
(1998.08.07) 1 of 61

ADL for C

The Open Group Research Institute

SunTest

The language definition for ADL annotations
for the C programming language.

ADL 2.0 for C Language Reference Manual, Version 1.1

ISSUE NUMBER REASON FOR ISSUE

1.0 Alpha Document Launch For Review

1.0 Beta First Revision

1.0 Gamma Second Revision

1.0 Delta Third Revision

1.0 Updated in accordance with version 2.0.2 of the ADL Translation System.

1.1 Updated in accordance with version 2.0.3 of the ADL Translation System

e and

rtain
stems,.
tion of

mission

 (IPA)
enta-
COPYRIGHT AND LICENSE NOTICE

Copyright © 1997-1998 The Open Group Research Institute

Copyright © 1994-1997 Sun Microsystems Inc.

Copyright © 1994-1998 Information-technology Promotion Agency, Japan

This technology has been developed as part of a collaborative project among the
Information-technology Promotion Agency, Japan (IPA), X/Open Company Ltd. and
Sun Microsystems Laboratories.

Permission to use, copy, modify and distribute this software and documentation for any purpos
without fee is hereby granted in perpetuity, provided that thisCOPYRIGHT AND LICENSE
NOTICE appears in its entirety in all copies of the software and supporting documentation. Ce
ideas and concepts contained in the software are protected by pending patents of Sun Microsy
Sun hereby grants a limited license to use these patents, if any issued, only in this implementa
the software and documentation and in derivatives thereof prepared in accordance with the per
granted herein.

The names X/Open, Sun Microsystems. and Information-technology Promotion Agency, Japan
shall not be used in advertising or publicity pertaining to distribution of the software and docum
tion without specific, written prior permission.

ANY USE OF THE SOFTWARE AND DOCUMENTATION SHALL BE GOVERNED BY
CALIFORNIA LAW. X/OPEN, SUN MICROSYSTEMS, INC. AND IPA MAKE NO REPRE-
SENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE OR
DOCUMENTATION FOR ANY PURPOSE. THEY ARE PROVIDED “AS IS” WITHOUT
EXPRESS OR IMPLIED WARRANTY OF ANY KIND. X/OPEN SUN MICROSYSTEMS,
INC. AND IPA SEVERALLY AND INDIVIDUALLY DISCLAIM ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE AND DOCUMENTATION, INCLUDING THE WARRAN-
TIES OF MERCHANTABILITY, DESIGN, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL X/OPEN, SUN
MICROSYSTEMS, INC. OR IPA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULT-
ING FROM LOSS OF USE, DATA, OR PROFITS, WHETHER IN ACTION ARISING OUT
OF CONTRACT, NEGLIGENCE, PRODUCT LIABILITY, OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE OR DOCUMENTATION.
2 of 61 ADL 2.0 Language Reference Manual for C

S™,
Trademarks

Sun™, Sun Microsystems™, Sun Microsystems Laboratories™, the Sun logo, Solaris™, SunO
and Java™ are trademarks or registered tradmarks of Sun Microsystems, Inc.

Postscript™ is a trademark of Adobe Systems Inc.

UNIX® is a registered trademark in the USA and other countries licensed exclusively through
X/Open™.

X/Open™ is a trademark of the X/Open Company Limited.
ADL 2.0 Language Reference Manual for C 3 of 61

Change Log

Release 1.1

3. Test Annotations

Updated section 3.1.4 and all examples to include the “import” keyword.

Updated examples according to the new syntax for TDD_ADLExpression.

5. Complete Grammar

Replaced IdExpression with Name.

Fixed typo in TDD_DatasetDeclaration.

Updated TDD_FieldDeclaration.

Updated TDD_ADLExpression.

Release 1.0

1. Introduction

No substantive change.

2. Semantics Annotations

Major update of most ADL productions and ADL examples so that it conforms to the last
ADL/C grammar. Note this change only concerns the syntax, no other substantive changes
have occured.

3. Test Annotations

Major update of most TDD productions and TDD examples so that it conforms to the last
ADL/C grammar. Note this change only concerns the syntax, no other substantive changes
have occured.

4. NLD Annotations

Major update of most NLD productions and NLD examples so that it conforms to the last
ADL/C grammar. Note this change only concerns the syntax, no other substantive changes
have occured.
4 of 61 ADL 2.0 Language Reference Manual for C

5. BNF

Major update of most ADL, TDD and NLD productions.

Release 1.0 Delta

1. Introduction

No substantive change.

2. Semantics Annotations

2.1: ADL_Inline_Declaration and ADL_FunctionDeclaration gathered in
ADL_AnnotatedDeclaration

 TranslationUnit changed to contain “ADL Annotated Declaration”.

2.2.2; ADL_ImplExpression removed. It is equivalent to ADL_Expression.

2.5: Added global Prologues and Epilogues in ADL_AnnotatedDeclaration

 ADL_Prologue and ADL_Epilogue changed: Statement replaced by CompoundStatement

 TBD resolved: a functional example is performed.

3. Test Annotations

3.1.3: TBD resolved. A factory definition is a function definition.

3.1.7: new section for the use importation clause.

Example 3.5: the semantics of elements of literal datasets has changed: they are evaluated
only once (static evaluation). Dynamic behavior is now possible only through factories.

Introduction of constants.

3.3: Slight changes in the grammar.

4. NLD Annotations

No substantive change
ADL 2.0 Language Reference Manual for C 5 of 61

Release 1.0 Gamma

1. Introduction

No substantive change.

2. Semantics Annotations

Terminology changes: ADL prefix added for ADL Non-Terminals.

2.1: “Annotated function declaration” changed to “ADL function declaration”.

Example 2.2; “define” changed “inline” for the inline declaration.

2.2: ADL Expressions changed to ADL Syntax;

2.2.1: Assertion groups redefined: “group_expression” changed to “ADL_AssertionGroup”

2.2.3 ADL_IfStatement modified and redefined;

 “Expression” in ADL_Domain changed to “ConditionalExpression”

2.3: “Multiple Behavior Descriptions For The Same Function” and “Extending the
Specification of a function” removed: ADL for C does not support inheritance, C programmer
is supposed to ignore this concept..

2.3.1: Added an example for “unchanged” .

2.3.2: “Definitions” changed to “Bindings”.

2.4: ADL_InlineDeclaration modified: “define” changed “inline”

 Added an example.

2.5: Added Prologues and Epilogues to perform preliminay initializations.

 Added TBD for the example given.

3. Test Annotations

No substantive change

4. NLD Annotations

4.5: Updating the NLD syntax.
6 of 61 ADL 2.0 Language Reference Manual for C

Release 1.0 Beta

1. Introduction

No substantive change.

2. Semantics Annotations

No substantive change.

3. Test Annotations

Title changed from “TDD Annotations”.

3.1.2: Terminology change: “bounded” dataset changed to “feasible”.

3.1.3: Add TBD for factory representation.

3.1.4: TBD resolved: explicit invocation of checked version by ADL(...). This affects all the
examples.

3.1.5: Terminology change: “Test expression” changed to “Test directive”. This affects the
explanation of some of the examples and the grammar.

3.1.6: Assert removed from language definition.

3.2: TBD resolved: factories are not implicit datasets.

Example 3.5: TBD resolved: dataset members are evaluated each time.

Example 3.10: TBD resolved: test directive syntax clarified.

Example 3.12: Rules for multiple reference simplified.

3.3.1: TBD resolved: external dataset reference clarified.

4. NLD Annotations

Example 4.3: TBD resolved: rules on formal argument name clarified.

4.3.1: TBD resolved: SGML entity definition referred to DTD.

Example 4.9: TBD resolved: Rule on markup (DocBook 3.0 Para entity) clarified.

Release 1.0 Alpha

Initial release.
ADL 2.0 Language Reference Manual for C 7 of 61

8 of 61 ADL 2.0 Language Reference Manual for C

Table of Contents ADL 2.0 Language Reference Manual for C
1 Introduction..13

2 Semantics Annotations ..15
2.1 Describing Semantics Of Functions ... 15

2.2 ADL Syntax.. 17
2.2.1 Assertion Groups ... 17
2.2.2 ADL Specific Expressions... 18
2.2.3 ADL Specific Statements.. 19

2.3 Behavior Specification.. 20
2.3.1 The Call State Operator ... 21
2.3.2 Bindings.. 22
2.3.3 Behavior Classification.. 23
2.3.4 The Exception Operator .. 25

2.4 inline declarations... 27

2.5 Prologues and Epilogues .. 27

3 Test Annotations...31
3.1 Concepts ... 31

3.1.1 Re-write ... 31
3.1.2 Dataset ... 31
3.1.3 Factory ... 31
3.1.4 Checked Function.. 32
3.1.5 Test Directives ... 32
3.1.6 Assertion.. 33
3.1.7 Importation .. 33

3.2 General Syntax & Examples .. 33
3.2.1 Datasets and Data Construction... 34

4 NLD Annotations..43
4.1 Concepts ... 43

4.2 Syntax and Semantics... 44
4.2.1 Simple Data Identifier Translation .. 44
4.2.2 A Simple Function Translation.. 44
4.2.3 Usingsemantics And nld Blocks... 44
4.2.4 Invocation translation .. 45

4.3 NLD Predicates .. 45
4.3.1 Pre-defined Predicates ... 46

4.4 NLD and SGML... 47
4.4.1 Reference Manual Document .. 47

4.5 NLD for TDD... 48

4.6 NLD and Localization .. 49

4.7 NLD Syntax.. 49

5 Complete Grammar...53
5.1 C language productions.. 53

5.2 ADL Productions.. 57

5.3 TDD productions .. 59

5.4 NLD productions .. 60
Version 1.1 9 of 61

Table of Contents ADL 2.0 Language Reference Manual for C
10 of 61 Version 1.1

List of Examples ADL 2.0 Language Reference Manual for C
EXAMPLE 2.1 StockBroker.h ..15

EXAMPLE 2.2 StockBrokerSpec.adl...16

EXAMPLE 2.3 StockBroker2.adl with behavior classification24

EXAMPLE 2.4 StockBroker2.adl with exceptions ...26

EXAMPLE 2.5 BankAccount.adl with prologues and epilogues28

EXAMPLE 3.1 t1.tdd : The Simplest Test...34

EXAMPLE 3.2 t2.tdd : A Simple Dataset..34

EXAMPLE 3.3 t3.tdd : Compound Data Construction34

EXAMPLE 3.4 t4.tdd : Void Datasets..35

EXAMPLE 3.5 t5.tdd : Runtime Initializers...36

EXAMPLE 3.6 t6.tdd : Provide Test Variables...36

EXAMPLE 3.7 t7.tdd : Better Test Variables ...37

EXAMPLE 3.8 t8.tdd : Chaining Factories...39

EXAMPLE 3.9 t9.tdd : Multiple Data Values ...39

EXAMPLE 3.10 t10.tdd : Test Directives and Procedures...............................40

EXAMPLE 3.11 t11.tdd : Test By Example ..41

EXAMPLE 3.12 t12.tdd : Multiple Dataset References...................................41

EXAMPLE 3.13 t13.tdd : Void Dataset Use ..42

EXAMPLE 4.14 Shadowing or Overriding A Translation45

EXAMPLE 4.15 Invocation Translation..45

EXAMPLE 4.1 Using Properties ..47

EXAMPLE 4.2 NLD annotation in a TDD class: ...48

EXAMPLE 4.3 Using Fully Scoped Names ...50
Version 1.1 11 of 61

List of Examples ADL 2.0 Language Reference Manual for C
12 of 61 Version 1.1

Introduction

 pro-

ject

s.
ta-
dop-

ing
ocu-

abil-

e

llows

he

nt
pear

bol
y not

d

1 Introduction

This document describes the enhancements to the ADL Language for the ANSI C
gramming language. The ADL Language has been revised as part of the ADL 2.0
Project. The purpose of the ADL 2.0 is to extend the technology of the ADL 1.0 pro
to object-oriented programming languages. Specifically, we intend to target C++,
CORBA IDL, and Java, while retaining the capability of specifying ANSI C program
This extension to object-oriented languages will require a substantial re-implemen
tion. We will take advantage of this opportunity to reduce some of the barriers to a
tion of ADL technology. In particular, we will simplify the input syntax of the ADL
compiler, and improve its portability by simplifying its internal structure. A migration
path for users of ADLT 1 is of utmost importance in this re-implementation.

