
Technical Guide

Security Design Patterns

by Bob Blakley, Craig Heath, and members of The Open Group Security Forum

The Open Group

 April 2004, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Technical Guide

Security Design Patterns

ISBN: 1-931624-27-5
Document Number: G031

Published in the U.K. by The Open Group, April 2004.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii Technical Guide (2004)

Contents

Chapter 1 Introduction... 1

Chapter 2 The Nature of Patterns .. 5
 2.1 Minimal Definition for a Pattern.. 5
 2.2 How to Recognize a Pattern ... 6
 2.3 Defining a Good Pattern.. 6

Chapter 3 The Open Group Pattern Template... 9

Chapter 4 The System of Security Patterns ... 11
 4.1 Available System Patterns .. 11
 4.2 Protected System Patterns... 11

Chapter 5 Design Methodology... 13
 5.1 System Security Sequence... 13
 5.2 Available System Sequence .. 14
 5.3 Protected System Sequence .. 14
 5.4 Review... 15

Chapter 6 Example: Secure Mail .. 17

Chapter 7 Available System Patterns.. 27
 7.1 Checkpointed System .. 28
 7.2 Standby ... 31
 7.3 Comparator-Checked Fault-Tolerant System....................................... 35
 7.4 Replicated System... 39
 7.5 Error Detection/Correction.. 42

Chapter 8 Protected System Patterns... 45
 8.1 Protected System... 46
 8.2 Policy ... 53
 8.3 Authenticator... 58
 8.4 Subject Descriptor... 59
 8.5 Secure Communication ... 64
 8.6 Security Context.. 71
 8.7 Security Association... 75
 8.8 Secure Proxy... 79

 Glossary ... 85

 Index... 89

Security Design Patterns iii

Contents

List of Figures

6-1 Example Problem: Secure Email ... 17
6-2 Identify Resources and Actors .. 18
6-3 Define Protected System Instances .. 19
6-4 Define Policy ... 20
6-5 Define Secure Communications ... 21
6-6 Derive Target Descriptor.. 22
6-7 Derive Security Contexts.. 23
6-8 Derive Secure Associations and Subject Descriptors 24
6-9 Consider Factoring Protected Systems.. 25

iv Technical Guide (2004)

Preface

The Open Group

The Open Group is a vendor-neutral and technology-neutral consortium, whose vision of
Boundaryless Information Flow will enable access to integrated information within and between
enterprises based on open standards and global interoperability. The Open Group works with
customers, suppliers, consortia, and other standards bodies. Its role is to capture, understand,
and address current and emerging requirements, establish policies, and share best practices; to
facilitate interoperability, develop consensus, and evolve and integrate specifications and Open
Source technologies; to offer a comprehensive set of services to enhance the operational
efficiency of consortia; and to operate the industry’s premier certification service, including
UNIX certification.

Further information on The Open Group is available at www.opengroup.org.

The Open Group has over 15 years’ experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of test
suites used to validate conformance to an open standard or specification.

More information is available at www.opengroup.org/testing.

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business
titles. Full details and a catalog are available at www.opengroup.org/pubs.

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards-compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published at www.opengroup.org/corrigenda.

Security Design Patterns v

Preface

This Document

The Open Group Security Forum decided to develop design patterns for information security
design because its members saw that a new, more flexible approach to security architecture is
needed.

There is a long history of The Open Group creating security specifications, providing structural
guidelines, and defining application programming interface definitions (APIs) in C and other
languages.

This approach no longer addresses the real needs of security system architects and designers,
because:

• Most information systems are already in existence.

• The C language is decreasingly relevant as the useful way to express interface definitions.

• In modern software design the designers need instructional guidance that is language-
independent; not prescriptive definitions written in C or any other programming language.

Design patterns are language-independent, flexible, adaptable, and scalable to all information
system design problems.

This Technical Guide provides a pattern-based security design methodology and a system of
security design patterns. This methodology, with the pattern catalog, enables system architects
and designers to develop security architectures which meet their particular requirements. The
introductory chapters of this Technical Guide provide background information on the design
patterns approach to software architecture, describe how patterns are discovered and
documented, and explain how to use patterns to design security into a system.

It is inherent in the nature of design patterns that they evolve with experience, and the security
design patterns in this Technical Guide are no exception. It is therefore possible that a second
edition will be forthcoming over time. We welcome feedback, which should be sent to
OGSpecs@opengroup.org and will be included in preparation of a future edition. We also invite
parties interested in working with us on progressing a future edition to get in touch using the
same email address.

vi Technical Guide (2004)

About the Authors

Bob Blakley
Chief Scientist, Security and Privacy, IBM Tivoli Software

Bob Blakley is chief scientist for Security and Privacy at IBM Tivoli Software. He is general chair
of the 2003 IEEE Security and Privacy Conference and has served as General Chair of the ACM
New Security Paradigms Workshop. He serves on the National Academy of Science’s study
group on Authentication Technologies and Their Privacy Implications. He was named
Distinguished Security Practitioner by the 2002 ACM Computer Security and Applications
Conference (ACSAC), and serves on the editorial board for the International Journal of
Information Security (IJIS).

Bob Blakley was the editor of the OMG CORBA Security specification, and is the author of
CORBA Security: An Introduction to Safe Computing with Objects, published by Addison-Wesley.
Blakley was also the editor of The Open Group Authorization API Specification and the OASIS
Security Services Technical Committee’s SAML Specification effort. Blakley has been involved in
cryptography and data security design work since 1979 and has authored or co-authored seven
papers on cryptography, secret-sharing schemes, access control, and other aspects of computer
security. He holds nine patents on security-related technologies.

Blakley received an A.B. in classics from Princeton University, and a Master’s Degree and Ph.D.
in computer and communications sciences from the University of Michigan.

Craig Heath
Product Strategist, Core OS and Security, Symbian

Craig has been working in IT security since 1988, including positions at The Santa Cruz
Operation as security architect for SCO UNIX, and at Lutris Technologies as security architect
for the Enhydra Enterprise Java Application Server.

He has been a member of The Open Group Security Forum (originally the X/Open Security
Working Group) since 1993, sitting on the Steering Committee since 1999. He has contributed to
several published security standards, including XBSS (baseline system security requirements),
XDAS (distributed audit), and XSSO (single sign-on). He has also participated in standards work
within POSIX, IETF, the Java Community Process, and the Open Mobile Alliance.

Craig graduated from the University of Warwick with a B.Sc. in computer science in 1984. He
has two patents pending on security-related technologies.

Security Design Patterns vii

Trademarks

CORBA is a registered trademark of the Object Management Group.

Java is a registered trademark of Sun Microsystems, Inc.

UNIX and The Open Group are registered trademarks of The Open Group in the United
States and other countries.

All other trademarks are the property of their respective owners.

viii Technical Guide (2004)

Acknowledgements

The Open Group gratefully acknowledges:

• The major contribution of George Robert (Bob) Blakley III, Chief Scientist, Security and
Privacy, IBM Tivoli Software, for his leadership and expertise in writing, editing, and
verifying the technical content of this Technical Guide

• The assistance of Craig Heath, Product Strategist, Core OS and Security, Symbian, for
preparation of new material (principally in Chapter 8) and editing for consistency.

