ADL 2.0 for C Language Reference Manual, Version 1.1

ADL for C

The Open Group Research Institute

SunTest

The language definition for ADL annotations
for the C programming language.

ISSUE NUMBER REASON FOR ISSUE

1.0 Alpha Document Launch For Review

1.0 Beta First Revision

1.0 Gamma Second Revision

1.0 Delta Third Revision

1.0 Updated in accordance with version 2.0.2 of the ADL Translation System.
11 Updated in accordance with version 2.0.3 of the ADL Translation System

(1998.08.07)

1of 61

COPYRIGHT AND LICENSE NOTICE
Copyright © 1997-1998 The Open Group Research Institute
Copyright © 1994-1997 Sun Microsystems Inc.
Copyright © 1994-1998 Information-technology Promotion Agency, Japan

This technology has been developed as part of a collaborative project among the
Information-technology Promotion Agency, Japan (IPA), X/Open Company Ltd. and
Sun Microsystems Laboratories.

Permission to use, copy, modify and distribute this software and documentation for any purpose and
without fee is hereby granted in perpetuity, provided thatGRIBYRIGHT AND LICENSE

NOTICE appears in its entirety in all copies of the software and supporting documentation. Certain
ideas and concepts contained in the software are protected by pending patents of Sun Microsystems,.
Sun hereby grants a limited license to use these patents, if any issued, only in this implementation of
the software and documentation and in derivatives thereof prepared in accordance with the permission
granted herein.

The names X/Open, Sun Microsystems. and Information-technology Promotion Agency, Japan (IPA)
shall not be used in advertising or publicity pertaining to distribution of the software and documenta-
tion without specific, written prior permission.

ANY USE OF THE SOFTWARE AND DOCUMENTATION SHALL BE GOVERNED BY
CALIFORNIA LAW. X/OPEN, SUN MICROSYSTEMS, INC. AND IPA MAKE NO REPRE-
SENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE OR
DOCUMENTATION FOR ANY PURPOSE. THEY ARE PROVIDED “AS IS” WITHOUT
EXPRESS OR IMPLIED WARRANTY OF ANY KIND. X/OPEN SUN MICROSYSTEMS,
INC. AND IPA SEVERALLY AND INDIVIDUALLY DISCLAIM ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE AND DOCUMENTATION, INCLUDING THE WARRAN-
TIES OF MERCHANTABILITY, DESIGN, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL X/OPEN, SUN
MICROSYSTEMS, INC. OR IPA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULT-
ING FROM LOSS OF USE, DATA, OR PROFITS, WHETHER IN ACTION ARISING OUT
OF CONTRACT, NEGLIGENCE, PRODUCT LIABILITY, OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE OR DOCUMENTATION.

2 0of 61 ADL 2.0 Language Reference Manual for C

Trademarks

Sun™ Sun Microsystems™, Sun Microsystems Laboratories™, the Sun logo, Solaris™, SunOS™,
and Java™ are trademarks or registered tradmarks of Sun Microsystems, Inc.

Postscript™ is a trademark of Adobe Systems Inc.

UNIX® is a registered trademark in the USA and other countries licensed exclusively through
X/Open™,

X/Open™ is a trademark of the X/Open Company Limited.

ADL 2.0 Language Reference Manual for C 3of61

Change Log

Release 1.1

3. Test Annotations

Updated section 3.1.4 and all examples to include the “import” keyword.
Updated examples according to the new syntax for TDD_ADLExpression.
5. Complete Grammar

Replaced IdExpression with Name.

Fixed typo in TDD_DatasetDeclaration.

Updated TDD_FieldDeclaration.

Updated TDD_ADLEXxpression.

Release 1.0

1. Introduction
No substantive change.
2. Semantics Annotations

Major update of most ADL productions and ADL examples so that it conforms to the last
ADL/C grammar. Note this change only concerns the syntax, no other substantive changes
have occured.

3. Test Annotations

Major update of most TDD productions and TDD examples so that it conforms to the last
ADL/C grammar. Note this change only concerns the syntax, no other substantive changes
have occured.

4. NLD Annotations

Major update of most NLD productions and NLD examples so that it conforms to the last
ADL/C grammar. Note this change only concerns the syntax, no other substantive changes
have occured.

4 of 61 ADL 2.0 Language Reference Manual for C

5. BNF

Major update of most ADL, TDD and NLD productions.

Release 1.0 Delta

1. Introduction
No substantive change.
2. Semantics Annotations

2.1: ADL_Inline_Declaration and ADL_FunctionDeclaration gathered in
ADL_AnnotatedDeclaration

TranslationUnit changed to contain “ADL Annotated Declaration”.

2.2.2; ADL_ImplExpression removed. It is equivalent to ADL_Expression.

2.5: Added global Prologues and Epilogues in ADL_AnnotatedDeclaration
ADL_Prologue and ADL_Epilogue changed: Statement replaced by CompoundStatement
TBD resolved: a functional example is performed.

3. Test Annotations

3.1.3: TBD resolved. A factory definition is a function definition.

3.1.7: new section for the use importation clause.

Example 3.5: the semantics of elements of literal datasets has changed: they are evaluated
only once (static evaluation). Dynamic behavior is now possible only through factories.

Introduction of constants.
3.3: Slight changes in the grammar.
4. NLD Annotations

No substantive change

ADL 2.0 Language Reference Manual for C 50f 61

Release 1.0 Gamma

1. Introduction
No substantive change.
2. Semantics Annotations
Terminology changes: ADL prefix added for ADL Non-Terminals.
2.1: “Annotated function declaration” changed to “ADL function declaration”.
Example 2.2; “define” changed “inline” for the inline declaration.
2.2: ADL Expressions changed to ADL Syntax;
2.2.1: Assertion groups redefined: “group_expression” changed to “ADL_AssertionGroup”
2.2.3 ADL_IfStatement modified and redefined;
“Expression” in ADL_Domain changed to “ConditionalExpression”

2.3: “Multiple Behavior Descriptions For The Same Function” and “Extending the
Specification of a function” removed: ADL for C does not support inheritance, C programmer
is supposed to ignore this concept..

2.3.1: Added an example for “unchanged” .

2.3.2: “Definitions” changed to “Bindings”.

2.4: ADL _InlineDeclaration modified: “define” changed “inline”
Added an example.

2.5: Added Prologues and Epilogues to perform preliminay initializations.
Added TBD for the example given.

3. Test Annotations

No substantive change

4. NLD Annotations

4.5: Updating the NLD syntax.

6 of 61 ADL 2.0 Language Reference Manual for C

Release 1.0 Beta

1. Introduction

No substantive change.

2. Semantics Annotations

No substantive change.

3. Test Annotations

Title changed from “TDD Annotations”.

3.1.2: Terminology change: “bounded” dataset changed to “feasible”.
3.1.3: Add TBD for factory representation.

3.1.4: TBD resolved: explicit invocation of checked version by ADL(...). This affects all the
examples.

3.1.5: Terminology change: “Test expression” changed to “Test directive”. This affects the
explanation of some of the examples and the grammar.

3.1.6: Assert removed from language definition.

3.2: TBD resolved: factories are not implicit datasets.

Example 3.5: TBD resolved: dataset members are evaluated each time.
Example 3.10: TBD resolved: test directive syntax clarified.

Example 3.12: Rules for multiple reference simplified.

3.3.1: TBD resolved: external dataset reference clarified.

4. NLD Annotations

Example 4.3: TBD resolved: rules on formal argument name clarified.
4.3.1: TBD resolved: SGML entity definition referred to DTD.

Example 4.9: TBD resolved: Rule on markup (DocBook 3.0 Para entity) clarified.

Release 1.0 Alpha

Initial release.

ADL 2.0 Language Reference Manual for C 7 of 61

8 of 61 ADL 2.0 Language Reference Manual for C

Table of Contents ADL 2.0 Language Reference Manual for C

I 1 (0T (1 Tox 1o o I RS 13
2 SemanticsS ANNOLALIONSccoeiiiieeeeeee e e e e e e e e e eaes 15
2.1 Describing Semantics Of FUNCHONSccooiiiiiiiiiiiiiice e r e e 15
2.2 ADL SYNEAX...etiiiiiiiiieiie ittt e e e s s 17.
2.2.1 ASSEITION GIOUPS ..ceeiiiitiiieeeitiiee e ettt e e e ettt e e et e e e e et b e e e e aabbe e e e e anbe e e e s e nenes 17
2.2.2 ADL SPECIfiC EXPIreSSIONS....cciitiiiiieiiiiiiee ettt 18
2.2.3 ADL SpPEeCIfiC StAtEMENTS.......eiiiiiiiiiieiiiie et 19
2.3 Behavior SPeCifiCatiON...........uiiiiiiiiiie e 20.......
2.3.1 The Call State OPEratOr.........ccouiiuiiiiiiiiiiiee it 21
P2 T =11 0 To 1 o £ PP OUUPPPPPPPPPRPN 22
2.3.3 Behavior ClasSifiCation........cccoeueiiiiiiiiiiiiiieeeee e 23
2.3.4 The EXCEPLiON OPEIALOruuvuriiiireeeeieiiieiiriiieeereeeeeesssssnrereeereeeeeessssannsenes 25
2.4 INlNE AECIATALIONS.ueiiiiiiiiiie ettt e e s e e e st e e e s snbb e e e e e s rmmemnn s 21..
2.5 Prologues and EPIlOQUEScoooiiiiiiiiiiiiiiee ettt 27,
G =T Y oL L] =0 1 RS 31
R J0 R O] g (o =] o) S OO OPPPPPPPPP 31
0 I R o LY 4 (= PSPPSR 31
312 DAEASEL ...ttt e e e e e e e e e e ee e e e e eeeennene 31
TN G T o= Vo1 (o] Y PP PP PP 31
3.1.4 ChecCKed FUNCLONciiiiiiiiiii ettt 32
3.1.5 TESE DIFECLIVES ..evviieiiiiiiie s iiiieee sttt ettt et e e et e e et e e e e nnbee e e e s nraeas 32
0 I R X114 1T o TS PPP TR 33
% I A 11177 o To 4 7= L1 T o [P RS SRT 33
3.2 General SyNtaxX & EXAMPIESooooiiiiiiiieeie ettt 33
3.2.1 Datasets and Data CONSIIUCLION.........cccoeeiiiieieiiiiieeeee e 34
O N[Y o o] [0 1 £ 43
R 0 [o £SO SOPP PP PPPP 43
4.2 Syntax and SEMANTICS......cccoiiuiiiiieiiiiiie et e e e e e b e ee e e s 44........
4.2.1 Simple Data Identifier Translationccccociiiiiiiiiiiee e 44
4.2.2 A Simple Function Translation.............occviiiiiiiiieiiieee e 44
4.2.3 Usingsemantics ANndnld BIOCKS.........ccccoouiiiiiiiiiiiieeiee e 44
4.2.4 Invocation translationouuiuiiiiiiiiiiiic e 45
4.3 NLD PrediCatesccovviiuiiiiiiiiiiiieiieie e e e e e e e e e e e et e ettt e e e e s 45....
4.3.1 Pre-defined PrediCatesuuuiiiiiiiiiiiiiiiieie e eeeee e 46
| I =T o 10 1 | PP 47......
4.4.1 Reference Manual DOCUMENT.........cccoiiiiiiiiiiiiiiiesiiiieee e ssieeee e sieeee e 47
A5 NLD fOF TDD ...uttttiiiieieee ettt e e e e e e e e e e et e e e e e aeaeeeesensssssmmmnas 48..
4.6 NLD and LOCAlIZAtIONvuueieiiiiiiiii e e e e 49.......
o A | B IS} o1 = ¥ SR 49.
SR OTo 1001 o] (o] (I €T =10] 1 1 = 53
5.1 C language ProdUCTIONSeeiieiiiiiiee it ettt e e e e s e e e e enneeas TR 5
5.2 ADL ProdUCHIONS......uuiiiiiiiiiiie ettt sttt ettt et e e e st e e s snnree e e s nnnsnaeens 57.....
5.3 TDD PrOQUCTIONSceiiiiiiiiee ittt ettt ettt et e e e st e e e e s st e e e e snbeeeesamnes 59.....
5.4 NLD PrOQUCTIONSeveieieiiiiiiee ettt ettt e e e e s snaee e e s snnneeeesnnnnneeesd 60....