ADL is an interface definition and testing system, which adds to a target programm
language a notation for describing behavior, for defining tests, and for generating d
mentation. This document describes ADL for the ANSI C programming language.

ADL provides capabilities to describe the semantics of interfaces, and also the cap
ity to design and implement test drivers.

This document is a concise language reference, intended to define the syntax of th
ADL annotation language.

The syntax used to describe the language grammar in this document is BNF, and fo
these conventions:

• The vertical bar “| ” represents a choice between different expansions. Hence “A | B

| C” represents eitherA, B, or C.

• Square brackets “[...] ” indicate optional constructs. Hence “A [B] C” is the same
as “ABC| AC”.

• Parentheses “(...) ” are used for grouping constructs. Hence “A (B) C” is the same
as “ABC” and “A (B | C) D” is the same as “ABD| ACD”.

• “ (...)* ” is used to represent zero or more occurrences of the group, and “(...)+ ” is
used to represent one or more occurrences of the group. Hence “A (B)* C” is t
same as “AC | ABC| ABBC| ABBBC| etc.” and “A (B)+ C” is the same as “ABC|

ABBC| ABBBC| etc.”.

• Non-terminals from the C language definition are represented in a sans-serif fo
(like literal), and the non-terminals that define the ADL augmentation of Java ap
in boldface .

• Lexical tokens and reserved words may appear literally within quotations, or the
name of the lexical token may appear in angle brackets like <STRING>.

• The left hand and the right hand sides of productions are separated by the sym
“ ::= ”. For presentation purposes, the entire right hand side of a production ma
be introduced at the same time. The symbol “+::= ” is used to indicate that the cur-
rent production is an augmentation of another production with the same left han
side that has been introduced earlier. For example, “A ::= B” followed by “A +::=

C” is the same as “A ::= B | C”.
13 of 61

Introduction
14 of 61 Version 1.1

Semantics Annotations ADL 2.0 Language Reference Manual for C

 col-
 are

o do

ocu-

is
2 Semantics Annotations

The ADL extensions that allow the definition of the semantics of a function, or of a
lection of functions that constitute a programmer’s interface to a given functionality,
discussed in the sections below.

2.1 Describing Semantics Of Functions

ADL provides syntactic constructs to describe semantic behavior of C functions. T
this, it provides an extended declaration syntax — thebehavior declaration — as shown
in the syntax below:

ADL_TranslationUnit := IncludeFileList
[ADL_AnnotatedDeclaration | TDD_AnnotatedDeclaration]
(NLD_Annotation)*
<EOF>

IncludeFileList := (IncludeFileDeclaration)*
IncludeFileDeclaration := “#include” <INCLUDED_FILE_NAME>

ADL_AnnotatedDeclaration := “adlmodule” (<ID>)?
“{“
[ADL_Prologue] [ADL_Epilogue]
(ADL_BehaviorDeclaration | ADL_InlineDeclaration)*
(NLD_Annotation)*
“}”

These rules are not complete: they will be refined (notation +::=) throughout this d
ment as we present new properties. The complete grammar is given in Chapter 5.

Behavior declarations and inline declarations are described in Section 2.3 and
Section 2.4 respectively; a simple example illustrating the use of these constructs
shown here. Suppose there is an interface declared (in file StockBrocker.h) as:

EXAMPLE 2.1 StockBroker.h

long Cash_Balance(long account);

long Stock_Balance(long account, char* symbol);

void Buy(long account, char* symbol, long no_of_shares);
Version 1.1 15 of 61

Semantics Annotations ADL 2.0 Language Reference Manual for C

ions

unc-

,
ernal
 is
Then we may describe its behavior with the ADL specification:

EXAMPLE 2.2 StockBrokerSpec.adl

#include “StockBroker.h”
#include “StockBrokerAux.h”

adlmodule StockBrocker {

inline long cost(char* symbol, long no_of_shares) {
no_of_shares * price(symbol);

}

void Buy(long account,
 char* symbol,
 long no_of_shares) {

semantics {
Cash_Balance(account) ==

 @Cash_Balance(account)
 - @cost(symbol, no_of_shares);

Stock_Balance(account, symbol) ==
@Stock_Balance(account, symbol)
 + no_of_shares;

}
}

}

In this example, a file with three functionsCash_Balance, Stock_Balance, andBuy is
extended with a description of the behavior ofBuy, written in the function declaration
syntax. The two boolean expressions appearing within “semantics { ... } ” describe legiti-
mate behavior of theBuy function. In these expressions, “@” is an unary operator
(referred to as thecall state operator — see Section 2.3.1) whose sole function is to
evaluate its argument prior to the execution of the function — by default all express
are evaluated after the execution of the function.

The first of these boolean expressions make use of the notion of “cost ” of a stock pur-
chase. This is implemented in the annotation as an inline declaration. The inline f
tion declaration in turn requires the notion of the “price ” of a particular share, and this
is implemented as a static method “price” from an additional class, StockBrokeAux
which is defined only for purposes of testing and included into the adl file as an ext
declaration. The main difference between inline and auxiliary function declarations
that the body of an inline declaration is an ADL expression (described fully below)
rather than a C block statement.

The example above shows that the specification of a function is written outside the
header that declares the function, much like an external implementation.
16 of 61 Version 1.1

Semantics Annotations ADL 2.0 Language Reference Manual for C

wo

us-

rectly
 then
in this
f the
e, and
ithin i;

: they
ts are
hen

ely

e fol-
2.2 ADL Syntax

ADL provides an syntax which is an extension of that of C. The extensions are of t
kinds: a few additional primary expressions and operators, and some ADL-specific
expression constructions. The ADL extensions will be presented here, without disc
sion of the standard C expressions.

2.2.1 Assertion Groups

The basic bloc construct of ADL is theassertion group, which is a list ofstatements.

ADL_AssertionGroup := “{“ (ADL_Binding “;”)* (ADL_Statement “;”)* “}”

ADL statements have a type (usually boolean) and a value, but can not be mixed di
inside expressions. If there is more than one statement within the assertion group,
all of these statements must be boolean valued. The value of the assertion group
case is the conjunction (logical AND) of all the statements in the assertion group. I
assertion group contains only one statement, then this statement may be of any typ
the assertion group is also of this type and has the same value as the statement w
this can occur with the inline/define constructs.

ADL_Statement := ADL_IfStatement
| ADL_Assertion

ADL_Assertion := [ADL_Labels] [ADL_Tags]
(ADL_Expression | ADL_QuantifiedAssertion)

ADL_Labels := (<ID> “:”)*

ADL_Tags := “[“ <ID> (“,” <ID>)* “]”

Assertions are boolean expressions whose evaluation must generate a test report
do not produce any other side effect (hence assignments or increments/decremen
forbidden inside assertions).They may be given labels and tags. Labels are used w
reporting the value of the expression; tags are used by the ADL runtime to selectiv
evaluate assertions.

The assertion group itself is an expression. Its use as an expression is given by th
lowing syntax:

ADL_BasicExpression +::=ADL_AssertionGroup

The following fragment taken from an earlier example is an example of a assertion
group:

{
Cash_Balance(account) ==

@Cash_Balance(account) - @cost(symbol, no_of_shares);
Stock_Balance(account, symbol) ==

@Stock_Balance(account, symbol) + no_of_shares;
}

Version 1.1 17 of 61

Semantics Annotations ADL 2.0 Language Reference Manual for C

ssion is
ertion
ue is

t for

ribed
t of

ool-

spec-
Since assertion groups are also expressions, they may appear anywhere an expre
expected, and they may be nested within each other. Assertions within nested ass
groups donot generate a test report: they are evaluated only so that their return val
used in the computation of the value of the enclosing assertion group.

semantics {
<boolean expression> ==> { <assertion1>; <assertion2> };

}

In this example, there is only one generated test report for the whole assertion, no
“sub-assertions”assertion1 andassertion2.

The list of expressions in an assertion group may be preceded bybindings (variable dec-
larations and initial value assignments to them).

2.2.2 ADL Specific Expressions

While most ADL specific expressions are described in this section, some are desc
later in sections where they are more appropriate. The following is the complete lis
all cross references to later sections where ADL features are described:

• The call state operator — Section 2.3.1

• Bindings — Section 2.3.2

• The exception operator — Section 2.3.4

• Inline declarations — Section 2.4

• Prologues and Epilogues — Section 2.5

The remainder of this section describes all other ADL specific expressions.

ADL_Expression := ADL_ImplExpression

ADL_ImplExpression := ConditionalExpression (ADL_ImplOp ConditionalExpression)

ADL_ImplOp := “==>” |“<==” | “<=>”

The three implication operators areimplication (==>), reverse implication (<==), and
equivalence (<=>). All these operations operate on boolean parameters and return b
ean results. The implication operator evaluates tofalse only when its left operand is
true and right operand isfalse (otherwise, it evaluates totrue). The reverse implica-
tion operator works like the implication operator with its arguments swapped. The
equivalence operator evaluates totrue if both its operands are the same, otherwise it
evaluate tofalse . (The exception operator (<:>) is described in the section 2.3.7)

PrimaryExpression +::= ”return”

Primaries are extended in ADL with the reserved wordreturn , which is used to refer
to the return value of a function. The primary return may be used only in behavior
ifications (Section 2.3) of functions with non-void return types and may not appear
within an operand of a call state operator (Section 2.3.1).
18 of 61 Version 1.1

Semantics Annotations ADL 2.0 Language Reference Manual for C

 is

“

e same
e out-
te-

e
antified
 type

 one by
 inte-

ten-
-
s.
2.2.3 ADL Specific Statements

ADL_IfStatement := “if” “(“ ADL_Expression “)” ADL_AssertionGroup
[“else” (ADL_AssertionGroup | ADL_IfStatement)]

“ If statements” provide a way to conditionally evaluate expressions. The meaning
quite similar to the “?: ” operator. The types of both the group expressions in theif

expression must be the same and this is the type of theif expression. If the type of the
if expression is boolean, then the else part may be omitted and is assumed to be else

true ”. The conditions (the expressions within parentheses) must beboolean valued
and are evaluated from top to bottom until the first one that evaluates totrue . The
assertion group of thistrue expression is then evaluated. This is the value of theif
statement.

The assertion groups of the branches of an if statement are considered to be at th
nested level as the enclosing assertion group. If this enclosing assertion group is th
ermost one (i.e. just following the “semantics” keyword), assertions within the if sta
ment will therefore generate test reports.

ADL_QuantifiedAssertion := ADL_Quantifier “(“ ADL_DomainList “)” ADL_AssertionGroup

ADL_Quantifier := “forall”
| “exists”

ADL_DomainList := ADL_Domain (“,” ADL_Domain)*

ADL_Domain := ADL_NamedParam “:” ADL_DomainExpression

ADL_DomainExpression := (“ADL_short_range” | “ADL_int_range” | “ADL_long_range”)
“(“ AssignmentExpression “,” AssignmentExpression “)”

ADL offers a constrained form of quantified expression using which one may iterat
over ADL sequence values. These sequences are specified as domains, and a qu
expression may contain any number of domains. Each domain is specified with the
of the sequence element, a new variable that takes on the values in the sequence
one, and finally the sequence itself. An example of a domain that iterates over the
gers 1 through 10 is:

long i : ADL_long_range(1,10)

The ADL compiler generates the appropriate code to loop over the sequence oflong ’s
starting fromi and ending atj .

