1, 0, 7 .. 9, 100, 101 };

 dataset bank BA1 = make_account(ACCOUNTS, BALANCES);

 factory bank make_account (int account_number,

 int initDeposit) {

 return new bank(account_number, initDeposit);

 }

 withdraw_test: test (bank b = BA1, int w = WITHDRAWS) {

 ADL(b).withdraw(w);

 }

 test (bank b = BA1, int d = DEPOSITS) {

 ADL(b).deposit(d);

 }

 full_test : test (bank b = BA1,

 int d = DEPOSITS) {

 long bal = b.get_balance();

 ADL(b).deposit(d);

 ADL(b).withdraw(d);

 if (d <= b.MAX) {

 tdd_assert("bal == b.get_balance()", bal == b.get_balance());

 }

 }

}

Literal Dataset
Definitions

Dataset where
values factory
generated

Factory used
by bank dataset

Unit test -
tests a single
method

Another unit
test

Subsystem test

26 ADL Translation System User’s Guide—February 1998

3

Illustrated Features of the TDD Language and Files

Now that the module has been specified with ADL, the next step is describe
the test data to be used as inputs to the functions under test. To do so, the
engineer creates a TDD file.

Note the following illustrated features of the TDD file:

1. The tddclass statement
Each TDD file must name its class. The class name is used to name
generated files, and must be the same as the name of the tdd file.

2. Datasets
In a TDD file, the test engineer defines collections of test data over which
the test driver will iterate. These collections are known as datasets. A dataset
can be defined as a collection of literal values, a collection of other datasets,
or as a factory (see below).

3. Factories
In addition to TDD datasets, the test engineer can define one or more test
data factories. A factory is a method that returns an object of any type. The
factory takes as arguments one or more datasets. At each iteration of the test
driver, the factory method is called with the appropriate arguments. The
factory is then responsible for establishing whatever conditions it wants and
returning an appropriate value. The factory can also use methods such as
tdd_skip() to control the execution of the tests.

4. Test directives
The test directive directs ADLT to generate test code for the associated
function or sequence of functions, using the specified datasets as
descriptions of the parameters of the test function. The test name is taken
from the label, if present, or else is generated by ADLT. An unlabelled test
directive will result in a test name that is the identifier of the tddclass, the
string “directive”, and an appended integer suffix. For example, the test
name for the unlabelled test directive on deposit will be
D_bankTest_directive_1 .

Other TDD Features and Concepts

In addition, here are other TDD features and concepts important to
understanding how test data is specified in ADLT:

A First Test 27

3

1. The TDD use statement
A TDD file can make visible the contents of any number of other TDD files
via the use statement. For example, a TDD file containing the use statement
below can “see” and reference all contents of the TDD file balances.tdd :

use “balances.tdd”;

The effect of the use statement is transitive: a file “used” in a second file is
imported transitively when that second file is later “used” by a third.

2. The ADLT Input Grid
Each test directive defines a set of points on an input grid. The input grid is
the set of test data input points generated by ADLT for a specific test of a
function.

The input grid is calculated as the cross product of all values of all datasets
of all test variables involved in a given test directive. For example, the test
directive labelled withdraw_test defines an input grid of 42 potential
inputs: the 6 potential values for b times the 7 potential values for w. (We say
that the inputs are “potential” because factories do not have to supply a
value for each point for each test variable.)

What to Place in TDD Files

When formulating the test variables and their datasets, keep in mind the
following principles:

• The TDD file must contain at least one test variable with an appropriate
dataset for each function parameter.

The user can create and re-use a single test variable, if that one test variable
supplies a suitable description of each function parameter. A test variable
has a “suitable” description of a function parameter if:

it has the same data type as the function parameter, or is compatible with
it.1

it adequately characterizes the actual values the parameter should have
during the test.

1. Type compatibility in TDD follows rules of the chosen language for assignment compatibility.

28 ADL Translation System User’s Guide—February 1998

3

• Representation of the sample

The task in choosing properties is to select a representative sample from the
possibly very large universe of parameter values. The problem is one of
equivalence partitioning: the TDD author needs to identify the finite set of
samples that provide a satisfactory representation of the universe of data
values that can be assigned to a test variable.

• Combinations of independent properties

The TDD file factory mechanism is designed to work with properties that are
independent of each other. During the running of the ADLT-generated tests,
those properties will be concatenated into a list of adjectives describing the
data element, and the associated factory will be asked to provide an
appropriate value of that combination of properties.

Generating Tests
Since the ADLT generator requires only two types of inputs—an ADL file and
TDD files—the program can now emit test code.

The ADLT Command

To generate a test for each directive in the test directive file, use the following
command:

adlt -v bankTest.tdd

This command tells ADLT to generate all outputs related to test generation,
and the -v argument tells the system to be verbose about it. As the outputs are
emitted, their file names are listed.

Notice that the command gives ADLT the name of the TDD file containing the
test directives currently of interest. If the TDD file containing the currently
interesting test directives is in mymodule.tdd , for example, the user gives the
following command:

adlt -v mymodule.tdd

The illustration below shows the inputs to ADLT and the generated outputs for
the bank sample module.

A First Test 29

3

Program Inputs and Outputs

Figure 3-4The inputs to ADLT and generated outputs for the bank module.
Users Descriptions of Generated Files

adlt

Test Driver:

bankTest.tdd

bank.adl

directive_1
Test Driver:

withdraw_general

Assertion-Checking
Function

Source File

Makefile

S_bankTest_*.java

...directive_1.java full_test.java

bankACO.java bankTest_CST.java

bankTest.mk

ADL File

Test Data Description File

Test Driver:
withdraw_small

withdraw_test.java

Dataset
Definition

Source Files

Makefile

Test Driver

Constant
Definitions

30 ADL Translation System User’s Guide—February 1998

3

ADLT emits the following types of files:

• Assertion-Checking Objects

ADLT translates the functional specifications in the ADL file into assertion-
checking objects. Assertion-checking objects (ACOs) are functions that check
for the behaviors specified by the ADL assertions. When compiled and
linked into the ADLT test program, the assertion-checking functions
compare the actual behavior of the functions under test to the behavior
specified. ADLT creates a source code file containing one assertion-checking
function for each annotated function in the ADL file.

Unless they wish to examine the generated code, users do not have to
examine or manipulate the contents of this file.

• Test Drivers

ADLT creates one test driver for each test directive in the TDD file. When
compiled and linked into the test program, the test driver iterates over the
grid of test data inputs specified by the test variables in the TDD file. The
driver calls factories and dataset functions to get actual values for each test
variable, and it passes those values to the assertion-checking object(s) for the
test function. The assertion-checking object, in turn, invokes the function
under test, which executes using the provided test data values. The driver
then conducts reporting functions.

Unless they wish to examine the generated code, users do not have to
examine or manipulate the contents of this file.

• TDD Class Constants source file

For each tddclass declaration, ADLT generates a source file that defines a
parent class for factories and datasets (in Java this is an interface definition).
The dataset and factory source files (below) implement this interface
definition, thereby inheriting any constant declarations that were defined in
the tddclass.

• Factory and dataset source files

ADLT generates a source file for each factory. The class definition is taken
from the implementation provided in the TDD file.

