
(1998.07.01) 1 of 81

ADL for IDL

SunTest
The Open Group Research Institute

The language definition for ADL annotations
for the IDL interface definition language
defined by Object Management Group.

ADL 2.0 for IDL Language Reference Manual,
Version 1.2

ISSUE NUMBER REASON FOR ISSUE

1.0 Alpha Document Launch For Review

1.0 Beta First Revision

1.0 Gamma Second Revision

1.0 Delta Third Revision

1.0 Final Revision: delivered to IPA

1.1 Second delivery to IPA

1.2 Updated in accordance with version 2.0.2 of the ADL Translation System.

e and

rtain
stems,.
tion of

mission

 (IPA)
enta-
COPYRIGHT AND LICENSE NOTICE

Copyright © 1997-1998 The Open Group

Copyright © 1994-1997 Sun Microsystems Inc.

Copyright © 1994-1998 Information-technology Promotion Agency, Japan

This technology has been developed as part of a collaborative project among the
Information-technology Promotion Agency, Japan (IPA), X/Open Company Ltd. and
Sun Microsystems Laboratories.

Permission to use, copy, modify and distribute this software and documentation for any purpos
without fee is hereby granted in perpetuity, provided that thisCOPYRIGHT AND LICENSE
NOTICE appears in its entirety in all copies of the software and supporting documentation. Ce
ideas and concepts contained in the software are protected by pending patents of Sun Microsy
Sun hereby grants a limited license to use these patents, if any issued, only in this implementa
the software and documentation and in derivatives thereof prepared in accordance with the per
granted herein.

The names X/Open, Sun Microsystems. and Information-technology Promotion Agency, Japan
shall not be used in advertising or publicity pertaining to distribution of the software and docum
tion without specific, written prior permission.

ANY USE OF THE SOFTWARE AND DOCUMENTATION SHALL BE GOVERNED BY
CALIFORNIA LAW. X/OPEN, SUN MICROSYSTEMS, INC. AND IPA MAKE NO REPRE-
SENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE OR
DOCUMENTATION FOR ANY PURPOSE. THEY ARE PROVIDED “AS IS” WITHOUT
EXPRESS OR IMPLIED WARRANTY OF ANY KIND. X/OPEN SUN MICROSYSTEMS,
INC. AND IPA SEVERALLY AND INDIVIDUALLY DISCLAIM ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE AND DOCUMENTATION, INCLUDING THE WARRAN-
TIES OF MERCHANTABILITY, DESIGN, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL X/OPEN, SUN
MICROSYSTEMS, INC. OR IPA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULT-
ING FROM LOSS OF USE, DATA, OR PROFITS, WHETHER IN ACTION ARISING OUT
OF CONTRACT, NEGLIGENCE, PRODUCT LIABILITY, OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE OR DOCUMENTATION.
2 of 81 ADL 2.0 Language Reference Manual for IDL

S™,
Trademarks

Sun™, Sun Microsystems™, Sun Microsystems Laboratories™, the Sun logo, Solaris™, SunO
and Java™ are trademarks or registered tradmarks of Sun Microsystems, Inc.

Postscript™ is a trademark of Adobe Systems Inc.

UNIX® is a registered trademark in the USA and other countries licensed exclusively through
X/Open™.

X/Open™ is a trademark of the X/Open Company Limited.
ADL 2.0 Language Reference Manual for IDL 3 of 81

r

Change Log

Release 1.2

Example 4.13: Updated example.

Example 4.15: Removed public modifier to tddclass declaration.

Modifications occur only in chapters 1 to 4 and chapter 6, and are exactly the same than in the
ADL 2.0 Language Reference Manual For Java Release 1.2.

Release 1.1

Example 4.15: Changed bankFactory type from BankFactory to BankFactoryHolder.

Release 1.0

Example 4.15: Improved tdd factory code.

6.7: New section dedicated to the portable ORB wrapper (ORBWrapper class).

Release 1.0 Delta

A new chapter has been added that deals with specific issues the test designers may encounte
when testing IDL interfaces with the ADL 2.0 for Java. The other chapters are references to
the ADL 2.0 for Java Language Reference Manual.

Release 1.0 Gamma

Complete rewriting of the document. ADL for IDL syntax is likely to be replaced for a large
part by the ADL syntax for an implementation language (Java for instance). Hence, this
document is a revisited version of the ADL for Java document.

Release 1.0 Beta

1. Introduction

1.1: New.
4 of 81 ADL 2.0 Language Reference Manual for IDL

1.2: New.

2. Semantics Annotations

2.1: TBD resolved: ADL annotations are external to the interface.

2.4: Inline operation implementation as procedure identified as stretch feature.

3. Test Annotations

Title changed from “TDD Annotations”.

3.1.2: Terminology change: “bounded” dataset changed to “feasible”.

3.1.3: Added TBD for factory representation.

3.1.4: TBD resolved: explicit invocation of checked version by ADL(...). This affects all the
examples.

3.1.5: Terminology change: “Test expression” changed to “Test directive”. This affects the
explanation of some of the examples and the grammar.

3.1.5: TBD resolved: TDD/IDL test statements are restricted to operation or test procedure
invocation, and test procedures are defined externally.

3.1.6: Assert expressed in support library.

3.2: TBD resolved: factories are not implicit datasets.

Example 3.5: TBD resolved: dataset members are evaluated each time.

Example 3.9: TBD resolved: no special syntax for multiple data values.

Example 3.10: TBD resolved: test directive syntax clarified.

Example 3.11: TBD resolved: multiple reference interpretation changed.

3.3 (TDDDatasetDeclaration): External dataset reference clarified.

3.3 (TDDTestDirective): Syntax cleaned up.

3.3.3 (TDDTestDirective): Cleaned up.

3.3.3 (TDDDatasetMember): Evaluation rule corrected.

3.3.4: Changed to eliminate proposed statement syntax extension.
ADL 2.0 Language Reference Manual for IDL 5 of 81

4. NLD Annotations

4.1: TBD resolved: inheritance clarified.

Example 4.4: TBD resolved: rules on formal argument name clarified.

4.3.1: TBD resolved: SGML entity definition referred to DTD.

4.5 (nld_entity_text): TBD resolved: Rule on markup (DocBook 3.0 Para entity) clarified.

5. Complete Grammar

Replaced entire with revised version generated from source code for parser.

Release 1.0 Alpha

Initial release.
6 of 81 ADL 2.0 Language Reference Manual for IDL

Table of Contents ADL 2.0 Language Reference Manual for IDL
1 Introduction..12

2 Semantic Annotations..13
2.1 Describing Semantics Of Interface Operations .. 13

2.2 ADL Syntax.. 15
2.2.1 Assertion Groups ... 15
2.2.2 ADL Specific Expressions.. 17
2.2.3 Quantified Assertions .. 17
2.2.4 ADL If Statement .. 18

2.3 Behavior Specification.. 19
2.3.1 The Call State Operator ... 20
2.3.2 Specification of a Constructor ... 20
2.3.3 Specification Of An Inherited Method .. 21
2.3.4 Bindings... 23
2.3.5 Try/Catch Specifications.. 24
2.3.6 Thrown Expressions .. 27
2.3.7 Behavior Classification.. 28
2.3.8 The Exception Operator .. 30

2.4 Inline Procedure Declarations .. 32

2.5 Prologues and Epilogues .. 33

3 Test Annotations...35
3.1 Concepts ... 35

3.1.1 Re-write ... 35
3.1.2 Dataset ... 35
3.1.3 Factory ... 36
3.1.4 Checked function... 36
3.1.5 Test Directive... 37
3.1.6 Assertion.. 38
3.1.7 Importation .. 38

3.2 Annotated TDD/Java Syntax .. 38
3.2.1 TDD declarations... 38
3.2.2 Dataset Expression Syntax .. 39

3.3 General Syntax & Examples .. 40
3.3.1 Simple Datasets and Data Construction .. 40
3.3.2 Compound Datasets: Factories, Concatenation... 41
3.3.3 Void Datasets ... 42
3.3.4 Dataset Elements Evaluation ... 43
3.3.5 Dataset Constants .. 44
3.3.6 Test Directives ... 45
3.3.7 Advanced Examples .. 46

4 NLD Annotations..51
4.1 Concepts ... 51

4.2 Syntax and Semantics... 52
4.2.1 Simple Data Member Translation.. 52
4.2.2 Simple Function Member Translation... 52
4.2.3 Out Of Line Translations... 52
4.2.4 Translations For Overloaded Methods .. 53
Version 1.2 7 of 81

Table of Contents ADL 2.0 Language Reference Manual for IDL
4.2.5 Priorities... 53
4.2.6 Usingsemantics And nld Blocks... 53
4.2.7 Shadowing or Overriding A Translation.. 54
4.2.8 Overriding A Non-Local Translation... 55
4.2.9 Invocation Translation ... 55

4.3 NLD Predicates... 56
4.3.1 Pre-defined Predicates ... 56
4.3.2 User-defined Predicates ... 57

4.4 NLD and SGML ... 57
4.4.1 Reference Manual Document .. 58

4.5 NLD for TDD ... 59

4.6 NLD and Localization .. 59

4.7 NLD Syntax .. 60

5 Testing CORBA Objects..63
5.1 Mapped built-in types ... 63

5.2 Bindings for objects.. 63

5.3 Inout parameters passing .. 63
5.3.1 Isolated variables ... 63
5.3.2 Member attribute of interface/structs/unions and inout/out parameters 64

5.4 Mapping for certain nested types.. 65

5.5 Interface inheritance ... 65

5.6 Writing CORBA specific code in TDD/Java. ... 66

5.7 ORBWrapper .. 67
5.7.1 ORB Wrapper Design.. 68
5.7.2 Adl environment property to use for the ORB wrapper............................... 69
5.7.3 Using the wrapper.. 69

5.8 References.. 71

6 Complete Grammar...73
8 of 81 Version 1.2

List of Examples ADL 2.0 Language Reference Manual for IDL
EXAMPLE 2.1 StockBroker interface...13

EXAMPLE 2.2 StockBroker specification...13

EXAMPLE 2.3 StockBroker constructor specification....................................20

EXAMPLE 2.4 Bank and MyBank classes..21

EXAMPLE 2.5 MyBank specification ...22

EXAMPLE 2.6 StockBroker2 interface...24

EXAMPLE 2.7 StockBroker2 specification...25

EXAMPLE 2.8 StockBroker2 specification (corrected)...................................26

EXAMPLE 2.9 StockBroker specification with behavior classification28

EXAMPLE 2.10 StockBroker specification with exceptions31

EXAMPLE 3.1 The Simplest Test ..40

EXAMPLE 3.2 A Simple Dataset ...41

EXAMPLE 3.3 Compound Data Construction...41

EXAMPLE 3.4 Void Datasets ...42

EXAMPLE 3.5 Runtime Initializers ..43

EXAMPLE 3.6 Provide Test Variables ..44

EXAMPLE 3.7 Better Test Variables...44

EXAMPLE 3.8 Test Directives and Procedures..45

EXAMPLE 3.9 Void Dataset Use..46

EXAMPLE 3.10 Chaining Factories ..46

EXAMPLE 3.11 Multiple Data Values ..47

EXAMPLE 3.12 Test By Example..48

EXAMPLE 3.13 Multiple Dataset References ..49

EXAMPLE 4.1 Using includes and description ..58

EXAMPLE 4.2 NLD Annotations in a TDD class ..59

EXAMPLE 4.3 Using Fully Scope Names ...61

EXAMPLE 4.4 Isolated variable used as inout parameter..............................64

EXAMPLE 4.5 Out/inout parameters and member attributes64

EXAMPLE 4.6 Bank factory TDD example..66
Version 1.2 9 of 81

List of Examples ADL 2.0 Language Reference Manual for IDL
10 of 81 Version 1.2

ADL 2.0 Language Reference Manual for IDL

to let
ision
L

s by
ese
a’s

r Java

A

For Your Information.

Since tensions in between IDL language independence and requirements for ADL
the test engineer provide real and complex code constructs were too strong, a dec
was made to use ADL/Java instead of pure ADL/IDL to implement test suites for ID
interfaces.

As a consequence test engineers should implement test suites for CORBA object
using ADL 2.0 Translation System. The tests are performed against Java stubs. Th
stubs are generated using some third party vendor Java ORBs (e.g. Sun’s Joe, Ion
OrbixWeb or Visigenic’s VisiBroker for Java).

The remaining of this document is organized as follows:

• chapters 1 to 4 are chapters from the ADL 2.0 Language Reference Manual fo

• chapter 5 contains information and guidelines for using ADL/Java to test CORB
objects (notably the ORB wrapper provided by the ADL environment),

• chapter 6 is the complete ADL 2.0 for Java grammar.
Version 1.2 11 of 81

Introduction ADL 2.0 Language Reference Manual for IDL

ing
ocu-

abil-

e
 sys-
d; test
natural
e.

xact
s-

llows

he

f font
pear

bol
y not

d

1 Introduction

ADL is an interface definition and testing system, which adds to a target programm
language a notation for describing behavior, for defining tests, and for generating d
mentation. This document describes ADL for the Java programming language.

ADL provides capabilities to describe the semantics of interfaces, and also the cap
ity to design and implement test drivers.

This document is a concise language reference, intended to define the syntax of th
ADL annotation language. There are three kinds of annotation possible in the ADL
tem: semantic annotations, that define the behavior required of an interface metho
annotations, that define a set of data and a procedure for testing an interface; and
language annotations, that define how to represent the interface in natural languag
These three kinds of annotation are described in the next three sections.

This document does not yet describe how to use the ADL system, nor define the e
interpretation of the annotations; familiarity with the previous version of the ADL sy
tem, ADLT 1, will be of great assistance.

The syntax used to describe the language grammar in this document is BNF, and fo
these conventions:

• The vertical bar “| ” represents a choice between different expansions. Hence “A | B

| C” represents eitherA, B, or C.

• Square brackets “[...] ” indicate optional constructs. Hence “A [B] C” is the same
as “ABC| AC”.

• Parentheses “(...) ” are used for grouping constructs. Hence “A (B) C” is the same
as “ABC” and “A (B | C) D” is the same as “ABD| ACD”.

• “ (...)* ” is used to represent zero or more occurrences of the group, and “(...)+ ” is
used to represent one or more occurrences of the group. Hence “A (B)* C” is t
same as “AC | ABC| ABBC| ABBBC| etc.” and “A (B)+ C” is the same as “ABC|

ABBC| ABBBC| etc.”.

• Non-terminals from the Java language definition are represented in a sans-seri
(like literal), and the non-terminals that define the ADL augmentation of Java ap
in boldface .

• Lexical tokens and reserved words may appear literally within quotations, or the
name of the lexical token may appear in angle brackets like <STRING>.

• The left hand and the right hand sides of productions are separated by the sym
“ ::= ”. For presentation purposes, the entire right hand side of a production ma
be introduced at the same time. The symbol “+::= ” is used to indicate that the cur-
rent production is an augmentation of another production with the same left han
side that has been introduced earlier. For example, “A ::= B” followed by “A +::=

C” is the same as “A ::= B | C”.
12 of 81 Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

are

o do

ocu-

s; a
cts
2 Semantic Annotations

The ADL extensions to Java that allow the definition of the semantics of a method
discussed in the sections below.

2.1 Describing Semantics Of Interface Operations

ADL provides syntactic constructs to describe the semantic behavior of methods. T
this, it provides an extended syntax for describing operations — theannotated declara-
tion — as shown in the syntax below:

ADL_CompilationUnit ::= (ImportDeclaration)* ADL_ClassDeclaration

ADL_ClassDeclaration ::= [“public”] “adlclass” <IDENTIFIER> “{“
(ADL_InlineDeclaration | ADL_BehaviorDeclaration)* “}”

ADL_BehaviorDeclaration ::= [“static”] [ResultType] Name FormalParameters
“{“ ADL_BehaviorSpecification “}”

These rules are not complete: they will be refined (notation +::=) throughout this d
ment as we present new properties. The complete grammar is given in Chapter 5.

