ADL 2.0 for C++ Language Reference Manual, Version 1.2

ADL for C++

SunTest

The Open Group Research Institute

The language definition for ADL annotations
for the C++ programming language.

ISSUE NUMBER REASON FOR ISSUE

1.0 Alpha Document Launch For Review
1.0 Beta First Revision

1.0 Gamma Second Revision

First snapshot from The Open Group research Institute

1.0 Delta Third Revision
Second snapshot from The Open Group Reserach Institute
1.0 Final revision
11 Second delivery to IPA
1.2 Updated in accordance with version 2.0.2 of the ADL Translation Syst

(1998.06.30) 10f 75

COPYRIGHT AND LICENSE NOTICE
Copyright © 1997-1998 The Open Group
Copyright © 1994-1997 Sun Microsystems Inc.
Copyright © 1994-1998 Information-technology Promotion Agency, Japan

This technology has been developed as part of a collaborative project among the
Information-technology Promotion Agency, Japan (IPA), X/Open Company Ltd. and
Sun Microsystems Laboratories.

Permission to use, copy, modify and distribute this software and documentation for any purpose and
without fee is hereby granted in perpetuity, provided thatGRIBYRIGHT AND LICENSE

NOTICE appears in its entirety in all copies of the software and supporting documentation. Certain
ideas and concepts contained in the software are protected by pending patents of Sun Microsystems,.
Sun hereby grants a limited license to use these patents, if any issued, only in this implementation of
the software and documentation and in derivatives thereof prepared in accordance with the permission
granted herein.

The names X/Open, Sun Microsystems. and Information-technology Promotion Agency, Japan (IPA)
shall not be used in advertising or publicity pertaining to distribution of the software and documenta-
tion without specific, written prior permission.

ANY USE OF THE SOFTWARE AND DOCUMENTATION SHALL BE GOVERNED BY
CALIFORNIA LAW. X/OPEN, SUN MICROSYSTEMS, INC. AND IPA MAKE NO REPRE-
SENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE OR
DOCUMENTATION FOR ANY PURPOSE. THEY ARE PROVIDED “AS IS” WITHOUT
EXPRESS OR IMPLIED WARRANTY OF ANY KIND. X/OPEN SUN MICROSYSTEMS,
INC. AND IPA SEVERALLY AND INDIVIDUALLY DISCLAIM ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE AND DOCUMENTATION, INCLUDING THE WARRAN-
TIES OF MERCHANTABILITY, DESIGN, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL X/OPEN, SUN
MICROSYSTEMS, INC. OR IPA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULT-
ING FROM LOSS OF USE, DATA, OR PROFITS, WHETHER IN ACTION ARISING OUT
OF CONTRACT, NEGLIGENCE, PRODUCT LIABILITY, OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE OR DOCUMENTATION.

20f75 ADL 2.0 Language Reference Manual for C++

Trademarks

Sun™ Sun Microsystems™, Sun Microsystems Laboratories™, the Sun logo, Solaris™, SunOS™,
and Java™ are trademarks or registered tradmarks of Sun Microsystems, Inc.

Postscript™ is a trademark of Adobe Systems Inc.

UNIX® is a registered trademark in the USA and other countries licensed exclusively through
X/Open™,

X/Open™ is a trademark of the X/Open Company Limited.

ADL 2.0 Language Reference Manual for C++ 3of 75

Change Log

Release 1.2

Complete revision of NLD concepts.

Release 1.1

2- Semantic Annotations

2.1 Removed Non-terminal Constituent.

3. Test Annotations

3.2 Test Function Definition allowed in TDD class body.

3.2 ParameterDeclaration used in TDD factory definition relinquish clause.

5. Complete Grammar

- Changed definition of TranslationUnit to allow parsing exclusive nld file.

- Added Non-terminal IncludeFileList gathering all the IncludeFileDeclarations.

- Changes in definitions of TDD_FieldDeclaration, TDD_FactoryDefinition,
TDD_UseDeclaration and AssignmentExpression.

Release 1.0

2. Semantics Annotations
2.1- Use keyword “adlclass” in adl class declaration.
2.3.2 Constructors can also be annotated. Stated some restrictions in constructor specification.

2.3.3 Better explanation of adl inheritance and use of inherited semantics. Added a schema for
this.

2.3.5 In adl try statement, ExceptionDeclaration is used.
2.3.5 Explained the use of adl_thrownException and modified examples accordingly.

2.5 Global prologues and epilogues not included in constructor specification.

4 of 75 ADL 2.0 Language Reference Manual for C++

3. Test Annotations
3.1.2 “tddclass” used for TDD annotated declaration.

3.1.2 Removed external declaration from TDD class body. Replaced with Declaration to
specify TDD variables. Specified constraints on these variables.

3.1.2 Test directives are all long. Removed factory declaration.

3.1.2 Added TDD_ADLnewExpression and TDD_ADLEXxpression

3.1.2 Changed TDD dataset grammar.

3.1.3 Examples changed to conform new test style. Explained use of datasets and factories.
5. Complete Grammar

- Added TypeNameList to be used by ADL_ThrownException.

- Added TDD_ADLnewExpression and ADL_TDDEXxpression.

- Use of ADL_NamedParamList in ADL_Binding to allow multiple variables declaration.

- ADL_BasicExpression (except “return”) are moved to UnaryExpression instead of
PrimaryExpression.

- “return” derive directly from PrimaryExpression to allow it to be post fixed.

- AssignmentExpression extended with ADL_Expression .

- Removed ADL_ArgumentList. Use of ArgumentList instead in “unchanged” expression.

- Removed TDD_DatasetLiteral from PrimaryExpression.

- Removed TDD Long and Short Test directive. Unique definition style for TDDTestDirective
- TDD_FactoryCall used a Qualiedld instead of <ID> => allow scope override.

- removed TDD_FactoryDeclaration. use TDD_factoryDefinition instead.

- Changed TDD dataset expressions.

- Types can not be datasets.

ADL 2.0 Language Reference Manual for C++ 50f 75

Release 1.0 Delta

1. Introduction

No substantive change.

2. Semantics Annotations

2.1: ADL_AnnotatedDeclaration renamed ADL_ClassDeclaration
2.3.1: Added ADL_CallStateExpression.

2.5 : Corrected : Local epilogues are executed before global epilogues. Add restriction about
the use of call state operator in Prologues and Epilogues.

3. Test Annotations

.3.1.3 TBD resolved : factories are function definitions.

3.1.7: Importation of tdd files supported with “use” declarations.

3.2.1: Use datasets instead of enum in examples 3.7 and 3.8

3.3: Test directives have two variants : Long test directives and short test directives.

Example 3.5: the semantics of elements of literal datasets has changed: they are evaluated
only once (static evaluation). Dynamic behavior is now possible only through factories.

4. NLD Annotations
No substantive change.
5. Complete Grammar

ADL and TDD annotations reviewed.

Release 1.0 Gamma

1. Introduction

No substantive change.

2. Semantics Annotations

2.1: TBD resolved :ADLT allow both external and inline specifications.

2.1: An adl class for each adl file.

6 of 75 ADL 2.0 Language Reference Manual for C++

2.2.1: Assertion Groups before ADL Specific Expressions

2.2.4: Definition of ADL If statement semantically different from the C++ if statement.
2.3: Semantics are pure adl assertions with no side-effects.
2.3.2: TBD resolved : Adl Inheritance supported.

2.3.4: Catch specification comes next to an ADL_TryStatement
2.4: Use “inline” to declare inline functions behaving like macros.
2.5: Introduction of local and global adl Prologues and Epilogues.
3. Test Annotations

Not modified yet.

TBD: see how to support tdd classes.

4. NLD Annotations

Not modified yet.

5. Complete Grammar

Modified grammar to respect new non-terminal naming model and introduce new concepts.
TBD : Modify the TDD and NLD productions.

5.2: ADL “and”, “or “and “xor” removed. Use C++ operators instead.

Release 1.0 Beta

1. Introduction

No substantive change.

2. Semantics Annotations

2.1: TBD resolved: ADLT will allow only external specifications..

2.3.3: TBD changed: SuperClass semantics reference not implicit; explicit invocation remains
a possibility.

3. Test Annotations

Title changed from “TDD Annotations”.

ADL 2.0 Language Reference Manual for C++ 7 of 75

3.1.2: Terminology change: “bounded” dataset changed to “feasible”.
3.1.3: Add TBD for factory representation.

3.1.4: TBD resolved: explicit invocation of checked version by ADL(...). This affects all the
examples.

3.1.5: Terminology change: “Test expression” changed to “Test directive”. This affects the
explanation of some of the examples and the grammar.

3.1.6: Assert moved from language definition to support library.

3.2: TBD resolved: factories are not implicit datasets.

Example 3.5: TBD resolved: dataset members are evaluated each time.
Example 3.9: TBD resolved: no special syntax for multiple data values.
Example 3.10: TBD resolved: test directive syntax clarified.

Example 3.12: TBD resolved: multiple reference interpretation changed.
3.3.1: External dataset reference clarified.

4. NLD Annotations

4.1: TBD resolved: inheritance clarified.

Example 4.5: TBD resolved: rules on formal argument name clarified.
4.3.1: TBD resolved: SGML entity definition referred to DTD.

4.5 (nld_entity text): TBD resolved: Rule on markup (DocBook 3.0 Para entity) clarified.
5. Complete Grammar

Replaced entire with revised version generated from source code for parser.

Release 1.0 Alpha

Initial release.

8 of 75 ADL 2.0 Language Reference Manual for C++

Table of Contents ADL 2.0 Language Reference Manual for C++

I 1 (0T (1 Tox 1o o I RS 13
2 SemanticsS ANNOLALIONSccoeiiiieeeeeee e e e e e e e e e eaes 15
2.1 Describing Semantics Of Interface OPerationscccccvveviiiiiieniniiiee e 15
2.2 ADL SYNEAX...etiiiiiiiiieiie ittt e e e s s 17.
2.2.1 ASSEITION GIOUPS ..ceeiiiitiiieeeitiiee e ettt e e e ettt e e et e e e e et b e e e e aabbe e e e e anbe e e e s e nenes 17
2.2.2 ADL SPECIfIC EXPIrE@SSIONS....cciiitiiiieiiiiiiieeiitiiee e sttt et 18
2.2.3 QuaNtified ASSEIIONSuuiiiiiiiieeei i e e e 19
2.2.4 ADL If StatemMENt ... e 20
2.3 Behavior SPECIfICALIONcuuiiiiiiiiiie e Q........ 2
2.3.1 The Call State OPEratOr.........ccouiiuuieiiiiiiiiiee et 22
2.3.2 Specification of @ CONSIIUCTIONcoiuuiiiiiiiiiiie e 22
2.3.3 Specification Of An Inherited Methodcoociiiiiiiee 23
2.3.4 BiNAINGS.. .. tiiiieiiiiiie ettt e e e e e e neee 25
2.3.5 Try/Catch SPecCifiCatiONS.coiuueiiiiiiiiie e 26
2.3.6 ThIrOWN EXPIrESSIONS ...eeiiiiiiiiiiieeiiiiie e ettt sttt et e e st e e e e e e nneeas 30
2.3.7 Behavior ClasSifiCation...........ceeueiiiiieiiiiiiiie e 30
2.3.8 The EXCEPLiON OPEIALOruuuuiiiiireeeeieiiiiiriiieeereeeeeessssssrerneereeeeeessssannsenes 32
2.4 Inline Procedure DECIAratioNSccoiiuueiieiiiiiieeessiieeeessiieee e e st e e e s ssaeeeesssnseeeeessnneeeee s 35
2.5 Prologues and EPIlOQUESccoiiiiiiieiiiiiiie et 35.........
G =T Y o L] =10 £ RSP 39
I J0 R O] g (o =T o) S PSPPI 39
0 I R o LY 4 (= PSPPSR 39
312 DAEASEL ...ttt e e e e e e e e e e ee e e e e eeeennene 39
I PR T = Tox (0] VPP UPPRPPPPPNt 40
3.1.4 ChecCKed FUNCLONciiiiiiiiiii ettt 40
3.1.5 TESE DIFECLIVES ..evvvieiiiiiiiie ittt sttt e et e st e s et e e s st e e s e snnbee e e e e neeeas 41
0 I R X114 1T o TS PPP TR 41
G 700 1197 o Yo 1 - 1o o P EEERRR 41
3.2 ANNotated TDD / CHt SYNEAX..ciiiiiieaiiiiiiiitiieieeee e e e e e e ettt e et e e e e e e s s s snbbebeeereeaaaeeeeaaaannes 42
3.3 General SyntaX & EXAMPIESooiiiiiiiiie et 44
3.3.1 Simple Datasets and Data CONSLIUCHIONcuvvevieeereiiiiiiiiiiieireeee e e e e e e 44
3.3.2 Compound Datasets : Factories, Concatenation...........cccccceeeeeeviviinvinnnennnn 45
TG TS TV Tl B = =] PR 46
3.3.4 Dataset Elements Evaluationoooooiiiiiiiiiiieee s e e e 47
3.3.5 Dataset CONSIANTScoeveieiiiiiiiiiiiiiiirr s e e e e e e e e e e e aeeaeeeeereeeeeeeeeeeeeennennnnnnnn 47
3.3.6 TESE DIFECHVESuvviiiiiiieiee e e e ettt e e e e e e e e e e e e e e e s s s enanrenereeneeaeeeeenan 48
3.3.7 VOId DAtASELS USE.....cceeeiieiiiiiiieiiieee ettt e e e e e s s s eeneeae e e s e e annnnnnes 49
3.3.8 AdvanCed EXAMPIEScooouuiiiieiiiiiiie it 50
/N I Y o g o) = 11 o 1RO 53
O R ©0] g (o1 o] =TT U U PP PPTRPPPRPPRN 53
4.2 Syntax and SEMANTICS......ccciiiuiiiiieiiiiiie et e e aere e e e e 54........
4.2.1 Simple Data Member Translation............cccoiiiiiiiiiiie e 54
4.2.2 A Simple Function Member Translationccccooveeeieinii i, 54
4.2.3 Out Of LiNe TranSlatioNScc..uuviiiiiiiee e e e e e e e ee e e e e e e e e 54
4.2.4 Translations For Overloaded Methodscccccviiiiiiee e 55
4,25 PrIOMES 1uvutuiiieiee et e 55
Version 1.2 9 of 75

Table of Contents ADL 2.0 Language Reference Manual for

C++

4.2.6 Usingsemantics Andnld BIOCKS........ceevviieeiiiiiiiiiiiiieeceee e 56
4.2.7 Shadowing or Overriding A Translation.............cccccvveeeiieeeeee e 56
4.2.8 Overriding a Non-Local Translation..........cccccceveiiiiiiiiiiieeeeee e ccccvvnieeeee 57
4.2.9 Invocation TranSIationeveiiiiiiiieiiiiii et 57

4.3 NLD PrediCates..........oooviiiiiiiiiiiiiiieie e e e e e e e ee et e e e e s h8...
4.3.1 Pre-defined PrediCates ... 58
4.3.2 User-defined PrediCates ... 59

4.4 NLD @GN0 SGMLcooiiiiieiiiiiit ettt ettt s e s e e e e e aeaaaeaanad 60......
4.4.1 Reference Manual DOCUMENToooiiiiiiiiiiiii e 60

4.5 NLD fOF TDD teiiiiiiiiiiie ettt ettt e et e e e s s st e e e s sntreeeessssneeeesssnneeesannnsd 61..

4.6 NLD and LOCAliZationoovviiiiiiiiiiiiiiiise e e e 62.......

A7 NLD SYNEBX .ottt ettt e e e e e e e s s r e e e e e e e e e s n s nenne 62.

