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Change Log

Release 1.1

2. The Driver

2.2: Added mention that NLD files are compiled before any other files.

2.3: Updated command line options and environment variables, removed file suffixes.

2.4: Added section on exit status.

3. Abstract Syntax Tree Design

3.2.1.4: Added note indicating that delegation is not implemented.

3.2.1.5: Added note indicating that externalization is not implemented.

3.3.2: Indicated that SimpleNode extends ADLNode.

4. Input Language Parsers

4.3.2: Added check of ADL() and ADL_new constructions.

6. Documentation Generation Architecture

6.1.6: TBD resolved - the documentation generation process does not use any AST node
property.

6.2: Added section describing the general architecture of the documentation generator.

6.3: Added TBD section describing the NL Engine.

6.4: Added section describing the NL Prolog rules.

6.5: Added TBD section on document templates.

7. Runtime Architecture

7.7.2: Fixed some minor error in description and examples of use of tdd_assert.

7.8.1: Updated required version number for JavaCC.
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Release 1.0

2. The Driver

2.2: Added architectural design of the driver module.

2.3: Revised options syntax. Added .tdd suffix. Revised C++ file suffixes. Added the extension
filter related options. Added default command line when no option is specified. Added
configuration file example.

3. Abstract Syntax Tree Design

Removed all references to node additive state.

3.1.1: Added justification to the AST centric design.

3.1.2: Removed “Node state” section.

3.3.2.2: Updated list of basic operations.

4. Input Language Parsers

Added section 4.1.3 on “Extension Parser”.

4.3: TBD resolved - pre-processor directives that are considered are completely described in
new section 4.3.1 “C/C++ pre-processing”.

4.3.2: Revised list of generic semantic checks.

4.3.2.2: TBD resolved - list of C++ specific semantic checks.

4.3.3.2: Added reference to ANSI C++ standard for a description of the C++ type
compatibility algorithm.

4.3.3.3: Updated type synthesis description.

4.3.3.4: Updated type representation.

4.3.5: TBD resolved - description of the TypeCheck visitor added.

4.4.2: Updated package names.

4.4.3.6: TBD resolved - the credentials management is not implemented in this release.

5. Code Generation

5.2.1.1: Updated the ACO blocks section.
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5.2.1.2: Updated the transformation patterns.

5.2.2: TBD resolved - added description of TDD node transformations.

5.2.3: TBD resolved - NLD nodes will probably never be transformed.

5.3.1: Updated declarations of generic unparser fields and methods.

7. Runtime Architecture

7.5: Updated examples.

7.6.1.1: Added missing methods and fixed some others.

7.6.1.2: Added mention of availability of test reporting methods.

7.6.1.3: Added methods ADL_*_range.

7.6.3: Added ADL_setblock function.

7.7.2: Added footnote about availability of bool type. Removed tdd_fail, tdd_Abort,
tdd_adl_passed and tdd_get_result methods. Added tdd_skip and infoline.

7.7.4.3: TBD resolved - removed ADL_FORK mode which is not necessary.

7.8.1: Updated ADLT compilation environment.

7.8.3: Updated test build environment.

Release 1.0 Delta

1. Introduction

1.3: Fixed transformation from IDL.

2. The Driver

2.2: TBD resolved - implementationof the driver requires at least a C wrapper.

2.3: Updated list of options. TBD resolved by adding the list of environment variables.

4. Input Language Parsers

Added description of semantic checks and symbol table management.

4.3: TBD resolved: list of semantic checks added in sections 4.3.1, 4.3.2 and 4.3.3.

4.3.1.2: Added TBD for C++ specific checks.
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4.3.4: Added TBD for missing description of TypeCheck visitor.

4.4.3.6: Added TBD for improvement of the credential management.

5. Code Generation

5.2: Completely revised with description of ADL AST transformation. Added TBD for TDD
and NLD AST transformation.

5.3.2: Revised comments processing section with arguments for not preserving comments in
the generated code.

7. Runtime Architecture

Added section 7.8 describing how to work under the TET test harness and consequences for
the ADLT system.

7.5: Fixed some examples

7.6: Added description of Java, C++ and C runtime internals.

7.7: Fixed result code names.

7.7.2: Fixed some typos.

7.7.4.3 Removed useless variables. Added TBD for design of ADL_FORK support.

Release 1.0 Gamma

1. Introduction

1.2.2: Relaxed constraint on extensibility of the ADLT system.

1.5: Reverted to using SWI Prolog Interpreter.

2. The Driver

Major simplification of the design of this module.

3. Abstract Syntax Tree Design

Updated to JavaCC version 0.7 pre 5 (signature of some methods changed).

4. Input Language Parsers

4.2.1: TBD resolved by adding a reference to JavaCC on-line documentation.
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4.4: More detailed description of how to satisfy external references for the different bindings.
Added TBD for complete list of semantic checks. Added TBD for processing of inlines and
builtins in C and C++.

4.4.1: Added TBD for complete design of the symbol table.

4.4.2: Added TBD for use of the Type interface.

5. Code Generation

5.1: Added description of the Visitor pattern to be used for most operations on ASTs.

5.3: Complete revision of the design of the unparsing operation according to the Visitor
pattern and the new version of JavaCC tools.

6. Documentation Generation Architecture

6.7: Added TBD for property names and types.

7. Runtime Architecture

Incorporated changes to the runtime system description to reflect a more TET-oriented
direction for the tools.

Release 1.0 Beta

The document was completely rewritten for this release.

Release 1.0 Alpha

Initial release.
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Chapter 1 Introduction

1.1 This Document

This document describes the architecture of the ADLT translation system, version 
The architecture is described by a mixture of prose descriptions, diagrams (some 
the Unified Modeling Language of Booch, Jacobson, and Rumbaugh)1, code fragments,
and design patterns as described in Alexander2 and in Gamma, Helm, Johnson and Vlis
sides3.

The purpose of the document is to enable the reader, a skilled programmer with kn
edge of the Java programming language, to understand the ADLT system; to be a
read the code of the system, to find the relevant parts of the system when seeking
answer to a specific question, and perhaps even to program a new module to add
system.

This document is a work in progress; until the ADLT2 system is finished, the inform
tion in this document is subject to revision.

1. Booch, G.; Jacobson, I.; and Rumbaugh, J.: "The Unified Modeling Language for Object
ented Development," Documentation Set Version 0.91 Addendum UML Update, Septem
1996.

2. Christopher Alexander,A Pattern Language, Oxford University Press, 1979. ISBN 0-19-50
919-9.

3. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,Design Patterns: Elements
of Reusable Object-Oriented Software, Addison Wesley, 1994. ISBN 0-201-63361-2.
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1.2 Design Goals

The goal of the ADLT2 design is to build a code transformation engine out of separ
parts.

1.2.1 Tasks

The task performed by ADLT is to translate one kind of program text—specification
text of the various kinds of specifications—to another—source text for the targeted
cution environment, and SGML source for the documentation.

The ADLT system also includes the runtime libraries and document templates requ
to make use of the generated code.

ADLT exists in several versions, one for each target language. Each of those versi
independent; it isnot a requirement that specifications for the various target languag
should interoperate in any way.

1.2.2 Constraints

ADLT2 must be at least as powerful as ADLT1; the proof of this is a processor that
translates ADLT1 specifications to ADL/C ADLT2 specifications.

It must be possible to write a GUI for ADLT, although writing such a GUI is not part
the core deliverables.

1.2.3 Desiderata

Given the variety of specifications parsed, and the requirement that parties outside
development team be able to add modules, it is desirable to minimize the depende
between modules of ADLT. In particular, the use of JavaBeans™-like introspection
discover processing modules at runtime will be convenient.

Sharing modules between target languages, or code between modules if they mus
fer, is desirable.
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1.3 Overview

The core of ADLT2 is a language transformer. This transformer reads in programs
one programming language and writes programs in another, similar programming 
guage. The particular transformations performed by the ADLT2 core engine are:

• Annotated Java -> Java

• Annotated IDL/Java -> Java

• Annotated C++ -> C++

• Annotated C -> C

• Annotations -> natural language documentation

The annotations allowed are described in the ADL language reference manuals fo
various target languages. In short, they may be categorized as semantics annotati
which specify the behavior of methods and functions; test annotations, which spec
the test procedure for functions, methods, and collections thereof; and documenta
annotations, which affect the translation of other annotations into natural language
umentation.

In addition to the core translation engine, the ADLT2 system includes a runtime sy
for controlling and reporting test results, and GUI tools for controlling the translatio
process, for managing test libraries, and for running tests. Integration between the
of the translation engine is performed by a central control unit, and data is passed
between the parts in a uniform format; this format also has an external representat
that it can be exchanged with external programs.

This document will give some details of the architecture of the ADLT2 system softw
with emphasis on the core engine.

1.4 The Parts of ADLT

All of the transformations performed by the ADLT2 core engine may be described 
the general pattern: src1 -> src2, where src1 and src2 are programs in (probably d
ent) programming languages. This pattern of operation is implemented by the cod
tern: parser->xform->unparser, where parser turns source text into an abstract syn
tree (AST), xform is a transform from one AST to another, and unparser generates
source text from an AST.

The ASTs used in ADLT areannotated: the tree holds not only the strict syntax tree,
which is a reflection of the grammar of the formal language represented, but also i
annotated with contextual information like the type of variables, and with derived in
mation like the natural language description of the variables.

The transform pattern is implemented by three modules: a parser module that rea
source text and creates the AST, a transformer module that creates a new transfo
AST based on the input AST, and an unparser that writes the source text correspo
to the transformed AST.
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The action of these modules is coordinated by a driver module, which implements
internal model of the dependencies among the various files known to ADLT. That i
nal model is also used to generate parts of the test program, especially the make 
that control test program compilation.

1.4.1 Parsers

There are four parsers required for ADLT2; one for each of the target languages. E
parser accepts the full range of annotations for the languages: semantic annotation
annotations, and documentation annotations. The user may of course divide the a
tions into separate files if so desired.

1.4.2 Modules

The heart of the work done by ADLT is in the AST transformers; parsing and unpar
are well-understood problems. The overall transformations required may be classi
into transformers for three kinds of annotations on the basic source program:

• semantic annotations -> checking functions

• test annotations -> test drivers

• NL annotations -> SGML source

In fact these annotations are layered; the semantic annotations ornament the basi
tax of the target language; the test annotations ornament the semantics AST; the N
annotations ornament the test AST. The degree of interdependency is not constan
semantic and test annotations depend heavily on the target language AST, while t
dependency of the test tree on the semantic tree is minor; the NL tree depends on
the semantic and the test tree.

These relationships could be expressed using an interlaced hierarchy of classes. H
ever, this would lead to a inflexible degree of interdependency between the data s
tures; derived types would have to know all details of the base type. ADLT1 was bu
using a shadow mechanism that freed us somewhat from this constraint. ADLT2 w
built with a general AST representation mechanism, which will be used to represen
the different ASTs, as instances of the same data type. The advantage is that the 
transformers can ignore details which do not affect them.

1.4.3 AST Representation

The central representation problem in the construction of ADLT2 is the representa
of the ASTs. In general, AST transformers will need to match certain parts of the t
that they understand while leaving other parts untouched.

In addition, the ASTs for the several target languages will have a great deal of com
ality, for example in the expression syntax, while not being identical. In order to effi
ciently support all four target languages, it will be necessary to maximize code re-u
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With these design criteria in mind, we have determined to use a common data type
represent all the various ASTs. The distinction between the different kinds of AST 
not be reflected in a formal data type, but will be a difference in instantiation of a si
data type.

1.5 Technology

ADLT2 will be built in the Java programming language. Our experience has been t
Java programs are much faster to develop and much less error-prone than equiva
C++ programs, due to automatic memory management, to a consistent implement
and to a sounder language design.

We will make use of two programing tools developed by members of the SunTest te
a parser generator, used to implement the various parsers required, and an AST g
tion and management tool. These tools replace one of the external tools used in th
development of ADLT 1, which proved a source of portability and maintenance hea
aches.

ADLT2 will make use of the reflection features introduced into Java with the 1.1
release.

ADLT 2 will also make use of the SWI Prolog Interpreter.  This freeware tool has
proven to be very resilient and portable in recent years, and the natural language t
tion tools from ADL1 rely upon it.  We will extend these tools, but will not move the
away from their dependence upon this externally-developed tool.
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Chapter 2 The Driver

2.1 Introduction

This chapter describes the general functionality of the ADL Translator. The Translat
intended to take a variety of different inputs and transform them, generating a varie
outputs. Each of these inputs and outputs, as well as the transformation mechanis
involved, are driven by a single driver program. This chapter describes how the dri
program operates. No description of the transformation mechanisms involved is m
here. Other chapters deal with some of these elements in more detail.

2.2 General Architecture

The diagram in Figure 1 depicts the general architecture of the system. In particula
shows that although the ADLT system will be perceived by the user as a single tool
made of several compilers acting on specifications written in a specific language bin
flavor. These compilers implement the transformation mechanisms. Actually, the s
tool perceived by the user is the driver. This module allows the selection and opera
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of the appropriate compiler based on user’s directions and the type of inputs. It im
ments the control of the ADLT system as described below.

Since the Driver module needs to access some environment variables it cannot be
ten in Java1. Or at least it has to be wrapped over by another program. For greater p
bility and simplicity this wrapper program is developed in C.

The general architecture of the Driver module is depicted below.

The C wrapper programadlt :

•  reads in environment variables whose name matches “ADL_<name>” and converts
them as Java properties “adl.<lowercase name> ”;

• extends the class path with the standard directories for ADLT;

• builds a Java command to invoke the main method of theAdlt  class and executes it
with system() .

TheAdlt  class:

• loads configuration files: system wide and local or user defined;

• parses command line options;

1. Starting from version 1.1 Java has deprecated the getenv() method which was used to a
environment variables. Java developers are rather encouraged to use properties.

C runtime

D
r
i
v
e
r

ADL/Java Compiler

ADL/C++ Compiler

ADL/C Compiler

ADL/IDL Compiler

ADLT

C++ runtime

Java runtime IDL

ADL

TDD

NLD

ACO/ACF

Test drivers

Documentation

FIGURE 1. General Architecture of the ADL Translator System
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• asksADLCompiler  to create a compiler based on the selected binding languag

• invokes the compile method of the compiler on each input file.

NLD files are compiled before any other file, and only when the documentation ge
tion has been requested (see below).

It also provides other modules with a set of static methods to determine if verbose 
has been selected, and what kind of output has been requested by the user.

TheADLCompiler  class implements an abstract factory which creates a compiler
according to the selected binding language (methodnewCompiler ). It also provides
the language dependent compilers with a method namedgetStream  which returns the
input stream for a given file, possibly pre-processing the file through an extension 

The language dependent compilers (JCompiler , CPPCompiler  andCCompiler
classes):

• create all the required modules: parser, translators, unparser;

• compile the input file (methodcompile ).

2.3 Control

The operation of ADLT is controlled in general by the command line, which is used
specify user’s directions as well as inputs and outputs. More detailed control is ava
by the use of environment variables, which can be used to set the search path use
looking for a required input, to select the user’s locale for generated documentation
to set error and warning options.

The general format for the command line is given below.

adlt [-v] [lang_opt] [doc_opt] [output_opts] [env_opts] \
<input> ...

ADLCompileradlt Adlt

JCompiler CPPCompiler CCompiler

(abstract)compiler

FIGURE 2. General architecture of the Driver module

C program

invokes
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The order of the various options is not important.

The-v  option allows to operate the ADLT in verbose mode.

The lang_opt  indicates which specific compiler to use. Possible values are-c , -
cpp , -java (default) and-idl .

Thedoc_opt  option is used to turn on the generation of the documentation (which
off by default). The generated documentation uses the SGML format based on the
DocBook DTD version 3.0 from the Davenport Group (http://www.ora.com/davenpo
Other formats can be derived from the SGML format by applying DocBook filters (
“Documentation Generation Architecture” on page 97.). The only possible value for
option is-doc .

Theoutput_opts  indicate which kind of output to generate. Specifically, the suffi
for each type of input is also used as the switch to request output of that type. In fa
suffix for an input determines the potential outputs that the ADLT can generate. Th
table below summarizes this first level of control.

When nooutput_opts  is specified, all possible outputs corresponding to the give
inputs are generated. On the contrary, theoutput_opts  can be used to specifically
request one or more of the possible outputs corresponding to the given inputs. Thi
illustrated by the third column in the table above.output_opt s can also take another
value:-nocode  which specifically requests the compiler to generate no code. This
useful when only the documentation has to be generated.

The-dev  option is provided for the sake of test suite developers. It requests that t
ALDT generates makefile dependency rules between a generated output and its c
sponding input, like, e.g., dependency between an ACO and the ADL source file.

The-noinc  option indicates that the generated scenario file will not be included in
test suite scenario file.

Files with suffix.nld  can be passed as input to provide natural language definitions
the symbols described and used in the test specifications.

Finally, theenv_opts  may be used to override some settings defined in environme
variables. These include the general ADLT configuration file,-config <config
file> , the search path used to find included inputs,-incpath <path>  option, the

Input Suffix Output Type Output Option

.adl .  ACO/ACF -aco | -acf

.tdd .  Test case classes

.  Test data classes

.  Makefile

.  TET scenario

-tc

-td

[ -dev ] -mk

[ -noinc ] -scen
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preferred locale for the user,-locale <locale>  option. These options override the
settings of their equivalent environment variables whose names are made of the o
names capitalized with an “ADL_” prefix prepended, e.g.,ADL_INCPATH.

Other environment variables may not be overridden:ADL2HOME which is mandatory
and references the directory where the ADLT has been installed,ADL_C_FILTER
and ADL_CPP_FILTER which are useful for the C and C++ language flavors to
define the pre-processor command,ADL_EXTENSION_FILTER which defines the
command to use as an extension filter to pre-parse the input files (like MRI’s exten
TDD parser), and ADL_PROLOG which defines the Prolog interpreter to use if the 
wants to supply its own instead of the one in$ADL2HOME/bin .

Two other environment variables defined for TET may be required for ADLT operat
TET_ROOT andTET_SUITE_ROOT. TET_ROOT references the directory where TET
has been installed.TET_SUITE_ROOT defines the top level directory of the test suite
to build if it is not belowTET_ROOT.

The following examples are legal ADLT invocations:

adlt -c spec.adl
adlt -doc -nocode spec.adlj

The first one requests all possible output (the default) from the input “spec.adl” wri
using the C flavor. The second requests just the output of type documentation, in S
format, for a java flavor of a specification file.

When no option is passed on the command line and no specific file suffix is used, 
default values assumed are equivalent to the following command:

adlt -java -aco -tc -td -mk -scen -config adlt.rc
<input> ...

where the fileadlt.rc  contains the default values for the other variables, just like t
system wide configuration file$ADL2HOME/Adlt.rc  which is systematically loaded
before any other configuration settings and which contains definitions like:

adl.incpath=.:..
adl.c_filter=gcc -E -xc -
adl.cpp_filter=gcc -E -xc++ -
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exit
2.4 Exit Status

The ADLT compiler indicates the result of its operation to the environment with an 
status. The following values are used to indicate the result of the compilation:

Value Status

0 No compilation error

1 Documentation generation error

2 Compilation or code generation error

10 No ADL2HOME

11 Incorrect command line

12 Unknown or unreadable file

100 Internal compiler error (program error)
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Chapter 3 Abstract Syntax Tree
Design

3.1 Introduction

This section describes the abstract syntax tree (AST) mechanisms of ADLT2.

The AST is a central data structure in ADLT2.  It is constructed from a set of nodes
linked together in interesting ways.  The content of the nodes is represented as pr
ties.

The implementation of the AST relies upon certain Java 1.1 features, specifically c
reflection for accessing certain properties, and serializability for persistent storage
externalization.

3.1.1 Tree construction

The inputs to ADLT2 are specifications of the interface under test. The specificatio
are written in a combination of ADL, TDD, NLD and target language expressions. 
parser takes the specification and constructs an initial tree representing the input.

To begin with only the structure of the input is represented in the AST.  Trees for o
representations and properties derived from the interactions of the trees are added
ADLT2 processing continues.

The AST is a collection of data that is shared between various clients.  For exampl
code generation is an AST client that attach properties to the AST nodes and build
nodes to represent information computed from them.

The AST is designed as data rather than a set of procedures because there are se
different kinds of operations that must be performed on it.  It is better to keep those
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actions in external objects rather than in methods on the AST objects so that the A
implementation can remain stable as the actions are developed. This scheme is
described by Gamma & Al. in their book Design Patterns as the Visitor Pattern.

3.1.2 Nodes

Nodes are linked together to represent the relationships between them. The inform
in a node, and the links it has to other nodes are represented as node properties.

Nodes represent syntactic entities in the input and output languages. For example
are AST nodes to represent input language features such as assertions, test direc
and declarations; and there are nodes for output features such as loops, declaratio
block statements.

One important kind of link between nodes is the parent-child relationship.  Every n
except the root node has a parent node accessible viajjtGetParent() method.
Every node has an array of child nodes accessible viajjtGetChild()  method.  The
children in this array are part of the fundamental syntax structure of the node and 
added as part of the JJTree tree generation process (see below).  The chidren arr
null  for leaf nodes.

3.1.3 Properties

Each node in the AST contains a set of properties.  A property is a per-node mapp
from one JavaObject  (the key) to anotherObject  (the value).  It is a general mecha
nism that can be used to represent a link between arbitrary objects.  The key is oft
string interpreted as the name of the property.

Some properties are provided by all nodes while other properties that a particular 
provides are determined by the type of the node and by the data it is representing
example, all nodes have a “parent’ property, but not all nodes have a “type” proper
Each piece of interesting information about a node is available as one of its proper
Some information can also be accessed via native Java mechanisms where conven
where performance is critical.

There are three basic kinds of property distinguished by their implementation sche
general table properties are stored in an association table, field properties are an i
face to the node object’s fields; and lazy properties are an interface to some of the
object’s methods.  A table entry for a property is always preferred over a method or
representation.  It is an error to have both a method and a field representation for 
same property.

Lazy properties provide a mechanism for parts of the AST to be produced in a dem
driven, lazily evaluated fashion.  Such getter methods should be functions, and ret
the same property value every time they are called.

Some properties are indexable.  They are a collection of values that can be acces
an integer index.  An indexable property can also be accessed as a single value, in
case it is represented as an array.
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3.2 Requirements

This section describes the requirements that the AST design must meet. It is orga
as a set of fundamental AST operations and overall features.

