ADL 2.0 for JAVA Language Reference Manual,

Version 1.2

ADL for Java

SunTest
The Open Group Research Institute

The language definition for ADL annotations
for the Java programming language.

ISSUE NUMBER REASON FOR ISSUE

1.0 Alpha Document Launch For Review

1.0 Beta First Revision

1.0 Gamma Second Revision

1.0 Delta Third Revision

1.0 Epsilon Interim Revision for MRI and K3

1.0 Final Revision

1.1 Second Delivery to IPA

1.2 Updated in accordance with version 2.0.2 of the ADL Translation Syst

(1998.06.30)

10of 73

COPYRIGHT AND LICENSE NOTICE
Copyright © 1994-1997 Sun Microsystems Inc.
Copyright © 1994-1998 Information-technology Promotion Agency, Japan
Copyright © 1997-1998 The Open Group

This technology has been developed as part of a collaborative project among the
Information-technology Promotion Agency, Japan (IPA), X/Open Company Ltd. and
Sun Microsystems Laboratories.

Permission to use, copy, modify and distribute this software and documentation for any purpose and
without fee is hereby granted in perpetuity, provided thatGRIBYRIGHT AND LICENSE

NOTICE appears in its entirety in all copies of the software and supporting documentation. Certain
ideas and concepts contained in the software are protected by pending patents of Sun Microsystems,.
Sun hereby grants a limited license to use these patents, if any issued, only in this implementation of
the software and documentation and in derivatives thereof prepared in accordance with the permission
granted herein.

The names X/Open, Sun Microsystems. and Information-technology Promotion Agency, Japan (IPA)
shall not be used in advertising or publicity pertaining to distribution of the software and documenta-
tion without specific, written prior permission.

ANY USE OF THE SOFTWARE AND DOCUMENTATION SHALL BE GOVERNED BY
CALIFORNIA LAW. X/OPEN, SUN MICROSYSTEMS, INC. AND IPA MAKE NO REPRE-
SENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE OR
DOCUMENTATION FOR ANY PURPOSE. THEY ARE PROVIDED “AS IS” WITHOUT
EXPRESS OR IMPLIED WARRANTY OF ANY KIND. X/OPEN SUN MICROSYSTEMS,
INC. AND IPA SEVERALLY AND INDIVIDUALLY DISCLAIM ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE AND DOCUMENTATION, INCLUDING THE WARRAN-
TIES OF MERCHANTABILITY, DESIGN, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL X/OPEN, SUN
MICROSYSTEMS, INC. OR IPA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULT-
ING FROM LOSS OF USE, DATA, OR PROFITS, WHETHER IN ACTION ARISING OUT
OF CONTRACT, NEGLIGENCE, PRODUCT LIABILITY, OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE OR DOCUMENTATION.

20f73 ADL 2.0 Language Reference Manual for JAVA

Trademarks

Sun™ Sun Microsystems™, Sun Microsystems Laboratories™, the Sun logo, Solaris™, SunOS™,
and Java™ are trademarks or registered trademarks of Sun Microsystems, Inc.

Postscript™ is a trademark of Adobe Systems Inc.

UNIX® is a registered trademark in the USA and other countries licensed exclusively through
X/Open™,

X/Open™ is a trademark of the X/Open Company Limited.

ADL 2.0 Language Reference Manual for JAVA 30f73

Change Log

Release 1.2

Complete revision of NLD concepts.

Release 1.1

Modified the syntax for “use”.

Release 1.0

2 Semantic Annotations
Added a paragraph for annotation of constructors (Section 2.3.2).

Introduced the adl_thrownException notation instead of the unclear former notation based on
caught exception names (see Section 2.3.5).

Re-wrote the explanations on the behavior of the exception operator.
Cosmetic changes.
3. Test Annotations

More comments for testing constructors and interfaces.

Release 1.0 Epsilon

2. Semantic Annotations
2.1 The keywords “adI” “class” are now concatenated as “adlclass”.

A behavior declaration can be defined for a constructor (no ResultType) and for a static
method (“static” modifier).

2.3.2. More explanation on inheritance.

Cosmetic changes.

4 of 73 ADL 2.0 Language Reference Manual for JAVA

3. Test Annotations

The keywords “tdd” “class” are now concatenated as “tddclass”.
The short test directive syntax has been suppressed.

The dataset expression syntax is much more strict.

The presentation of the whole section has been completely reorganized to make it easier to
read.

Release 1.0 Delta

2. Semantic Annotations

2.1 The PackageDeclaration feature has been suppressed (runtime implementation problems).
2.5 Prologs/epilogs scoping rules have been modified.

A few cosmetic changes in the grammar.

3. Test Annotations

3.2 The semantics of the “use” clause has been precised.

Example 3.5: the semantics of elements of literal datasets has changed: they are evaluated
only once (static evaluation). Dynamic behavior is now possible only through factories.

Introduction of constants.

Release 1.0 Gamma

1. Introduction

No change.

2. Semantic Annotations

2.1 No change.

2.2 Complete reorganization according to the changes in the grammar.

2.3.2 formerly “Multipe Behavior Descriptions For The Same Method”: suppressed.

2.3.2 (formerly 2.3.3): TBD resolved: explicit invocation of the superclass semantics.

ADL 2.0 Language Reference Manual for JAVA 50f 73

2.3.3 -> 2.3.7: cosmetic changes due to the revised grammar.
2.4: modified the semantics of “inline”: they are now macros
2.5: new section for prologues/epilogues

3. Test Annotations

3.1.3: TBD resolved. A factory definitias a method definition.
3.1.7: new section for the “use” importation clause.

3.3 Slight changes in the grammar.

4. NLD Annotations

No change.

5. Complete Grammar

Reviewed.

Release 1.0 Beta

1. Introduction

No substantive change.

2. Semantic Annotations

2.1: TBD resolved: ADLT will allow only external specifications.

2.2: TBD resolved: domain representation referred to runtime specification.

2.3.3: TBD changed: Superclass semantics reference not implicit; explicit invocation remains
a possibility.

3. Test Annotations

Title changed from “TDD Annotations”.

3.1.2: Terminology change: “bounded” dataset changed to “feasible”.
3.1.3: Added TBD for factory representation.

3.1.4: TBD resolved: explicit invocation of checked version by ADL(...). This affects all the
examples.

6 of 73 ADL 2.0 Language Reference Manual for JAVA

3.1.5: Terminology change: “Test expression” changed to “Test directive”. This affects the
explanation of some of the examples and the grammar.

3.1.6: Assert moved from language definition to support library.

3.2: TBD resolved: factories are not implicit datasets.

Example 3.5: TBD resolved: dataset members are evaluated each time.

Example 3.9: TBD resolved: no special syntax for multiple data values.

Example 3.10: TBD resolved: test directive syntax clarified.

Example 3.12: TBD resolved: multiple reference interpretation changed.

3.3 (TDDClassDeclaration): Absence of inheritence in TDD class described and explained.
3.3 (TDDDatasetDeclaration): External dataset reference clarified.

3.3 (TDDTestDirective): Syntax cleaned up.

4. NLD Annotations

4.1: TBD resolved: inheritance clarified.

Example 4.5: TBD resolved: rules on formal argument name clarified.

4.3.1: TBD resolved: SGML entity definition referred to DTD.

4.5 (nld_entity text): TBD resolved: Rule on markup (DocBook 3.0 Para entity) clarified.
5. Complete Grammar

Replaced entire with revised version generated from source code for parser.

Release 1.0 Alpha

Initial release.

ADL 2.0 Language Reference Manual for JAVA 7 of 73

8 0of 73 ADL 2.0 Language Reference Manual for JAVA

Table of Contents ADL 2.0 Language Reference Manual for JAVA

A 1 (o Yo U Tox 1] o TR 13
2 SemantiC ANNOLALIONScciiiiiiie e e e e e e et e e e e e eerba e e eeeeeees 15
2.1 Describing Semantics Of Interface OPEerationSceeveeeiiiiiiiiiiiiiieeee e e e 15
2.2 ADL SYNEAX...etiiiiiiiiieiie ittt e e e s s 17.
2.2.1 ASSEITION GIOUPS ..ceeiiiitiiieeeitiiee e ettt e e e ettt e e et e e e e et b e e e e aabbe e e e e anbe e e e s e nenes 17
2.2.2 ADL SPECIfIC EXPIrE@SSIONS....cciiitiiiieiiiiiiieeiitiiee e sttt et 19
2.2.3 QuaNtified ASSEIIONSuuiiiiiiiieeei i e e e 19
2.2.4 ADL If StAlEMENT ...u et 20
2.3 Behavior SPeCifiCatiON...........uiiiiiiiiiie e 21.......
2.3.1 The Call State OPEratOr.........ccouiiuiiiiiiiiiiiee it 22
2.3.2 Specification of @ CONSIIUCTIONooiuuiiiiiiiiiiie e 22
2.3.3 Specification Of An Inherited Method ..o, 23
2.3.4 BiNAINGS.....uteiieeiiiiiiee ettt e e e neee 25
2.3.5 Try/Catch SPecCifiCatiONS.coiuuiiiiiiiiiiie e 26
2.3.6 ThIrOWN EXPIrESSIONSeiiiiiiiiiiie ittt e ettt ettt e sttt s bt e e s e e e e enneeas 29
2.3.7 Behavior ClassSifiCation..........ccoeiiiieeeieeiieiieeeee e e e e e eeeeeaaes 30
2.3.8 The EXCEPLioN OPEIALOruuuuieiieieeeeieiiiiiirieieeeeeeeeeessssnsrereeeeereeeeesssnnsenes 32
2.4 Inline Procedure DECIAratioNscceeiiiiiiiiiiiiiiie e e e s e e e e e e e s s e e e e e e aeee e an 34
2.5 Prologues and EPIlOQUEScoooiiiiiiiiiiiiieee ettt 35.........
3 TSt ANNOLALIONS.....uuuiiiiiiiiiie et e e e e e r e e e e e e e e e e e e esaaeeeeas 37
I J0 R O] g (o =T o) S PSPPI 37
00 I T = T (= SRR 37
312 DALASEL ceieutiii ittt 37
I PR T = Tox (0] VPP UPPRPPPPPNt 38
3.1.4 Checked fUNCHIONciiiiie e eaee e 38
T =TS A B = Tox 11U 39
T G 07 o) o RPN 40
G 700 1197 o Yo 1 - 1o o P EEERRR 40
3.2 Annotated TDD/JAVA SYNEAXcuuuureeiieiieaeeeeiiaiitiiieeeteaae e e s s s aaetaebeeeeeeaaaesessaannanbasreeeeaaaeens 40
G I N W B T B o [=Tor F= 1 = L o] 1 TR 40
3.2.2 Dataset EXPreSSiON SYNEAXcceeeiiiiiiiiiiiiieeiee e e e eessiiete e e e ae e e s e sneenneeeees 41
3.3 General SyntaX & EXAMPIEScoiiiiiiiiie et 42
3.3.1 Simple Datasets and Data CONSLIUCHIONcuvvevieeereiiiiiiiiiiieireeee e e e e e e 42
3.3.2 Compound Datasets: Factories, Concatenation...........cccccccveeeeeviniicnvvnnnennnn. 43
RS IY o] [0l B T\ = 1SY=) £ 44
3.3.4 Dataset Elements Evaluation...............coeuvvuuiiiiiiiiiiiiiiiieieie e 45
3.3.5 Dataset CONSIANTS .. .couniiiiii e et e e e e et e e e e e eeaneas 46
T T L= QB T[Tt (YT 47
3.3.7 AdvanCed EXAMPIEScooouuiiiieiiiiiiie it 48
4 NLD ANNOTALIONS ...ttt e e e et e e e e e e eeaans 53
o R ©0] g (o1 o] T PP U PP PP PPPRPPPPRPRN 53
4.2 Syntax and SEMANTICS......ccciiiuiiiiieiiiiiie et e e aere e e e e 54........
4.2.1 Simple Data Member Translation............ccooiiiiiiiiiiie e 54
4.2.2 Simple Function Member Translation...........cccceeiiiie e 54
4.2.3 Out Of LINE TranSIationNS........cccuueiiiiiiiiiiee e e e e 54
4.2.4 Translations For Overloaded Methodsoooviiviiiiiiiiiicccccceee e, 55
Version 1.2 90of 73

Table of Contents ADL 2.0 Language Reference Manual for JAVA

N S = 10T 41 ([T TP 55
4.2.6 Usingsemantics Andnld BIOCKS........ceevviieeiiiiiiiiiiiiieeceee e 55
4.2.7 Shadowing or Overriding A Translation.............cccccvveeeiieeeeee e 56
4.2.8 Overriding A Non-Local Translation...........ccccoceeccviiiiieeieee e 57
4.2.9 INVOCation TranSIAtioNvevvrriuiiiiiiiiieieie e ee e eeeee e e ee e 57

I N T B I o = To ({07 (= PP 58...
4.3.1 Pre-defined PrediCatescooiicvieviiieieeeeee et 58
4.3.2 User-defined PrediCatescuviiiiiiiieie et 59

o N T = T IR €1 | 59......
4.4.1 Reference Manual DOCUMENToiiiiiiiiiiiee e e e 60

I N[D R (o) GO I B] LSS 61..

4.6 NLD and LOCAlIZAtIONuuiiiiiiiiiiieieei e e e et e e e e erae e e e e e enraand 6l.......

A7 NLD SYNEBX .ottt ettt e e e e e e e s s r e e e e e e e e e s n s nenne 62.

