
(1998.06.30) 1 of 75

ADL for C++

SunTest

The Open Group Research Institute

The language definition for ADL annotations
for the C++ programming language.

ADL 2.0 for C++ Language Reference Manual, Version 1.2

ISSUE NUMBER REASON FOR ISSUE

1.0 Alpha Document Launch For Review

1.0 Beta First Revision

1.0 Gamma Second Revision

First snapshot from The Open Group research Institute

1.0 Delta Third Revision

Second snapshot from The Open Group Reserach Institute

1.0 Final revision

1.1 Second delivery to IPA

1.2 Updated in accordance with version 2.0.2 of the ADL Translation System

e and

rtain
stems,.
tion of

mission

 (IPA)
enta-
COPYRIGHT AND LICENSE NOTICE

Copyright © 1997-1998 The Open Group

Copyright © 1994-1997 Sun Microsystems Inc.

Copyright © 1994-1998 Information-technology Promotion Agency, Japan

This technology has been developed as part of a collaborative project among the
Information-technology Promotion Agency, Japan (IPA), X/Open Company Ltd. and
Sun Microsystems Laboratories.

Permission to use, copy, modify and distribute this software and documentation for any purpos
without fee is hereby granted in perpetuity, provided that thisCOPYRIGHT AND LICENSE
NOTICE appears in its entirety in all copies of the software and supporting documentation. Ce
ideas and concepts contained in the software are protected by pending patents of Sun Microsy
Sun hereby grants a limited license to use these patents, if any issued, only in this implementa
the software and documentation and in derivatives thereof prepared in accordance with the per
granted herein.

The names X/Open, Sun Microsystems. and Information-technology Promotion Agency, Japan
shall not be used in advertising or publicity pertaining to distribution of the software and docum
tion without specific, written prior permission.

ANY USE OF THE SOFTWARE AND DOCUMENTATION SHALL BE GOVERNED BY
CALIFORNIA LAW. X/OPEN, SUN MICROSYSTEMS, INC. AND IPA MAKE NO REPRE-
SENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE OR
DOCUMENTATION FOR ANY PURPOSE. THEY ARE PROVIDED “AS IS” WITHOUT
EXPRESS OR IMPLIED WARRANTY OF ANY KIND. X/OPEN SUN MICROSYSTEMS,
INC. AND IPA SEVERALLY AND INDIVIDUALLY DISCLAIM ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE AND DOCUMENTATION, INCLUDING THE WARRAN-
TIES OF MERCHANTABILITY, DESIGN, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL X/OPEN, SUN
MICROSYSTEMS, INC. OR IPA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULT-
ING FROM LOSS OF USE, DATA, OR PROFITS, WHETHER IN ACTION ARISING OUT
OF CONTRACT, NEGLIGENCE, PRODUCT LIABILITY, OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE OR DOCUMENTATION.
2 of 75 ADL 2.0 Language Reference Manual for C++

S™,
Trademarks

Sun™, Sun Microsystems™, Sun Microsystems Laboratories™, the Sun logo, Solaris™, SunO
and Java™ are trademarks or registered tradmarks of Sun Microsystems, Inc.

Postscript™ is a trademark of Adobe Systems Inc.

UNIX® is a registered trademark in the USA and other countries licensed exclusively through
X/Open™.

X/Open™ is a trademark of the X/Open Company Limited.
ADL 2.0 Language Reference Manual for C++ 3 of 75

.

Change Log

Release 1.2

Complete revision of NLD concepts.

Release 1.1

2- Semantic Annotations

2.1 Removed Non-terminal Constituent.

3. Test Annotations

3.2 Test Function Definition allowed in TDD class body.

3.2 ParameterDeclaration used in TDD factory definition relinquish clause.

5. Complete Grammar

- Changed definition of TranslationUnit to allow parsing exclusive nld file.

- Added Non-terminal IncludeFileList gathering all the IncludeFileDeclarations.

- Changes in definitions of TDD_FieldDeclaration, TDD_FactoryDefinition,
TDD_UseDeclaration and AssignmentExpression.

Release 1.0

2. Semantics Annotations

2.1- Use keyword “adlclass” in adl class declaration.

2.3.2 Constructors can also be annotated. Stated some restrictions in constructor specification

2.3.3 Better explanation of adl inheritance and use of inherited semantics. Added a schema for
this.

2.3.5 In adl try statement, ExceptionDeclaration is used.

2.3.5 Explained the use of adl_thrownException and modified examples accordingly.

2.5 Global prologues and epilogues not included in constructor specification.
4 of 75 ADL 2.0 Language Reference Manual for C++

3. Test Annotations

3.1.2 “tddclass” used for TDD annotated declaration.

3.1.2 Removed external declaration from TDD class body. Replaced with Declaration to
specify TDD variables. Specified constraints on these variables.

3.1.2 Test directives are all long. Removed factory declaration.

3.1.2 Added TDD_ADLnewExpression and TDD_ADLExpression

3.1.2 Changed TDD dataset grammar.

3.1.3 Examples changed to conform new test style. Explained use of datasets and factories.

5. Complete Grammar

- Added TypeNameList to be used by ADL_ThrownException.

- Added TDD_ADLnewExpression and ADL_TDDExpression.

- Use of ADL_NamedParamList in ADL_Binding to allow multiple variables declaration.

- ADL_BasicExpression (except “return”) are moved to UnaryExpression instead of
PrimaryExpression.

- “return” derive directly from PrimaryExpression to allow it to be post fixed.

- AssignmentExpression extended with ADL_Expression .

- Removed ADL_ArgumentList. Use of ArgumentList instead in “unchanged” expression.

- Removed TDD_DatasetLiteral from PrimaryExpression.

- Removed TDD Long and Short Test directive. Unique definition style for TDDTestDirective

- TDD_FactoryCall used a QualiedId instead of <ID> => allow scope override.

- removed TDD_FactoryDeclaration. use TDD_factoryDefinition instead.

- Changed TDD dataset expressions.

- Types can not be datasets.
ADL 2.0 Language Reference Manual for C++ 5 of 75

Release 1.0 Delta

1. Introduction

No substantive change.

2. Semantics Annotations

2.1: ADL_AnnotatedDeclaration renamed ADL_ClassDeclaration

2.3.1: Added ADL_CallStateExpression.

2.5 : Corrected : Local epilogues are executed before global epilogues. Add restriction about
the use of call state operator in Prologues and Epilogues.

3. Test Annotations

.3.1.3 TBD resolved : factories are function definitions.

3.1.7: Importation of tdd files supported with “use” declarations.

3.2.1: Use datasets instead of enum in examples 3.7 and 3.8

3.3: Test directives have two variants : Long test directives and short test directives.

Example 3.5: the semantics of elements of literal datasets has changed: they are evaluated
only once (static evaluation). Dynamic behavior is now possible only through factories.

4. NLD Annotations

No substantive change.

5. Complete Grammar

ADL and TDD annotations reviewed.

Release 1.0 Gamma

1. Introduction

No substantive change.

2. Semantics Annotations

2.1: TBD resolved :ADLT allow both external and inline specifications.

2.1: An adl class for each adl file.
6 of 75 ADL 2.0 Language Reference Manual for C++

2.2.1: Assertion Groups before ADL Specific Expressions

2.2.4: Definition of ADL If statement semantically different from the C++ if statement.

2.3: Semantics are pure adl assertions with no side-effects.

2.3.2: TBD resolved : Adl Inheritance supported.

2.3.4: Catch specification comes next to an ADL_TryStatement

2.4: Use “inline” to declare inline functions behaving like macros.

2.5: Introduction of local and global adl Prologues and Epilogues.

3. Test Annotations

Not modified yet.

TBD: see how to support tdd classes.

4. NLD Annotations

Not modified yet.

5. Complete Grammar

Modified grammar to respect new non-terminal naming model and introduce new concepts.
TBD : Modify the TDD and NLD productions.

5.2: ADL “and”, “or “and “xor” removed. Use C++ operators instead.

Release 1.0 Beta

1. Introduction

No substantive change.

2. Semantics Annotations

2.1: TBD resolved: ADLT will allow only external specifications..

2.3.3: TBD changed: SuperClass semantics reference not implicit; explicit invocation remains
a possibility.

3. Test Annotations

Title changed from “TDD Annotations”.
ADL 2.0 Language Reference Manual for C++ 7 of 75

3.1.2: Terminology change: “bounded” dataset changed to “feasible”.

3.1.3: Add TBD for factory representation.

3.1.4: TBD resolved: explicit invocation of checked version by ADL(...). This affects all the
examples.

3.1.5: Terminology change: “Test expression” changed to “Test directive”. This affects the
explanation of some of the examples and the grammar.

3.1.6: Assert moved from language definition to support library.

3.2: TBD resolved: factories are not implicit datasets.

Example 3.5: TBD resolved: dataset members are evaluated each time.

Example 3.9: TBD resolved: no special syntax for multiple data values.

Example 3.10: TBD resolved: test directive syntax clarified.

Example 3.12: TBD resolved: multiple reference interpretation changed.

3.3.1: External dataset reference clarified.

4. NLD Annotations

4.1: TBD resolved: inheritance clarified.

Example 4.5: TBD resolved: rules on formal argument name clarified.

4.3.1: TBD resolved: SGML entity definition referred to DTD.

4.5 (nld_entity_text): TBD resolved: Rule on markup (DocBook 3.0 Para entity) clarified.

5. Complete Grammar

Replaced entire with revised version generated from source code for parser.

Release 1.0 Alpha

Initial release.
8 of 75 ADL 2.0 Language Reference Manual for C++

Table of Contents ADL 2.0 Language Reference Manual for C++
1 Introduction..13

2 Semantics Annotations ..15
2.1 Describing Semantics Of Interface Operations .. 15

2.2 ADL Syntax.. 17
2.2.1 Assertion Groups ... 17
2.2.2 ADL Specific Expressions.. 18
2.2.3 Quantified Assertions .. 19
2.2.4 ADL If Statement .. 20

2.3 Behavior Specification ... 20
2.3.1 The Call State Operator ... 22
2.3.2 Specification of a Constructor ... 22
2.3.3 Specification Of An Inherited Method .. 23
2.3.4 Bindings... 25
2.3.5 Try/Catch Specifications.. 26
2.3.6 Thrown Expressions .. 30
2.3.7 Behavior Classification.. 30
2.3.8 The Exception Operator .. 32

2.4 Inline Procedure Declarations .. 35

2.5 Prologues and Epilogues .. 35

3 Test Annotations...39
3.1 Concepts ... 39

3.1.1 Re-write ... 39
3.1.2 Dataset ... 39
3.1.3 Factory ... 40
3.1.4 Checked Function.. 40
3.1.5 Test Directives ... 41
3.1.6 Assertion.. 41
3.1.7 Importation .. 41

3.2 Annotated TDD / C++ Syntax.. 42

3.3 General Syntax & Examples .. 44
3.3.1 Simple Datasets and Data Construction .. 44
3.3.2 Compound Datasets : Factories, Concatenation.. 45
3.3.3 Void Datasets ... 46
3.3.4 Dataset Elements Evaluation ... 47
3.3.5 Dataset Constants .. 47
3.3.6 Test Directives ... 48
3.3.7 Void Datasets Use.. 49
3.3.8 Advanced Examples .. 50

4 NLD Annotations..53
4.1 Concepts ... 53

4.2 Syntax and Semantics... 54
4.2.1 Simple Data Member Translation.. 54
4.2.2 A Simple Function Member Translation ... 54
4.2.3 Out Of Line Translations... 54
4.2.4 Translations For Overloaded Methods .. 55
4.2.5 Priorities .. 55
Version 1.2 9 of 75

Table of Contents ADL 2.0 Language Reference Manual for C++
4.2.6 Usingsemantics And nld Blocks... 56
4.2.7 Shadowing or Overriding A Translation.. 56
4.2.8 Overriding a Non-Local Translation.. 57
4.2.9 Invocation Translation ... 57

4.3 NLD Predicates... 58
4.3.1 Pre-defined Predicates ... 58
4.3.2 User-defined Predicates ... 59

4.4 NLD and SGML ... 60
4.4.1 Reference Manual Document .. 60

4.5 NLD for TDD ... 61

4.6 NLD and Localization .. 62

4.7 NLD Syntax .. 62

5 Complete Grammar...65
5.1 C++ productions ... 65

5.2 ADL productions .. 71

5.3 TDD Productions .. 73

5.4 NLD productions .. 74
10 of 75 Version 1.2

List of Examples ADL 2.0 Language Reference Manual for C++
EXAMPLE 2.1 StockBroker.hh.. 15

EXAMPLE 2.2 StockBrokerSpec.adl... 15

EXAMPLE 2.3 StockBroker constructor specification............................ 22

EXAMPLE 2.4 Bank and MyBank classes.. 23

EXAMPLE 2.5 MyBankSpec specification ... 24

EXAMPLE 2.6 StockBroker2.hh ... 27

EXAMPLE 2.7 StockBroker2.adl... 27

EXAMPLE 2.8 StockBroker2.adl (corrected)... 28

EXAMPLE 2.9 StockBroker2.adl with behavior classification 31

EXAMPLE 2.10 StockBroker2.adl with exceptions 33

EXAMPLE 3.1 The Simplest Test .. 44

EXAMPLE 3.2 A Simple Dataset ... 44

EXAMPLE 3.3 Compound Data Construction... 45

EXAMPLE 3.4 Void Datasets ... 46

EXAMPLE 3.5 Runtime Initializers .. 47

EXAMPLE 3.6 Provide Test Variables .. 47

EXAMPLE 3.7 Better Test Variables... 48

EXAMPLE 3.8 Void Dataset Use.. 49

EXAMPLE 3.9 Chaining Factories .. 50

EXAMPLE 3.10 Test By Example.. 50

EXAMPLE 3.11 Multiple Dataset References .. 51

EXAMPLE 4.1 Using Properties .. 60

EXAMPLE 4.2 NLD annotation in a TDD class: 61

EXAMPLE 4.3 Using Fully Scoped Names ... 63
Version 1.2 11 of 75

List of Examples ADL 2.0 Language Reference Manual for C++
12 of 75 Version 1.2

Introduction ADL 2.0 Language Reference Manual for C++

o-

ject

s.
ta-
dop-

ing
ocu-

abil-

e

llows

he

 font
ear

bol
y not

d

1 Introduction

This document describes the enhancements to the ADL Language for the C++ pr
gramming language. The ADL Langauge has been revised as part of the ADL 2.0
Project. The purpose of the ADL 2.0 is to extend the technology of the ADL 1.0 pro
to object-oriented programming languages. Specifically, we intend to target C++,
CORBA IDL, and Java, while retaining the capability of specifying ANSI C program
This extension to object-oriented languages will require a substantial re-implemen
tion. We will take advantage of this opportunity to reduce some of the barriers to a
tion of ADL technology. In particular, we will simplify the input syntax of the ADL
compiler, and improve its portability by simplifying its internal structure. A migration
path for users of ADLT 1 is of utmost importance in this re-implementation.

ADL is an interface definition and testing system, which adds to a target programm
language a notation for describing behavior, for defining tests, and for generating d
mentation. This document describes ADL for the C++ programming language.

ADL provides capabilities to describe the semantics of interfaces, and also the cap
ity to design and implement test drivers.

This document is a concise language reference, intended to define the syntax of th
ADL annotation language.

The syntax used to describe the language grammar in this document is BNF, and fo
these conventions:

• The vertical bar “| ” represents a choice between different expansions. Hence “A | B

| C” represents eitherA, B, or C.