Despite its name, the AST is really a directed graph and not a tree. There are links
between nodes in both forward and backward directions (for example, the parent-c
link pair).  However, for reasons of tradition we’ll persist in referring to it as a tree.

The graph is a forest of trees that partially share subtrees. Subtrees are shared be
we have several versions of and uses for a subtree, and these versions have more
monalities than differences. In particular, properties of nodes are shared between 
of different structure.

As a design pattern, we treat ASTs as monotonic.  This is so several trees can sha
structure without danger.  Most properties are additive and consequently they are a
to a node but should not be subtracted nor modified (unless we can prove that no 
will be able to tell that we have changed them).  Trees are altered by copying and 
modifying nodes that must have their properties changed rather than altering the n
in place.

3.2.1 Basic operations

There is a small number of fundamental operations that the AST must support.  M
complex tree manipulations can be built out of these basic actions.

3.2.1.1 Node construction
Some nodes are created as the source parser reads the specification and builds th
AST, and other nodes are created during the transformation phases of ADLT proce

3.2.1.2 Node copying
Copying a node N from an existent node C means that all properties of C that are 
already properties of N have their current values added as properties of N.  This m
that lazy properties have their values frozen in the new node.  This should be safe
because lazy properties are supposed to be implemented by function methods.

3.2.1.3 Adding and retrieving properties
Any Java object can be added as the value of a property of a node. Any Java obje
be used as the key for a property.  A common case of this is objects looked up by a
represented by a JavaString  object.

Lazy properties have their values evaluated on demand when they are required.  An
client can test for the existence of a property and retrieve the value of a property.  
of all the currently defined properties of a node can also be obtained.  The list is re
sented by anEnumeration .

3.2.1.4 Delegation
A node N can delegate to another node D for getting property values. This means 
N does not have a local value for a requested property it will attempt to get the val
from D.  D itself can delegate to another node for the property.  Delegation is only 
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formed for getting the value of a property.  An attempt to set the value of a delegat
property is equivalent to setting a local table property.  The new property value is s
N, and does not change the value of the property in D or its own delegates.  This l
property will now hide the delegated property.

A node delegates to another node by setting itsDelegate  property to the desired dele
gated node.

Delegation is not currently required. It is therefore not implemented.

3.2.1.5 Externalize
Several external representations of the AST are required.  The most complete is p
vided by the Java 1.1 serialization interface which allows a reader to reconstruct th
entire tree.  Less complete external formats include reporting information for the ru
ime, debugging output, and skeleton localization tables.

Nodes implement the Java 1.1Serializable  interface.  There are notransient
fields, and noreadObject  or writeObject  methods; the default system imple-
mentations are appropriate.  Later evolution of the node design might require thes
methods to be customized, or for theExternalizable  interface to be implemented.

The Java 1.1 serialization provides a mechanism for persistent storage of the AST
well.

Externilization is not currently required. It is therefore not implemented.

3.3 Implementation

3.3.1 JavaCC and JJTree

The parsers for the input languages are built using the tools JavaCC and JJTree.  J
is a parser generator that produces a top down recursive descent parser from a gra
JJTree is a companion tool that takes a JavaCC grammar annotated with node inf
tion and produces another grammar decorated with actions to build a parse tree fro
nodes.

JJTree node objects must implement a simple interface that allows child nodes to 
attached to parent nodes.  The actions that JJTree inserts into the grammar use th
face to create nodes and to link them together to form the initial parse tree.

3.3.2 Nodes

In addition to the requirements that JJTree places on nodes, they must implement
functionality described in the Requirements section above.

Each node is represented as a Java class object, of a type that inherits from theSim-
pleNode  type, which itself inherits from theADLNode type.  Distinct node types are
used as a means to providing methods to implement lazy properties and field prop
and for type-specific operations such as externalization and unparsing.
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Here is a description of the methods onSimpleNode  objects:

3.3.2.1 JJTree methods

The following methods must be implemented by nodes designed to work with JJTr
Reasonable default implementations are provided in theSimpleNode  supertype.
Often the only methods that need to be customized for a particular AST node clas
jjtClose () andjjtCreate ().

The JJTree methods are intended to be called only by JJTree actions. The main e
tion to this isjjtGetChild () which is often called within the implementation of
jjtClose () so that the child node can be added as a more appropriately named p
erty.

static Node jjtCreate(int id)

The actions inserted in the grammar by JJTree call this factory method to create a
node.  Its argument is an identifier that was specified in the grammar to indicate w
kind of node is required. The method can use this identifier to determine the Java 
for the node.  Static methods are not inherited in Java, so every AST node type mu
provide its own implementation of this method.  Often this can be as simple as a me
that only callssuper(id).

void jjtOpen()

This method is called by JJTree actions to indicate that children can now be added
node.  It provides a mechanism to support nodes that need to make special prepa
before their children can be added.

void jjtClose()

This method is called once all of the node’s children have been added by JJTree.  I
opportunity for the node to store the children in a more convenient way than the de
scheme, and to compute information derived from the children.

void jjtSetParent(Node p)

Node jjtGetParent()

These two methods are used to notify the node of its parent, and provide a program
way to find out a node’s parent.  The node’s parent is also available via theParent
property.

void jjtAddChild(Node c, int i)

The actions inserted by JJTree call this method to add children to a node. It will be
called once for each child, after thejjtOpen () and before thejjtClose () methods
have been called.  It is the node’s responsibility to store the child for later access.

Node jjtGetChild(int i)
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This method is a programmatic interface for accessing the children of a node.  The
dren are indexed from left to right, starting from zero.

int jjtGetNumChildren()

This method returns the number of children that JJTree has added to the node.

3.3.2.2 Basic operations

SimpleNode(int i)

Each node type must implement a constructor with a single integer argument to cr
an empty node.  The new node’s association table will be empty, and its field prope
will be set to their initial values.  The node’sjjtCreate () method will call this con-
structor to build the node, passing the node id as argument.

void copyFrom(ADLNode source)

This method can be used to make a copy of the source node’s properties.  If a pro
exists in the source node but does not exist in the current node it is copied.  A new
erty is created and added to the current node’s association table with the current va
the source node’s property as its value.

Object getProperty(Object key) throws
PropertyAccessException

Get the value of the specified property.  If necessary, follow the delegation chain to
retrieve the value.  It is an error to attempt to get the value of a nonexistent proper

void setProperty(Object key, Object value) throws
PropertyAccessException

Set the specified property to the specified value.  If the property does not exist it is
ated and added to the current node’s association table, otherwise the property is u
to the new value.

An exception to this is if a lazy property has a setter method, in which case it can b
more than once.

Object getProperty(Object key, int i) throws
PropertyAccessException, ArrayIndexOutOfBoundsException

void setProperty(Object key, int i, Object value) throws
PropertyAccessException, ArrayIndexOutOfBoundsException

Get or set the value of the indexed property.  It is an error if the property is nonexis
or cannot be indexed.

boolean hasProperty(Object key)

Test to determine whether the property already exists on this node, following the de
tion chain if necessary.
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void removeProperty(Object key) throws
NoSuchPropertyException

Remove the specified property from the node. Any kind of property can be remove
regardless of whether it is represented as a table entry, a node field or method, or 
gated property.  Be careful.

Enumeration getKeys()

Return an enumeration that produces the keys of all the properties of the node.

void dump(OutputStream o, int level)

Produce a textual representation of the nodes and properties of the AST.  The leve
ment controls the amount of detail in the output. A level ofInteger.MAX_VALUE
produces everything.

3.3.2.3 Properties
Node properties are implemented as a combination of an association table, class m
calls and field accesses.  The association table is always the first place that a prop
looked for.  If it is not found there the Java core API reflection mechanism is used 
determine whether there are accessor methods for the property. Finally, reflection 
used to determine whether the node has a field that can be used to access the pro
value.

The Java Beans introspection API method naming conventions are used for prope
getter and setter methods.  The Java Beans naming convention is as follows.  Sup
node has a property with nameMyProp  and whose value is of typeMyPropType .  A
getter method on the node can be defined to retrieve the value of this property like

MyPropType getMyProp() {...}

Similarly a setter can be defined like this:

void setMyProp(MyPropType p) {...}

Alternatively the value of the property can be directly accessed via a field on the n

MyPropType myProp;

Java Beans indexable properties are also supported.  The naming conventions for
able getter and setter properties are:

MyPropType getMyProp(int index) {...}

void setMyProp(int index, MyPropType p) {...}

Private methods and fields are not considered as implementations for properties.
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Chapter 4 Input Language Parsers

4.1 Parsing

The first task of ADLT is to parse the input specification files. The parsers used in
ADLT are generated automatically from the grammars for the input languages; the
erated parsers construct the basic structure of the required Abstract Syntax Trees

After construction, the ASTs are checked for semantic consistency; during this pro
ing, references are resolved. After this semantic check, the AST and the parse are
plete.

4.1.1 Parser Generation

The parsers are built using the Java™ Compiler Compiler™ parser generator, deve
by a member of the ADL team at Sunlabs. JavaCC is a recursive-descent parser g
tor, similar in spirit to the PCCTS system that was used for ADLT1; however, JavaC
written in Java and generates a Java program.

One characteristic of recursive-descent parsers is that, in contrast to the tables of 
LALR parsers, the parser code is fairly close to the parser source, and fairly easy 
read. A consequence is that maintenance of the generated code is easier; it’s eas
trace the generated source code back to the input grammar, and easier to read and
the generated code.

4.1.2 AST Construction

The Abstract Syntax Trees required by ADLT are constructed using the tree-buildin
facilities of JavaCC. These facilities are implemented as a separate grammar pre-p
sor calledjjtree . By default,jjtree  constructs an AST that contains all the non-
terminals in the grammar. The input grammar can be annotated to leave out some
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terminals, to specify the class used to represent each node in the AST, and to add
terminal information; all those annotations are used in ADLT AST construction.

For details of thejjtree  annotations, refer to the JavaCC documentation set (http:
www.suntest.com/JavaCC/DOC/).

4.1.3 Extension Parser

One objective of the ADL translation system is to allow the other partners in the pro
to develop some extensions to the ADL and TDD languages. Instead of plugging e
sion parsers/translators into the ADLT compiler, it has been decided to provide ext
sion developers with a mean to pre-process files using the extended syntax before
are fed to the ADLT compiler. Although this solution can only be applied if the
extended syntax can be converted to the regular one, it has been found sufficient f
ADL project goals.

The implementation of this solution is based on a system property
adl.extension_filter  (See “The Driver” on page 25.) which defines the com-
mand to use to pre-process the input file. This command should generate on its sta
output a stream of regular ADL or TDD definitions. The output of the extension filte
passed to the parser to be used as its input stream.

This is implemented by theDataInputStream getStream(String file-
Name) method of the language independent compiler (ADLCompiler  class). It cre-
ates the filter process and get its output stream. If the adl.extension_filter property 
defined, it just returns aDataInputStream  built from theFileInputStream  of
the file. It the extension filter command fails an error is reported and the compiler a
its execution.

4.2 Grammars

There are four versions of ADLT, one for each target language. The specification la
guage for each target programming language is described by one grammar; those
fication languages are defined in these separate documents:

• ADL 2.0 for C Language Reference Manual

• ADL 2.0 for C++ Language Reference Manual

• ADL 2.0 for Java Language Reference Manual

• ADL 2.0 for IDL Language Reference Manual

These documents contain the text of the grammars, as well as explanations of the
fication constructs.
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4.3 Semantic Checking

The semantic check of an AST is largely symbol table work; linking variable referen
to variable definitions, associating types with variables and checking that expressi
have consistent types, satisfying external references.

The semantic check also needs to verify that the parsed AST is correct according 
ADL semantics, like, e.g., verifying that call state operator and unchanged aren’t ne

For the C and C++ bindings, satisfying external references may require a recursive
ing process, to parse the imported files. The idea is however to rather use the C p
cessor to include all the referenced files and provide the input to the parser. This s
allow the compiler to search for external references in its symbol table. The pre-pro
ing implementation is detailed in Section 4.3.1 below.

For the Java binding, resolving external references require that the compiler is abl
get information about a referenced class from its Java bytecode. Using the Java 1
reflection API to do so would be rather risky since there may be confusion betwee
classes used by the ADL compiler and those referenced by the parsed files. Instea
will be implemented by reading the constant pool in the Java bytecode for the clas

The results of semantic checking are recorded as properties in the AST.

Section 4.3.3 will present what is to be done withtypes (type synthesis, type check-
ing...), Section 4.3.4 withnames (scope rules, symbol tables management...), and
Section 4.3.2 with miscellaneous syntactic checks.

4.3.1 C/C++ pre-processing

The solution retained to import C/C++ external declarations into the parsed ADL / T
file is based on the C/C++ pre-processor and its#include  directive. The system prop-
ertyadl.filter  defines the pre-processing command. The C/C++ dependent co
pilers read this system property and create a process to pre-process the source fil
output stream of the process is the parser input stream.

The parser uses the standard#<line>  directives of the C pre-processor to update its
current file name and line number used for compiler error messages.

The parser finally operates in 2 different modes:

• Include Mode: When parsing included C++ files. In this case, parser acts in dec
tive mode. Its major action is to extend the symbol table with externally defined
symbols, hence no semantic checking is performed in this mode. When the incl
file is completely parsed, all AST nodes created within the Include Mode are cle
and replaced by an IncludeFileDeclaration node in which is saved the included
name. This allows to generate an AST corresponding to the input file before the
processing.

• ADL / TDD mode: This the normal mode in which all semantic and type checks
done. All necessary nodes are created and passed to the translator.
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Below is an example of the pre-processor output where comments have been add
illustrate how the parser switches between its 2 different operating modes.

# 1 “bank.adl”
// First pre-processor output line
// Used to set currentAdlFile lexer variable

# 1 “bank.hh” 1
// Corresponds to “#include <bank.hh>” in bank.adl
// Lexer send a SHARP_INCLUDE_FILE token to the parser
// Token image is the included file name “bank.hh”
// Parser enters IncludeMode

# 1 “bankAccount.hh” 1
// Corresponds to “#include <bankAccount.hh>” in
// bank.hh
// Nested included file => no token send to parser
// Current file name and line number are updated

//.. bankAccount.hh code

class bankAccount {
//...
}

# 25 “bank.hh” 1
// bankAccount.hh completely included
// back to bank.hh

// ... bank.hh specific code here

# 24 “bank.adl” 2
// bank.hh completely included.
// back to bank.adl file.
// END_INC token is sent to parser
// Parser exits IncludeMode

//... bank.adl code

All pre-processor output directives other than the#<line>  ones are ignored. This is
implemented in the C/C++ lexer which skips those directives, and thus, never send
them to the parser. Ignored directives are generally#pragma , #inline  and#buil-
tin . However, the last two directives seem to have now disappeared from the outp
most pre-processors.

4.3.2 Semantic Checking

In this section are listed the semantic checks that are common to all the language
ings (except checks related to object oriented paradigm that are not present in the
binding). In forthcoming sub-sections are listed the checks specific to each binding
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Preliminary definition: an assertion group isnested if it appears in anexpression (either
in an assertion, a binding definition or a normal/abnormal specification). An asserti
nested if it appears in a nested assertion group.

All kinds of checks that deal with names or types will be detailed in next sections.

• In ADL, the inherited adl classsource file (specified after keywordextends ) must
be accessible from the incpath (See “Control” on page 27.) and readable.

• An adl class and all its behavior declarations are implicitly considered aspublic
(this modifier can be explicitly added but is redundant; any other access modifie
not correct).

• In the behavior description of aconstructor, it is not possible to use call-state or
unchanged  expressions, nor thereturn  expression. Thethis  expression refers
to the object built by the tested constructor.

• Thesuper.semantics  clause may appear only in the outermost assertion gro
(after the keywordsemantics  or the potential normal/abnormal definitions).

• abnormal (resp.normal ) must be defined at most once.

• abnormal , normal  andreturn  cannot be used in the scope of a call-state
expression or in a binding definition.

• normal  (resp.abnormal ) cannot be used in the definition ofnormal  (resp.
abnormal ).

• A call-state expression or anunchanged  expression cannot be used within an
unchanged  expression.

• A call-state expression or anunchanged  expression cannot be used within a pro
logue or an epilogue.

• A nested assertion group cannot be used within a prologue or an epilogue.

• An unchanged  expression cannot be used within a call-state expression.

• A free variable of a quantified assertion cannot be used in the scope of a call-s
expression.

• A quantified assertion cannot be used inside a nested assertion group.

• The clausesuper.semantics  cannot be used when the adl class does not inh
from an other adl class (extends  clause).

• The behavior description where a super.semantics  clause is used must be
describing a method that overrides a method that was described in an adl class
current adl class is extending (directly or not).
Note: this check will not be implemented in the first release.

• The name, signature, return type and throws clause of the currently described
method must beexactly the same as onepublic method of the class under test.

• An expression that invokes an inline must be parsable when replacing the inline
invocation by the body of the inline definition.

• A binding cannot be defined inside an inline definition.

• A binding cannot be defined inside a nested assertion group.
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• A tdd class and all its datasets and factories are implicitly considered aspublic
(this modifier can be explicitly added but is redundant; any other access modifie
not correct).

• A tested method or constructor (invoked throughADL()  orADL_new) is effectively
defined in an accessible adl class.

Warnings

• If  abnormal  or normal  are used without being initialized, they will be given a
default value (see the different language reference manuals).

• A call-state operator used in the scope of a call-state expression or of an
unchanged  expression will be ignored.

• Each method invoked in the scope of a call-state expression should be in atry
block such that any exception of the throws clause of this method would be caug
acatch  block (thetry/catch  blocks being inside the call-state expression).

• When a global prologue and/or epilogue is defined and a constructor is describ
the global prologue/epilogue block will not be copied in the generated code for 
constructor.

4.3.2.1 Java Specific Semantic Checking

• Any constant declared in a tdd class is implicitly considered asprivate,
static andfinal  (these modifiers can be explicitly added but are redundant
any other modifier is not correct). Their initialization value must be computable 
compile-time.

• In ADL, the class under test (specified after keywordsadlclass ) must be a public,
accessible (from the runtime classpath) and readable Java class.

• In TDD, each tdd classsource file specified in ause  clause must be accessible
(from the incpath) and readable.

• In ADL, any exception named in athrown  expression must be either part of the
throws  clause of the currently described method, or aRuntimeException , or a
superclass of one of these exceptions. Its class must be accessible.

4.3.2.2 C++ Specific Semantic Checking

• Any constant declared in a tdd class is implicitly constantconst . All these vari-
ables must be initialized with values computable at compilation time.

• All used symbols must be visible: external declarations must be imported with
#include  directives. Included files are searched in all directories specified in t
incpath property (See “Control” on page 27.).

• The method under test must be a public method of the C++ class. It can also b
constructor.

• Nested classes can not be annotated in C++. Scope override can not be used w
specifying adl class name or in specifying adl super class names in call for sup
class semantics.

• Multiple inheritance is supported. Calling the super class annotation is done us
the syntax :<SuperClassName>.semantics . The super class name should
already have been defined as a super class of tested adl class.
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4.3.3 Type Checking

Type checking consists in ensuring that everywhere an expression of a type T is aw
from the language specification, the actual expression written by the user has a ty
that iscompatible with T (type compatibility will be presented in Section 4.3.3.2). Typ
cally, if “ int i; ” was declared, then in assignment “i=<expr>; ” this expression’s
type must be compatible withint , namelybyte , short , char  or int .

In other words: a type T is compatible with type T’ if an expression of type T can b
assigned to a variable of type T’, i.e. T’ isassignable from T.

4.3.3.1 Contexts

Type checking is necessary in these contexts:

• Assignment: the rhs expression type must be compatible with the declared type
the lhs variable.

• Method/inline/factory invocation: each actual parameter type must be compatib
with its corresponding formal parameter type.

• Test directives: for each dataset that is associated to a parameter, the type of th
dataset’s elements must be compatible with the declared type of the parameter

• Method/factory return type: the type of the returned expression must be compa
with the declared return-type.

• Inline definition: the type of the assertion group of an inline definition must be c
patible with the declared return-type of this inline.

• Binding definition: the type of the binding expression must be compatible with t
declared type of the binding

• Dataset declaration: the type of the rhs (right-hand side) dataset expression mu
compatible with the type of the declared lhs variable.

• Dataset domain: the type of the rhs dataset expression must be compatible wit
type of the declared lhs parameter.

• ADL try/catch  feature: the type of acatch  assertion group must be compatible
with the type of the correspondingtry  assertion group.

• relinquish  clause: the declared type of the parameter must beexactly the
declared type of the corresponding factory.

4.3.3.2 Type Compatibility

C++ type compatibility is implemented according the ANSI C++ Public Review Doc
ment, check this document for further details.

In Java, we will distinguish three distinct sets of types: boolean (which is a singleto
arithmetic types and reference types. In each of these families can be defined a pa
order.
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The partial order for arithmetic types is as follows:

A skeleton of the partial order for reference types is as follows (suppose C is a cla
its superclass, I an interface that C implements, J a superinterface of I, A an array
primitive type elements, A[C] an array of class C elements):

This diagram must be read as follows: any class is less than or equal to its superc
the interface it implements, any array is less than or equal to the interface “Clonea
etc. By transitivity, the base type Object is greater than any other reference type.

We can now set two definitions:

• A type T iscompatible with a type T’ iff T is less than or equal to T’.

• The upper bound of two types T and T’ is the least type that is greater than or e
to both T and T’.

4.3.3.3 Type Synthesis

The type of an expression is computed as follows:

FIGURE 3. Arithmetic types
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FIGURE 4. Reference Types
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• normal , abnormal , unchanged(<expr>)  andthrown(<name list>)
are boolean expressions.

• The type of thereturn  expression in an ADL behavior description is the return-
type of the currently described method in the class under test.

• The type of the call-state expression is the type of the enclosed expression.

• An type of an assertion must be boolean, except if:

1.This is not a quantified assertion.

2.This is the unique assertion of its enclosing assertion group.

3.This assertion group is atry  blockor acatch  blockor aninline  block.

4.This assertion group is in the scope of an expression.

In this case, the type of the assertion is the type of the enclosed expression.

• The type of an assertion group that contains a single assertion is the type of th
assertion.

• If an assertion group contains at least 2 assertions, then all its contained asser
must be boolean, and in this case the assertion group is boolean.

• If a dataset member is defined as a range (<expr> .. <expr> ), both expressions
must be integral expressions and the type of the dataset member is the upper b
of these types. Otherwise (not a range), the type of the dataset member is the t
its enclosed expression.

