
X/Open System Verification Suite

VSX User and Installation Guide

VSXgen1.4 May 1999
LSB-FHS 1.0 December 2001
LSB-OS 1.0 December 2001

LSB-VSX-PCTS 1.0 December 2001

The Open Group

X/Open System Verification Suite VSX User and Installation Guide

The Open Group

X/Open System Verification Suite VSX User and Installation Guide

 1991, 1992, 1997, 1999, 2000, 2001 The Open Group

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior permission of the copyright
owners.

Motif, OSF/1, and UNIX are registered trademarks and the IT DialToneTM, The
Open GroupTM, and the ‘‘X Device’’TM are trademarks of The Open Group.

Any comments relating to the material in this document may be sent by electronic mail
to the Open Group at:

ogtesting@opengroup.org

The Open Group

X/Open System Verification Suite VSX User and Installation Guide

The Open Group

X/Open System Verification Suite VSX User and Installation Guide

1. FOREWORD
1.1 VSX DOCUMENTATION

The X/Open Verification Suite, known as VSX, enables you to build and execute test
programs which assess operating systems for conformance to the standards established
in the Single UNIX Specification versions 1 and 2, the X/Open Portability Guide issues
3 and 4, POSIX.1-1990, and POSIX.1-1996. VSX is also being used as part of the Free
Standards Group LSB test program. VSX consists of a number of separate packages.
The VSXgen package is combined with one or more add-on test packages to form a test
suite which covers some or all of the above specifications.

This guide describes the use of VSXgen together with the following test packages:

LSB-FHS 1.0 December 2001
LSB-OS 1.0 December 2001

LSB-VSX-PCTS 1.0 December 2001

Note that this guide gives detailed information on the configuration and
installation of the test suite and is intended for experienced users. If you are using
the LSB version of this test package you are recommended to use the automated
installation scripts which will default to a useable setup for testing LSB
conformance. Note also that LSB-VSX-PCTS is referred to as VSX4 in this guide.

VSX uses part of a set of libraries and programs calledTETware. TETware has its own
documentation; this manual contains sufficient information on how to use TETware in
conjunction with VSX, but issues pertaining to TETware installation and use of the
more extended TETware functionality will require the user to refer to the toolkit
manuals. Some test packages can also be used with TET 1.10, a predecessor of
TETware. The instructions given in later parts of this document assume the use of
TETware. There may be some differences when predecessors of TETware are used.

The VSX User and Installation Guide is in four parts. Part 1 is the VSX User Guide,
which gives information about the terminology and structure used in VSX. In addition,
the User Guide tells you what resources and facilities you need to use VSX. Part 2 is the
VSX Installation Guide, which gives you all the information you need to install and run
VSX. It is a good idea to read both parts before you start installing and using VSX.
Part 3 gives additional reference information in a series of appendices, including details
of VSX support services. Part 4 contains manual pages for various VSX utilities.

The VSX documentation also includes a separate Pseudo-language Specification, which
contains details of the test locales that VSX uses.

1.1.1 Part 1: VSX User Guide

Contents
The terms used in the VSX documentation and the structure of VSX are explained in
the User Guide, so that you are familiar with the VSX system before you start
installation. The last chapter tells you the hardware, utilities, time and skills which are
necessary to use VSX successfully.

Layout
The layout of the User Guide gives section and paragraph headings in the left margin.
Additional sub-headings are in the body of the text.

Pages are numbered in the bottom right-hand corner, although references within the
documentation are made by reference to chapter, not numbered pages. This system is
used because when you format and print the VSX documentation, the pagination will
vary between systems.

The Open Group
VSXgen 1.4 Page 1

X/Open System Verification Suite VSX User and Installation Guide

1.1.2 Part 2: VSX Installation Guide

Users
The Installation Guide is written for people who are familiar with their system and who
have some knowledge of the utilities and options available on it. The installation of
VSX should be carried out by an experienced systems administrator, because of the
wide range of implementations which can be verified by VSX.

During the stages of installation, VSX needs detailed information about your system.
On a fully compliant system the configuration details can be found from the system
header files and the Conformance Statement. On other systems you may need to obtain
the information from the personnel who implemented the system.

Contents
Each chapter in the Installation Guide corresponds with a stage of installation and use
of VSX. An overview of each chapter is provided in the User Guide. Some chapters
contain supplementary information for specific test packages in the sections at the end
of the chapter. You will need to refer to these sections when the generic part of the
chapter indicates that a particular requirement only applies to some test packages, in
order to determine if it applies to any of the test packages you are using. These sections
may also describe additional procedures or requirements for each test package.

You can simply read the Installation Guide for detailed information about VSX. When
you want to install VSX on your system, follow the instructions in the Action Points at
the end of each section. Start from the first chapter and continue until you are ready to
build the testsets and execute them. The final VSX stage enables you to report on the
results of the building and execution stages. The last chapter of the Installation Guide
gives information about interpreting the results of the VSX tests.

When you are familiar with VSX, you can use the appendix entitled ‘‘Action Point
Summary’’ as a checklist.

Layout
The layout of the Installation Guide corresponds to that of the User Guide, with the
addition of Action Points for you to effect after you have read each section.

1.1.3 Part 3: VSX Appendices

The first appendix is a summary of the Action Points from the Installation Guide, which
you can use when you are familiar with installing VSX. Other appendices contain the
reference information you may need when you are using VSX, including information
about the support services for VSX.

1.1.4 Part 4:Manual Pages

The commands used to install, build and execute the test suite and to produce reports
are covered at a basic level in the installation guide. However, many of these
commands have additional features which are described only in the manual pages.

The Open Group
VSXgen 1.4 Page 2

X/Open System Verification Suite VSX User and Installation Guide

X/Open System Verification Suite

Part 1: User Guide

VSXgen1.4 May 1999

The Open Group

X/Open System Verification Suite VSX User and Installation Guide

The Open Group

X/Open System Verification Suite VSX User and Installation Guide

2. VSX TERMINOLOGY
2.1 INTRODUCTION

This chapter introduces the terms used in the VSX User and Installation Guides. The
chapter tells you about the seven stages of using VSX, the terms and naming
conventions used in describing the structure of VSX.

2.2 STAGES OF VSX
VSX is used in a series of independent stages. When you have run all of the stages, you
can read the VSX reports and interpret the results of the tests to assess the conformance
of your system. As each stage is independent, you can re-run the verification suite
starting at any of the stages without affecting any of the earlier stages in the suite.

2.2.1 Stage 1: Preparation

In this stage, you check your system has enough file space available, add entries to the
user and group databases and extract the VSX software from the distribution files for
VSXgen and one or more test packages.

2.2.2 Stage 2: Configuration

Next, the VSX configuration script interrogates your system for information and asks
you questions on the screen. From this information, VSX generates configuration
parameter files, which are used in the later stages of VSX to find out details about your
system. Additionally, for some test packages you must configure character encodings
for the VSX test locales, and install the test locales using the tools and file formats for
your system.

2.2.3 Stage 3: Installation

In this stage, VSX sets up the programs, libraries, include files and file systems which
are needed to build and execute the test suite.

2.2.4 Stage 4: Building

The building stage uses the VSX source files and the configuration parameter files to
build and install executable test programs. This stage places results in a journal file,
which is used by the reporting stage. You can choose to build the whole suite of test
programs to test your system for conformance, or selected parts. Building selected
parts is known as a partial build. In this stage you can also undo all or part of a previous
building stage, for example, when you want to rebuild using a different compiler.

2.2.5 Stage 5: Execution

When you have completed the preceding stages, you can run the tests to verify your
system. VSX executes the test programs and keeps the results in a journal file for use
by the reporting stage. You can choose to execute all of the installed tests at once, or
choose a partial execution.

2.2.6 Stage 6: Reporting

The reporting stage generates reports from the building and execution journal files.
You can also produce a summary report for management information and a report
comparing the results from several test executions.

The Open Group
VSXgen 1.4 Page 5

X/Open System Verification Suite VSX User and Installation Guide

2.2.7 Stage 7: Interpreting VSX Results

Using the report generated by VSX, the test source code and the test strategy
documentation, you can interpret the results in order to identify the causes of test
failures.

2.3 STRUCTURE
VSX uses a common structure for each of the building, execution and reporting stages
to locate the different facilities that are to be verified. This is a four-level hierarchy
consisting of the following levels:

2.3.1 Section

A section corresponds with the primary source of the definition of an interface. For
example, the VSX4 sectionlang.C corresponds with the C language definition in
XPG3 Volume 4, while the VSX4 sectionPOSIX.hdr corresponds with the header
file definitions relating to POSIX.1.

2.3.2 Area

An area groups together test programs with a common theme, and is a sub-division of a
section. For example, in the VSX4 sectionPOSIX.os (operating system interfaces
relating to POSIX), the areafiles holds all of the test programs for interfaces which
deal with files and directories.

2.3.3 Testset

A testset is the subdivision of an area. A testset usually relates directly to an interface
definition, with two exceptions. Firstly, where a single definition covers several
different interfaces, VSX may use separate testsets for each interface. Secondly, as
there is no natural division in the XPG3 description of the C language, a testset is used
for each discrete aspect of the C language definition.

2.3.4 Test

A test tests a particular statement in a definition. A number of tests, which may depend
on each other, make up the testset to assess the conformance of a particular interface.

2.4 NAMING CONVENTIONS
The VSX naming convention numbers the tests within a testset executable sequentially,
and, excepting the C language tests, corresponds with the test descriptions in the VSX
manual. The naming conventions are as follows;

Section
major-section. sub-section

Area
area-name

Testset directory
testset-name

Where testset directory names start with anM, they contain tests for the macro version
of the interface.

Testset executable
T. testset-name

Testset names which end in_X indicate tests for X/Open extensions to POSIX
interfaces (or a historical derivation from such extensions).

The Open Group
VSXgen 1.4 Page 6

X/Open System Verification Suite VSX User and Installation Guide

2.5 JOURNAL FILE
A journal file is generated after the building, execution and cleanup stages, with the
results of the stage. The journal file is a text file with control information on the front
of each line. It is not usually necessary to examine these files directly, but if you do
then details of the file format may be found in the TETware manuals. The reporting
stage uses the journal file as input when you are producing a formatted report.

The Open Group
VSXgen 1.4 Page 7

X/Open System Verification Suite VSX User and Installation Guide

3. VSX DIRECTORY STRUCTURE
3.1 TOP LEVEL DIRECTORY STRUCTURE
3.1.1 Introduction

There are the following directories in the top level of the VSX directory structure. This
section gives a brief description of the top level, and is followed by sections with a
detailed explanation of each directory hierarchy. These are described thus, with the
VSX directory name following the descriptive directory name.

3.1.2 Binaries: BIN

A common location for all the VSX commands you execute, for example,vrpt . You
should include this directory in the search path for your shell.

3.1.3 Manual: MAN

Manual pages for the testsets and VSX programs, and test description and strategy files.
The manual pages use theman macros package associated with[nt]roff for
formatting.

3.1.4 Results:results

A directory under which the journal files for the installation, building, execution and
cleanup stages are written.

3.1.5 Source:SRC

The source files for libraries and utilities used to configure, install and build VSX.

3.1.6 Support:SUPPORT

A template for error reports and details of how to submit them.

3.1.7 Testroot:TESTROOT

A directory containing the TESTROOT directory structure, used by default as the
directory to install the executable testsets. You can change the location when you are
configuring the parameter files.

3.1.8 Testset:tset

This directory hierarchy contains the source files which are used to build the VSX
testsets. The testset directory contains section directories.

Section
The section directories are named using the naming conventions explained in the
chapter entitled ‘‘VSX Terminology’’. Each section directory contains area directories,
below which are the testsets.

For header and C language sections, each testset directory contains a compacted (L.)
source file and a makefile. For other sections, each testset directory holds the source
programs and makefile for the testset.

The Test Case Controller executes the makefile to install the relevant files in the testroot
directory.

The Open Group
VSXgen 1.4 Page 8

X/Open System Verification Suite VSX User and Installation Guide

3.2 SOURCE DIRECTORY STRUCTURE
There are the following directories at the top of the source (orSRC) directory structure.

3.2.1 Common:common

The source files compiled during the installation stage, which are used to build the
executable programvrpt and others used by VSX. In addition, this directory includes
the source for the libraries used for building the testsets.

3.2.2 Install: install

The scripts and associated files used to configure and install VSX.

3.2.3 Subsets:subsets

This directory contains subdirectories relating to each available VSX subset. The files
for each subset contain information about the subset and the test package it belongs to,
used in the configuration and installation stages of VSX.

3.2.4 Library: LIB

An empty directory, namedLIB , which is used for the libraries compiled from the
source in the directorycommon.

3.2.5 Include: INC

The unique VSXincludefiles, used to build the common software and the testsets.

3.2.6 System Include:SYSINC

A copy of the includefiles for the system, which are modified during the installation
stage to correct any deficiencies. Note that it is important to ensure that this copy
reflects any changes made to the systemincludefiles.

3.3 MANUAL DIRECTORY STRUCTURE
The manual directory contains the following directories.

3.3.1 Common:common

The manual entries for the common software elements, which correspond with the
directories under the source directory structure.

3.3.2 Testset:tset

The manual entries, test descriptions and strategies for each VSX testset. The directory
structure follows the naming conventions explained in the chapter entitled ‘‘VSX
Terminology’’. The testset entries areT. files containing the manual pages (including
test descriptions) for formatting with[nt]roff -man , and L. files containing test
descriptions and strategies used byvrpt .

3.4 TESTROOT DIRECTORY STRUCTURE
This structure contains the executable programs for each of the testsets installed. The
structure under thetset subdirectory follows the naming conventions explained in
the chapter entitled ‘‘VSX Terminology’’. Each testset entry is an executable program
and creates a matchingd. directory entry which is used to hold any temporary files
created while the testset is executing.

The header file and C language testsets contain compacted file entries copied from the
source directory structure, as well as the executable drivers. These do not use ad.
temporary directory.

The Open Group
VSXgen 1.4 Page 9

X/Open System Verification Suite VSX User and Installation Guide

The BIN subdirectory is where utility programs and other binary files used by the
executable testsets are placed, and may also contain scripts which must be edited by the
user.

The INC subdirectory contains include files for use in header file and C language tests.

The Open Group
VSXgen 1.4 Page 10

X/Open System Verification Suite VSX User and Installation Guide

4. RESOURCES
4.1 INTRODUCTION

VSX requires the following major resources to run successfully:

g an adequate computer hardware environment

g the correct base utilities

g enough time to complete the task

g a system administrator with the necessary skill to run VSX.

4.2 COMPUTER HARDWARE
4.2.1 DiskSpace

Installation
VSX uses a considerable amount of disk space. This is described in detail in the chapter
entitled ‘‘PREPARATION’’.

Building and Execution
To save disk space, you can build and execute selected sections of VSX. See the
chapter entitled ‘‘BUILDING VSX’’ for more information.

4.2.2 Exclusive Use

It is recommended that you have exclusive use of the machine when you execute the
tests. In particular, the operating system tests should only be executed when exclusive
use is available since these tests may affect other users of the system.

4.2.3 Devices

In order to execute all of the tests in VSX you will need the following devices to be
available on your machine. These are only required for some subsets.

1. One or more mountable file systems. VSX uses these for three separate purposes,
and so three separate device names can be specified if desired. However, one file
system is normally used for all three. One of the file systems is used for testing
ENOSPC errors, and will be filled up as part the installation process (if needed by
a selected subset).

2. A terminal at which a user is logged on while the tests are executing.

3. Two spare ports to test the terminal interfaces.

4.3 UTILITIES
VSX assumes that the following utilities, which are defined in Volume 1 of XPG3, are
available on your system. VSX also assumes that the utilities work in the way described
in XPG3.

4.3.1 Bourne Shell

The configuration and installation stages use scripts which are written for the Bourne
shell, or a similar shell.

4.3.2 make

The installation and building stages usemake files.

The Open Group
VSXgen 1.4 Page 11

X/Open System Verification Suite VSX User and Installation Guide

4.3.3 Compiler

VSX requires a C compiler with the-E option, and a link editor. VSX assumes that
when these utilities execute successfully, they will return an exit value of 0 (zero).

4.3.4 Library Archiver

VSX requires a library archiver and other software to order the libraries. The ordering
software may be inherent in the library archiver, theranlib utility or the utility pair
lorder and tsort .

4.3.5 awk

The reporting stage usesawk scripts.

4.3.6 Editors

VSX uses the basic editored and the stream editorsed . The implementation of
sed can be either in the style of System V or BSD. In addition, the configuration and
installation stages use the utilitygrep extensively.

4.3.7 File Utilities

To handle files, VSX uses the basic utilitiescp , mv and rm. To handle file modes,
VSX uses the utilitieschown , chgrp and chmod and, for this reason, you must
have access to these during the installation phase of VSX.

VSX also uses a variety of other commands and utilities (as described in Volume 1 of
XPG3) during execution and uses the text formatternroff to format the
documentation.

4.3.8 Null Device

VSX assumes that the file/dev/null is readable and writable by all users and
behaves as described in XPG3.

4.4 TIME
For an experienced VSX user, the installation and execution of VSXgen and the full set
of test packages should take less than 24 hours. A longer period may be needed on
slower processors, as the building stage and the C language and header tests make
considerable use of the compiler.

The design of VSX enables you to run the building and execution stages without
intervention and to review the results afterwards.

4.5 SKILLS
4.5.1 Using VSX

To install, build and execute the tests correctly, you must be able to give detailed
information about your system to VSX. VSX is not a product which can be loaded and
run without assistance. VSX is designed for use by an experienced systems
administrator who has considerable knowledge of the utilities available, the devices and
their associated device files on the system. For example, you may need to know whether
your system generates theEBUSYerror if you attempt to remove a busy directory.
Without this level of information, you may find difficulty in using VSX.

The Open Group
VSXgen 1.4 Page 12

X/Open System Verification Suite VSX User and Installation Guide

4.5.2 Interpreting Results

When VSX reports on the results of the tests, the report may show that a facility does
not work in the way that VSX expects. To investigate the cause of failed tests, you may
need more information than is available from the VSX report. Considerable skill and an
understanding of the operating system are necessary to gather this information and to
investigate the results thoroughly.

The Open Group
VSXgen 1.4 Page 13

X/Open System Verification Suite VSX User and Installation Guide

The Open Group
VSXgen 1.4 Page 14

X/Open System Verification Suite VSX User and Installation Guide

X/Open System Verification Suite

Part 2: Installation Guide

VSXgen1.4 May 1999
LSB-FHS 1.0 December 2001
LSB-OS 1.0 December 2001

LSB-VSX-PCTS 1.0 December 2001

The Open Group

X/Open System Verification Suite VSX User and Installation Guide

The Open Group

X/Open System Verification Suite VSX User and Installation Guide

5. PREPARATION
5.1 INTRODUCTION

Before you install VSX you must first check there is file space available and then create
the user accounts. When you are ready to load the VSX distribution, you must unpack
the distribution files and then check that the contents were extracted correctly. Finally,
you can optionally remove any unwanted parts of the distribution. If you are using the
LSB packaged version of these tests you may prefer to use the automatic installation
scripts provided as a wrapper to the test suite. See the README file provided for the
instructions.

5.2 PREPARING YOUR SYSTEM
5.2.1 FileSpace Requirements

The target file system must have enough free space available to build and execute the
test suite. The amount of space required by each test package is given in the package-
specific sections at the end of this chapter. In addition VSXgen itself requires
approximately 5 to 8 Mb free space, of which less than 1 Mb is for theTESTROOT
directory.

Note the following points:

1. The TESTROOT directory may be on a different file system, but it must be one
that allows privileged access (e.g., it cannot be on a remote file system where user
ID 0 will be mapped to an ‘anonymous’ user ID).

2. The disk usage is much greater on RISC systems due to the larger size of object
and executable files. Where a range is given the higher figure is for a typical
RISC system, but some systems have been known to require up to three times this
amount.

3. You can reduce the disk usage by installing VSX in smaller segments, for
example, one subset at a time.

4. You will need space to hold the reports. Allow 2Mb minimum.

5. The archiver and compiler may also use some temporary file space.

6. Disk usage inTESTROOTwill be less if the executables use shared libraries.

hhh

Action Points

1. Check there is enough free space available to unpack and install the software.

5.2.2 VSX User Accounts

You must add one or more group names and one or more user names to the group and
user databases on your system. The precise requirements vary between test packages.
Refer to the package-specific sections at the end of this chapter for details.

The only requirements common to all packages are the user namevsx0 and the group
name vsxg0 . The home directory for uservsx0 must be a subdirectory of your
TET_ROOT directory. (If you do not have TETware installed, you must first create a
directory to be designated as yourTET_ROOT directory.)

The home directories of usersvsx1 and vsx2 (if needed) must differ from that of
vsx0 .

The Open Group
VSXgen 1.4 Page 17

X/Open System Verification Suite VSX User and Installation Guide

The user vsx0 must have a login shell. The user ID and group ID values chosen must
not exceed the value ofINT_MAX for the system.

If your system has extensions which are enabled by environment variables, and the
default settings of these variables would cause behaviour to differ from that required for
compliance, you must ensure that these variables are set so as to disable the extensions
in the login script for user vsx0 . For example, if the setting of theLANG
environment variable is such that processes have a locale setting other than the C or
POSIX locale on entry tomain() then this would typically be disabled by adding the
line

unset LANG

to the .profile for user vsx0 .

hhh

Action Points

1. (Note if you are installing the LSB version of these test packages you can use the
automatic installation scripts) Create a distinct group entry forvsxg0 and (if
required by one of the test packages) distinct group entries forvsxg1 and
vsxg2 ; usually in the file /etc/group .

2. If you do not already have TETware installed, create a directory you wish to
designate as yourTET_ROOT directory.

3. Create a distinct user entry forvsx0 in group vsxg0 , with home directory
located under yourTET_ROOT, and with a login shell; usually in the file
/etc/passwd .

4. Make sure that the uservsx0 has write permission in theTET_ROOT
directory.

5. Add $HOME/BIN and $HOME/../bin to the command search path for user
vsx0 , and include it in thePATH environment variable set in the login script for
user vsx0 .

6. Ensure that any extensions enabled by environment variables that would cause
non-compliant behaviour are disabled in the login script for uservsx0 .

7. For some test packages, if the implementation supports supplementary groups,
the user vsx0 should have the maximum number of supplementary groups
associated with it. These supplementary groups must exclude the groupsvsxg1
and vsxg2 . The group ID values chosen must not exceed the value of
INT_MAX for the system.

8. If required by one of the test packages, create a distinct user entry forvsx1 in
group vsxg1 , in the password file. The home directory must differ from that of
user vsx0 .

9. If required by one of the test packages, create a distinct user entry forvsx2 in
group vsxg2 , in the password file. The home directory must differ from that of
user vsx0 .

The Open Group
VSXgen 1.4 Page 18

X/Open System Verification Suite VSX User and Installation Guide

5.3 LOADING THE VSX DISTRIBUTION
5.3.1 Unpacking the Distribution Files

The sources for VSXgen and each VSX test package are distributed separately as
compressedcpio or tar archives.

When you unpack the distribution files, the contents are installed in a hierarchy which
starts from the current working directory. Make sure you log in as the uservsx0 and
unpack the files in thevsx0 home directory, to ensure that the access permissions and
locations for the files are correct.

hhh

Action Points

1. Log in to the test system as the uservsx0 , who must be the owner of all the
loaded files.

2. Ensure you are working in thevsx0 home directory and that you have write
permission in that directory.

3. Unpack the distribution files for the VSX-vtools (namespace test tool), VSXgen
and the test packages you wish to use, using appropriate commands to
decompress each file and extract all files from the resulting POSIXcpio or
tar archive, e.g.:

zcat ../vsx-vtools-1.4.tar.Z| pax -v -r -p p
zcat ../vsxgen-os-1.4.tar.Z| pax -v -r -p p
zcat ../vsx-pcts-4.4.4.tar.Z| pax -v -r -p p

or

zcat ../vsx-vtools-1.4.tar.Z| tar xvf -
zcat ../vsxgen-os-1.4.tar.Z| tar xvf -
zcat ../vsx-pcts-4.4.4.tar.Z| tar xvf -

Note that your distribution may be packaged up differently, check

ftp://ftp.freestands.org/pub/lsb/test_suites

for the latest distribution and see the README files as appropriate. The default
packaging for LSB testing includes a series of gzip’d tar files and an installation
wrapper script to automate installation.

5.3.2 Checking the Contents

When you have finished unpacking the files, the following main directories should be in
the vsx0 home directory:

Directory Name Summary of contents

BIN VSX user commands
MAN VSX user manuals (on-line)
results a directory tree for journal files
SRC general source tree
SUPPORT VSX error reporting macros
TESTROOT executable testsets tree
tset testset source tree

In addition, a number of other files should be in thevsx0 home directory. The most
important ones to look for are the test package release identification files, called

The Open Group
VSXgen 1.4 Page 19

X/Open System Verification Suite VSX User and Installation Guide

pkgrel num, wherepkg is the package name (e.g.VSX4) and num is the release
number of the package. This is the last file written to each test package archive. Its
presence tells you that all the contents of the archive have been read.

hhh

Action Points

1. Change to thevsx0 home directory (usingcd) and list the directory. Check
the expected subdirectories and the release identification files for each test
package are there.

If they are not, check that there were no read errors while the archives were being
read and that there is space available on the file system.

2. Check that the release numbers given in the test-package specific Action Points
for this chapter correspond with the release identification files.

5.4 REMOVING UNWANTED VSX DATA (OPTIONAL)
When you want to save space on your system and you do not want to install the tests for
some sections, you can remove parts of the VSX distribution. Refer to the package-
specific sections at the end of this chapter to identify which parts of each test package
you might be able to remove.

hhh

Action Points

1. Remove any unwanted sections from the directoriestset and MAN/tset .

The Open Group
VSXgen 1.4 Page 20

X/Open System Verification Suite VSX User and Installation Guide

5.5 LSB-FHS PREPARATION
5.5.1 FileSpace Requirements

The LSB-FHS test package requires in the region of 2 to 10 Mb of free space, of which
2 Mb is for the TESTROOTdirectory.

5.5.2 VSX User Accounts

hhh

Action Points

1. The install.sh script should setup all the accounts necessary for installation of this
testset.

5.5.3 Loading The LSB-FHS Distribution

hhh

Action Points

1. The name of the LSB-FHS release is determined by the identification file which is
the last file in the archive, and takes the form LSB-FHSrelX.Y-Z where X.Y is
the FHS specification revision number for this test suite and Z is the release level.
See the release notes for the current release level.

The Open Group
LSB-FHS Page 21

X/Open System Verification Suite VSX User and Installation Guide

5.6 LSB-OS PREPARATION
5.6.1 FileSpace Requirements

The LSB-OS test package requires in the region of 25 to 40 Mb of free space, of which
15 to 30 Mb is for theTESTROOTdirectory.

5.6.2 VSX User Accounts

hhh

Action Points

1. The LSB-OS test package requires configuration of usersvsx0 , vsx1 and
vsx2 and the groupsvsxg0 , vsxg1 and vsxg2.

5.6.3 Loading The VSX Distribution

hhh

Action Points

1. The name of the LSB-OS release identification file is LSB-OSrel1.0.

5.6.4 Removing Unwanted VSX Data (Optional)

All parts of LSB-OS are required. There are no optional parts to remove.

The Open Group
LSB-OS1.0 Page 22

X/Open System Verification Suite VSX User and Installation Guide

5.7 VSX4 PREPARATION
5.7.1 FileSpace Requirements

The VSX4 test package requires in the region of 75 to 125 Mb of free space, of which
50 to 90 Mb is for theTESTROOTdirectory.

5.7.2 VSX User Accounts

hhh

Action Points

1. The vsx0 home directory must be calledvsx4 .

2. The user namesvsx1 and vsx2 , group namesvsxg1 and vsxg2 , and
supplementary groups are all required.

3. If your system treats group ID values which do not exist in the group database as
invalid, then ensure that the six consecutive group ID values aftervsxg0 also
exist in the group database.

5.7.3 Loading The VSX Distribution

hhh

Action Points

1. The name of the VSX4 release identification file is VSX4rel4.4.4.

5.7.4 Removing Unwanted VSX Data (Optional)

VSX4 is divided into the sections listed below. Note that VSX4 has been designed to
follow the same structure as that adopted by the contents of the various standards and
guides which it tests.

Therefore, please note the following points regarding the contents of the sections within
the base subset:

1. The POSIX and ANSI sections are both required for testing conformance to the
POSIX.1 and FIPS 151 standards. The reason for this is that the POSIX.1
standard makes reference to the requirements within the ANSI C standard and
VSX follows this structure. These sections are included in VSX-PCTS.

2. The XOPEN, POSIX, ANSI and lang.C sections are all required for testing
compliance with the X/Open specifications. These sections are not included in
VSX-PCTS.

3. The XPG4sections are required in addition to theXOPEN, POSIX, ANSI and
lang.C sections for testing compliance with X/Open Portability Guide, issue 4,
and the Single UNIX Specification, version 2. These sections are not included in
VSX-PCTS.

Base Subset

Sections Description

ANSI.os Tests for ANSI system interfaces
ANSI.hdr Tests for ANSI header files
POSIX.os Tests for POSIX system interfaces
POSIX.hdr Tests for POSIX header files
XOPEN.os Tests for X/Open system interfaces

The Open Group
VSX-PCTS4.4.4 Page 23

X/Open System Verification Suite VSX User and Installation Guide

XOPEN.hdr Tests for X/Open header files
XOPEN.cmd Tests for X/Open commands
XPG4.os Tests for XPG issue 4 system interfaces
XPG4.hdr Tests for XPG issue 4 header files
lang.C Tests for the C language

Data Management Subset

Sections Description

dm.hdr Tests for ISAM header file
dm.isam Tests for ISAM sub-routines

The Open Group
VSX-PCTS4.4.4 Page 24

X/Open System Verification Suite VSX User and Installation Guide

6. CONFIGURING VSX
6.1 INTRODUCTION

When you receive VSX, the source code is written to run even when your system does
not yet conform fully to the specification. The construction of VSX enables it to run on
a wide range of implementations, by including a configuration stage.

During the configuration stage, VSX finds out the specific details about your system and
uses the information to generate parameter files for the system. VSX finds the
information both by interrogating your system and by asking you questions.

Before you start, you must establish an installation directory and find out the
information which is needed for configuration. Read this chapter and write the
information for your system next to each action point. When you have finished
configuring VSX, check the parameter files are correct for your system.

For some subsets you must also install several test locales, or ‘pseudo-languages’.
Further information is given in the section entitled ‘‘INSTALLING THE PSEUDO-
LANGUAGES’’ later in this chapter.