• Square brackets “[...] ” indicate optional constructs. Hence “A [B] C” is the same
as “ABC| AC”.

• Parentheses “(...) ” are used for grouping constructs. Hence “A (B) C” is the same
as “ABC” and “A (B | C) D” is the same as “ABD| ACD”.

• “ (...)* ” is used to represent zero or more occurrences of the group, and “(...)+ ” is
used to represent one or more occurrences of the group. Hence “A (B)* C” is t
same as “AC | ABC| ABBC| ABBBC| etc.” and “A (B)+ C” is the same as “ABC|

ABBC| ABBBC| etc.”.

• Non-terminals from the C++ language definition are represented in a sans-serif
(like literal), and the non-terminals that define the ADL augmentation of C++ app
in boldface .

• Lexical tokens and reserved words may appear literally within quotations, or the
name of the lexical token may appear in angle brackets like <STRING>.

• The left hand and the right hand sides of productions are separated by the sym
“ ::= ”. For presentation purposes, the entire right hand side of a production ma
be introduced at the same time. The symbol “+::= ” is used to indicate that the cur-
rent production is an augmentation of another production with the same left han
Version 1.2 13 of 75

Introduction ADL 2.0 Language Reference Manual for C++
side that has been introduced earlier. For example, “A ::= B” followed by “A +::=

C” is the same as “A ::= B | C”.
14 of 75 Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

. To

s. A
re is a
2 Semantics Annotations

The ADL extensions that allow the definition of the semantics of a function are dis-
cussed in the sections below.

2.1 Describing Semantics Of Interface Operations

ADL provides syntactic constructs to describe semantic behavior of C++ functions
do this, it provides an extended declaration syntax — theannotated function declaration
— as shown in the syntax below:

TranslationUnit := IncludeFileList [ADL_ClassDeclaration]

ADL_ClassDeclaration ::= “adlclass” <IDENTIFIER> [ADL_SuperClass] “{“ [ADL_Prologue]
[ADL_Epilogue] (ADL_InlineDeclaration | ADL_BehaviorDeclaration) * “}”

The above syntax indicates that the non-terminalTranslationUnit is modified to allow
the additional construct,ADL_ClassDeclaration . ADL introduces the
ADL_InlineDeclaration , as shown above, to facilitate the writing ofinline function
declarations.

ADL_BehaviorDeclaration := DeclarationSpecifiers FunctionDeclarator “{“ADL_BehaviorSpecification “}”

These rules are not complete: they will be refined throughout this document as we
present new properties. The complete grammar is given in Chapter 5.

The full definitions of the extra declarations added by ADL are given in later section
simple example illustrating the use of these constructs is shown here. Suppose the
class declared (in file StockBrocker.hh) as:

EXAMPLE 2.1 StockBroker.hh

class StockBroker {
long Cash_Balance(long account);

long Stock_Balance(long account, char* symbol);

void Buy(long account, char* symbol, long no_of_shares);
};

Then we may describe its behavior with the annotation:

EXAMPLE 2.2 StockBrokerSpec.adl

#include “StockBroker.hh”
Version 1.2 15 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

n

nline

Aux,
ernal
s is

tten

ilt-in
di-
include “StockBrokerAux.hh”

adlclass StockBroker {

inline long cost(char* symbol, long no_of_shares) {
no_of_shares * price(symbol);

}

void Buy(long account, char* symbol, long no_of_shares){
 semantics {

 Cash_Balance(account) ==
@Cash_Balance(account) - @cost(symbol, no_of_shares);

 Stock_Balance(account, symbol) ==
@Stock_Balance(account, symbol) + no_of_shares;

}

}

long Cash_Balance(long account) {
semantics {

// (...)
}

}

}

In this example, a class with three operationsCash_Balance, Stock_Balance, andBuy is
augmented with a description of the behavior ofBuy, written in the external function
annotation syntax. The two boolean expressions appearing within “semantics {...} ”
describe legitimate behavior of theBuy Function. In these expressions, “@” is a unary
operator (referred to as thecall state operator — see Section 2.3.1) whose sole functio
is to evaluate its argument prior to the execution of the Function — by default all
expressions are evaluated after the execution of the Function.

The first of these boolean expressions make use of the notion of “cost ” of a stock pur-
chase. This is implemented in the interface as an inline function declaration. The i
function declaration in turn requires the notion of the “price ” of a particular share, and
this is implemented as a static method “price” from an additional class, StockBroke
which is defined only for purposes of testing and included into the adl file as an ext
declaration. The main difference between inline and auxiliary function declaration
that the body of inline function declarations is an ADL expression (described fully
below) rather than a C++ block statement. The tested functions “Buy” could be referred
to using its fully qualified name “StockBroker::Buy”.

The example above shows that the specification of a class member function is wri
outside the definition of the class, much like an external implementation.

Behavior descriptions in annotated function declarations may refer to any of the bu
C++ types, and to types declared in the interface of the specified class or in any ad
tional declarations used for testing.
16 of 75 Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

 adl

n-
me
,

rectly
 then
in this
f the
e, and
ithin it;
 (see

orted
 runt-

The
must
 Lastly, it is not possible to define more than oneadl class in an ADL translation unit,
and the name of the file must be the name of the adl class extended with the suffix
(StockBroker.adl in the previous example).

2.2 ADL Syntax

ADL provides an expression syntax which is an extension of that of C++. The exte
sions are of two kinds: a few additional primary expressions and operators, and so
ADL-specific expression constructions. The ADL extensions will be presented here
without discussion of the standard C++ expressions.

2.2.1 Assertion Groups

ADL_AssertionGroup ::= “{“ (ADL_Binding)* (ADL_Statement)* “}”

ADL_Statement ::= ADL_Assertion
| ADL_IfStatement
| ADL_TryStatement

ADL_Assertion ::= [ADL_Label] [ADL_Tags]
(ADL_Expression | ADL_QuantifiedAssertion) “;”

ADL_Label ::= <IDENTIFIER> “:”

ADL_Tags ::= “[“ <IDENTIFIER> (“,” <IDENTIFIER>)* “]”

The basic block construct of ADL is theassertion group, which is a list ofstatements.
ADL statements have a type (usually boolean) and a value, but can not be mixed di
inside expressions. If there is more than one statement within the assertion group,
all of these statements must be boolean valued. The value of the assertion group
case is the conjunction (logical AND) of all the statements in the assertion group. I
assertion group contains only one statement, then this statement may be of any typ
the assertion group is also of this type and has the same value as the statement w
this can occur either with the inline/define constructs or with the try/catch statement
Section 2.3.5).

The optional label of an assertion is for documentation purposes only: it will be rep
as information when running the generated test. It does not modify the behavior at
ime in any other way.
The optional tags of an assertion are indications for the test runtime environment.
only currently supported tag is “[U]” (for untestable) that means that the assertion
not be evaluated.

The assertion group is an expression since:

ADL_BasicExpression ::= ADL_AssertionGroup
Version 1.2 17 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

: they
ts are

)
in

heir
p.

t for

com-
e. The
a-
Assertions are boolean expressions whose evaluation must generate a test report
do not produce any other side effect (hence assignments or increments/decremen
forbidden inside assertions). The following fragment is an example of an assertion
group:

{
Cash_Balance(account) == @Cash_Balance(account) -

@cost(symbol, no_of_shares);
Stock_Balance(account, symbol) ==

@Stock_Balance(account, symbol) + no_of_shares;
}

Since assertion groups are also expressions, they may appear anywhere an (ADL
expression is expected, and they may be nested within each other. Assertions with
nested assertion groups donot generate a test report: they are evaluated only so that t
return value is used in the computation of the value of the enclosing assertion grou

semantics {
<boolean expression> ==> {<assertion1>; <assertion2>};

}

In this example, there is only one generated test report for the whole assertion, no
“sub-assertions”assertion1 andassertion2 .

The list of expressions in an assertion group may be preceded bybindings: see
Section 2.3.4.

While most ADL specific expressions and statements are described in the two forth
ing sections, some are described later in sections where they are more appropriat
following is the complete list of all cross references to later sections where ADL fe
tures are described:

• The call state operator — Section 2.3.1

• Bindings —Section 2.3.4

• The try/catch statement — Section 2.3.5

• thrown expressions — Section 2.3.6

• The exception operator — Section 2.3.8

• Inline methods —Section 2.4

• Prologues and Epilogues —Section 2.5

2.2.2 ADL Specific Expressions

ADL_Expression ::= ADL_ImplExpression

ADL_ImplExpression ::= ConditionalExpression [ADL_ImplOp ConditionalExpression]

ADL_ImplOp ::= “==>”|“<==”|“<=>”|“<:>”
18 of 75 Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

ool-

s

e
antified
 type
ce one
he

ener-

um-
The three implication operators areimplication (==>), reverse implication (<==), and
equivalence (<=>). All these operations operate on boolean parameters and return b
ean results. The implication operator evaluates tofalse only when its left operand is
true and right operand isfalse (otherwise, it evaluates totrue). The reverse implica-
tion operator works like the implication operator with its arguments swapped. The
equivalence operator evaluates totrue if both its operands are the same, otherwise it
evaluate tofalse .

UnaryExpression +::= ADL_BasicExpression

ADL_BasicExpression +::= ”return”

Expressions are extended in ADL with the reserved wordreturn , which is used to
refer to the return value of a function. The primary expressionreturn may be used
only in behavior specifications (Section 2.3) of operations with non-void return type
and may not appear within an operand of a call state operator (Section 2.3.1).

2.2.3 Quantified Assertions

ADL_QuantifiedAssertion ::= ADL_Quantifier “(“ ADL_DomainList “)” ADL_AssertionGroup

ADL_Quantifier ::= “forall” | “exists”

ADL_DomainList ::= ADL_Domain (“,” ADL_Domain)*

ADL_Domain ::= NamedParam “:” ConditionalExpression

ADL offers a constrained form of quantified expression using which one may iterat
over ADL sequence values. These sequences are specified as domains, and a qu
assertions may contain any number of domains. Each domain is specified with the
of the sequence element, a new variable that can take on the values of the sequen
by one, and finally the sequence itself. An example of a domain that iterates over t
integers 1 through 10 is:

long i : ADL_long_range(1,10)

With ADL_long_range(i,j) which is a function that returns the sequence oflong ’s
starting fromi and ending atj . The same applies forADL_short_range and
ADL_int_range who return sequences of short’s and int’s resp.

In the case of the universal quantifier (forall), the enclosed assertion group (which
must have a boolean value) must betrue for all value assignments for free variables
from their domains. In the case of the existential quantifier (exists), the expressions
must betrue for at least one set of value assignments for the free variables.

The assertion group within a quantified assertion is nested: its assertions will not g
ate individual test reports.

The following is an example of the use of an universal quantifier that says that all n
bers in the range 1 to 10 are smaller than 100 (obviously):
Version 1.2 19 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

t dis-

rator

ng is

“

rtion

e same
e out-
te-

f

r the
forall (long i : ADL_long_range(1,10)) { i < 100; };

The following is an example of the use of an existential quantifier:

semantics {
exists (long i : ADL_long_range(1.10)) {

i%3 == 0;
i%7 == 0;

};
}

Because of the nested principle, the assertions within a quantified assertion are no
tributed: this example will generateone test report, with the valuefalse .

Free variables may not be used within the scope of a call-state or “unchanged” ope
(unless the whole quantified assertion itself is inside this scope).

2.2.4 ADL If Statement

ADL_IfStatement ::= “if” “(” ADL_Expression “)” ADL_AssertionGroup
[“else” (ADL_AssertionGroup | ADL_IfStatement)]

An “ if expression” provides a way to conditionally evaluate expressions. Its meani
quite similar to the “?: ” operator. The types of both the group expressions of theif

expression must be the same and this is the type of theif expression. If the type of the
if expression is boolean, then the else part may be omitted and is assumed to be else

true ”. The conditions (the expressions within parenthesis) must bebool valued and
are evaluated from top to bottom until the first one that evaluates to true. The asse
group of thistrue expression is then evaluated. This is the value of theif statement.

The assertion groups in the branches of an if statement are considered to be at th
nested level as the enclosing assertion group. If this enclosing assertion group is th
ermost one (i.e. just following the “semantics” keyword), assertions within the if sta
ment will therefore generate test reports.

2.3 Behavior Specification

The specification of the behavior of an interface function in its simplest form is the
function declaration followed by the reserved word “semantics” followed by a list o
boolean expressions within braces.

These expressions can refer to the visible state of the system both before and afte
execution of the function. The details of the syntax of expressions is presented in
Section 2.2.

ADL_BehaviorDeclaration ::= (DeclarationSpecifiers)? FunctionDeclarator
“{“ADL_BehaviorSpecification “}”
20 of 75 Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

sted.

ts to
rs are
e

ow:

ecla-
ns
| DtorCtorDeclSpec CtorDeclarator (ExceptionSpec)?
“{“ADL_BehaviorSpecification “}”

Both functions members (with or without a return type) and constructors can be te

ADL_BehaviorSpecification ::= "semantics" ADL_AssertionGroup

Every time an interface function with a behavior description is invoked, all argumen
call state operators are evaluated before the function is invoked (call state operato
described below). Then the function is invoked following which the remainder of th
behavior description is evaluated. If any expression evaluates tofalse , the function did
not behave as specified.

The behavior description ofBuy from Example 2.2 is reproduced below:

void Buy(long account,char* symbol, long no_of_shares){
 semantics {

Cash_Balance(account) ==
@Cash_Balance(account) - @cost(symbol, no_of_shares);

Stock_Balance(account, symbol) ==
@Stock_Balance(account, symbol) + no_of_shares;

 }

}

The evaluation of the behavior description whenever Buy is invoked is outlined bel

Step 1: Evaluation of arguments to call state operators:

tmp1 = Cash_Balance(account);
tmp2 = cost(symbol, no_of_shares);
tmp3 = Stock_Balance(account, symbol);

Step 2: The implementation ofBuy is invoked.

Step 3: Evaluation of the remainder of the behavior description:

assertion_1 = (Cash_Balance(account) == tmp1 - tmp2);
assertion_2 = (Stock_Balance(account, symbol) == tmp3 +

no_of_shares);

Step 4: Determination of consistent behavior:

if (!assertion_1 || !assertion_2) { report_error; }

Behavior descriptions can refer to inline function declarations and other function d
rations (as illustrated by the above example). Other specifics of behavior descriptio
are discussed below.
Version 1.2 21 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

he

 over-

mple,

e

func-
2.3.1 The Call State Operator

The call state operator has the effect of evaluating its argument before the call to t
specified function.

UnaryExpression +::= ADL_CallStateExpression

ADL_CallStateExpression +::=“@” UnaryExpression

ADL_BasicExpression +::=“unchanged” ArgumentList

Call state operators may nest within each other in which case, the inner operator is
ridden by the outer operator. For example,@(@a + b) is equivalent to@(a + b) .

Care must be taken to decide exactly where to place a call state operator. For exa
there is a subtle difference between@f(a, b) andf(@a, @b) . The first expression is
the value off(a, b) before the call to the specified function, while the second is th
value returned byf when called after the call to the specified function, but passed
parameters whose values are saved from the state before the call to the specified
tion.

