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Change Log

Release 1.1

2. The Driver

2.2: Added mention that NLD files are compiled before any other files.
2.3: Updated command line options and environment variables, removed file suffixes.
2.4: Added section on exit status.

3. Abstract Syntax Tree Design

3.2.1.4: Added note indicating that delegation is not implemented.
3.2.1.5: Added note indicating that externalization is not implemented.
3.3.2: Indicated that SimpleNode extends ADLNode.

4. Input Language Parsers

4.3.2: Added check of ADL() and ADL_new constructions.

6. Documentation Generation Architecture

6.1.6: TBD resolved - the documentation generation process does not use any AST node
property.

6.2: Added section describing the general architecture of the documentation generator.
6.3: Added TBD section describing the NL Engine.

6.4: Added section describing the NL Prolog rules.

6.5: Added TBD section on document templates.

7. Runtime Architecture

7.7.2: Fixed some minor error in description and examples of use of tdd_assert.

7.8.1: Updated required version number for JavaCC.
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Release 1.0

2. The Driver
2.2: Added architectural design of the driver module.

2.3: Revised options syntax. Added .tdd suffix. Revised C++ file suffixes. Added the extension
filter related options. Added default command line when no option is specified. Added
configuration file example.

3. Abstract Syntax Tree Design

Removed all references to node additive state.
3.1.1: Added justification to the AST centric design.
3.1.2: Removed “Node state” section.

3.3.2.2: Updated list of basic operations.

4. Input Language Parsers

Added section 4.1.3 on “Extension Parser”.

4.3: TBD resolved - pre-processor directives that are considered are completely described in
new section 4.3.1 “C/C++ pre-processing”.

4.3.2: Revised list of generic semantic checks.
4.3.2.2: TBD resolved - list of C++ specific semantic checks.

4.3.3.2: Added reference to ANSI C++ standard for a description of the C++ type
compatibility algorithm.

4.3.3.3: Updated type synthesis description.

4.3.3.4: Updated type representation.

4.3.5: TBD resolved - description of the TypeCheck visitor added.

4.4.2: Updated package names.

4.4.3.6: TBD resolved - the credentials management is not implemented in this release.
5. Code Generation

5.2.1.1: Updated the ACO blocks section.
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5.2.1.2: Updated the transformation patterns.

5.2.2: TBD resolved - added description of TDD node transformations.
5.2.3: TBD resolved - NLD nodes will probably never be transformed.
5.3.1: Updated declarations of generic unparser fields and methods.
7. Runtime Architecture

7.5: Updated examples.

7.6.1.1: Added missing methods and fixed some others.

7.6.1.2: Added mention of availability of test reporting methods.
7.6.1.3: Added methods ADL_* range.

7.6.3: Added ADL _setblock function.

7.7.2: Added footnote about availability of bool type. Removed tdd_fail, tdd_Abort,
tdd_adl_passed and tdd_get_result methods. Added tdd_skip and infoline.

7.7.4.3: TBD resolved - removed ADL_FORK mode which is not necessary.
7.8.1: Updated ADLT compilation environment.

7.8.3: Updated test build environment.

Release 1.0 Delta

1. Introduction

1.3: Fixed transformation from IDL.

2. The Driver

2.2: TBD resolved - implementationof the driver requires at least a C wrapper.

2.3: Updated list of options. TBD resolved by adding the list of environment variables.
4. Input Language Parsers

Added description of semantic checks and symbol table management.

4.3: TBD resolved: list of semantic checks added in sections 4.3.1, 4.3.2 and 4.3.3.
4.3.1.2: Added TBD for C++ specific checks.
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4.3.4: Added TBD for missing description of TypeCheck visitor.
4.4.3.6: Added TBD for improvement of the credential management.
5. Code Generation

5.2: Completely revised with description of ADL AST transformation. Added TBD for TDD
and NLD AST transformation.

5.3.2: Revised comments processing section with arguments for not preserving comments in
the generated code.

7. Runtime Architecture

Added section 7.8 describing how to work under the TET test harness and consequences for
the ADLT system.

7.5: Fixed some examples

7.6: Added description of Java, C++ and C runtime internals.

7.7: Fixed result code names.

7.7.2: Fixed some typos.

7.7.4.3 Removed useless variables. Added TBD for design of ADL_FORK support.

Release 1.0 Gamma

1. Introduction

1.2.2: Relaxed constraint on extensibility of the ADLT system.

1.5: Reverted to using SWI Prolog Interpreter.

2. The Driver

Major simplification of the design of this module.

3. Abstract Syntax Tree Design

Updated to JavaCC version 0.7 pre 5 (signature of some methods changed).
4. Input Language Parsers

4.2.1: TBD resolved by adding a reference to JavaCC on-line documentation.
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4.4: More detailed description of how to satisfy external references for the different bindings.
Added TBD for complete list of semantic checks. Added TBD for processing of inlines and
builtins in C and C++.

4.4.1: Added TBD for complete design of the symbol table.

4.4.2: Added TBD for use of the Type interface.

5. Code Generation

5.1: Added description of the Visitor pattern to be used for most operations on ASTSs.

5.3: Complete revision of the design of the unparsing operation according to the Visitor
pattern and the new version of JavaCC tools.

6. Documentation Generation Architecture
6.7: Added TBD for property names and types.
7. Runtime Architecture

Incorporated changes to the runtime system description to reflect a more TET-oriented
direction for the tools.

Release 1.0 Beta

The document was completely rewritten for this release.

Release 1.0 Alpha

Initial release.
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Introduction ADL 2.0 Translation System Design Specification

Chapter 1 Introduction

1.1 This Document

This document describes the architecture of the ADLT translation system, version 2.
The architecture is described by a mixture of prose descriptions, diagrams (some using
the Unified Modeling Language of Booch, Jacobson, and Rumbaweglp fragments,

and gesign patterns as described in Alexanaled in Gamma, Helm, Johnson and Vlis-
sides.

The purpose of the document is to enable the reader, a skilled programmer with knowl-
edge of the Java programming language, to understand the ADLT system; to be able to
read the code of the system, to find the relevant parts of the system when seeking the
answer to a specific question, and perhaps even to program a new module to add to the
system.

This document is a work in progress; until the ADLT2 system is finished, the informa-
tion in this document is subject to revision.

1. Booch, G.; Jacobson, I.; and Rumbaugh, J.: "The Unified Modeling Language for Object-Ori-
ented Development,” Documentation Set Version 0.91 Addendum UML Update, September
1996.

2. Christopher AlexandeA Pattern Language, Oxford University Press, 1979. ISBN 0-19-501-
919-9.

3. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlisfidegn Rtterns: Elements
of Reusable Object-Oriented Soétwve, Addison Wesley, 1994. ISBN 0-201-63361-2.
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1.2 Design Goals

The goal of the ADLT2 design is to build a code transformation engine out of separable
parts.

1.2.1 Tasks
The task performed by ADLT is to translate one kind of program text—specification
text of the various kinds of specifications—to another—source text for the targeted exe-
cution environment, and SGML source for the documentation.
The ADLT system also includes the runtime libraries and document templates required
to make use of the generated code.
ADLT exists in several versions, one for each target language. Each of those versions is
independent; it imot a requirement that specifications for the various target languages
should interoperate in any way.

1.2.2 Constraints
ADLT2 must be at least as powerful as ADLT1,; the proof of this is a processor that
translates ADLT1 specifications to ADL/C ADLT2 specifications.
It must be possible to write a GUI for ADLT, although writing such a GUI is not part of
the core deliverables.

1.2.3 Desiderata

Given the variety of specifications parsed, and the requirement that parties outside the
development team be able to add modules, it is desirable to minimize the dependencies
between modules of ADLT. In particular, the use of JavaBeans™-like introspection to
discover processing modules at runtime will be convenient.

Sharing modules between target languages, or code between modules if they must dif-
fer, is desirable.
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Overview

1.4

The core of ADLT2 is a language transformer. This transformer reads in programs in
one programming language and writes programs in another, similar programming lan-
guage. The particular transformations performed by the ADLT2 core engine are:

* Annotated Java ->  Java

e Annotated IDL/Java -> Java

* Annotated C++ > C++

* Annotated C > C

¢ Annotations -> natural language documentation

The annotations allowed are described in the ADL language reference manuals for the
various target languages. In short, they may be categorized as semantics annotations,
which specify the behavior of methods and functions; test annotations, which specify
the test procedure for functions, methods, and collections thereof; and documentation
annotations, which affect the translation of other annotations into natural language doc-
umentation.

In addition to the core translation engine, the ADLT2 system includes a runtime system
for controlling and reporting test results, and GUI tools for controlling the translation
process, for managing test libraries, and for running tests. Integration between the parts
of the translation engine is performed by a central control unit, and data is passed
between the parts in a uniform format; this format also has an external representation so
that it can be exchanged with external programs.

This document will give some details of the architecture of the ADLT2 system software,
with emphasis on the core engine.

The Parts of ADLT

All of the transformations performed by the ADLT2 core engine may be described by
the general pattern: srcl -> src2, where srcl and src2 are programs in (probably differ-
ent) programming languages. This pattern of operation is implemented by the code pat-
tern: parser->xform->unparser, where parser turns source text into an abstract syntax
tree (AST), xform is a transform from one AST to another, and unparser generates
source text from an AST.

The ASTs used in ADLT arannotatedthe tree holds not only the strict syntax tree,
which is a reflection of the grammar of the formal language represented, but also is
annotated with contextual information like the type of variables, and with derived infor-
mation like the natural language description of the variables.

The transform pattern is implemented by three modules: a parser module that reads
source text and creates the AST, a transformer module that creates a new transformed
AST based on the input AST, and an unparser that writes the source text corresponding
to the transformed AST.
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1.4.2

1.4.3

The action of these modules is coordinated by a driver module, which implements an
internal model of the dependencies among the various files known to ADLT. That inter-
nal model is also used to generate parts of the test program, especially the make files
that control test program compilation.

Parsers

There are four parsers required for ADLT2; one for each of the target languages. Each
parser accepts the full range of annotations for the languages: semantic annotations, test
annotations, and documentation annotations. The user may of course divide the annota-
tions into separate files if so desired.

Modules

The heart of the work done by ADLT is in the AST transformers; parsing and unparsing
are well-understood problems. The overall transformations required may be classified
into transformers for three kinds of annotations on the basic source program:

* semantic annotations -> checking functions
¢ test annotations -> test drivers
¢ NL annotations -> SGML source

In fact these annotations are layered; the semantic annotations ornament the basic syn-
tax of the target language; the test annotations ornament the semantics AST; the NL
annotations ornament the test AST. The degree of interdependency is not constant; the
semantic and test annotations depend heavily on the target language AST, while the
dependency of the test tree on the semantic tree is minor; the NL tree depends on both
the semantic and the test tree.

These relationships could be expressed using an interlaced hierarchy of classes. How-
ever, this would lead to a inflexible degree of interdependency between the data struc-
tures; derived types would have to know all details of the base type. ADLT1 was built
using a shadow mechanism that freed us somewhat from this constraint. ADLT2 will be
built with a general AST representation mechanism, which will be used to represent all
the different ASTSs, as instances of the same data type. The advantage is that the tree
transformers can ignore details which do not affect them.

AST Representation

The central representation problem in the construction of ADLT2 is the representation
of the ASTs. In general, AST transformers will need to match certain parts of the tree
that they understand while leaving other parts untouched.

In addition, the ASTSs for the several target languages will have a great deal of common-
ality, for example in the expression syntax, while not being identical. In order to effi-
ciently support all four target languages, it will be necessary to maximize code re-use.
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With these design criteria in mind, we have determined to use a common data type to

represent all the various ASTs. The distinction between the different kinds of AST will

not be reflected in a formal data type, but will be a difference in instantiation of a single
data type.

Technology

ADLT2 will be built in the Java programming language. Our experience has been that
Java programs are much faster to develop and much less error-prone than equivalent
C++ programs, due to automatic memory management, to a consistent implementation,
and to a sounder language design.

We will make use of two programing tools developed by members of the SunTest team:

a parser generator, used to implement the various parsers required, and an AST genera-
tion and management tool. These tools replace one of the external tools used in the
development of ADLT 1, which proved a source of portability and maintenance head-
aches.

ADLT2 will make use of the reflection features introduced into Java with the 1.1
release.

ADLT 2 will also make use of the SWI Prolog Interpreter. This freeware tool has

proven to be very resilient and portable in recent years, and the natural language transla-
tion tools from ADLL1 rely upon it. We will extend these tools, but will not move them
away from their dependence upon this externally-developed tool.
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Chapter 2

2.1

The Driver

Introduction

2.2

This chapter describes the general functionality of the ADL Translator. The Translator is
intended to take a variety of different inputs and transform them, generating a variety of
outputs. Each of these inputs and outputs, as well as the transformation mechanisms
involved, are driven by a single driver program. This chapter describes how the driver
program operates. No description of the transformation mechanisms involved is made
here. Other chapters deal with some of these elements in more detail.

General Architecture

The diagram in Figure 1 depicts the general architecture of the system. In particular, it

shows that although the ADLT system will be perceived by the user as a single tool, it is
made of several compilers acting on specifications written in a specific language binding
flavor. These compilers implement the transformation mechanisms. Actually, the single
tool perceived by the user is the driver. This module allows the selection and operation
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of the appropriate compiler based on user’s directions and the type of inputs. It imple-
ments the control of the ADLT system as described below.

/ ADLT \

ADL
ADL/Java Compil@
/—\ A p ACO/ACF
D
r /VCADL/IDL Compiler>
DD \I, —— - Test drivers
e
r \CADL/C++ CompileD
U\ . » Documentation
NLD
CADL/C Comp|ler> Java runtimé 1D

= J

FIGURE 1. General Architecture of the ADL Translator System

Since the Driver module needs to access some environment variables it cannot be writ-
ten in Java Or at least it has to be wrapped over by another program. For greater porta-
bility and simplicity this wrapper program is developed in C.

The general architecture of the Driver module is depicted below.

The C wrapper prograidit

* reads in environment variables whose name matdkiek_“<name>" and converts
them as Java propertieadi.<lowercase name> ”;
e extends the class path with the standard directories for ADLT;

¢ builds a Java command to invoke the main method didlie class and executes it
with system()

TheAdlt class:

* loads configuration files: system wide and local or user defined;
e parses command line options;

1. Starting from version 1.1 Java has deprecated the getenv() method which was used to access
environment variables. Java developers are rather encouraged to use properties.
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invokes compiler
adlt Adlt

(abstract)
IADLCompiler

C program

JCompiler I CPPCompiler I CCompiler I

FIGURE 2.

2.3

General architecture of the Driver module

* asksADLCompiler to create a compiler based on the selected binding language;
¢ invokes the compile method of the compiler on each input file.

NLD files are compiled before any other file, and only when the documentation genera-
tion has been requested (see below).

It also provides other modules with a set of static methods to determine if verbose mode
has been selected, and what kind of output has been requested by the user.

The ADLCompiler class implements an abstract factory which creates a compiler
according to the selected binding language (metteeeCompiler ). It also provides

the language dependent compilers with a method nget&tream which returns the

input stream for a given file, possibly pre-processing the file through an extension filter.

The language dependent compilel€gmpiler , CPPCompiler andCCompiler
classes):

* create all the required modules: parser, translators, unparser;
e compile the input file (methatbmpile ).

Control

The operation of ADLT is controlled in general by the command line, which is used to
specify user’s directions as well as inputs and outputs. More detailed control is available
by the use of environment variables, which can be used to set the search path used when
looking for a required input, to select the user’s locale for generated documentation and
to set error and warning options.

The general format for the command line is given below.

adlt[-v][lang_opt][doc_opt][output_opts][env_opts]\
<input>...
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The order of the various options is not important.
The-v option allows to operate the ADLT in verbose mode.

Thelang_opt indicates which specific compiler to use. Possible values are
cpp, -java (default) andidl

Thedoc_opt option is used to turn on the generation of the documentation (which is
off by default). The generated documentation uses the SGML format based on the
DocBook DTD version 3.0 from the Davenport Group (http://www.ora.com/davenport).
Other formats can be derived from the SGML format by applying DocBook filters (See
“Documentation Generation Architecture” on page 97.). The only possible value for this
option is-doc .

Theoutput_opts indicate which kind of output to generate. Specifically, the suffix

for each type of input is also used as the switch to request output of that type. In fact the
suffix for an input determines the potential outputs that the ADLT can generate. The
table below summarizes this first level of control.

Input Suffix  [Output Type Dutput Option
.adl . ACOJ/ACF -aco | -acf
.tdd . Test case classes -tc
. Test data classes -td
. Makefile [-dev] -mk
. TET scenario [-noinc ] -scen

When nooutput_opts  is specified, all possible outputs corresponding to the given
inputs are generated. On the contrary,diiput_opts  can be used to specifically
reguest one or more of the possible outputs corresponding to the given inputs. This is
illustrated by the third column in the table abowtput_opt s can also take another
value:-nocode which specifically requests the compiler to generate no code. This is
useful when only the documentation has to be generated.

The-dev option is provided for the sake of test suite developers. It requests that the
ALDT generates makefile dependency rules between a generated output and its corre-
sponding input, like, e.g., dependency between an ACO and the ADL source file.

The-noinc  option indicates that the generated scenario file will not be included in a
test suite scenario file.

Files with suffix.nld can be passed as input to provide natural language definitions for
the symbols described and used in the test specifications.

Finally, theenv_opts may be used to override some settings defined in environment
variables. These include the general ADLT configuration-filenfig <config
file> | the search path used to find included inpinispath <path> option, the
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preferred locale for the uselgcale <locale> option. These options override the
settings of their equivalent environment variables whose names are made of the option
names capitalized with a\DL_" prefix prepended, e.gADL_INCPATH

Other environment variables may not be overridddd.2HOMEvhich is mandatory

and references the directory where the ADLT has been installdd,C_FILTER

and ADL_CPP_FILTER which are useful for the C and C++ language flavors to
define the pre-processor commaAB®L_ EXTENSION_FILTERwhich defines the
command to use as an extension filter to pre-parse the input files (like MRI's extended
TDD parser), and ADL_PROLOG which defines the Prolog interpreter to use if the user
wants to supply its own instead of the on&ADL2HOME/bin.

Two other environment variables defined for TET may be required for ADLT operation:
TET_ROOTandTET_SUITE_ROOTTET_ROOTeferences the directory where TET
has been installedET_SUITE_ROOTdefines the top level directory of the test suite

to build if it is not belowTET_ROOT

The following examples are legal ADLT invocations:

adlt-cspec.adl
adlt-doc-nocode spec.adlj

The first one requests all possible output (the default) from the input “spec.adl” written
using the C flavor. The second requests just the output of type documentation, in SGML
format, for a java flavor of a specification file.

When no option is passed on the command line and no specific file suffix is used, the
default values assumed are equivalent to the following command:

adlt-java-aco-tc-td-mk-scen-configadit.rc
<input>...

where the fileadlt.rc ~ contains the default values for the other variables, just like the
system wide configuration fiRADL2HOME/AdIt.rc  which is systematically loaded
before any other configuration settings and which contains definitions like:

adl.incpath=.:..
adl.c_filter=gcc-E-xc-
adl.cpp_filter=gcc-E-xc++-
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2.4 Exit Status

The ADLT compiler indicates the result of its operation to the environment with an exit
status. The following values are used to indicate the result of the compilation:

Value Status

0 No compilation error

1 Documentation generation error

2 Compilation or code generation error
10 No ADL2HOME

11 Incorrect command line

12 Unknown or unreadable file

100 Internal compiler error (program error)
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Chapter 3

3.1

Abstract Syntax Tree
Design

Introduction

3.11

This section describes the abstract syntax tree (AST) mechanisms of ADLT2.

The AST is a central data structure in ADLT2. Itis constructed from a set of nodes
linked together in interesting ways. The content of the nodes is represented as proper-
ties.

The implementation of the AST relies upon certain Java 1.1 features, specifically class
reflection for accessing certain properties, and serializability for persistent storage and
externalization.

Tree construction

The inputs to ADLT?2 are specifications of the interface under test. The specifications
are written in a combination of ADL, TDD, NLD and target language expressions. A
parser takes the specification and constructs an initial tree representing the input.

To begin with only the structure of the input is represented in the AST. Trees for other
representations and properties derived from the interactions of the trees are added as
ADLT2 processing continues.

The AST is a collection of data that is shared between various clients. For example, the
code generation is an AST client that attach properties to the AST nodes and build new
nodes to represent information computed from them.

The AST is designed as data rather than a set of procedures because there are several
different kinds of operations that must be performed on it. It is better to keep those
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3.1.2

3.1.3

actions in external objects rather than in methods on the AST objects so that the AST
implementation can remain stable as the actions are developed. This scheme is
described by Gamma & Al. in their book Design Patterns as the Visitor Pattern.

Nodes

Nodes are linked together to represent the relationships between them. The information
in a node, and the links it has to other nodes are represented as node properties.

Nodes represent syntactic entities in the input and output languages. For example, there
are AST nodes to represent input language features such as assertions, test directives,
and declarations; and there are nodes for output features such as loops, declarations and
block statements.

One important kind of link between nodes is the parent-child relationship. Every node,
except the root node has a parent node accessiljjegdgtParent() method.

Every node has an array of child nodes accessibig@etChild() method. The
children in this array are part of the fundamental syntax structure of the node and are
added as part of the JJTree tree generation process (see below). The chidren array is
null  for leaf nodes.

Properties

Each node in the AST contains a set of properties. A property is a per-node mapping
from one Jav®bject (the key) to anothedbject (the value). Itis a general mecha-
nism that can be used to represent a link between arbitrary objects. The key is often a
string interpreted as the name of the property.

Some properties are provided by all nodes while other properties that a particular node
provides are determined by the type of the node and by the data it is representing. For
example, all nodes have a “parent’ property, but not all nodes have a “type” property.
Each piece of interesting information about a node is available as one of its properties.
Some information can also be accessed via native Java mechanisms where convenient or
where performance is critical.

There are three basic kinds of property distinguished by their implementation scheme:
general table properties are stored in an association table, field properties are an inter-
face to the node object’s fields; and lazy properties are an interface to some of the node
object’'s methods. A table entry for a property is always preferred over a method or field
representation. It is an error to have both a method and a field representation for the
same property.

Lazy properties provide a mechanism for parts of the AST to be produced in a demand-
driven, lazily evaluated fashion. Such getter methods should be functions, and return
the same property value every time they are called.

Some properties are indexable. They are a collection of values that can be accessed by
an integer index. An indexable property can also be accessed as a single value, in which
case it is represented as an array.
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3.2

Requirements

3.2.1

3.2.11

3.2.1.2

3.2.13

3.2.14

This section describes the requirements that the AST design must meet. It is organized
as a set of fundamental AST operations and overall features.