Version 1.1 9 of 61

Table of Contents ADL 2.0 Language Reference Manual for C

10 of 61 Version 1.1

List of Examples ADL 2.0 Language Reference Manual for C

EXAMPLE 2.1 StOCKBIOKELN ..o 15
EXAMPLE 2.2 StockBrokerSpec.adl.............ooovveiiiiiiiiiiiiiiiieeee e eeeeeeeeeeeeeinannns 16
EXAMPLE 2.3 StockBroker2.adl with behavior classification 24
EXAMPLE 2.4 StockBroker2.adl with eXceptionsccooovvviiiiiiiiiiiiiiiiieeee, 26
EXAMPLE 2.5 BankAccount.adl with prologues and epilogues 28
EXAMPLE 3.1 t1.tdd : The Simplest TEeSt.........uuuiiiiiiiiieeeeeeeeeeeeeeeii e 34
EXAMPLE 3.2 t12.tdd : A Simple Dataset..........cccviiiiiiiiiiiiiieeee 34
EXAMPLE 3.3 t3.tdd : Compound Data Constructionccceeevevvvevvvvnnnnns 34
EXAMPLE 3.4 t4.tdd : VOId DataSetsS.........uuuuiiiiiiiieeeeeeeeeeeeeeeiiitie e 35
EXAMPLE 3.5 t5.tdd : Runtime InitialiZersS........cccooeeveeeeeeieeiieeeeeeiieee e 36
EXAMPLE 3.6 t6.tdd : Provide Test Variables...........cccccvvviiiiiiiiiiiiiiieeien 36
EXAMPLE 3.7 t7.tdd : Better Test Variablesooouiiiiiiiieeeeis 37
EXAMPLE 3.8 t8.tdd : Chaining Factories............coooiiiiiiiiiiiiiiieceeeeeeeee e 39
EXAMPLE 3.9 t9.tdd : Multiple Data Values.............cccccceeeiiiiiiieeeeeieeeeeeeiiiiis 39
EXAMPLE 3.10 t10.tdd : Test Directives and Procedures............ccccccceeeeenennn. 40
EXAMPLE 3.11 t11.tdd : Test By EXamplecccoooeeiiiiiiiiiieecie e 41
EXAMPLE 3.12 t12.tdd : Multiple Dataset References..........ccccccvvvvvvvvncinennnn. 41
EXAMPLE 3.13 t13.tdd : Void Dataset USEceevieeieiiiiiiiiiieeeiviiiiie e 42
EXAMPLE 4.14 Shadowing or Overriding A Translationcccccccvveeenn. 45
EXAMPLE 4.15 Invocation Translation..............oooiiiiiiiiiiiiiiiiiiiiiceccceee e 45
EXAMPLE 4.1 USING PrOPEITIES ...cceeeiiiiiiiiiiiie ettt e e 47
EXAMPLE 4.2 NLD annotation in a TDD class:ccccvvvvveeviiviiciiiiiieeeeeeee, 48
EXAMPLE 4.3 Using Fully Scoped NameS...........cceeeiiiiiiieeeeeieeeeeeeeeeee s 50

Version 1.1 11 of 61

List of Examples ADL 2.0 Language Reference Manual for C

12 of 61 Version 1.1

Introduction

Introduction

This document describes the enhancements to the ADL Language for the ANSI C pro-
gramming language. The ADL Language has been revised as part of the ADL 2.0
Project. The purpose of the ADL 2.0 is to extend the technology of the ADL 1.0 project
to object-oriented programming languages. Specifically, we intend to target C++,
CORBA IDL, and Java, while retaining the capability of specifying ANSI C programs.
This extension to object-oriented languages will require a substantial re-implementa-
tion. We will take advantage of this opportunity to reduce some of the barriers to adop-
tion of ADL technology. In particular, we will simplify the input syntax of the ADL
compiler, and improve its portability by simplifying its internal structure. A migration
path for users of ADLT 1 is of utmost importance in this re-implementation.

ADL is an interface definition and testing system, which adds to a target programming
language a notation for describing behavior, for defining tests, and for generating docu-
mentation. This document describes ADL for the ANSI C programming language.

ADL provides capabilities to describe the semantics of interfaces, and also the capabil-
ity to design and implement test drivers.

This document is a concise language reference, intended to define the syntax of the
ADL annotation language.

The syntax used to describe the language grammar in this document is BNF, and follows
these conventions:

* The vertical bar["” represents a choice between different expansions. Herjce “
| C represents eitheX, B, orC.

e Square bracketg “...] " indicate optional constructs. Hence[‘B] C’is the same
as ‘ABC| AC.

e Parentheseq“...) " are used for grouping constructs. Henag¢ ‘B) C’is the same
as ‘ABC' and “A(B| C) D'is the same asABD| ACD.

e “(..)* "is used to represent zero or more occurrences of the group, ang " is
used to represent one or more occurrences of the group. Hence “A (B)* C” is the
same asAC| ABC| ABBC| ABBBC| etc” and “A(B)+ C’is the same asABC|
ABBC| ABBB(| etc’.

* Non-terminals from the C language definition are represented in a sans-serif font
(like literal), and the non-terminals that define the ADL augmentation of Java appear
in boldface .

¢ Lexical tokens and reserved words may appear literally within quotations, or the
name of the lexical token may appear in angle brackets like <STRING>.

* The left hand and the right hand sides of productions are separated by the symbol
“:= ". For presentation purposes, the entire right hand side of a production may not
be introduced at the same time. The symbok" " is used to indicate that the cur-
rent production is an augmentation of another production with the same left hand
side that has been introduced earlier. For examples“ B” followed by “A +::=
C’isthe same asA'::= B| C.

13 of 61

Introduction

14 of 61 Version 1.1

Semantics Annotations ADL 2.0 Language Reference Manual for C

Semantics Annotations

21

ADL_TranslationUnit

IncludeFileList
IncludeFileDeclaration
ADL_AnnotatedDeclaration

EXAMPLE 2.1

The ADL extensions that allow the definition of the semantics of a function, or of a col-
lection of functions that constitute a programmer’s interface to a given functionality, are
discussed in the sections below.

Describing Semantics Of Functions

ADL provides syntactic constructs to describe semantic behavior of C functions. To do
this, it provides an extended declaration syntax —b#tavior declaratior— as shown
in the syntax below:

= IncludeFileList
[ADL_AnnotatedDeclaration | TDD_AnnotatedDeclaration]
(NLD_Annotation)*
<EOF>
:= (IncludeFileDeclaration)*
= “#include” <INCLUDED_FILE_NAME>
= “adlmodule” (<ID>)?
g
[ADL_Prologue] [ADL_Epilogue]
(ADL_BehaviorDeclaration | ADL_InlineDeclaration)*
(NLD_Annotation)*

ap

These rules are not complete: they will be refined (notation +::=) throughout this docu-
ment as we present new properties. The complete grammar is given in Chapter 5.

Behavior declarations and inline declarations are described in Section 2.3 and
Section 2.4 respectively; a simple example illustrating the use of these constructs is
shown here. Suppose there is an interface declared (in file StockBrocker.h) as:

StockBroker.h

long Cash_Balance(longaccount);
long Stock_Balance(longaccount, char*symbol);

void Buy(longaccount, char*symbol,longno_of_shares);

Version 1.1

15 of 61

Semantics Annotations ADL 2.0 Language Reference Manual for C

EXAMPLE 2.2

Then we may describe its behavior with the ADL specification:

StockBrokerSpec.adl

#include “StockBroker.h”
#include “StockBrokerAux.h”

adlmodule StockBrocker{

inlinelong cost(char*symbol,longno_of _shares){
no_of shares*price(symbol);
}

void Buy(longaccount,
char*symbol,
longno_of_shares){
semantics{
Cash_Balance(account)==
@Cash_Balance(account)
- @cost(symbol,no_of_shares);
Stock_Balance(account, symbol)==
@Stock_Balance(account, symbol)
+no_of_shares;

}
}

In this example, a file with three functio@ash_BalangeStock_BalanceandBuy is

extended with a description of the behavioBa§, written in the function declaration
syntax. The two boolean expressions appearing witldmantics {..}" describe legiti-

mate behavior of thBuy function. In these expressiong®™is an unary operator

(referred to as theall state operator— see Section 2.3.1) whose sole function is to
evaluate its argument prior to the execution of the function — by default all expressions
are evaluated after the execution of the function.

The first of these boolean expressions make use of the notioosof™of a stock pur-
chase. This is implemented in the annotation as an inline declaration. The inline func-
tion declaration in turn requires the notion of thece " of a particular share, and this

is implemented as a static method “price” from an additional class, StockBrokeAux,
which is defined only for purposes of testing and included into the adl file as an external
declaration. The main difference between inline and auxiliary function declarations is
that the body of an inline declaration is an ADL expression (described fully below)
rather than a C block statement.

The example above shows that the specification of a function is written outside the
header that declares the function, much like an external implementation.

16 of 61

Version 1.1

Semantics Annotations ADL 2.0 Language Reference Manual for C

2.2

221

ADL_AssertionGroup

ADL_Statement

ADL_Assertion

ADL_Labels

ADL_Tags

ADL_BasicExpression

ADL Syntax

ADL provides an syntax which is an extension of that of C. The extensions are of two
kinds: a few additional primary expressions and operators, and some ADL-specific
expression constructions. The ADL extensions will be presented here, without discus-
sion of the standard C expressions.

Assertion Groups

The basic bloc construct of ADL is thssertion groupwhich is a list ostatements.
= “{“(ADL_Binding “")* (ADL_Statement “”)**“}"

ADL statements have a type (usually boolean) and a value, but can not be mixed directly
inside expressions. If there is more than one statement within the assertion group, then
all of these statements must be boolean valued. The value of the assertion group in this
case is the conjunction (logical AND) of all the statements in the assertion group. If the
assertion group contains only one statement, then this statement may be of any type, and
the assertion group is also of this type and has the same value as the statement within i;
this can occur with the inline/define constructs.

= ADL_IfStatement
| ADL_Assertion

= [ADL_Labels][ADL_Tags]
(ADL_Expression | ADL_QuantifiedAssertion)

= (<ID>*")"
1= [<ID> () <ID>)< T

Assertions are boolean expressions whose evaluation must generate a test report: they
do not produce any other side effect (hence assignments or increments/decrements are
forbidden inside assertions).They may be given labels and tags. Labels are used when
reporting the value of the expression; tags are used by the ADL runtime to selectively
evaluate assertions.

The assertion group itself is an expression. Its use as an expression is given by the fol-
lowing syntax:

+::=ADL_AssertionGroup

The following fragment taken from an earlier example is an example of a assertion
group:

Cash_Balance(account)==
@Cash_Balance(account)- @cost(symbol,no_of shares);
Stock_Balance(account,symbol)==
@Stock_Balance(account,symbol)+no_of_shares;

Version 1.1

17 of 61

Semantics Annotations ADL 2.0 Language Reference Manual for C

Since assertion groups are also expressions, they may appear anywhere an expression is
expected, and they may be nested within each other. Assertions within nested assertion
groups daot generate a test report: they are evaluated only so that their return value is
used in the computation of the value of the enclosing assertion group.

semantics{
<booleanexpression>==>{<assertion1>;<assertion2>};

}

In this example, there is only one generated test report for the whole assertion, not for
“sub-assertionsassertionl andassertion2.