6.2 INSTALLATION DIRECTORY
The directory you use to install the testsets may be on a different file system from the
distribution directory. The file system must have enough space available for the
executable testsets. A default installation directory is provided, namedTESTROOTin
the vsx0 home directory. If you choose a directory that does not already exist, it will
be created by the VSX installation procedure.

For some test packages (as indicated in the package-specific sections at the end of this
chapter), if you are testing for conformance to FIPS 151, XPG4 or UNIX the
installation directory must support the inheritance of parent directory group ID. The
method of achieving this (if it is not the default) is implementation dependent, but will
typically be either an option when the file system is created, or a mode setting on the
individual directories which support the feature. If the method used involves the setting
being inherited by subdirectories when they are created and there is an existing
directory hierarchy under the installation directory which is not set up to support the
inheritance of parent directory group ID, then you must remove thetset subdirectory
and everything below it.

It is recommended that you set the environment variableTET_EXECUTEto the
pathname of the installation directory in your login script. For example, if you are
using a Bourne-type shell and the default location for the installation directory, include
the lines

TET_EXECUTE=$HOME/TESTROOT
export TET_EXECUTE

in the .profile for the vsx0 login.

hhh

Action Points

1. Choose a directory for the installation of testset executables. The default is
TESTROOTunder the vsx0 home directory.

2. If you are testing for conformance to FIPS 151, XPG4 or UNIX and one of the
VSX test packages you are using requires that the installation directory must
support the inheritance of parent directory group ID, and your system implements
the inheritance of parent directory group ID by means of a directory mode setting

The Open Group
VSXgen 1.4 Page 25

X/Open System Verification Suite VSX User and Installation Guide

that is inherited by subdirectories (for example by setting theS_ISGID bit on
the directory), and there is an existing directory hierarchy under the testroot
which does not support this feature, then you must remove it using

rm -rf TESTROOT/tset

3. Set the environment variableTET_EXECUTEin the vsx0 login script to the
pathname of the testroot directory.

6.3 PARAMETERS
6.3.1 Introduction

The shell script included with VSX for configuration interrogates your system and asks
you questions on the screen. There are VSX default values which you can use, or you
can choose to start with the defaults in a parameter file which has already been set up. A
list of the parameter files available is given when the configuration script starts. See also
the section entitled ‘‘CREATING PARAMETER FILES’’ at the end of the chapter.

6.3.2 Libraries

When VSX interrogates your system, it searches libraries in an order which ensures that
the standard C library is checked last. Give the names of other libraries to search in the
order you want VSX to use them. Note that if loadable objects with the same name
appear in different libraries, problems may occur when you are compiling if the
libraries are searched in the wrong order.

6.4 VSX CONFIGURATION SCRIPT
6.4.1 Introduction

The configuration script finds or requests information about the following subjects.
When the configuration script asks a question on the screen, you can use the default
value, shown in brackets, or type the answer for your system. If you are using the LSB
packaged version of these tests, then the defaults are suitable for testing most Linux
distributions.The sections on the following pages tell you what information VSX is
looking for. The package-specific sections at the end of this chapter may indicate
additional requirements or restrictions on the answers you give to some of these
questions.

Note that the defaults (shown in parentheses) in the text on the following pages are the
VSX defaults. When you use a parameter file which has already been set up, the
defaults on the screen will be taken from the parameter file you chose. When you re-
run the configuration script later, the defaults are taken from the previous run unless
you use a parameter file.

6.4.2 General Information

Parameter File
Choose a parameter file from the list shown on the screen. Alternatively, press
RETURNto start with values from a previous run if any, otherwise the VSX defaults.

Mode
This determines which test mode you wish to run. Some or all of the following modes
will be offered, depending on which test packages are available:

g UNIX98 — tests compliance to the Single UNIX Specification, version 2

g UNIX95 — tests compliance to the Single UNIX Specification, version 1

g XPG4— tests compliance to X/Open Portability Guide, Issue 4

The Open Group
VSXgen 1.4 Page 26

X/Open System Verification Suite VSX User and Installation Guide

g XPG3— tests compliance to X/Open Portability Guide, Issue 3

g POSIX96 — tests compliance to POSIX.1-1996

g POSIX90 — tests compliance to POSIX.1-1990

g FIPS — tests compliance to FIPS 151-2

Subset
A list of the subsets that support the chosen test mode from each available test package
is displayed. Enter a space-separated list of the subsets which contain tests you wish to
run (default: all subsets that support the chosen test mode).

If only one subset supports the chosen test mode, its name is displayed and the question
is not asked.

Name
Your name in the way you want it shown on reports.

Agency
Your agency name, to use on reports.

System
The operating system name and the release number, to use on reports.

Installation Directory
The name of the installation directory for the executable testsets (default:
$HOME/TESTROOT). You can choose any other directory you want to use, to make
the best use of the file space available. The installation directory is also known as the
testroot directory.

Machine Speed
The speed of your machine, in the range 1–10, where 1 is very fast and 10 is slow
(default: 5). For example, the speed of an average workstation is rated 5 on this scale.
It is better to underestimate the speed of your machine than to overestimate it.

The speed rating is used to determine how much time to allow a test before timing out,
usually in cases where a test has failed. The speed rating does not affect the execution
time for VSX significantly.

Include Files
The system’sincludedirectories in order of searching (default:/usr/include).

C Compiler
The name of the C compiler (default:c89 or cc). Note that youmust use c89 for
UNIX98 registration runs.

C Compiler Special Command Line Options
This question prompts for special command line options for your C compiler. If you
want to compile parts of the suite with special options, you can specify them when you
build the parts with the Test Case Controller. The code is not usually optimised.

If the list of systeminclude directories specified earlier is not the default for the
C compiler, then add-I/ directoryoptions as necessary.

C Compiler Special Link Editor Options
The next question prompts for special link editor options for your compiler. The
default options are usually adequate. However, it should be noted that the C compiler
special command line options arenot used on the link command line, and thus some of
these special options may need to be repeated here.

The Open Group
VSXgen 1.4 Page 27

X/Open System Verification Suite VSX User and Installation Guide

Libraries
The location of the library maintenance utilitiesar , lorder , tsort and ranlib .
This is requested when they are not in the user’sPATH .

Files
The location of the commands to change file ownership, file group ownership and file
modes; namelychown , chgrp and chmod. This is requested when they are not in
the user’sPATH .

Additional Libraries
Libraries, other than the C library and specific libraries asked for individually, used by
your system for some of the routines (for example-lmalloc). Give one library
name each time the question is asked.

Note that some questions about specific libraries may be askedafter this question, if
they are only needed by certain subsets.

ANSI vprintf Function
Whether the ANSI functionsvprintf() and vfprintf() are supported (y/n,
default: y). This question is only asked in POSIX and FIPS modes.

6.4.3 Compiler Characteristics and Libraries

VSX uses a series of small C programs to test your compiler and libraries.

6.4.4 Subset-specific Information

Information needed by individual subsets is asked at this point. Refer to the package-
specific sections at the end of this chapter for details.

6.4.5 Optional Information

The following questions are only asked if the information is needed by one or more of
the subsets you have selected. The package-specific sections at the end of this chapter
indicate which questions apply to the subsets and test mode you have selected.

C Compiler Threads Command Line Options
This question prompts for compiler options to be usedinstead of the normal options,
when compiling thread-safe programs.

C Compiler Pure Executable Flag
The C compiler option to produce a pure executable (shared text) file. VSX needs this
information to create a pure executable program to test theETXTBSYerror condition.
Many compilers create all executable files in this way, while others require you to use
an option such as-n explicitly.

Maths Library
The location of the archive library which contains your maths library routines if there is
one (default: -lm).

File System for ENOSPC Tests
A mountable device to be used forENOSPCtests. This will be initialised to a known
nearly-full condition during the installation stage. The filling procedure will take less
time if the device to be used has a small capacity. If only a large device is available it is
advisable to create a small file system on it if possible.

6.4.6 Running the Configuration Script

When you execute the configuration script and answer the questions, messages appear
on the screen which tell you when the script is updating the parameter files.

The Open Group
VSXgen 1.4 Page 28

X/Open System Verification Suite VSX User and Installation Guide

hhh

Action Points

1. Read through the configuration script section and write down any information
you will need to use which is different from the defaults.

2. Execute the shell scriptconfig.sh which is in the BIN directory. When you
have included this directory in yourPATH , you can execute the command from
any location.

3. Answer the questions which the configuration script asks.

6.5 CHECKING THE PARAMETER FILES
When you have run the configuration script and answered the questions, VSX generates
two files in the SRCdirectory. One contains configuration parameters and the other is
a header file containingincludefile elements.

6.5.1 Configuration Parameters File

The parameters file, namedvsxparams , contains the configuration constants for your
system which VSX uses during the installation and building stages. The installation
stage uses the parameters file to modify makefiles to suit your system and to generate
the files tetbuild.cfg , tetexec.cfg and tetclean.cfg which are used
by the Test Case Controller. The parameters file contains a set of parameters which are
defined in a format suitable for inclusion in a Bourne shell script:

parameter−name=" parameter−value"

Note that you must include the quotation marks. A description of the use and possible
values for the parameter precedes each parameter setting. You can change the values of
parameters in the file without re-running the configuration script.

hhh

Action Points

1. Check the values in the configuration parameters fileSRC/vsxparams and
edit theparameter−namelines if necessary.

6.5.2 Configuration Header File

The source files used in the installation and building stages of VSX will not compile
unless your header files contain the definitions used by the source code for the subsets
you have selected. The configuration script checks your system header files for these
definitions and, when some are missing, creates a header file, namedvsxconfig.h ,
with a list of the definitions which are missing from your system.

Note that VSX uses NSIG in signal.h , which is not in the Single UNIX
Specification. However, this is required to find the highest signal number. This must
be set to the highest number that a signal can take plus one.

When the configuration script adds a definition to this file, a message appears on the
screen.

Definitions
The list may contain missing elements of the following types:

1. Where the value of a defined constant is unlikely to vary between systems, the
configuration header file uses the most common value.

2. Where the value of a defined constant is likely to vary between systems, the
configuration header file uses a value of−1. You can change the value to one

The Open Group
VSXgen 1.4 Page 29

X/Open System Verification Suite VSX User and Installation Guide

which is more suitable for your system, or leave it as−1. However, VSX only
functions correctly when all of these values have been changed to the correct
values for your system. Some tests will fail when values are left as−1. For
example if your signal.h file does not include the signalSIGABRT, you can
map it onto the signalSIGIOT in the configuration header file, by adding the
definition

#define SIGABRT SIGIOT

3. Where defined constants are missing from the filelimits.h , the configuration
header file uses the minimum acceptable value.

4. Where type definitions are missing the configuration header file will contain a
dummy typedef statement. You should replace the token<type> with the
correct type for your system. If a type definition appears in more than one header
file, it must be protected against redefinition in the same way in all the headers
that define it, otherwise it must be protected against multiple inclusions of the
header that defines it. You may also need to move the type definition so that it
appears before any declarations that use the type name.

5. Where structure definitions are missing the configuration header file will contain
a dummy struct statement. You should replace the token<members> with
the correct structure members for your system.

6. Where extern declarations are missing the configuration header file will
contain the correct declaration.

hhh

Action Points

1. Check the SRC/vsxconfig.h file to ensure that the values are correct for
your system.

2. Check that the values of all the varying defined constants have been changed
from −1 to the values for your system.

3. Check that the values of the other defined constants are correct for your system.

4. Check that all dummy statements have been changed to valid ones.

5. If you re-run config.sh at a later time, it will overwrite
SRC/vsxconfig.h , so make sure you copy it first.

6.5.3 IMPORTANT

When VSX creates the configuration header file with a list of definitions, the indication
is that your system does not conform to the specification. If you are unable to give the
correct values for the definitions in the file, you may find that some of the VSX sources
do not compile and that some of the tests fail.

You must check all the values for the definitions added to this file, to ensure that they
are suitable for your system. Incorrect values may cause particular tests to function
incorrectly. If this happens, it is much more difficult to ascertain the cause of the error.
As this information is not available to all users, you may need assistance from the
personnel who implemented your system.

The Open Group
VSXgen 1.4 Page 30

X/Open System Verification Suite VSX User and Installation Guide

6.6 CREATING PARAMETER FILES
You can create a new parameter file by copying thevsxparams file to the directory
install/params.data . If you re-run the configuration script, you can choose to
use any of the files in this directory to provide the default values for your system. The
default values are taken from the fileSRC/vsxparams unless you choose a different
parameter file.

6.7 TOP LEVEL MAKEFILE
The VSX configuration script generates aMakefile in the vsx0 home directory.
This contains commands to be executed in the installation stage. Many of the
commands needed are implementation-specific and so must be configured by the user.
Only the commands needed for the subsets and test mode you have selected are placed
in the templateMakefile .

The operations that must be performed by the configured commands are described in
the following sections. You need only refer to the descriptions of the targets that appear
in the template that has been created byconfig.sh .

The Makefile is provided for convenience should the installation stage need to be
repeated. However, as the configured commands must be executed as a privileged user,
you may, if you prefer, choose not to use theMakefile and execute the necessary
commands by hand instead.

6.7.1 Privilege Check

The privchk target checks thatmake has been executed with the necessary
privileges. The default commands assume that these privileges are associated with user
ID 0 and use the commandsid and grep to check the current user ID value.

6.7.2 Parent Directory Group ID

The dirgid target sets up the testroot directory to support the inheritance of parent
directory group ID. The default commands assume that this is done by setting the
S_ISGID bit on the directory.

6.7.3 Execute Install Script as Uservsx0

The install target executes the VSX installation scriptinstall.sh with the
user ID of user vsx0 . Since the script expects the environment variableHOME to
contain the vsx0 home directory, these commands must ensure that it is set
appropriately.

6.7.4 Assign Privileges tochmog Program

The chmogpriv target gives the programchmog the appropriate privilege to
change the mode, owner and group of any file and to assign privileges to executable
files. The default commands make the program setuidroot .

6.7.5 Set Up File System for ENOSPC Tests

The filldisc target initialises the mountable device to be used forENOSPCtests
to a known nearly-full condition. This is done by mounting the device, changing
directory to the mount point, and executing thefilldisc.sh script. The default
commands also include adf to report the free space remaining afterfilldisc.sh
has completed.

The Open Group
VSXgen 1.4 Page 31

X/Open System Verification Suite VSX User and Installation Guide

6.7.6 Additional Subset-specific Targets

The Makefile may also contain additional targets that are specific to the subsets you
have selected. Refer to the package-specific sections at the end of this chapter for
details.

6.7.7 Non-configured Commands

The top level Makefile may also perform some of the following operations, using
commands that do not need to be configured by the user:

g Creates the testroot directory if it does not already exist.

g Additional subset-specific operations.

hhh

Action Points

1. Edit the Makefile in the vsx0 home directory.

2. Configure the implementation-specific installation commands correctly for your
system.

3. If you re-run config.sh at a later time, it will overwrite Makefile , so
make sure you copy it first.

6.8 USER-SUPPLIED INTERFACE ROUTINES
6.8.1 Introduction

Depending on the test mode selected, VSX needs to use a variety of functions which are
not in the corresponding specification in order to set up the conditions required to
execute tests of system interfaces which are. Since this functionality can be defined in
any way a system implementor requires, VSX has a file which needs to be edited to
define these functions prior to the compilation of the test suite.

For example, VSX needs to obtainappropriate privilegesin many tests. Since the
means of obtaining these privileges is not specified in the Single UNIX Specification, it
is configurable in the fileSRC/userintf.c .

As supplied with VSX, these routines make use of system interfaces commonly found
on many systems. The file contains sensible defaults and if, after reviewing these, you
decide that they are not appropriate for your system, you should modify the routines as
necessary before the VSX test suite is installed.

Only the routines needed for the subsets and test mode you have selected are placed in
the template userintf.c file. Descriptions of the individual interfaces may be
found below. You need only refer to the descriptions of the routines that appear in the
template that has been created byconfig.sh .

6.8.2 setprv()

setprv() provides the current process withappropriate privileges. The argument
specifies what privilege is being requested from the following set:

PRV_SETID to perform privilegedsetuid() and setgid() calls

PRV_MOUNT to mount and unmount file systems

PRV_LINKDIR to create and remove links to directories

PRV_ACCESS to gain unrestricted access to files

The Open Group
VSXgen 1.4 Page 32

X/Open System Verification Suite VSX User and Installation Guide

PRV_CHOWN to perform privilegedchown() and chmod() calls

PRV_SETGRPS to set supplementary group IDs

PRV_NEWROOT to set the root directory of the process

PRV_KILL to perform privilegedkill() calls

PRV_DEVICE to access device files

PRV_ASSIGN to assign privileges to an executable file

PRV_IPC to allow unrestricted IPC access

PRV_NICE to perform privilegednice() calls

PRV_ULIMIT to perform privileged setlimit() or ulimit()
calls

PRV_LIMITS to perform privilegedsetrlimit() calls

PRV_MEMLOCK to obtain memory locking privileges

PRV_SETTIME to set (real-time) clocks

PRV_SETRTSCHED to set (real-time) process scheduling parameters

PRV_GETRTSCHED to get privileged (real-time) process scheduling
parameters

PRV_SETTHRSCHED to set threads scheduling parameters

PRV_GETTHRSCHED to get privileged threads scheduling parameters

The mapping of this privilege set to the set of privileges on the implementation may not
be one-to-one. If distinction between individual privileges is not considered important,
then the simplest mapping is to give the calling process all possible privileges on each
call to setprv() .
setprv() returns 0 for success,−1 for failure.

6.8.3 unsetprv()

unsetprv() removes the specified privilege from the current process. The argument
specifies what privilege is to be removed; the values are the same as those used with
setprv() .
unsetprv() returns 0 for success,−1 for failure. (If the process already does not
have the privilege, this is considered success).

6.8.4 prv_assign()

prv_assign() assignsappropriate privilegesto an executable file. The arguments
are the file name and a zero-terminated array of the privileges to be assigned. Privilege
values are the same as those used withsetprv() . If a process with effective user ID
of root automatically has the requested privilege, no action is necessary. When the
file is executed it will make calls tosetprv() to activate the assigned privileges. If
privileges assigned withprv_assign() are automatically active when the file is
executed, thensetprv() should just check that the requested privilege is in effect.
prv_assign() is only called after setprv(PRV_ASSIGN) since assigning
privilege is a privileged operation.
prv_assign() returns 0 for success,−1 for failure.

The Open Group
VSXgen 1.4 Page 33

X/Open System Verification Suite VSX User and Installation Guide

6.8.5 mnt_rw()

mnt_rw() mounts the file system specified byspecon to the directorydir for reading
and writing.
mnt_rw() returns 0 for success,−1 for failure.

6.8.6 mnt_ro()

mnt_ro() mounts the file system specified byspecon to the directorydir for reading
only.
mnt_ro() returns 0 for success,−1 for failure.

6.8.7 unmnt()

unmnt() unmounts the file system specified byspecfrom the directorydir where it
has previously been mounted.
unmnt() returns 0 for success,−1 for failure.

6.8.8 openctl()

openctl() opens the terminal devicespec with the specifiedflags. This then
becomes the controlling terminal for the current process.
openctl() returns the open file descriptor for the terminal, or−1 on failure.

6.8.9 openpty()

openpty() opens the master and slave sides of a pseudo-terminal. Both device
names are supplied, but if master pseudo-terminals are obtained from a clone device
such as /dev/ptmx then the slave name is a dummy which must be overwritten with
the real device name. An argument specifies whether the slave must be opened as a
controlling terminal by callingopenctl() instead of plain open() . Both devices
must be opened for reading and writing. On many systems master devices can only be
opened once, giving EBUSY for example on subsequent opens. Ifopenpty()
encounters a busy master device, it must simply open the slave. This routine is only
called if pseudo-terminals are being used for terminal testing.
openpty() returns 0 for success or−1 for failure.

6.8.10 ptygetattr()

ptygetattr() obtains terminal attributes for the slave pseudo-terminal
corresponding to the master device addressed by a specified file descriptor. This routine
is only called if pseudo-terminals are being used for terminal testing.
ptygetattr() returns 0 for success or−1 for failure.

6.8.11 newroot()

newroot() causespath to become the root directory for the current process.
newroot() is only called after setprv(PRV_NEWROOT) since setting the root
directory is usually a privileged operation.
newroot() returns 0 for success,−1 for failure.

6.8.12 setlimit()

setlimit() is used to reduce the output file size limit for the process. The argument
is the value to be set in units of 512 byte blocks, and will always be greater than or
equal to the value set for theVSX_ULIMIT_BLKS parameter.
setlimit() returns the new limit, or−1 for failure.

The Open Group
VSXgen 1.4 Page 34

X/Open System Verification Suite VSX User and Installation Guide

6.8.13 pathdepth()

pathdepth() is used to determine the depth of pathnames beginning with// below
the root directory of the process. The default code supplied is suitable for systems
which use // to refer to a directory level above the root; i.e., when the root directory is
referred to by // somename.

6.8.14 Additional Subset-specific Routines

The package-specific sections at the end of this chapter describe any additional routines
that may have been added touserintf.c for the subsets you have selected.

hhh

Action Points

1. Review the fileSRC/userintf.c and identify if it needs to be modified.

2. Modify the file to meet your system’s requirements.

3. If you re-run config.sh at a later time, it will overwriteSRC/userintf.c
with the default version, so make sure you copy it first.

6.9 INSTALLING THE PSEUDO-LANGUAGES
6.9.1 Introduction

The internationalisation elements of VSX make use of a set of ‘pseudo-languages’
which must be installed, if they are needed by one or more test packages, using the
appropriate tools for your system. Refer to the package-specific sections at the end of
this chapter to determine whether the pseudo-languages are needed for the subsets and
test mode you have selected.

The character encodings for additional characters in these languages must be chosen so
as not to conflict with the encodings for the portable character set on your system.

Detailed information about the VSX pseudo-languages is contained in a separate
document, called theVSX Pseudo-language Specification.

6.9.2 Configuring the Character Encodings

Each pseudo-language contains both the portable character set and the control character
set with their normal encodings, plus a number of additional characters. The character
encodings for the additional characters are specified in the file
SRC/INC/pslcodes.h , which you must modify if the default encodings conflict
with the encodings for the portable character set or the control character set on your
system. The default encodings are shown in the section entitled ‘‘PSEUDO-
LANGUAGE DEFINITION’’ in the VSX Pseudo-language Specification. They are
suitable for systems where the characters of the portable character set and control
character set have values in the range 0x0 to 0x7f (as in the ASCII character set).

The character encodings for the control character set are specified in the file
SRC/INC/ctrlcodes.h . You must modify this file if the default encodings are not
correct for your system. The default encodings are those of the control characters in the
ASCII character set. The file contains two sets of definitions, one for the C locale and
one for the pseudo-languages, in case the C locale definitions are not appropriate for use
in the pseudo-languages. Any control characters that are not supported by your system
should be defined with the value zero. The C locale definitions for the characters DEL,
NAK, ETX, FS, DC1, DC3, EOT, VT and SUB must not be zero, as they are used by
the terminal interface tests.

The Open Group
VSXgen 1.4 Page 35

X/Open System Verification Suite VSX User and Installation Guide

The character encodings specified in these two files will be compiled into the VSX
libraries when the libraries are built. Therefore you must configure these files before
proceeding to the installation stage, even though the languages themselves will not be
used until the execution stage.

6.9.3 Installing the Languages

There are five separate pseudo-languages, with the locale namesVSX4L1, VSX4L2,
VSX4L3, VSX4L3@dict and VSX4L0. The definitions of the language elements
(shift and classification tables, language information tables and collating sequences) are
contained in the section entitled ‘‘PSEUDO-LANGUAGE DEFINITION’’ in the VSX
Pseudo-language Specification. If you execute tests before installing the pseudo-
languages, then tests which require a pseudo-language will give a result of
unresolved or uninitiated .

If your system supports thelocaledef utility, and has ASCII or EBCDIC character
encodings, you should be able to use the files supplied inSUPPORT/psldefs with
little or no modification to install the pseudo-languages. If your system does not
support localedef you may find that you can adapt these files to the file format
required by your system. Note that the character encodings given in theCHARMAP
entries must match the encodings you have configured inSRC/INC/ctrlcodes.h
and SRC/INC/pslcodes.h . Also, since EBCDIC character encodings vary, you
may need to alter some of the encodings for the portable character set. Comments in
the file suggest alternative encodings.

hhh

Action Points

1. Check the package-specific action points for this chapter to see whether the
pseudo-languages are needed for the subsets and test mode you have selected. If
they are not needed, skip the following action points.

2. If your system does not use the ASCII character set, modify the file
SRC/INC/ctrlcodes.h so that it contains the correct control character
encodings for your system. If your system uses an EBCDIC character set, copy
the file SRC/INC/ctrlebcdic.h to SRC/INC/ctrlcodes.h first.

3. Check that the character encodings specified in the file
SRC/INC/pslcodes.h are suitable for your system, and modify the file if
they are not. If your system uses an EBCDIC character set, copy the file
SRC/INC/pslebcdic.h to SRC/INC/pslcodes.h first.

4. Install the VSX pseudo-languages using the appropriate tools for your system.
You may be able to make use of the files inSUPPORT/psldefs to do this.

6.10 WIDE CHARACTER CONFIGURATION FILE
6.10.1 Introduction

Some test packages contain tests for wide character and multibyte character interfaces,
which obtain information about the wide characters and multibyte characters supported
on the system from a configuration file,SRC/wchars.cfg . Refer to the package-
specific sections at the end of this chapter to see if this file is needed for the subsets and
test mode you have selected. If it is needed, you must enter the required information in
this file before proceeding to the installation stage, as the install script compiles the
information into a binary file for use in the tests.

An example file suitable for use on systems which only support single-byte characters is
provided with VSX. To use it simply copy SRC/wc_nosup.cfg to

The Open Group
VSXgen 1.4 Page 36

X/Open System Verification Suite VSX User and Installation Guide

SRC/wchars.cfg .

The wide character configuration file contains information about two locales. One
locale is often required to exhibit the opposite behaviour of the other, so while one of
the locales can be selected from the locales already present on the system, it will usually
be necessary to install the other, as it will have strange properties not found in a normal
locale. The locales chosen must support non-state-dependent encodings. Also, VSX
tests only multibyte characters of 2, 3 and 4 bytes. The locales chosen must support at
least one of these encodings.

The first two parameters in the file contain the names of the two locales. The remaining
parameters contain lists of characters with specified attributes. These characters may be
entered either as wide character numeric values or as multibyte sequences in quotes.
Numeric values may only be used if conversion to a multibyte sequence using
wctomb() will not generate a shift sequence. The usual convention of a leading0x
for hexadecimal and leading0 for octal are used (otherwise decimal). In quoted
strings the usual C language string literal conventions are used, including"\x"
hexadecimal escapes. Where a multibyte character requires a lead sequence to
introduce the encoding used, it must be entered as two adjacent quoted strings so that
the byte count of the character itself will be correct.

Comments preceding each parameter specify the required attributes of the characters
listed in the parameter. Where no character with those attributes exists, enter either0
or "" .

Note that the file does not contain parameters to specify printing and non-printing
characters. The tests assume that all graphic and space characters are printing
characters, and all control characters are non-printing characters.

6.10.2 Example Wide Character ConfigurationFile

On the following pages is an example wide character configuration file based on a draft
of the ISO 10646 character set. This character set supports three and four byte
multibyte encodings introduced by one or two SGCI (single graphic character
introducer) control characters ("\x97").

Long lines in this example have been folded for formatting purposes, marked by a \
character on the end of the line. These lines must be entered as a single line in the
configuration file.

hhh

Action Points

1. If the wide character locales are needed for the subsets and test mode you have
selected, update the fileSRC/wchars.cfg with information about wide
characters and multibyte characters supported on your system. If your system
only supports single-byte characters, simply copySRC/wc_nosup.cfg to
SRC/wchars.cfg .

2. If you re-run config.sh at a later time, it will overwrite
SRC/wchars.cfg , so make sure you copy it first.

3. Install additional locales if necessary to reflect the information in the file.

4. If you changeSRC/wchars.cfg at a later stage there is no need to repeat the
installation stage or to rebuild any testsets. Simply change directory to
SRC/common/wchars and type make. This will update the binary file used
by the tests from the new information inwchars.cfg .

The Open Group
VSXgen 1.4 Page 37

X/Open System Verification Suite VSX User and Installation Guide

This file is a pro forma wide character configuration parameter file.
Wide characters may be entered as a numeric value (with a leading 0
indicating octal or a leading 0x indicating hexadecimal, otherwise
decimal), or as the equivalent multibyte sequence in double quotes
(using ’C’ string literal conventions). If a character needs a lead
sequence to introduce it, it must be specified as two double quoted
strings ("lead_seq" "character") so that the byte count of the
character itself will be correct. Numeric values may only be used
if conversion by wctomb() will not generate a shift sequence.
#
Where no wide character with the specified attributes exists, enter 0
or "". White space in parameter values is ignored.
#
Wide character entries are separated by commas; groups of wide characters
are separated by semi-colons.