• The type of an empty dataset literal isnull , otherwise it is the upper bound of the
types of its dataset members (see Section 4.3.3.2).

• The type of a dataset expression is defined as follows: If the dataset expression
dataset variable, then its type is the declared type of this dataset variable.

1.Else if the dataset expression is a dataset literal, its type is the type of this lite

2.Else if the dataset expression is a factory invocation, then its type is the return
of this factory.

3.Else if the dataset expression is a basic expression (literal, method invocation
constant), then its type is the type of this expression.

4.Else if the dataset expression is a dataset concatenation (operator “+”), then 
type is the upper bound of the dataset operands.

5.Else the dataset expression is not correct and a compile-time error results.Impor-
tant note: it is not possible to perform a “.” (dot) access operation on a datase
expression.

• The type of a variable expression (resp. a method/factory/inline invocation) is th
declared type of this variable (resp. the declared return-type of this method/fact
invocation)

• The type of an explicit cast expression is the named cast type.
Important note: in ADL or TDD, explicit casts will not be checked. When a user
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writes an expression(MyType)<expr>  the ADLT compiler will not verify that
the type of <expr> can be actually casted to type MyType.

• For expressions involving operations, the “classical” rules of the target language
be used: type check of the operands (boolean for logical operations, arithmetic
arithmetic operations, etc.) and numeric promotion (for instance when an additi
involves along  and afloat  operands, thelong  operand will be “promoted” to
float  and the result-type of the operation isfloat ).

4.3.3.4 Type Representation
A data type is represented by a subtype of the TypedNode abstract class. That cla
modeled on the representation of type in ADLT 1, the class named ADLTP; in part
lar, it has these methods:

abstract class TypedNode extends SimpleNode {

/** Returns the defining node of the type, or null. */
public SimpleNode defn();

/** Returns the name of this type (if any), or null.  *
public String getTypeName();

/** Returns the LType symbol for this type. */
public LType getType();

};

This class is used in conjunction with class LType which is a more generic class, us
represent target language types (both builtin-types and constructed types) in the s
table. In particular it has these methods :

class LType {

/** Is this type the same type as t? */
public boolean equals(LType t);

/** Can a value of type t be assigned to a variable
     * of this type (i.e. is type t compatible with
     * this type)? */

public boolean assignable(LType t);

/** Returns a descriptive string representation of the
* type. */

public String getName();

};

EXAMPLE 1 Interface Type definition

As an example, here is how type check is performed for an assignement node.
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// here node is an Assignment node made up of two expression
// child nodes
TypedNode leftNode = node.jjtGetChild(0);
TypedNode rightNode =  node.jjtGetChild(1);
if ( leftNode.getType().assignable(rightNode.getType()) )
{

// type check is ok, set Assignment type to that of
// left hand expression
node.setType(leftNode.getType();

}
else
{

// report a type check error
}

4.3.4 Names

4.3.4.1 Scope Rules and Name Checking

• The scope of a binding beginsafter its declaration and goes to the end of the enclo
ing assertion group.

• The scope of a variable defined in a global prologue begins after its declaration
goes to the end of the compilation unit. The scope of a variable defined in a loc
prologue begins after its declaration and goes to the end of the behavior declar

• The scope of a variable defined in an epilogue (global or local) begins after its d
ration and goes to the end of this epilogue.

• The scope of an inline is the complete adl class in which it is declared.

• It is not permitted to define a local variable, a parameter or a binding with the s
name and scopes with non-null intersection.

• A binding cannot be used in the scope of a call-state expression, in a prologue 
the global epilogue.

• An inline cannot be invoked in the definition of another inline, in a prologue or in
epilogue.

• An inline cannot have the same name as a method of the class under test.

• It is not permitted to define in the same adl class two different inlines with the s
nameand the same signature.

• The scope of datasets and factories is the entire declaration of the tdd class in 
they are declared and of all tdd classes that import (“use”) this tdd class.

• A dataset expression cannot be used outside a dataset definition, a test directiv
parameter in a factory invocation.

• It is not permitted to define in the same tdd class two different datasets with the 
name.

• It is not permitted to define in the same tdd class two different factories with the
same name.
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• It is not permitted to define in the same tdd class a dataset and a constant with
same name.

• A dataset definition cannot be recursive (directly or not, i.e. by mutual recursion
with one or more other dataset definitions).

• It is not permitted to define in the same tdd class a factory and a method with th
same name and the same signature.

4.3.5 The TypeCheck Visitor

Type checking is performed by the ADLTypeCheckVisitor class. This visitor visits e
AST node for which type check is relevant (assignments, arithmetic and logical op
tion, method calls...) and performs type check and type synthesis. A helper class, 
ADLTypeCheckHelper, helps the type check visitor during this process, by providin
useful methods for type synthezis (synthetizeTypes() ) and other type checks
(checkTypesAreAssignable() andcheckTypesAreSameKind() ).

4.4 Symbol Tables

This section describes the symbol table management system used by the ADL co
ers. A HTML document generated by javadoc and describing the classes involved
available.

4.4.1 Concepts

The main concepts used for the symbol table management system are introduced 
section.

4.4.1.1 Symbol Table Manager

The symbol table manager is the main interface the client parser shall use to mana
symbols. The symbol table manager is responsible for:

•  allowing the client parser to put and retrieve symbols in and from the symbol ta

•  storing a reference to the current scope being parsed,

• managing the client’s requests to open or close a new scope (e.g. when enterin
a struct or class definition or into a new block of code),

•  creating new symbols (abstract factory role).

4.4.1.2 Symbol

A symbol is any identifier that may be encountered while parsing an ADL source fi
Amongst symbols are identifiers for types, classes, methods or attributes. The ma
attribute of a symbol is its name.
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4.4.1.3 Scope & Anonymous Scope

A scope defines a unit of visibility for a group of symbols. Such things as a block o
code, a class or a package define scopes.

Scopes may be nested within each others, like a block of code inside another one
class inside a package. For this reason scopes are organized in a parent-childs tre
ture. In some cases this organization may be refined and some scopes may have m
parent scopes (e.g. a class scope may be related to a package scope as well as to
several superclass scopes in a child parent relationship).

Some scopes are closely related to symbols, e.g. a class may be considered as a 
inside a package scope but it also defines a scope. For this reason a scope may b
attached to a symbol. Note that some symbols are indirectly related to scopes (e.g
erence foo to an object of class Bar which definition is class Bar { int x; int y; } is in
rectly related to the scope of Bar so that foo.x as well as Bar.x are valid scoped na

Some scopes are not related to symbols, e.g. a code block scope. These scopes a
to be anonymous.

4.4.1.4 Language Independent Symbols

 Since target languages share the same kind of symbols (type, variables, classes.
guage independent symbols have been defined to promote code reuse within the 
parsers.

Language independent symbols are abstract classes for symbols likely to be used 
all ADL bindings. Specific behaviour is implemented in language dependent subcla
of the language independent symbol classes. But this is hidden to the symbol table
ager client (the parser).

The language independent symbols ar organized as follows:

•  target language independent symbols (the L... hierarchy)

•  ADL language independent symbols (the ADL... hierarchy)

•  TDD language independent symbols (the TDD... hierarchy)

 all of these symbols implements the symbol interface, or the scope interface or bo

4.4.1.5 Scoped Name

 Scoped names are composite names to identify symbols, each component of the
but the last identifying a scope and the last one identifying a symbol (e.g. java.util.H
table, CORBA::ORB). The use of scoped names inside the ADL source files led to
tree structure organization for the symbol table manager.
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4.4.1.6 Symbol Listeners

Some symbols can appear in ADL code before they have been defined (e.g. Java 
ods). In such case, the client parser may supply a SymbolListener object when tryi
get a symbol from the symbol table manager. This symbol listener is stored by the
bol table manager, and as the definition of the requested symbol becomes availab
at the end of the parsing), this symbol listener is used to call the client parser back
that it can finish its set up.

Note that symbol listeners are directly inspired from Java AWT1.1 event model.

4.4.1.7 Predicates

Predicates are used to selects symbols in the symbol table, when a same name is
by several symbol (e.g. to select among different overload of a same method a Me
Comparator predicate shall be supplied).

 Predicates are supplied to the symbol table manager in addition to a scoped name
symbol selection is necessary.

4.4.1.8 Credentials

Credentials are granted to scopes and enable them to states they have visibility on
other scopes. Credential are for internal use within the symbol table manager.

As an example, a subclass in a Java Package may see protected symbols in its su
classes, and package visibility classes in its own package.

4.4.2 Package organization

The symbol table manager is made of a set of packages:

• the org.opengroup.adl.symboltable package which is a package containing gen
components and that defines the interfaces and abstract classes used by all th
compilers,

• the compiler specific packages that are used by each specific ADL compiler. Th
packages are org.opengroup.adl.symboltable.c (for ADL/C and ADL/C++ comp
ers) and org.opengroup.adl.symbol_table.j (for ADL/java and ADL/IDL compiler

4.4.3 Generic org.opengroup.adl.symboltable package design

The symbol_table package defines the interfaces and abstract classes that are use
the ADL compilers to manage symbols.

The class design follows the Composite design pattern (see [Gamma]), in that clas
defined to handle symbols and scopes may be composite or not. This depend on t
interface the class implements, it may:
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• implement only the Symbol interface - to represent simple symbols   (e.g. a sim
type like int)

• implement both the Symbol and Scope interface - to represent   composite obje
(e.g. packages, classes, struct)

• implement only the Scope interface - to represent simple scopes   (e.g. anonym
blocks of code)

The symbol table manager also follows the Abstract Factory design pattern (see
[Gamma]).

4.4.3.1 SymbolTableMgr (abstract class)

SymbolTableMgr is an abstract class that is to be subclassed in each concrete sym
table manager packages. It defines the interface that the symbol table manager cl
(ADL purser) shall use.

This class is responsible for holding a reference to the scope being parsed (curren
scope), and managing the client’s requests to open or close a new scope (e.g. wh
entering into a struct or class definition or into a new block of code):

void openScope(Symbol s) // opens the scope owned by
// the provided symbol

void openScope() // opens an anonymous scope

This class is also responsible for forwarding the put and get symbols request to th
rent scope:

void putSymbol(Symbol s)
void putAlias(String aliasName, Symbol s)
Symbol getSymbol(String scopedName,

UnaryPredicate predicate,
SymbolListener symbolListener,
Scope scopeOverride)

Predicate may be a MethodComparator, symbol listener is used supplied when the
parser is interested in some symbol not yet defined, and scope override is used w
default current scope should be overridden to perform the symbol research.

Specialized getSymbol() methods are supplied so that symbols which were classifi
parsing time may be easily retrieved, these methods are:

LVariable    getVariable(String scopeName)
LType          getType(String scopeName)
LPackage      getPackage(String scopeName)
ADLClass      getADLClass(String scopeName)
TDDClass      getTDDClass  (String scopeName)
LExpression  getExpression(String scopeName)
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LMethod     getMethod(String scopeName,Predicate predicate)
ADLInline     getInline(String scopeName)
TDDFactory  getFactory(String scopeName)

and the likes...

This class is an abstract factory for language independent symbols. That is client p
should create their symbols through calls to the new...() methods. It is then up to th
concrete symbol manager to supply either a default language independent symbo
specialized symbol where necessary. The client parser does not need to know the
bol actual class. It only need to know the language independent symbol interface i
implemented. The methods enabling to create these symbols are:

LVariable newVariable(String name,
int modifier,
LType type)

which returns a variable with the supplied name, modifier and type.

LClass    newClass(String name,
int modifier,
LClass[] superclasses,
LClass[] interfaces)

which returns a new class with the supplied name, modifier (bit mask made of
ABSTRACT, INTERFACE...), superclasses and interfaces. Note C++ symbol table
managers accepts no interfaces while Java symbol table manager accepts only on
superclass.

Many other factory methods are defined for other symbols...

To simplify, these methods are a superset of all the methods that should be neces
create symbols for a particular binding. But since most of the symbols are very clo
each other this is not an issue.

Finally the symbol table manager can tell the client parser whether current scope i
inside a given scope type or not

boolean inScope(Class symbolClass)

4.4.3.2 Symbol (interface)

Symbol is the interface that all the symbols shall implement. It’s an interface so tha
concrete symbols may be organized with their own inheritance tree structure.

This interface manages the name of the symbol:getName() andsetName().

This interface defines methods to gain access to the scope that may be associate
symbol:

boolean hasScopeAccess()
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Checks whether symbol has access to a scope or not. Note some symbols owns s
but cannot be seen from any outer scope. An example is a function: it’s got its own 
scopes, but these scopes are not visible from any outer scope, this means that for
tion foo(), the scoped name foo.bar should not be allowed!!! This information is sta
by the hasScopeAccess() method.

Scope getScope()

Returns the scope the symbol has access to.

4.4.3.3 Scope (interface)

Scope is the interface that all concrete scopes shall implement.

A scope is responsible for holding its symbols, organizing them in any suitable wa
(e.g. in a hash table).The methods provided to achieve this are:

void putSymbol(Symbol s)

which put a symbol into the current scope,

void putAlias(String aliasName, Symbol s),

which create an alias for symbol s in the current scope (useful for tepidness)

Scopes are also responsible for retrieving symbols, each concrete scope class defi
own policy for this. The most common policy is to search first in a local symbol has
table and if nothing is found to forward the request to the parent scope (that’s the w
method scope or a block scope do). But more subtle policies may be defined: a ja
class scope forward the requests to its superclasses scopes first and then to its pa
package scope. The method used here is:

 Symbol getSymbol(String name, Predicate p, Credentials c)

which gets a symbol in current scope, the symbol shall verify the supplied predicate
be visible to the requestor (which is checked using the credentials).

Furthermore scopes are responsible for forwarding getSymbol() requests to releva
scopes when necessary (e.g. a Class scope forwards the request to its superclass
scopes).

4.4.3.4 Language independent symbols hierarchy

Language independent symbols are abstract classes for symbols likely to be used 
all ADL bindings.

The main inheritance tree for the language independent symbols is as follows:

( o-- means implements interface and <-- means inherits  )
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Symbol o-- LPackage

LNameSpace

LType <--   LBuiltinType
<--   LPointerType
<--   LReferenceType
<--   LConstructedType <--  LStruct

<--  LUnion
<--  LClass
<--  ADLClass
<--  TDDClass

LCallable <-- LFunction
<-- LMethod
<-- ADLInline
<-- TDDFactory

LExpression <--  LVariable
<--  LParameter
<--  LField
<--  ADLBinding
<--  TDDDataset

All these symbols classes also implements additional methods, notably to test for
assignability of values to variables:

boolean LType.assignable(LType t)

checks that a variable of type t can be assigned to a variable of this type.

boolean LClass.subclassOf(LClass lClass)

checks that some classes are subclasses of other classes. E.g. when parsing thro
must be checked that E is a subclass of Throbs.

In addition, the following classes implements the Scope interface:

Scope o-- LBlockScope
o-- LTranslationUnit
o-- ADLTranslationUnit
o-- TDDTranslationUnit
o-- LConstructedType
o-- LCallable

The containment relationship in between symbols and scopes are presented here

( The notation is:
Symbol (type attribute...)

<Symbol that may be defined in the symbol’s scope>  )
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ADLCompilationUnitScope
LPackage (or LNameSpace)

LFunction
LClass (int modifier, LClass superclasses[],

 LClass[] interfaces ... )
JField (int modifier)
JMethod (int modifier, LType returnType,

 LParameter[] parameters, LClass[] throws )
LBlockScope

LBlockScope...
LVariable

ADLClass ( LClass tested, ADLClass extends )
ADLInline
ADLPrologue
ADLEpilogue
ADLBehaviourDeclaration

ADLPrologue
ADLEpilogue
ADLSemantic

ADLBehaviorClassification
ADLAssertionGroup

ADLBinding
TDDCompilationUnitScope

LPackage
   ...

TDDClass (TDDClass used )
TDDConstant
TDDDataset
TDDFactory

...

4.4.3.5 UnaryPredicate (abstract class)

UnaryPredicate is an abstract class that only implements one method

boolean execute(Object o)

the predicate is used to check if an object satisfies the predicate or not.

As an example of predicate, consider the LCallableEqualsComparator predicate, wh
is a subclass from UnaryPredicate, it implements the following methods in to
UnaryPredicate:

void   setReturnType(LType type)

void   addParameterType(LType type)

void addException(LType exc)

This predicate is executed against a LCallable object and if the callable’s return typ
parameters and thrown exceptions are equals to the method comparator ones, the
cate returns true. Otherwise it returns false. Note that another comparator LCallab
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signComparator may be used to check a method call is compatible with a method
signature (i.e. the expressions types in the method call must be compatible with th
mal parameters types).

4.4.3.6 Credentials

The point is that when searching for a symbol, the symbol table   manager should c
that any suitable symbol is visible from   the requesting scope (the current scope w
the request is issued).

Imagine for example that SomeClass.somePrivateattribute symbol is requested fro
scope being external to SomeClass, then the symbol table manager should not re
this symbol.

This issue is all the more complex since many different level of visibility exists (pub
protected, package, private...) for many   different symbols (public classes, public
attributes...). Moreover a   request to retrieve a symbol may be forwarded to many
ferent   scopes, and the last scope receiving the request may not know about   the

So a general mechanism is required! The solution proposed here is that   each sco
granted some credentials. These credentials are used by   any scope receiving a r
to decide if the requester has visibility   over the requested symbol.

The credentials hold the scope originating the request, together with   a list of
“scope:visibility” pairs that is the scopes for which part   or all the symbols are visib

As an example suppose package BankPackage holds the class Bank and its subc
MyBank, then my bank would be granted the following credentials:

requestor   = “MyBank”

credentials = { “Bank:protected” ,“BankPackage:package” }

Then, whenever Bank scope receives a getSymbol() request from MyBank   scope
checks that the requested symbol can be returned or not by   looking in the credent
at the “Bank:visibility” entry.

Though being somewhat complex, this mechanism is generic enough and scale   s
ciently to be used for the ADL/java and ADL/C++ compilers.       Furthermore, whil
request is forwarded from scope to scope the   credential list should grow, the rele
credential being added to   the list.

Note: this feature is not implemented in this release. In Java limiting bytecode load
to only public fields and methods is enough for access control. A similar solution m
be adopted for C++.

4.4.3.7 Symbol Listeners (callback mechanism)

The point is that some symbols can be used before they have been defined (e.g. J
methods).
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A simple solution would be to write a two-pass ADL compiler. But the symbol listen
mechanism based on the event model found in the Java AWT1.1 solves this proble
is much more elegant.

Actually, in case a symbol cannot be found by the client parser, possibly because 
not yet been defined, the parser client shall pass a symbol listener object to the sy
table manager. This symbol listener is stored by the symbol table manager, and as
definition of the requested symbol (or at the end of the parsing), this symbol listen
used called back so that the client parser can finish its set up.

Internally, the symbol table manager stores the symbol listener together with the cu
scope at the moment the symbol listener is received.

After parsing is finished, the symbol table manager process each saved symbol lis
that is try to find the symbol, and call the symbol listener back when the symbol is
found.

To use this mechanism, the client parser should supply the symbol table manager
an object implementing the following interface:

 interface SymbolListener {
       void symbolFound(Symbol symbol);
   }

The symbol listener can be implemented as an inner class of the ADLNode. Wher
methods are likely to be listened to this class could be MethodSymbolListener.

4.4.4 Specific org.opengroup.adl.symboltable.c package design (ADL/C & ADL/
C++)

The org.opengroup.adl.symboltable.c package holds the concrete classes respons
managing the symbols for the ADL C and C++ compilers (C++ symbols are a supe
of C symbols).

The responsibility of these symbol table managers is to coordinate symbol search
between scopes according to the rules defined in the ADL/C and ADL/C++ seman
checks document.

The language independent symbol hierarchy is taken as it is with minor changes. 
main constraints on the symbols being:

• a CPP class implements no interfaces

• the CModifier class helps manipulating the C and CPP modifiers (public,   protec
private, const, virtual...)

Furthermore, C and C++ typedefs are implemented as symbol aliases.
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4.4.5  Specific org.opengroup.adl.symboltable.java Package Design (ADL/Java)

The org.opengroup.adl.symboltable.java package holds the concrete classes respo
for managing the symbols for the ADL/Java compiler.

The ALDSymbolTableMgr (resp. TDDSymbolTableMgr) is the ADL/Java specialize
version of the SymbolTableMgr class for the ADL parser (resp. TDD parser).

The responsibility of these symbol table managers is to coordinate symbol search
between scopes according to the rules defined in the ADL/Java semantic checks d
ment (notably to determine the meaning of a name when retrieving a symbol or be
defining a new symbol).

The language independent symbol hierarchy is taken as it is with minor changes. 
main constraints on the Java symbols being:

• a class only has one superclass

• the JModifier class helps manipulating the Java modifiers (public, protected, pri
abstract, interface...)

However with Java, new issues are raised. Since no pre-processor mechanism exis
in C/C++, Java imported stuff must be accessed at parsing time.

To solve this problem, a companion class is introduced: the symbol loader. The sy
loader (SymbolLoader class) is in charge of loading Java package and classes on
demand and populate the symbol table with the symbols loaded.

The client parser uses the symbol loader when import or use clauses are encount

Another issue is also raised: loading symbols may be heavy, it is certainly better to
only the necessary stuff. This issue is solved by using proxy symbols. Proxy symb
are based on the Proxy design pattern ([Gamma]).

When requested to load symbols the symbol loader may decide to load only a prox
the symbol.

The proxy symbol acts like the original symbol (it implements the same interface), 
is it tries to respond most of the client request without any help from the original sy
bols. When the proxy cannot respond by itself, it requests the symbol loader to loa
plain symbol, it gets a reference to that plain symbol and forwards the request to t
symbol.

Hence, the use of proxy symbols is transparent both to the client parser and to the
bol table manager.

The design for the symbol loader and the proxy is discussed more deeply   in the t
following section.
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4.4.5.1 SymbolLoader

The symbol loader (SymbolLoader class) is in charge of loading Java package and
classes on demand and populate the symbol table with the symbols loaded.

The client parser uses the symbol loader when import or use clauses are encount
Actual loading of the symbol is deferred to appropriate moment (e.g. when a class 
imported package is used).

From the client (parser) viewpoint symbols may be imported through relevant Sym
bolTableManager calls. That’s why the SymbolLoader interface is also implemente
the SymboltableManager. Internally, the symbol table manager collaborates with th
symbol loader so that symbols can be loaded as they are requested.