The list of expressions in an assertion group may be precediaddiygs(variable dec-
larations and initial value assignments to them).

2.2.2 ADL Specific Expressions

While most ADL specific expressions are described in this section, some are described
later in sections where they are more appropriate. The following is the complete list of
all cross references to later sections where ADL features are described:

e The call state operator — Section 2.3.1
* Bindings — Section 2.3.2

* The exception operator — Section 2.3.4
* Inline declarations — Section 2.4

* Prologues and Epilogues — Section 2.5

The remainder of this section describes all other ADL specific expressions.

ADL_Expression := ADL_ImplExpression

ADL_ImplExpression ConditionalExpression (ADL_ImplOp ConditionalExpression)

ADL_ImplOp = *“==>"|'<=="|"<=>"

The three implication operators aneplication (==>), reverse implicatior{<==), and
equivalencd<=>). All these operations operate on boolean parameters and return bool-
ean results. The implication operator evaluatdalée only when its left operand is

true and right operand false (otherwise, it evaluates tae). The reverse implica-

tion operator works like the implication operator with its arguments swapped. The
equivalence operator evaluatesrte if both its operands are the same, otherwise it
evaluate tdalse . (The exception operator (<:>) is described in the section 2.3.7)

PrimaryExpression +::= "return”

Primaries are extended in ADL with the reserved wengn , which is used to refer

to the return value of a function. The primary return may be used only in behavior spec-
ifications (Section 2.3) of functions with non-void return types and may not appear
within an operand of a call state operator (Section 2.3.1).

18 of 61 Version 1.1

Semantics Annotations ADL 2.0 Language Reference Manual for C

2.2.3 ADL Specific Statements

ADL_IfStatement = “if" “(* ADL_Expression *“)” ADL_AssertionGroup
[“else” (ADL_AssertionGroup | ADL_IfStatement)]

“If statements” provide a way to conditionally evaluate expressions. The meaning is
quite similar to the ?: " operator. The types of both the group expressions iii the
expression must be the same and this is the type of tagpression. If the type of the

if expression is boolean, then the else part may be omitted and is assumexgkto be “
true ”. The conditions (the expressions within parentheses) musidiean valued

and are evaluated from top to bottom until the first one that evaludtes to The
assertion group of thisue expression is then evaluated. This is the value df the
statement.

The assertion groups of the branches of an if statement are considered to be at the same
nested level as the enclosing assertion group. If this enclosing assertion group is the out-
ermost one (i.e. just following the “semantics” keyword), assertions within the if state-
ment will therefore generate test reports.

ADL_QuantifiedAssertion :=ADL_Quantifier “(* ADL_DomainList “)" ADL_AssertionGroup

ADL_Quantifier := “forall”
| “exists”

ADL_DomainList

ADL_Domain (“,” ADL_Domain)*

ADL_Domain ADL_NamedParam “” ADL_DomainExpression

ADL_DomainExpression := (“ADL_short range” | “ADL_int_range” | “ADL_long_range”)
“(* AssignmentExpression “,” AssignmentExpression)"

ADL offers a constrained form of quantified expression using which one may iterate

over ADL sequence values. These sequences are specified as domains, and a quantified
expression may contain any number of domains. Each domain is specified with the type
of the sequence element, a new variable that takes on the values in the sequence one by
one, and finally the sequence itself. An example of a domain that iterates over the inte-
gers 1 through 10 is:

longi:ADL_long_range(1,10)

The ADL compiler generates the appropriate code to loop over the sequémee 'sf
starting fromi and ending at.

In the case of the universal quantifiiargll), the quantification expression (which

must take on bBoolean value) will be true if the group expressiontige for all value
assignments for quantification variables from their domains. In the case of the existen-
tial quantifier éxists), the quantification expression will be true if the group expres-
sion istrue for at least one set of value assignments for the quantification variables.

Version 1.1 19 of 61

Semantics Annotations ADL 2.0 Language Reference Manual for C

2.3

ADL_BehaviorDeclaration

ADL_BehaviorSpecification

The following is an example of the use of an universal quantifier that says that all num-
bers in the range 1 to 10 are smaller than 100 (obviously):

forall(longi: ADL_long_range(1,10)){i<100;}

The following is an example of the use of an existential quantifier that says that at least
one number between 1 and 10 is divisible by 3 (in fact there are more than one):

semantics{
exists(longi: ADL_long_range(1.10)){
i%3==0;
}
}

Behavior Specification

The specification of the behavior of a function in its simplest form is the function decla-
ration followed by the reserved word “semantics” followed by an assertion group.

These assertions can refer to the visible state of the system both before and after the exe-
cution of the function. The details of the syntax of expressions is presented in
Section 2.2.

= (FunctionDeclarator | DeclarationSpecifiers FunctionDeclarator)
“{* ADL_BehaviorSpecification “}” (NLD_Annotation)*

= ‘“semantics” ADL_AssertionGroup

Every time a function with a behavior description is invoked, all arguments to call state
operators are evaluated before the function is invoked (call state operators are described
below). Then the function is invoked following which the remainder of the behavior
description is evaluated. If any expression evaluatidsto , the function did not

behave as specified.

The behavior description &uy from Example 2.2 is reproduced below:

void Buy(longaccount,
char*symbol,
longno_of_shares){
semantics{
Cash_Balance(account)==
@Cash_Balance(account)- @cost(symbol,no_of shares);
Stock_Balance(account,symbol)==
@Stock_Balance(account,symbol)+no_of shares;

}
}

The evaluation of the behavior description whenever Buy is invoked is outlined below:

20 of 61

Version 1.1

Semantics Annotations ADL 2.0 Language Reference Manual for C

Step 1: Evaluation of arguments to call state operators:
tmpl=Cash_Balance(account);

tmp2=cost(symbol,no_of_shares);
tmp3=Stock Balance(account,symbol);

Step 2: The implementation Bfiy is invoked.

Step 3: Evaluation of the remainder of the behavior description:

assertion_1=(Cash_Balance(account)==tmp1-tmp?2);

report(assertion_1);

assertion_2=(Stock_Balance(account,symbol)==tmp3+
no_of_shares);

report(assertion_2);

Step 4: Determination of consistent behavior:
if(lassertion_1]|!assertion_2){report_error;}

Behavior descriptions can refer to inline declarations and other function declarations (as
illustrated by the above example). Other specifics of behavior descriptions are discussed
below.

2.3.1 The Call State Operator

The call state operator is a unary operator. It has the effect of evaluating its argument
before the call to the specified function.

UnaryExpression +::= ADL_CallStateExpression
ADL_CallStateExpression = “@" UnaryExpression

UnaryExpression +::= ADL_BasicExpression
ADL_BasicExpression +:=*“unchanged” “(* ADL_ArgumentList *)”

Call state operators may nest within each other in which case, the inner operator is over-
ridden by the outer operator. For examg@é@a + b)is equivalent ta@(a + b) .

Care must be taken to decide exactly where to place a call state operator. For example,
there is a subtle difference betwe®@f(a, b) andf(@a, @b) . The first expression is

the value of(a, b) before the call to the specified function, while the second is the
value returned by when called after the call to the specified function, but passed
parameters whose values are saved from the state before the call to the specified func-
tion.

The “unchanged” operator of ADL is maintained:
unchanged(<exprl>, <expr2>)

is a syntactic sugar for:

Version 1.1 21 of 61

Semantics Annotations ADL 2.0 Language Reference Manual for C

23.2

ADL_Binding
ADL_NamedParamList

ADL_NamedParam

<exprl> == @<exprl> && <expr2> == @<expr2>

Bindings

Bindings are used to declare variables and initialize them with useful values. Their main
goal is to be used in conjunction with NLD annotations.

"define" ADL_NamedParamList "with" (<ID>"=")* ADL_Expression

ADL_NamedParam ("," ADL_NamedParam)*

DeclarationSpecifiers Declarator

Suppose the simple stock broker interface was modified to:
void Cash_Balance(longaccount,long*balance);
long Stock_Balance(longaccount,char*symbol);

void Buy(longaccount, char*symbol,longno_of_shares);

The essence of the modification is tBath_Balance no longer returns its result as a
function return value, rather it returns its result through a pointer parameter. Bindings
may be used to bind a local variable to this pointer parameter, and this local variable can
then be used in the assertions. The earlier assertion group would be modified to be:

definelong pre_cash_balwith
@Cash_Balance(account, &pre_cash_bal);

definelongpost_cash_balwith
Cash_Balance(account,&post_cash_bal);

post_cash_bal==
pre_cash_bal-@cost(symbol,no_of shares);
Stock_Balance(account, symbol)==
@Stock_Balance(account,symbol)+no_of_shares;

}

Even thouglstock Balance continues to return its result as a function return value,
the second assertion may also be modified to use bindings. The following is equivalent
to the above assertion group:

{

definelongpre_cash_balwith
@Cash_Balance(account, &pre_cash_bal);
definelongpost_cash_balwith
Cash_Balance(account,&post_cash_bal);
definelong pre_stock_balwith
pre_stock_bal=@Stock_Balance(account,symbol);
definelongpost_stock_balwith
post_stock_bal=Stock_Balance(account,symbol);

22 of 61

Version 1.1

Semantics Annotations ADL 2.0 Language Reference Manual for C

2.3.3

ADL_BehaviorClassification
ADL_NormalBehavior

ADL_AbnormalBehavior

post_cash_bal==
pre_cash_bal-@cost(symbol,no_of shares);
post_stock bal==pre_stock bal+no_of shares;

}

A single binding declaration may introduce multiple variables and initialize them. For
example, suppose we had the following function:

longfoobar(longx,long*y,long*z);

The following binding declaration evaluatesbar once with the number 5 as its input
parameter and “captures” all the values it returns:

definelongretval,longy, long zwith
retval=foobar(5, &y, &2);

It is also possible for a binding tebind variables introduced in earlier (and possibly
more global) bindings.

Behavior Classification

It is often very useful to broadly categorize the behavior of a function into its “normal
behavior” and “abnormal behavior”. One may then specify more details of the behavior
in each of these cases. ADL provides the behavior classification construct for this pur-
pose. The behavior classification is used to associate a boolean expression to the
reserved wordsormal andabnormal .

= “[*(ADL_NormalBehavior | ADL_AbnormalBehavior)**“]”
= “normal” “=" ADL_Expression ;"

= *“abnormal” “=" ADL_Expression “;"

Normal and abnormal are used to classify the outcome of function invocation. If a func-
tion always succeeds and has no way of giving an error indication to the caller, then the
specification of that function will have:

[normal=true;]

If, as is common for system functions, there is a special return value that signals to the
caller that some problem occurred and the function was unable to perform the requested
task, then the abnormal behavior binding will check for that special return value. For
example, it is common in Unix interfaces to have

[abnormal=return<0;]

The default meanings of normal and abnormal are as follows:

¢ |f neithernormal norabnormal has been defined in a behavior classification, then
normal defaults tarue andabnormal defaults tcfalse

Version 1.1

23 of 61

Semantics Annotations ADL 2.0 Language Reference Manual for C

e If only one ofnormal andabnormal is defined, the other defaults to the negation of
the one defined. For examplenifrmal is defined, theabnormal defaults to
Inormal

When botmormal andabnormal are defined, their definitions need not be negations
of each other. They may overlap or exclude portions of the possible output domain.

In a behavior classification, there may be at most one definitionrioal and one for
abnormal .