A First Test 31

3

• Makefiles

The program also generates makefiles to help TET generate and maintain
the test program and documentation.

• TET Scenario File

If an installation is using TET, ADLT can generate a scenario file. This
generated file is not shown in the diagram.

Factories and Relinquish Functions
The next step is to write the functions that will perform any setup necessary
for the execution of unit or sub-system tests.

Role of Factories and Relinquish Functions

As described above, factories are methods that are used to provide a value for
use in testing. This value may be an isomorphic mapping from the input space,
or it may be some more esoteric relationship between the values of several
dataset-member values passed as parameters to the factory. Regardless of the
purpose of a particular factory, the general purpose is simply to generate
values of a specific type when those values (and associated side-effects) cannot
be generated through simple literal dataset definitions.

When a factory has side-effects (e.g. allocating memory), the test engineer may
choose to also write a relinquish function. The purpose of a relinquish function
is to return resources to the system or otherwise clean up after a factory once
the test has been performed.

Beyond these simple tasks, factories can evaluate system state or the
combination of parameters passed to them. If, for example, a certain
combination of parameters to a factory is not sensible for testing (e.g. a POSIX-
compatible file name when the file system being tested doesn’t handle POSIX
file names), the factory can call the tdd_skip() method to indicate to the test
driver that this test data instance should not be tested.

32 ADL Translation System User’s Guide—February 1998

3

Factory/Relinquish File Naming Conventions

ADLT generates a source file for each factory and relinquish function specified.
That source file (in Java) defines a class that contains an ADLT-generated
constructor, the user-provided factory and (optionally) the user-provided
relinquish function. The source file is named for the tddclass in which the
factory was defined and the name of the factory (e.g.
F_bankTest_make_account.java in the bank example).

Making the Test Program
Using the makefiles emitted by ADLT, the user processes the ADL and/or TDD
inputs to create ADLT-generated files and test programs.

ADLT generates the necessary makefiles.

Building the Test Program
Once the test program has been generated, it needs to be compiled. The
simplest way to do this is to let TET handle it. Just enter the command:

tcc -b <test_dir>

TET will use the generated makefiles and the ADL-provided TET configuration
files to call the appropriate compilers, generate the object files, and link them
together into an executable test.

Running the Test Program
To run the test program withdraw_general , enter the following command:

tcc -e <test_dir> withdraw_general

This command will run the test scenario withdraw_general

By default, the test program will attempt to execute all test instances. Users
may also request individual test instances, a list of instances, a range, or only
instances that produced errors in a prior run of the test program.

33

A First Look at Documentation 4

This chapter describes the documentation that can be generated by ADLT. It
shows generated documentation for the simplified bank module introduced in
Chapter 3, “A First Test.” This chapter does not discuss all the documentation
features of ADLT. The goal is to provide a feel for the ADLT system and its use
in generating documents.

Attention Reviewer! – This section is not yet complete, as this part of the ADL
Translation System is still under development.

The Role of the Natural Language Dictionary
ADLT input files can be used, on their own, as documentation. An ADL file
can be a means of documenting the interface to a module. And TDD files
record the significant characteristics of test data.

However, users usually require more readable types of documentation. Each
function in a module is normally described in a man page. And testers need a
formal description of the specified tests. ADLT offers both types of documents:

• The Natural Language Specification (NLS)

The NLS is a natural-language description of each annotated function.

• The Test Specification (TS)

34 ADL Translation System User’s Guide—February 1998

4

The TS is a natural-language description of the tests that can be generated
by ADLT. It describes the functions under test, the assertions about their
behavior, and the symbolic and/or literal values over which the test will be
run.

ADLT can generate both documents from the ADL and TDD files written for
testing purposes. In addition, the system offers a way for the user to provide
explanations for identifiers used in the ADL specification. By supplying the
optional Natural Language Dictionary (NLD), the user helps ADLT convey
more meaning in generated natural-language translations.

The NLD is a glossary describing the elements that make up ADL assertions.
These descriptions are used as translations. In generated documentation, the
element names are translated into the given natural language descriptions. Via
these translations, NLD entries augment the natural language renderings of
ADL assertions as they appear in the generated NLS and TS.

The illustration below shows a sample NLD entry describing the function
balance and the resulting improvement in the generated natural-language
translation of an ADL assertion:

A First Look at Documentation 35

4

Figure 4-1 Illustration of an ADL assertion, an NLD entry describing a function
referenced in the assertion, and the resulting natural-language translation.
The translation on the left was generated without the input of the NLD; the
one on the right has been augmented by an NLD translation.

The use of NLD is optional. In practice, users will probably first generate
documentation without NLD input, evaluate the quality of the generated
document, then provide NLD entries for those areas that will benefit most from
augmented descriptions.

get_balance() =
"the balance of the account"

ADL

NLD

Generated Documents

If an exceptional outcome
has occurred then

if (abnormal) {
 unchanged(get_balance())

the value returned by
get_balance()
remains unchanged.

If an exceptional outcome
has occurred then
the balance of
the account
remains unchanged.

36 ADL Translation System User’s Guide—February 1998

4

Part 2 — Effective Use of ADLT

39

The Structure of the Test Suite 5

This chapter discusses the organization of the files that make up an ADLT
generated test suite. It gives an overview of the files involved in the test
program and suggests various approaches to structuring ADLT specifications
and organizing test suites. It contains the following major sections:

• Overview of ADLT Files (See page 40.)

Shows an overview of the files that make up the ADLT test program.

• Importing and Referencing Specification Files (See page 46.)

Discusses the use of multiple ADL and TDD files to structure specifications.
Also discusses how ADL and TDD modules should be related.

• Organizing the Test Suite (See page 58)

Discusses approaches to organizing ADLT directories and files at the user ’s
installation, with the goal of creating reusable libraries of ADLT
specification and code files.

40 ADL Translation System User’s Guide—February 1998

5

Overview of ADLT Files
As illustrated on the next page, an ADLT test is composed of the following
types of files:

1. Specification Files
The ADL, TDD, and NLD specification files.

2. Implementation Files
The file representing the implementations of the functions under test, along
with the implementation’s header file (in languages where this is
appropriate).

3. ADLT-Generated Files
The language specific header files (when appropriate) and source files for
test drivers and assertion-checking functions. In addition, to facilitate the
making and running of the test program, ADLT generates makefiles and
TET scenario files.

4. Test Code Files
Implementations of the factory and relinquish functions supplied by the
user, any auxiliary functions used in the ADL specification, as well as any
optional user-defined print, initiation, and termination routines.