The loaded symbols are discovered via CLASSPATH and/or INCPATH, relevant ch
are performed by the SymbolLoader, and finally symbols are put in the symbol tab

 The SymbolLoader collaborates with the SymbolTableMgr so that the loaded sym
are put in the symbol table as part of the loading process. Its methods are the follo

LPackage importPackage(String name);

Imports a package. the processing here is to check that the package is accessible
classpath.

LClass importClass(String name);

Imports a class (or transparently a proxy for the class).

void useClause(String name);

Use clause. Makes the named ADL file available for use. Part of the process is to c
that the adl file is accessible from incpath.

4.4.5.2 Proxy Symbols

The proxy design pattern shall be used when partial loading of symbols is useful (a
of the import/use mechanism).

Due to the design of the byte code file (.class) a proxy is needed only for Java clas
Proxy Java Class is created each time a non loaded class symbol is encountered 
byte code (this applies only to public fields and method parameters and return typ
superclasses symbols are always loaded).

E.g. a JClassProxy symbol should hold only its class name, respond to request for 
this knowledge is enough by itself and forward any request for which more knowle
is required to the real JClass symbol, which have to be loaded before.

Proxy symbols collaborates with the SymbolLoader so that the actual symbols sha
loaded when necessary. The use of ProxySymbols should be transparent to the S
bolTableMgr and to the client parser.
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4.4.6 Using the symbol table manager

The example below show how the CSymbolTableMgr is used from the client (ADL
parser) view point:

EXAMPLE 2 Using the symbol table.

// Initialize symbol table manager

SymbolTableMgr stm = new CSymbolTableMgr();

// Get a handle on int builtin type

LType intT = stm.getType(“int”);

// Declares a typedef type ( typedef int MyInt )

stm.putAlias(“MyInt”,intT);

// Defines a struct type and put it into the current scope

LStruct ComplexT = stm.newStruct(“ComplexT”);

stm.putSymbol(ComplexT);

// Open the scope associated with that struct and defines
// two attributes for that struct (x and y) note that
// CAttribute symbols are constructed using a name and
// a type symbol. This type symbol is obtained from the
// symbol table manager.

stm.openScope(ComplexT);

LField x = stm.newField(“x”,intT);

stm.putSymbol(x);

LField y = stm.newField(“y”,intT);

stm.putSymbol(y);

// Close struct scope

stm.closeScope();

// Search for symbol with ComplexT.x scoped name

Symbol s = stm.getSymbol(“ComplexT.x”);
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4.4.7 Guidelines for the symbol table manager user (FAQ like)

This section contains guidelines for using a symbol table manager when particular
issues are encountered.

4.4.7.1 How to store typedefs in the symbol table (ADL/C & ADL/CPP)

Typedefs are considered as aliases for other types, instead of creating special sym
alias entries are put in the symbol table. this is achieved using the putAlias() symb
table manager method.

4.4.7.2 How to control that variables are used after they are defined (ADL/Java)

This is an issue for ADL/Java where a variable can be declared anywhere in a bloc
code. The solution proposed is to force the client parser to check that a variable is
defined before being used.

4.4.7.3 How to distinguish in between several overloaded method.

When retrieving a method symbol the parser client shall provide a supplementary L
ableAssignComparator predicate object, that will help the method scope selecting
suitable method symbol.

4.4.7.4 How can I check that only one external functions definition exists (ADL/C)

When retrieving a method symbol the parser client shall provide a supplementary L
ableEqualsComparator predicate object, that will help the method scope selecting
suitable method symbol.

4.4.7.5 How can I check the symbol I encounter is in a suitable scope.

This is to allows to control that symbols are used or are not defined inside a scope
some supplied type. For example to check that inlines are not called in the definitio
other inlines.

The solution is to use the inScope() method of the symbol table manager.

EXAMPLE 3 Testing if encountered symbol is in a suitable scope.

SymbolTableMgr stm = new SymbolTableMgr();
...
if ( stm.inScope(TDDFactory.class) )
{

  throw new ADLParseError
(“A factory cannot be called in the definition “ +
 “of another factory”);

}
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Chapter 5 Code Generation

5.1 Introduction

Code generation is the fundamental task of ADLT. In ADLT, code generation is bro
down into two phases: AST generation and unparsing. AST generation creates a n
Abstract Syntax Tree to represent the required code; unparsing generates a text fi
resentation of that AST. Code generation is separated into these two phases beca
many ADL constructs, like, e.g., the call state operator, require to generate some c
ahead of their current location in the AST.

In addition, in order to avoid intricate code for both phases into the data structure r
senting an AST, they are designed around the “Visitor” pattern as described in the 
from Gamma et al., “Design Patterns”. This pattern clearly separates the processin
from the data structure it operates on by using a simple “accept/visit” protocol. A vis
object implementing a particular processing algorithm, e.g., AST generation, asks 
given node in the AST whether itaccepts to bevisited. By accepting, the node then

explicitly requests the visitor tovisit it. Since version 0.7pre5, the Java Compiler

Compiler tool set, especiallyjjtree , supports the “Visitor” pattern by generating
the appropriate methods for the “accept/visit” protocol and an interface to be imple
mented by any candidate visitor.

Since there is a great deal of commonality between the AST generators for the va
parts of a test program, and between the AST generators for various target languag
separating the syntax details, we are able to re-use parts of the AST generators. S
details are mapped onto an AST structure. By simply using similar names in the va
target languages grammar for similar syntactic constructs, it becomes possible to d
some generic classes that define the appropriate processing methods for the relev
constructs.
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Figure 5 shows the overall scheme of the design for code generation and illustrate
it will allow to make maximum re-use of the code within ADLT.

The exact content of the generic classes depends on the commonalities between t
eral target language grammars with respect to the concerned operation.

5.2 AST Transformation

Abstract Syntax Trees for the generated code are derived from the ASTs of the sp
cations (described in Chapter 3, “Abstract Syntax Tree Design,”). The outline of the
generation process is to walk the input AST, generating the new AST as you go, us
“Transformer” visitor. The code pattern of a visit method depends on the type of the
rently visited node:

• In some cases, the current node is the root of a subtree that has not to be mod
the visit method does nothing.

• In some cases, the current node has not to be modified, but some of its descen
nodes have to: the visit method simply consists in ensuring that the child nodes
be visited.

• In some cases, the properties of the current node have to be modified, but not it
and structure (it keeps the same number of children).

ADLJavaParserVisitor

GenericTransformerVisitor

GenericUnparserVisitor

ADLCppParserVisitor

JavaTransformerVisitor CppTransformerVisitor

CppUnparserVisitorJavaUnparserVisitor

FIGURE 5. Code Generation Architecture Model

implementsimplements
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• Last, in some cases (notably all the ADL_* nodes) the visit method creates a n
node that will replace the current node in the tree structure. The child nodes of 
newly generated node are built depending on the current node children (visited
not), on its properties and on the type of the new node.

In the next section we detail the transformation patterns with respect to the visited 
type, using Java as an example. Although each language binding generates differe
code, the described patterns are to a large extent reusable for each of them.

5.2.1 ADL Node Transformation

5.2.1.1 Notation Used
In the sequel, we will use the following notation to describe the actions to be perfor
to transform a node of a given type. This notation is an attempt at providing releva
information in a concise and as precise as possible manner; this isnot a formal notation.

a/ ATypeNode
Children nodes:

ATypeNode1 child1
[ ATypeNode2 child2 ]
( ATypeNode3 child3 )*

Created Node:
ATypeNode4 :

ATypeNode1 : child1
ATypeNode5 :

[ visit(child2) ]
( visit(child3) )*

Fields:
[ ATypeNode2 field1 = child2 ]

Actions:
// pseudo-code to precise complicated actions to be done.

This must be read as follows: the current node has one first child node of type
ATypeNode1, an optional second child of type ATypeNode2, and a possibly empty
of child nodes of type ATypeNode3. It must be transformed into a node of type
ATypeNode4 with two children: the first child is the first child of the current node, a
the second is a node of type ATypeNode5 which has itself as a first optional node 
transformation of the current node second child, and also the list of the transforme
ATypeNode3 nodes of the current node. Furthermore, the node child2, if it is prese
stored as a global field: this handle is necessary when the information contained in
child2 is to be used in the generated tree somewhere else that at direct proximity o
present node transformation.

Children nodes are sometimes declared as Node (the interface of all node types) w
the dynamic type cannot be known statically: for instance the root node of an expre
could be ADL_Expression, EqualityExpression, PrimaryExpression, etc.
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b/ ACO Blocks

Some blocks of generated code are always the same, whatever the input program
just slightly different (for instance following the name of the adl class).

For this, we define a class ACOauxiliary and the visitor will declare an instance AC
this class. Some data obtained by visit methods will be stored as ACO fields when
are needed for code generation. The make* methods generate ASTs of the output
program. For instance, the method makeInitialization generates ASTBlockStateme
for the following code:

boolean doReport = finalJournalReporting;
boolean normal = true; boolean abnormal = false;
boolean tddRes; boolean wasThrownException = false;
Throwable adl_thrownException = null;

    and in the case of a constructor or a static method:

skipAssertions |= testContext.skipAssertions;

    else:

skipAssertions |= testContext.skipAssertions ||
realObject == null;

<adlclass> <adlclass>Object = (<adlclass>)realObject;

5.2.1.2 Transformation Patterns

a/ ADL_CompilationUnit
Children nodes:

( ImportDeclaration : impDecl )*
ADL_ClassDeclaration : adl_ClassDecl

Created node:
ADL_CompilationUnit :

ImportDeclaration : <ORG.opengroup.adl.runtime.*>
( ImportDeclaration : impDecl )*
visit(adl_ClassDecl)

b/ ADL_ClassDeclaration
Children nodes:

IDENTIFIER : id
[ Name : name ]  // name of the inherited adl class.
[ ADL_Prologue : prolog ]
[ ADL_Epilogue : epilog ]
( ADL_BehaviorDeclaration : behavDecl

|
ADL_InlineDeclaration : inlineDecl

)*
Created node:

ClassDeclaration :
MODIFIER : “public”
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IDENTIFIER : id
Name : extendedClass
ConstructorDeclaration : ACO.makeConstructor() // build the constructor
(  visit(behavDecl) )*

Fields:
ACO.setExtendedClass(name + “ACO”) // “ObjectACO” by default
[ Block globalProlog = prolog ]
[ Block globalEpilog = epilog ]
ACO.setADLClassName(id) // name of the class under test
( ADL_InlineDeclaration inlineDeclaration = inlineDecl )*
// for inline substitution, see Section 5.2.1.4.

c/ ADL_BehaviorDeclaration
Children nodes:

[ ResultType : resType ]
Name : name
FormalParameters : formalParam
[ NameList : nameList ]
[ ADL_Prologue : prolog ]
ADL_BehaviorSpecification : behavSpec
[ ADL_Epilogue : epilog ]

Created nodes:
MethodDeclaration :

MODIFIER : “public”
ResultType : ACO.getMetodReturnType()
MethodDeclarator :

IDENTIFIER : name
FormalParameters : formalParam

[ NameList : nameList ]
visit(behavSpec)

Fields:
[ Block localProlog = prolog ]
[ Block localEpilog = epilog ]
ACO.setIsConstructor (<no ResultType>)
if (isConstructor)

ACO.setMethodReturnType (name)
else ACO.setMethodReturnType(resType)
ACO.setMethodName(name)
ACO.setMethodFormalParam(formalParam)
[ ACO.setMethodThrowsList(nameList) ]

d/ ADL_BehaviorSpecification
Children nodes:

[ ADL_BehaviorClassification : behavClass ]
ADL_AssertionGroup : adl_assGrp

Created node:
Block :

( BlockStatement : ACO.makeInitialization().child )+
( BlockStatement : globalProlog.child.clone() )*
( BlockStatement : localProlog.child )*
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( BlockStatement : saveBlock )*
( BlockStatement : ACO.makeCallBlock().child )+
visit(adl_assGrp)
( BlockStatement : localEpilog.child )*
( BlockStatement : globalEpilog.child.clone() )*
( BlockStatement : ACO.makeFinal().child )+

Fields:
ACO.setSuperSemantics(<adl_assGrp has a child ADL_SuperSemantics>)

Actions:
visit(behavClass)
generate default values for (ab)normalSpec fields that have not been defined

Notes:
The saveBlock notation stands for a list of statements that deal with the call-st
feature: saveBlock is the assignment of a generated temporary variable whose
is that of a call-state expression (see Section 5.2.1.3.b).
The visit to child adl_assGrp occursbefore inserting the saveBlock statements: th
latter ones are produced during the visit of the former.
The method makeCallBlock will use ACO fields superSemantics, myType, met
Name, methodFormalParam, methodThrowsList, normalSpec and abNormalS
The method makeFinal needs methodName and methodThrowsList.

e/ ADL_BehaviorClassification
Children nodes:

( Node : exp )+
Fields:

Expression (ab)normalSpec = exp
Note:

the trees “exp” arenot visited here: this is will be done in the ACO.makeCallBloc

f/ ADL_AssertionGroup (nested)
Note:

Conjunction of assertions in an expression
 ... exp || { <ass1>; <ass2>; } ...
To be transformed into:
 ... exp || (exp1 && exp2) ...
where expi is the return of visit(assi)

Children nodes:
( Node : adl_exp )*

Created node:
visit(ConditionalAndExpression : (adl_exp)* )
or
visit(adl_exp) // if only one child

g/ ADL_AssertionGroup (not nested)
Note:

“real” group of ADL assertions
Children nodes:

( ADL_Binding : adl_Binding )*
( Node : adl_Stmt )*
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om-
Created node:
Block :

( visit(adl_Binding) )*
( visit(adl_Stmt) )*

h/ ADL_Assertion (not nested)
Children nodes:

[ ADL_Label : label ]
[ ADL_Tags : tags ]
ConditionalExpression : adl_Expr

Created node:
Block:

BlockStatement :
<testContext.assertionStart(“<assertionString>”)>

IfStatement : // if1
UnaryNotPlusMinus : // condition if1

Operator : “!”
Name : “skipAssertions”

Block : // then if1
( BlockStatement : preAssertion )*
StatementExpression :

Assignment :
Name : “tddRes”
visit(expr) // note: this visit was performed “before”,

// to generate preAssertion
IfStatement : // if2

Name : “debugMode” // condition if2
Block : // then if2

( BlockStatement :
<testContext.infoline(preAssertion.string,

preAssertion.tmp)>
)*

BlockStatement :
<testContext.assertionResult(tddRes ? ADL_PASS : ADL_FAIL)>

Block : // else if1
BlockStatement :

<testContext.assertionResult(ADL_UNEVALUATED)>
Fields:

[ IDENTIFIER assLabel = label ]
( IDENTIFIER assTags = tags )*

Note:
The preAssertion notation stands for a list of statements that deal with the dec
position of the assertion expression in sub-expressions (see Section 5.2.1.3).

Example:

testContext.assertionStart(“get_active_accounts()==
@get_active_accounts()+1”);

if (!skipAssertions) {
// preAssertions
int __ADL_tmp_0 = bankObject.get_active_accounts();
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int __ADL_tmp_1 = __ADL_savTmp_1; // saveBlock tmp variable
int __ADL_tmp_2 = __ADL_tmp_1 + 1;
boolean __ADL_tmp_3 = __ADL_tmp_0 == __ADL_tmp_2;
tddRes = __ADL_tmp_3;
if (debugMode) {

testContext.infoline(“get_active_accounts()\t” +
 __ADL_tmp_0);

testContext.infoline(“@get_active_accounts()\t” +
 __ADL_tmp_1);

testContext.infoline(“@get_active_accounts()+1\t” +
 __ADL_tmp_2);

testContext.infoline(“get_active_accounts()==
@get_active_accounts()+1\t” + __ADL_tmp_3);

}
testContext.assertionResult(( tddRes ? ADL_PASS :

ADL_FAIL ));
}
else {

testContext.assertionResult(ADL_UNEVALUATED);
}

i/ ADL_Assertion (nested)
Children nodes:

Node : expr
Created node:

visit(expr)
Note:

In this case, the assertion is considered as just a boolean expression.

j/ ADL_IfStatement (nested)
Note:

evaluated as an expression: (cond) ? (thenBranch) : (elseBranch)
Children nodes:

Node : adl_Expr
ADL_AssertionGroup : adl_AssGrp
[ Node : elseBranch ] // ADL_AssertionGroup or ADL_IfStatement

Created node:
ConditionalExpression :

visit(adl_Expr)
visit(adl_AssGrp)

#if (#(children nodes) > 2)
visit(elseBranch)

#else
BooleanLiteral : “true”

k/ ADL_IfStatement (not nested)
Children nodes:

ConditionalExpression : adl_Expr
ADL_AssertionGroup : adl_AssGrp
[ Node : elseBranch ] // ADL_AssertionGroup or ADL_IfStatement

Created node:
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IfStatement :
visit(adl_Expr)
visit(adl_AssGrp)

#if (#(children nodes) > 2)
visit(elseBranch)

l/ ADL_TryStatement (not nested)
Children nodes:

ADL_AssertionGroup : tryAssGrp
( FormalParameters : catchFP

ADL_AssertionGroup : catchAssGrp
)+

Created node:
TryStatement :

visit(tryAssGrp)
( FormalParameters : catchFP

visit(catchAssGrp)
)+

m/ ADL_TryStatement (nested)
Children nodes:

ADL_AssertionGroup : tryAssGrp
( FormalParameters : catchFP

ADL_AssertionGroup : catchAssGrp
)+

Created node:
Name : aName

Actions:
see the decomposition algorithm (Section 5.2.1.3.c).

n/ ADL_Binding
Children nodes:

FormalParameter : formalParam
ConditionalExpression : expr

Created node:
LocalVariableDeclaration :

Type : formalParam.Type
VariableDeclarator :

VariableDeclaratorId : formalParam.VariableDeclaratorId
visit(expr)

o/ ADL_ImplExpression
Children nodes:

Node : e1, e2
ADL_ImplOp : op

#if (op == “==>”) // e1 ==> e2  --->  !(e1) || (e2)
Created node:

ConditionalOrExpression :
UnaryExpressionNotPlusMinus :

Operator: “!”
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ParenthExpression:
visit(e1)

ParenthExpression:
visit(e2)

#if (op == “<==”) // similar (exchange e1 and e2)
#if (op == “<=>”) // e1 <=> e2  --->  (e1) == (e2)
Created node:

EqualityExpression:
ParenthExpression:

visit(e1)
Operator: “==”
ParenthExpression:

visit(e2)
#if (op == “<:>”) // e1 <:> e2  --->

(e1) ? abnormal : !((e2) && abnormal)
Created node:

ConditionalExpression:
ParenthExpression:

visit(e1)
Name : “abnormal”
UnaryExpressionNotPlusMinus

Operator: “!”
ConditionalAndExpression:

ParenthExpression:
visit(e2)

Name : “abnormal”

p/ ADL_Expression (and all other Java expression nodes except PrimaryExpression)
Children nodes:

( Node : exp )+
Created nodes:

Name : aName
Actions:

see the decomposition algorithm (Section 5.2.1.3)

q/ ADL_ThrownExpression
Children nodes:

NameList : nameList
Created node:
#if (#nameList == 1)

// thrown(e1)  ---->  (thrownException instanceof e1)
InstanceOfExpression:

Name : “thrownException”
Type : nameList.getChild(0)

#else
// thrown(e1, e2)  ---->  (thrownException instanceof e1) || (thrownException
instanceof e1)
ConditionalOrExpression:

InstanceOfExpression:
Name : “thrownException”
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Type : nameList.getChild(0)
InstanceOfExpression:

Name : “thrownException”
Type : nameList.getChild(1)

...

r/ unchanged
Note:

unchanged(expr) ---> (expr == @expr)
unchanged (expr1, expr2 /* , ... */) --->

((expr1 == @expr1) && (expr2 == @expr2) /* && ... */)
Children nodes:

Arguments : args
Created node:
#if (#args == 1)

EqualityExpression :
ConditionalExpression :

visit(args.ArgumentList.ConditionalExpression)
Operator: “==”
ConditionalExpression :

visit(ADL_CallStateExpression :
args.ArgumentList.ConditionalExpression)

#else
ConditionalAndExpression :

EqualityExpression :
ConditionalExpression :

visit(args.ArgumentList.ConditionalExpression1)
Operator: “==”
ConditionalExpression :

visit(ADL_CallStateExpression :
args.ArgumentList.ConditionalExpression1)

EqualityExpression :
ConditionalExpression :

visit(args.ArgumentList.ConditionalExpression2)
Operator: “==”
ConditionalExpression :

visit(ADL_CallStateExpression :
args.ArgumentList.ConditionalExpression2)

...

5.2.1.3 Expression Decomposition Algorithm

a/ Rationale
In the ADL runtime, i.e. when evaluating the assertions of the generated ACOs, the
a possible “debug” mode such that all expressions present in the assertions are de
posed in sub-expressions and all these sub-expressions are evaluated separately.
when an assertion fails, the user may set the debug mode in order to have a more 
analysis and detect which sub-expression of the assertion is responsible for the fa
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The debug mode is aruntime option, not acompilation option, therefore the transforma
tion must foresee this mode: the generated code will systematically decompose ex
sions in assertions and guard the “debug mode code” by a condition (in fact, only t
reporting of the values of the sub-expressions is guarded).