5 Complete GrammMar...........uiiiiiiiiiiee e e e e e e 65

10 of 73

Version 1.2

List of Examples ADL 2.0 Language Reference Manual for JAVA

EXAMPLE 2.1 StockBroKker interface............ooeuvveviiiiiiiieiieee e 15
EXAMPLE 2.2 StockBroker specification...............ccveiiiiiiiieiieeeeceeeeeeeeeiiiiiians 15
EXAMPLE 2.3 StockBroker constructor specification.............ccccevvvvvvvvinnnnnnn. 22
EXAMPLE 2.4 Bank and MyBank ClasSes...........coooiiiiiiiiiiiiiiiiiiiiieieeeceeeeee e 23
EXAMPLE 2.5 MyBank SpecifiCationcccccceeeeeeeiiiiiieeceiciee e 24
EXAMPLE 2.6 StockBroker2 interface.............ouuuueuiiiiiiiiiee e 26
EXAMPLE 2.7 StockBroker2 specifiCation............cccueeeeeeiiiiiiiiiciiiiiiiieeeeeeee 27
EXAMPLE 2.8 StockBroker2 specification (corrected)..........cccceeeevieeeieeeeennnn. 28
EXAMPLE 2.9 StockBroker specification with behavior classification 30
EXAMPLE 2.10 StockBroker specification with exceptionscccccccoeeeene. 33
EXAMPLE 3.1 The SIMPIESt TESt....cccvuiiiiiiiiiiiie e 42
EXAMPLE 3.2 A SIMple Dataset.........ccooiiiiiiiiiiiiiice e 43
EXAMPLE 3.3 Compound Data CONSLIUCTION..........uuuuiiiiiiiiieieiieieeeeeeeeee s 43
EXAMPLE 3.4 VOIO DALASELSeevviiiiiiiiiiieee ettt a e e e e 44
EXAMPLE 3.5 Runtime INItialiZerscooiiiiiiiiee e 45
EXAMPLE 3.6 Provide Test Variablesoooviiiiiiiiiiiiiii e 46
EXAMPLE 3.7 Better Test Variables..........ccuuuviiiiiiiiiiiiiiiiieeeee e 46
EXAMPLE 3.8 Test Directives and Procedures.............oooevvviiiiiviiiiiiiinneeeeeeeeenn, a7
EXAMPLE 3.9 VOId DatasSet USE........uuiiiiiiiiieeeeeiieiieeiiiiiiienss e e e e e e eeeeeeeeeesnnnnnnns 48
EXAMPLE 3.10 Chaining FaCtONEScoiiiiieeeeeiieeeeeeeeeis e e 48
EXAMPLE 3.11 Multiple Data ValUescoouuuiuumiiiiiiniieeeeeeeeeeeeeeeeiins 49
EXAMPLE 3.12 TeSt By EXaMPIE......ueiiiiiiiiiiiiiiieeee et 50
EXAMPLE 3.13 Multiple Dataset Referencescccceeeeeeeviivieeeiiiiiiccceee e 51
EXAMPLE 4.1 Using includes and descCriptioneeeiiiiieeeeeeeieeeeeeeeeiiiienns 60
EXAMPLE 4.2 NLD Annotations in @ TDD ClassScccuuvvvveviiiiiiniieeeeeeeeeeee, 61
EXAMPLE 4.3 Using Fully Scope Namescoovvvviiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeannnns 63

Version 1.2 11 of 73

List of Examples ADL 2.0 Language Reference Manual for JAVA

12 of 73 Version 1.2

Introduction

ADL 2.0 Language Reference Manual for JAVA

1

Introduction

ADL is an interface definition and testing system, which adds to a target programming
language a notation for describing behavior, for defining tests, and for generating docu-
mentation. This document describes ADL for the Java programming language.

ADL provides capabilities to describe the semantics of interfaces, and also the capabil-
ity to design and implement test drivers.

This document is a concise language reference, intended to define the syntax of the
ADL annotation language. There are three kinds of annotation possible in the ADL sys-
tem: semantic annotations, that define the behavior required of an interface method; test
annotations, that define a set of data and a procedure for testing an interface; and natural
language annotations, that define how to represent the interface in natural language.
These three kinds of annotation are described in the next three sections.

This document does not yet describe how to use the ADL system, nor define the exact
interpretation of the annotations; familiarity with the previous version of the ADL sys-
tem, ADLT 1, will be of great assistance.

The syntax used to describe the language grammar in this document is BNF, and follows
these conventions:

e The vertical bar["” represents a choice between different expansions. Herjce “
| C'represents eithex, B, orC.

e Square bracketg “...] " indicate optional constructs. Hence[‘B] C’is the same
as ‘ABC| AC.

e Parentheseq“...) " are used for grouping constructs. Henag¢ ‘B) C’is the same
as ‘ABC' and “A(B| C) D'is the same asABD| ACD.

e “(..)* "is used to represent zero or more occurrences of the group, ang " is
used to represent one or more occurrences of the group. Hence “A (B)* C” is the
same asAC| ABC| ABBC| ABBBC| etc’ and “A(B)+ C’is the same asABC|
ABBC| ABBB(| etc’.

* Non-terminals from the Java language definition are represented in a sans-serif font
(like literal), and the non-terminals that define the ADL augmentation of Java appear
in boldface .

¢ Lexical tokens and reserved words may appear literally within quotations, or the
name of the lexical token may appear in angle brackets like <STRING>.

¢ The left hand and the right hand sides of productions are separated by the symbol
“::= ". For presentation purposes, the entire right hand side of a production may not
be introduced at the same time. The symbok" " is used to indicate that the cur-
rent production is an augmentation of another production with the same left hand
side that has been introduced earlier. For examples“ B” followed by “A +::=
C'is the same asA'::= B| C.

Version 1.2

13 of 73

Introduction ADL 2.0 Language Reference Manual for JAVA

14 of 73 Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

2

Semantic Annotations

21

ADL_CompilationUnit

ADL_ClassDeclaration

ADL_BehaviorDeclaration

EXAMPLE 2.1

The ADL extensions to Java that allow the definition of the semantics of a method are
discussed in the sections below.

Describing Semantics Of Interface Operations

ADL provides syntactic constructs to describe the semantic behavior of methods. To do
this, it provides an extended syntax for describing operations -antimated declara-
tion — as shown in the syntax below:

(ImportDeclaration)* ADL_ClassDeclaration

[“public”] “adiclass” <IDENTIFIER> “{*
(ADL_InlineDeclaration | ADL_BehaviorDeclaration)**}"

[“static”] [ResultType] Name FormalParameters
“{* ADL_BehaviorSpecification “}”

These rules are not complete: they will be refined (notation +::=) throughout this docu-
ment as we present new properties. The complete grammar is given in Chapter 5.

The full definitions of the extra declarations added by ADL are given in later sections; a
simple example is given here. Suppose that we wish to define the behavior of objects
conforming to this interface:

StockBroker interface

EXAMPLE 2.2

package stock;
interface StockBroker {
publiclong Cash_Balance(longaccount);
publiclong Stock Balance(longaccount, Stringsymbol);
publicvoid Buy(longaccount,
Stringsymbol,
longno_of_shares);

}

Then the ADL specification of this interface can be written in a separatesfibek-
Broker.adl " as shown below:

StockBroker specification

Version 1.2

15 of 73

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

importstock.*;//importthe package ofthe Javaclass
/I StockBroker
importStockBrokerAux;

adlclass StockBroker {//define the adl class StockBroker

inlinelong cost(Strings,longnsh){
nsh*StockBrokerAux.price(s);

}

void Buy(longaccount, Stringsymbol,longno_of _shares){
semantics{
assertion1:Cash_Balance(account)==
@ Cash_Balance(account)- @cost(symbol,no_of shares);
assertion2: Stock_Balance(account,symbol)==
@ Stock _Balance(account,symbol)+no_of shares;
}

}

long Cash_Balance(longaccount){
semantics{
1(...)
}
}

}

In this example, an interface with three operatioash_Balance

Stock_Balance , andBuy is augmented with a description of the behavioBwof
andCash_Balance . The behavior description 8uy uses a static methogrice ”

from an additional class, StockBrokerAux, which is defined only for purposes of test-
ing. The behavior description is written in the annotated declaration syntax. The two
boolean expressions appearing withéerhantics { ... } " describe legitimate
behavior of théBuy method. In these expressiong] fs an unary operator (referred to

as thecall state operator— see Section 2.3.1) whose sole function is to evaluate its
argument prior to the execution of the method — by default all expressions are evalu-
ated after the execution of the method.

It is important to note that the referer@ash_Balance inside the behavior descrip-
tion of Buy is a reference to the meth@ash_Balance of the Java class under test,
nota reference to the behavior descriptiolfath_Balance that is given below.
Behavior descriptions are not method declarations.

The first boolean expression, labeled asséertionl ", makes use of the notion of

“cost ” of a stock purchase. This is implemented as an inline procedure declaration in
the semantic annotation file. An inline procedure declaration defines a block that may be
used like a macro within a semantic annotation (see Section 2.4).

The syntax described above is external to the interface definition, because ADL asser-
tions can only be evaluated from the perspective of a client of the interface. Such an
annotation can be applied to a class or an abstract class equally as well as to an inter-

16 of 73 Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

2.2

221
ADL_AssertionGroup

ADL_Statement

ADL_Assertion

ADL_Label

ADL_Tags

face. The behavior description for a given class cannot be split into several ADL files;
however, the behavior description for a class can inherit the description of the superclass
of this class (see Section 2.3.3).

The semantics of “import” clauses are the same as for a Java compilation unit. However,
it is not possible to define a Java class or a Java interface inside an ADL file: auxiliary
classes must be defined in different, regular Java files.

Note that because semantic annotations are external to the class and method being anno-
tated, the annotations do not have access to private, protected or package members: only
public fields and methods of the class under test are accessible. If a method is not pub-
lic, then it cannot be described nor called in the description of another method.

Lastly, it is not possible to define more than adkclassin an ADL compilation unit,

and the name of the file must be the name of the adl class: to annotate the Java class
foo.class, one must define a singdditlass foo " in a file named foo.adl (or
foo.adljava).

ADL Syntax

ADL provides a syntax that is a minor extension to that of Java 1.0.2. Any Java expres-
sionexcept assignmentsay appear in a semantic annotation, as well as expressions
using the extensions described in this section.

The new syntactic constructs of Java 1.1 — that deal with “inner classes” and the
“.class” feature for the reflection APl — are not supported within the ADL for Java syn-
tax. However, as the ADLT runtime is written in Java 1.1, ADL 2 supports the testing of
Java 1.1 interfaces and the use of Java 1.1 auxiliary classes.

Assertion Groups
»= " (ADL_Binding)* (ADL_Statement)*‘“}"

::= ADL_Assertion
| ADL_IfStatement
| ADL_TryStatement

= [ADL_Label][ADL_Tags]
(ADL_Expression | ADL_QuantifiedAssertion) *;"

= <IDENTIFIER> *"

i= “[*<IDENTIFIER> (“” <IDENTIFIER>)* “]"

The basic block construct of ADL is tlhssertion groupwhich is a list obtatements

ADL statements have a type (usually boolean) and a value, but can not be mixed directly
inside expressions. If there is more than one statement within the assertion group, then
all of these statements must be boolean valued. The value of the assertion group in this
case is the conjunction (logical AND) of all the statements in the assertion group. If the
assertion group contains only one statement, then this statement may be of any type, and

Version 1.2

17 of 73

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

the assertion group is also of this type and has the same value as the statement within it;
this can occur either with the inline/define constructs or with the try/catch statement (see
Section 2.3.5).

The optional label of an assertion is for documentation purposes only: it will be reported
as information when running the generated test. It does not modify the behavior at runt-
ime in any other way.

The optional tags of an assertion are indications for the test runtime environment. The
only currently supported tag is “[U]” (famtestablg that means that the assertion must

not be evaluated.

The assertion group itself is an expression. Its use as an expression is given by the fol-
lowing syntax:

ADL_BasicExpression ::= ADL_AssertionGroup

Assertions are boolean expressions whose evaluation must generate a test report: they
do not produce any other side effect (hence assignments or increments/decrements are
forbidden inside assertions).

The following fragment is an example of an assertion group:

Cash_Balance(account)==@Cash_Balance(account)-
@cost(symbol,no_of shares);
Stock_Balance(account,symbol)==
@Stock_Balance(account,symbol)+no_of shares;
}

Since assertion groups are also expressions, they may appear anywhere an expression is
expected, and they may be nested within each other. Assertions within nested assertion
groups daot generate a test report: they are evaluated only so that their return value is
used in the computation of the value of the enclosing assertion group.

semantics{
<booleanexpression>==>{<assertion1>;<assertion2>};

}

In this example, there is only one generated test report for the whole assertion, not for
“sub-assertionsassertionl andassertion2

The list of expressions in an assertion group may be precedsddiygs see
Section 2.3.4.

While most ADL specific expressions and statements are described in the two forthcom-
ing sections, some are described later in sections where they are more appropriate. The
following is the complete list of all cross references to later sections where ADL fea-
tures are described:

e The call state operator — Section 2.3.1
* Bindings — Section 2.3.4

18 of 73 Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

222
ADL_Expression
ADL_ImplExpression

ADL_ImplOp

ADL_BasicExpression

223
ADL_QuantifiedAssertion
ADL_Quantifier
ADL_DomainList

ADL_Domain

e The try/catch statement — Section Section 2.3.5
* thrown expressions — Section 2.3.6

* The exception operator — Section 2.3.8

* Inline methods —Section 2.4

* Prologues and Epilogues —Section 2.5

ADL Specific Expressions

= ADL_ImplExpression

ConditionalExpression [ADL_ImplOp ConditionalExpression]

= o u<::n|u<:>n u<:>n

The three implication operators aneplication (==>), reverse implicatior{<==), and
equivalencd<=>). All these operations operate on boolean parameters and return bool-
ean results. The implication operator evaluatdsl¢e only when its left operand is

true and right operand false (otherwise, it evaluates tae). The reverse implica-

tion operator works like the implication operator with its arguments swapped. The
equivalence operator evaluatesrt@ if both its operands are the same, otherwise it
evaluates tdalse . For the exception operator <:>, see Section 2.3.8.

+::=PrimaryExpression | “return”

Primaries are extended in ADL with the reserved wendn (to refer to the return
value of a method). The primary return may be used only in behavior specifications
(Section 2.3) of methods with non-void return types and may not appear within the
scope of a call state operator (Section 2.3.1).

Quantified Assertions

= ADL_Quantifier “(* ADL_DomainList *“)” ADL_AssertionGroup
;= “forall” | “exists”

= ADL_Domain (“,” ADL_Domain)*

= FormalParameter “:” ConditionalExpression

ADL offers a constrained form of quantified expression in order to iterate over ADL
sequence values. These sequences are specified as domains, and a quantified assertions
may contain any number of domains. Each domain is specified with the type of the
sequence element, a new variable that can take on the values of the sequence one by
one, and finally the sequence itself. An example of a domain that iterates over the inte-
gers 1 through 10 is:

longi:ADL_long_range(1,10)

Version 1.2

19 of 73

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

224

ADL_IfStatement

The ADL language supports 3 meth@dsL_long_range(long i,long j)
(resp. ADL_short_range and ADL _int_range) that return the enumeration of
long (resp short and int) starting framand ending at.

In ADL for Java, the ConditionalExpression in the domain must be of the type
java.util. Enumeration.

In the case of the universal quantifitergll), the enclosed assertion group (which
must have a boolean value) mustroe for all value assignments for free variables
from their domains. In the case of the existential quantéiésté), the expressions
must betrue for at least oneset of value assignments for the free variables.

The assertion group within a quantified assertion is nested: its assertions will not gener-
ate individual test reports.

The following is an example of the use of an universal quantifier that says that all num-
bers in the range 1 to 10 are smaller than 100 (obviously):

forall(longi: ADL_long_range(1,10)){i<100;};

The following is an example of the use of an existential quantifier:

semantics{
exists(longi: ADL_long_range(1.10)){
i%3==0;
i%7==0;
h
}

Because of the nested principle, the assertions within a quantified assertion are not dis-
tributed: this example will generat@etest report, with the valfalse

A quantified assertion may not appear inside the scope of a call-state/unchanged expres-
sion; free variables of a quantified assertion may not be used inside the scope of a call-
state/unchanged expression.