5. Libraries
The ADLT runtime library and the TET library, as any user libraries used
as auxiliary functions.

The Structure of the Test Suite 41

5

Figure 5-1 Overview of files involved in the ADLT test suite.

tddbase. ext

TDD File(s)

ADL File(s)

module.adl

Programmer-Supplied
File

Internal File Generated
or Supplied by ADLT

module.$(H)

Header File

Function(s)

module.$(O)

Under Test

Specification Files Implementation Files

module_aux.$(SRC)

tddbase_ext.$(SRC)

Test Code Files

Factory/Rel
Function
Source

Auxiliary
Function
Source

ADLT-Generated Files

Libraries

Assertion-
Checking

Object
Source

Test
Driver(s)
Source

Factory/Rel
Header(s)

Assertion-
Checking
Function
Header

Auxiliary
Function

Header/Source

Makefile

moduleACO.$(SRC)

moduleACO.$(H)

D_testname.$(SRC)

F_module.$(H)

moduleAux.c

depends
upon

language

Overview of
ADLT Files

User-Oriented File Generated
or Supplied by ADLT

tet_scen

TET
Scenario

Natural
Language

Specification

module_nls. format

testname_ts. format

Test
Specification(s)

module.mk

NLD File(s)

module.nld

42 ADL Translation System User’s Guide—February 1998

5

File Naming Conventions

ADLT uses the following naming convention, where the suffixes vary
depending upon the language binding being used:

File Description of Contents

Specification Files

module.adl Top-level ADL file for the software module to be tested.
Mandatory file name format.

tddbase.tdd TDD file containing test directives for test code to be
generated during the running of ADLT.
Mandatory file name format.

module.nld Optional NLD for the module.
If present, file name format is mandatory. Note that the full
path name may depend upon the locale.

Implementation Files

module.$(O) Compiled functions to be tested. The file module.$(O)
should contain implementations of the constituent (non-
auxiliary) functions declared in module.adl.
The user ’s implementation file may have some other name;
the user can change the name in the generated makefile
tddbase.mk. or override it in an ADL configuration file.

module.$(H) Top-level header for all functions to be tested.
Mandatory file name format.

ADLT-Generated Files: User-Oriented

tddbase.mk Makefile containing the make logic for each testname and
the Test specification.
Generated file name format.

module_nls.format Natural language specification for the given module, in the
chosen output format.
Generated file name format.

testname_ts.format Test Specification(s)—one per test directive—in the chosen
output format.
Generated file name format.

The Structure of the Test Suite 43

5

Where:

module

is the name of the ADL module.

moduleAux.$(H) Auxiliary function header. Also contains declarations of
pointers for optional user-defined print functions and
wrappers around the function under test. See the ADL
Translator Programmers Guide for details.
Mandatory file name format.

moduleAux.$(SRC) Source file containing any definitions of auxiliary functions
placed in-line in the ADL file.
Generated file name format.

tddbase_CST.$(H) Factory/relinquish header file(s)—one per .tdd file.
Generated file name format.

tet_scen Optional TET scenario file (for TET environments).
Generated file name format.

ADLT-Generated Files: Internal Files

moduleACO.$(H) ACF header file.
Generated file name format.

moduleACO.$(SRC) ACF source code file.
Generated file name format.

D_testname.$(SRC) Test driver source code file(s)—one per test directive.
Generated file name format.

User-Supplied
Test Code Files

moduleAux.$(SRC) Source for implementations of functions referenced in
factory, relinquish, or test functions that are not provided
elsewhere in the implementation.

May also contain user implementations of any optional
print-formatting functions, initiation and termination
routines, and/or wrappers around the function under test.
See the ADL Translator Programmers Guide for details.
The user can work with other file names by changing the
name in the generated makefile tddbase.mk.

File Description of Contents

44 ADL Translation System User’s Guide—February 1998

5

tddbase

is the base name of the TDD file at end of the “use” chain (usually
the one containing the test directives currently of interest).

The TDD base name can be any name (subject to system file length
restrictions). It can be the same as module, but it does not have to be.

ext

can be one of the TDD file extensions, .tdd , .tdi , or .td r.

All suffixes identify TDD files; .tdr and .tdi identify restricted file
formats. See “Information and Directive Files,” later in this chapter,
for details about TDD restricted file formats.

testname

is the name of the ADLT-generated test program. The test name is
constructed by using the test directive label or, if no label is present,
by using the name of the function under test with an incremented
integer suffix starting with 1.

format

is the documentation output format, either man (a file designed to be
processed with troff and the man macros; the default), or html
(hypertext markup language format).

$(SRC)

is the source code suffix for the target language.

$(H)

is the header file suffix for the target language (assuming it uses
headers).

$(O)

is the generated object code suffix for the target language.

Composition of the ADLT Test Program

The ADLT test program is composed of ADLT-generated and programmer-
supplied elements. These elements are compiled and linked with
implementations of the functions under test and the ADLT library.

The Structure of the Test Suite 45

5

The source files for compilation are:

• the assertion-checking objects generated by ADLT. Assertion-checking
objects determine whether or not the function under test behaves as
specified in ADL.

• the test drivers generated by ADLT. There is one generated test driver for
each test directive in the TDD. The test driver contains a loop that iterates
over the test data inputs specified by the properties and values of each test
variable.

• the programmer-supplied implementations of factory and relinquish
functions. The factory function is the ADLT element that turns the symbolic
description of data in the test variable into an actual programming value to
use in the test. The relinquish function releases the resources allocated by
the factory function.

• the programmer-supplied implementations of auxiliary functions (if any are
declared in the ADL specification). Auxiliary functions provide access to
functionality that is not exposed in the module but which is necessary for a
complete specification of the intended behavior of a function. In the ADLT-
generated test, the auxiliary function is called by the assertion-checking
function in the course of evaluating the assertions about the function under
test.

• the optional programmer-supplied functions to customize the test and the
test report: test prologue and epilogue routines, wrappers around the
function under test, user-defined print formatting functions. (See the ADL
Translator Programmers Guide for details.)

The compilation of the elements above depends upon the following header
files generated by ADLT or supplied by the user:

• the user-supplied implementation header file (module.$(H))

• the factory/relinquish function declaration header file or files

• the auxiliary constituent declaration header file

• the assertion-checking object declaration header file

The compiled elements, above, are linked with the following elements to
produce the test program:

• the compiled implementations of the functions under test

• the ADLT library for the target language

46 ADL Translation System User’s Guide—February 1998

5

• the TET library for the target language

ADLT generates two kinds of makefiles: one to process the elements relative to
a TDD file, and one to control the building, execution, and cleaning of tests
from TET. The former is in tddbase .mk . The latter is in the file Makefile. This
is dynamically updated adlt is executed in the directory. Variables in the
generated tddbase .mk file can be overridden via an ADL configuration
makefile of variable definitions.

Importing and Referencing Specification Files
In ADLT, the user has many options when structuring specification files. For a
given module, there may be one ADL and one TDD file, or the specifications
may be organized in multiple files that import and reference one another.

This section discusses approaches to using multiple specification files in the
creation of ADLT tests. Specifically, it addresses:

• Importing ADL Files (See “Importing ADL Files” on page 46.)

• Referencing TDD Files (See “Referencing TDD Files” on page 51.)

• The Relationship Between ADL and TDD Modules (See “The Relationship
Between ADL and TDD Modules” on page 53.)

Importing ADL Files

ADLT uses the module as a way of organizing specification components; the
module can be any collection of type definitions, variables, constants, and
functions that are related for the purposes of specification, documentation,
and/or testing. The constituents of an ADL module are approximately those
that might appear together in a C/C++ header file or in a Java class definition.

It is up to the ADLT test designer to decide how the implementation’s header
and code files should be represented in ADLT specification modules. The
designer may create one ADL file for each header file, for example, or may
create one large ADL file containing specifications of all related functions.