#Locale names to which the values in the following parameters apply.
LOCALE1=VSXWCLOC1
LOCALE2=VSXWCLOC2

#Characters for which iswcntrl(), etc. are true (ISWCNTRL, etc.) or
#false (NOTCNTRL, etc.) for LOCALE1, and vice versa for LOCALE2.
#It is assumed that all graphic and space characters are printing
#characters, and all control characters are non-printing characters.
#Each parameter must contain a comma separated list of three wide
#characters which correspond to 2,3 and 4 byte multibyte characters
#respectively.
ISWCNTRL=0, "\x97"" \x81", "\x97\x97"" \x81"
NOTCNTRL=0, "\x97"" \x94", "\x97\x97"" \x94"
ISWGRAPH=0, "\x97"" ˜", "\x97\x97"" ˜"
NOTGRAPH=0, "\x97"" &", "\x97\x97"" &"
ISWLOWER=0, "\x97"" a", "\x97\x97"" a"
NOTLOWER=0, "\x97"" A", "\x97\x97"" A"
ISWPUNCT=0, "\x97"" !", "\x97\x97"" !"
NOTPUNCT=0, "\x97"" #", "\x97\x97"" #"
ISWSPACE=0, "\x97"" @", "\x97\x97"" @"
NOTSPACE=0, "\x97"" ", "\x97\x97"" "
ISWUPPER=0, "\x97"" A", "\x97\x97"" A"
NOTUPPER=0, "\x97"" a", "\x97\x97"" a"

#Lowercase/uppercase character pairs. In LOCALE1 the first character
#in each pair is lowercase, the second is the corresponding uppercase
#character. In LOCALE2 the first is uppercase and the second is
#the corresponding lowercase character.
#This parameter must contain a semi-colon separated list of three pairs
#of comma separated wide characters with the first character in each pair
#corresponding to a 2, 3 and 4 byte multibyte character respectively.
TOWUPPER=0,0; "\x97"" a", "\x97"" A"; "\x97\x97"" a", "\x97\x97"" A"

#Uppercase/lowercase character pairs. In LOCALE1 the first character
#in each pair is uppercase, the second is the corresponding lowercase
#character. In LOCALE2 the first is lowercase and the second is
#the corresponding uppercase character.
#This parameter must contain a semi-colon separated list of three pairs
#of comma separated wide characters with the first character in each pair
#corresponding to a 2, 3 and 4 byte multibyte character respectively.
TOWLOWER=0,0; "\x97"" A", "\x97"" a"; "\x97\x97"" A", "\x97\x97"" a"

The Open Group
VSXgen 1.4 Page 38

X/Open System Verification Suite VSX User and Installation Guide

#Additional properties for use with wctype().
#This parameter must contain a comma separated list of all property
#names supported by wctype() other than the standard ones
#(alnum, etc.).
PROPERTIES=cyrillic, greek

#Characters for which the above properties are true (ISW<property>)
#or false (NOT<property>) for LOCALE1, and vice versa for LOCALE2.
#One ISW<property> and one NOT<property> parameter should be
#defined for each property name in PROPERTIES, with <property>
#in the parameter names replaced by the real property name.
#Each parameter must contain a comma separated list of three wide
#characters which correspond to 2,3 and 4 byte multibyte characters
#respectively.
ISWCYRILLIC=0, "\x97"" \x28\x60", "\x97\x97"" \x28\x60"
NOTCYRILLIC=0, "\x97"" \x2a\x22", "\x97\x97"" \x2a\x22"
ISWGREEK=0, "\x97"" \x2a\x22", "\x97\x97"" \x2a\x22"
NOTGREEK=0, "\x97"" \x28\x60", "\x97\x97"" \x28\x60"

#Characters with specified printing widths in LOCALE1. The wide
#characters in WIDTH<x> have a printing width of <x>.
#Each parameter must contain a comma separated list of three wide
#characters which correspond to 2,3 and 4 byte multibyte characters
#respectively. If the system does not support any printing
#characters of a particular width, enter 0 or "" for all three
#wide characters in the corresponding parameter.
WIDTH0=0, "\x97"" \x82", "\x97\x97"" \x82"
WIDTH1=0, "\x97"" \x83", "\x97\x97"" \x83"
WIDTH2=0, "\x97"" \x84", "\x97\x97"" \x84"
WIDTH3=0, "\x97"" \x85", "\x97\x97"" \x85"

#Decimal point character for LOCALE1.
#This parameter should contain a multibyte character of more than
#one byte, if supported.
DECPOINT1="\x97"" ."

#Decimal point character for LOCALE2.
#This parameter should contain a multibyte character of more than
#one byte, if supported, with a different value to DECPOINT1.
DECPOINT2="\x97"" , "

#A character in LOCALE1 which corresponds to a multibyte sequence
#of length MB_CUR_MAX.
MBCURMAX1="\x97\x97"" a"

#A character in LOCALE2 which corresponds to a multibyte sequence
#of length MB_CUR_MAX.
MBCURMAX2="\x97\x97"" a"

#An invalid multibyte sequence.
#This parameter must contain a string in double quotes.
INVALID_MB="\x97"

#A wide character value which does not correspond to a multibyte
#character.
#This parameter must contain an integer value.
INVALID_WC=999999

The Open Group
VSXgen 1.4 Page 39

X/Open System Verification Suite VSX User and Installation Guide

The following parameters are not used in any tests if wcscoll() and
wcsxfrm() are not supported. In this case "all zero" values should
be used to satisfy the config file compiler. (They can be copied
from wc_nosup.cfg).

#Characters which are ignored when collating strings.
#This parameter must contain a comma separated list of three wide
#characters which correspond to 2,3 and 4 byte multibyte characters
#respectively.
DONTCARE=0, "\x97"" \x86", "\x97\x97"" \x86"

#Character pairs which differ in primary collation order. In
#each pair the first character collates before the second in
#LOCALE1, and vice versa in LOCALE2.
#This parameter must contain a semi-colon separated list of ten
#pairs of comma separated wide characters which correspond to
#multibyte characters with the following numbers of bytes: 1, 1;
#1, 2; 1, 3; 1, 4; 2, 2; 2, 3; 2, 4; 3, 3; 3, 4; 4, 4.
PRIMARY="\x87", "\x88";0,0; "\x87", "\x97"" \x88"; "\x87", "\x97\x97"" \
\x88";0,0;0,0;0,0; "\x97"" \x87", "\x97"" \x88"; "\x97"" \x87", "\x97\x97"" \
\x88"; "\x97\x97"" \x87", "\x97\x97"" \x88"

#Character pairs which have the same primary collation order
#but differ in secondary collation order. In each pair the first
#character collates before the second in LOCALE1, and vice versa
#in LOCALE2.
#This parameter must contain a semi-colon separated list of ten
#pairs of comma separated wide characters which correspond to
#multibyte characters with the following numbers of bytes: 1, 1;
#1, 2; 1, 3; 1, 4; 2, 2; 2, 3; 2, 4; 3, 3; 3, 4; 4, 4.
SECONDARY="\x89", "\x8a";0,0; "\x89", "\x97"" \x8a"; "\x89", "\x97\x97"" \
\x8a";0,0;0,0;0,0; "\x97"" \x89", "\x97"" \x8a"; "\x97"" \x89", "\x97\x97"" \
\x8a"; "\x97\x97"" \x89", "\x97\x97"" \x8a"

#Characters which collate as 2-1 mappings, with different primary
#order. In each set of three characters the first two together
#form a collation element which collates before the third character
#in LOCALE1, and vice versa in LOCALE2.
#This parameter must contain a semi-colon separated list of six
#triplets of comma separated wide characters which correspond to
#multibyte characters with the following numbers of bytes: 1, 1, 2;
#2, 3, 1; 2, 1, 3; 4, 2, 3; 1, 3, 3; 3, 4, 4.
PRIMARY2_1=0,0,0;0,0,0;0,0,0;0,0,0; "\x8b", "\x97"" \x8c", "\x97"" \x8d"; \
"\x97"" \x8b", "\x97\x97"" \x8c", "\x97\x97"" \x8d"

#Characters which collate as 2-1 mappings, with the same primary
#collation order, but different secondary order. In each set of
#three characters the first two together form a collation element
#which collates before the third character in LOCALE1, and vice
#versa in LOCALE2.
#This parameter must contain a comma separated list of six
#triplets of wide characters which correspond to multibyte
#characters with the following numbers of bytes: 1, 1, 2;
#2, 3, 1; 2, 1, 3; 4, 2, 3; 1, 3, 3; 3, 4, 4.
SECONDARY2_1=0,0,0;0,0,0;0,0,0;0,0,0; "\x8e", "\x97"" \x8f", "\x97"" \x90"; \
"\x97"" \x8e", "\x97\x97"" \x8f", "\x97\x97"" \x90"

The Open Group
VSXgen 1.4 Page 40

X/Open System Verification Suite VSX User and Installation Guide

#Characters which collate equally as 1-2 mappings. In each set of
#three characters the first two are collation elements which
#collate as a pair equally with the third character.
#This parameter must contain a comma separated list of six
#triplets of wide characters which correspond to multibyte
#characters with the following numbers of bytes: 1, 1, 2;
#2, 3, 1; 2, 1, 3; 4, 2, 3; 1, 3, 3; 3, 4, 4.
EQUAL1_2=0,0,0;0,0,0;0,0,0;0,0,0; "\x91", "\x97"" \x92", "\x97"" \x93"; \
"\x97"" \x91", "\x97\x97"" \x92", "\x97\x97"" \x93"

The following parameters are not used in any tests if wcsftime() is not
supported. In this case dummy values should be entered to satisfy the
config file compiler. (They can be copied from wc_nosup.cfg).

#Time values returned by wcsftime() for LOCALE1.
#MONTH1_1 contains a comma separated list of the characters in
#the full name for January, MONTH2_1 for February, and so on.
#Likewise ABMON1_1, etc. contain the abbreviated month names,
#DAY1_1, etc. contain the seven full day names, starting with
#Sunday, and ABDAY1_1, etc. contain the abbreviated day names.
#AM_STR1 contains the AM string and PM_STR1 contains the PM string.
#These parameters must together contain 2, 3 and 4 byte multibyte
#characters (at least one of each size that is supported).
MONTH1_1="J", "a", "\x97\x97"" n", "\x97"" u", "a", "r", "y"
MONTH2_1="F", "e", "b", "r", "\x97"" u", "a", "r", "y"
MONTH3_1="M", "a", "r", "c", "h"
MONTH4_1="A", "p", "r", "i", "l"
MONTH5_1="M", "a", "y"
MONTH6_1="J", "\x97"" u", "\x97\x97"" n", "e"
MONTH7_1="J", "\x97"" u", "l", "y"
MONTH8_1="A", "\x97"" u", "g", "\x97"" u", "s", "t"
MONTH9_1="S", "e", "p", "t", "e", "m", "b", "e", "r"
MONTH10_1="O", "c", "t", "o", "b", "e", "r"
MONTH11_1="N", "o", "v", "e", "m", "b", "e", "r"
MONTH12_1="D", "e", "c", "e", "m", "b", "e", "r"
ABMON1_1="J", "a", "\x97\x97"" n"
ABMON2_1="F", "e", "b"
ABMON3_1="M", "a", "r"
ABMON4_1="A", "p", "r"
ABMON5_1="M", "a", "y"
ABMON6_1="J", "\x97"" u", "\x97\x97"" n"
ABMON7_1="J", "\x97"" u", "l"
ABMON8_1="A", "\x97"" u", "g"
ABMON9_1="S", "e", "p"
ABMON10_1="O", "c", "t"
ABMON11_1="N", "o", "v"
ABMON12_1="D", "e", "c"
DAY1_1="S", "\x97"" u", "\x97\x97"" n", "d", "a", "y"
DAY2_1="M", "o", "\x97\x97"" n", "d", "a", "y"
DAY3_1="T", "\x97"" u", "e", "s", "d", "a", "y"
DAY4_1="W", "e", "d", "\x97\x97"" n", "e", "s", "d", "a", "y"
DAY5_1="T", "h", "\x97"" u", "r", "s", "d", "a", "y"
DAY6_1="F", "r", "i", "d", "a", "y"
DAY7_1="S", "a", "t", "\x97"" u", "r", "d", "a", "y"
ABDAY1_1="S", "\x97"" u", "\x97\x97"" n"
ABDAY2_1="M", "o", "\x97\x97"" n"
ABDAY3_1="T", "\x97"" u", "e"
ABDAY4_1="W", "e", "d"

The Open Group
VSXgen 1.4 Page 41

X/Open System Verification Suite VSX User and Installation Guide

ABDAY5_1="T", "h", "\x97"" u"
ABDAY6_1="F", "r", "i"
ABDAY7_1="S", "a", "t"
AM_STR1="A", "M"
PM_STR1="P", "M"

#Time values returned by wcsftime() for LOCALE2, specified in the
#same manner as for LOCALE1. The values in these parameters must
#differ from the values in the corresponding LOCALE1 parameters.
MONTH1_2="j", "a", "\x97\x97"" n", "v", "i", "e", "r"
MONTH2_2="f", "E", "v", "r", "i", "e", "r"
MONTH3_2="m", "a", "r", "s"
MONTH4_2="a", "v", "r", "i", "l"
MONTH5_2="m", "a", "i"
MONTH6_2="j", "\x97"" u", "i", "\x97\x97"" n"
MONTH7_2="j", "\x97"" u", "i", "l", "l", "e", "t"
MONTH8_2="a", "o", "C", "t"
MONTH9_2="s", "e", "p", "t", "e", "m", "b", "r", "e"
MONTH10_2="o", "c", "t", "o", "b", "r", "e"
MONTH11_2="\x97\x97"" n", "o", "v", "e", "m", "b", "r", "e"
MONTH12_2="d", "E", "c", "e", "m", "b", "r", "e"
ABMON1_2="j", "a", "\x97\x97"" n", "v"
ABMON2_2="f", "E", "v", "r"
ABMON3_2="m", "a", "r", "s"
ABMON4_2="a", "v", "r"
ABMON5_2="m", "a", "i"
ABMON6_2="j", "\x97"" u", "i", "\x97\x97"" n"
ABMON7_2="j", "\x97"" u", "i", "l"
ABMON8_2="a", "o", "C", "t"
ABMON9_2="s", "e", "p", "t"
ABMON10_2="o", "c", "t"
ABMON11_2="\x97\x97"" n", "o", "v"
ABMON12_2="d", "E", "c"
DAY1_2="d", "i", "m", "a", "\x97\x97"" n", "c", "h", "e"
DAY2_2="l", "\x97"" u", "\x97\x97"" n", "d", "i"
DAY3_2="m", "a", "r", "d", "i"
DAY4_2="m", "e", "r", "c", "r", "e", "d", "i"
DAY5_2="j", "e", "\x97"" u", "d", "i"
DAY6_2="v", "e", "\x97\x97"" n", "d", "r", "e", "d", "i"
DAY7_2="s", "a", "m", "e", "d", "i"
ABDAY1_2="d", "i", "m"
ABDAY2_2="l", "\x97"" u", "\x97\x97"" n"
ABDAY3_2="m", "a", "r"
ABDAY4_2="m", "e", "r"
ABDAY5_2="j", "e", "\x97"" u"
ABDAY6_2="v", "e", "\x97\x97"" n"
ABDAY7_2="s", "a", "m"
AM_STR2="a", "m"
PM_STR2="p", "m"

The Open Group
VSXgen 1.4 Page 42

X/Open System Verification Suite VSX User and Installation Guide

6.11 CONFIGURING LSB-FHS
6.11.1 Installation Directory

hhh

Action Points

1. The requirement for the installation directory to support the inheritance of parent
directory group ID only applies if you intend to merge this testset with the VSX-
PCTS subset.

2. If you are first time user of the LSB-FHS distribution, it is recommended that you
use the install.sh script to guide you through the configure, install, build
and execute process.

6.11.2 VSX Configuration Script

Note the following points regarding the configuration script questions described in the
generic part of this chapter:

Subset
You can select the following subset only:

g lsb-fhs – the LSB tests for the filesystem hierarchy layout.

The Open Group
LSB-FHS Page 43

X/Open System Verification Suite VSX User and Installation Guide

6.12 CONFIGURING LSB-OS
6.12.1 Installation Directory

hhh

Action Points

1. The requirement for the installation directory to support the inheritance of parent
directory group ID does not apply to LSB-OS.

6.12.2 VSX Configuration Script

The following additional questions are asked by the configuration script if thelsb-os
subset has been selected:

Link Editor Options for Threads and Realtime
The link editor options to be used instead of the normal options when linking programs
that use Threads and Realtime APIs, ornone if no options should be used (default:
same as normal link editor options).

Realtime Library
The library or libraries used by your system for Realtime APIs (for example-lrt).
Give one library name each time the question is asked.

Additional Realtime Libraries
Libraries needed on your system to build programs that use Threads and Realtime APIs.
The list of libraries given here is usedinsteadof the libraries given in answer to the
‘Additional Libraries’ question described in the generic part of this chapter. The list
needs to include libraries used for Threads and Realtime routines as well as Base
routines (for example-lrt -lpthread -lc). Give one library name each time
the question is asked.

Dependency Objects
Whether dependencies between shared objects are supported (y/n, default:y).

Objects with Unresolved References
Whether shared objects containing unresolved references are supported (y/n, default:
y).

Compiler Options Needed for dlopen()
The compiler options to be used instead of the normal options when compiling
programs that employdlopen() and its related services, ornone if no options
should be used (default: same as normal compiler options).

Link Editor Options Needed for dlopen()
The link editor options to be used instead of the normal options when linking programs
that employ dlopen() and its related services, ornone if no options should be
used (default: same as normal link editor options).

Dynamic Linking Library
The location of the library which contains the dynamic linking routinesdlopen() ,
etc., or none if no separate library is needed to use these routines (default:none).

The optional configuration script questions described in the generic part of this chapter
apply to LSB-OS as follows:

C Compiler Threads Command Line Options
This question is always asked.

The Open Group
LSB-OS1.0 Page 44

X/Open System Verification Suite VSX User and Installation Guide

C Compiler Pure Executable Flag
This question does not apply.

Maths Library
This question does not apply.

File System for ENOSPC Tests
This question is always asked.

6.12.3 User-Supplied Interface Routines

LSB-OS does not require any special user-supplied routines.

6.12.4 Installing the Pseudo-Languages

hhh

Action Points

1. The pseudo-languages are needed by LSB-OS.

6.12.5 Wide Character ConfigurationFile

hhh

Action Points

1. The SRC/wchars.cfg file is needed by LSB-OS.

6.12.6 Script To Create Shared Objects

All of the shared objects used in the dynamic linking interface tests are created using a
shell script which you need to configure to use the correct compiler/linker commands
for your system. In the simplest case the script is passed the name of the shared object
to be created and a C source file. If the implementation supports dependency objects,
the script will also be used to create shared objects which have a dependency on another
shared object (which will have been previously created by the same script). In addition,
the script will be used to create shared objects containing unresolved references, if they
are supported by the implementation.

The shell script is calleddynl_mkso.sh , and is placed in theSRCdirectory by
config.sh if the lsb-os subset has been selected (and the file does not already
exist). The default version supplied uses an additional compiler option-fPIC and an
additional link editor option -shared , and assumes that dependencies (if supported)
are indicated simply by placing the full path name of the dependency object in the
compiler command after the source file for the new shared object. If this will not cause
the dependency object to be found using the full path name, the script must be altered as
necessary to ensure the dependency object will be found (e.g. by arranging for the new
shared object to contain a suitable search path). The default script also assumes that no
additional compiler option is needed to indicate that the shared object to be created
contains unresolved references (if supported).

hhh

Action Points

1. Edit the file SRC/dynl_mkso.sh and ensure that the commands it uses to
create shared objects are correct for your system.

The Open Group
LSB-OS1.0 Page 45

X/Open System Verification Suite VSX User and Installation Guide

6.13 CONFIGURING VSX4
6.13.1 Installation Directory

hhh

Action Points

1. The requirement for the installation directory to support the inheritance of parent
directory group ID applies to VSX4 if thebase subset is selected.

6.13.2 VSX Configuration Script

Note the following points regarding the configuration script questions described in the
generic part of this chapter:

Subset
You can select the following VSX4 subsets:

g base – the Base system interface and header tests, and (except in POSIX and FIPS
modes) C language tests.

g dm– the data management tests.

Include Files
If you have selected thedm subset, and isam.h is not in the default include
directories, add its directory here.

The following additional question is asked by the configuration script if thebase
subset has been selected:

ANSI signal Function
Whether the ANSI function signal() is supported (y/n, default: y). This
question is only asked in POSIX and FIPS modes.

The following additional question is asked by the configuration script if thedmsubset
has been selected:

ISAM Library
The location of the archive library which contains your ISAM library routines, if there
is one.

The optional configuration script questions described in the generic part of this chapter
apply to VSX4 as follows:

C Compiler Threads Command Line Options
This question does not apply.

C Compiler Pure Executable Flag
This question is asked if thebase subset and one of the XPG or UNIX test modes
have been selected. The detection ofETXTBSY is optional in the X/Open
specifications tested by VSX4 and thus this flag may be omitted if this functionality is
not supported.

Maths Library
This question is asked if thebase subset has been selected.

File System for ENOSPC Tests
This question is asked if thebase subset has been selected.

The Open Group
VSX-PCTS4.4.4 Page 46

X/Open System Verification Suite VSX User and Installation Guide

6.13.3 User-supplied Interface Routines

The additional routines inuserintf.c needed by VSX4 are described below.

An example version ofuserintf.c suitable for systems based on UNIX System V
Release 4.1 Enhanced Security is provided in the file
SRC/common/vport/userintfES.c . Note that this file only contains the
routines needed by the VSX4 test package.

setgrps()
setgrps() sets the current supplementary groups list to the group IDs ingrparray.
This array should containngrps entries. setgrps() is only called after
setprv(PRV_SETGRPS) since setting groups is usually a privileged operation.
setgrps() returns 0 for success,−1 for failure.

If the implementation does not support setting the supplementary groups list, then
setgrps() must return−1 with errno set to ENOSYS.

sys_call()
sys_call() makes one or more calls to an interface which is known to be a system
call. When a test needs to accumulate system CPU time, this routine is called a large
number of times. One system call each time should be sufficient, but more may be
executed if required.
sys_call() returns 0 for success,−1 for failure.

use_time()
use_time() performs processing which will accumulate user CPU time. When a test
needs to accumulate user CPU time, this routine is called a large number of times. The
amount of processing per call may be adjusted if necessary.

ftok()
ftok() returns a key based on the argumentspath and id, for use in msgget() ,
semget() and shmget() calls. ftok() is normally supplied with IPC
implementations. You only need to provideftok() in userintf.c if you do not
already have the function on your system, or if the version offtok() on the system
has different arguments or return type. The example version provided with VSX
assumes thatkey_t is a 32 bit integral type.

This function is only used in XPG4 mode.

6.13.4 Installing The Pseudo-languages

hhh

Action Points

1. The pseudo-languages are needed if thebase subset has been selected.

6.13.5 Wide Character ConfigurationFile

hhh

Action Points

1. The SRC/wchars.cfg file is needed for thebase subset in XPG4 and
UNIX98 modes.

The Open Group
VSX-PCTS4.4.4 Page 47

X/Open System Verification Suite VSX User and Installation Guide

7. INSTALLING VSX
7.1 INTRODUCTION

If you are using the LSB packaged version of these tests then the you can use the
automated installation wrapper scripts to complete this stage. See the top-level
README provided with the download files.

When you have configured VSX for your system, you can proceed to the VSX
installation stage. This is where the installation commands configured in the top level
Makefile are executed and the VSX utilities and libraries are built.

The major part of the installation procedure is performed by a script which is executed
with the user ID of uservsx0 from the top level Makefile . The installation script
applies the parameters and definitions in the filesvsxparams and vsxconfig.h
to the VSX source files. The script generates a report with details of the success of each
step in a journal file in theresults directory. The journal files from successive runs
of the installation script are numbered sequentially.

The installation script includes the following steps:

7.1.1 VSX Header Files

The file SRC/INC/std.h is updated with values fromvsxparams which are
needed in C compilations.

7.1.2 Include Files

The set of your system include files is copied intoSRC/SYSINC and each file is
updated with any extra definitions required, from the filevsxconfig.h . The VSX
include files are used to install and build the VSX software, but not in the execution of
header file tests.

7.1.3 Directory Routines

The installation script checks the directory routinesopendir() and readdir()
are working. When the directory routines are not functioning correctly, the script gives
a warning, both on the screen and in the install journal.

7.1.4 Variable Argument Routines

The installation script checks whether variable argument functions work correctly,
using either <varargs.h> or <stdarg.h> depending on the test mode selected
and whether the compiler defines the symbol__STDC__. Note that the contents of
these headers is not checked during the configuration stage, when the other system
headers are checked. If the header file contents are found to be incorrect, and you do
not wish to alter the file in the system include directory, you can copy it in to
SRC/SYSINCand correct the problem there.

7.1.5 Testroot Initialisation

The install script creates the testroot directory structure under the testroot directory.

7.1.6 Configuration Files

The building and cleaning configuration files, tetbuild.cfg and
tetclean.cfg are created in the home directory, using the information from the
configuration stage. The execution configuration file,tetexec.cfg is created in the
testroot directory with some of the parameters set up with the information from the
configuration stage. However, you must add the values for most of the parameters in
the execution file manually. See the chapter entitled ‘‘EXECUTING VSX’’ for details.

The Open Group
VSXgen 1.4 Page 48

X/Open System Verification Suite VSX User and Installation Guide

These files contain the parameters which are used during the building, execution and
cleanup stages respectively.

If these configuration files already exist, they are first renamed tooldbuild.cfg ,
oldclean.cfg and oldexec.cfg before being created. Parameter values from
the old tetexec.cfg are copied to the new file before it is updated with information
from the configuration stage.

7.1.7 Scenario Files

The install script creates the scenario filesscen.bld and scen.exec in the home
directory. These are used by TETware to determine which tests are built and executed,
respectively.

7.1.8 Update Common Software Files

Firstly, userintf.c is copied into SRC/common/vport . Then the
Makefile s in the various sub-directories ofSRC/common are updated with
information from the configuration stage.

7.1.9 Subset-specific Install Scripts

Any additional procedures needed for the subsets and test mode you have selected are
performed at this point. For example, additional subset-specific values may be added to
SRC/INC/std.h .

7.1.10 Build Common Software

The installation script builds the VSX libraries and utility programs. The install journal
gives a success/failure indication for each directory in whichmake is executed. You
must investigate and correct any failures which occur during building before continuing
any further.

hhh

Action Points

1. Obtain the necessary privileges for execution of the installation commands you
have configured in the top levelMakefile and executemake in the vsx0
home directory. E.g.

su root -c make

2. When make has completed, check the installation log in theresults
directory to ensure that no errors have occurred. Ifmake encountered any
errors, or there are errors in the log, you must correct them and re-runmake.

The Open Group
VSXgen 1.4 Page 49

X/Open System Verification Suite VSX User and Installation Guide

8. BUILDING VSX
8.1 INTRODUCTION

When you have configured and installed VSX, the next stage builds a series of
executable programs in yourTESTROOTdirectory. These programs make up the VSX
test suite, which you run in the execution stage to verify your system. The building
stage also copies the source files for any header file and C language tests into the correct
directories.

You can choose to build all the testsets you have configured. Alternately, you can
choose the section or area you want to build and, optionally, build single testsets. When
building the tests, you can specify options to use an alternative configuration file and to
modify parameters on the command line, among others. In addition, you can use the
output from the building stage in a VSX journal file for the VSX reporting stage.

You may also need to install a loopback lead for the terminal interface testing. See the
section entitled ‘‘TERMINAL INTERFACE TESTING’’ later in this chapter for
information.

8.2 BUILDING ALL REQUIRED TESTSETS
8.2.1 Introduction

Invoking the Test Case Controller with the command

tcc -b -s scen.bld

will cause all the testsets for the options selected during the configuration stage to be
built. If you have not set the environment variableTET_EXECUTE to the pathname
of your testroot directory, you must specify it on thetcc command line. For example,
to specify the default testroot location, append

-a TESTROOT

to the command given above. The remaining example commands in this chapter
assume thatTET_EXECUTE is set in the environment.

The build parameters are found in thetetbuild.cfg file in the vsx0 home
directory. This file is created during the installation phase.

Journal File
The results from the building stage are placed in a journal file under theresults
directory. The name of this file is output by thetcc on startup. VSX provides
utilities to produce reports from these files — see the chapter entitled ‘‘REPORTING’’
for further details.

8.3 BUILDING SELECTED TESTSETS (OPTIONAL)
8.3.1 Sections and Areas

The package-specific sections at the end of this chapter give details about the parts of
the test suite you can build. To build individual testsets and use other options for the
tcc command, see the sections marked ‘‘OPTIONAL’’ later in the chapter.

8.3.2 Building Selected Parts of a Scenario

To build selected parts of the test suite, you can use the-y and -n options of the
tcc to select which lines of the filescen.bld you wish to include (-y) or exclude
(-n). You can use as many of these options as you like in one command. If a scenario
line matches both a-y string and a-n string it will be excluded.

The Open Group
VSXgen 1.4 Page 50

X/Open System Verification Suite VSX User and Installation Guide

For example, to build just thePOSIX.os section, use the command:

tcc -b -s scen.bld -y POSIX.os

or to build everything except the header tests, use the command:

tcc -b -s scen.bld -n .hdr

or to build the streamio areas in all the sections that have one, but excluding tests of
fprintf , printf , sprintf , vfprintf , vprintf and vsprintf , use the
command:

tcc -b -s scen.bld -y streamio -n printf

The journal file for a partial execution is handled correctly by the report writer.

8.3.3 Building Individual Testsets

If the list of testsets you wish to build is too varied to be specified easily using-y and
-n options, simply edit a copy of the scenario filescen.bld to reflect the testsets
you wish to build.

Examples
If the file myscen.bld contains an edited copy ofscen.bld then use the
command

tcc -b -s myscen.bld

to build just the testsets contained in the file.

8.3.4 Additional Options

The tcc manual page gives full details of the additional options you can use with the
tcc command. The following options are some of the most useful.

1. To see a running progress report, include the-p option. The tcc will then
output a line to the terminal as it starts building each testset.

2. To use an alternative configuration file totetbuild.cfg, include the
-g filenameoption. The file must be in the same format astetbuild.cfg .

3. To override a parameter in the build parameters file, include the-v option. For
example, to use the operator name ‘‘A N Other’’ rather than the value defined in
tetbuild.cfg , use the command

tcc -b -v VSX_OPER="A N Other" rest−of−command

4. In order to build testsets which failed to build in a previous build, use

tcc -b -s scen.bld -r FAIL old−journal−file

whereold−journal−file is the journal file from which the codes are extracted.

hhh

Action Points

1. Log in as the uservsx0 .

2. Give the command

tcc -b -s scen.bld

with the other options you want to use. Use the command

../bin/tcc -b -s scen.bld

from the vsx0 home directory if $HOME/../bin is not in yourPATH .

The Open Group
VSXgen 1.4 Page 51

X/Open System Verification Suite VSX User and Installation Guide

8.4 REMOVING BUILT TESTSETS
When you want to remove all of the object files and executable programs for the whole
test suite or part of it, you can use the-c option of the tcc command. This option
works in exactly the same way as the-b option except that, instead of building the test
suite, this option returns the system to the state it was in before you started the building
stage.

Use this option when you want to re-build VSX using a different compiler.

8.5 REPORTING
You can produce reports from the journal files output bytcc by using the procedures
described in the chapter entitled ‘‘REPORTING’’. These reports show you where any
compilation failures have occurred.

8.6 TERMINAL INTERFACE TESTING
8.6.1 Introduction

For tests that need to use a terminal interface, two ports on the same machine are
connected with each other. Then one port simulates the presence of a terminal providing
for error-free and repeatable testing. Where implementations do not have at least two
terminal ports, the tests can instead be performed using pseudo-terminals. In this case a
user-supplied routine is called to open the pseudo-terminals. See the section entitled
‘‘USER-SUPPLIED INTERFACE ROUTINES’’ for a description of this routine.

The terminal loop-back is only needed by some test packages. Refer to the package-
specific sections at the end of this chapter for details.

If the system does not provide any devices which support the general terminal interface,
then tests which need to use a terminal interface will giveunsupported results.