ADL If Statement

= i “(* ADL_Expression “)" ADL_AssertionGroup
[“else” (ADL_AssertionGroup | ADL_IfStatement)]

“if statements” provide a way to conditionally evaluate expressions and its meaning is
quite similar to the ?: ” operator. The types of all the assertion groups offthstate-

ment must be the same and this is the type af thetatement. If the type of the first

“then” branch is boolean, then the else branch may be omitted and is assumed to be
“else true ”. The conditions (the expressions within parentheses) mustdiean

valued and are evaluated from top to bottom until the first one that evaluates to

The assertion group of thisie expression is then evaluated. This is the value of the

if statement.

20 of 73

Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

2.3

ADL_BehaviorDeclaration

ADL_BehaviorSpecification

The assertion groups in the branches of an if statement are considered to be at the same
nested level as the enclosing assertion group. If this enclosing assertion group is the out-
ermost one (i.e. just following the “semantics” keyword), assertions within the if state-
ment will therefore generate test reports.

Behavior Specification

The specification of the behavior of an interface method in its simplest form is the
method declaration as in Java followed by the reserved word “semantics” followed by
an assertion group.

The assertions can refer to the visible state of the system both before and after the exe-
cution of the method.

+::=[ResultType] Name FormalParameters [“throws” NameList]
“{* ADL_BehaviorSpecification “}”

= “semantics” ADL_AssertionGroup

Note that a behavior declaration cannot be empty in ADL for Java, as opposed to ADL
for C/C++. This is because the Java language does not need forward declarations.

The “ResultType” is optional in the grammar because it is possible to annotate a class
constructor.

Every time an interface method with a behavior description is invoked, all arguments to
call state operators are evaluated before the method is invoked (call state operators are
described below). The remainder of the behavior description is evaluated after the
method is invoked. If any expression evaluatealte , the method did not behave as
specified.

The behavior description &uy from the example of Section 2 is reproduced below:

void Buy(longaccount, Stringsymbol,longno_of_shares){
semantics{
Cash_Balance(account)==@Cash_Balance(account)-
@cost(symbol,no_of_shares);
Stock_Balance(account, symbol)==
@Stock_Balance(account,symbol)+no_of_shares;
}

}
The evaluation of the behavior description whenever Buy is invoked is outlined below:

Step 1: Evaluation of arguments to call state operators:

tmpl=Cash_Balance(account);
tmp2=cost(symbol,no_of shares);
tmp3=Stock _Balance(account,symbol);

Step 2: The implementation Bfiy is invoked.

Version 1.2

21 of 73

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

231

UnaryExpression

ADL_BasicExpression

2.3.2

EXAMPLE 2.3

Step 3: Evaluation of the remainder of the behavior description:
assertion_1=(Cash_Balance(account)==tmp1-tmp2);
report(assertionl);
assertion_2=(Stock_Balance(account,symbol)==tmp3+

no_of_shares);
report(assertion2);

Step 4: Determination of consistent behavior:
iflassertion_1||'assertion_2){report_error;}

Behavior descriptions can refer to inline method declarations (as illustrated by the above
example). Other specifics of behavior descriptions are discussed below.

The Call State Operator

The call state operator is an unary operator. It has the effect of evaluating its argument
before the call to the specified method.

+::="@” UnaryExpression
+::="unchanged” Arguments

Call state operators may nest within each other, in which case the inner operator is over-
ridden by the outer operator. For examg@é@a + b)is equivalent t@(a + b) .

Care must be taken to decide exactly where to place a call state operator. For example,
there is a subtle difference betwe®@f(a, b) andf(@a, @b) . The first expression is

the value of(a, b) before the call to the specified method, while the second is the
value returned by when called after the call to the specified method, but passed param-
eters whose values are saved from the state before the call to the specified method.

Different call-state expressions are independent from each other. For instance in an
assertion @time() == @time() ", both expressions are not considered as equal.

The “unchanged” operator of ADL1 is maintained:

unchanged(<exprl>,<expr2>)

is a syntactic sugar for:

<exprl>==@<exprl>&&<expr2>==@<expr2>

Specification of a Constructor

Specifying a constructor is very similar to specifying a method, except that some con-
straints are added.

StockBroker constructor specification

22 of 73

Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

2.3.3

ADL_ClassDeclaration

ADL_AssertionGroup

EXAMPLE 2.4

importstock.*; //importthe package ofthe Javaclass
/I StockBroker
importStockBrokerAux;

adlclass StockBroker {//define the adl class StockBroker

StockBroker(intamt){
semantics{
Cash_balance()==amt;

}
}

In this example, the call to Cash_balance is executed on the StockBroker object built by
an implicit call to the real constructor of the class StockBroker.

Note that in a constructor behavior specification:

e itis not possible to use a call-state or an unchanged expression (this would not make
sense: there is no “real object” before the call to the tested method (the constructor),
because this is this very call that builds the “real object”).

e jtis not possible to use the “return” expression.
* the “this” expression refers to the built real object.

Specification Of An Inherited Method

+2:=[“public”] “adiclass” <IDENTIFIER> [“extends” Name]
“{* (ADL_BehaviorDeclaration)**“}"

+:=*{" (ADL_Binding)*[“super” “” “semantics” “;"] (ADL_Statement)*“}’

To describe the behavior of a methmdt is possible to use the behavior description of
the methodn’ thatmoverrides.

Bank and MyBank classes

/*Bank.java*/
packagebank;

classBank{
publicvoidopenAccount(){(...
publicvoidcloseAccount(){(..

}

/*MyBank.java*/
packagebank;

)}
)}

Version 1.2

23 0of 73

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

EXAMPLE 2.5

classMyBankextends Bank{
publicvoidopenAccount(){(...)}
/loverrides Bank.openAccount
publicvoidchangeAccount(){(...)}//newmethod

}

The behavior of the methods openAccount and closeAccount of class Bank is specified
in a file Bank.adl, and we want now to describe the behavior of the methods of the class
MyBank:

MyBank specification

importbankAux; //forauxiliaryfunctions
importbank.*;//package oftheannotatedclass

adlclass MyBank extends Bank{

voidopenAccount(){
semantics{
super.semantics;//assertions specifictothe method
//Bank.openAccount
<assertion>; //assertion specifictothe method
/IMyBank.openAccount

}

The “extends” clause is quite different from its usual meaning in Java: it is used here to
refer to ADL files (Bank.adl in the example). The compiler checks the presence and cor-
rectness of theourceadl file; it is left to the responsibility of the user to ensure that at
runtime theclassfile obtained by transformation of Bank.adl will be accessible from the
classpath, along with the class file generated by transformation of MyBank.adl. This is
close to the C semantics, with the distinction between header files at compilation time
and libraries at runtime.

The assertionsuper.semantics; " in openAccount is an explicit invocation of the
annotation of openAccount onesuperclass (direct super class or any “ancestor” class)
of MyBank (here the semantics of the method openAccount of the class Bank — which
MyBank inherits from — as defined in Bank.adl). It may be called only d&she
assertion of the main assertion group. Its (boolean) result is the value of the behavior
description of method openAccount in Bank.adllthe assertions defined in this speci-
fication are evaluated. The only side-effects are the generation of test reports for the
assertions of this behavior description.

The generated Java Assertion Checking Object (ACO) file for MyBank will in fact
inherit from the generated Java ACO file for Bank. See the ADL 2.0 Translation System
design document for more details.

24 of 73

Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

To summarize:

Java classes ADL classes

Cl fool, barl Cl fool, barl

; :

C2 foo2, bar2

f

C3 foo3 C3 foo2, foo3, barl

T A

C4 food

C5 foo2, foo5 C5 fool, foo2, foo3, foo4,

foob5, barl, bar2

This picture represents a Java hierarchy (C5 extends C4 that extends C3...) and a corre-
sponding adl classes hierarchy. Toes andbars are methods defined in Java classes,
some of them being annotated by adl classes. We can notice that:

* the adl classes graph is a subgraph of the java classes graph (it is not compulsory to
annotate all java classes).

* an adl class can annotate a method thdgfimedn the corresponding java class
(e.g. foo5 in C5) ooverridden(e.g. foo2 in C5) or jushherited(e.g. foo4 in C5).

¢ thesuper.semantics feature can be used only in methods that have already
been annotated in an inherited adl class. For instance in adl class C5, it would be an
error to use this feature in methods foo4, foo5 and bar2, and correct in the other
methods.
Note that this inherited adl class is not necessarily the direct superclass: for instance
in adl class C5, super.semantics in fool would refer to fool of adl class C1.
Last, this process is recursive: if barl in C5 and barl in C3 both use super.semantics,
then calling barl of C5 will first evaluate the assertions of barl in C1, then the asser-
tions of barl in C3, and then the assertions of barl in C5.

2.3.4 Bindings
Bindings are used to declare local variables and initialize them with useful values. Their
main goal is to be used in conjunction with NLD annotations.
ADL_Binding ::=“define” FormalParameter “with” [<IDENTIFIER> “="] ADL_Expression *“;”
The earlielStock_Balance example may also be modified to use bindings. The fol-
lowing is equivalent to the earlier behavior description:
Version 1.2 25 of 73

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

235

ADL_TryStatement

EXAMPLE 2.6

definelongpre_cash_balwith
pre_cash_bal=@Cash_Balance(account);
definelongpost_cash_balwith
post_cash_bal=Cash_Balance(account);
definelongpre_stock_balwith
pre_stock bal=@Stock_Balance(account,symbol);
definelongpost_stock balwith
post_stock _bal=Stock_Balance(account,symbol);

post_cash_bal==
pre_cash_bal- @cost(symbol,no_of_shares);
post_stock_bal==pre_stock bal+no_of shares;

}

In ADL for Java, a binding declaration shall not introduce simultaneously multiple vari-
ables (as opposed to ADL for C/C++ where side-effects are possible).

Important note:

It is not possible to reference a binding inside the scope of a call-state operator.

Indeed, in the generated code, the code that implements bindings appear after the code
that implements call-state expressions.

It is possible to declare a binding using variables introduced in earlier bindings, but not
to rebind a variable: a binding is a variable declared and initialized once for all. The
scope of a binding is its innermost enclosing assertion group.

Try/Catch Specifications

During the evaluation of the assertions of an assertion group, it is possible for excep-
tions to be thrown. Try/catch specifications may be used to catch these exceptions and
provide an alternate assertion group whose value is used for that of the parent (“try”)
assertion group. The assertion group(s) in the catch specification(s) must therefore be of
the same type as the parent assertion group.

= “try” ADL_AssertionGroup
(“catch” “(* FormalParameter “)” ADL_AssertionGroup)+

A catch specification has to name the particular exception it catches and bind it to a
local identifier; this identifier may be used in the following assertion group to select val-
ues returned by the exception.

Suppose we modify the original stock broker interface to include some exceptions:

StockBroker2 interface

package stock;

26 of 73

Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

classBadCallextends Exception{
publicbooleanbad_account;
publicbooleanbad_stock_symbol;

}
interface StockBroker2{
publiclongCash_Balance(longaccount) throwsBadCall;

publiclong Stock Balance(longaccount, String symbol)
throwsBadCall;

publicvoid Buy(longaccount, String symbol,
longno_of_shares)throwsBadCall;
}

Then we can modify the specification of this interface as follows:

EXAMPLE 2.7 StockBroker2 specification

importstock.*;
import StockBrokerAux;

adlclass StockBroker2 {

inlinelong cost(Strings, longnsh){
nsh*StockBrokerAux.price(s);

}

void Buy(longaccount, String symbol, longno_of _shares)
throws BadCall{
semantics{
try{
Cash_Balance(account)==@Cash_Balance(account)-
@cost(symbol,no_of_shares);//assertion1
Stock_Balance(account,symbol)==
@Stock_Balance(account,symbol)+no_of_shares;
/lassertion2

}
catch(BadCallexc){
thrown(BadCall) &&{
((BadCall)adl_thrownException).bad_account==
exc.bad_account;
((BadCall)adl_thrownException).bad_stock symbol==
exc.bad_stock symbol;
h

}
catch(Throwablet){
false;
}
}
}

Version 1.2

27 of 73

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

EXAMPLE 2.8

}

In this modified specification, the assertion group of the behavior descriptog ¢f
modified to include two catch specifications.

The first catch specification catches the excef@itCall . The assertion group of this

catch specification states that the excepsiadCall must be thrown buy (thrown
expressions are described below). Furthermore, this exception must have the same com-
ponent values as that of the exception that was thrown during the evaluation of the asser-
tion group. Note the mechanism to refer to components of exceptions thrown during the
evaluation of a behavior description: the left hand sides of the comparisons use the ADL
variableadl_thrownException (which is of typeThrowable and must therefore

be casted), that is the exception thrown by the specified mBtlypdnd the right hand

sides of the comparisonesx€.bad_account andexc.bad_stock_symbol) refer to

the values of components of the exception caught by the catch specification (i.e. the one
that was thrown during the evaluation of the “try” assertion group). Also note the nested
assertion group that contains the two comparisons. This prevents these comparisons
from being evaluated thrown(BadCall) is nottrue (in this case, the selection of
components oBadCall will have unexpected results).

The second catch specification catches all other exceptions and its assertion group is
simply “{ false; } ", This is simply stating that this situation is unexpected and if it
does happen for whatever reason, a failure needs to be reported.

The assertion groups in the try and in the catch specifications are considered to be at the
same nested level as the enclosing assertion group. In the previous example, a test report
is generated for each assertion 1 and 2, or for the whole assertion of the catch clause
“thrown(BadCall) && { ((BadCall)adl_thrownException).bad_account

..} "in case a BadCall exception is thrown.

The above example has a serious flaw. Exceptions may be thrown during the evaluation
of an expression in the scope of one of the call state operators. These exceptions cannot
be caught by the above catch specifications since they are evaluated after the specified
method has been called. The solution to this problem is to catch the exceptions in the
call state itself and replace them with harmless values. In this particular example, the
same exceptions will be thrown by evaluation in the state after the call to the specified
method, and hence the semantics specified by the catch specification will still take
effect. The corrected version of the above example follows:

StockBroker2 specification (corrected)

importstock.*;
importStockBrokerAux;

adlclass StockBroker2{
inlinelong cost(Strings,longnsh){

nsh*StockBrokerAux.price(s);

}

28 of 73

Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

void Buy(longaccount, Stringsymbol,longno_of shares)
throws BadCall{
semantics{

try{
Cash_Balance(account)==

@ { try{ Cash_Balance(account)-
cost(symbol,no_of shares);}
catch(Throwablet){0;}
h
Stock_Balance(account, symbol)==
@ { try{ Stock_Balance(account,symbol);}
catch(Throwablet){0;}

}

+no_of_shares;

}
catch(BadCallexc){
thrown(BadCall) &&{
((BadCall)adl_thrownException).bad _account==
exc.bad_account;
((BadCall)adl_thrownException).bad_stock symbol==
exc.bad_stock _symbol;
h

}
catch(Throwablet){
false;

}
}
}

}

In this version, all exceptions caught in the call state are replaced by the value 0. The
nature of this example is such that any exception thrown in the call state will also be
thrown after the call to the specified method, hence the 0’s passed from the call state are
never really used.

Note that this is one of the two possible cases where an assertion and an assertion group
may have non-boolean values.