The full definitions of the extra declarations added by ADL are given in later section
simple example is given here. Suppose that we wish to define the behavior of obje
conforming to this interface:

EXAMPLE 2.1 StockBroker interface

package stock;

interface StockBroker {

public long Cash_Balance(long account);

public long Stock_Balance(long account, String symbol);

public void Buy(long account,
 String symbol,
 long no_of_shares);

}

Then the ADL specification of this interface can be written in a separate file, “Stock-

Broker.adl ” as shown below:

EXAMPLE 2.2 StockBroker specification
Version 1.2 13 of 81

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

st-
o

lu-

n in
ay be

ser-
n

nter-
import stock.*; // import the package of the Java class
 // StockBroker

import StockBrokerAux;

adlclass StockBroker { // define the adl class StockBroker

inline long cost(String s, long nsh) {
nsh * StockBrokerAux.price(s);

}

void Buy(long account, String symbol, long no_of_shares) {
semantics {

assertion1 : Cash_Balance(account) ==
@ Cash_Balance(account)- @cost(symbol, no_of_shares);

assertion2 : Stock_Balance(account, symbol) ==
@ Stock_Balance(account, symbol) + no_of_shares;

}
}

long Cash_Balance(long account) {
semantics {

// (...)
}

}

}

In this example, an interface with three operationsCash_Balance ,
Stock_Balance , andBuy is augmented with a description of the behaviors ofBuy
andCash_Balance . The behavior description ofBuy uses a static method “price ”
from an additional class, StockBrokerAux, which is defined only for purposes of te
ing. The behavior description is written in the annotated declaration syntax. The tw
boolean expressions appearing within “semantics { ... } ” describe legitimate
behavior of theBuy method. In these expressions, “@” is an unary operator (referred to
as thecall state operator — see Section 2.3.1) whose sole function is to evaluate its
argument prior to the execution of the method — by default all expressions are eva
ated after the execution of the method.

It is important to note that the referenceCash_Balance inside the behavior descrip-
tion of Buy is a reference to the methodCash_Balance of the Java class under test,
not a reference to the behavior description ofCash_Balance that is given below.
Behavior descriptions are not method declarations.

The first boolean expression, labeled as “assertion1 ”, makes use of the notion of
“cost ” of a stock purchase. This is implemented as an inline procedure declaratio
the semantic annotation file. An inline procedure declaration defines a block that m
used like a macro within a semantic annotation (see Section 2.4).

The syntax described above is external to the interface definition, because ADL as
tions can only be evaluated from the perspective of a client of the interface. Such a
annotation can be applied to a class or an abstract class equally as well as to an i
14 of 81 Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

es;
rclass

ever,
iary

g anno-
rs: only
t pub-

lass

pres-
s

yn-
g of

rectly
 then
in this
f the
e, and
face. The behavior description for a given class cannot be split into several ADL fil
however, the behavior description for a class can inherit the description of the supe
of this class (see Section 2.3.3).

The semantics of “import” clauses are the same as for a Java compilation unit. How
it is not possible to define a Java class or a Java interface inside an ADL file: auxil
classes must be defined in different, regular Java files.

Note that because semantic annotations are external to the class and method bein
tated, the annotations do not have access to private, protected or package membe
public fields and methods of the class under test are accessible. If a method is no
lic, then it cannot be described nor called in the description of another method.

Lastly, it is not possible to define more than oneadl class in an ADL compilation unit,
and the name of the file must be the name of the adl class: to annotate the Java c
foo.class, one must define a single “adlclass foo ” in a file named foo.adl (or
foo.adljava).

2.2 ADL Syntax

ADL provides a syntax that is a minor extension to that of Java 1.0.2. Any Java ex
sionexcept assignmentsmay appear in a semantic annotation, as well as expression
using the extensions described in this section.

The new syntactic constructs of Java 1.1 — that deal with “inner classes” and the
“.class” feature for the reflection API — are not supported within the ADL for Java s
tax. However, as the ADLT runtime is written in Java 1.1, ADL 2 supports the testin
Java 1.1 interfaces and the use of Java 1.1 auxiliary classes.

2.2.1 Assertion Groups

ADL_AssertionGroup ::= “{“ (ADL_Binding)* (ADL_Statement)* “}”

ADL_Statement ::= ADL_Assertion
| ADL_IfStatement
| ADL_TryStatement

ADL_Assertion ::= [ADL_Label] [ADL_Tags]
(ADL_Expression | ADL_QuantifiedAssertion) “;”

ADL_Label ::= <IDENTIFIER> “:”

ADL_Tags ::= “[“ <IDENTIFIER> (“,” <IDENTIFIER>)* “]”

The basic block construct of ADL is theassertion group, which is a list ofstatements.
ADL statements have a type (usually boolean) and a value, but can not be mixed di
inside expressions. If there is more than one statement within the assertion group,
all of these statements must be boolean valued. The value of the assertion group
case is the conjunction (logical AND) of all the statements in the assertion group. I
assertion group contains only one statement, then this statement may be of any typ
Version 1.2 15 of 81

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

ithin it;
 (see

rted
 runt-

The
t

e fol-

: they
ts are

ssion is
ertion
ue is

t for

com-
e. The
a-
the assertion group is also of this type and has the same value as the statement w
this can occur either with the inline/define constructs or with the try/catch statement
Section 2.3.5).

The optional label of an assertion is for documentation purposes only: it will be repo
as information when running the generated test. It does not modify the behavior at
ime in any other way.
The optional tags of an assertion are indications for the test runtime environment.
only currently supported tag is “[U]” (foruntestable) that means that the assertion mus
not be evaluated.

The assertion group itself is an expression. Its use as an expression is given by th
lowing syntax:

ADL_BasicExpression ::= ADL_AssertionGroup

Assertions are boolean expressions whose evaluation must generate a test report
do not produce any other side effect (hence assignments or increments/decremen
forbidden inside assertions).

The following fragment is an example of an assertion group:

{
Cash_Balance(account) == @Cash_Balance(account) -

@cost(symbol, no_of_shares);
Stock_Balance(account, symbol) ==

@Stock_Balance(account, symbol) + no_of_shares;
}

Since assertion groups are also expressions, they may appear anywhere an expre
expected, and they may be nested within each other. Assertions within nested ass
groups donot generate a test report: they are evaluated only so that their return val
used in the computation of the value of the enclosing assertion group.

semantics {
<boolean expression> ==> { <assertion1>; <assertion2>};

}

In this example, there is only one generated test report for the whole assertion, no
“sub-assertions”assertion1 andassertion2 .

The list of expressions in an assertion group may be preceded bybindings: see
Section 2.3.4.

While most ADL specific expressions and statements are described in the two forth
ing sections, some are described later in sections where they are more appropriat
following is the complete list of all cross references to later sections where ADL fe
tures are described:

• The call state operator — Section 2.3.1

• Bindings — Section 2.3.4
16 of 81 Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

ool-

s

sertions

e by
 inte-
• The try/catch statement — Section Section 2.3.5

• thrown expressions — Section 2.3.6

• The exception operator — Section 2.3.8

• Inline methods —Section 2.4

• Prologues and Epilogues —Section 2.5

2.2.2 ADL Specific Expressions

ADL_Expression ::= ADL_ImplExpression

ADL_ImplExpression ::= ConditionalExpression [ADL_ImplOp ConditionalExpression]

ADL_ImplOp ::= “==>”|“<==”|“<=>”|“<:>”

The three implication operators areimplication (==>), reverse implication (<==), and
equivalence (<=>). All these operations operate on boolean parameters and return b
ean results. The implication operator evaluates tofalse only when its left operand is
true and right operand isfalse (otherwise, it evaluates totrue). The reverse implica-
tion operator works like the implication operator with its arguments swapped. The
equivalence operator evaluates totrue if both its operands are the same, otherwise it
evaluates tofalse . For the exception operator <:>, see Section 2.3.8.

ADL_BasicExpression +::=PrimaryExpression | “return”

Primaries are extended in ADL with the reserved wordreturn (to refer to the return
value of a method). The primary return may be used only in behavior specification
(Section 2.3) of methods with non-void return types and may not appear within the
scope of a call state operator (Section 2.3.1).

2.2.3 Quantified Assertions

ADL_QuantifiedAssertion ::= ADL_Quantifier “(“ ADL_DomainList “)” ADL_AssertionGroup

ADL_Quantifier ::= “forall” | “exists”

ADL_DomainList ::= ADL_Domain (“,” ADL_Domain)*

ADL_Domain ::= FormalParameter “:” ConditionalExpression

ADL offers a constrained form of quantified expression in order to iterate over ADL
sequence values. These sequences are specified as domains, and a quantified as
may contain any number of domains. Each domain is specified with the type of the
sequence element, a new variable that can take on the values of the sequence on
one, and finally the sequence itself. An example of a domain that iterates over the
gers 1 through 10 is:

long i : ADL_long_range(1,10)
Version 1.2 17 of 81

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

ener-

um-

t dis-

xpres-
 call-

ng is

be
The ADL language supports 3 methodsADL_long_range(long i,long j)

(resp. ADL_short_range and ADL_int_range) that return the enumeration of
long (resp short and int) starting fromi and ending atj .

In ADL for Java, the ConditionalExpression in the domain must be of the type
java.util.Enumeration.

In the case of the universal quantifier (forall), the enclosed assertion group (which
must have a boolean value) must betrue for all value assignments for free variables
from their domains. In the case of the existential quantifier (exists), the expressions
must betrue for at least one set of value assignments for the free variables.

The assertion group within a quantified assertion is nested: its assertions will not g
ate individual test reports.

The following is an example of the use of an universal quantifier that says that all n
bers in the range 1 to 10 are smaller than 100 (obviously):

forall (long i : ADL_long_range(1,10)) { i < 100; };

The following is an example of the use of an existential quantifier:

semantics {
exists (long i : ADL_long_range(1.10)) {

i%3 == 0;
i%7 == 0;

};
}

Because of the nested principle, the assertions within a quantified assertion are no
tributed: this example will generateone test report, with the valuefalse .

A quantified assertion may not appear inside the scope of a call-state/unchanged e
sion; free variables of a quantified assertion may not be used inside the scope of a
state/unchanged expression.

2.2.4 ADL If Statement

ADL_IfStatement ::= “if” “(“ ADL_Expression “)” ADL_AssertionGroup
[“else” (ADL_AssertionGroup | ADL_IfStatement)]

“ if statements” provide a way to conditionally evaluate expressions and its meani
quite similar to the “?: ” operator. The types of all the assertion groups of theif state-
ment must be the same and this is the type of theif statement. If the type of the first
“then” branch is boolean, then the else branch may be omitted and is assumed to
“else true ”. The conditions (the expressions within parentheses) must beboolean

valued and are evaluated from top to bottom until the first one that evaluates totrue .
The assertion group of thistrue expression is then evaluated. This is the value of the
if statement.
18 of 81 Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

e same
e out-
te-

 by

 exe-

ADL
.

lass

ts to
rs are

ow:
The assertion groups in the branches of an if statement are considered to be at th
nested level as the enclosing assertion group. If this enclosing assertion group is th
ermost one (i.e. just following the “semantics” keyword), assertions within the if sta
ment will therefore generate test reports.

2.3 Behavior Specification

The specification of the behavior of an interface method in its simplest form is the
method declaration as in Java followed by the reserved word “semantics” followed
an assertion group.

The assertions can refer to the visible state of the system both before and after the
cution of the method.

ADL_BehaviorDeclaration +::=[ResultType] Name FormalParameters [“throws” NameList]
“{“ ADL_BehaviorSpecification “}”

ADL_BehaviorSpecification ::= “semantics” ADL_AssertionGroup

Note that a behavior declaration cannot be empty in ADL for Java, as opposed to
for C/C++. This is because the Java language does not need forward declarations

The “ResultType” is optional in the grammar because it is possible to annotate a c
constructor.

Every time an interface method with a behavior description is invoked, all argumen
call state operators are evaluated before the method is invoked (call state operato
described below). The remainder of the behavior description is evaluated after the
method is invoked. If any expression evaluates tofalse , the method did not behave as
specified.

The behavior description ofBuy from the example of Section 2 is reproduced below:

void Buy(long account, String symbol, long no_of_shares) {
semantics {

Cash_Balance(account) == @Cash_Balance(account) -
@cost(symbol, no_of_shares);

Stock_Balance(account, symbol) ==
@Stock_Balance(account, symbol) + no_of_shares;

}
}

The evaluation of the behavior description whenever Buy is invoked is outlined bel

Step 1: Evaluation of arguments to call state operators:

tmp1 = Cash_Balance(account);
tmp2 = cost(symbol, no_of_shares);
tmp3 = Stock_Balance(account, symbol);

Step 2: The implementation ofBuy is invoked.
Version 1.2 19 of 81

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

bove

ent

 over-

mple,

e
ram-
d.

n
.

on-
Step 3: Evaluation of the remainder of the behavior description:

assertion_1 = (Cash_Balance(account) == tmp1 - tmp2);
report(assertion1);
assertion_2 = (Stock_Balance(account, symbol) == tmp3 +

no_of_shares);
report(assertion2);

Step 4: Determination of consistent behavior:

if (!assertion_1 || !assertion_2) { report_error; }

Behavior descriptions can refer to inline method declarations (as illustrated by the a
example). Other specifics of behavior descriptions are discussed below.

2.3.1 The Call State Operator

The call state operator is an unary operator. It has the effect of evaluating its argum
before the call to the specified method.

UnaryExpression +::=“@” UnaryExpression

ADL_BasicExpression +::=“unchanged” Arguments

Call state operators may nest within each other, in which case the inner operator is
ridden by the outer operator. For example,@(@a + b) is equivalent to@(a + b) .

Care must be taken to decide exactly where to place a call state operator. For exa
there is a subtle difference between@f(a, b) andf(@a, @b) . The first expression is
the value off(a, b) before the call to the specified method, while the second is th
value returned byf when called after the call to the specified method, but passed pa
eters whose values are saved from the state before the call to the specified metho

Different call-state expressions are independent from each other. For instance in a
assertion “@time() == @time() ”, both expressions are not considered as equal

The “unchanged” operator of ADL1 is maintained:

unchanged(<expr1>, <expr2>)

is a syntactic sugar for:

<expr1> == @<expr1> && <expr2> == @<expr2>

2.3.2 Specification of a Constructor

Specifying a constructor is very similar to specifying a method, except that some c
straints are added.

EXAMPLE 2.3 StockBroker constructor specification
20 of 81 Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

ilt by

make
ctor),

f

import stock.*; // import the package of the Java class
// StockBroker

import StockBrokerAux;

adlclass StockBroker { // define the adl class StockBroker

StockBroker(int amt) {
semantics {

Cash_balance() == amt;
}

}

In this example, the call to Cash_balance is executed on the StockBroker object bu
an implicit call to the real constructor of the class StockBroker.

Note that in a constructor behavior specification:

• it is not possible to use a call-state or an unchanged expression (this would not
sense: there is no “real object” before the call to the tested method (the constru
because this is this very call that builds the “real object”).

• it is not possible to use the “return” expression.

• the “this” expression refers to the built real object.

2.3.3 Specification Of An Inherited Method

ADL_ClassDeclaration +::=[“public”] “adlclass” <IDENTIFIER> [“extends” Name]
“{“ (ADL_BehaviorDeclaration)* “}”

ADL_AssertionGroup +::=“{“ (ADL_Binding)* [“super” “.” “semantics” “;”] (ADL_Statement)* “}”

To describe the behavior of a methodm, it is possible to use the behavior description o
the methodm’ thatm overrides.

EXAMPLE 2.4 Bank and MyBank classes

/* Bank.java */
package bank;

class Bank {
public void openAccount() { (...) }
public void closeAccount() { (...) }

}

/* MyBank.java */
package bank;
Version 1.2 21 of 81

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

cified
class

re to
 cor-

at
he
is is
ime

ss)
hich

ior
i-
he

tem
class MyBank extends Bank {
public void openAccount() { (...) }

// overrides Bank.openAccount
public void changeAccount() { (...) } // new method

}

The behavior of the methods openAccount and closeAccount of class Bank is spe
in a file Bank.adl, and we want now to describe the behavior of the methods of the
MyBank:

EXAMPLE 2.5 MyBank specification

import bankAux; // for auxiliary functions
import bank.*; // package of the annotated class

adlclass MyBank extends Bank {

void openAccount() {
semantics {

super.semantics; // assertions specific to the method
 // Bank.openAccount

<assertion>; // assertion specific to the method
 // MyBank.openAccount

}
}

}

The “extends” clause is quite different from its usual meaning in Java: it is used he
refer to ADL files (Bank.adl in the example). The compiler checks the presence and
rectness of thesource adl file; it is left to the responsibility of the user to ensure that
runtime theclass file obtained by transformation of Bank.adl will be accessible from t
classpath, along with the class file generated by transformation of MyBank.adl. Th
close to the C semantics, with the distinction between header files at compilation t
and libraries at runtime.

The assertion “super.semantics; ” in openAccount is an explicit invocation of the
annotation of openAccount inone superclass (direct super class or any “ancestor” cla
of MyBank (here the semantics of the method openAccount of the class Bank — w
MyBank inherits from — as defined in Bank.adl). It may be called only as thefirst
assertion of the main assertion group. Its (boolean) result is the value of the behav
description of method openAccount in Bank.adl:all the assertions defined in this spec
fication are evaluated. The only side-effects are the generation of test reports for t
assertions of this behavior description.

The generated Java Assertion Checking Object (ACO) file for MyBank will in fact
inherit from the generated Java ACO file for Bank. See the ADL 2.0 Translation Sys
design document for more details.
22 of 81 Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

 corre-
,

ory to

be an
r

tance

ntics,
sser-

heir

-

To summarize:

This picture represents a Java hierarchy (C5 extends C4 that extends C3...) and a
sponding adl classes hierarchy. Thefoos andbars are methods defined in Java classes
some of them being annotated by adl classes. We can notice that:

• the adl classes graph is a subgraph of the java classes graph (it is not compuls
annotate all java classes).