Certain tests require modem control and will be reportedunsupported if this is not
available.

The Open Group
VSXgen 1.4 Page 52

X/Open System Verification Suite VSX User and Installation Guide

8.6.2 Cable Wiring

If the system has at least two ports, preparation for the tests begins by connecting two
terminal or modem ports back-to-back (sometimes calledloop-backor closed-loop)
using a cable which fits these sockets. For example, a null modem cable is suitable for
RS232-type DTE ports. A typical cable wiring would be:

iii
Null Modem Cable (DTE-DTE)

Function Pins Data Flow Pins Functioniii
Protective Ground 1 ⇐⇒ 1 Protective Ground
Transmit Data 2 ⇒ 3 Receive Data
Receive Data 3 ⇐ 2 Transmit Data
Request to Send 4 ⇒ 8 Data Carrier Detect
Clear to Send 5 ⇐ 8 Data Carrier Detect
Data Set Ready 6 ⇐ 20 Data Terminal Ready
Signal Ground 7 ⇐⇒ 7 Signal Ground
Data Carrier Detect 8 ⇐ 4 Request to Send
Data Carrier Detect 8 ⇒ 5 Clear to Send
Data Terminal Ready 20 ⇒ 6 Data Set Readyiiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

An equivalent ‘‘null terminal’’ cable suitable for RS232-type DCE ports could be wired
as follows:

iii
Null Terminal Cable (DCE-DCE)

Function Pins Data Flow Pins Functioniii
Protective Ground 1 ⇐⇒ 1 Protective Ground
Transmit Data 2 ⇐ 3 Receive Data
Receive Data 3 ⇒ 2 Transmit Data
Request to Send 4 ⇐ 6 Data Set Ready
Data Set Ready 6 ⇒ 4 Request to Send
Data Set Ready 6 ⇒ 20 Data Terminal Ready
Signal Ground 7 ⇐⇒ 7 Signal Ground
Data Terminal Ready 20 ⇐ 6 Data Set Readyiiicc

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

hhh

Action Points

1. Check the package-specific action points for this chapter to see whether the
terminal loop-back is needed for the subsets and test mode you have selected. If
it is not needed, skip the following action points.

2. If the system has at least two terminal ports, wire and connect two ports to
provide a loop-back.

3. Make the two ports readable and writable by uservsx0 .

4. There must not be any processes attached to these ports. (For example, you may
have to change/etc/inittab or /etc/ttys to remove login processes at
this point.)

The Open Group
VSXgen 1.4 Page 53

X/Open System Verification Suite VSX User and Installation Guide

8.7 TROUBLESHOOTING
You may encounter some of the following problems when you build tests withtcc .
This section lists common problems and gives notes explaining how to overcome them.

1. tcc cannot create lock files.

There may be lock files left over from a previous run. Whenever possibletcc
always removes its lock files, however if it is terminated by an uncatchable signal
or the system crashes then lock files may be left behind. Check for files named
tet_lock in both the source and testroot directory hierarchies at the testset
level. The tet_lock file may itself be the lock file, or it may be a directory
containing lock files.

2. Some header tests fail to build, due to a program calledhdrdefs trying to write
files larger than the file size limit, or running out of disk space.

Normally hdrdefs creates a copy of each header it processes, with all nested
#include lines expanded out. On some systems, if certain key headers are
included by many others, the nesting complexity can cause these headers to be
copied so many times into the expanded file that the file becomes huge.

The hdrdefs program can be prevented from creating the expanded-out files by
setting the environment variable HDRDEFS_NOEXPAND. However, this also
causeshdrdefs to treat ‘missing’ nested include files differently. Instead of
indicating that a nested header could not be opened by placing a special#define
in the expanded-out file, it will report an error immediately and exit. If you try to
build the header tests with HDRDEFS_NOEXPAND set, and the build fails due
to some missing nested includes, you should first check that the reason they are
not being found is because they do not exist on your system, rather than because
their location has been omitted from the INCDIRS parameter in
SRC/vsxparams . You can stophdrdefs reporting missing nested include files
by creating dummy versions of the missing files. Each file must contain a line
which will cause an error to be reported should the file be compiled during one of
the header tests. For example:

#error Dummy version of sys/thisfile.h was used

The location of the dummy include files should be added to the INCDIRS
parameter inSRC/vsxparams so thathdrdefs will be able to find them.

3. Some header tests fail to build, with syntax errors reported by a program called
hdranal.

If your system headers make use of type names that are built-in to the compiler,
they will not be recognised byhdranal unless they are defined in the file
SRC/INC/builtins.h . This file may be edited by the user. As distributed,
the file contains all the definitions needed for systems that VSX has been run on
to date. If you find you need to add new definitions to the file, please inform the
VSXgen support team (see the appendix entitled ‘‘SUPPORT SERVICES’’) so
that the additions can be included in the next VSXgen release.

The Open Group
VSXgen 1.4 Page 54

X/Open System Verification Suite VSX User and Installation Guide

8.8 BUILDING LSB-FHS
8.8.1 Sections and Areas

LSB Subset
The sections in thebase subset contain the following areas:

root
Areas: boot, bin, dev, etc, etc-opt, etc-x11, home, lib,
mnt, opt, root, sbin, and tmp

usr
Area: bin, include, lib , local, sbin, share, share-dict,
share-man, share-misc, src, x11r6, and x386.

var
Areas: account , cache , cache-font , cache-man , crash , games,
lib , lib-misc , lock , log , mail , opt , run , spool , spool-lpd ,
spool-rwho , state , tmp , var , and yp .

linux
Area: dev , proc , root , sbin , usr-include , usr-src , and var-
spool-cron .

The Open Group
LSB-FHS Page 55

X/Open System Verification Suite VSX User and Installation Guide

8.9 BUILDING LSB-OS
8.9.1 Terminal Interface Testing

hhh

Action Points

1. If they are available, LSB-OS will use loop-backed terminal ports in testing
Asynchronous I/O APIs.

The Open Group
LSB-OS1.0 Page 56

X/Open System Verification Suite VSX User and Installation Guide

8.10 BUILDING VSX4
8.10.1 Sections and Areas

Base Subset
The sections in thebase subset contain the following areas:

lang.C
Areas: 00.min_req , 01.lexical , 02.declare , 03.convert ,
04.constexpr , 05.expr , 06.statement , 07.ext_defi ,
08.scoperule , 09.impl_decl , 10.type_rev and 11.prepro .

ANSI.hdr
Area: misc .

ANSI.os
Areas: charhandle , diagnostics , genuts , jump , locale , maths ,
signal , streamio , string and time .

POSIX.hdr
Area: misc .

POSIX.os
Areas: Csupport , dataform , devclass , files , ioprim , procenv ,
procprim and sysdb .

XOPEN.hdr
Area: misc .

XOPEN.cmd
Area: locale .

XOPEN.os
Areas: charhandle , files , genuts , locale , maths , procenv ,
streamio , string and time .

XPG4.hdr
Area: misc .

XPG4.os
Areas: genuts , locale , signal , streamio , string and time .

Data Management Subset
The sections in thedmsubset contain the following areas:

dm.hdr
Area: isam .

dm.isam
Areas: file , ix and rec .

8.10.2 Terminal Interface Testing

hhh

Action Points

1. The terminal loop-back is needed if thebase subset has been selected.

The Open Group
VSX-PCTS4.4.4 Page 57

X/Open System Verification Suite VSX User and Installation Guide

8.10.3 Data Interchange Format Testing

A number of shell scripts are provided with VSX4 which execute the data interchange
format utilities installed on the test machine. These utilities are required to test the
archive/interchange file formats within the testsetsPOSIX.os/dataform/tar and
POSIX.os/dataform/cpio .

The contents of these shell scripts should be modified to call the format utilities with the
correct syntax and arguments on the test machine. This is necessary because the name
and syntax of the format utilities are not defined within POSIX.1.

However, suitable commands are defined in the X/Open specifications, and these are
used by default in the supplied scripts. If the system under test has a conformingpax
utility, there is no need to change these scripts. Otherwise, if it hastar and cpio
commands with the arguments as defined in the X/Open specifications, then these
commands can be used by uncommenting the relevant lines in the scripts. Note that the
default scripts do not use full pathnames, so if you do not change the scripts, you must
ensure that yourPATH includes the directories where the commands used in these
scripts are located.

The shell scripts will be called by the test sets with arguments which are defined within
the shell script — these arguments should be passed to the format utility in an
appropriate manner to create or read an archive file.

The names of the shell scripts provided are as follows. These should all be present in
the directoryyour−testroot−directory/BIN .

Shell script Use of script

cpio_cr.sh createcpio format archive file
cpio_xt.sh readcpio format archive file
cpio_i_xt.sh readcpio format archive file restoring file ownership
tar_cr.sh createtar format archive file
tar_xt.sh readtar format archive file
tar_i_xt.sh readtar format archive file restoring file ownership

hhh

Action Points

1. Review the contents of thetar and cpio shell scripts in the directory
your−testroot−directory/BIN and, where required, modify the contents of the
scripts to call suitable utilities with the correct syntax and arguments for the test
system.

The Open Group
VSX-PCTS4.4.4 Page 58

X/Open System Verification Suite VSX User and Installation Guide

9. EXECUTING VSX
9.1 INTRODUCTION

Before you run the testsets you have built, you must set up the file containing execution
parameters. When you are ready to execute the VSX testsets, you can choose to run the
entire selection of testsets you have configured or, optionally, execute sections, areas,
single testsets and individual invocable components. In addition, you can use options to
change parameters on the command line and to re-execute failed testsets from old
journal files, among others. You can use the output from the execution stage in a
journal file for the VSX reporting stage.

9.2 THE EXECUTION PARAMETERS FILE
9.2.1 Introduction

During the testset execution stage, the VSX testsets find information about your system
from the execution parameters file. This file contains lines which define the parameters
and give their values. If the testset cannot find the information, it either uses a default
value or reports that the parameter is not set in the test results for the tests that use that
parameter.

9.2.2 Setting the Execution Parameters

VSX looks for the execution parameters file,tetexec.cfg , in the testroot directory
when you execute the Test Case Controller. During the installation stage, VSX
generates an execution parameters file in the testroot directory, but some of the values
in the file are INCORRECT for your system.

Format
Each line in the execution parameters file is either a comment line, beginning with the
hash character (#), or a parameter line. Parameter lines use the following format:

parameter−name=parameter−value

The contents of the generated file vary according to the subsets you have selected. The
section below lists the parameter names that are always present. Additional parameters
required only for one subset are listed in the package-specific sections at the end of this
chapter.

The value given to each parameter may be any sequence of characters which is valid for
the associated parameter. When you leave the value blank after the equals sign (=), the
parameter is set to its default value, if it has one.

hhh

Action Points

1. Check the execution parameters filetetexec.cfg before you start the VSX
execution stage and edit any values which are not correct for your system.

9.3 EXECUTION PARAMETER NAMES
Check or set the values for the following parameters, and any additional subset-specific
parameters, in the execution parameters file before you start the VSX execution stage.
Note that the order of these parameters is the same as they are in the file where you will
edit them.

The Open Group
VSXgen 1.4 Page 59

X/Open System Verification Suite VSX User and Installation Guide

9.3.1 General Parameters

TEST_MODE
The testing mode selected whenconfig.sh was run. The value is set
automatically by the installation procedure and should not be altered.

TEST_PACKAGES
A list of the test packages being used. The value is set automatically by the
installation procedure and should not be altered.

VSXDIR
The source directory for the VSX source software.

Where Used
vbuild (vprog)

Default Value
None

VSX_DBUG_FLAGS
The debugging flags used to determine the level of debugging information
generated upon execution of tests.

Where Used
All testsets

Default Value
If this parameter is not set, no debugging output is produced.

VSX_DBUG_FILE
The default destination for debug and path tracing output. This file is used if
none is specified in the debug flags inVSX_DBUG_FLAGS. Output is
appended to the file on each run, so an existing file should be saved or deleted
before running tcc with debugging enabled. Use of relative path names is
not recommended, as the directory in which test programs are executed
varies. This parameter is usually set toyour−testroot−directory/dbug.out .

Where Used
All testsets

Default Value
If this parameter is not set, debug output is sent to the standard error stream.
Note that this often causes incorrect test results in cases where the interface
being tested usesstderr . For this reason, it is advisable to direct
debugging output to a file.

VSX_NAME
The test run name; that is, what this particular test run will be called in the
final vrpt and/or prpt output.

Where Used
vrpt (vprog)
prpt (vprog)

Default Value
No default value is assigned.

The Open Group
VSXgen 1.4 Page 60

X/Open System Verification Suite VSX User and Installation Guide

VSX_OPER
The name of the operator for this test run.

Where Used
vrpt (vprog)
prpt (vprog)

Default Value
No default value is assigned.

VSX_ORG
Name of the agency running the tests/for whom the tests are being run.

Where Used
vrpt (vprog)
prpt (vprog)

Default Value
No default value is assigned.

VSX_PATH
Used to set thePATH environment variable during execution of testsets in
the C language and header file sections. This will be used to locate the
C compiler and the executable object produced by it. This parameter should
always include the current directory.

Where Used
driver.hdr (drivers)
driver.C (drivers)

Default Value
:/bin:/usr/bin ; that is: your current directory, then/bin , then
/usr/bin .

VSX_SYS
The test system name; that is, the name of the system being tested.

Where Used
vrpt (vprog)
prpt (vprog)

Default Value
No default value is assigned.

VSX_UID0, VSX_UID1, VSX_UID2
These are the user IDs associated with the usersvsx0 , vsx1 and vsx2
respectively.
These must not be privileged users.

Where Used
uids (genlib)

Default Value
If not defined, each of the tests that uses these parameters is reported as
unresolved or uninitiated .

The Open Group
VSXgen 1.4 Page 61

X/Open System Verification Suite VSX User and Installation Guide

VSX_GID0, VSX_GID1, VSX_GID2
These are the group IDs associated with the groupsvsxg0 , vsxg1 and
vsxg2 respectively.
These must not be privileged groups.

Where Used
uids (genlib)

Default Value
If not defined, each of the tests that uses these parameters is reported as
unresolved or uninitiated .

TET_SIG_IGN
A list of the signal numbers that are to be ignored during testing. This should
be a comma-separated list of (non-POSIX) signal numbers. Many systems
will need to include the signal number for SIGSYS.

Where Used
TETware API

Default Value
No default value is assigned.

TET_SIG_LEAVE
A list of the signal numbers that are to be left alone during testing. These are
most often signals which cause problems both if they are set to be caught and
if they are ignored viaTET_SIG_IGN . This should be a comma-separated
list of (non-POSIX) signal numbers.

Where Used
setsigs (vlib)
TETware API

Default Value
No default value is assigned.

9.3.2 Compiler Characteristics

These parameters are only required if one or more selected subsets contain C language
tests, or header tests which use the generic driverdriver.hdr . Some test packages
may build alternative header test drivers, which use different parameters.

VSX_CC
The full path name of the C compiler to be used in header and C language
tests. This is normally set to the same value asCC in SRC/vsxparams .
The file named byVSX_CC may be a shell script or an executable file.

Where Used
driver.hdr (drivers)
driver.C (drivers)

Default Value
/bin/cc

VSX_CFLAGS
The flags to be passed to the C compiler (VSX_CC). This is normally set to
the same value asCOPTS in SRC/vsxparams .

These flags must not define any of the feature test macros
_XOPEN_SOURCE, _XOPEN_SOURCE_EXTENDED, _POSIX_SOURCE

The Open Group
VSXgen 1.4 Page 62

X/Open System Verification Suite VSX User and Installation Guide

or _POSIX_C_SOURCE.

Where Used
driver.hdr (drivers)
driver.C (drivers)

Default Value
NULL; that is, no string.

VSX_LIBS
Libraries and linker flags to be passed to the C compiler (VSX_CC).

These will usually include any subset-specific libraries named individually in
parameters in SRC/vsxparams , any libraries specified inSYSLIBS in
SRC/vsxparams , and any link editor command line options specified in
LDFLAGS in SRC/vsxparams .

Where Used
driver.hdr (drivers)
driver.C (drivers)

Default Value
-lm

9.3.3 Operating System Characteristics Common To Multiple Subsets

The following parameters are in the generic part oftetexec.cfg because they may
be needed by more than one subset. This avoids the need to configure the same
information multiple times under different parameter names. However, if you have not
selected any of the subsets which use a particular parameter, you do not need to set a
value for that parameter. Refer to the package-specific sections at the end of this
chapter to see which of these parameters are needed, and where they are used.

VSX_BLKDEV_FILE
The full path name of a block special device which exists on your system. If
block special files are not supported, this parameter should be set tounsup .

Default Value
If not defined, each of the tests that usesVSX_BLKDEV_FILE is marked as
unresolved or uninitiated .

VSX_CHRDEV_FILE
The path name of a character special device which exists on your system. If
character special files are not supported, this parameter should be set to
unsup .

Default Value
If not defined, each of the tests that usesVSX_CHRDEV_FILE is reported
as unresolved or uninitiated .

VSX_FCNTL_EDEADLK
Does fcntl() detect EDEADLK? (Y–yes or N–no)

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

The Open Group
VSXgen 1.4 Page 63

X/Open System Verification Suite VSX User and Installation Guide

VSX_FCNTL_MAXLOCK
The maximum number of locks that can be set usingfcntl() . This
number does not have to be exact, just sufficiently large to obtain an
ENOLCKerror. A value of−1 indicates there is no practical limit (e.g., if
limited only by available memory).

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

VSX_INVALID_FCNTL_CMD
An invalid cmd value for the argument tofcntl() .

Default Value
−1

VSX_INVALID_GID
Out of range group ID. If allgid_t values are valid group IDs, this parameter
should be set tounsup , so tests using this parameter will be reported
unsupported .

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

VSX_INVALID_GNAME
Group name not in the group database.

Default Value
nogroup

VSX_INVALID_PNAME
User name not in the user database.

Default Value
nouser

VSX_INVALID_UID
Out of range user ID. If alluid_t values are valid user IDs, this parameter
should be set tounsup , so tests using this parameter will be reported
unsupported .

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

VSX_INVALID_WHENCE
An invalid whence value for the argument tolseek() and fseek() ,
and for the l_whence structure member passed tofcntl() .

Default Value
−1

The Open Group
VSXgen 1.4 Page 64

X/Open System Verification Suite VSX User and Installation Guide

VSX_INVAL_SIG
An illegal signal number.

Default Value
If not defined, the default is set to−1.

VSX_MOUNT_DEV
The full path name of a block special file which can be mounted. The value
may be the same as that given for theVSX_ROFS and/or
VSX_NOSPC_DEVparameters.

Default Value
If not defined, each of the tests that usesVSX_MOUNT_DEV will be
reported asuninitiated or unresolved .

VSX_NOSPC_DEV
The full path name of the block special file for the mountable device which
was filled during the installation stage. The value may be the same as that
given for theVSX_MOUNT_DEV and/orVSX_ROFSparameters.

Default Value
If not defined, each of the tests that usesVSX_NOSPC_DEVwill be reported
as untested .

VSX_PURE_FILE
The full path name to an executable pure procedure (shared text) file, this is
normally set to your−testroot−directory/BIN/purefile . If shared
executables are not supported, this parameter should be set tounsup . If the
system supports shared executables but does not produce theETXTBSYerror
condition, this parameter shouldnot be set to unsup .

Each test takes its own copy of the file before performing the test using it.
This is done so that if, for example,creat() on a busy pure procedure file
succeeds and truncates the file, other tests that depend on the existence of
purefile will not be affected.

Default Value
If not defined, each of the tests that uses this parameter will be reported as
unresolved or uninitiated .

VSX_READDIR_EBADF
Does readdir() detect EBADF? (Y–yes or N–no)

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

VSX_ROFS
The full path name of a block special file which can be mounted read-only. If
read-only file systems are not supported, this parameter should be set to
unsup . The value may be the same as that given for the
VSX_MOUNT_DEV and/orVSX_NOSPC_DEVparameters.

Default Value
If not defined, each of the tests that usesVSX_ROFS will be reported
unresolved .

The Open Group
VSXgen 1.4 Page 65

X/Open System Verification Suite VSX User and Installation Guide

VSX_SIGSET_EINVAL
Can sigaddset() and sigdelset() give EINVAL? (Y–yes or
N–no)

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

VSX_SYS_OPEN_MAX
The maximum number of files that can be open on the system at any time.
This number does not have to be exact, just sufficiently large to obtain an
ENFILE error. A value of−1 indicates that there is no practical limit (e.g., if
limited only by available memory). In the latter case the tests using this
parameter will be reported asuntested .

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

VSX_TTYNAME
Device name of the terminal on which thetcc is running.

Default Value
None.

VSX_TTYUSER
The login name of the user logged on at the terminal specified by
VSX_TTYNAME .

Default Value
None.

VSX_ULIMIT_BLKS
The minimum multiple of blocks for which a file size limit can be set (using
the setlimit() user-supplied function). Most implementations only
support settings which correspond to the underlying file system block size. If
the system does not support setting a file size limit this parameter should be
set to−1.

Default Value
None.

VSX_UNLOCKABLE_FILE
The name of a file which cannot be locked. The file must have read and write
permission for uservsx0 or group vsxg0 . If no unlockable files exist or
can be created on the system, then this parameter should be set tounsup .

Default Value
None. If not defined, each of the tests that uses
VSX_UNLOCKABLE_FILE will be reported as unresolved or
uninitiated .

VSX_UNUSED_GID
An unused (but valid) group ID. If all unused group IDs are invalid, this
parameter should be set tounsup .

The Open Group
VSXgen 1.4 Page 66

X/Open System Verification Suite VSX User and Installation Guide

Default Value
None.

VSX_UNUSED_UID
An unused (but valid) user ID. If all unused user IDs are invalid, this
parameter should be set tounsup .

Default Value
None.

9.3.4 Terminal Interface Parameters Common To Multiple Subsets

The parameters in this part oftetexec.cfg are only needed by some test packages.
Refer to the package-specific sections at the end of this chapter to see whether they are
needed, and if so where they are used.

If the system does not provide any devices which support the general terminal interface,
the VSX_TERMIOS_TTY andVSX_TERMIOS_LOOP parameters should be set to
unsup . In this case the remaining parameters are not used.

If the system does provide devices which support the general terminal interface, but
does not have two ports which can be used to form a hardware loopback, then where
possible testing should be performed using pseudo-terminals and the software loopback
facility in VSX. If the pseudo-terminal devices do not support the general terminal
interface fully, they should still be used, and waivers requested for the tests which use
unsupported features (typically parity generation/detection and character size). If
testing with neither a hardware nor software loopback is possible, set the
VSX_TERMIOS_TTY andVSX_TERMIOS_LOOP parameters tounsup . In this
case it will be necessary to request a waiver for the terminal interface tests which give
UNSUPPORTED results as they will disagree with the conformance statement.

VSX_TERMIOS_TTY
This is the terminal device to be used as controlling terminal for the tests.
This parameter should be set tounsup if the general terminal interface is
not supported. When using pseudo-terminals for terminal interface testing, if
pseudo-terminal master devices are obtained from a clone device such as
/dev/ptmx then VSX_TERMIOS_TTY must be set to a dummy slave
device name long enough to be overwritten with the real name when it is
obtained; for example/dev/pts/XXX .

Default Value
None.

VSX_TERMIOS_LOOP
This is the terminal device connected toVSX_TERMIOS_TTY by loopback.
This parameter should be set tounsup if the general terminal interface is
not supported. When using pseudo-terminals for terminal interface testing, if
pseudo-terminal master devices are obtained from a clone device such as
/dev/ptmx thenVSX_TERMIOS_LOOP must be set to a dummy slave
device name long enough to be overwritten with the real name when it is
obtained.

Default Value
None.

The Open Group
VSXgen 1.4 Page 67

X/Open System Verification Suite VSX User and Installation Guide

VSX_MASTER_TTY
When using pseudo-terminals for terminal interface testing, this identifies the
master side of the pseudo-terminal pair for whichVSX_TERMIOS_TTY is
the slave. This parameter should be left unset ifVSX_TERMIOS_TTY is
not a pseudo-terminal.

Default Value
If not defined, the tests which perform terminal testing do not provide a
software loopback between VSX_TERMIOS_TTY and
VSX_TERMIOS_LOOP .

VSX_MASTER_LOOP
When using pseudo-terminals for terminal interface testing, this identifies the
master side of the pseudo-terminal pair for whichVSX_TERMIOS_LOOP
is the slave. This parameter should be left unset ifVSX_TERMIOS_LOOP
is not a pseudo-terminal.

Default Value
If not defined, the tests which perform terminal testing do not provide a
software loopback between VSX_TERMIOS_TTY and
VSX_TERMIOS_LOOP .

VSX_TERMIOS_ASYNC
Are VSX_TERMIOS_TTY and VSX_TERMIOS_LOOP asynchronous
serial terminals? (Y–yes or N–no)

Default Value
If not defined, each of the tests in the above testsets that uses
VSX_TERMIOS_ASYNC will be reported as uninitiated or
unresolved .

VSX_TERMIOS_BUFFERED
Do VSX_TERMIOS_TTY and VSX_TERMIOS_LOOP have buffered
output queues? (Y–yes or N–no)

Default Value
If not defined, each of the tests in the above testsets that uses this parameter
will be reported asuninitiated or unresolved .

VSX_TERMIOS_SPEED
This is the normal speed setting for terminal tests (e.g.,B9600). If split
baud rates are supported, this parameter should be set to anoutput baud rate
which may be used with a different input baud rate.

Default Value
None.

VSX_MODEM_CONTROL
Is modem control supported? (Y–yes or N–no)

Default Value
None. If not defined, each of the tests in the above testsets that uses
VSX_MODEM_CONTROL will be reported as uninitiated or
unresolved .

The Open Group
VSXgen 1.4 Page 68

X/Open System Verification Suite VSX User and Installation Guide

VSX_START_STOP_CHNG
Can the STARTand STOPcharacters be changed? (Y–yes or N–no)

Default Value
None. If not defined, each of the tests in the above testsets that uses
VSX_START_STOP_CHNG will be reported as uninitiated or
unresolved .

VSX_TCGETPGRP_SUPPORTED
Is tcgetpgrp() supported? (Y–yes or N–no)

Default Value
None. If not defined, each of the tests in the above testsets that uses
VSX_TCGETPGRP_SUPPORTEDwill be reported asuninitiated or
unresolved .

VSX_TCSETPGRP_SUPPORTED
Is tcsetpgrp() supported? (Y–yes or N–no)

Default Value
None. If not defined, each of the tests in the above testsets that uses
VSX_TCSETPGRP_SUPPORTEDwill be reported asuninitiated or
unresolved .

VSX_UNSUPPORTED_CFLAG
An unsupportedc_cflag value or speed. The value can be specified using
c_cflag symbols from <termios.h> , as a speed with leadingB, or as a
numeric value (with leading0 for octal, 0x for hexadecimal, otherwise
decimal). If a c_cflag symbol or numeric value is prefixed with̃ the
relevant bits will be cleared instead of set inc_cflag . This parameter
should be set tonone if all possible c_cflag values are supported.

Default Value
None. If not defined, each of the tests in the above testsets that uses this
parameter will be reported asuninitiated or unresolved .

VSX_SUPPORTED_CFLAG
A c_cflag value which is not the default value in effect when the terminal
is opened, or a speed other than that specified forVSX_TERMIOS_SPEED.
The value must be unrelated toVSX_UNSUPPORTED_CFLAG (e.g., they
cannot both be speeds or both be one ofCS5, CS6, CS7 and CS8). The
value is specified in the same form as forVSX_UNSUPPORTED_CFLAG.
This parameter should be set tonone if no settings other than the defaults
are supported.

Default Value
None. If not defined, each of the tests in the above testsets that uses this
parameter will be reported asuninitiated or unresolved .

PCTS_ECHOE
Erase sequence echoed whenECHOEand ECHOare set.

Default Value
None.

The Open Group
VSXgen 1.4 Page 69

X/Open System Verification Suite VSX User and Installation Guide

PCTS_ECHOK
Kill sequence echoed whenECHOKand ECHOare set, and a’\025’ kill
character is used to kill an input line containing seven characters.

Default Value
None.

9.4 EXECUTING THE VSX TEST SUITE
9.4.1 Introduction

The TETware test case controller,tcc , controls the execution of the test suite. The
driver executes all the testsets or those for the part you have requested. The results from
the execution stage are placed in a journal file under theresults directory. The
name of this file is output by thetcc on startup.

The sections below give details about the parts of the test suite you can execute and how
to execute them. To execute individual testsets and use other options for the test suite
driver, see the sections marked ‘‘OPTIONAL’’ later in this chapter.

Note that tcc cannot be run usingnohup as this would break the association with
the login terminal specified in theVSX_TTYNAME parameter. If you wish to leave
tcc to run unattended but do not want the terminal to be left logged in when it finishes
you can use the shell’sexec command to executetcc in place of the login shell.
This will cause the terminal to be logged out whentcc exits.

9.4.2 Executing All Required Tests

To execute all the tests for the options selected during the configuration stage, invoke
the test case controller with the command:

tcc -e -s scen.exec

If you have not set the environment variableTET_EXECUTE to the pathname of your
testroot directory, you must specify it on thetcc command line. For example, to
specify the default testroot location, append

-a TESTROOT

to the command given above. The remaining example commands in this chapter
assume thatTET_EXECUTE is set in the environment.

The following sections contain details on executing selected parts of the test suite. Note
that if you make changes to your system to correct the faults diagnosed by VSX, it is
not sufficient just to re-build and re-run the tests that failed and see that they now pass.
The whole of VSX must be re-built and re-run to ensure that the changes have not had
an adverse effect on any other tests.

hhh

Action Points

1. Log in as the uservsx0 .

2. Give the command

tcc -e -s scen.exec

with the other options you want to use. Use the command

../bin/tcc -e -s scen.exec

from the home directory if$HOME/../bin is not in yourPATH .

The Open Group
VSXgen 1.4 Page 70

X/Open System Verification Suite VSX User and Installation Guide

9.4.3 Executing Selected Parts of a Scenario (OPTIONAL)

To execute selected parts of the test suite, you can use the-y and -n options of the
tcc to select which lines of the filescen.exec you wish to include (-y) or exclude
(-n). You can use as many of these options as you like in one command. If a scenario
line matches both a-y string and a-n string it will be excluded.

For example, to execute just thePOSIX.os section, use the command:

tcc -e -s scen.exec -y POSIX.os

or to execute everything except the header tests, use the command:

tcc -e -s scen.exec -n .hdr

or to execute thestreamio areas in all the sections that have one, but excluding the
macro versions of the interfaces, use the command:

tcc -e -s scen.exec -y streamio -n streamio/M

The journal file for a partial execution is handled correctly by the report writer.