The “unchanged” operator of ADL1 is maintained:

unchanged(<expr1>, <expr2>)

is a syntactic sugar for:

<expr1> == @<expr1> && <expr2> == @<expr2>

2.3.2 Specification of a Constructor

Constructor semantics are specified in the following way:

ADL_BehaviorDeclaration +::= DtorCtorDeclSpec CtorDeclarator (ExceptionSpec)? “{“ [ADL_Prologue]
ADL_BehaviorSpecification [ADL_Epilogue] (NLD_Annotation) * “}”

Some constraints are added while specifying a constructor :

EXAMPLE 2.3 StockBroker constructor specification

#include “StockBroker.hh”

include “StockBrokerAux.hh”

adlclass StockBroker {

StockBroker(int amt){
 semantics {

 Cash_Balance() == amt ;
 }
22 of 75 Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

ilt by

make
tor),

n not
p-

cified
class
 }

}

In this example, the call to Cash_Balance is executed on the StockBroker object bu
an implicit call to the real constructor of the class StockBroker.

Note that in constructor behavior specification:

• it is not possible to use a call-state or an unchanged expression (this would not
sense: there is no real object before the call of the tested method (the construc
because it is this call that builds the real “object”).

• it is not possible to use the “return” expression.

• the “this” expression refers to the built real object.

2.3.3 Specification Of An Inherited Method

ADL_ClassDeclaration +::= “adlclass” <IDENTIFIER> ADL_SuperClass
“{“ (ADL_BehaviorDeclaration)* “}”

ADL_SuperClass := “:” [“public”] <ID> (“,” [“public”] <ID>) *

Note that the multiple inheritance of ADL classes is supported. Scope override ca
figure in the name of the super class since inheriting from nested classes is not su
ported. To describe the behavior of a methodm, it is possible to use the behavior
description of the methodm’ thatm overrides.

EXAMPLE 2.4 Bank and MyBank classes

/* Bank.hh */

class Bank {
void openAccount();
void closeAccount();

}

/* MyBank.hh */

class MyBank : Bank {
void openAccount(); // overrides Bank.openAccount
void changeAccount(); // new method

}

The behavior of the methods openAccount and closeAccount of class Bank is spe
in a file Bank.adl, and we want now to describe the behavior of the methods of the
MyBank:
Version 1.2 23 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

d
ence
e

rol
e”

 class
nly
f the
d)
era-

r

EXAMPLE 2.5 MyBankSpec specification

include “Bank.hh”

adlclass MyBank : Bank {

void openAccount() {
semantics {

Bank::semantics; // assertions specific to the method
// Bank.openAccount

<assertion>; // assertion specific to the method
// MyBank.openAccount

}
}

}

The “:” inheritance clause is quite different from its usual meaning in C++: it is use
here to refer to ADL files (Bank.adl in the example). The compiler checks the pres
and correctness of thesource adl file; it is left to the responsibility of the user to ensur
that at link theobject file obtained by transformation of Bank.adl will be accessible,
along with the class file generated by transformation of MyBank.adl. Access cont
keywords is optional and can only be “public” (in comparison of the “public”, “privat
or “protected” inheritance in C++).

The assertion “Bank::semantics; ” is an explicit invocation of the semantics of the
superclass Bank of MyBank (here the semantics of the method openAccount of the
Bank — which MyBank inherits from — as defined in Bank.adl). It may be called o
as the first assertion of the main assertion group. Its (boolean) result is the value o
behavior description of method openAccount in Bank.adl. The superclass (qualifie
name is required to support multiple inheritance. The only side-effects are the gen
tion of test reports for the assertions of this behavior description.

The generated C++ ACO classes for MyBank will in fact inherit from the generated
C++ ACO class for Bank. See the ADL 2.0 Translation System design document fo
more details.
24 of 75 Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

...)

ory to

ass
).

ave
per
e

 super
eth-
ited
eman-

 calls
 C1,

heir
To summarize:

This picture represents a C++ hierarchy (C5 inherits from C4 that inherits from C3
and a corresponding adl classes hierarchy. Thefoos andbars are methods defined in
C++ classes, some of them being annotated by adl classes. We can notice that:

• the adl classes graph is a subgraph of the C++ classes graph (it is not compuls
annotate all C++ classes).

• an adl class can annotate a method that is defined in the corresponding C++ cl
(e.g. foo5 in C5) or overridden (e.g. foo2 in C5) or just inherited (e.g. foo4 in C5

• the <SuperClassName>::semantics feature can be used only in methods that h
already been annotated in an inherited adl class. Specifying the name of the su
class prior to the keyword “semantics”, makes the support of multiple inheritanc
possible in adl. Method under test should have been annotated in the specified
class. For instance in adl class C5, it would be an error to use this feature for m
ods foo4, foo5 and bar2, and correct for the other methods. Note that this inher
class is not necessarily the direct superclass: for instance in adl class C5, C1::s
tics in foo1 is valid.
Last, this process is recursive: if bar1 in C5 calls C3::semantics and bar1 in C3
C1::semantics, then calling bar1 of C5 will first evaluate the assertions of bar1 in
then the assertions of bar1 in C3, and then the assertions of bar1 in C5.

2.3.4 Bindings

Bindings are used to declare local variables and initialize them with useful values. T
main goal is to be used in conjunction with NLD annotations.

ADL_Binding ::= “define” NamedParamList “with” [<IDENTIFIER> “=”] ADL_Expression “;”

C++ classes

C1 foo1, bar1

C2 foo2, bar2

C3 foo3

C4 foo4

C5 foo2, foo5

ADL classes

C1 foo1, bar1

C3 foo2, foo3, bar1

C5 foo1, foo2, foo3, foo4,
foo5, bar1, bar2
Version 1.2 25 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

-

or

t

p-
 and
y”)
 be of

 a
 val-

local
 to
The earlierStock_Balance example may also be modified to use bindings. The fol
lowing is equivalent to the earlier behavior description:

{
define long pre_cash_bal with

pre_cash_bal = @Cash_Balance(account);
define long post_cash_bal with

post_cash_bal = Cash_Balance(account);
define long pre_stock_bal with

pre_stock_bal = @Stock_Balance(account, symbol);
define long post_stock_bal with

post_stock_bal = Stock_Balance(account, symbol);

post_cash_bal ==
pre_cash_bal - @cost(symbol, no_of_shares);

post_stock_bal == pre_stock_bal + no_of_shares;
}

 It is not possible to reference a binding inside the scope of a call-state operator.

A single binding declaration may introduce multiple variables and initialize them. F
example, suppose we had the following function:

long foobar(long x, long& y, long& z);

The following binding declaration evaluatesfoobar once with the number 5 as its inpu
parameter and “captures” all the values it returns:

define long retval, long y, long z with
retval = foobar(5, y, z);

It is also possible for a binding torebind variables introduced in earlier (and possibly
more global) bindings.

2.3.5 Try/Catch Specifications

During the evaluation of the assertions of an assertion group, it is possible for exce
tions to be thrown. Try/catch specifications may be used to catch these exceptions
provide an alternate assertion group whose value is used for that of the parent (“tr
assertion group. The assertion group(s) in the catch specification(s) must therefore
the same type as the parent assertion group.

ADL_TryStatement ::= “try” ADL_AssertionGroup (“catch” “(“ ExceptionDeclaration “)”
ADL_AssertionGroup)+

A catch specification has to name the particular exception it catches and bind it to
local identifier; this identifier may be used in the following assertion group to select
ues returned by the exception.

A catch specification may name the particular exception it catches and bind it to a
identifier, in which case, this identifier may be used in the following assertion group
26 of 75 Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

:

select values returned by the exception. A catch specification may also use the “... ”
syntax to catch any exception that may be thrown.

Suppose we modify the original stock broker interface to include some exceptions

EXAMPLE 2.6 StockBroker2.hh

class BadCall {
bool bad_account;
bool bad_stock_symbol;

};

class StockBroker {

long Cash_Balance(long account) throw (BadCall);

long Stock_Balance(long account, char* symbol)
throw (BadCall);

void Buy(long account, char* symbol, long no_of_shares)
throw (BadCall);

};

Then we can modify the specification of this interface as follows:

EXAMPLE 2.7 StockBroker2.adl

#include “StockBroker.hh”
#include “StockBrokerAux.hh”

adlclass StockBroker2{

inline long cost(char* symbol, long nsh) throw (BadCall) {
nsh * price(symbol);

}

void Buy(long account, char* symbol, long no_of_shares)
throw (BadCall){
 semantics {

 try {

 Cash_Balance(account) ==
@Cash_Balance(account) - @cost(symbol, no_of_shares);

 Stock_Balance(account, symbol) ==
@Stock_Balance(account, symbol) + no_of_shares;

 }
 catch (BadCall exc) {

thrown(BadCall) && {
((BadCall *) adl_thrownException)->bad_account ==
Version 1.2 27 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

e com-
 asser-
g the
 ADL

t
ser-
s.

p is
es

ation
cannot
cified
 the
the
fied
 exc.bad_account;
((BadCall *)adl_thrownException)->bad_

stock_symbol== exc.bad_stock_symbol;
};

 }
 catch (...) {

false;
 }

 } // end of semantics

 } // end of Buy

}

In this modified specification, the assertion group of the behavior description ofBuy is
modified to include two catch specifications.

The first catch specification catches the exceptionBadCall . The assertion group of this
catch specification states that the exceptionBadCall must be thrown byBuy (thrown
expressions are described below). Furthermore, this exception must have the sam
ponent values as that of the exception that was thrown during the evaluation of the
tion group. Note the mechanism to refer to components of exceptions thrown durin
evaluation of a behavior description: the left hand sides of the comparison use the
variable adl_thrownException, that is the exception thrown by the specified method
Buy, and the right hand sides of the comparisons (exc.bad_account and
exc.bad_stock_symbol) refer to the values of components of the exception caugh
by the catch specification (i.e. that was thrown during the evaluation of the “try” as
tion group). Also note the nested assertion group that contains the two comparison
This prevents these comparisons from being evaluated ifthrown(BadCall) is not
true (in this case, the selection of components ofBadCall will have unexpected
results).

The second catch specification catches all other exceptions and its assertion grou
simply “{false} ”. This is simply stating that this situation is unexpected and if it do
happen for whatever reason, a failure needs to be reported.

The above example has a serious flaw. Exceptions may be thrown during the evalu
of an expression in the scope of one of the call state operators. These exceptions
be caught by the above catch specifications since they are evaluated after the spe
function has been called. The solution to this problem is to catch the exceptions in
call state itself and replace them with harmless values. In this particular example,
same exceptions will be thrown by evaluation in the state after the call to the speci
function, and hence the semantics specified by the catch specification will still take
effect. The corrected version of the above example follows:

EXAMPLE 2.8 StockBroker2.adl (corrected)
28 of 75 Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

he
e
te are

pecifi-
ample
e are
#include “StockBroker2.hh”
#include “StockBrokerAux.hh”
adlclass StockBroker2{
inline long cost(char* symbol, long no_of_shares) throw
(BadCall) {

no_of_shares * price(symbol);
};

void Buy(long account, char* symbol, long no_of_shares)
throw (BadCall) {
semantics {

try {

 Cash_Balance(account) ==
@{

try { Cash_Balance(account) - cost(symbol,
no_of_shares);}

catch(...) { 0; };
};

Stock_Balance(account, symbol) ==
@{

try { Stock_Balance(account, symbol);}
catch(...) { 0; };

}
+ no_of_shares;

 }
catch (BadCall exc) {

thrown(BadCall) && {
((BadCall *) adl_thrownException)->bad_account ==

 exc.bad_account;
((BadCall *)adl_thrownException)->

bad_stock_symbol== exc.bad_stock_symbol;
};

}
catch (...) {

false;
}

 } // end of semantics

 } // end of Buy specifications

}

In this version, all exceptions caught in the call state are replaced by the value 0. T
nature of this example is such that any exception thrown in the call state will also b
thrown after the call to the specified function, hence the 0’s passed from the call sta
never really used.

The above example looks messy, but in the presence of exceptions, a lot of catch s
cations are necessary. This is true of normal programs too. However, the above ex
is further cleaned up in Section 2.3.7 where the catch specifications of the call stat
moved up into inline function declarations.
Version 1.2 29 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

ptions

r.

al
vior

pur-

n

of

s
.

-
r the
2.3.6 Thrown Expressions

Thrown expressions are boolean expressions used to specify whether or not exce
have been thrown.

ADL_BasicExpression +::= ADL_ThrownExpression

ADL_ThrownExpression ::= “thrown” “(” (TypeNameList | “...”) “)”

thrown(e1, e2, etc.) is true if any of the exceptionse1, e2, etc. is thrown and is
false otherwise.thrown(...) is true if any exception is thrown. It isfalse if no
exception is thrown.

“thrown(e)” is equivalent to saying that “adl_thrownException is e”.

Thrown expressions may not be placed within the argument of a call state operato

2.3.7 Behavior Classification

It is often very useful to broadly categorize the behavior of a function into its “norm
behavior” and “abnormal behavior”. One may then specify more details of the beha
in each of these cases. ADL provides the behavior classification construct for this
pose. The behavior classification is used to associate a boolean expression to the
reserved wordsnormal andabnormal .

ADL_BehaviorSpecification :=“semantics” [ADL_BehaviorClassification] ADL_AssertionGroup

ADL_BehaviorClassification := “[” ((“normal”|”abnormal”) “=” ADL_Expression “;”)* “]”

The default meanings of normal and abnormal are as follows:

• If neithernormal norabnormal has been defined in a behavior classification, the
normal defaults to!thrown(...) andabnormal defaults tothrown(...) .

• If only one ofnormal andabnormal is defined, the other defaults to the negation
the one defined. For example, ifnormal is defined, thenabnormal defaults
to!normal .

When bothnormal andabnormal are defined, their definitions need not be negation
of each other. They may overlap or exclude portions of the possible output domain

In a behavior classification, there may be at most one definition fornormal and one for
abnormal .

The reserved wordsnormal andabnormal may then be used in the behavior descrip
tion of the function as short forms for the expressions associated with them, as pe
following syntax:

ADL_BasicExpression +::=“normal” |“abnormal”
30 of 75 Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

ifica-
The following example modifies the earlier example to make use of behavior class
tions:

EXAMPLE 2.9 StockBroker2.adl with behavior classification

#include “StockBroker2.hh”
#include “stockBrokerAux.hh”

adlclass StockBroker2{

inline long cost(char* s, long nsh)
{

try{ nsh * price(s);}
catch(...) { 0; };

};

inline long _Cash_Balance(long account)
{

try { Cash_Balance(account);}
catch(...) { 0; };

};

inline long _Stock_Balance(long account, char* symbol)
{

try{ Stock_Balance(account, symbol);}
catch(...) { 0; };

};

void Buy(long account, char* symbol, long no_of_shares)
throw (BadCall) {

semantics
[normal = !thrown(...);

abnormal = thrown(BadCall);]
{ if (normal) {

try{

Cash_Balance(account) ==
@_Cash_Balance(account) - @cost(symbol, no_of_shares);

Stock_Balance(account, symbol) ==
 @_Stock_Balance(account, symbol) + no_of_shares;

 } //end try
catch (...) { false; };

}; // end if (normal)
 } // end semantics

} // end Buy

}

Version 1.2 31 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

at it

de:

ne

n
d sim-

l
e
n.

ssifi-
cep-
tes

d and
ifica-

sta-
tially
ised.

n

This version of the stock broker specification is weaker than the previous one in th
talks only about the normal behavior ofBuy. It will be extended to describe the abnor-
mal behavior ofBuy in Section 2.3.8. Interesting aspects of the above example inclu

• The catch specifications to catch exceptions in the call state are moved into inli
function declarations so as to reduce the clutter in the behavior description ofBuy.

• The normal behavior ofBuy is defined as any behavior that does not throw any
exception. The abnormal behavior ofBuy is defined as any that causedBadCall to
be thrown.