The above example looks messy, but in the presence of exceptions, a lot of catch specifi-
cations are necessary. This is true of normal programs too. However, the above example
is further cleaned up in Section 2.3.7 where the catch specifications of the call state are
moved up into inline method declarations.

2.3.6 Thrown Expressions

Thrown expressions are boolean expressions used to specify whether exceptions have
been thrown or not.

ADL_ThrownExpression := “thrown” “(* Name (*,” Name)* “)”

Version 1.2 29 of 73

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

2.3.7

ADL_BehaviorSpecification
ADL_BehaviorClassification
ADL_NormalBehavior

ADL_AbNormalBehavior

ADL_BasicExpression

EXAMPLE 2.9

Thrown(el, e2, etc) istrue if any of the exceptionsl, e2, etc. is thrown and is
false otherwiseThrown(Throwable) istrue if any exception or other Throwable is
thrown. It isfalse if no Throwable is thrown.

“thrown(e)” is in fact just syntactic sugar for “adl_thrownException instanceof e”.
Note: thrown expressions may not be placed within the scope of a call state operator.

Behavior Classification

It is often very useful to broadly categorize the behavior of an method into its “normal
behavior” and “abnormal behavior”. One may then specify more details of the behavior
in each of these cases. ADL provides the behavior classification construct for this pur-
pose. The behavior classification is used to associate a boolean expression to the
reserved wordsormal andabnormal .

+::="semantics” [ADL_BehaviorClassification] ADL_AssertionGroup

= “[* (ADL_NormalBehavior | ADL_AbNormalBehavior)+ ‘]’

“normal” “=" ADL_Expression *“;”

“abnormal” “=" ADL_Expression *“”

The default meanings of normal and abnormal are as follows:

¢ |f neithernormal norabnormal has been defined in a behavior classification, then
normal defaults tdthrown(Throwable) andabnormal defaults to
thrown(Throwable)

e If only one ofnormal andabnormal is defined, the other defaults to the negation of
the one defined. For examplenidrmal is defined, theabnormal defaults to
Inormal

When botmormal andabnormal are defined, their definitions need not be negations
of each other. They may overlap or exclude portions of the possible output domain.

In a behavior classification, there may be at most one definitionrfoal and one for
abnormal .

The reserved wordsormal andabnormal may then be used in the behavior descrip-
tion of the method as short forms for the expressions associated with them, as per the
following syntax:

+:="normal” | “abnormal”

The following example modifies the earlier example to make use of behavior classifica-
tions.

StockBroker specification with behavior classification

30 of 73

Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

importstock.*;
importStockBroker2;

adlclass StockBroker2{

inlinelong cost(String s, longnsh){
try{nsh*StockBrokerAux.price(s);}
catch(Throwablet){0;}

}

inlinelong_Cash_Balance(longact){
try{Cash_Balance(act);}
catch(Throwablet){0;}

}

inlinelong _Stock Balance(longact, Strings){
try{Stock_Balance(act,s);}
catch(Throwablet){0;}

}

void Buy(longaccount, Stringsymbol,longno_of shares)
throws BadCall{
semantics
[normal=!thrown(Throwable);
abnormal=thrown(RuntimeException, BadCall);]

if (normal){

try{
Cash_Balance(account)==@_Cash_Balance(account)
- @cost(symbol,no_of_shares);
Stock_Balance(account, symbol)==
@ _Stock Balance(account,symbol)+no_of shares;
} //lendtry
catch(Throwablet){false;}
} lendif (normal)
} //endsemantics
} //end Buy

} /llendadliclass

This version of the stock broker specification is weaker than the previous one in that it
talks only about the normal behaviorBlfy. It will be extended to describe the abnor-
mal behavior oBuy in Section 2.3.8. Interesting aspects of the above example include:

* The catch specifications to catch exceptions in the call state are moved into inline
procedure declarations so as to reduce the clutter in the behavior descriptign of

* The normal behavior duy is defined as any behavior that does not throw any
exception. The abnormal behaviorBly is defined as any that throws eitiRemnt-
imeException orBadCall . If a checked invocation of Buy throws an Error or
other Throwable, that will be reported as outside the specification.

* The main part of the behavior descriptiorBaf is guarded by thef* ” statement
(Section 2.2) if (normal) ...". In this case, no exception is expected to be thrown

Version 1.2 31 0f 73

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

during the evaluation of the assertions, and hence a try/catch specification is used
simply to report an error if any exception is thrown.

¢ Previous versions of this example mixed the description of normal and abnormal
behavior. This version provides the beginnings of a clear separation which will be
more apparent when the abnormal behavior is also completed in the next section.

2.3.8 The Exception Operator

ADL provides the exception operator <:> whose meaning is based on behavior classifi-
cations. In usual usage of this operator, the left operand is the enabler of an exception,
while the right operand is a “thrown” expression.

Informally, A <:> B means that if A is true, then an abnormal condition should be
detected but B is not necessarily true. However, if an abnormal condition is detected and
B is also true, then A must be true as well. The first part of this rule allows the specifica-
tion of abnormal conditions for functions that can raise several different abnormal status
in a possibly non-deterministic way, e.g., several error conditions are met initially but
we don't care which one is raised as long as at least one of them is actually raised.

More formally, the exception operator is defined as:
A <> B is the same a$A ==> abnormal) AND ((abnormal && B) ==> A))

As an example of the use of the exception operator, consider the following assertion
group (we detour from the stock broker a bit here):

Ifile_exists(f) <:>thrown(not_found);
disk_full()<:>thrown(disk_error);

If we assume the default definitionadfnormal , this assertion group could probably be
used to specify a file open method. It reads: If thé fdees not exist, then an exception
must be thrown. Similarly, if the disk is full, an exception must be thrown. However, it
does not restrict exceptions to be thrown for other reasons. But it does say that if the
exceptiomot_found was thrown, it must be the case that theffitoes not exist, and

if the exceptiordisk_error ~ was thrown, it must be the case that the disk was full. An
interesting consequence is that if both the file does not exist and the disk is full, either
exception may be thrown. The following assertion group strengthens the above assertion
group to require that only these two exceptions or runtime exceptions may be thrown:

Ifile_exists(f) <:>thrown(not_found);
disk_full() <:>thrown(disk_error);
abnormal==>thrown(not_found, disk_error,
RuntimeException);
}

Now the earlier stock broker example is completed with specification of abnormal
behavior. A helper interface with two method declarationisae-acct andbad_sym
— are added:

32 0f 73

Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

interface StockAuxiliary {
publicbooleanbad_acct(StockBrokersb,longaccount);
publicbooleanbad_sym(String symbol);

}

EXAMPLE 2.10 StockBroker specification with exceptions

importstock.*;
importStockBrokerAux;

adlclass StockBroker2{

inlinelong cost(Strings,longnsh){
try{nsh*StockBrokerAux.price(s);}
catch(Throwablet){0;}

}

inlinelong_Cash_Balance(longact){
try{Cash_Balance(act);}
catch(Throwablet){0;}

}

inlinelong _Stock Balance(longact, Strings){
try{Stock_Balance(act,s);}
catch(Throwablet){0;}

}

void Buy(longaccount, Stringsymbol,longno_of shares)
throws BadCall{
semantics
[normal=!thrown(Throwable);
abnormal=thrown(RuntimeException, BadCall);]

StockAuxiliary.bad_acct(self,account) <:>
(thrown(BadCall) &&
((BadCall)adl_thrownException).bad_account);

StockAuxiliary.bad_sym(symbol) <:>(thrown(BadCall) &&
((BadCall)adl_thrownException).bad_stock_symbol);

if (thrown(BadCall)){
((BadCall)adl_thrownException).bad_account||
((BadCall)adl_thrownException).bad_stock_symbol;

if (normal){
try{
Cash_Balance(account)== @_Cash_Balance(account)-
@cost(symbol,no_of shares);
Stock_Balance(account,symbol)==
@_Stock_Balance(account,symbol)+no_of_shares;
} llendtry
catch(Throwablet){false;}

Version 1.2 330f 73

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

2.4

ADL_InlineDeclaration

} llendif
} //endsemantics

}
}

Note the right hand side of the two exception operators refer to the same exception, but
different additional conditions associated with the raising of the exception. This new
behavior description is different from the earlier behavior description in Section 2.3.7 in
a few interesting ways, some of which are:

* It makes clear the abnormal behavior. In the earlier example, the abnormal behavior
was described through catch specifications in the normal behavior.

* This leaves the particular exception condition (right operand of the exception opera-
tor) that occurs non-deterministic. If the left operands of the exception operators are
both true, then the behavior description allows either (or even both) the exception
conditions to hold.

* [t uses an additional interfacgtockAuxiliary , to give additional information
about accounts and symbols. It is often the case that an interface sufficient for nor-
mal use is not sufficient for testing; typically, it is useful to add operations to inspect
the state of an object or to encapsulate complex actions. Within the constraints of
Java, these additional operations can only be defined in a new interface. In some
cases, the new interface can be implemented entirely separately from the interface
under test; in other cases, it will require some collaboration between the objects.

Inline Procedure Declarations

Inline macro declarations is another way to define concepts used in behavior descrip-
tions (along with auxiliary interface declarations). Their syntax is:

= ‘“inline” ResultType MethodDeclarator ADL_AssertionGroup

Inline declarations are macros, in the usual C pre-processor meaning. The call to an
inline is replaced by the text of the corresponding assertion group, with ad hoc substitu-
tion of the parameters.

In the Stockbroker example, where “cost” is defined as:

inlinelong cost(Strings, longnsh){
try{nsh*StockBrokerAux.price(s);}
catch(Throwablet){0;}

}

any expressiooost(symbol,no_of_shares) will be replaced by:

{ try{no_of shares*StockBrokerAux.price(symbol);}
catch(Throwablet){0;}}

This is the second case (after try/catch specifications) of the two cases where an asser-
tion group may have a non-boolean value.

34 of 73

Version 1.2

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

2.5

ADL_ClassDeclaration

ADL_BehaviorDeclaration

ADL_Prologue

ADL_Epilogue

It is not possible to define bindings or NLD annotations inside an inline declaration.

Prologues and Epilogues
Before being able to test a specified method, it is sometimes necessary to perform pre-

liminary initializations that require imperative features: this cannot be made inside
semantic assertions, which should remain declarative constructs with no side-effect.

For this purpose, the user can use firelbg” and “epilog’ features, which provide
blocks of “pure” Java that will be transmitted without any transformation to the gener-
ated code.

There are two kinds of prologues/epilogues: either glob&[dh _CompilationUnit)
or local (inADL_ClassDeclaration).

+::=[“public”] “adiclass” <IDENTIFIER> [“extends” Name]
“{* [ADL_Prologue][ADL_Epilogue]
(ADL_InlineDeclaration | ADL_BehaviorDeclaration)*“}”

+::= [“static”] [ResultType] Name FormalParameters [“throws” NameList]
“{* [ADL_Prologue] ADL_BehaviorSpecification [ADL_Epilogue]}’

;= “prolog” Block

“epilog” Block

adlclassbankAccount{

prolog{
Stringurl="jdbc:odbc:wombat”;

DbConnectiondbcon=DbDriverManager.getConnection(url);
DbTabledbtbl=dbcon.createTable();

}

longdeposit(longamt){
prolog{
Stringsel="SELECTp.*(...)";
dbtbl.checkAssertion(sel);
dbtbl.setInt(1,get_account());

}

semantics{
dbtbl.execute(); //boolean-valuedfunction

epilog{
dbcon.close();

}

In the generated Java code for this example, the global and local prologue blocks are
concatenated (the global before the local) and copied “as is” at the beginning of the

Version 1.2

350f 73

Semantic Annotations ADL 2.0 Language Reference Manual for JAVA

“deposit” generated method, before the code that deals with the semantic assertions.
The epilog code is copied at the end of this method (a global epilog would be copied
right after the local one).

The overall execution scheme is as follows:

Step 1: Execution of the global prologue (except in constructors)
Step 2: Execution of the local prologue

Step 3: Evaluation and saving of call-state expressions

Step 4: Call the method on the real object

Step 5: Evaluation of the assertions and test reporting

Step 6: Execution of the local epilogue

Step 7: Execution of the global epilogue (except in constructors)

Note that the global prologue is a purely syntactic construct: variables declared therein
arenot global variables, but variables local to all the specified method — exactly like
the variables declared in the local prologue. Its sole purpose is to factorize the state-
ments that need to be executed at the beginniaf tife methods whose behavior is
specified in the adl class.

There is a special case for constructors: it is possible to define a local prologue in the
behavior specification of a constructor, but the global prologue/epilogue are not
imported in the generated code.

Call-state expressions and inlines cannot be used in prologues and epilogues. Bindings
can be used in the local epilogue of the behavior where they are defined, but not in pro-
logues and global epilogue. The global epilogue has only access to variables defined in
itself and in the global prologue. It is possible, inside call-state expressions, to reference
the variables declared in prologues.

36 of 73 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for JAVA

3

Test Annotations

3.1

3.11

3.1.2

Test data annotations allow the test engineer to define how an interface should be tested,
what data and what procedures should be used to exercise the functions in the interface.

Concepts

The test data description (TDD) language provides a notation in which the user can
write descriptions of test sets, which will be processed into test driver programs. TDD is
organized by a few concepts; these are presented in the first section, with syntactic
details in later sections.

This document focuses on the Tdhguage The integration of the TDD concepts
with relation to the ADLT runtime is presented in more details in the ADL 2.0 Transla-
tion System document, chapter 7.

Re-write

The principle behind TDD2 (TDD for ADLT?2) is that it is processed by re-writing the
input to create a test program. The re-write does not remove any information.

The concepts of TDD2 are applied to a variety of programming languages, called target
languages. The concepts of TDD2 are common to all target languages, and the syntax is
in large measure common; the parts of the language that get re-written are common to
our four target languages (C, C++, IDL, and Java).

Dataset

A dataset is a set of data values. It may be used in place of an expression in the target
language syntax. The result of such an expression over a dataset is another dataset. An
expression involving more than one dataset is treated as an expression over the Carte-
sian product of the datasets:

AT B=fy(A B =F,(Ax B) (EQ 3)

Dataset SizeA dataset has a definite size, by construction. However, that size may not
be feasible to use as a test. Examples of feasible datasets are enum types, array indices,
array contents, and datasets created by literal expressions. The concept of feasibility is
not precise; there is not an axiomatic way to decide if a dataset is small enough. In prac-
tice, a dataset with more than 2732 elements is certainly infeasible.

A dataset may be created by a literal expression or by a factory. A dataset may also be
created by the combination of a representation type and a constraint. A single value, that
is, an expression in the target language, is a trivial dataset.

Dataset size is determined by calculation rather than by construction. It is easy to com-
bine a finite number of feasible datasets and create an infeasible dataset; 32 copies of a
Boolean dataset, for example.

Version 1.2

37 of 73

Test Annotations ADL 2.0 Language Reference Manual for JAVA

3.13

3.14

Factory

A factory is a data creator. It encapsulates the notions of a constructor, a destructor, and
reporting.