Despite its name, the AST is really a directed graph and not a tree. There are links
between nodes in both forward and backward directions (for example, the parent-child
link pair). However, for reasons of tradition we’ll persist in referring to it as a tree.

The graph is a forest of trees that partially share subtrees. Subtrees are shared because
we have several versions of and uses for a subtree, and these versions have more com-
monalities than differences. In particular, properties of nodes are shared between trees
of different structure.

As a design pattern, we treat ASTs as monotonic. This is so several trees can share
structure without danger. Most properties are additive and consequently they are added
to a node but should not be subtracted nor modified (unless we can prove that no one
will be able to tell that we have changed them). Trees are altered by copying and then
modifying nodes that must have their properties changed rather than altering the nodes
in place.

Basic operations

There is a small number of fundamental operations that the AST must support. More
complex tree manipulations can be built out of these basic actions.

Node construction
Some nodes are created as the source parser reads the specification and builds the initial
AST, and other nodes are created during the transformation phases of ADLT processing.

Node copying

Copying a node N from an existent node C means that all properties of C that are not
already properties of N have their current values added as properties of N. This means
that lazy properties have their values frozen in the new node. This should be safe
because lazy properties are supposed to be implemented by function methods.

Adding and retrieving properties

Any Java object can be added as the value of a property of a node. Any Java object can
be used as the key for a property. A common case of this is objects looked up by a name
represented by a Jagaring  object.

Lazy properties have their values evaluated on demand when they are required. An AST
client can test for the existence of a property and retrieve the value of a property. A list
of all the currently defined properties of a node can also be obtained. The list is repre-
sented by ainumeration

Delegation

A node N can delegate to another node D for getting property values. This means that if
N does not have a local value for a requested property it will attempt to get the value
from D. D itself can delegate to another node for the property. Delegation is only per-
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3.3

formed for getting the value of a property. An attempt to set the value of a delegated
property is equivalent to setting a local table property. The new property value is set in
N, and does not change the value of the property in D or its own delegates. This local
property will now hide the delegated property.

A node delegates to another node by settingelegate property to the desired dele-
gated node.

Delegation is not currently required. It is therefore not implemented.

Externalize

Several external representations of the AST are required. The most complete is pro-
vided by the Java 1.1 serialization interface which allows a reader to reconstruct the
entire tree. Less complete external formats include reporting information for the runt-
ime, debugging output, and skeleton localization tables.

Nodes implement the Java Berializable interface. There are rimnsient

fields, and naeadObject  orwriteObject methods; the default system imple-
mentations are appropriate. Later evolution of the node design might require these
methods to be customized, or for theernalizable interface to be implemented.

The Java 1.1 serialization provides a mechanism for persistent storage of the AST as
well.

Externilization is not currently required. It is therefore not implemented.

Implementation

331

3.3.2

JavaCC and JJTree

The parsers for the input languages are built using the tools JavaCC and JJTree. JavaCC
is a parser generator that produces a top down recursive descent parser from a grammatr.
JJTree is a companion tool that takes a JavaCC grammar annotated with node informa-
tion and produces another grammar decorated with actions to build a parse tree from the
nodes.

JJTree node objects must implement a simple interface that allows child nodes to be
attached to parent nodes. The actions that JJTree inserts into the grammar use this inter-
face to create nodes and to link them together to form the initial parse tree.

Nodes

In addition to the requirements that JJTree places on nodes, they must implement the
functionality described in the Requirements section above.

Each node is represented as a Java class object, of a type that inherits 8om the
pleNode type, which itself inherits from theDLNode type. Distinct node types are

used as a means to providing methods to implement lazy properties and field properties,
and for type-specific operations such as externalization and unparsing.
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Here is a description of the methodsRimpleNode objects:

JJTree methods

The following methods must be implemented by nodes designed to work with JJTree.
Reasonable default implementations are provided iSif@leNode supertype.

Often the only methods that need to be customized for a particular AST node class are
jitClose () andjjtCreate ().

The JJTree methods are intended to be called only by JJTree actions. The main excep-
tion to this igjtGetChild () which is often called within the implementation of

jitClose () so that the child node can be added as a more appropriately named prop-
erty.

static NodejjtCreate(intid)

The actions inserted in the grammar by JJTree call this factory method to create a new
node. Its argument is an identifier that was specified in the grammar to indicate what
kind of node is required. The method can use this identifier to determine the Java type
for the node. Static methods are not inherited in Java, so every AST node type must
provide its own implementation of this method. Often this can be as simple as a method
that only callssuper(id).

voidjjtOpen()

This method is called by JJTree actions to indicate that children can now be added to the
node. It provides a mechanism to support nodes that need to make special preparations
before their children can be added.

voidjjtClose()

This method is called once all of the node’s children have been added by JJTree. Itis an
opportunity for the node to store the children in a more convenient way than the default
scheme, and to compute information derived from the children.

voidjjtSetParent(Nodep)
NodejjtGetParent()

These two methods are used to notify the node of its parent, and provide a programmatic
way to find out a node’s parent. The node’s parent is also available Hartme

property.
voidjjtAddChild(Nodec, inti)
The actions inserted by JJTree call this method to add children to a node. It will be

called once for each child, after tit©pen () and before thgtClose () methods
have been called. It is the node’s responsibility to store the child for later access.

Node jjtGetChild(inti)
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This method is a programmatic interface for accessing the children of a node. The chil-
dren are indexed from left to right, starting from zero.

intjjtGetNumChildren()
This method returns the number of children that JJTree has added to the node.

Basic operations
SimpleNode(inti)

Each node type must implement a constructor with a single integer argument to create
an empty node. The new node’s association table will be empty, and its field properties
will be set to their initial values. The nodgt€reate () method will call this con-
structor to build the node, passing the node id as argument.

void copyFrom(ADLNode source)

This method can be used to make a copy of the source node’s properties. If a property

exists in the source node but does not exist in the current node it is copied. A new prop-
erty is created and added to the current node’s association table with the current value of
the source node’s property as its value.

ObjectgetProperty(Objectkey)throws
PropertyAccessException

Get the value of the specified property. If necessary, follow the delegation chain to
retrieve the value. It is an error to attempt to get the value of a nonexistent property.

void setProperty(Objectkey, Objectvalue) throws
PropertyAccessException

Set the specified property to the specified value. If the property does not exist it is cre-
ated and added to the current node’s association table, otherwise the property is updated
to the new value.

An exception to this is if a lazy property has a setter method, in which case it can be set
more than once.

ObjectgetProperty(Objectkey, inti)throws
PropertyAccessException, ArraylndexOutOfBoundsException

void setProperty(Objectkey, inti, Objectvalue)throws
PropertyAccessException, ArraylndexOutOfBoundsException

Get or set the value of the indexed property. It is an error if the property is honexistent
or cannot be indexed.

booleanhasProperty(Objectkey)

Test to determine whether the property already exists on this node, following the delega-
tion chain if necessary.
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void removeProperty(Objectkey) throws
NoSuchPropertyException

Remove the specified property from the node. Any kind of property can be removed
regardless of whether it is represented as a table entry, a node field or method, or a dele-
gated property. Be careful.

EnumerationgetKeys()

Return an enumeration that produces the keys of all the properties of the node.

void dump(OQutputStreamo, intlevel)

Produce a textual representation of the nodes and properties of the AST. The level argu-
ment controls the amount of detail in the output. A levéhtefger. MAX_VALUE
produces everything.

Properties

Node properties are implemented as a combination of an association table, class method
calls and field accesses. The association table is always the first place that a property is
looked for. If it is not found there the Java core API reflection mechanism is used to
determine whether there are accessor methods for the property. Finally, reflection is
used to determine whether the node has a field that can be used to access the property
value.

The Java Beans introspection APl method naming conventions are used for property
getter and setter methods. The Java Beans naming convention is as follows. Suppose a
node has a property with narklyProp and whose value is of typédyPropType . A

getter method on the node can be defined to retrieve the value of this property like this:

MyPropTypegetMyProp(){...}

Similarly a setter can be defined like this:

void setMyProp(MyPropType p){...}

Alternatively the value of the property can be directly accessed via a field on the node:
MyPropType myProp;

Java Beans indexable properties are also supported. The naming conventions for index-
able getter and setter properties are:

MyPropTypegetMyProp(intindex){...}
voidsetMyProp(intindex, MyPropType p){...}

Private methods and fields are not considered as implementations for properties.
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Chapter 4

4.1

Input Language Parsers

Parsing

4.1.1

41.2

The first task of ADLT is to parse the input specification files. The parsers used in
ADLT are generated automatically from the grammars for the input languages; the gen-
erated parsers construct the basic structure of the required Abstract Syntax Trees.

After construction, the ASTs are checked for semantic consistency; during this process-
ing, references are resolved. After this semantic check, the AST and the parse are com-
plete.

Parser Generation

The parsers are built using the Java™ Compiler Compiler™ parser generator, developed
by a member of the ADL team at Sunlabs. JavaCC is a recursive-descent parser genera-
tor, similar in spirit to the PCCTS system that was used for ADLT1; however, JavaCC is
written in Java and generates a Java program.

One characteristic of recursive-descent parsers is that, in contrast to the tables of an
LALR parsers, the parser code is fairly close to the parser source, and fairly easy to

read. A consequence is that maintenance of the generated code is easier; it's easier to
trace the generated source code back to the input grammar, and easier to read and debug
the generated code.

AST Construction

The Abstract Syntax Trees required by ADLT are constructed using the tree-building
facilities of JavaCC. These facilities are implemented as a separate grammar pre-proces-
sor calledjtree . By defaultjjtree  constructs an AST that contains all the non-
terminals in the grammar. The input grammar can be annotated to leave out some non-
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terminals, to specify the class used to represent each node in the AST, and to add non-
terminal information; all those annotations are used in ADLT AST construction.

For details of thgitree  annotations, refer to the JavaCC documentation set (http://
www.suntest.com/JavaCC/DOC)/).

4.1.3 Extension Parser

One objective of the ADL translation system is to allow the other partners in the project
to develop some extensions to the ADL and TDD languages. Instead of plugging exten-
sion parsers/translators into the ADLT compiler, it has been decided to provide exten-
sion developers with a mean to pre-process files using the extended syntax before they
are fed to the ADLT compiler. Although this solution can only be applied if the

extended syntax can be converted to the regular one, it has been found sufficient for the
ADL project goals.

The implementation of this solution is based on a system property

adl.extension_filter (See “The Driver” on page 25.) which defines the com-
mand to use to pre-process the input file. This command should generate on its standard
output a stream of regular ADL or TDD definitions. The output of the extension filter is
passed to the parser to be used as its input stream.

This is implemented by thRatalnputStream getStream(String file-

Name) method of the language independent compA&L(Compiler class). It cre-

ates the filter process and get its output stream. If the adl.extension_filter property is not
defined, it just returns RatalnputStream  built from theFilelInputStream of

the file. It the extension filter command fails an error is reported and the compiler aborts
its execution.

4.2 Grammars

There are four versions of ADLT, one for each target language. The specification lan-
guage for each target programming language is described by one grammar; those speci-
fication languages are defined in these separate documents:

« ADL 2.0 for C Language Reference Manual

« ADL 2.0 for C++ Language Reference Manual
« ADL 2.0 for Java Language Reference Manual
« ADL 2.0 for IDL Language Reference Manual

These documents contain the text of the grammars, as well as explanations of the speci-
fication constructs.
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4.3

Semantic Checking

431

The semantic check of an AST is largely symbol table work; linking variable references
to variable definitions, associating types with variables and checking that expressions
have consistent types, satisfying external references.

The semantic check also needs to verify that the parsed AST is correct according to the
ADL semantics, like, e.g., verifying that call state operator and unchanged aren’t nested.

For the C and C++ bindings, satisfying external references may require a recursive pars-
ing process, to parse the imported files. The idea is however to rather use the C pre-pro-
cessor to include all the referenced files and provide the input to the parser. This should

allow the compiler to search for external references in its symbol table. The pre-process-
ing implementation is detailed in Section 4.3.1 below.

For the Java binding, resolving external references require that the compiler is able to
get information about a referenced class from its Java bytecode. Using the Java 1.1
reflection API to do so would be rather risky since there may be confusion between the
classes used by the ADL compiler and those referenced by the parsed files. Instead this
will be implemented by reading the constant pool in the Java bytecode for the class.

The results of semantic checking are recorded as properties in the AST.

Section 4.3.3 will present what is to be done wyttes(type synthesis, type check-
ing...), Section 4.3.4 withamegscope rules, symbol tables management...), and
Section 4.3.2 with miscellaneous syntactic checks.

C/C++ pre-processing

The solution retained to import C/C++ external declarations into the parsed ADL / TDD
file is based on the C/C++ pre-processor antiitslude  directive. The system prop-

erty adl.filter defines the pre-processing command. The C/C++ dependent com-
pilers read this system property and create a process to pre-process the source file. The
output stream of the process is the parser input stream.

The parser uses the standéiddine>  directives of the C pre-processor to update its
current file name and line number used for compiler error messages.

The parser finally operates in 2 different modes:

* Include Mode: When parsing included C++ files. In this case, parser acts in declara-
tive mode. Its major action is to extend the symbol table with externally defined
symbols, hence no semantic checking is performed in this mode. When the included
file is completely parsed, all AST nodes created within the Include Mode are cleared
and replaced by an IncludeFileDeclaration node in which is saved the included file
name. This allows to generate an AST corresponding to the input file before the pre-
processing.

* ADL / TDD mode: This the normal mode in which all semantic and type checks are
done. All necessary nodes are created and passed to the translator.
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Below is an example of the pre-processor output where comments have been added to
illustrate how the parser switches between its 2 different operating modes.

#1"“bank.adl”
/[ Firstpre-processoroutputline
/IUsedtosetcurrentAdIFilelexervariable

#1“bank.hh"1
/[Correspondsto“#include <bank.hh>"inbank.adl
/[LexersendaSHARP_INCLUDE_FILEtokentothe parser
/ITokenimageistheincludedfilename“bank.hh”
/lParserentersincludeMode

#1"bankAccount.hh”1
/[Correspondsto“#include <bankAccount.hh>"in
/Ibank.hh
/[Nestedincludedfile=>notokensendto parser
/[Currentfilenameandlinenumberare updated

/l..bankAccount.hhcode

classbankAccount{
/...

}

#25“bank.hh”1
/IbankAccount.hhcompletelyincluded
/[backtobank.hh

/l...bank.hhspecificcode here

#24"bank.adl"2
/Ibank.hhcompletelyincluded.
//backtobank.adlfile.
/[END_INCtokenissenttoparser
/[ Parserexits IncludeMode

/l...bank.adlcode

All pre-processor output directives other than#kéne> ones are ignored. This is
implemented in the C/C++ lexer which skips those directives, and thus, never sends
them to the parser. Ignored directives are genetallggma , #inline  and#buil-

tin . However, the last two directives seem to have now disappeared from the output of
MOSt pre-processors.

Semantic Checking

In this section are listed the semantic checks that are common to all the languages bind-
ings (except checks related to object oriented paradigm that are not present in the C
binding). In forthcoming sub-sections are listed the checks specific to each binding.
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Preliminary definition: an assertion groupistedf it appears in aexpressior(either
in an assertion, a binding definition or a normal/abnormal specification). An assertion is
nestedf it appears in a nested assertion group.

All kinds of checks that deal with names or types will be detailed in next sections.

In ADL, the inherited adl classourcefile (specified after keyworeixtends ) must
be accessible from the incpath (See “Control” on page 27.) and readable.

An adl class and all its behavior declarations are implicitly consideneabdis
(this modifier can be explicitly added but is redundant; any other access modifier is
not correct).

In the behavior description ofcanstructor it is not possible to use call-state or
unchanged expressions, nor tlreturn  expression. Thihis  expression refers
to the object built by the tested constructor.

Thesuper.semantics clause may appear only in the outermost assertion group
(after the keywordemantics or the potential normal/abnormal definitions).

abnormal (resp.normal ) must be defined at most once.

abnormal ,normal andreturn cannot be used in the scope of a call-state
expression or in a binding definition.

normal (resp.abnormal ) cannot be used in the definitionradrmal (resp.
abnormal ).

A call-state expression or amchanged expression cannot be used within an
unchanged expression.

A call-state expression or amchanged expression cannot be used within a pro-
logue or an epilogue.

A nested assertion group cannot be used within a prologue or an epilogue.
An unchanged expression cannot be used within a call-state expression.

A free variable of a quantified assertion cannot be used in the scope of a call-state
expression.

A quantified assertion cannot be used inside a nested assertion group.

The clausesuper.semantics cannot be used when the adl class does not inherit
from an other adl clasgXtends clause).

The behavior description wheresaper.semantics clause is used must be
describing a method that overrides a method that was described in an adl class the
current adl class is extending (directly or not).

Note: this check will not be implemented in the first release.

The name, signature, return type and throws clause of the currently described
method must bexactlythe same as orpiblic method of the class under test.

An expression that invokes an inline must be parsable when replacing the inline
invocation by the body of the inline definition.

A binding cannot be defined inside an inline definition.
A binding cannot be defined inside a nested assertion group.
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4321

43.2.2

A tdd class and all its datasets and factories are implicitly considepedblis
(this modifier can be explicitly added but is redundant; any other access modifier is
not correct).

A tested method or constructor (invoked throdd¥L () or ADL_new) is effectively
defined in an accessible adl class.

Warnings

If abnormal ornormal are used without being initialized, they will be given a
default value (see the different language reference manuals).

A call-state operator used in the scope of a call-state expression or of an
unchanged expression will be ignored.

Each method invoked in the scope of a call-state expression shouldtog in a
block such that any exception of the throws clause of this method would be caught in
acatch block (thetry/catch blocks being inside the call-state expression).

When a global prologue and/or epilogue is defined and a constructor is described,
the global prologue/epilogue block will not be copied in the generated code for the
constructor.

Java Specific Semantic Checking

Any constant declared in a tdd class is implicitly considerqutiaate,

static andfinal  (these modifiers can be explicitly added but are redundant;
any other modifier is not correct). Their initialization value must be computable at
compile-time.

In ADL, the class under test (specified after keywaudislass ) must be a public,
accessible (from the runtime classpath) and readable Java class.

In TDD, each tdd classourcefile specified in aise clause must be accessible
(from the incpath) and readable.

In ADL, any exception named intarown expression must be either part of the
throws clause of the currently described method, RuatimeException , ora
superclass of one of these exceptions. Its class must be accessible.

C++ Specific Semantic Checking

Any constant declared in a tdd class is implicitly constaonist . All these vari-
ables must be initialized with values computable at compilation time.

All used symbols must be visible: external declarations must be imported with
#include directives. Included files are searched in all directories specified in the
incpath property (See “Control” on page 27.).

The method under test must be a public method of the C++ class. It can also be a
constructor.

Nested classes can not be annotated in C++. Scope override can not be used while
specifying adl class name or in specifying adl super class names in call for super
class semantics.

Multiple inheritance is supported. Calling the super class annotation is done using
the syntax <SuperClassName>.semantics . The super class name should
already have been defined as a super class of tested adl class.
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4.3.3

4331

4.3.3.2

Type Checking

Type checking consists in ensuring that everywhere an expression of a type T is awaited
from the language specification, the actual expression written by the user has a type T’
that iscompatiblewith T (type compatibility will be presented in Section 4.3.3.2). Typi-
cally, if “inti; " was declared, then in assignmeirt<expr>; " this expression’s

type must be compatible witht , namelybyte , short ,char orint .

In other words: a type T is compatible with type T’ if an expression of type T can be
assigned to a variable of type T', i.e. Taissignabldrom T.

Contexts

Type checking is necessary in these contexts:
e Assignment: the rhs expression type must be compatible with the declared type of
the lhs variable.

* Method/inline/factory invocation: each actual parameter type must be compatible
with its corresponding formal parameter type.

* Test directives: for each dataset that is associated to a parameter, the type of this
dataset’s elements must be compatible with the declared type of the parameter.

* Method/factory return type: the type of the returned expression must be compatible
with the declared return-type.

* Inline definition: the type of the assertion group of an inline definition must be com-
patible with the declared return-type of this inline.

¢ Binding definition: the type of the binding expression must be compatible with the
declared type of the binding

* Dataset declaration: the type of the rhs (right-hand side) dataset expression must be
compatible with the type of the declared |hs variable.

* Dataset domain: the type of the rhs dataset expression must be compatible with the
type of the declared Ihs parameter.

e ADL try/catch feature: the type of@atch assertion group must be compatible
with the type of the correspondity assertion group.

* relinquish clause: the declared type of the parameter muskx&etlythe
declared type of the corresponding factory.

Type Compatibility

C++ type compatibility is implemented according the ANSI C++ Public Review Docu-
ment, check this document for further details.

In Java, we will distinguish three distinct sets of types: boolean (which is a singleton),
arithmetic types and reference types. In each of these families can be defined a partial
order.
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The partial order for arithmetic types is as follows:

double
fILat
Io|ng
"
char/ short
b)|/te
FIGURE 3. Arithmetic types

A skeleton of the partial order for reference types is as follows (suppose C is a class, S
its superclass, | an interface that C implements, J a superinterface of I, A an array of a
primitive type elements, A[C] an array of class C elements):

Object
Cloneable J
ATS] * |I
A /
A[C] C
null
FIGURE 4. Reference Types

This diagram must be read as follows: any class is less than or equal to its superclass or
the interface it implements, any array is less than or equal to the interface “Cloneable”,
etc. By transitivity, the base type Object is greater than any other reference type.

We can now set two definitions:

e Atype T iscompatiblewith a type T’ iff T is less than or equal to T'.

e The upper bound of two types T and T’ is the least type that is greater than or equal
to both Tand T'.

4.3.3.3 Type Synthesis

The type of an expression is computed as follows:
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normal , abnormal , unchanged(<expr>)  andthrown(<name list>)
are boolean expressions.

The type of theeturn  expression in an ADL behavior description is the return-
type of the currently described method in the class under test.

The type of the call-state expression is the type of the enclosed expression.
An type of an assertion must be boolean, except if:

1.This is not a quantified assertion.

2.This is the unique assertion of its enclosing assertion group.

3.This assertion group istey blockor acatch blockor aninline  block.
4.This assertion group is in the scope of an expression.

In this case, the type of the assertion is the type of the enclosed expression.

The type of an assertion group that contains a single assertion is the type of this
assertion.

If an assertion group contains at least 2 assertions, then all its contained assertions
must be boolean, and in this case the assertion group is boolean.