5 Complete GrammMar...........uiiiiiiiiiiie e e e e e e e e e 65

5.1 CH+ PrOUCTIONSeeeiiieiitiiie ettt ettt e et e e et e e e st e e e e s sabn et e e s aanbeee e 65......

5.2 ADL PrOGUCLIONSceeiiiiiiiiiice ettt ettt e e et e e e s e e s nseeemmnas 71....

5.3 TDD ProUCHIONSciiiiiiiiiiee s iiiiiee ettt e sttt ettt e et e e e s st e e e e s snbaeeeessnsbeeessmmns 73.....

5.4 NLD PrOQUCTIONSeeeieiiiiiiiiee ittt ettt ettt e e e e e e s annneeeeas 74.......

10 of 75

Version 1.2

List of Examples

ADL 2.0 Language Reference Manual for C++

EXAMPLE 2.1 StoCKBroker.hh.........ccccooiiiiiiiiiiiieeee e 15
EXAMPLE 2.2 StockBrokerSpec.adl...........cccoevvvvviiiiiiiiiiieiee e 15
EXAMPLE 2.3 StockBroker constructor specification.................ccceuvenn. 22
EXAMPLE 2.4 Bank and MyBank CIaSSesS..........ccccuvuiiiiiiiiiiiiiiiieeeeeeeens 23
EXAMPLE 2.5 MyBankSpec specificationccccoeeeeeeeeeeiiiiiiieeiiiiiiinnns 24
EXAMPLE 2.6 StoCKBroker2.nh ... 27
EXAMPLE 2.7 StockBroker2.adl...............ueeiiiiiiiiieieiiiiieeeeeiee e 27
EXAMPLE 2.8 StockBroker2.adl (corrected)...........ovvvvveiiiiiiiiiiieeeiennnnne, 28
EXAMPLE 2.9 StockBroker2.adl with behavior classification................ 31
EXAMPLE 2.10 StockBroker2.adl with exceptionscccvvvvveeviiinnnnnenn. 33
EXAMPLE 3.1 The SIMpIest TESt......cccvviiiiiiiiiiii e 44
EXAMPLE 3.2 A Simple Dataset..........ccoouiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeevis 44
EXAMPLE 3.3 Compound Data CONStrUCHION.........ccevvviieeeeeiniiiiiiiiiis 45
EXAMPLE 3.4 VOId DAt@SeLSccooiiiiiiiiiiiiiieeee et 46
EXAMPLE 3.5 Runtime INItIaliZers ... 47
EXAMPLE 3.6 Provide Test Variablesooviiiiiiiie i a7
EXAMPLE 3.7 Better Test Variables..........ccocccciiiiiiiiicciiiiiie 48
EXAMPLE 3.8 VOId Dataset USE.........uuuiiiiiiiiiiieeiieieeeeeeeiiti e 49
EXAMPLE 3.9 Chaining FactOresoooviiiiiiiiiiiiiiieeieeeeeeee e 50
EXAMPLE 3.10 Test By EXample........ooovvviiiiiiiiiiiiiieeeeeeeeeeeeeeee 50
EXAMPLE 3.11 Multiple Dataset Referencescccceeeeeeiiieneeeeiiiieeieeninns 51
EXAMPLE 4.1 USING PrOPEItIESccooiiiiiieiiiiiiitiieee ettt 60
EXAMPLE 4.2 NLD annotation in @ TDD ClasS:ccccccviiiieeiiieniinninnns 61
EXAMPLE 4.3 Using Fully Scoped Names ... 63
Version 1.2 11 of 75

List of Examples ADL 2.0 Language Reference Manual for C++

12 of 75 Version 1.2

Introduction ADL 2.0 Language Reference Manual for C++

1 Introduction

This document describes the enhancements to the ADL Language for the C++ pro-
gramming language. The ADL Langauge has been revised as part of the ADL 2.0
Project. The purpose of the ADL 2.0 is to extend the technology of the ADL 1.0 project
to object-oriented programming languages. Specifically, we intend to target C++,
CORBA IDL, and Java, while retaining the capability of specifying ANSI C programs.
This extension to object-oriented languages will require a substantial re-implementa-
tion. We will take advantage of this opportunity to reduce some of the barriers to adop-
tion of ADL technology. In particular, we will simplify the input syntax of the ADL
compiler, and improve its portability by simplifying its internal structure. A migration
path for users of ADLT 1 is of utmost importance in this re-implementation.

ADL is an interface definition and testing system, which adds to a target programming
language a notation for describing behavior, for defining tests, and for generating docu-
mentation. This document describes ADL for the C++ programming language.

ADL provides capabilities to describe the semantics of interfaces, and also the capabil-
ity to design and implement test drivers.

This document is a concise language reference, intended to define the syntax of the
ADL annotation language.

The syntax used to describe the language grammar in this document is BNF, and follows
these conventions:

e The vertical bar["” represents a choice between different expansions. Herjce “
| C'represents eithex, B, orC.

e Square bracketg “...] " indicate optional constructs. Hence[‘B] C’is the same
as ‘ABC| AC.

e Parentheseq“...) " are used for grouping constructs. Henag¢ ‘B) C’is the same
as ‘ABC' and “A(B| C) D'is the same asABD| ACD.

e “(..)* "is used to represent zero or more occurrences of the group, ang " is
used to represent one or more occurrences of the group. Hence “A (B)* C” is the
same asAC| ABC| ABBC| ABBBC| etc” and “A(B)+ C’is the same asABC|
ABBC| ABBB(| etc’.

* Non-terminals from the C++ language definition are represented in a sans-serif font
(like literal), and the non-terminals that define the ADL augmentation of C++ appear
in boldface .

¢ Lexical tokens and reserved words may appear literally within quotations, or the
name of the lexical token may appear in angle brackets like <STRING>.

e The left hand and the right hand sides of productions are separated by the symbol
“::= ". For presentation purposes, the entire right hand side of a production may not
be introduced at the same time. The symbok" " is used to indicate that the cur-
rent production is an augmentation of another production with the same left hand

Version 1.2 13 of 75

Introduction ADL 2.0 Language Reference Manual for C++

side that has been introduced earlier. For examples“ B” followed by “A +::=
C'is the same asA'::= B| C.

14 of 75 Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

2 Semantics Annotations

The ADL extensions that allow the definition of the semantics of a function are dis-
cussed in the sections below.

2.1 Describing Semantics Of Interface Operations

ADL provides syntactic constructs to describe semantic behavior of C++ functions. To
do this, it provides an extended declaration syntax —athetated function declaration
— as shown in the syntax below:

TranslationUnit := IncludeFileList [ADL_ClassDeclaration]

ADL_ClassDeclaration := “adlclass” <IDENTIFIER> [ADL_SuperClass] “{“[ADL_Prologue]
[ADL_Epilogue] (ADL_InlineDeclaration | ADL_BehaviorDeclaration) **}"

The above syntax indicates that the non-termiredslationUnit is modified to allow
the additional construcBDL_ClassDeclaration . ADL introduces the
ADL_InlineDeclaration, as shown above, to facilitate the writingrdfne function
declarations

ADL_BehaviorDeclaration := DeclarationSpecifiers FunctionDeclarator “{"ADL_BehaviorSpecification *}"

These rules are not complete: they will be refined throughout this document as we
present new properties. The complete grammar is given in Chapter 5.

The full definitions of the extra declarations added by ADL are given in later sections. A
simple example illustrating the use of these constructs is shown here. Suppose there is a
class declared (in file StockBrocker.hh) as:

EXAMPLE 2.1 StockBroker.hh

class StockBroker{
longCash_Balance(longaccount);

long Stock_Balance(longaccount, char*symbol);

void Buy(longaccount, char*symbol,longno_of_shares);

g

Then we may describe its behavior with the annotation:

EXAMPLE 2.2 StockBrokerSpec.adl

#include “StockBroker.hh”

Version 1.2 15 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

#include “StockBrokerAux.hh”
adlclass StockBroker {

inlinelong cost(char*symbol,longno_of_shares){
no_of_shares*price(symbol);

}

void Buy(longaccount, char*symbol,longno_of shares){
semantics{
Cash_Balance(account)==
@Cash_Balance(account)- @cost(symbol,no_of_shares);
Stock_Balance(account, symbol)==
@Stock Balance(account,symbol)+no_of shares;

}
}
long Cash_Balance(longaccount){
semantics{
1(...)
}
}

In this example, a class with three operatioash_BalangeStock_BalanceandBuy is
augmented with a description of the behavioBwyf, written in the external function
annotation syntax. The two boolean expressions appearing wthirafitics { }”
describe legitimate behavior of tBay Function. In these expression&™is a unary
operator (referred to as thall state operator— see Section 2.3.1) whose sole function
is to evaluate its argument prior to the execution of the Function — by default all

expressions are evaluated after the execution of the Function.

The first of these boolean expressions make use of the notioosof™of a stock pur-
chase. This is implemented in the interface as an inline function declaration. The inline
function declaration in turn requires the notion of thécé " of a particular share, and

this is implemented as a static method “price” from an additional class, StockBrokeAux,
which is defined only for purposes of testing and included into the adl file as an external
declaration. The main difference between inline and auxiliary function declarations is
that the body of inline function declarations is an ADL expression (described fully
below) rather than a C++ block statement. The tested functBuy$ tould be referred

to using its fully qualified name “StockBroker::Buy”.

The example above shows that the specification of a class member function is written
outside the definition of the class, much like an external implementation.

Behavior descriptions in annotated function declarations may refer to any of the built-in
C++ types, and to types declared in the interface of the specified class or in any addi-
tional declarations used for testing.

16 of 75

Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

2.2

221
ADL_AssertionGroup

ADL_Statement

ADL_Assertion

ADL_Label

ADL_Tags

ADL_BasicExpression

Lastly, it is not possible to define more than adkclassin an ADL translation unit,
and the name of the file must be the name of the adl class extended with the suffix adl
(StockBroker.adl in the previous example).

ADL Syntax

ADL provides an expression syntax which is an extension of that of C++. The exten-
sions are of two kinds: a few additional primary expressions and operators, and some
ADL-specific expression constructions. The ADL extensions will be presented here,
without discussion of the standard C++ expressions.

Assertion Groups
= “{“ (ADL_Binding)* (ADL_Statement)* }"

::= ADL_Assertion
| ADL_IfStatement
| ADL_TryStatement

.= [ADL_Label] [ADL_Tags]
(ADL_Expression | ADL_QuantifiedAssertion) *;"

= <IDENTIFIER> *"

i= “[*<IDENTIFIER> (“” <IDENTIFIER>)* “]"

The basic block construct of ADL is tlssertion groupwhich is a list oktatements

ADL statements have a type (usually boolean) and a value, but can not be mixed directly
inside expressions. If there is more than one statement within the assertion group, then
all of these statements must be boolean valued. The value of the assertion group in this
case is the conjunction (logical AND) of all the statements in the assertion group. If the
assertion group contains only one statement, then this statement may be of any type, and
the assertion group is also of this type and has the same value as the statement within it;
this can occur either with the inline/define constructs or with the try/catch statement (see
Section 2.3.5).

The optional label of an assertion is for documentation purposes only: it will be reported
as information when running the generated test. It does not modify the behavior at runt-
ime in any other way.

The optional tags of an assertion are indications for the test runtime environment. The
only currently supported tag is “[U]” (for untestable) that means that the assertion must
not be evaluated.

The assertion group is an expression since:

:= ADL_AssertionGroup

Version 1.2

17 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

222

ADL_Expression

ADL_ImplExpression

ADL_ImplOp

Assertions are boolean expressions whose evaluation must generate a test report: they
do not produce any other side effect (hence assignments or increments/decrements are
forbidden inside assertions). The following fragment is an example of an assertion

group:

Cash_Balance(account)==@Cash_Balance(account)-
@cost(symbol,no_of shares);
Stock_Balance(account, symbol)==
@Stock _Balance(account,symbol)+no_of shares;
}

Since assertion groups are also expressions, they may appear anywhere an (ADL)
expression is expected, and they may be nested within each other. Assertions within
nested assertion groupsiat generate a test report: they are evaluated only so that their
return value is used in the computation of the value of the enclosing assertion group.

semantics{
<booleanexpression>==>{<assertion1>;<assertion2>};

}

In this example, there is only one generated test report for the whole assertion, not for
“sub-assertionséssertionl ~ andassertion2

The list of expressions in an assertion group may be precedsddiygs see
Section 2.3.4.

While most ADL specific expressions and statements are described in the two forthcom-
ing sections, some are described later in sections where they are more appropriate. The
following is the complete list of all cross references to later sections where ADL fea-
tures are described:

¢ The call state operator — Section 2.3.1
* Bindings —Section 2.3.4

* The try/catch statement — Section 2.3.5
e thrown expressions — Section 2.3.6

* The exception operator — Section 2.3.8
¢ Inline methods —Section 2.4

* Prologues and Epilogues —Section 2.5

ADL Specific Expressions

ADL_ImplExpression

ConditionalExpression [ADL_ImplOp ConditionalExpression]

n::>n u<::n|u<:>u u<.>n

18 of 75

Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

The three implication operators angplication (==>), reverse implicatior{<==), and
equivalencd<=>). All these operations operate on boolean parameters and return bool-
ean results. The implication operator evaluatdslte only when its left operand is

true and right operand false (otherwise, it evaluates tae). The reverse implica-

tion operator works like the implication operator with its arguments swapped. The
equivalence operator evaluatesrt@ if both its operands are the same, otherwise it
evaluate tdalse

UnaryExpression +::= ADL_BasicExpression

ADL_BasicExpression +:="return”

Expressions are extended in ADL with the reserved waoth , which is used to

refer to the return value of a function. The primary expressiomn ~ may be used
only in behavior specifications (Section 2.3) of operations with non-void return types
and may not appear within an operand of a call state operator (Section 2.3.1).

2.2.3 Quantified Assertions

ADL_QuantifiedAssertion ;= ADL_Quantifier “(* ADL_DomainList “)” ADL_AssertionGroup
ADL_Quantifier ::= “forall” | “exists”
ADL_DomainList := ADL_Domain (“” ADL_Domain)*
ADL_Domain ::= NamedParam *“:” ConditionalExpression

ADL offers a constrained form of quantified expression using which one may iterate

over ADL sequence values. These sequences are specified as domains, and a quantified
assertions may contain any number of domains. Each domain is specified with the type
of the sequence element, a new variable that can take on the values of the sequence one
by one, and finally the sequence itself. An example of a domain that iterates over the
integers 1 through 10 is:

longi:ADL_long_range(1,10)

With ADL_long_range(i,j) which is a function that returns the sequenderaf 's
starting fromi and ending gt. The same applies f&DL_short_range and
ADL_int_range who return sequences of short’s and int’s resp.

In the case of the universal quantifierfll), the enclosed assertion group (which
must have a boolean value) mustrdoe for all value assignments for free variables
from their domains. In the case of the existential quant#iésté), the expressions
must betrue for at least oneset of value assignments for the free variables.

The assertion group within a quantified assertion is nested: its assertions will not gener-
ate individual test reports.

The following is an example of the use of an universal quantifier that says that all num-
bers in the range 1 to 10 are smaller than 100 (obviously):

Version 1.2 19 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

224

ADL_IfStatement

2.3

ADL_BehaviorDeclaration

forall(longi:ADL_long_range(1,10)){i<100;};

The following is an example of the use of an existential quantifier:

semantics{
exists(longi:ADL_long_range(1.10)){
i%3==0;
i%7==0;
I3
}

Because of the nested principle, the assertions within a quantified assertion are not dis-
tributed: this example will generat@etest report, with the vallfalse

Free variables may not be used within the scope of a call-state or “unchanged” operator
(unless the whole quantified assertion itself is inside this scope).