• The main part of the behavior description ofBuy is guarded by the “if ” expression
(Section 2.2) “if (normal) ...”. In this case, no exception is expected to be throw
during the evaluate of the assertions, and hence a catch specification is include
ply to report an error if any exception is thrown.

• Previous versions of this example mixed the description of normal and abnorma
behavior. This version provides the beginnings of a clear separation which will b
more apparent when the abnormal behavior is also completed in the next sectio

2.3.8 The Exception Operator

ADL provides the exception operator <:> whose meaning is based on behavior cla
cations. In the usual usage of this operator, the left operand is the enabler of an ex
tion, while the right operand is a “thrown” expression. The following example illustra
this typical use:

bad_account(account) || bad_symbol(symbol) <:>
thrown(BadCall)

Informally, A<:>B means that if A is true, then the abnormal condition should be
detected but B is not necessarily true. However, if an abnormal condition is detecte
B is also true, then A must be true as well. The first part of this rule allows the spec
tion of abnormal conditions for functions that can raise several different abnormal
tuses in a possibly non-deterministic way, e.g., several error conditions are met ini
but we don’t care which one is raised as long as at least one of them is actually ra

More formally, the exception operator is defined as:

A <:> B is the same as

((A ==> abnormal) and (abnormal && B ==> A))

As an example of the use of the exception operator, consider the following assertio
group (we detour from the stock broker a bit here):

{
!file_exists(f) <:> thrown(not_found);
disk_full() <:> thrown(disk_error);

};

If we assume the default definition ofabnormal , this assertion group could probably be
used to specify a file open function. It reads: If the filef does not exist, then an excep-
32 of 75 Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

-
 that

n-
may

y be
tion must be thrown. Similarly, if the disk is full, an exception must be thrown. How
ever, it does not restrict exceptions to be thrown for other reasons. But it does say
the exceptionnot_found should only be thrown when the filef does not exist, and
exceptiondisk_error should only thrown when the disk was full. An interesting co
sequence is that if both the file does not exist and the disk is full, either exception
be thrown. The following assertion group strengthens the above assertion group to
require that only these two exceptions or members of a class SystemException ma
thrown:

{
!file_exists(f) <:> thrown(not_found);
disk_full() <:> thrown(disk_error);
abnormal ==>

thrown(not_found, disk_error, SystemException);
};

Now the earlier stock broker example is completed with specification of abnormal
behavior. Two auxiliary function declarations —bad_acct andbad_sym — are added
into the StockBroker.hh file:

class StockAuxiliary {
public:

bool bad_acct(StockBroker sb, long account);
bool bad_sym(char * symbol);interface StockAuxiliary {
long price(char* s, long nsh);
}

EXAMPLE 2.10 StockBroker2.adl with exceptions

#include “StockBroker.hh”
#include “StockBrokerAux.hh”

adlclass StockBroker2 {

inline long cost(char* symbol, long no_of_shares) {
try { no_of_shares * price(symbol);}
catch(...) { 0; };

};

inline long _Cash_Balance(long account) {
try { Cash_Balance(account);}
catch(...) { 0; };

};

inline long _Stock_Balance(long account, char* symbol) {
try { Stock_Balance(account, symbol);}
catch(...) { 0; };

};
Version 1.2 33 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

n, but
w
.7 in

avior

era-
s are
s to

ts
cient
ct or
void Buy(long account, char* symbol, long no_of_shares)
throw (BadCall) {
semantics
[normal = !thrown(...);

abnormal = thrown(SystemException, BadCall);]
{

bad_acct(account) <:>
(thrown(BadCall) && ((BadCall*)adl_thrownException)->

bad_account);
bad_sym(symbol) <:>

(thrown(BadCall) && ((BadCall*)adl_thrownException)->
bad_stock_symbol);

if (thrown(BadCall)) {
 ((BadCall *) adl_thrownException)->bad_account ||

((BadCall) adl_thrownException).bad_stock_symbol;
};
if (normal) {
 try { Cash_Balance(account) ==

@_Cash_Balance(account) -
@cost(symbol, no_of_shares);

Stock_Balance(account, symbol) ==
@_Stock_Balance(account, symbol) + no_of_shares;

 } // end try
catch (...) { false; };

}; // end if

} // end semantics

}
}

Note the right hand side of the two exception operators refer to the same exceptio
different additional conditions associated with the raising of the exception. This ne
behavior description is different from the earlier behavior description in Section 2.3
a few interesting ways, some of which are:

• It makes clear the abnormal behavior. In the earlier example, the abnormal beh
was described through catch specifications in the normal behavior.

• This leaves the particular exception condition (right operand of the exception op
tor) that occurs non-deterministic. If the left operands of the exception operator
both true, then the behavior description allows either of the exception condition
hold.

• It uses an additional auxiliary class to give additional information about accoun
and symbols. It is often the case that a class sufficient for normal use is not suffi
for testing; typically, it is useful to add operations to inspect the state of an obje
to encapsulate complex actions.
34 of 75 Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

tions

an
stitu-

sser-

relim-
an-

er-
ts.
2.4 Inline Procedure Declarations

Inline macro declarations is other way to define concepts used in behavior descrip
(along with Auxiliary C++ declarations). Their syntax is:

ADL_InlineDeclaration ::= "inline" DeclarationSpecifiers FunctionDeclarator “{“
ADL_AssertionGroup “}” “;”

Inline declarations are macros, in the usual C pre-processor meaning. The call to
inline is replaced by the text of the corresponding assertion group, with adhoc sub
tion of the parameters.

In the Stockbroker example, where “cost” is defined as:

inline long cost(String s, long nsh) {
try { nsh * StockBrokerAux.price(s); }
catch(...) { 0; };

};

any expressioncost(symbol, no_of_shares) will be replaced by:

{ try { no_of_shares * StockBrokerAux.price(symbol); }
catch(...) { 0; };}

This is the second case (after try/catch specifications) of the two cases where an a
tion group may have a non-boolean value.

2.5 Prologues and Epilogues

Before being able to test a specific method, it is sometimes necessary to perform p
inary initializations that require imperative features: this cannot be made inside sem
tics assertions, which should remain declarative constructs with no side-effects.

For this purpose, the user can use the “prolog” and “epilog” features, which provide
blocks of “pure” C++ that will be transmitted without any transformation to the gen
ated code. It is up to the C++ compiler to check the correctness of these statemen

There are two kinds of prologues/epilogues: either global (inADL_ClassDeclaration)
or local (inADL_BehaviorDeclaration).

ADL_ClassDeclaration +::= “adlclass” <IDENTIFIER> [: <ID>]
“{“ [ADL_Prologue] [ADL_Epilogue]
(ADL_InlineDeclaration | ADL_BehaviorDeclaration)* “}”

ADL_BehaviorDeclaration ::= FunctionDeclaration “{“ [ADL_Prologue] ADL_BehaviorSpecification
[ADL_Epilogue]“}”

ADL_Prologue ::= “prolog” CompoundStatement

ADL_Epilogue ::= “epilog” CompoundStatement

adlclass bankAccount {
Version 1.2 35 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

re
e
ons.
ed

rein
e
te-

ehav-
 in

dings
 pro-
ed in
prolog {
char* url = “jdbc:odbc:wombat”;

 DbConnection dbcon= DbDriverManager::getConnection(url);
DbTable dbtbl = dbcon.createTable();

}

long deposit(long amt) {
prolog {

char* sel = “SELECT p.* (...)”;
 dbtbl.checkAssertion(sel);

dbtbl.setInt(1, get_account());
}
semantics {

dbtbl.execute(); // boolean-valued function
}
epilog {

dbcon.close();
}

}

}

In the generated C++ code for this example, the global and local prologue blocks a
concatenated (the global before the local) and copied “as is” at the beginning of th
“deposit” generated method, before the code that deals with the semantics asserti
The epilog code is copied at the end of this method (a global epilog would be copi
right before the local one).

The overall execution scheme is as follows:

Step 1: Execution of the global prologue (except in constructors)
Step 2: Execution of the local prologue
Step 3: Call of the tested method
Step 4: Evaluation and saving of call-state expressions
Step 5: Evaluation of the assertions and test reporting
Step 6: Execution of the local epilogue
Step 7: Execution of the global epilogue (except in constructors)

Note that the global prologue is a purely syntactic construct: variables declared the
arenot global variables, but variables local to all the specified method — exactly lik
the variables declared in the local prologue. Its sole purpose is to factorize the sta
ments that need to be executed at the beginning ofall the methods whose behavior is
specified in the adl class.

There is a special case for constructors; it is possible to define a local prologue in b
ior specification of a constructor, but the global prologue/epilogue are not included
the generated code.

Call-state expressions and inlines cannot be used in prologues and epilogues. Bin
can be used in the local epilogue of the behavior where they are defined, but not in
logues and global epilogue. The global epilogue has only access to variables defin
36 of 75 Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

rence
itself and in the global prologue. It is possible, inside call-state expressions, to refe
the variables declared in prologues.
Version 1.2 37 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++
38 of 75 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for C++

tested;
erface.

n
D is

c

 test
 tar-
 input

arget
ntax is
n to

rget
et. An
arte-

 not
indices,

ility
. In

o be
; that

com-
s of a
3 Test Annotations

Test data annotations allow the test engineer to define how an interface should be
what data and what procedures should be used to exercise the functions in the int

3.1 Concepts

The test data description (TDD) language provides a notation in which the user ca
write descriptions of test sets, which will be processed into test driver programs. TD
organized by a few concepts; these are presented in the first section, with syntacti
details in later sections.

3.1.1 Re-write

The principle behind TDD2 is that it is processed by re-writing the input to create a
program. The re-write does not remove any information, and a valid program in the
get language should not be altered by the re-write. Hence any code fragment in the
which does not use TDD2 features will appear unaltered in the rewritten output.

The concepts of TDD2 are applied to a variety of programming languages, called t
languages. The concepts of TDD2 are common to all target languages, and the sy
in large measure common; the parts of the language that get re-written are commo
our four target languages (C, C++, IDL, and Java).

3.1.2 Dataset

A dataset is a set of data values. It may be used in place of an expression in the ta
language syntax. The result of such an expression over a dataset is another datas
expression involving more than one dataset is treated as an expression over the C
sian product of the datasets:

(EQ 3)

Dataset Size.A dataset has a definite size, by construction. However, that size may
be feasible to use as a test. Examples of feasible datasets are enum types, array
array contents, and datasets created by literal expressions. Examples of infeasible
datasets are programming language types like ‘int’ and ‘float’. The concept of feasib
is not precise; there is not an axiomatic way to decide if a dataset is small enough
practice, a dataset with more than 2^32 elements is certainly infeasible.

A dataset may be created by a literal expression or by a factory. A dataset may als
created by the combination of a representation type and a constraint. A single value
is, an expression in the target language, is a trivial dataset.

Dataset size is determined by calculation rather than by construction. It is easy to
bine a finite number of feasible datasets and create an infeasible dataset; 32 copie
Boolean dataset, for example.

A B⊗ f 0 A B,() F0 A B×()≡ ≡
Version 1.2 39 of 75

Test Annotations ADL 2.0 Language Reference Manual for C++

r, and

 the
for
ent of

 con-
n,

ype
g; for
ll
 of
pes

f the
all-

s.

hich
 a spe-

tion.
3.1.3 Factory

A factory is a data creator. It encapsulates the notions of a constructor, a destructo
reporting.

A factory is, formally, a function from a dataset to a dataset. A function fn(A,B,C...) of
more than one argument is formally treated as function f1 of a single argument,
AxBxC... – the crossproduct of the input datasets.

Operationally, a factory is implemented by a pointwise function on the elements of
domain. In addition, the implementation of a factory includes a destructor function
elements of the range, and an association from an element of the range to the elem
the domain.

The formal definition of a factory is: ,

where D is the domain of the factory, R is the range of the factory, c is the factory’s
structor function, d is the factory’s destructor function, and i is the inversion functio
which can be used to determine the input that gave rise to a given range element.

While several of the target languages provide expression of these notions in their t
structure, those expressions may be not be available for all types needed for testin
example, none of the target languages permit extension of the built-in types, and a
allow the declaration of types which permit no extension. The factory notion is part
TDD2, outside the target language’s type system, so that it can be applied to all ty
needed for testing.

3.1.4 Checked Function

A checked function is a function for which an oracle is available. Calling a checked
function produces the same value and outcome as calling the unchecked version o
function, but will report some measurement information as an invisible (within the c
ing program — not to the user!) side effect.

When running under a debugger, all functions may be said to be checked function

In the ADLT system, checked functions are generated from function declarations w
have been annotated with semantics specifications. Within a test directive, there is
cial convenient syntax for invocation of such an ADL-derived checked function; the
class or object on which the method is invoked is enclosed in the ADL pseudo-func

ADL(obj)->meth(data);
obj->meth(data);

F D R c, , d i,{ , }≅
c D R ⊥{ }∪→?Functional?

d R ∅ ⊥, }{→?Functional?

i F D→?Functional?
40 of 75 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for C++

L-
ot
ch an

d

t
nc-

writ-
, in
 call-
out

ive.

sser-
 is

l

Both method invocations in this example result in invocation of methodmeth on the
underlying implementation objectobj ; however, the checked method invocation is
relayed through anAssertion Checking ObjectADL(obj) that implements the seman-
tic checks specified by the ADL semantic annotation. It is an error to invoke the AD
checked version of a method if either the class type of the underlying object has n
been annotated (there is no adl class that annotates this type) or if there exists su
adl class but that method does not have a semantic annotation in this adl class.

The scope of the ADL keyword operates on only one method: in the expression
ADL(obj)->m1(p1)->m2(p2) the methodm1 is called on the ACO object created
by ADL(obj) and therefore it is the checked methodm1 that is called; however, this
method will create a usual object on which theunchecked methodm2 will be called. If
the return type ofm1 has been annotated and the user wants to execute the checke
methodm2, he/she must write:ADL(ADL(obj)->m1(p1))->m2(p2)

It is possible to test a constructor: the syntaxADL_new Foo(bar) will create an
object of type Foo using a checked constructor.

3.1.5 Test Directives

A test directive is ormally a statement, evaluated for side effect. In particular, a tes
directive normally includes an expression involving one or more calls to checked fu
tions.

Note that a function or method body in a test declaration is subject to the same re-
ing as any other code in the test declaration. Hence any call to a checked function
such a body, will be interpreted as a call to the checked version of the function; and
ing such a function or method will have the side-effect of making an observation ab
the behavior of such checked functions.

A test directive expression is parameterized by the datasets used in the test direct

3.1.6 Assertion

An assertion is a Bool expression. However, the test framework takes note of an a
tion. An assertion is a postcondition. An assertion contributes to the test result and
reported to the user.

Formally, an assertion is a Bool expression evaluated for side effect.

An assertion is expressed by a call to the functiontdd_assert(char*, bool) from
the ADLT runtime library. As a stretch feature, the ADLT translator may re-write the
assertion to provide better reporting.

3.1.7 Importation

It is possible to import datasets or factories defined in other TDD files, by using the
“use” feature of the TDD language. This feature is syntactically similar to the usua
importation scheme of the target language:#include for C/C++ andimport (with
qualified name) for Java.
Version 1.2 41 of 75

Test Annotations ADL 2.0 Language Reference Manual for C++

n
fined

f the
nk-
is is
iler

uc-
nter-

ass”
ay

ean-
s
and
e

ns
sing
Note that this importation clause makes reference to thesource TDD file, not to the
object code obtained after ADLT translation and compilation. In TDD for C++, whe
the user declares “use bar;”, he can thereafter use for instance the dataset “D1” de
in the file bar.tdd. With “use”, the compiler checks the presence and correctness o
source tdd file. It is however left to the responsibility of the user to ensure that at li
time the object file obtained by transformation of the bar.tdd will be accessible. Th
closer to the C semantics, with the distinction between the header file for the comp
and the library at runtime.