In the case of the universal quantifier (forall), the quantification expression (which
must take on aboolean value) will be true if the group expression istrue for all value
assignments for quantification variables from their domains. In the case of the exis
tial quantifier (exists), the quantification expression will be true if the group expres
sion istrue for at least one set of value assignments for the quantification variable
Version 1.1 19 of 61

Semantics Annotations ADL 2.0 Language Reference Manual for C

um-

least

cla-

he exe-

tate
cribed
r

ow:
The following is an example of the use of an universal quantifier that says that all n
bers in the range 1 to 10 are smaller than 100 (obviously):

forall (long i : ADL_long_range(1,10)) { i < 100; }

The following is an example of the use of an existential quantifier that says that at
one number between 1 and 10 is divisible by 3 (in fact there are more than one):

semantics {
exists (long i : ADL_long_range(1.10)) {

i%3 == 0;
}

}

2.3 Behavior Specification

The specification of the behavior of a function in its simplest form is the function de
ration followed by the reserved word “semantics” followed by an assertion group.

These assertions can refer to the visible state of the system both before and after t
cution of the function. The details of the syntax of expressions is presented in
Section 2.2.

ADL_BehaviorDeclaration := (FunctionDeclarator | DeclarationSpecifiers FunctionDeclarator)
“{“ ADL_BehaviorSpecification “}” (NLD_Annotation)*

ADL_BehaviorSpecification := “semantics” ADL_AssertionGroup

Every time a function with a behavior description is invoked, all arguments to call s
operators are evaluated before the function is invoked (call state operators are des
below). Then the function is invoked following which the remainder of the behavio
description is evaluated. If any expression evaluates tofalse , the function did not
behave as specified.

The behavior description ofBuy from Example 2.2 is reproduced below:

void Buy(long account,
char* symbol,
long no_of_shares) {

semantics {
Cash_Balance(account) ==

@Cash_Balance(account) - @cost(symbol, no_of_shares);
Stock_Balance(account, symbol) ==

@Stock_Balance(account, symbol) + no_of_shares;
 }
}

The evaluation of the behavior description whenever Buy is invoked is outlined bel
20 of 61 Version 1.1

Semantics Annotations ADL 2.0 Language Reference Manual for C

s (as
ussed

ent

 over-

mple,

e

func-
Step 1: Evaluation of arguments to call state operators:

tmp1 = Cash_Balance(account);
tmp2 = cost(symbol, no_of_shares);
tmp3 = Stock_Balance(account, symbol);

Step 2: The implementation ofBuy is invoked.

Step 3: Evaluation of the remainder of the behavior description:

assertion_1 = (Cash_Balance(account) == tmp1 - tmp2);
report(assertion_1);
assertion_2 = (Stock_Balance(account, symbol) == tmp3 +

no_of_shares);
report(assertion_2);

Step 4: Determination of consistent behavior:

if (!assertion_1 || !assertion_2) { report_error; }

Behavior descriptions can refer to inline declarations and other function declaration
illustrated by the above example). Other specifics of behavior descriptions are disc
below.

2.3.1 The Call State Operator

The call state operator is a unary operator. It has the effect of evaluating its argum
before the call to the specified function.

UnaryExpression +::= ADL_CallStateExpression

ADL_CallStateExpression := “@” UnaryExpression

UnaryExpression +::= ADL_BasicExpression

ADL_BasicExpression +::= “unchanged” “(“ ADL_ArgumentList “)”

Call state operators may nest within each other in which case, the inner operator is
ridden by the outer operator. For example,@(@a + b) is equivalent to@(a + b) .

Care must be taken to decide exactly where to place a call state operator. For exa
there is a subtle difference between@f(a, b) andf(@a, @b) . The first expression is
the value off(a, b) before the call to the specified function, while the second is th
value returned byf when called after the call to the specified function, but passed
parameters whose values are saved from the state before the call to the specified
tion.

The “unchanged” operator of ADL is maintained:

unchanged(<expr1>, <expr2>)

is a syntactic sugar for:
Version 1.1 21 of 61

Semantics Annotations ADL 2.0 Language Reference Manual for C

main

gs
e can
e:

,
alent
<expr1> == @<expr1> && <expr2> == @<expr2>

2.3.2 Bindings

Bindings are used to declare variables and initialize them with useful values. Their
goal is to be used in conjunction with NLD annotations.

ADL_Binding ::= "define" ADL_NamedParamList "with" (<ID> "=")* ADL_Expression

ADL_NamedParamList ::= ADL_NamedParam ("," ADL_NamedParam)*

ADL_NamedParam ::= DeclarationSpecifiers Declarator

Suppose the simple stock broker interface was modified to:

void Cash_Balance(long account, long *balance);

long Stock_Balance(long account,char* symbol);

void Buy(long account, char* symbol, long no_of_shares);

The essence of the modification is thatCash_Balance no longer returns its result as a
function return value, rather it returns its result through a pointer parameter. Bindin
may be used to bind a local variable to this pointer parameter, and this local variabl
then be used in the assertions. The earlier assertion group would be modified to b

{
define long pre_cash_bal with

@Cash_Balance(account, &pre_cash_bal);
define long post_cash_bal with

Cash_Balance(account, &post_cash_bal);

post_cash_bal ==
pre_cash_bal - @cost(symbol, no_of_shares);

Stock_Balance(account, symbol) ==
@Stock_Balance(account, symbol) + no_of_shares;

}

Even thoughStock_Balance continues to return its result as a function return value
the second assertion may also be modified to use bindings. The following is equiv
to the above assertion group:

{
define long pre_cash_bal with

@Cash_Balance(account, &pre_cash_bal);
define long post_cash_bal with

Cash_Balance(account, &post_cash_bal);
define long pre_stock_bal with

pre_stock_bal = @Stock_Balance(account, symbol);
define long post_stock_bal with

post_stock_bal = Stock_Balance(account, symbol);
22 of 61 Version 1.1

Semantics Annotations ADL 2.0 Language Reference Manual for C

or

t

al
vior

pur-

func-
n the

 the
ested
or

n

post_cash_bal ==
pre_cash_bal - @cost(symbol, no_of_shares);

post_stock_bal == pre_stock_bal + no_of_shares;
}

A single binding declaration may introduce multiple variables and initialize them. F
example, suppose we had the following function:

long foobar(long x, long *y, long *z);

The following binding declaration evaluatesfoobar once with the number 5 as its inpu
parameter and “captures” all the values it returns:

define long retval, long y, long z with
retval = foobar(5, &y, &z);

It is also possible for a binding torebind variables introduced in earlier (and possibly
more global) bindings.

2.3.3 Behavior Classification

It is often very useful to broadly categorize the behavior of a function into its “norm
behavior” and “abnormal behavior”. One may then specify more details of the beha
in each of these cases. ADL provides the behavior classification construct for this
pose. The behavior classification is used to associate a boolean expression to the
reserved wordsnormal andabnormal .

ADL_BehaviorClassification := “[“ (ADL_NormalBehavior | ADL_AbnormalBehavior)* “]”

ADL_NormalBehavior := “normal” “=” ADL_Expression “;”

ADL_AbnormalBehavior := “abnormal” “=” ADL_Expression “;”

Normal and abnormal are used to classify the outcome of function invocation. If a
tion always succeeds and has no way of giving an error indication to the caller, the
specification of that function will have:

[normal = true;]

If, as is common for system functions, there is a special return value that signals to
caller that some problem occurred and the function was unable to perform the requ
task, then the abnormal behavior binding will check for that special return value. F
example, it is common in Unix interfaces to have

[abnormal = return < 0;]

The default meanings of normal and abnormal are as follows:

• If neithernormal norabnormal has been defined in a behavior classification, the
normal defaults totrue andabnormal defaults tofalse .
Version 1.1 23 of 61

Semantics Annotations ADL 2.0 Language Reference Manual for C

of

s
.

-
r the

ifica-

at it
• If only one ofnormal andabnormal is defined, the other defaults to the negation
the one defined. For example, ifnormal is defined, thenabnormal defaults to
!normal .

When bothnormal andabnormal are defined, their definitions need not be negation
of each other. They may overlap or exclude portions of the possible output domain

In a behavior classification, there may be at most one definition fornormal and one for
abnormal .

The reserved wordsnormal andabnormal may then be used in the behavior descrip
tion of the function as short forms for the expressions associated with them, as pe
following syntax:

ADL_BasicExpression +::=“normal” |“abnormal”

The following example modifies the earlier example to make use of behavior class
tions:

EXAMPLE 2.3 StockBroker2.adl with behavior classification

#include “StockBroker2.h”
#include “StockBrokerAux.h”

adlmodule StockBroker2 {
inline long cost(char* symbol, long no_of_shares)
{

no_of_shares * price(symbol);
}

int Buy(long account,
 char* symbol,
 long no_of_shares) {

semantics
[normal = return == 0;

abnormal = return < 0;]
{

if (normal) {
Cash_Balance(account) ==

@Cash_Balance(account)
 - @cost(symbol, no_of_shares);

Stock_Balance(account, symbol) ==
@Stock_Balance(account, symbol)
+ no_of_shares;

};
}

}
}

This version of the stock broker specification is weaker than the previous one in th
talks only about the normal behavior ofBuy. It will be extended to describe the abnor-
24 of 61 Version 1.1

Semantics Annotations ADL 2.0 Language Reference Manual for C

ally.

lassi-
avior
ch a

le the
llow-

per-
w-

ptions
ause
cause
ion

oper-

n

ver,

exist
mal behavior ofBuy in Section 2.3.4. Note that in this example, the main part of the
behavior description ofBuy is guarded by the “if ” expression (Section 2.2) “if (nor-

mal) ...”. In this case, no behavior is specified unless the function completes norm

2.3.4 The Exception Operator

ADL provides the exception operator “<:>” whose meaning is based on behavior c
fications. It is called the exception operator to reflect the idea that an abnormal beh
condition is an exception to the expected flow of events; in fact, we may refer to su
condition as an exception. It is a binary operator whose syntax is:

ADL_ImplOp +::=“<:>”

In usual usage of this operator, the left operand is the enabler of an exception, whi
right operand is an exception expression identifying the particular problem. The fo
ing example illustrates this typical use:

bad_account(account) || bad_symbol(symbol) <:>
stockbroker_errno == EBADCALL

Informally, the exception operator states that if the condition specified by the left o
and is true, then one of the exceptions specified in the right operand will occur. Ho
ever if some other exception happens to occur for whatever reason, then the exce
in the right operand need not occur. This kind of weaker specification is useful bec
in general exceptions may occur for a variety of uncontrollable reasons and also be
the choice of exception communicated to the caller is often left as an implementat
decision when it is possible for more than one exception to occur in the same call.

Finally, the exception operator also says that if the exception specified in the right
and occurs, then the left operand must be true.