• The significant contributions of pattern drafts, and of review comments and verification of
the security design patterns in this catalog provided by other members of The Open Group
Security Forum, particularly:

Steve Jenkins, NASA Jet Propulsion Laboratory, CalTech
Chris Milsom, Hewlett-Packard Company
Eliot Solomon, SIMC
Steve Whitlock, Boeing Corporation
Ian Dobson, The Open Group

Security Design Patterns ix

Referenced Documents

The following documents are referenced in this Technical Guide:

[APLRAC]
A Pattern Language for Designing and Implementing Role-based Access Control, Saluka R.
Kodituwakku and Peter Bertok (Dept. of Computer Science, RMIT University, Australia)
and Liping Zhao (Dept. of Computation, UMIST, UK).

[Appleton]
Patterns and Software: Essential Concepts and Terminology, Brad Appleton:
www.cmcrossroads.com/bradapp/docs/patterns-intro.html.

[Brown-Fernandez]
The Authenticator Pattern, F. Lee Brown and Eduardo B. Fernandez, 1999.

[CA_OE]
The Oregon Experiment, Christopher Alexander, Oxford University Press, New York, 1975,
ISBN: 0-19-501824-9.

[CA_NOPCL]
The Nature of Order Book 2: The Process of Creating Life, Christopher Alexander,
Patternlanguage.com, August 2003, ISBN: 0-97-265292-2.

[CA_PL]
A Pattern Language: Towns, Buildings, Construction, Christopher Alexander, Oxford
University Press, New York, 1979, ISBN: 0-19-501919-9.

[CA_TWB79]
The Timeless Way of Building, Christopher Alexander, Oxford University Press, 1979, ISBN:
0-19-502402-8.

[CESG Memorandum No.1]
CESG Memorandum No.1, Issue 1.2, October 1992, Glossary of Security Terminology.

[Coplien]
Links to James O. Coplien works on design patterns: http://www1.bell-labs.com/user/copy/.

[ECMA TR/46]
ECMA TR/46, Security in Open Systems, A Security Framework, July 1988, European
Computer Manufacturers Association.

[Federal Criteria V1.0]
Federal Criteria Version 1.0, December 1992, Federal Criteria for Information Technology
Security.

[Fernandez-Pan]
A Pattern Language for Security Models, Eduardo B. Fernandez and Rouyi Pan, Dept. of
Computer Science & Engineering, Florida Atlantic University, 2001.

[GoF]
Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides, Addison-Wesley, October 1994, ISBN: 0-201-63361-2.

[IEEE Std 1003.0/D15]
IEEE Std 1003.0/D15, June 1992, Draft Standard for Information Technology — Portable
Operating System Interface (POSIX) — Part 0.

x Technical Guide (2004)

Referenced Documents

[ISO 7498-2]
ISO 7498-2: 1989, Information Processing Systems — Open Systems Interconnection — Basic
Reference Model — Part 2: Security Architecture.

[ISO/IEC 10181-1]
ISO/IEC 10181-1: 1996, Information Technology — Open Systems Interconnection —
Security Frameworks for Open Systems: Overview.

[ISO/IEC 10181-2]
ISO/IEC 10181-2: 1996, Information Technology — Open Systems Interconnection —
Security Frameworks for Open Systems: Authentication Framework.

[ISO/IEC 10181-3]
ISO/IEC 10181-3: 1996, Information Technology — Open Systems Interconnection —
Security Frameworks for Open Systems: Access Control Framework.

[ITSEC]
Information Technology Security Evaluation Criteria (ITSEC), Provisional Harmonized
Criteria, June 1991, Version 1.2, published by the Commission of the European
Communities.

[Lea]
Links to Doug Lea’s checklist on how to write good patterns:
www.hillside.net/patterns/writing/writingpatterns.htm.

[Mahmoud]
Security Policy: A Design Pattern for Mobile Java Code, Qusay H. Mahmoud, School of
Computer Science, Carleton University, Ontario, Canada, 2000.

[NAI]
Security Patterns Repository, Version 1.0, Darrell M. Kienzle, Matthew C. Elder, David Tyree,
and James Edwards-Hewitt. (Available from: www.scrypt.net.˜celer/securitypatterns/.)

[Object-Filter]
The Object Filter and Access Control Framework, Viviane Hays, Marc Loutrel, and Eduardo B.
Fernandez, Dept. of Computer Science & Engineering, Florida Atlantic University, 2000.

[Role-Object]
The Role Object Pattern, Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Martina Wulf, 1997.

[Romanowsky]
Security Design Patterns Part 1, Sasha Romanowsky, Morgan Stanley Online, September 2001.

[TCSEC]
Trusted Computer System Evaluation Criteria, National Computer Security Center, Technical
Report DoD 5200.28-STD, U.S. Department of Defense, 1985.

[TG_SDP]
Security Design Patterns, Bob Blakley, Craig Heath, and The Open Group Security Forum,
Technical Guide, 2004, Doc. No. G031, ISBN: 1-931624-27-5 (this document).

[Tropyc]
A Pattern Language for Cryptographic Software, Alexandre M. Braga, Cecilia M.F. Rubira, and
Ricardo Dahab, Institute of Computing, State University of Campinas, Brazil, 1998.

[Yoder-Barcalow]
Architectural Patterns for Enabling Application Security, Joseph Yoder and Jeffrey Barcalow,
1998.

Security Design Patterns xi

Referenced Documents

The following provide further information:

• Informative links to design patterns information on the Hillside web site: www.hillside.net.

• Security Patterns and Related Concepts, and Security Engineering with Patterns (Markus
Schumacher and Utz Roedig), Darmstadt University of Technology, Dept. of Computer
Science, IT Transfer Office (ITO): www.ito.tu-darmstadt.de/securitypatterns.

• Courier Patterns, Robert Switzer, Goettingen Mathematisches Institut, Germany, July 1998.

xii Technical Guide (2004)

Chapter 1

Introduction

Why Security Patterns?

There are many excellent Security Architecture publications available. They have variously
appeared and rapidly become out-of-date for different reasons, but mostly because they either
do not allow a sufficiently flexible architectural model to keep up with the evolving needs of a
business and the evolving landscape of available information technology, or they limit the scope
of the architecture that the business needs in other ways.

We see that in the current diversity of enterprise business requirements, software architects and
designers increasingly need a way to design their own architectures—and then to be able to
maintain their integrity and coherence as they evolve to match the changing needs of the
business they serve. In the spirit of the proverb:

‘‘It’s better to teach a man how to fish than to give him fish.’’

we believe it is better to explain how to use a proven methodology—design patterns—to design
security architectures that accurately fit the needs of a business, than to prescribe a range of fixed
architectures that system architects and designers then have to modify and mould to make a
best approximate fit with their systems.

What are Patterns?

Brad Appleton [Appleton] has defined a ‘‘pattern’’ as:

‘‘A named nugget of instructive information that captures the essential structure and insight
of a successful family of proven solutions to a recurring problem that arises within a certain
context and system of forces.’’

Design patterns tell their readers how to design a system, given a statement of a problem and a
set of forces that act upon the system. In the information technology environment, patterns give
information system architects a method for defining reusable solutions to design problems
without ever having to talk about or write program code; they are truly programming
language-independent.