ADL If Statement

= “if" “(” ADL_Expression “)” ADL_AssertionGroup
[“else” (ADL_AssertionGroup | ADL_IfStatement)]

An “if expression” provides a way to conditionally evaluate expressions. Its meaning is
quite similar to the ?: ” operator. The types of both the group expressions df the
expression must be the same and this is the type df tegpression. If the type of the

if expression is boolean, then the else part may be omitted and is assumexkto be “
true ”. The conditions (the expressions within parenthesis) mustdie valued and

are evaluated from top to bottom until the first one that evaluates to true. The assertion
group of thistrue expression is then evaluated. This is the value df thetatement.

The assertion groups in the branches of an if statement are considered to be at the same
nested level as the enclosing assertion group. If this enclosing assertion group is the out-
ermost one (i.e. just following the “semantics” keyword), assertions within the if state-
ment will therefore generate test reports.

Behavior Specification

The specification of the behavior of an interface function in its simplest form is the
function declaration followed by the reserved word “semantics” followed by a list of
boolean expressions within braces.

These expressions can refer to the visible state of the system both before and after the
execution of the function. The details of the syntax of expressions is presented in
Section 2.2.

::= (DeclarationSpecifiers)? FunctionDeclarator
“{*ADL_BehaviorSpecification “}’

20 of 75

Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

ADL_BehaviorSpecification

| DtorCtorDeclSpec CtorDeclarator (ExceptionSpec)?
“{“ADL_BehaviorSpecification “}"

Both functions members (with or without a return type) and constructors can be tested.

= "semantics" ADL_AssertionGroup

Every time an interface function with a behavior description is invoked, all arguments to
call state operators are evaluated before the function is invoked (call state operators are
described below). Then the function is invoked following which the remainder of the
behavior description is evaluated. If any expression evaluaftaseo , the function did

not behave as specified.

The behavior description &uy from Example 2.2 is reproduced below:

void Buy(longaccount,char*symbol,longno_of shares){
semantics{
Cash_Balance(account)==
@Cash_Balance(account)- @cost(symbol,no_of_shares);
Stock_Balance(account, symbol)==
@Stock Balance(account,symbol)+no_of shares;
}

}

The evaluation of the behavior description whenever Buy is invoked is outlined below:

Step 1: Evaluation of arguments to call state operators:
tmpl=Cash_Balance(account);

tmp2=cost(symbol,no_of_shares);
tmp3=Stock_Balance(account,symbol);

Step 2: The implementation Bfly is invoked.

Step 3: Evaluation of the remainder of the behavior description:
assertion_1=(Cash_Balance(account)==tmp1-tmp2);

assertion_2=(Stock_Balance(account,symbol)==tmp3+
no_of_shares);

Step 4: Determination of consistent behavior:
if(lassertion_1]|!assertion_2){report_error;}

Behavior descriptions can refer to inline function declarations and other function decla-
rations (as illustrated by the above example). Other specifics of behavior descriptions
are discussed below.

Version 1.2

21 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

23.1

UnaryExpression

ADL_CallStateExpression

ADL_BasicExpression

2.3.2

ADL_BehaviorDeclaration

EXAMPLE 2.3

The Call State Operator

The call state operator has the effect of evaluating its argument before the call to the
specified function.

+::= ADL_CallStateExpression
+:="@" UnaryExpression
+::="unchanged” ArgumentList

Call state operators may nest within each other in which case, the inner operator is over-
ridden by the outer operator. For examg@é@a + b)is equivalent t@(a + b) .

Care must be taken to decide exactly where to place a call state operator. For example,
there is a subtle difference betwe®@f(a, b) andf(@a, @b) . The first expression is

the value of(a, b) before the call to the specified function, while the second is the
value returned b§ when called after the call to the specified function, but passed
parameters whose values are saved from the state before the call to the specified func-
tion.

The “unchanged” operator of ADL1 is maintained:

unchanged(<exprl>,<expr2>)

is a syntactic sugar for:
<exprl>==@<expril>&&<expr2>==@<expr2>
Specification of a Constructor

Constructor semantics are specified in the following way:

+::= DtorCtorDeclSpec CtorDeclarator (ExceptionSpec)? “{“ [ADL_Prologue]
ADL_BehaviorSpecification [ADL_Epilogue] (NLD_Annotation) *

Some constraints are added while specifying a constructor :

StockBroker constructor specification

#include “StockBroker.hh”
#include “StockBrokerAux.hh”
adlclass StockBroker {
StockBroker(intamt){

semantics{
Cash_Balance()==amt;
}

22 of 75

Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

2.3.3

ADL_ClassDeclaration

ADL_SuperClass

EXAMPLE 2.4

}
}

In this example, the call to Cash_Balance is executed on the StockBroker object built by
an implicit call to the real constructor of the class StockBroker.

Note that in constructor behavior specification:

e jtis not possible to use a call-state or an unchanged expression (this would not make
sense: there is no real object before the call of the tested method (the constructor),
because it is this call that builds the real “object”).

e jtis not possible to use the “return” expression.
* the “this” expression refers to the built real object.

Specification Of An Inherited Method

+::= “adiclass” <IDENTIFIER> ADL_SuperClass
“{* (ADL_BehaviorDeclaration)* “}"

= [“public”] <ID> (* [“public”] <ID>) *

Note that the multiple inheritance of ADL classes is supported. Scope override can not
figure in the name of the super class since inheriting from nested classes is not sup-
ported. To describe the behavior of a methpd is possible to use the behavior
description of the methaa’ thatmoverrides.

Bank and MyBank classes

[*Bank.hh*/

classBank{
void openAccount();
voidcloseAccount();

}
/*MyBank.hh*/

classMyBank: Bank{
void openAccount(); //overrides Bank.openAccount
void changeAccount(); //newmethod

}

The behavior of the methods openAccount and closeAccount of class Bank is specified
in a file Bank.adl, and we want now to describe the behavior of the methods of the class
MyBank:

Version 1.2

23 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

EXAMPLE 2.5 MyBankSpec specification

#include“Bank.hh”
adlclass MyBank: Bank{

void openAccount(){
semantics{
Bank::semantics;//assertions specifictothe method
/[Bank.openAccount
<assertion>; //assertion specifictothe method
/IMyBank.openAccount

}

The “:" inheritance clause is quite different from its usual meaning in C++: it is used
here to refer to ADL files (Bank.adl in the example). The compiler checks the presence
and correctness of tl®urceadl file; it is left to the responsibility of the user to ensure
that at link theobjectfile obtained by transformation of Bank.adl will be accessible,
along with the class file generated by transformation of MyBank.adl. Access control
keywords is optional and can only be “public” (in comparison of the “public”, “private”
or “protected” inheritance in C++).

The assertionBank::semantics; " is an explicit invocation of the semantics of the
superclass Bank of MyBank (here the semantics of the method openAccount of the class
Bank — which MyBank inherits from — as defined in Bank.adl). It may be called only
as the first assertion of the main assertion group. Its (boolean) result is the value of the
behavior description of method openAccount in Bank.adl. The superclass (qualified)
name is required to support multiple inheritance. The only side-effects are the genera-
tion of test reports for the assertions of this behavior description.

The generated C++ ACO classes for MyBank will in fact inherit from the generated
C++ ACO class for Bank. See the ADL 2.0 Translation System design document for
more details.

24 of 75 Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

To summarize:

C++ classes ADL classes

Cl fool, barl Cl fool, barl

; :

C2 foo2, bar2

f

C3 foo3 C3 foo2, foo3, barl

T A

C4 food

C5 foo2, foo5 C5 fool, foo2, foo3, foo4,

foob5, barl, bar2

This picture represents a C++ hierarchy (C5 inherits from C4 that inherits from C3...)
and a corresponding adl classes hierarchy.fateandbars are methods defined in
C++ classes, some of them being annotated by adl classes. We can notice that:

* the adl classes graph is a subgraph of the C++ classes graph (it is not compulsory to
annotate all C++ classes).

¢ an adl class can annotate a method that is defined in the corresponding C++ class
(e.g. foo5 in C5) or overridden (e.g. foo2 in C5) or just inherited (e.g. foo4 in C5).

* the <SuperClassName>::semantics feature can be used only in methods that have
already been annotated in an inherited adl class. Specifying the name of the super
class prior to the keyword “semantics”, makes the support of multiple inheritance
possible in adl. Method under test should have been annotated in the specified super
class. For instance in adl class C5, it would be an error to use this feature for meth-
ods foo4, foo5 and bar2, and correct for the other methods. Note that this inherited
class is not necessarily the direct superclass: for instance in adl class C5, C1l::seman-
tics in fool is valid.

Last, this process is recursive: if barl in C5 calls C3::semantics and barl in C3 calls
Cl::semantics, then calling barl of C5 will first evaluate the assertions of barl in C1,
then the assertions of barl in C3, and then the assertions of barl in C5.

2.3.4 Bindings

Bindings are used to declare local variables and initialize them with useful values. Their
main goal is to be used in conjunction with NLD annotations.

ADL_Binding ::="“define” NamedParamList “with” [<IDENTIFIER> “="] ADL_Expression *“;"

Version 1.2 25 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

The earlielStock_Balance example may also be modified to use bindings. The fol-
lowing is equivalent to the earlier behavior description:

definelongpre_cash_balwith
pre_cash_bal=@Cash_Balance(account);
definelongpost_cash_balwith
post_cash_bal=Cash_Balance(account);
definelong pre_stock_balwith
pre_stock bal=@Stock_Balance(account,symbol);
definelongpost_stock_balwith
post_stock bal=Stock_Balance(account,symbol);

post_cash_bal==
pre_cash_bal-@cost(symbol,no_of_shares);
post_stock_bal==pre_stock bal+no_of shares;

}

It is not possible to reference a binding inside the scope of a call-state operator.

A single binding declaration may introduce multiple variables and initialize them. For
example, suppose we had the following function:

longfoobar(longx,long&y,long& z);

The following binding declaration evaluatesbar once with the number 5 as its input
parameter and “captures” all the values it returns:

definelongretval,longy, long zwith
retval=foobar(5,y, z);

It is also possible for a binding tebindvariables introduced in earlier (and possibly
more global) bindings.

2.3.5 Try/Catch Specifications

During the evaluation of the assertions of an assertion group, it is possible for excep-
tions to be thrown. Try/catch specifications may be used to catch these exceptions and
provide an alternate assertion group whose value is used for that of the parent (“try”)
assertion group. The assertion group(s) in the catch specification(s) must therefore be of
the same type as the parent assertion group.

ADL_TryStatement ::= “try” ADL_AssertionGroup (“catch” “(* ExceptionDeclaration “)”
ADL_AssertionGroup)+

A catch specification has to name the particular exception it catches and bind it to a
local identifier; this identifier may be used in the following assertion group to select val-
ues returned by the exception.

A catch specification may name the particular exception it catches and bind it to a local
identifier, in which case, this identifier may be used in the following assertion group to

26 of 75 Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

EXAMPLE 2.6

select values returned by the exception. A catch specification may also use the “
syntax to catch any exception that may be thrown.

Suppose we modify the original stock broker interface to include some exceptions:

StockBroker2.hh

EXAMPLE 2.7

classBadCall{
boolbad_account;
boolbad_stock symbol;

}1
class StockBroker{
longCash_Balance(longaccount) throw(BadCall);

long Stock_Balance(longaccount, char* symbol)
throw (BadCall);

void Buy(longaccount, char*symbol,longno_of shares)
throw (BadCall);

k

Then we can modify the specification of this interface as follows:

StockBroker2.adl

#include “StockBroker.hh”
#include “StockBrokerAux.hh”

adlclass StockBroker2{

inlinelong cost(char*symbol, long nsh) throw (BadCall) {
nsh*price(symbol);

void Buy(longaccount, char*symbol,longno_of shares)
throw (BadCall){
semantics{

try{

Cash_Balance(account)==
@Cash_Balance(account)- @cost(symbol,no_of shares);
Stock_Balance(account, symbol)==
@Stock Balance(account,symbol)+no_of shares;

catch(BadCallexc){
thrown(BadCall) &&{
((BadCall*)adl_thrownException)->bad_account==

Version 1.2

27 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

exc.bad_account;
((BadCall*)adl_thrownException)->bad_
stock_symbol==exc.bad_stock symbol;

3

}
catch(...){

false;
}

}//endof semantics

}//endof Buy

}

In this modified specification, the assertion group of the behavior descriptog ¢f
modified to include two catch specifications.

The first catch specification catches the exce@itCall . The assertion group of this

catch specification states that the excepsiadCall must be thrown bguy (thrown
expressions are described below). Furthermore, this exception must have the same com-
ponent values as that of the exception that was thrown during the evaluation of the asser-
tion group. Note the mechanism to refer to components of exceptions thrown during the
evaluation of a behavior description: the left hand sides of the comparison use the ADL
variable adl_thrownException, that is the exception thrown by the specified method

Buy, and the right hand sides of the comparisersifad account and
exc.bad_stock_symbol) refer to the values of components of the exception caught

by the catch specification (i.e. that was thrown during the evaluation of the “try” asser-
tion group). Also note the nested assertion group that contains the two comparisons.
This prevents these comparisons from being evaluatldwn(BadCall) is not

true (in this case, the selection of componentBafCall will have unexpected

results).

The second catch specification catches all other exceptions and its assertion group is
simply “{false} ". This is simply stating that this situation is unexpected and if it does
happen for whatever reason, a failure needs to be reported.

The above example has a serious flaw. Exceptions may be thrown during the evaluation
of an expression in the scope of one of the call state operators. These exceptions cannot
be caught by the above catch specifications since they are evaluated after the specified
function has been called. The solution to this problem is to catch the exceptions in the
call state itself and replace them with harmless values. In this particular example, the
same exceptions will be thrown by evaluation in the state after the call to the specified
function, and hence the semantics specified by the catch specification will still take
effect. The corrected version of the above example follows:

EXAMPLE 2.8 StockBroker2.adl (corrected)

28 of 75

Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

#include“StockBroker2.hh”
#include“StockBrokerAux.hh”
adlclass StockBroker2{
inlinelong cost(char*symbol,longno_of shares)throw
(BadCall){

no_of_shares*price(symbol);

k

void Buy(longaccount, char*symbol,longno_of shares)
throw (BadCall){
semantics{

try{

Cash_Balance(account)==

@f{
try{Cash_Balance(account)-cost(symbol,
no_of_shares);}
catch(...){0;};

Stock_Balance(account, symbol)==

@f{
try{Stock Balance(account,symbol);}
catch(...){0;};

+no_of_shares;

catch(BadCallexc){
thrown(BadCall) &&{
((BadCall*)adl_thrownException)->bad_account==
exc.bad_account;
((BadCall*)adI_thrownException)->
bad_stock symbol==exc.bad_stock symbol;

h

}
catch(...){

false;
}

}//endofsemantics

}/endof Buy specifications

}

In this version, all exceptions caught in the call state are replaced by the value 0. The
nature of this example is such that any exception thrown in the call state will also be
thrown after the call to the specified function, hence the 0's passed from the call state are
never really used.

The above example looks messy, but in the presence of exceptions, a lot of catch specifi-
cations are necessary. This is true of normal programs too. However, the above example
is further cleaned up in Section 2.3.7 where the catch specifications of the call state are
moved up into inline function declarations.