More formally, the exception operator is defined as:

A <:> B
is the same as
((A ==> abnormal) and (abnormal && B ==> A))

As an example of the use of the exception operator, consider the following assertio
group (we detour from the stock broker a bit here):

{
!file_exists(f) <:> errno == ENOENT;
disk_full() <:> errno == ENOSPC;

};

If we assume thatabnormal is defined asreturn < 0 , this assertion group could
probably be used to specify a file open function. It reads: If the filef does not exist, then
errno must be ENOENT. Similarly, if the disk is full, errno must be ENOSPC. Howe
it does not restrict other exception conditions. But it does say thaterrno==ENOENT
should only occur if the filef does not exist, anderrno==ENOSPC should only occur
when the disk was full. An interesting consequence is that if both the file does not
Version 1.1 25 of 61

Semantics Annotations ADL 2.0 Language Reference Manual for C

ngth-
AIN

n con-
and the disk is full, errno may take either value. The following assertion group stre
ens the above assertion group to require that only these two values of errno or EAG
may occur:

{
!file_exists(f) <:> errno == ENOENT;
disk_full() <:> errno == ENOSPC;
abnormal ==>

errno == ENOENT || errno == ENOSPC || errno == EAGAIN;
};

Now we complete the earlier stock broker example with specification of abnormal
behavior. Two auxiliary function declarations —bad_acct andbad_sym — are added:

EXAMPLE 2.4 StockBroker2.adl with exceptions

#include “StockBroker2.h”
#include “StockBrokerAux.h”

adlmodule StockBroker2 {

inline long cost(char* symbol, long no_of_shares) {
no_of_shares * price(symbol);

};

int Buy(long account,
 char* symbol,
 long no_of_shares) {

semantics
[normal = return == 0;

abnormal = return < 0;]
{

bad_acct(account) <:>
(stockbroker_errno == EBADCALL);
TranslationUnitTranslationUnitbad_sym(symbol) <:>
(stockbroker_errno == EBADCALL);
if (normal) {

Cash_Balance(account) ==
@Cash_Balance(account)
- @cost(symbol, no_of_shares);
Stock_Balance(account, symbol) ==
@Stock_Balance(account, symbol)
+ no_of_shares;

};
}

}
}

Note the right hand side of the two exception operators refer to the same exceptio
dition, but different additional conditions associated with the condition. This new
26 of 61 Version 1.1

Semantics Annotations ADL 2.0 Language Reference Manual for C

.4 in

he
ption

-

epts

 is
l

oces-
ond-

 pre-

ct.

ted
behavior description is different from the earlier behavior description in Section 2.3
a few interesting ways, some of which are:

• It makes clear the abnormal behavior.

• This leaves the particular exception condition that occurs non-deterministic. If t
left operands of the exception operators are both true, then the behavior descri
allows either of the exception conditions to hold.

• It does not allow for the possibility thatBuy might return a positive value. Such a
condition, where neithernormal norabnormal is true, is reported as a specifica
tion error if it should be observed; similarly for the condition that bothnormal and
abnormal are true.

2.4 inline declarations

Inline declarations (or inline function declarations) are the other way to define conc
used in behavior descriptions (along with C declarations). Their syntax is:

ADL_InlineDeclaration ::= “inline” declaration_specifiers function_declarator ADL_AssertionGroup

The significant difference between inline declarations and C function declarations
that the inline declarations are implemented by ADL assertions, with the additiona
ADL operators, rather than by C statements.

In other words, Inline declarations are considered as macros in the usual C pre-pr
sor meaning. The call to an inline declaration is replaced by the text of the corresp
ing assertion group, with adhoc substitution of the parameters.

In the StockBroker example, where “cost” is defined as:

 inline long cost(char* symbol, long no_of_shares)
{
 no_of_shares * price(symbol);
};

any expression cost(char* symbol, long no_of_shares) will be replaced by:

{ no_of_shares * price(symbol); }

2.5 Prologues and Epilogues

Before being able to test a specified method, it is sometimes necessary to perform
liminary initialization that require imperative features: this cannot be made inside
semantics assertions, which should remain declarative constructs with no side-effe

For this purpose, the user can use the “prolog” and “epilog” features, which provide
blocks of “pure” C that will be transmitted without any transformation to the genera
code.
Version 1.1 27 of 61

Semantics Annotations ADL 2.0 Language Reference Manual for C

tion

 con-

ions.
ied
Ther are two kinds of prologues/epilogues: either global in ADL_AnnotatedDeclara
or local in ADL_FunctionDeclaration.

ADL_AnnotatedDeclaration := [ADL_Prologue] [ADL_Epilogue]
(ADL_InlineDeclaration | ADL_BehaviorDeclaration)*

ADL_BehaviorDeclaration := “{“ [ADL_Prologue] ADL_BehaviorSpecification [ADL_Epilogue] “}”
(NLD_Annotation)*

ADL_Prologue := “prolog” CompoundStatement

ADL_Epilogue := “epilog” CompoundStatement

ADL_BehaviorSpecification := “semantics” [ADL_BehaviorClassification] ADL_AssertionGroup

EXAMPLE 2.5 BankAccount.adl with prologues and epilogues

#include “AccountFile.h”

adlmodule AccountFile {

prolog {
Char* FileRadix = “/jdbc/odbc/wombat”;

}

long deposit(long account, long amt) {
prolog {

FILE* fd = OpenAccountFile(FileRadix,account);
}
semantics {

return == getBalanceAfterDepositFromFile(fd, amt);
}
epilog {

close(fd);
}

}
}

}

In the generated C code for this example, the global and local prologue blocks are
catenated (the global before the local) and copied “as is” at the beginning of the
“deposit” generated function, before the code that deals with the semantics assert
The epilog code is copied at the end of this function (a global epilog would be cop
right before the local one).

The overall execution scheme is as follows:

Step 1: Execution of the global prologue
Step 2: Execution of the local prologue
Step 3: Evaluation and saving of call-state expressions
Step 4: Evaluation of the assertions and test reporting
28 of 61 Version 1.1

Semantics Annotations ADL 2.0 Language Reference Manual for C

rein
e

te-

dings
 pro-

ned in
rence
Step 5: Execution of the local epilogue
Step 6: Execution of the global epilogue

Note that the global prologue is a purely syntactic construct: variables declared the
arenot global variables, but variables local to all the specified function — exactly lik
the variables declared in the local prologue. Its sole purpose is to factorize the sta
ments that need to be executed at the beginning ofall the functions whose behavior is
specified in the adl file.

Call-state expressions and inlines cannot be used in prologues and epilogues. Bin
can be used in the local epilogue of the behavior where they are defined, but not in
logues and global epilogues. The global epilogue has only access to variables defi
itself and in the global prologue. It is possible, inside call-state expressions, to refe
the variables declared in prologues.
Version 1.1 29 of 61

Semantics Annotations ADL 2.0 Language Reference Manual for C
30 of 61 Version 1.1

Test Annotations ADL 2.0 Language Reference Manual for C

tested;
erface.

n
D is

c

 test

arget
ntax is
n to

rget
et. An
arte-

 not
indices,

ility
. In

at is,

com-
s of a

r, and
3 Test Annotations

Test data annotations allow the test engineer to define how an interface should be
what data and what procedures should be used to exercise the functions in the int

3.1 Concepts

The test data description (TDD) language provides a notation in which the user ca
write descriptions of test sets, which will be processed into test driver programs. TD
organized by a few concepts; these are presented in the first section, with syntacti
details in later sections.

3.1.1 Re-write

The principle behind TDD2 is that it is processed by re-writing the input to create a
program. The re-write does not remove any information.

The concepts of TDD2 are applied to a variety of programming languages, called t
languages. The concepts of TDD2 are common to all target languages, and the sy
in large measure common; the parts of the language that get re-written are commo
our four target languages (C, C++, IDL, and Java).

3.1.2 Dataset

A dataset is a set of data values. It may be used in place of an expression in the ta
language syntax. The result of such an expression over a dataset is another datas
expression involving more than one dataset is treated as an expression over the C
sian product of the datasets:

(EQ 3)

Dataset Size.A dataset has a definite size, by construction. However, that size may
be feasible to use as a test. Examples of feasible datasets are enum types, array
array contents, and datasets created by literal expressions. Examples of infeasible
datasets are programming language types like ‘int’ and ‘float’. The concept of feasib
is not precise; there is not an axiomatic way to decide if a dataset is small enough
practice, a dataset with more than 2^32 elements is certainly infeasible.

A dataset may be created by a literal expression or by a factory. A single value; th
an expression in the target language, is a trivial dataset.

Dataset size is determined by calculation rather than by construction. It is easy to
bine a finite number of feasible datasets and create an infeasible dataset; 32 copie
Boolean dataset, for example.

3.1.3 Factory

A factory is a data creator. It encapsulates the notions of a constructor, a destructo
reporting.

A B⊗ f 0 A B,() F0 A B×()≡ ≡
Version 1.1 31 of 61

Test Annotations ADL 2.0 Language Reference Manual for C

 the
for
ent of

 con-
n,

ype
g; for
ll
 of
pes

f the
all-

s.

hich
 is a
 the
tion.
.

t
nc-
A factory is, formally, a function from a dataset to a dataset. A function fn(A,B,C...) of
more than one argument is formally treated as function f1 of a single argument,
AxBxC... – the Cartesian product of the input datasets.

Operationally, a factory is implemented by a pointwise function on the elements of
domain. In addition, the implementation of a factory includes a destructor function
elements of the range, and an association from an element of the range to the elem
the domain.

The formal definition of a factory is: ,

where D is the domain of the factory, R is the range of the factory, c is the factory’s
structor function, d is the factory’s destructor function, and i is the inversion functio
which can be used to determine the input that gave rise to a given range element.

While several of the target languages provide expression of these notions in their t
structure, those expressions may be not be available for all types needed for testin
example, none of the target languages permit extension of the built-in types, and a
allow the declaration of types which permit no extension. The factory notion is part
TDD2, outside the target language’s type system, so that it can be applied to all ty
needed for testing.

3.1.4 Checked Function

A checked function is a function for which an oracle is available. Calling a checked
function produces the same value and outcome as calling the unchecked version o
function, but will report some measurement information as an invisible (within the c
ing program — not to the user!) side effect.

When running under a debugger, all functions may be said to be checked function

In the ADLT system, checked functions are generated from function declarations w
have been annotated with semantics specifications. Within a test expression, there
special convenient syntax for invocation of such an ADL-derived checked function;
class or object on which the method is invoked is enclosed in the ADL pseudo-func
The annotated functions are looked for in the declared list of imported adl modules

3.1.5 Test Directives

A test directive is formally a statement, evaluated for side effect. In particular, a tes
directive normally includes an expression involving one or more calls to checked fu
tions.

F D R c, , d i,{ , }≅
c D R ⊥{ }∪→?Functional?

d R ∅ ⊥, }{→?Functional?

i F D→?Functional?
32 of 61 Version 1.1

Test Annotations ADL 2.0 Language Reference Manual for C

writ-
, in
 call-
out

ssion.

n
lt and

ser-

rta-

he
 in the
ource
the
r to

he

sign.

e

ed to
Note that a function or method body in a test declaration is subject to the same re-
ing as any other code in the test declaration. Hence any call to a checked function
such a body, will be interpreted as a call to the checked version of the function; and
ing such a function or method will have the side-effect of making an observation ab
the behavior of such checked functions.

A test directive expression is parameterized by the datasets used in the test expre

3.1.6 Assertion

An assertion is a Boolean expression. However, the test framework takes note of a
assertion. An assertion is a postcondition. An assertion contributes to the test resu
is reported to the user.

Formally, an assertion is a Boolean expression evaluated for side effect.

An assertion is expressed by a call to the functiontdd_assert(boolean) from the
ADLT runtime library. As a stretch feature, the ADLT translator may re-write the as
tion to provide better reporting.

3.1.7 Importation

It is possible to import datasets or factories defined in other TDD files, by using the
“use” feature of TDD language.This feature is syntactically similar to the usual impo
tion scheme of the target language:#include for C/C++ andimport (with quali-
fied name) for Java.

Note that this importation clause makes reference to thesource TDD file, not to the
object code obtained after ADLT translation and compilation. In TDD for C, when t
user declares “use bar”, he can thereafter use for instance the dataset “D1” defined
file bar.tdd. With “use”, the compiler checks the presence and correctness of the s
tdd file; it is however left to the responsability of the user to ensure that at runtime
object file obtained by transformation of the bar.tdd will be accessible. This is close
the C semantics, with the distinction between the header file for the compiler and t
library at runtime.