9.4.4 Executing Individual Testsets (OPTIONAL)

If the list of testsets you wish to execute is too varied to be specified easily using-y
and -n options, simply edit a copy of the scenario filescen.exec to reflect the
testsets you wish to build.

Examples
If the file myscen.exec contains an edited copy ofscen.exec then use the
command

tcc -e -s myscen.exec

to execute just the testsets contained in the file.

9.4.5 Executing Individual Tests (OPTIONAL)

The lowest level of granularity in VSX allows you to execute individual tests. Most
tests can be executed in this way, but some are dependent upon execution of earlier tests
in the testset, in which case only groups of dependent tests may be executed as a single
unit. Also, the header and C language tests can only be executed as whole testsets.

The mechanism for executing individual tests is the TETinvocable component(IC)
facility. Where no dependencies between tests exist the IC numbers are the same as the
test numbers. Where dependencies exist, the IC number for a group of dependent tests
is the same as the test number of the first test in the group. For example if a testset
contains four tests and test 3 is dependent on test 2, the IC numbers will be as follows:

Test number IC number

1 1
2 2
3 2
4 4

If IC number 2 is requested, then tests 2 and 3 will both be executed.

Note that even where no explicit dependency has been identified, some tests may
behave differently when executed individually than when executed in the normal testset
sequence. For this reason, it is always advisable to re-execute the whole testset once
individual testing has been completed.

To execute selected invocable components from one or more testsets add a comma-
separated list of the IC numbers in curly braces on the end of the associated scenario

The Open Group
VSXgen 1.4 Page 71

X/Open System Verification Suite VSX User and Installation Guide

lines. For example, the scenario file

all
/tset/POSIX.os/ioprim/write/T.write{3,7,8}

will execute only IC numbers 3,7 and 8 in thewrite() testset.

Alternatively, a one-off execution of selected IC numbers from a single testset can be
performed using the-l option of tcc . For example, the above execution could also
be achieved by the command

tcc -e -l /tset/POSIX.os/ioprim/write/T.write{3,7,8}

Some shells may require the braces to be quoted.

Multiple -l options may be specified to execute more than one testset.

9.4.6 Additional Options (OPTIONAL)

The tcc manual page gives full details of the additional options you can use with the
tcc command. The following options are some of the most useful:

1. To see a running progress report, include the-p option. The tcc will then
output a line to the terminal as it starts executing each testset.

2. To use an alternative configuration file totetexec.cfg , include the
-x filenameoption. The file must be in the same format astetexec.cfg .

3. To override a parameter in the execution parameters file, include the-v option.
For example, to use the run nameXYZ123 rather than the value defined in
tetexec.cfg , use the command

tcc -e -v VSX_NAME=XYZ123 rest−of−command

4. In order to execute testsets which failed during a previous run, use

tcc -e -r code−list other−options old−journal−file

where code−list is a comma-separated list of result codes to be re-executed,
other−optionsare the othertcc options (e.g., -y or -n) andold−journal−file
is the journal file from which the codes are extracted. For example, to re-execute
all the tests that failed withFAIL , UNRESOLVEDand UNINITIATED codes
from journal file results/0002e/journal , use the following command:3

cd results
tcc -e -r FAIL,UNRESOLVED,UNINITIATED \

-s ../scen.exec 0002e/journal

9.4.7 Path Tracing (OPTIONAL)

Most tests within the VSX test suite are coded for path tracing. Path tracing
information may be generated when a test is run by enabling the debugging mechanism.
The following VSX parameters, described earlier in this chapter, control VSX
debugging and path tracing:

hhhhhhhhhhhhhhhhhh

3. The long line in this example has been folded at the\ character for formatting purposes. The command can be typed all on one
line, in which case the\ character must be omitted.

The Open Group
VSXgen 1.4 Page 72

X/Open System Verification Suite VSX User and Installation Guide

VSX_DBUG_FLAGS
This determines the level of debugging, and what useful information is
generated with the output; e.g., line numbers, function names, etc.

VSX_DBUG_FILE
This determines the output file for the debugging information.

These parameters can be set to generate debugging information either on the
command line of thetcc by specifying -v VSX_DBUG_FILE=filename
and -v VSX_DBUG_FLAGS=dbug−flags or by modifying the relevant
tetexec.cfg file lines.

9.4.8 Debugging Options (OPTIONAL)

This section summarises the currently available debugging options and the flag
characters which enable them. Argument lists enclosed in square brackets are optional.
Options are separated by colons.

d[, keywords]
Enable output from macros including the specifiedkeywords. A null list of
keywords implies that all keywords are selected.

f [, functions]
Limit debugger actions to the specified list offunctionsand the functions
which they invoke. A null list of functions implies that all functions are
selected.

F
Mark each debugger output line with the name of the source file containing
the macro causing the output.

l [, n]
Specify level of debugging output required, defaults to 1. Use level 2 to get
debugging output from library routines.

L
Mark each debugger output line with the source file line number of the macro
causing the output.

n
Mark each debugger output line with the current function nesting depth.

o[, file]
Re-direct the debugger output stream to the specifiedfile. The default output
file is specified by the configuration variableVSX_DBUG_FILE . If this is
not set or cannot be opened,stderr is used. A null argument list or the file
name - causes output to be sent tostderr .

p[, processes]
Limit debugger actions to the specifiedprocesses. A null list implies all
processes. This is useful for processes which run child processes.

P
Mark each debugger output line with the name and PID of the current
process. Most useful when used with a process which runs child processes
that are also being debugged.

The Open Group
VSXgen 1.4 Page 73

X/Open System Verification Suite VSX User and Installation Guide

t [, n]
Enable function control flow tracing. The maximum nesting depth is
specified byn and defaults to 200.

Useful Debugging Setting
A useful setting for path tracing purposes is

VSX_DBUG_FLAGS=d,trace:F:L

which prints the file name and line number as well as the check point value, and
therefore can provide a useful aid to locating the source of a path tracing error.

9.4.9 Debugging Output and thePath Tracing Code

This section describes the correlation between the debugging output and the source
code functions.

PATH_TRACE
This is the basic macro to checkpoint program progress. Output associated
with a call to PATH_TRACEwill be in the form:

trace: path counter 1

Where the test is running correctly, one would expect a single output line for
each occurrence of thePATH_TRACEmacro within the code, and the path
counter to increment.

PATH_FUNC_TRACE
PATH_FUNC_TRACEcalls generate identical style of debugging information
to PATH_TRACEwhen a function is diagnosed as having path traced
successfully; however, if a function failed its path trace, output of the form

trace: path check failed in function call

will be produced by thePATH_FUNC_TRACEcall.

PATH_XS_RPT
This call is made when the test has completed, and wishes to signal aPASS
result, subject to the path check being a given number. If the path check was
successful, then the success will be reported. However, if the path check was
unsuccessful, anunresolved result will be reported, together with the
following diagnostic appearing in both the journal and the debugging output:

path trace error: path counter X, expected Y

9.4.10 Executing Tests Directly (OPTIONAL)

When debugging tests it is sometimes useful to execute them directly instead of under
the control of tcc . When tests are executed in this way the current directory must be
the location of the testset executable file. Also the variablesTET_CONFIG and
TET_CODE must be set in the environment. Once the tests have been executed the
results are found in a file calledtet_xres .

For example to execute the tests forwrite() directly you would use the commands:

The Open Group
VSXgen 1.4 Page 74

X/Open System Verification Suite VSX User and Installation Guide

TET_CONFIG=$TET_EXECUTE/tetexec.cfg
TET_CODE=$HOME/tet_code
export TET_CONFIG TET_CODE

cd $TET_EXECUTE/tset/POSIX.os/ioprim/write
./T.write
more tet_xres

This will execute all the tests in the testset. If you want to execute only specified ICs,
give the IC list as an argument:

./T.write 1-3,7

9.5 TROUBLESHOOTING
You may encounter some of the following problems when you execute tests withtcc .
This section lists common problems and gives notes explaining how to overcome them.

1. tcc refuses to find testsets.

Ensure you have either set the environment variableTET_EXECUTE to the full
pathname of the testroot directory, or used the-a option of the tcc to specify
the testroot directory.

2. Tests appear to hang for long periods.

Some tests do require a long time, as they must wait for timeouts. If the test is not
simply waiting but is using processor time, it may be receiving a signal
repeatedly. If you interrupt thetcc program with a SIGINT (e.g., by typing
DEL or CTRL-C on the terminal wheretcc is running), it will terminate the
current testset and start the next one. You can also do this by sending a
SIGTERMsignal to the stuck process.

3. The messageIC number not defined for this test casein journal files.

There may be a dependency. See journal from whole testset execution to identify
IC numbers.

4. Most header and C language tests give FIP results.

If your C compiler produces output on successful compilations (e.g. an
identification message) then these tests will giveFurther Information Provided
(FIP) results, meaning the output must be checked manually before it can be
considered a pass. It is impractical to check hundreds of FIP results, so to avoid
producing them you should set theVSX_CC parameter to the name of a shell
script which invokes the C compiler and discards the identification message. It
must discard only the exact message, not all output. A suitable script to discard a
one line message would be:

c89 "$@" 2> tmp.err
code=$?
grep -v ’ˆText of message$’ tmp.err >&2
rm -f tmp.err
exit $code

5. Some header tests do not compile because the compiler cannot cope with a huge
header.h.D file.

You can prevent these huge files from being created by building the header tests
with the variable HDRDEFS_NOEXPAND set in the environment. However, this
will produce build failures as there will be some nested include files that the

The Open Group
VSXgen 1.4 Page 75

X/Open System Verification Suite VSX User and Installation Guide

hdrdefs program cannot open. Refer to the TROUBLESHOOTING section in
the chapter entitled ‘‘BUILDING VSX’’ for information on how to deal with
these build failures.

The Open Group
VSXgen 1.4 Page 76

X/Open System Verification Suite VSX User and Installation Guide

9.6 EXECUTING LSB-FHS
9.6.1 General Parameters

9.6.2 Compiler Characteristics

All of the parameters in this section oftetexec.cfg are needed.

Its recommended thatcc or gcc is used for the name of the compiler.

9.6.3 Operating System Characteristics for LSB-FHS Subset Only

The following additional parameters are required for thelsb-fhs subset in the LSB
test mode.

LSB_BIN_SHELL_BASH
Denotes whether the implementation under test provides a /bin/sh as bash.

Where Used
LSB.fhs/root/bin

Default Value
In the case no value is specified, tests using this parameter will be reported as
unsupported.

LSB_C_SHELL_SUPP
Denotes whether the implementation under test provides a C shell.

Where Used
LSB.fhs/root/bin
LSB.fhs/root/etc

Default Value
In the case no value is specified, tests using this parameter will be reported as
unsupported.

LSB_KERNEL_NAME
The name of the kernel.

Where Used
LSB.fhs/root/boot

Default Value
None. This should be set to either vmlinux or vmlinuz. In the case no value is
specified, tests using this parameter will be reported asunresolved.

LSB_USER_DEV_CREATE
Does the implementation support users creating devices using the
MAKEDEV script?

Where Used
LSB.fhs/root/dev

Default Value
None. In the case no value is specified, tests using this parameter will be
reported asunsupported.

The Open Group
LSB-FHS Page 77

X/Open System Verification Suite VSX User and Installation Guide

LSB_FILE_ASCII
The system provides the file /usr/share/misc/ascii

Where Used
LSB.fhs/usr/share-misc

Default Value
None. In the case no value is specified, tests using this parameter will be
reported asunsupported.

LSB_FILE_MAGIC
The system provides the file /usr/share/misc/magic

Where Used
LSB.fhs/usr/share-misc

Default Value
None. In the case no value is specified, tests using this parameter will be
reported asunsupported.

LSB_FILE_TERMCAP
The system provides the file /usr/share/misc/termcap

Where Used
LSB.fhs/usr/share-misc

Default Value
None. In the case no value is specified, tests using this parameter will be
reported asunsupported.

LSB_FILE_TERMCAPDB
The system provides the file /usr/share/misc/termcap.db

Where Used
LSB.fhs/usr/share-misc

Default Value
None. In the case no value is specified, tests using this parameter will be
reported asunsupported.

LSB_PROCESS_ACCOUNTING
The implementation supports process accounting.

Where Used
LSB.fhs/var/account

Default Value
None. In the case no value is specified, tests using this parameter will be
reported asunsupported.

LSB_C_COMPILER_SUPPORTED
Denotes whether a C or C++ compiler is provided with the implementation.

Where Used
LSB.fhs/linux/usr-include
LSB.fhs/linux/usr-src

The Open Group
LSB-FHS Page 78

X/Open System Verification Suite VSX User and Installation Guide

Default Value
None. In the case no value is specified, tests using this parameter will be
reported asunsupported.

LSB_NIS_SUPPORTED
Denotes whether NIS is supported by the implementation.

Where Used
LSB.fhs/var/yp

Default Value
None. In the case no value is specified, tests using this parameter will be
reported asunsupported.

The Open Group
LSB-FHS Page 79

X/Open System Verification Suite VSX User and Installation Guide

9.7 EXECUTING LSB-OS
9.7.1 The Execution Parameters File

LSB-OS uses the following execution parameters described in the generic part of this
chapter: VSX_CC, VSX_CFLAGS, VSX_LIBS, VSX_GID0, VSX_GID1,
VSX_GID2, VSX_UID0, VSX_UID1, VSX_UID2, VSX_NOSPC_DEV,
VSX_ROFS, andVSX_INVAL_SIG .

If you specified a separate dynamic linking library (such as-ldl) when you ran
config.sh , then you will need to update theVSX_LIBS parameter to include this
library.

LSB-OS employs a number of test package-specific execution parameters which must
be set for your implementation before executing LSB-OS.

VSX_INVALID_POPEN_MODE
An invalid string for the mode argument topopen() . If popen() does
not detect the EINVAL error condition, this parameter should be set to
unsup .

Default Value
If no value is specified, tests using this parameter will be reported
uninitiated or unresolved .

VSRT_CFLAGS
The flags to be passed to the C compiler (VSX_CC) when compiling code
that uses threads and real time features. This is normally set to the same
value asTHR_COPTS in SRC/vsxparams .

These flags must not define any of the feature test macros
_XOPEN_SOURCE, _XOPEN_SOURCE_EXTENDED, _POSIX_SOURCE
or _POSIX_C_SOURCE.

Default Value
Empty string.

VSRT_SUPPORTS_RT_FG
If the system supports the UNIX98 Realtime Feature Group. (y-yes or n-no)
This value is only used in UNIX98 testing. It controls what is expected in
some sysconf and unistd.h tests.

Default Value
If not defined each of the tests that useVSRT_SUPPORTS_RT_FG is
reported asfail .

VSRT_MQUEUE_IS_DISTINCT
If Message Queues are implemented as a distinct file type. (y-yes or n-no)

Default Value
If not defined each of the tests that useVSRT_MQUEUE_IS_DISTINCT is
reported asunsupported .

VSRT_SEM_IS_DISTINCT
If Semaphores are implemented as a distinct file type. (y-yes or n-no)

The Open Group
LSB-OS1.0 Page 80

X/Open System Verification Suite VSX User and Installation Guide

Default Value
If not defined each of the tests that useVSRT_SEM_IS_DISTINCT is
reported asunsupported .

VSRT_SHM_IS_DISTINCT
If Shared Memory objsects are implemented as a distinct file type. (y-yes or
n-no)

Default Value
If not defined each of the tests that useVSRT_SHM_IS_DISTINCT is
reported asunsupported .

VSRT_MQDES_IS_FILEDES
If Message Queues are implemented as file descriptors. (y-yes or n-no)

Default Value
If not defined each of the tests that useVSRT_MQDES_IS_FILEDES is
reported asunsupported .

VSRT_MQUEUE_PREFIX
A path prefix to which an arbitrary name can be appended to form a valid
name for a message queue. Must begin with a slash (’/’).

Default Value
If not defined each of the tests that useVSRT_MQUEUE_PREFIX is
reported asfail .

VSRT_MQUEUE_PREFIX_INVALID
A path prefix to which an arbitrary name can be appended to form an invalid
name for a Message Queue.

Default Value
If not defined each of the tests that use
VSRT_MQUEUE_PREFIX_INVALID is reported asunsupported .

VSRT_SHM_PREFIX
A path prefix to which an arbitrary name can be appended to form a valid
name for a Shared Memory object. Must begin with a slash (’/’).

Default Value
If not defined each of the tests that useVSRT_SHM_PREFIX is reported as
fail .

VSRT_SHM_PREFIX_INVALID
A path prefix to which an arbitrary name can be appended to form an invalid
name for a Shared Memory object.

Default Value
If not defined each of the tests that useVSRT_SHM_PREFIX_INVALID is
reported asunsupported .

VSRT_SEM_IS_FILEDES
If named Semaphores are implemented as file descriptors. (y-yes or n-no)

Default Value
If not defined each of the tests that useVSRT_SEM_IS_FILEDES is
reported asunsupported .

The Open Group
LSB-OS1.0 Page 81

X/Open System Verification Suite VSX User and Installation Guide

VSRT_SEM_PREFIX
A path prefix to which an arbitrary name can be appended to form a valid
name for a Semaphores. Must begin with a slash (’/’).

Default Value
If not defined each of the tests that useVSRT_SEM_PREFIX is reported as
fail .

VSRT_SEM_PREFIX_INVALID
A path prefix to which an arbitrary name can be appended to form an invalid
name for a Semaphores.

Default Value
If not defined each of the tests that useVSRT_SEM_PREFIX_INVALID is
reported asunsupported .

VSRT_FILE_NO_MMAP
The absolute pathname of a file for which the implementation does not
support mmap().

Default Value
If not defined each of the tests that useVSRT_FILE_NO_MMAP is reported
as unsupported .

VSRT_FILE_ASYNC_IO
The absolute pathname of file for which the implementation supports
Asynchronous I/O. The user vsx0 must have permission to create the file and
then read and write to it. The file will be deleted and recreated during testing.

Default Value
If not defined each of the tests that useVSRT_FILE_ASYNC_IO is reported
as unsupported .

VSRT_FILE_NO_ASYNC_IO
The absolute pathname of a file or device for which the implementation does
not support Asynchronous I/O. The file or device must exist the user vsx0
must have read and write access to it.

Default Value
If not defined each of the tests that useVSRT_FILE_NO_ASYNC_IO is
reported asunsupported .

VSRT_TERMIOS_TTY

VSRT_TERMIOS_LOOP
The names of two terminal devices connected in a loopback configuration for
use in Asynchronous I/O testing. User vsx0 must have read and write access
to these devices. Device names may be the same as VSX_TERMIOS_TTY
and VSX_TERMIOS_LOOP.

Default Value
If not defined each of the tests that useVSRT_TERMIOS_TTY and
VSRT_TERMIOS_LOOP is reported asunsupported .

The Open Group
LSB-OS1.0 Page 82

X/Open System Verification Suite VSX User and Installation Guide

VSRT_MASTER_PTY
The name of a master pty device for use in Asynchronous I/O testing. User
vsx0 must have read and write access to this device. VSRT_MASTER_PTY
may be set to the same name as VSX_MASTER_TTY.

Default Value
If not defined each of the tests that useVSRT_MASTER_PTY is reported as
unsupported .

VSRT_FILE_SYNC_IO
The absolute pathname of file for which the implementation supports
Synchronized I/O. The file or device must exist the user vsx0 must have read
and write access to it.

Default Value
If not defined each of the tests that useVSRT_FILE_SYNC_IO is reported
as unsupported .

VSRT_FILE_NO_SYNC_IO
The absolute pathname of a file or device for which the implementation does
not support Synchronized I/O. The file or device must exist the user vsx0
must have read and write access to it.

Default Value
If not defined each of the tests that useVSRT_FILE_NO_SYNC_IO is
reported asunsupported .

VSRT_FILE_PRIO_IO
The absolute pathname of file for which the implementation supports
Prioritized I/O. The user vsx0 must have permission to create the file and
then read and write to it. The file will be deleted and recreated during testing.

Default Value
If not defined each of the tests that useVSRT_FILE_PRIO_IO is reported
as unsupported .

VSRT_FILE_NO_PRIO_IO
The absolute pathname of a file or device for which the implementation does
not support Prioritized I/O. The file or device must exist the user vsx0 must
have read and write access to it.

Default Value
If not defined each of the tests that useVSRT_FILE_NO_PRIO_IO is
reported asunsupported .

VSRT_RELAX_WRITE_ORDER
Indicates if the implementation relaxes the restriction on ordering of
asynchronous writes to devices not capable of seeking or when the
O_APPEND flag is set (for example the implementation is a microprocessor).
Set to y if this is the case on the implementation and n otherwise.

Default Value
If not defined each of the tests that useVSRT_RELAX_WRITE_ORDER is
reported asfail .

The Open Group
LSB-OS1.0 Page 83

X/Open System Verification Suite VSX User and Installation Guide

VSRT_INVALID_AIO_NBYTES_READ
Indicates a value which is invalid when used as aio_nbytes in an aiocb in an
AIO read operation. Leave blank after the = if all values are valid on this
implementation.

Default Value
If not defined each of the tests that use
VSRT_INVALID_AIO_NBYTES_READ is reported asunsupported .

VSRT_ADDR_SPACE_PAGES
The maximum size of a process’ address space, in pages. This value is used
in mmap testing (mmap 26 and 31 and mmap_P 29 and 34) to verify
ENOMEM is returned when memory allocation is not possible due to address
space boundaries. On some systems where this value is very large, using the
actual value may cause mmap to fail with an invalid value error. These tests
are constructed so that they completely validate their assertions using any
value between 1/2 the size of the address space and its full size can be used,
and in this circumstance a smaller value in this range should be used .

Default Value
If not defined each of the tests that useVSRT_ADDR_SPACE_PAGESis
reported asfail .

VSRT_MMAP_UNSUPPORTED_PROT
The unsupported access or combination of accesses for the data mapped by
mmap or changed bymprotect:
0 - No unsupported access(es)
1 - PROT_EXEC unsupported
2 - PROT_EXEC|PROT_WRITE unsupported
3 - PROT_EXEC|PROT_READ unsupported

Default Value
If not defined each of the tests that use
VSRT_MMAP_UNSUPPORTED_PROT is reported asfail .

VSRT_BAD_CLOCKID
The numeric value of a clock id which is not valid on the implementation.

Default Value
If not defined each of the tests that useVSRT_BAD_CLOCKID is reported
as unsupported .

VSRT_REALTIME_RES_SEC
The seconds component of the resolution of CLOCK_REALTIME.

Default Value
If not defined each of the tests that useVSRT_REALTIME_RES_SEC is
reported asfail .

VSRT_REALTIME_RES_NSEC
The nanoseconds component of the resolution of CLOCK_REALTIME.

Default Value
If not defined each of the tests that useVSRT_REALTIME_RES_NSEC is
reported asfail .

The Open Group
LSB-OS1.0 Page 84

X/Open System Verification Suite VSX User and Installation Guide

VSRT_DEF_TIMER_SIG
The numeric value of the signal sent by default when theevp argument to
timer_create is NULL.

Default Value
If not defined each of the tests that useVSRT_DEF_TIMER_SIG is
reported asfail .

VSRT_RT_SIG_DEF_IGN
The numeric value of a signal which is not in the range SIGRTMIN to
SIGRTMAX, for which realtime signal behavior is supported, and for which
the default action is to ignore the signal.

Default Value
If not defined each of the tests that useVSRT_RT_SIG_DEF_IGN is
reported asunsupported .

VSRT_SCHED_INVALID
A numeric value which is an invalid scheduling policy of the implementation.

Default Value
If not defined each of the tests that useVSRT_SCHED_INVALID is
reported asunsupported .

VSRT_SUPPORTS*
A variable of this form is provided for each of the APIs in the Realtime
Feature Group, e.g.VSRT_SUPPORTS_AIO_CANCEL. These variables
indicate if the implementation supports each of these functions. These
variables are provided for testing POSIX96 and other implementations which
do not support the Realtime Feature Group, where whether a function is to be
tested is contingent on the definition of symbolic constants indicating support
of a group of functions, and otherwise of support of individual functions.
These variables are used to determine if an individual function is to be tested
if its corresponding symbolic constants are not set. (y-yes or n-no). These
variables are not germane to testing the Realtime Feature Group, where all
such functions are required to be supported.

Default Value
If not defined each of the tests that use a givenVSRT_SUPPORTS*variable
is reported as unsupported if the governing symbolic constant is not
defined.

The Open Group
LSB-OS1.0 Page 85

X/Open System Verification Suite VSX User and Installation Guide

9.8 EXECUTING VSX4
9.8.1 General Parameters

The VSX_PATH parameter is also used inPOSIX.os/procprim/exec and
POSIX.os/procprim/exec_X .

9.8.2 Compiler Characteristics

All of the parameters in this section oftetexec.cfg are needed.

9.8.3 Operating System Characteristics Common To Multiple Subsets

The following parameters are needed from this section oftetexec.cfg if the
base subset has been selected. The full descriptions of these parameters are in the
generic part of this chapter.

VSX_BLKDEV_FILE

Where Used
POSIX.hdr/misc/stat
POSIX.os/dataform/tar
POSIX.os/files/stat_X

VSX_CHRDEV_FILE

Where Used
POSIX.hdr/misc/stat
POSIX.os/dataform/tar
POSIX.os/files/stat_X

VSX_FCNTL_EDEADLK

Where Used
POSIX.os/ioprim/fcntl

VSX_FCNTL_MAXLOCK

Where Used
POSIX.os/ioprim/fcntl

VSX_INVALID_FCNTL_CMD
This parameter is not required for POSIX and FIPS modes

Where Used
POSIX.os/ioprim/fcntl_X

VSX_INVALID_GID
Note that the EINVAL test for chown() gives an unsupported result
only when bothVSX_INVALID_GID andVSX_INVALID_UID are set to
unsup .

Where Used
POSIX.os/files/chown
POSIX.os/procenv/setgid
POSIX.os/sysdb/getgrgid

The Open Group
VSX-PCTS4.4.4 Page 86

X/Open System Verification Suite VSX User and Installation Guide

VSX_INVALID_GNAME

Where Used
POSIX.os/sysdb/getgrnam

VSX_INVALID_PNAME

Where Used
POSIX.os/sysdb/getpwnam

VSX_INVALID_UID
Note that the EINVAL test for chown() gives an unsupported result
only when bothVSX_INVALID_GID andVSX_INVALID_UID are set to
unsup .

Where Used
POSIX.os/files/chown
POSIX.os/procenv/setuid
POSIX.os/sysdb/getpwuid

VSX_INVALID_WHENCE

Where Used
ANSI.os/streamio/fseek
POSIX.os/ioprim/fcntl
POSIX.os/ioprim/lseek

VSX_INVAL_SIG

Where Used
vsx_sigs (tsetlib)

VSX_MOUNT_DEV

Where Used
mountfs (tsetlib)

VSX_NOSPC_DEV

Where Used
setupnospc (tsetlib)

VSX_PURE_FILE
This parameter is not required for POSIX and FIPS modes

Where Used
pure_run (tsetlib)

VSX_READDIR_EBADF

Where Used
POSIX.os/files/readdir

VSX_ROFS

Where Used
setuprofs (tsetlib)

The Open Group
VSX-PCTS4.4.4 Page 87

X/Open System Verification Suite VSX User and Installation Guide

VSX_SIGSET_EINVAL

Where Used
POSIX.os/procprim/sigaddset
POSIX.os/procprim/sigdelset
POSIX.os/procprim/sigismembe

VSX_SYS_OPEN_MAX

Where Used
ANSI.os/streamio/fopen
ANSI.os/streamio/freopen
ANSI.os/streamio/tmpfile
POSIX.os/files/creat
POSIX.os/files/open
POSIX.os/files/opendir
POSIX.os/ioprim/pipe

VSX_TTYNAME

Where Used
POSIX.os/files/fpathconf
POSIX.os/files/pathconf
POSIX.os/procenv/isatty
POSIX.os/procenv/isatty_X
POSIX.os/procenv/ttyname

VSX_TTYUSER

Where Used
XOPEN.os/procenv/cuserid
POSIX.os/procenv/getlogin

VSX_ULIMIT_BLKS

Where Used
ANSI.os/streamio/fwrite
XOPEN.os/procenv/ulimit
do_ferr (tsetlib)

VSX_UNLOCKABLE_FILE

Where Used
POSIX.os/ioprim/fcntl

VSX_UNUSED_GID

Where Used
POSIX.os/sysdb/getgrgid

VSX_UNUSED_UID

Where Used
POSIX.os/sysdb/getpwuid
XOPEN.os/procenv/cuserid

The Open Group
VSX-PCTS4.4.4 Page 88

X/Open System Verification Suite VSX User and Installation Guide

9.8.4 Terminal Interface Parameters Common To Multiple Subsets

The following parameters are needed from this section oftetexec.cfg if the
base subset has been selected. The full descriptions of these parameters are in the
generic part of this chapter.

VSX_TERMIOS_TTY and VSX_TERMIOS_LOOP

Where Used
termios (tsetlib)

VSX_MASTER_TTY and VSX_MASTER_LOOP

Where Used
termios (tsetlib)

VSX_TERMIOS_ASYNC

Where Used
POSIX.os/devclass/tcsendbrea
POSIX.os/devclass/c_iflag

VSX_TERMIOS_BUFFERED

Where Used
POSIX.os/devclass/c_iflag
POSIX.os/devclass/c_iflag_X
POSIX.os/devclass/i_close
POSIX.os/devclass/i_spchars
POSIX.os/devclass/tcflow
POSIX.os/devclass/tcflush
POSIX.os/devclass/tcsetattr
POSIX.os/procprim/sigconcept

VSX_TERMIOS_SPEED

Where Used
termios (tsetlib)

VSX_MODEM_CONTROL

Where Used
POSIX.os/devclass/cfsetospee
POSIX.os/devclass/i_close
POSIX.os/devclass/i_modem

VSX_START_STOP_CHNG

Where Used
POSIX.os/devclass/i_spchars

VSX_TCGETPGRP_SUPPORTED

Where Used
POSIX.os/devclass/i_ctty
POSIX.os/devclass/tcgetpgrp
POSIX.os/devclass/tcsetpgrp

The Open Group
VSX-PCTS4.4.4 Page 89

X/Open System Verification Suite VSX User and Installation Guide

VSX_TCSETPGRP_SUPPORTED

Where Used
POSIX.os/devclass/tcsetpgrp

VSX_UNSUPPORTED_CFLAG and VSX_SUPPORTED_CFLAG

Where Used
POSIX.os/devclass/tcsetattr

PCTS_ECHOE and PCTS_ECHOK

Where Used
POSIX.os/devclass/c_lflag

9.8.5 Operating System Characteristics for Base Subset Only

The following additional parameters are required for thebase subset in all test modes.