The Implementation Files

For example, consider the following C header file and three source files:

The Structure of the Test Suite 47

5

/* balances.h */

typedef int account_balance;
typedef int transaction_amount;
typedef int account;

extern account_balance balance(account account_number);

extern account_balance deposit(account account_number,
 transation_amount amount);

extern account_balance withdraw(account account_number,
 transation_amount amount);

Code Example 5-1 Implementation header file named bank.h

/* balance.c */

#include “balances.h”

account_balance balance(account account_number)
{

/* function logic */
return account_balance;

}

Code Example 5-2 Implementation source file named balance.c

/* deposit.c */

#include “balances.h”

account_balance deposit(account account_number,
 transaction_amount amount)
{

/* function logic */
return account_balance;

}

Code Example 5-3 Implementation source file named deposit.c

48 ADL Translation System User’s Guide—February 1998

5

/* withdraw.c */

#include “balances.h”

account_balance withdraw(account account_number,
 transaction_amount amount)
{

/* function logic */
return account_balance;

}

Code Example 5-4 Implementation source file named withdraw.c

Using a Single ADL Module

Given the implementation files above, the test designer can create a single ADL
module containing specifications of all three functions. The module definition,
then, follows the organization of the header file balances.h , which is used by
all three functions.

typedef int account_balance;
typedef int transaction_amount;
typedef int account;

account_balance balance(account account_number);

account_balance deposit(account account_number,
 transaction_amount amount)

semantics{
return == @balance(account_number) + amount

};

account_balance withdraw(account account_number,
 transaction_amount amount)

semantics{
return == @balance(account_number) - amount

};

Code Example 5-5 ADL file named bank.adl containing specifications of three
functions.

Given the organization of the ADL module above, the designer simply needs
to create a header file named bank.h , which would #include the
implementation’s header balances.h .

The Structure of the Test Suite 49

5

Using an ADL Module Hierarchy

As an alternative to the single-module organization shown above, the designer
can create a hierarchy of ADL modules by using the ADL imports clause. An
ADL file can contain the specification of only a single module. However, that
one file can “see” the constituents of other modules through the use of the
imports clause.

Consider the four modules below, each in a separate ADL file:

file balances.adl:

typedef int account_balance;
typedef int transaction_amount;
typedef int account;

account_balance balance(account account_number);

Code Example 5-6 ADL file named balances.adl

file deposits.adl:

import balances;

account_balance deposit(account account_number,
 transaction_amount amount)

semantics{
return == @balance(account_number) + amount

};

Code Example 5-7 ADL file named deposits.adl

file withdrawals.adl:

import balances;

account_balance withdraw(account account_number,
 transaction_amount amount)

semantics{
return == @balance(account_number) - amount

};

Code Example 5-8 ADL file named withdrawals.adl

50 ADL Translation System User’s Guide—February 1998

5

file bank.adl:

import deposits, withdrawals {

}

Code Example 5-9 ADL file named bank.adl

In the example above, the modules deposits and withdrawals import the
module balances , and the top-level module bank imports both deposits
and withdrawals .

The effect of the import statement is to make visible the contents of the
imported modules in the importing modules. Both withdrawals and
deposits can “see” the constituents of balances , and they can refer to those
constituents as if they had been declared inside their own respective modules.
Further, importing is transitive. The module bank can see the constituents of
balances as a consequence of importing either deposits or withdrawals.

For this hierarchical module organization, the designer must create four header
files—one module.h for each module.

Reasons for Using Multiple ADL Files

The hierarchical example, above, requires that the test designer create four
header files instead of the one used in the single-module solution. However,
the designer may decide that the additional headers are worth the trouble, if
the type definitions and function declarations in the modules will be used by
other modules representing code beyond that contained in bank.c .

For instance, there may be a source file specifically for automated teller
transactions; that code might not perform deposits and withdrawals
immediately (such transactions may be verified and processed overnight).
However the automated teller module does need access to real-time account
balances, and a module named atm might therefore import balances .

The use of multiple ADL files therefore facilitates the re-use of specification
components. It is up to the designer to weigh the benefit of simplicity (a
smaller set of specification files) against the longer-range goal of reusability.
The decision involves balancing the goals of the software (ad hoc code versus
the construction of a large system for long-term use) and the needs of the test
(special-situation testing versus the construction of a test suite to be used over
years).

The Structure of the Test Suite 51

5

Referencing TDD Files

TDD files describe data to use in the test of functions described in ADL files.
However, the organization of TDD files does not have to follow exactly that
used by the related ADL files. The designer may decide to use and reference
multiple TDD files; he or she can also employ TDD restricted-content
information and directive files, as well as general TDD files.

The TDD use statement

The use statement permits the TDD author to organize TDD files in hierarchies
of files, similar to the way the ADL imports clause creates transitively visible
modules.

Figure 5-2 Illustration of transitive references among TDD files.

use " balances.tdd" ;

use " deposits.tdd" ;

Sees everything declared in
balances.tdd from point
of declaration forward.

Sees everything declared in
deposits.tdd from point
of declaration, plus
all elements in

Sees everything declared in
bank.tdd from point
of declaration, plus all
elements visible in
deposits.tdd —which
includes all elements

balances.tdd .

TDD File balances.tdd

TDD File deposits.tdd

TDD File bank.tdd

in balances.tdd .

52 ADL Translation System User’s Guide—February 1998

5

The effect of the TDD use statement is transitive. All the elements in the
named file—properties, test variables, and test directives—along with any
elements that were visible in the named file, are transitively visible in files
containing the use statement.

Strategies for Using Multiple TDD Files

When ADLT is run to process a TDD file, it is given the name of the TDD file
containing the test directive or directives that will produce the tests currently
of interest. That file is then the “innermost” TDD file in the current set—it is
the one that can “see” all other files containing needed declarations but which
is not itself referenced by any other files needed for the current test. The
illustration below shows the relationship between the test directive and the file
name given in the ADLT command:

import " balances.tdd" ;

import " deposits.tdd" ;

TDD File balances.tdd

TDD File deposits.tdd

TDD File bank.tdd

test balance(...);

test deposit(...);

test withdraw(...);

Given the Command: adlt deposits.tdd

This file is not involved

Current test directives.

in the current test.

The Structure of the Test Suite 53

5

The test designer can arrange TDD declarations in any import hierarchy that
seems useful. The simplest is to use one TDD file per module under test. There
are many other possible ways to structure TDD files. For instance, the designer
could use multiple TDD files, all involved in the current test. Each project can
decide upon the standards and conventions that best suit its needs. For a
discussion of organizing principals, see “Organizing the Test Suite” on page 58.

Reasons for Using Multiple TDD Files

The factors in deciding to use multiple TDD specifications are like those for
ADL files: the balance of simplicity of the specification versus reusability of
specification components. If a set of test variables will be useful in many
testing situations (for example, for file names or integers used as incrementors,
or any other common data type), the designer should probably place those
TDD test variables in a separate file that will be “used” as necessary.

Some TDD files can define the architecture of the test, and provide general
factories and associated relinquish functions. These then make up an archive of
reusable testing code. Other TDD files can then define the individual tests in
terms of these general factories. Over time, as users create libraries of reusable,
referenced TDD files, they will also be creating libraries of factory and
relinquish functions, thereby decreasing the effort involved in creating new
ADLT test programs.