• an adl class can annotate a method that isdefined in the corresponding java class
(e.g. foo5 in C5) oroverridden (e.g. foo2 in C5) or justinherited (e.g. foo4 in C5).

• thesuper.semantics feature can be used only in methods that have already
been annotated in an inherited adl class. For instance in adl class C5, it would
error to use this feature in methods foo4, foo5 and bar2, and correct in the othe
methods.
Note that this inherited adl class is not necessarily the direct superclass: for ins
in adl class C5, super.semantics in foo1 would refer to foo1 of adl class C1.
Last, this process is recursive: if bar1 in C5 and bar1 in C3 both use super.sema
then calling bar1 of C5 will first evaluate the assertions of bar1 in C1, then the a
tions of bar1 in C3, and then the assertions of bar1 in C5.

2.3.4 Bindings

Bindings are used to declare local variables and initialize them with useful values. T
main goal is to be used in conjunction with NLD annotations.

ADL_Binding ::= “define” FormalParameter “with” [<IDENTIFIER> “=”] ADL_Expression “;”

The earlierStock_Balance example may also be modified to use bindings. The fol
lowing is equivalent to the earlier behavior description:

Java classes

C1 foo1, bar1

C2 foo2, bar2

C3 foo3

C4 foo4

C5 foo2, foo5

ADL classes

C1 foo1, bar1

C3 foo2, foo3, bar1

C5 foo1, foo2, foo3, foo4,
foo5, bar1, bar2
Version 1.2 23 of 81

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

ari-

 code

t not
e

p-
 and
y”)
 be of

 a
 val-

:

{
define long pre_cash_bal with

pre_cash_bal = @Cash_Balance(account);
define long post_cash_bal with

post_cash_bal = Cash_Balance(account);
define long pre_stock_bal with

pre_stock_bal = @Stock_Balance(account, symbol);
define long post_stock_bal with

post_stock_bal = Stock_Balance(account, symbol);

post_cash_bal ==
pre_cash_bal - @cost(symbol, no_of_shares);

post_stock_bal == pre_stock_bal + no_of_shares;
}

In ADL for Java, a binding declaration shall not introduce simultaneously multiple v
ables (as opposed to ADL for C/C++ where side-effects are possible).

Important note:
It is not possible to reference a binding inside the scope of a call-state operator.
Indeed, in the generated code, the code that implements bindings appear after the
that implements call-state expressions.

It is possible to declare a binding using variables introduced in earlier bindings, bu
to rebind a variable: a binding is a variable declared and initialized once for all. Th
scope of a binding is its innermost enclosing assertion group.

2.3.5 Try/Catch Specifications

During the evaluation of the assertions of an assertion group, it is possible for exce
tions to be thrown. Try/catch specifications may be used to catch these exceptions
provide an alternate assertion group whose value is used for that of the parent (“tr
assertion group. The assertion group(s) in the catch specification(s) must therefore
the same type as the parent assertion group.

ADL_TryStatement ::= “try” ADL_AssertionGroup
(“catch” “(“ FormalParameter “)” ADL_AssertionGroup)+

A catch specification has to name the particular exception it catches and bind it to
local identifier; this identifier may be used in the following assertion group to select
ues returned by the exception.

Suppose we modify the original stock broker interface to include some exceptions

EXAMPLE 2.6 StockBroker2 interface

package stock;
24 of 81 Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for IDL
class BadCall extends Exception {
public boolean bad_account;
public boolean bad_stock_symbol;

}

interface StockBroker2 {

public long Cash_Balance(long account) throws BadCall;

public long Stock_Balance(long account, String symbol)
throws BadCall;

public void Buy(long account, String symbol,
long no_of_shares) throws BadCall;

}

Then we can modify the specification of this interface as follows:

EXAMPLE 2.7 StockBroker2 specification

import stock.*;
import StockBrokerAux;

adlclass StockBroker2 {

inline long cost(String s, long nsh) {
nsh * StockBrokerAux.price(s);

}

void Buy(long account, String symbol, long no_of_shares)
throws BadCall {

semantics {
try {

Cash_Balance(account) == @Cash_Balance(account) -
@cost(symbol, no_of_shares); // assertion 1

Stock_Balance(account, symbol) ==
@Stock_Balance(account, symbol) + no_of_shares;
// assertion 2

}
catch (BadCall exc) {

thrown(BadCall) && {
((BadCall)adl_thrownException).bad_account ==

exc.bad_account;
((BadCall)adl_thrownException).bad_stock_symbol ==

exc.bad_stock_symbol;
};

}
catch (Throwable t) {

false;
}

}
}

Version 1.2 25 of 81

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

e com-
 asser-
g the
 ADL

e one
sted
ns

p is
it

 at the
t report
use

ation
cannot
cified
 the
the
fied
}

In this modified specification, the assertion group of the behavior description ofBuy is
modified to include two catch specifications.

The first catch specification catches the exceptionBadCall . The assertion group of this
catch specification states that the exceptionBadCall must be thrown byBuy (thrown
expressions are described below). Furthermore, this exception must have the sam
ponent values as that of the exception that was thrown during the evaluation of the
tion group. Note the mechanism to refer to components of exceptions thrown durin
evaluation of a behavior description: the left hand sides of the comparisons use the
variableadl_thrownException (which is of typeThrowable and must therefore
be casted), that is the exception thrown by the specified methodBuy, and the right hand
sides of the comparisons (exc.bad_account andexc.bad_stock_symbol) refer to
the values of components of the exception caught by the catch specification (i.e. th
that was thrown during the evaluation of the “try” assertion group). Also note the ne
assertion group that contains the two comparisons. This prevents these compariso
from being evaluated ifthrown(BadCall) is nottrue (in this case, the selection of
components ofBadCall will have unexpected results).

The second catch specification catches all other exceptions and its assertion grou
simply “{ false; } ”. This is simply stating that this situation is unexpected and if
does happen for whatever reason, a failure needs to be reported.

The assertion groups in the try and in the catch specifications are considered to be
same nested level as the enclosing assertion group. In the previous example, a tes
is generated for each assertion 1 and 2, or for the whole assertion of the catch cla
“ thrown(BadCall) && { ((BadCall)adl_thrownException).bad_account

... } ” in case a BadCall exception is thrown.

The above example has a serious flaw. Exceptions may be thrown during the evalu
of an expression in the scope of one of the call state operators. These exceptions
be caught by the above catch specifications since they are evaluated after the spe
method has been called. The solution to this problem is to catch the exceptions in
call state itself and replace them with harmless values. In this particular example,
same exceptions will be thrown by evaluation in the state after the call to the speci
method, and hence the semantics specified by the catch specification will still take
effect. The corrected version of the above example follows:

EXAMPLE 2.8 StockBroker2 specification (corrected)

import stock.*;
import StockBrokerAux;

adlclass StockBroker2 {

inline long cost(String s, long nsh) {
nsh * StockBrokerAux.price(s);

}

26 of 81 Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

he
e
te are

 group

pecifi-
ample
e are

have
void Buy(long account, String symbol, long no_of_shares)
throws BadCall {

semantics {
try {

Cash_Balance(account) ==
@ { try { Cash_Balance(account) -

cost(symbol, no_of_shares); }
catch(Throwable t) { 0; }

};
Stock_Balance(account, symbol) ==

@ { try { Stock_Balance(account, symbol); }
catch(Throwable t) { 0; }

}
+ no_of_shares;

}
catch (BadCall exc) {

thrown(BadCall) && {
((BadCall)adl_thrownException).bad_account ==

exc.bad_account;
((BadCall)adl_thrownException).bad_stock_symbol ==

exc.bad_stock_symbol;
};

}
catch (Throwable t) {

false;
}

}
}

}

In this version, all exceptions caught in the call state are replaced by the value 0. T
nature of this example is such that any exception thrown in the call state will also b
thrown after the call to the specified method, hence the 0’s passed from the call sta
never really used.

Note that this is one of the two possible cases where an assertion and an assertion
may have non-boolean values.

The above example looks messy, but in the presence of exceptions, a lot of catch s
cations are necessary. This is true of normal programs too. However, the above ex
is further cleaned up in Section 2.3.7 where the catch specifications of the call stat
moved up into inline method declarations.

2.3.6 Thrown Expressions

Thrown expressions are boolean expressions used to specify whether exceptions
been thrown or not.

ADL_ThrownExpression ::= “thrown” “(“ Name (“,” Name)* “)”
Version 1.2 27 of 81

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

tor.

al
vior

pur-

n

of

s
.

-
 the

ifica-
Thrown(e1, e2, etc.) is true if any of the exceptionse1, e2, etc. is thrown and is
false otherwise.Thrown(Throwable) is true if any exception or other Throwable is
thrown. It isfalse if no Throwable is thrown.

“thrown(e)” is in fact just syntactic sugar for “adl_thrownException instanceof e”.

Note: thrown expressions may not be placed within the scope of a call state opera

2.3.7 Behavior Classification

It is often very useful to broadly categorize the behavior of an method into its “norm
behavior” and “abnormal behavior”. One may then specify more details of the beha
in each of these cases. ADL provides the behavior classification construct for this
pose. The behavior classification is used to associate a boolean expression to the
reserved wordsnormal andabnormal .

ADL_BehaviorSpecification +::=“semantics” [ADL_BehaviorClassification] ADL_AssertionGroup

ADL_BehaviorClassification ::= “[“ (ADL_NormalBehavior | ADL_AbNormalBehavior)+ “]”

ADL_NormalBehavior ::= “normal” “=” ADL_Expression “;”

ADL_AbNormalBehavior ::= “abnormal” “=” ADL_Expression “;”

The default meanings of normal and abnormal are as follows:

• If neithernormal norabnormal has been defined in a behavior classification, the
normal defaults to!thrown(Throwable) andabnormal defaults to
thrown(Throwable) .

• If only one ofnormal andabnormal is defined, the other defaults to the negation
the one defined. For example, ifnormal is defined, thenabnormal defaults to
!normal .

When bothnormal andabnormal are defined, their definitions need not be negation
of each other. They may overlap or exclude portions of the possible output domain

In a behavior classification, there may be at most one definition fornormal and one for
abnormal .

The reserved wordsnormal andabnormal may then be used in the behavior descrip
tion of the method as short forms for the expressions associated with them, as per
following syntax:

ADL_BasicExpression +::=“normal” | “abnormal”

The following example modifies the earlier example to make use of behavior class
tions.

EXAMPLE 2.9 StockBroker specification with behavior classification
28 of 81 Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

at it

de:

ne
f

n

import stock.*;
import StockBroker2;

adlclass StockBroker2 {

inline long cost(String s, long nsh) {
try { nsh * StockBrokerAux.price(s); }
catch(Throwable t) { 0; }

}

inline long _Cash_Balance(long act) {
try { Cash_Balance(act); }
catch(Throwable t) { 0; }

}

inline long _Stock_Balance(long act, String s) {
try { Stock_Balance(act, s); }
catch(Throwable t) { 0; }

}

void Buy(long account, String symbol, long no_of_shares)
throws BadCall {

semantics
[normal = !thrown(Throwable);

abnormal = thrown(RuntimeException, BadCall);]
{

if (normal) {
try {

Cash_Balance(account) == @_Cash_Balance(account)
- @cost(symbol, no_of_shares);

Stock_Balance(account, symbol) ==
@_Stock_Balance(account, symbol) + no_of_shares;

} // end try
catch (Throwable t) { false; }

} // end if (normal)
} // end semantics

} // end Buy

} // end adl class

This version of the stock broker specification is weaker than the previous one in th
talks only about the normal behavior ofBuy. It will be extended to describe the abnor-
mal behavior ofBuy in Section 2.3.8. Interesting aspects of the above example inclu

• The catch specifications to catch exceptions in the call state are moved into inli
procedure declarations so as to reduce the clutter in the behavior description oBuy.

• The normal behavior ofBuy is defined as any behavior that does not throw any
exception. The abnormal behavior ofBuy is defined as any that throws eitherRunt-

imeException or BadCall . If a checked invocation of Buy throws an Error or
other Throwable, that will be reported as outside the specification.

• The main part of the behavior description ofBuy is guarded by the “if ” statement
(Section 2.2) “if (normal) ...”. In this case, no exception is expected to be throw
Version 1.2 29 of 81

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

ed

l
e
n.

ssifi-
tion,

d and
ifica-
tatus
ut
.

n

, it
he

n
ther
ertion
wn:
during the evaluation of the assertions, and hence a try/catch specification is us
simply to report an error if any exception is thrown.

• Previous versions of this example mixed the description of normal and abnorma
behavior. This version provides the beginnings of a clear separation which will b
more apparent when the abnormal behavior is also completed in the next sectio

2.3.8 The Exception Operator

ADL provides the exception operator <:> whose meaning is based on behavior cla
cations. In usual usage of this operator, the left operand is the enabler of an excep
while the right operand is a “thrown” expression.

Informally, A <:> B means that if A is true, then an abnormal condition should be
detected but B is not necessarily true. However, if an abnormal condition is detecte
B is also true, then A must be true as well. The first part of this rule allows the spec
tion of abnormal conditions for functions that can raise several different abnormal s
in a possibly non-deterministic way, e.g., several error conditions are met initially b
we don’t care which one is raised as long as at least one of them is actually raised

More formally, the exception operator is defined as:

A <:> B is the same as((A ==> abnormal) AND ((abnormal && B) ==> A))

As an example of the use of the exception operator, consider the following assertio
group (we detour from the stock broker a bit here):

{
!file_exists(f) <:> thrown(not_found);
disk_full() <:> thrown(disk_error);

}

If we assume the default definition ofabnormal , this assertion group could probably be
used to specify a file open method. It reads: If the filef does not exist, then an exception
must be thrown. Similarly, if the disk is full, an exception must be thrown. However
does not restrict exceptions to be thrown for other reasons. But it does say that if t
exceptionnot_found was thrown, it must be the case that the filef does not exist, and
if the exceptiondisk_error was thrown, it must be the case that the disk was full. A
interesting consequence is that if both the file does not exist and the disk is full, ei
exception may be thrown. The following assertion group strengthens the above ass
group to require that only these two exceptions or runtime exceptions may be thro

{
!file_exists(f) <:> thrown(not_found);
disk_full() <:> thrown(disk_error);
abnormal ==> thrown(not_found, disk_error,

RuntimeException);
}

Now the earlier stock broker example is completed with specification of abnormal
behavior. A helper interface with two method declarations —bad_acct andbad_sym

— are added:
30 of 81 Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for IDL
interface StockAuxiliary {
public boolean bad_acct(StockBroker sb, long account);
public boolean bad_sym(String symbol);

}

EXAMPLE 2.10 StockBroker specification with exceptions

import stock.*;
import StockBrokerAux;

adlclass StockBroker2 {

inline long cost(String s, long nsh) {
try { nsh * StockBrokerAux.price(s); }
catch(Throwable t) { 0; }

}

inline long _Cash_Balance(long act) {
try { Cash_Balance(act); }
catch(Throwable t) { 0; }

}

inline long _Stock_Balance(long act, String s) {
try { Stock_Balance(act, s); }
catch(Throwable t) { 0; }

}

void Buy(long account, String symbol, long no_of_shares)
throws BadCall {

semantics
[normal = !thrown(Throwable);

abnormal = thrown(RuntimeException, BadCall);]
{

StockAuxiliary.bad_acct(self,account) <:>
(thrown(BadCall) &&
((BadCall)adl_thrownException).bad_account);

StockAuxiliary.bad_sym(symbol) <:> (thrown(BadCall) &&
((BadCall)adl_thrownException).bad_stock_symbol);

if (thrown(BadCall)) {
((BadCall)adl_thrownException).bad_account ||
((BadCall)adl_thrownException).bad_stock_symbol;

}
if (normal) {

try {
Cash_Balance(account) == @_Cash_Balance(account) -

@cost(symbol, no_of_shares);
Stock_Balance(account, symbol) ==

@_Stock_Balance(account, symbol) + no_of_shares;
} // end try
catch (Throwable t) { false; }
Version 1.2 31 of 81

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

n, but
w
.7 in

avior

era-
s are
on

nor-
ect

 of
e

ace
s.

rip-

an
stitu-

sser-
} // end if
} // end semantics

}

}

Note the right hand side of the two exception operators refer to the same exceptio
different additional conditions associated with the raising of the exception. This ne
behavior description is different from the earlier behavior description in Section 2.3
a few interesting ways, some of which are:

• It makes clear the abnormal behavior. In the earlier example, the abnormal beh
was described through catch specifications in the normal behavior.

• This leaves the particular exception condition (right operand of the exception op
tor) that occurs non-deterministic. If the left operands of the exception operator
both true, then the behavior description allows either (or even both) the excepti
conditions to hold.