Version 1.2

29 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

2.3.6

ADL_BasicExpression

ADL_ThrownExpression

2.3.7

ADL_BehaviorSpecification

ADL_BehaviorClassification

ADL_BasicExpression

Thrown Expressions

Thrown expressions are boolean expressions used to specify whether or not exceptions
have been thrown.

+::= ADL_ThrownExpression

= “thrown” “(" (TypeNamelList | “...") *)”

thrown(el, e2, etc) istrue if any of the exceptionsl, e2, etc. is thrown and is
false otherwisethrown(...) istrue if any exception is thrown. It false if no
exception is thrown.

“thrown(e)” is equivalent to saying that “adl_thrownException is e”.
Thrown expressions may not be placed within the argument of a call state operator.

Behavior Classification

It is often very useful to broadly categorize the behavior of a function into its “normal
behavior” and “abnormal behavior”. One may then specify more details of the behavior
in each of these cases. ADL provides the behavior classification construct for this pur-
pose. The behavior classification is used to associate a boolean expression to the
reserved wordsormal andabnormal .

:="semantics” [ADL_BehaviorClassification] ADL_AssertionGroup

= “I" ((“normal’|"abnormal”) “=" ADL_Expression *“;")* “]"

The default meanings of normal and abnormal are as follows:

¢ If neithernormal norabnormal has been defined in a behavior classification, then
normal defaults tdthrown(...) andabnormal defaults tahrown(...)

e If only one ofnormal andabnormal is defined, the other defaults to the negation of
the one defined. For examplenifrmal is defined, theabnormal defaults
tolnormal

When botmormal andabnormal are defined, their definitions need not be negations
of each other. They may overlap or exclude portions of the possible output domain.

In a behavior classification, there may be at most one definitionrfoal and one for
abnormal .

The reserved wordsormal andabnormal may then be used in the behavior descrip-
tion of the function as short forms for the expressions associated with them, as per the
following syntax:

+:="normal” |“abnormal”

30 of 75

Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

The following example modifies the earlier example to make use of behavior classifica-
tions:

EXAMPLE 2.9 StockBroker2.adl with behavior classification

#include “StockBroker2.hh”
#include “stockBrokerAux.hh”

adlclass StockBroker2{

inlinelong cost(char*s,longnsh)

try{nsh*price(s);}
catch(...){0;};

inlinelong_Cash_Balance(longaccount)

try{Cash_Balance(account);}
catch(...){0;};

inlinelong_Stock_Balance(longaccount, char*symbol)

try{ Stock_Balance(account,symbol);}
catch(...){0;};
h

void Buy(longaccount, char*symbol,longno_of_shares)
throw (BadCall){
semantics
[normal=!thrown(...);
abnormal=thrown(BadCall);]
{ if(normal){
try{

Cash_Balance(account)==
@_Cash_Balance(account)- @cost(symbol,no_of shares);
Stock_Balance(account,symbol)==
@_Stock_Balance(account,symbol)+no_of shares;

Hiendtry
catch(...){false;};
}/lendif(normal)
}/endsemantics

}//end Buy

}

Version 1.2 31 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

2.3.8

This version of the stock broker specification is weaker than the previous one in that it
talks only about the normal behaviorBafy. It will be extended to describe the abnor-
mal behavior oBuy in Section 2.3.8. Interesting aspects of the above example include:

* The catch specifications to catch exceptions in the call state are moved into inline
function declarations so as to reduce the clutter in the behavior descripiion of

* The normal behavior dduy is defined as any behavior that does not throw any
exception. The abnormal behaviorBaly is defined as any that causgdiCall to
be thrown.

* The main part of the behavior descriptiorBaf is guarded by thef* ” expression
(Section 2.2) if (normal) ...". In this case, no exception is expected to be thrown
during the evaluate of the assertions, and hence a catch specification is included sim-
ply to report an error if any exception is thrown.

* Previous versions of this example mixed the description of normal and abnormal
behavior. This version provides the beginnings of a clear separation which will be
more apparent when the abnormal behavior is also completed in the next section.

The Exception Operator

ADL provides the exception operator <:> whose meaning is based on behavior classifi-
cations. In the usual usage of this operator, the left operand is the enabler of an excep-
tion, while the right operand is a “thrown” expression. The following example illustrates
this typical use:

bad_account(account)||bad_symbol(symbol)<:>
thrown(BadCall)

Informally, A<:>B means that if A is true, then the abnormal condition should be
detected but B is not necessarily true. However, if an abnormal condition is detected and
B is also true, then A must be true as well. The first part of this rule allows the specifica-
tion of abnormal conditions for functions that can raise several different abnormal sta-
tuses in a possibly non-deterministic way, e.g., several error conditions are met initially
but we don’t care which one is raised as long as at least one of them is actually raised.

More formally, the exception operator is defined as:
A<>>B isthe same as
((A ==> abnormal) and (abnormal && B ==> A))

As an example of the use of the exception operator, consider the following assertion
group (we detour from the stock broker a bit here):

Ifile_exists(f) <:>thrown(not_found);
disk_full()<:>thrown(disk_error);

If we assume the default definitionadfnormal , this assertion group could probably be
used to specify a file open function. It reads: If theffitlbes not exist, then an excep-

32 of 75

Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

EXAMPLE 2.10

tion must be thrown. Similarly, if the disk is full, an exception must be thrown. How-
ever, it does not restrict exceptions to be thrown for other reasons. But it does say that
the exceptiomot_found should only be thrown when the filedoes not exist, and
exceptiondisk_error should only thrown when the disk was full. An interesting con-
sequence is that if both the file does not exist and the disk is full, either exception may
be thrown. The following assertion group strengthens the above assertion group to
require that only these two exceptions or members of a class SystemException may be
thrown:

Ifile_exists(f) <:>thrown(not_found);
disk_full()<:>thrown(disk_error);
abnormal==>
thrown(not_found, disk_error, SystemException);
h

Now the earlier stock broker example is completed with specification of abnormal
behavior. Two auxiliary function declarationsbad_acct andbad_sym — are added
into the StockBroker.hh file:

class StockAuxiliary {
public:

bool bad_acct(StockBroker sb, long account);
bool bad_sym(char * symbol);interface StockAuxiliary {
long price(char* s, long nsh);

StockBroker2.adl with exceptions

#include “StockBroker.hh”
#include “StockBrokerAux.hh”

adlclass StockBroker2 {

inlinelong cost(char*symbol,longno_of _shares){
try{no_of_shares*price(symbol);}
catch(...){0;};

inlinelong_Cash_Balance(longaccount){
try{Cash_Balance(account);}
catch(...){0;};

h

inlinelong_Stock Balance(longaccount, char*symbol){
try{Stock Balance(account,symbol);}
catch(...){0;};

Version 1.2

33 0of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

void Buy(longaccount, char*symbol,longno_of shares)

throw (BadCall){

semantics

[normal=!thrown(...);
abnormal=thrown(SystemException, BadCall);]

bad_acct(account)<:>
(thrown(BadCall) && ((BadCall*)adl_thrownException)->
bad_account);
bad_sym(symbol)<:>
(thrown(BadCall) && ((BadCall*)adl_thrownException)->
bad_stock_symbol);
if (thrown(BadCall)){
((BadCall*)adl_thrownException)->bad_account||
((BadCall)adl_thrownException).bad_stock_symbol;

if (normal){
try{Cash_Balance(account)==
@_Cash_Balance(account)-
@cost(symbol,no_of shares);
Stock_Balance(account,symbol)==
@_Stock_Balance(account,symbol)+no_of_shares;

Hiendtry
catch(...){false;};

Y:/lendif

}H/endsemantics

}
}

Note the right hand side of the two exception operators refer to the same exception, but
different additional conditions associated with the raising of the exception. This new
behavior description is different from the earlier behavior description in Section 2.3.7 in

a few interesting ways, some of which are:

* It makes clear the abnormal behavior. In the earlier example, the abnormal behavior

was described through catch specifications in the normal behavior.

e This leaves the particular exception condition (right operand of the exception opera-
tor) that occurs non-deterministic. If the left operands of the exception operators are
both true, then the behavior description allows either of the exception conditions to

hold.

e It uses an additional auxiliary class to give additional information about accounts
and symbols. It is often the case that a class sufficient for normal use is not sufficient
for testing; typically, it is useful to add operations to inspect the state of an object or

to encapsulate complex actions.

34 of 75

Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

2.4

ADL_InlineDeclaration

25

ADL_ClassDeclaration

ADL_BehaviorDeclaration

ADL_Prologue

ADL_Epilogue

Inline Procedure Declarations

Inline macro declarations is other way to define concepts used in behavior descriptions
(along with Auxiliary C++ declarations). Their syntax is:

2= "inline" DeclarationSpecifiers FunctionDeclarator “{*
ADL_AssertionGroup “}" %"

Inline declarations are macros, in the usual C pre-processor meaning. The call to an
inline is replaced by the text of the corresponding assertion group, with adhoc substitu-
tion of the parameters.

In the Stockbroker example, where “cost” is defined as:

inlinelong cost(Strings, longnsh){
try{nsh*StockBrokerAux.price(s);}
catch(...){0;};

any expressiooost(symbol,no_of _shares) will be replaced by:

{ try{no_of_shares*StockBrokerAux.price(symbol);}
catch(...){0;};}

This is the second case (after try/catch specifications) of the two cases where an asser-
tion group may have a non-boolean value.

Prologues and Epilogues

Before being able to test a specific method, it is sometimes necessary to perform prelim-
inary initializations that require imperative features: this cannot be made inside seman-
tics assertions, which should remain declarative constructs with no side-effects.

For this purpose, the user can use firelbg” and “epilog’ features, which provide
blocks of “pure” C++ that will be transmitted without any transformation to the gener-
ated code. It is up to the C++ compiler to check the correctness of these statements.

There are two kinds of prologues/epilogues: either globa#ih_ClassDeclaration)
or local (inADL_BehaviorDeclaration).

+::= “adlclass” <IDENTIFIER> [: <ID>]
“{“ [ADL_Prologue][ADL_Epilogue]
(ADL_InlineDeclaration | ADL_BehaviorDeclaration)*“}”

;= FunctionDeclaration “{* [ADL_Prologue] ADL_BehaviorSpecification
[ADL_Epilogue %"

= “prolog” CompoundStatement

= “epilog” CompoundStatement

adlclass bankAccount{

Version 1.2

35 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

prolog{
char*url="jdbc:odbc:wombat”;

DbConnectiondbcon=DbDriverManager::getConnection(url);
DbTabledbtbl=dbcon.createTable();

}

longdeposit(longamt){
prolog{
char*sel="SELECTp.*(...)";
dbtbl.checkAssertion(sel);
dbtbl.setint(1, get_account());

semantics{
dbtbl.execute(); //boolean-valuedfunction

}
epilog{
dbcon.close();

}
}

}

In the generated C++ code for this example, the global and local prologue blocks are
concatenated (the global before the local) and copied “as is” at the beginning of the
“deposit” generated method, before the code that deals with the semantics assertions.
The epilog code is copied at the end of this method (a global epilog would be copied
right before the local one).

The overall execution scheme is as follows:

Step 1: Execution of the global prologue (except in constructors)
Step 2: Execution of the local prologue

Step 3: Call of the tested method

Step 4: Evaluation and saving of call-state expressions

Step 5: Evaluation of the assertions and test reporting

Step 6: Execution of the local epilogue

Step 7: Execution of the global epilogue (except in constructors)

Note that the global prologue is a purely syntactic construct: variables declared therein
arenot global variables, but variables local to all the specified method — exactly like
the variables declared in the local prologue. Its sole purpose is to factorize the state-
ments that need to be executed at the beginniaf tife methods whose behavior is
specified in the adl class.

There is a special case for constructors; it is possible to define a local prologue in behav-
ior specification of a constructor, but the global prologue/epilogue are not included in
the generated code.

Call-state expressions and inlines cannot be used in prologues and epilogues. Bindings
can be used in the local epilogue of the behavior where they are defined, but not in pro-
logues and global epilogue. The global epilogue has only access to variables defined in

36 of 75

Version 1.2

Semantics Annotations ADL 2.0 Language Reference Manual for C++

itself and in the global prologue. It is possible, inside call-state expressions, to reference
the variables declared in prologues.

Version 1.2 37 of 75

Semantics Annotations ADL 2.0 Language Reference Manual for C++

38 of 75 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for C++

3

Test Annotations

3.1

3.11

3.1.2

Test data annotations allow the test engineer to define how an interface should be tested;
what data and what procedures should be used to exercise the functions in the interface.

Concepts

The test data description (TDD) language provides a notation in which the user can
write descriptions of test sets, which will be processed into test driver programs. TDD is
organized by a few concepts; these are presented in the first section, with syntactic
details in later sections.

Re-write

The principle behind TDD2 is that it is processed by re-writing the input to create a test
program. The re-write does not remove any information, and a valid program in the tar-
get language should not be altered by the re-write. Hence any code fragment in the input
which does not use TDD?2 features will appear unaltered in the rewritten output.

The concepts of TDD2 are applied to a variety of programming languages, called target
languages. The concepts of TDD2 are common to all target languages, and the syntax is
in large measure common; the parts of the language that get re-written are common to
our four target languages (C, C++, IDL, and Java).

Dataset

A dataset is a set of data values. It may be used in place of an expression in the target
language syntax. The result of such an expression over a dataset is another dataset. An
expression involving more than one dataset is treated as an expression over the Carte-
sian product of the datasets:

AT B=fy(A B =F,(Ax B) (EQ 3)

Dataset SizeA dataset has a definite size, by construction. However, that size may not
be feasible to use as a test. Examples of feasible datasets are enum types, array indices,
array contents, and datasets created by literal expressions. Examples of infeasible
datasets are programming language types like ‘int’ and ‘float’. The concept of feasibility

is not precise; there is not an axiomatic way to decide if a dataset is small enough. In
practice, a dataset with more than 232 elements is certainly infeasible.

A dataset may be created by a literal expression or by a factory. A dataset may also be
created by the combination of a representation type and a constraint. A single value; that
is, an expression in the target language, is a trivial dataset.

Dataset size is determined by calculation rather than by construction. It is easy to com-
bine a finite number of feasible datasets and create an infeasible dataset; 32 copies of a
Boolean dataset, for example.

Version 1.2

39 of 75

Test Annotations ADL 2.0 Language Reference Manual for C++

3.13

3.14

Factory

A factory is a data creator. It encapsulates the notions of a constructor, a destructor, and
reporting.

A factory is, formally, a function from a dataset to a dataset. A fungt{gne,C...) of
more than one argument is formally treated as funciiof & single argument,
AxBXC... — the crossproduct of the input datasets.

Operationally, a factory is implemented by a pointwise function on the elements of the
domain. In addition, the implementation of a factory includes a destructor function for
elements of the range, and an association from an element of the range to the element of
the domain.

FO{D,R ¢d,}

. _ ¢ ?Functional® -~ RO {0}
The formal definition of a factory is:) ,
d ?FunctionalR - {0, O}

i ?FunctionalF - D

where D is the domain of the factory, R is the range of the factory, c is the factory’s con-
structor function, d is the factory’s destructor function, and i is the inversion function,
which can be used to determine the input that gave rise to a given range element.

While several of the target languages provide expression of these notions in their type
structure, those expressions may be not be available for all types needed for testing; for
example, none of the target languages permit extension of the built-in types, and all
allow the declaration of types which permit no extension. The factory notion is part of
TDD2, outside the target language’s type system, so that it can be applied to all types
needed for testing.

Checked Function

A checked function is a function for which an oracle is available. Calling a checked
function produces the same value and outcome as calling the unchecked version of the
function, but will report some measurement information as an invisible (within the call-
ing program — not to the user!) side effect.