Origins of Design Patterns Technique

The design patterns approach was invented by Christopher Alexander. Alexander is a buildings
architect, who devised the idea of a design pattern in the course of his design work. He realized
that in buildings design there are certain well-defined components that occur repeatedly and
which can be described in design terms, and reused. He defined these repeating components as
design patterns, and each time the problems recurred he reused the same design pattern to
provide the solution. This technique maintained accuracy and consistency in design for the
common components in his buildings designs.

Alexander first launched his ideas on the concept of design patterns in The Oregon Experiment
[CA_OE], published in 1975. He followed this with A Pattern Language [CA_PL], published in
1977, and described his design patterns technique in his landmark book The Timeless Way of
Building [CA_TWB79], published in 1979.

After Alexander’s book first described patterns for physical architecture, software architects saw
parallels between architectural issues in buildings and in software; it was natural that they
should adopt (and adapt) the design patterns approach to their own work.

Security Design Patterns 1

Introduction

Many papers and books have been published on design patterns since Alexander’s 1979 book
first appeared. The landmark patterns book for software architects is Design Patterns: Elements of
Reusable Object-Oriented Software [GoF] published in October 1994. The authors (Gamma, Helm,
Johnson, and Vlissides) of that book are known in the software patterns community as the
‘‘Gang of Four’’. Their book describes simple and elegant solutions to specific problems in
object-oriented software design. It established design patterns as a method for software
architecture.

Mature software design patterns, like patterns in any other discipline, capture solutions that
have developed and evolved over time. Hence they are not the designs that people tend to
generate initially. Mature patterns reflect many iterations of untold redesign and recoding, as
developers have struggled for greater reuse and flexibility in their software. Design patterns
capture refined solutions in a succinct and easily applied form.

The purpose of using patterns is to create a re-usable design element. Each pattern is useful in
and of itself. The combination of patterns assists those responsible for implementing security to
produce sound, consistent designs that include all the operations required, and so assure that the
resulting implementations can be completed efficiently and will perform effectively.

Writing good design patterns is hard. We recommend reading the ‘‘Gang of Four’’ book to gain
an appreciation of just how much expertise and skill is required to do it well. Equally, the flaws
in inadequate patterns become evident when they are put to real use; unfortunately there is no
such thing as a self-checking facility for a design pattern.

Today, the design patterns technique for designing software architecture to suit any
organization’s business needs is firmly established, and many design patterns for software
components have been published. The good ones have been proven as ‘‘good’’ because they
have stood the test of time through repeated successful application.

In this spirit, we want the security design patterns in this Technical Guide to be proven as good,
so expect them to evolve with experience. It is therefore possible that a second edition will be
forthcoming over time. We welcome feedback, which should be sent to OGSpecs@opengroup.org
and will be included in preparation of a future edition. We also invite parties interested in
working with us on progressing a future edition to get in touch using the same email address.

Objectives of this Technical Guide

Many software design patterns have been published. Some security patterns exist; the
Referenced Documents section (see Referenced Documents) lists a number of them. What
doesn’t exist yet is a comprehensive system of security patterns together with a methodology for
constructing a secure system by combining the correct patterns in the correct way. The Open
Group Security Forum established the Security Patterns initiative which produced this Technical
Guide in order to fill this gap.

The aim of this Technical Guide is to provide a catalog of security design patterns, and a
methodology for using those patterns to design a secure system, which will enable software
architects and system designers who:

• Have a specific security problem in a specific context

• Want to develop an architecture to solve that security problem in that context

• Would like to know how The Open Group security experts would approach their task

to produce a system architecture which meets their security requirements, and which is
maintainable and extensible from the smallest to the largest systems

2 Technical Guide (2004)

Introduction

When to Use this Technical Guide

There is a huge installed base of computing systems throughout the world. Business increasingly
depends on the secure operation of its computing systems. It is the task of information security
architects and systems designers to design and upgrade all these computer systems to
incorporate increasingly more sophisticated security mechanisms (often off-the-shelf
mechanisms whose properties can’t be changed), so as to provide the increasing levels of
protection that business needs.

In a world of diverse computing systems, security architects and systems designers need sound
guidance rather than prescribed language-dependent solutions, because they need to be able to
work out their own system architecture solutions that will provide the right system designs for
their business requirements in their contexts, and then to be able to upgrade those system
designs to match the evolving needs of their business.

Use of design patterns enables them to do this. The design patterns in this catalog provide a
sufficient set to enable design of software system architectures that address security concerns.
They can also be used to verify that integrating and evolving extensions and upgrades is
achieved in a secure manner. This design patterns approach provides a framework for continued
secure system evolution to match the changing needs of the business.

Security Design Patterns 3

Introduction

4 Technical Guide (2004)

Chapter 2

The Nature of Patterns

A comprehensive source for information about patterns, and a bibliography of reference
publications, is available at: www.hillside.net/patterns.

2.1 Minimal Definition for a Pattern
Accepting the definition of (in Chapter 1) a ‘‘pattern’’ as:

‘‘... a named nugget of instructive information that captures the essential structure and
insight of a successful family of proven solutions to a recurring problem that arises within a
certain context and system of forces ...’’

we can construct the essential content and features of a pattern definition. It’s clear that a pattern
definition must include a name; a description of the problem, its context, and the system of
forces which must be addressed; and a description of the structure of the family of successful
solutions the pattern recommends. In other words, a pattern’s definition must include at least the
following:

Pattern Name Provides a memorable and descriptive way to refer to the pattern.

This formal process to name and describe a pattern captures the key elements
of knowledge about it that will remind programmers who will use it of its
intent, and attaches a label to it that makes it easy to recognize.

The Problem A description of the contexts and situations in which the pattern is useful.

This is essentially the design rationale, describing under what conditions this
pattern should be used.

The Solution A specific but flexible approach to solving the problem.

This provides the program structure for the pattern, and also serves as a
language-independent description of a typical implementation.

Consequences Implementing the solution described in the pattern will require making
specific trade-offs among competing forces. These trade-offs and their
consequences are described here.

Security Design Patterns 5

How to Recognize a Pattern The Nature of Patterns

2.2 How to Recognize a Pattern
You might be wondering how you recognize a pattern if someone else hasn’t already written it
down. Jim Coplien [Coplien] recommends asking whether a solution to a problem has the
following properties (if it has, it might be a pattern!):

• Is it a solution to a problem in a context?

• Can you tell the problem solver what to do in order to solve the problem?

• Is it a mature, proven solution?

In this context, ‘‘proven’’ means it has been used multiple times by architects and designers
who are familiar with proper use of design patterns and on all occasions has not been found
to be flawed in any way.

• Is it something you did not invent yourself?

• Does the solution build on the insight of the problem solver, and can it be implemented
many times without ever being the same twice?

• Can the solution be formalized or automated?

If it can be formalized or automated, then do that instead of writing it as a pattern.

• Does it have a dense set of interacting forces that are independent of the forces in other
patterns?

• Is writing it down hard work?

If it is easy to write, it may not be a pattern, or it is likely that you have not thought hard
enough about the forces that bear down on the situation.

2.3 Defining a Good Pattern
If you have identified a pattern and tried your hand at writing it down, you might be wondering
how you know whether you’ve done it right. Doug Lea [Lea] has identified the following
checklist for verifying that you have written a good pattern:

• It describes a single kind of problem.

• It describes the context in which the problem occurs.

• It describes the solution as a constructable software entity.