If a dataset member is defined as a rarge(r> .. <expr> ), both expressions

must be integral expressions and the type of the dataset member is the upper bound
of these types. Otherwise (not a range), the type of the dataset member is the type of
its enclosed expression.

The type of an empty dataset literahidl , otherwise it is the upper bound of the
types of its dataset members (see Section 4.3.3.2).

The type of a dataset expression is defined as follows: If the dataset expression is a
dataset variable, then its type is the declared type of this dataset variable.

1.Else if the dataset expression is a dataset literal, its type is the type of this literal.

2.Else if the dataset expression is a factory invocation, then its type is the return-type
of this factory.

3.Else if the dataset expression is a basic expression (literal, method invocation or
constant), then its type is the type of this expression.

4.Else if the dataset expression is a dataset concatenation (operator “+"), then its
type is the upper bound of the dataset operands.

5.Else the dataset expression is not correct and a compile-time error tesguits.

tant note: it is not possible to perform a “” (dot) access operation on a dataset
expression.

The type of a variable expression (resp. a method/factory/inline invocation) is the
declared type of this variable (resp. the declared return-type of this method/factory/
invocation)

The type of an explicit cast expression is the named cast type.
Important note: in ADL or TDD, explicit casts will not be checked. When a user
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writes an expressiofMyType)<expr> the ADLT compiler will not verify that
the type of <expr> can be actually casted to type MyType.

* For expressions involving operations, the “classical” rules of the target language will
be used: type check of the operands (boolean for logical operations, arithmetic for
arithmetic operations, etc.) and numeric promotion (for instance when an addition
involves along and &loat  operands, thiong operand will be “promoted” to
float and the result-type of the operatioriliat ).

4.3.3.4 Type Representation

A data type is represented by a subtype of the TypedNode abstract class. That class is
modeled on the representation of type in ADLT 1, the class hamed ADLTP; in particu-
lar, it has these methods:

abstractclass TypedNode extends SimpleNode {

/**Returnsthe defining node ofthe type, ornull. */
public SimpleNode defn();

[**Returnsthe name ofthistype (ifany), ornull. *
public StringgetTypeName();

/**Returnsthe LType symbolforthistype.*/
publicLTypegetType();

k

This class is used in conjunction with class LType which is a more generic class, used to

represent target language types (both builtin-types and constructed types) in the symbol
table. In particular it has these methods :

classLType{

[**1Isthistypethe sametypeast?*/
publicbooleanequals(LTypet);

/** Canavalue oftypetbe assignedtoavariable
*ofthistype (i.e.istype tcompatible with
*thistype)?*/

publicbooleanassignable(LTypet);

/**Returnsadescriptive stringrepresentation ofthe
*type.*/
public StringgetName();

EXAMPLE 1 Interface Type definition

As an example, here is how type check is performed for an assignement node.
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43.4.1

//here nodeisan Assignmentnode made up oftwo expression
//childnodes

TypedNodeleftNode =node.jjtGetChild(0);
TypedNoderightNode = node.jjtGetChild(1);

if (leftNode.getType().assignable(rightNode.getType()))

/Itype checkis ok, setAssignmenttypetothatof
/lefthand expression
node.setType(leftNode.getType();

else

/lreportatype checkerror

Names

Scope Rules and Name Checking

The scope of a binding begiafter its declaration and goes to the end of the enclos-
ing assertion group.
The scope of a variable defined in a global prologue begins after its declaration and

goes to the end of the compilation unit. The scope of a variable defined in a local
prologue begins after its declaration and goes to the end of the behavior declaration.

The scope of a variable defined in an epilogue (global or local) begins after its decla-
ration and goes to the end of this epilogue.

The scope of an inline is the complete adl class in which it is declared.

It is not permitted to define a local variable, a parameter or a binding with the same
name and scopes with non-null intersection.

A binding cannot be used in the scope of a call-state expression, in a prologue or in
the global epilogue.

An inline cannot be invoked in the definition of another inline, in a prologue or in an
epilogue.
An inline cannot have the same name as a method of the class under test.

It is not permitted to define in the same adl class two different inlines with the same
nameandthe same signature.

The scope of datasets and factories is the entire declaration of the tdd class in which
they are declared and of all tdd classes that import (“use”) this tdd class.

A dataset expression cannot be used outside a dataset definition, a test directive or a
parameter in a factory invocation.

It is not permitted to define in the same tdd class two different datasets with the same
name.

It is not permitted to define in the same tdd class two different factories with the
same name.
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* ltis not permitted to define in the same tdd class a dataset and a constant with the
same name.

* A dataset definition cannot be recursive (directly or not, i.e. by mutual recursion
with one or more other dataset definitions).

* Itis not permitted to define in the same tdd class a factory and a method with the
same name and the same signature.

4.3.5 The TypeCheck Visitor
Type checking is performed by the ADLTypeCheckVisitor class. This visitor visits each
AST node for which type check is relevant (assignments, arithmetic and logical opera-
tion, method calls...) and performs type check and type synthesis. A helper class, the
ADLTypeCheckHelper, helps the type check visitor during this process, by providing
useful methods for type synthezsyiithetizeTypes() ) and other type checks
(checkTypesAreAssignable() andcheckTypesAreSameKind() ).
4.4 Symbol Tables
This section describes the symbol table management system used by the ADL compil-
ers. A HTML document generated by javadoc and describing the classes involved is
available.
4.4.1 Concepts
The main concepts used for the symbol table management system are introduced in this
section.
4.4.1.1 Symbol Table Manager
The symbol table manager is the main interface the client parser shall use to manage its
symbols. The symbol table manager is responsible for:
¢ allowing the client parser to put and retrieve symbols in and from the symbol table,
* storing a reference to the current scope being parsed,
* managing the client’s requests to open or close a new scope (e.g. when entering into
a struct or class definition or into a new block of code),
e creating new symbols (abstract factory role).
4.4.1.2 Symbol

A symbol is any identifier that may be encountered while parsing an ADL source files.
Amongst symbols are identifiers for types, classes, methods or attributes. The main
attribute of a symbol is its name.
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4413

44.1.4

4415

Scope & Anonymous Scope

A scope defines a unit of visibility for a group of symbols. Such things as a block of
code, a class or a package define scopes.

Scopes may be nested within each others, like a block of code inside another one, or a
class inside a package. For this reason scopes are organized in a parent-childs tree struc-
ture. In some cases this organization may be refined and some scopes may have multiple
parent scopes (e.g. a class scope may be related to a package scope as well as to one or
several superclass scopes in a child parent relationship).

Some scopes are closely related to symbols, e.g. a class may be considered as a symbol
inside a package scope but it also defines a scope. For this reason a scope may be
attached to a symbol. Note that some symbols are indirectly related to scopes (e.g. a ref-
erence foo to an object of class Bar which definition is class Bar { int x; int y; } is indi-
rectly related to the scope of Bar so that foo.x as well as Bar.x are valid scoped names).

Some scopes are not related to symbols, e.g. a code block scope. These scopes are said
to be anonymous.

Language Independent Symbols

Since target languages share the same kind of symbols (type, variables, classes...) lan-
guage independent symbols have been defined to promote code reuse within the ADL
parsers.

Language independent symbols are abstract classes for symbols likely to be used within
all ADL bindings. Specific behaviour is implemented in language dependent subclasses

of the language independent symbol classes. But this is hidden to the symbol table man-
ager client (the parser).

The language independent symbols ar organized as follows:
* target language independent symbols (the L... hierarchy)

* ADL language independent symbols (the ADL... hierarchy)
e TDD language independent symbols (the TDD... hierarchy)

all of these symbols implements the symbol interface, or the scope interface or both.
Scoped Name

Scoped names are composite hames to identify symbols, each component of the name
but the last identifying a scope and the last one identifying a symbol (e.g. java.util.Hash-

table, CORBA::ORB). The use of scoped names inside the ADL source files led to the
tree structure organization for the symbol table manager.
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44.1.6

4417

4418

4.4.2

443

Symbol Listeners

Some symbols can appear in ADL code before they have been defined (e.g. Java meth-
ods). In such case, the client parser may supply a SymbolListener object when trying to
get a symbol from the symbol table manager. This symbol listener is stored by the sym-
bol table manager, and as the definition of the requested symbol becomes available (or
at the end of the parsing), this symbol listener is used to call the client parser back so
that it can finish its set up.

Note that symbol listeners are directly inspired from Java AWT1.1 event model.

Predicates

Predicates are used to selects symbols in the symbol table, when a same name is shared
by several symbol (e.g. to select among different overload of a same method a Method-
Comparator predicate shall be supplied).

Predicates are supplied to the symbol table manager in addition to a scoped name when
symbol selection is necessary.

Credentials

Credentials are granted to scopes and enable them to states they have visibility on some
other scopes. Credential are for internal use within the symbol table manager.

As an example, a subclass in a Java Package may see protected symbols in its super-
classes, and package visibility classes in its own package.

Package organization

The symbol table manager is made of a set of packages:

* the org.opengroup.adl.symboltable package which is a package containing generic
components and that defines the interfaces and abstract classes used by all the ADL
compilers,

* the compiler specific packages that are used by each specific ADL compiler. These
packages are org.opengroup.adl.symboltable.c (for ADL/C and ADL/C++ compil-
ers) and org.opengroup.adl.symbol_table.j (for ADL/java and ADL/IDL compilers).

Generic org.opengroup.adl.symboltable package design

The symbol_table package defines the interfaces and abstract classes that are used by all
the ADL compilers to manage symbols.

The class design follows the Composite design pattern (see [Gamma]), in that classes
defined to handle symbols and scopes may be composite or not. This depend on the
interface the class implements, it may:
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443.1

* implement only the Symbol interface - to represent simple symbols (e.g. a simple
type like int)

* implement both the Symbol and Scope interface - to represent composite objects
(e.g. packages, classes, struct)

¢ implement only the Scope interface - to represent simple scopes (e.g. anonymous
blocks of code)

The symbol table manager also follows the Abstract Factory design pattern (see
[Gammal).

SymbolTableMgr (abstract class)

SymbolTableMgr is an abstract class that is to be subclassed in each concrete symbol
table manager packages. It defines the interface that the symbol table manager client
(ADL purser) shall use.

This class is responsible for holding a reference to the scope being parsed (current
scope), and managing the client’s requests to open or close a new scope (e.g. when
entering into a struct or class definition or into a new block of code):

void openScope(Symbols) /lopensthe scope owned by
//the provided symbol

voidopenScope() /lopensananonymousscope

This class is also responsible for forwarding the put and get symbols request to the cur-
rent scope:

void putSymbol(Symbols)

void putAlias(StringaliasName, Symbol s)

SymbolgetSymbol(String scopedName,
UnaryPredicate predicate,
SymbolListenersymbolListener,
Scope scopeOQverride)

Predicate may be a MethodComparator, symbol listener is used supplied when the
parser is interested in some symbol not yet defined, and scope override is used when
default current scope should be overridden to perform the symbol research.

Specialized getSymbol() methods are supplied so that symbols which were classified at
parsing time may be easily retrieved, these methods are:

LVariable getVariable(StringscopeName)
LType getType(StringscopeName)
LPackage getPackage(StringscopeName)
ADLClass getADLClass(StringscopeName)
TDDClass getTDDClass (StringscopeName)
LExpression getExpression(String scopeName)

Version 1.1

53 of 132



Input Language Parsers ADL 2.0 Translation System Design Specification

4.43.2

LMethod getMethod(StringscopeName,Predicatepredicate)
ADLlInline getinline(StringscopeName)
TDDFactory getFactory(StringscopeName)

and the likes...

This class is an abstract factory for language independent symbols. That is client parser
should create their symbols through calls to the new...() methods. It is then up to the
concrete symbol manager to supply either a default language independent symbol or a
specialized symbol where necessary. The client parser does not need to know the sym-
bol actual class. It only need to know the language independent symbol interface is
implemented. The methods enabling to create these symbols are:

LVariable newVariable(Stringname,
intmodifier,

LTypetype)
which returns a variable with the supplied hame, modifier and type.

LClass newClass(Stringname,
intmodifier,
LClass[]superclasses,
LClass[]interfaces)

which returns a new class with the supplied name, modifier (bit mask made of
ABSTRACT, INTERFACE...), superclasses and interfaces. Note C++ symbol table
managers accepts no interfaces while Java symbol table manager accepts only one
superclass.

Many other factory methods are defined for other symbols...

To simplify, these methods are a superset of all the methods that should be necessary to
create symbols for a particular binding. But since most of the symbols are very close to
each other this is not an issue.

Finally the symbol table manager can tell the client parser whether current scope is
inside a given scope type or not

booleaninScope(Class symbolClass)

Symbol (interface)

Symbol is the interface that all the symbols shall implement. It's an interface so that
concrete symbols may be organized with their own inheritance tree structure.

This interface manages the name of the syngeiName() andsetName().

This interface defines methods to gain access to the scope that may be associated to the
symbol:

booleanhasScopeAccess()
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4.43.3

4434

Checks whether symbol has access to a scope or not. Note some symbols owns scopes
but cannot be seen from any outer scope. An example is a function: it's got its own child
scopes, but these scopes are not visible from any outer scope, this means that for func-
tion foo(), the scoped name foo.bar should not be allowed!!! This information is stated
by the hasScopeAccess() method.

ScopegetScope()
Returns the scope the symbol has access to.
Scope (interface)
Scope is the interface that all concrete scopes shall implement.

A scope is responsible for holding its symbols, organizing them in any suitable way
(e.g. in a hash table).The methods provided to achieve this are:

void putSymbol(Symbols)

which put a symbol into the current scope,

void putAlias(StringaliasName, Symbols),
which create an alias for symbol s in the current scope (useful for tepidness)

Scopes are also responsible for retrieving symbols, each concrete scope class defines its
own policy for this. The most common policy is to search first in a local symbol hash-
table and if nothing is found to forward the request to the parent scope (that’s the way a
method scope or a block scope do). But more subtle policies may be defined: a java
class scope forward the requests to its superclasses scopes first and then to its parent
package scope. The method used here is:

SymbolgetSymbol(Stringname, Predicate p, Credentialsc)

which gets a symbol in current scope, the symbol shall verify the supplied predicate and
be visible to the requestor (which is checked using the credentials).

Furthermore scopes are responsible for forwarding getSymbol() requests to relevant
scopes when necessary (e.g. a Class scope forwards the request to its superclasses
scopes).

Language independent symbols hierarchy

Language independent symbols are abstract classes for symbols likely to be used within
all ADL bindings.

The main inheritance tree for the language independent symbols is as follows:

( 0-- means implements interface and <-- means inherits )
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Symbolo-- LPackage
LNameSpace

LType <-- LBuiltinType
<-- LPointerType
<-- LReferenceType
<-- LConstructedType  <--LStruct

<--LUnion
<--LClass
<-- ADLClass
<--TDDClass
LCallable <--LFunction
<--LMethod
<--ADLInline
<--TDDFactory
LExpression <-- LVariable
<-- LParameter
<-- LField
<-- ADLBinding

<-- TDDDataset

All these symbols classes also implements additional methods, notably to test for
assignability of values to variables:

booleanLType.assignable(LTypet)

checks that a variable of type t can be assigned to a variable of this type.

booleanLClass.subclassOf(LClassIClass)

checks that some classes are subclasses of other classes. E.g. when parsing thrown(E) it
must be checked that E is a subclass of Throbs.

In addition, the following classes implements the Scope interface:

Scope o--LBlockScope
o--LTranslationUnit
o--ADLTranslationUnit
o--TDDTranslationUnit
o--LConstructedType
o--LCallable

The containment relationship in between symbols and scopes are presented here:

( The notation is:
Symbol (type attribute...)
<Symbol that may be defined in the symbol’s scope> )
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ADLCompilationUnitScope
LPackage (orLNameSpace)
LFunction
LClass(intmodifier, LClass superclasses][],
LClass[]interfaces...)
JField (intmodifier)
JMethod (intmodifier, LTypereturnType,
LParameter[] parameters, LClass[]throws)
LBlockScope
LBlockScope...
LVariable
ADLClass(LClasstested, ADLClassextends)
ADLInline
ADLPrologue
ADLEpilogue
ADLBehaviourDeclaration
ADLPrologue
ADLEpilogue
ADLSemantic
ADLBehaviorClassification
ADLAssertionGroup
ADLBiInding
TDDCompilationUnitScope
LPackage

TDDClass(TDDClassused)
TDDConstant
TDDDataset
TDDFactory

4.4.3.5 UnaryPredicate (abstract class)

UnaryPredicate is an abstract class that only implements one method
booleanexecute(Objecto)

the predicate is used to check if an object satisfies the predicate or not.
As an example of predicate, consider the LCallableEqualsComparator predicate, which
is a subclass from UnaryPredicate, it implements the following methods in to
UnaryPredicate:

void setReturnType(LTypetype)

void addParameterType(LTypetype)

voidaddException(LType exc)
This predicate is executed against a LCallable object and if the callable’s return type,

parameters and thrown exceptions are equals to the method comparator ones, the predi-
cate returns true. Otherwise it returns false. Note that another comparator LCallableAs-
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4.43.7

signComparator may be used to check a method call is compatible with a method
signature (i.e. the expressions types in the method call must be compatible with the for-
mal parameters types).

Credentials

The point is that when searching for a symbol, the symbol table manager should check
that any suitable symbol is visible from the requesting scope (the current scope when
the request is issued).

Imagine for example that SomeClass.somePrivateattribute symbol is requested from a
scope being external to SomecClass, then the symbol table manager should not return
this symbol.

This issue is all the more complex since many different level of visibility exists (public,
protected, package, private...) for many different symbols (public classes, public
attributes...). Moreover a request to retrieve a symbol may be forwarded to many dif-
ferent scopes, and the last scope receiving the request may not know about the issuer.

So a general mechanism is required! The solution proposed here is that each scope be
granted some credentials. These credentials are used by any scope receiving a request
to decide if the requester has visibility over the requested symbol.

The credentials hold the scope originating the request, together with a list of
“scope:visibility” pairs that is the scopes for which part or all the symbols are visible.

As an example suppose package BankPackage holds the class Bank and its subclass
MyBank, then my bank would be granted the following credentials:

requestor =“MyBank”
credentials = { “Bank:protected” ,"BankPackage:package” }

Then, whenever Bank scope receives a getSymbol() request from MyBank scope it
checks that the requested symbol can be returned or not by looking in the credential list
at the “Bank:visibility” entry.

Though being somewhat complex, this mechanism is generic enough and scale suffi-
ciently to be used for the ADL/java and ADL/C++ compilers. Furthermore, while a
request is forwarded from scope to scope the credential list should grow, the relevant
credential being added to the list.

Note: this feature is not implemented in this release. In Java limiting bytecode loading
to only public fields and methods is enough for access control. A similar solution might
be adopted for C++.

Symbol Listeners (callback mechanism)

The point is that some symbols can be used before they have been defined (e.g. Java
methods).
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4.4.4

A simple solution would be to write a two-pass ADL compiler. But the symbol listener
mechanism based on the event model found in the Java AWT1.1 solves this problem and
is much more elegant.

Actually, in case a symbol cannot be found by the client parser, possibly because it has
not yet been defined, the parser client shall pass a symbol listener object to the symbol
table manager. This symbol listener is stored by the symbol table manager, and as the

definition of the requested symbol (or at the end of the parsing), this symbol listener is

used called back so that the client parser can finish its set up.

Internally, the symbol table manager stores the symbol listener together with the current
scope at the moment the symbol listener is received.

After parsing is finished, the symbol table manager process each saved symbol listener,
that is try to find the symbol, and call the symbol listener back when the symbol is
found.

To use this mechanism, the client parser should supply the symbol table manager with
an object implementing the following interface:

interface SymbolListener{
void symbolFound(Symbolsymbol);

}

The symbol listener can be implemented as an inner class of the ADLNode. Where
methods are likely to be listened to this class could be MethodSymbolListener.

Specific org.opengroup.adl.symboltable.c package design (ADL/C & ADL/
C++)

The org.opengroup.adl.symboltable.c package holds the concrete classes responsible for
managing the symbols for the ADL C and C++ compilers (C++ symbols are a superset
of C symbols).

The responsibility of these symbol table managers is to coordinate symbol searching in
between scopes according to the rules defined in the ADL/C and ADL/C++ semantic
checks document.

The language independent symbol hierarchy is taken as it is with minor changes. The
main constraints on the symbols being:

* a CPP class implements no interfaces

* the CModifier class helps manipulating the C and CPP modifiers (public, protected,
private, const, virtual...)

Furthermore, C and C++ typedefs are implemented as symbol aliases.
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4.45 Specific org.opengroup.adl.symboltable.java Package Design (ADL/Java)

The org.opengroup.adl.symboltable.java package holds the concrete classes responsible
for managing the symbols for the ADL/Java compiler.

The ALDSymbolTableMgr (resp. TDDSymbolTableMgr) is the ADL/Java specialized
version of the SymbolTableMgr class for the ADL parser (resp. TDD parser).

The responsibility of these symbol table managers is to coordinate symbol searching in
between scopes according to the rules defined in the ADL/Java semantic checks docu-
ment (notably to determine the meaning of a name when retrieving a symbol or before
defining a new symbol).

The language independent symbol hierarchy is taken as it is with minor changes. The
main constraints on the Java symbols being:

* aclass only has one superclass

* the JModifier class helps manipulating the Java modifiers (public, protected, private,
abstract, interface...)

However with Java, new issues are raised. Since no pre-processor mechanism exists like
in C/C++, Java imported stuff must be accessed at parsing time.

To solve this problem, a companion class is introduced: the symbol loader. The symbol
loader (SymbolLoader class) is in charge of loading Java package and classes on
demand and populate the symbol table with the symbols loaded.

The client parser uses the symbol loader when import or use clauses are encountered.

Another issue is also raised: loading symbols may be heavy, it is certainly better to load
only the necessary stuff. This issue is solved by using proxy symbols. Proxy symbols
are based on the Proxy design pattern ([Gammay).

When requested to load symbols the symbol loader may decide to load only a proxy for
the symbol.

The proxy symbol acts like the original symbol (it implements the same interface), that
is it tries to respond most of the client request without any help from the original sym-
bols. When the proxy cannot respond by itself, it requests the symbol loader to load the
plain symbol, it gets a reference to that plain symbol and forwards the request to the
symbol.

Hence, the use of proxy symbols is transparent both to the client parser and to the sym-
bol table manager.

The design for the symbol loader and the proxy is discussed more deeply in the two
following section.

60 of 132

Version 1.1



Input Language Parsers ADL 2.0 Translation System Design Specification

4451

4.45.2

SymbolLoader

The symbol loader (SymbolLoader class) is in charge of loading Java package and
classes on demand and populate the symbol table with the symbols loaded.