VSX_AL_ACCURACY
Allowable error, in seconds, for thealarm() system call in thealarm
testset. Useful for slow systems where the system scheduler cannot always
guarantee the alarm signal will take effect precisely at the specified interval.

Where Used
POSIX.os/procprim/sleep
POSIX.os/procprim/alarm

Default Value
If not defined, the alarm testset sets the default toSPEEDFACTOR.

VSX_CLOCK_ERR
The percentage accuracy to which the clock system interface is to be
measured.

Where Used
POSIX.os/procenv/times
XOPEN.os/time/clock

Default Value
Five per cent inaccuracy is allowed.

VSX_CLOSEDIR_EBADF
Does closedir() detect EBADF? (Y–yes or N–no)

Where Used
POSIX.os/files/closedir

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

VSX_FP_SOFTWARE
The system provides support for floating point calculations by software
emulation. If software emulation is employed the time-outs on the
mathematics tests will be increased by a factor of 5. (Y–yes or N–no)

The Open Group
VSX-PCTS4.4.4 Page 90

X/Open System Verification Suite VSX User and Installation Guide

Where Used
FPCOMP.h
fpcomp(genlib)

Default Value
N

VSX_INVALID_AMODE
An invalid access mode value for the second argument toaccess() . If
access() does not detect EINVAL errors, this parameter should be set to
unsup , so tests using this parameter will be reportedunsupported .

Where Used
POSIX.os/files/access

Default Value
−1

VSX_INVALID_PC
An invalid _PC_. . . value for the second argument topathconf() and
fpathconf() .

Where Used
POSIX.os/files/pathconf
POSIX.os/files/fpathconf

Default Value
−1

VSX_INVALID_PGID
An invalid process group ID.

Where Used
POSIX.os/devclass/tcsetpgrp

Default Value
−1

VSX_INVALID_SC
An invalid _SC_. . . value for the argument tosysconf() .

Where Used
POSIX.os/procenv/sysconf

Default Value
−1

VSX_JOB_CONTROL_SUPP
Is the behaviour associated with {_POSIX_JOB_CONTROL} supported?
(Y–yes, N–no.

Where Used
POSIX.os/procenv/sysconf

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

The Open Group
VSX-PCTS4.4.4 Page 91

X/Open System Verification Suite VSX User and Installation Guide

VSX_LINK_ACCESS_REQD
Does link() require access to the existing file? (Y–yes or N–no)

Where Used
POSIX.os/files/link

Default Value
N

VSX_LINK_DIR_SUPP
Can link() and unlink() be used on directories? (Y–both, N–neither,
U–unlink only)

Where Used
POSIX.os/files/link
POSIX.os/files/unlink

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

VSX_LINK_FILESYS_SUPP
Can link() be used across file systems? (Y–yes or N–no)

Where Used
POSIX.os/files/link
POSIX.os/files/rename

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

VSX_NONEXEC_FILE
The name of a file of a non-executable type. This file must not be a regular
file and must have execute permission for uservsx0 . If all file types are
executable, this parameter should be set tounsup .

Where Used
POSIX.os/procprim/exec

Default Value
None. If not defined, each of the tests in the above testsets that uses
VSX_NONEXEC_FILE will be reported as unresolved or
uninitiated .

VSX_OPENDIR_EMNFILE
Does opendir() detect EMFILE and ENFILE? (Y–yes or N–no)

Where Used
POSIX.os/files/opendir

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

The Open Group
VSX-PCTS4.4.4 Page 92

X/Open System Verification Suite VSX User and Installation Guide

VSX_PRIV_ACCESS_SUPP
Is privileged access to files supported? (Y–yes or N–no)

Where Used
POSIX.os/files/access
POSIX.os/files/utime

Default Value
N

VSX_PRIV_CHOWN_SUPP
Do chown() and chmod() supportappropriate privileges? (Y–yes or
N–no)

Where Used
POSIX.os/files/chmod
POSIX.os/files/chown

Default Value
N

VSX_REMOVE_DIR_EBUSY
Does removing a busy directory giveEBUSY?
Y = Yes, always
S = Yes, but only when in use by the system
P = Yes, but only when in use by another process
N= No

Where Used
ANSI.os/streamio/remove
POSIX.os/files/rename
POSIX.os/files/rmdir
POSIX.os/files/unlink

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

VSX_RENAME_DIR_EBUSY
Does renaming a busy directory giveEBUSY?
Y = Yes, always
S = Yes, but only when in use by the system
P = Yes, but only when in use by another process
N= No

Note: in the rename() tests, VSX_RENAME_DIR_EBUSY is used
when the busy directory is the first argument torename() , and
VSX_REMOVE_DIR_EBUSY is used when the busy directory is the
second argument (whenrename() will attempt to remove it).

Where Used
POSIX.os/files/rename

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

The Open Group
VSX-PCTS4.4.4 Page 93

X/Open System Verification Suite VSX User and Installation Guide

VSX_RENAME_DIR_WPERM_REQD
Does rename() on directories require write access? (Y–yes or N–no)

Where Used
POSIX.os/files/rename

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

VSX_SAVED_IDS_SUPP
Is the behaviour associated with {_POSIX_SAVED_IDS} supported? (Y–yes
or N–no)

Where Used
POSIX.os/procenv/sysconf

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

VSX_SET_ID_MODES_SUPP
Is setting S_ISUID and S_ISGID by chmod() supported? (Y–yes or
N–no)

Where Used
POSIX.os/files/chmod
POSIX.os/files/chown

Default Value
None. If no value is specified, tests using this parameter will be reported
uninitiated or unresolved .

VSX_SETPGID_SUPPORTED
Is the setpgid() interface supported? (Y–yes or N–no)
This parameter should be set toY if POSIX_JOB_CONTROL is supported.

Where Used
POSIX.os/procenv/setpgid

Default Value
None. If no value is specified, tests using this parameter will be reported
uninitiated or unresolved .

VSX_UNSUPPORTED_PGID
An unsupported process group ID (this must be greater than zero). This may
be set to unsup if all positive pid_t values are supported process group
IDs.

Where Used
POSIX.os/procenv/setpgid

Default Value
None.

The Open Group
VSX-PCTS4.4.4 Page 94

X/Open System Verification Suite VSX User and Installation Guide

9.8.6 Operating System Characteristics for X/Open Base Elements Only

These parameters are required for thebase subset in XPG and UNIX modes.

VSX_INVALID_NL_ITEM
An invalid nl_item value for the argument tonl_langinfo() .

Where Used
XOPEN.os/locale/nl_langinf

Default Value
−1

VSX_NXIO_BLKDEV
The full path name of a block special file that has no device attached. This is
normally produced by making a block special file for an existing major
device, using a minor device number that does not exist. The file must have
read and write permission for uservsx0 or group vsxg0 . If block special
files are not supported, this parameter should be set tounsup .

Where Used
ANSI.os/streamio/fopen_X
ANSI.os/streamio/freopen_X
POSIX.os/files/creat_X
POSIX.os/files/open_X
XPG2.os/files/mount

Default Value
If not defined, each of the tests in the above testsets that uses
VSX_NXIO_BLKDEV will be reported as uninitiated or
unresolved .

VSX_NXIO_CHRDEV
The full path name of a character special file that has no device attached. This
is normally produced by making a character special file for an existing major
device, using a minor device number that does not exist. The file must have
read and write permission for uservsx0 or group vsxg0 .

Where Used
ANSI.os/streamio/fopen_X
ANSI.os/streamio/freopen_X
POSIX.os/files/creat_X
POSIX.os/files/open_X

Default Value
If not defined, each test which uses this parameter is reported as
uninitiated or unresolved .

The Open Group
VSX-PCTS4.4.4 Page 95

X/Open System Verification Suite VSX User and Installation Guide

9.8.7 Operating System Characteristics for XPG4 Base Elements

These parameters are required for thebase subset in XPG4 and UNIX modes.

VSX_BRE_SUBANCHOR
Do regcomp() and regexec() support subexpression anchoring in
Basic Regular Expressions? (Y–yes or N–no)

Where Used
XPG4.os/genuts/regex

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

VSX_CAT_LOCALE
A locale name for use in message catalogue testing. This will be used to set
the LC_MESSAGES category. The name must be of the form
language_territory.codeset.

Where Used
XOPEN.os/locale/catopen

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

VSX_CODESET1
The name of the codeset associated with the locales specified in the wide
character configuration filewchars.cfg .

Where Used
XPG4.os/wgenuts/iconv

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

VSX_CODESET2
The name of a second codeset that can be converted usingiconv() . If
only one codeset is supported on the system, this parameter should be set to
unsup . This parameter must not be the same asVSX_CODESET1.

Where Used
XPG4.os/wgenuts/iconv

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

VSX_INVALID_CS
An invalid _CS_. . . value for the argument toconfstr() .

Where Used
XPG4.os/procenv/confstr

Default Value
−1

The Open Group
VSX-PCTS4.4.4 Page 96

X/Open System Verification Suite VSX User and Installation Guide

VSX_INVALID_POPEN_MODE
An invalid string for the mode argument topopen() . If popen() does
not detect the EINVAL error condition, this parameter should be set to
unsup .

Where Used
XOPEN.os/genuts/popen

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

VSX_LINE_BUF_SUPP
Is line bufferedinputsupported on terminals and/or pipes?
Y = supported on both
T = supported on terminals only
P = supported on pipes only
N= not supported

Where Used
ANSI.os/streamio/setvbuf_X

Default Value
None. In the case no value is specified, tests using this parameter will be
reported uninitiated or unresolved .

9.8.8 Operating System Characteristics for Data Management Subset Only

The following parameter is needed for thedmsubset in XPG4 mode.

VSX_ISAM_VAR_SUPP
Are variable record length file types supported? (Y–yes or N–no)

Where Used
dm.isam/file/isbuild
dm.isam/file/isopen
dm.isam/ix/isaddindex
dm.isam/ix/isindexinf
dm.isam/rec/isread
dm.isam/rec/isrewcurr
dm.isam/rec/isrewrec
dm.isam/rec/isrewrite
dm.isam/rec/iswrcurr
dm.isam/rec/iswrite

Default Value
N

The Open Group
VSX-PCTS4.4.4 Page 97

X/Open System Verification Suite VSX User and Installation Guide

10. REPORTING
10.1 INTRODUCTION

You can use the VSX reporting program to format reports from the results of the
building and execution stages. You can generate reports from a complete journal file or
from the results for the part you want to use. In addition, you can generate summary
reports which summarise the results for testsets in a given section, area or testset. When
you use the reporting program, you can use other options to control the length and
width of the text on the page.

There is a separate reporting program for producing POSIX conformance reports.

When you want to compare the results in several journal files, you can use the
comparative reporting program, explained at the end of this chapter.

10.2 THE REPORTING PROGRAMS
The VSX reporting program,vrpt , formats the results in the VSX journal files
generated by the building and execution stages. When you usevrpt , the environment
variablePATH must be correctly set so that commands can be executed. The reporting
program and its subsidiary programs are located in the directoryBIN below the vsx0
home directory. Include this directory in yourPATH.

The POSIX reporting program,prpt , produces the definitive POSIX conformance
report from journal files created by execution in POSIX modes. It should only be used
with test packages that provide POSIX assertion numbers in their test descriptions.
Usually this will be the case only for test packages containing tests that can be run in
POSIX90 mode.

NB. prpt does not provide the detailed diagnostic information thatvrpt provides,
and it gives results against POSIX assertion numbers, not the VSX testset names and
test numbers that would be needed to re-run failed tests. For these reasons, it is
recommended that POSIX mode users runvrpt until they are happy with the results
of the tests;prpt may then be run to produce final documentation of the test results.

10.3 REPORTING PROGRAM USAGE SUMMARY
vrpt [-l level] [-r coverage] [-f file] [-v] [-H] [-p] [-P] [-L len]
[-W wid] [file ...]

prpt [-H] [-L len] [-W wid] [file ...]

10.4 REPORTING PROGRAM OPTIONS
10.4.1 Reporting on the Entire Journal

To generate a report on an entire journal file, use the command:

vrpt journal−file

10.4.2 Reporting on a Section or Area (OPTIONAL)

The names of the sections and areas are the same as those listed in the building chapter.

By default, the reporting program generates a report from the complete journal file. To
produce a report from results for part of the test suite, use the-r option of vrpt ,
followed by the name of the section or area you want to use. For example, to report on
the POSIX.os testset results in the latest journal file, use the command:

vrpt -r POSIX.os journal−file

The Open Group
VSXgen 1.4 Page 98

X/Open System Verification Suite VSX User and Installation Guide

To report on thestreamio area within theANSI.os section, use the command:

vrpt -r ANSI.os/streamio journal−file

Note that the Conformance Summary produced as part of the cover pages on validation
test reports always contains the complete results for the journal file(s) being processed.
Only the body of the report is affected by the-r option.

10.4.3 Reporting on Individual Testsets (OPTIONAL)

You can also use the-r option for vrpt to report on the results of individual
testsets, or a range of testsets. The-P option is useful here to stop the cover pages
being produced. For example, to report on the results of a single testset for the system
interface write() , use the command:

vrpt -r POSIX.os/ioprim/write -P journal−file

To report on the results from all the testsets between the system callsread() and
write() , use the following command:5

vrpt -r POSIX.os/ioprim/read:POSIX.os/ioprim/write \
-P journal−file

10.4.4 Summary Reports (OPTIONAL)

To generate a report which summarises the testset results by section or area, use the-l
option. The area summary report, which is useful as a management summary, is given
in tabular format. For example, to generate a summary report at section level, use the
command:

vrpt -l sect journal−file

For area level reports, use the command:

vrpt -l area journal−file

10.4.5 Varying the Text Format (OPTIONAL)

You can use the-L page length and-W page width options to format the text in
reports according to your paper size. When you reduce the page width, long output lines
are automatically wrapped onto the next line of the report. Note that the Conformance
Summary produced as part of the cover pages contains a wide table which does not get
wrapped, so if you are using a page width of less than the default 80 characters, you will
probably want to disable the cover pages by using the-P option. For example, to
format the text using a page length of 50 lines and width of 64 characters, use the
command:

vrpt -L50 -W64 -P journal−file

10.4.6 Additional Options (OPTIONAL)

The vrpt user manual, in part 4 of this guide, gives full details of the additional
options you can use with thevrpt reporting program.

hhhhhhhhhhhhhhhhhh

5. The long line in this example has been folded at the\ character for formatting purposes. The command can be typed all on one
line, in which case the\ character must be omitted.

The Open Group
VSXgen 1.4 Page 99

X/Open System Verification Suite VSX User and Installation Guide

hhh

Action Points

1. Log in as the uservsx0 .

2. Check that the environment variable PATH is set correctly.

3. Change to the directoryresults if required.

4. Give the commandvrpt with the options you want to use, on a journal file
generated from the results of running thetcc .

10.5 POSIX CONFORMANCE REPORTING
A separate reporting programprpt produces POSIX conformance reports from
execution journal files. These reports consist only of the result codes for each POSIX
assertion; failure information produced by the tests is not included. Use the standard
reporting program,vrpt , to generate reports with the details of test failures.

Options
You can use the-W and -L options, for page width and page length, withprpt .

hhh

Action Points

1. Log in as the uservsx0 .

2. Check that the environment variable PATH is set correctly.

3. Change to the directoryresults if required.

4. Give the commandprpt with the options you want to use, on journal files
generated from the results of running thetcc .

10.6 COMPARATIVE REPORTING
You can use an alternative reporting program to compare the results in a number of
different journal files. The reporting programvrptm enables you to compare the
results from tests on a range of machines, or from a series of execution runs on the
same machine with different software releases.

The comparative reporting program handles results from up to five journal files on the
default page width of 80 columns (more on wider pages). The successes and failures
are printed in tables, without any extra information about the reasons for tests failing.
Use the standard reporting programvrpt to generate reports with the details of test
failures.

Options
You can use the-W and -L options, for page width and page length, withvrptm .

hhh

Action Points

1. Log in as the uservsx0 .

2. Check that the environment variable PATH is set correctly.

3. Change to the directoryresults if required.

4. Give the commandvrptm with the options you want to use, on journal files
generated from the results of running thetcc .

The Open Group
VSXgen 1.4 Page 100

X/Open System Verification Suite VSX User and Installation Guide

10.7 SAMPLE REPORT OUTPUT
10.7.1 vrpt Sample Output

Conformance Summary Information

X/OPEN Verification Suite
Test-Set Summary Test-Set Summary

CONFORMANCE Summary

This is to certify that this system when tested for conformance
to POSIX.1-1990 achieved the results below.

| TOTALS Succeeded Warnings Unresolved Unsupported NotInUse|
Section | Expect Actual Failed FIP Uninitiated Untested |
____________|___|

| |
ANSI.hdr | 586 586 260 18 0 0 0 0 307 0 1 |
ANSI.os F | 1676 1676 1638 6 2 0 0 0 3 0 27 |
ANSI.os M | 1676 1676 97 0 0 0 0 0 0 0 1579 |
POSIX.hdr | 450 450 233 13 0 0 0 0 198 0 6 |
POSIX.os F | 1434 1434 1330 9 0 3 0 0 57 1 34 |
POSIX.os M | 1434 1434 4 0 0 0 0 0 0 0 1430 |
TOTAL | 7256 7256 3562 46 2 3 0 0 565 1 3077 |
____________|___|

Number of amendments ____________

Signature/Date

Test Agency: UniSoft System Tested: oursys
Test Date: Apr 11, 1997 Page 4

The Open Group
VSXgen 1.4 Page 101

X/Open System Verification Suite VSX User and Installation Guide

Test Results

Test-Set Summary Test-Set Summary

Test-Set Results:

Test-Set Started: 19:55:04

Test-Set Ended: 19:55:06

Test-Set Results Summary:

1 Tests Executed
1 Tests Succeeded

Test-Set Name: /tset/ANSI.os/charhandle/Miscntrl/T.iscntrl
--

Test-Set Results:

Test-Set Started: 19:55:07

Test-Set Ended: 19:55:08

Test-Set Results Summary:

2 Tests Executed
2 Tests Succeeded

Test-Set Name: /tset/ANSI.os/charhandle/Miscntrl_X/T.iscntrl_X
--

Test-Set Results:

Test-Set Started: 19:55:09

Test-Set Ended: 19:55:11

Test-Set Results Summary:

1 Tests Executed
1 Tests Succeeded

Test-Set Name: /tset/ANSI.os/charhandle/Misdigit/T.isdigit
--

Test-Set Results:

Test Agency: UniSoft System Tested: oursys
Test Date: Apr 11, 1997 Page 6

The Open Group
VSXgen 1.4 Page 102

X/Open System Verification Suite VSX User and Installation Guide

Summary Information

X/OPEN Verification Suite
Test-Set Summary Test-Set Summary

Section Name: ANSI.os

Section Started: 19:54:56

Section Ended: 22:35:59

Section Results Summary:

10 Areas Containing 296 Test-Sets Completed

3352 Tests Executed
1735 Tests Succeeded

6 Tests Failed
2 Tests Warning
3 Tests Unsupported

1606 Tests Not In Use

Test Agency: UniSoft System Tested: oursys
Test Date: Apr 11, 1997 Page 119

The Open Group
VSXgen 1.4 Page 103

X/Open System Verification Suite VSX User and Installation Guide

X/OPEN Verification Suite
Test-Set Summary Test-Set Summary

Test Parameters:
TET_OUTPUT_CAPTURE = False
TET_RESCODES_FILE = tet_code
TET_VERSION = 1.10
TEST_MODE = POSIX90
TEST_PACKAGES = VSX4.4.1
VSXDIR = /user4/TET/vsx4/SRC
VSX_DBUG_FLAGS =
VSX_DBUG_FILE = /user4/TET/vsx4/TESTROOT/dbug.out
VSX_NAME =
VSX_OPER = Joe Programmer
VSX_ORG = UniSoft
VSX_PATH =
VSX_SYS = oursys
VSX_UID0 = 146
VSX_UID1 = 147
VSX_UID2 = 149
VSX_GID0 = 200
VSX_GID1 = 201
VSX_GID2 = 202
TET_SIG_IGN = 12
TET_SIG_LEAVE =
VSX_AL_ACCURACY =
VSX_BLKDEV_FILE = /dev/mt/1m
VSX_CHRDEV_FILE = /dev/rmt/1m
VSX_CLOCK_ERR =
VSX_CLOSEDIR_EBADF = Y
VSX_FCNTL_MAXLOCK = 400
VSX_FP_SOFTWARE =
VSX_INVALID_GID =
VSX_INVALID_GNAME =
VSX_INVALID_PC =
VSX_INVALID_PNAME =
VSX_INVALID_SC =
VSX_INVALID_UID =
VSX_INVAL_SIG =
VSX_LINK_DIR_SUPP = Y
VSX_LINK_FILESYS_SUPP = N
VSX_MOUNT_DEV = /dev/dsk/c1d0s6
VSX_NONEXEC_FILE = .
VSX_NOSPC_DEV = /dev/dsk/c1d0s6
VSX_PRIV_ACCESS_SUPP = Y
VSX_PRIV_CHOWN_SUPP = Y
VSX_READDIR_EBADF = Y
VSX_REMOVE_DIR_EBUSY = S
VSX_RENAME_DIR_EBUSY = S
VSX_RENAME_DIR_WPERM_REQD = N
VSX_ROFS = /dev/dsk/c1d0s6
VSX_SET_ID_MODES_SUPP = Y
VSX_SETPGID_SUPPORTED = Y
VSX_SIGSET_EINVAL = Y
VSX_SYS_OPEN_MAX = 600
VSX_TTYNAME = /dev/tty0p3
VSX_TTYUSER = vsx0

Test Agency: UniSoft System Tested: oursys
Test Date: Apr 11, 1997 Page 120

The Open Group
VSXgen 1.4 Page 104

X/Open System Verification Suite VSX User and Installation Guide

Test Failure Information

X/OPEN Verification Suite
Test-Set Summary Test-Set Summary

Test-Set Name: /tset/POSIX.os/procprim/sigaddset/T.sigaddset
--

Test-Set Results:

Test-Set Started: 02:18:15

Test-Set Ended: 02:18:16

Test-Set Results Summary:

2 Tests Executed
2 Tests Succeeded

Test-Set Name: /tset/POSIX.os/procprim/sigconcept/T.sigconcept
--

Test-Set Results:

Test-Set Started: 02:18:16

Test Results:

**
/tset/POSIX.os/procprim/sigconcept/T.sigconcept 22 Failed

Test Description:
If _POSIX_JOB_CONTROL is defined, setting a signal action to SIG_DFL
for a SIGCHLD signal that is pending shall cause the pending signal to
be discarded.
Posix Ref: Component Signal Concepts Assertion 3.3.1.3-29(C)

Test Strategy:
FORK a child process
CHILD process:

SET the SIGCHLD signal action to signal catching function
BLOCK the SIGCHLD signal and send to itself
VERIFY the SIGCHLD signal is not received
VERIFY the SIGCHLD signal is pending
SET the SIGCHLD signal action to SIG_DFL
VERIFY the SIGCHLD signal is not pending
UNBLOCK the SIGCHLD signal
EXIT with the exit code set to the number of any caught signal,
otherwise 0

PARENT process:
VERIFY the SIGCHLD signal was discarded

Test Information:

Test Agency: UniSoft System Tested: oursys
Test Date: Apr 11, 1997 Page 23

The Open Group
VSXgen 1.4 Page 105

X/Open System Verification Suite VSX User and Installation Guide

X/OPEN Verification Suite
Test-Set Summary Test-Set Summary

signal 18 (SIGCHLD) still pending after sigaction()
deletion reason: waitsync() failed, errno 4
**

Test-Set Ended: 03:16:35

Test-Set Results Summary:

37 Tests Executed
36 Tests Succeeded

1 Tests Failed

The Open Group
VSXgen 1.4 Page 106

X/Open System Verification Suite VSX User and Installation Guide

10.7.2 prpt Sample Output

POSIX Summary POSIX Summary

Journal File: /user4/TET/vsx4/results/0002e/journal
Test Date: Fri Apr 11 19:26:25 1997
Test Agency: UniSoft
Test System: oursys
Test Operator: Joe Programmer
Test Parameters:

TET_OUTPUT_CAPTURE = False
TET_RESCODES_FILE = tet_code
TET_VERSION = 1.10
TEST_MODE = POSIX90
TEST_PACKAGES = VSX4.4.1
VSXDIR = /user4/TET/vsx4/SRC
VSX_DBUG_FLAGS =
VSX_DBUG_FILE = /user4/TET/vsx4/TESTROOT/dbug.out
VSX_NAME =
VSX_OPER = Joe Programmer
VSX_ORG = UniSoft
VSX_PATH =
VSX_SYS = oursys
VSX_UID0 = 146
VSX_UID1 = 147
VSX_UID2 = 149
VSX_GID0 = 200
VSX_GID1 = 201
VSX_GID2 = 202
TET_SIG_IGN = 12
TET_SIG_LEAVE =
VSX_AL_ACCURACY =
VSX_BLKDEV_FILE = /dev/mt/1m
VSX_CHRDEV_FILE = /dev/rmt/1m
VSX_CLOCK_ERR =
VSX_CLOSEDIR_EBADF = Y
VSX_FCNTL_MAXLOCK = 400

X/OPEN Verification Suite
POSIX Summary POSIX Summary

GETENV 4.6.1.1-01(A) PASS
GETENV 4.6.1.1-02(C) UNSUPPORTED
GETENV 4.6.1.1-03(C) UNSUPPORTED
GETENV 4.6.1.2-04(A) PASS
GETENV 4.6.1.2-05(A) PASS
GETENV 4.6.1.2-06(A) PASS
GETENV 4.6.1.2-07(A) PASS
GETENV 4.6.1.3-08(D) UNTESTED

Page 23

The Open Group
VSXgen 1.4 Page 107

X/Open System Verification Suite VSX User and Installation Guide

10.8 TROUBLESHOOTING
This section lists known problems, and gives notes on how to overcome them. You
may encounter the following problem when you runvrpt .

1. vrpt gives the error message ‘‘received SIGPIPE’’.

If the vrpt output was not being piped to another process, e.g. a pager, which
exited before reading all the output, then this may be due toawk becoming
overwhelmed and dumping core. Try using the-t option to truncate test failure
information to a manageable number of lines. Ifawk still dumps core, replacing
awk with nawk or gawk may cure the problem.

The Open Group
VSXgen 1.4 Page 108

X/Open System Verification Suite VSX User and Installation Guide

11. INTERPRETING VSX RESULTS
11.1 INTRODUCTION

To interpret the results of the VSX tests, you must review each test and the test results
from your system. To review the test results, you must generate a report from the VSX
journal file, as explained in the chapter entitled ‘‘REPORTING’’. Test descriptions and
strategy are include in reports generated withvrpt for failed tests. Test descriptions
are also provided as a VSX manual page, to be found under theMAN/tset directory,
which you can print out using the utility [nt]roff -man .

11.2 TEST RESULTS
11.2.1 Failed

C Language
The reported information for failed C language tests includes the C source code which
was used in the test. You can extract the code from the VSX journal file to use in further
testing.

Operating System
The test source code for failed operating system tests is located in the appropriate testset
directory, in the directory hierarchy starting fromtset . To analyse the results of
these tests fully, you must be able to examine the test source code to understand the test
strategy and identify the conditions which led to the test failure. This level of expertise
requires the skills of an operating system specialist; non-specialist staff should not
attempt to interpret these results.

11.2.2 Uninitiated or Unresolved

Uninitiatedmeans that the particular test in question did not start to execute.

Unresolvedmeans that the test started but did not reach the point where the test was
able to report success or failure.

When a test is reported asuninitiated or unresolved you must identify the
reason why the test was not completed. These may be because of incorrect parameters,
preceding failures or external events, which are described in the following paragraphs.

Incorrect Parameters
Most tests reported this way cannot be run because a parameter is not set correctly in
the execution parameters filetetexec.cfg . The test report always identifies the
tests which cannot run because of incorrect parameters. For some tests, you can correct
the parameter and re-run the tests. For others, you may not be able to correct the
parameter because the resources required are not available on your system.

Incorrect Entries in userintf.c (Implementation Specific Routines)
Tests may be reported asunresolved or uninitiated because of incorrect
entries in SRC/userintf.c . If failures of user-supplied functions are reported, you
will need to check this file. See ‘‘User-supplied Interface Routines’’ in the chapter
entitled ‘‘CONFIGURING VSX’’ for more details.

Preceding Failures
When earlier tests have failed, some tests cannot be performed. Before you can re-run
the tests, you must resolve the problem in the preceding failed tests.

External Events
When an external event occurs unexpectedly, tests may not be performed. Investigate
the reason the test has not been run as for a failed test.

The Open Group
VSXgen 1.4 Page 109

X/Open System Verification Suite VSX User and Installation Guide

11.2.3 Unreported

When a test is marked asunreported a major error has occurred during the testset
execution. VSX tries to avoid such errors as far as possible. However, if you terminate a
testset with the signalSIGTERM, tests will be unreported . Investigate the cause
of the major error as for a failed test.

11.2.4 Warning

Whenever a warning is given, the functionality is acceptable, but you should be aware
that later revisions of the relevant standards or specifications may change the
requirements in this area. See the appendix entitled ‘‘TESTS GIVING WARNINGS’’
for a list of the tests which may give warnings and the reasons for them.

11.2.5 FIP (Further Information Provided)

When a test has succeeded, additional information may sometimes be given which
needs to be inspected. Some examples are given below:

C Language
The additional information is output by the compiler, usually compiler warnings,
although the compilation and execution of the test has been successful.

Checking
Information which cannot be checked automatically by a test is given for you to
validate. For example, the system name and node name are given by the VSX4uname
testset.

11.2.6 Unsupported

Unsupportedmeans that an optional feature is not available or supported in the
implementation under test.

For example, in some modes the job control features are optional. VSX will recognise
that they are unsupported on a particular system and report this.

11.2.7 Not In Use

Where no macro version of an interface exists, or separate macro and function testing is
not required, the macro version of the testset will report all tests as not in use. Also,
some tests within a testset may not be required in a particular test mode. For example,
tests for POSIX.1-1996 functionality when running in POSIX90 mode. These are not
failures and require no further work.

11.2.8 Untested

This occurs because there is no test written to check a particular feature, or an optional
facility needed to perform a test is not available on the system.

For example, it is not possible to check that session IDs are inherited across afork()
when job control is not available.

These are generally listed on the manual pages under ‘‘Untestable Aspects’’.

11.2.9 Succeeded

This means the test has been executed correctly and to completion without any kind of
problem.