The Relationship Between ADL and TDD Modules

Through the import statement, a TDD file gains visibility of all ADL type
definitions and function names that are visible in the ADL files and target
language source files thereby imported.

For example, given the following TDD statement in a file named bank.tdd :

import bank.*;

all ADL types and functions visible in package bank will also be visible in
bank.tdd .

However, a TDD file cannot simply reference any arbitrary ADL module; the
TDD file should describe data for one or more related ADL modules. Modules
are related in ADL files through the ADL language import statement. The

54 ADL Translation System User’s Guide—February 1998

5

ADL files therefore define a hierarchy of modules that are related for the
purposes of documentation, specification, and testing. The purpose of the TDD
file is to describe data for that same set of modules.

TDD references do not have to follow exactly the ADL hierarchy. However, the
module dependencies in the TDD file should follow those in the ADL files. That
is, the direction of the TDD use statement should be the same as the ADL
import , as shown in the illustration below.

The Structure of the Test Suite 55

5

Figure 5-3 Sets of modules related in ADL and TDD files

In the illustration above, the use of the use statement in the TDD file is
appropriate because it follows the direction of the dependencies in the ADL
files. In the ADL files, the bank module imports the balances module, albeit
indirectly. In the TDD files, the bank module also references the balances
module. Because the TDD files follow the hierarchy used in the ADL files, the
TDD use statement is legal. Note that the TDD hierarchy does not have to
follow exactly the importing hierarchy in the ADL files. Only the direction of
the dependencies among modules must be preserved across ADL and TDD
files.

ADL Files TDD Files

import balances;

use “balances.tdd”;

file deposits.adl
 import balances;

file bank.adl
 import deposits;

Related ADL Modules and TDD Files

balances.tdd

bank.tdd

file balances.adl

56 ADL Translation System User’s Guide—February 1998

5

Figure 5-4 Illegal use statement in balances.tdd

The TDD use statement in the illustration above is not legal. Here, the TDD
file balances.tdd tries to reference bank.tdd . While the bank and
balances modules are indeed related in the ADL files, the TDD files do not
follow the ADL import hierarchy. The file bank.tdd should use
balances.tdd , not vice versa.

ADL Files TDD Files

use “bank.tdd”;

file balances.adl

file deposits.adl
 import balances;

file bank.adl
 import deposits;

Illegal Reference in TDD Files: ADL Hierarchy Not Followed

balances.tdd

bank.tdd

The Structure of the Test Suite 57

5

Figure 5-5 Illegal import statement in bank.tdd . The module currency is not
related to the bank module.

The illustration above shows another illegal use of the use statement in TDD
files. Here, the file bank.tdd tries to reference a TDD file that describes an
unrelated module. The module currency is not part of the ADL hierarchy of
modules, and the TDD file may not use declarations that describe an unrelated

ADL Files TDD Files

file bank.tdd

file balances.adl

file deposits.adl

file bank.adl
 import deposits;

Illegal Importing in TDD Files: Unrelated Module

use “currency.tdd”;

bank.tdd

currency.tdd

file currency.adl

};

58 ADL Translation System User’s Guide—February 1998

5

module. The rule prevents confusion; if module currency defines an
identifier that is also defined by module deposits , the meaning of that
identifier would be unclear in bank.tdd .

Organizing the Test Suite
This section discusses approaches to organizing the elements of the ADLT test
program. Its goal is to help the user create specifications and test code which
meet the needs of specific testing situations and which also contribute, over
time, to building a reusable library of testing components.

This sections discusses:

• Principals of Specification Structure (See page 58.)

• Recommended Directory Structures (See page 59.)

• The UNIX File System Example (See page 60.)

• Customizing the Test Suite Structure (See page 62.)

Principals of Specification Structure

The overall goal is to write specifications and test code so that, over time, the
user is constructing an archive of components that can be reused in multiple
testing situations. As individual testing needs arise, the archived
components—ADL and TDD specifications, accompanying auxiliary, factory,
and relinquish functions—can be reused to create the currently needed test.

The following principals will support reusability:

• Data types used in more than one software component should be described
in ADL and TDD files that are then imported and referenced as needed.

• It is often useful to define more than one TDD test variable for a given data
type: one for normal values and one for abnormal/erroneous values.

• The user should balance the use of several test variables over the
convenience of using refinements. The issue is whether to use a single test
variable, one that contains a small amount of special case logic, and then to
refine that single test variable; or to specify multiple test variables. If the
factory function requires a great deal of special casing, multiple test
variables are advisable.

The Structure of the Test Suite 59

5

• The user should consider reusability when defining auxiliary functions. The
building of a library of auxiliary functions will shorten the effort needed to
create new tests. Note that the definition of reusable auxiliary functions may
require iteration, as the range of needed testing situations become clear.

Once specifications are designed for general, long-range reuse, they may be
modified for specific test needs through the following ADLT facilities:

• Refinement of TDD test variables (in a separate TDD or TDR file)

• Use of test directives that use the refined test variables (in a separate TDD or
TDR file)

• Addition, deletion, or modification of optional user-supplied code to
customize the test program and test result report— test initiation and
termination routines, wrappers around the function under test, user-defined
print formatting functions. (See the ADL Translator Programmers Guide.)

Recommended Directory Structures

To support the twin goals of reusability and per-test customizing, the following
general directory structure is recommended:

60 ADL Translation System User’s Guide—February 1998

5

Figure 5-6 Recommended ADLT directory structure: AUX, DATA, and TESTS.

The purpose of the recommended structure is to separate components
designed for re-use (type definitions, auxiliary functions, test variables and
their accompanying factory/relinquish functions) from those elements used in
particular tests (the ADL, TDD, and NLD files).

The AUX and DATA directories are kept separate due to the different organizing
principles for the next level of directories. Auxiliary functions should probably
be grouped by type of module they address (for instance, those related to file
systems or to memory management); data is best organized by related types.

In addition, the TESTS directory can be further divided to facilitate re-use of
ADL and NLD specifications. For example, one branch could be reserved for
ADL modules imported by many groups of tests.

The UNIX File System Example

The recommended directory structure is used in the sample, partial test suite
for the UNIX file system. The example contains the outline of the suite that will
test UNIX file system calls.

AUX DATA TESTS

Auxiliary Functions
TDD Files

Factory/Relinquish
Functions NLDs for Aux Functions

ADL, TDD,
and NLD Files

Divide next level
by groups of related

functions, as appropriate

Divide next level by
types of data, as

appropriate

Divide next level by
test or groups of

related tests

ADL Type Definition Files

The Structure of the Test Suite 61

5

The UFS example is structured as shown below:

Figure 5-7 Directory structure for the UNIX file system example.

Beneath the root directory for the set of suites, unix_fs , the next level of
directories follows the recommended structure:

• fs_aux holds all the auxiliary functions for the set of suites.

• fs_data holds the TDD files containing master test variables and their
corresponding source files for factory and relinquish functions.

• fs_tests is a node which organizes the suites for individual system calls
related to the UFS. The example provides tests for chmod and unlink . This
structure permits other directories to be added as tests are developed for the
additional UFS system calls.