• It describes design steps or rules for constructing the solution.

• It describes the forces leading to the solution.

• It describes evidence that the solution optimally resolves forces.

• It describes details that are allowed to vary, and those that are not.

• It describes at least one actual instance of use.

• It describes evidence of generality across different instances.

• It describes or refers to variants and subpatterns.

• It describes or refers to other patterns that it relies upon.

• It describes or refers to other patterns that rely upon this pattern.

6 Technical Guide (2004)

The Nature of Patterns Defining a Good Pattern

• It relates to other patterns with similar contexts, problems, or solutions.

Above all, a good pattern is one that has been proven to be effective through repeated use, with
experiences of usage resulting in appropriate refinements to its definition within the context of
the problem it addresses.

Security Design Patterns 7

The Nature of Patterns

8 Technical Guide (2004)

Chapter 3

The Open Group Pattern Template

In this Technical Guide, we have chosen to adopt a variant of the format used by the ‘‘Gang of
Four’’ [GoF] to describe our patterns. Our format for describing a pattern includes the following
elements:

Pattern Name (Scope, Purpose)

The pattern’s name conveys the essence of the pattern succinctly. A good name is vital, because
it will become part of your design vocabulary.

Intent

A short statement that answers the following questions:

• What does the design pattern do?

• What is its rationale and intent?

• What particular design issue or problem does it address?

Also Known As

Other well-known names for the pattern, if any.

Motivation

A scenario that illustrates a design problem, and how the structures in the pattern solve the
problem. The scenario will help understanding of the more abstract description of the pattern
that follows.

Applicability

• What are the situations in which the design pattern can be applied?

• What are examples of design problems that the pattern can address?

• How can you recognize these situations?

• What forces must be reconciled when solving the problem?

An applicable situation should be included in the description.

Structure

A diagram illustrating the structure of the solution.

Participants

The entities participating in the design pattern, and their responsibilities.

Security Design Patterns 9

The Open Group Pattern Template

Collaborations

How the participants collaborate to carry out their responsibilities.

Consequences

• How does the pattern support its objectives?

• What are the trade-offs and results of using the pattern?

• What aspect of system structure does it let you vary independently?

Implementation

What are the pitfalls, hints, or techniques that you should be aware of when implementing the
pattern? Are there language-specific issues?

Known Uses

Examples of the pattern found in real systems. We have included at least two examples from
different domains.

Related Patterns

• What design patterns are closely related to this one?

• What are the important differences?

• With which other patterns should this one be used?

10 Technical Guide (2004)

Chapter 4

The System of Security Patterns

The Patterns Catalog (see Chapter 7 and Chapter 8) in this Technical Guide provides a coherent
set of security design pattern definitions that can be used to provide a framework for building a
secure system.

The patterns fall into two parts:

1. Available System Catalog

Contains structural design patterns which facilitate construction of systems which provide
predictable uninterrupted access to the services and resources they offer to users.

2. Protected System Catalog

Contains structural design patterns which facilitate construction of systems which protect
valuable resources against unauthorized use, disclosure, or modification.

4.1 Available System Patterns
The Available System patterns include:

• Checkpointed System

• Standby

• Comparator-Checked Fault-Tolerant System

• Replicated System

• Error Detection/Correction

4.2 Protected System Patterns
The Protected System patterns include:

• Protected System

• Policy

• Authenticator

(This is a placeholder pattern for possible future expansion for the Authenticator class
referred to in the Policy pattern.)

• Subject Descriptor

• Secure Communication

• Security Context

• Security Association

• Secure Proxy

Security Design Patterns 11

The System of Security Patterns

12 Technical Guide (2004)

Chapter 5

Design Methodology

This chapter describes a systematic methodology for using the security pattern catalogs which
appear in Chapter 7 and Chapter 8 to design a system which has good availability and
protection properties.

The methodology presented here is based on the notion of ‘‘generative sequences’’ developed by
Christopher Alexander, and explained in his book The Nature of Order Book 2: The Process of
Creating Life [CA_NOPCL].

A generative sequence is similar to an algorithm; it is a recipe for creating a design, with steps
which need to be performed in order. Generative sequences tell you which patterns to start
with, and which ones to apply in what order as you refine a design.

A generative sequence tells you how to apply patterns from a pattern catalog:

• Starting with a high-level sequence of operations defining a set of steps to apply, in order

• With no backtracking

• Making well-identified choices at each step

• In which each step involves a choice of which patterns to apply

• Where each step is likely to include making design tradeoffs among alternative patterns
which could be used

The generative sequence for applying The Open Group security patterns to a design problem
consists of a main sequence and two sub-sequences. The remainder of this chapter lists the steps
in the main sequence and the sub-sequences. Chapter 6 further explains each step by way of an
example.

5.1 System Security Sequence
The System Security Sequence defines the order in which security concerns are addressed. Note
that this sequence assumes that you are not building a totally new system from scratch
(although we think it would work in that case too!). Rather, the sequence assumes that your
design is starting from a collection of components (perhaps products, or pre-existing code
modules), many of which won’t be changed significantly during the process of constructing the
overall system.

The System Security Sequence is as follows:

1. Choose a design which satisfies your functional objectives for the system (you might use
patterns or any other design technique you choose to perform this step). Identify the
components of your design, including their interfaces, data repositories, and
communications links and protocols.

2. Apply the Available System Sequence.

3. Apply the Protected System Sequence.

In practice you should anticipate that you will not be able to meet all your availability and
protection requirements. Experience suggests that adding protection to a system can adversely
affect the availability. Balancing competing requirements is a judgement the designer must
make the on the overall system requirements.

Security Design Patterns 13

Available System Sequence Design Methodology

5.2 Available System Sequence
The Available System Sequence is as follows:

1. Identify critical components; specifically, identify critical processing elements and critical
repositories (a critical processing element is a processing element whose services are
subject to an availability requirement; a critical repository is a data store whose contents
must remain correct and up-to-date because of an availability requirement).

2. If data corruption is a likely cause of system failures, apply the Error Detection/Correction
pattern to critical repositories to reduce the risk of data corruption.

3. If single component failures must be detected and corrected immediately in order to
maintain a known level of confidence in the availability of the system, and if service
outages are unacceptable, use the Comparator-Checked Fault-Tolerant System pattern to
address the availability requirement. Otherwise, continue to the next step.

4. If single component failures are acceptable but service outage is unacceptable, use the
Standby pattern to address the availability requirement. Otherwise, continue to the next
step.

5. If partial or localized service outages are acceptable, as long as service is available from
alternate components, use the Replicated System pattern to address the availability
requirement.

5.3 Protected System Sequence
The Protected System Sequence is as follows:

1. Identify Resources (things to be protected—more familiar to those with Orange Book
[TCSEC] backgrounds as ‘‘Objects’’), and Actors (entities whose access to the resource is to
be restricted—more familiar to those with Orange Book backgrounds as ‘‘Subjects’’).

2. Define one or more Protected System (PS) pattern instances. You may identify only one
instance, or you may identify more than one, but every resource which needs to be
protected must be inside at least one PS instance. If you identify more than one instance,
you must ensure that every pair of instances is in one of two relationships:

Disjoint The two PS instances contain no resources in common.

Nested Every resource contained in one PS instance is also contained in the other
instance (but not necessarily vice versa).