The reserved wordsormal andabnormal may then be used in the behavior descrip-
tion of the function as short forms for the expressions associated with them, as per the
following syntax:

ADL_BasicExpression +:="“normal” |“abnormal”

The following example modifies the earlier example to make use of behavior classifica-
tions:

EXAMPLE 2.3 StockBroker2.adl with behavior classification

#include “StockBroker2.h”
#include “StockBrokerAux.h”

adlmodule StockBroker2{
inlinelong cost(char*symbol,longno_of_shares)

no_of shares*price(symbol);

}

intBuy(longaccount,
char*symbol,
longno_of_shares){
semantics
[normal=return==0;
abnormal=return<0;]

if (normal) {
Cash_Balance(account)==
@Cash_Balance(account)
- @cost(symbol,no_of shares);
Stock_Balance(account, symbol)==
@Stock_Balance(account,symbol)
+no_of_shares;

This version of the stock broker specification is weaker than the previous one in that it
talks only about the normal behaviorBlfy. It will be extended to describe the abnor-

24 of 61 Version 1.1

Semantics Annotations ADL 2.0 Language Reference Manual for C

234

ADL_ImplOp

mal behavior oBuy in Section 2.3.4. Note that in this example, the main part of the
behavior description dduy is guarded by thef* " expression (Section 2.2)f‘(nor-
mal) ...". In this case, no behavior is specified unless the function completes normally.

The Exception Operator

ADL provides the exception operator “<:>" whose meaning is based on behavior classi-
fications. It is called the exception operator to reflect the idea that an abnormal behavior
condition is an exception to the expected flow of events; in fact, we may refer to such a
condition as an exception. It is a binary operator whose syntax is:

frmirs”

In usual usage of this operator, the left operand is the enabler of an exception, while the
right operand is an exception expression identifying the particular problem. The follow-
ing example illustrates this typical use:

bad_account(account)||bad_symbol(symbol)<:>
stockbroker_errno==EBADCALL

Informally, the exception operator states that if the condition specified by the left oper-
and is true, then one of the exceptions specified in the right operand will occur. How-
ever if some other exception happens to occur for whatever reason, then the exceptions
in the right operand need not occur. This kind of weaker specification is useful because
in general exceptions may occur for a variety of uncontrollable reasons and also because
the choice of exception communicated to the caller is often left as an implementation
decision when it is possible for more than one exception to occur in the same call.

Finally, the exception operator also says that if the exception specified in the right oper-
and occurs, then the left operand must be true.

More formally, the exception operator is defined as:

A<>B
is the same as
((A ==> abnormal) and (abnormal && B ==> A))

As an example of the use of the exception operator, consider the following assertion
group (we detour from the stock broker a bit here):

Ifile_exists(f)<:>errno==ENOENT;
disk_full()<:>errno==ENOSPC,;
h

If we assume thatbnormal is defined aseturn <0, this assertion group could
probably be used to specify a file open function. It reads: If thie fitees not exist, then
errno must be ENOENT. Similarly, if the disk is full, errno must be ENOSPC. However,
it does not restrict other exception conditions. But it does sagitimi==ENOENT

should only occur if the filé does not exist, andrrno==ENOSPC should only occur

when the disk was full. An interesting consequence is that if both the file does not exist

Version 1.1

25 of 61

Semantics Annotations ADL 2.0 Language Reference Manual for C

and the disk is full, errno may take either value. The following assertion group strength-
ens the above assertion group to require that only these two values of errno or EAGAIN
may occur:

Ifile_exists(f)<:>errno==ENOENT;
disk_full()<:>errno==ENOSPC;
abnormal==>
errno==ENOENT ||errno==ENOSPC||errno==EAGAIN;
h

Now we complete the earlier stock broker example with specification of abnormal
behavior. Two auxiliary function declarationsbad_acct andbad_sym — are added:

EXAMPLE 2.4 StockBroker2.adl with exceptions

#include “StockBroker2.h”
#include “StockBrokerAux.h”

adlmodule StockBroker2{

inlinelong cost(char*symbol,longno_of _shares){
no_of_shares*price(symbol);
%

intBuy(longaccount,
char*symbol,
longno_of_shares){
semantics
[normal=return==0;
abnormal=return<0;]
{

bad_acct(account)<:>

(stockbroker_errno==EBADCALL);

TranslationUnitTranslationUnitbad_sym(symbol)<:>

(stockbroker_errno==EBADCALL);

if (normal){

Cash_Balance(account)==

@Cash_Balance(account)
- @cost(symbol,no_of_shares);
Stock_Balance(account, symbol)==
@Stock_Balance(account, symbol)
+no_of_shares;

}
}

Note the right hand side of the two exception operators refer to the same exception con-
dition, but different additional conditions associated with the condition. This new

26 of 61

Version 1.1

Semantics Annotations ADL 2.0 Language Reference Manual for C

24

ADL _InlineDeclaration

2.5

behavior description is different from the earlier behavior description in Section 2.3.4 in
a few interesting ways, some of which are:
* It makes clear the abnormal behavior.

* This leaves the particular exception condition that occurs non-deterministic. If the
left operands of the exception operators are both true, then the behavior description
allows either of the exception conditions to hold.

¢ It does not allow for the possibility thBuy might return a positive value. Such a
condition, where neitherormal norabnormal is true, is reported as a specifica-
tion error if it should be observed; similarly for the condition that hotimal and
abnormal are true.

inline declarations

Inline declarations (or inline function declarations) are the other way to define concepts
used in behavior descriptions (along with C declarations). Their syntax is:

= “inline” declaration_specifiers function_declarator ADL_AssertionGroup

The significant difference between inline declarations and C function declarations is
that the inline declarations are implemented by ADL assertions, with the additional
ADL operators, rather than by C statements.

In other words, Inline declarations are considered as macros in the usual C pre-proces-
sor meaning. The call to an inline declaration is replaced by the text of the correspond-
ing assertion group, with adhoc substitution of the parameters.

In the StockBroker example, where “cost” is defined as:

inline long cost(char* symbol, long no_of_shares)

{
no_of_shares * price(symbol);

¥
any expression cost(char* symbol, long no_of_shares) will be replaced by:

{no_of_shares * price(symbol); }

Prologues and Epilogues

Before being able to test a specified method, it is sometimes necessary to perform pre-
liminary initialization that require imperative features: this cannot be made inside
semantics assertions, which should remain declarative constructs with no side-effect.

For this purpose, the user can use frelbg” and “epilog’ features, which provide
blocks of “pure” C that will be transmitted without any transformation to the generated
code.

Version 1.1

27 of 61

Semantics Annotations ADL 2.0 Language Reference Manual for C

Ther are two kinds of prologues/epilogues: either global in ADL_AnnotatedDeclaration
or local in ADL_FunctionDeclaration.

ADL_AnnotatedDeclaration := [ADL_Prologue] [ADL_Epilogue]
(ADL_lInlineDeclaration | ADL_BehaviorDeclaration)*
ADL_BehaviorDeclaration = “{*[ADL_Prologue] ADL_BehaviorSpecification [ADL_Epilogue]}
(NLD_Annotation)*
ADL_Prologue := *“prolog” CompoundStatement
ADL_Epilogue := “epilog” CompoundStatement
ADL_BehaviorSpecification := “semantics” [ADL_BehaviorClassification] ADL_AssertionGroup

EXAMPLE 2.5 BankAccount.adl with prologues and epilogues

#include “AccountFile.h”

adimodule AccountFile{

prolog{
Char*FileRadix="/jdbc/odbc/wombat”;
}
longdeposit(longaccount,longamt){
prolog{
FILE*fd=OpenAccountFile(FileRadix,account);
}
semantics{
return==getBalanceAfterDepositFromFile(fd, amt);
}
epilog{
close(fd);
}
}

}

In the generated C code for this example, the global and local prologue blocks are con-
catenated (the global before the local) and copied “as is” at the beginning of the
“deposit” generated function, before the code that deals with the semantics assertions.
The epilog code is copied at the end of this function (a global epilog would be copied
right before the local one).

The overall execution scheme is as follows:

Step 1: Execution of the global prologue

Step 2: Execution of the local prologue

Step 3: Evaluation and saving of call-state expressions
Step 4: Evaluation of the assertions and test reporting

28 of 61 Version 1.1

Semantics Annotations ADL 2.0 Language Reference Manual for C

Step 5: Execution of the local epilogue
Step 6: Execution of the global epilogue

Note that the global prologue is a purely syntactic construct: variables declared therein
arenot global variables, but variables local to all the specified function — exactly like
the variables declared in the local prologue. Its sole purpose is to factorize the state-
ments that need to be executed at the beginnial tfe functions whose behavior is
specified in the adl file.

Call-state expressions and inlines cannot be used in prologues and epilogues. Bindings
can be used in the local epilogue of the behavior where they are defined, but not in pro-
logues and global epilogues. The global epilogue has only access to variables defined in
itself and in the global prologue. It is possible, inside call-state expressions, to reference
the variables declared in prologues.

Version 1.1

29 of 61

Semantics Annotations ADL 2.0 Language Reference Manual for C

30 of 61 Version 1.1

Test Annotations ADL 2.0 Language Reference Manual for C

3

Test Annotations

3.1

3.11

3.1.2

3.1.3

Test data annotations allow the test engineer to define how an interface should be tested;
what data and what procedures should be used to exercise the functions in the interface.

Concepts

The test data description (TDD) language provides a notation in which the user can
write descriptions of test sets, which will be processed into test driver programs. TDD is
organized by a few concepts; these are presented in the first section, with syntactic
details in later sections.

Re-write

The principle behind TDD2 is that it is processed by re-writing the input to create a test
program. The re-write does not remove any information.

The concepts of TDD2 are applied to a variety of programming languages, called target
languages. The concepts of TDD2 are common to all target languages, and the syntax is
in large measure common; the parts of the language that get re-written are common to
our four target languages (C, C++, IDL, and Java).

Dataset

A dataset is a set of data values. It may be used in place of an expression in the target
language syntax. The result of such an expression over a dataset is another dataset. An
expression involving more than one dataset is treated as an expression over the Carte-
sian product of the datasets:

AT B=fy(A B =F,(Ax B) (EQ 3)

Dataset SizeA dataset has a definite size, by construction. However, that size may not

be feasible to use as a test. Examples of feasible datasets are enum types, array indices,
array contents, and datasets created by literal expressions. Examples of infeasible
datasets are programming language types like ‘int’ and ‘float’. The concept of feasibility

is not precise; there is not an axiomatic way to decide if a dataset is small enough. In
practice, a dataset with more than 232 elements is certainly infeasible.

A dataset may be created by a literal expression or by a factory. A single value; that is,
an expression in the target language, is a trivial dataset.

Dataset size is determined by calculation rather than by construction. It is easy to com-
bine a finite number of feasible datasets and create an infeasible dataset; 32 copies of a
Boolean dataset, for example.

Factory

A factory is a data creator. It encapsulates the notions of a constructor, a destructor, and
reporting.

Version 1.1

31 of 61

Test Annotations ADL 2.0 Language Reference Manual for C

3.14

3.15

A factory is, formally, a function from a dataset to a dataset. A fungt{gne,C...) of
more than one argument is formally treated as funciiof & single argument,
AxBXC... — the Cartesian product of the input datasets.

Operationally, a factory is implemented by a pointwise function on the elements of the
domain. In addition, the implementation of a factory includes a destructor function for
elements of the range, and an association from an element of the range to the element of
the domain.

FO{D,R ¢d,}

The formal definition of a factory is® ?Functional® - RO { L} ,

d ?Functional®R - {0, O}
i ?FunctionalF - D

where D is the domain of the factory, R is the range of the factory, c is the factory’s con-
structor function, d is the factory’s destructor function, and i is the inversion function,
which can be used to determine the input that gave rise to a given range element.