• It uses an additional interface,StockAuxiliary , to give additional information
about accounts and symbols. It is often the case that an interface sufficient for
mal use is not sufficient for testing; typically, it is useful to add operations to insp
the state of an object or to encapsulate complex actions. Within the constraints
Java, these additional operations can only be defined in a new interface. In som
cases, the new interface can be implemented entirely separately from the interf
under test; in other cases, it will require some collaboration between the object

2.4 Inline Procedure Declarations

Inline macro declarations is another way to define concepts used in behavior desc
tions (along with auxiliary interface declarations). Their syntax is:

ADL_InlineDeclaration ::= “inline” ResultType MethodDeclarator ADL_AssertionGroup

Inline declarations are macros, in the usual C pre-processor meaning. The call to
inline is replaced by the text of the corresponding assertion group, with ad hoc sub
tion of the parameters.

In the Stockbroker example, where “cost” is defined as:

inline long cost(String s, long nsh) {
try { nsh * StockBrokerAux.price(s); }
catch(Throwable t) { 0; }

}

any expressioncost(symbol, no_of_shares) will be replaced by:

{ try { no_of_shares * StockBrokerAux.price(symbol); }
catch(Throwable t) { 0; }}

This is the second case (after try/catch specifications) of the two cases where an a
tion group may have a non-boolean value.
32 of 81 Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

.

 pre-

t.

er-

are
e

It is not possible to define bindings or NLD annotations inside an inline declaration

2.5 Prologues and Epilogues

Before being able to test a specified method, it is sometimes necessary to perform
liminary initializations that require imperative features: this cannot be made inside
semantic assertions, which should remain declarative constructs with no side-effec

For this purpose, the user can use the “prolog” and “epilog” features, which provide
blocks of “pure” Java that will be transmitted without any transformation to the gen
ated code.

There are two kinds of prologues/epilogues: either global (inADL_CompilationUnit)
or local (inADL_ClassDeclaration).

ADL_ClassDeclaration +::=[“public”] “adlclass” <IDENTIFIER> [“extends” Name]
“{“ [ADL_Prologue] [ADL_Epilogue]
(ADL_InlineDeclaration | ADL_BehaviorDeclaration)* “}”

ADL_BehaviorDeclaration +::= [“static”] [ResultType] Name FormalParameters [“throws” NameList]
“{“ [ADL_Prologue] ADL_BehaviorSpecification [ADL_Epilogue] “}”

ADL_Prologue ::= “prolog” Block

ADL_Epilogue ::= “epilog” Block

adlclass bankAccount {

prolog {
String url = “jdbc:odbc:wombat”;

 DbConnection dbcon = DbDriverManager.getConnection(url);
DbTable dbtbl = dbcon.createTable();

}

long deposit(long amt) {
prolog {

String sel = “SELECT p.* (...)”;
 dbtbl.checkAssertion(sel);

dbtbl.setInt(1, get_account());
}
semantics {

dbtbl.execute(); // boolean-valued function
}
epilog {

dbcon.close();
}

}

}

In the generated Java code for this example, the global and local prologue blocks
concatenated (the global before the local) and copied “as is” at the beginning of th
Version 1.2 33 of 81

Semantic Annotations ADL 2.0 Language Reference Manual for IDL

ns.
ed

rein
e
te-

the

dings
 pro-
ed in

rence
“deposit” generated method, before the code that deals with the semantic assertio
The epilog code is copied at the end of this method (a global epilog would be copi
right after the local one).

The overall execution scheme is as follows:

Step 1: Execution of the global prologue (except in constructors)
Step 2: Execution of the local prologue
Step 3: Evaluation and saving of call-state expressions
Step 4: Call the method on the real object
Step 5: Evaluation of the assertions and test reporting
Step 6: Execution of the local epilogue
Step 7: Execution of the global epilogue (except in constructors)

Note that the global prologue is a purely syntactic construct: variables declared the
arenot global variables, but variables local to all the specified method — exactly lik
the variables declared in the local prologue. Its sole purpose is to factorize the sta
ments that need to be executed at the beginning ofall the methods whose behavior is
specified in the adl class.

There is a special case for constructors: it is possible to define a local prologue in
behavior specification of a constructor, but the global prologue/epilogue are not
imported in the generated code.

Call-state expressions and inlines cannot be used in prologues and epilogues. Bin
can be used in the local epilogue of the behavior where they are defined, but not in
logues and global epilogue. The global epilogue has only access to variables defin
itself and in the global prologue. It is possible, inside call-state expressions, to refe
the variables declared in prologues.
34 of 81 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for IDL

tested,
erface.

n
D is

c

la-

e

arget
ntax is
n to

rget
et. An
arte-

 not
indices,
lity is
 prac-

o be
, that

com-
s of a
3 Test Annotations

Test data annotations allow the test engineer to define how an interface should be
what data and what procedures should be used to exercise the functions in the int

3.1 Concepts

The test data description (TDD) language provides a notation in which the user ca
write descriptions of test sets, which will be processed into test driver programs. TD
organized by a few concepts; these are presented in the first section, with syntacti
details in later sections.

This document focuses on the TDDlanguage. The integration of the TDD concepts
with relation to the ADLT runtime is presented in more details in the ADL 2.0 Trans
tion System document, chapter 7.

3.1.1 Re-write

The principle behind TDD2 (TDD for ADLT2) is that it is processed by re-writing th
input to create a test program. The re-write does not remove any information.

The concepts of TDD2 are applied to a variety of programming languages, called t
languages. The concepts of TDD2 are common to all target languages, and the sy
in large measure common; the parts of the language that get re-written are commo
our four target languages (C, C++, IDL, and Java).

3.1.2 Dataset

A dataset is a set of data values. It may be used in place of an expression in the ta
language syntax. The result of such an expression over a dataset is another datas
expression involving more than one dataset is treated as an expression over the C
sian product of the datasets:

(EQ 3)

Dataset Size.A dataset has a definite size, by construction. However, that size may
be feasible to use as a test. Examples of feasible datasets are enum types, array
array contents, and datasets created by literal expressions. The concept of feasibi
not precise; there is not an axiomatic way to decide if a dataset is small enough. In
tice, a dataset with more than 2^32 elements is certainly infeasible.

A dataset may be created by a literal expression or by a factory. A dataset may als
created by the combination of a representation type and a constraint. A single value
is, an expression in the target language, is a trivial dataset.

Dataset size is determined by calculation rather than by construction. It is easy to
bine a finite number of feasible datasets and create an infeasible dataset; 32 copie
Boolean dataset, for example.

A B⊗ f 0 A B,() F0 A B×()≡ ≡
Version 1.2 35 of 81

Test Annotations ADL 2.0 Language Reference Manual for IDL

r, and

 the
for
ent of

 con-
n,

ype
for
ll
 of
pes

f the
all-

s.

hich
a spe-

tion.
3.1.3 Factory

A factory is a data creator. It encapsulates the notions of a constructor, a destructo
reporting.

A factory is, formally, a function from a dataset to a dataset. A function fn(A,B,C...) of
more than one argument is formally treated as function f1 of a single argument,
AxBxC... – the crossproduct of the input datasets.

Operationally, a factory is implemented by a pointwise function on the elements of
domain. In addition, the implementation of a factory includes a destructor function
elements of the range, and an association from an element of the range to the elem
the domain.

The formal definition of a factory is: ,

where D is the domain of the factory, R is the range of the factory, c is the factory’s
structor function, d is the factory’s destructor function, and i is the inversion functio
which can be used to determine the input that gave rise to a given range element.

While several of the target languages provide expression of these notions in their t
structure, those expressions may be not available for all types needed for testing;
example, none of the target languages permit extension of the built-in types, and a
allow the declaration of types which permit no extension. The factory notion is part
TDD2, outside the target language’s type system, so that it can be applied to all ty
needed for testing.

3.1.4 Checked function

A checked function is a function for which an oracle is available. Calling a checked
function produces the same value and outcome as calling the unchecked version o
function, but will report some measurement information as an invisible (within the c
ing program — not to the user!) side effect.

When running under a debugger, all functions may be said to be checked function

In the ADLT system, checked functions are generated from function declarations w
have been annotated with semantic specifications. Within a test directive, there is
cial convenient syntax for invocation of such an ADL-derived checked function; the
class or object on which the method is invoked is enclosed in the ADL pseudo-func

ADL(obj).meth(data);
obj.meth(data);

F D R c, , d i,{ , }≅
c D R ⊥{ }∪→?Functional?

d R ∅ ⊥, }{→?Functional?

i F D→?Functional?
36 of 81 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for IDL

L-
ot
ch an

d

use:
at

t the

t
nc-

writ-
, in
 call-
out

ive.
Both method invocations in this example result in invocation of methodmeth on the
underlying implementation objectobj ; however, the checked method invocation is
relayed through anAssertion Checking ObjectADL(obj) that implements the seman-
tic checks specified by the ADL semantic annotation. It is an error to invoke the AD
checked version of a method if either the class type of the underlying object has n
been annotated (there is no adl class that annotates this type) or if there exists su
adl class but that method does not have a semantic annotation in this adl class.

The scope of the ADL keyword operates on only one method: in the expression
ADL(obj).m1(p1).m2(p2) the methodm1 is called on the ACO object created by
ADL(obj) and therefore it is the checked methodm1 that is called; however, this
method will create a usual object on which theunchecked methodm2 will be called. If
the return type ofm1 has been annotated and the user wants to execute the checke
methodm2, he/she must write:ADL(ADL(obj).m1(p1)).m2(p2)

It is possible to test a constructor: the syntaxADL_new Foo(bar) will create an
object of type Foo using a checked constructor. The scope is similar to the ADL cla
ADL(ADL_new Foo(bar)).m(p) invokes a checked constructor of class Foo, th
returns a Foo object on which is invoked the checked method m.

It is possible to test an interface:

AnInterf x = new AClass();
ADL(x).meth(data);

whereAnInterf is a Java interface andAClass is a Java class that implements
AnInterf. The notationADL(x) refers to an annotation of AnInterf (i.e. there must be
an adl classAnInterf.adl that describes the behavior of the methodmeth). Even
if AClass is also annotated, this annotation will not be called in this example: to tes
annotation of AClass, one should write

AClass y = new AClass(); ADL(y).meth(data);

In other words, the notationADL(obj) refers to thestatic type ofobj , not to its
dynamic type.

3.1.5 Test Directive

A test directive is formally a statement evaluated for side effect. In particular, a tes
directive normally includes an expression involving one or more calls to checked fu
tions.

Note that a function or method body in a test declaration is subject to the same re-
ing as any other code in the test declaration. Hence any call to a checked function
such a body, will be interpreted as a call to the checked version of the function; and
ing such a function or method will have the side-effect of making an observation ab
the behavior of such checked functions.

A test directive expression is parameterized by the datasets used in the test direct
Version 1.2 37 of 81

Test Annotations ADL 2.0 Language Reference Manual for IDL

n
lt and

ite

l

n

rt”
e tdd

is is
iler

uc-
nter-

ean-

r may
3.1.6 Assertion

An assertion is a Boolean expression. However, the test framework takes note of a
assertion. An assertion is a postcondition. An assertion contributes to the test resu
is reported to the user.

Formally, an assertion is a Boolean expression evaluated for side effect.

An assertion is expressed by a call to the functiontdd_assert(String, boolean)

from the ADLT runtime library. As a stretch feature, the ADLT translator may re-wr
the assertion to provide better reporting.

3.1.7 Importation

It is possible to import datasets or factories defined in other TDD files, by using the
“use” feature of the TDD language. This feature is syntactically similar to the usua
importation scheme of the target language:#include for C/C++ andimport (with
qualified name) for Java.

Note that this importation clause makes reference to thesource TDD file, not to the
object code obtained after ADLT translation and compilation. In TDD for Java, whe
the user declares“use foo;” , he can thereafter use for instance the dataset “D1”
defined in the file foo.tdd. There is however an important difference with the “impo
clause: with “use”, the compiler checks the presence and correctness of the sourc
file; it is left to the responsibility of the user to ensure that at runtime the class file
obtained by transformation of the bar.tdd will be accessible from the classpath. Th
closer to the C semantics, with the distinction between the header file for the comp
and the library at runtime.

3.2 Annotated TDD/Java Syntax

This is not the complete syntax for the TDD extensions to Java, but rather the prod
tions that are additions or modifications from the language standard. Undefined no
minals and terminals are references to the language standard.

3.2.1 TDD declarations

ADL_CompilationUnit ::= (ImportDeclaration)*
(TDD_UseDeclaration)*
TDD_ClassDeclaration
<EOF>

TDD_ClassDeclaration ::= [“public”] “tddclass” <IDENTIFIER>
“{“ (TDD_ClassBodyDeclaration)* “}”

TDD classes have no inheritance structure, as the concept of “superclass” is not m
ingful for a TDD class. Therefore a TDD class may not be marked as “final” or
“abstract”; all TDD classes are final, just as all Java interfaces are abstract. Neithe
a TDD class extend another, although one TDD class may refer to another.
38 of 81 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for IDL

d in
r by
s-
r 2).

acto-

res-
 in

, and

tax.

vo-
it,
sla-
ch

ned to
ro-
One TDD class may refer to Java entities or TDD datasets and/or factories declare
other compilation units, either using the fully qualified name of the external entity, o
importation (“import” for Java, “use” for TDD, referenced by the incpath or the clas
path: see the ADL 2.0 Translation System Design Specification document, chapte

TDD_ClassBodyDeclaration ::= MethodDeclaration
| TDD_FieldDeclaration
| TDD_DatasetDeclaration
| TDD_FactoryDeclaration
| TDD_TestDirective

The extra constructs that may occur in a TDD class are constant fields, datasets, f
ries, and test directives.

TDD_FieldDeclaration ::= Type VariableDeclaratorId “=” VariableInitializer
(“,” VariableDeclaratorId “=” VariableInitializer)* “;”

tdd class fields are constant and must therefore be initialized. The initialization exp
sion must be computable at compile-time (similar to the initialization of static fields
Java).

TDD_DatasetDeclaration ::= “dataset” TDD_SingleDeclarator “=” TDD_DatasetExpr “;”

A dataset is like an initialized declaration, except that a dataset may have type void
the initializer is a dataset not just a scalar.

TDD_FactoryDeclaration ::= “factory” MethodDeclaration
[“relinquish” “(“ [FormalParameter] “)” Block]

A factory is declared just like a method.

TDD_TestDirective ::= [<IDENTIFIER> “:”] “test” [“forall”]
“(“ [TDD_DatasetDomain (“,” TDD_DatasetDomain)*] “)” Statement

A test directive is similar to an ADL quantified expression, and allows a similar syn
It declares local variables that range over the contents of the specified datasets.

A test directive is implemented by putting it in the body of a method, suitable for in
cation by the appropriate test framework. The test method declaration is left implic
rather than being explicitly written as part of the test directive, so that the ADL tran
tor can supply a test method declaration specialized for the test framework for whi
code is being generated.

TDD_DatasetDomain ::= TDD_SingleDeclarator (“=” | “:”) TDD_DatasetExpr
| TDD_DatasetExpr

3.2.2 Dataset Expression Syntax

A dataset expression may be used alone in an domain list (i.e. without being assig
a single declarator) only if it reduces to a void dataset expression, which must be p
Version 1.2 39 of 81

Test Annotations ADL 2.0 Language Reference Manual for IDL

ctory

set
ceded

 one-
all

t lit-

 of a

s that
duced by a factory; in that case, this notation denotes the evaluation of the void fa
member for side effect only (see Section 3.3.3).

TDD_DatasetExpr ::= TDD_DatasetConcatExpr
 (“+” TDD_DatasetConcatExpr)*

TDD_DatasetConcatExpr ::= TDD_DatasetSingleton
| TDD_DatasetLiteral
| TDD_FactoryCall

TDD_DatasetSingleton ::= Literal | Name

TDD_DatasetLiteral ::= “{“ [TDD_DatasetMember (“,” TDD_DatasetMember)* [“,”]] “}”

TDD_DatasetMember ::= ConditionalExpression [“ .. ” ConditionalExpression]

TDD_FactoryCall ::= Name “(“ [TDD_DatasetExpr (“,” TDD_DatasetExpr)*] “)”

A dataset literal is written in braces. It may be empty. The elements in a literal data
may be expressions or ranges (in a range expression, the two dots “..” must be pre
and followed by blank space(s)). Ranges are only meaningful for integral types. A
dataset expression that reduces to a literal or a local field name is converted into a
element dataset literal. The expressions in a dataset literal are evaluated once for
when the dataset is initialized; they will not be re-evaluated at each selection.

Method invocation is legal only as TDD_DatasetMember (for members of a datase
eral) whereas factory invocation is legal only as TDD_DatasetExpr:

dataset int D = f1() + { f2() };

this definition is correct ifff1 is a factory andf2 a method.