Note that some expressions will not be decomposed:

• try/catch expressions

• call-state expressions

• expressions in quantified assertions

Note also that only expressions in assertions can be decomposed, not the express
that occur in binding definitions, prologues and epilogues.

b/ Algorithm: General Case
Note:

The algorithm for a PrimaryExpression node (especially when this corresponds
method call) is quite complex: it will be presented separately in Section 5.2.1.5

Current node:
Node : exp // an expression node

Children nodes:
( Node : subexp )* // any kind of expressions

Action:
#if (isDecomposable)

String str = <the token string of the current node>
// stored to be called in infoline, in debug mode

( visit(subexp) )*
make_preassertion // store information: node type, visited node, str
// return the name of a generated variable stored as a preassertion

Created node:
Name tmp // variable name returned by make_preassertion

#else
Created node:

( visit(subexp) )*
Note:

isDecomposable = isInAssertion && !(isInTry ||
isInCallState || isInQuantifiedAssertion)

Example:
visit(EqualityExpression: a + b == f(c))

str = “a + b == f(c)”
visit(AdditiveExpression: a+b)

str = “a + b” // local variable (does not overwrite preceding str)
visit(Name: a)

str = “a”
// no child node to visit
make_preassertion(typeOf(a), a, str) -> tmp1
 // preAssertion: “T tmp1 = a;” where T is typeOf(a)
return // transformed tree: Name a -> Name tmp1

visit(Name: b)
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str = “b”
// no child node to visit
make_preassertion(typeOf(b), b, str) -> tmp2
 // preAssertion: “T tmp2 = b;” where T is typeOf(b)
return // transformed tree: Name b -> Name tmp2

// no more child node to visit
make_preassertion(typeOf(a+b), tmp1+tmp2, str) -> tmp3 // str == “a+
return // transformed tree: AdditiveExpression a+b -> Name tmp3

visit(PrimaryExpression: f(c))
str = “f(c)”
visit(Name: f)

return // function name: node not transformed
visit(Name: c)

str = “c”
// no child node to visit
make_preassertion(typeOf(c), c, str) -> tmp4
return // transformed tree: Name c -> Name tmp4

// no more child node to visit
make_preassertion(typeOf(f(c)), f(tmp4), str) -> tmp5 // str == “f(c)”
return // transformed tree: PrimaryExpression f(c) -> Name tmp5

// no more child node to visit
make_preassertion(boolean, tmp3 == tmp5, str) -> tmp6 // str == “a+b==f(
return // transformed tree: EqualityExpression a + b == f(c) -> Name tmp6

During this evaluation, six pre-assertions are stored. Once the assertion evalu
is completed, the transformer will generate the code along with these preasser
e.g. (see Section 5.2.1.2.d: ADL_BehaviorSpecification):

testContext.assertionStart(“a + b == f(c)”);
if (!skipAssertions) {

int tmp1 = a; short tmp2 = b; int tmp3 = tmp1 + tmp2;
short tmp4 = c; int tmp5 = f(tmp4);
boolean tmp6 = tmp3 == tmp5;
tddRes = tmp6;
if (debugMode) {

testContext.infoline(“a”, tmp1);
// ...
testContext.infoline(“a+b==f(c)”, tmp6);

}
testContext.assertionResult(tddRes ? ADL_PASS :

ADL_FAIL);
} else {

testContext.assertionResult(ADL_UNEVALUATED);
}

c/ Call-State Expression

• A call-state expression is not further decomposed.

• A call-state expression is first saved as a saveBlock, and the generated tempor
that corresponds to this saveBlock is then saved as a PreAssertion.

Example:
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visit(EqualityExpression: a == @(f(b) + c))
str = “a==@(f(b)+c)”
visit(Name: a)

str = “a”
make_preassertion(typeOf(a), a, str) -> tmp1
// preAssertion: “T tmp1 = a;”
return // transformed tree: Name tmp1

visit(ADL_CallStateExpression: @(f(b)+c))
// no decomposition of a callstate

str = “@(f(b)+c)”
make_saveBlock(typeOf(f(b)+c), f(b)+c) -> savTmp1
make_preassertion(T, savTmp1, str) -> tmp2 // str == “@(f(b)+c)”
// preAssertion: “T tmp2 = savTmp1;”
return // transformed tree: Name tmp2

make_preassertion(boolean, tmp1==tmp2, str) -> tmp3
return // transformed tree: Name tmp3

Generated code:
As a saveBlock (see Section 5.2.1.2.d: ADL_BehaviorSpecification)

int tmpSav1 = 0;
if (!skipAssertions) {

tmpSav1 = f(b)+c;
}

As preAssertion:
short tmp1 = a; int tmp2 = savTmp1;
boolean tmp3 = tmp1 == tmp2; tddRes = tmp3;

Note:
make_saveBlock generates 2 distinct statements: the declaration of the tempo
variable with an initialization to a default value (the Java default value for the ty
of the variable) and the assignment of the call-state expression to this variable.
is because the evaluation of the expression must be performed only when the
ime is not in a “skipAssertions” mode and because the Java compiler requires 
local variable be always initialized before being used.

d/ “Try/Catch” Case
A try/catch expression is not further decomposed.

Example:
visit(EqualityExpression: a + { try { f(b)+c; } catch(Exc e) { 0; } } == 0)

str = “a+{try{f(b)+c;}catch(Exc e){0;}}==0”
visit(AdditiveExpression: a+{try{f(b)+c;}catch(Exc e){0;}})

str = “a+{try{f(b)+c;}catch(Exc e){0;}”
visit(Name: a)

str = “a”
make_preassertion(typeOf(a), a, str) -> tmp1
return // transformed tree: Name tmp1

visit(ADL_TryAssertionGroup: try{f(b)+c;}catch(Exc e){0;})
// no decomposition of a try block
str = “try{f(b)+c;}catch(Exc e){0;}”
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make_preassertion(typeOf(f(b)+c), try{f(b)+c;}catch(Exc e){0;}, str
-> tmp2

return // transformed tree: Name tmp2
make_preassertion(T, tmp1+tmp2, str) -> tmp3
return // transformed tree: Name tmp3

visit(0)
return // primitive values are not transformed

make_preassertion(boolean, tmp3 == 0, str) -> tmp4
return // transformed tree: Name tmp4

Generated code:
short tmp1 = a; int tmp2 = 0;
try { tmp2 = f(b)+c;} catch(Exc e) {tmp2 = 0;}
int tmp3 = tmp1+tmp2;
boolean tmp4 = tmp3 == 0; tddRes = tmp4;

Note:
here, make_preassertion generates in fact two separate statements: the decla
of the temporary variable and its initialization with a default value, and the try/ca
statement where this variable is given the expression value.

5.2.1.4 Inline Substitution Algorithm

a/ Inline call (PrimaryExpression)
Children nodes:

PrimaryPrefix:
Name: inlineName

PrimarySuffix:
Arguments: inlineArgs

Created node:
visit(currentInline.ADL_AssertionGroup.clone()))

Fields:
currentInline = // the inlineDeclaration that corresponds to the current

// call to inlineName (Section 5.2.1.2.b)
inlineFormalParams = currentInline.MethodDeclarator.FormalParameters
inlineActualParams = inlineArgs
inlining // boolean set to true before visiting currentInline.ADL_AssertionGroup

// false after

b/ Name
Current node:

Name aName
Actions:

if inlining

if aName <is the nth parameter of inlineFormalParams>
newnode = inlineActualParams.getChild(n).clone()

Created node:
visit(newnode)

Note:
in other cases, see the usual decomposition algorithm (Section 5.2.1.3).
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5.2.1.5 PrimaryExpression: general algorithm
Several cases must be taken into account, for example whether this is an inline ca
the node is encountered during an inline substitution.

Current node:
PrimaryPrefix : prefix
PrimarySuffix : suffix1
( PrimarySuffix : otherSuffixes )*

Actions:
IF prefix is not a name: usual algorithm (visit all children)
ELSE

IF prefix is an inline name
IF no otherSuffixes: see Section a on page 70
ELSE return a PrimaryExpression whose prefix is the visited inline call

(i.e. visit(prefix.suffix1)) and suffixes are visit(otherSuffixes)
ELSE

IF inlining
IF prefix is the name of a formal parameter of the current inline substitut

return a PrimaryExpression with as prefix the visit to the correspondin
actual parameter and as suffixes visit(suffix1) and visit(otherSuffixes)

IF prefix is a qualified name whose first component is the name of a form
parameter of the current inline substitution
IF the corresponding actual parameter is a name, just replace the form

parameter by the actual one:
<Name: <inlineFormalP>”.”<nameRest>><suffix1><otherSuffixes> -
<Name: <inlineActualP>”.”<nameRest>><suffix1><otherSuffixes>

ELSE the rest of the name becomes a DotSuffix:
<Name: <inlineFormalP>”.”<nameRest>><suffix1><otherSuffixes> -
<PrimaryPrefix: inlineActualP><DotSuffix: nameRest><suffix1><oth

erSuffixes>
IF prefix is the name of a component of the tested object, it must be qualifi

by this real object name.
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5.2.2 TDD Node Transformation

5.2.2.1 Design

Figure 6 presents the UML diagram of the hierarchy of classes used in the code g
tion code for a tdd class. The main class is the TDDTransformVisitor, which is given
AST root of the parsed tdd class. This visitor will “dispatch” the computation, creat
objects for each feature present in the source: a DatasetBuilder object for a datase
nition, a FactoryBuilder for a factory definition, a DirectiveBuilder for a test directive
Each of these builders will have to create an AST that will be unparsed as a separ
Java file; they all inherit from an abstract class Builder that initializes such a tree.

Dataset and directive features both contain dataset expressions; when a dataset e
sion is encountered, one must create a DatasetExprVisitor object that will visit this
expression and generate the code that implements it.

Finally, the class RemoveADLVisitor is used to visit the AST of a directive body or 
test function to detect ADL and/or ADL_new expressions and replace them with su
able code. FactoryVisitor is used to visit the body of factory definitions in order to
replace primitive type expressions in return statements by an equivalent wrapper o
(for instance “return 0;” must be replaced by “return new Integer(0);”).

Builder

GenericVisitor

FIGURE 6. TDD Code Generation Architecture Model

TDDTransformVisitor

DatasetBuilder

FactoryBuilder FactoryVisitor

DatasetExprVisitor

DirectiveBuilder RemoveADLVisitor
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5.2.2.2 TDDTransformVisitor

a/ ADL_CompilationUnit
Children nodes:

( ImportDeclaration : impDecl )*
( TDD_UseDeclaration : useDecl )*
TDD_ClassDeclaration : tddClass

Created node:
CompilationUnit :

( ImportDeclaration : importDecls )+
visit(tddClass)

Fields:
( ImportDeclaration importDecls += impDecl )*
importDecls += <ORG.opengroup.adl.runtime.*>

Note:
“use” declarations are used only by the symbol table manager during parsing.

b/ TDD_ClassDeclaration
Children nodes:

IDENTIFIER : id
( TDD_ClassBodyDeclaration : decl )*

Created node:
ClassBodyDeclaration :

MODIFIER : “public”
IDENTIFIER : id + “TDD”
Name : “ADLTest” // extends clause
( visit(decl) )*

Fields:
Name unitName = id
CompilationUnit : constInterface =

makeConstInterface(constants, unitName, importDecls)
// for the constant interface, see Section f.

c/ TDD_DatasetDeclaration
Created node:

null // no created node
Action:

datasets += new DatasetBuilder(node, importDecls, unitName).compilUnit
Note:

“datasets” is the handle that gathers all ASTs that correspond to dataset defin
(returned as field “compilUnit” of the DatasetBuilder). It will be used by the ADL
engine that has started the TDDTransformVisitor, so that its AST elements are
to an unparser.
The principle is the same for both following sections TDD_FactoryDeclaration 
TDD_TestDirective.

d/ TDD_FactoryDeclaration
Created node:

null // no created node
Action:
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factories += new FactoryBuilder(node, importDecls, unitName).compilUnit

e/ TDD_TestDirective
Created node:

null // no created node
Action:

directives += new DirectiveBuilder(node, importDecls, unitName).compilUnit

f/ TDD_FieldDeclaration
Children nodes:

Type : type
( VariableDeclaratorId : id
  VariableInitializer : init )+

Created node:
null // no created node

Actions:
FieldDeclaration constants +=

MODIFIER : “public”
Type : type
( VariableDeclarator :

VariableDeclaratorId : id
VariableInitializer : init

)+
Note:

makeConstInterface is a method called in the visit of TDD_ClassDeclaration, a
the visit to FieldDeclaration nodes, which builds the interface that gathers all d
rations of the “constants” handle. This is a trivial method that will not be detaile
here.

g/ MethodDeclaration
Actions:

Create an RemoveADLVisitor object and make it visit the last child (Block) of t
current node (see Section 5.2.2.8).
Return the current node.

5.2.2.3 Dataset Builder
Input:

TDD_DatasetDeclaration :
TDD_SingleDeclarator :

ResultType : dsType
VariableDeclaratorId : dsName

TDD_DatasetExpr : datasetExpr
( ImportDeclaration : importDecls )*
Name : unitName

Fields:
Name datasetName = dsName
Name className = “S_” + unitName + “_” + datasetName
Type datasetType = dsType

Actions:
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datasetComponents is computed by visiting the dataset expression datasetExpr
through a dataset expression visitor (see Section 5.2.2.6):

visitor = new DatasetExprVisitor(“tc”, “elt”);
visitor.visit(datasetExpr);

(the first string parameter is used to send the right test-context for newly creat
datasets, and the second one will initialize the visitor’s stack of string strStack)

Output:
CompilationUnit :

( ImportDeclaration : importDecls )*
ClassDeclaration :

MODIFIER : “public”
IDENTIFIER : className
Name : findType(datasetExpr) // inherited class name
ClassBodyDeclaration :

ConstructorDeclaration :
MODIFIER : “public”
IDENTIFIER : className
FormalParameters :

<ADLTest tc>
ExplicitConstructorInvocation :

<super(tc, “<datasetName>”);>
( visitor.datasetComponents.top )*
( BlockStatement :

<addElement(elt<i>);>
)i=1..datasetComponents.top.size()

5.2.2.4 Directive Builder
Input:

TDD_TestDirective : node
[ IDENTIFIER : ident ]
( TDD_DatasetDomain :

[ TDD_SingleDeclarator : single ]
TDD_DatasetExpr : datasetExpr

)*
Statement: userStmt

( ImportDeclaration : importDecls )*
Name : unitName

Fields:
[ Name directiveName = ident ] // or directiveName = “anonymous_<index>”
Name className = “D_” + unitName + “_” + directiveName
( SingleDeclarator singleDecl = single )*

Output:
CompilationUnit :

( ImportDeclaration : importDecls )*
ClassDeclaration :

MODIFIER : “public”
IDENTIFIER : className
84 of 132 Version 1.1



Code Generation ADL 2.0 Translation System Design Specification

uple

=int:

LVis-
ents.
Name : “TDD” + unitName
ClassBodyDeclaration :

ConstructorDeclaration : makeDirectiveConstructor()
MethodDeclaration : makeMain()
MethodDeclaration : makeRunInstance()

Actions:
1/ makeDirectiveConstructor --> generates constructor “public
<className>()” with body created by:
( // loop on dataset expression parameters

visitor = new DatasetExprVisitor(“this”, “elt_” + i)
visitor.visit(datasetExpr);
( visitor.datasetComponents.top )*
BlockStatement :

“addParameter(elt<i>)”
) i=1..nbDatasetExpr

2/ makeMain --> generates method:

“static public void main(String[] args) {
testCase.main(“<directiveName>”, args,

new <className>());
}”

3/ makeRunInstance --> generates method“protected void
runInstance(Object[] paramValues) throws Throwable”  with
body created by a loop on singleDecl, such that for each SingleDeclarator (a co
type-name), two statements are generated:

• “<type> <name> = (<type>) paramValues[i];”
(with a special case to consider when the type is primitive: for instance if type=
then “int <name> = ((Integer) paramValues[i]).intValue();”)

• “infoline(“Parameter <type> <name> = “ + <name>);”

Then the user code of the test directive (userStmt) is visited by an RemoveAD
itor (see Section 5.2.2.8) and the return of this visit is added after these statem

5.2.2.5 Factory Builder
Input:

TDD_FactoryDeclaration : node
MethodDeclaration :

ResultType : factType
MethodDeclarator :

IDENTIFIER : factName
FormalParameters :

( FormalParameter :
Type : typeParam
VariableDeclaratorId : nameParam

)*
[ NameList : factThrowsList ]
Block : factBlock
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[ [ FormalParameters : relinquishParams ]
  Block : relinquishBlock ]

( ImportDeclaration : importDecls )*
Name : unitName

Fields:
Name className = “F_” + unitName + “_” + factName

Output:
CompilationUnit :

( ImportDeclaration : importDecls )*
ClassDeclaration :

MODIFIER : “public”
IDENTIFIER : className
Name : “ADLFactorySet”
ClassBodyDeclaration :

ConstructorDeclaration : makeFactoryConstructor()
MethodDeclaration : makeFactoryProvide()
MethodDeclaration : makeFactoryRelinquish()
MethodDeclaration : makeProvide()
MethodDeclaration : makeRelinquish()

Note:
The constructor and the methods makeFactoryProvide, makeFactoryRelinquis
makeRelinquish are easily built: direct and obvious tree creation using availab
information (no subtree to visit, no particular algorithm or data structure to take
into account).
The makeProvide (resp makeRelinquish) method generates the code of a met
that is exactly the same as the factory code written by the user (resp the relinq
block), except:

• the name of the method (“provide_<factName>” instead of “<factName>”).

• if the factory has a primitive return type (e.g. int), the last child (Block) of the fac
tory definition must be visited by a FactoryVisitor object: see Section 5.2.2.7.

5.2.2.6 Dataset Expression Visitor

a/ Algorithm
The dataset expression visitor is used by two builders: DatasetBuilder and Directiv
Builder. It is given as input an AST that corresponds to a dataset expression, but it
not modify this tree: instead it creates a set of trees that will be used in different wa
the caller.

The transformation of a dataset expression (either in a dataset or in a directive defi
tion) consists in declaring and initializing a Java variable. The class type of this obje
either an existing external dataset implementation class or factory implementation c
or an ADLLiteralSet (initialized by an array containing the values of the literal set
expression), or an ADLConcatenationSet. The goal of the dataset expression visito
build the trees corresponding to these declarations.

There are two kinds of dataset expressions: theprimitive expressions (name or literal)
and theaggregated ones (concatenation or factory call). In the case of aggregated
expressions, the dataset is composed of dataset sub-expressions: the datasetcomponents
86 of 132 Version 1.1



Code Generation ADL 2.0 Translation System Design Specification

t com-

ataset-
to the
s to
er by

is as

2”)
(arguments of a factory call or elements of a dataset concatenation). These datase
ponents must be sent to the parent object for its initialization. This process may of
course be recursive, and therefore requires to use stack-oriented data-structures: d
Components is a stack of vectors of nodes (datasetComponents.top corresponds 
components of the current dataset) and strStack is a stack of strings to give name
new declarations; this stack is initialized by a string given as a constructor paramet
the object that uses a dataset expression visitor.

The algorithm to generate the declarations corresponding to dataset components 
follows:

makeComponents( (node)nbNodes)
// node stands for dataset components (operands of a “+” or arguments
// of a factory call)
datasetComponents.push(new())
for i = 1..nbNodes
  strStack.push(strStack.top + “_p” + i)
  visit(TDD_DatasetExpr : node)// recursive visit
  strStack.pop()
endfor
result = datasetComponents.top
datasetComponents.pop()
return result;

b/ Name (of a dataset)
add to datasetComponents.top the declaration:

“<name> <datasetName> = new <name> (<testContext>);”

FieldDeclaration : createdNode
Type : fullName
VariableDeclarator :

Name : strStack.top
AllocationExpression :

Name : fullName
Arguments :

Name : <testContext>
Fields:

fullName = makeName(name) // name: current node
// makeName gives the complete dataset name (e.g. from “D2” to “S_auxlib_D

Actions:
datasetComponents.top += createdNode

c/ Literal (singleton literal dataset)
“Cast” in a real literal dataset.
Actions:

visit(TDD_DatasetLiteral : currentNode)

d/ Name (of a constant)
Note:

considered as a literal
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Actions:
// “Cast” in a real literal dataset.
visit(TDD_DatasetLiteral : currentNode)

e/ TDD_DatasetExpr (concatenation of datasets)
Example:  // in tdd class “examples”

D1 + D2 // D1 is defined in “auxlib” and D2 in the current tdd class
-->

ADLConcatenationSet <myname> =
new ADLConcatenationSet(<testContext>, null);

S_auxlib_D1 <myname>_p1 = new S_auxlib_D1(tc);
S_examples_D2 <myname>_p2 = new S_examples_D2(tc);

<myname>.addElement(<myname>_p1);
<myname>.addElement(<myname>_p2);

Children nodes:

( TDD_DatasetConcatExpr : child )nbChildren

Actions:
#if ANONYMOUS
FieldDeclaration : createdNode1

Type : “ADLConcatenationSet”
VariableDeclarator :

Name : strStack.top
AllocationExpression :

Name : “ADLConcatenationSet”
Arguments :

Name : <testContext>
StringLiteral : “null”

datasetComponents.top += createdNode1
#endif
datasetComponents.top +=

makeComponents( (child ) nbChildren  )
#if ANONYMOUS
( Statement : createdNode2

“<strStack.top>.addComponent(<strStack.top>_p<i>);”
datasetComponents.top += createdNode2

)i=1..nbChildren

#endif
Notes:

• The special case “dataset T D1 = D2;” is considered as a concatenation of data
with a single operand.