3.2 General Syntax & Examples

This section presents the general syntax along with examples that motivate the de
Several syntactic conveniences are used in the examples:

Expressions as Datasets.A target-language expression can be used as a dataset; th
expression is interpreted as a singleton dataset.

Types as datasets.The name of a data type can be used as a dataset; it is interpret
mean all members of the data type. In C, onlyenum types andchar are small enough
to be useful as datasets.

Dataset Concatenation.The “+” operator is overloaded with dataset concatenation.
Version 1.1 33 of 61

Test Annotations ADL 2.0 Language Reference Manual for C

ross-
-

le
3.2.1 Datasets and Data Construction

Some examples of data generation.

EXAMPLE 3.1 t1.tdd : The Simplest Test

#include “mymath.h”
import mymath;
tddmodule t1 {

test ADL(plus(3,4));
}

The simplest test is just an invocation of an annotated function. Formally, this test
expression is the application of the annotated version of the function “plus” to the c
product of two datasets, “{3}” and “{4}”; the promotion from a single value to a one
element dataset is automatic.

In the example,plus is a checked function from “mymath.h”, annotated in adl modu
“mymath”.

EXAMPLE 3.2 t2.tdd : A Simple Dataset

#include “mymath.h”
import mymath;
tddmodule t2 {

dataset int A = {1,3,5 .. 7};
test ADL(plus(A,1));
test ADL(plus(1,A));

}

This testsplus when adding the constant 1, from both sides.

EXAMPLE 3.3 t3.tdd : Compound Data Construction

#include “myio.h”
import myio;
tddmodule t3 {

factory RandomAccessFile
make_file(char* nm, char* mode) { /* ... */ };
34 of 61 Version 1.1

Test Annotations ADL 2.0 Language Reference Manual for C

 the
he

icitly
the

 of a
 and
rom
plete
dataset File F0 = make_file(
{“/dev/null”,”/dev/tty”,”/tmp/foo”},
{“r”,”rw”});

dataset File F1 =
make_file(“/dev/null”,”r”) +
make_file(“/dev/tty”, {“r”,”rw”}) +
make_file(util.tmpnam(), {“rw”});

char* buf[512];

test (RandomAccessFile F=F0) {
ADL(read(F,buf,512));

}

test (RandomAccessFile F=F1) {
ADL(read(F,buf,512));

}
}

Dataset F0 has 3x2=6 members, while F1 has 1+2+1=4 members. Note that F1 is
union of several datasets, each produced by a separate invocation of the factory; t
example uses “+” as the dataset union operator.

This example shows the full syntax for a test directive, with the datasets listed expl
as an initialized declaration list. This is the fundamental syntax for a test directive;
shorter procedure call syntax is an abbreviation. Note also that the local variablebuf
and the constant “512” are used as datasets in the expressions in the directive.

EXAMPLE 3.4 t4.tdd : Void Datasets

In order to express the notion of an environment condition that affects the operation
system under test, without producing an assignable value, the concepts of dataset
factory are extended to allow void pseudo-values. This example imports datasets f
the previous one, and shows the use of a block as the body of a test directive, com
with an assert.

import myio;
use t3;

tddmodule t4 {
factory void setup_system(int condition_code) {

// ...
 } relinquish() { ... }

dataset void setup_set = setup_system;

test (setup_set,
RandomAccessFile F = F1,
char* data={““, “hello”})

{
char* tmp;
Version 1.1 35 of 61

Test Annotations ADL 2.0 Language Reference Manual for C

;
 that

an
 a

files.

tic
he

o-
 a
ADL(write(F,data));
seek(F,0);
tmp = ADL(read(F));
tdd_assert(“streq(tmp,data)”, streq(tmp,data));

}
}

This example shows the use of an unchecked function (seek) in conjunction with some
checked functions (write andread , defined in the adl module “myio”.). All three
function invocations result in function invocations on the underlying implementation
however, the checked function invocations are relayed through a checking function
implements the semantic checks specified by the ADL semantics annotation. It is
error to invoke the ADL-checked version of a function if that function does not have
semantics annotation.

Imported dataset names (through the “use ” clause) are used if there is no ambiguity
about their origin. Unqualified syntax (F = F1 in the example) is possible if

• F1 is defined in the current tdd file, or

• F1 is defined in at most one of the “used” tdd files.

Since qualified syntax is not used in C, F1 can not be defined in two tdd imported

These rules are also valid for factory importation. Only datasets and factories are
importable: the constants, test functions and test directives are not.

EXAMPLE 3.5 t5.tdd : Runtime Initializers

The elements of a dataset literal are evaluated only once, at initialization time (sta
evaluation). If the user wants a dataset whose elements are evaluated each time t
dataset is referenced (dynamic evaluation), he must use factories.

tddmodule t5 {
/* this is not a good dataset; it lacks repeatability */
dataset double q_static = {

drand48(),
drand48(),
drand48()

};
factory double rand() { return drand48(); }
dataset double q_dynamic = rand();

}

EXAMPLE 3.6 t6.tdd : Provide Test Variables

This example may be slightly familiar for those familiar with the ADLT1 example pr
grams. The combination of a factory requiring one or more integer parameters with
dataset is the ADL/C idiom for a provide test variable. In TDD, any global variable
36 of 61 Version 1.1

Test Annotations ADL 2.0 Language Reference Manual for C
(field) is implicitly constant (const in C) and must be initialized at its declaration. A
TDD constant is local: it cannot be imported through the “use” clause.

#include “bank_test.h”;
import bank;

tddmodule t6 {

int SAVINGS = -1, CHECKING = 1, IRA = 7;
int negative = -10, zero = 0, small = 3, average = 100,

large = 1000, over_limit = 10000;

dataset int account_type = {SAVINGS, CHECKING, IRA};
dataset int size_code =

{negative, zero, small, average, large, over_limit};

factory account acct(
int account_type t,
int size_code s) { /*...*/ }

dataset account Account1 =
acct(account_type t, size_code s);

factory int amount(int size_code size) { /*...*/ }
dataset Bank bank = { make_test_bank() };

test (Bank b = bank,
 account a = Account1,
 int amounts = amount(size_code)) {

ADL(withdraw(b,a,amounts));
}
test (Bank b = bank, account a = Account1) {

ADL(balance(b,a));
}

}

EXAMPLE 3.7 t7.tdd :Better Test Variables
Version 1.1 37 of 61

Test Annotations ADL 2.0 Language Reference Manual for C

f
Here is a more general collection of test variables, showing the increased power o
TDD2.

#include “bank_test.h”
import bank;

tddmodule t7 {
dataset int size_code =

{negative, zero, small, average, large, over_limit};
dataset int account_type =

{checking, savings, IRA, zero, neg, max,over_max};

factory double amount(int size) { /*...*/}
factory account make_acct(

int type_code,
double size) { /*...*/ }

dataset account Acct = make_acct(
acount_type, amount(size_code));

 dataset Bank bank = { make_test_bank() };

test (Bank b = bank, account a = Acct,
int amounts = amount(size_code)) {

ADL(withdraw(b,a,amounts));
}
test (Bank b = bank, account a = Acct,

int amounts = {0.1, 124.1e10, 1125.333}) {
ADL(deposit(b,a,amounts));

}
test (Bank b = bank, account a = Acct) {

ADL(balance(b,a));
}

}

38 of 61 Version 1.1

Test Annotations ADL 2.0 Language Reference Manual for C

s. The
cct

ssion.
ction
This example is intended to motivate the separation between factories and dataset
make_acct factory can be used to create a dataset with accounts of any size; the a
dataset is the result of applying that factory to a specific set of amount values.

EXAMPLE 3.8 t8.tdd : Chaining Factories

#include “testframe.h”

tddmodule t8 {
dataset int length_code =

{ZERO, ONE, MEDIUM, LONG, TOO_LONG};

factory char* make_file_name(
boolean absolute,
boolean device,
boolean funny_chars,
int length_code) { /*...*/ }

/* use datatype names as datasets */
dataset char* file_name_set =

make_file_name(boolean, boolean, boolean,
int length_code);

factory File make_file(char* file_name) { /*...*/ }

factory RandomAccessFile
make_filestream(File f,char* md) { /*...*/ }

dataset char* legal_open_type = {“r”, “rw”};

factory char* illegal_open_type() { /*...*/ }

dataset char* open_type =
legal_open_type +
illegal_open_type;

dataset int File_set =
 make_file(file_name_set);

dataset FILE* Stream_set =
make_filestream(File_set, open_type);

}

This illustrates several techniques for re-using factories.

EXAMPLE 3.9 t9.tdd : Multiple Data Values

In some cases it is useful to produce a group of values with a single dataset expre
Rather than inventing a new syntax for a group of values, we use the data constru
mechanism (struct or class) already present in the programming language.
Version 1.1 39 of 61

Test Annotations ADL 2.0 Language Reference Manual for C

you

re are

direc-

ike an
ble

e con-
For example, to construct a dataset containing pairs of host addresses and ports,
might use:

#include “io_test_data.h”
#include “io_test_aux.h”
import myio;

/* last included file defines
 * struct port_pair {
 * char* host;
 * int port;
 * }
 */

tddmodule t9 {
factory port_pair make_port_pair(int pp_code) { /*...*/ }
dataset int port_pair_code = { 0 .. 10 };

dataset port_pair Ports =
make_port_pair(port_pair_code);

test (char* data = io.data_set,
port_pair pp = Ports) {

socket_t s = makeSocket(pp.host, pp.port);
ADL(write(s,data, strlen(data)));

}
}

EXAMPLE 3.10 t10.tdd : Test Directives and Procedures

Simple examples of test directives were given in the previous section. To recap, he
examples of the alternative syntaxes for test directives:

#include “some_data.h”;

tddmodule t10 {
test (data_t d = data_set) {

hashCode(d);
}

}

The syntax is:

test (type id = dataset, ...) statement

A test directive body has the same syntax ascompound statement in the C grammar;
however, “test statement” is a misleading phrase. A label may be placed on a test
tive; this will influence the generated code in some way.

Local variables are created to range over the specified datasets. Syntactically; it’s l
initialized declaration, but the initializer is a dataset expression. The declared varia
ranges over the members of the dataset during test execution. The list may also b
40 of 61 Version 1.1

Test Annotations ADL 2.0 Language Reference Manual for C

ed; in
 side

, a

e is
f the

e

r,
nc-
eck-
tain a dataset expression denoting a dataset over type void, with no variable declar
that case the dataset member selection, presumably by a factory, is evaluated for
effect only.

Not all programming language statements are legal in text directives. For instance
goto statement is not a legal test directive statement.

EXAMPLE 3.11 t11.tdd : Test By Example

More complex examples bring us to the concept of “Test by Example”: the test cod
an example of typical code, or code fragments, the user would write to make use o
interface under test.

#include “testdata.h”
import myio;

tddmodule t11 {
void read_then_write(FILE* f,

char buf[512]) {
long pos;

pos = ftell(f);
ADL(fread(buf,1,512,f));
ADL(fseek(f,pos,SEEK_SET));
ADL(fwrite(buf,1,512,f));

}

test read_then_write(io.File_set, io.Buf_set);
}

This defines and then calls a test procedure that, when executed, will check that th
functionsfread , fseek , andfwrite operate together correctly when used in this
particular way. More exactly, the test procedure will exercise the functions togethe
giving the assertion-checking code a chance to check the behavior of annotated fu
tions. This is not a good way to test for error handling; it may prove useful when ch
ing the normal operation of an interface.