While several of the target languages provide expression of these notions in their type
structure, those expressions may be not be available for all types needed for testing; for
example, none of the target languages permit extension of the built-in types, and all
allow the declaration of types which permit no extension. The factory notion is part of
TDD2, outside the target language’s type system, so that it can be applied to all types
needed for testing.

Checked Function

A checked function is a function for which an oracle is available. Calling a checked
function produces the same value and outcome as calling the unchecked version of the
function, but will report some measurement information as an invisible (within the call-
ing program — not to the user!) side effect.

When running under a debugger, all functions may be said to be checked functions.

In the ADLT system, checked functions are generated from function declarations which
have been annotated with semantics specifications. Within a test expression, there is a
special convenient syntax for invocation of such an ADL-derived checked function; the

class or object on which the method is invoked is enclosed in the ADL pseudo-function.
The annotated functions are looked for in the declared list of imported adl modules.

Test Directives

A test directive is formally a statement, evaluated for side effect. In particular, a test
directive normally includes an expression involving one or more calls to checked func-
tions.

32 of 61

Version 1.1

Test Annotations ADL 2.0 Language Reference Manual for C

3.1.6

3.1.7

3.2

Note that a function or method body in a test declaration is subject to the same re-writ-
ing as any other code in the test declaration. Hence any call to a checked function, in
such a body, will be interpreted as a call to the checked version of the function; and call-
ing such a function or method will have the side-effect of making an observation about
the behavior of such checked functions.

A test directive expression is parameterized by the datasets used in the test expression.

Assertion

An assertion is a Boolean expression. However, the test framework takes note of an
assertion. An assertion is a postcondition. An assertion contributes to the test result and
is reported to the user.

Formally, an assertion is a Boolean expression evaluated for side effect.

An assertion is expressed by a call to the funatidnassert(boolean) from the
ADLT runtime library. As a stretch feature, the ADLT translator may re-write the asser-
tion to provide better reporting.

Importation

It is possible to import datasets or factories defined in other TDD files, by using the
“use” feature of TDD language.This feature is syntactically similar to the usual importa-
tion scheme of the target languagjgiclude for C/C++ andmport (with quali-

fied name) for Java.

Note that this importation clause makes reference tedhee TDD filenot to the

object code obtained after ADLT translation and compilation. In TDD for C, when the
user declares “use bar”, he can thereafter use for instance the dataset “D1” defined in the
file bar.tdd. With “use”, the compiler checks the presence and correctness of the source
tdd file; it is however left to the responsability of the user to ensure that at runtime the
object file obtained by transformation of the bar.tdd will be accessible. This is closer to
the C semantics, with the distinction between the header file for the compiler and the
library at runtime.

General Syntax & Examples

This section presents the general syntax along with examples that motivate the design.
Several syntactic conveniences are used in the examples:

Expressions as Dataset#\ target-language expression can be used as a dataset; the
expression is interpreted as a singleton dataset.

Types as datasetsThe name of a data type can be used as a dataset; it is interpreted to
mean all members of the data type. In C, @mlym types anadthar are small enough
to be useful as datasets.

Dataset ConcatenationThe “+” operator is overloaded with dataset concatenation.

Version 1.1

33 of 61

Test Annotations ADL 2.0 Language Reference Manual for C

3.2.1 Datasets and Data Construction

Some examples of data generation.

EXAMPLE 3.1 tl.tdd: The Simplest Test

#include “mymath.h”

importmymath;

tddmoduletl1{
testADL(plus(3,4));

The simplest test is just an invocation of an annotated function. Formally, this test
expression is the application of the annotated version of the function “plus” to the cross-
product of two datasets, “{3}" and “{4}"; the promotion from a single value to a one-
element dataset is automatic.

In the exampleplus is a checked function from “mymath.h”, annotated in adl module
“mymath”.

EXAMPLE 3.2 t2.tdd : A Simple Dataset

#include “mymath.h”

importmymath;

tddmodulet2{
datasetintA={1,3,5..7};
testADL(plus(A,1));
testADL(plus(1,A));

This testplus when adding the constant 1, from both sides.

EXAMPLE 3.3 t3.tdd : Compound Data Construction

#include “myio.h”
importmyio;
tddmodulet3{
factoryRandomAccessFile
make_file(char*nm, char*mode){/*...*/};

34 of 61 Version 1.1

Test Annotations ADL 2.0 Language Reference Manual for C

EXAMPLE 3.4

datasetFile FO=make_file(
{“/dev/null”,"/dev/tty”,"/tmp/foo”},
T,

datasetFileF1=
make_file(“/dev/null”,’r") +
make_file(“/dev/tty”, {"r"," rw"}) +
make_file(util.tmpnam(), {“rw});

char*buf[512];

test(RandomAccessFile F=F0){
ADL (read(F,buf,512));
}

test(RandomAccessFile F=F1){
ADL (read(F,buf,512));

}

Dataset FO has 3x2=6 members, while F1 has 1+2+1=4 members. Note that F1 is the
union of several datasets, each produced by a separate invocation of the factory; the
example uses “+” as the dataset union operator.

This example shows the full syntax for a test directive, with the datasets listed explicitly
as an initialized declaration list. This is the fundamental syntax for a test directive; the
shorter procedure call syntax is an abbreviation. Note also that the local viadfable

and the constant “512” are used as datasets in the expressions in the directive.

t4.tdd : Void Datasets

In order to express the notion of an environment condition that affects the operation of a
system under test, without producing an assignable value, the concepts of dataset and
factory are extended to allow void pseudo-values. This example imports datasets from
the previous one, and shows the use of a block as the body of a test directive, complete
with an assert.

importmyio;
uset3;

tddmodulet4{
factoryvoid setup_system(intcondition_code){
/...
}relinquish(){...}
datasetvoidsetup_set=setup_system;

test(setup_set,
RandomAccessFileF=F1,
char*data={"“,“hello})

char*tmp;

Version 1.1

35 o0f 61

Test Annotations ADL 2.0 Language Reference Manual for C

EXAMPLE 3.5

ADL (write(F,data));

seek(F,0);

tmp=ADL(read(F));
tdd_assert(“streq(tmp,data)”, streq(tmp,data));

}
}

This example shows the use of an unchecked funaeek() in conjunction with some
checked functionswfite andread , defined in the adl module “myio”.). All three
function invocations result in function invocations on the underlying implementation;
however, the checked function invocations are relayed through a checking function that
implements the semantic checks specified by the ADL semantics annotation. It is an
error to invoke the ADL-checked version of a function if that function does not have a
semantics annotation.

Imported dataset names (through thee'” clause) are used if there is no ambiguity
about their origin. Unqualified syntak € F1 in the example) is possible if

¢ F1 is defined in the current tdd file, or
e F1 is defined in at most one of the “used” tdd files.

Since qualified syntax is not used in C, F1 can not be defined in two tdd imported files.

These rules are also valid for factory importation. Only datasets and factories are
importable: the constants, test functions and test directives are not.

t5.tdd : Runtime Initializers

EXAMPLE 3.6

The elements of a dataset literal are evaluated only once, at initialization time (static
evaluation). If the user wants a dataset whose elements are evaluated each time the
dataset is referenced (dynamic evaluation), he must use factories.

tddmodulet5{
[* thisisnotagooddataset; itlacks repeatability */
datasetdoubleg_static={
drand48(),
drand48(),
drand48()
h
factorydoublerand() {returndrand48();}
datasetdoubleq_dynamic=rand();
}

t6.tdd : Provide Test Variables

This example may be slightly familiar for those familiar with the ADLT1 example pro-
grams. The combination of a factory requiring one or more integer parameters with a
dataset is the ADL/C idiom for a provide test variable. In TDD, any global variable

36 of 61

Version 1.1

Test Annotations ADL 2.0 Language Reference Manual for C

(field) is implicitly constant (const in C) and must be initialized at its declaration. A
TDD constant is local: it cannot be imported through the “use” clause.

#include “bank_test.h”;
import bank;

tddmodulet6{

intSAVINGS=-1,CHECKING=1,IRA=7,
intnegative=-10,zero=0,small=3,average =100,
large=1000, over_limit=10000;

datasetintaccount_type={SAVINGS, CHECKING, IRA};
datasetint size_code=
{negative,zero,small,average, large,over_limit};

factoryaccountacct(
int account_typet,
intsize_codes){/*...*/}

datasetaccountAccountl=
acct(account_typet,size_codes);

factoryintamount(intsize_codesize){/*...*/}
datasetBankbank={make_test bank()};

test(Bankb=bank,
accounta=Accountl,
intamounts=amount(size_code)){
ADL (withdraw(b,a,amounts));

test(Bankb=bank,accounta=Accountl){
ADL (balance(b,a));
}

}

EXAMPLE 3.7 t7.tdd :Better Test Variables

Version 1.1 37 of 61

Test Annotations ADL 2.0 Language Reference Manual for C

Here is a more general collection of test variables, showing the increased power of
TDD2.

#include“bank_test.h”
importbank;

tddmodulet7{
datasetintsize_code=
{negative, zero,small,average, large,over_limit};
datasetintaccount_type=
{checking, savings, IRA, zero, neg, max,over_max};

factory doubleamount(intsize){/*...*/}
factoryaccountmake_acct(

inttype_code,

doublesize){/*...*/}
datasetaccountAcct=make_acct(

acount_type,amount(size_code));

datasetBankbank={make_test bank()};
test(Bankb=bank,accounta=Acct,
intamounts=amount(size_code)){
ADL (withdraw(b,a,amounts));
test(Bankb=bank,accounta=Acct,
intamounts={0.1,124.1e10,1125.333}){
ADL (deposit(b,a,amounts));

test(Bankb=bank,accounta=Acct){
ADL (balance(b,a));
}

}

38 of 61 Version 1.1

Test Annotations ADL 2.0 Language Reference Manual for C

EXAMPLE 3.8

This example is intended to motivate the separation between factories and datasets. The
make_acct factory can be used to create a dataset with accounts of any size; the acct
dataset is the result of applying that factory to a specific set of amount values.

t8.tdd : Chaining Factories

EXAMPLE 3.9

#include “testframe.h”

tddmodulet8{
datasetintlength_code=
{ZERO,ONE,MEDIUM,LONG,TOO_LONG};

factory char*make_file_name(
booleanabsolute,
booleandevice,
booleanfunny_chars,
intlength_code){/*...*/}

[* usedatatype namesasdatasets */
datasetchar*file_name_set=
make_file_name(boolean,boolean, boolean,
intlength_code);
factory Filemake_file(char*file_name){/*...*/}

factoryRandomAccessFile
make_filestream(Filef,char*md){/*...*/}

datasetchar*legal_open_type={"r","“rw"};

factorychar*illegal_open_type(){/*...*/}

datasetchar*open_type=
legal_open_type+

illegal_open_type;

datasetintFile_set=
make_file(file_name_set);

datasetFILE*Stream_set=
make_filestream(File_set,open_type);
}

This illustrates several techniques for re-using factories.

t9.tdd : Multiple Data Values

In some cases it is useful to produce a group of values with a single dataset expression.
Rather than inventing a new syntax for a group of values, we use the data construction
mechanismsfruct orclass) already present in the programming language.

Version 1.1

39 of 61

Test Annotations ADL 2.0 Language Reference Manual for C

EXAMPLE 3.10

For example, to construct a dataset containing pairs of host addresses and ports, you
might use:

#include“io_test data.h”
#include“io_test_aux.h”
importmyio;

[*lastincludedfile defines
* structport_pair{

* char*host;
* intport;

*)

*

tddmodulet9{

factoryport_pairmake_port_pair(intpp_code){/*...*/}
datasetintport_pair_code= {0..10};

datasetport_pairPorts=
make_port_pair(port_pair_code);

test(char*data=io.data_set,
port_pairpp=Ports){
socket_ts=makeSocket(pp.host, pp.port);
ADL (write(s,data, strlen(data)));

t10.tdd : Test Directives and Procedures

Simple examples of test directives were given in the previous section. To recap, here are
examples of the alternative syntaxes for test directives:

#include“some_data.h”;

tddmodulet10{
test(data_td=data_set){
hashCode(d);

}

The syntax is:

test(typeid=dataset, ...) Statement

A test directive body has the same syntagaspound statemeit the C grammar;
however, “test statement” is a misleading phrase. A label may be placed on a test direc-
tive; this will influence the generated code in some way.