• When the concatenation operation is at the outermost level of a dataset declara
(e.g. “dataset int D = D1 + D2”), i.e. when the result is not “anonymous”, only th
“makeComponents” part of this algorithm is necessary: the ADLConcatenationS
declaration and the “addComponent” statements (in fact addElement for conca
tion or addParameter for factory call) are performed by the caller, dataset or dire
builder. These operations occur only in the case of complex expressions such a
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“fact(D1, D2+D3)”: here the expression “D2+D3” is anonymous and must theref
be declared as a dataset concatenation and initialized with the components D2
D3.

f/ TDD_FactoryCall
Example:

Fact(D2)
-->

F_examples_Fact <myname> = new F_examples_Fact(<testContext>, null);
S_auxlib_D2 <myname>_p1 = new S_auxlib_D2(tc);
<myname>.addParameter(<myname>_p1);

Children nodes:
Name : factName

(Node : factArg )nbArgs

Actions:
#if ANONYMOUS
FieldDeclaration : createdNode1

Type : factFullName // makeName(factName)
VariableDeclarator :

Name : strStack.top
AllocationExpression :

Name : factFullName
Arguments :

Name : <testContext>
StringLiteral : “null”

datasetComponents.top += createdNode1
#endif
datasetComponents.top +=

makeComponents( (factArg ) nbArgs  )
#if ANONYMOUS
( Statement : createdNode2

“<strStack.top>.addComponent(<strStack.top>_p<i>);”
datasetComponents.top += createdNode2

)i=1..nbArgs

#endif
Note:

ANONYMOUS: cf second note for concatenation above (Section e).

g/ TDD_DatasetLiteral / TDD_DatasetMember
The transformation is performed in three steps:

• initialize a vector with the values of the literal set

• transfer this vector into an array

• declare the dataset as an ADLLiteralSet constructed with this array.
Example:

{3, 5 .. (int)(Math.random()*10)+5, 20 .. (int)(Math.sqrt(1000))}
-->

java.util.Vector <myname>_v = new java.util.Vector();
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<myname>_v.addElement(new Integer(3));
int minexp, maxexp;
minexp = 5; maxexp = (int)(Math.random()*10)+5;
for (int i = minexp; i <= maxexp; i++)

<myname>_v.addElement(new Integer(i));
minexp = 20; maxexp = (int)(Math.sqrt(1000));
for (int i = minexp; i <= maxexp; i++)

<myname>_v.addElement(new Integer(i));
int <myname>_a[] = new int[<myname>_v.size()];
for (int i = 0; i < <myname>_v.size(); i++)

<myname>_a[i] = ((Integer)<myname>_v.elementAt(i)).intValue();
ADLLiteralSet <myname> = new ADLLiteralSet(tc, <myname>_a);

Actions:
All these declarations and statements are to be generated in datasetCompone
We will not detail here the transformation, which is simple but tedious... Just n
that in the case of a single-valued dataset literal, we generate a simple
“<myname>_v.addElement” statement, whereas for a range dataset literal we 
erate a loop from the first value of this range to the second one.
Note also that if a dataset member calls a static method “meth” of the current 
class, the generated code must call “<tddClassName>TDD.meth”.

h/ Example
Let’s consider the following dataset definition (in tdd class bTest):

dataset bank TEST =
make_bank(DEPOSITS, BANKSIZE + DEPOSITS, INT_VALUES);

The transformation of this dataset declaration will generate a class S_bTest_TEST
inherits from the class that implements the factory make_bank, and where the data
expressionmake_bank(...)  is transformed into:

S_bTest_DEPOSITS elt_p1 = new S_bTest_DEPOSITS(tc);
// 2nd parameter: anonymous --> recursive call
ADLConcatenationSet elt_p2 =

new ADLConcatenationSet(tc, null);
S_bTest_BANKSIZE elt_p2_p1 = new S_bTest_BANKSIZE(tc);
S_bTest_DEPOSITS elt_p2_p2 = new S_bTest_DEPOSITS(tc);
elt_p2.addElement(elt_p2_p1);
elt_p2.addElement(elt_p2_p2);
S_bTest_INT_VALUES elt_p3 = new S_bTest_INT_VALUES(tc);
// Components are then added as parameters of the factory
// make_bank:
addParameter(elt_p1); addParameter(elt_p2);
addParameter(elt_p3);

5.2.2.7 FactoryVisitor
The aim of this visitor is to visit a Block AST in order to replace primitive type expr
sions in return statements by an equivalent wrapper object (for instance “return 0; ”
must be replaced by “return new Integer(0); ”).
This class overrides only one visit method, for the ReturnStatement node:
90 of 132 Version 1.1



Code Generation ADL 2.0 Translation System Design Specification

ve

part
re, to

ith any
ble to

isitor
r the
ine

at the
Children nodes:
[ Node : returnExpr ]

Created node:
ReturnStatement :

[ AllocationExpression :
Type : <JavaWrapperType(returnExpr)>
Argument : returnExpr ]

5.2.2.8 RemoveADLVisitor
The aim of this visitor is to replace ADL/ADL_new expressions that occur in directi
bodies or test functions.

ADL(<object name>)<suffixes>*  --->
new <object type>ACO(<object name>, this)<suffixes>*

ADL(<class name>)<suffixes>*  ---> // test of a static method
new <class name>ACO(null, this)<suffixes>*

ADL_new <name>(<args>)<suffixes>*  ---> // constructor test
new <name>ACO(null, this).<name>(<args>)<suffixes>*

This class only overrides the visit methods for nodes PrimaryExpression,
TDD_ADLExpression and TDD_ADLnewExpression.

5.3 Unparsing

Generating the text of the generated file is comparatively simple. The only difficult 
is laying out the source so it’s easy to read. Unparsing an AST, or other data structu
produce human-readable text is often called “prettyprinting”.This may require two
passes; one to count the length of a generated line, another to generate the line w
required linebreaks. Or, assuming the current column in the output stream is availa
unparser method, a single pass where required linebreaks are generated when it
becomes impossible to dump the next node.

 According to the visitor pattern as described in introduction above, the unparser v
provides a visit method for each node type. The visit method generates the text fo
node, using hard and optional line breaks. The first unparse pass uses only hard l
breaks; if a line of text is too long, then it is regenerated with optional line breaks.

For example: the code to unparse a “for” statement might be (assuming as above th
parts of the for statement are available as instance variables)

void visit(ForStatement fs) {
boolean wrapped = false;
if (currentColumn >= lineLimit - 5) {

wrapped = true;
newline(); // emit a newline and reset currentColumn
addIndent(subIndent); // add subIndent to indent
indent(); // emit the current indent

}
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emit(“for (“); // emit the start of the for statement

// ask the forInit member to unparse itself
fs.forInit.jjtAccept(this);
emit(“; ”);
// ask the forTest member to unparse itself
// it will take care of remaining space to decide whether
// to emit a newline or not
fs.forTest.jjtAccept(this);
emit("; ");
// ask the forUpdate member to unparse itself
fs.forUpdate.jjtAccept(this);
emit(")");

fs.forBody.jjtAccept(this);

if (wrapped) {
delIndent(subIndent);

}
}

EXAMPLE 4 Unparsing for statement

This code is certainly not complete; it may be improved by adding a special treatm
when the body of the for statement is not a block. It relies on several information a
methods in the current unparser visitor that are not described in this example. Add
ally, it provides no code to deal with comments in the code. A specific section belo
describes the design for comments processing. Nonetheless, the pattern of the un
code should be evident.

5.3.1 Unparser Visitor Classes

Unparsing is done by an unparsing visitor class, which is the dual of the parser for
AST type in question. Unparser visitors are derived from the abstract class Generi
parserVisitor (see Figure 5). This class provides specific unparser methods with cu
unparser state information and generic methods.

The relevant declarations are:

abstract class GenericUnparserVisitor {
...
protected PrintWriter out; // print stream to write to
protected String outputDirectory; // root dir for output

private StringBuffer currentIndent;

protected int subIndent; // indent level for sub expr
protected int regIndent; // indent level for stmt
protected int currentColumn; // current col in print stream
protected int lineLimit; // maximum length of line
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protected void addIndent(int extraIndent) { ... }
protected void delIndent(int extraIndent) { ... }
protected void indent() { ... }
protected void setIndent(int newIndent) { ... }

  protected int getIndent() { ... }
protected void newline() { ... }
protected void emit(String str) { ... }

private String addUnicodeEscapes(String str) { ... }

protected GenericUnparserVisitor(String toolname,
String version,
int linelimit,
String regindent,
String subindent) {

...
}

protected GenericUnparserVisitor(String toolname,
String version) {

...
}

}

EXAMPLE 5 GenericUnparserVisitor Skeleton

A simple rule for writing the specific UnparserVisitor classes is that there should be
visit  method for each grammar rule that consume a token; parse rules that do n
consume token may not need emit methods for the corresponding Node class. If o
Node class is used to represent more than one grammar rule, then the code for th
method will have to distinguish those nodes by looking at the node properties.

Before a string can be emitted on the print stream, each character out of the stand
ASCII character set should be replaced by its corresponding UTF-8 encoded char
This operation is performed by theaddUnicodeEscapes  method. Such replacement
might be conditioned by a system property indicating the type of character set use
the underlying operating system (ASCII or UTF-8).

5.3.2 Comments Processing

If comments are to be reproduced in the generated code they require a special tre
during the parsing, and they need to be copied into the target AST generated by the
transformation phase.

As far as parsing is concerned, the simplest way to handle comments is to apply th

eral pattern provided in the Java Compiler Compiler examples.

In this pattern, comments are usually parsed as SPECIAL_TOKENS.
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As these special tokens get attached to the real token immediately following them,
non-terminal node needs in turn to reference its first token to be able to access po
comment strings preceding it.

Some terminals in the ADL grammar (generally keywords, operators and separato
may not be represented by nodes in the AST. They are however parsed as tokens a
therefore reference a preceding comment string. Ideally, each non-terminal node m
ing use of such terminals in its production rule should keep a reference to those. Bu
is not always possible since the terminal may in fact be used in a different product
rule than the one where the non-terminal node is built. The solution is then to keep
last token of a non-terminal, as shown in the examples above, so that it can be use
get the next token in the token chain, i.e., the terminal’s token. Figure 7 depicts the
actual links between the generated AST and the token chain for a simple input text
input text has been chosen because it illustrates the problem of comments associa
terminals without corresponding nodes.

The typical algorithm used to unparse text in such a situation is kind oftoken-driven.
Starting from the first token in the token chain, each token is unparsed in turn. This
rather incompatible with thenode-driven algorithm suggested by the AST data structu
and the visitor pattern model.

“( a+2 // comment 1
   , b // comment 2
)”

ArgList

+

a 2

b

( a + 2 , b )

// comment 1\n // comment 2\n

firstToken (f) lastToken (l)

f l

f,l

f,l

next
specialToken

f,l
Token Chain

AST

Input Text

FIGURE 7. Links between AST and Token Chain
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Furthermore, it should be noted that the depicted links are valid right after parsing.
while AST transformation can preserve them as much as possible, it will never be 
to establish such links for generated nodes.

And another even more serious problem is related to the memory usage of the pars
long as one non-terminal node keeps a reference to its first token, all remaining to
returned by the lexer.from the parsed file are referenced and will therefore never b
bage collected, or at least until the tree is transformed. This means that a really hu
amount of tokens are kept in memory, together with the whole AST. JavaCC users
already reported that this may cause Java to run out of memory.

For all these reasons, we have decided to currently not preserve comments in the
ated code.
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Chapter 6 Documentation
Generation Architecture

6.1 Introduction

In addition to code to implement the test, ADLT2 generates natural language to des
the specification and data that it is to be tested with.

This chapter describes the requirements that the ADLT2 natural language generat
subsystem should satisfy and the design of its implementation.

6.1.1 Generated documents

There are two kinds of document produced as output. The first is reference manua
uments to describe the interface of the function under test. They are modeled on t
standard Unix manual page entries and include descriptions of the function synops
the assertions from the ADL specification.

The second document type is the test description. This document describes the da
the function is to be tested against, and the sequence of annotated functions that 
tute the test.

Some of the content of these documents comes from templates, some is generate
matically from the ADL and TDD sources, and some is directly provided by user a
tations.

6.1.2 Expression translation

ADLT2 can generate natural language translations for expressions in ADL and TD
The default translations are rather stilted and unnatural. The translations can be
Version 1.1 97 of 132



Documentation Generation Architecture ADL 2.0 Translation System Design Specification

 iden-
tion.
vide

tities

enti-
log

t con-
ntences
nese.

lish.

n
 in

en-
panese

nt
cla-

rd
d test

for
en-
L

ed

page
improved by providing alternative translations for source language identifiers. NLD
annotations are the mechanism for associating translations with source identifiers.

Each natural language annotation provides information about the translation for an
tifier. It does this in the form of a list of predicates that assert facts about the transla
Some predicates define the actual translation text for the identifier, while others pro
contextual constraints such as the appropriate locale for the translation. SGML en
can also be declared in the predicate list.

6.1.3 Sentence construction

ADLT uses a set of rules to construct descriptions of ADL expressions out of the id
fier translation fragments. These rules take the form of a Prolog program. That Pro
program is specific to the natural language being generated, since it has rules tha
struct sentences in the language. One candidate for the generation of Japanese se
is the Language Toolbox, which is an existing Prolog system for generation of Japa

6.1.4 Internationalization

ADLT2 must support the generation of documentation in languages other than Eng

ADLT2 provides internationalization mechanisms in three areas: the NLD translatio
annotations can be marked with their locale (by using a locale predicate), or stored
locale-specific files; the document templates can be locale-specific files; and the s
tence generation rules can be modified to support a specific locale (such as the Ja
Language Toolbox).

6.1.5 SGML support

Standard Generalized Markup Language (SGML) is the foundation of the docume
generation system. ADLT renders ADL and TDD expressions into SGML entity de
rations, exploiting any NLD annotations that the test engineer has provided.

ADLT supplies templates and synthesizes entities based upon the industry standa
DocBook 3.0 document type definition for constructing reference manual pages an
specification descriptions.

The synthesized entity declaration are taken with user supplied entity declarations
together with template entity declarations to produce complete SGML documents 
subsequent processing. They can be converted with auxiliary tools into more conv
tional formats such as HTML and Unix manual page format. Alternatively, the SGM
document can be incorporated into larger SGML documents.

The SGML that is generated is standard SGML and can be manipulated, transform
and rendered with standard SGML tools. Although ADLT2 will make use of freely
available tools to convert the generated documentation to HTML and Unix manual 
formats1, users will be able to use their own SGML tools for custom processing.

1. See http://www.gr.opengroup.org/adl/papers/sgml_setup.html.
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6.1.6 Abstract syntax tree interface

Natural language information need not be made available to other parts of the ADL
system. Hence there is no need to attach the translations for identifiers and expres
directly to nodes in the AST. Moreover, as it is described below, there is no AST w
processing a NLD file.

6.2 General Architecture

Figure 8 below depicts how NLD annotations are processed in the ADLT system to
erate the Natural Language Specifications (NLS) and Tests Description (NLTD).

Basically, the ADL compiler passes each input file to the ADL/TDD parser of the c
rent language binding. NLD annotations are extracted from the input file and sent t
Prolog engine as mappings, i.e., associations between symbols in a given context
translations.

ADL/TDD Parser

NL Unparser

NLD Parser

NL Engine

Prolog Engine

AST

NLD Annotations

Mappings

ADL/TDD Source

NL Translations

Communication
Pipe

ADL, TDD, NLD File

NL Specifications,
NL Tests Description

FIGURE 8. NLD Annotations Processing
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The resulting AST at the end of the parsing of the input file is then passed to the N
unparser which generates the associated documentation: NL specifications for an
file, NL Tests Description for a TDD file.

NLD files don’t generate any AST. Their purpose is just to provide some additiona
mappings to feed into the Prolog engine. Since these additional mappings may be 
sary to generate the documentation of any ADL or TDD file, NLD files are parsed
before any other file. This is done by reorganizing the list of input files in the ADLT 
tem driver class:Adlt  (See “The Driver” on page 25.).

6.2.1 ADL/TDD Parser

The key idea in separating the ADL/TDD parser from the NLD parser is that the sy
of NLD annotations is almost the same for all binding languages. Each ADL/TDD
parser ignores the NLD annotations and passes them to the NLD parser.

NLD annotations start with thenld  keyword, followed by a brace-delimited block. The
exact syntax is expanded below:

NLD_Annotation ::= “nld” [ NLD_Locale  ] “{“ ( NLD_Declaration  )* “}”

This syntax is used to define a token in each input language parser to ignore the N
annotations while still keeping its value.

In case of a pure NLD file, no AST is generated by the input language parsers. The
annotations it contains are just used to extend the set of mappings of the Prolog e

Obviously, when the user has requested not to generate the documentation, the
NLD_Annotation  tokens are just discarded.

6.2.2 NLD Parser

The role of the NLD parser is to convert NLD annotations in the source files into pr
calls to the NL Engine methods which extend the set of mappings known by the P
engine. For this task, there is no need to create an AST representing the annotatio
The parsing consists in extracting the various information attached to an annotatio
predicates, scope, translation; interpreting and passing them as arguments to the 
engine methods.

A single NLD annotation grammar is used for all supported language bindings. Th
syntax of NLD strings has hence been extended to cover both C, C++ and Java. F
instance, it is possible in any case to define a concatenation string as in C++:

aMapping = “a first string” “, a second one concatenated”;

or as in Java:

aMapping = “a first string” + “, a second one concatenated”;
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The complete NLD annotations grammar is reproduced in the language reference 
als for all bindings. An interesting feature of NLD annotations in ADL 2 is that they
may define properties that characterize them, and be qualified with some additiona
predicates. This features is less important in English than in other languages. The 
ple below demonstrates its usefulness on a French translation example (note that 
not use the exact syntax).

Color(Object[gender(male)]) = “la couleur du $1”,
 gender(female);

Color(Object[gender(female)]) = “la couleur de la $1”,
 gender(female);

Color(Object[number(>1)]) = “la couleur des $1”,
 gender(female);

Color(Object) = “la couleur de l’objet $1”,
 gender(female);

EXAMPLE 6 Use of predicates and properties for NLD annotations

While parsing the NLD annotations contained in the source files, the NLD parser a
filters them to only retain those defined in the appropriate locale. The user’s locale
specified, is available in theadl.locale  system property. Otherwise, it defaults to
theC locale.

6.2.3 NL Engine

Upon creation, the NL engine opens a connection to the Prolog engine using theFil-
terProcess  class. It selects the appropriate set of rules to pass to the Prolog en
according to the user’s locale (see above). Rules are stored in the$ADL2HOME/lib/
nl/<locale>/nl_rules  file. Any user can provide additional locale-specific rule
by putting them in the appropriate file and directory.

There is a single instance of the NL engine, with a permanent connection to the P
engine, during the entire lifetime of the ADLT compiler. It serves all requests for tra
lations for all compiled files.

Upon creation, the NL engine sends a default mapping to the Prolog engine using
assertz/1  predicate. This default mapping ensure that even un-annotated symb
will get a translation: the symbol name.

All other mappings are sent to the Prolog engine by using theasserta/1  predicate.

Translation requests are sent to the Prolog engine using thexlate/3  predicate.

6.2.4 NL Unparser

Since the NL unparser works on the AST generated by the input language parser,
should be one NL unparser for each binding language.
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Its main purpose is to extract specification phrases as source code, and request th
engine to translate them to generate the appropriate documentation. Basically a s
cation phrase is an assertion. From a node representing an assertion in the AST, t
unparser visits its children recursively to build the specification phrase. Each node
ited should return a string describing how to translate that node, which in turn is use
the parent node to build its own translation request string. When the visit of the chil
ends, the assertion node asks the NL engine to translate the resulting phrase.

The NL unparser also builds a complete documentation out of a template that is lo
from a source file in the$ADL2HOME/lib/nl/<locale>  directory, according to
the user’s locale and the type of file that is currently unparsed: ADL or TDD. There
one template for each kind of documentation, i.e., one for NL Specifications name
nl_specs.tpl , and one for the NL Tests Description namednl_tests.tpl .
These templates define the general layout of a document using SGML and predefi
entities referring to the various parts generated during the NL unparsing: class des
tion, method description, method semantics, etc. The NL unparser class contains 
ous placeholders where it keeps the generated translations for the predefined enti
used in the templates.

6.3 NL Engine

The NL Engine is a Java class that is used by both the NLD parser and the NL unp
as the single interface with the Prolog engine. Its role is to:

• launch a SWI Prolog process, initialize it with thelocale prolog rules
($ADL2HOME/lib/nl/<locale>/nl_rules ), and maintain a connection
with this process. This is done via theFilterProcess  class.

• during parsing, maintain information on the local scope in which an NLD annota
appears.

• allow communication with the Prolog engine formappings (from the NLD parser)
andqueries (from the NL unparsers), manipulating strings accordingly to be coh
ent with the string formats used by the different modules.

TBD Complete description of the NLEngine class.

6.4 NL Rules

6.4.1 Basic Principles

Basically, the role of the Prolog engine is twofold: during NLD parsing it has to sto
mappings (association of a symbol with its translation) and during NL unparsing it ta
as input anexpression and thecontext of this expression, and returns thetranslation of
this expression in this context, possibly using the stored mappings.

Consider for instance a variable “foo” in a class AClass, where foo is both a class 
and the parameter of a method “bar”; suppose that in the ADL specification there i
mapping “a stupid translation for foo” for the parameter foo of bar (see the ADL for
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Java or C++ Reference Manual, chapter 4), but no mapping for the field foo. Cons
now the ADL assertion “foo == 0”. If this assertion is in the specification for method
bar, it refers to theparameter foo, and the user wants this assertion to be translated 
something like “a stupid translation for foo is equal to 0” in the generated NL speci
tion document of AClass; conversely, if this assertion is in another method, it refers
thefield foo, hence it has no proposed mapping, and the translation will be a defaul
“foo is equal to 0”.

This basic mechanism is extended in two directions: scope and inheritance.

• Saying that the parameter foo of method bar has a mapping is not accurate. In
there may be a mapping defined for “AClass.bar(int).foo”. When translating an
assertion in bar that contains foo, the Prolog engine will search for such a map
If this mapping does not exist but there is a mapping for “AClass.bar(*).foo”, the
this mapping has to be taken. If it does not exist, search for “AClass.*.foo”, and
on.

• In Java and C++, we must take inheritance into account. If there is no mapping
defined for field foo but foo is in fact a field from class ASuperClass, ancestor o
AClass, and there is a mapping for ASuperClass.foo, then this mapping must b
used.

The inheritance mechanism has a higher priority than the scope mechanism. In th
of the assertion in bar that involves foo, and if there is no mapping for
“AClass.bar(int).foo”, then a mapping for “ASuperClass.bar(int).foo” will be preferre
to the mapping “AClass.bar(*).foo”.

6.4.2 Mappings

During NLD parsing, the mappings defined in NLD annotations are stored in a Pro
database as clauses “map” via the “assert” pre-defined clauses.

The clause map has the following signature:

map(Symbol, Scope, Translation, UserPred, SystemPred)

where Symbol is the symbol’s name, Scope represents the scope of the symbol as
defined in the NLD annotation, Translation is the proposed translation for the symb
UserPred and SystemPred are for user/system predicates and will be discussed la
Section 6.4.4).

Example:

asserta(map(‘maxact’, [‘#<EXTERN>’, ‘bank_example’, ‘bank’,
[‘bank’, ‘(int)’]], [‘le nombre max de comptes’],
[], [])).

This defines a translation “le nombre max de comptes1” without predicates for
“bank_example.bank.bank(int).maxact ”, i.e. the variable maxact defined

1. the max number of accounts
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in the constructor bank(int) of class bank in package bank_example. #<EXTERN>
“trick” to unify with C++. Single quotes are used to avoid clashes with Prolog variab

For methods and functions, we must also precise how the translation of the argume
used in the translation of the method call, and if the mapping is defined for argume
that obey some predicates.

asserta(mapfn(‘is_active(bank, long)’,
[‘#<EXTERN>’, ‘bank_example’, ‘bank’],
[‘le compte’, 2, ‘de la banque’, 1, ‘était actif’],
[[‘female’], []], [], [‘#CALLSTATE’])).