When running under a debugger, all functions may be said to be checked functions.

In the ADLT system, checked functions are generated from function declarations which
have been annotated with semantics specifications. Within a test directive, there is a spe-
cial convenient syntax for invocation of such an ADL-derived checked function; the

class or object on which the method is invoked is enclosed in the ADL pseudo-function.

ADL (obj)->meth(data);
obj->meth(data);

40 of 75

Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for C++

3.15

3.1.6

3.1.7

Both method invocations in this example result in invocation of mettedd on the
underlying implementation objeobj ; however, the checked method invocation is
relayed through aAssertion Checking Objeé&DL(obj) that implements the seman-

tic checks specified by the ADL semantic annotation. It is an error to invoke the ADL-
checked version of a method if either the class type of the underlying object has not
been annotated (there is no adl class that annotates this type) or if there exists such an
adl class but that method does not have a semantic annotation in this adl class.

The scope of the ADL keyword operates on only one method: in the expression
ADL(obj)->m1(p1)->m2(p2) the methodnlis called on the ACO obiject created
by ADL(obj) and therefore it is the checked metmotithat is called; however, this
method will create a usual object on which tineheckeanethodm2will be called. If

the return type omlhas been annotated and the user wants to execute the checked
methodm?2 he/she must writeADL(ADL(obj)->m1(p1))->m2(p2)

It is possible to test a constructor; the syda@t._new Foo(bar) will create an
object of type Foo using a checked constructor.

Test Directives

A test directive is ormally a statement, evaluated for side effect. In particular, a test
directive normally includes an expression involving one or more calls to checked func-
tions.

Note that a function or method body in a test declaration is subject to the same re-writ-
ing as any other code in the test declaration. Hence any call to a checked function, in
such a body, will be interpreted as a call to the checked version of the function; and call-
ing such a function or method will have the side-effect of making an observation about
the behavior of such checked functions.

A test directive expression is parameterized by the datasets used in the test directive.
Assertion

An assertion is a Bool expression. However, the test framework takes note of an asser-
tion. An assertion is a postcondition. An assertion contributes to the test result and is
reported to the user.

Formally, an assertion is a Bool expression evaluated for side effect.

An assertion is expressed by a call to the funatidnassert(char*, bool) from

the ADLT runtime library. As a stretch feature, the ADLT translator may re-write the
assertion to provide better reporting.

Importation

It is possible to import datasets or factories defined in other TDD files, by using the
“use” feature of the TDD language. This feature is syntactically similar to the usual

importation scheme of the target languagjaclude for C/C++ andmport (with
qualified name) for Java.

Version 1.2

41 of 75

Test Annotations ADL 2.0 Language Reference Manual for C++

3.2

TDD_AnnotatedDeclaration

TDD_ClassDeclaration

TDD_UseDeclaration

TDD_ClassBodyDeclaration

TDD_FieldDeclaration

Note that this importation clause makes reference tedhee TDD filenot to the

object code obtained after ADLT translation and compilation. In TDD for C++, when

the user declares “use bar;”, he can thereafter use for instance the dataset “D1” defined
in the file bar.tdd. With “use”, the compiler checks the presence and correctness of the
source tdd file. It is however left to the responsibility of the user to ensure that at link-
time the object file obtained by transformation of the bar.tdd will be accessible. This is
closer to the C semantics, with the distinction between the header file for the compiler
and the library at runtime.

Annotated TDD / C++ Syntax

This is not the complete syntax for the TDD extensions to C++, but rather the produc-
tions that are additions or modifications from the language standard. Undefined nonter-
minals and terminals are references to the language standard.

:= [TDD_UseDeclaration] TDD_ClassDeclaration

.= “tddclass” <IDENTIFIER>
“{* (TDD_ClassBodyDeclaration)* “}"

A TDD class declaration is like any C++ class declaration, with the use of the “tddclass”
keyword and with the methods access modifiers “public” and “private” removed. It may
contain any C++ declaration, plus some TDD constructs.

TDD classes have no inheritance structure, as the concept of “superclass” is not mean-
ingful for a TDD class. TDD class may not extend another, although one TDD class
may refer to another. One TDD class may refer to entities (both C++ declarations and
TDD declarations) declared in another, either by using the fully scoped name of the
external entity or the “use” TDD file feature.

= (uusen <ID> u;n)+

<ID> refers to the tdd file (without its extension .tdd) to be used.

;= TDD_DatasetDeclaration

| TDD_FactoryDeclaration
| TDD_TestDirective

| TDD_FieldDeclaration

| FunctionDefinition

::= DeclarationSpecifiers Declarator “=" AssignmentExpression
(“) Declarator “=" AssignmentExpression)* “;”

In TDD class body, only initialized variable declarations and test fucntion declarations
are allowed. Other pure C++ declarations (ExternalDeclaration) can be included using
the “# include” feature.

42 of 75

Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for C++

TDD_DatasetDeclaration

ADL_NamedParam

TDD_FactoryDefinition

TDD_TestDirective

TDD_DatasetDomain

TDD_DatasetExpr

TDD_DatasetConcatExpr

TDD_DatasetSingleton
TDD_DatasetLiteral
TDD_DatasetMember

TDD_FactoryCall

The extra constructs that may occur in a TDD declaration are datasets, factories, test
functions and test directives.

= "dataset" ADL_NamedParam "="TDD_DatasetExpr ";"

DeclarationSpecifiers Declarator

A dataset is like an initialized declaration, except that dataset may have type void, and
that the initializer is a dataset not just a scalar

:="factory" DeclarationSpecifiers FunctionDeclarator CompoundStatement
[“relinquish” “(* ParameterDeclaration)" CompoundStatement]

A factory is defined just like a function with a C++ compound statement. It must return
a pointer to a value (a builtin type or an object). The relinquish clause receives the
pointer to the returned value as parameter. It provides a way to free the memory allo-
cated for the returned value. Obviously, the type returned by the factory and the type of
the parameter of the relinquish clause must be identical.

= [<ID>"™"]"test" [“forall”] “(* [TDD_DatasetDomain
(“) TDD_DatasetDomain)*]*“)” Statement

A test directive is similar to an ADL quantified expression, and allows a similar syntax.
It declares local variables that range over the contents of the specified datasets.

A test directive is implemented by putting it in the body of a method, suitable for invo-
cation by the appropriate test framework. The test method declaration is left implicit,
rather than being explicitly written as part of the test directive, so that the ADL transltor
can supply a test method declaration specialized for the test framework for which
code is being generated.

= ADL_NamedParam ("="|":") TDD_DatasetExpr
| TDD_DatasetExpr

A dataset expression may be used alone in a domain list only if it is a void dataset,
which must be produced by a factory; in that case, it denotes the evaluation of the corre-
sponding void factory member for side effect.

;= TDD_DatasetConcatExpr (“+” TDD_DatasetConcatExpr)*

::= TDD_DatasetSingleton
| TDD_DatasetLiteral
| TDD_FactoryCall

;= Constant | <ID>
= “{“[TDD_DatasetMember (*“) TDD_DatasetMember)*[“"]1]"}
== ConditionalExpression [“..” ConditionalExpression]

;= Qualifiedld “(* [TDD_DatasetExpr (“, TDD_DatasetExpr)*]“)”

Version 1.2

43 of 75

Test Annotations ADL 2.0 Language Reference Manual for C++

TDD_ADLnewEXxpression

TDD_ADLExpression

;= “ADL_new” IdExpression

“ADL” “(* PrimaryExpression() “)”

A dataset literal is written in braces. It may be empty. The elements in a literal dataset
may be expressions or ranges. Ranges are only meaningful for integral types. A dataset
expression that reduces to a literal or a local field name is converted into a one-element
dataset literal. The expressions in a dataset literal are evaluated once for all when the
dataset is initialized; they will not be re-evaluated at each selection.

Method invocation is legal only as TDD_DatasetMember (for members of a dataset lit-
eral) whereas factory invocation is legal only as TDD_DatasetExpression:

dataset int D = f1() + { f2() };

this definition is correct if f1 is a factory and f2 a method.

3.3 General Syntax & Examples
This section presents the general syntax along with examples that motivate the design.
3.3.1 Simple Datasets and Data Construction
Some examples of data generation.
EXAMPLE 3.1 The Simplest Test
#include “subject.hh”
tddclasst1{
ADL (subject)->plus(3,4);
}
The simplest test is just an invocation of an annotated function. Formally, this test direc-
tive is the application of the annotated function “plus” to the cross-product of two
datasets, “{3}" and “{4}"; the promotion from a single value to a one-element dataset is
automatic.
In the examplesubject.plus is a static method namapL (subject)->plus
is the name of a checked version of that static method (we do not precise here what the
name “subject” refers to; it is implicit that it has been imported through the target lan-
guage standard importation featuséisiclude in C++ andmport in Java).
EXAMPLE 3.2 A Simple Dataset

#include “subject.hh”

tddclasst2{
datasetintA={1,3,5..7};
test(intil=A,inti2=1)

44 of 75

Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for C++

ADL (subject)->plus(il1,i2);
test(intil=1,inti2=A)
ADL (subject)->plus(i1,i2);
}

This testplus when adding the constant 1, from both sides.

3.3.2 Compound Datasets : Factories, Concatenation

EXAMPLE 3.3 Compound Data Construction

#include “myio.h”
tddclass{
factoryRandomAccessFile*
make_file(char*nm, char*mode){
returnnew RandomAccessFile(nm, mode);
}relinquish(RandomAccessFile*r){// ...

dataset File* FO=make_file(
{*/dev/null”,”/dev/tty”,"/tmp/foo”},
{f'r, iwy);

datasetFile*F1=
make_file(“/dev/null”,”r")+
make_file(“/dev/tty”, {"r","rw"}) +
make_file({util.tmpnam()}, {*rw});

char*buf=newbyte[512];

test(RandomAccessFile*F = FO0)
ADL(F)->read(buf,512);

test(RandomAccessFile* F=F1){
ADL (F)->read(buf,512);
}

}

Dataset FO has 3x2=6 members, while F1 has 1+2+1=4 members. Note that F1 is the
concatenation of several datasets, each produced by a separate invocation of the factory;
the example uses “+" as the dataset concatenation operator.

This example shows the syntax for a test directive, with the datasets listed explicitly as
an initialized declaration list.

The optional relinquish clause has similar syntax to a C++ catch clause. The relinquish
clause takes a single argument whose type must match the return type of the factory
method. In the body of the relinquish clause, the user has visibility to all the arguments
of the factory method and the system guarantees that values used for the arguments in
the preceding call to the factory method to create the return data, are the same when exe-
cuting the call to the relinquish clause.

Version 1.2 45 of 75

Test Annotations ADL 2.0 Language Reference Manual for C++

3.3.3 \Void Datasets

In order to express the notion of an environment condition that affects the operation of a
system under test, without producing an assignable value, the concepts of dataset and
factory are extended to allow void pseudo-values. This example imports datasets from
the previous one, and shows the use of a block as the body of a test directive, complete
with an assert.

EXAMPLE 3.4 Void Datasets
usets;
tddclass{
factoryvoidsetup_system(intcondition_code){//..
}relinquish{...}
datasetvoidsetup_set=setup_system(1);
test(setup_set,
RandomAccessFile*F=F1,//Flaccessible thanks
/[to“uset3;”
char*data={"“,“hello})
{
char*tmp;
ADL(F)->write(data);
F->seek(0);
tmp=ADL(F)->read();
tdd_assert(“streq(tmp,data)”, streq(tmp,data));
}
}

This example shows the use of an unchecked mesiad () in conjunction with some
checked methodswite andread). All three method invocations result in method
invocations on the underlying implementation obfedbowever, the checked method
invocations are relayed through a checking object that implements the semantic checks
specified by the ADL semantics annotation.

Note that, as the void dataset setup_set is defined as a factory call, this factory
setup_system is called once for each test data instance.

Imported dataset names (through thee'” clause) can be unqualified only if defined in
the current tdd class. Unqualified syntexs(F1 in the example) is possible if

¢ F1 is defined in the current tdd class, or
* F1 is defined in at most one of the “used” classes

If two tdd classes are importedlsg c1; use c2;) such that a dataset F1 is defined
in c1.tdd and another in c2.tdd, then a call to F1 must be qualified: F = c1::F1. A locally
defined dataset nanmesan imported dataset that has the same name. Importation is

46 of 75

Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for C++

334

not transitive: if tdd class c0 imports tdd class c1 and c1 imports c2, then cO does not
import c2 (unless it explicitly does so, of course).

These rules are also valid for factory importation. Only datasets and factories are
importable: the constants and test directives of a tdd class are not.

Dataset Elements Evaluation

EXAMPLE 3.5 Runtime Initializers
The elements of a dataset literal are evaluated only once, at initialization time (static
evaluation). If the user wants a dataset whose elements are evaluated each time the
dataset is referenced (dynamic evaluation), he must use factories.
tddclasst5{
[* thisisnotagooddataset; itlacks repeatability */
datasetdoubleq_static=
{drand48(),drand48(), drand43() };
factorydoublerand() {returndrand48();}
datasetdoubleq_dynamic=rand();
}
In this example, the dataset q_static is initialized with 3 random values that will not
change whatever the number of test directives that reference q_static. But for test direc-
tives that use g_dynamic, each test data instance will be dynamically reevaluated.
3.3.5 Dataset Constants
EXAMPLE 3.6 Provide Test Variables

This example may be slightly familiar for those familiar with the ADLT1 example pro-
grams. The combination of a factory requiring one or more integer parameters with a
dataset is the ADL/C++ idiom for a provide test variable. In TDD, any global variable
(field) is implicitly constantdonst in C++) and must be initialized at its declaration.

A TDD constant is private: it cannot be imported through the “use” clause.

#include“Bank.hh”;
tddclasst6{

intSAVINGS=-1,CHECKING=1,IRA=7;
intnegative=-10,zero=0,small=3,average=100,
large=1000, over_limit=10000;
datasetintaccount_type={SAVINGS, CHECKING, IRA};
datasetintsize_code=
{negative, zero,small,average, large,over_limit};

Version 1.2

47 of 75

Test Annotations ADL 2.0 Language Reference Manual for C++

factoryaccount*acct(intt,ints){/*...*/}
datasetaccount* Accountl=acct(account_type,size_code);

factoryintamount(intsize_code){/*...*/}
Bank*bank=newBank(/*..*/);

test(account*act=Accountl,intsize=size_code){
ADL (bank)->withdraw(act, amount(size_code));
ADL (bank)->deposit(act, amount(size_code));
ADL (bank)->balance(act);

EXAMPLE 3.7 Better Test Variables

Here is a more general collection of test variables, showing the increased power of
TDD2.

#include“Bank.hh”

tddclasst7{
datasetintsize_code=
{negative,zero,small,average, large,over_limit};
datasetintaccount_type=
{checking, savings, IRA, zero, neg, max,over_max};

factory doubleamount(intsize){/*...*/}
factoryaccount*make_acct(

inttype_code,

doublesize) {/*....*/}
datasetaccount* Acct=make_acct(

acount_type,amount(size_code));

Bank*bank=newBank(/*..*/);

test (account*act=Acct, intsize =size_code){
ADL (bank)->withdraw(act, amount(size_code));
ADL (bank)->deposit(act, {0.1,124.1e10,1125.333});
ADL (bank)->balance(act);

}
}

This example is intended to motivate the separation between factories and datasets. The
make_acct factory can be used to create a dataset with accounts of any size; the
Acct dataset is the result of applying that factory to a specific set of amount values.