A factory is, formally, a function from a dataset to a dataset. A fungt{gne,C...) of
more than one argument is formally treated as funciiof & single argument,
AxBXC... — the crossproduct of the input datasets.

Operationally, a factory is implemented by a pointwise function on the elements of the
domain. In addition, the implementation of a factory includes a destructor function for
elements of the range, and an association from an element of the range to the element of
the domain.

FO{D,R ¢d,}
¢ ?Functional® - RO {0}
d ?FunctionalR - {J, O}
i ?FunctionalF — D

The formal definition of a factory is:

3

where D is the domain of the factory, R is the range of the factory, c is the factory’s con-
structor function, d is the factory’s destructor function, and i is the inversion function,
which can be used to determine the input that gave rise to a given range element.

While several of the target languages provide expression of these notions in their type
structure, those expressions may be not available for all types needed for testing; for
example, none of the target languages permit extension of the built-in types, and all
allow the declaration of types which permit no extension. The factory notion is part of
TDD?2, outside the target language’s type system, so that it can be applied to all types
needed for testing.

Checked function

A checked function is a function for which an oracle is available. Calling a checked
function produces the same value and outcome as calling the unchecked version of the
function, but will report some measurement information as an invisible (within the call-
ing program — not to the user!) side effect.

When running under a debugger, all functions may be said to be checked functions.

In the ADLT system, checked functions are generated from function declarations which
have been annotated with semantic specifications. Within a test directive, there is a spe-
cial convenient syntax for invocation of such an ADL-derived checked function; the
class or object on which the method is invoked is enclosed in the ADL pseudo-function.

ADL(obj).meth(data);
obj.meth(data);

38 of 73

Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for JAVA

3.15

Both method invocations in this example result in invocation of mettedd on the
underlying implementation objeobj ; however, the checked method invocation is
relayed through aAssertion Checking Objeé&DL(obj) that implements the seman-

tic checks specified by the ADL semantic annotation. It is an error to invoke the ADL-
checked version of a method if either the class type of the underlying object has not
been annotated (there is no adl class that annotates this type) or if there exists such an
adl class but that method does not have a semantic annotation in this adl class.

The scope of the ADL keyword operates on only one method: in the expression
ADL(obj).m1(p1).m2(p2) the methodnlis called on the ACO object created by
ADL(obj) and therefore it is the checked methotithat is called; however, this
method will create a usual object on which tineheckeanethodm2will be called. If

the return type omlhas been annotated and the user wants to execute the checked
methodm?2 he/she must writeADL(ADL(obj).m1(p1)).m2(p2)

It is possible to test a constructor; the syda@t._new Foo(bar) will create an

object of type Foo using a checked constructor. The scope is similar to the ADL clause:
ADL(ADL_new Foo(bar)).m(p) invokes a checked constructor of class Foo, that
returns a Foo object on which is invoked the checked method m.

It is possible to test an interface:

Anlinterfx=newAClass();
ADL(x).meth(data);

whereAninterf is a Java interface aidClass is a Java class that implements
Anlinterf. The notatioADL(x) refers to an annotation of Aninterf (i.e. there must be

an adl clas#ninterf.adl that describes the behavior of the methwath). Even

if AClass is also annotated, this annotation will not be called in this example: to test the
annotation of AClass, one should write

AClassy=newAClass(); ADL(y).meth(data);

In other words, the notatiohDL(obj) refers to thestatictype ofobj , not to its
dynamictype.

Test Directive

A test directive is formally a statement evaluated for side effect. In particular, a test
directive normally includes an expression involving one or more calls to checked func-
tions.

Note that a function or method body in a test declaration is subject to the same re-writ-
ing as any other code in the test declaration. Hence any call to a checked function, in
such a body, will be interpreted as a call to the checked version of the function; and call-
ing such a function or method will have the side-effect of making an observation about
the behavior of such checked functions.

A test directive expression is parameterized by the datasets used in the test directive.

Version 1.2

39 of 73

Test Annotations ADL 2.0 Language Reference Manual for JAVA

3.1.6 Assertion

An assertion is a Boolean expression. However, the test framework takes note of an
assertion. An assertion is a postcondition. An assertion contributes to the test result and
is reported to the user.

Formally, an assertion is a Boolean expression evaluated for side effect.

An assertion is expressed by a call to the funatidnassert(String, boolean)
from the ADLT runtime library. As a stretch feature, the ADLT translator may re-write
the assertion to provide better reporting.

3.1.7 Importation

It is possible to import datasets or factories defined in other TDD files, by using the
“use” feature of the TDD language. This feature is syntactically similar to the usual
importation scheme of the target languagjaclude for C/C++ andmport (with
qualified name) for Java.

Note that this importation clause makes reference tedhece TDD filenot to the

object code obtained after ADLT translation and compilation. In TDD for Java, when
the user declarésise foo;” , he can thereafter use for instance the dataset “D1”
defined in the file foo.tdd. There is however an important difference with the “import”
clause: with “use”, the compiler checks the presence and correctness of the source tdd
file; it is left to the responsibility of the user to ensure that at runtime the class file
obtained by transformation of the bar.tdd will be accessible from the classpath. This is
closer to the C semantics, with the distinction between the header file for the compiler
and the library at runtime.

3.2 Annotated TDD/Java Syntax

This is not the complete syntax for the TDD extensions to Java, but rather the produc-
tions that are additions or modifications from the language standard. Undefined nonter-
minals and terminals are references to the language standard.

3.2.1 TDD declarations

ADL_CompilationUnit ~ ::= (ImportDeclaration)*
(TDD_UseDeclaration)*

TDD_ClassDeclaration
<EOF>

TDD_ClassDeclaration ::= [“public’] “tddclass” <IDENTIFIER>
“{“ (TDD_ClassBodyDeclaration)* “}”

TDD classes have no inheritance structure, as the concept of “superclass” is not mean-
ingful for a TDD class. Therefore a TDD class may not be marked as “final” or
“abstract”; all TDD classes are final, just as all Java interfaces are abstract. Neither may
a TDD class extend another, although one TDD class may refer to another.

40 of 73 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for JAVA

TDD_ClassBodyDeclaration

TDD_FieldDeclaration

TDD_DatasetDeclaration

TDD_FactoryDeclaration

TDD_TestDirective

TDD_DatasetDomain

3.2.2

One TDD class may refer to Java entities or TDD datasets and/or factories declared in
other compilation units, either using the fully qualified name of the external entity, or by
importation (“import” for Java, “use” for TDD, referenced by the incpath or the class-

path: see the ADL 2.0 Translation System Design Specification document, chapter 2).

::= MethodDeclaration

| TDD_FieldDeclaration

| TDD_DatasetDeclaration
| TDD_FactoryDeclaration
| TDD_TestDirective

The extra constructs that may occur in a TDD class are constant fields, datasets, facto-
ries, and test directives.

::= Type VariableDeclaratorld “=" Variablelnitializer
(“) VariableDeclaratorld “=" Variablelnitializer)* “;”

tdd class fields are constant and must therefore be initialized. The initialization expres-
sion must be computable at compile-time (similar to the initialization of static fields in
Java).

= “dataset” TDD_SingleDeclarator “=" TDD_DatasetExpr *“;"

A dataset is like an initialized declaration, except that a dataset may have type void, and
the initializer is a dataset not just a scalar.

= “factory” MethodDeclaration
[“relinquish” “(* [FormalParameter])" Block]

A factory is declared just like a method.

= [<IDENTIFIER> “"] “test” [“forall”]
“(* [TDD_DatasetDomain (“” TDD_DatasetDomain)*]*)” Statement

A test directive is similar to an ADL quantified expression, and allows a similar syntax.
It declares local variables that range over the contents of the specified datasets.

A test directive is implemented by putting it in the body of a method, suitable for invo-
cation by the appropriate test framework. The test method declaration is left implicit,
rather than being explicitly written as part of the test directive, so that the ADL transla-
tor can supply a test method declaration specialized for the test framework for which
code is being generated.

::= TDD_SingleDeclarator (“="|*“") TDD_DatasetExpr
| TDD_DatasetExpr

Dataset Expression Syntax

A dataset expression may be used alone in an domain list (i.e. without being assigned to
a single declarator) only if it reduces to a void dataset expression, which must be pro-

Version 1.2

41 of 73

Test Annotations ADL 2.0 Language Reference Manual for JAVA

TDD_DatasetExpr

TDD_DatasetConcatExpr

TDD_DatasetSingleton

TDD_DatasetLiteral

TDD_DatasetMember

TDD_FactoryCall

3.3

3.3.1

EXAMPLE 3.1

duced by a factory; in that case, this notation denotes the evaluation of the void factory
member for side effect only (see Section 3.3.3).

::= TDD_DatasetConcatExpr
(“+" TDD_DatasetConcatExpr)*

= TDD_DatasetSingleton
| TDD_DatasetLiteral
| TDD_FactoryCall

= Literal | Name

= “{“[TDD_DatasetMember (*“) TDD_DatasetMember)*[“"]1]"}
== ConditionalExpression [“ .. ” ConditionalExpression]

= Name “(* [TDD_DatasetExpr (“ TDD_DatasetExpr)*]*)”

A dataset literal is written in braces. It may be empty. The elements in a literal dataset

may be expressions or ranges (in a range expression, the two dots “..” must be preceded
and followed by blank space(s)). Ranges are only meaningful for integral types. A
dataset expression that reduces to a literal or a local field name is converted into a one-
element dataset literal. The expressions in a dataset literal are evaluated once for all
when the dataset is initialized; they will not be re-evaluated at each selection.

Method invocation is legal only as TDD_DatasetMember (for members of a dataset lit-
eral) whereas factory invocation is legal only as TDD_DatasetExpr:

datasetintD=f1()+{f2()};
this definition is correct iff1 is a factory and2 a method.

A TDD_DatasetSingleton name must be either the name of a dataset or the name of a
local field; a TDD_FactoryCall name must be the name of a factory.

General Syntax & Examples

This section presents the general syntax (for C-like languages) along with examples that
motivate the design.

Simple Datasets and Data Construction

Some examples of data generation.

The Simplest Test

42 of 73

Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for JAVA

EXAMPLE 3.2

tddclasst1{
test(intil=3,inti2=4)
ADL(subject).plus(i1,i2);
}

The simplest test is just an invocation of an annotated function. Formally, this test direc-
tive is the application of the annotated function “plus” to the cross-product of two
datasets, “{3}" and “{4}"; the promotion from a single value to a one-element dataset is
implicit and automatic.

In the examplesubject.plus is a static method nam&DL (subject).plus is

the name of a checked version of that static method (we do not precise here what the
name “subject” refers to; it is implicit that it has been imported through the target lan-
guage standard class importation featu#esclude in C++,import in Java).

A Simple Dataset

3.3.2

EXAMPLE 3.3

tddclasst2{
datasetintA={1,3,5..7};
test(intil=A,inti2=1)
ADL (subject).plus(i1,i2);
test(intil=1,inti2=A)
ADL(subject).plus(i1,i2);
}

This testplus when adding the constant dataset {1}, on both sides.

Compound Datasets: Factories, Concatenation

Compound Data Construction

tddclasst3{

factoryRandomAccessFile make_file (Stringname,
Stringmode){
returnnew RandomAccessFile(name, mode);
/inTDDforJava
}relinquish(RandomAccessFiler){// ...

datasetFile FO=make_file(
{“/dev/null”,“/dev/tty”, “/tmp/foo™},
“r.)!, ”rW"});

datasetFileF1=
make_file(“/dev/null”,“r")+
make_file(“/dev/tty”,{“r",“rw"}) +
make_file({util.tmpnam()},{“rw™});

byte[]buf=newbyte[512];

Version 1.2

43 of 73

Test Annotations ADL 2.0 Language Reference Manual for JAVA

3.3.3

EXAMPLE 3.4

test(RandomAccessFile F=F0){
ADL(F).readFully(buf);

test(RandomAccessFile F=F1){
ADL(F).readFully(buf);

}

Dataset FO has 3x2=6 members, while F1 has 1+2+1=4 members. Note that F1 is the
concatenation of several datasets, each produced by a separate invocation of the factory;
the example uses “+" as the dataset concatenation operator.

This example shows the syntax for a test directive, with the datasets listed explicitly as
an initialized declaration list.

The optional relinquish clause has similar syntax to a Java catch clause. The relinquish
clause takes a single argument whose type must match the return type of the factory
method. In the body of the relinquish clause, the user has visibility to all the arguments
of the factory method and the system guarantees that values used for the arguments in
the preceding call to the factory method to create the return data, are the same when exe-
cuting the call to the relinquish clause.

Void Datasets

Void Datasets

In order to express the notion of an environment condition that affects the operation of a
system under test, without producing an assignable value, the concepts of dataset and
factory are extended to allow void pseudo-values. This example imports datasets from
the previous one, and shows the use of a block as the body of a test directive, completed
with an assert.

use t3;

tddclasst4{
factoryvoid setup_system(intcondition_code){
/Ivoidfactory
...

}relinquish(){...}
datasetvoidsetup_set=setup_system(1);

test(setup_set,//voiddatasetexpression
RandomAccessFileF=F1, //Flaccessiblethrough
/limportoft3
Stringdata={"*","hello"})

Stringtmp;
ADL(F).writeUTF(data);
F.seek(0);

44 of 73

Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for JAVA

3.34

EXAMPLE 3.5

tmp=ADL(F).readUTF();
tdd_assert(“tmp.equals(data)”, tmp.equals(data));

}

Note that, as the void datasetup_set is defined as a factory call, this factory
setup_system s called once for each test data instance (see also Section 3.3.4).

This example shows the use of an unchecked mesied () in conjunction with some
checked methodswiteUTF andreadUTF). All three method invocations result in
method invocations on the underlying implementation olbjebbwever, the checked
method invocations are relayed through a checking object that implements the semantic
checks specified by the ADL semantic annotation.

Imported dataset names (through thee'” clause) can be unqualified if there is no
ambiguity about their origin. Unqualified syntdx< F1 in the example) is possible if

¢ F1 is defined in the current tdd class, or
¢ F1 is defined in at most one of the “used” tdd classes.

If two tdd classes are importedse c1; use c2;) such that a dataset F1 is defined

in c1.tdd and another in c2.tdd, then a call to F1 must be qualified: F = c1.F1. A locally
defined dataset nanmédesan imported dataset that has the same name. Importation is
not transitive: if tdd class c0 imports tdd class c1 and c1 imports c2, then cO does not
import c2 (unless it explicitly does so, of course).

The qualified syntax can also be used when the tdd class is not explicitly imported by a
use clause. These rules are also valid for factory importation. Only datasets and facto-
ries are importable: the constants, test functions and test directives of a tdd class are not.