Local variables are created to range over the specified datasets. Syntactically; it's like an
initialized declaration, but the initializer is a dataset expression. The declared variable
ranges over the members of the dataset during test execution. The list may also be con-

40 of 61

Version 1.1

Test Annotations ADL 2.0 Language Reference Manual for C

EXAMPLE 3.11

tain a dataset expression denoting a dataset over type void, with no variable declared; in
that case the dataset member selection, presumably by a factory, is evaluated for side
effect only.

Not all programming language statements are legal in text directives. For instance, a
goto statement is not a legal test directive statement.

t11.tdd : Test By Example

EXAMPLE 3.12

More complex examples bring us to the concept of “Test by Example”: the test code is
an example of typical code, or code fragments, the user would write to make use of the
interface under test.

#include “testdata.h”
importmyio;

tddmodulet11{
voidread_then_write(FILE*f,
charbuf[512]){
longpos;

pos=ftell(f);
ADL (fread(buf,1,512,f));
ADL (fseek(f,pos,SEEK_SET));
ADL (fwrite(buf,1,512,f));
}

testread_then_write(io.File_set,io.Buf_set);

}

This defines and then calls a test procedure that, when executed, will check that the
functionsfread , fseek , andfwrite operate together correctly when used in this
particular way. More exactly, the test procedure will exercise the functions together,
giving the assertion-checking code a chance to check the behavior of annotated func-
tions. This is not a good way to test for error handling; it may prove useful when check-
ing the normal operation of an interface.

t12.tdd : Multiple Dataset References

Version 1.1

41 of 61

Test Annotations ADL 2.0 Language Reference Manual for C

A single dataset may be used more than once in a single test directive. This results in
independent iterations over the dataset. If the test author wants multiple references to
the same value in one directive, it is necessary to use the long form of the test directive.

importmymath;

tddmodulet12{
datasetintA={1,2,3};

testADL(plus(A,A)); I 9evaluations

test(inta=A){
ADL(plus(a,a)); I 3evaluations

EXAMPLE 3.13 t13.tdd : Void Dataset Use

Most of the examples have used the procedure-call syntax for the test directive. If the
user needs explicit control over the order of selection from datasets, or needs to use void
datasets, the longer syntax for a test directive may be used.

importadimod,;
tddmodulet13{
datasetintA={1,2,3};

factoryvoidside_effect(int) {/*...*/}
datasetvoid X=side_effect({0..6});

datasetfloat F={f1(),2(),f3()};

test(inta=A, X, floatf=F)
ADL(tested_func(f,a));
}

In this examplef is the loop variable for the inner loop, and varies fastest. The middle
loop is a selection over X, evaluated only for side effect. The outer test loopavaries
OVerA.

42 of 61 Version 1.1

NLD Annotations ADL 2.0 Language Reference Manual for C

4

NLD Annotations

4.1

Natural language annotations can be provided to improve the quality of generated
descriptions of ADL and TDD expressions.

Concepts

The ADLT tool can generate natural language (NL) documentation describing the
semantics of functions and the generated test driver. The quality of the generated docu-
ments can be improved by annotating the input files with natural language descriptions
(NLD). These annotations describe translations for identifier names, and provide other
configuration information for the ADLT NL system.

Standard Generalized Markup Language (SGML) is the foundation of the document
generation system. ADLT renders ADL and TDD expressions into SGML entity decla-
rations, exploiting any NLD annotations that the test engineer has provided. These
entity declarations are processed together with a set of document template entity decla-
rations to form a complete SGML document conforming to the DocBook 3.0 DTD. The
final SGML document can be converted to specific output formats such as HTML or
Unix manual pages, or incorporated in larger SGML documents. See the NLD and
SGML section for more details.

C can be annotated with NL information in several places. Briefly, it can be placed at
top level, within a TDD annotation, attached to an annotated function or test statement,
or placed after the bindings in an ADL semantics group expression. The translations it
provides apply throughout the scope (and enclosed scopes), not just from the declaration
point onwards. The examples in this section illustrate some of the annotation attach-
ment locations.

NLD annotations introduce translation information for identifier names at a specific
scope. Translations in outer scopes are shadowed or overridden by translations for the
same identifier name within enclosed scopes.

When ADLT comes to generate a natural language rendering of an ADL or TDD
expression it takes each identifier in the expression and determines whether the user has
provided any NL translations for its name. It searches outwards from the scope declar-
ing the identifier through its enclosing scopes until it finds a candidate translation that
satisfies any constraints on usage (such as locale) defined by its predicates. It uses the
first one it finds. If more than one satisfactory translation is found at the same scope
level a warning is generated and one of the translations is arbitrarily selected.

For example, a translation for an identifier name can be provided at the top level scope
and it will be found and used for any identifier with that name in any enclosed scope,
unless an alternative translation is provided at a more local scope.

Version 1.1

43 of 61

NLD Annotations ADL 2.0 Language Reference Manual for C

4.2

421

4.2.2

4.2.3

Syntax and Semantics

Simple Data Identifier Translation

[*Ccode*/
intamount;

[*ADLsource*/
adimodule C{
nid{
amount="“the correctamount”;
}

}

This declares a translation for the global identdierount . Any expression using an
identifier namedmount will be translated to use the declared string.

A Simple Function Translation

Functions can have translations declared in a similar fashion.

intbalance();

nid{
balance() ="the balance oftheaccount”;

}

This declares a translation foalance() . Any expression using this function identi-
fier will be translated to use the declared string.

Using semantics And nld Blocks

A function can be annotated with both semantics and NL translations.

intbalance(intac)
semantics{
ac!=0;
nid{
.ac="theaccountnumber”;
}

}

The dot notation.”” refers to the current NLD scope (in this case the meltiabd
ance(int)). The notation “.ac” is equivalent to using a fully scoped name to refer to
the function’s local arguments.

nld{
balance(int)::ac="theaccountnumber”;

44 of 61

Version 1.1

NLD Annotations ADL 2.0 Language Reference Manual for C

EXAMPLE 4.14

The formal argument name from the function declaration is used as the name of the
local argument, using the “::” scope resolution operator borrowed from C++.

Shadowing or Overriding A Translation

424

EXAMPLE 4.15

inti;

nid{
i="theloopcounter”;

}

voidB(){
semantics{/*...*/}
nid{
i="B'si";
}

}

An expression using will pick up the top level NL declaration forand be translated
as “the loop counter”. The NL declaration fowithin B overrides the top level decla-
ration so an expression within B usingvill be translated as “B’s i".

Invocation translation

An invocation translation is used to translate a function call. It provides a mechanism for
the translation to refer to the translations of the actual arguments. In order to use this
mechanism the function translation must be provided with the full function signature. If
an interpolated identifier name is the same as one of the translation’s formal arguments,
the translation of the corresponding actual argument is used instead of any translation
for the formal argument name.

Invocation Translation

4.3

inta;
voidf(inti);

nid{
a="theactualargument”;
i="theformalargument”;
f(int)="using“+%1,

h

An expression usinffa) will be translated as “using the actual argument”.
NLD Predicates
Each NL translation associates a list of predicates with an identifier name. Each predi-

cate asserts certain attributes of the translation. The most important attribute is the
actual translation text (which must be provided), but other attributes are also defined.

Version 1.1

45 of 61

NLD Annotations ADL 2.0 Language Reference Manual for C

43.1

Some predicates act as constraints to determine when the translation can be used in the
generated documents. SGML entities can also be declared in the predicate list.

The order of predicates in the predicate list is not significant. A predicate can only be
used once in a list. Future predicates might include markers for grammatical categories
such as tense, gender or number.

Pre-defined Predicates
These predicates (there are currently three defined: call-state, negation and locale) pro-
vide a mechanism to select a mapping for a given situation.

For instance, consider:

amount="theamount”;
amount[@]="theformeramount”;

The second mapping will be used to translate the identifier amount when it appears
within the scope of a call-stat@@mount) whereas the first one will be used in the

other cases. If no mapping with the call-state predicate is defined, an appropriate trans-
lation text is synthesized from the basic translation (@aenountwould be translated

as “the previous value of the amount”). This predicate is useful in situations where the
synthesized translation is clumsy or inappropriate.

Thenegationpredicate (notation “I") is used in a similar fashion for negation scopes.

strcmp(char*,char*)[']=
“string”+$1 +“isequaltostring”+$2;

With this mapping, an assertionstrcmp(str, “foo”); " will be translated as
“string str is equal to string “foo™ instead of “the negation of the value returned by the
function strcemp(char*, char*), invoked with parameters: (str ; “foo”)", the default trans-
lation.

Invocation translations apply for call-state and negation translations too.

Different languages require different translations. [Beale(<string>) predi-

cate can be used to mark a translation as being valid for the specified locale. A transla-
tion with the locale predicate is only considered when it matches the current system
locale. This is usually configured by setting tReNGenvironment variable. See the
setlocale(3) manual page for more details. A translation for an identifier name

with a locale predicate that matches the current system locale takes preference over a
translation with a different or unspecified locale.

It is possible to define a mapping for several predicates (e,g,
amount[!,@,locale(“fr")] = “...”;)

To define several mappings with different predicates, it is possible to use the extended
syntax:

46 of 61

Version 1.1

NLD Annotations ADL 2.0 Language Reference Manual for C

deposit(int,int): {
text="the basicmapping”;
text[@]="the callstate mapping”;
text[!]="the negationmapping”;

}

The notatiordeposit(int) = “deposit an amount”; is in fact a shortcut
for deposit(int) : { text = “deposit an amount”; }

An other possible shortcut is to declare the locale before the translation text:
deposit(int) “C” = “the mapping for locale C”; stands for
deposit(int) : {

text[locale(“C")] = “the mapping for locale C”; }

4.4 NLD and SGML

ADLT generates documentation by emitting SGML entity declarations for descriptions

of aspects of the annotated functions and test specification. These synthesized and user
supplied entity declarations can be used with template entity declarations to produce
complete SGML documents for subsequent processing. ADLT supplies templates and
synthesizes entities based upon the DocBook 3.0 document type definition for con-
structing reference manual pages and test specification descriptions.

4.4.1 Reference Manual Document

ADLT processes each annotated function to generate a function file containing SGML
entity declarations describing its synopsis, semantics and error conditions. This file can
be parsed in conjunction with the supplied reference manual template to produce an
SGML document conforming to the DocBook RBfEntry element. ADLT also

provides tools to convert the final SGML document into other formats such as HTML or
Unix manual pages.

The reference manual template file declares default values for some entities which the
function file generated by ADLT can override. Here are the entities for which it is pos-
sible to generate a value in nld blocks (we call them “properties”):

%description: A general description of the function and/or the class. This can be
specified by using theéescription property in the NL declaration for the function/
class.

%includes: Unlike all other property declarations, the declared tektadfides
is processed before generating the property declaration to escape “<" characters.

%purpose: A short description of a function.

%seeAlso: A reference.

EXAMPLE 4.1 Using Properties

Version 1.1 47 of 61

NLD Annotations ADL 2.0 Language Reference Manual for C

4.5

EXAMPLE 4.2

voidf(){
semantics{/*...*/}
nid{
o
&includes="#include <stdlib.h>";
&description="Behavioral description”;
%purpose =“Shortdescription”;
%seeAlso="SeetheclassFoo”;
}
}
}
This is equivalent to:
nid{

f(): &includes="#include <stdlib.h>";
f(): &description="Behavioral description”;
...