Designers should note that the current pattern catalog does not provide a way to deal with
designs in which two PS instances overlap, but in which neither instance completely
contains the other. When using the present version of the Protected System catalog, it is
best to avoid configurations with overlapping PS instances.

Note that the ‘‘nested’’ relationship could be degenerate, in the sense that two PS instances
contain the same resources, but still interesting because the two PS instances have different
guards.

3. For each pair of nested PS instances, choose a Secure Proxy pattern to define the
relationship between the two PS instances.

4. For each PS guard, define a Policy.

5. For each Policy, define the required Secure Communication pattern instance. Instances of
Secure Communication arise whenever disjoint PS instances need to communicate, or

14 Technical Guide (2004)

Design Methodology Protected System Sequence

whenever an actor needs to communicate to a PS instance.

6. Decide how the Policy will describe and identify Resources.

7. Derive Security Context from the Policy at each end of the Secure Communication.

8. For each Security Context, derive a Security Association and Subject Descriptor.

9. Examine each Security Context to determine whether it needs to be factored into a PS with
multiple Security Contexts.

5.4 Review
Once you’ve completed the System Security Sequence, stop and reflect. Did you learn anything
while you were applying the patterns? Is there something about your basic design which makes
it difficult to secure? If so, could you do something different which would simplify the task of
building a secure system?

In particular, you might want to think about two things:

1. Distribution issues: does your design co-locate different kinds of resources with different
policy enforcement requirements? Does this complicate your security design? Does your
design spread protected resources over several or many different systems, thereby
requiring lots of protected system instances and lots of redundant components for
availability? If so, could you simplify the security design by centralizing protected
resources?

2. Composition issues: do you have a lot of nested protected system instances? Does this
require you to define a lot of instances of Secure Communication, or make a lot of use of
the Secure Proxy patterns? Does it make proper design of Policies very difficult? If so,
could you simplify your design by ‘‘collapsing’’ several nested protected systems into a
single protected system with a single guard?

Security Design Patterns 15

Design Methodology

16 Technical Guide (2004)

Chapter 6

Example: Secure Mail

The following example illustrates the use of the Protected System generatives sequence to solve
an example problem of how to define a system for securing email. The diagram below illustrates
the secure email problem: two actors wish to communicate—a sender wishes to send a
document to a receiver. The sender and the receiver wish to eliminate the risk that an attacker
might be able to examine or modify the contents of the document while it is in transit between
the sender and the receiver.

(Attacker)

Figure 6-1 Example Problem: Secure Email

Security Design Patterns 17

Example: Secure Mail

Step 1

In Step 1 of the sequence, we identify resources and actors. The resource is the email, and the
actors are the Sender and the Target Addressee, plus the Attacker.

Resource Actor

Figure 6-2 Identify Resources and Actors

18 Technical Guide (2004)

Example: Secure Mail

Step 2

In Step 2 of the sequence, we identify instances of the Protected System pattern. The Protected
System instance is a Guard enveloping the email document. For the present, we will assume
that the Sender of the email is inside the Protected System boundary. This violates one of our
rules (that all the actors should be outside the Protected System boundary) but we will fix this
problem later in this example.

Guard

Figure 6-3 Define Protected System Instances

Security Design Patterns 19

Example: Secure Mail

Step 3

Since we don’t have any nested PS instances, we skip Step 3.

Step 4

In Step 4, we define the policy to be enforced by the Guard of our PS instance. The Guard needs
to have a Policy that relates subject control information, target control information, and context
information, in order to make a decision. Because this is a secure email, we define a Policy that
allows only the intended Recipient to read the email.

Constraint: named
recipient may read

Guard

Figure 6-4 Define Policy

20 Technical Guide (2004)

Example: Secure Mail

Step 5

Next we have to define the Secure Communication between the Guard and the target Recipient
of the email. The security protection applied to the communication depends on the Guard’s
Policy, and in this case this Policy requires the application of confidentiality and authentication
services.

Guard

Must authenticate actor (constraint restricts actor name)
Must protect confidentiality (constraint restricts read)

Constraint: named
recipient may read

Figure 6-5 Define Secure Communications

Security Design Patterns 21

Example: Secure Mail

Step 6

We now decide how to describe Resources in the Policy. The Policy Rule needs to contain a field
for the Recipient name because the Policy refers to the Recipient’s name.

Guard

Recipient name

Constraint: named
recipient may read

Figure 6-6 Derive Target Descriptor

22 Technical Guide (2004)

Example: Secure Mail

Step 7

What needs to be done next is to describe how an actor convinces the Guard that it has the right
subject control information to pass the policy test. This is where we use the Security Context
pattern. The Guard uses the information in the Secure Communication to determine the partner
name, and puts this into the Security Context.

First we derive from the policy what Security Context(s) is required at each end of the Secure
Communication.

Guard

Recipient name

Partner name
Constraint: named
recipient may read

Figure 6-7 Derive Security Contexts

Security Design Patterns 23

Example: Secure Mail

Step 8

In this step we define Subject Descriptors and Security Associations.

The Secure Communication uses an instance of the Secure Association to send the name for the
client to the Guard. In order to do this it needs to get the Client name — in this case from the
Subject Descriptor.

Guard

Recipient name

Partner name

Name

Constraint: named
recipient may read

Figure 6-8 Derive Secure Associations and Subject Descriptors

Those who know email systems may recognize this scheme as similar to ‘‘hushmail’’.1 In this
system, the Protected System is enforced by encryption, and thus the message is inside the
Protected System boundary even when it is not on the Sender’s machine.

This represents a problem where both parties must share a key.

1. Copyright 2001 Hush Communications

Refer to the Hush Encryption EngineTM white paper available at:
corp.hush.com/info_center/document_library/hush_patent_wp.pdf.

24 Technical Guide (2004)

Example: Secure Mail

Step 9

In this step we check to see whether we need to introduce additional instances of Protected
System or Secure Communication, in order to refine the design. The solution is to introduce a
mutually trusted third party with whom all parties share a key. To do this we have to factor the
Protected System.

Our rules for the Protected System define that all the actors must be outside the Protected
System. So we have to move the Sender outside the Protected System, and add a constraint to
the Guard’s Policy saying that anyone can write a message so long as the Sender identifies the
Recipient.

Guard

Recipient name

Partner name

Name

Constraint: named
recipient may read

Figure 6-9 Consider Factoring Protected Systems

To support this Policy change, we need to define a second Secure Communication, which does
not need to authenticate the partner (the Sender) but does need to require the Sender to identify
the Recipient and also needs to prevent the content of the message from being revealed to an
Attacker.

The definition for this Secure Communication instance will be developed in future Writers’
Workshops.

Security Design Patterns 25

Example: Secure Mail

26 Technical Guide (2004)

Chapter 7

Available System Patterns

The Available System patterns are a coherent set of security design pattern definitions that
facilitate construction of systems which provide predictable uninterrupted access to the services
and resources they offer to users.

Security Design Patterns 27

Checkpointed System Available System Patterns

7.1 Checkpointed System

Intent

Structure a system so that its state can be recovered and restored to a known valid state in case a
component fails.

Also Known As

Snapshot, Undo

Motivation

A component failure can result in loss or corruption of state information maintained by the
failed component. Systems which rely on retained state for correct operation must be able to
recover from loss or corruption of state information.