Dataset Elements Evaluation

Runtime Initializers

The elements of a dataset literal are evaluated only once, at initialization time (static
evaluation). If the user wants a dataset whose elements are evaluated each time the
dataset is referenced (dynamic evaluation), he must use factories.

tddclasst5{
[* thisisnotagooddataset; itlacks repeatability */
datasetdoubleg_static={
Math.random(),
Math.random(),
Math.random()
5
factorydoublerand() {return Math.random();}
datasetdoublegq_dynamic=rand();

}

Version 1.2

45 of 73

Test Annotations ADL 2.0 Language Reference Manual for JAVA

In this example, the datasgtstatic is initialized with 3 random values that will not
change whatever the number of test data instances that refgrestagic . But for
test directives that use dynamic , each reference @ dynamic in each test data
instance will be dynamically reevaluated.

3.3.5 Dataset Constants

EXAMPLE 3.6 Provide Test Variables

This example may be slightly familiar for those familiar with the ADLT1 example pro-
grams. The combination of a factory requiring one or more integer parameters with a
dataset is the ADL/Java idiom for a provide test variable, just as a collection of static
final ints is the Java idiom for an enum. In TDD, any global variable (field) is implicitly
constant (static final in Java) and must be initialized at its declaration. A TDD constant
cannot be imported through the “use” clause.

importBank;//inTDDforJava
tddclasst6{
intSAVINGS=-1,CHECKING=1,IRA=7;
intnegative=-10,zero=0,small=3,average =100,
large=1000, over_limit=10000;
factoryaccountacct(
int account_type,
intsize_code){/*...*/}
datasetintact_code={SAVINGS, CHECKING, IRA};

datasetintsize_code=
{negative, zero,small,average, large,over_limit};

datasetaccountAccountl=acct(act_code,size_code);
factoryintamount(intsize_code){/*...*/}
Bankbank=newBank(/*...*/);
test(accountact=Accountl,intsize=size_code){

ADL (bank).deposit(act,amount(size));

ADL (bank).withdraw(act,amount(size));
ADL (bank).balance(act);

EXAMPLE 3.7 Better Test Variables

Here is a more general collection of test variables, showing the increased power of
TDD2.

46 of 73 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for JAVA

importBank;
tddclasst7{

intSAVINGS=-1,CHECKING=1,IRA=7;
intnegative=-10, zero=0,small=3,average=100,
large=1000, over_limit=10000;

factory doubleamount(intsize){/*...*/}

datasetintsize_code=
{negative, zero,small,average, large,over_limit};

datasetintaccount_type=
{checking, savings, IRA, zero, neg, max,over_max};

factoryaccountmake_acct(
inttype_code,
doublesize){/*...*/}

datasetaccountAcct=make_acct(
acount_type,amount(size_code));

test(accountact=Acct,intsize=size_code){
ADL(bank).deposit(act,{0.1,124.1e10,1125.333});
ADL (bank).withdraw(act,amount(size));
ADL (bank).balance(act);
}
}

This example is intended to motivate the separation between factories and datasets. The
make_acct factory can be used to create a dataset with accounts of any size; the
Acct dataset is the result of applying that factory to a specific set of amount values.

3.3.6 Test Directives

EXAMPLE 3.8 Test Directives and Procedures

Simple examples of test directives were given in the previous sections.

The syntax is:

[label:]test(typeid=dataset, ...) Statement

Example:

importobject.data;

Version 1.2 47 of 73

Test Annotations ADL 2.0 Language Reference Manual for JAVA

EXAMPLE 3.9

tddclasst8{
Dirl:test(Objecto=data.obj){
ADL(0).hashCode();
}

}

A test directive body has the same syntagtatementn the Java grammar; however,
“test statement” is a misleading phrase. A label may be placed on a test directive; this
will influence the generated code and the generated test documentation in some way.

In the syntax, local variables are created to range over the specified datasets. Syntacti-
cally; this is like an initialized declaration, but the initializer is a dataset expression. The
declared variable ranges over the members of the dataset during test execution. The list
may also contain a dataset expression denoting a dataset of type void, with no variable
declared; in that case the dataset member selection, presumably by a factory, is evalu-
ated for side effect only.

Not all programming language statements are legal test directives. For instance, a break
statement is not a legal test statement.

Void Dataset Use

3.3.7

EXAMPLE 3.10

The syntax for using void datasets is as follows:
tddclasst9{
datasetintA={1,2,3};
factoryvoidside_effect(inti){/*...*/}
datasetvoid X=side_effect({0..6});
datasetfloatF ={f1(),2(),f30 };
test(inta=A, X, floatf=F)

ADL(tested).func(f,a);
}

In this examplef is the loop variable for the inner loop, and varies fastest. The middle
loop is a selection over X, evaluated only for side effect. The outer test loopavaries
OVerA.

Advanced Examples

Chaining Factories

importtestframe.code;

tddclasst10{

48 of 73

Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for JAVA

factory Stringmake_file_name(
booleanabsolute,
booleandevice,
booleanfunny_chars,
intlength_code

Y.}

datasetintlength_code ={code.ZERO, code.ONE,
code.MEDIUM, code.LONG, code.TOO_LONG};

datasetStringfile_name_set=
make_file_name(true, false,false, 10);

factoryFilemake_file(Stringfile_name){/*...*/}

factoryRandomAccessFile
make_filestream(Filef, Stringmd){/*...*/}

datasetStringlegal_open_type ={“r",“rw" };
factory Stringillegal_open_type(){/*...*/}

dataset Stringopen_type=
legal_open_type+illegal_open_type();

datasetFileFile_set=
make_file(file_name_set);

datasetRandomAcessFile Stream_set=
make_filestream(File_set,open_type);
}

This illustrates several techniques for re-using factories.

EXAMPLE 3.11 Multiple Data Values

In some cases it is useful to produce a group of values with a single dataset expression.
Rather than inventing a new syntax for a group of values, we use the data construction
mechanismdlass) already present in the programming language.

For example, to construct a dataset containing pairs of host addresses and ports, you
might use:

importjava.net.*;

importtestdata.io;

importfoo.port_pair;
[*classport_pairisdefinedinpackagefoo:

packagefoo;

Version 1.2 49 of 73

Test Annotations ADL 2.0 Language Reference Manual for JAVA

EXAMPLE 3.12

classport_pair{
String host;
intport;

}

*/

publictddclasst1l {
factoryport_pairmake_port_pair(intpp_code){/*...*/ }
datasetintport_pair_code= {0..10};

datasetport_pairPorts=
make_port_pair(port_pair_code);

test(byte[]data={io.mydata}, port_pairpp="Ports){
Sockets=new Socket(pp.host, pp.port);
ADL (s.getOutputStream()).write(data);

Test By Example

More complex examples bring us to the concept of “Test by Example”: the test code is
an example of typical code, or code fragments, the user would write to make use of the
interface under test.

importjava.io.*;
importtestdata.io;

publictddclasst12 {

voidread_then_write(RandomAccessFilef, byte[] buf){
longpos;

pos=f.getFilePointer();
ADL(f).readFully(buf);
ADL(f).seek(pos);
ADL(f).writeFully(buf);

}

test(Filef=t10.File_set)
read_then_write(f,io.buf_set);
}

This defines and then calls a test procedure that, when executed, will check that the
readFully , seek , andwriteFully operate together correctly when used in this
particular way. More exactly, the test procedure will exercise the methods together, giv-
ing the assertion-checking code a change to check the behavior of annotated methods.

50 of 73

Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for JAVA

This is not a good way to test for error handling; it may prove useful when checking the
normal operation of an interface.

EXAMPLE 3.13 Multiple Dataset References

A single dataset may be used more than once in a single test directive. This results in
independent iterations over the dataset. If the test author wants multiple references to
the same value in one directive, it is necessary to declare multiple variables ranging on
the same dataset.

tddclasst13 {
datasetintA={1,2,3};

test(inta=A,intb=A)
ADL(Math).plus(a, b); 1 9evaluations

test(inta=A){
ADL (Math).plus(a,a); I 3evaluations
2

}

Version 1.2 51 of 73

Test Annotations ADL 2.0 Language Reference Manual for JAVA

52 of 73 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for JAVA

4

NLD Annotations

4.1

Natural language annotations can be provided to improve the quality of generated
descriptions of ADL and TDD expressions.

Concepts

The ADLT tool can generate natural language (NL) documentation describing the
semantics of functions and the generated test driver. The quality of the generated docu-
ments can be improved by annotating the input files with natural language descriptions
(NLD). These annotations describe translations for identifier names, and provide other
configuration information for the ADLT NL system.

Standard Generalized Markup Language (SGML) is the foundation of the document
generation system. ADLT renders ADL and TDD expressions into SGML entity decla-
rations, exploiting any NLD annotations that the test engineer has provided. These
entity declarations are processed together with a set of document template entity decla-
rations to form a complete SGML document conforming to the DocBook 3.0 DTD. The
final SGML document can be converted to specific output formats such as HTML or
Unix manual pages, or incorporated in larger SGML documents. See the NLD and
SGML section for more details.

Java can be annotated with NL information in several places. Briefly, it can be placed at
top level, within an adlclass or TDD annotation, attached to inline, an annotated func-
tion or a test statement, or placed after the bindings in an ADL semantics group expres-
sion. The translations it provides apply throughout the scope and enclosed scopes (see
Section 4.2).

NLD annotations introduce translation information for identifier names at a specific
scope. Translations in outer scopes are shadowed or overridden by translations for the
same identifier name within enclosed scopes.

When ADLT comes to generate a natural language rendering of an ADL or TDD
expression it takes each identifier in the expression and determines whether the user has
provided any NL translations for its name. It searches outwards from the scope declar-
ing the identifier through its enclosing scopes until it finds a candidate translation that
satisfies any constraints on usage (such as locale) defined by its predicates. It uses the
first one it finds. If more than one satisfactory translation is found at the same scope
level a warning is generated and one of the translations is arbitrarily selected.

For example, a translation for an identifier name can be provided at the top level scope
and it will be found and used for any identifier with that name in any enclosed scope,
unless an alternative translation is provided at a more local scope.

A subclass inherits the NL declarations of its superclass. An NL declaration for an
identifier given in the subclass overrides any inherited NL declarations for that identifier
name.

Version 1.2

53 of 73

NLD Annotations ADL 2.0 Language Reference Manual for JAVA

4.2

421

4.2.2

4.2.3

Syntax and Semantics

The inheritance of NL declarations follows the target language; in the case of Java, this
means that NL declarations are inherited from the superclass and from any implemented
interfaces, and may be overridden in a subclass or implementation class.

Simple Data Member Translation

Translations can be provided very close to where an identifier is declared by using an
NL declaration in the same scope as the identifier.

[*Javasource*/

classC{
public staticintamount;
/...

}

[*ADLsource*/
adlclassC{
nld{//top-levelNLD annotations
.amount="“the correctamount”;
}

}

This declares a translation famount in the scop& (the dot. before amount refers to
the current scope where the nld block is written, here the global scope of the adl class
C). Any expression using an identifier nana@dount declared withirC or one its
enclosed scopes will be translated to use the declared string.

Simple Function Member Translation

Methods can have translations declared in a similar fashion.

classC{
publicintbalance(){/*...*/}

}

adlclassC {
nld{
.balance() =“the balance ofthe account”;
}

}

This declares a translation foalance() in the scop&€. Any expression using a
function identifier namebalance declared withirC or one of its enclosed scopes will
be translated to use the declared string.

Out Of Line Translations

Translations do not have to be declared at the same place the identifiers are. The trans-
lations in the two previous examples could have been provided out of line, in a .nld file,
by using fully scoped identifier names.

54 of 73

Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for JAVA

4.2.4

425

4.2.6

[*NLDsource*/

nid{
C.amount="the correctamount”;
C.balance() ="the balance ofthe account”;

Translations For Overloaded Methods

As there may be more than one function with a particular name in a scope the function
signature must be provided in its NL declaration.

classC{
abstractvoid deposit(intamount);
abstractvoiddeposit(intamount, intcharge);
abstractvoidclose_account();

}

nid{
C.deposit(int) ="depositsome money”;
C.deposit(int,int) =“depositsomemoneyandchargeafee”;
C.close_account()="“closetheaccount”;

}

These mappings are not preceded by a dot, which means they do not refer to a current
scope but describe entities with a full name. The not&ideposit(*) could be

used to define a mapping common to all deposit methods. The n@atiamount

could be used to define a mapping common to all local entities (parameter, binding)
named “amount”, in all methods of C.

Priorities

When several NL mappings are defined for an entity, they are distinguished one from an
other by an algorithm that detects the more “precise” one:

C.deposit(int).amount="the depositamount”;
/Ihashigher prioritythan
C.deposit(*).amount="adepositamount”;
/lwhichitselfhashigher prioritythan
C.*.amount="theamount”;
/Iwhichitselfhashigher priority than
C.amount="the classamount”;
/landfinallythelowest priority forglobal scope
amount="theglobalamount”;

With the inheritance mechanism, this algorithm is refined by a prioritized “super class
lookup”: if C.deposit(int).amount is not found, the mapping will first be

searched in super classes of C (from parent class of C up to java.lang.Object), and if not
found the search will be launched @rdeposit(*).amount and so forth.

Using semantics And nld Blocks

A method can be annotated with both semantics and NL translations.

Version 1.2

55 of 73

NLD Annotations ADL 2.0 Language Reference Manual for JAVA

4.2.7

adlclassC{
intbalance(intac){
semantics{
ac!=0;

}

nld{
.ac="theaccountnumber”;
.=“thebalanceoftheaccount”;

}
}

The dot notation.”” refer to the current NLD scope (in this case the metiadd
ance(int)). The notation “.ac” is equivalent to using a fully scoped name to refer to
the function’s local arguments.

nid{
C.balance(int).ac="theaccountnumber”;
C.balance(int) ="the balance oftheaccount”;

}

In case of a clash between two equivalent mappings, the final mappindgistthe
encountered one, knowing that NLD files are always pdyefmie ADL/TDD files

(except for this rule, NLD files and ADL/TDD files are parsed in the order they appear
on the command line). If the two equivalent mappings are defined in the very same file,
the last occurrence is retained.

The formal argument name from the function declaration is used as the name of the
local argument. The signature of the function must be given in order to disambiguate
overloaded functions.

Shadowing or Overriding A Translation

nld{
i="theloopcounter”;

}

adlclassA{
/Ipublicstaticinti;declaredinclass A

}

adlclassB{
/Ipublicstaticinti;declaredinclassB
nid{
i="B’si";
}

}

An expression using in A will pick up the top level NL declaration forand be trans-
lated as “the loop counter”. The NL declarationifarithin B overrides the top level
declaration so an expression usingn B will be translated as “B’s i".

56 of 73

Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for JAVA

4.2.8

4.2.9

Overriding A Non-Local Translation

Translations in other scopes can be overridden too.

classA{
publicstaticbooleanti;
publicabstractvoidf();

}

classB{
publicabstractvoidg();

}

adlclassA{
voidf(){//...
nid{
A="fsi”;
}

}
}

adlclassB{

voidg(){
semantics{

A.;

}

nid{
Ali="g'si”;

}

}
}

The translation of the referencefaf intheB.g() semantics block is “g’s i”, over-
riding the translation for given inA.