A TDD_DatasetSingleton name must be either the name of a dataset or the name
local field; a TDD_FactoryCall name must be the name of a factory.

3.3 General Syntax & Examples

This section presents the general syntax (for C-like languages) along with example
motivate the design.

3.3.1 Simple Datasets and Data Construction

Some examples of data generation.

EXAMPLE 3.1 The Simplest Test
40 of 81 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for IDL

irec-

t is

the
n-
tddclass t1 {
test (int i1 = 3, int i2 = 4)

ADL(subject).plus(i1, i2);
}

The simplest test is just an invocation of an annotated function. Formally, this test d
tive is the application of the annotated function “plus” to the cross-product of two
datasets, “{3}” and “{4}”; the promotion from a single value to a one-element datase
implicit and automatic.

In the example,subject.plus is a static method name;ADL(subject).plus is
the name of a checked version of that static method (we do not precise here what
name “subject” refers to; it is implicit that it has been imported through the target la
guage standard class importation features:#include in C++, import in Java).

EXAMPLE 3.2 A Simple Dataset

tddclass t2 {
dataset int A = {1,3,5 .. 7};
test (int i1 = A, int i2 = 1)

ADL(subject).plus(i1, i2);
test (int i1 = 1, int i2 = A)

ADL(subject).plus(i1, i2);
}

This testsplus when adding the constant dataset {1}, on both sides.

3.3.2 Compound Datasets: Factories, Concatenation

EXAMPLE 3.3 Compound Data Construction

tddclass t3 {

factory RandomAccessFile make_file (String name,
 String mode) {

return new RandomAccessFile(name, mode);
//in TDD for Java

} relinquish(RandomAccessFile r) { // ...
}

dataset File F0 = make_file(
{“/dev/null”, “/dev/tty”, “/tmp/foo”},
{“r”, ”rw”});

dataset File F1 =
make_file(“/dev/null”, “r”) +
make_file(“/dev/tty”, {“r”, “rw”}) +
make_file({util.tmpnam()}, {“rw”});

byte[] buf = new byte[512];
Version 1.2 41 of 81

Test Annotations ADL 2.0 Language Reference Manual for IDL

 the
actory;

y as

quish
ry
ents
nts in
en exe-

 of a
 and
rom
pleted
test (RandomAccessFile F=F0) {
ADL(F).readFully(buf);

}

test (RandomAccessFile F=F1) {
ADL(F).readFully(buf);

}
}

Dataset F0 has 3x2=6 members, while F1 has 1+2+1=4 members. Note that F1 is
concatenation of several datasets, each produced by a separate invocation of the f
the example uses “+” as the dataset concatenation operator.

This example shows the syntax for a test directive, with the datasets listed explicitl
an initialized declaration list.

The optional relinquish clause has similar syntax to a Java catch clause. The relin
clause takes a single argument whose type must match the return type of the facto
method. In the body of the relinquish clause, the user has visibility to all the argum
of the factory method and the system guarantees that values used for the argume
the preceding call to the factory method to create the return data, are the same wh
cuting the call to the relinquish clause.

3.3.3 Void Datasets

EXAMPLE 3.4 Void Datasets

In order to express the notion of an environment condition that affects the operation
system under test, without producing an assignable value, the concepts of dataset
factory are extended to allow void pseudo-values. This example imports datasets f
the previous one, and shows the use of a block as the body of a test directive, com
with an assert.

use t3;

tddclass t4 {
factory void setup_system(int condition_code) {

// void factory
// ...

} relinquish() {...}

dataset void setup_set = setup_system(1);

test (setup_set, // void dataset expression
RandomAccessFile F = F1, // F1 accessible through

// import of t3
String data = {“”, “hello”})

{
String tmp;
ADL(F).writeUTF(data);
F.seek(0);
42 of 81 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for IDL

.

antic

d
cally
 is

not

 by a
cto-
re not.

tic
he
tmp = ADL(F).readUTF();
tdd_assert(“tmp.equals(data)”, tmp.equals(data));

}

}

Note that, as the void datasetsetup_set is defined as a factory call, this factory
setup_system is called once for each test data instance (see also Section 3.3.4)

This example shows the use of an unchecked method (seek) in conjunction with some
checked methods (writeUTF andreadUTF). All three method invocations result in
method invocations on the underlying implementation objectF; however, the checked
method invocations are relayed through a checking object that implements the sem
checks specified by the ADL semantic annotation.

Imported dataset names (through the “use ” clause) can be unqualified if there is no
ambiguity about their origin. Unqualified syntax (F = F1 in the example) is possible if

• F1 is defined in the current tdd class, or

• F1 is defined in at most one of the “used” tdd classes.

If two tdd classes are imported (use c1; use c2;) such that a dataset F1 is define
in c1.tdd and another in c2.tdd, then a call to F1 must be qualified: F = c1.F1. A lo
defined dataset namehides an imported dataset that has the same name. Importation
not transitive: if tdd class c0 imports tdd class c1 and c1 imports c2, then c0 does
import c2 (unless it explicitly does so, of course).

The qualified syntax can also be used when the tdd class is not explicitly imported
use clause. These rules are also valid for factory importation. Only datasets and fa
ries are importable: the constants, test functions and test directives of a tdd class a

3.3.4 Dataset Elements Evaluation

EXAMPLE 3.5 Runtime Initializers

The elements of a dataset literal are evaluated only once, at initialization time (sta
evaluation). If the user wants a dataset whose elements are evaluated each time t
dataset is referenced (dynamic evaluation), he must use factories.

tddclass t5 {
/* this is not a good dataset; it lacks repeatability */
dataset double q_static = {

Math.random(),
Math.random(),
Math.random()

};
factory double rand() { return Math.random(); }
dataset double q_dynamic = rand();

}

Version 1.2 43 of 81

Test Annotations ADL 2.0 Language Reference Manual for IDL

o-
 a

tic
tly
tant

f

In this example, the datasetq_static is initialized with 3 random values that will not
change whatever the number of test data instances that referenceq_static . But for
test directives that useq_dynamic , each reference toq_dynamic in each test data
instance will be dynamically reevaluated.

3.3.5 Dataset Constants

EXAMPLE 3.6 Provide Test Variables

This example may be slightly familiar for those familiar with the ADLT1 example pr
grams. The combination of a factory requiring one or more integer parameters with
dataset is the ADL/Java idiom for a provide test variable, just as a collection of sta
final ints is the Java idiom for an enum. In TDD, any global variable (field) is implici
constant (static final in Java) and must be initialized at its declaration. A TDD cons
cannot be imported through the “use” clause.

import Bank; // in TDD for Java

tddclass t6 {

int SAVINGS = -1, CHECKING = 1, IRA = 7;
int negative = -10, zero = 0, small = 3, average = 100,

large = 1000, over_limit = 10000;

factory account acct(
int account_type,
int size_code) {/*...*/}

dataset int act_code = { SAVINGS, CHECKING, IRA };

dataset int size_code =
{ negative, zero, small, average, large, over_limit };

dataset account Account1 = acct(act_code, size_code);

factory int amount(int size_code) { /*...*/ }

Bank bank = new Bank(/*...*/);

test (account act = Account1, int size = size_code) {
ADL(bank).deposit(act, amount(size));
ADL(bank).withdraw(act, amount(size));
ADL(bank).balance(act);

}
}

EXAMPLE 3.7 Better Test Variables

Here is a more general collection of test variables, showing the increased power o
TDD2.
44 of 81 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for IDL

s. The

s.
import Bank;

tddclass t7 {

int SAVINGS = -1, CHECKING = 1, IRA = 7;
int negative = -10, zero = 0, small = 3, average = 100,

large = 1000, over_limit = 10000;

factory double amount(int size) { /*...*/ }

dataset int size_code =
{ negative, zero, small, average, large, over_limit };

dataset int account_type =
{checking, savings, IRA, zero, neg, max,over_max};

factory account make_acct(
int type_code,
double size) { /*...*/ }

dataset account Acct = make_acct(
acount_type, amount(size_code));

test (account act = Acct, int size = size_code) {
ADL(bank).deposit(act, {0.1, 124.1e10, 1125.333});
ADL(bank).withdraw(act, amount(size));
ADL(bank).balance(act);

}
}

This example is intended to motivate the separation between factories and dataset
make_acct factory can be used to create a dataset with accounts of any size; the
Acct dataset is the result of applying that factory to a specific set of amount value

3.3.6 Test Directives

EXAMPLE 3.8 Test Directives and Procedures

Simple examples of test directives were given in the previous sections.

The syntax is:

[label :] test (type id = dataset, ...) statement

Example:

import object.data;
Version 1.2 45 of 81

Test Annotations ADL 2.0 Language Reference Manual for IDL

this
ay.

tacti-
 The
he list
iable
valu-

 break

dle
tddclass t8 {
Dir1 : test (Object o = data.obj) {

ADL(o).hashCode();
}

}

A test directive body has the same syntax asstatement in the Java grammar; however,
“test statement” is a misleading phrase. A label may be placed on a test directive;
will influence the generated code and the generated test documentation in some w

In the syntax, local variables are created to range over the specified datasets. Syn
cally; this is like an initialized declaration, but the initializer is a dataset expression.
declared variable ranges over the members of the dataset during test execution. T
may also contain a dataset expression denoting a dataset of type void, with no var
declared; in that case the dataset member selection, presumably by a factory, is e
ated for side effect only.

Not all programming language statements are legal test directives. For instance, a
statement is not a legal test statement.

EXAMPLE 3.9 Void Dataset Use

The syntax for using void datasets is as follows:

tddclass t9 {

dataset int A = { 1,2,3 };

factory void side_effect(int i) { /*...*/ }

dataset void X = side_effect({0 .. 6});

dataset float F = { f1(), f2(), f3() };

test (int a = A, X, float f = F)
ADL(tested).func(f,a);

}

In this example,f is the loop variable for the inner loop, and varies fastest. The mid
loop is a selection over X, evaluated only for side effect. The outer test loop variesa

overA.

3.3.7 Advanced Examples

EXAMPLE 3.10 Chaining Factories

import testframe.code;

tddclass t10 {
46 of 81 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for IDL

ssion.
ction

you
factory String make_file_name(
boolean absolute,
boolean device,
boolean funny_chars,
int length_code

) { /*...*/ }

dataset int length_code = { code.ZERO, code.ONE,
code.MEDIUM, code.LONG, code.TOO_LONG };

dataset String file_name_set =
make_file_name(true, false, false, 10);

factory File make_file(String file_name) { /*...*/ }

factory RandomAccessFile
make_filestream(File f, String md) { /*...*/ }

dataset String legal_open_type = { “r”, “rw” };

factory String illegal_open_type() { /*...*/ }

dataset String open_type =
legal_open_type + illegal_open_type();

dataset File File_set =
 make_file(file_name_set);

dataset RandomAcessFile Stream_set =
make_filestream(File_set, open_type);

}

This illustrates several techniques for re-using factories.

EXAMPLE 3.11 Multiple Data Values

In some cases it is useful to produce a group of values with a single dataset expre
Rather than inventing a new syntax for a group of values, we use the data constru
mechanism (class) already present in the programming language.

For example, to construct a dataset containing pairs of host addresses and ports,
might use:

import java.net.*;
import testdata.io;
import foo.port_pair;

/* class port_pair is defined in package foo:

package foo;
Version 1.2 47 of 81

Test Annotations ADL 2.0 Language Reference Manual for IDL

e is
f the

e

r, giv-
hods.
class port_pair {
String host;
int port;

}

*/

public tddclass t11 {

factory port_pair make_port_pair(int pp_code) { /*...*/ }

dataset int port_pair_code = { 0 .. 10 };

dataset port_pair Ports =
make_port_pair(port_pair_code);

test (byte[] data = { io.mydata }, port_pair pp = Ports) {
Socket s = new Socket(pp.host, pp.port);
ADL(s.getOutputStream()).write(data);

}
}

EXAMPLE 3.12 Test By Example

More complex examples bring us to the concept of “Test by Example”: the test cod
an example of typical code, or code fragments, the user would write to make use o
interface under test.

import java.io.*;
import testdata.io;

public tddclass t12 {

void read_then_write(RandomAccessFile f, byte[] buf) {
long pos;

pos = f.getFilePointer();
ADL(f).readFully(buf);
ADL(f).seek(pos);
ADL(f).writeFully(buf);

}

test (File f=t10.File_set)
read_then_write(f, io.buf_set);

}

This defines and then calls a test procedure that, when executed, will check that th
readFully , seek , andwriteFully operate together correctly when used in this
particular way. More exactly, the test procedure will exercise the methods togethe
ing the assertion-checking code a change to check the behavior of annotated met
48 of 81 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for IDL

 the

s in
s to
g on
This is not a good way to test for error handling; it may prove useful when checking
normal operation of an interface.

EXAMPLE 3.13 Multiple Dataset References

A single dataset may be used more than once in a single test directive. This result
independent iterations over the dataset. If the test author wants multiple reference
the same value in one directive, it is necessary to declare multiple variables rangin
the same dataset.

tddclass t13 {

dataset int A = { 1, 2, 3 };

test (int a = A, int b = A)
ADL(Math).plus(a, b); // 9 evaluations

test (int a = A) {
ADL(Math).plus(a,a); // 3 evaluations

};
}

Version 1.2 49 of 81

Test Annotations ADL 2.0 Language Reference Manual for IDL
50 of 81 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for IDL

docu-
tions
other

nt
cla-
e
ecla-
he
r

ed at
nc-
pres-
s (see

r the

er has
clar-

hat
es the
pe

cope
e,

ifier
4 NLD Annotations

Natural language annotations can be provided to improve the quality of generated
descriptions of ADL and TDD expressions.

4.1 Concepts

The ADLT tool can generate natural language (NL) documentation describing the
semantics of functions and the generated test driver. The quality of the generated
ments can be improved by annotating the input files with natural language descrip
(NLD). These annotations describe translations for identifier names, and provide
configuration information for the ADLT NL system.

Standard Generalized Markup Language (SGML) is the foundation of the docume
generation system. ADLT renders ADL and TDD expressions into SGML entity de
rations, exploiting any NLD annotations that the test engineer has provided. Thes
entity declarations are processed together with a set of document template entity d
rations to form a complete SGML document conforming to the DocBook 3.0 DTD. T
final SGML document can be converted to specific output formats such as HTML o
Unix manual pages, or incorporated in larger SGML documents. See the NLD and
SGML section for more details.

Java can be annotated with NL information in several places. Briefly, it can be plac
top level, within an adlclass or TDD annotation, attached to inline, an annotated fu
tion or a test statement, or placed after the bindings in an ADL semantics group ex
sion. The translations it provides apply throughout the scope and enclosed scope
Section 4.2).

NLD annotations introduce translation information for identifier names at a specific
scope. Translations in outer scopes are shadowed or overridden by translations fo
same identifier name within enclosed scopes.

When ADLT comes to generate a natural language rendering of an ADL or TDD
expression it takes each identifier in the expression and determines whether the us
provided any NL translations for its name. It searches outwards from the scope de
ing the identifier through its enclosing scopes until it finds a candidate translation t
satisfies any constraints on usage (such as locale) defined by its predicates. It us
first one it finds. If more than one satisfactory translation is found at the same sco
level a warning is generated and one of the translations is arbitrarily selected.

For example, a translation for an identifier name can be provided at the top level s
and it will be found and used for any identifier with that name in any enclosed scop
unless an alternative translation is provided at a more local scope.

A subclass inherits the NL declarations of its superclass. An NL declaration for an
identifier given in the subclass overrides any inherited NL declarations for that ident
name.
Version 1.2 51 of 81

NLD Annotations ADL 2.0 Language Reference Manual for IDL

, this
ented

 an

lass

l

 trans-
 file,
4.2 Syntax and Semantics

The inheritance of NL declarations follows the target language; in the case of Java
means that NL declarations are inherited from the superclass and from any implem
interfaces, and may be overridden in a subclass or implementation class.

4.2.1 Simple Data Member Translation

Translations can be provided very close to where an identifier is declared by using
NL declaration in the same scope as the identifier.

/* Java source */
class C {

public static int amount;
// ...

}

/* ADL source */
adlclass C {

nld { // top-level NLD annotations
.amount = “the correct amount”;

}
}

This declares a translation foramount in the scopeC (the dot. before amount refers to
the current scope where the nld block is written, here the global scope of the adl c
C). Any expression using an identifier namedamount declared withinC or one its
enclosed scopes will be translated to use the declared string.

4.2.2 Simple Function Member Translation

Methods can have translations declared in a similar fashion.

class C {
public int balance() { /*...*/ }

}

adlclass C {
nld {

.balance() = “the balance of the account”;
}

}

This declares a translation forbalance() in the scopeC. Any expression using a
function identifier namedbalance declared withinC or one of its enclosed scopes wil
be translated to use the declared string.