The client parser uses the symbol loader when import or use clauses are encountered.
Actual loading of the symbol is deferred to appropriate moment (e.g. when a class of an
imported package is used).

From the client (parser) viewpoint symbols may be imported through relevant Sym-
bolTableManager calls. That's why the SymbolLoader interface is also implemented by
the SymboltableManager. Internally, the symbol table manager collaborates with the
symbol loader so that symbols can be loaded as they are requested.

The loaded symbols are discovered via CLASSPATH and/or INCPATH, relevant checks
are performed by the SymbolLoader, and finally symbols are put in the symbol table.

The SymbolLoader collaborates with the SymbolTableMgr so that the loaded symbols
are put in the symbol table as part of the loading process. Its methods are the following:

LPackageimportPackage(Stringname);

Imports a package. the processing here is to check that the package is accessible from
classpath.

LClassimportClass(Stringname);

Imports a class (or transparently a proxy for the class).

void useClause(Stringname);

Use clause. Makes the named ADL file available for use. Part of the process is to check
that the adl file is accessible from incpath.

Proxy Symbols

The proxy design pattern shall be used when partial loading of symbols is useful (as part
of the import/use mechanism).

Due to the design of the byte code file (.class) a proxy is needed only for Java classes. A
Proxy Java Class is created each time a non loaded class symbol is encountered in the
byte code (this applies only to public fields and method parameters and return types,
superclasses symbols are always loaded).

E.g. a JClassProxy symbol should hold only its class name, respond to request for which
this knowledge is enough by itself and forward any request for which more knowledge
is required to the real JClass symbol, which have to be loaded before.

Proxy symbols collaborates with the SymbolLoader so that the actual symbols shall be
loaded when necessary. The use of ProxySymbols should be transparent to the Sym-
bolTableMgr and to the client parser.
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4.4.6 Using the symbol table manager

EXAMPLE 2

The example below show how the CSymbolTableMgr is used from the client (ADL
parser) view point;

Using the symbol table.

/Initialize symboltable manager
SymbolTableMgrstm=new CSymbolTableMgr();
//Getahandle onintbuiltintype
LTypeintT=stm.getType(“int”);
//Declaresatypedeftype (typedefintMyint)
stm.putAlias(“MyInt”,intT);

//Definesastructtype andputitintothe currentscope
LStruct ComplexT =stm.newStruct(“ComplexT");
stm.putSymbol(ComplexT);

//Openthe scope associatedwiththatstructand defines
/ltwo attributesforthatstruct (xandy) note that

/I CAttribute symbolsare constructed usinganame and
[latype symbol. Thistype symbolisobtained fromthe
//symboltable manager.
stm.openScope(ComplexT);
LFieldx=stm.newField(“x”,intT);

stm.putSymbol(x);

LFieldy=stm.newField(“y”,intT);

stm.putSymbol(y);

/I Close structscope

stm.closeScope();

I/ Searchforsymbolwith ComplexT.xscopedname

Symbols=stm.getSymbol(“ComplexT.x");
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44.7.4

4475

EXAMPLE 3

Guidelines for the symbol table manager user (FAQ like)

This section contains guidelines for using a symbol table manager when particular
issues are encountered.

How to store typedefs in the symbol table (ADL/C & ADL/CPP)

Typedefs are considered as aliases for other types, instead of creating special symbols,
alias entries are put in the symbol table. this is achieved using the putAlias() symbol
table manager method.

How to control that variables are used after they are defined (ADL/Java)

This is an issue for ADL/Java where a variable can be declared anywhere in a block of
code. The solution proposed is to force the client parser to check that a variable is
defined before being used.

How to distinguish in between several overloaded method.

When retrieving a method symbol the parser client shall provide a supplementary LCall-
ableAssignComparator predicate object, that will help the method scope selecting the
suitable method symbol.

How can | check that only one external functions definition exists (ADL/C)

When retrieving a method symbol the parser client shall provide a supplementary LCall-
ableEqualsComparator predicate object, that will help the method scope selecting the
suitable method symbol.

How can | check the symbol | encounter is in a suitable scope.

This is to allows to control that symbols are used or are not defined inside a scope of
some supplied type. For example to check that inlines are not called in the definition of
other inlines.

The solution is to use the inScope() method of the symbol table manager.

Testing if encountered symbol is in a suitable scope.

SymbolTableMgrstm=new SymbolTableMgr();
ifkstm.inScope(TDDFactory.class))
thrownewADLParseError

(“Afactorycannotbe calledinthe definition* +
“ofanotherfactory”);
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Chapter 5

5.1

Code Generation

Introduction

Code generation is the fundamental task of ADLT. In ADLT, code generation is broken
down into two phases: AST generation and unparsing. AST generation creates a new
Abstract Syntax Tree to represent the required code; unparsing generates a text file rep-
resentation of that AST. Code generation is separated into these two phases because
many ADL constructs, like, e.g., the call state operator, require to generate some code
ahead of their current location in the AST.

In addition, in order to avoid intricate code for both phases into the data structure repre-
senting an AST, they are designed around the “Visitor” pattern as described in the book
from Gamma et al., “Design Patterns”. This pattern clearly separates the processing
from the data structure it operates on by using a simple “accept/visit” protocol. A visitor
object implementing a particular processing algorithm, e.g., AST generation, asks a
given node in the AST whetheratceptdo bevisited By accepting the node then

explicitly requests the visitor tasit it. Since version 0.7pre5, the JaYaCompiler

CompilerD tool set, especialljtree , supports the “Visitor” pattern by generating
the appropriate methods for the “accept/visit” protocol and an interface to be imple-
mented by any candidate visitor.

Since there is a great deal of commonality between the AST generators for the various
parts of a test program, and between the AST generators for various target languages; by
separating the syntax details, we are able to re-use parts of the AST generators. Syntax
details are mapped onto an AST structure. By simply using similar names in the various
target languages grammar for similar syntactic constructs, it becomes possible to design
some generic classes that define the appropriate processing methods for the relevant
constructs.
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Figure 5 shows the overall scheme of the design for code generation and illustrates how
it will allow to make maximum re-use of the code within ADLT.

ADLJavaParserVisitor ADLCppParserVisitor
implements enericTransformerVisitor' implements
GenericUnparserVisitor
avaTransformerVisito?' CppTransformerVisitor '

JavaUnparserVisitor CppUnparserVisitor

FIGURE 5. Code Generation Architecture Model

The exact content of the generic classes depends on the commonalities between the sev-
eral target language grammars with respect to the concerned operation.

5.2 AST Transformation

Abstract Syntax Trees for the generated code are derived from the ASTs of the specifi-
cations (described in Chapter 3, “Abstract Syntax Tree Design,”). The outline of the
generation process is to walk the input AST, generating the new AST as you go, using a
“Transformer” visitor. The code pattern of a visit method depends on the type of the cur-
rently visited node:

¢ In some cases, the current node is the root of a subtree that has not to be modified:
the visit method does nothing.

¢ In some cases, the current node has not to be modified, but some of its descendant
nodes have to: the visit method simply consists in ensuring that the child nodes will
be visited.

* In some cases, the properties of the current node have to be modified, but not its type
and structure (it keeps the same number of children).
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52.1.1

e Last, in some cases (notably all the ADL_* nodes) the visit method creates a new
node that will replace the current node in the tree structure. The child nodes of this
newly generated node are built depending on the current node children (visited or
not), on its properties and on the type of the new node.

In the next section we detail the transformation patterns with respect to the visited node
type, using Java as an example. Although each language binding generates different
code, the described patterns are to a large extent reusable for each of them.

ADL Node Transformation

Notation Used

In the sequel, we will use the following notation to describe the actions to be performed
to transform a node of a given type. This notation is an attempt at providing relevant
information in a concise and as precise as possible manner;rbisiormal notation.

ATypeNode
Children nodes:
ATypeNodel childl
[ ATypeNode2 child2 ]
( ATypeNode3 child3 )*
Created Node:
ATypeNode4 :
ATypeNodel : childl
ATypeNode5 :
[ visit(child2) ]
(visit(child3) )*
Fields:
[ ATypeNode? field1 = child2 ]
Actions:
Il pseudo-code to precise complicated actions to be done.

This must be read as follows: the current node has one first child node of type
ATypeNodel, an optional second child of type ATypeNode2, and a possibly empty list
of child nodes of type ATypeNode3. It must be transformed into a node of type
ATypeNode4 with two children: the first child is the first child of the current node, and
the second is a node of type ATypeNode5 which has itself as a first optional node the
transformation of the current node second child, and also the list of the transformed
ATypeNode3 nodes of the current node. Furthermore, the node child2, if it is present, is
stored as a global field: this handle is necessary when the information contained in node
child2 is to be used in the generated tree somewhere else that at direct proximity of the
present node transformation.

Children nodes are sometimes declared as Node (the interface of all node types) when
the dynamic type cannot be known statically: for instance the root node of an expression
could be ADL_Expression, EqualityExpression, PrimaryExpression, etc.
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b/ ACO Blocks

Some blocks of generated code are always the same, whatever the input program is, or
just slightly different (for instance following the name of the adl class).

For this, we define a class ACOauxiliary and the visitor will declare an instance ACO of
this class. Some data obtained by visit methods will be stored as ACO fields when they
are needed for code generation. The make* methods generate ASTs of the output Java
program. For instance, the method makelnitialization generates ASTBlockStatements
for the following code:

booleandoReport=finalJournalReporting;
booleannormal=true; booleanabnormal =false;
booleantddRes;booleanwasThrownException=false;
Throwablead|_thrownException=null;

and in the case of a constructor or a static method:

skipAssertions |=testContext.skipAssertions;

else:

skipAssertions |=testContext.skipAssertions||
realObject==null;
<adlclass><adlclass>Object=(<adlclass>)realObject;

5.2.1.2 Transformation Patterns

a/ ADL_CompilationUnit
Children nodes:
( ImportDeclaration : impDecl )*
ADL_ClassDeclaration : adl_ClassDecl
Created node:
ADL_CompilationUnit :
ImportDeclaration : <ORG.opengroup.adl.runtime.*>
( ImportDeclaration : impDecl )*
visit(adl_ClassDecl)

b/ ADL_ClassDeclaration
Children nodes:
IDENTIFIER : id
[ Name : name ] // name of the inherited adl class.
[ ADL_Prologue : prolog ]
[ ADL_Epilogue : epilog ]
( ADL_BehaviorDeclaration : behavDecl
I
ADL_InlineDeclaration : inlineDecl
)*
Created node:
ClassDeclaration :
MODIFIER : “public”
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IDENTIFIER :id
Name : extendedClass
ConstructorDeclaration : ACO.makeConstructor() // build the constructor
( visit(behavDecl) )*
Fields:
ACO.setExtendedClass(name + “ACQ") // “ObjectACO” by default
[ Block globalProlog = prolog ]
[ Block globalEpilog = epilog ]
ACO.setADLClassName(id) // name of the class under test
( ADL_InlineDeclaration inlineDeclaration = inlineDecl )*
// for inline substitution, see Section 5.2.1.4.

¢/ ADL_BehaviorDeclaration
Children nodes:
[ ResultType : resType ]
Name : name
FormalParameters : formalParam
[ NameList : nameList ]
[ ADL_Prologue : prolog ]
ADL_BehaviorSpecification : behavSpec
[ ADL_Epilogue : epilog ]
Created nodes:
MethodDeclaration :
MODIFIER : “public”
ResultType : ACO.getMetodReturnType()
MethodDeclarator :
IDENTIFIER : name
FormalParameters : formalParam
[ NameList : nameList ]
visit(behavSpec)
Fields:
[ Block localProlog = prolog ]
[ Block localEpilog = epilog ]
ACO.setlsConstructor (<no ResultType>)
if (isConstructor)
ACO.setMethodReturnType (name)
else ACO.setMethodReturnType(resType)
ACO.setMethodName(name)
ACO.setMethodFormalParam(formalParam)
[ ACO.setMethodThrowsList(nameList) ]

d/  ADL_BehaviorSpecification
Children nodes:
[ ADL_BehaviorClassification : behavClass ]
ADL_AssertionGroup : adl_assGrp
Created node:
Block :
( BlockStatement : ACO.makelnitialization().child )+
( BlockStatement : globalProlog.child.clone() )*
( BlockStatement : localProlog.child )*
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( BlockStatement : saveBlock )*

( BlockStatement : ACO.makeCallBlock().child )+

visit(adl_assGrp)
( BlockStatement : localEpilog.child )*

( BlockStatement : globalEpilog.child.clone() )*

( BlockStatement : ACO.makeFinal().child )+

Fields:

ACO.setSuperSemantics(<adl_assGrp has a child ADL_SuperSemantics>)

Actions:
visit(behavClass)

generate default values for (ab)normalSpec fields that have not been defined

Notes:

The saveBlock notation stands for a list of statements that deal with the call-state
feature: saveBlock is the assignment of a generated temporary variable whose value
is that of a call-state expression (see Section 5.2.1.3.h).

The visit to child adl_assGrp occursforeinserting the saveBlock statements: the
latter ones are produced during the visit of the former.

The method makeCallBlock will use ACO fields superSemantics, myType, method-
Name, methodFormalParam, methodThrowsList, normalSpec and abNormalSpec.
The method makeFinal needs methodName and methodThrowsList.

e/ ADL_BehaviorClassification

f/

o/

Children nodes:

( Node : exp )+
Fields:

Expression (ab)normalSpec = exp
Note:

the trees “exp” araotvisited here: this is will be done in the ACO.makeCallBlock.

ADL_AssertionGroup (nested)
Note:
Conjunction of assertions in an expression
.. exp || { <asg; <ass>; } ...
To be transformed into:
.. exp || (exp&& expy) ...
where expis the return of visit(ags
Children nodes:
(Node : adl_exp )*
Created node:
visit(ConditionalAndExpression : (adl_exp)*)
or
visit(adl_exp) // if only one child

ADL_AssertionGroup (not nested)
Note:

“real” group of ADL assertions
Children nodes:

( ADL_Binding : adl_Binding )*

( Node : adl_Stmt )*
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Created node:
Block :
(visit(adl_Binding) )*
(visit(adl_Stmt) )*

h/  ADL_Assertion (not nested)
Children nodes:
[ ADL_Label : label ]
[ ADL_Tags : tags ]
ConditionalExpression : adl_Expr
Created node:
Block:
BlockStatement :
<testContext.assertionStart(“<assertionString>")>
IfStatement : // if1
UnaryNotPlusMinus : // condition ifl
Operator : “I”
Name : “skipAssertions”
Block : // then ifl
( BlockStatement : preAssertion )*
StatementExpression :
Assignment :
Name : “tddRes”
visit(expr) // note: this visit was performed “before”,
Il to generate preAssertion
IfStatement : // if2
Name : “debugMode” // condition if2
Block : // then if2
( BlockStatement :
<testContext.infoline(preAssertion.string,
preAssertion.tmp)>
)*
BlockStatement :
<testContext.assertionResult(tddRes ? ADL_PASS : ADL_FAIL)>
Block : // else ifl
BlockStatement :
<testContext.assertionResult(ADL_UNEVALUATED)>
Fields:
[ IDENTIFIER assLabel = label ]
( IDENTIFIER assTags = tags )*
Note:
The preAssertion notation stands for a list of statements that deal with the decom-
position of the assertion expression in sub-expressions (see Section 5.2.1.3).
Example:

testContext.assertionStart(“get_active_accounts()==
@get_active_accounts()+1");

if ('skipAssertions){
/lpreAssertions
int__ ADL_tmp_O=bankObject.get_active_accounts();
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int_ ADL _tmp_1=__ ADL_savTmp_1;//saveBlocktmpvariable
int__ ADL tmp 2= ADL_tmp_1+1;
boolean__ ADL_tmp_3=__ADL_tmp_0==__ADL_tmp_2;
tddRes=__ ADL_tmp_3;
if (debugMode){
testContext.infoline(“get_active_accounts()\t”+
__ADL_tmp_0);
testContext.infoline(“@get_active_accounts()\t"+
__ADL_tmp_1);
testContext.infoline(“@get_active_accounts()+1\t"+
__ADL_tmp_2);
testContext.infoline(“get_active_accounts()==
@get_active_accounts()+1\t"+__ ADL_tmp_3);

}
testContext.assertionResult((tddRes? ADL_PASS.:

ADL_FAIL));
}

else{
testContext.assertionResult(ADL_UNEVALUATED);
}

i/ ADL_Assertion (nested)
Children nodes:
Node : expr
Created node:
visit(expr)
Note:
In this case, the assertion is considered as just a boolean expression.

i/ ADL_IfStatement (nested)
Note:
evaluated as an expression: (cond) ? (thenBranch) : (elseBranch)
Children nodes:
Node : adl_Expr
ADL_AssertionGroup : adl_AssGrp
[ Node : elseBranch ] // ADL_AssertionGroup or ADL_IfStatement
Created node:
ConditionalExpression :
visit(adl_Expr)
visit(adl_AssGrp)
#if (#(children nodes) > 2)
visit(elseBranch)
#else
BooleanLiteral : “true”

k/  ADL_IfStatement (not nested)
Children nodes:
ConditionalExpression : adl_Expr
ADL_AssertionGroup : adl_AssGrp
[ Node : elseBranch ] // ADL_AssertionGroup or ADL_IfStatement
Created node:
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IfStatement :
visit(adl_Expr)
visit(adl_AssGrp)

#if (#(children nodes) > 2)
visit(elseBranch)

I/ ADL_TryStatement (not nested)
Children nodes:
ADL_AssertionGroup : tryAssGrp
( FormalParameters : catchFP
ADL_AssertionGroup : catchAssGrp
)+
Created node:
TryStatement :
visit(tryAssGrp)
( FormalParameters : catchFP
visit(catchAssGrp)

)+

m/ ADL_TryStatement (nested)

Children nodes:
ADL_AssertionGroup : tryAssGrp
(  FormalParameters : catchFP

ADL_AssertionGroup : catchAssGrp

)+

Created node:
Name : aName

Actions:
see the decomposition algorithm (Section 5.2.1.3.c).

n/ ADL_Binding
Children nodes:
FormalParameter : formalParam
ConditionalExpression : expr
Created node:
LocalVariableDeclaration :
Type : formalParam.Type
VariableDeclarator :
VariableDeclaratorld : formalParam.VariableDeclaratorld
visit(expr)

o/ ADL_ImplExpression
Children nodes:

Node : el, e2
ADL_ImplOp : op
#if (op == “==>") [/ el ==> €2 ---> l(el) || (e2)

Created node:
ConditionalOrExpression :
UnaryExpressionNotPlusMinus :
Operator: “I”

Version 1.1 73 of 132



Code Generation ADL 2.0 Translation System Design Specification

ParenthExpression:
visit(el)
ParenthExpression:
visit(e2)
#if (op == “<==") // similar (exchange el and e2)
#if (op =="“<=>") /[ el <=>e2 ---> (el) == (e2)
Created node:
EqualityExpression:
ParenthExpression:
visit(el)
Operator: “=="
ParenthExpression:
visit(e2)
#if (op=="“<>") /el <>e2 --->
(e1) ? abnormal : !((e2) && abnormal)
Created node:
ConditionalExpression:
ParenthExpression:
visit(el)
Name : “abnormal”
UnaryExpressionNotPlusMinus
Operator: “I”
ConditionalAndExpression:
ParenthExpression:
visit(e2)
Name : “abnormal”

p/ ADL_Expression (and all other Java expression nodes except PrimaryExpression)
Children nodes:
( Node : exp )+
Created nodes:
Name : aName
Actions:
see the decomposition algorithm (Section 5.2.1.3)

g/ ADL_ThrownExpression
Children nodes:
NameList : nameList
Created node:
#if (#namelList == 1)
// thrown(el) ----> (thrownException instanceof el)
InstanceOfExpression:
Name : “thrownException”
Type : namelList.getChild(0)
#else
/l thrown(el, e2) ----> (thrownException instanceof el) || (thrownException
instanceof el)
ConditionalOrExpression:
Instance OfExpression:
Name : “thrownException”
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Type : namelList.getChild(0)
Instance OfExpression:

Name : “thrownException”

Type : namelList.getChild(1)

r/  unchanged
Note:
unchanged(expr) ---> (expr == @expr)
unchanged (exprl, expr2 /*, ... */) --->
((exprl == @exprl) && (expr2 == @expr2) /* && ... */)
Children nodes:
Arguments : args
Created node:
#if (#args == 1)
EqualityExpression :
ConditionalExpression :
visit(args.ArgumentList.ConditionalExpression)
Operator: “=="
ConditionalExpression :
visit(ADL_CallStateExpression :
args.ArgumentList.ConditionalExpression)
#else
ConditionalAndExpression :
EqualityExpression :
ConditionalExpression :
visit(args.ArgumentList.ConditionalExpression1)
Operator: “=="
ConditionalExpression :
visit(ADL_CallStateExpression :
args.ArgumentList.ConditionalExpression1)
EqualityExpression :
ConditionalExpression :
visit(args.ArgumentList.ConditionalExpression2)
Operator: “=="
ConditionalExpression :
visit(ADL_CallStateExpression :
args.ArgumentList.ConditionalExpression2)

5.2.1.3 Expression Decomposition Algorithm

a/ Rationale
In the ADL runtime, i.e. when evaluating the assertions of the generated ACOs, there is
a possible “debug” mode such that all expressions present in the assertions are decom-
posed in sub-expressions and all these sub-expressions are evaluated separately. Thus,
when an assertion fails, the user may set the debug mode in order to have a more refined
analysis and detect which sub-expression of the assertion is responsible for the failure.
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The debug mode israntimeoption, not a&zompilationoption, therefore the transforma-

tion must foresee this mode: the generated code will systematically decompose expres-
sions in assertions and guard the “debug mode code” by a condition (in fact, only the
reporting of the values of the sub-expressions is guarded).