3.2 Annotated TDD / C++ Syntax

This is not the complete syntax for the TDD extensions to C++, but rather the prod
tions that are additions or modifications from the language standard. Undefined no
minals and terminals are references to the language standard.

TDD_AnnotatedDeclaration ::= [TDD_UseDeclaration] TDD_ClassDeclaration

TDD_ClassDeclaration ::= “tddclass” <IDENTIFIER>
“{“ (TDD_ClassBodyDeclaration)* “}”

A TDD class declaration is like any C++ class declaration, with the use of the “tddcl
keyword and with the methods access modifiers “public” and “private” removed. It m
contain any C++ declaration, plus some TDD constructs.

 TDD classes have no inheritance structure, as the concept of “superclass” is not m
ingful for a TDD class. TDD class may not extend another, although one TDD clas
may refer to another. One TDD class may refer to entities (both C++ declarations
TDD declarations) declared in another, either by using the fully scoped name of th
external entity or the “use” TDD file feature.

TDD_UseDeclaration ::= (“use” <ID> “;”)+

<ID> refers to the tdd file (without its extension .tdd) to be used.

TDD_ClassBodyDeclaration ::= TDD_DatasetDeclaration
| TDD_FactoryDeclaration
| TDD_TestDirective
| TDD_FieldDeclaration
| FunctionDefinition

TDD_FieldDeclaration ::= DeclarationSpecifiers Declarator “=” AssignmentExpression
(“,” Declarator “=” AssignmentExpression)* “;”

In TDD class body, only initialized variable declarations and test fucntion declaratio
are allowed. Other pure C++ declarations (ExternalDeclaration) can be included u
the “# include” feature.
42 of 75 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for C++

est

 and

turn

llo-
pe of

tax.

vo-
it,
ltor

,
corre-
The extra constructs that may occur in a TDD declaration are datasets, factories, t
functions and test directives.

TDD_DatasetDeclaration ::= "dataset" ADL_NamedParam "=" TDD_DatasetExpr ";"

ADL_NamedParam ::= DeclarationSpecifiers Declarator

A dataset is like an initialized declaration, except that dataset may have type void,
that the initializer is a dataset not just a scalar

TDD_FactoryDefinition ::="factory" DeclarationSpecifiers FunctionDeclarator CompoundStatement
[“relinquish” “(“ ParameterDeclaration “)” CompoundStatement]

A factory is defined just like a function with a C++ compound statement. It must re
a pointer to a value (a builtin type or an object). The relinquish clause receives the
pointer to the returned value as parameter. It provides a way to free the memory a
cated for the returned value. Obviously, the type returned by the factory and the ty
the parameter of the relinquish clause must be identical.

TDD_TestDirective ::= [<ID> ":"] "test" [“forall”] “(“ [TDD_DatasetDomain
(“,” TDD_DatasetDomain)*] “)” Statement

A test directive is similar to an ADL quantified expression, and allows a similar syn
It declares local variables that range over the contents of the specified datasets.

A test directive is implemented by putting it in the body of a method, suitable for in
cation by the appropriate test framework. The test method declaration is left implic
rather than being explicitly written as part of the test directive, so that the ADL trans
can supply a test method declaration specialized for the test framework for which
code is being generated.

TDD_DatasetDomain ::= ADL_NamedParam ("=" | ":") TDD_DatasetExpr
| TDD_DatasetExpr

A dataset expression may be used alone in a domain list only if it is a void dataset
which must be produced by a factory; in that case, it denotes the evaluation of the
sponding void factory member for side effect.

TDD_DatasetExpr ::= TDD_DatasetConcatExpr (“+” TDD_DatasetConcatExpr)*

TDD_DatasetConcatExpr ::= TDD_DatasetSingleton
| TDD_DatasetLiteral
| TDD_FactoryCall

TDD_DatasetSingleton ::= Constant | <ID>

TDD_DatasetLiteral ::= “{“ [TDD_DatasetMember (“,” TDD_DatasetMember)* [“,”]] “}”

TDD_DatasetMember ::= ConditionalExpression [“..” ConditionalExpression]

TDD_FactoryCall ::= QualifiedId “(“ [TDD_DatasetExpr (“,” TDD_DatasetExpr)*] “)”
Version 1.2 43 of 75

Test Annotations ADL 2.0 Language Reference Manual for C++

set
ataset
ment

 the

t lit-

sign.

irec-

t is

at the
n-
TDD_ADLnewExpression ::= “ADL_new” IdExpression

TDD_ADLExpression ::= “ADL” “(“ PrimaryExpression() “)”

A dataset literal is written in braces. It may be empty. The elements in a literal data
may be expressions or ranges. Ranges are only meaningful for integral types. A d
expression that reduces to a literal or a local field name is converted into a one-ele
dataset literal. The expressions in a dataset literal are evaluated once for all when
dataset is initialized; they will not be re-evaluated at each selection.

Method invocation is legal only as TDD_DatasetMember (for members of a datase
eral) whereas factory invocation is legal only as TDD_DatasetExpression:

dataset int D = f1() + { f2() };

this definition is correct if f1 is a factory and f2 a method.

3.3 General Syntax & Examples

This section presents the general syntax along with examples that motivate the de

3.3.1 Simple Datasets and Data Construction

Some examples of data generation.

EXAMPLE 3.1 The Simplest Test

#include “subject.hh”
tddclass t1{

ADL(subject)->plus(3,4);
}

The simplest test is just an invocation of an annotated function. Formally, this test d
tive is the application of the annotated function “plus” to the cross-product of two
datasets, “{3}” and “{4}”; the promotion from a single value to a one-element datase
automatic.

In the example,subject.plus is a static method name;ADL(subject)->plus
is the name of a checked version of that static method (we do not precise here wh
name “subject” refers to; it is implicit that it has been imported through the target la
guage standard importation features:#include in C++ andimport in Java).

EXAMPLE 3.2 A Simple Dataset

#include “subject.hh”
tddclass t2{

dataset int A = {1,3,5 .. 7};
test (int i1 = A, int i2 = 1)
44 of 75 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for C++

 the
actory;

y as

quish
ry
ents
nts in
en exe-
ADL(subject)->plus(i1, i2);
test (int i1 = 1, int i2 = A)

ADL(subject)->plus(i1, i2);

}

This testsplus when adding the constant 1, from both sides.

3.3.2 Compound Datasets : Factories, Concatenation

EXAMPLE 3.3 Compound Data Construction

#include “myio.h”
tddclass{

factory RandomAccessFile*
make_file(char* nm, char* mode){

return new RandomAccessFile(nm, mode);
} relinquish(RandomAccessFile* r) { // ...
};
dataset File* F0 = make_file(

{“/dev/null”,”/dev/tty”,”/tmp/foo”},
{“r”,”rw”});

dataset File* F1 =
make_file(“/dev/null”,”r”) +
make_file(“/dev/tty”, {“r”,”rw”}) +
make_file({ util.tmpnam()}, {“rw”});

char* buf = new byte[512];

test (RandomAccessFile* F = F0)
ADL(F)->read(buf,512);

test (RandomAccessFile* F=F1) {
ADL(F)->read(buf,512);

}
}

Dataset F0 has 3x2=6 members, while F1 has 1+2+1=4 members. Note that F1 is
concatenation of several datasets, each produced by a separate invocation of the f
the example uses “+” as the dataset concatenation operator.

This example shows the syntax for a test directive, with the datasets listed explicitl
an initialized declaration list.

The optional relinquish clause has similar syntax to a C++ catch clause. The relin
clause takes a single argument whose type must match the return type of the facto
method. In the body of the relinquish clause, the user has visibility to all the argum
of the factory method and the system guarantees that values used for the argume
the preceding call to the factory method to create the return data, are the same wh
cuting the call to the relinquish clause.
Version 1.2 45 of 75

Test Annotations ADL 2.0 Language Reference Manual for C++

 of a
 and
rom
plete

ecks

d
cally
 is
3.3.3 Void Datasets

In order to express the notion of an environment condition that affects the operation
system under test, without producing an assignable value, the concepts of dataset
factory are extended to allow void pseudo-values. This example imports datasets f
the previous one, and shows the use of a block as the body of a test directive, com
with an assert.

EXAMPLE 3.4 Void Datasets

use t3;
tddclass{

factory void setup_system(int condition_code){//..

 } relinquish{...}

dataset void setup_set = setup_system(1);

test (setup_set,
RandomAccessFile* F = F1,// F1 accessible thanks

 // to “use t3;”
char* data={““, “hello”})

{
char* tmp;
ADL(F)->write(data);
F->seek(0);
tmp = ADL(F)->read();
tdd_assert(“streq(tmp,data)”, streq(tmp,data));

}
}

This example shows the use of an unchecked method (seek) in conjunction with some
checked methods (write andread). All three method invocations result in method
invocations on the underlying implementation objectF; however, the checked method
invocations are relayed through a checking object that implements the semantic ch
specified by the ADL semantics annotation.

Note that, as the void dataset setup_set is defined as a factory call, this factory
setup_system is called once for each test data instance.

Imported dataset names (through the “use ” clause) can be unqualified only if defined in
the current tdd class. Unqualified syntax (F = F1 in the example) is possible if

• F1 is defined in the current tdd class, or

• F1 is defined in at most one of the “used” classes

If two tdd classes are imported (use c1; use c2;) such that a dataset F1 is define
in c1.tdd and another in c2.tdd, then a call to F1 must be qualified: F = c1::F1. A lo
defined dataset namehides an imported dataset that has the same name. Importation
46 of 75 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for C++

not

tic
he

t
direc-

o-
 a
le
not transitive: if tdd class c0 imports tdd class c1 and c1 imports c2, then c0 does
import c2 (unless it explicitly does so, of course).

These rules are also valid for factory importation. Only datasets and factories are
importable: the constants and test directives of a tdd class are not.

3.3.4 Dataset Elements Evaluation

EXAMPLE 3.5 Runtime Initializers

The elements of a dataset literal are evaluated only once, at initialization time (sta
evaluation). If the user wants a dataset whose elements are evaluated each time t
dataset is referenced (dynamic evaluation), he must use factories.

tddclass t5 {
/* this is not a good dataset; it lacks repeatability */
dataset double q_static =

{ drand48(), drand48(), drand48() };
factory double rand() { return drand48(); }

dataset double q_dynamic = rand();
}

In this example, the dataset q_static is initialized with 3 random values that will no
change whatever the number of test directives that reference q_static. But for test
tives that use q_dynamic, each test data instance will be dynamically reevaluated.

3.3.5 Dataset Constants

EXAMPLE 3.6 Provide Test Variables

This example may be slightly familiar for those familiar with the ADLT1 example pr
grams. The combination of a factory requiring one or more integer parameters with
dataset is the ADL/C++ idiom for a provide test variable. In TDD, any global variab
(field) is implicitly constant (const in C++) and must be initialized at its declaration.
A TDD constant is private: it cannot be imported through the “use” clause.

#include “Bank.hh”;

tddclass t6 {

 int SAVINGS = -1, CHECKING = 1, IRA = 7;
int negative = -10, zero = 0, small = 3, average = 100,

large = 1000, over_limit = 10000;
dataset int account_type = {SAVINGS, CHECKING, IRA};
dataset int size_code =

{negative, zero, small, average, large, over_limit};
Version 1.2 47 of 75

Test Annotations ADL 2.0 Language Reference Manual for C++

f

s. The

s.
factory account* acct(int t, int s) { /* ... */ }

dataset account* Account1 = acct(account_type,size_code);

factory int amount(int size_code){/* ...*/}
Bank* bank = new Bank(/*..*/);

test (account* act = Account1, int size = size_code) {
ADL(bank)->withdraw(act, amount(size_code));
ADL(bank)->deposit(act, amount(size_code));
ADL(bank)->balance(act);

}
}

EXAMPLE 3.7 Better Test Variables

Here is a more general collection of test variables, showing the increased power o
TDD2.

#include “Bank.hh”

 tddclass t7 {
dataset int size_code =

{negative, zero, small, average, large, over_limit};
dataset int account_type =

{checking, savings, IRA, zero, neg, max,over_max};

factory double amount(int size){/*...*/}
factory account* make_acct(

 int type_code,
double size) {/*....*/}

dataset account* Acct = make_acct(
acount_type, amount(size_code));

Bank* bank = new Bank(/*..*/);

test (account* act = Acct, int size = size_code) {
ADL(bank)->withdraw(act, amount(size_code));
ADL(bank)->deposit(act, {0.1, 124.1e10, 1125.333});
ADL(bank)->balance(act);

}
}

This example is intended to motivate the separation between factories and dataset
make_acct factory can be used to create a dataset with accounts of any size; the
Acct dataset is the result of applying that factory to a specific set of amount value

3.3.6 Test Directives

Simple examples of test directives were given in the previous section.
48 of 75 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for C++

ver,
this
ay.

tacti-
. The
he list
iable
valu-

 break

dle
The syntax is:

[label :] test (type id = dataset,...) statement

Example:

#include “object_data.h”;

tddclass t10{
Dir1 : test (Object* o = data.obj) {

ADL(o)->hashCode();
}

A test directive body has the same syntax as statement in the C++ grammar; howe
“test statement” is a misleading phrase. A label may be placed on a test directive;
will influence the generated code and the generated test documentation in some w

In the syntax, local variables are created to range over the specified datasets. Syn
cally; this is like an initialized declaration, but the initializer is a dataset expression
declared variable ranges over the members of the dataset during test execution. T
may also contain a dataset expression denoting a dataset of type void, with no var
declared; in that case the dataset member selection, presumably by a factory, is e
ated for side effect only.

Not all programming language statements are legal test directives. For instance, a
statement is not a legal test statement.

3.3.7 Void Datasets Use

EXAMPLE 3.8 Void Dataset Use

The syntax for having void datasets is as follows :

tddclass t9 {
dataset int A = { 1,2,3 };

factory void side_effect(int){/*...*/}
dataset void X = side_effect({0..6});

dataset float F = { f1(), f2(), f3() };

test (int a=A, X, float f=F)
ADL(tested)->func(f, a);

}

In this example,f is the loop variable for the inner loop, and varies fastest. The mid
loop is a selection over X, evaluated only for side effect. The outer test loop variesa

overA.
Version 1.2 49 of 75

Test Annotations ADL 2.0 Language Reference Manual for C++

e is
f the
3.3.8 Advanced Examples

EXAMPLE 3.9 Chaining Factories

#include “code.hh”
#include “myio.hh”

tddclass t10 {

factory char* make_file_name(
bool absolute,
bool device,
bool funny_chars,
int length_code

) { /*...*/ }

dataset int length_code =
{ code::ZERO, code::ONE, code::MEDIUM,
 code::LONG, code::TOO_LONG };

dataset char* file_name_set =
make_file_name(true, false, false, 10);

factory File* make_file(char* file_name) { /*...*/ }

factory RandomAccessFile*
make_filestream(File* f, char* md) { /*...*/ }

dataset char* legal_open_type = {“r”, “rw”};

factory char* illegal_open_type() { /*...*/ }

dataset char* open_type =
legal_open_type + illegal_open_type();

dataset File* File_set =
 make_file(file_name_set);

dataset RandomAcessFile* Stream_set =
make_filestream(File_set, open_type);

}

This illustrates several techniques for re-using factories.