}

The implementation of ADLT includes an SGML DTD that defines the structure of
these entities. Note that ADLT doest preprocess the strings that define these entities:
it sends them without any modification, except for “<* and “>" in %includes (there is
for instance no interpolation mechanism performed on these strings).

NLD for TDD

Test Data Description sources can also be annotated with nld blocks in order to generate
SGML documentation files. There is however an important difference: as there are no
assertions in TDD, there are no automated translation of any expression. Therefore the
user may only write NLD annotations to provigeperties(like %description) or

SGML entities, that are gathered and rendered in the generated documentation.

NLD annotation in a TDD class:

tddclassdatasetsCollection{

nld{
.:%description="Acollectionofdatasets.”;
}

iINtNEG=-1,;intZERO=0;intMAX=100;

nid{
.NEG:%description="anegativevalue”;
.ZERO:%description="the nullvalue”;
.MAX:%description="the greatestvalue”;

}

datasetintDEPOSITS={NEG, ZERO, 7, MAX};
datasetbank*B_SINGLE=make_bank(10,0,DEPOSITS);

48 of 61

Version 1.1

NLD Annotations ADL 2.0 Language Reference Manual for C

nid{
.DEPOSITS: %description="Setoftypicalvalues.”;}
.B_SINGLE:%description="bank....... "

4.6 NLD and Localization

4.7
NLD_Annotation

NLD_Locale

ADLT chooses translations for identifier names based on the current system locale.
Each NL declaration can be marked with a specific locale that determines when the
translation can be used. Ald annotation can specify the locale of all the NL declara-
tions grouped within it by using the optional locale marker. Additionally each declara-
tion can use the locale predicate to specify its individual locale. When a locale is
specified for a NLD group, any other locale defined for a mapping within this group
would be skipped.

If a translation has a locale specified it will only be selected as a candidate when that
locale is the system locale. A translation without a locale specification is considered to
be in the default locale, and will be selected as a candidate when no other translation
specified with the current locale is available.

There are four areas where localization is necessary.

Identifier translations. The locale mechanism provides a way to produce a set of trans-
lations for C and ADL identifiers that are restricted to one locale. They will be selected
in preference to translations for the identifiers which do not have a locale specified.

User-specified entity declarationsThe locale mechanism can also be used to mark
user-supplied entity declarations with a specific locale.

Document templatesThe translations and user-specified entities are merged with text
in the document template files to produce the final SGML documents. The template
files can be localized.

Sentence construction rulesADLT uses a set of rules to construct descriptions of

ADL expressions out of the identifier translation fragments. These rules take the form
of a Prolog program that can be localized.

NLD Syntax

“nld” [NLD_Locale]1“{" (NLD_Declaration | NLD_EntityDeclaration)*“}"

<STRING_LITERAL>

Natural language information is attached to the ADL source with a natural language
annotation. An annotation is introduced with thét reserved word, an optional locale
indicator and then a group of one or more NL declarations within braces. If the locale
indicator is present it acts as if the locale predicate is specified for every translation in
the group. For example,

Version 1.1

49 of 61

NLD Annotations ADL 2.0 Language Reference Manual for C

EXAMPLE 4.3

nld“C’{
-

acts as ifocale(“C") is specified for each translation.

Each NL declaration is either a translation for a C or ADL identifier, or a declaration for
an SGML entity to be used for document generation.

The left hand side of each kind of declaration can contain a scoped name. In addition to
the standard C scoping, NLD also allows identifier names within a function member to
be specified. This makes it possible to give translation information for a method’s for-
mal parameters and local ADL bindings. This is useful for specifying translations for
identifier names from many functions in one place, rather than forcing the test engineer
to distribute NL information throughout the specification files.

Using Fully Scoped Names

NLD_Declaration

NLD_Statement

NLD_TextAssignment

NLD_SelectPred

NLD_Predicate

NLD_PredefinedPred
NLD_UserPred
NLD_ParamNumber

NLD_ScopedName

nid{
i="translationfori”;
f(int)="translationforf(int)";
f(int)::i="translationforiinf(int)”;

g

The translation information is entered at the specified scope (refered to as “."), so an
expression rendered at the current scope, or within an enclosed scope can find it.

= NLD_ScopedName
([NLD_Locale] NLD_TextAssignment

I
“" [NLD_Locale] (NLD_Statement | “{* NLD_Statement * “}"))

NLD_PropertyDeclaration | “%text” NLD_TextAssignment *“;”

[NLD_SelectPred]“=" NLD_String
[“”“[* NLD_UserPred (“,” NLD_UserPred)* "]

“[* NLD_Predicate (“) NLD_Predicate)**“]”

NLD_PredefinedPred
| NLD_ParamNumber “[* NLD_UserPred (*“,” NLD_UserPred)*“]”

u@n | u!n | ulocalen u(u NLD_LOC&le u)n

<IDENTIFIER>

“$"<INTEGER_LITERAL>

| NLD_MethodName

50 of 61

Version 1.1

NLD Annotations ADL 2.0 Language Reference Manual for C

| [NLD_Scope “:"]NLD_ldentifier

NLD_MethodName ::= Name NLD_Signature
NLD_Signature = “(* (" | Type (“,” Type)*))’
NLD_Scope .= “*
| “.”
| Name][“:*]

| NLD_MethodName

SGML entities can also be declared in an NL annotation. The text declared as the value
of the entity is not examined by ADLT, it is passed on to the SGML back end uninter-
preted and unmodified. For example,

&gen-ent="ageneralentity”;

declares a general entity with the specified value.

NLD_EntityDeclaration “&" <IDENTIFIER> “=" NLD_Entity Text

NLD_PropertyDeclaration NLD_PropertyName “=" NLD_EntityText

NLD_PropertyName “O%description” | “%includes” | “Y%purpose” | “%seeAlso”

NLD_EntityText

<STRING_LITERAL> (“<<” <STRING_LITERAL>)*

With the exception of the notation for string literals, the SGML syntax for entity names
and values is used. See the SGML Handbook for details. NLD specifies string literals
with a notation based upon the C++ language.

NLD_String

NLD_StringElem (“+” NLD_StringElem)*

NLD_StringElem <STRING_LITERAL> | NLD_ParamNumber

See the C grammar for descriptions of Mane and Type nonterminals.

Version 1.1 51 of 61

NLD Annotations ADL 2.0 Language Reference Manual for C

52 of 61 Version 1.1

Complete Grammar ADL 2.0 Language Reference Manual for C

5 Complete Grammar

Here is the complete grammar f8DL for C. Non-terminals in boldface are defined in
this document; other non-terminals are part of the C language definition.

5.1 C language productions

TranslationUnit

ExternalDeclaration

FunctionDefinition

Declaration

TypeModifiers

DeclarationSpecifiers

TypeQualifier
StorageStructSpecifier

BuiltinTypeSpecifier

InitDeclaratorList
InitDeclarator

StructSpecifier

MemberDeclaration

(ExternalDeclaration)* <EOF>

Declaration

EnumSpecifier [InitDeclaratorList] “;"
FunctionDefinition

Declaration

DeclarationSpecifiers FunctionDeclarator (“;” | CompoundStatement)
FunctionDeclarator (“;” | CompoundStatement)

DeclarationSpecifiers [InitDeclaratorList] *,”

StorageStructSpecifier
TypeQualifier

(TypeModifiers)*
BuiltinTypeSpecifier (BuiltinTypeSpecifier | TypeModifiers)*
| [(Name | StructSpecifier | EnumSpecifier) (TypeModifiers)*]
BuiltinTypeSpecifier (BuiltinTypeSpecifier | TypeModifiers)*
((Name | StructSpecifier | EnumSpecifier) (TypeModifiers)*)

“const” | “volatile”
“auto” | “register” | “static” | “extern” | “typedef”

“void” | “char” | “short” | “int” | “long” | “float” | “double”
“signed” | “unsigned”

InitDeclarator (“)” InitDeclarator)*
Declarator [“=" Initializer]

(“struct” | “union™)

<ID> [“{* (MemberDeclaration)* “}"]
| “{“ (MemberDeclaration)* “}”

Declaration
EnumSpecifier [MemberDeclaratorList] “;”
DeclarationSpecifiers [MemberDeclaratorList] *;”

Version 1.1

53 of 61

Complete Grammar

MemberDeclaratorList
MemberDeclarator
EnumSpecifier
EnumeratorList
Enumerator

PtrOperator

CvQualifierSeq

Declarator

DirectDeclarator

DeclaratorSuffixes

FunctionDeclarator

FunctionDirectDeclarator
ParameterList
ParameterDeclarationList
ParameterDeclaration

Initializer

TypeName

AbstractDeclarator

AbstractDeclaratorSuffix

StatementList

MemberDeclarator (“,” MemberDeclarator)*

Declarator

“enum” (“{* EnumeratorList “}" | <ID> [“{* EnumeratorList “}")
Enumerator (“;” Enumerator)*

<ID> [“=" ConstantExpression]

“&” CvQualifierSeq
“*” CvQualifierSeq

[“const” | “const” “volatile” | “volatile” | “volatile” “const”]

PtrOperator Declarator
DirectDeclarator

“(“ Declarator “)” [DeclaratorSuffixes]
Name [DeclaratorSuffixes]

(“[* [ConstantExpression] “]”)*
“(u [Pal’ameterLlSt] u)n
“” ConstantExpression

PtrOperator FunctionDeclarator
FunctionDirectDeclarator

Name “(* [ParameterList] “)”

ParameterDeclarationList [[“"]“.."]] “...
ParameterDeclaration (“,” ParameterDeclaration)*
DeclarationSpecifiers (Declarator | AbstractDeclarator)

““ Initializer (“)" Initializer)* “}"
AssignmentExpression

DeclarationSpecifiers AbstractDeclarator

[PtrOperator AbstractDeclarator | “(* AbstractDeclarator “)”
(AbstractDeclaratorSuffix)* | (“[* [ConstantExpression] “]")*]

“[* [ConstantExpression | “]”
“(“ [ParameterList])

(Statement)*

54 of 61

Version 1.1

ADL 2.0 Language Reference Manual for C

Complete Grammar

ADL 2.0 Language Reference Manual for C

Statement

LabeledStatement

CompoundStatement

SelectionStatement

IterationStatement

JumpStatement

Expression

AssignmentExpression

ConditionalExpression

ConstantExpression
LogicalOrExpression
LogicalAndExpression
InclusiveOrExpression
ExclusiveOrExpression

AndExpression

Declaration
LabeledStatement
Expression *;”
CompoundStatement
SelectionStatement
IterationStatement
JumpStatement

<ID> “” Statement
“case” ConstantExpression “:” Statement
“default” “;” Statement

“{* [StatementList] “}"

“if” “(* Expression “)” Statement [“else” Statement]
“switch” “(* Expression “)” Statement

“while” “(* Expression “)” Statement

“do” Statement “while” “(* Expression “)" “;”

“for” “(* (Declaration | Expression “;” | “;”) [Expression] “;” [Expression]
“)” Statement

“goto” <ID> "

“continue” ;
“break” H;l!
“return” [Expression] ;"

AssignmentExpression (“,” AssignmentExpression)*

ConditionalExpression
[(H:” | H*:l! | “/:” | H%:” H+:H | “_:” H<<:” “>>:H | “&:H I “/\:l! | “|:")
AssignmentExpression]

LogicalOrExpression
[“?” LogicalOrExpression “:" LogicalOrExpression]

ConditionalExpression

LogicalAndExpression (“||” LogicalAndExpression)*
InclusiveOrExpression (“&&" InclusiveOrExpression)*
ExclusiveOrExpression (“|” ExclusiveOrExpression)*
AndExpression (“*" AndExpression)*