Note that some expressions will not be decomposed:

e try/catch expressions
* call-state expressions
e expressions in quantified assertions

Note also that only expressions in assertions can be decomposed, not the expressions
that occur in binding definitions, prologues and epilogues.

b/ Algorithm: General Case
Note:
The algorithm for a PrimaryExpression node (especially when this corresponds to a
method call) is quite complex: it will be presented separately in Section 5.2.1.5.
Current node:
Node : exp // an expression node
Children nodes:
( Node : subexp )* // any kind of expressions
Action:
#if (isDecomposable)
String str = <the token string of the current node>
/I stored to be called in infoline, in debug mode
(visit(subexp) )*
make_preassertion // store information: node type, visited node, str
Il return the name of a generated variable stored as a preassertion
Created node:
Name tmp // variable name returned by make_preassertion
#else
Created node:
(visit(subexp) )*
Note:
isDecomposable = isInAssertion && !(isInTry ||
isInCallState || isinQuantifiedAssertion)
Example:
visit(EqualityExpression: a + b == f(c))
str="a + b ==f(c)"
visit(AdditiveExpression: a+b)
str ="a + b” // local variable (does not overwrite preceding str)
visit(Name: a)
str=*"a”
// no child node to visit
make_preassertion(typeOf(a), a, str) -> tmp1l
/I preAssertion: “T tmpl = a;” where T is typeOf(a)
return // transformed tree: Name a -> Name tmp1l
visit(Name: b)
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str="b”
// no child node to visit
make_preassertion(typeOf(b), b, str) -> tmp2
/I preAssertion: “T tmp2 = b;” where T is typeOf(b)
return // transformed tree: Name b -> Name tmp2
// no more child node to visit
make_preassertion(typeOf(a+b), tmpl+tmp2, str) -> tmp3 // str == “a+b”
return // transformed tree: AdditiveExpression a+b -> Name tmp3
visit(PrimaryExpression: f(c))
str = “f(c)”
visit(Name: f)
return // function name: node not transformed
visit(Name: c)
str = “¢”
// no child node to visit
make_preassertion(typeOf(c), ¢, str) -> tmp4
return // transformed tree: Name ¢ -> Name tmp4
// no more child node to visit
make_preassertion(typeOf(f(c)), f(tmp4), str) -> tmp5 // str == “f(c)”
return // transformed tree: PrimaryExpression f(c) -> Name tmp5
// no more child node to visit
make_preassertion(boolean, tmp3 == tmp5, str) -> tmp6 // str == “a+b==f(c)"
return // transformed tree: EqualityExpression a + b == f(c) -> Name tmp6

During this evaluation, six pre-assertions are stored. Once the assertion evaluation
is completed, the transformer will generate the code along with these preassertions:
e.g. (see Section 5.2.1.2.d: ADL_BehaviorSpecification):

testContext.assertionStart(“a+b==f(c)");
if ('skipAssertions){
inttmpl=a; shorttmp2=b; inttmp3=tmpl+tmp2;
shorttmp4=c;inttmp5=f(tmp4);
booleantmp6=tmp3==tmp5;
tddRes=tmp6;
if (debugMode){
testContext.infoline(“a”, tmp1);
/...
testContext.infoline(“a+b==f(c)”,tmp6);

}
testContext.assertionResult(tddRes? ADL_PASS:
ADL_FAIL);
}else{
testContext.assertionResult(ADL_UNEVALUATED);
}

¢/ Call-State Expression
¢ A call-state expression is not further decomposed.

* A call-state expression is first saved as a saveBlock, and the generated temporary
that corresponds to this saveBlock is then saved as a PreAssertion.

Example:
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visit(EqualityExpression: a == @(f(b) + ¢))
str = “a==@(f(b)+c)”
visit(Name: a)
str =*"a”
make_preassertion(typeOf(a), a, str) -> tmpl
Il preAssertion: “T tmpl = a;”
return // transformed tree: Name tmp1l
visit(ADL_CallStateExpression: @(f(b)+c))
/l no decomposition of a callstate
str = “@(f(b)+c)”
make_saveBlock(typeOf(f(b)+c), f(b)+c) -> savTmp1l
make_preassertion(T, savTmpl, str) -> tmp2 // str == “@(f(b)+c)”
Il preAssertion: “T tmp2 = savTmp1l;”
return // transformed tree: Name tmp2
make_preassertion(boolean, tmpl==tmp2, str) -> tmp3
return // transformed tree: Name tmp3

Generated code:
As a saveBlock (see Section 5.2.1.2.d: ADL_BehaviorSpecification)

inttmpSav1=0;
if ('skipAssertions){
tmpSavl=f(b)+c;

As preAssertion:

short tmpl = a; int tmp2 = savTmpl;

boolean tmp3 = tmp1 == tmp2; tddRes = tmp3;

Note:

make_saveBlock generates 2 distinct statements: the declaration of the temporary
variable with an initialization to a default value (the Java default value for the type
of the variable) and the assignment of the call-state expression to this variable. This
is because the evaluation of the expression must be performed only when the runt-
ime is not in a “skipAssertions” mode and because the Java compiler requires that a
local variable be always initialized before being used.

d/ “Try/Catch” Case
A try/catch expression is not further decomposed.

Example:
visit(EqualityExpression: a + { try { f(b)+c; } catch(Exc e) { 0; }} == 0)
str = “a+{try{f(b)+c;}catch(Exc e){0;}}==0"
visit(AdditiveExpression: a+{try{f(b)+c;}catch(Exc e){0;}})
str = “a+{try{f(b)+c;}catch(Exc e){0;}"
visit(Name: a)
str =*a”
make_preassertion(typeOf(a), a, str) -> tmp1l
return // transformed tree: Name tmp1l
visit(ADL_TryAssertionGroup: try{f(b)+c;}catch(Exc e){0;})
/I no decomposition of a try block
str = “try{f(b)+c;}catch(Exc e){0;}"
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5214

b/

make_preassertion(typeOf(f(b)+c), try{f(b)+c;}catch(Exc €){0;}, str)
->tmp2
return // transformed tree: Name tmp2
make_preassertion(T, tmpl+tmp2, str) -> tmp3
return // transformed tree: Name tmp3
visit(0)
return // primitive values are not transformed
make_preassertion(boolean, tmp3 == 0, str) -> tmp4
return // transformed tree: Name tmp4

Generated code:
short tmpl = a; int tmp2 = 0;
try { tmp2 = f(b)+c;} catch(Exc e) {tmp2 = 0;}
int tmp3 = tmpl+tmp2;
boolean tmp4 = tmp3 == 0; tddRes = tmp4;
Note:
here, make_preassertion generates in fact two separate statements: the declaration
of the temporary variable and its initialization with a default value, and the try/catch
statement where this variable is given the expression value.

Inline Substitution Algorithm

Inline call (PrimaryExpression)
Children nodes:
PrimaryPrefix:
Name: inlineName
PrimarySuffix:
Arguments: inlineArgs
Created node:
visit(currentinline.ADL_AssertionGroup.clone()))
Fields:
currentlnline = // the inlineDeclaration that corresponds to the current
/I call to inlineName (Section 5.2.1.2.b)
inlineFormalParams = currentinline.MethodDeclarator.FormalParameters
inlineActualParams = inlineArgs
inlining // boolean set to true before visiting currentinline.ADL_AssertionGroup,
// false after

Name
Current node:
Name aName
Actions:
if inlining
if aName <is the H parameter of inlineFormalParams>
newnode = inlineActualParams.getChild(n).clone()
Created node:
visit(newnode)
Note:
in other cases, see the usual decomposition algorithm (Section 5.2.1.3).
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5.2.1.5 PrimaryExpression: general algorithm
Several cases must be taken into account, for example whether this is an inline call or if
the node is encountered during an inline substitution.

Current node:
PrimaryPrefix : prefix
PrimarySuffix : suffixl
( PrimarySuffix : otherSuffixes )*
Actions:
IF prefix is not a name: usual algorithm (visit all children)
ELSE
IF prefix is an inline name
IF no otherSuffixes: see Section a on page 70
ELSE return a PrimaryExpression whose prefix is the visited inline call
(i.e. visit(prefix.suffix1l)) and suffixes are visit(otherSuffixes)
ELSE
IF inlining
IF prefix is the name of a formal parameter of the current inline substitution
return a PrimaryExpression with as prefix the visit to the corresponding
actual parameter and as suffixes visit(suffix1) and visit(otherSuffixes)
IF prefix is a qualified name whose first component is the name of a formal
parameter of the current inline substitution
IF the corresponding actual parameter is a name, just replace the formal
parameter by the actual one:
<Name: <inlineFormalP>""<nameRest>><suffixl1><otherSuffixes> -->
<Name: <inlineActualP>"."<nameRest>><suffix1><otherSuffixes>
ELSE the rest of the name becomes a DotSulffix:
<Name: <inlineFormalP>""<nameRest>><suffixl1><otherSuffixes> -->
<PrimaryPrefix: inlineActualP><DotSuffix; nameRest><suffix1><oth-
erSuffixes>
IF prefix is the name of a component of the tested object, it must be qualified
by this real object name.
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5.2.2 TDD Node Transformation

5.2.2.1 Design

GenericVisitor

Builder I
— @ TDDTransformVisitor I
DirectiveBuilder } c RemoveADLVisitor
Vo
G

T

DatasetBuilder F

FactoryBuilder F FactoryVisitor

FIGURE 6. TDD Code Generation Architecture Model

DatasetExprVisitor

LUl

Figure 6 presents the UML diagram of the hierarchy of classes used in the code genera-
tion code for a tdd class. The main class is the TDDTransformVisitor, which is given the
AST root of the parsed tdd class. This visitor will “dispatch” the computation, creating
objects for each feature present in the source: a DatasetBuilder object for a dataset defi-
nition, a FactoryBuilder for a factory definition, a DirectiveBuilder for a test directive.
Each of these builders will have to create an AST that will be unparsed as a separate
Java file; they all inherit from an abstract class Builder that initializes such a tree.

Dataset and directive features both contain dataset expressions; when a dataset expres-
sion is encountered, one must create a DatasetExprVisitor object that will visit this
expression and generate the code that implements it.

Finally, the class RemoveADLVisitor is used to visit the AST of a directive body or a
test function to detect ADL and/or ADL_new expressions and replace them with suit-
able code. FactoryVisitor is used to visit the body of factory definitions in order to
replace primitive type expressions in return statements by an equivalent wrapper object
(for instance “return 0;” must be replaced by “return new Integer(0);").
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5.2.2.2 TDDTransformVisitor

a/ ADL_CompilationUnit
Children nodes:
( ImportDeclaration : impDecl )*
( TDD_UseDeclaration : useDecl )*
TDD_ClassDeclaration : tddClass
Created node:
CompilationUnit :
( ImportDeclaration : importDecls )+
visit(tddClass)
Fields:
( ImportDeclaration importDecls += impDecl )*
importDecls += <ORG.opengroup.adl.runtime.*>
Note:
“use” declarations are used only by the symbol table manager during parsing.

b/ TDD_ClassDeclaration
Children nodes:
IDENTIFIER : id
( TDD_ClassBodyDeclaration : decl )*
Created node:
ClassBodyDeclaration :
MODIFIER : “public”
IDENTIFIER : id + “TDD”
Name : “ADLTest” // extends clause
(visit(decl) )*
Fields:
Name unitName = id
CompilationUnit : constinterface =
makeConstinterface(constants, unitName, importDecls)
/I for the constant interface, see Section f.

¢/ TDD_DatasetDeclaration

Created node:
null // no created node

Action:
datasets += new DatasetBuilder(node, importDecls, unitName).compilUnit

Note:
“datasets” is the handle that gathers all ASTs that correspond to dataset definitions
(returned as field “compilUnit” of the DatasetBuilder). It will be used by the ADLT
engine that has started the TDDTransformVisitor, so that its AST elements are sent
to an unparser.
The principle is the same for both following sections TDD_FactoryDeclaration and
TDD_TestDirective.

d/ TDD_FactoryDeclaration
Created node:
null // no created node
Action:
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factories += new FactoryBuilder(node, importDecls, unitName).compilUnit

e/ TDD_TestDirective

f/

o/

5223

Created node:
null // no created node
Action:
directives += new DirectiveBuilder(node, importDecls, unitName).compilUnit

TDD_FieldDeclaration
Children nodes:
Type : type
( VariableDeclaratorld : id
Variablelnitializer : init )+
Created node:
null // no created node
Actions:
FieldDeclaration constants +=
MODIFIER : “public”
Type : type
( VariableDeclarator :
VariableDeclaratorld : id
Variablelnitializer : init
)+
Note:
makeConstinterface is a method called in the visit of TDD_ClassDeclaration, after
the visit to FieldDeclaration nodes, which builds the interface that gathers all decla-
rations of the “constants” handle. This is a trivial method that will not be detailed
here.

MethodDeclaration

Actions:
Create an RemoveADLVisitor object and make it visit the last child (Block) of the
current node (see Section 5.2.2.8).
Return the current node.

Dataset Builder
Input:
TDD_DatasetDeclaration :
TDD_SingleDeclarator :
ResultType : dsType
VariableDeclaratorld : dsName
TDD_DatasetExpr : datasetExpr
( ImportDeclaration : importDecls )*
Name : unitName
Fields:
Name datasetName = dsName
Name className = “S_" + unitName + “_" + datasetName
Type datasetType = dsType
Actions:

Version 1.1

83 of 132



Code Generation ADL 2.0 Translation System Design Specification

datasetComponents computed by visiting the dataset expression datasetExpr
through a dataset expression visitor (see Section 5.2.2.6):

visitor = new DatasetExprVisitor(“tc”, “elt”);
visitor.visit(datasetExpr);

(the first string parameter is used to send the right test-context for newly created
datasets, and the second one will initialize the visitor's stack of string strStack)
Output:
CompilationUnit :
( ImportDeclaration : importDecls )*
ClassDeclaration :
MODIFIER : “public”
IDENTIFIER : className
Name : findType(datasetExpr) // inherited class name
ClassBodyDeclaration :
ConstructorDeclaration :
MODIFIER : “public”
IDENTIFIER : className
FormalParameters :
<ADLTest tc>
ExplicitConstructorinvocation :
<super(tc, “<datasetName>");>
(visitor.datasetComponents.top )*
( BlockStatement :
<addElement(elt<i>);>

)i:l..datasetComponents.top.size()

5.2.2.4 Directive Builder
Input:
TDD_TestDirective : node
[ IDENTIFIER : ident ]
( TDD_DatasetDomain :
[ TDD_SingleDeclarator : single ]
TDD_DatasetExpr : datasetExpr
)*
Statement: userStmt
( ImportDeclaration : importDecls )*
Name : unitName
Fields:
[ Name directiveName = ident ] // or directiveName = “anonymous_<index>
Name className = “D_" + unitName + “_" + directiveName
( SingleDeclarator singleDecl = single )*
Output:
CompilationUnit :
( ImportDeclaration : importDecls )*
ClassDeclaration :
MODIFIER : “public”
IDENTIFIER : className
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Name : “TDD” + unitName
ClassBodyDeclaration :
ConstructorDeclaration : makeDirectiveConstructor()
MethodDeclaration : makeMain()
MethodDeclaration : makeRunlInstance()
Actions:
1/ makeDirectiveConstructor --> generates constructtpublic
<className>()” with body created by:
(// loop on dataset expression parameters
visitor = new DatasetExprVisitor(“this”, “elt_" + i)
visitor.visit(datasetExpr);
(visitor.datasetComponents.top )*
BlockStatement :
“addParameter(elt<i>)”

) i=1..nbDatasetExpr

2/ makeMain --> generates method:

“static publicvoid main(String[]args){
testCase.main(“<directiveName>", args,
new<className>());

p

3/ makeRunlInstance --> generates methdgrotected void
runinstance(Object[] paramValues) throws Throwable” with

body created by a loop on singleDecl, such that for each SingleDeclarator (a couple
type-name), two statements are generated

e ‘“<type> <name> = (<type>) paramValuesi];”
(with a special case to consider when the type is primitive: for instance if type==int:
then “int <name> = ((Integer) paramValuesi]).intValue();")

* ‘“infoline(*Parameter <type> <name> =“ + <name>);"

Then the user code of the test directive (userStmt) is visited by an RemoveADLVis-
itor (see Section 5.2.2.8) and the return of this visit is added after these statements.

5.2.2.5 Factory Builder
Input:
TDD_FactoryDeclaration : node
MethodDeclaration :
ResultType : factType
MethodDeclarator :
IDENTIFIER : factName
FormalParameters :
( FormalParameter :
Type : typeParam
VariableDeclaratorld : nameParam
)*
[ NamelList : factThrowsList ]
Block : factBlock
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5.2.2.6

[ [ FormalParameters : relinquishParams ]
Block : relinquishBlock ]
( ImportDeclaration : importDecls )*
Name : unitName
Fields:
Name className = “F_" + unitName + “_" + factName
Output:
CompilationUnit :
( ImportDeclaration : importDecls )*
ClassDeclaration :
MODIFIER : “public”
IDENTIFIER : className
Name : “ADLFactorySet”
ClassBodyDeclaration :
ConstructorDeclaration : makeFactoryConstructor()
MethodDeclaration : makeFactoryProvide()
MethodDeclaration : makeFactoryRelinquish()
MethodDeclaration : makeProvide()
MethodDeclaration : makeRelinquish()
Note:
The constructor and the methods makeFactoryProvide, makeFactoryRelinquish and
makeRelinquish are easily built: direct and obvious tree creation using available
information (no subtree to visit, no particular algorithm or data structure to take
into account).
The makeProvide (resp makeRelinquish) method generates the code of a method
that is exactly the same as the factory code written by the user (resp the relinquish
block), except:

* the name of the method (“provide_<factName>" instead of “<factName>").

¢ f the factory has a primitive return type (e.g. int), the last child (Block) of the fac-
tory definition must be visited by a FactoryVisitor object: see Section 5.2.2.7.

Dataset Expression Visitor

Algorithm

The dataset expression visitor is used by two builders: DatasetBuilder and Directive-
Builder. It is given as input an AST that corresponds to a dataset expression, but it does
not modify this tree: instead it creates a set of trees that will be used in different ways by
the caller.

The transformation of a dataset expression (either in a dataset or in a directive defini-
tion) consists in declaring and initializing a Java variable. The class type of this object is
either an existing external dataset implementation class or factory implementation class,
or an ADLLiteralSet (initialized by an array containing the values of the literal set
expression), or an ADLConcatenationSet. The goal of the dataset expression visitor is to
build the trees corresponding to these declarations.

There are two kinds of dataset expressionsptimitive expressions (name or literal)
and theaggregatednes (concatenation or factory call). In the case of aggregated
expressions, the dataset is composed of dataset sub-expressions: theatafasents
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(arguments of a factory call or elements of a dataset concatenation). These dataset com-
ponents must be sent to the parent object for its initialization. This process may of

course be recursive, and therefore requires to use stack-oriented data-structures: dataset-
Components is a stack of vectors of nodes (datasetComponents.top corresponds to the
components of the current dataset) and strStack is a stack of strings to give names to
new declarations; this stack is initialized by a string given as a constructor parameter by
the object that uses a dataset expression visitor.

The algorithm to generate the declarations corresponding to dataset components is as
follows:

makeComponents( (nod&Nodes
/I nodestands for dataset components (operands of a “+” or arguments
/I of a factory call)
datasetComponents.push(new())
fori=1..nbNodes
strStack.push(strStack.top + “_p” + i)
visit(TDD_DatasetExpr : node)// recursive visit
strStack.pop()
endfor
result = datasetComponents.top
datasetComponents.pop()
return result;

b/ Name (of a dataset)
add to datasetComponents.top the declaration:
“<name> <datasetName> = new <name> (<testContext>);”

FieldDeclaration : createdNode
Type : fullName
VariableDeclarator :
Name : strStack.top
AllocationExpression :
Name : fullName
Arguments :
Name : <testContext>
Fields:
fullName = makeName(name) // name: current node
/l makeName gives the complete dataset name (e.g. from “D2” to “S_auxlib_D2")
Actions:
datasetComponents.top += createdNode

c/ Literal (singleton literal dataset)
“Cast” in a real literal dataset.
Actions:
visit(TDD_DatasetLiteral : currentNode)

d/ Name (of a constant)
Note:
considered as a literal
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Actions:
/] “Cast” in a real literal dataset.
visit(TDD_DatasetLiteral : currentNode)

e/ TDD_DatasetExpr (concatenation of datasets)

Example: //in tdd class “examples”
D1 + D2 // D1 is defined in “auxlib” and D2 in the current tdd class
-—->
ADLConcatenationSet <myname> =
new ADLConcatenationSet(<testContext>, null);
S _auxlib_D1 <myname>_pl =new S_auxlib_D1(tc);
S _examples_D2 <myname> p2 = new S_examples_D2(tc);

<myname>.addElement(<myname>_p1l);
<myname>.addElement(<myname>_p2);

Children nodes:

( TDD_DatasetConcatExpr : chilgefhildren
Actions:
#if ANONYMOUS
FieldDeclaration : createdNodel
Type : “ADLConcatenationSet”
VariableDeclarator :
Name : strStack.top
AllocationExpression :
Name : “ADLConcatenationSet”
Arguments :
Name : <testContext>
StringLiteral : “null”
datasetComponents.top += createdNodel
#endif
datasetComponents.top +=
makeComponents( (child )
#if ANONYMOUS
(  Statement : createdNode2
“<strStack.top>.addComponent(<strStack.top>_p<i>);”
datasetComponents.top += createdNode2

)i=1..nbChildren
#endif
Notes:
* The special case “dataset T D1 = D2;” is considered as a concatenation of datasets
with a single operand

nbChildren )

* When the concatenation operation is at the outermost level of a dataset declaration
(e.g. “dataset int D = D1 + D2"), i.e. when the result is not “anonymous”, only the
“makeComponents” part of this algorithm is necessary: the ADLConcatenationSet
declaration and the “addComponent” statements (in fact addElement for concatena-
tion or addParameter for factory call) are performed by the caller, dataset or directive
builder. These operations occur only in the case of complex expressions such as
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“fact(D1, D2+D3)": here the expression “D2+D3" is anonymous and must therefore
be declared as a dataset concatenation and initialized with the components D2 and
D3.

f/ TDD_FactoryCall
Example:
Fact(D2)
-—->
F_examples_Fact <myname> = new F_examples_Fact(<testContext>, null);
S _auxlib_D2 <myname>_pl =new S_auxlib_D2(tc);
<myname>.addParameter(<myname>_pl);

Children nodes:
Name : factName

(Node : factArg JPA'9S
Actions:
#if ANONYMOUS
FieldDeclaration : createdNodel
Type : factFullName // makeName(factName)
VariableDeclarator :
Name : strStack.top
AllocationExpression :
Name : factFullName
Arguments :
Name : <testContext>
StringLiteral : “null”
datasetComponents.top += createdNodel
#endif
datasetComponents.top +=
makeComponents( (factArg ) nbArgs )
#if ANONYMOUS
(  Statement : createdNode2
“<strStack.top>.addComponent(<strStack.top>_p<i>);”
datasetComponents.top += createdNode2
)i:l..nbArgs
#endif
Note:
ANONYMOUS: cf second note for concatenation above (Section e).

g/ TDD_DatasetLiteral / TDD_DatasetMember
The transformation is performed in three steps:

* initialize a vector with the values of the literal set
» transfer this vector into an array

¢ declare the dataset as an ADLLiteralSet constructed with this array.
Example:
{3, 5 .. (int)(Math.random()*10)+5, 20 .. (int)(Math.sqrt(1000))}
->
java.util.Vector <myname>_v = new java.util.Vector();
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<myname>_v.addElement(new Integer(3));

int minexp, maxexp;

minexp = 5; maxexp = (int)(Math.random()*10)+5;

for (int i = minexp; i <= maxexp; i++)
<myname>_v.addElement(new Integer(i));

minexp = 20; maxexp = (int)(Math.sqrt(1000));

for (int i = minexp; i <= maxexp; i++)
<myname>_v.addElement(new Integer(i));

int <myname>_a[] = new int[<myname>_v.size()];

for (inti = 0; i < <myname>_v.size(); i++)
<myname>_al[i] = ((Integer)<myname>_v.elementAt(i)).intValue();

ADLLiteralSet <myname> = new ADLLiteralSet(tc, <myname>_a);

Actions:
All these declarations and statements are to be generated in datasetComponents.
We will not detail here the transformation, which is simple but tedious... Just note
that in the case of a single-valued dataset literal, we generate a simple
“<myname>_v.addElement” statement, whereas for a range dataset literal we gen-
erate a loop from the first value of this range to the second one.
Note also that if a dataset member calls a static method “meth” of the current tdd
class, the generated code must call “<tddClassName>TDD.meth".

h/  Example

5.2.2.7

Let's consider the following dataset definition (in tdd class bTest):

datasetbank TEST=
make_bank(DEPOSITS,BANKSIZE + DEPOSITS, INT_VALUES);

The transformation of this dataset declaration will generate a class S_bTest TEST that
inherits from the class that implements the factory make_bank, and where the dataset
expressiomake_bank(...) is transformed into:

S bTest DEPOSITSelt pl1= newS_bTest DEPOSITS(tc);
//2nd parameter: anonymous-->recursive call
ADLConcatenationSetelt p2=

newADLConcatenationSet(tc, null);
S_bTest_BANKSIZEelt_p2 pl= newS_bTest BANKSIZE(tc);
S bTest DEPOSITSelt p2_p2= newS_bTest DEPOSITS(tc);
elt_p2.addElement(elt_p2_p1);
elt_p2.addElement(elt_p2_p2);
S_bTest_INT_VALUESelt_p3= newS_bTest INT_VALUES(tc);
//Componentsarethenadded as parameters ofthefactory
//make_bank:
addParameter(elt_p1);addParameter(elt_p2);
addParameter(elt_p3);

FactoryVisitor

The aim of this visitor is to visit a Block AST in order to replace primitive type expres-
sions in return statements by an equivalent wrapper object (for instatwe'0; 7

must be replaced byéturn new Integer(0); ).