EXAMPLE 3.12 t12.tdd : Multiple Dataset References
Version 1.1 41 of 61

Test Annotations ADL 2.0 Language Reference Manual for C

s in
s to
ctive.

the
e void

dle
A single dataset may be used more than once in a single test directive. This result
independent iterations over the dataset. If the test author wants multiple reference
the same value in one directive, it is necessary to use the long form of the test dire

import mymath;
tddmodule t12 {

dataset int A = { 1, 2, 3 };

test ADL(plus(A,A)); // 9 evaluations

test (int a = A) {
ADL(plus(a,a)); // 3 evaluations

};
}

EXAMPLE 3.13 t13.tdd : Void Dataset Use

Most of the examples have used the procedure-call syntax for the test directive. If
user needs explicit control over the order of selection from datasets, or needs to us
datasets, the longer syntax for a test directive may be used.

import adlmod;
tddmodule t13 {

dataset int A = { 1,2,3 };

factory void side_effect(int) { /*...*/ }
dataset void X = side_effect({0..6});

dataset float F = { f1(), f2(), f3() };

test (int a=A, X, float f=F)
ADL(tested_func(f,a));

}

In this example,f is the loop variable for the inner loop, and varies fastest. The mid
loop is a selection over X, evaluated only for side effect. The outer test loop variesa

overA.
42 of 61 Version 1.1

NLD Annotations ADL 2.0 Language Reference Manual for C

docu-
tions
other

nt
cla-
e
ecla-

The
r

 at
ent,

ns it
ration

ch-

r the

er has
clar-

hat
es the
pe

cope
e,
4 NLD Annotations

Natural language annotations can be provided to improve the quality of generated
descriptions of ADL and TDD expressions.

4.1 Concepts

The ADLT tool can generate natural language (NL) documentation describing the
semantics of functions and the generated test driver. The quality of the generated
ments can be improved by annotating the input files with natural language descrip
(NLD). These annotations describe translations for identifier names, and provide
configuration information for the ADLT NL system.

Standard Generalized Markup Language (SGML) is the foundation of the docume
generation system. ADLT renders ADL and TDD expressions into SGML entity de
rations, exploiting any NLD annotations that the test engineer has provided. Thes
entity declarations are processed together with a set of document template entity d
rations to form a complete SGML document conforming to the DocBook 3.0 DTD.
final SGML document can be converted to specific output formats such as HTML o
Unix manual pages, or incorporated in larger SGML documents. See the NLD and
SGML section for more details.

C can be annotated with NL information in several places. Briefly, it can be placed
top level, within a TDD annotation, attached to an annotated function or test statem
or placed after the bindings in an ADL semantics group expression. The translatio
provides apply throughout the scope (and enclosed scopes), not just from the decla
point onwards. The examples in this section illustrate some of the annotation atta
ment locations.

NLD annotations introduce translation information for identifier names at a specific
scope. Translations in outer scopes are shadowed or overridden by translations fo
same identifier name within enclosed scopes.

When ADLT comes to generate a natural language rendering of an ADL or TDD
expression it takes each identifier in the expression and determines whether the us
provided any NL translations for its name. It searches outwards from the scope de
ing the identifier through its enclosing scopes until it finds a candidate translation t
satisfies any constraints on usage (such as locale) defined by its predicates. It us
first one it finds. If more than one satisfactory translation is found at the same sco
level a warning is generated and one of the translations is arbitrarily selected.

For example, a translation for an identifier name can be provided at the top level s
and it will be found and used for any identifier with that name in any enclosed scop
unless an alternative translation is provided at a more local scope.
Version 1.1 43 of 61

NLD Annotations ADL 2.0 Language Reference Manual for C

-

 to
4.2 Syntax and Semantics

4.2.1 Simple Data Identifier Translation

/* C code */
int amount;

/* ADL source */
adlmodule C {

nld {
amount = “the correct amount”;

}
}

This declares a translation for the global identifieramount . Any expression using an
identifier namedamount will be translated to use the declared string.

4.2.2 A Simple Function Translation

Functions can have translations declared in a similar fashion.

int balance();

nld {
balance() = “the balance of the account”;

}

This declares a translation forbalance() . Any expression using this function identi
fier will be translated to use the declared string.

4.2.3 Using semantics And nld Blocks

A function can be annotated with both semantics and NL translations.

int balance(int ac)
semantics {

ac != 0;
nld {

.ac = “the account number”;
}

}

The dot notation “. ” refers to the current NLD scope (in this case the methodbal-
ance(int)). The notation “.ac” is equivalent to using a fully scoped name to refer
the function’s local arguments.

nld {
balance(int)::ac = “the account number”;

}

44 of 61 Version 1.1

NLD Annotations ADL 2.0 Language Reference Manual for C

e

 for
this
. If
ents,
tion

redi-

ed.
The formal argument name from the function declaration is used as the name of th
local argument, using the “::” scope resolution operator borrowed from C++.

EXAMPLE 4.14 Shadowing or Overriding A Translation

int i;

nld {
i = “the loop counter”;

}

void B() {
semantics { /* ... */ }
nld {

.i = “B’s i”;
}

}

An expression usingi will pick up the top level NL declaration fori and be translated
as “the loop counter”. The NL declaration fori within B overrides the top level decla-
ration so an expression within B usingi will be translated as “B’s i”.

4.2.4 Invocation translation

An invocation translation is used to translate a function call. It provides a mechanism
the translation to refer to the translations of the actual arguments. In order to use
mechanism the function translation must be provided with the full function signature
an interpolated identifier name is the same as one of the translation’s formal argum
the translation of the corresponding actual argument is used instead of any transla
for the formal argument name.

EXAMPLE 4.15 Invocation Translation

int a;
void f(int i);

nld {
a = “the actual argument”;
i = “the formal argument”;
f(int) = “using “ + $1;

};

An expression usingf(a) will be translated as “using the actual argument”.

4.3 NLD Predicates

Each NL translation associates a list of predicates with an identifier name. Each p
cate asserts certain attributes of the translation. The most important attribute is the
actual translation text (which must be provided), but other attributes are also defin
Version 1.1 45 of 61

NLD Annotations ADL 2.0 Language Reference Manual for C

 in the

 be
ories

) pro-

s

trans-

 the

.

the
ns-

nsla-
m

er a

ded
Some predicates act as constraints to determine when the translation can be used
generated documents. SGML entities can also be declared in the predicate list.

The order of predicates in the predicate list is not significant. A predicate can only
used once in a list. Future predicates might include markers for grammatical categ
such as tense, gender or number.

4.3.1 Pre-defined Predicates
These predicates (there are currently three defined: call-state, negation and locale
vide a mechanism to select a mapping for a given situation.

For instance, consider:

amount = “the amount”;
amount[@] = “the former amount”;

The second mapping will be used to translate the identifier amount when it appear
within the scope of a call-state (@amount) whereas the first one will be used in the
other cases. If no mapping with the call-state predicate is defined, an appropriate
lation text is synthesized from the basic translation (here@amount would be translated
as “the previous value of the amount”). This predicate is useful in situations where
synthesized translation is clumsy or inappropriate.

Thenegation predicate (notation “!”) is used in a similar fashion for negation scopes

strcmp(char*, char*)[!] =
“string” + $1 + “is equal to string” + $2;

With this mapping, an assertion ‘! strcmp(str, “foo”); ’ will be translated as
“string str is equal to string “foo”” instead of “the negation of the value returned by
function strcmp(char*, char*), invoked with parameters: (str ; “foo”)”, the default tra
lation.

Invocation translations apply for call-state and negation translations too.

Different languages require different translations. Thelocale(<string>) predi-
cate can be used to mark a translation as being valid for the specified locale. A tra
tion with the locale predicate is only considered when it matches the current syste
locale. This is usually configured by setting theLANG environment variable. See the
setlocale(3) manual page for more details. A translation for an identifier name
with a locale predicate that matches the current system locale takes preference ov
translation with a different or unspecified locale.

It is possible to define a mapping for several predicates (e,g,
amount[!,@,locale(“fr”)] = “...”;)

To define several mappings with different predicates, it is possible to use the exten
syntax:
46 of 61 Version 1.1

NLD Annotations ADL 2.0 Language Reference Manual for C

ons
d user
ce
 and
-

ML
e can
an

L or

 the
os-

 be
deposit(int, int) : {
text = “the basic mapping”;
text[@] = “the callstate mapping”;
text[!] = “the negation mapping”;

}

The notationdeposit(int) = “deposit an amount”; is in fact a shortcut
for deposit(int) : { text = “deposit an amount”; }

An other possible shortcut is to declare the locale before the translation text:
deposit(int) “C” = “the mapping for locale C”; stands for
deposit(int) : {
 text[locale(“C”)] = “the mapping for locale C”; }

4.4 NLD and SGML

ADLT generates documentation by emitting SGML entity declarations for descripti
of aspects of the annotated functions and test specification. These synthesized an
supplied entity declarations can be used with template entity declarations to produ
complete SGML documents for subsequent processing. ADLT supplies templates
synthesizes entities based upon the DocBook 3.0 document type definition for con
structing reference manual pages and test specification descriptions.

4.4.1 Reference Manual Document

ADLT processes each annotated function to generate a function file containing SG
entity declarations describing its synopsis, semantics and error conditions. This fil
be parsed in conjunction with the supplied reference manual template to produce
SGML document conforming to the DocBook 3.0RefEntry element. ADLT also
provides tools to convert the final SGML document into other formats such as HTM
Unix manual pages.

The reference manual template file declares default values for some entities which
function file generated by ADLT can override. Here are the entities for which it is p
sible to generate a value in nld blocks (we call them “properties”):

%description: A general description of the function and/or the class. This can
specified by using thedescription property in the NL declaration for the function/
class.

%includes: Unlike all other property declarations, the declared text ofincludes
is processed before generating the property declaration to escape “<“ characters.

%purpose: A short description of a function.

%seeAlso: A reference.

EXAMPLE 4.1 Using Properties
Version 1.1 47 of 61

NLD Annotations ADL 2.0 Language Reference Manual for C

s:
s

nerate
 no
e the
void f() {
semantics { /* ... */ }
nld {

. : {
&includes = “#include <stdlib.h>”;
&description = “Behavioral description”;
%purpose = “Short description”;
%seeAlso = “See the class Foo”;

}
}

}

This is equivalent to:

nld {
f() : &includes = “#include <stdlib.h>”;
f() : &description = “Behavioral description”;

// ...
}

The implementation of ADLT includes an SGML DTD that defines the structure of
these entities. Note that ADLT doesnot preprocess the strings that define these entitie
it sends them without any modification, except for “<“ and “>” in %includes (there i
for instance no interpolation mechanism performed on these strings).

4.5 NLD for TDD

Test Data Description sources can also be annotated with nld blocks in order to ge
SGML documentation files. There is however an important difference: as there are
assertions in TDD, there are no automated translation of any expression. Therefor
user may only write NLD annotations to provideproperties (like %description) or
SGML entities, that are gathered and rendered in the generated documentation.

EXAMPLE 4.2 NLD annotation in a TDD class:

tddclass datasetsCollection {

nld {
. : %description = “A collection of datasets.”;

}

int NEG = -1; int ZERO = 0; int MAX = 100;
nld {

.NEG : %description = “a negative value”;

.ZERO : %description = “the null value”;

.MAX : %description = “the greatest value”;
}

dataset int DEPOSITS = { NEG, ZERO, 7, MAX };
dataset bank* B_SINGLE = make_bank (10,0,DEPOSITS);
48 of 61 Version 1.1

NLD Annotations ADL 2.0 Language Reference Manual for C

.
e
a-
ra-

hat
ed to
ion

ans-
cted
.

ext
te

orm

e

ale
n in
nld {
.DEPOSITS : %description = “Set of typical values.”; }
.B_SINGLE : %description = “bank.......”;

}

}

4.6 NLD and Localization

ADLT chooses translations for identifier names based on the current system locale
Each NL declaration can be marked with a specific locale that determines when th
translation can be used. Annld annotation can specify the locale of all the NL declar
tions grouped within it by using the optional locale marker. Additionally each decla
tion can use the locale predicate to specify its individual locale. When a locale is
specified for a NLD group, any other locale defined for a mapping within this group
would be skipped.