Invocation Translation

An invocation translation is used to translate a function call. It provides a mechanism for
the translation to refer to the translations of the actual arguments. In order to use this
mechanism the function translation must be provided with the full function signature.
The notation ‘$1’, ‘$2’, etc. in the mapping of a function definition refer to the first, sec-
ond, etc. acual argument of the function call: the translation of the corresponding actual
argument is used instead of any translation for the formal argument name.

classC{
publicinta;
publicabstractvoidf(inti, intj);

}

nid{
C.a="theactualargument”;

Version 1.2

57 of 73

NLD Annotations ADL 2.0 Language Reference Manual for JAVA

4.3

43.1

C.f(int,int)="using”+$1+"“and” +$2;
C.f(int,int).i="thefirstformalargument”;

g

An expression usinffa, 3) will be translated as “using the actual argument and 3”.

NLD Predicates

Each NL translation associates a list of predicates with an identifier name. Each predi-
cate asserts certain attributes of the translation. The most important attribute is the
actual translation text (which must be provided), but other attributes are also defined.
Some predicates act as constraints to determine when the translation can be used in the
generated documents. SGML entities can also be declared in the predicate list.

The order of predicates in the predicate list is not significant. A predicate can only be
used once in a list. Future predicates might include markers for grammatical categories
such as tense, gender or number.

Pre-defined Predicates
These predicates (there are currently three defined: call-state, negation and locale) pro-
vide a mechanism to select a mapping for a given situation.

For instance, consider:

amount="theamount”;
amount[@]="theformeramount”;

The second mapping will be used to translate the identifier amount when it appears
within the scope of a call-stat@@mouni) whereas the first one will be used in the

other cases. If no mapping with the call-state predicate is defined, an appropriate trans-
lation text is synthesized from the basic translation (@aenountwould be translated

as “the previous value of the amount”). This predicate is useful in situations where the
synthesized translation is clumsy or inappropriate.

Thenegationpredicate (notation “1”) is used in a similar fashion for negation scopes.
Invocation translations apply for call-state and negation translations too.

Different languages require different translations. [Boale(<string>) predi-

cate can be used to mark a translation as being valid for the specified locale. A transla-
tion with the locale predicate is only considered when it matches the current system
locale. This is usually configured by setting tReNGenvironment variable. See the
setlocale(3) manual page for more details. A translation for an identifier name

with a locale predicate that matches the current system locale takes preference over a
translation with a different or unspecified locale.

It is possible to define a mapping for several predicates (e,g,
amount[!,@,locale(“fr")] = “...”;)

58 of 73

Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for JAVA

4.3.2

4.4

To define several mappings with different predicates, it is possible to use the extended
syntax:

deposit(int, int): {
text="the basicmapping”;
text[@]="the callstate mapping”;
text[!]="the negationmapping”;

}

The notatiordeposit(int) = “deposit an amount”; is in fact a shortcut
for deposit(int) : { text = “deposit an amount”; }

An other possible shortcut is to declare the locale before the translation text:
deposit(int) “C” = “the mapping for locale C”; stands for
deposit(int) : {

text[locale(“C")] = “the mapping for locale C”; }

User-defined Predicates
A user-defined predicate is a mechanism to assert an attribute to a mapping, so that this
mapping can be selected or not elsewhere.

We will give an example in french, a language with explicit gender:

maleCat="chat”,[male];

femaleCat="chatte”, [female];

colorOf(int) : “fr.FR"{
text[$1[male]]="lacouleurdu”+$1,[female];
text[$1[female]]="lacouleurdela”+$1, [female];

The two first mappings state that maleCat and femaleCat correspond respectively to a
masculine and feminine gender. The notaitfmale] s to select a mapping that
corresponds to a function call with a first argument that has the “male” predicate. The
function callcolorOf(femaleCat) would therefore be translated as “la couleur de

la chatte”. The “female” predicate that is defined as an attribute to the colorOf method
states that the word “couleur” is feminine; thus the expressilmmOf(maleCat)

could be used in a context where an expression with “female” predicate is expected (for
a “stupid” examplegolorOf(colorOf(maleCat)) would be rendered as “la

couleur de la couleur du chat”).

NLD and SGML

ADLT generates documentation by emitting SGML entity declarations for descriptions

of aspects of the annotated functions and test specification. These synthesized and user
supplied entity declarations can be used with template entity declarations to produce
complete SGML documents for subsequent processing. ADLT supplies templates and
synthesizes entities based upon the DocBook 3.0 document type definition for con-
structing reference manual pages and test specification descriptions.

Version 1.2

59 of 73

NLD Annotations ADL 2.0 Language Reference Manual for JAVA

4.4.1 Reference Manual Document

EXAMPLE 4.1

ADLT processes each annotated function to generate a function file containing SGML
entity declarations describing its synopsis, semantics and error conditions. This file can
be parsed in conjunction with the supplied reference manual template to produce an
SGML document conforming to the DocBook RefEntry element. ADLT also

provides tools to convert the final SGML document into other formats such as HTML or
Unix manual pages.

The reference manual template file declares default values for some entities which the
function file generated by ADLT can override. Here are the entities for which it is pos-
sible to generate a value in nld blocks (we call them “properties”):

%description: A general description of the function and/or the class. This can be
specified by using théescription property in the NL declaration for the function/
class.

%includes: Unlike all other property declarations, the declared texiafides
is processed before generating the property declaration to escape “<" characters.

%purpose: A short description of a function.

%seeAlso: A reference.

Using includes and description

adlclassC{
voidf(){//...
nid{
o
%description="Behavioral description”;
%purpose ="“Shortdescription”;
%seeAlso="SeetheclassFoo”;
}
}
}
}
This is equivalent to:
nid{

C.f() :%description="Behavioral description”;
C.f():%purpose=...

/...

}

The implementation of ADLT includes an SGML DTD that defines the structure of
these entities. Note that ADLT doest preprocess the strings that define these entities:
it sends them without any modification, except for “<* and “>" in %includes (there is
for instance no interpolation mechanism performed on these strings).

60 of 73

Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for JAVA

4.5 NLD for TDD

Test Data Description sources can also be annotated with nld blocks in order to generate
SGML documentation files. There is however an important difference: as there are no
assertions in TDD, there are no automated translation of any expression. Therefore the
user may only write NLD annotations to provigeperties(like %description) or

SGML entities, that are gathered and rendered in the generated documentation.

EXAMPLE 4.2 NLD Annotations in a TDD class

tddclassdatasetsCollection{

nid{
.:%description="Acollectionofdatasets.”;

}

iNtNEG=-1;intZERO=0;intMAX=100;

nld{

.NEG:%description="anegativevalue”;
.ZERO:%description="thenullvalue”;
.MAX:%description="the greatestvalue”;

}

datasetintDEPOSITS={NEG, ZERO, 7,MAX};
datasetbankB_SINGLE=make_bank(10,0,DEPOSITS);

nid{
.DEPOSITS: %description="Setoftypicalvalues.”;}
.B_SINGLE: %description="bank....... "

4.6 NLD and Localization

ADLT chooses translations for identifier names based on the current system locale.
Each NL declaration can be marked with a specific locale that determines when the
translation can be used. Adl annotation can specify the locale of all the NL declara-
tions grouped within it by using the optional locale marker. Additionally each declara-
tion can use the locale predicate to specify its individual locale. When a locale is
specified for a NLD group, any other locale defined for a mapping within this group
would be skipped.

If a translation has a locale specified it will only be selected as a candidate when that
locale is the system locale. A translation without a locale specification is considered to
be in the default locale, and will be selected as a candidate when no other translation
specified with the current locale is available.

There are four areas where localization is necessary.

Version 1.2 61 of 73

NLD Annotations ADL 2.0 Language Reference Manual for JAVA

Identifier translations. The locale mechanism provides a way to produce a set of trans-
lations for Java and ADL identifiers that are restricted to one locale. They will be
selected in preference to translations for the identifiers which do not have a locale spec-
ified.

User-specified entity declarationsThe locale mechanism can also be used to mark
user-supplied entity declarations with a specific locale.

Document templatesThe translations and user-specified entities are merged with text
in the document template files to produce the final SGML documents. The template
files can be localized.

Sentence construction rulesADLT uses a set of rules to construct descriptions of
ADL expressions out of the identifier translation fragments. These rules take the form
of a Prolog program that can be localized.

4.7 NLD Syntax
NLD_Annotation ::= “nld” [NLD_Locale]“{* (NLD_Declaration | NLD_EntityDeclaration)*“}’

NLD_Locale

<STRING_LITERAL>

Natural language information is attached to the ADL source with a natural language
annotation. An annotation is introduced with thét reserved word, an optional locale
indicator and then a group of one or more NL declarations within braces. If the locale
indicator is present it acts as if the locale predicate is specified for every translation in
the group. For example,

nld“C’{
-

acts as ifocale(“C”") is specified for each translation.

Each NL declaration is either a translation for a Java or ADL identifier, or a declaration
for an SGML entity to be used for document generation.

The left hand side of each kind of declaration can contain a scoped name. In addition to
the standard Java scoping PackagePath.Class.Member NLD also allows identifier names
within a function member to be specified. This makes it possible to give translation
information for a method’s formal parameters and local ADL bindings. This is useful

for specifying translations for identifier names from many packages, classes or methods

62 of 73 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for JAVA

EXAMPLE 4.3

in one place, rather than forcing the test engineer to distribute NL information through-
out the specification files.

Using Fully Scope Names

NLD_Declaration

NLD_Statement

NLD_TextAssignment

NLD_SelectPred

NLD_Predicate

NLD_PredefinedPred
NLD_UserPred
NLD_ParamNumber

NLD_ScopedName

NLD_MethodName

classC{
publicinti;
publicvoidf(inti);

nid{
C.i="translationfori”;
C.f(int)="translationforf(int)”;
C.f(int).i="translationfor parameter iinf(int)”;

}

If a function name is overloaded at a particular scope it must have its signature fully
specified. Otherwise it can be abbreviated to omit the declarations for the formal
parameters and use only the notation “(*)".

The translation information is entered at the specified scope (refered to as “.”), so an
expression rendered at the current scope, or within an enclosed scope can find it.

NLD_ScopedName
([NLD_Locale] NLD_TextAssignment

I
“” [NLD_Locale] (NLD_Statement | “{“ NLD_Statement ™ “}"))

= NLD_PropertyDeclaration | “%text” NLD_TextAssignment *;”

= [NLD_SelectPred]*“=" NLD_String
[“)“[“NLD_UserPred (“,” NLD_UserPred)*“]"]

= “[“NLD_Predicate (“” NLD_Predicate)*“]"

= NLD_PredefinedPred
| NLD_ParamNumber “[* NLD_UserPred (*“,” NLD_UserPred)*“]"

1= “@"|“" | “locale” “(NLD_Locale *)"
= <IDENTIFIER>

= "$’<INTEGER_LITERAL>

| NLD_MethodName
| [NLD_Scope “”]NLD_ldentifier

;= Name NLD_Signature

Version 1.2

63 of 73

NLD Annotations ADL 2.0 Language Reference Manual for JAVA

NLD_Signature

NLD_Scope

NLD_EntityDeclaration

NLD_PropertyDeclaration

NLD_PropertyName

NLD_EntityText

NLD_String

NLD_StringElem

¢ (" | Type (* Type))

I “.”

| Name[“*"]

| NLD_MethodName

SGML entities can also be declared in an NL annotation. The text declared as the value

of the entity is not examined by ADLT, it is passed on to the SGML back end uninter-
preted and unmodified. For example,

&gen-ent="ageneralentity”;

declares a general entity with the specified value.

“&" <IDENTIFIER> “=" NLD_EntityText

NLD_PropertyName “=" NLD_EntityText

“Y%description” | “%includes” | “Ypurpose” | “Y%seeAlso”

<STRING_LITERAL> (“+” <STRING_LITERAL>)*

With the exception of the notation for string literals, the SGML syntax for entity names
and values is used. See the SGML Handbook for details. NLD specifies string literals
with a notation based upon the Java language.

NLD_StringElem (“+” NLD_StringElem)*

<STRING_LITERAL> | NLD_ParamNumber

See the Java grammar for descriptions of\th@e and Type nonterminals.

64 of 73

Version 1.2

Complete Grammar ADL 2.0 Language Reference Manual for JAVA

Complete Grammar

ADL_CompilationUnit

ImportDeclaration
TDD_UseDeclaration

ADL_ClassDeclaration

ADL_InlineDeclaration

ADL_BehaviorDeclaration

ADL_Prologue
ADL_Epilogue
ADL_BehaviorSpecification
ADL_BehaviorClassification
ADL_NormalBehavior

ADL_AbNormalBehavior

Here is the complete BNF grammar for ADL for Java. Non-terminals in boldface are
defined in this document; other non-terminals are part of the Java language definition.
Lexical entities, names in angle brackets like <THIS>, are references to the Java lan-
guage standard.

Although, for practical reasons, the grammars for ADL and TDD are mixed in the fol-
lowing grammar, they are in fact distinct. From a TDD annotation, all rules involving an
ADL non-terminal will be forbidden (by a semantic check), except for the derivation:
UnaryExpressionNotPlusMinus -> ADL_BasicExpression -> PrimaryExpression.

Much of this grammar reproduces the Java expression syntax, with the extensions
detailed in this document. The differences are intended as extensions; any Java expres-
sion not accepted by this grammar is a bug.