This class overrides only one visit method, for the ReturnStatement node:

90 of 132

Version 1.1



Code Generation ADL 2.0 Translation System Design Specification

5228

5.3

Children nodes:
[ Node : returnExpr ]
Created node:
ReturnStatement :
[ AllocationExpression :
Type : <JavaWrapperType(returnExpr)>
Argument : returnExpr ]

RemoveADLVisitor
The aim of this visitor is to replace ADL/ADL_new expressions that occur in directive
bodies or test functions.

ADL (<objectname>)<suffixes>* --->
new <objecttype>ACO(<objectname>, this)<suffixes>*

ADL (<classname>)<suffixes>* --->//test ofastatic method
new <classname>ACO(null, this)<suffixes>*

ADL_new<name>(<args>)<suffixes>* --->//constructortest
new<name>ACO(null, this).<name>(<args>)<suffixes>*

This class only overrides the visit methods for nodes PrimaryExpression,
TDD_ADLExpression and TDD_ADLnewExpression.

Unparsing

Generating the text of the generated file is comparatively simple. The only difficult part

is laying out the source so it’s easy to read. Unparsing an AST, or other data structure, to
produce human-readable text is often called “prettyprinting”.This may require two
passes; one to count the length of a generated line, another to generate the line with any
required linebreaks. Or, assuming the current column in the output stream is available to
unparser method, a single pass where required linebreaks are generated when it
becomes impossible to dump the next node.

According to the visitor pattern as described in introduction above, the unparser visitor
provides a visit method for each node type. The visit method generates the text for the
node, using hard and optional line breaks. The first unparse pass uses only hard line
breaks; if a line of text is too long, then it is regenerated with optional line breaks.

For example: the code to unparse a “for” statement might be (assuming as above that the
parts of the for statement are available as instance variables)

voidvisit(ForStatementfs){
booleanwrapped=false;
if (currentColumn>=lineLimit-5){
wrapped =true;
newline();//emitanewlineandresetcurrentColumn
addIndent(subindent);//add subindenttoindent
indent(); //emitthe currentindent
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emit(“for (“);//emitthe startofthe for statement

/lasktheforlnitmembertounparseitself
fs.forlnit.jjtAccept(this);

emit(“;");
/lasktheforTestmembertounparseitself
/litwilltake care ofremaining spacetodecide whether
/ltoemitanewline ornot
fs.forTest.jjtAccept(this);

emit(";");

/lasktheforUpdate membertounparseitself
fs.forUpdate.jjtAccept(this);

emit(")");

fs.forBody.jjtAccept(this);

if (wrapped){
delindent(sublndent);

}

}
EXAMPLE 4 Unparsing for statement
This code is certainly not complete; it may be improved by adding a special treatment
when the body of the for statement is not a block. It relies on several information and
methods in the current unparser visitor that are not described in this example. Addition-
ally, it provides no code to deal with comments in the code. A specific section below
describes the design for comments processing. Nonetheless, the pattern of the unparse
code should be evident.
5.3.1 Unparser Visitor Classes

Unparsing is done by an unparsing visitor class, which is the dual of the parser for the
AST type in question. Unparser visitors are derived from the abstract class GenericUn-
parserVisitor (see Figure 5). This class provides specific unparser methods with current
unparser state information and generic methods.

The relevant declarations are:

abstractclass GenericUnparserVisitor{

protected PrintWriter out; // printstreamtowrite to
protected String outputDirectory; //rootdirfor output

private StringBuffer currentindent;

protectedintsublndent;//indentlevelforsubexpr
protectedintregindent;//indentlevel for stmt
protectedintcurrentColumn;//currentcolinprintstream
protectedintlineLimit;//maximumlengthofline
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EXAMPLE 5

protectedvoidaddindent(intextralndent){...}

protectedvoiddellndent(intextralndent){...}

protectedvoidindent(){...}

protectedvoid setindent(intnewindent){...}
protectedintgetindent(){...}

protectedvoid newline(){...}

protectedvoidemit(Stringstr){...}

private StringaddUnicodeEscapes(Stringstr){...}

protected GenericUnparserVisitor(Stringtoolname,
Stringversion,
intlinelimit,
Stringregindent,
String subindent){

protected GenericUnparserVisitor(Stringtoolname,
Stringversion){

GenericUnparserVisitor Skeleton

5.3.2

A simple rule for writing the specific UnparserVisitor classes is that there should be a
visit  method for each grammar rule that consume a token; parse rules that do not
consume token may not need emit methods for the corresponding Node class. If one
Node class is used to represent more than one grammar rule, then the code for the emit
method will have to distinguish those nodes by looking at the node properties.

Before a string can be emitted on the print stream, each character out of the standard
ASCII character set should be replaced by its corresponding UTF-8 encoded character.
This operation is performed by taddUnicodeEscapes method. Such replacement
might be conditioned by a system property indicating the type of character set used by
the underlying operating system (ASCII or UTF-8).

Comments Processing

If comments are to be reproduced in the generated code they require a special treatment
during the parsing, and they need to be copied into the target AST generated by the AST
transformation phase.

As far as parsing is concerned, the simplest way to handle comments is to apply the gen-
eral pattern provided in the JavaCompiler Compilel] examples.

In this pattern, comments are usually parsed as SPECIAL_TOKENS.

Version 1.1

93 of 132



Code Generation ADL 2.0 Translation System Design Specification

As these special tokens get attached to the real token immediately following them, each
non-terminal node needs in turn to reference its first token to be able to access potential
comment strings preceding it.

Some terminals in the ADL grammar (generally keywords, operators and separators)
may not be represented by nodes in the AST. They are however parsed as tokens and can
therefore reference a preceding comment string. ldeally, each non-terminal node mak-
ing use of such terminals in its production rule should keep a reference to those. But this
is not always possible since the terminal may in fact be used in a different production
rule than the one where the non-terminal node is built. The solution is then to keep the
last token of a non-terminal, as shown in the examples above, so that it can be used to
get the next token in the token chain, i.e., the terminal’s token. Figure 7 depicts the
actual links between the generated AST and the token chain for a simple input text. This
input text has been chosen because it illustrates the problem of comments associated to
terminals without corresponding nodes.

Input Text “(a+2 // comment 1
, b // comment 2
)”
AST
firstToken lastToken (I
® ArgList U
f + | b
/\ £
a 2
) f,l f,l
Token Chain
A A A A
( next a - 2 ! b )
specialToken
/I comment 1\r /I comment 2\
FIGURE 7. Links between AST and Token Chain

The typical algorithm used to unparse text in such a situation is kio#esf-driven
Starting from the first token in the token chain, each token is unparsed in turn. This is
rather incompatible with theode-driveralgorithm suggested by the AST data structure
and the visitor pattern model.
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Furthermore, it should be noted that the depicted links are valid right after parsing. And
while AST transformation can preserve them as much as possible, it will never be able
to establish such links for generated nodes.

And another even more serious problem is related to the memory usage of the parser. As
long as one non-terminal node keeps a reference to its first token, all remaining tokens
returned by the lexer.from the parsed file are referenced and will therefore never be gar-
bage collected, or at least until the tree is transformed. This means that a really huge
amount of tokens are kept in memory, together with the whole AST. JavaCC users have
already reported that this may cause Java to run out of memory.

For all these reasons, we have decided to currently not preserve comments in the gener-
ated code.
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Chapter 6

Documentation
Generation Architecture

6.1 Introduction

In addition to code to implement the test, ADLT2 generates natural language to describe
the specification and data that it is to be tested with.
This chapter describes the requirements that the ADLT2 natural language generation
subsystem should satisfy and the design of its implementation.

6.1.1 Generated documents
There are two kinds of document produced as output. The first is reference manual doc-
uments to describe the interface of the function under test. They are modeled on the
standard Unix manual page entries and include descriptions of the function synopsis and
the assertions from the ADL specification.
The second document type is the test description. This document describes the data that
the function is to be tested against, and the sequence of annotated functions that consti-
tute the test.
Some of the content of these documents comes from templates, some is generated auto-
matically from the ADL and TDD sources, and some is directly provided by user anno-
tations.

6.1.2 Expression translation

ADLT2 can generate natural language translations for expressions in ADL and TDD.
The default translations are rather stilted and unnatural. The translations can be

Version 1.1

97 of 132



Documentation Generation Architecture  ADL 2.0 Translation System Design Specification

6.1.3

6.1.4

6.1.5

improved by providing alternative translations for source language identifiers. NLD
annotations are the mechanism for associating translations with source identifiers.

Each natural language annotation provides information about the translation for an iden-
tifier. It does this in the form of a list of predicates that assert facts about the translation.
Some predicates define the actual translation text for the identifier, while others provide
contextual constraints such as the appropriate locale for the translation. SGML entities
can also be declared in the predicate list.

Sentence construction

ADLT uses a set of rules to construct descriptions of ADL expressions out of the identi-
fier translation fragments. These rules take the form of a Prolog program. That Prolog
program is specific to the natural language being generated, since it has rules that con-
struct sentences in the language. One candidate for the generation of Japanese sentences
is the Language Toolbox, which is an existing Prolog system for generation of Japanese.

Internationalization
ADLT2 must support the generation of documentation in languages other than English.

ADLT?2 provides internationalization mechanisms in three areas: the NLD translation
annotations can be marked with their locale (by using a locale predicate), or stored in
locale-specific files; the document templates can be locale-specific files; and the sen-
tence generation rules can be modified to support a specific locale (such as the Japanese
Language Toolbox).

SGML support

Standard Generalized Markup Language (SGML) is the foundation of the document
generation system. ADLT renders ADL and TDD expressions into SGML entity decla-
rations, exploiting any NLD annotations that the test engineer has provided.

ADLT supplies templates and synthesizes entities based upon the industry standard
DocBook 3.0 document type definition for constructing reference manual pages and test
specification descriptions.

The synthesized entity declaration are taken with user supplied entity declarations
together with template entity declarations to produce complete SGML documents for
subsequent processing. They can be converted with auxiliary tools into more conven-
tional formats such as HTML and Unix manual page format. Alternatively, the SGML
document can be incorporated into larger SGML documents.

The SGML that is generated is standard SGML and can be manipulated, transformed
and rendered with standard SGML tools. Although ADLT2 will make use of freely
available tools to convert the generated documentation to HTML and Unix manual page
formats, users will be able to use their own SGML tools for custom processing.

1. See http://www.gr.opengroup.org/adl/papers/sgml_setup.html.

98 of 132

Version 1.1



Documentation

Generation Architecture  ADL 2.0 Translation System Design Specification

6.1.6

6.2

Abstract syntax tree interface

Natural language information need not be made available to other parts of the ADLT
system. Hence there is no need to attach the translations for identifiers and expressions
directly to nodes in the AST. Moreover, as it is described below, there is no AST while
processing a NLD file.

General Architecture

Figure 8 below depicts how NLD annotations are processed in the ADLT system to gen-
erate the Natural Language Specifications (NLS) and Tests Description (NLTD).

ADL, TDD, NLD File

ADL/TDD Parser

Prolog Engine

NLD Annotations

AST

Y

Communication
Pipe

NLD Parser
Mappings

NL Engine

ADL/TDD Source

NL Unparser

NL Translations

NL Specifications,
NL Tests Description

FIGURE 8.

NLD Annotations Processing

Basically, the ADL compiler passes each input file to the ADL/TDD parser of the cur-

rent language binding. NLD annotations are extracted from the input file and sent to the

Prolog engine as mappings, i.e., associations between symbols in a given context and

translations.
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6.2.1

NLD_Annotation

6.2.2

The resulting AST at the end of the parsing of the input file is then passed to the NL
unparser which generates the associated documentation: NL specifications for an ADL
file, NL Tests Description for a TDD file.

NLD files don't generate any AST. Their purpose is just to provide some additional
mappings to feed into the Prolog engine. Since these additional mappings may be neces-
sary to generate the documentation of any ADL or TDD file, NLD files are parsed

before any other file. This is done by reorganizing the list of input files in the ADLT sys-
tem driver classAdlt (See “The Driver” on page 25.).

ADL/TDD Parser

The key idea in separating the ADL/TDD parser from the NLD parser is that the syntax
of NLD annotations is almost the same for all binding languages. Each ADL/TDD
parser ignores the NLD annotations and passes them to the NLD parser.

NLD annotations start with thdd keyword, followed by a brace-delimited block. The
exact syntax is expanded below:

= “nld” [ NLD_Locale ]“{* ( NLD_Declaration )**“}’

This syntax is used to define a token in each input language parser to ignore the NLD
annotations while still keeping its value.

In case of a pure NLD file, no AST is generated by the input language parsers. The NLD
annotations it contains are just used to extend the set of mappings of the Prolog engine.

Obviously, when the user has requested not to generate the documentation, the
NLD_Annotation tokens are just discarded.

NLD Parser

The role of the NLD parser is to convert NLD annotations in the source files into proper
calls to the NL Engine methods which extend the set of mappings known by the Prolog
engine. For this task, there is no need to create an AST representing the annotations.
The parsing consists in extracting the various information attached to an annotation:
predicates, scope, translation; interpreting and passing them as arguments to the NL
engine methods.

A single NLD annotation grammar is used for all supported language bindings. The
syntax of NLD strings has hence been extended to cover both C, C++ and Java. For
instance, it is possible in any case to define a concatenation string as in C++:

aMapping="afirststring”“,asecond one concatenated”;

or as in Java:

aMapping="afirststring”+“,asecond one concatenated”;
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EXAMPLE 6

The complete NLD annotations grammar is reproduced in the language reference manu-
als for all bindings. An interesting feature of NLD annotations in ADL 2 is that they

may define properties that characterize them, and be qualified with some additional
predicates. This features is less important in English than in other languages. The exam-
ple below demonstrates its usefulness on a French translation example (note that it does
not use the exact syntax).

Color(Object[gender(male)])="lacouleurdu$1”,
gender(female);

Color(Object[gender(female)])=“lacouleurdela$1”,
gender(female);

Color(Object[number(>1)])="“lacouleurdes $1”,
gender(female);

Color(Object)="lacouleurdel'objet$1”,
gender(female);

Use of predicates and properties for NLD annotations

6.2.3

6.2.4

While parsing the NLD annotations contained in the source files, the NLD parser also
filters them to only retain those defined in the appropriate locale. The user’s locale, if
specified, is available in trell.locale system property. Otherwise, it defaults to
theClocale.

NL Engine

Upon creation, the NL engine opens a connection to the Prolog engine udtilg the
terProcess  class. It selects the appropriate set of rules to pass to the Prolog engine
according to the user’s locale (see above). Rules are storediABRHOME/lib/
nl/<locale>/nl_rules file. Any user can provide additional locale-specific rules
by putting them in the appropriate file and directory.

There is a single instance of the NL engine, with a permanent connection to the Prolog
engine, during the entire lifetime of the ADLT compiler. It serves all requests for trans-
lations for all compiled files.

Upon creation, the NL engine sends a default mapping to the Prolog engine using the
assertz/1  predicate. This default mapping ensure that even un-annotated symbols
will get a translation: the symbol name.

All other mappings are sent to the Prolog engine by usingstberta/l  predicate.

Translation requests are sent to the Prolog engine usintpteé3  predicate.

NL Unparser

Since the NL unparser works on the AST generated by the input language parser, there
should be one NL unparser for each binding language.
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6.3

Its main purpose is to extract specification phrases as source code, and request the NL
engine to translate them to generate the appropriate documentation. Basically a specifi-
cation phrase is an assertion. From a node representing an assertion in the AST, the NL
unparser visits its children recursively to build the specification phrase. Each node vis-
ited should return a string describing how to translate that node, which in turn is used by
the parent node to build its own translation request string. When the visit of the children
ends, the assertion node asks the NL engine to translate the resulting phrase.

The NL unparser also builds a complete documentation out of a template that is loaded
from a source file in th$ADL2HOME!/lib/nl/<locale> directory, according to

the user’s locale and the type of file that is currently unparsed: ADL or TDD. There is
one template for each kind of documentation, i.e., one for NL Specifications named
nl_specs.tpl , and one for the NL Tests Description namédests.tpl

These templates define the general layout of a document using SGML and predefined
entities referring to the various parts generated during the NL unparsing: class descrip-
tion, method description, method semantics, etc. The NL unparser class contains vari-
ous placeholders where it keeps the generated translations for the predefined entities
used in the templates.

NL Engine

TBD

6.4

The NL Engine is a Java class that is used by both the NLD parser and the NL unparsers
as the single interface with the Prolog engine. Its role is to:

* launch a SWI Prolog process, initialize it with theale prolog rules
($ADL2HOME/lib/nl/<locale>/nl_rules ), and maintain a connection
with this process. This is done via thi#lerProcess class.

e during parsing, maintain information on the local scope in which an NLD annotation
appears.

¢ allow communication with the Prolog engine foappinggfrom the NLD parser)
andqueries(from the NL unparsers), manipulating strings accordingly to be coher-
ent with the string formats used by the different modules.

Complete description of the NLENngine class.

NL Rules

6.4.1

Basic Principles

Basically, the role of the Prolog engine is twofold: during NLD parsing it has to store
mappinggassociation of a symbol with its translation) and during NL unparsing it takes
as input arexpressiorand thecontextof this expression, and returns trenslationof

this expression in this context, possibly using the stored mappings.

Consider for instance a variable “foo” in a class AClass, where foo is both a class field
and the parameter of a method “bar”; suppose that in the ADL specification there is a
mapping “a stupid translation for foo” for the parameter foo of bar (see the ADL for
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6.4.2

Java or C++ Reference Manual, chapter 4), but no mapping for the field foo. Consider
now the ADL assertion “foo == 0. If this assertion is in the specification for method
bar, it refers to thparameterfoo, and the user wants this assertion to be translated to
something like “a stupid translation for foo is equal to 0” in the generated NL specifica-
tion document of AClass; conversely, if this assertion is in another method, it refers to
thefield foo, hence it has no proposed mapping, and the translation will be a default one
“foo is equal to 0.

This basic mechanism is extended in two directions: scope and inheritance.

* Saying that the parameter foo of method bar has a mapping is not accurate. In fact,
there may be a mapping defined for “AClass.bar(int).foo”. When translating an
assertion in bar that contains foo, the Prolog engine will search for such a mapping.
If this mapping does not exist but there is a mapping for “AClass.bar(*).foo”, then
this mapping has to be taken. If it does not exist, search for “AClass.*.foo”, and so
on.

* InJava and C++, we must take inheritance into account. If there is no mapping
defined for field foo but foo is in fact a field from class ASuperClass, ancestor of
AClass, and there is a mapping for ASuperClass.foo, then this mapping must be
used.

The inheritance mechanism has a higher priority than the scope mechanism. In the case
of the assertion in bar that involves foo, and if there is no mapping for
“AClass.bar(int).foo”, then a mapping for “ASuperClass.bar(int).foo” will be preferred

to the mapping “AClass.bar(*).foo".

Mappings

During NLD parsing, the mappings defined in NLD annotations are stored in a Prolog
database as clauses “map” via the “assert” pre-defined clauses.

The clause map has the following signature:

map(Symbol, Scope, Translation, UserPred, SystemPred)

where Symbol is the symbol's name, Scope represents the scope of the symbol as it is
defined in the NLD annotation, Translation is the proposed translation for the symbol.
UserPred and SystemPred are for user/system predicates and will be discussed later (see
Section 6.4.4).

Example:

asserta(map(‘maxact’,[#<EXTERN>', ‘bank_example’, ‘bank’,
[‘bank’,‘(int)']],['le nombre maxde comptes’],

0.0

This defines a translation “le nombre max de contpteihout predicates for
“bank_example.bank.bank(int).maxact ", i.e. the variable maxact defined

1. the max number of accounts
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6.4.3

6.4.3.1

in the constructor bank(int) of class bank in package bank _example. #<EXTERN> is a
“trick” to unify with C++. Single quotes are used to avoid clashes with Prolog variables.