3.3.6 Test Directives

Simple examples of test directives were given in the previous section.

48 of 75 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for C++

3.3.7

EXAMPLE 3.8

The syntax is:
[label :] test (type id = dataset,...) statement
Example:

#include “object_data.h”;

tddclasst10{
Dirl:test(Object*o=data.obj){
ADL(0)->hashCode();

A test directive body has the same syntax as statement in the C++ grammar; however,
“test statement” is a misleading phrase. A label may be placed on a test directive; this
will influence the generated code and the generated test documentation in some way.

In the syntax, local variables are created to range over the specified datasets. Syntacti-
cally; this is like an initialized declaration, but the initializer is a dataset expression. The
declared variable ranges over the members of the dataset during test execution. The list
may also contain a dataset expression denoting a dataset of type void, with no variable
declared; in that case the dataset member selection, presumably by a factory, is evalu-
ated for side effect only.

Not all programming language statements are legal test directives. For instance, a break
statement is not a legal test statement.

Void Datasets Use

Void Dataset Use

The syntax for having void datasets is as follows :

tddclasst9{
datasetintA={1,2,3};

factoryvoidside_effect(int){/*...*/}
datasetvoid X=side_effect({0..6});

datasetfloatF={f1(),f2(),f3()};
test(inta=A, X, floatf=F)
ADL (tested)->func(f, a);
}

In this examplef is the loop variable for the inner loop, and varies fastest. The middle
loop is a selection over X, evaluated only for side effect. The outer test loopavaries
OVerA,

Version 1.2

49 of 75

Test Annotations ADL 2.0 Language Reference Manual for C++

3.3.8 Advanced Examples

EXAMPLE 3.9 Chaining Factories

#include“code.hh”
#include“myio.hh”

tddclasst10{

factory char*make_file_name(
boolabsolute,
booldevice,
boolfunny_chars,
intlength_code

M/*..*}
datasetintlength_code=
{code::ZERO, code::ONE, code::MEDIUM,
code::LONG,code:: TOO_LONG}

datasetchar*file_name_set=
make_file_name(true, false,false, 10);

factoryFile*make_file(char*file_name){/*...*/}

factoryRandomAccessFile*
make_filestream(File*f, char*md){/*...*/}

datasetchar*legal_open_type={"r","“rw"};
factorychar*illegal_open_type(){/*...*/}

datasetchar*open_type=
legal_open_type+illegal_open_type();

datasetFile*File_set=
make_file(file_name_set);

datasetRandomAcessFile* Stream_set=
make_filestream(File_set,open_type);

}

This illustrates several techniques for re-using factories.

EXAMPLE 3.10 Test By Example

More complex examples bring us to the concept of “Test by Example”: the test code is
an example of typical code, or code fragments, the user would write to make use of the
interface under test.

50 of 75 Version 1.2

Test Annotations ADL 2.0 Language Reference Manual for C++

#include“myio.hh”
usetlo;
publictddclasst12{

voidread_then_write(RandomAccessFile*f, byte[]buf){
longpos;

pos=f->getFilePointer();
ADL(f)->read(buf);
ADL (f)->seek(pos);
ADL(f)->write(buf);

}

test(File*f=File_set)
read_then_write(f, buf_set);
}

This defines and then calls a test procedure that, when executed, will check that the
readFully , seek , andwriteFully operate together correctly when used in this
particular way. More exactly, the test procedure will exercise the methods together, giv-
ing the assertion-checking code a change to check the behavior of annotated methods.
This is not a good way to test for error handling; it may prove useful when checking the
normal operation of an interface.

EXAMPLE 3.11 Multiple Dataset References

A single dataset may be used more than once in a single test directive. This results in
independent iterations over the dataset. If the test author wants multiple references to
the same value in one directive, it is necessary to declare multiple variables ranging on
the same dataset.

#include “Math.hh”

tddclasst13{
datasetintA={1,2,3};

test(inta=A,inth=A)
ADL(Math)::plus(a, b); 1 9evaluations

test(inta=A){
ADL(Math)::plus(a,a); // 3evaluations

Version 1.2 51 of 75

Test Annotations ADL 2.0 Language Reference Manual for C++

52 of 75 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for C++

4

NLD Annotations

4.1

Natural language annotations can be provided to improve the quality of generated
descriptions of ADL and TDD expressions.

Concepts

The ADLT tool can generate natural language (NL) documentation describing the
semantics of functions and the generated test driver. The quality of the generated docu-
ments can be improved by annotating the input files with natural language descriptions
(NLD). These annotations describe translations for identifier names, and provide other
configuration information for the ADLT NL system.

Standard Generalized Markup Language (SGML) is the foundation of the document
generation system. ADLT renders ADL and TDD expressions into SGML entity decla-
rations, exploiting any NLD annotations that the test engineer has provided. These
entity declarations are processed together with a set of document template entity decla-
rations to form a complete SGML document conforming to the DocBook 3.0 DTD. The
final SGML document can be converted to specific output formats such as HTML or
Unix manual pages, or incorporated in larger SGML documents. See the NLD and
SGML section for more details.

C++ can be annotated with NL information in several places. Briefly, it can be placed at
top level, within a TDD annotation, attached to an annotated function or test statement,
or placed after the bindings in an ADL semantics group expression. The translations it
provides apply throughout the scope (and enclosed scopes), not just from the declaration
point onwards. The examples in this section illustrate some of the annotation attach-
ment locations.

NLD annotations introduce translation information for identifier names at a specific
scope. Translations in outer scopes are shadowed or overridden by translations for the
same identifier name within enclosed scopes.

When ADLT comes to generate a natural language rendering of an ADL or TDD
expression it takes each identifier in the expression and determines whether the user has
provided any NL translations for its name. It searches outwards from the scope declar-
ing the identifier through its enclosing scopes until it finds a candidate translation that
satisfies any constraints on usage (such as locale) defined by its predicates. It uses the
first one it finds. If more than one satisfactory translation is found at the same scope
level a warning is generated and one of the translations is arbitrarily selected.

For example, a translation for an identifier name can be provided at the top level scope
and it will be found and used for any identifier with that name in any enclosed scope,
unless an alternative translation is provided at a more local scope.

A subclass inherits the NL declarations of its superclass. An NL declaration for an
identifier given in the subclass overrides any inherited NL declarations for that identifier
name.

Version 1.2

53 of 75

NLD Annotations ADL 2.0 Language Reference Manual for C++

4.2 Syntax and Semantics

The inheritance of NL declarations follows the target language; in the case of C++, this
means that NL declarations are inherited from all base classes, and may be overridden in
a subclass or implementation class. An error occurs if a conflicting definition arises

from this inheritance.

4.2.1 Simple Data Member Translation
Translations can be provided very close to where an identifier is declared by using an
NL declaration in the same scope as the identifier.

[*C++code*/
classC{
public staticintamount;

}

[*ADLsource*/
adlclassC{
nid{
.amount="“the correctamount”;
}

}

This declares a translation for amount in the scope C (the dot. before amount refers to
the current scope where the nld block is written, here the global scope of the adl class
C). Any expression using an identifier named amount declared within C or one its
enclosed scopes will be translated to use the declared string.

4.2.2 A Simple Function Member Translation

Methods can have translations declared in a similar fashion.

classC{
public:intbalance();

}

adlclassC{
nid{
.balance()="“the balance oftheaccount”;
}

}

This declares a translation for balance() in the scope C. Any expression using a
function identifier named balance declared within C or one of its enclosed scopes will
be translated to use the declared string.

4.2.3 Out Of Line Translations

Translations do not have to be declared at the same place the identifiers are. The trans-
lations in the two previous examples could have been provided out of line, in a .nld file,
by using fully scoped identifier names.

54 of 75 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for C++

4.2.4

4.2.5

nld{
C::amount="the correctamount”;
C::balance()="thebalance oftheaccount”;

g

Translations For Overloaded Methods

As there may be more than one function with a particular name in a scope the function
signature must be provided in its NL declaration.

classC{

public:
voiddeposit(intamount);
voiddeposit(intamount, intcharge);
voidclose_account();

g

nid{
C::deposit(intamount) =“depositsome money”;
C::deposit(intamount, intcharge)
="depositsomemoneyandchargeafee”;
C::close_account="“closetheaccount”;

}

These mappings are not preceded by a dot, which means they do not refer to a current
scope but describe entities with a full name. The notation C::deposit(*) could be

used to define a mapping common to all deposit methods. The notation C::*::amount
could be used to define a mapping common to all local entities (parameter, binding)
named “amount”, in all methods of C.

Priorities

When several NL mappings are defined for an entity, they are distinguished one from an
other by an algorithm that detects the more “precise” one:

C::deposit(int)::amount="the depositamount”;
/lhashigher prioritythan
C::deposit(*)::amount="adepositamount”;
/Iwhichitselfhashigher prioritythan
C::*::amount="theamount”;
/Iwhichitselfhashigher priority than
C::amount="theclassamount”;
/landfinallythelowest priority forglobal scope
amount="theglobalamount”;

With the inheritance mechanism, this algorithm is refined by a prioritized “super class

lookup™: if C::deposit(int).amount is not found, the mapping will first be
searched in super classes of C (from parent class of C), and if not found the search will
be launched of::deposit(*).amount and so forth.

Version 1.2

55 of 75

NLD Annotations ADL 2.0 Language Reference Manual for C++

4.2.6 Using semantics And nld Blocks

A method can be annotated with both semantics and NL translations.

adlclassC{
int balance(intac){
semantics{
ac!=0;

}

nid{
.ac="theaccountnumber”;
.=“the balance oftheaccount”;

}
k

The dot notation.”” refers to the current NLD scope (in this case the meliabd
ance(int)). The notation “.ac” is equivalent to using a fully scoped name to refer to
the function’s local arguments.

nld{
C::balance(int)::ac="theaccountnumber”;
C::balance(int)="“the balance oftheaccount”;

g

In case of a clash between two equivalent mappings, the final mappindgistthe
encountered one, knowing that NLD files are always pdretate ADL/TDD files

(except for this rule, NLD files and ADL/TDD files are parsed in the order they appear
on the command line). If the two equivalent mappings are defined in the very same file,
the last occurrence is retained.

The formal argument name from the function declaration is used as the name of the
local argument.The signature of the function must be given in order to disambiguate
overloaded functions.

4.2.7 Shadowing or Overriding A Translation

nid{
i="theloopcounter”;

J3

classA{

public:
staticinti;

3

classB({

public:
staticinti;

nid{

56 of 75 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for C++

An expression using.::i will pick up the top level NL declaration forand be trans-
lated as “the loop counter”. The NL declarationifarithin B overrides the top level
declaration so an expression usBig will be translated as “B’s i".

4.2.8 Overriding a Non-Local Translation
Translations in other scopes can be overridden too.
classA{
public:
staticbooleani;
h
classB{
public:
voidg();
adlclassA{
nid{
A="A’si";
}
}
adlclassB({
void g(){
semantics{/*... A:i...*/}
nid{
Ai="g'si”,
}
}
}
The translation of the reference/fi intheB::g() semantics block is “g’s i”,
overriding the translation far given inA.
4.2.9 Invocation Translation
An invocation translation is used to translate a function call. It provides a mechanism for
the translation to refer to the translations of the actual arguments. In order to use this
mechanism the function translation must be provided with the full function signature.
The notation ‘$1’, ‘$2’, etc. in the mapping of a function definition refer to the first, sec-
ond, etc. acual argument of the function call: the translation of the corresponding actual
argument is used instead of any translation for the formal argument name.
Version 1.2 57 of 75

NLD Annotations ADL 2.0 Language Reference Manual for C++

4.3

43.1

classC{

public:
publicinta;
publicvoidf(inti,intj);

nld{
C::a="theactualargument”;

C::f(int,int)="using"+$1+“and "+ $2;
C::f(int,int)::i="thefirstformalargument”;

g

An expression usinf{a, 3) will be translated as “using the actual argument and 3”.

NLD Predicates

Each NL translation associates a list of predicates with an identifier name. Each predi-
cate asserts certain attributes of the translation. The most important attribute is the
actual translation text (which must be provided), but other attributes are also defined.
Some predicates act as constraints to determine when the translation can be used in the
generated documents. SGML entities can also be declared in the predicate list.

The order of predicates in the predicate list is not significant. A predicate can only be
used once in a list. Future predicates might include markers for grammatical categories
such as tense, gender or number.

Pre-defined Predicates
These predicates (there are currently three defined: call-state, negation and locale) pro-
vide a mechanism to select a mapping for a given situation.

For instance, consider:

amount="theamount”;
amount[@]="theformeramount”;

The second mapping will be used to translate the identifier amount when it appears
within the scope of a call-stat@@mouni) whereas the first one will be used in the

other cases. If no mapping with the call-state predicate is defined, an appropriate trans-
lation text is synthesized from the basic translation (@aenountwould be translated

as “the previous value of the amount”). This predicate is useful in situations where the
synthesized translation is clumsy or inappropriate.

Thenegationpredicate (notation “1”) is used in a similar fashion for negation scopes.

strcmp(char*, char®)[']=
“string”+$1+“isequaltostring”+$2;

With this mapping, an assertiohstrcmp(str, “foo”); " will be translated as
“string str is equal to string “foo™ instead of “the negation of the value returned by the

58 of 75

Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for C++

4.3.2

function strcemp(char*, char*), invoked with parameters: (str ; “foo”)", the default trans-
lation.

Invocation translations apply for call-state and negation translations too.

Different languages require different translations. [Beale(<string>) predi-

cate can be used to mark a translation as being valid for the specified locale. A transla-
tion with the locale predicate is only considered when it matches the current system
locale. This is usually configured by setting tReNGenvironment variable. See the
setlocale(3) manual page for more details. A translation for an identifier name

with a locale predicate that matches the current system locale takes preference over a
translation with a different or unspecified locale.

It is possible to define a mapping for several predicates (e,g,
amount[!,@,locale(“fr")] = “...”;)
To define several mappings with different predicates, it is possible to use the extended
syntax:

deposit(int, int): {
text="the basicmapping”;
text[@]="the callstate mapping”;
text[!]="the negationmapping”;

}

The notatiordeposit(int) = “deposit an amount”; is in fact a shortcut
for deposit(int) : { text = “deposit an amount”; }

An other possible shortcut is to declare the locale before the translation text:
deposit(int) “C” = “the mapping for locale C”; stands for
deposit(int) : {

text[locale(“C")] = “the mapping for locale C”; }

User-defined Predicates
A user-defined predicate is a mechanism to assert an attribute to a mapping, so that this
mapping can be selected or not elsewhere.

We will give an example in french, a language with explicit gender:

maleCat="chat”,[male];

femaleCat="chatte”, [female];

colorOf(int) : “fr.FR"{
text[$1[male]]="lacouleurdu”+$1,[female];
text[$1[female]]="lacouleurdela”+$1, [female];

The two first mappings state that maleCat and femaleCat correspond respectively to a
masculine and feminine gender. The notaitfmale] s to select a mapping that
corresponds to a function call with a first argument that has the “male” predicate. The
function callcolorOf(femaleCat) would therefore be translated as “la couleur de

la chatte”. The “female” predicate that is defined as an attribute to the colorOf method

Version 1.2

59 of 75

NLD Annotations ADL 2.0 Language Reference Manual for C++

states that the word “couleur” is feminine; thus the expressilmmOf(maleCat)

could be used in a context where an expression with “female” predicate is expected (for
a “stupid” examplegolorOf(colorOf(maleCat)) would be rendered as “la

couleur de la couleur du chat”).