This defines a mapping forbank_example.bank.is_active(bank, long)
when the first argument has the predicate “female” and the method call occurs in t
scope of a call-state. In such a case, the expression@is_active(aBank, 100)
where aBank has a mapping “Société Lyonnaise” and predicate female will be tran
lated as “le compte 100 de la banque Société Lyonnaise était actif1”.

Finally, there is also a simple clause for NLD entities:

asserta(mapEntity(‘bank’, [‘#<EXTERN>’, ‘bank_example’],
description, ‘Class defining the interface of a bank.’)).

This defines the entity “description” for classbank_example.bank .

6.4.3 Translations

The basic Prolog clause for translation is “natural”:

natural(+Expr, +Ctxt, -Transl, +ScopeList,
-UserPredList, +SystemPredList)

Note: we follow the Prolog usage: an argument denoted as “+” is passed to the cla
whereas an argument denoted as “-” is computed by this clause.

Expr is the expression to be translated, Ctxt represents the local scope (the enclos
method, for an assertion) and ScopeList the current class and its ancestors. Trans
returned translation and UserPredList a list of user predicates, used for translation
method calls.

6.4.3.1 Mapping Resolution
When the expression to be translated is a simple symbol, the “natural” clause calls
“search” clause (which has the same signature).

search(’maxact’, [‘#<CLASS>’, [‘bank’, ‘(int)’]], Transl,
[[‘#<EXTERN>’, ‘bank_example’, ‘bank’],
 [‘#<EXTERN>’, ‘java’, ‘lang’, ‘Object’]],
UserPredList, SystemPredList).

1. account 100 of bank Société Lyonnaise was active
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The second argument (Ctxt) means “the current scope is the method bank(int) of t
current class” and the fourth one (ScopeList) describes this current class and its a
tors.

This clause will first call the searchInherited clause, that will try to detect a mapping
“bank(int).maxact” in the current class or its ancestors. This is done by replacing th
keyword #<CLASS> by the complete class name (first element of ScopeList) and
search for

map(’maxact’, [‘#<EXTERN>’, ‘bank_example’, ‘bank’,
[‘bank’, ‘(int)’]], Transl, UserPredList,
SystemPredList).

and if this map does not exist in the assert database, then replace bank_example.b
the next element in ScopeList (java.lang.Object here), and so on.

Note that even if there is no mapping defined for maxact, this call to map will return
argument Transl the default translation: maxact, i.e. the symbol itself. Hence, sayin
“the map does not exist” is more precisely “the map is the same as the given symb

If searchInherited has failed (i.e. the returned translation is still the initial symbol), t
we trigger the second searching mechanism: scopes. For this, we first use a claus
“enlarges” the Scope argument and we re-run the search clause.

In the previous example, enlarging the scope means replacing [‘#<CLASS>’, [‘ban
‘(int)’]] by [‘#<CLASS>’, [‘bank’, ‘(*)’]], hence searching for a mapping
“bank_example.bank.bank(*).maxact”. The next steps would be:
[‘#<CLASS>’, ‘*’] for “bank_example.bank.*.maxact”
[‘#<CLASS>’] for “bank_example.bank.maxact”

For a further scope enlargement, ScopeList must also be modified:
[‘#<CLASS>’], [[‘#<EXTERN>’, ‘bank_example’, ‘bank’], [‘#<EXTERN>’, ‘java’,
‘lang’, ‘Object’]] must be changed in [‘#<CLASS>’], [[‘#<EXTERN>’,
‘bank_example’, ‘*’], [‘#<EXTERN>’, ‘java’, ‘lang’, ‘*’]] in order to search for
“bank_example.*.maxact”, and so on.

The search for method mappings is similar, except that the “searchfun” clause has
argument more than search, an argument that deals with argument predicates. Se
Section 6.4.4.

6.4.3.2 Decomposition Algorithm

The sentence that is passed from the NL unparser to the Prolog engine correspond
assertion, i.e. a complex expression. This expression is decomposed by “natural” 
most of them very simple (such as <the translation of expression “e1 + e2”> is <th
translation of expression “e1”> “plus” <the translation of expression “e2”>). The
“search” clauses are used for atomic expressions.
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There are also rules to deal with ADL specificities, for instance to translate “thrown
e2)” by “at least one of the following exceptions is thrown: e1, e2”.

Note that such rules depend on the locale and should be translated if one wishes 
rewrite them for a different locale.

6.4.4 Predicates

There are two kinds of predicates, and their use in the translation rules require diff
behaviors. A user predicate is an “ascendant” information: it is present in the mapp
and goes “up” until a clause uses it, whereas a system predicate is a “descendant
mation that goes “down” to the mapping.

6.4.4.1 User Predicates

asserta(map(‘aBank’,
[‘#<EXTERN>’, ‘bank_example’, ‘bank’],
[‘Société Lyonnaise’], [female], [])).

(bank is a feminine noun in french...)
This mapping defines a translation for field aBank of class bank_example.bank and
that it has a “female” predicate. Hence, when the search clause will find this mappi
will also transmit this information.

In an assertion such as “aBank != null”, this information on the female predicate of
aBank has no use, but in an assertion that contains the expression “is_active(aBa
100)”, a clause “mapfun” is activated:

• mapfun first searches the argument aBank and therefore the information “aBan
female predicate” is synthesized. No predicate is found for the second argumen

• this information is propagated up to mapfun.

• mapfun then searches for a method “is_active” with the information “the first arg
ment has female predicate” propagated down to the map clause, which will uni
with the mapping defined for is_active in Section 6.4.2.

6.4.4.2 System Predicates
The mechanism for user predicates purely lays down on Prolog unification, that is 
the user can freely define its own predicates (in the previous example, one just ha
ensure that the word “female” used in the mapping for aBank is exactly the same a
word used in the mapping for is_active, otherwise they will of course not be unified

The mechanism for system predicates is different because it is triggered by the NL 
In ADLT2, two system predicates are defined, one for negation and one for call-sta
When entering an expression that begins by “!” (resp. by “@”), the “natural” clause
adds the keyword #NOT (resp. #CALLSTATE) to the argument SystemPredList. Th
predicates can be used in two different ways:

• either by a “natural” rule (for instance in the rule for expression “e1 > e2”, if #NO
is in the SystemPredList, then the returned translation will be “the translation of
is less than or equal to the translation of e2”. Note that the translation for sub-ex
sions is launchedwithout #NOT in their SystemPredList).
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• either by the mapping resolution if a mapping was defined with a system predica
the NLD annotation (unification with the “map” clause).

6.5 Document Templates

TBD Definition of the default templates for NLS and NLTD.
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Chapter 7 Runtime Architecture

7.1 Introduction

The ADL 2.0 runtime architecture broadly defines two entities; the ADL runtime libr
and the test program code generated by the ADL Translator. The code generated b
ADL translator is heavily dependent on the ADL runtime library to report the results 
test to the user, to control test execution, and to assist with data generation. The lin
of the generated code, the implementation being tested and the ADL runtime librar
the end goal of the ADL Translator; a portable executable program that exercises a
verifies that a specific implementation conforms to its test and interface specificatio

7.2 Runtime Architecture Goals

Reporting is the end goal of test creation; the test report represents the value of th
program. Some of the design goals of the runtime architecture are:

Minimal interference. The reporting scheme should minimize the impact on the tes
code. For example, the reporting mechanism should minimize its use of potentially
scarce resources like memory and (on Unix) file descriptors.

Unattended operation.ADLT is targeted at the acceptance test market; hence it is
important that an ADLT test be able to operate in batch mode, with after-the-fact in
tion of results.

Minimal code generation.The code generated by ADLT should take extreme advan
tage of the runtime library. Minimal code should be emitted by ADLT to create a tes
program.

Preservation of user written test code. An ADL generated test will contain rewritten
user test code. The rewritten code should preserve as much as possible the syntax
original input. The user should be able to easily identify original source from perusa
compilation and execution of the rewritten source code.
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7.3 Design Notation

• The source examples and design description contained in this chapter are writt
the Java language. Any implementation details of a particular target language (
C++, IDL, or JAVA) relevant to this design description will be noted.

• Most of the diagrams presented in this chapter loosely follow the Unified Model
Language(UML)1.

• In presenting TDD examples

- comments are bold italicized:// this is comment in TDD examples

- tdd specific syntax is bold:test (int a = DS){ //...} // this is
                             // a test directive

- all other source is in normal “code” font

1. Booch, G.; Jacobson, I.; and Rumbaugh, J.: “The Unified Modeling Language for Object
ented Development,” Documentation Set Version 0.91 Addendum UML Update, Septem
1996.

A B Inheritance Relation

A is-a subclass of B

A
Class or interface

 instance

A

B

Aggregation Relation

A has-a instance of B

A

B

Aggregation Relation

A has multiple

instances of B

A B

Bi-directional

Use Relation

A uses B or

B uses A

in some way

FIGURE 9. UML Notation Key
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7.4 ADL Generated Test Program Design

The ADL generated test program is a self contained executable that embodies the
and verification intentions of the input ADL and TDD specifications. It consists of u
written test code, the implementation under test, the ADL runtime library and the g
ated test code from the ADL Translator.

ADL Generated
Test Program

Software
Implementation

Under Test

ADL Generated
Code

User Written Test
Code

ADL Runtime
Library

Assertion
Checking

Objects and
Methods

Data
Generation

and
Test Control

Factory
Provide
Methods

Test
Functions

Results
Reporting

Data
Generation

And
Test Control

ADL
Specifications

1

ADL
Translator

TDD
Specifications

Classes
Under Test

Class methods
Under Test

FIGURE 10. ADL Test Program Components

Note: This is not a UML dia-
gram. It only depicts the
high-level view of the ADL
Test Program Components.

 (including TET)
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Some of the source code that comprise an ADL test program is generated by the A
translator from input TDD specifications and optional ADL interface specifications.
There is no dependence on ADL annotated functions for generating a useful work
test. The Assertion Checking Functions (ACF) or Assertion Checking Objects (ACO
generated by ADLT check an implementation against its corresponding ADL speci
tion. An ACO is a mirror image class definition of an ADL annotated object that co
tains the same method names and signatures of the ADL specified original. The
methods of the ACO object are the delegating ACF methods that test whether the 
sponding methods of the object under test conform to their ADL specification. A co
structor of the ACO takes the object under test as an argument. After the ACO obj
created with this constructor, the calls to methods of the ACO will invoke the corre
sponding (ACF)s of the method under test. In the ADL Translation System, Version
the generated ADL verification methods are available to the user to be called expli
from the test code in a TDD specification file. ACFs and ACOs offer a more thorou
and in most cases a more convenient method of ensuring expected behavior of the
tem under test. However, all verification and assertion checks can be explicitly writ
in the TDD test code. If desired, ADL specifications and generated ACOs can be
ignored entirely. It is up to the user to determine what is more effective for their tes
and specification requirements.

7.5 Overview of TDD Language constructs

ADLT generates a test program from an input TDD file. Specifically, a single test p
gram is generated for each of the TDD test directives defined in a TDD environme
scope. All user written source code appearing inside a TDD environment class or s
is rewritten or transformed as various output source code files that make up the te
gram. All true target language source code appearing in a TDD file will remain una
tered except for some special defined TDD library methods which are slightly rema
to include original source location and contextual information. The TDD library me
ods explained in Section 7.7.2, “Test Reporting Library,” on page 125 are available
test writers to affect the control, reporting and outcome of a test.
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7.5.1 The TDD environment scope

All TDD declarations occur inside a TDD environment scope. In ADL for Java and AD
for IDL the TDD environment scope is declared as a tdd class:

// TDD environment scope definition (in Java)
public  tddclass  simpleTest {

// declare a dataset
dataset  int VALUES = {1,2,3,4,5};

// declare a test directive
dir1 : test (int i=VALUES) {

// a sample TDD assertion check
tdd_assert  (”the compiler is hosed”,

i * 0 == 0);
}

}

In all other ADL target languages, the TDD environment scope is declared as a name
source block.

EXAMPLE 7 Sample TDD Environment scope declaration  (for Java)

// TDD environment scope definition  (in C/C++)

simpleTest :tdd  {

// declare a dataset
dataset  int VALUES = {1,2,3,4,5};

// declare a test directive
test1 : test (int i=VALUES) {

// a sample TDD assertion check
tdd_assert  (”the compiler is hosed”,

i * 0  == 0);
}

}

EXAMPLE 8 Sample TDD Environment scope declaration  (for C/C++/IDL)

In a TDD environment scope you can declare test data (as TDD datasets), and TDD 
using test directives. In addition, you can include ordinary methods used in calls from 
directive. Except for some minor additions, the source code in the TDD environment s
is expressed in the target language.
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In the implementation of the generated test, the TDD environment scope maps to 
gle class definition (in ADL for Java and ADL for IDL). Below is the Java output of
ADLT that represents the TDD environment scope class presented in simpleTest E
ple above:

//********************************************************
// File Generated by ADLT Version 2.0
//
// Date: Feb 4, 1997 20:58:47
// TDD file: simpleTest.tdd
//********************************************************
public class D_simpleTest_test1 extends simpleTestTDD {

/* some snipped house keeping declarations */

 public void runInstance (Object[] paramValues)
throws Throwable {

int i = ((Integer) paramValues[0]).intValue();
infoline(“Parameter int i = “ + i);

/*USER CODE STARTS HERE*/
tdd_assert (“the compiler is hosed”,

i * 0 == 0);
}

}

EXAMPLE 9 ADLT Generated TDD environment class file simpleTest.java
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7.5.2 Datasets and Factories

One of the main goals of the ADL System is to offer an easy and powerful way to
express the number and type of data to be used in the testing of interfaces or softw
under test. The fundamental data specification construct in TDD is the dataset. Th
dataset is used to describe a set of values of a particular type that are to be used c
utively in a test of a system under test. In TDD there are several kinds of datasets;
eral, an expression, and a factory. Each type of dataset expresses a finite set of va
that can be used as parameter input to test directives or as input to factories.

public  tdd  class bankTest {
// ===================================================
//          literal integer dataset

  // ===================================================
dataset int DEPOSITS = {0,1,10,100};
dataset int WITHDRAWS = {0,1,15,100};

// ===================================================
//        expression data set of type bank
// ===================================================
dataset  bank BANK_VALUES = {new bank(1),

new bank(2),
new bank(3)};

// ===================================================
  //        a factory that creates objects of type

//        bankAccount.
  // ===================================================

factory  bankAccount
  make_account  ( bank theBank,

int initDeposit) {

    if (theBank == null) {
tdd_end_case (“can’t test with null bank object”);
return null;

    } else {
return theBank.open_account (initDeposit);

    }
  }

// declaring a dataset that uses a factory
dataset  bankAccount BA1 =

make_account(BANK_VALUES,DEPOSITS);
}

EXAMPLE 10 Sample TDD Dataset declarations
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A TDD factory is a special type of dataset used to define a function that generates
instance of data based on the values of its parameters. A TDD factory definition ca
optionally include a relinquish clause that is called at the end of a test instance to 
the reclamation of any resources that are consumed by the generated data. Below
example of a TDD factory definition:

public  tddclass  bankTest {

factory  bank
make_bank ( int maxAccts,

int numAcctsActive,
int initDeposit) {

bank ret = new bank(maxAccts);
for (int x=0;x < maxAccts && x < numAcctsActive;x++) {

try {
bankAccount ba = ret.open_account(initDeposit);

} catch (bankException be) {
tdd_result  (ADL_FAIL,"exception caught on open");
tdd_end_case (null);

}
}
return ret;

} relinquish  (bank b) { // optional relinquish clause
if (numAcctsActive > 0) {

b.close_all_accounts();
}

}
}

EXAMPLE 11 Sample TDD factory definition

All TDD reporting methods defined in Section 7.7.2, “Test Reporting Library,” on
page 125 are available to the user when writing the body of a factory. The optional 
quish clause has similar syntax to a Java catch clause. The relinquish clause take
gle argument whose type must match the return type of the factory method. In the 
of the relinquish clause, the user has visibility to all the arguments of the factory me
and the system guarantees that values used for the arguments in the preceding ca
factory method to create the return data, are the same when executing the call to t
relinquish clause.
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7.5.3 Test Driver and Test Directives

The test driver is the “main” of the ADL generated test program. It is responsible fo
program initialization, test execution and the gathering and processing of the test re
information generated from the successive runs of test instances. The test driver c
one or more test directives that are declared inside a TDD environment scope.

A test directive is declared in the TDD specification file and specifies a list of data 
values which are assigned to normal target language identifiers of the appropriate
The body of a test directive is ordinary target language code that can use and refer
current values of the specified data set arguments. Below is an example TDD file t
demonstrates a test directive declaration:

In the execution of a test, the test driver iterates over the dataset arguments, gener
selects the appropriate values and assigns the values to the argument identifiers. T
driver then uses these data to exercise the interface(s) referenced in the test direc
This continues until all dataset values are exhausted.

public  tddclass  bankTest {

//(see dataset declarations in Example 10 above.)

// example of a TDD test directive
test_bank_3: test  ( bankAccount ba=BA1,

int d = DEPOSITS,
int w = WITHDRAWS) {

int save_val = ba.balance();

// invoke the Assertion Checking Object
//for the bankAccount Object ba to call the
// Assertion Checking Functions (ACF)s
// deposit and withdraw.
ADL(ba).deposit(d);
ADL(ba).withdraw(w);

// call tdd_assert method when both d and
// w are equal to ensure the saved balance
// is equal to the current balance

if ( d == w) {
tdd_assert (“ba.balance() == save_val“,

ba.balance() == save_val);
}

} // end of test_bank3 test directive

Dataset
Arguments

EXAMPLE 12 TDD Test Directive declaration
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7.5.4 Invocation of Assertion Checking Objects and Assertion Checking
Functions

As previously noted, an ADL generated test program does not implicitly invoke an A
or an ACO as was the case in ADL Translation System, Version 1.0. In 2.0, ADLT 
erated ACOs and ACFs must be explicitly invoked by the user from either a test di
tive or some test code function inside the TDD environment scope. This is accompl
by calling the TDD defined method ADL (<object under test>) that creates and retu
the ACO object. The returned ACO object has exactly the same method signature 
object being tested and indeed is a true delegation object that will ultimately forwar
method call to the object and method under test.

In Example 12, “TDD Test Directive declaration,” above, we see the use of the
ADL(Object)  method being used to call the ACFs for a previously created bankA
count object:

...
ADL(ba).deposit(d);
ADL(ba).withdraw(w);

...

The ADL method returns the ACO object wrapper of the object being tested and th
ACF of the method under test is invoked directly. If the goal of a test directive is to 
a single ACF, the ADL method can be used in a test directive:

public  tddclass  bankTest {
...

// Note: the names of the datasets BA1 and WITHDRAWS are
// used explicitly in the test directive below

test_bank_4: test  (bankAccount b = BA1, int w = WITHDRAWS)
ADL(b).withdraw(w);

}

If testing a constructor of an object is desired, the system generates special const
methods which create an object under test. test the conformance with the ACF an
return the object as a result of the call to the special constructor method. The syste
ates the same number and signature of the test constructor methods as contained
source ADL annotated class definition. The testing constructor methods are name
using the following naming convention:

ADL_new <class_name>(<constructor arguments>)

For example you can test the constructor and ACF in a single directive like:

public  tddclass  bankTest {
...

test_bank_4: test  (int d = DEPOSITS, int w = WITHDRAWS)
ADL( ADL_new bankAccount(d)).withdraw(w);

}
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7.6 Internal Runtime Architecture Design

The ADL Translation System, Version 2.0 Runtime Architecture relies heavily upon
Test Environment Toolkit (TET). TET supplies the command line handling, results
tracking, and result reporting functions. Thus, the Runtime Architecture of this sys
is relatively straightforward:

• Each Test Directive maps to a single, executable Test Case.

• Each Test Data Instance of a Test Directive is an Invocable Component (IC) of 
Test Case. The IC number is determined by assigning an ordinal number to ea
unique combination of Test Data.

• Within each IC there is a single Test Purpose. That Test Purpose is the sequen
testing defined in the Test Directive.

• For each assertion represented by that Test Directive, a variety of infoline calls 
be made to report intermediate status information. When the assertion is comp
the ACO will call assertionResult with the result of the execution of that individu
assertion. TET will automatically handle determining the aggregate result from t
intermediate results upon completion of the Test Directive for that Test Data
Instance.

The code to implement this policy is made possible by a variety of extensions to T
that were made in version 3.2.

Within each Test Purpose of a generated test, the structure will be something like:

1. Determine the test data instance by evaluating the ordinal IC number against th
set(s) of relevant test data sets. Output the selected test data items via tet_info

2. Call the appropriate provide factory methods with the appropriate arguments. T
factory methods are encouraged to make use of TET primitives to output inform
tion, synchronize with remote processes, etc.

3. Execute each ACO referenced in the Test Directive.

4. Within each ACO, evaluate each assertion not tagged as “untestable”.

5. Call the appropriate relinquish factory methods.
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7.6.1 Java Internals

The architecture of the Java runtime environment for the ADL Translation System 
sion 2.0  is depicted below.

Basically, there are three major classes:ADLTest , ObjectACO  andADLDataSet .
The first one is the root class for all test directives. The second one is the root class
assertion checking objects and the last one is the root class for all TDD datasets. 
used as parameters, e.g., for a test directive or a factory, TDD datasets are groupe
ADLParameterSet .

In addition to these classes, theADLTestCase  makes the link with the TET environ-
ment through JETpack (Java Enabled TETware Package). AndADLResultCodes
provides the result codes used to report to TET. It is implemented as an interface w
all the classes that needs themimplements.

Many of these classes are abstract since they should never be instantiated directly
are subclassed by generated code which will effectively be instantiated.

The following sections describe the major classes of this architecture.

7.6.1.1 Class ADLTest
The highest level interface between the generated test cases and the runtime syst
theADLTest  class. This class has within it all of the methods that a generated test
use. These methods include:

ADLDataSet ADLParameterSet

ADLTestCase

JET/TET

ADLTest theTest

Object ACO
(abstract)

(abstract)

testContext

realObject

ADLResultCodesADLLiteralSet ADLConcatenationSet ADLFactorySet

(abstract)

(interface)

params

(abstract)

params

elementSet

FIGURE 11. Architecture of the Java runtime environment

testContext
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void addParameter  - adds anADLDataSet  type parameter (see below) to the
matrix of test data parameters available to this test. This method will be used by th
erated test to inform the test about the test data that it has available to exercise th
face(s) under test.

void infoline  - sends a String to the journal file.