For methods and functions, we must also precise how the translation of the arguments is
used in the translation of the method call, and if the mapping is defined for arguments
that obey some predicates.

asserta(mapfn(‘is_active(bank,long)’,
[#<EXTERN>', ‘bank_example’, ‘bank’,
[lecompte’, 2,'delabanque’, 1, ‘étaitactif],
[[female’],[]], [, [#CALLSTATE')).

This defines a mapping fbank_example.bank.is_active(bank, long)

when the first argument has the predicate “female” and the method call occurs in the
scope of a call-state. In such a case, the expregi®nactive(aBank, 100)

where aBank has a mapping “Société Lyonnaise” and predicate female will be trans-
lated as “le compte 100 de la banque Société Lyonnaise étdit. actif

Finally, there is also a simple clause for NLD entities:

asserta(mapEntity(‘bank’,['#<EXTERN>', ‘bank_example’],
description, ‘Classdefiningtheinterface ofabank.")).

This defines the entity “description” for cldssnk_example.bank

Translations
The basic Prolog clause for translation is “natural”:

natural(+Expr, +Ctxt,-Transl, +ScopeList,
-UserPredList, +SystemPredList)

Note we follow the Prolog usage: an argument denoted as “+” is passed to the clause,
whereas an argument denoted as “-” is computed by this clause.

Expr is the expression to be translated, Ctxt represents the local scope (the enclosing
method, for an assertion) and ScopelList the current class and its ancestors. Transl is the
returned translation and UserPredList a list of user predicates, used for translation of
method calls.

Mapping Resolution
When the expression to be translated is a simple symbol, the “natural” clause calls the
“search” clause (which has the same signature).

search(’'maxact’, [#<CLASS>’,['bank’, ‘(int)']], Transl,
[['#<EXTERN>',‘bank_example’, ‘bank’,
[#<EXTERN>', ‘java’, ‘lang’, ‘ObjectT],
UserPredList, SystemPredList).

1. account 100 of bank Société Lyonnaise was active
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6.4.3.2

The second argument (Ctxt) means “the current scope is the method bank(int) of the
current class” and the fourth one (ScopeList) describes this current class and its ances-
tors.

This clause will first call the searchinherited clause, that will try to detect a mapping for
“bank(int).maxact” in the current class or its ancestors. This is done by replacing the
keyword #<CLASS> by the complete class name (first element of ScopeList) and
search for

map('maxact’,[#<EXTERN>’, ‘bank_example’, ‘bank’,
[‘bank’,‘(int)']], Transl, UserPredList,
SystemPredList).

and if this map does not exist in the assert database, then replace bank_example.bank by
the next element in ScopelList (java.lang.Object here), and so on.

Note that even if there is no mapping defined for maxact, this call to map will return for
argument Transl the default translation: maxact, i.e. the symbol itself. Hence, saying
“the map does not exist” is more precisely “the map is the same as the given symbol”.

If searchinherited has failed (i.e. the returned translation is still the initial symbol), then
we trigger the second searching mechanism: scopes. For this, we first use a clause that
“enlarges” the Scope argument and we re-run the search clause.

In the previous example, enlarging the scope means replacing [#<CLASS>', ['bank’,
‘(int)"]] by [#<CLASS>’, ['bank’, ‘(*)']], hence searching for a mapping
“bank_example.bank.bank(*).maxact”. The next steps would be:

[#<CLASS>', '] for “bank_example.bank.*.maxact”

[#<CLASS>'] for “bank_example.bank.maxact”

For a further scope enlargement, ScopeList must also be modified:
[#<CLASS>"], [['#<EXTERN>', ‘bank_example’, ‘bank’], [#<EXTERN>', ‘java’,
‘lang’, ‘Object’]] must be changed in [#<CLASS>'], [[#<EXTERN>’,
‘bank_example’, *'], [#<EXTERN>', ‘java’, ‘lang’, **']] in order to search for
“bank_example.*.maxact”, and so on.

The search for method mappings is similar, except that the “searchfun” clause has one
argument more than search, an argument that deals with argument predicates. See
Section 6.4.4.

Decomposition Algorithm

The sentence that is passed from the NL unparser to the Prolog engine corresponds to an
assertion, i.e. a complex expression. This expression is decomposed by “natural” rules,
most of them very simple (such as <the translation of expression “el + e2"> is <the
translation of expression “e1”> “plus” <the translation of expression “e2">). The

“search” clauses are used for atomic expressions.
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6.4.4

6.44.1

6.4.4.2

There are also rules to deal with ADL specificities, for instance to translate “thrown(el,
e2)" by “at least one of the following exceptions is thrown: e1, e2".

Note that such rules depend on the locale and should be translated if one wishes to
rewrite them for a different locale.

Predicates

There are two kinds of predicates, and their use in the translation rules require different
behaviors. A user predicate is an “ascendant” information: it is present in the mappings
and goes “up” until a clause uses it, whereas a system predicate is a “descendant” infor-
mation that goes “down” to the mapping.

User Predicates

asserta(map(‘aBank’,
[#<EXTERN>',‘bank_example’,‘bank’],
[‘Société Lyonnaise’],[female],[])).

(bank is a feminine noun in french...)

This mapping defines a translation for field aBank of class bank_example.bank and says
that it has a “female” predicate. Hence, when the search clause will find this mapping, it
will also transmit this information.

In an assertion such as “aBank != null”, this information on the female predicate of
aBank has no use, but in an assertion that contains the expression “is_active(aBank,
100)”, a clause “mapfun” is activated:

* mapfun first searches the argument aBank and therefore the information “aBank has
female predicate” is synthesized. No predicate is found for the second argument.

¢ this information is propagated up to mapfun.

* mapfun then searches for a method “is_active” with the information “the first argu-
ment has female predicate” propagated down to the map clause, which will unify
with the mapping defined for is_active in Section 6.4.2.

System Predicates

The mechanism for user predicates purely lays down on Prolog unification, that is why
the user can freely define its own predicates (in the previous example, one just has to
ensure that the word “female” used in the mapping for aBank is exactly the same as the
word used in the mapping for is_active, otherwise they will of course not be unified...)

The mechanism for system predicates is different because it is triggered by the NL rules.
In ADLT2, two system predicates are defined, one for negation and one for call-state.
When entering an expression that begins by “I” (resp. by “@"), the “natural” clause
adds the keyword #NOT (resp. #CALLSTATE) to the argument SystemPredList. These
predicates can be used in two different ways:

* either by a “natural” rule (for instance in the rule for expression “el > e2”, if #NOT
is in the SystemPredList, then the returned translation will be “the translation of el
is less than or equal to the translation of e2”. Note that the translation for sub-expres-
sions is launchedithout#NQOT in their SystemPredList).
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* either by the mapping resolution if a mapping was defined with a system predicate in
the NLD annotation (unification with the “map” clause).

6.5 Document Templates

TBD Definition of the default templates for NLS and NLTD.
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Chapter 7 Runtime Architecture

7.1 Introduction

The ADL 2.0 runtime architecture broadly defines two entities; the ADL runtime library
and the test program code generated by the ADL Translator. The code generated by the
ADL translator is heavily dependent on the ADL runtime library to report the results of a
test to the user, to control test execution, and to assist with data generation. The linking
of the generated code, the implementation being tested and the ADL runtime library is
the end goal of the ADL Translator; a portable executable program that exercises and
verifies that a specific implementation conforms to its test and interface specifications.

7.2 Runtime Architecture Goals

Reporting is the end goal of test creation; the test report represents the value of the test
program. Some of the design goals of the runtime architecture are:

Minimal interference. The reporting scheme should minimize the impact on the tested
code. For example, the reporting mechanism should minimize its use of potentially
scarce resources like memory and (on Unix) file descriptors.

Unattended operation.ADLT is targeted at the acceptance test market; hence it is
important that an ADLT test be able to operate in batch mode, with after-the-fact inspec-
tion of results.

Minimal code generation.The code generated by ADLT should take extreme advan-
tage of the runtime library. Minimal code should be emitted by ADLT to create a test
program.

Preservation of user written test codeAn ADL generated test will contain rewritten

user test code. The rewritten code should preserve as much as possible the syntax of the
original input. The user should be able to easily identify original source from perusal,
compilation and execution of the rewritten source code.

Version 1.1 109 of 132



Runtime Architecture ADL 2.0 Translation System Design Specification

Design Notation

L

1L
[ OUEE

The source examples and design description contained in this chapter are written in
the Java language. Any implementation details of a particular target language (C,
C++, IDL, or JAVA) relevant to this design description will be noted.

Most of the diagrams presented in this chapter loosely follow the Unified Modeling
Language(UML}.

In presenting TDD examples

- comments are bold italicized:this is comment in TDD examples

- tdd specific syntax is boltest (inta=DS){//...} // this is
// a test directive

- all other source is in normal “code” font

Class or interface
instance

Inheritance Relation
A is-a subclass of B

Aggregation Relation
A has-a instance of B

Aggregation Relation
A has multiple
instances of B

Bi-directional
Use Relation

A uses B or
B uses A
in some way

UML Notation Key

1. Booch, G.; Jacobson, I.; and Rumbaugh, J.: “The Unified Modeling Language for Object-Ori-

ented Development,” Documentation Set Version 0.91 Addendum UML Update, September
1996.
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7.4 ADL Generated Test Program Design

The ADL generated test program is a self contained executable that embodies the test
and verification intentions of the input ADL and TDD specifications. It consists of user
written test code, the implementation under test, the ADL runtime library and the gener-
ated test code from the ADL Translator.

Note: This is not a UML dia-
Specifications gram. It only depicts the
high-level view of the ADL
Test Program Components

ADL

ADL
Translator

ADL Generated
\ Test Program

Software
Implementation
Under Test

ADL Generated User Written Test ADL Runtime
Code Code Library

(including TET)

Data
Generation
And
Test Control

Data

Generation
and

Test Control

Assertion
Checking

Objects and
Methods

Factory
Provide
Methods

Test
Functions

Results
Reporting

Classes
Under Test

—

Class methods
Under Test

FIGURE 10. ADL Test Program Components
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7.5

Some of the source code that comprise an ADL test program is generated by the ADL
translator from input TDD specifications and optional ADL interface specifications.
There is no dependence on ADL annotated functions for generating a useful working
test. The Assertion Checking Functions (ACF) or Assertion Checking Objects (ACO)
generated by ADLT check an implementation against its corresponding ADL specifica-
tion. An ACO is a mirror image class definition of an ADL annotated object that con-
tains the same method names and signatures of the ADL specified original. The
methods of the ACO object are the delegating ACF methods that test whether the corre-
sponding methods of the object under test conform to their ADL specification. A con-
structor of the ACO takes the object under test as an argument. After the ACO object is
created with this constructor, the calls to methods of the ACO will invoke the corre-
sponding (ACF)s of the method under test. In the ADL Translation System, Version 2.0
the generated ADL verification methods are available to the user to be called explicitly
from the test code in a TDD specification file. ACFs and ACOs offer a more thorough
and in most cases a more convenient method of ensuring expected behavior of the sys-
tem under test. However, all verification and assertion checks can be explicitly written

in the TDD test code. If desired, ADL specifications and generated ACOs can be
ignored entirely. It is up to the user to determine what is more effective for their testing
and specification requirements.

Overview of TDD Language constructs

ADLT generates a test program from an input TDD file. Specifically, a single test pro-
gram is generated for each of the TDD test directives defined in a TDD environment
scope. All user written source code appearing inside a TDD environment class or scope
is rewritten or transformed as various output source code files that make up the test pro-
gram. All true target language source code appearing in a TDD file will remain unal-
tered except for some special defined TDD library methods which are slightly remapped
to include original source location and contextual information. The TDD library meth-
ods explained in Section 7.7.2, “Test Reporting Library,” on page 125 are available to
test writers to affect the control, reporting and outcome of a test.
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7.5.1 The TDD environment scope

All TDD declarations occur inside a TDD environment scope. In ADL for Java and ADL
for IDL the TDD environment scope is declared as a tdd class:

//TDD environmentscope definition (inJava)
public tddclass simpleTest{

/ldeclareadataset
dataset intVALUES={1,2,3,4,5};

//declare atestdirective
dirl: test (inti=VALUES){
//asample TDD assertioncheck
tdd_assert ("thecompilerishosed”,
i*0==0);
}
}

In all other ADL target languages, the TDD environment scope is declared as a named
source block.

EXAMPLE 7 Sample TDD Environment scope declaration (for Java)

/[ TDDenvironmentscope definition (inC/C++)
simpleTest :tdd {

//declare adataset
dataset intVALUES={1,2,3,4,5};

//declare atestdirective
testl: test (inti=VALUES){
//asample TDD assertioncheck
tdd_assert ("thecompilerishosed”,
i*0==0);

EXAMPLE 8 Sample TDD Environment scope declaration (for C/C++/IDL)

In a TDD environment scope you can declare test data (as TDD datasets), and TDD tests
using test directives. In addition, you can include ordinary methods used in calls from a test
directive. Except for some minor additions, the source code in the TDD environment scope
is expressed in the target language.
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In the implementation of the generated test, the TDD environment scope maps to a sin-
gle class definition (in ADL for Java and ADL for IDL). Below is the Java output of
ADLT that represents the TDD environment scope class presented in simpleTest Exam-
ple above:

/7********************************************************

//  File GeneratedbyADLT Version2.0
/4

// Date:Feb4,199720:58:47

// TDDfile:simpleTest.tdd

/ KA KA AR AAAAAAAAAAAAAARAA XA AAAAAAAAAA AR A XA AAAAAAKX

publicclassD_simpleTest_testlextendssimpleTestTDD{
/*some snippedhouse keeping declarations*

publicvoidruninstance (Object[] paramValues)
throws Throwable{

inti=((Integer) paramValues[0]).intValue();
infoline(“Parameterinti="+1i);

/*USERCODE STARTSHERE?*/
tdd_assert(“the compilerishosed”,
i*0==0);

EXAMPLE 9 ADLT Generated TDD environment class file simpleTest.java
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7.5.2 Datasets and Factories

One of the main goals of the ADL System is to offer an easy and powerful way to
express the number and type of data to be used in the testing of interfaces or software
under test. The fundamental data specification construct in TDD is the dataset. The
dataset is used to describe a set of values of a particular type that are to be used consec-
utively in a test of a system under test. In TDD there are several kinds of datasets; A lit-
eral, an expression, and a factory. Each type of dataset expresses a finite set of values
that can be used as parameter input to test directives or as input to factories.

public tdd classbankTest{

/

// literalintegerdataset

/

dataset int DEPOSITS ={0,1,10,100};

dataset int  WITHDRAWS ={0,1,15,100},

/7

// expressiondatasetoftype bank

/7

dataset bankBANK_VALUES={newbank(1),
newbank(2),
newbank(3)};

/7

// afactorythatcreates objects oftype
// bankAccount.
/

factory bankAccount
make_account ( banktheBank,
intinitDeposit){

if (theBank==null){
tdd_end_case (“can’ttestwithnullbankobject”);

returnnull;
telse{
returntheBank.open_account (initDeposit);
}
}

//declaringadatasetthatusesafactory
dataset bankAccountBAl=
make_account(BANK_VALUES,DEPOSITS);

EXAMPLE 10 Sample TDD Dataset declarations
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A TDD factory is a special type of dataset used to define a function that generates an
instance of data based on the values of its parameters. A TDD factory definition can
optionally include a relinquish clause that is called at the end of a test instance to allow
the reclamation of any resources that are consumed by the generated data. Below is an
example of a TDD factory definition:

public tddclass bankTest{

factory bank

make_bank( intmaxAccts,
intnumAcctsActive,
intinitDeposit){

bankret=newbank(maxAccts);
for (intx=0;x<maxAccts &&x <numAcctsActive;x++){
try{
bankAccountba=ret.open_account(initDeposit);
} catch(bankExceptionbe){
tdd_result ~ (ADL_FAIL,"exceptioncaughtonopen™);
tdd_end_case (null);

}
}
returnret;
} relinquish (bankb){ //optionalrelinquish clause
if (numAcctsActive >0){
b.close_all_accounts();
}
}
}

EXAMPLE 11 Sample TDD factory definition

All TDD reporting methods defined in Section 7.7.2, “Test Reporting Library,” on

page 125 are available to the user when writing the body of a factory. The optional relin-
quish clause has similar syntax to a Java catch clause. The relinquish clause takes a sin-
gle argument whose type must match the return type of the factory method. In the body
of the relinquish clause, the user has visibility to all the arguments of the factory method
and the system guarantees that values used for the arguments in the preceding call to the
factory method to create the return data, are the same when executing the call to the
relinquish clause.
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7.5.3 Test Driver and Test Directives

The test driver is the “main” of the ADL generated test program. It is responsible for
program initialization, test execution and the gathering and processing of the test results
information generated from the successive runs of test instances. The test driver can run
one or more test directives that are declared inside a TDD environment scope.

A test directive is declared in the TDD specification file and specifies a list of data set
values which are assigned to normal target language identifiers of the appropriate type.
The body of a test directive is ordinary target language code that can use and refer to the
current values of the specified data set arguments. Below is an example TDD file that
demonstrates a test directive declaration:

public tddclass bankTest{
//(seedatasetdeclarationsin Example 10above.)

//example ofa TDDtestdirective

test_bank_3: test ( bankAccountba=BAl, D —
intd=DEPOSITS, <«— | Dataset
intw=WITHDRAWS){«——— Arguments

intsave_val=ba.balance();

//invokethe Assertion Checking Object
//forthe bankAccount Objectbato callthe
//Assertion Checking Functions (ACF)s
//depositandwithdraw.
ADL(ba).deposit(d);
ADL(ba).withdraw(w);

//calltdd_assertmethodwhenbothdand
//ware equaltoensurethe savedbalance
//isequaltothe currentbalance

if (d==w){
tdd_assert (“ba.balance()==save_val“,
ba.balance()==save_val);

}
} //endoftest_bank3testdirective

EXAMPLE 12 TDD Test Directive declaration

In the execution of a test, the test driver iterates over the dataset arguments, generates or
selects the appropriate values and assigns the values to the argument identifiers. The test
driver then uses these data to exercise the interface(s) referenced in the test directive.
This continues until all dataset values are exhausted.
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7.5.4 Invocation of Assertion Checking Objects and Assertion Checking
Functions

As previously noted, an ADL generated test program does not implicitly invoke an ACF
or an ACO as was the case in ADL Translation System, Version 1.0. In 2.0, ADLT gen-
erated ACOs and ACFs must be explicitly invoked by the user from either a test direc-
tive or some test code function inside the TDD environment scope. This is accomplished
by calling the TDD defined method ADL (<object under test>) that creates and returns
the ACO object. The returned ACO object has exactly the same method signature as the
object being tested and indeed is a true delegation object that will ultimately forward the
method call to the object and method under test.

In Example 12, “TDD Test Directive declaration,” above, we see the use of the
ADL(Object) method being used to call the ACFs for a previously created bankAc-
count object:

ADL(ba).deposit(d);
ADL(ba).withdraw(w);

The ADL method returns the ACO object wrapper of the object being tested and the
ACF of the method under test is invoked directly. If the goal of a test directive is to test
a single ACF, the ADL method can be used in a test directive:

public tddclass bankTest{

/INote:the namesofthe datasetsBA1and WITHDRAWS are
/lusedexplicitlyinthetestdirective below

test_bank 4: test (bankAccountb=BAl,intw=WITHDRAWS)
ADL(b).withdraw(w);
}

If testing a constructor of an object is desired, the system generates special constructor
methods which create an object under test. test the conformance with the ACF and
return the object as a result of the call to the special constructor method. The system cre-
ates the same number and signature of the test constructor methods as contained by the
source ADL annotated class definition. The testing constructor methods are named
using the following naming convention:

ADL_new<class_name>(<constructorarguments>)
For example you can test the constructor and ACF in a single directive like:
public tddclass bankTest{

test_bank_4: test (intd=DEPOSITS, intw=WITHDRAWS)
ADL( ADL_newbankAccount(d)).withdraw(w);
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7.6 Internal Runtime Architecture Design

The ADL Translation System, Version 2.0 Runtime Architecture relies heavily upon the
Test Environment Toolkit (TET). TET supplies the command line handling, results
tracking, and result reporting functions. Thus, the Runtime Architecture of this system
is relatively straightforward:

Each Test Directive maps to a single, executable Test Case.

Each Test Data Instance of a Test Directive is an Invocable Component (IC) of that
Test Case. The IC number is determined by assigning an ordinal number to each
unique combination of Test Data.

Within each IC there is a single Test Purpose. That Test Purpose is the sequence of
testing defined in the Test Directive.

For each assertion represented by that Test Directive, a variety of infoline calls will
be made to report intermediate status information. When the assertion is complete,
the ACO will call assertionResult with the result of the execution of that individual
assertion. TET will automatically handle determining the aggregate result from these
intermediate results upon completion of the Test Directive for that Test Data
Instance.

The code to implement this policy is made possible by a variety of extensions to TET
that were made in version 3.2.

Within each Test Purpose of a generated test, the structure will be something like:

1.

Determine the test data instance by evaluating the ordinal IC number against the
set(s) of relevant test data sets. Output the selected test data items via tet_infoline.

Call the appropriate provide factory methods with the appropriate arguments. The
factory methods are encouraged to make use of TET primitives to output informa-
tion, synchronize with remote processes, etc.

3. Execute each ACO referenced in the Test Directive.
4. Within each ACO, evaluate each assertion not tagged as “untestable”.

Call the appropriate relinquish factory methods.
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7.6.1 Java Internals

testContext params

(abstract)
ADLDataSet]

y

The architecture of the Java runtime environment for the ADL Translation System ver-
sion 2.0 is depicted below.

JET/TET

(abstract)
ADLTest

theTest ADLTestCas

elementSe

ADLParameterSet

testContext

params

ADLLiteraISetI ADLConcatenationSetI

(abstract)
ADLFactorySet

>

v (abstract)
(interface) Object ACO
ADLResultCodes [1
realObject

FIGURE 11. Architecture of the Java runtime environment

76.1.1

Basically, there are three major clasgd3LTest , ObjectACO andADLDataSet .

The first one is the root class for all test directives. The second one is the root class of all
assertion checking objects and the last one is the root class for all TDD datasets. When
used as parameters, e.g., for a test directive or a factory, TDD datasets are grouped in an
ADLParameterSet

In addition to these classes, hBLTestCase makes the link with the TET environ-

ment through JETpack (Java Enabled TETware Package)ABhResultCodes

provides the result codes used to report to TET. It is implemented as an interface which
all the classes that needs thienplements

Many of these classes are abstract since they should never be instantiated directly. They
are subclassed by generated code which will effectively be instantiated.

The following sections describe the major classes of this architecture.