Applicability

Use Checkpointed System when:

• Operations on a component update its state.

• Correctness of the system’s operation depends on correctness of its components’ state.

• Component failures could cause loss or corruption of a component’s state.

• Transactions which occurred between the time a state snapshot is taken and the time the
system is rolled back to the snapshot state are irrelevant or inconsequential, or can be
reapplied.

Structure

The Checkpointed System pattern consists of a Recovery Proxy [Proxy: GoF] and a Recoverable
Component which periodically saves a recoverable version of the component’s state as a
Memento [GoF]. The Memento can be used to restore the component’s state when required.

Recoverable

Component

Operation

CreateMemento

SetMemento a Memento

()

()

()

Stateful

Component

Operation()

Recovery

Proxy

Operation()

SetState

GetState

()

()

State

Memento

28 Technical Guide (2004)

Available System Patterns Checkpointed System

Participants

• Stateful Component

Abstract class. Defines component operations.

• Recovery Proxy

Proxy [GoF] for Recoverable Component. A Stateful Component. Caretaker for Recoverable
Component’s Mementos. Initiates creation of Mementos when Recoverable Component state
changes. Detects failures and initiates state recovery by instructing Recoverable Component
to restore state from Memento.

• Recoverable Component

A Stateful Component. Implements component operations. Periodically saves component
state to Memento to support later recovery operations. Restores component state when
required.

• Memento [GoF]

The Recoverable Component’s externalized state.

Collaborations

• The Recovery Proxy responds to requests to perform operations.

• The Recovery Proxy periodically instructs the Recoverable Component to create a new
Memento to save the Recoverable Component’s current state.

• In the event of a failure, the Recovery Proxy instructs the Recoverable Component to restore
its state using the information stored in the Memento, and then instructs the Recoverable
Component to execute requested operations. Note that any state resulting from operations
performed after the most recent state save will be lost.

Client Rec. Proxy Rec. Cmp Memento

Operation

Operation

Operation

Operation

CreateMemento

SetMemento

Operation

Operation

SetState

GetState

new Memento

Failure

checkpoint

restore

Security Design Patterns 29

Checkpointed System Available System Patterns

Consequences

Use of the Checkpointed System pattern:

• Improves component fault tolerance.

• Improves component error recovery.

• Increases system resource consumption (extra resources are required for the Memento).

• Increases system complexity; creating a Memento may require the creation of work queues or
other transaction management constructs to ensure consistency of the state data stored in the
Memento.

• May increase system latency or decrease throughput if creation of the Memento requires
processing to pause or stop.

• Allows loss of a small number of transactions and their associated state.

• Increases system cost per unit of functionality.

Implementation

A wide variety of implementation approaches are possible. Examples include:

• A wide variety of configurations that provide the ability to ‘‘restart’’ the system from a
known valid state, either on the same platform or on different platforms.

Known Uses

The periodic save feature of many applications (for example, Microsoft Word) is an instance of
the Checkpointed System pattern.

Related Patterns

Recovery Proxy is a Proxy [GoF].
Recovery Proxy is the Caretaker for a Memento [GoF].

30 Technical Guide (2004)

Available System Patterns Standby

7.2 Standby

Intent

Structure a system so that the service provided by one component can be resumed from a
different component.

Also Known As

Disaster Recovery, Backup Site

Motivation

In many system implementations it is only cost-effective to implement a single, coarse recovery
mechanism that will suffice for all forms of fault or failure, up to and including the complete
destruction of a component (as by fire or other environmental failure).

Applicability

Use Standby when:

• It is not acceptable for a single component failure to cause a system service outage.

• It is anticipated that a failed component may not be recoverable, but a similar or identical
backup component is available.

• A small number of transactions occurring between the time a component fails and the time
service is restored using a backup component are irrelevant or inconsequential, or can be
recovered and reapplied.

• Employing a duplicate component is economical.

• Externalizing component state is feasible.

Structure

The Standby pattern consists of one active Recoverable Component and at least one Standby
Recoverable Component. When the Standby is activated, the Memento (or Mementos) of the
active component are consumed by the State Recovery facility of the Standby component, which
‘‘restores’’ the state to the Standby component and activates it.

Security Design Patterns 31

Standby Available System Patterns

Active

Component

Operation

CreateMemento

()

()

Standby

Component

Operation

SetMemento a Memento

()

()

Stateful

Component

Operation()

Recovery

Proxy

Operation()

SetState

GetState

()

()

State

Memento

Participants

• Active Component

A Stateful Component. Performs operations on behalf of clients. Periodically saves state to
Memento.

• Recovery Proxy

Proxy [GoF] for Active and Standby Components. A Stateful Component. Caretaker for
Active Component’s Mementos. Initiates creation of Mementos when Active Component
state changes. Detects failures and initiates recovery by instructing Standby Component to
restore state from Memento and routing operations to Standby Component.

• Standby Component

Waits for failure of Active Component. Upon failure, restores state from Memento and
activates.

• Memento

A Memento [GoF]. Encapsulates the state of the Active Component. Used by the Standby
Component to restore the system’s state and resume operations.

32 Technical Guide (2004)

Available System Patterns Standby

Collaborations

• Recovery Proxy responds to client requests for operations and dispatches them to the Active
Component.

• From time to time, Recovery Proxy instructs Active Component to checkpoint its state by
creating a Memento.

• In case of a failure of the Active Component, Recovery Proxy activates the Standby
Component by restoring the Memento’s state to it and routing requests to it instead of the
failed Active Component. Note that any transactions which the failed Active Component
executed after its last checkpoint will be lost.

Client Rec. Proxy Act. Cmp Standby Memento

Operation

Operation

Operation

Operation

CreateMemento

SetMemento

Operation

Operation

SetState

GetState

new Memento

Failure

checkpoint

restore

Consequences

Use of Standby:

• Improves system resistance to component failures.

• May introduce a substantial delay between component failure and standby activation.

• Increases system complexity. Creating the Memento may require the creation of work queues
or other transaction management constructs to ensure consistency of the state data stored in
the Memento.

• May impair system latency or throughput if creation of a checkpoint requires processing to
pause or stop.

• Allows loss of a small number of transactions.

• May require substantial resources for storage of Memento information.

• Increases system cost by requiring at least one non-operational component.

Security Design Patterns 33

Standby Available System Patterns

Implementation

A wide variety of implementation approaches are possible. Examples include:

• Offsite backup

Known Uses

Offsite disaster recovery services often implement instances of the Standby pattern.

Related Patterns

Standby is a Checkpointed System [TG_SDP] with an identical spare Recoverable Component.

Standby uses a Memento [GoF] to communicate state information from the active component to
the Standby Component when recovery is required.

34 Technical Guide (2004)

Available System Patterns Comparator-Checked Fault-Tolerant System

7.3 Comparator-Checked Fault-Tolerant System

Intent

Structure a system so that an independent failure of one component will be detected quickly and
so that an independent single-component failure will not cause a system failure.

Also Known As

Tandem system

Motivation

It is sometimes very important to detect component faults quickly, or to detect component faults
at a specific point during processing, to prevent component faults from causing system failures.
Inspection of the output of a component may not directly reveal whether a fault has occurred or
not. Some mechanism is required to support detection of faults which have not yet caused a
failure.