The Open Group
VSXgen 1.4 Page 110

X/Open System Verification Suite VSX User and Installation Guide

X/Open System Verification Suite

Part 3: Appendices

VSXgen1.4 May 1999
LSB-FHS 1.0 December 2001
LSB-OS 1.0 December 2001

LSB-VSX-PCTS 1.0 December 2001

The Open Group

X/Open System Verification Suite VSX User and Installation Guide

The Open Group

X/Open System Verification Suite VSX User and Installation Guide

A. ACTION POINT SUMMARY
A.1 PREPARATION
A.1.1 PREPARING YOUR SYSTEM

File Space Requirements

1. Check there is enough free space available to unpack and install the software.

VSX User Accounts

1. (Note if you are installing the LSB version of these test packages you can use the
automatic installation scripts) Create a distinct group entry forvsxg0 and (if
required by one of the test packages) distinct group entries forvsxg1 and
vsxg2 ; usually in the file /etc/group .

2. If you do not already have TETware installed, create a directory you wish to
designate as yourTET_ROOT directory.

3. Create a distinct user entry forvsx0 in group vsxg0 , with home directory
located under yourTET_ROOT, and with a login shell; usually in the file
/etc/passwd .

4. Make sure that the uservsx0 has write permission in theTET_ROOT
directory.

5. Add $HOME/BIN and $HOME/../bin to the command search path for user
vsx0 , and include it in thePATH environment variable set in the login script for
user vsx0 .

6. Ensure that any extensions enabled by environment variables that would cause
non-compliant behaviour are disabled in the login script for uservsx0 .

7. For some test packages, if the implementation supports supplementary groups,
the user vsx0 should have the maximum number of supplementary groups
associated with it. These supplementary groups must exclude the groupsvsxg1
and vsxg2 . The group ID values chosen must not exceed the value of
INT_MAX for the system.

8. If required by one of the test packages, create a distinct user entry forvsx1 in
group vsxg1 , in the password file. The home directory must differ from that of
user vsx0 .

9. If required by one of the test packages, create a distinct user entry forvsx2 in
group vsxg2 , in the password file. The home directory must differ from that of
user vsx0 .

A.1.2 LOADING THE VSX DISTRIBUTION

Unpacking the Distribution Files

1. Log in to the test system as the uservsx0 , who must be the owner of all the
loaded files.

2. Ensure you are working in thevsx0 home directory and that you have write
permission in that directory.

3. Unpack the distribution files for the VSX-vtools (namespace test tool), VSXgen
and the test packages you wish to use, using appropriate commands to
decompress each file and extract all files from the resulting POSIXcpio or
tar archive, e.g.:

The Open Group
Page 113

X/Open System Verification Suite VSX User and Installation Guide

zcat ../vsx-vtools-1.4.tar.Z| pax -v -r -p p
zcat ../vsxgen-os-1.4.tar.Z| pax -v -r -p p
zcat ../vsx-pcts-4.4.4.tar.Z| pax -v -r -p p

or
zcat ../vsx-vtools-1.4.tar.Z| tar xvf -
zcat ../vsxgen-os-1.4.tar.Z| tar xvf -
zcat ../vsx-pcts-4.4.4.tar.Z| tar xvf -

Note that your distribution may be packaged up differently, check
ftp://ftp.freestands.org/pub/lsb/test_suites

for the latest distribution and see the README files as appropriate. The default
packaging for LSB testing includes a series of gzip’d tar files and an installation
wrapper script to automate installation.

Checking the Contents

1. Change to thevsx0 home directory (usingcd) and list the directory. Check
the expected subdirectories and the release identification files for each test
package are there.

If they are not, check that there were no read errors while the archives were being
read and that there is space available on the file system.

2. Check that the release numbers given in the test-package specific Action Points
for this chapter correspond with the release identification files.

A.1.3 REMOVING UNWANTED VSX DATA (OPTIONAL)

1. Remove any unwanted sections from the directoriestset and MAN/tset .

A.1.4 LSB-FHS PREPARATION

VSX User Accounts

1. The install.sh script should setup all the accounts necessary for installation of this
testset.

Loading The LSB-FHS Distribution

1. The name of the LSB-FHS release is determined by the identification file which is
the last file in the archive, and takes the form LSB-FHSrelX.Y-Z where X.Y is
the FHS specification revision number for this test suite and Z is the release level.
See the release notes for the current release level.

A.1.5 LSB-OS PREPARATION

VSX User Accounts

1. The LSB-OS test package requires configuration of usersvsx0 , vsx1 and
vsx2 and the groupsvsxg0 , vsxg1 and vsxg2.

Loading The VSX Distribution

1. The name of the LSB-OS release identification file is LSB-OSrel1.0.

A.1.6 VSX4 PREPARATION

VSX User Accounts

1. The vsx0 home directory must be calledvsx4 .

2. The user namesvsx1 and vsx2 , group namesvsxg1 and vsxg2 , and
supplementary groups are all required.

The Open Group
Page 114

X/Open System Verification Suite VSX User and Installation Guide

3. If your system treats group ID values which do not exist in the group database as
invalid, then ensure that the six consecutive group ID values aftervsxg0 also
exist in the group database.

Loading The VSX Distribution

1. The name of the VSX4 release identification file is VSX4rel4.4.4.

A.2 CONFIGURING VSX
A.2.1 INSTALLATION DIRECTORY

1. Choose a directory for the installation of testset executables. The default is
TESTROOTunder the vsx0 home directory.

2. If you are testing for conformance to FIPS 151, XPG4 or UNIX and one of the
VSX test packages you are using requires that the installation directory must
support the inheritance of parent directory group ID, and your system implements
the inheritance of parent directory group ID by means of a directory mode setting
that is inherited by subdirectories (for example by setting theS_ISGID bit on
the directory), and there is an existing directory hierarchy under the testroot
which does not support this feature, then you must remove it using

rm -rf TESTROOT/tset

3. Set the environment variableTET_EXECUTEin the vsx0 login script to the
pathname of the testroot directory.

A.2.2 VSX CONFIGURATION SCRIPT

Running the Configuration Script

1. Read through the configuration script section and write down any information
you will need to use which is different from the defaults.

2. Execute the shell scriptconfig.sh which is in the BIN directory. When you
have included this directory in yourPATH , you can execute the command from
any location.

3. Answer the questions which the configuration script asks.

A.2.3 CHECKING THE PARAMETER FILES

Configuration Parameters File

1. Check the values in the configuration parameters fileSRC/vsxparams and
edit theparameter−namelines if necessary.

Configuration Header File

1. Check the SRC/vsxconfig.h file to ensure that the values are correct for
your system.

2. Check that the values of all the varying defined constants have been changed
from −1 to the values for your system.

3. Check that the values of the other defined constants are correct for your system.

4. Check that all dummy statements have been changed to valid ones.

5. If you re-run config.sh at a later time, it will overwrite
SRC/vsxconfig.h , so make sure you copy it first.

The Open Group
Page 115

X/Open System Verification Suite VSX User and Installation Guide

A.2.4 TOP LEVEL MAKEFILE

1. Edit the Makefile in the vsx0 home directory.

2. Configure the implementation-specific installation commands correctly for your
system.

3. If you re-run config.sh at a later time, it will overwrite Makefile , so
make sure you copy it first.

A.2.5 USER-SUPPLIED INTERFACE ROUTINES

1. Review the fileSRC/userintf.c and identify if it needs to be modified.

2. Modify the file to meet your system’s requirements.

3. If you re-run config.sh at a later time, it will overwriteSRC/userintf.c
with the default version, so make sure you copy it first.

A.2.6 INSTALLING THE PSEUDO-LANGUAGES

Installing the Languages

1. Check the package-specific action points for this chapter to see whether the
pseudo-languages are needed for the subsets and test mode you have selected. If
they are not needed, skip the following action points.

2. If your system does not use the ASCII character set, modify the file
SRC/INC/ctrlcodes.h so that it contains the correct control character
encodings for your system. If your system uses an EBCDIC character set, copy
the file SRC/INC/ctrlebcdic.h to SRC/INC/ctrlcodes.h first.

3. Check that the character encodings specified in the file
SRC/INC/pslcodes.h are suitable for your system, and modify the file if
they are not. If your system uses an EBCDIC character set, copy the file
SRC/INC/pslebcdic.h to SRC/INC/pslcodes.h first.

4. Install the VSX pseudo-languages using the appropriate tools for your system.
You may be able to make use of the files inSUPPORT/psldefs to do this.

A.2.7 WIDE CHARACTER CONFIGURATION FILE

1. If the wide character locales are needed for the subsets and test mode you have
selected, update the fileSRC/wchars.cfg with information about wide
characters and multibyte characters supported on your system. If your system
only supports single-byte characters, simply copySRC/wc_nosup.cfg to
SRC/wchars.cfg .

2. If you re-run config.sh at a later time, it will overwrite
SRC/wchars.cfg , so make sure you copy it first.

3. Install additional locales if necessary to reflect the information in the file.

4. If you changeSRC/wchars.cfg at a later stage there is no need to repeat the
installation stage or to rebuild any testsets. Simply change directory to
SRC/common/wchars and type make. This will update the binary file used
by the tests from the new information inwchars.cfg .

A.2.8 CONFIGURING LSB-FHS

Installation Directory

1. The requirement for the installation directory to support the inheritance of parent
directory group ID only applies if you intend to merge this testset with the VSX-
PCTS subset.

The Open Group
Page 116

X/Open System Verification Suite VSX User and Installation Guide

2. If you are first time user of the LSB-FHS distribution, it is recommended that you
use the install.sh script to guide you through the configure, install, build
and execute process.

A.2.9 CONFIGURING LSB-OS

1. The requirement for the installation directory to support the inheritance of parent
directory group ID does not apply to LSB-OS.

Installing the Pseudo-Languages

1. The pseudo-languages are needed by LSB-OS.

Wide Character Configuration File

1. The SRC/wchars.cfg file is needed by LSB-OS.

Script To Create Shared Objects

1. Edit the file SRC/dynl_mkso.sh and ensure that the commands it uses to
create shared objects are correct for your system.

A.2.10 CONFIGURING VSX4

Installation Directory

1. The requirement for the installation directory to support the inheritance of parent
directory group ID applies to VSX4 if thebase subset is selected.

Installing The Pseudo-languages

1. The pseudo-languages are needed if thebase subset has been selected.

Wide Character Configuration File

1. The SRC/wchars.cfg file is needed for thebase subset in XPG4 and
UNIX98 modes.

A.3 INSTALLING VSX
A.3.1 INTRODUCTION

1. Obtain the necessary privileges for execution of the installation commands you
have configured in the top levelMakefile and executemake in the vsx0
home directory. E.g.

su root -c make

2. When make has completed, check the installation log in theresults
directory to ensure that no errors have occurred. Ifmake encountered any
errors, or there are errors in the log, you must correct them and re-runmake.

A.4 BUILDING VSX
1. Log in as the uservsx0 .

2. Give the command

tcc -b -s scen.bld

with the other options you want to use. Use the command

The Open Group
Page 117

X/Open System Verification Suite VSX User and Installation Guide

../bin/tcc -b -s scen.bld

from the vsx0 home directory if $HOME/../bin is not in yourPATH .

A.4.1 TERMINAL INTERFACE TESTING

Cable Wiring

1. Check the package-specific action points for this chapter to see whether the
terminal loop-back is needed for the subsets and test mode you have selected. If
it is not needed, skip the following action points.

2. If the system has at least two terminal ports, wire and connect two ports to
provide a loop-back.

3. Make the two ports readable and writable by uservsx0 .

4. There must not be any processes attached to these ports. (For example, you may
have to change/etc/inittab or /etc/ttys to remove login processes at
this point.)

A.4.2 BUILDING LSB-OS

Terminal Interface Testing

1. If they are available, LSB-OS will use loop-backed terminal ports in testing
Asynchronous I/O APIs.

A.4.3 BUILDINGVSX4

1. The terminal loop-back is needed if thebase subset has been selected.

Data Interchange Format Testing

1. Review the contents of thetar and cpio shell scripts in the directory
your−testroot−directory/BIN and, where required, modify the contents of the
scripts to call suitable utilities with the correct syntax and arguments for the test
system.

A.5 EXECUTING VSX
A.5.1 THE EXECUTION PARAMETERS FILE

Setting the Execution Parameters

1. Check the execution parameters filetetexec.cfg before you start the VSX
execution stage and edit any values which are not correct for your system.

A.5.2 EXECUTING THE VSX TEST SUITE

1. Log in as the uservsx0 .

2. Give the command

tcc -e -s scen.exec

with the other options you want to use. Use the command

../bin/tcc -e -s scen.exec

from the home directory if$HOME/../bin is not in yourPATH .

The Open Group
Page 118

X/Open System Verification Suite VSX User and Installation Guide

A.6 REPORTING
A.6.1 REPORTING PROGRAM OPTIONS

1. Log in as the uservsx0 .

2. Check that the environment variable PATH is set correctly.

3. Change to the directoryresults if required.

4. Give the commandvrpt with the options you want to use, on a journal file
generated from the results of running thetcc .

A.6.2 POSIX CONFORMANCE REPORTING

1. Log in as the uservsx0 .

2. Check that the environment variable PATH is set correctly.

3. Change to the directoryresults if required.

4. Give the commandprpt with the options you want to use, on journal files
generated from the results of running thetcc .

A.6.3 COMPARATIVE REPORTING

1. Log in as the uservsx0 .

2. Check that the environment variable PATH is set correctly.

3. Change to the directoryresults if required.

4. Give the commandvrptm with the options you want to use, on journal files
generated from the results of running thetcc .

The Open Group
Page 119

X/Open System Verification Suite VSX User and Installation Guide

B. TESTS GIVING WARNINGS
B.1 WARNING CLASSIFICATIONS

The package-specific tables in the following sections show which tests can produce
warnings and the classification of the warning. Unless stated otherwise, the
classifictions given in each table are as follows.

Warnings in classification A are cases where many implementations differ from the
functionality described in the relevant specification. In each of these cases, the
functionality tested is not considered important enough to merit a failure, but in future
releases of the verification suite these tests may be re-classified as failures.

Warnings in classification B are cases where different implementations produce
different error numbers from those expected by the test. The specifications are not
explicit about the precedence of errors and, therefore, these tests are only classified as
warnings.

Warnings in classification C are cases where many implementations differ from the
functionality described in the relevant specification but agree with a known future
direction in which the specification is likely to alter.

Warnings in classification D are cases where the relevant specification describes the
feature being tested as optional, and the implementation under test does not support it.

Warnings in classification E are cases where the behaviour expected by the test is not
actually required by the relevant specification, but most implementations behave that
way, and some applications may (incorrectly) rely on it. Such cases arise where a test
has been downgraded to a warning rather than being removed, as it can still provide
useful information to users.

The Open Group
VSXgen 1.4 Page 120

X/Open System Verification Suite VSX User and Installation Guide

B.2 VSX4 TESTS GIVING WARNINGS
B.2.1 Header Tests and Interface Tests

ii
Section Area Testset Test Numbers Classii

ANSI.os maths fmod 1 A
ANSI.os maths pow 3,4(XPG3 mode) A
ANSI.os maths pow 4(not XPG3 mode) C
ANSI.os streamio fflush 5-11 E
ANSI.os streamio fopen 28 E
ANSI.os streamio fopen_X 2,3 D
ANSI.os streamio freopen_X 2,3 D
ANSI.os streamio fscanf 41 A
ANSI.os streamio fscanf_X 41 A
ANSI.os streamio remove_X 1 D
ANSI.os streamio scanf 41 A
ANSI.os streamio scanf_X 41 A
ANSI.os streamio sscanf 41 A
ANSI.os streamio sscanf_X 41 A
ANSI.os streamio ungetc 2 A
POSIX.os devclass i_noncanon 14,15 A
POSIX.os devclass i_spchars 1,3,5 C
POSIX.os devclass tcsendbrea 2 A
POSIX.os files access_X 1 D
POSIX.os files creat_X 2 D
POSIX.os files open_X 3 D
POSIX.os files rename_X 1 D
POSIX.os files unlink_X 1 D
POSIX.os procenv isatty 2 D
POSIX.os procenv isatty_X 1 D
POSIX.os procenv sysconf_X 2 A
POSIX.os procprim execl_X 4 D
POSIX.os procprim execle_X 4 D
POSIX.os procprim execlp_X 4 D
POSIX.os procprim execv_X 4 D
POSIX.os procprim execve_X 4 D
POSIX.os procprim execvp_X 4 Diic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

The Open Group
VSX-PCTS4.4.4 Page 121

X/Open System Verification Suite VSX User and Installation Guide

ii
Section Area Testset Test Numbers Classii

XOPEN.hdr misc regexp 9 A
XOPEN.hdr misc search 22 C
XOPEN.os genuts encrypt 2 C
XOPEN.os genuts popen 3 C
XOPEN.os procenv cuserid 1,2,3,4 C
XOPEN.os streamio tempnam 5,6 D
XPG4.os genuts getopt 1 A
XPG4.os genuts regex 34,38 Ciicc

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

The Open Group
VSX-PCTS4.4.4 Page 122

X/Open System Verification Suite VSX User and Installation Guide

B.2.2 C Language Tests

The following classes of warning can occur when executing the C language testsets.
The table below shows which tests can produce warnings and the classification of the
warnings.

Warnings in classification A are cases where a common fault occurs in many C
compilers. In all of these cases the functionality tested is not considered important
enough to merit a failure, but in future releases of the verification suite these tests may
be re-classified as failures.

Warnings in classification B are cases where the compiler does not adhere to the
ANSI C Standard. In these cases XPG3 is not specific about the manner in which the
compiler should behave.

iii
Area Testset Test Numbers Classiii

04.constexpr equal 3,6,7,8,9 A
evalorder 1,2,3,24,25 A
greater 3,6,7,8,9 A
greatereq 3,6,7,8,9 A
less 36,7,8,9 A
lessequal 3,6,7,8,9 A
logicand 1–9 A
logicor 1–9 A
miscell 9,12 A
notequal 3,6,7,8,9 A
unary 9 Biii

05.expr addass 5,10,15,20 B
assign 5,10,15,20 B
divass 5,10,15,20 B
mulass 5,10,15,20 B
subass 5,10,15,20 B
unary 11,16 Aiii

06.statement brkcont 1 Biii
08.scoperule blokscope 7,8 Aiii
11.prepro define 14,15 Biiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

The Open Group
VSX-PCTS4.4.4 Page 123

X/Open System Verification Suite VSX User and Installation Guide

C. PRIVILEGED PROGRAMS
The following pages list the programs in each test package that are assigned privileges other than
PRV_DEVICEwhen the corresponding testsets are built.

The Open Group
VSXgen 1.4 Page 124

X/Open System Verification Suite VSX User and Installation Guide

C.1 LSB-OS PRIVILEGED PROGRAMS
LSB.os/genuts/pclose/pclose_t6
LSB.os/genuts/nftw/T.nftw
LSB.os/genuts/syslog/setupsyslog
LSB.os/ioprim/readv/readv_L_su
LSB.os/ioprim/writev/writev_L_su
LSB.os/ipc/msgctl/T.msgctl
LSB.os/ipc/msgsnd/T.msgsnd
LSB.os/ipc/semctl/T.semctl
LSB.os/ipc/semget/T.semget
LSB.os/ipc/semop/T.semop
LSB.os/ipc/shmctl/T.shmctl
LSB.os/mfiles/msync/T.msync
LSB.os/mfiles/munmap/T.munmap
LSB.os/procenv/chroot/T.chroot
LSB.os/procenv/cuserid/T.cuserid
LSB.os/procenv/cuserid/cuserid_su
LSB.os/procenv/nice/T.nice
LSB.os/procenv/nice/nice_X1
LSB.os/procenv/ulimit/ulimit_t4
LSB.os/procprim/_exit/_exit2
LSB.os/procprim/fork/fork2
LSB.os/procprim/fork/fork8
LSB.os/procprim/execl/execl3
LSB.os/procprim/execle/execle3
LSB.os/procprim/execlp/execlp3
LSB.os/procprim/execv/execv3
LSB.os/procprim/execve/execve3
LSB.os/procprim/execvp/execvp3

The Open Group
LSB-OS1.0 Page 125

X/Open System Verification Suite VSX User and Installation Guide

C.2 LIST OF PRIVILEGED PROGRAMS IN VSX4
ANSI.os/genuts/system_X/sys_t56
ANSI.os/genuts/system_X/sys_t57
ANSI.os/streamio/fclose/fclose_t18
ANSI.os/streamio/fflush/fflush_t13
ANSI.os/streamio/fgets/fgets_su
ANSI.os/streamio/fopen/fopen_t23
ANSI.os/streamio/fopen/fopen_t30
ANSI.os/streamio/fputs/fputs_t11
ANSI.os/streamio/fread/fread_su
ANSI.os/streamio/freopen/freop_t25
ANSI.os/streamio/freopen/freop_t30
ANSI.os/streamio/fseek/fseek_t15
ANSI.os/streamio/fwrite/fwrite_t17
ANSI.os/streamio/getc/getc_su
ANSI.os/streamio/gets/gets_su
ANSI.os/streamio/printf/printf_t68
ANSI.os/streamio/putc/putc_t11
ANSI.os/streamio/puts/puts_t11
ANSI.os/streamio/remove/remove_su
ANSI.os/streamio/scanf/scanf_su
ANSI.os/streamio/vprintf/vprintf_t68
POSIX.os/dataform/cpio/cpio_su
POSIX.os/dataform/tar/tar_su
POSIX.os/dataform/tar/tar_uids
POSIX.os/devclass/tcgetpgrp/tcgetpg_su
POSIX.os/files/access/T.access
POSIX.os/files/chdir/chdir_t4
POSIX.os/files/chmod/T.chmod
POSIX.os/files/chown/T.chown
POSIX.os/files/creat/creat_su
POSIX.os/files/creat/creat_t30
POSIX.os/files/link/T.link
POSIX.os/files/mkdir/mkdir_su
POSIX.os/files/mkdir/mkdir_t19
POSIX.os/files/mkfifo/mkfifo_su
POSIX.os/files/mkfifo/mkfifo_t17
POSIX.os/files/open/open_t20_3
POSIX.os/files/open/open_t44
POSIX.os/files/open/open_t46
POSIX.os/files/opendir/opendir_t5
POSIX.os/files/pathconf/pathcf_t19
POSIX.os/files/rename/rename_su
POSIX.os/files/rename/rename_t17
POSIX.os/files/rmdir/rmdir_su
POSIX.os/files/rmdir/rmdir_t9
POSIX.os/files/unlink/T.unlink
POSIX.os/files/unlink/unlink_t9
POSIX.os/files/utime/T.utime
POSIX.os/ioprim/read/read_su
POSIX.os/ioprim/write/write_su
POSIX.os/procenv/getgid/T.getgid
POSIX.os/procenv/getgroups/T.getgroups
POSIX.os/procenv/getlogin/T.getlogin

The Open Group
VSX-PCTS4.4.4 Page 126

X/Open System Verification Suite VSX User and Installation Guide

POSIX.os/procenv/getuid/T.getuid
POSIX.os/procenv/setgid/setgid_t01
POSIX.os/procenv/setgid/setgid_t03
POSIX.os/procenv/setuid/setuid_t01
POSIX.os/procenv/setuid/setuid_t03
POSIX.os/procprim/exec/exec_setid
POSIX.os/procprim/exec/exec_su
POSIX.os/procprim/exec/exec_tstop
POSIX.os/procprim/fork/fork_su
POSIX.os/procprim/fork/fork_t18
POSIX.os/procprim/fork/fork_t21
POSIX.os/procprim/kill/kill_su
POSIX.os/procprim/kill_X/kill_su_X
POSIX.os/procprim/kill/kill_t12
XOPEN.os/genuts/pclose/pclose_t6
XOPEN.os/procenv/chroot/T.chroot
XOPEN.os/procenv/cuserid/cuserid_su
XOPEN.os/procenv/nice/T.nice
XOPEN.os/procenv/ulimit/ulimit_t4
XOPEN.os/streamio/getw/getw_su
XOPEN.os/streamio/putw/putw_t11
XOPEN.os/streamio/tempnam/tempnam_su
XPG4.os/ipc/msgctl/T.msgctl
XPG4.os/ipc/msgctl/msgctl_prg
XPG4.os/ipc/msgsnd/T.msgsnd
XPG4.os/ipc/semctl/T.semctl
XPG4.os/ipc/shmctl/T.shmctl
XPG4.os/ipc/shmget/T.shmget
XPG4.os/wstreamio/fgetws/fgetws_su
XPG4.os/wstreamio/fputws/fputws_t11
XPG4.os/wstreamio/getwc/getwc_su
XPG4.os/wstreamio/putwc/putwc_t13

The Open Group
VSX-PCTS4.4.4 Page 127

X/Open System Verification Suite VSX User and Installation Guide

The Open Group
VSX-PCTS4.4.4 Page 128

X/Open System Verification Suite VSX User and Installation Guide

X/Open System Verification Suite

Part 4: Manual Pages

VSXgen1.4 May 1999

The Open Group

prpt(vprog) VSX USER MANUAL prpt(vprog)

NAME

prpt - POSIX summary report generator

USAGE

prpt [-H] [-L len] [-Wwid] jnlfile ...

DESCRIPTION

Prpt produces a POSIX conformance report from one or more test journal files. If the test suite
was not installed and run in one of the POSIX modes, the extra test results in the journal file(s) are
ignored byprpt . Reports are produced on the standard output.

Each report is prefaced by several cover pages, one for each test journal file being processed,
listing information from the file as follows: file name, validation test name, test date, test agency
and system, test operator and all test parameters.

The cover pages are followed by tables of test results, sorted by POSIX chapter then interface
name. Each line contains the interface name, assertion number and result code (PASS, FAIL,
UNRESOLVED, UNSUPPORTED, UNTESTED or NOTINUSE).

PARAMETERS

Command Line

-H Disable page headers and footers.Prpt will normally print page headers and footers
whose placement and size depend on the page size flags given below. They contain the
page number, report date and report type. The report date is determined from the host
system at the time of prpt invocation. Headers and footers include blank lines between
each header and footer and page text.

Prpt produces headers and footers by default if no -H flag is given.

-L len Page length islen lines - used to place headers and footers properly on the output pages.
Defaults to 66 lines if no -L flag given.

-Wwid
Page width iswid columns - used to generate headers and footers and to wrap long lines.
Defaults to 80 columns if no -W flag given.

Environment

VSXBIN
specifies the directory where prpt executables and scripts reside. IfVSXBIN is not set
this directory is assumed to be$HOME/BIN.

RETURNS

0 Report terminated successfully

1 Unknown option argument or command line usage error

2 Unreadable file or other unrecoverable error during report generation

VSXgen release 1.4 UniSoft Ltd. Page 130

prpt(vprog) VSX USER MANUAL prpt(vprog)

DIAGNOSTICS

"cannot read input file <filename>"
An input file given on the command line could not be opened.

EXAMPLES

prpt journal01
Generate a report from journal file "journal01, using the default page size with page
headers and footers, and put the report onto the standard output.

prpt -H -W132 journal*
Generate a report from all journal files in the current directory, using the default page
length, a page width of 132 columns, and with no page headers or footers.

SEE ALSO

vrpt(vprog)
vrptm(vprog)

AUTHORS

Geoff Clare, UniSoft Ltd.
Stuart Boutell, UniSoft Ltd.
J. A. Nave, UniSoft Ltd.

RELEASE

VSXgen 1.4

VSXgen release 1.4 UniSoft Ltd. Page 131

tcc(1) USER COMMANDS tcc(1)

NAME

tcc− TETware test case controller

SYNOPSIS

tcc −{ bec} [options] [test-suite[scenario]]

tcc −{ bec} −m codelist[options] old-journal-file[test-suite[scenario]]

tcc −{ bec} −r codelist[options] old-journal-file[test-suite[scenario]]

DESCRIPTION

tcc is the TETware test case controller. It provides support for the building, execution and clean-
up of test scenarios.

When TETware-Lite is built, scenarios may only contain test cases which are to be executed on the
local system andtcc performs all the actions required to process such test cases itself. When
Distributed TETware is built, scenarios can contain local, remote and distributed test cases. The
distributed version oftcc does not perform the actions required to process test cases itself but
instead sends requests to the test case controller daemontccd which runs on the local system and
also on each participating remote system (see thetccd(1) manual page for details).

Apart from the scenario directives which relate to the processing of remote and distributed test
cases, the user interface totcc is the same irrespective of whether TETware-Lite or Distributed
TETware is being used.

tcc has three modes of operation, namelybuild , executeandclean, which may be invoked singly
or in any combination. These modes are specified by the−b, −e and−c command-line options, at
least one of which must appear. All of the other options modify the behaviour oftcc in one or
more of these operational modes. Each mode (with optionally modified behaviour) is applied to
the test cases and invocable components selected for processing.

By default,tcc builds, executes or cleans test cases in the namedscenariocontained in the scenario
file tet_scen, which is located in the test suite root directory fortest-suite(seeDIRECTORIES
below). If no scenario is specified, the default scenario namedall is used. If notest-suiteis
specified,tcc attempts to deduce a default test suite name using the following rules:

1. If the TET_SUITE_ROOT environment variable is set and the current directory lies
under the directory hierarchy specified by this variable, then the test suite is the
component of the current directory’s path name which lies immediately below
$TET_SUITE_ROOT. For example, if$TET_SUITE_ROOT is /usr/tet3 and the
current directory is/usr/tet3/suite1/results, then the name of the default test suite is
suite1.

2. If the TET_SUITE_ROOT environment variable is not set and the current directory
lies under the directory hierarchy specified by theTET_ROOT environment variable,
then the test suite is the component of the current directory’s path name which lies
immediately below$TET_ROOT.

3. If the current directory lies outside of the directory hierarchy specified by the
TET_SUITE_ROOT environment variable (if set) or theTET_ROOT environment
variable (if TET_SUITE_ROOT is not set), then no default test suite name can be
deduced.

The Open Group Page 132

tcc(1) USER COMMANDS tcc(1)

DIRECTORIES

By default,tcc interprets test case names relative to thetest suite rootdirectory. The location of
this directory is determined as follows on the local system:

1. If theTET_SUITE_ROOT environment variable is set, thetest suite rootdirectory is
determined by the test suite name, relative to$TET_SUITE_ROOT.

2. If the TET_SUITE_ROOT environment variable is not set, thetest suite root
directory is determined by the test suite name, relative to$TET_ROOT.

3. If theTET_RUN environment variable is set, then the directory subtree below thetest
suite root (determined as described above) is copied to the location below$TET_RUN
and this location becomes the newtest suite rootdirectory.