EXAMPLE 3.10 Test By Example

More complex examples bring us to the concept of “Test by Example”: the test cod
an example of typical code, or code fragments, the user would write to make use o
interface under test.
50 of 75 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for C++

e

r, giv-
hods.
 the

s in
s to
g on
#include “myio.hh”

use t10;

public tddclass t12 {

void read_then_write(RandomAccessFile* f, byte[] buf) {
long pos;

pos = f->getFilePointer();
ADL(f)->read(buf);
ADL(f)->seek(pos);
ADL(f)->write(buf);

}

test (File* f = File_set)
read_then_write(f, buf_set);

}

This defines and then calls a test procedure that, when executed, will check that th
readFully , seek , andwriteFully operate together correctly when used in this
particular way. More exactly, the test procedure will exercise the methods togethe
ing the assertion-checking code a change to check the behavior of annotated met
This is not a good way to test for error handling; it may prove useful when checking
normal operation of an interface.

EXAMPLE 3.11 Multiple Dataset References

A single dataset may be used more than once in a single test directive. This result
independent iterations over the dataset. If the test author wants multiple reference
the same value in one directive, it is necessary to declare multiple variables rangin
the same dataset.

#include “Math.hh”

tddclass t13 {
dataset int A = { 1, 2, 3 };

test (int a = A, int b = A)
ADL(Math)::plus(a, b); // 9 evaluations

test (int a = A) {
ADL(Math)::plus(a,a); // 3 evaluations

};
}

Version 1.2 51 of 75

Test Annotations ADL 2.0 Language Reference Manual for C++
52 of 75 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for C++

docu-
tions
other

nt
cla-
e
ecla-
he
r

d at
ent,

ns it
ration

ch-

r the

er has
clar-

hat
es the
pe

cope
e,

ifier
4 NLD Annotations

Natural language annotations can be provided to improve the quality of generated
descriptions of ADL and TDD expressions.

4.1 Concepts

The ADLT tool can generate natural language (NL) documentation describing the
semantics of functions and the generated test driver. The quality of the generated
ments can be improved by annotating the input files with natural language descrip
(NLD). These annotations describe translations for identifier names, and provide
configuration information for the ADLT NL system.

Standard Generalized Markup Language (SGML) is the foundation of the docume
generation system. ADLT renders ADL and TDD expressions into SGML entity de
rations, exploiting any NLD annotations that the test engineer has provided. Thes
entity declarations are processed together with a set of document template entity d
rations to form a complete SGML document conforming to the DocBook 3.0 DTD. T
final SGML document can be converted to specific output formats such as HTML o
Unix manual pages, or incorporated in larger SGML documents. See the NLD and
SGML section for more details.

C++ can be annotated with NL information in several places. Briefly, it can be place
top level, within a TDD annotation, attached to an annotated function or test statem
or placed after the bindings in an ADL semantics group expression. The translatio
provides apply throughout the scope (and enclosed scopes), not just from the decla
point onwards. The examples in this section illustrate some of the annotation atta
ment locations.

NLD annotations introduce translation information for identifier names at a specific
scope. Translations in outer scopes are shadowed or overridden by translations fo
same identifier name within enclosed scopes.

When ADLT comes to generate a natural language rendering of an ADL or TDD
expression it takes each identifier in the expression and determines whether the us
provided any NL translations for its name. It searches outwards from the scope de
ing the identifier through its enclosing scopes until it finds a candidate translation t
satisfies any constraints on usage (such as locale) defined by its predicates. It us
first one it finds. If more than one satisfactory translation is found at the same sco
level a warning is generated and one of the translations is arbitrarily selected.

For example, a translation for an identifier name can be provided at the top level s
and it will be found and used for any identifier with that name in any enclosed scop
unless an alternative translation is provided at a more local scope.

A subclass inherits the NL declarations of its superclass. An NL declaration for an
identifier given in the subclass overrides any inherited NL declarations for that ident
name.
Version 1.2 53 of 75

NLD Annotations ADL 2.0 Language Reference Manual for C++

, this
den in

 an

rs to
lass

will

 trans-
 file,
4.2 Syntax and Semantics

The inheritance of NL declarations follows the target language; in the case of C++
means that NL declarations are inherited from all base classes, and may be overrid
a subclass or implementation class. An error occurs if a conflicting definition arises
from this inheritance.

4.2.1 Simple Data Member Translation
Translations can be provided very close to where an identifier is declared by using
NL declaration in the same scope as the identifier.

/* C++ code */
class C {

public static int amount;
}

/* ADL source */
adlclass C {

nld {
.amount = “the correct amount”;

}
}

This declares a translation for amount in the scope C (the dot. before amount refe
the current scope where the nld block is written, here the global scope of the adl c
C). Any expression using an identifier named amount declared within C or one its
enclosed scopes will be translated to use the declared string.

4.2.2 A Simple Function Member Translation

Methods can have translations declared in a similar fashion.

class C {
public: int balance();

}

adlclass C {
nld {

.balance() = “the balance of the account”;
}

}

This declares a translation for balance() in the scope C. Any expression using a
function identifier named balance declared within C or one of its enclosed scopes
be translated to use the declared string.

4.2.3 Out Of Line Translations

Translations do not have to be declared at the same place the identifiers are. The
lations in the two previous examples could have been provided out of line, in a .nld
by using fully scoped identifier names.
54 of 75 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for C++

ction

rrent

nt
)

m an

ss

h will
nld {
C::amount = “the correct amount”;
C::balance() = “the balance of the account”;

};

4.2.4 Translations For Overloaded Methods

As there may be more than one function with a particular name in a scope the fun
signature must be provided in its NL declaration.

class C {
public:

void deposit(int amount);
void deposit(int amount, int charge);
void close_account();

};

nld {
C::deposit(int amount) = “deposit some money”;
C::deposit(int amount, int charge)

= “deposit some money and charge a fee”;
C::close_account = “close the account”;

}

These mappings are not preceded by a dot, which means they do not refer to a cu
scope but describe entities with a full name. The notation C::deposit(*) could be
used to define a mapping common to all deposit methods. The notation C::*::amou
could be used to define a mapping common to all local entities (parameter, binding
named “amount”, in all methods of C.

4.2.5 Priorities

When several NL mappings are defined for an entity, they are distinguished one fro
other by an algorithm that detects the more “precise” one:

C::deposit(int)::amount = “the deposit amount”;
// has higher priority than

C::deposit(*)::amount = “a deposit amount”;
// which itself has higher priority than

C::*::amount = “the amount”;
// which itself has higher priority than

C::amount = “the class amount”;
// and finally the lowest priority for global scope

amount = “the global amount”;

With the inheritance mechanism, this algorithm is refined by a prioritized “super cla
lookup”: if C::deposit(int).amount is not found, the mapping will first be
searched in super classes of C (from parent class of C), and if not found the searc
be launched onC::deposit(*).amount and so forth.
Version 1.2 55 of 75

NLD Annotations ADL 2.0 Language Reference Manual for C++

 to

ear
 file,

e
te
4.2.6 Using semantics And nld Blocks

A method can be annotated with both semantics and NL translations.

adlclass C {
int balance(int ac) {

semantics {
ac != 0;

}
nld {

.ac = “the account number”;

. = “the balance of the account”;
}

}
};

The dot notation “. ” refers to the current NLD scope (in this case the methodbal-
ance(int)). The notation “.ac” is equivalent to using a fully scoped name to refer
the function’s local arguments.

nld {
C::balance(int)::ac = “the account number”;
C::balance(int) = “the balance of the account”;

};

In case of a clash between two equivalent mappings, the final mapping is thelast
encountered one, knowing that NLD files are always parsedbefore ADL/TDD files
(except for this rule, NLD files and ADL/TDD files are parsed in the order they app
on the command line). If the two equivalent mappings are defined in the very same
the last occurrence is retained.

The formal argument name from the function declaration is used as the name of th
local argument.The signature of the function must be given in order to disambigua
overloaded functions.

4.2.7 Shadowing or Overriding A Translation

nld {
i = “the loop counter”;

};

class A {
public:

static int i;
};

class B {
public:

static int i;

nld {
56 of 75 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for C++

 for
this
e.
ec-
ctual
.i = “B’s i”;
};

};

An expression usingA::i will pick up the top level NL declaration fori and be trans-
lated as “the loop counter”. The NL declaration fori within B overrides the top level
declaration so an expression usingB::i will be translated as “B’s i”.

4.2.8 Overriding a Non-Local Translation

Translations in other scopes can be overridden too.

class A {
public:

static boolean i;
};

class B {
public:

void g();
};

adlclass A {
nld {

.i = “A’s i”;
}

}

adlclass B {
void g() {

semantics { /* ... A::i ...*/ }
nld {

A::i = “g’s i”;
}

}
}

The translation of the reference ofA::i in theB::g() semantics block is “g’s i”,
overriding the translation fori given inA.

4.2.9 Invocation Translation

An invocation translation is used to translate a function call. It provides a mechanism
the translation to refer to the translations of the actual arguments. In order to use
mechanism the function translation must be provided with the full function signatur
The notation ‘$1’, ‘$2’, etc. in the mapping of a function definition refer to the first, s
ond, etc. acual argument of the function call: the translation of the corresponding a
argument is used instead of any translation for the formal argument name.
Version 1.2 57 of 75

NLD Annotations ADL 2.0 Language Reference Manual for C++

”.

redi-

ed.
 in the

 be
ories

) pro-

s

trans-

 the

.

the
class C {
public:

public int a;
public void f(int i, int j);

}

nld {
C::a = “the actual argument”;

C::f(int, int) = “using ” + $1 + “ and ” + $2;
C::f(int, int)::i = “the first formal argument”;

};

An expression usingf(a, 3) will be translated as “using the actual argument and 3

4.3 NLD Predicates

Each NL translation associates a list of predicates with an identifier name. Each p
cate asserts certain attributes of the translation. The most important attribute is the
actual translation text (which must be provided), but other attributes are also defin
Some predicates act as constraints to determine when the translation can be used
generated documents. SGML entities can also be declared in the predicate list.

The order of predicates in the predicate list is not significant. A predicate can only
used once in a list. Future predicates might include markers for grammatical categ
such as tense, gender or number.

4.3.1 Pre-defined Predicates
These predicates (there are currently three defined: call-state, negation and locale
vide a mechanism to select a mapping for a given situation.

For instance, consider:

amount = “the amount”;
amount[@] = “the former amount”;

The second mapping will be used to translate the identifier amount when it appear
within the scope of a call-state (@amount) whereas the first one will be used in the
other cases. If no mapping with the call-state predicate is defined, an appropriate
lation text is synthesized from the basic translation (here@amount would be translated
as “the previous value of the amount”). This predicate is useful in situations where
synthesized translation is clumsy or inappropriate.

Thenegation predicate (notation “!”) is used in a similar fashion for negation scopes

strcmp(char*, char*)[!] =
“string” + $1 + “is equal to string” + $2;

With this mapping, an assertion ‘! strcmp(str, “foo”); ’ will be translated as
“string str is equal to string “foo”” instead of “the negation of the value returned by
58 of 75 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for C++

ns-

nsla-
m

er a

ded

at this

 to a

he
e
hod
function strcmp(char*, char*), invoked with parameters: (str ; “foo”)”, the default tra
lation.

Invocation translations apply for call-state and negation translations too.

Different languages require different translations. Thelocale(<string>) predi-
cate can be used to mark a translation as being valid for the specified locale. A tra
tion with the locale predicate is only considered when it matches the current syste
locale. This is usually configured by setting theLANG environment variable. See the
setlocale(3) manual page for more details. A translation for an identifier name
with a locale predicate that matches the current system locale takes preference ov
translation with a different or unspecified locale.

It is possible to define a mapping for several predicates (e,g,
amount[!,@,locale(“fr”)] = “...”;)

To define several mappings with different predicates, it is possible to use the exten
syntax:

deposit(int, int) : {
text = “the basic mapping”;
text[@] = “the callstate mapping”;
text[!] = “the negation mapping”;

}

The notationdeposit(int) = “deposit an amount”; is in fact a shortcut
for deposit(int) : { text = “deposit an amount”; }

An other possible shortcut is to declare the locale before the translation text:
deposit(int) “C” = “the mapping for locale C”; stands for
deposit(int) : {
 text[locale(“C”)] = “the mapping for locale C”; }

4.3.2 User-defined Predicates
A user-defined predicate is a mechanism to assert an attribute to a mapping, so th
mapping can be selected or not elsewhere.

We will give an example in french, a language with explicit gender:

maleCat = “chat”, [male];
femaleCat = “chatte”, [female];
colorOf(int) : “fr.FR” {

text[$1[male]] = “la couleur du ” + $1, [female];
text[$1[female]] = “la couleur de la ” + $1, [female];

}

The two first mappings state that maleCat and femaleCat correspond respectively
masculine and feminine gender. The notation$1[male] is to select a mapping that
corresponds to a function call with a first argument that has the “male” predicate. T
function callcolorOf(femaleCat) would therefore be translated as “la couleur d
la chatte”. The “female” predicate that is defined as an attribute to the colorOf met
Version 1.2 59 of 75

NLD Annotations ADL 2.0 Language Reference Manual for C++

d (for

ons
d user
ce
 and
-

ML
e can
an

L or

 the
os-

 be
states that the word “couleur” is feminine; thus the expressioncolorOf(maleCat)
could be used in a context where an expression with “female” predicate is expecte
a “stupid” example,colorOf(colorOf(maleCat)) would be rendered as “la
couleur de la couleur du chat”).

4.4 NLD and SGML

ADLT generates documentation by emitting SGML entity declarations for descripti
of aspects of the annotated functions and test specification. These synthesized an
supplied entity declarations can be used with template entity declarations to produ
complete SGML documents for subsequent processing. ADLT supplies templates
synthesizes entities based upon the DocBook 3.0 document type definition for con
structing reference manual pages and test specification descriptions.

4.4.1 Reference Manual Document

ADLT processes each annotated function to generate a function file containing SG
entity declarations describing its synopsis, semantics and error conditions. This fil
be parsed in conjunction with the supplied reference manual template to produce
SGML document conforming to the DocBook 3.0RefEntry element. ADLT also
provides tools to convert the final SGML document into other formats such as HTM
Unix manual pages.

The reference manual template file declares default values for some entities which
function file generated by ADLT can override. Here are the entities for which it is p
sible to generate a value in nld blocks (we call them “properties”):

%description: A general description of the function and/or the class. This can
specified by using thedescription property in the NL declaration for the function/
class.

%includes: Unlike all other property declarations, the declared text ofincludes
is processed before generating the property declaration to escape “<“ characters.

%purpose: A short description of a function.

%seeAlso: A reference.

EXAMPLE 4.1 Using Properties

void f() {
semantics { /* ... */ }
nld {

. : {
&includes = “#include <stdlib.h>”;
&description = “Behavioral description”;
%purpose = “Short description”;
%seeAlso = “See the class Foo”;
60 of 75 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for C++

s:
s

nerate
 no
e the
}
}

}

This is equivalent to:

nld {
C::f() : &includes = “#include <stdlib.h>”;
C::f() : &description = “Behavioral description”;

// ...
}

The implementation of ADLT includes an SGML DTD that defines the structure of
these entities. Note that ADLT doesnot preprocess the strings that define these entitie
it sends them without any modification, except for “<“ and “>” in %includes (there i
for instance no interpolation mechanism performed on these strings).

4.5 NLD for TDD

Test Data Description sources can also be annotated with nld blocks in order to ge
SGML documentation files. There is however an important difference: as there are
assertions in TDD, there are no automated translation of any expression. Therefor
user may only write NLD annotations to provideproperties (like %description) or
SGML entities, that are gathered and rendered in the generated documentation.