If a translation has a locale specified it will only be selected as a candidate when t
locale is the system locale. A translation without a locale specification is consider
be in the default locale, and will be selected as a candidate when no other translat
specified with the current locale is available.

There are four areas where localization is necessary.

Identifier translations. The locale mechanism provides a way to produce a set of tr
lations for C and ADL identifiers that are restricted to one locale. They will be sele
in preference to translations for the identifiers which do not have a locale specified

User-specified entity declarations.The locale mechanism can also be used to mark
user-supplied entity declarations with a specific locale.

Document templates.The translations and user-specified entities are merged with t
in the document template files to produce the final SGML documents. The templa
files can be localized.

Sentence construction rules.ADLT uses a set of rules to construct descriptions of
ADL expressions out of the identifier translation fragments. These rules take the f
of a Prolog program that can be localized.

4.7 NLD Syntax

NLD_Annotation ::= “nld” [NLD_Locale] “{“ (NLD_Declaration | NLD_EntityDeclaration)* “}”

NLD_Locale ::= <STRING_LITERAL>

Natural language information is attached to the ADL source with a natural languag
annotation. An annotation is introduced with thenld reserved word, an optional locale
indicator and then a group of one or more NL declarations within braces. If the loc
indicator is present it acts as if the locale predicate is specified for every translatio
the group. For example,
Version 1.1 49 of 61

NLD Annotations ADL 2.0 Language Reference Manual for C

 for

ion to
r to
for-
or
ineer

an
nld “C” {
...
}

acts as iflocale(“C”) is specified for each translation.

Each NL declaration is either a translation for a C or ADL identifier, or a declaration
an SGML entity to be used for document generation.

The left hand side of each kind of declaration can contain a scoped name. In addit
the standard C scoping, NLD also allows identifier names within a function membe
be specified. This makes it possible to give translation information for a method’s
mal parameters and local ADL bindings. This is useful for specifying translations f
identifier names from many functions in one place, rather than forcing the test eng
to distribute NL information throughout the specification files.

EXAMPLE 4.3 Using Fully Scoped Names

nld {
i = “translation for i”;
f(int) = “translation for f(int)”;
f(int)::i = “translation for i in f(int)”;

};

The translation information is entered at the specified scope (refered to as “.”), so
expression rendered at the current scope, or within an enclosed scope can find it.

NLD_Declaration ::= NLD_ScopedName
([NLD_Locale] NLD_TextAssignment
|

“:” [NLD_Locale] (NLD_Statement | “{“ NLD_Statement + “}”))

NLD_Statement ::= NLD_PropertyDeclaration | “%text” NLD_TextAssignment “;”

NLD_TextAssignment ::= [NLD_SelectPred] “=” NLD_String
[“,” “[“ NLD_UserPred (“,” NLD_UserPred)* “]”]

NLD_SelectPred ::= “[“ NLD_Predicate (“,” NLD_Predicate)* “]”

NLD_Predicate ::= NLD_PredefinedPred
| NLD_ParamNumber “[“ NLD_UserPred (“,” NLD_UserPred)* “]”

NLD_PredefinedPred ::= “@” | “!” | “locale” “(“ NLD_Locale “)”

NLD_UserPred ::= <IDENTIFIER>

NLD_ParamNumber ::= “$”<INTEGER_LITERAL>

NLD_ScopedName ::= “.”
| NLD_MethodName
50 of 61 Version 1.1

NLD Annotations ADL 2.0 Language Reference Manual for C

 value
er-

es
rals
| [NLD_Scope “::”] NLD_Identifier

NLD_MethodName ::= Name NLD_Signature

NLD_Signature ::= “(“ (“*” | Type (“,” Type)*) “)”

NLD_Scope ::= “*”
| “.”
| Name [“::*”]
| NLD_MethodName

SGML entities can also be declared in an NL annotation. The text declared as the
of the entity is not examined by ADLT, it is passed on to the SGML back end unint
preted and unmodified. For example,

&gen-ent = “a general entity”;

declares a general entity with the specified value.

NLD_EntityDeclaration ::= “&” <IDENTIFIER> “=” NLD_EntityText

NLD_PropertyDeclaration ::= NLD_PropertyName “=” NLD_EntityText

NLD_PropertyName ::= “%description” | “%includes” | “%purpose” | “%seeAlso”

NLD_EntityText ::= <STRING_LITERAL> (“<<” <STRING_LITERAL>)*

With the exception of the notation for string literals, the SGML syntax for entity nam
and values is used. See the SGML Handbook for details. NLD specifies string lite
with a notation based upon the C++ language.

NLD_String ::= NLD_StringElem (“+” NLD_StringElem)*

NLD_StringElem ::= <STRING_LITERAL> | NLD_ParamNumber

See the C grammar for descriptions of theName and Type nonterminals.
Version 1.1 51 of 61

NLD Annotations ADL 2.0 Language Reference Manual for C
52 of 61 Version 1.1

Complete Grammar ADL 2.0 Language Reference Manual for C
5 Complete Grammar

Here is the complete grammar forADL for C. Non-terminals in boldface are defined in
this document; other non-terminals are part of the C language definition.

5.1 C language productions

TranslationUnit ::= (ExternalDeclaration)* <EOF>

ExternalDeclaration ::= Declaration
| EnumSpecifier [InitDeclaratorList] “;”
| FunctionDefinition
| Declaration
| “;”

FunctionDefinition ::= DeclarationSpecifiers FunctionDeclarator (“;” | CompoundStatement)
| FunctionDeclarator (“;” | CompoundStatement)

Declaration ::= DeclarationSpecifiers [InitDeclaratorList] “;”

TypeModifiers ::= StorageStructSpecifier
| TypeQualifier

DeclarationSpecifiers ::= (TypeModifiers)*
BuiltinTypeSpecifier (BuiltinTypeSpecifier | TypeModifiers)*
 | [(Name | StructSpecifier | EnumSpecifier) (TypeModifiers)*]

| BuiltinTypeSpecifier (BuiltinTypeSpecifier | TypeModifiers)*
| ((Name | StructSpecifier | EnumSpecifier) (TypeModifiers)*)

TypeQualifier ::= “const” | “volatile”

StorageStructSpecifier ::= “auto” | “register” | “static” | “extern” | “typedef”

BuiltinTypeSpecifier ::= “void” | “char” | “short” | “int” | “long” | “float” | “double”
| “signed” | “unsigned”

InitDeclaratorList ::= InitDeclarator (“,” InitDeclarator)*

InitDeclarator ::= Declarator [“=” Initializer]

StructSpecifier ::= (“struct” | “union”)
<ID> [“{“ (MemberDeclaration)* “}”]
 | “{“ (MemberDeclaration)* “}”

MemberDeclaration ::= Declaration
| EnumSpecifier [MemberDeclaratorList] “;”
| DeclarationSpecifiers [MemberDeclaratorList] “;”
| “;”
Version 1.1 53 of 61

Complete Grammar ADL 2.0 Language Reference Manual for C
MemberDeclaratorList ::= MemberDeclarator (“,” MemberDeclarator)*

MemberDeclarator ::= Declarator

EnumSpecifier ::= “enum” (“{“ EnumeratorList “}” | <ID> [“{“ EnumeratorList “}”])

EnumeratorList ::= Enumerator (“,” Enumerator)*

Enumerator ::= <ID> [“=” ConstantExpression]

PtrOperator ::= “&” CvQualifierSeq
| “*” CvQualifierSeq

CvQualifierSeq ::= [“const” | “const” “volatile” | “volatile” | “volatile” “const”]

Declarator ::= PtrOperator Declarator
| DirectDeclarator

DirectDeclarator ::= “(“ Declarator “)” [DeclaratorSuffixes]
| Name [DeclaratorSuffixes]

DeclaratorSuffixes ::= (“[“ [ConstantExpression] “]”)*
| “(“ [ParameterList] “)”
| “:” ConstantExpression

FunctionDeclarator ::= PtrOperator FunctionDeclarator
| FunctionDirectDeclarator

FunctionDirectDeclarator ::= Name “(“ [ParameterList] “)”

ParameterList ::= ParameterDeclarationList [[“,”] “...”] | “...”

ParameterDeclarationList ::= ParameterDeclaration (“,” ParameterDeclaration)*

ParameterDeclaration ::= DeclarationSpecifiers (Declarator | AbstractDeclarator)

Initializer ::= “{“ Initializer (“,” Initializer)* “}”
| AssignmentExpression

TypeName ::= DeclarationSpecifiers AbstractDeclarator

AbstractDeclarator ::= [PtrOperator AbstractDeclarator | “(“ AbstractDeclarator “)”
 (AbstractDeclaratorSuffix)* | (“[“ [ConstantExpression] “]”)*]

AbstractDeclaratorSuffix ::= “[“ [ConstantExpression] “]”
| “(“ [ParameterList] “)”

StatementList ::= (Statement)*
54 of 61 Version 1.1

Complete Grammar ADL 2.0 Language Reference Manual for C
Statement ::= Declaration
| LabeledStatement
| Expression “;”
| CompoundStatement
| SelectionStatement
| IterationStatement
| JumpStatement
| “;”

LabeledStatement ::= <ID> “:” Statement
| “case” ConstantExpression “:” Statement
| “default” “:” Statement

CompoundStatement ::= “{“ [StatementList] “}”

SelectionStatement ::= “if” “(“ Expression “)” Statement [“else” Statement]
| “switch” “(“ Expression “)” Statement

IterationStatement ::= “while” “(“ Expression “)” Statement
| “do” Statement “while” “(“ Expression “)” “;”
| “for” “(“ (Declaration | Expression “;” | “;”) [Expression] “;” [Expression]

 “)” Statement

JumpStatement ::= “goto” <ID> “;”
| “continue” “;”
| “break” “;”
| “return” [Expression] “;”

Expression ::= AssignmentExpression (“,” AssignmentExpression)*

AssignmentExpression ::= ConditionalExpression
[(“=” | “*=” | “/=” | “%=” | “+=” | “-=” | “<<=” | “>>=” | “&=” | “^=” | “|=”)
 AssignmentExpression]

ConditionalExpression ::= LogicalOrExpression
[“?” LogicalOrExpression “:” LogicalOrExpression]

ConstantExpression ::= ConditionalExpression

LogicalOrExpression ::= LogicalAndExpression (“||” LogicalAndExpression)*

LogicalAndExpression ::= InclusiveOrExpression (“&&” InclusiveOrExpression)*

InclusiveOrExpression ::= ExclusiveOrExpression (“|” ExclusiveOrExpression)*

ExclusiveOrExpression ::= AndExpression (“^” AndExpression)*

AndExpression ::= EqualityExpression (“&” EqualityExpression)*
Version 1.1 55 of 61

Complete Grammar ADL 2.0 Language Reference Manual for C
EqualityExpression ::= RelationalExpression ((“!=” | “==”) RelationalExpression)*

RelationalExpression ::= ShiftExpression ((“<“ | “>” | “<=” | “>=”) ShiftExpression)*

ShiftExpression ::= AdditiveExpression ((“<<“ | “>>”) AdditiveExpression)*

AdditiveExpression ::= MultiplicativeExpression ((“+” | “-”) MultiplicativeExpression)*

MultiplicativeExpression ::= CastExpression ((“*” | “/” | “%”) CastExpression)*

CastExpression ::= UnaryExpression
| “(“ TypeName “)” CastExpression

UnaryExpression ::= PreIncrementExpression
| PreDecrementExpression
| UnaryOperatorExpression
| SizeOfExpression
| PostfixExpression
| ADL_BasicExpression
| ADL_CallStateExpression

PreIncrementExpression ::= “++” UnaryExpression

PreDecrementExpression ::= “--” UnaryExpression

UnaryOperatorExpression ::= UnaryOperator UnaryExpression

UnaryOperator ::= “&” | “*” | “+” | “-” | “~” | “!”