String getvar  - gets a configuration variable value from the Test Environment
Toolkit.

void setblock  - increments the block number for the Test Environment Toolkit.

void result  - reports an intermediate result to the Test Environment Toolkit.

void assertionStart - indicate to the runtime that the processing of an assert
has started.

void assertionResult  - posts a result value for an assertion. This method will 
used by generated tests to inform the runtime system of the results of each assert
evaluation.

void factoryResult  - posts a result value and an optional message to the jou
from within a data factory. This method should only be used to indicate some wort
warning or failure encountered while setting up the test parameters.

TheADLTest  class also implements the test reporting methods described in
Section 7.7.1 on page 124.

The ADLT compiler generates one subclass ofADLTest  for each TDD file, and one
subclass of this for each test directive. Test functions are placed in theADLTest  sub-
class. Test directive subclasses define amain  method so that they are invocable.

Static constants in a TDD file are placed in an interface which any class represent
dataset or factory using them implements.

7.6.1.2 Class ADLDataSet
An ADLDataSet  represents a TDD dataset, i.e., a variable with a provide method
get a value from an ordinal number, and a relinquish method to free that value. It is
erally labelled and is used within a test context. It is an abstract class that cannot b
directly instantiated. It is subclassed as:ADLLiteralSet , which represents datasets
made of static values;ADLFactorySet , which is an abstract class for factories whic
build values at each invocation based on their parameters (that can beADLDataSet s);
andADLConcatenationSet , which is built by concatenating other datasets. Eac
subclass defines the following abstract methods:

Object provide  - provide the nth value in the dataset.

boolean relinquish  - free the nth value in the dataset (exact meaning offree
depends on the actual dataset).
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These two methods are called by theADLParameterSet  attached to anADLTest  or
ADLFactorySet .

To provide dataset reusability, except when the dataset is anonymous, the classesADL-
LiteralSet  andADLConcatenationSet  are not instantiated directly, but rather
subclassed.

The scheme for a factory is to generate one subclass ofADLFactorySet  to define the
actual provide and relinquish functions, and one subclass of this for each dataset 
using the factory. TheADLFactorySet  class also implements all the test reporting
methods described in Section 7.7.1 on page 124, excepttdd_assert .

7.6.1.3 Class ObjectACO
TheObjectACO  class is an abstract class from which any generated ACO inherits
just provides them with a generic constructor that gets some information from the 
runtime environment (reporting level selected) and some attributes which are usef
when evaluating assertions and dealing with inherited specifications.

Generated ACOs define their own constructor -  which just calls super - and asser
checking wrappers deduced from the specifications.

TheObjectACO  class also provides the runtime environment with the methods to 
erate an enumeration for integer ranges of all kinds (ADL_short_range ,
ADL_int_range  or ADL_long_range ).

7.6.2 C++ Internals

The overall architecture of the C++ runtime environment is similar to the Java one
depicted in Figure 11 to a large extent. The slight differences come from the differe
nature of both languages.

For instance there is no interface concept in C++ but rather multiple inheritance. H
static constants in a TDD file are in this case placed in a class from which any clas
resenting a dataset or factory using them inherits. And for the same reason the AD
standard result codes are placed in a header file used by both the C++ and C runt
environments.

Another slight difference is due to the lack of the equivalent of the JavaString  class
in C++. This makes formatting messages a lot more tedious. To avoid having to de
with formats and memory, a additional class has been defined:ADLString . Its use is
described below.

7.6.2.1 Class ADLString
This class implements the standard operators generally used with C++ streams to
formatting message easier. It is an extension of the standardostrstream  class where
the<< operator has been redefined to return anADLString&  instead of an
ostream& .

It also defines areset  method to reinitialize the string to be formatted. Whenreset
is not called, remaining arguments are appended to the previously formatted mess
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Finally it defines a set of conversion methods to and from achar* .

TheADLString  class is instantiated only once for a static instance calledadlstr
(just likecin , cout  or cerr  in the stream classes). The typical use is demonstrate
below:

infoline(adlstr.reset() << anInt << “ and “ << aFloat);

7.6.3 C Internals

The C Language has a flat namespace. This means that it is not possible to isolat
methods associated with the runtime within the various classes, as in the other run
environments. Consequently, all of the C Runtime methods are prefixed with the s
“ADL_” for ADL-related functions, and “tdd_” for methods that are called only from
within the TDD test declarations. The “tdd_” prefix is lowercase because it is likely 
these methods will be called directly by users in the specifications and should be a
to type as possible.  The “ADL_” functions are most likely only called by the genera
code, although the ADL_infoline and ADL_printf functions might be called in user-
written provide functions. The functions available within the C Language runtime
include:

void ADL_infoline  - sends a char * to the journal file.

void ADL_printf  - sends a formatted char * to the journal file.

char* ADL_getvar  - gets a configuration variable value from the Test Environme
Toolkit.

void ADL_setblock  - increments the block number for the Test Environment To
kit.

void ADL_result  - reports an intermediate result to the Test Environment Toolk

void ADL_assertionStart  - indicates to the runtime that processing of an ass
tion is starting.

void ADL_assertionResult  - posts a result value for an assertion. This metho
will be used by generated tests to inform the runtime system of the results of each
tion evaluation.

void ADL_factoryResult  - posts a result value and an optional message to th
journal from within a data factory. This method should only be used to indicate som
wort of warning or failure encountered while setting up the test parameters.

And all reporting methods defined in Section 7.7.1 on page 124.
Version 1.1 123 of 132



Runtime Architecture ADL 2.0 Translation System Design Specification

of all
 hierar-
rtion
rar-

detail
nd
, and
ce-
ts
7.7 External Runtime Architecture Design

7.7.1 Test Result Reporting

The final result generated from an ADL test is computed from the tabulated results 
test instances executed from a given run of the test. The results are computed as a
chy of granularity ranging from the program result as the least granular to an asse
result as the most granular level. The following diagram depicts the test results hie
chy

Test results reporting occurs at the end of the test execution. The level of reporting 
is determined by the reporting level switch set either by default or from the comma
line of the test program. The results of a test are defined by a code number, name
precedence value and are defined by the system or optionally by the user. The pre
dence value is used to determine the overall result of a given component of the tes

Test Program
Results

Assertion
Checking

Object
Results

TDD
Environment

Result

Assertion
Checking
Functions
Results

TDD
Reporting
Results

Test
Instances
Results

ACF
Assertion
Results

FIGURE 12. Test Results  Hierarchy
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based on the aggregate results of the sub-components. A test code with a higher 
dence value overrides a lower precedence result. Below is the table defining the A
System test results:.

TABLE 1. ADL System Test Result Codes

The ADL System result codes are predefined and can not be overridden. However
can add your own code values to system with a results code file. See Section 7.7.3
“Result Code File,” on page 126 for details.

7.7.2 Test Reporting Library

With no intervention by the user, the code generated by ADLT can report on the re
of tests, the results of assertions, and the value of expressions within assertions a
within inline functions. The user can control test execution and can provide more in
test report by using the ADLT runtime library, which contains these functions (note 
in the C and C++ runtimes, the functions of type “boolean” here are declared as ty
“int” 1):

1. Or “bool” according to the C++ standard.

Result Code Name Precedence Value Legal Value Meaning

ADL_PASS 1 0 Test has passed

ADL_FAIL MAX_VALUE 1 Test has failed

ADL_UNRESOLVED MAX_VALUE - 1 2 Evaluation of test could
not be determined.

ADL_NOTINUSE 2 3 The test is not evaluated
in this environment.

ADL_UNSUPPORTED 2 4 The test is not sup-
ported

ADL_UNTESTED 2 5 The test was not done

ADL_UNINITIATED MAX_INT - 1 6 The test was not started

ADL_NORESULT MAX_INT - 2 7 The test did not yield a
result

ADL_UNEVALUATED 0 32 The assertion was not
evaluated

ADL_AMBIGUOUS 3 33 Abnormal and normal
both evaluated to true

ADL_UNDEFINED 3 34 Abnormal and normal
both evaluated to false

User Defined Result
Codes

4 as defined by
the user

as defined by the user
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void infoline(String message);

Infoline  emits a message in the test journal.

boolean tdd_result(int result_code, String reason);

Tdd_result  sets the result of the test instance. It returns a boolean which is FAL
iff the result is a terminating result code, in the opinion of the test framework. The e
tive result code after this call might be different from theresult_code  parameter,
because test result codes are ranked in a precedence hierarchy, so that a later PA
not hide an earlier FAIL. Reason may be null.

boolean tdd_assert(String expr_text, boolean expr)

Tdd_assert  takes a boolean expression as the second parameter. The expressio
is reported to the user and the result of the test is set to ADL_PASS if the express
evaluates to true, and ADL_FAIL otherwise. In any case the test continues with the
statement in the test expression.
Expr_text should not be null. Expr is returned as the value of the function.

boolean tdd_skip();

Skip the current test case evaluation.  It is primarily intended to be called from a fac
to ignore a test instance. The result of the test isADL_SKIPPED and all assertions are
reported asADL_UNEVALUATED.

boolean tdd_end_test();

Tdd_end_test  ends the test upon invocation. The result of the test is the current
result of the test at the time of the call totdd_end_test (). Tdd_end_test  does
not return; it is declared as a boolean so that it may be used in expressions like
tdd_assert(Text, Condition) || tdd_end_test()

boolean tdd_end_case(String reason);

Tdd_end_case  ends the current test instance upon invocation. The result of the t
instance is the current result of the test instance at the point of the call to
tdd_end_case (). Reason may be null.Tdd_end_case  does not return; it is
declared as a boolean so that it may be used in expressions like
tdd_assert(Text, Condition) || tdd_end_case()

7.7.3 Result Code File

The method result is normally called with a test result code defined in a result code
The result code file location is defined by the environment variable
TET_RESCODES_FILE.

The format of the result code file is as defined by TET: each line of the file defines
result code, giving its number, its name (as a quoted string), and an optional action
action controls what the test driver should do when this result code is encountered;
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values areContinue  andAbort . Blank lines and comment lines (which start with a
‘#’) are legal in the result code file. The name of the result code is used in the test r

7.7.4 Test Program Control

7.7.4.1 Command line invocation

User control of the test program is achieved via the command line and via TET con
ration variables. Test Programs are invoked from TET’s test case controller - the op
of that program can be found in the TET documentation (see http://tetworks.open-
group.org).

7.7.4.2 Configuration Variables

The user can control the test program by use of configuration variables. These are
ables that can be set by a variety of mechanisms and read by the test program; so
read by the ADL library and control reporting. User-written code can read test varia
and control the test; for example, a configuration variable could be used to set the 
of a temporary directory for a file system test.

Configuration variables can be read by user-written code by use of thegetvar  func-
tion, which is part of the ADLT runtime library. Its declaration is:

String getvar(String propName);

char *getvar(char *propName); // C++

char *ADL_getvar(char *propName); /* C */

The name of the configuration variable is the sole argument togetvar ; it returns the
value of the variable if it is set, ornull  if the variable is not set.

Configuration variable settings are available in a file named by the TET_CONFIG 
ronment variable.

7.7.4.3 System Configuration Variables

Certain configuration variables are read by the ADLT runtime library and control th
operation of the test program. All configuration variables with names beginning wit
ADL are reserved for use by the ADL system.

TABLE 2. System Configuration Variables

Variable Legal
Values

Default
Value Meaning

ADL_RPT_DETAIL LONG
SHORT

SHORT Reporting detail level
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User-written code may read the values of these system configuration variables, as
as any other user-defined configuration variables.

7.7.5 Reporting Formats

The format of ADL reports is that of the Test Environment Toolkit. Within these repo
ADL-generated tests will adopt the convention that each assertion will report its inf
mation in a separate “block” (a TET reporting abstraction). This will permit easy po
processing that could produce per-assertion reports, should those be needed.

7.8 Building, Executing, and Cleaning Tests under TET

In order to ensure that ADL and ADL generated tests work well in the expected env
ments, the requirements for those environments and the behavior of the build and 
environments needs to be very clear. This section documents these behaviors.

7.8.1 The ADLT compilation environment

In order to build the various ADL translators, the platform must have at least the fo
ing:

• A JDK-compliant java compiler and classes at the 1.1 level or better.

• A version of GNU make.

• A variety of POSIX.2-conforming utilities, including the shell, cp, rm, mv, and
touch.

• TETware 3.2 or the freely available TET 3.2.

• JavaCC and JJtree version 0.8 pre 1 or better (if parser regeneration is needed

• An ISO C compiler.

• A draft ANSI C++ compiler (gcc 2.7.2).

• A library build tool (Note - there should be an option to build the ADL libraries a
shared libraries to speed execution and reduce the size of compiled tests).

The makefiles in this environment will use a master Makefile.vars in the top level a
directory that has platform-specific options in it.

Examples for these will be included in a config directory. Typing “make all” at the to
of the adl2 source tree will recurse through the source tree, compiling the different
ments. At each level the makefiles will use the GNU makeinclude  directive to bring
in the variables settings from the Makefile.vars at the top level. The makefiles can 
take some variables from the environment if they are not set in the Makefile.vars fi
(e.g.TET_ROOT, ADL2HOME).

7.8.2 ADLT execution environment

When the user is running ADLT, certain facilities need to be available. These includ
following:
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• A JVM and the core java classes conforming to JDK 1.1 or better.

• A prolog interpreter such as SWI prolog to assist in natural language generatio

7.8.3 Generated Test Build Environment

Once a user has used ADLT to generate the tests, these tests can be exported and
any platform that supports the language in which the tests were generated. This en
ment needs at least the following facilities:

• A POSIX.2 conforming make.

• (possibly) some POSIX.2 conforming tools including a shell, cp, rm, and mv.

• TETware 3.2 or the freely available TET 3.2 with JETpack installed if using Java

• The ADLT runtime environment, including libraries, headers, and tools that ass
TET's compilation of the tests.

• A compiler for the language(s) used by the generated tests:

• An ANSI C Compiler for C Language Tests.

• A Draft ANSI C++ Compiler for C++ Language Tests.

• A JDK 1.1 or better compliant compiler and class libraries for Java tests.

• A IDL/Java 1.0 compliant class library implementation for ADL/IDL tests.

7.8.4 Generated Test Execution Environment

Once the generated tests have been built, they can be distributed in their pre-com
form and executed elsewhere. In order to accomplish this, the system under test m
have at least the following facilities:

• TETware 3.2 or the freely available TET 3.2 (in the case of remote testing, this 
be only the executables tccd, tetxresd, and tetsyncd) with JETpack installed if u
Java.

• The ADLT runtime environment, including libraries and tools that assist TET's e
cution of the tests (note that these tools, written in C, require the XPG facilities
getenv and putenv in addition to the standard C language libraries).

• If the test author chooses, a POSIX.2 conforming make that will be used in con
tion with the ADLT runtime environment to start the test after setting environme
parameters, or

• A requirement that the test user's environment be set up appropriately before e
ing the tests through traditional means that do not include the use of make.

7.8.5 How it all hangs together

The purpose of this design, and the overall goal for ADL2 in general, is to have an
ronment in which it is possible to iteratively develop test specifications, tests, and im
mentations. Once the user has run adlt once for a given TDD test specification, the
should only have to type “make” in the directory to have the appropriate files, includ
the makefiles, regenerated as their specifications and implementations change. Un
nately, getting this to work correctly in all instances will require a reasonably sophi
cated user. More on that later. For the typical user in the typical environment, here 
Version 1.1 129 of 132



Runtime Architecture ADL 2.0 Translation System Design Specification

ifica-

e adlt
est
t
uage
les it

file
 for
 the

tion
r

. It
 if
ill in
n
 files

at the

 JVM
een
).

utable

 the

ated

is
ld be
mplete

ds and
T's

eneric
sequence of events for each phase of TET usage (as it relates to developing spec
tions and tests):

7.8.5.1 Running ADLT for the first time
When a user has created a specification file and a test directive file, they can call th
translator for the relevant language.  This translator is responsible for parsing the t
data definitions and assertion definitions, turning them into source code for the tes
driver, the assertion checking object(s), and the translation files for the natural lang
versions of the assertions. These are well understood. The structure of the makefi
generates, however, are somewhat confusing:

1. First, there is the Makefile. In the directory in which adlt was run, a master Make
is created or modified. The translator places a single line in the master Makefile
each test directive in the parsed TDD file. This target has as its method a call to
real makefile for that test directive - named something liketdd_file.mk.  It also
passes into that makefile the name of an (optional) user-provided test configura
file, the name of the target to work on, and the mode of operation (build, exec, o
clean).

2. In the generated makefiletdd_file.mk , there are targets for each of the gener-
ated test directives for each it the modes (three targets per test directive1).

3. The build target has dependencies on the source files used by the test directive
uses default rules to regenerate the executable test case files from the sources
needed. If adlt was run with the -dev option, the source files generated by adlt w
turn have dependencies on their interface specification source or test descriptio
source file, as appropriate. It will use other default rules to regenerate the source
from their specification files before compiling.

4. The execute target has dependencies as above (thus automatically ensuring th
tests are built before executing them).

5. The method for the execute target is to hand control off to the test case (via the
in the case of Java test cases), passing along the arguments that might have b
passed by TET's test case controller (e.g. the invocable components to execute

6. The clean target has no dependencies, per se. However, it will remove the exec
test cases and any intermediate files.

7. An additional “realclean” target will perform the clean as above, and also remove
generated files (except the generated makefiles).

8. ADLT also generates a TET scenario file that describes the various tests gener
by ADL. By default this scenario file is a complete TET scenario file called
tetsyncd . If the -scen_include option is selected, the generated scenario file 
designed to be collected later by a scenario file generation tool. This option wou
used when generating tests that are an element of a test suite, rather than a co
test suite themselves.

7.8.5.2 Performing subsequent actions via TET
Now that the makefiles have been created, we can use make and/or TET to do buil
runs of the tests. (Note that, in general, you should always execute the tests via TE

1. In Java only the clean target has to be defined. Build and exec targts are defined in the g
makefile.
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tcc so that the environment is properly set up at test execution time. It is possible to
ulate this environment, but it is almost always better to just let TET do its job.) In o
to teach TET to do this, we provide the following information and tools to TET:

First, we need to establish configuration files. These files tell TET how to perform i
each of its modes of operation. Since we cannot know where in a directory hierarch
ADL user is building their tests, and since these configuration files need to be at the
of a test suite tree, we do not generate them from ADLT automatically. Instead, the
needs to be in the appropriate directory and ask specifically that they be generate
Examples are also provided with the ADL2 source that can be copied, if that is mo
desirable. The configuration files specify the following:

• The name of the tool to use in the mode (e.g. TET_BUILD_TOOL). This tool is 
ADL-provided C program that should build and run on any platform. It performs
some rudimentary checking and then calls make.

• The correct settings for TET flags for each mode (e.g. TET_API_COMPLIANT,
TET_PASS_TESTCASE_NAME).

• The default set of test results.

• The tools need to be in the user's path. We place these tools in the ADL bin dire
by default. However, if they are included in the ADL runtime environment for use
platforms without ADL present, they should be installed in the TET bin directory 
simplicity.

• If the test suite was generated as a collection of parts using the -scen_include o
(as described above), then a tet_scen file needs to be generated using an ADL
vided tool.

• Now everything is set up. We can use TET's tcc to build the tests, execute them
clean up. The following is a description of the sequence of execution if TET we
used in build mode in the environment described above for a test suite named
mysuite:

• The user enters the command tcc -b mysuite

• The tcc does some initial setup, reports the path to the journal file it will genera
and examines the tet_scen and tet_build.cfg files for mysuite

• For each test case specified in the scenario named all, tcc does the following:

1.Establishes a build lock (to prevent simultaneous compilation by multiple use

2.Calls the ADL-provided BUILD_TOOL with the test case name as an argume

3.The ADL-provided BUILD_TOOL (let's call it adlbuild) looks in the current
working directory and the test suite root directory for a file called
adl_options.mk. This is a file in which the test suite author can specify option
a per-directory and/or test suite wide basis. These options will work in conju
tion with the default make rules. Examples of such options are the name of t
library where the implementation is stored, additional elements for the CLAS
PATH, etc.

4.adlbuild then calls make: make ADLCONFIG="-f path_to_options"  ADLTAR-
GET=build test_case_name

5.The master makefile's entry for test_case_name then calls make again, usin
real makefile name and passing in the ADL default rules and the test suite-sp
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options: make -f $(ADL2HOME)/lib/generic_java.mk $(ADLCONFIG) -f
tdd_file.mk TARGET=$@ $(ADLTARGET)

6.Make reads the ADLCONFIG file (if any) and the default make rules, and the
reads in the makefile for this tdd file. In the tdd_file.mk file there is a target fo
each test_case that reacts appropriately given the value of ADLTARGET (as
described above).

7.That target has dependencies value of TARGET, which in turn has dependen
on each component of the test case, including optional dependencies that m
get resolved from data in the adl_options.mk file.

8.make ensures that all of the dependencies are satisfied, and finally executes
default loader rule that will create the executable test case file.

The output from this activity is recorded in the journal file.

Once all of the test cases have been generated, tcc exits. Note that, because of th
tributed nature of TET, it is possible to perform any TET operations across the netw
In the case of a build, if the tet_scen file's all scenario were enclosed within a :rem
1,2,3: option, the build would be done on three systems simultaneously.

In the execute and clean modes, the operations would be similar.

7.8.6 ADL2 and the sophisticated user

The default mode of operation in ADL2 is target at the typical user with typical nee
We believe this user is someone who has a reasonable number of tests that exerc
implementation. The tests are probably being specified separately from the actual 
opment. Consequently, they user needs to tell ADL and TET where to find their im
mentation. They also may need to tell ADL where to find relevant header files, and
potentially the source files for the implementation. All of these things can be speci
in the adl_config.mk file. There can be a single version of this file in the test suite r
directory. There can also be a version of the file in any directory in the test suite hi
chy - overriding the test suite wide version in the root directory. In most instances, 
file is not needed at all. When it is needed, it is usually only needed in the root direc
Only the most sophisticated test suites will have configuration files on a per-directo
basis.

The format for this file is exactly like that of a makefile. However, we really expect t
the user will only specify a certain set of options in that file. They could theoretical
also specify additional make rules and dependencies for their implementation, but
ADL's default rules should be sufficient for that.

The following table describes the variables that can be specified in this configurati
file.

[Note:The contents of this table have yet to be designed. It will depend upon the w
generated tests are constructed at link time.  See ADL1 for some ideas in this area
spm]
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