Note that the fs_data directory also contains a program which sets up
directories and files needed for the test suites. This program, setup.c , must
run as root in order to set permissions; therefore, its logic could not be placed
in an initialization routine.

unix_fs

fs_aux fs_data fs_tests

chmod unlink ...other functions
 to be added over time

62 ADL Translation System User’s Guide—February 1998

5

Customizing the Test Suite Structure

Obviously, the user may find other effective structures for their test suites
besides the one recommended here. The makefile generated by ADLT
“expects” to find files with given names in anticipated places. However, the
user can modify the emitted makefile if and where user file names do not
conform to ADLT defaults. Specifically, the makefile contains variables whose
assignment may be changed by the user.

Attention Reviewer! – These variables are not yet fully defined.

Code Example 5-10

63

Using ADLT with TET 6

This chapter describes how to use the ADLT-generated tests via the Test
Environment Toolkit. It provides a mapping of ADLT concepts to TET
concepts and shows how to make the ADLT test program run with TET. The
chapter also provides a description of test result report formats available for
ADLT test programs running under TET.

Mappings Between ADLT and TET
The paradigm used by ADLT testing is slightly different from that used by
traditional conformance testing. Traditional testing involves specifying tests by
their inputs and outputs. ADLT separates the specification of behavior—the
ADL file—from the specification of the data and the test—the TDD file.
Nonetheless, the ADLT and traditional testing models are similar enough to
permit the use of ADLT for conformance testing under TET. This section
summarizes how ADLT inputs, outputs, and tests, map to those used in
conformance testing under TET.

Test Units

TET defines several levels of testing abstraction. The smallest level of
abstraction, or unit of testing, is the test purpose. A test purpose in TET is a set
of one of more assertions for which a single result will be reported. In ADL-
generated tests, each test instance maps to a TET test purpose. A test instance
is defined as one invocation of the function(s) under test, using input data from
one point on the ADLT input grid, followed by evaluation of all ADL

64 ADL Translation System User’s Guide—February 1998

6

assertions about the behavior of the function(s). For each input gridpoint, the
ADL generated test evaluates each assertion; then, when all assertions have
been evaluated, it assigns a test result for the gridpoint.

The next level of testing abstract TET defines is the invocable component. TET
calls this level “invocable” because it this level of abstraction can be explicitly
invoked for testing from the command line. TET permits any number of test
purposes to be encapsulated in an invocable component. ADL-generated tests
map each test purpose to a single invocable component. This means that it is
possible to select one or more specific test instances from the command line,
and have the assertions of the function(s) under test evaluated against only
those test instances.

Test Results

As the ADL-generated test evaluates each assertion for each test instance, that
assertion evaluation is assigned a result. Those results are recorded as interim
results in the TET journal file. When all assertions for a test instance have been
evaluated, TET uses the tiered relationship of test results to determine the
aggregate result for that test instance.

In addition, the test author can set any desired result code by calling the
functions adlResult or tddResult, which are part of the ADL library. These
function may be called from a provide function, when it sets the user result for
all assertions at that grid point, or from an auxiliary function, when it sets the
user result for that assertion at that grid point, or even from within a test
definition in a TDD file. The result code for an assertion is calculated by
combining the automatic result code (calculated as above) and any user-set
result codes.

Test Directives and Scenarios

In ADLT, the test program is defined by the test directive. For each test
directive in the TDD file, ADLT generates one test program.

In TET testing, each test suite is defined as a scenario in the TET scenario file,
tet_scen . The scenario file contains sequences of invocable components (ICs)
that can be invoked under a scenario name. When ADLT is run under TET, the
invocable component numbers, a range beginning with 1, are used to represent
the ICs.

Using ADLT with TET 65

6

When ADLT is run against a TDD file, the program emits the TET scenario file,
tet_scen . This file maps ADLT test directives to TET test suite scenarios. For
each ADLT test directive, the defined scenario entry runs the test program over
all invocable components. This name of the assertion is the same as the name
assigned to the test clause in the TDD file.

For example, given the following labeled TDD test directive:

withdraw_general: test withdraw(account acct, int amount);

ADLT will generate the following scenario name:

withdraw_general

And, given the following unlabeled TDD test directive:

test withdraw(account acct, int amount);

ADLT will generate the following scenario name:

withdraw1

See the section “The Generated TET Scenario File” below, for a detailed
discussion about the contents of the generated TET scenario file.

Directory Structure and Required Files
Neither ADLT nor TET require the organization of ADLT files in any particular
directory structure. However, the user may find it useful to separate shared,
master ADL specification and TDD files from TDD files that define tests. For a
full discussion of approaches to organizing ADLT files and directories, see
Chapter 5, “The Structure of the Test Suite.”

In order to run ADLT test programs under TET, the scenario file tet_scen,
and the files tetbuild.cfg , tetclean.cfg , and tetexec.cfg file must
exist. Sample versions of these are available in the ADL2 lib directory. ADLT
generates a default tet_scen file. For information on setting up a
tetexec.cfg file, see the Test Environment Toolkit Architectural, Functional, and
Interface Specification.

Environment/Configuration Variables
When running ADLT test programs under TET, the following environment
variables must be defined:

• TET_ROOT - An environment variable set to the main TET directory.

66 ADL Translation System User’s Guide—February 1998

6

• ADL2HOME - An environment variable set to the directory in which the ADLT
program was installed.

The following table contains a complete list of the environment variables that
are used by the test program.

For information regarding TET configuration and communication variables,
see the Test Environment Toolkit Architectural, Functional, and Interface
Specification.

Generating Test Programs for TET
Once the ADL specification and TDD files have been created, there are two
main steps in generating an ADLT test program for use with the TET test
harness:

1. Run ADLT

2. Make the test program

The scenario file is emitted by default, and is known to the generated makefile.

Running the Test Program under TET
To run ADLT test programs under TET, use the following command:

Where:

test_dir

is the pathname of the directory that contains the ADLT test
programs, given relative to the location of TET_ROOT. If a
pathname is not specified, the user cannot specify a scenario. In the

Name Legal Values Default Value Description

ADL2HOME a directory path name none
 must be defined

Specifies the path of ADL system release
directory

tcc -e test_dir [scenario]

Using ADLT with TET 67

6

absence of a pathname, tcc assumes the TET scenario file,
tet_scen , is in the current working directory and runs the scenario
all .

scenario

is the name of a scenario in the TET scenario file, tet_scen . If the
user wants to specify a scenario, he or she must provide a value for
test_dir. If no scenario is specified, tcc runs the scenario named all .

ADLT generates a default tet_scen file for convenience. The contents of this
scenario file and a description of how to customize it are provided in the
section below.

The Generated TET Scenario File

The TET scenario file contains scenarios composed of scenario names,
comments, and command lines for the ADLT test program.

Modifying the TET Scenario File

To add scenarios to the file, or modify existing ones, the user will need to
supply the test program command in a format that is understood by ADLT.

Here is the general format for the ADLT command in the tet_scen file:

Where:

testname

is the name of the ADLT test program.

range_list

specifies a range or list of invocable components to run.