;= (ImportDeclaration)*
(TDD_UseDeclaration)*
(NLD_Annotation)*
ADL_ClassDeclaration | TDD_ClassDeclaration
| (NLD_Annotation)*
<EOF>

“import,, Name [u.n [] u;u
= “use” <IDENTIFIER> %"

= [“public”] “adlclass” Name [“extends” Name]
“{“ [ADL_Prologue][ADL_Epilogue]
(ADL_InlineDeclaration | ADL_BehaviorDeclaration
(NLD_Annotation)*)*“}”

= ‘“inline” ResultType MethodDeclarator ADL_AssertionGroup

(“static” | “public”)* [ResultType] Name FormalParameters
[“throws” NamelList] [“{“] [ADL_Prologue] ADL_BehaviorSpecification
[ADL_Epilogue](NLD_Annotation)*(“" | “}")

== “prolog” Block

= “epilog” Block

;= “semantics” [ADL_BehaviorClassification] ADL_AssertionGroup
= “[* (ADL_NormalBehavior | ADL_AbNormalBehavior)+ 7"

= “normal” “=" ADL_Expression *;"

;= “abnormal” “=" ADL_Expression *“;"

Version 1.2

65 of 73

Complete Grammar ADL 2.0 Language Reference Manual for JAVA

“(* (ADL_Binding)* [“super” * “semantics” *;"]
(ADL_Statement)* (NLD_Annotation)*“}’

ADL_AssertionGroup

ADL_Bindings “define” FormalParameter “with” [<IDENTIFIER> “="] ADL_Expression *“;"

ADL_Statement

ADL_IfStatement
| ADL_TryStatement
| ADL_Assertion

ADL_IfStatement

“if” “(* ADL_Expression *“)” ADL_AssertionGroup
[“else” (ADL_AssertionGroup | ADL_IfStatement)]

ADL_TryStatement ::= “try” ADL_AssertionGroup
(“catch” “(* FormalParameter “)” ADL_AssertionGroup)+

ADL_Quantifier

“forall” | “exists”

ADL_Assertion [ADL_Label][ADL_Tags]

(ADL_Expression | ADL_QuantifiedAssertion) *;”

ADL_Label <IDENTIFIER> *”

ADL_Tags

“[<IDENTIFIER> (“)” <IDENTIFIER>)* “]"

ADL_QuantifiedAssertion ADL_Quantifier “(* ADL_DomainList “)” ADL_AssertionGroup

ADL_Expression ADL_ImplExpression

ADL_ImplExpression ConditionalExpression [ADL_ImplOp ConditionalExpression]

ADL_ImplOp ==V | fe==" | f<=>" | <>

ConditionalExpression ConditionalOrExpression

[“?” ConditionalExpression “:” ConditionalExpression]

ConditionalOrExpression ConditionalAndExpression (“||” ConditionalAndExpression)*

ConditionalAndExpression InclusiveOrExpression (“&&” InclusiveOrExpression)*

InclusiveOrExpression ExclusiveOrExpression (“|" ExclusiveOrExpression)*

ExclusiveOrExpression AndExpression (“*" AndExpression)*

AndExpression EqualityExpression (“&” EqualityExpression)*

EqualityExpression InstanceOfExpression ((“=="| “I=") InstanceOfExpression)*

InstanceOfExpression RelationalExpression [“instanceof” Type]

RelationalExpression ShiftExpression ((“<" | “>" | “<="| “>=") ShiftExpression)*

ShiftExpression AdditiveExpression ((“<<*| “>>"| “>>>") AdditiveExpression)*

66 of 73 Version 1.2

Complete Grammar

ADL 2.0 Language Reference Manual for JAVA

AdditiveExpression =
MultiplicativeExpression ::=

UnaryExpression ::=

PrelncrementExpression
PreDecrementExpression

UnaryExpressionNotPlusMinus::=

ADL_CallStateExpression ::=

CastExpression ::=

ADL_BasicExpression =

PrimaryExpression ::=

TDD_ADLnewExpression =
TDD_ADLExpression =

PrimaryPrefix ::=

ParenthExpression ::=

PrimarySuffix

MultiplicativeExpression ((“+” | “-") MultiplicativeExpression)*

UnaryExpression ((“*" | “/" | “%") UnaryExpression)*

(“+”] ") UnaryExpression
PrelncrementExpression
PreDecrementExpression
UnaryExpressionNotPlusMinus

;="++" PrimaryExpression
="--" PrimaryExpression

(“~"]"“") UnaryExpression
“@" ADL_CallStateExpression
CastExpression
ADL_BasicExpression

UnaryExpression

“(* PrimitiveType (“[* “1")*)" UnaryExpression

“(“ Name (“[*“T")* “)" UnaryExpressionNotPlusMinus
PostfixExpression

“normal”

“abnormal”

“unchanged” Arguments

“return”

ADL_AssertionGroup

ADL_ThrownExpression

TDD_ADLExpression (PrimarySuffix)*
TDD_ADLnewExpression (PrimarySuffix)*
PrimaryPrefix (PrimarySuffix)*

“ADL_new” Name
“ADL" “(* PrimaryExpression “)”

Literal

Name

“this”

“super” “" <IDENTIFIER>
ParenthExpression
AllocationExpression

“(* ADL_Expression “)”

BracketSuffix

Version 1.2

67 of 73

Complete Grammar

ADL 2.0 Language Reference Manual for JAVA

DotSuffix
BracketSuffix

Literal

BooleanLiteral
NullLiteral
Arguments
ArgumentList

AllocationExpression

ArrayDimensions
ADL_ThrownExpression

ADL_DomainList
ADL_Domain

VariableDeclaratorld

MethodDeclarator

FormalParameters

FormalParameter

Type

PrimitiveType

ResultType

Name

NamelList

DotSuffix
Arguments

“” <IDENTIFIER>
“[* ADL_Expression “]"

<INTEGER_LITERAL>
<FLOATING_POINT_LITERAL>
<CHARACTER_LITERAL>
<STRING_LITERAL>
BooleanLiteral

NullLiteral
“true” | “false”
“null”

“(* [ArgumentList])"

ADL_Expression (“,” ADL_Expression)*

“new” PrimitiveType ArrayDimensions
“new” Name (Arguments | ArrayDimensions)

(“[* ADL_Expression “I")+ (“[““]")*

“thrown” “(* NamelList “)”

ADL_Domain (“,” ADL_Domain)*

FormalParameter “:” ConditionalExpression
<IDENTIFIER> (“[““]")*

<IDENTIFIER> FormalParameters (“[* “]")*

“(* [FormalParameter (“,” FormalParameter)*] “)”

Type VariableDeclaratorld

(PrimitiveType | Name) (“[* “]")*
“boolean”|“char”|“byte”|*short”|“int”|“long”|“float”|“double”

“void”
Type

<IDENTIFIER> (“” <IDENTIFIER>)*

Name (“,” Name)*

68 of 73

Version 1.2

Complete Grammar ADL 2.0 Language Reference Manual for JAVA

TDD_ClassDeclaration [“public”] “tddclass” <IDENTIFIER>

“{“ (TDD_ClassBodyDeclaration)*“}"

MethodDeclaration
NLD_Annotation
TDD_FieldDeclaration
TDD_DatasetDeclaration
TDD_FactoryDeclaration
TDD_TestDirective

TDD_ClassBodyDeclaration

TDD_FieldDeclaration ::= Type VariableDeclaratorld “=" Variablelnitializer
(“) VariableDeclaratorld “=" Variablelnitializer)* “;”

TDD_DatasetDeclaration ::= “dataset” TDD_SingleDeclarator “=" TDD_DatasetExpr “;"

TDD_FactoryDeclaration ::= “factory” MethodDeclaration
[“relinquish” “(* [FormalParameter] “)” Block]

TDD_TestDirective ::= [<IDENTIFIER> “"] “test” [“forall”]
“(“[TDD_Datasetbomain (“,;” TDD_DatasetDomain)*]*)”
(NLD_Annotation)* Statement

TDD_DatasetDomain ::= TDD_SingleDeclarator (“:"|“=") TDD_DatasetExpr
| TDD_DatasetExpr
TDD_SingleDeclarator ::= ResultType VariableDeclaratorld
TDD_DatasetExpr ::= TDD_DatasetConcatExpr

(“+" TDD_DatasetConcatExpr)*

TDD_DatasetConcatExpr ::= TDD_DatasetSingleton
| TDD_DatasetLiteral
I

TDD_FactoryCall

TDD_DatasetSingleton Literal | Name

TDD_DatasetLiteral

“{ [TDD_DatasetMember (“ TDD_DatasetMember)*[*’]1]*}Y’

TDD_DatasetMember ConditionalExpression [“..” ConditionalExpression]

TDD_FactoryCall

Name “(* [TDD_DatasetExpr (“,” TDD_DatasetExpr)*]")”

ClassDeclaration (“abstract” | “final” | “public”)* “class” <IDENTIFIER>
[“extends” Name] [“implements” NamelList]

“{* (ClassBodyDeclaration)* “}"

Version 1.2 69 of 73

Complete Grammar

ADL 2.0 Language Reference Manual for JAVA

ClassBodyDeclaration

InterfaceDeclaration

InterfaceMemberDeclaration

FieldDeclaration

Staticlnitializer

ConstructorDeclaration

MethodDeclaration

Statement

VariableDeclarator

Block

ExplicitConstructorinvocation ::

BlockStatement

Staticlnitializer
ConstructorDeclaration
MethodDeclaration
FieldDeclaration

(“abstract” | “public”)* “interface” <IDENTIFIER> [“extends” NameList]
“" (InterfaceMemberDeclaration)* “}"

MethodDeclaration | FieldDeclaration

(“public” | “protected” | “private” | “static” | “final” | “transient” | “volatile”)*

Type VariableDeclarator (“,” VariableDeclarator)* “;"

“static” Block

[“public” | “protected” | “private”]
<IDENTIFIER> FormalParameters [“throws” NameList]
“{" [ExplicitConstructorinvocation] (BlockStatement)* “}"

(“public” | “protected” | “private” | “static” | “abstract” | “final” | “native” |
“synchronized”)* ResultType MethodDeclarator [“throws” NameList]
(Block | ™)

LabeledStatement
StatementExpression “;"
Block

EmptyStatement
SwitchStatement
IfStatement
WhileStatement
DoStatement
ForStatement
BreakStatement
ContinueStatement
ReturnStatement
ThrowStatement
SynchronizedStatement
TryStatement

VariableDeclaratorld [“=" Variablelnitializer]
“{* (BlockStatement)* “}"

“this” Arguments “;
“super” Arguments “;”

LocalVariableDeclaration “;”

70 of 73

Version 1.2

Complete Grammar

ADL 2.0 Language Reference Manual for JAVA

LabeledStatement
EmptyStatement

StatementExpression

SwitchStatement

SwitchLabel

IfStatement
WhileStatement
DoStatement
ForStatement

Forlnit

BreakStatement
ContinueStatement
ReturnStatement
ThrowStatement
SynchronizedStatement
TryStatement

Expression

Variablelnitializer
LocalVariableDeclaration
Assignment
AssignmentOperator

PostfixExpression

Statement

<IDENTIFIER> “:" Statement

PrelncrementExpression
PreDecrementExpression
Assignment
PostfixExpression

“switch” “(* Expression)" “{* (SwitchLabel (BlockStatement)*)* “}"

“case” Expression “:
“default” “:”

“if” “(* Expression “)” Statement [“else” Statement]

“while” “(* Expression “)” Statement

“do” Statement “while” “(* Expression “)" “;”

“for” “(“ [ForInit] “;” [Expression] “;” [ForUpdate])" Statement

LocalVariableDeclaration
StatementExpressionList

“break” [<IDENTIFIER>] ;"
“continue” [<IDENTIFIER>] *}”
“return” [Expression | “;”
“throw” Expression “;"

“synchronized” “(* Expression “)” Block

“try” Block (“catch” “(* FormalParameter “)” Block)* [“finally” Block]

Assignment
ConditionalExpression

Expression

Type VariableDeclarator (“,” VariableDeclarator)*
PrimaryExpression AssignmentOperator Expression
u:Hlu*:ﬂlu/:nlu%:n u+:1! u_:n u<<:ﬂ u>>:!l u>>>:n|u&:lllu/\:HIul:H

P”maryEXpreSSIOn [uy g pu_m]

Version 1.2

71 0of 73

Complete Grammar

ADL 2.0 Language Reference Manual for JAVA

StatementExpressionList

ForUpdate

NLD_Annotation
NLD_Locale

NLD_Declaration

NLD_Statement

NLD_TextAssignment

NLD_SelectPred

NLD_Predicate

NLD_PredefinedPred
NLD_UserPred
NLD_ParamNumber

NLD_ScopedName

NLD_MethodName
NLD_Signature

NLD_Scope

NLD_EntityDeclaration
NLD_PropertyDeclaration
NLD_PropertyName

NLD_EntityText

StatementExpression (“,” StatementExpression)*

StatementExpressionList

“nld” [NLD_Locale]“{" (NLD_Declaration | NLD_EntityDeclaration
<STRING_LITERAL>

NLD_ScopedName
([NLD_Locale] NLD_TextAssignment

|
“ [NLD_Locale] (NLD_Statement |“{* NLD_Statement * “}"))

NLD_PropertyDeclaration | “%text” NLD_TextAssignment ;"

[NLD_SelectPred]“=" NLD_String
[““[*NLD_UserPred (“, NLD_UserPred)*“]"]

“[* NLD_Predicate (*“) NLD_Predicate)**]”

NLD_PredefinedPred
NLD_ParamNumber “[“ NLD_UserPred (“) NLD_UserPred)*“]”

“‘@”|"1" | “locale” “(* NLD_Locale *)”
<IDENTIFIER>

“$"<INTEGER_LITERAL>

NLD_MethodName
[NLD_Scope “”] NLD_ldentifier

Name NLD_Signature

¢ (" | Type (* Type) Y

hgen

Name [“.*"]
NLD_MethodName

“&" <IDENTIFIER> “=" NLD_EntityText
NLD_PropertyName “=" NLD_EntityText
“O%description” | “%includes” | “Ypurpose” | “%seeAlso”

<STRING_LITERAL> (“+" <STRING_LITERAL>)*

i

72 of 73

Version 1.2

Complete Grammar ADL 2.0 Language Reference Manual for JAVA

NLD_String ::= NLD_StringElem (“+” NLD_StringElem)*

NLD_StringElem

<STRING_LITERAL> | NLD_ParamNumber

Version 1.2 73 of 73

	ADL 2.0 for JAVA Language Reference Manual, Versio...
	1 Introduction
	2 Semantic Annotations
	2.1 Describing Semantics Of Interface Operations
	2.2 ADL Syntax
	2.2.1 Assertion Groups
	2.2.2 ADL Specific Expressions
	2.2.3 Quantified Assertions
	2.2.4 ADL If Statement

	2.3 Behavior Specification
	2.3.1 The Call State Operator
	2.3.2 Specification of a Constructor
	2.3.3 Specification Of An Inherited Method
	2.3.4 Bindings
	2.3.5 Try/Catch Specifications
	2.3.6 Thrown Expressions
	2.3.7 Behavior Classification
	2.3.8 The Exception Operator

	2.4 Inline Procedure Declarations
	2.5 Prologues and Epilogues

	3 Test Annotations
	3.1 Concepts
	3.1.1 Re-write
	3.1.2 Dataset
	3.1.3 Factory
	3.1.4 Checked function
	3.1.5 Test Directive
	3.1.6 Assertion
	3.1.7 Importation

	3.2 Annotated TDD/Java Syntax
	3.2.1 TDD declarations
	3.2.2 Dataset Expression Syntax

	3.3 General Syntax & Examples
	3.3.1 Simple Datasets and Data Construction
	3.3.2 Compound Datasets: Factories, Concatenation
	3.3.3 Void Datasets
	3.3.4 Dataset Elements Evaluation
	3.3.5 Dataset Constants
	3.3.6 Test Directives
	3.3.7 Advanced Examples

	4 NLD Annotations
	4.1 Concepts
	4.2 Syntax and Semantics
	4.2.1 Simple Data Member Translation
	4.2.2 Simple Function Member Translation
	4.2.3 Out Of Line Translations
	4.2.4 Translations For Overloaded Methods
	4.2.5 Priorities
	4.2.6 Using semantics And nld Blocks
	4.2.7 Shadowing or Overriding A Translation
	4.2.8 Overriding A Non-Local Translation
	4.2.9 Invocation Translation

	4.3 NLD Predicates
	4.3.1 Pre-defined Predicates
	4.3.2 User-defined Predicates

	4.4 NLD and SGML
	4.4.1 Reference Manual Document

	4.5 NLD for TDD
	4.6 NLD and Localization
	4.7 NLD Syntax

	5 Complete Grammar