Applicability

Use Comparator-Checked Fault-Tolerant System when:

• Faults in one component are not expected to be strongly correlated with similar or identical
faults in another component (this will usually be the case when faults are caused by factors
external to components; it will often not be the case when faults are caused by component
design or implementation errors).

• It is feasible to compare the outputs or internal states of components.

• Component faults must be detected soon after they occur, or at specific points during
processing, but in any case before they lead to a system failure.

• Duplicating system components is economical.

Structure

A Comparator-Checked Fault-Tolerant System consists of an even number of Recoverable
Components [TG_SDP] (often four or more), organized as sets of pairs, together with a
Comparator for each pair. Each comparator examines Mementos [GoF] produced by each
member of its pair to determine whether they match. If the Mementos do not match, the
Comparator concludes that a fault has occurred in one of the components and takes corrective
action.

Security Design Patterns 35

Comparator-Checked Fault-Tolerant System Available System Patterns

Recoverable

Component 1

Operation

CreateMemento

GetMementoState

()

()

()

Recoverable

Component 2

Operation

CreateMemento

GetMementoState

()

()

()

Component

Operation()

Comparator

Operation()
SetState

GetState

()

()

State

Memento

SetState

GetState

()

()

State

Memento

Participants

• Recoverable Components

Perform operations on behalf of clients. Each Recoverable Component is a member of a pair.

• Comparator

A Proxy [GoF] for a pair of Recoverable Components. The Caretaker for Recoverable
Components’ Mementos [GoF]. Checks Mementos created by the members of its pair of
Recoverable Components. If the Mementos do not match, the Comparator concludes that a
fault has occurred in one of its Recoverable Components and initiates corrective action. In
systems consisting of two or more pairs, the usual corrective action is to take the faulted pair
offline.

Collaborations

• Comparator responds to requests for operations.

• Comparator routes each request to both Recoverable Components, each of which creates a
Memento externalizing its state upon completion of the operation.

• Comparator retrieves state from both Mementos and compares them.

• If the states of the Mementos match, Comparator returns the operation’s result to the client;
otherwise (if the states do not match), Comparator initiates recovery actions.

36 Technical Guide (2004)

Available System Patterns Comparator-Checked Fault-Tolerant System

Client RC2RC1Comparator Mem1 Mem2

Operation

CreateMemento

CreateMemento

Operation

Operation

Compare

new Memento

new Memento

SetState

GetState

GetState

SetState

Get

MementoState

GetMementoState

Consequences

Use of the Comparator-Checked Fault-Tolerant System pattern:

• Improves system tolerance of component faults.

• Substantially increases component costs.

• Increases system complexity. Creating the Memento may require the creation of work queues
or other transaction management constructs to ensure consistency of the state data stored in
the Memento. Creating the Comparator and its recovery function will also add complexity.

• May impair system latency or throughput if creation of a checkpoint requires processing to
pause or stop.

Implementation

• The Comparator’s error checking mechanism works by comparing the two Mementos. If the
state comparison shows any difference, the pair is taken offline. In some implementations,
the ‘‘failed’’ pair continues processing inputs but presents no outputs. Continued processing
allows the next collaboration.

• The Comparator of a failed pair may collaborate with the error checking mechanisms of the
surviving pair’s Comparator to identify which Recoverable Component of the failed pair has
actually failed. This function can be used to guide manual or automatic intervention,
correction, and restart.

• A Comparator may use its Mementos to maintain a consistent externalized image of the
‘‘correct’’ state. This can be used to enable the restart of a failed element or its replacement.

Security Design Patterns 37

Comparator-Checked Fault-Tolerant System Available System Patterns

Known Uses

The Tandem Nonstop operating system is an example of the Comparator-Checked Fault-
Tolerant System pattern.

Related Patterns

Comparator is a Proxy [GoF] and the Caretaker for the Mementos [GoF] of its Recoverable
Components.

38 Technical Guide (2004)

Available System Patterns Replicated System

7.4 Replicated System

Intent

Structure a system which allows provision of service from multiple points of presence, and
recovery in case of failure of one or more components or links.

Also Known As

Redundant Components, Horizontal Scalability

Motivation

Transactional systems often susceptible to outages because of failure of communication links,
communication protocols, or other system elements. Nevertheless, it is important to assure
availability of transaction services in the face of such failures.

Applicability

Use Replicated System when:

• A system’s state is updated via a series of individual transactions.

• The completion state and result of each transaction must be accurately reflected in the system
state.

• Equivalent services must be provided simultaneously from multiple ‘‘points of presence’’,
each of which must rely on and consistently update the same system state.

• Link failures are more likely than component failures.

• Each point of presence can be provided with reliable access to a master copy of the system
state.

• Operational procedures call for a service to be periodically relocated from one platform or
site to another, and brief pauses in processing for the purpose of relocation are acceptable.
(Relocation might be desired to match the point of provision of the service to the locality of
the offered load, or when the service may need to be relocated to a more capable (‘‘larger’’)
platform to meet peak load demands.) Service must continue to be provided in the face of
component or link failures.

Structure

Replicated System consists of two or more Replicas and a Workload Management Proxy which
distributes work among the components. The Replicas must all be capable of performing the
same work. The Replicas may be stateless or stateful. If they are stateful, they may be allowed to
be inconsistent. If the Replicas are stateful and must be kept consistent, the Standby pattern may
be used to ensure consistency of state across components.

Security Design Patterns 39

Replicated System Available System Patterns

Replica 1

Operation()

Replica 2

Operation()

Component

Operation()

Workload

Mgmt. Proxy

Operation()

Participants

• Replica

Implements operations. All Replicas in a replicated system must support the same set of
operations.

• Workload Management Proxy

Dispatches operations to components based on workload scheduling algorithm.

Collaborations

• Workload Management Proxy responds to requests for operations.

• Workload Management Proxy dispatches operation requests to Replicas which are best able
to handle them.

Client Rep 1 Rep 2 WMP

Operation
Choose

component

response

response

Determine or estimate workload

Determine or estimate workload

Operation

40 Technical Guide (2004)

Available System Patterns Replicated System

Consequences

Use of the Replicated System pattern:

• Improves system tolerance to component failures.

• Improves system ability to handle distributed load and link failures.

• Makes the Workload Management Proxy a single point of failure; may make the persistent
data store a single point of failure.

Implementation

Future Writer’s Workshops will identify appropriate text for this section.

Known Uses

Network Load Balancers (fronting replicated Web Servers, for example) are instances of the
Replicated System pattern.

Related Patterns

Replicated System may use Standby [TG_SDP] to ensure consistency of state among its Replicas
if this is required.

Replicated System’s Workload Management Proxy is a Proxy [GoF].

Security Design Patterns 41

Error Detection/Correction Available System Patterns

7.5 Error Detection/Correction

Intent

Add redundancy to data to facilitate later detection of and recovery from errors.

Also Known As

Redundancy Check, Error-correcting Code, Parity

Motivation

Data residing on storage media or in transit across communication links is often susceptible to
small, local errors.

Applicability

Use Error Detection/Correction when:

• Storage media or communication links are susceptible to undetected or uncorrected errors.

• The format of data stored on media or communicated across a link can be modified to
incorporate redundant error-control information.

• Some data expansion is acceptable.

• Data corruption is likely to be limited to a known number of errors per bit of data, and the
distribution of errors is likely to be predictable in advance.