/ testname { range_list}

68 ADL Translation System User’s Guide—February 1998

6

Where n is the identifier of the invocable component to run, range
can be specified as:

0 to run all invocable components in assertion-oriented
 mode

all to run all invocable components in data-oriented mode

n [, n]* to run individual invocable components in data-oriented
mode

n - n to run a range of invocable components in data-oriented
mode

For example, to create a scenario to test the first 10 invocable components for
the withdraw function in data-oriented mode, the user can create a new
scenario called withdraw_first_10 by adding the following lines to the
scenario file:

withdraw_first_10
 "directive withdraw_general:test withdraw(acct, amount)"
 /withdraw_general_data {1-10}

To run this test, enter the following tcc command line:

tcc -e my_directory withdraw_first_10

69

Customizing the Test Program 7

In many ways, ADLT is an open testing tool. Since the ADLT compiler
produces source code which can be linked with user-supplied code, there are
several points of interface between built-in and user-supplied functionality.

ADLT is a tool designed for programmers; it permits the programmer to
customize the generated test through the addition of optional functions which
operate at various points in the test-generation process and runtime test
program. Such optional functions can control the environment surrounding the
entire test or surrounding a single invocation of the function under test; can
modify the content and format of generated test result reports; and can change
the languages in which documentation is produced.

This chapter gives an overview of ADLT customization features. It introduces
the mechanisms available to programmers, and contains references to more
detailed information in the ADLT document set.

The programmer can modify the ADLT test and test report through the
following means:

• Initialization and Termination Routines

It is sometimes necessary to establish elements in the environment of the
runtime test: to create files, initialize libraries, set the values of global
variables, or other factors in the test environment. To permit the user to
establish this environment, ADLT contains a mechanism for user-defined
initialization and termination functions. For details, see the language
reference manual for the language binding you are using.

70 ADL Translation System User’s Guide—February 1998

7

• User-Defined Iterators for ADL Quantified Expressions

The ADL language includes advanced features for existential and universal
quantification; for example,

exists (int j : int_range(1, 10)) {
P(j) };

which is an ADL expression using existential quantification over a compact
set of integers; and

forall (deftype_t x : def_set()) {
Q(x) };

which is an example of universal quantification over a user-defined set. The
first example uses a set constructor defined in the predefined module
ADL_Standard , which is implicitly available to all ADL modules. The
second quantified expression uses a user-defined set constructor for a user-
defined type. ADLT permits the user to define iterators for any type that is
legal in the ADL specification. For details, see the lanuage reference guide
for the language you are using.

• Controlling the Level of Expression-Evaluations on Reports

By default, the ADLT test result report shows the evaluation, true or false, of
each assertion. Alternately, the user may wish to see evaluations of lower-
level expressions and subexpressions, down to the level of a single variable.
To control the expression-evaluation level, users may set a command-line
switch when running the test program, or may set the TET configuration
variable ADL_RPT_DETAIL.

• Inserting Messages into Test Result Reports

Users may wish to place text in test result reports. To implement this facility,
the ADLT library supplies several functions that can be called from any
user-defined functions, such as auxiliary, provide/relinquish functions;
initiation and termination routines, and/or other user-supplied code.

• Setting the Test Result Code

Users may set a test result code based upon some condition in the execution
environment of the test program. The ADLT library contains functions to
check configuration variables and set the test result.

• Modification of the Generated Makefiles

Customizing the Test Program 71

7

The ADLT-generated makefiles conform to some reasonably simple default
for file names and directories. It is expected that only basic suites will be
structured in accordance with the defaults. The makefile is constructed so
that the user can easily identify and modify makefile variables to indicate
whatever files and directory structures are most effective for the testing
needs at hand.

For details, see “Recommended Directory Structures” on page 59 and
“Customizing the Test Suite Structure” on page 62, both in Chapter 5, “The
Structure of the Test Suite,” in this book

• Modification of the Generated TET Scenario File

When run with the TET option, ADLT generates a scenario file. This file
contains scenarios for reports in two modes, with defaults for the invocable
components to be run. The user can freely modify the scenario file in
accordance with TET and ADLT conventions.

For details, see “Modifying the TET Scenario File” on page 67 of Chapter 6,
“Using ADLT with TET,” in this book.

72 ADL Translation System User’s Guide—February 1998

7

73

Glossary

ADL
See “Assertion Definition Language.”

ADLT

Assertion Definition Language Translator. ADLT is a system that assists in the
functional testing of software components. It is a compiler that generates test
programs based upon the input of formal functional and test-data
specifications. ADLT-generated test programs call the components under test
to determine if they are compliant with their specification. The system also
generates natural-language documentation of specification inputs and
generated tests. ADLT’s goal is to automate, as much as possible, current best
practices in unit testing.

Assertion
An ADL assertion is a boolean expression that describes the normal and/or
exceptional behavior of a function. ADLT evaluates each assertion after
execution of the function. The function has executed properly if all of the
assertions are true.

Assertion-Checking Functions
Assertion-checking functions are C-code functions generated by ADLT. The
functions have embedded in them the behaviors specified by the ADL semantic
statements. When compiled and linked into the ADLT test program, the
assertion-checking functions compare the actual behavior of the function under
test to the behavior specified in the ADL assertions.

74 ADL Translation System User’s Guide—February 1998

Assertion Definition Language
Assertion Definition Language is a formal grammar for declaring the
constituents of a software module—its data types, variables, constants, and
functions—and for specifying the intended behaviors of functions within the
module.

Auxiliary Constituents
Auxiliary constituents are types, variables, constants, and functions that are
used in the ADL specification to help describe the intended behavior of
module functions. Auxiliary constituents are implemented separately from the
module being specified. Declarations of auxiliary constituents are visible only
within ADL semantic bindings and assertions.

Auxiliary Functions
Auxiliary functions are functions that are declared in the ADL specification but
implemented separately from the module being specified. The functions
typically examine some aspect of the implementation’s execution state or
surrounding environment. Auxiliary functions can be new functions defined
especially for ADLT testing purposes, or they can be already-compiled
functions, such as library and system calls.

Constituent
A constituent is an element of an ADL module. There are three types of
constituents: type definitions; variables and constants; and functions.

Environment Parameter
An environment parameter is a TDD test variable used to set up a global state
or condition that can affect the operation of the function under test.

Input Grid
The input grid is the set of test data input points generated by ADLT for a
specific test of a function. The number of points on the grid is determined by
the TDD file specification of the test variables in a given test directive. The test
variables include those that describe function parameters, as well as any
optional environment parameters. The input grid is calculated as the cross
product of all values of all properties of all test variables.

Literal Test Variables
Literal test variables are TDD descriptions of test data defined with numeric
and character constants. The ADLT test program uses the specified literal
values as inputs to the function under test.

Glossary 75

Master Test Data Definitions
Master test data definitions constitute the most complete description of TDD
test variables or properties. Their purpose is to document the full set of
important values that should be examined for a particular data element.
Master definitions also determine the functionality of the provide function. The
provide function must be ready to interpret the full set of values specified by
the master definition of a test variable. (Also see “Test Data Refinements.”)

Module
An ADL module is a programmer-defined software component. The module
may contain any variables, constants, type definitions, and functions that the
programmer considers to be related for the purposes of specification,
documentation, implementation, and/or testing.

Natural Language Dictionary
The Natural Language Dictionary is a glossary of translations for elements that
make up ADL assertions. ADLT uses these translations to augment natural
language descriptions that appear in generated Natural Language Specification
and Test Specification documents.