4.4 NLD and SGML

ADLT generates documentation by emitting SGML entity declarations for descriptions

of aspects of the annotated functions and test specification. These synthesized and user
supplied entity declarations can be used with template entity declarations to produce
complete SGML documents for subsequent processing. ADLT supplies templates and
synthesizes entities based upon the DocBook 3.0 document type definition for con-
structing reference manual pages and test specification descriptions.

4.4.1 Reference Manual Document

ADLT processes each annotated function to generate a function file containing SGML
entity declarations describing its synopsis, semantics and error conditions. This file can
be parsed in conjunction with the supplied reference manual template to produce an
SGML document conforming to the DocBook RefEntry element. ADLT also

provides tools to convert the final SGML document into other formats such as HTML or
Unix manual pages.

The reference manual template file declares default values for some entities which the
function file generated by ADLT can override. Here are the entities for which it is pos-
sible to generate a value in nld blocks (we call them “properties™):

%description: A general description of the function and/or the class. This can be
specified by using théescription property in the NL declaration for the function/
class.

%includes: Unlike all other property declarations, the declared tekiadfides
is processed before generating the property declaration to escape “<" characters.

%purpose: A short description of a function.

%seeAlso: A reference.

EXAMPLE 4.1 Using Properties

void f(){
semantics{/*...*/}
nid{

o
&includes="#include <stdlib.h>";
&description="Behavioraldescription”;
%purpose =“Shortdescription”;
%seeAlso="SeetheclassFoo";

60 of 75 Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for C++

4.5

EXAMPLE 4.2

}
}

This is equivalent to:

nld{
C::f() :&includes="#include <stdlib.h>";
C::f(): &description="Behavioraldescription”;
...

}

The implementation of ADLT includes an SGML DTD that defines the structure of
these entities. Note that ADLT doest preprocess the strings that define these entities:
it sends them without any modification, except for “<* and “>" in %includes (there is
for instance no interpolation mechanism performed on these strings).

NLD for TDD

Test Data Description sources can also be annotated with nld blocks in order to generate
SGML documentation files. There is however an important difference: as there are no
assertions in TDD, there are no automated translation of any expression. Therefore the
user may only write NLD annotations to provigeperties(like %description) or

SGML entities, that are gathered and rendered in the generated documentation.

NLD annotation in a TDD class:

tddclassdatasetsCollection{

nid{
.:%description="Acollectionofdatasets.”;
}

iNtNEG=-1;intZERO=0;intMAX=100;

nld{
.NEG:%description="anegativevalue”;
.ZERO:%description="thenullvalue”;
.MAX:%description="the greatestvalue”;

}

datasetintDEPOSITS={NEG, ZERO, 7,MAX};
datasetbank*B_SINGLE=make_bank(10,0,DEPOSITS);

nid{
.DEPOSITS: %description="Setoftypicalvalues.”;}
.B_SINGLE: %description="bank....... "

Version 1.2

61 of 75

NLD Annotations ADL 2.0 Language Reference Manual for C++

4.6

4.7
NLD_Annotation

NLD_ Locale

NLD and Localization

ADLT chooses translations for identifier names based on the current system locale.
Each NL declaration can be marked with a specific locale that determines when the
translation can be used. Adl annotation can specify the locale of all the NL declara-
tions grouped within it by using the optional locale marker. Additionally each declara-
tion can use the locale predicate to specify its individual locale. When a locale is
specified for a NLD group, any other locale defined for a mapping within this group
would be skipped.

If a translation has a locale specified it will only be selected as a candidate when that
locale is the system locale. A translation without a locale specification is considered to
be in the default locale, and will be selected as a candidate when no other translation
specified with the current locale is available.

There are four areas where localization is necessary.

Identifier translations. The locale mechanism provides a way to produce a set of trans-
lations for C++ and ADL identifiers that are restricted to one locale. They will be
selected in preference to translations for the identifiers which do not have a locale spec-
ified.

User-specified entity declarationsThe locale mechanism can also be used to mark

user-supplied entity declarations with a specific locale.

Document templatesThe translations and user-specified entities are merged with text
in the document template files to produce the final SGML documents. The template
files can be localized.

Sentence construction rulesADLT uses a set of rules to construct descriptions of

ADL expressions out of the identifier translation fragments. These rules take the form
of a Prolog program that can be localized.

NLD Syntax

“nld” [NLD_Locale]1“{" (NLD_Declaration | NLD_EntityDeclaration)**“}"

<STRING_LITERAL>

Natural language information is attached to the ADL source with a natural language
annotation. An annotation is introduced with i@ reserved word, an optional locale
indicator and then a group of one or more NL declarations within braces. If the locale
indicator is present it acts as if the locale predicate is specified for every translation in
the group. For example,

nld“C’{
-

acts as ifocale(“C") is specified for each translation.

62 of 75

Version 1.2

NLD Annotations ADL 2.0 Language Reference Manual for C++

EXAMPLE 4.3

Each NL declaration is either a translation for a C++ or ADL identifier, or a declaration
for an SGML entity to be used for document generation.

The left hand side of each kind of declaration can contain a scoped name. In addition to
the standard C++ scoping, NLD also allows identifier names within a function member
to be specified. This makes it possible to give translation information for a method’s
formal parameters and local ADL bindings. This is useful for specifying translations

for identifier names from many classes or methods in one place, rather than forcing the
test engineer to distribute NL information throughout the specification files.

Using Fully Scoped Names

NLD_Declaration

NLD_Statement

NLD_TextAssignment

NLD_SelectPred

NLD_Predicate

NLD_PredefinedPred

NLD_UserPred

classC{
public:
inti;
voidf(inti);

nid{
C::i="translationfori”;
C::f(int)="translationforf(int)”;
C::f(int)::i="translationforiinf(int)”;

g

If a function name is overloaded at a particular scope it must have its signature fully
specified. Otherwise it can be abbreviated to omit the declarations for the formal
parameters and use only the notation “(*)".

The translation information is entered at the specified scope (refered to as “.”), so an
expression rendered at the current scope, or within an enclosed scope can find it.

NLD_ScopedName
([NLD_Locale] NLD_TextAssignment

I
“” [NLD_Locale] (NLD_Statement |“{* NLD_Statement * “}"))

= NLD_PropertyDeclaration | “%text” NLD_TextAssignment *;”

;= [NLD_SelectPred]“=" NLD_String
[“7“[* NLD_UserPred (“; NLD_UserPred)*“]"]

i= “[*NLD_Predicate (*“,” NLD_Predicate)**“]”

= NLD_PredefinedPred
| NLD_ParamNumber “[“NLD_UserPred (*“;” NLD_UserPred)*“]"

= n@u | n!n I ulocalen u(u NLD_LOCEl|e n)n

= <IDENTIFIER>

Version 1.2

63 of 75

NLD Annotations ADL 2.0 Language Reference Manual for C++

NLD_ParamNumber

NLD_ScopedName

NLD_MethodName
NLD_Signature

NLD_Scope

NLD_EntityDeclaration
NLD_PropertyDeclaration
NLD_PropertyName

NLD_EntityText

NLD_String

NLD_StringElem

= "$’<INTEGER_LITERAL>

| NLD_MethodName
| [NLD_Scope “::”] NLD_ldentifier

;= Name NLD_Signature

B= (] Type (4 Type <) ")
(13731

|

| Name["“:*"]

| NLD_MethodName

SGML entities can also be declared in an NL annotation. The text declared as the value
of the entity is not examined by ADLT, it is passed on to the SGML back end uninter-
preted and unmodified. For example,

&gen-ent="ageneralentity”;

declares a general entity with the specified value.

“&" <IDENTIFIER> “=" NLD_EntityText

NLD_PropertyName “=" NLD_EntityText

“O%description” | “%includes” | “Ypurpose” | “%seeAlso”

<STRING_LITERAL> (“<<” <STRING_LITERAL>)*

With the exception of the notation for string literals, the SGML syntax for entity names
and values is used. See the SGML Handbook for details. NLD specifies string literals
with a notation based upon the C++ language.

;= NLD_StringElem (“+” NLD_StringElem)*

<STRING_LITERAL> | NLD_ParamNumber

See the C++ grammar for descriptions of tlagne and Type nonterminals.

64 of 75

Version 1.2

Complete Grammar ADL 2.0 Language Reference Manual for C++

5 Complete Grammar

Here is the complete grammar for ADL for C++. Non-terminals in boldface are defined
in this document; other non-terminals are part of the C++ language definition.

There may be some discrepancy between this grammar and any particular C++ dialect,
for two reaasons: C++ is not standardized, and the ADLT system is not intended to sup-
port all of the language. Also, the fact that a C++ construct is parsed by this grammar
does not mean that construct will be processed by ADLT.

5.1 C++ productions

TranslationUnit ::= IncludeFileList [ADL_ClassDeclaration | TDD_AnnotatedDeclaration]
(NLD_Annotation)* <EOF>

IncludeFileList (IncludeFileDeclaration)*

IncludeFileDeclaration <SHARP_INCLUDE_FILE> (ExternalDeclaration)* <ENDINC>

DtorDefinition

| CtorDefinition

| FunctionDefinition
| ConversionDeclOrDef
I
I

ExternalDeclaration ::

Declaration

FunctionDefinition ::= DeclarationSpecifiers FunctionDeclarator (“;” | CompoundStatement)
| FunctionDeclarator (“;” | CompoundStatement)

LinkageSpecification ::= “extern” <STRING> (“{* (ExternalDeclaration)* “}" [“;"] | Declaration)

Declaration ::= DeclarationSpecifiers [InitDeclaratorList] “;”
| LinkageSpecification

TypeModifiers ::= StorageClassSpecifier
| TypeQualifier
| “inline” | “virtual” | “friend”

DeclarationSpecifiers ::= (TypeModifiers)+
[BuiltinTypeSpecifier (BuiltinTypeSpecifier | TypeModifiers)*
| (QualifiedType | ClassSpecifier | EnumSpecifier) (TypeModifiers)*]
| BuiltinTypeSpecifier (BuiltinTypeSpecifier | TypeModifiers)*
| (QualifiedType | ClassSpecifier | EnumSpecifier) (TypeModifiers)*

SimpleTypeSpecifier ::= (BuiltinTypeSpecifier | QualifiedType)

ScopeOverride ::= (“:") (<ID> [“<" TemplateArgumentList “>"] “::;")*
| (<ID>["“<" TemplateArgumentList “>"] “::")*

Version 1.2 65 of 75

Complete Grammar

ADL 2.0 Language Reference Manual for C++

Qualifiedld

FullyScopedId
PtrToMember

QualifiedType

FullyScopedType
TypeQualifier
StorageClassSpecifier

BuiltinTypeSpecifier

InitDeclaratorList
InitDeclarator
ClassHead

ClassSpecifier

BaseClause

BaseSpecifier

AccessSpecifier
ClassMemberList

MemberDeclaration

FullyScopedid
<ID> [“<" TemplateArgumentList “>"
“operator” Optor

ScopeOverride (<ID> [“<" TemplateArgumentList “>"] | “operator” Optor)

ScopeOverride “*”

FullyScopedType
<ID> [“<* TemplateArgumentList “>"

ScopeOverride <ID> [“<* TemplateArgumentList “>"
“const” | “volatile”
“auto” | “register” | “static” | “extern” | “typedef”

“void” | “char” | “short” | “int” | “long” | “float” | “double” | “signed”
“unsigned” | “bool”

InitDeclarator (“)” InitDeclarator)*
Declarator [“=" Initializer | “(* ExpressionList “)"]
(“struct” | “union” | “class”) [<ID> [BaseClause]]

(“struct” | “union” | “class”) (ClassMemberList | <ID> [BaseClause]
ClassMemberList | <ID> [“<" TemplateArgumentList “>"])

“." BaseSpecifier (“,” BaseSpecifier)*

[“virtual” [AccessSpecifier] | AccessSpecifier (“virtual”)]]
[ScopeOverride] <ID> [“<" TemplateArgumentList “>"

“public” | “protected” | “private”
{* (MemberDeclaration)* “}”

Declaration

EnumSpecifier [MemberDeclaratorList] “;”
ConversionDeclOrDef

DtorDefinition

DtorCtorDeclSpec SimpleDtorDeclarator ;"
CtorDefinition

(DtorCtorDeclSpec CtorDeclarator “;”)
FunctionDefinition

DeclarationSpecifiers [MemberDeclaratorList] “;”
FunctionDeclarator “;”

Qualifiedld “;"

66 of 75

Version 1.2

Complete Grammar

ADL 2.0 Language Reference Manual for C++

MemberDeclaratorList

MemberDeclarator

conversionDeclOrDef

EnumSpecifier
EnumeratorList
Enumerator

PtrOperator

CvQualifierSeq

Declarator

DirectDeclarator

DeclaratorSuffixes

FunctionDeclarator

FunctionDirectDeclarator

DtorCtorDeclSpec
DtorDefinition

CtorDefinition

CtorDeclarator
Ctorlnitializer

Superclassinit

AccessSpecifier *;”

NLD_Annotation “;"

MemberDeclarator [“=" <OCTALINT>]
(“,” MemberDeclarator [“=" <OCTALINT>])*

Declarator

“operator” DeclarationSpecifiers [“*" | “&”] “(* [ParameterList] “)”
[TypeQualifier] [ExceptionSpec] (CompoundStatement | “;")

“enum” (“{* EnumeratorList “}" | <ID> [“{* EnumeratorList “}")
Enumerator (" Enumerator)*
<ID> [“=" ConstantExpression]

“&" CvQualifierSeq
“*" CvQualifierSeq
PtrToMember CvQualifierSeq

[“const” [“volatile”] | “volatile” [“const”]]

PtrOperator Declarator
DirectDeclarator

|“(“ Declarator)" [DeclaratorSuffixes]
Qualifiedld [DeclaratorSuffixes]

(“[* [ConstantExpression] “]”)*
“(* [ParameterList] “)" [TypeQualifier | [ExceptionSpec]

PtrOperator FunctionDeclarator
FunctionDirectDeclarator

Qualifiedld “(* [ParameterList])" [TypeQualifier] [ExceptionSpec]

[“=" <OCTALINT>]

[“virtual” [“inline”] | “inline” [“virtual”]]

[TemplateHead] DtorCtorDeclSpec DtorDeclarator CompoundStatement

DtorCtorDeclSpec CtorDeclarator [ExceptionSpec]
(" | [Ctorlnitializer] CompoundStatement)
Qualifiedld “(* [ParameterList] “)”

“” Superclasslnit (“,” Superclassinit)*

Qualifiedid “(* [Expression] “)"

Version 1.2

Complete Grammar

ADL 2.0 Language Reference Manual for C++

DtorDeclarator
SimpleDtorDeclarator
ParameterList
ParameterDeclarationList

ParameterDeclaration

Initializer

TypeName
TypeNamelList

AbstractDeclarator

AbstractDeclaratorSuffix

TemplateHead
TemplateParameterList

TemplateParameter

Templateld
TemplateArgumentList

TemplateArgument

StatementList

Statement

[ScopeOverride] SimpleDtorDeclarator

“~" <ID> “(* [ParameterList])"

ParameterDeclarationList [[“"1"..)"] |

ParameterDeclaration (“,” ParameterDeclaration)*

DeclarationSpecifiers (Declarator | AbstractDeclarator)
[“=" AssignmentExpression]

“{* Initializer (“,” Initializer)* “}”
AssignmentExpression

DeclarationSpecifiers AbstractDeclarator
TypeName (, TypeName)

[“(* AbstractDeclarator “)” (AbstractDeclaratorSuffix)*
| (“[* [ConstantExpression] “]”)* | PtrOperator AbstractDeclarator]

“[* [ConstantExpression] “]”
“(* [ParameterList])"