However, an alternate execution directory on the master system may be specified by the
TET_EXECUTE environment variable or by a command-line option (seeOPTIONSbelow). If an
alternate execution directory is specified,tcc interprets test case names relative to this directory
when operating in execute mode.

By default, tcc creates a directory calledtet_tmp_dir below the test suite root directory.
However, a different temporary directory name on the local system may be specified by the
TET_TMP_DIR environment variable. Each invocation oftcc creates a unique subdirectory
below the temporary directory on startup and removes it and its contents on normal completion.

CONFIGURATION FILES

During execution,tcc reads configuration variables from certain configuration files on both the
local and the remote systems (if any). By default, the name of the build mode configuration file is
tetbuild.cfg, that of the execute mode configuration file istetexec.cfgand that of the clean mode
configuration file istetclean.cfg. The build and clean mode configuration files reside in the test
suite root directory on each system. The execute mode configuration file resides in the alternate
execution directory if one has been specified, otherwise in the test suite root directory.

The Distributed version oftcc reads distributed configuration variables are read from the file
namedtetdist.cfg in the test suite root directory on the local system. This file must at least contain
definitions for thetet root and test suite root directories for any remote systems that are specified
in the scenario being processed.

JOURNAL FILE

By default, tcc creates a sequentially numbered directory below theresults directory in the test
suite root directory for the namedtest-suiteon the local system, and places the journal file and
saved intermediate result files there. On startup,tcc writes the name of the journal file being used
to the standard output.

RESULT CODES

tcc uses a table of result codes to interpret the results generated by API-conforming test cases. A
default table containing standard codes is built in totcc. It is possible to specify additional codes
in user-supplied result codes files located below thetet root and test suite root directories on the
local system. These files are optional but, if they exist, the codes specified in them are added to the
table of standard codes. The default name for each of these files istet_codebut this name can be
changed by means of the TET_RESCODES_FILE configuration variable.

The Open Group Page 133

tcc(1) USER COMMANDS tcc(1)

OPTIONS

The followingoptionsalter the default behaviour described above:

−I Enable interactive journal trace. Journal lines which indicate the start and end of
processing of each test case in each of the chosen modes of operation are written to the
standard error as well as being written to the journal file.

−a directory
Use directory as the alternate execution directory instead of the one specified by the
TET_EXECUTE environment variable (if any).

−f file Usefile as the clean mode configuration file instead of the default.

−g file
Usefile as the build mode configuration file instead of the default.

−i directory
Place the default journal file and saved intermediate results files indirectory instead of in
the default location.

−j file Usefile as the journal file instead of the default.

−l scenario-line
Processscenario-lineas if it appeared in a scenario file below a scenario namedall. More
than one−l option may be specified; thescenario-linesare processed in the order in
which they appear on the command line.scenario-linemust be presented as a single
argument so it must be quoted if it contains embedded spaces. If a scenario file is
specified by a−s option, anyscenario-linesare processed before that scenario file is read.
If no −soption is specified, the default scenario filetet_scenis not read when−l is used.

−n string
Do not process test case names that containstring. More than one−n option may appear.

−p Enable progress reporting. As each build, execute or clean operation is started, a line
indicating the time, mode and scenario line being processed is printed on the standard
output.

−s file
Usefile as the scenario file instead of the default.

−t timeout
Terminate the build, execute or clean of an individual test case if processing would
continue for more thantimeoutseconds.

−v variable=value
The specified configurationvariable is set tovalue, overriding any assignment in the
configuration file for the current mode. It is probably best to surroundvaluewith single
quotes if it contains characters which have special meaning to the Shell. More than one
−v option may appear.

−x file
Usefile as the execute mode configuration file instead of the default.

The Open Group Page 134

tcc(1) USER COMMANDS tcc(1)

−y string
Only process test case names that containstring. More than one−y option may appear.
The−n option has higher precedence than the−y option; thus, a test case is not processed
if its name is matched bystringsspecified with both the−n and the−y options.

RERUN AND RESUME OPTIONS

The following options are mutually exclusive:

−m code-list
Causestcc to resume the previous run of the specifiedscenarioin the namedtest-suite
whose results are inold-journal-file. code-listspecifies the point in the previous run from
which processing is to be resumed and may consist of a comma-separated list of result
codes, or of one or more of the lettersb, e and c to specify failures in particular
processing modes. Ifcode-listconsists of result codes, then processing resumes at the
first invocable component whose result in the previous run matched one of those in the
list. If code-listspecifies processing modes, then processing resumes at the first test case
which failed to build or clean or the first invocable component which, when executed, did
not report PASS in the previous run.

For example:

tcc −b −m b

Resume building from the first test case that failed to build.

tcc −e−m FAIL,UNRESOLVED

Resume execution from the first invocable component that reported FAIL or
UNRESOLVED.

tcc −bec−m b,e

Resume building, execution and cleaning from the first test case which failed to build or
from the first invocable component that did not report PASS.

−r code-list
Causestcc to re-run individual test cases and invocable components from the specified
scenarioin the namedtest-suitewhose results are inold-journal-file. code-listspecifies
the elements that are to be re-run and may consist of a comma-separated list of result
codes, or of one or more of the lettersb, e and c to specify failures in particular
processing modes. Ifcode-listconsists of result codes, then test cases and invocable
components are re-run if the corresponding result in the previous run matched one of the
result codes in the list. Ifcode-listspecifies processing modes, then a test case is re-run if
it failed to build or clean and an invocable component is re-run if it did not report PASS
when it was executed in the previous run.

For example:

tcc −b −r b

Re-build test cases that previously failed to build.

The Open Group Page 135

tcc(1) USER COMMANDS tcc(1)

tcc −e−r FAIL,UNRESOLVED

Re-execute all invocable components that previously reported FAIL or UNRESOLVED.

tcc −bec−r b,e

Re-build, execute and clean all test cases that previously failed to build or execute, and all
invocable components that did not previously report PASS when executed.

FILES

test-suite-root/tet_scen
Default scenario file. In Distributed TETware, only required on the local system.

test-suite-root/tetbuild.cfg
Default build mode configuration file.

alt-exec-dir/tetexec.cfg
Optional default execute mode configuration file when an alternate execution directory
has been specified.

test-suite-root/tetexec.cfg
Default execute mode configuration file whenalt-exec-dir/tetexec.cfgdoes not exist or an
alternate execution directory has not been specified.

test-suite-root/tetclean.cfg
Default clean mode configuration file.

test-suite-root/tetdist.cfg
The distributed configuration file. Not used by TETware-Lite. In Distributed TETware,
only required on the local system.

$TET_ROOT/tet_code
test-suite-root/tet_code

Default result code files. In Distributed TETware, only accessed on the local system.

test-suite-root/tet_tmp_dir
Default temporary directory hierarchy.

test-suite-root/results/nnnn{ bec}
Default results and saved files directory.

results-dir/REMOTEnnn
In Distributed TETware on the local system, the saved files directory for systemnnn.

results-dir/journal
Default journal file. In Distributed TETware, only created on the local system.

The Open Group Page 136

vrpt(vprog) VSX USER MANUAL vrpt(vprog)

NAME

vrpt - validation test report generator

USAGE

vrpt [-llevel] [-rcoverage] [-ffile] [-v] [-H] [-P] [-p]
[-L len] [-Wwid] [-tlines] [jnlfile...]

DESCRIPTION

Vrpt generates a report from journal files specified by thejnlfile argument. Reports are generated
on the standard output.

Reports can be generated at one of threelevels- thesection, area, andtestsetlevels - and covering
a specified range of sections, areas or testsets within these levels.

At the section level, for each section specified by thecoverageparameter, a section report is
produced listing section start and end times, and a section summary listing the number of areas and
testsets run and the number of test/make results in each category. Test result categories are:
Succeeded, Failed, Warning, FIP (Further Information Provided), Unresolved, Uninitiated,
Unsupported, Untested and Not In Use. Make result categories are: Succeeded, Failed and
Unsupported.

At the area level, for each area specified by thecoverageparameter, an area report is produced
giving area start and end time, a table showing the number of results in each category (see list
above) for each testset run, a list of all unsuccessful tests under result category headings, and an
area summary listing the number of testsets run and the number of results in each category. A
section summary is produced after the area reports in each section.

At the testset level, for each testset specified by thecoverageparameter, a report is produced
listing testset start and end time, detailed testset results, and a summary listing the number of
results in each category (see list above). The detailed results list each unsuccessful test/make with
its result category and any supplementary information produced by the test/make stage. In verbose
mode (-v flag given) all successful and "Not In Use" tests/makes are also listed. Area and section
summaries are produced after the testset reports in each area/section.

Each section, area, or testset level individual report starts with the section/area/testset identifier as
passed through from the test/make stage.

Each validation test report run is normally prefaced by cover pages giving a contents list, an
operational summary and a conformance summary. Details are described under the "-P" flag
description below.

Any input thatvrpt does not understand will be ignored, with a warning being issued for the first of
a sequence of lines not understood. Processing will attempt to continue normally from the first
understandable line.

PARAMETERS

VSXgen release 1.4 UniSoft Ltd. Page 137

vrpt(vprog) VSX USER MANUAL vrpt(vprog)

Command Line

-llevel generate report atlevel. Levelcan be one of "sect", "area", or "tset", for section, area,
and testset levels respectively.
leveldefaults totset if no -l parameter given.

-rcoverage
report only on the specified range of tcc output within the level specified above. Note that
the tables in the conformance summary cover page always give the complete results for
the journal files being processed - only the detailed reports are affected when a reduced
coverage is specified.

Coverage can be specified as follows:
1) as a list in the format "name1 name2 ... namen", where a report will be generated for each
section/area/testset (depending on report level) whose name appears in the list;
2) as a range, in the format "name1:name2", where reporting will start with the section/area/testset
(depending on report level) named name1 and will continue until the report for section/area/testset
name2 is completed; note that ordering of sections/areas/testsets within each journal file depends
on the scenario files, and may differ between runs; or,
3) a combination of the above, in the format "name1:name2 name3 name4 name5:name6", etc -
with the combination of the above meanings.

It is notan error if specified names do not actually appear in the journal files.

If range names are specified to a greater level than the level as given in the -l option, then the extra
levels are ignored. E.g.-l sect -r section1/area1will be processed the same as-l sect -r section1.

Vrpt defaults to reporting on every section/area/testset in the journal files if no -r list is specified.

-ffile take the coverage specifier list fromfile; this file should contain a list of
section/area/testset identifiers or names one per line.

The -f and the-r parameters can be used together - the two lists are merged, and the
resulting list used, ignoring repetitions.

-v Verbose mode - list names of successful and "Not In Use" tests/makes in testset level
reports. Without the -v flag, detailed output at this level is produced only for unsuccessful
tests/makes.

-H Disable page headers and footers.Vrpt will normally print page headers and footers
whose placement and size depend on the page size flags given below. They contain the
report level, system and agency names, test/make date, and page number.

Vrpt produces headers and footers by default if no -H flag is given.

-P Do not print the cover pages normally produced with reports, or the parameter list at the
end of all reports. Test cover pages consist of a banner page; a contents page; an
operational summary listing test date, test agency and operator, report date, report level
and coverage, and the journal files reported on; and, a conformance summary showing
tables of the total number of tests in each result category for each section, over the whole
of the journal files being processed (not just the coverage specified with -r).

Report date is determined from the host system at the time of vrpt invocation. Report
level and coverage are as given on the vrpt command line. All other items are determined
from the journal files.

VSXgen release 1.4 UniSoft Ltd. Page 138

vrpt(vprog) VSX USER MANUAL vrpt(vprog)

The -P parameter implies -p, so that progressive report output is generated.

Vrpt defaults to producing the cover pages and parameter list if the -P flag is not given.

-p Disable "Page n of N" page numbering style.Vrpt will normally report the page numbers
in the style "Page 4 of 40". However, this means that no output is generated all the pages
have been prepared.-p allows the user to disable this feature, and thus allowing
progressive report output.

Vrpt will produce footers with the "Page n of N" page numbering, and generates a
progress message every 25 pages on stderr, if the -p flag is not given.

-L len Page length islen lines - used to place headers and footers properly on the output pages.
Defaults to 66 lines if no -L flag given.

-Wwid
Page width iswid columns - used to generate headers and footers and to wrap long lines
in the journal file. Defaults to 80 columns if no -W flag given.

-tlines Truncate test failure information after the specified number of lines. Some tests can
produce hundreds of lines of failure information. This option may be used to reduce the
size of a full report, with the complete test information for tests of interest subsequently
being obtained by using the-r option. The default is no truncation.

Environment

VSXBIN
specifies the directory where vrpt executables and scripts reside. IfVSXBIN is not set
this directory is assumed to be$HOME/BIN.

RETURNS

0 Report terminated successfully

1 Unknown option argument

2 Unrecoverable error during report generation

DIAGNOSTICS

"warning: input does not start with control sequence"
- input file was probably not a correctly formed test/make journal file (i.e. file did not start
with the special "start report" sequence); this is not fatal, but may produce some strange
output.

"warning - line XXX: line ignored"
vrpt ignores lines it does not expect to see at that point, or that appear to be malformed.
Not fatal, and only produced for the first such error in each sequence of malformed lines
in the input file.

VSXgen release 1.4 UniSoft Ltd. Page 139

vrpt(vprog) VSX USER MANUAL vrpt(vprog)

EXAMPLES

vrpt foo
Generate a validation report from the journal file named foo, using default levels and
coverage (testset/all), producing page headers and footers and a parameter list, and put the
report onto standard output.

vrpt -H -P -larea -r’area1 area3:area7’ journal[12]
Generate a validation report from the vtest journal files "journal1" and "journal2", at the
area level, for the area "area1" and every area from "area3" to area7" inclusive; don’t
produce any page headers or footers or cover pages.

SEE ALSO

prpt(vprog)
vrptm(vprog)

AUTHORS

Hamish Reid, UniSoft Ltd.
Stuart Boutell, UniSoft Ltd.
J. A. Nave, UniSoft Ltd.

RELEASE

VSXgen 1.4

VSXgen release 1.4 UniSoft Ltd. Page 140

vrptm(vprog) VSX USER MANUAL vrptm(vprog)

NAME

vrptm - multiple test run comparison report generator

USAGE

vrptm [-H] [-L len] [-Wwid] file1 file2 ...

DESCRIPTION

Vrptm produces a report comparing the results of two or more VSX validation test runs. It takes
as input the test journal files from the runs to be compared. The file names given on the command
line are used in the report to identify the results from the corresponding runs. Reports are
produced on the standard output.

Each report is prefaced by several cover pages, one for each test journal file being processed,
listing information from the file as follows: file name, validation test name, test date, test agency
and system, test operator and all test parameters.

The cover pages are followed by tables of test results, one table per testset, showing the results for
each test across all the input files. The tables contain one word entries giving the test result
category (Succeeded, Failed, Warning, FIP (Further Information Provided), Unresolved,
Uninitiated, Unsupported, Untested or Not In Use). A ’-’ character in the table indicates that no
result was found for that test in the corresponding file. Any additional test information in the
journal file is not reproduced.

PARAMETERS

Command Line

-H Disable page headers and footers.Vrptm will normally print page headers and footers
whose placement and size depend on the page size flags given below. They contain the
page number, report date and report type. The report date is determined from the host
system at the time of vrptm invocation. Headers and footers include blank lines between
each header and footer and page text.

Vrptm produces headers and footers by default if no -H flag is given.

-L len Page length islen lines - used to place headers and footers properly on the output pages.
Defaults to 66 lines if no -L flag given.

-Wwid
Page width iswid columns - used to generate headers and footers and to wrap long lines
in the journal file. Defaults to 80 columns if no -W flag given.

Environment

VSXBIN
specifies the directory where vrptm executables and scripts reside. IfVSXBIN is not set
this directory is assumed to be$HOME/BIN.

VSXgen release 1.4 UniSoft Ltd. Page 141

vrptm(vprog) VSX USER MANUAL vrptm(vprog)

RETURNS

0 Report terminated successfully

1 Unknown option argument or command line usage error

2 Unreadable file or other unrecoverable error during report generation

DIAGNOSTICS

"cannot read input file <filename>"
An input file given on the command line could not be opened.

"insufficient page width for number of files - using <wid>"
The page width specified with the -W option was less than the minimum required for the
number of input files being processed. The program will produce the report using <wid>
instead of the requested width.

EXAMPLES

vrptm journal1 journal[45]
Generate a report comparing test results from journal files journal1, journal4 and journal5,
using the default page size with page headers and footers, and put the report onto the
standard output.

vrptm -H -W132 jo*
Generate a report comparing test results from all "journal" files in the current directory,
using the default page length, a page width of 132 columns, and with no page headers or
footers.

SEE ALSO

vrpt(vprog)
prpt(vprog)

AUTHORS

Geoff Clare, UniSoft Ltd.
Stuart Boutell, UniSoft Ltd.

RELEASE

VSXgen 1.4

VSXgen release 1.4 UniSoft Ltd. Page 142

CONTENTS

1. FOREWORD . 1
1.1 VSX DOCUMENTATION 1

1.1.1 Part 1: VSX User Guide 1
1.1.2 Part 2: VSX Installation Guide. 2
1.1.3 Part 3: VSX Appendices 2
1.1.4 Part 4: Manual Pages 2

2. VSX TERMINOLOGY . 5
2.1 INTRODUCTION . 5
2.2 STAGES OF VSX. 5

2.2.1 Stage 1: Preparation. 5
2.2.2 Stage 2: Configuration. 5
2.2.3 Stage 3: Installation. 5
2.2.4 Stage 4: Building. 5
2.2.5 Stage 5: Execution 5
2.2.6 Stage 6: Reporting 5
2.2.7 Stage 7: Interpreting VSX Results. 6

2.3 STRUCTURE . 6
2.3.1 Section. 6
2.3.2 Area . 6
2.3.3 Testset. 6
2.3.4 Test . 6

2.4 NAMING CONVENTIONS 6
2.5 JOURNAL FILE . 7

3. VSX DIRECTORY STRUCTURE 8
3.1 TOP LEVEL DIRECTORY STRUCTURE 8

3.1.1 Introduction . 8
3.1.2 Binaries:BIN . 8
3.1.3 Manual:MAN . 8
3.1.4 Results:results 8
3.1.5 Source:SRC . 8
3.1.6 Support:SUPPORT. 8
3.1.7 Testroot:TESTROOT 8
3.1.8 Testset:tset . 8

3.2 SOURCE DIRECTORY STRUCTURE 9
3.2.1 Common:common 9
3.2.2 Install: install 9
3.2.3 Subsets:subsets 9
3.2.4 Library: LIB . 9
3.2.5 Include: INC . 9
3.2.6 System Include:SYSINC 9

3.3 MANUAL DIRECTORY STRUCTURE 9
3.3.1 Common:common 9
3.3.2 Testset:tset . 9

3.4 TESTROOT DIRECTORY STRUCTURE 9

4. RESOURCES. 11
4.1 INTRODUCTION . 11
4.2 COMPUTER HARDWARE 11

4.2.1 Disk Space . 11
4.2.2 Exclusive Use . 11
4.2.3 Devices . 11

4.3 UTILITIES . 11

- i -

4.3.1 Bourne Shell . 11
4.3.2 make . 11
4.3.3 Compiler . 12
4.3.4 Library Archiver . 12
4.3.5 awk . 12
4.3.6 Editors . 12
4.3.7 File Utilities . 12
4.3.8 Null Device . 12

4.4 TIME . 12
4.5 SKILLS . 12

4.5.1 Using VSX . 12
4.5.2 Interpreting Results. 13

5. PREPARATION . 17
5.1 INTRODUCTION . 17
5.2 PREPARING YOUR SYSTEM. 17

5.2.1 File Space Requirements 17
5.2.2 VSX User Accounts. 17

5.3 LOADING THE VSX DISTRIBUTION 19
5.3.1 Unpacking the Distribution Files. 19
5.3.2 Checking the Contents. 19

5.4 REMOVING UNWANTED VSX DATA (OPTIONAL) 20
5.5 LSB-FHS PREPARATION 21

5.5.1 File Space Requirements 21
5.5.2 VSX User Accounts. 21
5.5.3 Loading The LSB-FHS Distribution. 21

5.6 LSB-OS PREPARATION 22
5.6.1 File Space Requirements 22
5.6.2 VSX User Accounts. 22
5.6.3 Loading The VSX Distribution 22
5.6.4 Removing Unwanted VSX Data (Optional). 22

5.7 VSX4 PREPARATION . 23
5.7.1 File Space Requirements 23
5.7.2 VSX User Accounts. 23
5.7.3 Loading The VSX Distribution 23
5.7.4 Removing Unwanted VSX Data (Optional). 23

6. CONFIGURING VSX . 25
6.1 INTRODUCTION . 25
6.2 INSTALLATION DIRECTORY 25
6.3 PARAMETERS . 26

6.3.1 Introduction . 26
6.3.2 Libraries . 26

6.4 VSX CONFIGURATION SCRIPT 26
6.4.1 Introduction . 26
6.4.2 General Information. 26
6.4.3 Compiler Characteristics and Libraries. 28
6.4.4 Subset-specific Information 28
6.4.5 Optional Information 28
6.4.6 Running the Configuration Script. 28

6.5 CHECKING THE PARAMETER FILES 29
6.5.1 Configuration Parameters File. 29
6.5.2 Configuration Header File. 29
6.5.3 IMPORTANT . 30

6.6 CREATING PARAMETER FILES 31
6.7 TOP LEVEL MAKEFILE 31

- ii -

6.7.1 Privilege Check . 31
6.7.2 Parent Directory Group ID. 31
6.7.3 Execute Install Script as Uservsx0 31
6.7.4 Assign Privileges tochmog Program 31
6.7.5 Set Up File System for ENOSPC Tests. 31
6.7.6 Additional Subset-specific Targets 32
6.7.7 Non-configured Commands 32

6.8 USER-SUPPLIED INTERFACE ROUTINES 32
6.8.1 Introduction . 32
6.8.2 setprv() . 32
6.8.3 unsetprv() . 33
6.8.4 prv_assign() 33
6.8.5 mnt_rw() . 34
6.8.6 mnt_ro() . 34
6.8.7 unmnt() . 34
6.8.8 openctl() . 34
6.8.9 openpty() . 34
6.8.10 ptygetattr() 34
6.8.11 newroot() . 34
6.8.12 setlimit() . 34
6.8.13 pathdepth() . 35
6.8.14 Additional Subset-specific Routines. 35

6.9 INSTALLING THE PSEUDO-LANGUAGES 35
6.9.1 Introduction . 35
6.9.2 Configuring the Character Encodings. 35
6.9.3 Installing the Languages 36

6.10 WIDE CHARACTER CONFIGURATION FILE 36
6.10.1 Introduction . 36
6.10.2 Example Wide Character Configuration File 37

6.11 CONFIGURING LSB-FHS 43
6.11.1 Installation Directory 43
6.11.2 VSX Configuration Script 43

6.12 CONFIGURING LSB-OS 44
6.12.1 Installation Directory 44
6.12.2 VSX Configuration Script 44
6.12.3 User-Supplied Interface Routines. 45
6.12.4 Installing the Pseudo-Languages. 45
6.12.5 Wide Character Configuration File 45
6.12.6 Script To Create Shared Objects. 45

6.13 CONFIGURING VSX4 . 46
6.13.1 Installation Directory 46
6.13.2 VSX Configuration Script 46
6.13.3 User-supplied Interface Routines. 47
6.13.4 Installing The Pseudo-languages. 47
6.13.5 Wide Character Configuration File 47

7. INSTALLING VSX . 48
7.1 INTRODUCTION . 48

7.1.1 VSX Header Files 48
7.1.2 Include Files . 48
7.1.3 Directory Routines 48
7.1.4 Variable Argument Routines 48
7.1.5 Testroot Initialisation 48
7.1.6 Configuration Files 48
7.1.7 Scenario Files. 49

- iii -

7.1.8 Update Common Software Files. 49
7.1.9 Subset-specific Install Scripts. 49
7.1.10 Build Common Software 49

8. BUILDING VSX . 50
8.1 INTRODUCTION . 50
8.2 BUILDING ALL REQUIRED TESTSETS 50

8.2.1 Introduction . 50
8.3 BUILDING SELECTED TESTSETS (OPTIONAL) 50

8.3.1 Sections and Areas. 50
8.3.2 Building Selected Parts of a Scenario. 50
8.3.3 Building Individual Testsets 51
8.3.4 Additional Options 51

8.4 REMOVING BUILT TESTSETS 52
8.5 REPORTING . 52
8.6 TERMINAL INTERFACE TESTING 52

8.6.1 Introduction . 52
8.6.2 Cable Wiring . 53

8.7 TROUBLESHOOTING . 54
8.8 BUILDING LSB-FHS . 55

8.8.1 Sections and Areas. 55
8.9 BUILDING LSB-OS . 56

8.9.1 Terminal Interface Testing. 56
8.10 BUILDING VSX4 . 57

8.10.1 Sections and Areas. 57
8.10.2 Terminal Interface Testing. 57
8.10.3 Data Interchange Format Testing. 58

9. EXECUTING VSX . 59
9.1 INTRODUCTION . 59
9.2 THE EXECUTION PARAMETERS FILE 59

9.2.1 Introduction . 59
9.2.2 Setting the Execution Parameters. 59

9.3 EXECUTION PARAMETER NAMES 59
9.3.1 General Parameters. 60
9.3.2 Compiler Characteristics 62
9.3.3 Operating System Characteristics Common To Multiple Subsets. 63
9.3.4 Terminal Interface Parameters Common To Multiple Subsets. 67

9.4 EXECUTING THE VSX TEST SUITE 70
9.4.1 Introduction . 70
9.4.2 Executing All Required Tests. 70
9.4.3 Executing Selected Parts of a Scenario (OPTIONAL). 71
9.4.4 Executing Individual Testsets (OPTIONAL) 71
9.4.5 Executing Individual Tests (OPTIONAL) 71
9.4.6 Additional Options (OPTIONAL). 72
9.4.7 Path Tracing (OPTIONAL) 72
9.4.8 Debugging Options (OPTIONAL) 73
9.4.9 Debugging Output and the Path Tracing Code. 74
9.4.10 Executing Tests Directly (OPTIONAL). 74

9.5 TROUBLESHOOTING . 75
9.6 EXECUTING LSB-FHS . 77

9.6.1 General Parameters. 77
9.6.2 Compiler Characteristics 77
9.6.3 Operating System Characteristics for LSB-FHS Subset Only. 77

9.7 EXECUTING LSB-OS . 80
9.7.1 The Execution Parameters File. 80

- iv -

9.8 EXECUTING VSX4 . 86
9.8.1 General Parameters. 86
9.8.2 Compiler Characteristics 86
9.8.3 Operating System Characteristics Common To Multiple Subsets. 86
9.8.4 Terminal Interface Parameters Common To Multiple Subsets. 89
9.8.5 Operating System Characteristics for Base Subset Only. 90
9.8.6 Operating System Characteristics for X/Open Base Elements Only. 95
9.8.7 Operating System Characteristics for XPG4 Base Elements. 96
9.8.8 Operating System Characteristics for Data Management Subset Only. . . . 97

10. REPORTING . 98
10.1 INTRODUCTION . 98
10.2 THE REPORTING PROGRAMS 98
10.3 REPORTING PROGRAM USAGESUMMARY 98
10.4 REPORTING PROGRAM OPTIONS. 98

10.4.1 Reporting on the Entire Journal 98
10.4.2 Reporting on a Section or Area (OPTIONAL). 98
10.4.3 Reporting on Individual Testsets (OPTIONAL) 99
10.4.4 Summary Reports (OPTIONAL). 99
10.4.5 Varying the Text Format (OPTIONAL). 99
10.4.6 Additional Options (OPTIONAL). 99

10.5 POSIX CONFORMANCE REPORTING. 100
10.6 COMPARATIVE REPORTING 100
10.7 SAMPLE REPORT OUTPUT 101

10.7.1 vrpt Sample Output 101
10.7.2 prpt Sample Output 107

10.8 TROUBLESHOOTING . 108

11. INTERPRETING VSX RESULTS 109
11.1 INTRODUCTION . 109
11.2 TEST RESULTS . 109

11.2.1 Failed . 109
11.2.2 Uninitiated or Unresolved. 109
11.2.3 Unreported . 110
11.2.4 Warning . 110
11.2.5 FIP (Further Information Provided). 110
11.2.6 Unsupported . 110
11.2.7 Not In Use . 110
11.2.8 Untested . 110
11.2.9 Succeeded. 110

A. ACTION POINT SUMMARY . 113
A.1 PREPARATION . 113

A.1.1 PREPARING YOUR SYSTEM 113
A.1.2 LOADING THE VSX DISTRIBUTION 113
A.1.3 REMOVING UNWANTED VSX DATA (OPTIONAL) 114
A.1.4 LSB-FHS PREPARATION 114
A.1.5 LSB-OS PREPARATION 114
A.1.6 VSX4 PREPARATION 114

A.2 CONFIGURING VSX . 115
A.2.1 INSTALLATION DIRECTORY 115
A.2.2 VSX CONFIGURATION SCRIPT 115
A.2.3 CHECKING THE PARAMETER FILES 115
A.2.4 TOP LEVEL MAKEFILE 116
A.2.5 USER-SUPPLIED INTERFACE ROUTINES. 116
A.2.6 INSTALLING THE PSEUDO-LANGUAGES 116

- v -

A.2.7 WIDE CHARACTER CONFIGURATION FILE 116
A.2.8 CONFIGURING LSB-FHS 116
A.2.9 CONFIGURING LSB-OS 117
A.2.10 CONFIGURING VSX4 117

A.3 INSTALLING VSX . 117
A.3.1 INTRODUCTION 117

A.4 BUILDING VSX . 117
A.4.1 TERMINAL INTERFACE TESTING 118
A.4.2 BUILDING LSB-OS 118
A.4.3 BUILDING VSX4 118

A.5 EXECUTING VSX . 118
A.5.1 THE EXECUTION PARAMETERS FILE 118
A.5.2 EXECUTING THE VSX TEST SUITE 118

A.6 REPORTING . 119
A.6.1 REPORTING PROGRAM OPTIONS 119
A.6.2 POSIX CONFORMANCE REPORTING 119
A.6.3 COMPARATIVE REPORTING 119

B. TESTS GIVING WARNINGS . 120
B.1 WARNING CLASSIFICATIONS 120
B.2 VSX4 TESTS GIVING WARNINGS 121

B.2.1 Header Tests and Interface Tests. 121
B.2.2 C Language Tests 123

C. PRIVILEGED PROGRAMS . 124
C.1 LSB-OS PRIVILEGED PROGRAMS. 125
C.2 LIST OF PRIVILEGED PROGRAMS IN VSX4. 126

- vi -