4.2.3 Out Of Line Translations

Translations do not have to be declared at the same place the identifiers are. The
lations in the two previous examples could have been provided out of line, in a .nld
by using fully scoped identifier names.
52 of 81 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for IDL

ction

rrent

)

m an

ss

 if not
/* NLD source */
nld {

C.amount = “the correct amount”;
C.balance() = “the balance of the account”;

}

4.2.4 Translations For Overloaded Methods

As there may be more than one function with a particular name in a scope the fun
signature must be provided in its NL declaration.

class C {
abstract void deposit(int amount);
abstract void deposit(int amount, int charge);
abstract void close_account();

}

nld {
C.deposit(int) = “deposit some money”;
C.deposit(int, int) = “deposit some money and charge a fee”;
C.close_account() = “close the account”;

}

These mappings are not preceded by a dot, which means they do not refer to a cu
scope but describe entities with a full name. The notationC.deposit(*) could be
used to define a mapping common to all deposit methods. The notationC.*.amount
could be used to define a mapping common to all local entities (parameter, binding
named “amount”, in all methods of C.

4.2.5 Priorities

When several NL mappings are defined for an entity, they are distinguished one fro
other by an algorithm that detects the more “precise” one:

C.deposit(int).amount = “the deposit amount”;
// has higher priority than

C.deposit(*).amount = “a deposit amount”;
// which itself has higher priority than

C.*.amount = “the amount”;
// which itself has higher priority than

C.amount = “the class amount”;
// and finally the lowest priority for global scope

amount = “the global amount”;

With the inheritance mechanism, this algorithm is refined by a prioritized “super cla
lookup”: if C.deposit(int).amount is not found, the mapping will first be
searched in super classes of C (from parent class of C up to java.lang.Object), and
found the search will be launched onC.deposit(*).amount and so forth.

4.2.6 Using semantics And nld Blocks

A method can be annotated with both semantics and NL translations.
Version 1.2 53 of 81

NLD Annotations ADL 2.0 Language Reference Manual for IDL

 to

ear
 file,

e
te
adlclass C {
int balance(int ac) {

semantics {
ac != 0;

}
nld {

.ac = “the account number”;

. = “the balance of the account”;
}

}
}

The dot notation “. ” refer to the current NLD scope (in this case the methodbal-
ance(int)). The notation “.ac” is equivalent to using a fully scoped name to refer
the function’s local arguments.

nld {
C.balance(int).ac = “the account number”;
C.balance(int) = “the balance of the account”;

}

In case of a clash between two equivalent mappings, the final mapping is thelast
encountered one, knowing that NLD files are always parsedbefore ADL/TDD files
(except for this rule, NLD files and ADL/TDD files are parsed in the order they app
on the command line). If the two equivalent mappings are defined in the very same
the last occurrence is retained.

The formal argument name from the function declaration is used as the name of th
local argument. The signature of the function must be given in order to disambigua
overloaded functions.

4.2.7 Shadowing or Overriding A Translation

nld {
i = “the loop counter”;

}

adlclass A {
//public static int i; declared in class A

}

adlclass B {
//public static int i; declared in class B
nld {

.i = “B’s i”;
}

}

An expression usingi in A will pick up the top level NL declaration fori and be trans-
lated as “the loop counter”. The NL declaration fori within B overrides the top level
declaration so an expression usingi in B will be translated as “B’s i”.
54 of 81 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for IDL

 for
this
e.
ec-
ctual
4.2.8 Overriding A Non-Local Translation

Translations in other scopes can be overridden too.

class A {
public static boolean i;
public abstract void f();

}

class B {
public abstract void g();

}

adlclass A {
void f() { //...

nld {
.i = “f’s i”;

}
}

}

adlclass B {
void g() {

semantics {
A.i;

}
nld {

A.i = “g’s i”;
}

}
}

The translation of the reference ofA.i in theB.g() semantics block is “g’s i”, over-
riding the translation fori given inA.

4.2.9 Invocation Translation

An invocation translation is used to translate a function call. It provides a mechanism
the translation to refer to the translations of the actual arguments. In order to use
mechanism the function translation must be provided with the full function signatur
The notation ‘$1’, ‘$2’, etc. in the mapping of a function definition refer to the first, s
ond, etc. acual argument of the function call: the translation of the corresponding a
argument is used instead of any translation for the formal argument name.

class C {
public int a;
public abstract void f(int i, int j);

}

nld {
C.a = “the actual argument”;
Version 1.2 55 of 81

NLD Annotations ADL 2.0 Language Reference Manual for IDL

”.

redi-

ed.
 in the

 be
ories

) pro-

s

trans-

 the

.

nsla-
m

er a
C.f(int, int) = “using ” + $1 + “ and ” + $2;
C.f(int, int).i = “the first formal argument”;

};

An expression usingf(a, 3) will be translated as “using the actual argument and 3

4.3 NLD Predicates

Each NL translation associates a list of predicates with an identifier name. Each p
cate asserts certain attributes of the translation. The most important attribute is the
actual translation text (which must be provided), but other attributes are also defin
Some predicates act as constraints to determine when the translation can be used
generated documents. SGML entities can also be declared in the predicate list.

The order of predicates in the predicate list is not significant. A predicate can only
used once in a list. Future predicates might include markers for grammatical categ
such as tense, gender or number.

4.3.1 Pre-defined Predicates
These predicates (there are currently three defined: call-state, negation and locale
vide a mechanism to select a mapping for a given situation.

For instance, consider:

amount = “the amount”;
amount[@] = “the former amount”;

The second mapping will be used to translate the identifier amount when it appear
within the scope of a call-state (@amount) whereas the first one will be used in the
other cases. If no mapping with the call-state predicate is defined, an appropriate
lation text is synthesized from the basic translation (here@amount would be translated
as “the previous value of the amount”). This predicate is useful in situations where
synthesized translation is clumsy or inappropriate.

Thenegation predicate (notation “!”) is used in a similar fashion for negation scopes

Invocation translations apply for call-state and negation translations too.

Different languages require different translations. Thelocale(<string>) predi-
cate can be used to mark a translation as being valid for the specified locale. A tra
tion with the locale predicate is only considered when it matches the current syste
locale. This is usually configured by setting theLANG environment variable. See the
setlocale(3) manual page for more details. A translation for an identifier name
with a locale predicate that matches the current system locale takes preference ov
translation with a different or unspecified locale.

It is possible to define a mapping for several predicates (e,g,
amount[!,@,locale(“fr”)] = “...”;)
56 of 81 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for IDL

ded

at this

 to a

he
e
hod

d (for

ons
d user
ce
 and
-

To define several mappings with different predicates, it is possible to use the exten
syntax:

deposit(int, int) : {
text = “the basic mapping”;
text[@] = “the callstate mapping”;
text[!] = “the negation mapping”;

}

The notationdeposit(int) = “deposit an amount”; is in fact a shortcut
for deposit(int) : { text = “deposit an amount”; }

An other possible shortcut is to declare the locale before the translation text:
deposit(int) “C” = “the mapping for locale C”; stands for
deposit(int) : {
 text[locale(“C”)] = “the mapping for locale C”; }

4.3.2 User-defined Predicates
A user-defined predicate is a mechanism to assert an attribute to a mapping, so th
mapping can be selected or not elsewhere.

We will give an example in french, a language with explicit gender:

maleCat = “chat”, [male];
femaleCat = “chatte”, [female];
colorOf(int) : “fr.FR” {

text[$1[male]] = “la couleur du ” + $1, [female];
text[$1[female]] = “la couleur de la ” + $1, [female];

}

The two first mappings state that maleCat and femaleCat correspond respectively
masculine and feminine gender. The notation$1[male] is to select a mapping that
corresponds to a function call with a first argument that has the “male” predicate. T
function callcolorOf(femaleCat) would therefore be translated as “la couleur d
la chatte”. The “female” predicate that is defined as an attribute to the colorOf met
states that the word “couleur” is feminine; thus the expressioncolorOf(maleCat)
could be used in a context where an expression with “female” predicate is expecte
a “stupid” example,colorOf(colorOf(maleCat)) would be rendered as “la
couleur de la couleur du chat”).

4.4 NLD and SGML

ADLT generates documentation by emitting SGML entity declarations for descripti
of aspects of the annotated functions and test specification. These synthesized an
supplied entity declarations can be used with template entity declarations to produ
complete SGML documents for subsequent processing. ADLT supplies templates
synthesizes entities based upon the DocBook 3.0 document type definition for con
structing reference manual pages and test specification descriptions.
Version 1.2 57 of 81

NLD Annotations ADL 2.0 Language Reference Manual for IDL

ML
e can
an

L or

 the
os-

 be

s:
s

4.4.1 Reference Manual Document

ADLT processes each annotated function to generate a function file containing SG
entity declarations describing its synopsis, semantics and error conditions. This fil
be parsed in conjunction with the supplied reference manual template to produce
SGML document conforming to the DocBook 3.0RefEntry element. ADLT also
provides tools to convert the final SGML document into other formats such as HTM
Unix manual pages.

The reference manual template file declares default values for some entities which
function file generated by ADLT can override. Here are the entities for which it is p
sible to generate a value in nld blocks (we call them “properties”):

%description: A general description of the function and/or the class. This can
specified by using thedescription property in the NL declaration for the function/
class.

%includes: Unlike all other property declarations, the declared text ofincludes
is processed before generating the property declaration to escape “<“ characters.

%purpose: A short description of a function.

%seeAlso: A reference.

EXAMPLE 4.1 Using includes and description

adlclass C {
void f() { //...

nld {
. : {

%description = “Behavioral description”;
%purpose = “Short description”;
%seeAlso = “See the class Foo”;

}
}

}
}

This is equivalent to:

nld {
C.f() : %description = “Behavioral description”;
C.f() : %purpose = ...

//...
}

The implementation of ADLT includes an SGML DTD that defines the structure of
these entities. Note that ADLT doesnot preprocess the strings that define these entitie
it sends them without any modification, except for “<“ and “>” in %includes (there i
for instance no interpolation mechanism performed on these strings).
58 of 81 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for IDL

nerate
 no
e the

.
e
a-
ra-

hat
ed to
ion
4.5 NLD for TDD

Test Data Description sources can also be annotated with nld blocks in order to ge
SGML documentation files. There is however an important difference: as there are
assertions in TDD, there are no automated translation of any expression. Therefor
user may only write NLD annotations to provideproperties (like %description) or
SGML entities, that are gathered and rendered in the generated documentation.

EXAMPLE 4.2 NLD Annotations in a TDD class

tddclass datasetsCollection {

nld {
. : %description = “A collection of datasets.”;

}

int NEG = -1; int ZERO = 0; int MAX = 100;
nld {

.NEG : %description = “a negative value”;

.ZERO : %description = “the null value”;

.MAX : %description = “the greatest value”;
}

dataset int DEPOSITS = { NEG, ZERO, 7, MAX };
dataset bank B_SINGLE = make_bank (10,0,DEPOSITS);

nld {
.DEPOSITS : %description = “Set of typical values.”; }
.B_SINGLE : %description = “bank.......”;

}

}

4.6 NLD and Localization

ADLT chooses translations for identifier names based on the current system locale
Each NL declaration can be marked with a specific locale that determines when th
translation can be used. Anadl annotation can specify the locale of all the NL declar
tions grouped within it by using the optional locale marker. Additionally each decla
tion can use the locale predicate to specify its individual locale. When a locale is
specified for a NLD group, any other locale defined for a mapping within this group
would be skipped.

If a translation has a locale specified it will only be selected as a candidate when t
locale is the system locale. A translation without a locale specification is consider
be in the default locale, and will be selected as a candidate when no other translat
specified with the current locale is available.

There are four areas where localization is necessary.
Version 1.2 59 of 81

NLD Annotations ADL 2.0 Language Reference Manual for IDL

ans-

 spec-

ext
te

orm

e

ale
n in

tion

ion to
ames

n
ful
thods
Identifier translations. The locale mechanism provides a way to produce a set of tr
lations for Java and ADL identifiers that are restricted to one locale. They will be
selected in preference to translations for the identifiers which do not have a locale
ified.

User-specified entity declarations.The locale mechanism can also be used to mark
user-supplied entity declarations with a specific locale.

Document templates.The translations and user-specified entities are merged with t
in the document template files to produce the final SGML documents. The templa
files can be localized.

Sentence construction rules.ADLT uses a set of rules to construct descriptions of
ADL expressions out of the identifier translation fragments. These rules take the f
of a Prolog program that can be localized.

4.7 NLD Syntax

NLD_Annotation ::= “nld” [NLD_Locale] “{“ (NLD_Declaration | NLD_EntityDeclaration)* “}”

NLD_Locale ::= <STRING_LITERAL>

Natural language information is attached to the ADL source with a natural languag
annotation. An annotation is introduced with thenld reserved word, an optional locale
indicator and then a group of one or more NL declarations within braces. If the loc
indicator is present it acts as if the locale predicate is specified for every translatio
the group. For example,

nld “C” {
...
}

acts as iflocale(“C”) is specified for each translation.

Each NL declaration is either a translation for a Java or ADL identifier, or a declara
for an SGML entity to be used for document generation.

The left hand side of each kind of declaration can contain a scoped name. In addit
the standard Java scoping PackagePath.Class.Member NLD also allows identifier n
within a function member to be specified. This makes it possible to give translatio
information for a method’s formal parameters and local ADL bindings. This is use
for specifying translations for identifier names from many packages, classes or me
60 of 81 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for IDL

ugh-

ly

an
in one place, rather than forcing the test engineer to distribute NL information thro
out the specification files.

EXAMPLE 4.3 Using Fully Scope Names

class C {
public int i;
public void f(int i);

}

nld {
C.i = “translation for i”;
C.f(int) = “translation for f(int)”;
C.f(int).i = “translation for parameter i in f(int)”;

}

If a function name is overloaded at a particular scope it must have its signature ful
specified. Otherwise it can be abbreviated to omit the declarations for the formal
parameters and use only the notation “(*)”.

The translation information is entered at the specified scope (refered to as “.”), so
expression rendered at the current scope, or within an enclosed scope can find it.

NLD_Declaration ::= NLD_ScopedName
([NLD_Locale] NLD_TextAssignment
|

“:” [NLD_Locale] (NLD_Statement | “{“ NLD_Statement + “}”))

NLD_Statement ::= NLD_PropertyDeclaration | “%text” NLD_TextAssignment “;”

NLD_TextAssignment ::= [NLD_SelectPred] “=” NLD_String
[“,” “[“ NLD_UserPred (“,” NLD_UserPred)* “]”]

NLD_SelectPred ::= “[“ NLD_Predicate (“,” NLD_Predicate)* “]”

NLD_Predicate ::= NLD_PredefinedPred
| NLD_ParamNumber “[“ NLD_UserPred (“,” NLD_UserPred)* “]”

NLD_PredefinedPred ::= “@” | “!” | “locale” “(“ NLD_Locale “)”

NLD_UserPred ::= <IDENTIFIER>

NLD_ParamNumber ::= “$”<INTEGER_LITERAL>

NLD_ScopedName ::= “.”
| NLD_MethodName
| [NLD_Scope “.”] NLD_Identifier

NLD_MethodName ::= Name NLD_Signature
Version 1.2 61 of 81

NLD Annotations ADL 2.0 Language Reference Manual for IDL

value
er-

es
rals
NLD_Signature ::= “(“ (“*” | Type (“,” Type)*) “)”

NLD_Scope ::= “*”
| “.”
| Name [“.*”]
| NLD_MethodName

SGML entities can also be declared in an NL annotation. The text declared as the
of the entity is not examined by ADLT, it is passed on to the SGML back end unint
preted and unmodified. For example,

&gen-ent = “a general entity”;

declares a general entity with the specified value.

NLD_EntityDeclaration ::= “&” <IDENTIFIER> “=” NLD_EntityText

NLD_PropertyDeclaration ::= NLD_PropertyName “=” NLD_EntityText

NLD_PropertyName ::= “%description” | “%includes” | “%purpose” | “%seeAlso”

NLD_EntityText ::= <STRING_LITERAL> (“+” <STRING_LITERAL>)*

With the exception of the notation for string literals, the SGML syntax for entity nam
and values is used. See the SGML Handbook for details. NLD specifies string lite
with a notation based upon the Java language.

NLD_String ::= NLD_StringElem (“+” NLD_StringElem)*

NLD_StringElem ::= <STRING_LITERAL> | NLD_ParamNumber

See the Java grammar for descriptions of theName and Type nonterminals.
62 of 81 Version 1.2

Testing CORBA Objects ADL 2.0 Language Reference Manual for IDL

n an
ted
antics
aining

pes.
ed

m

BA
pera-
hen

We
ion),

s
 type,
5 Testing CORBA Objects

Writing test suites for CORBA objects whose specifications were supplied using
CORBA IDL is mostly the same as developing Java client and server code based o
IDL interface. It is straightforward since part of the IDL to Java mapping is automa
by relevant tools. However the test engineer should take care when supplying sem
and test objects to take all the IDL to Java mapping aspects into account. The rem
of this section provides guidelines for the test engineer designing tests for CORBA
objects using ADL/Java.