EXAMPLE 4.2 NLD annotation in a TDD class:

tddclass datasetsCollection {

nld {
. : %description = “A collection of datasets.”;

}

int NEG = -1; int ZERO = 0; int MAX = 100;
nld {

.NEG : %description = “a negative value”;

.ZERO : %description = “the null value”;

.MAX : %description = “the greatest value”;
}

dataset int DEPOSITS = { NEG, ZERO, 7, MAX };
dataset bank* B_SINGLE = make_bank (10,0,DEPOSITS);

nld {
.DEPOSITS : %description = “Set of typical values.”; }
.B_SINGLE : %description = “bank.......”;

}

}

Version 1.2 61 of 75

NLD Annotations ADL 2.0 Language Reference Manual for C++

.
e
a-
ra-

hat
ed to
ion

ans-

 spec-

ext
te

orm

e

ale
n in
4.6 NLD and Localization

ADLT chooses translations for identifier names based on the current system locale
Each NL declaration can be marked with a specific locale that determines when th
translation can be used. Anadl annotation can specify the locale of all the NL declar
tions grouped within it by using the optional locale marker. Additionally each decla
tion can use the locale predicate to specify its individual locale. When a locale is
specified for a NLD group, any other locale defined for a mapping within this group
would be skipped.

If a translation has a locale specified it will only be selected as a candidate when t
locale is the system locale. A translation without a locale specification is consider
be in the default locale, and will be selected as a candidate when no other translat
specified with the current locale is available.

There are four areas where localization is necessary.

Identifier translations. The locale mechanism provides a way to produce a set of tr
lations for C++ and ADL identifiers that are restricted to one locale. They will be
selected in preference to translations for the identifiers which do not have a locale
ified.

User-specified entity declarations.The locale mechanism can also be used to mark
user-supplied entity declarations with a specific locale.

Document templates.The translations and user-specified entities are merged with t
in the document template files to produce the final SGML documents. The templa
files can be localized.

Sentence construction rules.ADLT uses a set of rules to construct descriptions of
ADL expressions out of the identifier translation fragments. These rules take the f
of a Prolog program that can be localized.

4.7 NLD Syntax

NLD_Annotation ::= “nld” [NLD_Locale] “{“ (NLD_Declaration | NLD_EntityDeclaration)* “}”

NLD_Locale ::= <STRING_LITERAL>

Natural language information is attached to the ADL source with a natural languag
annotation. An annotation is introduced with thenld reserved word, an optional locale
indicator and then a group of one or more NL declarations within braces. If the loc
indicator is present it acts as if the locale predicate is specified for every translatio
the group. For example,

nld “C” {
...
}

acts as iflocale(“C”) is specified for each translation.
62 of 75 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for C++

tion

ion to
ber
’s
s
g the

ly

an
Each NL declaration is either a translation for a C++ or ADL identifier, or a declara
for an SGML entity to be used for document generation.

The left hand side of each kind of declaration can contain a scoped name. In addit
the standard C++ scoping, NLD also allows identifier names within a function mem
to be specified. This makes it possible to give translation information for a method
formal parameters and local ADL bindings. This is useful for specifying translation
for identifier names from many classes or methods in one place, rather than forcin
test engineer to distribute NL information throughout the specification files.

EXAMPLE 4.3 Using Fully Scoped Names

class C {
public:

int i;
void f(int i);

};

nld {
C::i = “translation for i”;
C::f(int) = “translation for f(int)”;
C::f(int)::i = “translation for i in f(int)”;

};

If a function name is overloaded at a particular scope it must have its signature ful
specified. Otherwise it can be abbreviated to omit the declarations for the formal
parameters and use only the notation “(*)”.

The translation information is entered at the specified scope (refered to as “.”), so
expression rendered at the current scope, or within an enclosed scope can find it.

NLD_Declaration ::= NLD_ScopedName
([NLD_Locale] NLD_TextAssignment
|

“:” [NLD_Locale] (NLD_Statement | “{“ NLD_Statement + “}”))

NLD_Statement ::= NLD_PropertyDeclaration | “%text” NLD_TextAssignment “;”

NLD_TextAssignment ::= [NLD_SelectPred] “=” NLD_String
[“,” “[“ NLD_UserPred (“,” NLD_UserPred)* “]”]

NLD_SelectPred ::= “[“ NLD_Predicate (“,” NLD_Predicate)* “]”

NLD_Predicate ::= NLD_PredefinedPred
| NLD_ParamNumber “[“ NLD_UserPred (“,” NLD_UserPred)* “]”

NLD_PredefinedPred ::= “@” | “!” | “locale” “(“ NLD_Locale “)”

NLD_UserPred ::= <IDENTIFIER>
Version 1.2 63 of 75

NLD Annotations ADL 2.0 Language Reference Manual for C++

 value
er-

es
rals
NLD_ParamNumber ::= “$”<INTEGER_LITERAL>

NLD_ScopedName ::= “.”
| NLD_MethodName
| [NLD_Scope “::”] NLD_Identifier

NLD_MethodName ::= Name NLD_Signature

NLD_Signature ::= “(“ (“*” | Type (“,” Type)*) “)”

NLD_Scope ::= “*”
| “.”
| Name [“::*”]
| NLD_MethodName

SGML entities can also be declared in an NL annotation. The text declared as the
of the entity is not examined by ADLT, it is passed on to the SGML back end unint
preted and unmodified. For example,

&gen-ent = “a general entity”;

declares a general entity with the specified value.

NLD_EntityDeclaration ::= “&” <IDENTIFIER> “=” NLD_EntityText

NLD_PropertyDeclaration ::= NLD_PropertyName “=” NLD_EntityText

NLD_PropertyName ::= “%description” | “%includes” | “%purpose” | “%seeAlso”

NLD_EntityText ::= <STRING_LITERAL> (“<<” <STRING_LITERAL>)*

With the exception of the notation for string literals, the SGML syntax for entity nam
and values is used. See the SGML Handbook for details. NLD specifies string lite
with a notation based upon the C++ language.

NLD_String ::= NLD_StringElem (“+” NLD_StringElem)*

NLD_StringElem ::= <STRING_LITERAL> | NLD_ParamNumber

See the C++ grammar for descriptions of theName and Type nonterminals.
64 of 75 Version 1.2

Complete Grammar ADL 2.0 Language Reference Manual for C++

ned

alect,
 sup-
ar
5 Complete Grammar

Here is the complete grammar for ADL for C++. Non-terminals in boldface are defi
in this document; other non-terminals are part of the C++ language definition.

There may be some discrepancy between this grammar and any particular C++ di
for two reaasons: C++ is not standardized, and the ADLT system is not intended to
port all of the language. Also, the fact that a C++ construct is parsed by this gramm
does not mean that construct will be processed by ADLT.

5.1 C++ productions

TranslationUnit ::= IncludeFileList [ADL_ClassDeclaration | TDD_AnnotatedDeclaration]
(NLD_Annotation)* <EOF>

IncludeFileList ::= (IncludeFileDeclaration)*

IncludeFileDeclaration ::= <SHARP_INCLUDE_FILE> (ExternalDeclaration)* <ENDINC>

 ExternalDeclaration ::= DtorDefinition
| CtorDefinition
| FunctionDefinition
| ConversionDeclOrDef
| Declaration
| “;”

FunctionDefinition ::= DeclarationSpecifiers FunctionDeclarator (“;” | CompoundStatement)
| FunctionDeclarator (“;” | CompoundStatement)

LinkageSpecification ::= “extern” <STRING> (“{“ (ExternalDeclaration)* “}” [“;”] | Declaration)

Declaration ::= DeclarationSpecifiers [InitDeclaratorList] “;”
| LinkageSpecification

TypeModifiers ::= StorageClassSpecifier
| TypeQualifier
| “inline” | “virtual” | “friend”

DeclarationSpecifiers ::= (TypeModifiers)+
[BuiltinTypeSpecifier (BuiltinTypeSpecifier | TypeModifiers)*
| (QualifiedType | ClassSpecifier | EnumSpecifier) (TypeModifiers)*]

| BuiltinTypeSpecifier (BuiltinTypeSpecifier | TypeModifiers)*
| (QualifiedType | ClassSpecifier | EnumSpecifier) (TypeModifiers)*

SimpleTypeSpecifier ::= (BuiltinTypeSpecifier | QualifiedType)

ScopeOverride ::= (“::”) (<ID> [“<“ TemplateArgumentList “>”] “::”)*
| (<ID> [“<“ TemplateArgumentList “>”] “::”)*
Version 1.2 65 of 75

Complete Grammar ADL 2.0 Language Reference Manual for C++
QualifiedId ::= FullyScopedId
| <ID> [“<“ TemplateArgumentList “>”]
| “operator” Optor

FullyScopedId ::= ScopeOverride (<ID> [“<“ TemplateArgumentList “>”] | “operator” Optor)

PtrToMember ::= ScopeOverride “*”

QualifiedType ::= FullyScopedType
| <ID> [“<“ TemplateArgumentList “>”]

FullyScopedType ::= ScopeOverride <ID> [“<“ TemplateArgumentList “>”]

TypeQualifier ::= “const” | “volatile”

StorageClassSpecifier ::= “auto” | “register” | “static” | “extern” | “typedef”

BuiltinTypeSpecifier ::= “void” | “char” | “short” | “int” | “long” | “float” | “double” | “signed”
| “unsigned” | “bool”

InitDeclaratorList ::= InitDeclarator (“,” InitDeclarator)*

InitDeclarator ::= Declarator [“=” Initializer | “(“ ExpressionList “)”]

ClassHead ::= (“struct” | “union” | “class”) [<ID> [BaseClause]]

ClassSpecifier ::= (“struct” | “union” | “class”) (ClassMemberList | <ID> [BaseClause]
ClassMemberList | <ID> [“<“ TemplateArgumentList “>”])

BaseClause ::= “:” BaseSpecifier (“,” BaseSpecifier)*

BaseSpecifier ::= [“virtual” [AccessSpecifier] | AccessSpecifier (“virtual”)]]
 [ScopeOverride] <ID> [“<“ TemplateArgumentList “>”]

AccessSpecifier ::= “public” | “protected” | “private”

ClassMemberList ::= {“ (MemberDeclaration)* “}”

MemberDeclaration ::= Declaration
| EnumSpecifier [MemberDeclaratorList] “;”
| ConversionDeclOrDef
| DtorDefinition
| DtorCtorDeclSpec SimpleDtorDeclarator “;”
| CtorDefinition
| (DtorCtorDeclSpec CtorDeclarator “;”)
| FunctionDefinition
| DeclarationSpecifiers [MemberDeclaratorList] “;”
| FunctionDeclarator “;”
| QualifiedId “;”
66 of 75 Version 1.2

Complete Grammar ADL 2.0 Language Reference Manual for C++
| AccessSpecifier “:”
| “;”
| NLD_Annotation “;”

MemberDeclaratorList ::= MemberDeclarator [“=” <OCTALINT>]
 (“,” MemberDeclarator [“=” <OCTALINT>])*

MemberDeclarator ::= Declarator

conversionDeclOrDef ::= “operator” DeclarationSpecifiers [“*” | “&”] “(“ [ParameterList] “)”
[TypeQualifier] [ExceptionSpec] (CompoundStatement | “;”)

EnumSpecifier ::= “enum” (“{“ EnumeratorList “}” | <ID> [“{“ EnumeratorList “}”])

EnumeratorList ::= Enumerator (“,” Enumerator)*

Enumerator ::= <ID> [“=” ConstantExpression]

PtrOperator ::= “&” CvQualifierSeq
| “*” CvQualifierSeq
| PtrToMember CvQualifierSeq

CvQualifierSeq ::= [“const” [“volatile”] | “volatile” [“const”]]

Declarator ::= PtrOperator Declarator
| DirectDeclarator

DirectDeclarator ::= |“(“ Declarator “)” [DeclaratorSuffixes]
| QualifiedId [DeclaratorSuffixes]

DeclaratorSuffixes ::= (“[“ [ConstantExpression] “]”)*
| “(“ [ParameterList] “)” [TypeQualifier] [ExceptionSpec]

FunctionDeclarator ::= PtrOperator FunctionDeclarator
| FunctionDirectDeclarator

FunctionDirectDeclarator ::= QualifiedId “(“ [ParameterList] “)” [TypeQualifier] [ExceptionSpec]
[“=” <OCTALINT>]

DtorCtorDeclSpec ::= [“virtual” [“inline”] | “inline” [“virtual”]]

DtorDefinition ::= [TemplateHead] DtorCtorDeclSpec DtorDeclarator CompoundStatement

CtorDefinition ::= DtorCtorDeclSpec CtorDeclarator [ExceptionSpec]
 (“;” | [CtorInitializer] CompoundStatement)

CtorDeclarator ::= QualifiedId “(“ [ParameterList] “)”

CtorInitializer ::= “:” SuperclassInit (“,” SuperclassInit)*

SuperclassInit ::= QualifiedId “(“ [Expression] “)”
Version 1.2 67 of 75

Complete Grammar ADL 2.0 Language Reference Manual for C++
DtorDeclarator ::= [ScopeOverride] SimpleDtorDeclarator

SimpleDtorDeclarator ::= “~” <ID> “(“ [ParameterList] “)”

ParameterList ::= ParameterDeclarationList [[“,”] “...”] | “...”

ParameterDeclarationList ::= ParameterDeclaration (“,” ParameterDeclaration)*

ParameterDeclaration ::= DeclarationSpecifiers (Declarator | AbstractDeclarator)
[“=” AssignmentExpression]

Initializer ::= “{“ Initializer (“,” Initializer)* “}”
| AssignmentExpression

TypeName ::= DeclarationSpecifiers AbstractDeclarator

TypeNameList ::= TypeName (, TypeName)

AbstractDeclarator ::= [“(“ AbstractDeclarator “)” (AbstractDeclaratorSuffix)*
| (“[“ [ConstantExpression] “]”)* | PtrOperator AbstractDeclarator]

AbstractDeclaratorSuffix ::= “[“ [ConstantExpression] “]”
| “(“ [ParameterList] “)”

TemplateHead ::= “template” “<“ TemplateParameterList “>”

TemplateParameterList ::= TemplateParameter (“,” TemplateParameter)*

TemplateParameter ::= “class” <ID>
| ParameterDeclaration

TemplateId ::= <ID> “<“ TemplateArgumentList “>”

TemplateArgumentList ::= TemplateArgument (“,” TemplateArgument)*

TemplateArgument ::= TypeName
| ShiftExpression

StatementList ::= (Statement)*

Statement ::= Declaration
| LabeledStatement
| Expression “;”
| CompoundStatement
| SelectionStatement
| IterationStatement
| JumpStatement
| “;”
| TryBlock
| ThrowStatement
68 of 75 Version 1.2

Complete Grammar ADL 2.0 Language Reference Manual for C++
LabeledStatement ::= <ID> “:” Statement
| “case” ConstantExpression “:” Statement
| “default” “:” Statement

CompoundStatement ::= “{“ [StatementList] “}”

SelectionStatement ::= “if” “(“ Expression “)” Statement [“else” Statement]
| “switch” “(“ Expression “)” Statement

IterationStatement ::= “while” “(“ Expression “)” Statement
| “do” Statement “while” “(“ Expression “)” “;”
| “for” “(“ (Declaration | Expression “;” | “;”)

[Expression] “;” [Expression] “)” Statement

JumpStatement ::= “goto” <ID> “;”
| “continue” “;”
| “break” “;”
| “return” [Expression] “;”

TryBlock ::= “try” CompoundStatement (Handler)*

Handler ::= “catch” “(“ ExceptionDeclaration “)” CompoundStatement

ExceptionDeclaration ::= ParameterDeclarationList | ”...”