SizeOfExpression ::= “sizeof” (“(“ TypeName() “)” | UnaryExpression)

PostfixExpression ::= PrimaryExpression
(ArraySuffix
| DotAccessSuffix
| RefAccessSuffix
| ArgumentList
| PostDeIncrement)*

ArraySuffix ::= “[“ AssignmentExpression “]”

DotAccessSuffix ::= “.” Name

RefAccessSuffix ::= “->” Name

ArgumentList ::= “(“ [Expression] “)”

PostDeIncrement ::= “++” | “--”

Name ::= <ID>
56 of 61 Version 1.1

Complete Grammar ADL 2.0 Language Reference Manual for C
PrimaryExpression ::= TDD_ADLExpression
| Name
| Constant
| <STRING>
| ParentheizedExpression
| “return”

ParentheizedExpression ::= “(“ Expression “)”

UnaryPlusMinusConstant ::= (“+” | “-”) Constant

Constant ::= <OCTALINT>
| <DECIMALINT>
| <HEXADECIMALINT>
| <CHARACTER>
| <FLOATONE>
| <FLOATTWO>
| “true”
| “false”

5.2 ADL Productions

ADL_AnnotatedDeclaration ::= [ADL_Prologue] [ADL_Epilogue]
(ADL_InlineDeclaration | ADL_FunctionDeclaration)*

ADL_InlineDeclaration ::= “inline” DeclarationSpecifiers FunctionDeclarator
ADL_AssertionGroup

ADL_TranslationUnit ::= IncludeFileList
[ADL_AnnotatedDeclaration | TDD_AnnotatedDeclaration]
(NLD_Annotation)*
<EOF>

IncludeFileList ::= (IncludeFileDeclaration)*

IncludeFileDeclaration ::= “#include” <INCLUDED_FILE_NAME>

ADL_AnnotatedDeclaration ::= “adlmodule” [<ID>] “{“ [ADL_Prologue] [ADL_Epilogue]
(ADL_BehaviorDeclaration | ADL_InlineDeclaration)*
(NLD_Annotation)* “}”

ADL_InlineDeclaration ::= “inline” FunctionDeclarator DeclarationSpecifiers ADL_AssertionGroup

ADL_BehaviorDeclaration ::= (FunctionDeclarator | DeclarationSpecifiers FunctionDeclarator)
“{“ [ADL_Prologue] ADL_BehaviorSpecification [ADL_Epilogue]
 (NLD_Annotation)* “}”

ADL_Prologue ::= “prolog” CompoundStatement
Version 1.1 57 of 61

Complete Grammar ADL 2.0 Language Reference Manual for C
ADL_Epilogue ::= “epilog” CompoundStatement

ADL_BehaviorSpecification ::= “semantics” [ADL_BehaviorClassification] ADL_AssertionGroup

ADL_BehaviorClassification ::= “[“ (ADL_NormalBehavior | ADL_AbnormalBehavior)* “]”

ADL_NormalBehavior ::= “normal” “=” ADL_Expression “;”

ADL_AbnormalBehavior ::= “abnormal” “=” ADL_Expression “;”

ADL_AssertionGroup ::= “{“ (ADL_Binding “;”)* (ADL_Statement “;”)* (NLD_Annotation)* “}”

ADL_Binding ::= “define” ADL_NamedParamList “with” [<ID> “=”] ADL_Expression

ADL_NamedParamList ::= ADL_NamedParam (“,” ADL_NamedParam)*

ADL_NamedParam ::= DeclarationSpecifiers Declarator

ADL_Statement ::= ADL_IfStatement
| ADL_Assertion

ADL_IfStatement ::= “if” “(“ ADL_Expression “)” ADL_AssertionGroup
[“else” (ADL_AssertionGroup | ADL_IfStatement)]

ADL_Assertion ::= [ADL_Labels] [ADL_Tags]
(ADL_Expression | ADL_QuantifiedAssertion)

ADL_Labels ::= (<ID> “:”)*

ADL_Tags ::= “[“ <ID> (“,” <ID>)* “]”

ADL_QuantifiedAssertion ::= ADL_Quantifier “(“ ADL_DomainList “)” ADL_AssertionGroup

ADL_Quantifier ::= “forall” | “exists”

ADL_DomainList ::= ADL_Domain (“,” ADL_Domain)*

ADL_Domain ::= ADL_NamedParam “:” ADL_DomainExpression

ADL_DomainExpression ::= (“ADL_short_range” | “ADL_int_range” | “ADL_long_range”)
“(“ AssignmentExpression “,” AssignmentExpression “)”

ADL_Expression ::= ADL_ImplExpression

ADL_ImplExpression ::= ConditionalExpression (ADL_ImplOp ConditionalExpression)

ADL_ImplOp ::= “==>” | “<==” | “<=>” | “<:>”

ADL_CallStateExpression ::= “@” UnaryExpression
58 of 61 Version 1.1

Complete Grammar ADL 2.0 Language Reference Manual for C
ADL_BasicExpression ::= “normal”
| “abnormal”
| “unchanged” “(“ ADL_ArgumentList “)”
| ADL_AssertionGroup

ADL_Return ::= “return”

ADL_ArgumentList ::= ADL_Expression (“;” ADL_Expression)*

5.3 TDD productions

TDD_AnnotatedDeclaration ::= (TDD_ImportDeclaration)*
(TDD_UseDeclaration)* “tdd_module” [<ID>]
{“ (TDD_Declaration | NLD_Annotation)* “}”

TDD_ImportDeclaration ::= “import” <ID> “;”

TDD_UseDeclaration ::= “use“ <ID> “;”

TDD_Declaration ::= TDD_DatasetDeclaration
| TDD_FactoryDefinition
| TDD_TestDirective
| FunctionDefinition
| TDD_FieldDeclaration

TDD_DatasetDeclaration ::= “dataset” ADL_NamedParam “=” TDD_DatasetExpression “;”

TDD_FactoryDefinition ::= “factory” DeclarationSpecifiers FunctionDeclarator
CompoundStatement
[“relinquish” “(“ ParameterDeclaration “)” CompoundStatement]

TDD_TestDirective ::= [<ID> “:”] “test” [“forall”]
“(“ [TDD_DatasetDomain (“,” TDD_DatasetDomain)*] “)” Statement

TDD_DatasetDomain ::= ADL_NamedParam (“:” | “=”) TDD_DatasetExpression
| TDD_DatasetExpression

TDD_DatasetLiteral ::= “{“ [TDD_DatasetMember (“,” TDD_DatasetMember)* [“,”]] “}”

TDD_FieldDeclaration ::= DeclarationSpecifiers Declarator “=” Initializer
(“,” Declarator “=” Initializer)* “;”

TDD_DatasetMember ::= ConditionalExpression [“..” ConditionalExpression]

TDD_DatasetExpression ::= TDD_DatasetConcatenationExpr
(“+” TDD_DatasetConcatenationExpr)*
Version 1.1 59 of 61

Complete Grammar ADL 2.0 Language Reference Manual for C
TDD_DatasetConcatenationExpr ::= TDD_DatasetLiteral
| TDD_FactoryCall
| TDD_DatasetSingleton

TDD_DatasetSingleton ::= Name | UnaryPlusMinusConstant | Constant

TDD_FactoryCall ::= <ID> “(“ [TDD_DatasetExpression (“,” TDD_DatasetExpression)*] “)”

TDD_ADLExpression ::= “ADL” “(“ Name ArgumentList “)”

5.4 NLD productions

NLD_Annotation ::= “nld” [NLD_Locale] “{“ (NLD_Declaration | NLD_EntityDeclaration)* “}”

NLD_Locale ::= <STRING_LITERAL>

NLD_Declaration ::= NLD_ScopedName ([NLD_Locale] NLD_TextAssignment

| “:” [NLD_Locale] (NLD_Statement | “{“ NLD_Statement + “}”))

NLD_Statement ::= NLD_PropertyDeclaration | “%text” NLD_TextAssignment “;”

NLD_TextAssignment ::= [NLD_SelectPred] “=” NLD_String
[“,” “[“ NLD_UserPred (“,” NLD_UserPred)* “]”]

NLD_SelectPred ::= “[“ NLD_Predicate (“,” NLD_Predicate)* “]”

NLD_Predicate ::= NLD_PredefinedPred
| NLD_ParamNumber “[“ NLD_UserPred (“,” NLD_UserPred)* “]”

NLD_PredefinedPred ::= “@” | “!” | “locale” “(“ NLD_Locale “)”

NLD_UserPred ::= <IDENTIFIER>

NLD_ParamNumber ::= “$”<INTEGER_LITERAL>

NLD_ScopedName ::= “.”
| NLD_MethodName
| [NLD_Scope “::”] NLD_Identifier

NLD_MethodName ::= Name NLD_Signature

NLD_Signature ::= “(“ (“*” | Type (“,” Type)*) “)”

NLD_Scope ::= “*” | “.” | Name [“::*”] | NLD_MethodName

NLD_EntityDeclaration ::= “&” <IDENTIFIER> “=” NLD_EntityText

NLD_PropertyDeclaration ::= NLD_PropertyName “=” NLD_EntityText

NLD_PropertyName ::= “%description” | “%includes” | “%purpose” | “%seeAlso”
60 of 61 Version 1.1

Complete Grammar ADL 2.0 Language Reference Manual for C
NLD_EntityText ::= <STRING_LITERAL> (“<<” <STRING_LITERAL>)*

NLD_String ::= NLD_StringElem (“+” NLD_StringElem)*

NLD_StringElem ::= <STRING_LITERAL> | NLD_ParamNumber
Version 1.1 61 of 61

	ADL 2.0 for C Language Reference Manual, Version 1...
	1 Introduction
	2 Semantics Annotations
	2.1 Describing Semantics Of Functions
	2.2 ADL Syntax
	2.2.1 Assertion Groups
	2.2.2 ADL Specific Expressions
	2.2.3 ADL Specific Statements

	2.3 Behavior Specification
	2.3.1 The Call State Operator
	2.3.2 Bindings
	2.3.3 Behavior Classification
	2.3.4 The Exception Operator

	2.4 inline declarations
	2.5 Prologues and Epilogues

	3 Test Annotations
	3.1 Concepts
	3.1.1 Re-write
	3.1.2 Dataset
	3.1.3 Factory
	3.1.4 Checked Function
	3.1.5 Test Directives
	3.1.6 Assertion
	3.1.7 Importation

	3.2 General Syntax & Examples
	3.2.1 Datasets and Data Construction

	4 NLD Annotations
	4.1 Concepts
	4.2 Syntax and Semantics
	4.2.1 Simple Data Identifier Translation
	4.2.2 A Simple Function Translation
	4.2.3 Using semantics And nld Blocks
	4.2.4 Invocation translation

	4.3 NLD Predicates
	4.3.1 Pre-defined Predicates

	4.4 NLD and SGML
	4.4.1 Reference Manual Document

	4.5 NLD for TDD
	4.6 NLD and Localization
	4.7 NLD Syntax

	5 Complete Grammar
	5.1 C language productions
	5.2 ADL Productions
	5.3 TDD productions
	5.4 NLD productions