5.1 Mapped built-in types

Test engineer should take care of the mapping constraints for the CORBA built-in ty
For example CORBA long type is mapped to Java int type. The original and mapp
types are equivalent but it may be somewhat confusing to use mapped types.

The simplest way to avoid getting confused is simply to write ADL tests directly fro
the mapped Java interface instead of using the original IDL interface.

5.2 Bindings for objects

Take care when using bindings to CORBA objects to specify ADL semantics. COR
objects are created using a CORBA factory and not using the natural Java “new” o
tor. While this is an advantage when writing TDD factories, this may be confusing w
specifying simple ADL bindings.

For example instead of writing an ADL/IDL binding:

define Foo foo with foo = new Foo(1,1);

test engineer should write:

// ... code to get a reference on a Foo object factory
// called myFooFactory

// Creation of a foo object
define Foo foo with foo = myFooFactory.create(1,1);

5.3 Inout parameters passing

This section explains how IDL inout parameters should be managed in ADL/Java.
distinguish two cases: either an isolated variable (non member of a class/struct/un
or a member attribute from a class/struct/union.

5.3.1 Isolated variables

In this case the mapping applied by the ADL/IDL translator is simple: if a variable i
used as an out/inout parameter at any time, declare it with its corresponding holder
Version 1.2 63 of 81

Testing CORBA Objects ADL 2.0 Language Reference Manual for IDL

 its

 the
 of this
d.
and replace any occurrence of the variable byvariable.value except when it’s
used as out/inout parameter where no replacement is needed.

 Let’s consider the following idl interface and its corresponding java mapping.

EXAMPLE 4.4 Isolated variable used as inout parameter

// IDL file - Bank.idl -----------------------------------

interface Bank {
void cash_balance(in long account, out long cash);
void deposit(in long account, in long amount);

}

// Bank.Java obtained after applying idl to java mapping

class Bank {
void cash_balance(int account, IntHolder cash);
void deposit(int account,int amount);

}

// ADL file - Bank.adl (ADL/Java) to be written

import Bank;
adlclass Bank {
 void Bank.deposit(int account,int amount) {

semantics {
define IntHolder pre_cash_balance with

@cash_balance(account,pre_cash_balance);
define IntHolder post_cash_balance with

cash_balance(account,post_cash_balance);
post_cash_balance.value == pre_cash_balance.value

+ amount;
 }
}

5.3.2 Member attribute of interface/structs/unions and inout/out parameters

What we did to use a local variable as an out/inout parameter (changing its type to
associated holder, e.g. int -> IntHolder) does not work for attributes members of an
interface/union/struct. The other approach is to use intermediate holders each time
member attribute is used as an out/inout parameter, and to wrap each occurrence
with getter and setter methods so that the attribute and the holder are synchronize

EXAMPLE 4.5 Out/inout parameters and member attributes

// Interface in IDL --------------------------------
64 of 81 Version 1.2

Testing CORBA Objects ADL 2.0 Language Reference Manual for IDL

ey-
interface Foo {
long member; // member attribute
long sideEffects(inout long a);

}

// Generated Java ---------------------------------

interface Foo {
int member(); // get method
void member(int value); // set method
int sideEffects(IntHolder a);

}

// Following is an ADL prolog expressed in pseudo
// ADL/IDL that we would like to express in ADL/Java

//prolog {
// int aValue = sideEffects(member);
//}

// equivalent ADL/Java

prolog {
// set holder value
IntHolder memberHolder = new IntHolder(member());
int aValue = sideEffects(upperBound,memberHolder);

 // get holder value back
member(memberHolder.value);

}

5.4 Mapping for certain nested types.

The rule specified in [IDLJava] is applied. Note it is not a natural way to do.

// IDL
module Example {

interface Foo {
exception E1 {};

 }
}

// Java
package Example.FooPackage;
final public class E1 extends org.omg.CORBA.UserException {
 ...
}

5.5 Interface inheritance

Interface inheritance does not imply implementation inheritance: avoid using the k
word super when specifying CORBA object semantics.
Version 1.2 65 of 81

Testing CORBA Objects ADL 2.0 Language Reference Manual for IDL

e as
s to
om

on,

exist-

ntry

p
able
rm

t
 port-

 in
sts:
5.6 Writing CORBA specific code in TDD/Java.

A CORBA client application, an ADL/Java test suite for example, is mostly the sam
a non CORBA application except for two important features: a CORBA client need
initialize the ORB, and also to get a CORBA entry point, that is a CORBA object fr
which other objects can be found and used.

After that, a CORBA client application acts just as if it was a non CORBA applicati
that is it creates, finds, and manipulates objects.

Some good news for test engineers is that TDD factories can easily be built upon
ing CORBA factories (CORBA factories is the normal way to create new objects in
CORBA applications).

The CORBA API that the test engineer may use to initialize the ORB and get an e
point are any CORBA API provided by the underlying CORBA platform. Using the
portable CORBA APIs as defined by the OMG is strongly recommended to develo
portable test suites. But since few ORB vendors are fully compliant with these port
APIs, the test developper may use any CORBA API provided with a CORBA platfo
(high level API such as that of Sun’s Joe is ok).

Note that the ADL environment provide a portable CORBA ORB wrapper (see nex
chapter) that can be used instead of a proprietary ORB in order to reach maximum
ability.

As an example let’s consider the following example TDD/Java that could be written
TDD/Java to specify a bank factory, which is the CORBA entry point for our bank te

EXAMPLE 4.6 Bank factory TDD example

import Bank;
import org.omg.CORBA.*;

tddclass bankTest {

BankFactoryHolder bankFactory =
 new BankFactoryHolder(null);
 // Note a holder is used here
 // because tdd fields shall
 // be constant!

factory Bank makeBank (int maxAccts,
int numAcctsActive,
int initDeposit) {

org.omg.CORBA.Object obj;
Bank bank;

if (bankFactoryHolder.value == null)
{

// Initialize the ORB
ORB orb = ORB.init();
66 of 81 Version 1.2

Testing CORBA Objects ADL 2.0 Language Reference Manual for IDL

n
rs for

 not
// Get a ref on a CORBA bank factory
// (which is the CORBA entry point)
try {

obj = orb.resolve_initial_references
 (“BankFactoryID”)

} catch (org.omg.CORBA.SystemException exc) {
tdd_end_case();

}

// Narrow the CORBA object reference to its
// actual type
try {

bankFactory.value =
 BankFactoryHelper.narrow(obj);

} catch (org.omg.CORBA.SystemException exc) {
tdd_end_case(“exception caught when getting”

 +” initial reference”);
}

}

// Create bank
bank = bankFactory.value.createBank(maxAccts);

// Create accounts
for (int x=0; x < maxAccts; x++) {

try {
BankAccount ba =

 bank.openAccount(initDeposit);
} catch (BankException be) {

tdd_result(ADL_FAIL,
 ”exception caught on open”);

}
}

} relinquish (Bank b) {
if (numAcctsActive > 0) {

 b.close_all_accounts();
 }

}
}

5.7 ORBWrapper

In order to provide CORBA test suites with maximum portability, the ADL distributio
contains an abstract class called ORBWrapper which is the superclass for wrappe
third party vendor Java ORBs.

The concrete subclass of the ORB wrapper is selected using theadl.orbclass system
property which gives the fully qualified name of the real ORB wrapper.

Internally, the reflection API is used to instantiate the real ORB wrapper. Hence, it is
necessary to have all the real ORB wrapper compiled, only that referenced by the
adl.orbclass property shall be compiled and available at runtime.
Version 1.2 67 of 81

Testing CORBA Objects ADL 2.0 Language Reference Manual for IDL

 is

 ADL

 but a

trings

r props
B

B

The ORBWrapper class implements a subset of the CORBA ORB methods, which
portable and which maps well on the different Java ORB third party products. The
ORBWrapper class provide methods:

• to initialize the ORB (both for an applet and an application)

• method to get and make stringified object reference

• to connect and disconnect CORBA skeleton to the ORB.

This subset of ORB methods is both for client side and server side, but note that an
test suite may have to use only the client side methods, for example if the CORBA
server is on a distant machine on the network and implemented without using Java
different language.

5.7.1 ORB Wrapper Design

The abstract class ORBWrapper has the following methods:

public static ORBWrapper init(String args[],
 Properties props);

Create a new ORB instance for an application. Parameter args is the application s
from main() method. Parameter props contains application-specific properties. The
method returns a reference to the real ORB wrapper implementation.

public static ORBWrapper init(Applet app,
 Properties props);

Create a new ORB instance for an applet. Parameter app is the applet. Paramete
contains applet-specific properties. The method returns a reference to the real OR
wrapper implementation.

public abstract Object string_to_object(String str);

Convert a string to a CORBA object reference1.

public abstract String object_to_string(Object obj);

Convert a COBRA object reference to a string1.

public abstract void connect(Object skeleton);

Connect a CORBA object to the ORB. All objects created by the user become OR

objects only after connect is called. Parameter skeleton is the object to connect1.

public abstract void disconnect(Object skeleton);

1. Note that CORBA objects are passed or returned by the ORBWrapper as
java.lang.Object instead of org.omg.CORBA.Object, actual typecast to
org.omg.CORBA.Object is let to the wrapper.
68 of 81 Version 1.2

Testing CORBA Objects ADL 2.0 Language Reference Manual for IDL

t to

wrap-

 not,
etons.

,

t

ow
mple
y in

 (the
the
t suite.

d

Disconnect a CORBA object from the ORB. To stop an ORB object from receiving
remote invocations disconnect needs to be called. Parameter skeleton is the objec

disconnect1.

Concrete subclass of the ORBWrapper are in charge of actually implementing the
per’s methods.

The class diagram is as follows :

ORBWrapper <-- inherits -- SunORBWrapper
<-- inherits -- VbORBWrapper 1

...

Note: the wrapped Java ORB is required to supply portable classes for
org.omg.CORBA.Object (necessary for CORBA references narrowing) and all the
built-in types Holders (IntHolder... - necessary for out/inout parameters passing). If
the application could not easily make use of the generated CORBA stubs and skel
For such Java ORBs, direct use of the proprietary API is required in the tests.

5.7.2 Adl environment property to use for the ORB wrapper.

The ADL environment provides:

• a propertyadl.orbclass indicating the real ORB wrapper class to use for the tests

• a propertyadl.initialreferencefile indicating the file containing the stringified objec
reference of a CORBA initial object reference. The string_to_object can then be
used to get this initial object reference.

Note: how the file containing the stringified initial object reference is created and h
the ORB servant objects are registered is not part the test, ORB server can for exa
be implemented in another language and be located on a distant machine. Anywa
some cases the test scenario shall perform these tasks.

5.7.3 Using the wrapper

A scenario for using the ORB wrapper is described in this section, both client side
TDD test class) and server side (creation and connection of the CORBA server to
ORB) are showed here. In most cases only the client side should be part of the tes

5.7.3.1 Create CORBA objects in TDD factories

Normally, only a single CORBA object (CORBA initial reference) should be obtaine
from the ORB. This initial reference shall be a CORBA factory from which other
CORBA objects can be obtained.

An example of such a TDD file is:

1. Not implemented in this release.
Version 1.2 69 of 81

Testing CORBA Objects ADL 2.0 Language Reference Manual for IDL
import java.io.*;
import org.opengroup.adl.orbwrapper.ORBWrapper;

tddclass bankTest
{

// the initial object reference
BankFactoryHolder bankFactory =

 new BankFactoryHolder(null);

factory bank make_bank (int maxAccts,
int numAcctsActive,
int initDeposit)

{
if (bankFactory.value == null)
{

// create and initialize the ORB wrapper
ORBWrapper orb = ORBWrapper.init(args,null);

// Get the stringified initial object reference
String fileName =

System.getProperty
(“adl.initialreferencefile”);

BufferedReader br = new BufferedReader
 (new FileReader(fileName));

String ior = br.readLine();
br.close();

// Get the actual initial object reference
// here : a bankFactory
// note bankFactoryHelper is a helper class
// generated by the IDL to Java compiler
Object obj = orb.string_to_object(ior);
 bankFactory.value = bankFactoryHelper.narrow

 ((org.omg.CORBA.Object)obj);
}

// now use the factory to create banks as in non CORBA
//test suites
bank ret = bankFactory.value.makeBank(maxAccts);
...
return ret;

}

// these factory does not use the ORB to create objects, it
// just use a bank object that has been obtained from the
// top level factory

factory bankAccount make_account (bank aBank,
int initDeposit)

{
bankAccount ret = aBank.openAccount(initDeposit);
return ret;

}
}

70 of 81 Version 1.2

Testing CORBA Objects ADL 2.0 Language Reference Manual for IDL

bject
5.7.3.2 Create and connect a CORBA bank server

A bank server class shall also be supplied to create the bank factory and the initial o
reference file. Again the portable wrapper can be used.

import java.io.*;
import org.omg.CORBA.*;
import org.opengroup.adl.orbwrapper.ORBWrapper;

public class bankServer {

public static ORBWrapper _orb;

// Main method.
 public static void main(String[] args)

{
try
{

// create and initialize the ORB wrapper
orb = ORBWrapper.init(args, null);

// create servant and register it with ORB
bankFactoryImpl servant = new bankFactoryImpl();
orb.connect(servant);

// put a stringified reference to the servant in
// a file for further retrieving by a client
String iorFileName =

System.getProperty(“adl.initialreferencefile”);
PrintWriter pw = new PrintWriter

(new FileWriter(iorFileName));
pw.print(_orb.object_to_string(servant));
pw.close();

// wait for invocations from clients
java.lang.Object sync = new java.lang.Object();
synchronized (sync) {

sync.wait();
}

}
catch (Exception ex) {

ex.printStackTrace();
System.err.println
(“Bank Server: Exception-> “ + ex);

}
}

}

5.8 References

 [IDL/Java] “IDL/Java Language Mapping” OMG TC Document orbos/97-03-01
Version 1.2 71 of 81

Testing CORBA Objects ADL 2.0 Language Reference Manual for IDL
72 of 81 Version 1.2

Complete Grammar ADL 2.0 Language Reference Manual for IDL

e
ion.
an-

ol-
 an
:

xpres-
6 Complete Grammar

Here is the complete BNF grammar for ADL for Java. Non-terminals in boldface ar
defined in this document; other non-terminals are part of the Java language definit
Lexical entities, names in angle brackets like <THIS>, are references to the Java l
guage standard.

Although, for practical reasons, the grammars for ADL and TDD are mixed in the f
lowing grammar, they are in fact distinct. From a TDD annotation, all rules involving
ADL non-terminal will be forbidden (by a semantic check), except for the derivation
UnaryExpressionNotPlusMinus -> ADL_BasicExpression -> PrimaryExpression.

Much of this grammar reproduces the Java expression syntax, with the extensions
detailed in this document. The differences are intended as extensions; any Java e
sion not accepted by this grammar is a bug.