“template” “<" TemplateParameterList “>"

TemplateParameter (“,” TemplateParameter)*

“class” <ID>
ParameterDeclaration

<ID> “<* TemplateArgumentList “>"

TemplateArgument (“,” TemplateArgument)*

TypeName
ShiftExpression

(Statement)*

Declaration
LabeledStatement
Expression *;”
CompoundStatement
SelectionStatement
IterationStatement
JumpStatement
TryBlock
ThrowStatement

68 of 75

Version 1.2

Complete Grammar

ADL 2.0 Language Reference Manual for C++

LabeledStatement

CompoundStatement

SelectionStatement

IterationStatement

JumpStatement

TryBlock

Handler
ExceptionDeclaration
ThrowStatement

AssignmentExpression

ConditionalExpression
ConstantExpression
LogicalOrExpression
LogicalAndExpression
InclusiveOrExpression
ExclusiveOrExpression
AndExpression
EqualityExpression
RelationalExpression

ShiftExpression

<ID> *” Statement

“case” ConstantExpression “:” Statement

TRl

“default Statement

“{* [StatementList] “}"

“if” “(* Expression “)” Statement [“else” Statement]
“switch” “(* Expression “)” Statement

“while” “(* Expression “)” Statement

“do” Statement “while” “(* Expression “)

r" “(* (Declaration | Expression ;" | “; ”)

[Expressmn 1%

"gOtO" <ID>*"
“continue” *;"
“break” “;”

“return” [Expression] *;

[Expression])" Statement

“try” CompoundStatement (Handler)*

“catch” “(* ExceptionDeclaration “)” CompoundStatement

ParameterDeclarationList |
“throw” [AssignmentExpression] *;

= ConditionalExpression ((“="|“*="|“/="] “%="| “+=" | “-

“_—n

“& " *A=" =") AssignmentExpression)

ConditionalExpression

[

LogicalOrExpression [“?” LogicalOrExpression “:” LogicalOrExpression]

ConditionalExpression

LogicalAndExpression (

“II" LogicalAndExpression)*

InclusiveOrExpression (“&&" InclusiveOrExpression)*

ExclusiveOrExpression (“|” ExclusiveOrExpression)*

AndExpression (“*" AndExpression)*

EqualityExpression (“&” EqualityExpression)*

RelationalExpression ((“1="|

) RelationalExpression)*

ShiftExpression ((“<"|“>" | “<="| “>=") ShiftExpression)*

AdditiveExpression ((“<<* | “>>") AdditiveExpression)*

Version 1.2

69 of 75

Complete Grammar

ADL 2.0 Language Reference Manual for C++

AdditiveExpression
MultiplicativeExpression
PmExpression

CastExpression

UnaryExpression

ADL_CallStateExpression

NewExpression

NewTypeld

NewDeclarator

DirectNewDeclarator
DeleteExpression
UnaryOperator

PostfixExpression

ArraySufix
ArgumentList
DotAccessSuffix
RefAccessSuffix

IdExpression

MultiplicativeExpression ((“+” | “-") MultiplicativeExpression)*
PmExpression ((“*” | “/" | “%”") PmExpression)*
CastExpression ((“.*" | “->*") CastExpression)*

“(* TypeName “)" CastExpression
UnaryExpression

“++” UnaryExpression

“--" UnaryExpression

UnaryOperator CastExpression

“sizeof” (“(* TypeName “)” | UnaryExpression)
NewExpression

DeleteExpression

PostfixExpression

ADL_BasicExpression
ADL_CallStateExpression

“@" UnaryExpression

[“:] “new” [“(* Expression)"] (“(* TypeName “)" | NewTypeld)
[ArgumentList]

DeclarationSpecifiers [NewDeclarator]

PtrToMember CvQualifierSeq [NewDeclarator]
DirectNewDeclarator

(“[* Expression “]")*
[“:"] “delete” [“[* “]"] CastExpression
AR R b

PrimaryExpression

(ArraySuffix | DotAccessSuffix | RefAccessSuffix | ArgumentList
PostDelncrement)*

SimpleTypeSpecifier ArgumentList

“[* AssignmentExpression “]”

“(* [Expression]")”

“” IdExpression [ArgumentList]
“->" |[dExpression [ArgumentList]

[ScopeOverride] (<ID> | “operator” Optor | “~" <ID>)

70 of 75

Version 1.2

Complete Grammar ADL 2.0 Language Reference Manual for C++

PrimaryExpression ::= TDD_ADLEXxpression
TDD_ADLnewExpression ArgumentList
IdExpression [ArgumentList]

Constant

“this”

“return”

<STRING>

ParentheizedExpression

ParentheizedExpression ::= “(* Expression “)"

Expression := AssignmentExpression (“,” AssignmentExpression)*

Constant ::= <OCTALINT>

<OCTALLONG>

<DECIMALINT>
<DECIMALLONG>
<HEXADECIMALINT>
<HEXADECIMALLONG>
<UNSIGNED_OCTALINT>
<UNSIGNED_OCTALLONG>
<UNSIGNEDDECIMALINT>
<UNSIGNEDDECIMALLONG>
<UNSIGNED_HEXADECIMALINT>
<UNSIGNED_HEXADECIMALLONG>

<CHARACTER>

<FLOATONE>

<FLOATTWO>

“true”

“false”

Optor == “new” [“[*"]"]

| “delete” [“[*“T"]
I e e A R R R N e e R e e e e R
IR R e R R R e R e R e e RS Ry
I e e e R e R R R e R RO MR
|

DeclarationSpecifiers [(“*" | “&”")]

ExceptionSpec ::= “throw” [“(“ [ParameterList] “)"]

5.2 ADL productions

ADL_ClassDeclaration ::= “adlclass” <IDENTIFIER> [ADL_SuperClass]
“{* [ADL_Prologue] [ADL_Epilogue]

Version 1.2 71 of 75

Complete Grammar

ADL 2.0 Language Reference Manual for C++

ADL_BehaviorDeclaration

ADL_BehaviorSpecification

ADL_BehaviorClassification

ADL_AssertionGroup

ADL_InlineDeclaration

ADL_Binding
ADL_SuperClass
ADL_Prologue
ADL_Prologue

ADL_Statement

ADL_InheritedSemantics

ADL_IfStatement

ADL_TryStatement

ADL_QuantifiedAssertion
ADL_Quantifier
ADL_DomainList
ADL_Domain
ADL_NamedParamList
ADL_NamedParam

ADL_Label

(ADL_InlineDeclaration | ADL_BehaviorDeclaration

)<Y

[DeclarationSpecifiers] FunctionDeclarator “{“ [ADL_Prologue]
ADL_BehaviorSpecification [ADL_Epilogue] (NLD_Annotation) *
DtorCtorDeclSpec CtorDeclarator [ExceptionSpec | “{* [ADL_Prologue]

ADL_BehaviorSpecification [ADL_Epilogue] (NLD_Annotation) *
“semantics” [ADL_BehaviorClassification] ADL_AssertionGroup

“I (“normal” “=" ADL_Expression *;”
| “abnormal” “=" ADL_Expression *;")* "

“(" (ADL_Binding)* (ADL_InheritedSemantics)*
(ADL_Statement) * (NLD_Annotation)* “}”

“inline” DeclarationSpecifiers FunctionDeclarator
“{* ADL_AssertionGroup “}’

“define” ADL_NamedParamList “with” [<ID> “="] ADL_Expression “;"
“"[“public”] <ID> (“) [“public”] <ID>)*
“prolog” CompoundStatement

“epilog” CompoundStatement

ADL_IfStatement
ADL_TryStatement
ADL_Assertion

<ID> “::" “semantics” " ;"

“if” “(* ADL_ImplExpression “)” ADL_AssertionGroup
[“else” (ADL_AssertionGroup | ADL_IfStatement)]

“try” ADL_AssertionGroup
(“catch” “(* ExceptionDeclaration “)” ADL_AssertionGroup

)+
ADL_Quantifier “(* ADL_DomainList “)” ADL_AssertionGroup
“forall” | “exists”

ADL_Domain (“” ADL_Domain)*
ADL_NamedParam *“:” ConditionalExpression
ADL_NamedParam (“,” ADL_NamedParam)*
DeclarationSpecifiers Declarator

(<ID>*“")*

72 of 75

Version 1.2

Complete Grammar

ADL 2.0 Language Reference Manual for C++

ADL_Tags

ADL_Assertion

ADL_Expression
ADL_ImplExpression
ADL_ImplOp

ADL_BasicExpression

ADL_ThrownExpression

5.3
TDD_AnnotatedDeclaration

TDD_ClassDeclaration

TDD_UseDeclaration

TDD_ClassBodyDeclaration

TDD_FieldDeclaration

TDD_DatasetDeclaration

TDD_FactoryDefinition

TDD_TestDirective

TDD_DatasetDomain

TDD_DatasetLiteral

i= [<ID> (%) <ID>)+]’

= [ADL_Label][ADL_Tags]

(ADL_Expression | ADL_QuantifiedAssertion) *;”

= ADL_ImplExpression
== ConditionalExpression [ADL_ImplOp ConditionalExpression]

o Mooy?

=" | P u<:>n

= “normal”

“abnormal”
ADL_AssertionGroup
“unchanged” ArgumentList
ADL_ThrownExpression

= “thrown” “(* TypeNameList “)"

TDD Productions

::= [TDD_UseDeclaration] TDD_ClassDeclaration

“tddclass” <IDENTIFIER>
“(* (TDD_ClassBodyDeclaration)*“}"

= (“use” <ID> ")+

::= TDD_DatasetDeclaration
TDD_FactoryDefinition
TDD_TestDirective
TDD_FieldDeclaration
FunctionDefinition

DeclarationSpecifiers Declarator “=" AssignmentExpression
(“) Declarator “=" AssignmentExpression)* *;"

= "dataset" ADL_NamedParam "="TDD_DatasetExpr ";"

—

“relinquish” “(* ParameterDeclaration “)” CompoundStatement]

[<ID>™"]"test" [“forall”]

"factory" DeclarationSpecifiers FunctionDeclarator CompoundStatement

“(“ [TDD_DatasetDomain (“;” TDD_DatasetDomain)*] “)” Statement

ADL_NamedParam (" |
| TDD_DatasetExpr

“=") TDD_DatasetExpr

= “{“[TDD_DatasetMember (*“) TDD_DatasetMember)*[“"1]"}

Version 1.2

73 of 75

Complete Grammar ADL 2.0 Language Reference Manual for C++

TDD_DatasetMember

TDD_DatasetExpr

TDD_DatasetConcatenationExpr

TDD_DatasetSingleton

TDD_FactoryCall

TDD_ADLEXxpression

TDD_ADLnewExpression

ConditionalExpression [“.."” ConditionalExpression]

TDD_DatasetConcatenationExpr (“+” TDD_DatasetConcatenationExpr)*

::= TDD_DatasetLiteral

TDD_FactoryCall
TDD_DatasetSingleton

<ID> | Constant
Qualifiedld “(* [TDD_DatasetExpr (“,;” TDD_DatasetExpr)*]*)”
“ADL” “(* PrimaryExpression “)”

“ADL_new" IdExpression

5.4 NLD productions

NLD_Annotation ::=
NLD Locale ::=

NLD_Declaration ::=

NLD_Statement ::=

NLD_TextAssignment =

NLD_SelectPred ::=

NLD_Predicate :=

NLD_PredefinedPred ::=
NLD_UserPred ::=
NLD_ParamNumber ::=

NLD_ScopedName :=

NLD_MethodName

NLD_Signature

NLD_Scope

“nld” [NLD_Locale]*“{" (NLD_Declaration | NLD_EntityDeclaration
<STRING_LITERAL>

NLD_ScopedName
([NLD_Locale] NLD_TextAssignment

“” [NLD_Locale] (NLD_Statement | “{* NLD_Statement * “}"))
NLD_PropertyDeclaration | “%text” NLD_TextAssignment *;”

[NLD_SelectPred]“="NLD_String
[“7“[*NLD_UserPred (“; NLD_UserPred)*“]"]

“[* NLD_Predicate (“) NLD_Predicate)**“]”

NLD_PredefinedPred
NLD_ParamNumber “[* NLD_UserPred (“,” NLD_UserPred)**]"

n@n | n!n | ulocalen u(u NLD_LOC3|e n)n
<IDENTIFIER>

“$"<INTEGER_LITERAL>

NLD_MethodName
[NLD_Scope “::”] NLD_Identifier

Name NLD_Signature

¢ (" | Type (*7 Type) Y

130

i

74 of 75

Version 1.2

Complete Grammar

ADL 2.0 Language Reference Manual for C++

NLD_EntityDeclaration

NLD_PropertyDeclaration
NLD_PropertyName
NLD_EntityText
NLD_String

NLD_StringElem

Name [“::*"]
NLD_MethodName

“&” <IDENTIFIER> “=" NLD_EntityText
NLD_PropertyName “=" NLD_EntityText
“Y%description” | “%includes” | “Ypurpose” | “Y%seeAlso”
<STRING_LITERAL> (“<<" <STRING_LITERAL>)*
NLD_StringElem (“+” NLD_StringElem)*

<STRING_LITERAL> | NLD_ParamNumber

Version 1.2

75 of 75

	ADL 2.0 for C++ Language Reference Manual, Version...
	1 Introduction
	2 Semantics Annotations
	2.1 Describing Semantics Of Interface Operations
	2.2 ADL Syntax
	2.2.1 Assertion Groups
	2.2.2 ADL Specific Expressions
	2.2.3 Quantified Assertions
	2.2.4 ADL If Statement

	2.3 Behavior Specification
	2.3.1 The Call State Operator
	2.3.2 Specification of a Constructor
	2.3.3 Specification Of An Inherited Method
	2.3.4 Bindings
	2.3.5 Try/Catch Specifications
	2.3.6 Thrown Expressions
	2.3.7 Behavior Classification
	2.3.8 The Exception Operator

	2.4 Inline Procedure Declarations
	2.5 Prologues and Epilogues

	3 Test Annotations
	3.1 Concepts
	3.1.1 Re-write
	3.1.2 Dataset
	3.1.3 Factory
	3.1.4 Checked Function
	3.1.5 Test Directives
	3.1.6 Assertion
	3.1.7 Importation

	3.2 Annotated TDD / C++ Syntax
	3.3 General Syntax & Examples
	3.3.1 Simple Datasets and Data Construction
	3.3.2 Compound Datasets : Factories, Concatenation...
	3.3.3 Void Datasets
	3.3.4 Dataset Elements Evaluation
	3.3.5 Dataset Constants
	3.3.6 Test Directives
	3.3.7 Void Datasets Use
	3.3.8 Advanced Examples

	4 NLD Annotations
	4.1 Concepts
	4.2 Syntax and Semantics
	4.2.1 Simple Data Member Translation
	4.2.2 A Simple Function Member Translation
	4.2.3 Out Of Line Translations
	4.2.4 Translations For Overloaded Methods
	4.2.5 Priorities
	4.2.6 Using semantics And nld Blocks
	4.2.7 Shadowing or Overriding A Translation
	4.2.8 Overriding a Non-Local Translation
	4.2.9 Invocation Translation

	4.3 NLD Predicates
	4.3.1 Pre-defined Predicates
	4.3.2 User-defined Predicates

	4.4 NLD and SGML
	4.4.1 Reference Manual Document

	4.5 NLD for TDD
	4.6 NLD and Localization
	4.7 NLD Syntax

	5 Complete Grammar
	5.1 C++ productions
	5.2 ADL productions
	5.3 TDD Productions
	5.4 NLD productions