EqualityExpression (“&” EqualityExpression)*

Version 1.1

55 of 61

Complete Grammar

ADL 2.0 Language Reference Manual for C

EqualityExpression
RelationalExpression
ShiftExpression
AdditiveExpression
MultiplicativeExpression

CastExpression

UnaryExpression

PrelncrementExpression
PreDecrementExpression
UnaryOperatorExpression
UnaryOperator
SizeOfExpression

PostfixExpression

ArraySuffix
DotAccessSuffix
RefAccessSuffix

ArgumentList
PostDelncrement

Name

RelationalExpression ((“!="| “==") RelationalExpression)*
ShiftExpression ((‘<" | “>" | “<="]“>=") ShiftExpression)*
AdditiveExpression ((“<<* | “>>") AdditiveExpression)*
MultiplicativeExpression ((“+” | “-") MultiplicativeExpression)*
CastExpression ((“*" | “I" | “%") CastExpression)*

UnaryExpression
“(* TypeName “)" CastExpression

PrelncrementExpression
PreDecrementExpression
UnaryOperatorExpression
SizeOfExpression
PostfixExpression
ADL_BasicExpression
ADL_CallStateExpression

“++" UnaryExpression

“--" UnaryExpression

UnaryOperator UnaryExpression

G |

“sizeof” (“(* TypeName())" | UnaryExpression)

PrimaryExpression

(ArraySuffix

| DotAccessSuffix

| RefAccessSuffix

| ArgumentList

| PostDelncrement)*

“[AssignmentExpression “]”
“’ Name

“->" Name

“(* [Expression])"

g |

<|D>

56 of 61

Version 1.1

Complete Grammar ADL 2.0 Language Reference Manual for C

PrimaryExpression ::= TDD_ADLEXxpression
Name

Constant

<STRING>
ParentheizedExpression
“return”

ParentheizedExpression ::= *“(* Expression “)”
UnaryPlusMinusConstant ::= (“+"|*“") Constant

Constant ::= <OCTALINT>
<DECIMALINT>
<HEXADECIMALINT>
<CHARACTER>
<FLOATONE>
<FLOATTWO>

“true”

“false”

5.2 ADL Productions

ADL_AnnotatedDeclaration ::= [ADL_Prologue] [ADL_Epilogue]
(ADL_InlineDeclaration | ADL_FunctionDeclaration)*

ADL_InlineDeclaration “inline” DeclarationSpecifiers FunctionDeclarator

ADL_AssertionGroup

IncludeFileList

[ADL_AnnotatedDeclaration | TDD_AnnotatedDeclaration]
(NLD_Annotation)*

<EOF>

ADL_TranslationUnit

IncludeFileList (IncludeFileDeclaration)*

IncludeFileDeclaration “#include” <INCLUDED_FILE_NAME>

ADL_AnnotatedDeclaration “adlmodule” [<ID>1“{" [ADL_Prologue] [ADL_Epilogue]
(ADL_BehaviorDeclaration | ADL_InlineDeclaration)*

(NLD_Annotation)*“}”

ADL_InlineDeclaration ::= ‘“inline” FunctionDeclarator DeclarationSpecifiers ADL_AssertionGroup

ADL_BehaviorDeclaration (FunctionDeclarator | DeclarationSpecifiers FunctionDeclarator)
“{“ [ADL_Prologue] ADL_BehaviorSpecification [ADL_Epilogue]

(NLD_Annotation)**“}”

ADL_Prologue

“prolog” CompoundStatement

Version 1.1 57 of 61

Complete Grammar

ADL 2.0 Language Reference Manual for C

ADL_Epilogue
ADL_BehaviorSpecification
ADL_BehaviorClassification

ADL_NormalBehavior
ADL_AbnormalBehavior
ADL_AssertionGroup
ADL_Binding
ADL_NamedParamList
ADL_NamedParam

ADL_Statement

ADL_IfStatement

ADL_Assertion

ADL_Labels

ADL_Tags
ADL_QuantifiedAssertion

ADL_Quantifier

ADL_DomainList

ADL_Domain

ADL_DomainExpression

ADL_Expression
ADL_ImplExpression
ADL_ImplOp

ADL_CallStateExpression

“epilog” CompoundStatement

“semantics” [ADL_BehaviorClassification] ADL_AssertionGroup

“I (ADL_NormalBehavior | ADL_AbnormalBehavior)**“]”

“normal” “=" ADL_Expression “;"

“abnormal” “=" ADL_Expression *“”

“{* (ADL_Binding *“;”)* (ADL_Statement “;”)* (NLD_Annotation)**}"
“define” ADL_NamedParamList “with” [<ID> “="] ADL_Expression
ADL_NamedParam (“,” ADL_NamedParam)*

DeclarationSpecifiers Declarator

ADL_IfStatement
ADL_Assertion

“if” “(* ADL_Expression “)” ADL_AssertionGroup
[“else” (ADL_AssertionGroup | ADL_IfStatement)]

[ADL_Labels][ADL_Tags]
(ADL_Expression | ADL_QuantifiedAssertion)

(<ID>*“")*

“[“<ID> () <ID>)* “]"

ADL_Quantifier “(* ADL_DomainList “)” ADL_AssertionGroup
“forall” | “exists”

ADL_Domain (“,” ADL_Domain)*

ADL_NamedParam “” ADL_DomainExpression

(“ADL_short_range” | “ADL_int_range” | “ADL_long_range”)
“(* AssignmentExpression “,” AssignmentExpression)"

ADL_ImplExpression
ConditionalExpression (ADL_ImplOp ConditionalExpression)
“::>” H<::H | “<:>H “<:>H

“@” UnaryExpression

58 of 61

Version 1.1

Complete Grammar

ADL 2.0 Language Reference Manual for C

ADL_BasicExpression

ADL_Return

ADL_ArgumentList

5.3

TDD_AnnotatedDeclaration

TDD_ImportDeclaration
TDD_UseDeclaration

TDD_Declaration

TDD_DatasetDeclaration

TDD_FactoryDefinition

TDD_TestDirective

TDD_DatasetDomain

TDD_DatasetLiteral

TDD_FieldDeclaration

TDD_DatasetMember

TDD_DatasetExpression

“normal”

“abnormal”

“unchanged” “(* ADL_ArgumentList
ADL_AssertionGroup

o

“return”

ADL_Expression (“;” ADL_Expression)*

TDD productions

(TDD_ImportDeclaration)*

(TDD_UseDeclaration)* “tdd_module” [<ID>]
{* (TDD_Declaration | NLD_Annotation)* “}’
“import” <ID> *;”

“use“ <ID> ;"

TDD_DatasetDeclaration
TDD_FactoryDefinition
TDD_TestDirective
FunctionDefinition
TDD_FieldDeclaration

“dataset” ADL_NamedParam “=" TDD_DatasetExpression *”

“factory” DeclarationSpecifiers FunctionDeclarator
CompoundStatement
[“relinquish” “(* ParameterDeclaration “)” CompoundStatement]

[<ID>*"] “test” [“forall”]
“(“ [TDD_DatasetDomain (“,;” TDD_DatasetDomain)*]“)” Statement

ADL_NamedParam (“”|“=") TDD_DatasetExpression
TDD_DatasetExpression

" [TDD_DatasetMember (“,” TDD_DatasetMember)*[“"]]“}"

DeclarationSpecifiers Declarator “=" Initializer
(“]” DeC|aI’at0r “=" |n|t|allzer)* u;n

ConditionalExpression [“.."” ConditionalExpression]

TDD_DatasetConcatenationExpr
(“+” TDD_DatasetConcatenationExpr)*

Version 1.1

59 of 61

Complete Grammar ADL 2.0 Language Reference Manual for C

TDD_DatasetConcatenationExpr ::= TDD_DatasetLiteral
| TDD_FactoryCall
| TDD_DatasetSingleton

TDD_DatasetSingleton Name | UnaryPlusMinusConstant | Constant

TDD_FactoryCall ::= <ID>*“(“[TDD_DatasetExpression (" TDD_DatasetExpression)*]“)”

TDD_ADLEXxpression “ADL" “(* Name ArgumentList “)”

5.4 NLD productions

NLD_Annotation = “nld” [NLD_Locale | “{* (NLD_Declaration | NLD_EntityDeclaration)*“}”

NLD_Locale <STRING_LITERAL>

NLD_Declaration NLD_ScopedName ([NLD_Locale] NLD_TextAssignment

| “” [NLD_Locale] (NLD_Statement | “{* NLD_Statement * “}"))

NLD_PropertyDeclaration | “%text” NLD_TextAssignment ;"

NLD_Statement

NLD_TextAssignment [NLD_SelectPred]“=" NLD_String

[“”“[* NLD_UserPred (*; NLD_UserPred)*‘T"]

NLD_SelectPred

“[“ NLD_Predicate (“ NLD_Predicate)*“]"

NLD_Predicate NLD_PredefinedPred

| NLD_ParamNumber “[* NLD_UserPred (*“;” NLD_UserPred)*“]"

NLD_PredefinedPred “‘@” | “"| “locale” “(“ NLD_Locale “)”

<IDENTIFIER>

NLD_UserPred

NLD_ParamNumber “$"<INTEGER_LITERAL>

wn

| NLD_MethodName
| [NLD_Scope “:"] NLD_ldentifier

NLD_ScopedName

NLD_MethodName

Name NLD_Signature

‘(| Type (* Type)*) *)"
“r | “" | Name [“::*"] | NLD_MethodName

NLD_Signature

NLD_Scope

NLD_EntityDeclaration “&" <IDENTIFIER> “=" NLD_EntityText

NLD_PropertyDeclaration NLD_PropertyName “=" NLD_EntityText

“Y%description” | “%includes” | “Y%purpose” | “Y%seeAlso”

NLD_PropertyName

60 of 61 Version 1.1

Complete Grammar ADL 2.0 Language Reference Manual for C

NLD_EntityText = <STRING_LITERAL> (“<<” <STRING_LITERAL>)*

NLD_String NLD_StringElem (“+” NLD_StringElem)*

NLD_StringElem ::= <STRING_LITERAL> | NLD_ParamNumber

Version 1.1 61 of 61

	ADL 2.0 for C Language Reference Manual, Version 1...
	1 Introduction
	2 Semantics Annotations
	2.1 Describing Semantics Of Functions
	2.2 ADL Syntax
	2.2.1 Assertion Groups
	2.2.2 ADL Specific Expressions
	2.2.3 ADL Specific Statements

	2.3 Behavior Specification
	2.3.1 The Call State Operator
	2.3.2 Bindings
	2.3.3 Behavior Classification
	2.3.4 The Exception Operator

	2.4 inline declarations
	2.5 Prologues and Epilogues

	3 Test Annotations
	3.1 Concepts
	3.1.1 Re-write
	3.1.2 Dataset
	3.1.3 Factory
	3.1.4 Checked Function
	3.1.5 Test Directives
	3.1.6 Assertion
	3.1.7 Importation

	3.2 General Syntax & Examples
	3.2.1 Datasets and Data Construction

	4 NLD Annotations
	4.1 Concepts
	4.2 Syntax and Semantics
	4.2.1 Simple Data Identifier Translation
	4.2.2 A Simple Function Translation
	4.2.3 Using semantics And nld Blocks
	4.2.4 Invocation translation

	4.3 NLD Predicates
	4.3.1 Pre-defined Predicates

	4.4 NLD and SGML
	4.4.1 Reference Manual Document

	4.5 NLD for TDD
	4.6 NLD and Localization
	4.7 NLD Syntax

	5 Complete Grammar
	5.1 C language productions
	5.2 ADL Productions
	5.3 TDD productions
	5.4 NLD productions