ADL_CompilationUnit ::= (ImportDeclaration)*
(TDD_UseDeclaration)*
(NLD_Annotation)*
ADL_ClassDeclaration | TDD_ClassDeclaration
| (NLD_Annotation)*
<EOF>

ImportDeclaration ::= “import” Name [“.” “*”] “;”

TDD_UseDeclaration ::= “use” <IDENTIFIER> “;”

ADL_ClassDeclaration ::= [“public”] “adlclass” Name [“extends” Name]
“{“ [ADL_Prologue] [ADL_Epilogue]
(ADL_InlineDeclaration | ADL_BehaviorDeclaration
 (NLD_Annotation)*)* “}”

ADL_InlineDeclaration ::= “inline” ResultType MethodDeclarator ADL_AssertionGroup

ADL_BehaviorDeclaration ::= (“static” | “public”)* [ResultType] Name FormalParameters
[“throws” NameList] [“{“] [ADL_Prologue] ADL_BehaviorSpecification
 [ADL_Epilogue] (NLD_Annotation)* (“;” | “}”)

ADL_Prologue ::= “prolog” Block

ADL_Epilogue ::= “epilog” Block

ADL_BehaviorSpecification ::= “semantics” [ADL_BehaviorClassification] ADL_AssertionGroup

ADL_BehaviorClassification ::= “[“ (ADL_NormalBehavior | ADL_AbNormalBehavior)+ “]”

ADL_NormalBehavior ::= “normal” “=” ADL_Expression “;”

ADL_AbNormalBehavior ::= “abnormal” “=” ADL_Expression “;”
Version 1.2 73 of 81

Complete Grammar ADL 2.0 Language Reference Manual for IDL
 ADL_AssertionGroup ::= “{“ (ADL_Binding)* [“super” “.” “semantics” “;”]
(ADL_Statement)* (NLD_Annotation)* “}”

ADL_Bindings ::= “define” FormalParameter “with” [<IDENTIFIER> “=”] ADL_Expression “;”

 ADL_Statement ::= ADL_IfStatement
| ADL_TryStatement
| ADL_Assertion

 ADL_IfStatement ::= “if” “(“ ADL_Expression “)” ADL_AssertionGroup
[“else” (ADL_AssertionGroup | ADL_IfStatement)]

 ADL_TryStatement ::= “try” ADL_AssertionGroup
(“catch” “(“ FormalParameter “)” ADL_AssertionGroup)+

 ADL_Quantifier ::= “forall” | “exists”

ADL_Assertion ::= [ADL_Label] [ADL_Tags]
(ADL_Expression | ADL_QuantifiedAssertion) “;”

ADL_Label ::= <IDENTIFIER> “:”

ADL_Tags ::= “[“ <IDENTIFIER> (“,” <IDENTIFIER>)* “]”

 ADL_QuantifiedAssertion ::= ADL_Quantifier “(“ ADL_DomainList “)” ADL_AssertionGroup

ADL_Expression ::= ADL_ImplExpression

ADL_ImplExpression ::= ConditionalExpression [ADL_ImplOp ConditionalExpression]

ADL_ImplOp ::= “==>” | “<==” | “<=>” | “<:>”

ConditionalExpression ::= ConditionalOrExpression
[“?” ConditionalExpression “:” ConditionalExpression]

ConditionalOrExpression ::= ConditionalAndExpression (“||” ConditionalAndExpression)*

ConditionalAndExpression ::= InclusiveOrExpression (“&&” InclusiveOrExpression)*

InclusiveOrExpression ::= ExclusiveOrExpression (“|” ExclusiveOrExpression)*

ExclusiveOrExpression ::= AndExpression (“^” AndExpression)*

AndExpression ::= EqualityExpression (“&” EqualityExpression)*

EqualityExpression ::= InstanceOfExpression ((“==” | “!=”) InstanceOfExpression)*

InstanceOfExpression ::= RelationalExpression [“instanceof” Type]

RelationalExpression ::= ShiftExpression ((“<“ | “>” | “<=” | “>=”) ShiftExpression)*

ShiftExpression ::= AdditiveExpression ((“<<“ | “>>” | “>>>”) AdditiveExpression)*
74 of 81 Version 1.2

Complete Grammar ADL 2.0 Language Reference Manual for IDL
AdditiveExpression ::= MultiplicativeExpression ((“+” | “-”) MultiplicativeExpression)*

MultiplicativeExpression ::= UnaryExpression ((“*” | “/” | “%”) UnaryExpression)*

UnaryExpression ::= (“+” | “-”) UnaryExpression
| PreIncrementExpression
| PreDecrementExpression
| UnaryExpressionNotPlusMinus

PreIncrementExpression ::=“++” PrimaryExpression

PreDecrementExpression ::=“--” PrimaryExpression

UnaryExpressionNotPlusMinus::= (“~” | “!”) UnaryExpression
| “@” ADL_CallStateExpression
| CastExpression
| ADL_BasicExpression

ADL_CallStateExpression ::= UnaryExpression

CastExpression ::= “(“ PrimitiveType (“[“ “]”)* “)” UnaryExpression
| “(“ Name (“[“ “]”)* “)” UnaryExpressionNotPlusMinus

ADL_BasicExpression ::= PostfixExpression
| “normal”
| “abnormal”
| “unchanged” Arguments
| “return”
| ADL_AssertionGroup
| ADL_ThrownExpression

PrimaryExpression ::= TDD_ADLExpression (PrimarySuffix)*
| TDD_ADLnewExpression (PrimarySuffix)*
| PrimaryPrefix (PrimarySuffix)*

TDD_ADLnewExpression ::= “ADL_new” Name

TDD_ADLExpression ::= “ADL” “(“ PrimaryExpression “)”

PrimaryPrefix ::= Literal
| Name
| “this”
| “super” “.” <IDENTIFIER>
| ParenthExpression
| AllocationExpression

ParenthExpression ::= “(“ ADL_Expression “)”

PrimarySuffix ::= BracketSuffix
Version 1.2 75 of 81

Complete Grammar ADL 2.0 Language Reference Manual for IDL
| DotSuffix
| Arguments

DotSuffix ::= “.” <IDENTIFIER>

BracketSuffix ::= “[“ ADL_Expression “]”

Literal ::= <INTEGER_LITERAL>
| <FLOATING_POINT_LITERAL>
| <CHARACTER_LITERAL>
| <STRING_LITERAL>
| BooleanLiteral
| NullLiteral

BooleanLiteral ::= “true” | “false”

NullLiteral ::= “null”

Arguments ::= “(“ [ArgumentList] “)”

ArgumentList ::= ADL_Expression (“,” ADL_Expression)*

AllocationExpression ::= “new” PrimitiveType ArrayDimensions
| “new” Name (Arguments | ArrayDimensions)

ArrayDimensions ::= (“[“ ADL_Expression “]”)+ (“[“ “]”)*

ADL_ThrownExpression ::= “thrown” “(“ NameList “)”

ADL_DomainList ::= ADL_Domain (“,” ADL_Domain)*

ADL_Domain ::= FormalParameter “:” ConditionalExpression

VariableDeclaratorId ::= <IDENTIFIER> (“[“ “]”)*

MethodDeclarator ::= <IDENTIFIER> FormalParameters (“[“ “]”)*

FormalParameters ::= “(“ [FormalParameter (“,” FormalParameter)*] “)”

FormalParameter ::= Type VariableDeclaratorId

Type ::= (PrimitiveType | Name) (“[“ “]”)*

PrimitiveType ::= “boolean”|“char”|“byte”|“short”|“int”|“long”|“float”|“double”

ResultType ::= “void”
| Type

Name ::= <IDENTIFIER> (“.” <IDENTIFIER>)*

NameList ::= Name (“,” Name)*
76 of 81 Version 1.2

Complete Grammar ADL 2.0 Language Reference Manual for IDL
TDD_ClassDeclaration ::= [“public”] “tddclass” <IDENTIFIER>
“{“ (TDD_ClassBodyDeclaration)* “}”

TDD_ClassBodyDeclaration ::= MethodDeclaration
| NLD_Annotation
| TDD_FieldDeclaration
| TDD_DatasetDeclaration
| TDD_FactoryDeclaration
| TDD_TestDirective

TDD_FieldDeclaration ::= Type VariableDeclaratorId “=” VariableInitializer
(“,” VariableDeclaratorId “=” VariableInitializer)* “;”

TDD_DatasetDeclaration ::= “dataset” TDD_SingleDeclarator “=” TDD_DatasetExpr “;”

TDD_FactoryDeclaration ::= “factory” MethodDeclaration
[“relinquish” “(“ [FormalParameter] “)” Block]

TDD_TestDirective ::= [<IDENTIFIER> “:”] “test” [“forall”]
“(“ [TDD_DatasetDomain (“,” TDD_DatasetDomain)*] “)”
(NLD_Annotation)* Statement

TDD_DatasetDomain ::= TDD_SingleDeclarator (“:” | “=”) TDD_DatasetExpr
| TDD_DatasetExpr

TDD_SingleDeclarator ::= ResultType VariableDeclaratorId

TDD_DatasetExpr ::= TDD_DatasetConcatExpr
 (“+” TDD_DatasetConcatExpr)*

TDD_DatasetConcatExpr ::= TDD_DatasetSingleton
| TDD_DatasetLiteral
| TDD_FactoryCall

TDD_DatasetSingleton ::= Literal | Name

TDD_DatasetLiteral ::= “{“ [TDD_DatasetMember (“,” TDD_DatasetMember)* [“,”]] “}”

TDD_DatasetMember ::= ConditionalExpression [“..” ConditionalExpression]

TDD_FactoryCall ::= Name “(“ [TDD_DatasetExpr (“,” TDD_DatasetExpr)*] “)”

ClassDeclaration ::= (“abstract” | “final” | “public”)* “class” <IDENTIFIER>
[“extends” Name] [“implements” NameList]
“{“ (ClassBodyDeclaration)* “}”
Version 1.2 77 of 81

Complete Grammar ADL 2.0 Language Reference Manual for IDL
ClassBodyDeclaration ::= StaticInitializer
| ConstructorDeclaration
| MethodDeclaration
| FieldDeclaration

InterfaceDeclaration ::= (“abstract” | “public”)* “interface” <IDENTIFIER> [“extends” NameList]
“{“ (InterfaceMemberDeclaration)* “}”

InterfaceMemberDeclaration ::= MethodDeclaration | FieldDeclaration

FieldDeclaration ::= (“public” | “protected” | “private” | “static” | “final” | “transient” | “volatile”)*
Type VariableDeclarator (“,” VariableDeclarator)* “;”

StaticInitializer ::= “static” Block

ConstructorDeclaration ::= [“public” | “protected” | “private”]
<IDENTIFIER> FormalParameters [“throws” NameList]
“{“ [ExplicitConstructorInvocation] (BlockStatement)* “}”

MethodDeclaration ::= (“public” | “protected” | “private” | “static” | “abstract” | “final” | “native” |
 “synchronized”)* ResultType MethodDeclarator [“throws” NameList]
(Block | “;”)

Statement ::= LabeledStatement
| StatementExpression “;”
| Block
| EmptyStatement
| SwitchStatement
| IfStatement
| WhileStatement
| DoStatement
| ForStatement
| BreakStatement
| ContinueStatement
| ReturnStatement
| ThrowStatement
| SynchronizedStatement
| TryStatement

VariableDeclarator ::= VariableDeclaratorId [“=” VariableInitializer]

Block ::= “{“ (BlockStatement)* “}”

ExplicitConstructorInvocation ::= “this” Arguments “;”
| “super” Arguments “;”

BlockStatement ::= LocalVariableDeclaration “;”
78 of 81 Version 1.2

Complete Grammar ADL 2.0 Language Reference Manual for IDL
| Statement

LabeledStatement ::= <IDENTIFIER> “:” Statement

EmptyStatement ::= “;”

StatementExpression ::= PreIncrementExpression
| PreDecrementExpression
| Assignment
| PostfixExpression

SwitchStatement ::= “switch” “(“ Expression “)” “{“ (SwitchLabel (BlockStatement)*)* “}”

SwitchLabel ::= “case” Expression “:”
| “default” “:”

IfStatement ::= “if” “(“ Expression “)” Statement [“else” Statement]

WhileStatement ::= “while” “(“ Expression “)” Statement

DoStatement ::= “do” Statement “while” “(“ Expression “)” “;”

ForStatement ::= “for” “(“ [ForInit] “;” [Expression] “;” [ForUpdate] “)” Statement

ForInit ::= LocalVariableDeclaration
| StatementExpressionList

BreakStatement ::= “break” [<IDENTIFIER>] “;”

ContinueStatement ::= “continue” [<IDENTIFIER>] “;”

ReturnStatement ::= “return” [Expression] “;”

ThrowStatement ::= “throw” Expression “;”

SynchronizedStatement ::= “synchronized” “(“ Expression “)” Block

TryStatement ::= “try” Block (“catch” “(“ FormalParameter “)” Block)* [“finally” Block]

Expression ::= Assignment
| ConditionalExpression

VariableInitializer ::= Expression

LocalVariableDeclaration ::= Type VariableDeclarator (“,” VariableDeclarator)*

Assignment ::= PrimaryExpression AssignmentOperator Expression

AssignmentOperator ::= “=”|“*=”|“/=”|“%=”|“+=”|“-=”|“<<=”|“>>=”|“>>>=”|“&=”|“^=”|“|=”

PostfixExpression ::= PrimaryExpression [“++” | “--”]
Version 1.2 79 of 81

Complete Grammar ADL 2.0 Language Reference Manual for IDL
StatementExpressionList ::= StatementExpression (“,” StatementExpression)*

ForUpdate ::= StatementExpressionList

NLD_Annotation ::= “nld” [NLD_Locale] “{“ (NLD_Declaration | NLD_EntityDeclaration)* “}”

NLD_Locale ::= <STRING_LITERAL>

NLD_Declaration ::= NLD_ScopedName
([NLD_Locale] NLD_TextAssignment
|

“:” [NLD_Locale] (NLD_Statement | “{“ NLD_Statement + “}”))

NLD_Statement ::= NLD_PropertyDeclaration | “%text” NLD_TextAssignment “;”

NLD_TextAssignment ::= [NLD_SelectPred] “=” NLD_String
[“,” “[“ NLD_UserPred (“,” NLD_UserPred)* “]”]

NLD_SelectPred ::= “[“ NLD_Predicate (“,” NLD_Predicate)* “]”

NLD_Predicate ::= NLD_PredefinedPred
| NLD_ParamNumber “[“ NLD_UserPred (“,” NLD_UserPred)* “]”

NLD_PredefinedPred ::= “@” | “!” | “locale” “(“ NLD_Locale “)”

NLD_UserPred ::= <IDENTIFIER>

NLD_ParamNumber ::= “$”<INTEGER_LITERAL>

NLD_ScopedName ::= “.”
| NLD_MethodName
| [NLD_Scope “.”] NLD_Identifier

NLD_MethodName ::= Name NLD_Signature

NLD_Signature ::= “(“ (“*” | Type (“,” Type)*) “)”

NLD_Scope ::= “*”
| “.”
| Name [“.*”]
| NLD_MethodName

NLD_EntityDeclaration ::= “&” <IDENTIFIER> “=” NLD_EntityText

NLD_PropertyDeclaration ::= NLD_PropertyName “=” NLD_EntityText

NLD_PropertyName ::= “%description” | “%includes” | “%purpose” | “%seeAlso”

NLD_EntityText ::= <STRING_LITERAL> (“+” <STRING_LITERAL>)*
80 of 81 Version 1.2

Complete Grammar ADL 2.0 Language Reference Manual for IDL
NLD_String ::= NLD_StringElem (“+” NLD_StringElem)*

NLD_StringElem ::= <STRING_LITERAL> | NLD_ParamNumber

end
Version 1.2 81 of 81

	ADL 2.0 for IDL Language Reference Manual, Version...
	1 Introduction
	2 Semantic Annotations
	2.1 Describing Semantics Of Interface Operations
	2.2 ADL Syntax
	2.2.1 Assertion Groups
	2.2.2 ADL Specific Expressions
	2.2.3 Quantified Assertions
	2.2.4 ADL If Statement

	2.3 Behavior Specification
	2.3.1 The Call State Operator
	2.3.2 Specification of a Constructor
	2.3.3 Specification Of An Inherited Method
	2.3.4 Bindings
	2.3.5 Try/Catch Specifications
	2.3.6 Thrown Expressions
	2.3.7 Behavior Classification
	2.3.8 The Exception Operator

	2.4 Inline Procedure Declarations
	2.5 Prologues and Epilogues

	3 Test Annotations
	3.1 Concepts
	3.1.1 Re-write
	3.1.2 Dataset
	3.1.3 Factory
	3.1.4 Checked function
	3.1.5 Test Directive
	3.1.6 Assertion
	3.1.7 Importation

	3.2 Annotated TDD/Java Syntax
	3.2.1 TDD declarations
	3.2.2 Dataset Expression Syntax

	3.3 General Syntax & Examples
	3.3.1 Simple Datasets and Data Construction
	3.3.2 Compound Datasets: Factories, Concatenation
	3.3.3 Void Datasets
	3.3.4 Dataset Elements Evaluation
	3.3.5 Dataset Constants
	3.3.6 Test Directives
	3.3.7 Advanced Examples

	4 NLD Annotations
	4.1 Concepts
	4.2 Syntax and Semantics
	4.2.1 Simple Data Member Translation
	4.2.2 Simple Function Member Translation
	4.2.3 Out Of Line Translations
	4.2.4 Translations For Overloaded Methods
	4.2.5 Priorities
	4.2.6 Using semantics And nld Blocks
	4.2.7 Shadowing or Overriding A Translation
	4.2.8 Overriding A Non-Local Translation
	4.2.9 Invocation Translation

	4.3 NLD Predicates
	4.3.1 Pre-defined Predicates
	4.3.2 User-defined Predicates

	4.4 NLD and SGML
	4.4.1 Reference Manual Document

	4.5 NLD for TDD
	4.6 NLD and Localization
	4.7 NLD Syntax

	5 Testing CORBA Objects
	5.1 Mapped built-in types
	5.2 Bindings for objects
	5.3 Inout parameters passing
	5.3.1 Isolated variables
	5.3.2 Member attribute of interface/structs/unions...

	5.4 Mapping for certain nested types.
	5.5 Interface inheritance
	5.6 Writing CORBA specific code in TDD/Java.
	5.7 ORBWrapper
	5.7.1 ORB Wrapper Design
	5.7.2 Adl environment property to use for the ORB ...
	5.7.3 Using the wrapper
	5.7.3.1 Create CORBA objects in TDD factories
	5.7.3.2 Create and connect a CORBA bank server

	5.8 References

	6 Complete Grammar