Class ADLTest

The highest level interface between the generated test cases and the runtime system is
theADLTest class. This class has within it all of the methods that a generated test will
use. These methods include:
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7.6.1.2

void addParameter - adds arADLDataSet type parameter (see below) to the

matrix of test data parameters available to this test. This method will be used by the gen-
erated test to inform the test about the test data that it has available to exercise the inter-
face(s) under test.

void infoline - sends a String to the journal file.

String getvar - gets a configuration variable value from the Test Environment
Toolkit.

void setblock - increments the block number for the Test Environment Toolkit.
void result - reports an intermediate result to the Test Environment Toolkit.

void assertionStart - indicate to the runtime that the processing of an assertion

has started.

void assertionResult - posts a result value for an assertion. This method will be
used by generated tests to inform the runtime system of the results of each assertion
evaluation.

void factoryResult - posts a result value and an optional message to the journal
from within a data factory. This method should only be used to indicate some wort of
warning or failure encountered while setting up the test parameters.

TheADLTest class also implements the test reporting methods described in
Section 7.7.1 on page 124.

The ADLT compiler generates one subclasébBf Test for each TDD file, and one
subclass of this for each test directive. Test functions are placedAbthieest sub-
class. Test directive subclasses defineain method so that they are invocable.

Static constants in a TDD file are placed in an interface which any class representing a
dataset or factory using them implements.

Class ADLDataSet

An ADLDataSet represents a TDD dataset, i.e., a variable with a provide method to
get a value from an ordinal number, and a relinquish method to free that value. It is gen-
erally labelled and is used within a test context. It is an abstract class that cannot be
directly instantiated. It is subclassed ABL LiteralSet  , which represents datasets
made of static value&DLFactorySet , which is an abstract class for factories which
build values at each invocation based on their parameters (that A& bataSet s);
andADLConcatenationSet , which is built by concatenating other datasets. Each
subclass defines the following abstract methods:

Object provide - provide the nth value in the dataset.

boolean relinquish - free the nth value in the dataset (exact meanifigef
depends on the actual dataset).
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7.6.1.3

7.6.2

7.6.2.1

These two methods are called by &2l ParameterSet attached to aADLTest or
ADLFactorySet

To provide dataset reusability, except when the dataset is anonymous, theAddsses
LiteralSet andADLConcatenationSet  are not instantiated directly, but rather
subclassed.

The scheme for a factory is to generate one subclasSldfactorySet  to define the
actual provide and relinquish functions, and one subclass of this for each dataset built
using the factory. ThADLFactorySet class also implements all the test reporting
methods described in Section 7.7.1 on page 124, eld@passert

Class ObjectACO

TheObjectACO class is an abstract class from which any generated ACO inherits. It
just provides them with a generic constructor that gets some information from the TET
runtime environment (reporting level selected) and some attributes which are useful
when evaluating assertions and dealing with inherited specifications.

Generated ACOs define their own constructor - which just calls super - and assertion
checking wrappers deduced from the specifications.

TheObjectACO class also provides the runtime environment with the methods to gen-
erate an enumeration for integer ranges of all kinds (Abbrt_range
ADL_int_range or ADL_long_range ).

C++ Internals

The overall architecture of the C++ runtime environment is similar to the Java one
depicted in Figure 11 to a large extent. The slight differences come from the different
nature of both languages.

For instance there is no interface concept in C++ but rather multiple inheritance. Hence
static constants in a TDD file are in this case placed in a class from which any class rep-
resenting a dataset or factory using them inherits. And for the same reason the ADL
standard result codes are placed in a header file used by both the C++ and C runtime
environments.

Another slight difference is due to the lack of the equivalent of theStewg  class

in C++. This makes formatting messages a lot more tedious. To avoid having to deal
with formats and memory, a additional class has been defiddString . Its use is
described below.

Class ADLString

This class implements the standard operators generally used with C++ streams to make
formatting message easier. It is an extension of the staoslastteam  class where

the<< operator has been redefined to returdBhString& instead of an

ostreamé& .

It also defines eeset method to reinitialize the string to be formatted. Wieset
is not called, remaining arguments are appended to the previously formatted message.
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7.6.3

Finally it defines a set of conversion methods to and frohea* .

The ADLString class is instantiated only once for a static instance cadikstr
(just likecin , cout orcerr in the stream classes). The typical use is demonstrated
below:

infoline(adlstr.reset() << anint << “ and “ << aFloat);

C Internals

The C Language has a flat namespace. This means that it is not possible to isolate the
methods associated with the runtime within the various classes, as in the other runtime
environments. Consequently, all of the C Runtime methods are prefixed with the string
“ADL_" for ADL-related functions, and “tdd_" for methods that are called only from

within the TDD test declarations. The “tdd_" prefix is lowercase because it is likely that
these methods will be called directly by users in the specifications and should be as easy
to type as possible. The “ADL_" functions are most likely only called by the generated
code, although the ADL_infoline and ADL_printf functions might be called in user-
written provide functions. The functions available within the C Language runtime
include:

void ADL_infoline - sends a char * to the journal file.

void ADL_ printf - sends a formatted char * to the journal file.

char* ADL_getvar - gets a configuration variable value from the Test Environment
Toolkit.

void ADL_setblock - increments the block number for the Test Environment Tool-
kit.

void ADL_result - reports an intermediate result to the Test Environment Toolkit.
void ADL_assertionStart - indicates to the runtime that processing of an asser-

tion is starting.

void ADL_assertionResult - posts a result value for an assertion. This method
will be used by generated tests to inform the runtime system of the results of each asser-
tion evaluation.

void ADL_factoryResult - posts a result value and an optional message to the
journal from within a data factory. This method should only be used to indicate some
wort of warning or failure encountered while setting up the test parameters.

And all reporting methods defined in Section 7.7.1 on page 124.
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7.7 External Runtime Architecture Design

7.7.1 Test Result Reporting

The final result generated from an ADL test is computed from the tabulated results of all
test instances executed from a given run of the test. The results are computed as a hierar-
chy of granularity ranging from the program result as the least granular to an assertion
result as the most granular level. The following diagram depicts the test results hierar-
chy

Test Program
Results

==\

Test
Instances
Results

TDD Assertion
Environment Checking
Result Object
Results
TDD_ Assertion
Reporting Checking
Results Functions
Results
ACF
Assertion
Results
FIGURE 12. Test Results Hierarchy

Test results reporting occurs at the end of the test execution. The level of reporting detail
is determined by the reporting level switch set either by default or from the command
line of the test program. The results of a test are defined by a code number, name, and
precedence value and are defined by the system or optionally by the user. The prece-
dence value is used to determine the overall result of a given component of the tests

124 of 132

Version 1.1



Runtime Architecture ADL 2.0 Translation System Design Specification

based on the aggregate results of the sub-components. A test code with a higher prece-
dence value overrides a lower precedence result. Below is the table defining the ADL
System test results:.

Result Code Name Precedence Value Legal Value Meaning
ADL_PASS 1 0 Test has passed
ADL_FAIL MAX_VALUE 1 Test has failed
ADL_UNRESOLVED MAX_VALUE -1 2 Evaluation of test could
not be determined.
ADL_NOTINUSE 2 3 The test is not evaluated
in this environment.
ADL_UNSUPPORTED | 2 4 The test is not sup-
ported
ADL_UNTESTED 2 5 The test was not done
ADL_UNINITIATED MAX_INT -1 6 The test was not started
ADL_NORESULT MAX_INT - 2 7 The test did not yield a
result
ADL_UNEVALUATED |0 32 The assertion was not
evaluated
ADL_AMBIGUOUS 3 33 Abnormal and normal
both evaluated to true
ADL_UNDEFINED 3 34 Abnormal and normal
both evaluated to false
User Defined Result 4 as defined by | as defined by the user
Codes the user
TABLE 1. ADL System Test Result Codes

The ADL System result codes are predefined and can not be overridden. However, you
can add your own code values to system with a results code file. See Section 7.7.3,
“Result Code File,” on page 126 for details.

7.7.2 Test Reporting Library

With no intervention by the user, the code generated by ADLT can report on the results
of tests, the results of assertions, and the value of expressions within assertions and
within inline functions. The user can control test execution and can provide more in the
test report by using the ADLT runtime library, which contains these functions (note that
in th(la C and C++ runtimes, the functions of type “boolean” here are declared as type
“int” 4):

1. Or “bool” according to the C++ standard.
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7.7.3

voidinfoline(Stringmessage);

Infoline emits a message in the test journal.

booleantdd_result(intresult_code, Stringreason);

Tdd_result  sets the result of the test instance. It returns a boolean which is FALSE

iff the result is a terminating result code, in the opinion of the test framework. The effec-
tive result code after this call might be different fromrsult code  parameter,

because test result codes are ranked in a precedence hierarchy, so that a later PASS can-
not hide an earlier FAIL. Reason may be null.

booleantdd_assert(Stringexpr_text,booleanexpr)

Tdd_assert takes a boolean expression as the second parameter. The expression text
is reported to the user and the result of the test is set to ADL_PASS if the expression
evaluates to true, and ADL_FAIL otherwise. In any case the test continues with the next
statement in the test expression.

Expr_text should not be null. Expr is returned as the value of the function.

booleantdd_skip();

Skip the current test case evaluation. It is primarily intended to be called from a factory
to ignore a test instance. The result of the teADis_SKIPPEDand all assertions are
reported a&ADL_UNEVALUATED

booleantdd_end_test();

Tdd_end_test ends the test upon invocation. The result of the test is the current
result of the test at the time of the caltdd_end_test (). Tdd_end_test does
not return; it is declared as a boolean so that it may be used in expressions like
tdd_assert(Text, Condition) || tdd_end_test()

booleantdd _end_case(Stringreason);

Tdd_end_case ends the current test instance upon invocation. The result of the test
instance is the current result of the test instance at the point of the call to
tdd_end_case (). Reason may be nulldd_end_case does not return; it is

declared as a boolean so that it may be used in expressions like

tdd_assert(Text, Condition) || tdd_end_case()

Result Code File

The method result is normally called with a test result code defined in a result code file.
The result code file location is defined by the environment variable
TET_RESCODES FILE.

The format of the result code file is as defined by TET: each line of the file defines one
result code, giving its number, its name (as a quoted string), and an optional action. The
action controls what the test driver should do when this result code is encountered; legal
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values areContinue andAbort . Blank lines and comment lines (which start with a
‘#') are legal in the result code file. The name of the result code is used in the test report.

7.7.4 Test Program Control

7.7.4.1 Command line invocation

User control of the test program is achieved via the command line and via TET configu-
ration variables. Test Programs are invoked from TET's test case controller - the options
of that program can be found in the TET documentation (see http://tetworks.open-

group.org).

7.7.4.2 Configuration Variables

The user can control the test program by use of configuration variables. These are vari-
ables that can be set by a variety of mechanisms and read by the test program; some are
read by the ADL library and control reporting. User-written code can read test variables
and control the test; for example, a configuration variable could be used to set the name
of a temporary directory for a file system test.

Configuration variables can be read by user-written code by usegs#tiree  func-
tion, which is part of the ADLT runtime library. Its declaration is:

String getvar(StringpropName);
char*getvar(char*propName);//C++
char*ADL_getvar(char*propName);/*C*/

The name of the configuration variable is the sole argumettar ; it returns the
value of the variable if it is set, aull if the variable is not set.

Configuration variable settings are available in a file named by the TET _CONFIG envi-
ronment variable.

7.7.4.3 System Configuration Variables
Certain configuration variables are read by the ADLT runtime library and control the

operation of the test program. All configuration variables with names beginning with
ADL are reserved for use by the ADL system.

Variable Legal Default
Values Value Meaning
ADL_RPT _DETAIL | LONG SHORT Reporting detail level
SHORT
TABLE 2. System Configuration Variables

Version 1.1 127 of 132



Runtime Architecture ADL 2.0 Translation System Design Specification

7.7.5

7.8

User-written code may read the values of these system configuration variables, as well
as any other user-defined configuration variables.

Reporting Formats

The format of ADL reports is that of the Test Environment Toolkit. Within these reports,
ADL-generated tests will adopt the convention that each assertion will report its infor-
mation in a separate “block” (a TET reporting abstraction). This will permit easy post-
processing that could produce per-assertion reports, should those be needed.

Building, Executing, and Cleaning Tests under TET

7.8.1

7.8.2

In order to ensure that ADL and ADL generated tests work well in the expected environ-
ments, the requirements for those environments and the behavior of the build and run
environments needs to be very clear. This section documents these behaviors.

The ADLT compilation environment

In order to build the various ADL translators, the platform must have at least the follow-
ing:
* A JDK-compliant java compiler and classes at the 1.1 level or better.
* A version of GNU make.
e A variety of POSIX.2-conforming utilities, including the shell, cp, rm, mv, and
touch.
e TETware 3.2 or the freely available TET 3.2.
¢ JavaCC and JJtree version 0.8 pre 1 or better (if parser regeneration is needed).
* An ISO C compiler.
* A draft ANSI C++ compiler (gcc 2.7.2).

¢ Alibrary build tool (Note - there should be an option to build the ADL libraries as
shared libraries to speed execution and reduce the size of compiled tests).

The makefiles in this environment will use a master Makefile.vars in the top level adl2
directory that has platform-specific options in it.

Examples for these will be included in a config directory. Typing “make all” at the top
of the adl2 source tree will recurse through the source tree, compiling the different ele-
ments. At each level the makefiles will use the GNU niradlede  directive to bring

in the variables settings from the Makefile.vars at the top level. The makefiles can also
take some variables from the environment if they are not set in the Makefile.vars file
(e.9.TET_ROOTADL2HOME

ADLT execution environment

When the user is running ADLT, certain facilities need to be available. These include the
following:
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7.8.3

7.8.4

7.8.5

* A JVM and the core java classes conforming to JDK 1.1 or better.
* A prolog interpreter such as SWI prolog to assist in natural language generation

Generated Test Build Environment

Once a user has used ADLT to generate the tests, these tests can be exported and run on
any platform that supports the language in which the tests were generated. This environ-
ment needs at least the following facilities:

* A POSIX.2 conforming make.
¢ (possibly) some POSIX.2 conforming tools including a shell, cp, rm, and mv.
e TETware 3.2 or the freely available TET 3.2 with JETpack installed if using Java.

e The ADLT runtime environment, including libraries, headers, and tools that assist
TET's compilation of the tests.

* A compiler for the language(s) used by the generated tests:
* An ANSI C Compiler for C Language Tests.
* A Draft ANSI C++ Compiler for C++ Language Tests.
* A JDK 1.1 or better compliant compiler and class libraries for Java tests.
* A IDL/Java 1.0 compliant class library implementation for ADL/IDL tests.

Generated Test Execution Environment

Once the generated tests have been built, they can be distributed in their pre-compiled
form and executed elsewhere. In order to accomplish this, the system under test must
have at least the following facilities:

e TETware 3.2 or the freely available TET 3.2 (in the case of remote testing, this can
be only the executables tccd, tetxresd, and tetsyncd) with JETpack installed if using
Java.

e The ADLT runtime environment, including libraries and tools that assist TET's exe-
cution of the tests (note that these tools, written in C, require the XPG facilities
getenv and putenv in addition to the standard C language libraries).

* If the test author chooses, a POSIX.2 conforming make that will be used in conjunc-
tion with the ADLT runtime environment to start the test after setting environment
parameters, or

e Arequirement that the test user's environment be set up appropriately before execut-
ing the tests through traditional means that do not include the use of make.

How it all hangs together

The purpose of this design, and the overall goal for ADL2 in general, is to have an envi-
ronment in which it is possible to iteratively develop test specifications, tests, and imple-
mentations. Once the user has run adlt once for a given TDD test specification, they
should only have to type “make” in the directory to have the appropriate files, including
the makefiles, regenerated as their specifications and implementations change. Unfortu-
nately, getting this to work correctly in all instances will require a reasonably sophisti-
cated user. More on that later. For the typical user in the typical environment, here is the
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7.8.5.2

sequence of events for each phase of TET usage (as it relates to developing specifica-
tions and tests):

Running ADLT for the first time

When a user has created a specification file and a test directive file, they can call the adlt
translator for the relevant language. This translator is responsible for parsing the test
data definitions and assertion definitions, turning them into source code for the test
driver, the assertion checking object(s), and the translation files for the natural language
versions of the assertions. These are well understood. The structure of the makefiles it
generates, however, are somewhat confusing:

1.

First, there is the Makefile. In the directory in which adlt was run, a master Makefile
is created or modified. The translator places a single line in the master Makefile for
each test directive in the parsed TDD file. This target has as its method a call to the
real makefile for that test directive - named somethingtdilefile.mk. It also
passes into that makefile the name of an (optional) user-provided test configuration
file, the name of the target to work on, and the mode of operation (build, exec, or
clean).

In the generated makefildd_file.mk , there are targets for each of the gener-
ated test directives for each it the modes (three targets per test dijective

The build target has dependencies on the source files used by the test directive. It
uses default rules to regenerate the executable test case files from the sources if
needed. If adlt was run with the -dev option, the source files generated by adlt will in
turn have dependencies on their interface specification source or test description
source file, as appropriate. It will use other default rules to regenerate the source files
from their specification files before compiling.

The execute target has dependencies as above (thus automatically ensuring that the
tests are built before executing them).

The method for the execute target is to hand control off to the test case (via the JVM
in the case of Java test cases), passing along the arguments that might have been
passed by TET's test case controller (e.g. the invocable components to execute).

The clean target has no dependencies, per se. However, it will remove the executable
test cases and any intermediate files.

An additional “realclean” target will perform the clean as above, and also remove the
generated files (except the generated makefiles).

ADLT also generates a TET scenario file that describes the various tests generated
by ADL. By default this scenario file is a complete TET scenario file called

tetsyncd . If the -scen_include option is selected, the generated scenario file is
designed to be collected later by a scenario file generation tool. This option would be
used when generating tests that are an element of a test suite, rather than a complete
test suite themselves.

Performing subsequent actions via TET
Now that the makefiles have been created, we can use make and/or TET to do builds and
runs of the tests. (Note that, in general, you should always execute the tests via TET's

1.

In Java only the clean target has to be defined. Build and exec targts are defined in the generic

makefile.
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tce so that the environment is properly set up at test execution time. It is possible to sim-
ulate this environment, but it is almost always better to just let TET do its job.) In order
to teach TET to do this, we provide the following information and tools to TET:

First, we need to establish configuration files. These files tell TET how to perform in
each of its modes of operation. Since we cannot know where in a directory hierarchy the
ADL user is building their tests, and since these configuration files need to be at the root
of a test suite tree, we do not generate them from ADLT automatically. Instead, the user
needs to be in the appropriate directory and ask specifically that they be generated.
Examples are also provided with the ADL2 source that can be copied, if that is more
desirable. The configuration files specify the following:

* The name of the tool to use in the mode (e.g. TET_BUILD_TOOL). This tool is an
ADL-provided C program that should build and run on any platform. It performs
some rudimentary checking and then calls make.

* The correct settings for TET flags for each mode (e.g. TET_API_COMPLIANT,
TET_PASS_TESTCASE_NAME).

¢ The default set of test results.

* The tools need to be in the user's path. We place these tools in the ADL bin directory
by default. However, if they are included in the ADL runtime environment for use on
platforms without ADL present, they should be installed in the TET bin directory for
simplicity.

* If the test suite was generated as a collection of parts using the -scen_include option
(as described above), then a tet_scen file needs to be generated using an ADL-pro-
vided tool.

* Now everything is set up. We can use TET's tcc to build the tests, execute them, and
clean up. The following is a description of the sequence of execution if TET were
used in build mode in the environment described above for a test suite named
mysuite:

e The user enters the command tcc -b mysuite

* The tcc does some initial setup, reports the path to the journal file it will generate,
and examines the tet_scen and tet_build.cfg files for mysuite

* For each test case specified in the scenario named all, tcc does the following:
1.Establishes a build lock (to prevent simultaneous compilation by multiple users)
2.Calls the ADL-provided BUILD_TOOL with the test case name as an argument

3.The ADL-provided BUILD_TOOL (let's call it adlbuild) looks in the current
working directory and the test suite root directory for a file called
adl_options.mk. This is a file in which the test suite author can specify options on
a per-directory and/or test suite wide basis. These options will work in conjunc-
tion with the default make rules. Examples of such options are the name of the
library where the implementation is stored, additional elements for the CLASS-
PATH, etc.

4.adlbuild then calls make: make ADLCONFIG="-f path_to_options" ADLTAR-
GET=build test_case_name

5.The master makefile's entry for test_case_name then calls make again, using the
real makefile name and passing in the ADL default rules and the test suite-specifi
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options: make -f $(ADL2HOME)/lib/generic_java.mk $(ADLCONFIG) -f
tdd_file.mk TARGET=$@ $(ADLTARGET)

6.Make reads the ADLCONFIG file (if any) and the default make rules, and then
reads in the makefile for this tdd file. In the tdd_file.mk file there is a target for
each test_case that reacts appropriately given the value of ADLTARGET (as
described above).

7.That target has dependencies value of TARGET, which in turn has dependencies
on each component of the test case, including optional dependencies that might
get resolved from data in the adl_options.mk file.

8.make ensures that all of the dependencies are satisfied, and finally executes the
default loader rule that will create the executable test case file.

The output from this activity is recorded in the journal file.

Once all of the test cases have been generated, tcc exits. Note that, because of the dis-
tributed nature of TET, it is possible to perform any TET operations across the network.
In the case of a build, if the tet_scen file's all scenario were enclosed within a :remote
1,2,3: option, the build would be done on three systems simultaneously.

In the execute and clean modes, the operations would be similar.

ADL?2 and the sophisticated user

The default mode of operation in ADL?2 is target at the typical user with typical needs.
We believe this user is someone who has a reasonable number of tests that exercise an
implementation. The tests are probably being specified separately from the actual devel-
opment. Consequently, they user needs to tell ADL and TET where to find their imple-
mentation. They also may need to tell ADL where to find relevant header files, and
potentially the source files for the implementation. All of these things can be specified

in the adl_config.mk file. There can be a single version of this file in the test suite root
directory. There can also be a version of the file in any directory in the test suite hierar-
chy - overriding the test suite wide version in the root directory. In most instances, this
file is not needed at all. When it is needed, it is usually only needed in the root directory.
Only the most sophisticated test suites will have configuration files on a per-directory
basis.

The format for this file is exactly like that of a makefile. However, we really expect that
the user will only specify a certain set of options in that file. They could theoretically
also specify additional make rules and dependencies for their implementation, but
ADL's default rules should be sufficient for that.

The following table describes the variables that can be specified in this configuration
file.

[Note: The contents of this table have yet to be designed. It will depend upon the way
generated tests are constructed at link time. See ADL1 for some ideas in this area. -
spm]
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