Natural Language Specification
The Natural Language Specification is an ADLT-generated document that
contains natural language descriptions of functions described by ADL
semantics.

NLD
See “Natural Language Dictionary.”

Property
A property is a significant, independent aspect of a TDD test variable.
Properties are defined as having sets of symbolic values—adjectives that
characterize the actual values the test variable should take on during the ADLT
test of a function.

Provide Functions
Provide functions are programmer-written functions that provide instances of
data elements to be used in the test of module function. In arguments passed to
the provide function, the ADLT test driver describes the combination of
properties to be instantiated. The provide function creates or locates an
instance of the data element with a value that agrees with the description in
the properties. It then supplies that value to the driver to be used as part of the
current ADLT test instance.

76 ADL Translation System User’s Guide—February 1998

Relinquish Functions
Relinquish functions are programmer-written functions that relinquish any
resources allocated by a corresponding provide function. If the provide
function created a new instance of a data element, for example, the relinquish
function would normally deallocate the element.

Scenario
A scenario is a TET test description.

Semantics
Semantics are ADL statements that describe the intended behavior of functions
in the module. ADLT translates semantic statements into assertion-checking
functions, which determine whether the function under test passes or fails the
ADLT test program.

Symbolic Value
A symbolic value is an adjective that characterizes the actual values a TDD test
variable should take on during the ADLT test of a function.

TDD File
See “Test Data Description File.”

Test Data Description File
The test data description file (TDD file) is a text file containing TDD-language
descriptions of data to be used during ADLT tests. In the TDD file, data are
described with either literal values or symbolic properties. The TDD file also
contains test directives, which direct ADLT to generate a test for specific
functions using specific test data descriptions. (Also see “Test Data Information
File” and “Test Directive File.”)

Test Data Information File
A test data information file is a restricted form of a TDD file. It may contain
only declarations of properties and test variables, as well as their refinements.
It may not contain test directives. (Also see “Test Directive File.”)

Test Data Refinements
Test data refinements are definitions of TDD test variables and properties that
specify a subset of the values described in master definitions. Refinements
allow the TDD file author to limit the number of tests implied by the master
definition of a test variable or property. Since particular testing situations can
require more targeted test input values, refinements let the author specify a
smaller set of values, as needed. (Also see “Master Test Data Definitions.”)

Glossary 77

Test Directive
A test directive is a TDD-language statement that directs the ADL Translator to
generate a test for the function given in the statement. The test directive also
indicates the TDD test variables that should be used to generate test data
inputs to the test.

Test Directive File
A test directive file is a restricted form of a TDD file. It may contain only
refinements of test variables and properties, as well as test directives. It may
not contain declarations of master properties or test variables. (Also see “Test
Data Information File.”)

Test Driver
A test driver is a C-language source file emitted by ADLT. The program
generates a test driver for each TDD file test directive statement. When
compiled and linked into the test program, the test driver interates over the
grid of test data inputs implied by the test variable properties in the TDD file.
The driver calls provide functions to get actual values for each test variable,
and it passes those values to the assertion-checking function for the function
under test.

Test Instance
A test instance is one invocation of the function under test with a discrete
combination of input values; that is, at one point on the generated input grid.
(Also see “Input Grid.”)

Test Result
A test result is the overall determination of whether a function passes or fails
an ADLT test program. The function passes if all specified ADL assertions are
true at all tested points on the input grid. (Also see “Input Grid.”)

Test Specification
The Test Specification is an ADLT-generated document containing natural
language descriptions of an ADLT test.

Test Variable
A test variable is a TDD-language definition of a data element to be used in an
ADLT-generated test. Test variables are defined with either literal values or
symbolic properties.

TET
Test Environment Toolkit, a test harness in general use in UNIX environments.

78 ADL Translation System User’s Guide—February 1998

Translation
An translation is a natural language phrase, sentence, or paragraph specified in
an NLD. Each translation describes a programmer-defined element of an ADL
assertion. When generating documentation, ADLT substitutes the given
translation for each occurrence of the corresponding ADL assertion element.

XPG
X/Open Portability Guide. XPG is the specification produced by X/Open for a
Common Application Environment (CAE).

IX-1

Index

A
ADL

annotated functions, 19
auxiliary functions, 6
bindings

normal and exception, 19
C-like syntax, 18
group expression, 19
imports statement, 49, 55
multiple specification files, 50
quantified expressions, 70
reserved words, 19

ADLT
as a test compiler, 4
compiler, generated outputs, 28
customization features, 45, 59, 69
documentation inputs and

outputs, 10
file naming conventions, 42
generation of documentation, 10
makefiles, 31, 32
mappings to TET, 63
test generation, 6
test program

elements, 44
elements to be compiled, 44
elements to be linked, 45
functionality overview, 44

test suites, 39
annotated functions

as module constituents, 19
assertion-checking functions, 30
assertions

in ADL, 21
auxiliary functions

in ADL, 6, 24

B
bindings

normal and exception, 20

C
call-state operator, 19
customization features

declarations in the auxiliary header
file, 43

in the generated makefiles, 62
initialization and termination

routines, 45
messages in test result reports, 70
overview, 69
print formatting functions, 45, 59
setting result codes, 70
wrappers around the function under

test, 45, 59

IX-2 ADL Translation System User’s Guide—February 1998

D
documentation

and NLD input, 10, 34
inputs and outputs, 10

E
environment variables

ADL_OPTIONS, 70
under TET, 65

exception operator, 20
expression evaluation level, 70

F
file naming conventions

for ADLT, 42

G
group expressions, 19

I
implication operator, 20
imports statement

transitivity among ADL files, 49, 50
initialization and termination

routines, 59, 69
input grid, 27
inputs

to ADLT compiler, 28

L
logical equivalence operator, 20

M
makefile

customization features, 70
makefiles

customization features, 62
generated by ADLT, 8, 31, 32, 46

messages

in test result reports, 70
module

constituents, 13
organization, 46

multiple specification files, 46
ADL, 50
TDD, 51

N
NLD

as a glossary of terms, 10, 34
as optional input to ADLT, 11, 35

NLS file
generated by ADLT, 10, 23, 33

O
operators

ADL call-state, 19
ADL exception, 20
ADL logical equivalence, 20

outputs
generated by ADLT compiler, 23, 28

P
print formatting functions, 45, 59

R
relinquish functions, 7
reserved words

in ADL, 19
result codes

user settings, 70
reverse implication operator, 20

T
TDD

module statement, 26
multiple specification files, 51
use statement, 27, 51, 55
use statement, illegal, 56

Index IX-3

test directives, 7, 26, 64
test driver, 30
test generation, 6
test instance, 3, 63
test program

elements, 44
functionality overview, 44

test result reports, 9
customization features, 70

test suites
ADLT, 39
customizing the structure and

files, 62
organization of, 58
recommended directory

structures, 59, 60
TET, 65
the UNIX file system example, 60

TET
scenario file, 71
test suites, 64

TS
generated by ADLT, 10, 34

U
use statement

illegal, 56
in TDD, 27
transitivity among TDD files, 52

W
wrapper around the function under

test, 45, 59

IX-4 ADL Translation System User’s Guide—February 1998