ThrowStatement ::= “throw” [AssignmentExpression] “;”

AssignmentExpression ::= ConditionalExpression ((“=” | “*=” | “/=” | “%=” | “+=” | “-=” | “<<=” | “>>=” |
“&=” | “^=” | “|=”) AssignmentExpression)
| ConditionalExpression

ConditionalExpression ::= LogicalOrExpression [“?” LogicalOrExpression “:” LogicalOrExpression]

ConstantExpression ::= ConditionalExpression

LogicalOrExpression ::= LogicalAndExpression (“||” LogicalAndExpression)*

LogicalAndExpression ::= InclusiveOrExpression (“&&” InclusiveOrExpression)*

InclusiveOrExpression ::= ExclusiveOrExpression (“|” ExclusiveOrExpression)*

ExclusiveOrExpression ::= AndExpression (“^” AndExpression)*

AndExpression ::= EqualityExpression (“&” EqualityExpression)*

EqualityExpression ::= RelationalExpression ((“!=” | “==”) RelationalExpression)*

RelationalExpression ::= ShiftExpression ((“<“ | “>” | “<=” | “>=”) ShiftExpression)*

ShiftExpression ::= AdditiveExpression ((“<<“ | “>>”) AdditiveExpression)*
Version 1.2 69 of 75

Complete Grammar ADL 2.0 Language Reference Manual for C++
AdditiveExpression ::= MultiplicativeExpression ((“+” | “-”) MultiplicativeExpression)*

MultiplicativeExpression ::= PmExpression ((“*” | “/” | “%”) PmExpression)*

PmExpression ::= CastExpression ((“.*” | “->*”) CastExpression)*

CastExpression ::= “(“ TypeName “)” CastExpression
| UnaryExpression

UnaryExpression ::= “++” UnaryExpression
| “--” UnaryExpression
| UnaryOperator CastExpression
| “sizeof” (“(“ TypeName “)” | UnaryExpression)
| NewExpression
| DeleteExpression
| PostfixExpression
| ADL_BasicExpression
| ADL_CallStateExpression

ADL_CallStateExpression ::= “@” UnaryExpression

NewExpression ::= [“::”] “new” [“(“ Expression “)”] (“(“ TypeName “)” | NewTypeId)
 [ArgumentList]

NewTypeId ::= DeclarationSpecifiers [NewDeclarator]

NewDeclarator ::= PtrToMember CvQualifierSeq [NewDeclarator]
| DirectNewDeclarator

DirectNewDeclarator ::= (“[“ Expression “]”)*

DeleteExpression ::= [“::”] “delete” [“[“ “]”] CastExpression

UnaryOperator ::= “&” | “*” | “+” | “-” | “~” | “!”

PostfixExpression ::= PrimaryExpression
(ArraySuffix | DotAccessSuffix | RefAccessSuffix | ArgumentList
 PostDeIncrement)*

| SimpleTypeSpecifier ArgumentList

ArraySufix ::= “[“ AssignmentExpression “]”

 ArgumentList ::= “(“ [Expression] “)”

DotAccessSuffix ::= “.” IdExpression [ArgumentList]

RefAccessSuffix ::= “->” IdExpression [ArgumentList]

IdExpression ::= [ScopeOverride] (<ID> | “operator” Optor | “~” <ID>)
70 of 75 Version 1.2

Complete Grammar ADL 2.0 Language Reference Manual for C++
PrimaryExpression ::= TDD_ADLExpression
| TDD_ADLnewExpression ArgumentList
| IdExpression [ArgumentList]
| Constant
| “this”
| “return”
| <STRING>
| ParentheizedExpression

 ParentheizedExpression ::= “(“ Expression “)”

Expression ::= AssignmentExpression (“,” AssignmentExpression)*

Constant ::= <OCTALINT>
| <OCTALLONG>
| <DECIMALINT>
| <DECIMALLONG>
| <HEXADECIMALINT>
| <HEXADECIMALLONG>
| <UNSIGNED_OCTALINT>
| <UNSIGNED_OCTALLONG>
| <UNSIGNEDDECIMALINT>
| <UNSIGNEDDECIMALLONG>
| <UNSIGNED_HEXADECIMALINT>
| <UNSIGNED_HEXADECIMALLONG>
| <CHARACTER>
| <FLOATONE>
| <FLOATTWO>
| “true”
| “false”

Optor ::= “new” [“[“ “]”]
| “delete” [“[“ “]”]
| “+” | “-” | “*” | “/” | “%” | “^” | “&” | “|” | “~” | “!” | “=” | “<“ | “>” | “+=” | “-=”
| “*=” | “/=” | “%=” | “^=” | “&=” | “|=” | “<<“ | “>>” | “>>=” | “<<=” | “==”
| “!=” | “<=” | “>=” | “&&” | “||” | “++” | “--” | “,” | “->*” | “->” | “(“ “)” | “[“ “]”
| DeclarationSpecifiers [(“*” | “&”)]

ExceptionSpec ::= “throw” [“(“ [ParameterList] “)”]

5.2 ADL productions

ADL_ClassDeclaration ::= “adlclass” <IDENTIFIER> [ADL_SuperClass]
“{“ [ADL_Prologue] [ADL_Epilogue]
Version 1.2 71 of 75

Complete Grammar ADL 2.0 Language Reference Manual for C++
(ADL_InlineDeclaration | ADL_BehaviorDeclaration) * “}”

ADL_BehaviorDeclaration ::= [DeclarationSpecifiers] FunctionDeclarator “{“ [ADL_Prologue]
ADL_BehaviorSpecification [ADL_Epilogue] (NLD_Annotation) * “}”

| DtorCtorDeclSpec CtorDeclarator [ExceptionSpec] “{“ [ADL_Prologue]
ADL_BehaviorSpecification [ADL_Epilogue] (NLD_Annotation) * “}”

ADL_BehaviorSpecification ::= “semantics” [ADL_BehaviorClassification] ADL_AssertionGroup

ADL_BehaviorClassification ::= “[“ (“normal” “=” ADL_Expression “;”
 | “abnormal” “=” ADL_Expression “;”)* “]”

ADL_AssertionGroup ::= “{” (ADL_Binding)* (ADL_InheritedSemantics)*
(ADL_Statement) * (NLD_Annotation)* “}”

ADL_InlineDeclaration ::=“inline” DeclarationSpecifiers FunctionDeclarator
“{“ ADL_AssertionGroup “}”

ADL_Binding ::= “define” ADL_NamedParamList “with” [<ID> “=”] ADL_Expression “;”

ADL_SuperClass ::= “:” [“public”] <ID> (“,” [“public”] <ID>)*

ADL_Prologue ::= “prolog” CompoundStatement

ADL_Prologue ::= “epilog” CompoundStatement

ADL_Statement ::= ADL_IfStatement
| ADL_TryStatement
| ADL_Assertion

ADL_InheritedSemantics ::= <ID> “::” “semantics” ” ; ”

ADL_IfStatement ::= “if” “(“ ADL_ImplExpression “)” ADL_AssertionGroup
[“else” (ADL_AssertionGroup | ADL_IfStatement)]

ADL_TryStatement ::= “try” ADL_AssertionGroup
(“catch” “(“ ExceptionDeclaration “)” ADL_AssertionGroup)+

ADL_QuantifiedAssertion ::= ADL_Quantifier “(“ ADL_DomainList “)” ADL_AssertionGroup

ADL_Quantifier ::= “forall” | “exists”

ADL_DomainList ::= ADL_Domain (“,” ADL_Domain)*

ADL_Domain ::= ADL_NamedParam “:” ConditionalExpression

ADL_NamedParamList ::= ADL_NamedParam (“,” ADL_NamedParam)*

ADL_NamedParam ::= DeclarationSpecifiers Declarator

ADL_Label ::= (<ID> “:”)*
72 of 75 Version 1.2

Complete Grammar ADL 2.0 Language Reference Manual for C++
ADL_Tags ::= “[“ <ID> (“,” <ID>)* “]”

ADL_Assertion ::= [ADL_Label] [ADL_Tags]
(ADL_Expression | ADL_QuantifiedAssertion) “;”

ADL_Expression ::= ADL_ImplExpression

ADL_ImplExpression ::= ConditionalExpression [ADL_ImplOp ConditionalExpression]

ADL_ImplOp ::= “==>” | “<==” | “<=>” | “<:>”

ADL_BasicExpression ::= “normal”
| “abnormal”
| ADL_AssertionGroup
| “unchanged” ArgumentList
| ADL_ThrownExpression

 ADL_ThrownExpression ::= “thrown” “(“ TypeNameList “)”

5.3 TDD Productions

TDD_AnnotatedDeclaration ::= [TDD_UseDeclaration] TDD_ClassDeclaration

TDD_ClassDeclaration ::= “tddclass” <IDENTIFIER>
“{“ (TDD_ClassBodyDeclaration)* “}”

TDD_UseDeclaration ::= (“use” <ID> “;”)+

TDD_ClassBodyDeclaration ::= TDD_DatasetDeclaration
| TDD_FactoryDefinition
| TDD_TestDirective
| TDD_FieldDeclaration
| FunctionDefinition

TDD_FieldDeclaration ::= DeclarationSpecifiers Declarator “=” AssignmentExpression
(“,” Declarator “=” AssignmentExpression)* “;”

TDD_DatasetDeclaration ::= "dataset" ADL_NamedParam "=" TDD_DatasetExpr ";"

TDD_FactoryDefinition ::= "factory" DeclarationSpecifiers FunctionDeclarator CompoundStatement
 [“relinquish” “(“ ParameterDeclaration “)” CompoundStatement]

TDD_TestDirective ::= [<ID> ":"] "test" [“forall”]
“(“ [TDD_DatasetDomain (“,” TDD_DatasetDomain)*] “)” Statement

TDD_DatasetDomain ::= ADL_NamedParam (“:” | “=”) TDD_DatasetExpr
| TDD_DatasetExpr

TDD_DatasetLiteral ::= “{“ [TDD_DatasetMember (“,” TDD_DatasetMember)* [“,”]] “}”
Version 1.2 73 of 75

Complete Grammar ADL 2.0 Language Reference Manual for C++
TDD_DatasetMember ::= ConditionalExpression [“..” ConditionalExpression]

TDD_DatasetExpr ::= TDD_DatasetConcatenationExpr (“+” TDD_DatasetConcatenationExpr)*

TDD_DatasetConcatenationExpr ::= TDD_DatasetLiteral
| TDD_FactoryCall
| TDD_DatasetSingleton

TDD_DatasetSingleton ::= <ID> | Constant

TDD_FactoryCall ::= QualifiedId “(“ [TDD_DatasetExpr (“,” TDD_DatasetExpr)*] “)”

TDD_ADLExpression ::= “ADL” “(“ PrimaryExpression “)”

TDD_ADLnewExpression ::= “ADL_new” IdExpression

5.4 NLD productions

NLD_Annotation ::= “nld” [NLD_Locale] “{“ (NLD_Declaration | NLD_EntityDeclaration)* “}”

NLD_Locale ::= <STRING_LITERAL>

NLD_Declaration ::= NLD_ScopedName
([NLD_Locale] NLD_TextAssignment

| “:” [NLD_Locale] (NLD_Statement | “{“ NLD_Statement + “}”))

NLD_Statement ::= NLD_PropertyDeclaration | “%text” NLD_TextAssignment “;”

NLD_TextAssignment ::= [NLD_SelectPred] “=” NLD_String
[“,” “[“ NLD_UserPred (“,” NLD_UserPred)* “]”]

NLD_SelectPred ::= “[“ NLD_Predicate (“,” NLD_Predicate)* “]”

NLD_Predicate ::= NLD_PredefinedPred
| NLD_ParamNumber “[“ NLD_UserPred (“,” NLD_UserPred)* “]”

NLD_PredefinedPred ::= “@” | “!” | “locale” “(“ NLD_Locale “)”

NLD_UserPred ::= <IDENTIFIER>

NLD_ParamNumber ::= “$”<INTEGER_LITERAL>

NLD_ScopedName ::= “.”
| NLD_MethodName
| [NLD_Scope “::”] NLD_Identifier

NLD_MethodName ::= Name NLD_Signature

NLD_Signature ::= “(“ (“*” | Type (“,” Type)*) “)”

NLD_Scope ::= “*”
74 of 75 Version 1.2

Complete Grammar ADL 2.0 Language Reference Manual for C++
| “::”
| Name [“::*”]
| NLD_MethodName

NLD_EntityDeclaration ::= “&” <IDENTIFIER> “=” NLD_EntityText

NLD_PropertyDeclaration ::= NLD_PropertyName “=” NLD_EntityText

NLD_PropertyName ::= “%description” | “%includes” | “%purpose” | “%seeAlso”

NLD_EntityText ::= <STRING_LITERAL> (“<<” <STRING_LITERAL>)*

NLD_String ::= NLD_StringElem (“+” NLD_StringElem)*

NLD_StringElem ::= <STRING_LITERAL> | NLD_ParamNumber
Version 1.2 75 of 75

	ADL 2.0 for C++ Language Reference Manual, Version...
	1 Introduction
	2 Semantics Annotations
	2.1 Describing Semantics Of Interface Operations
	2.2 ADL Syntax
	2.2.1 Assertion Groups
	2.2.2 ADL Specific Expressions
	2.2.3 Quantified Assertions
	2.2.4 ADL If Statement

	2.3 Behavior Specification
	2.3.1 The Call State Operator
	2.3.2 Specification of a Constructor
	2.3.3 Specification Of An Inherited Method
	2.3.4 Bindings
	2.3.5 Try/Catch Specifications
	2.3.6 Thrown Expressions
	2.3.7 Behavior Classification
	2.3.8 The Exception Operator

	2.4 Inline Procedure Declarations
	2.5 Prologues and Epilogues

	3 Test Annotations
	3.1 Concepts
	3.1.1 Re-write
	3.1.2 Dataset
	3.1.3 Factory
	3.1.4 Checked Function
	3.1.5 Test Directives
	3.1.6 Assertion
	3.1.7 Importation

	3.2 Annotated TDD / C++ Syntax
	3.3 General Syntax & Examples
	3.3.1 Simple Datasets and Data Construction
	3.3.2 Compound Datasets : Factories, Concatenation...
	3.3.3 Void Datasets
	3.3.4 Dataset Elements Evaluation
	3.3.5 Dataset Constants
	3.3.6 Test Directives
	3.3.7 Void Datasets Use
	3.3.8 Advanced Examples

	4 NLD Annotations
	4.1 Concepts
	4.2 Syntax and Semantics
	4.2.1 Simple Data Member Translation
	4.2.2 A Simple Function Member Translation
	4.2.3 Out Of Line Translations
	4.2.4 Translations For Overloaded Methods
	4.2.5 Priorities
	4.2.6 Using semantics And nld Blocks
	4.2.7 Shadowing or Overriding A Translation
	4.2.8 Overriding a Non-Local Translation
	4.2.9 Invocation Translation

	4.3 NLD Predicates
	4.3.1 Pre-defined Predicates
	4.3.2 User-defined Predicates

	4.4 NLD and SGML
	4.4.1 Reference Manual Document

	4.5 NLD for TDD
	4.6 NLD and Localization
	4.7 NLD Syntax

	5 Complete Grammar
	5.1 C++ productions
	5.2 ADL productions
	5.3 TDD Productions
	5.4 NLD productions