Structure

Error Detection/Correction consists of a Media device or a communications Link together with
an Error Control Proxy.

Redundant

Media/Link

Get

Put

()

()

Media/Link

Get

Put

()

()

Error

Control Proxy

Get

Put

()

()

Client

42 Technical Guide (2004)

Available System Patterns Error Detection/Correction

Participants

• Redundant Media/Link

The storage medium or communications link to which data will be written or from which
data will be read.

• Error Control Proxy

Adds redundancy to data written to a storage medium or communications link; uses
redundant information to check integrity of (and, if possible, repair integrity of) data read
from a storage medium or communications link.

Collaborations

• Error Control Proxy responds to client requests to put/get information to/from a
communications link or media device.

• Error Control Proxy adds redundancy to information which is written to the link or device.

• Error Control Proxy checks previously added redundancy in order to verify the integrity of
data retrieved from the communications link or media device. In the event that the
verification fails, Error Control Proxy may retry the get operation before returning a failure
code to the client.

Client

Redundant

Media/Link Err. Ctl. Proxy

error detected

error notification

Get

Get

Check

Redun.

Add

Redun.

<- fail

Put

Put

retry

response

response

response

response

Security Design Patterns 43

Error Detection/Correction Available System Patterns

Consequences

Use of the Error Detection/Correction pattern:

• Protects against loss of data integrity by detecting and, in some cases, correcting errors.

• Expands data by a known factor.

• Introduces a startup delay into data storage/transmission and retrieval/reception
operations.

Implementation

Error-Control Code (for example, Cyclic Redundancy Check (CRC)), Cryptographic Hash,
Digital Signature.

Note that performance overhead can be reduced to a constant startup latency by using
streaming and parallelism.

Known Uses

RAID array, Disk storage CRC

Related Patterns

Error Control Proxy is a Proxy [GoF].

44 Technical Guide (2004)

Chapter 8

Protected System Patterns

The Protected System patterns are a coherent set of security design pattern definitions that
facilitate construction of systems which protect valuable resources against unauthorized use,
disclosure, or modification.

Security Design Patterns 45

Protected System Protected System Patterns

8.1 Protected System

Intent

Structure a system so that all access by clients to resources is mediated by a guard which
enforces a security policy.

Also Known As

Reference Monitor, Enclave

Motivation

It is often desirable or imperative to protect system resources against unauthorized access. In
order to do this it is necessary to evaluate requests to determine whether or not they are
permitted by a policy. All requests must be evaluated against the policy; otherwise, unchecked
requests might violate the policy.

To assure that all access requests are evaluated against the system’s policy, a policy enforcement
mechanism with the following properties must exist:

• The mechanism must be invoked on every access request.

• The mechanism must not be bypassable.

• The mechanism must correctly evaluate the policy.

• The mechanism’s correct functioning must not be corruptible.

• The previous four properties must be verifiable to some stated level of confidence.

This pattern includes three elements:

1. An ‘‘outside’’, from which all access requests originate

2. An ‘‘inside’’, in which all resources are located

3. A correct, verifiable, incorruptible, non-bypassable ‘‘guard’’, which enforces policy on all
requests from ‘‘outside’’ for resources ‘‘inside’’

clients resourcesguard

46 Technical Guide (2004)

Protected System Patterns Protected System

Applicability

Use this pattern whenever access to resources must be granted selectively based on a policy.
When designing secure systems by refinement, Protected System should be considered a
candidate for the starting point of the refinement.

Structure

There are two main variants of this pattern. The first variant has a single centralized guard
which mediates requests for all resources in the system.

The second variant distributes the responsibilities of the guard, such that there is a separate
guard instance for each distinct type of resource.

Hybrids of these variants are possible (see Implementation below).

Security Design Patterns 47

Protected System Protected System Patterns

Participants

• Client

— Submits access requests to guard.

• Guard

— Mediates requests to access protected resources. The Guard is a Facade [GoF].

— Evaluates each access request against a policy; grants requests which are permitted by the
policy, and denies requests which are forbidden by the policy.

— Cannot be bypassed (no direct access by Clients to Resources is possible).

• Policy

— Determines whether access to the resource should be granted.

— Encapsulates the rules defining which Clients may access which Resources.

• Resource

— Services requests for access to protected resources.

Collaborations

• Clients submit access requests to the Protected System’s Guard.

• The Guard determines whether access requests should be granted or denied by consulting
the Policy.

• If the Guard determines that an access request should be denied, it discards the request and
returns. If the Guard determines that the access request should be granted, it passes the
request on to the Resource for fulfillment and returns the response to the Client.

48 Technical Guide (2004)

Protected System Patterns Protected System

Consequences

Use of the Protected System pattern:

• Isolates resources.

The system’s resources are isolated by the Guard from any accesses which do not conform to
the security policy enforced by the Guard.

• Loosens coupling between security policy and Resource implementation.

Resource implementations do not need to be aware of security policy and do not have to be
modified when security policy changes, since the policy is enforced by the Guard.

• Improves system assurability.

Only the Guard implementation needs to be evaluated for correctness in order to ensure that
the system correctly enforces its security policy.

• Degrades performance.

In almost all implementations, interposing a Guard between the Client and the Resource
imposes a performance penalty; this penalty may be significant. In operating system kernel
implementations, the performance cost to cross the kernel boundary is often much higher
than the cost to make a procedure call when the caller and the called routine are both in
‘‘user space’’ or both in ‘‘system space’’. In network configurations, Guards are usually
network proxies (for example, routers) and their use requires an extra network message for
each resource access.

Security Design Patterns 49

Protected System Protected System Patterns

Implementation

Several issues need to be considered when implementing the Protected System pattern:

• Isolation

In order to provide complete protection of resources, the Guard must be non-bypassable.

A firewall is a good example of a Guard which may be bypassable; if modems permit
intermittent dial-up access to machines ‘‘inside’’, but access to the modems does not go
through the firewall, then it will be possible to bypass the firewall and its associated security
policy.

Many microprocessor designs do not support complete address-space isolation between
programs running in ‘‘system state’’ and programs running in ‘‘user state’’. It is difficult or
impossible to design operating system kernels which are not bypassable to run on such
microprocessors.

Virtual machine architectures also suffer from failures of address-space isolation; several
versions of the Java Virtual Machine, for example, shared public static variables between
thread address spaces, which violated the thread isolation property assumed by the Java
security model.

• Guard self-protection

In order to protect resources, the Guard must function correctly. Among other things, this
means that the Guard must be incorruptible.

Corruptibility is often a consequence of a failure to validate input data.

Many systems (including many Internet servers) are vulnerable to buffer overflow attacks.
Buffer overflow attacks result from the Guard’s failure to check the size of input parameters
provided by the client. A buffer overflow attack causes the Guard to execute malicious code
provided by the client.

Some systems are vulnerable to data poisoning attacks; data poisoning attacks which result
from the Guard’s designers failing to define error responses for all possible invalid input data
values. Data poisoning attacks exploit the Guard’s unanticipated response to an ‘‘improper’’
input value.

• Assurance

It must be possible to demonstrate that the Guard functions correctly, and that the Guard is
non-bypassable and incorruptible.

Assurance is very difficult, and its difficulty scales super-linearly with increasing system size.
The Protected System pattern contributes to assurability by minimizing the amount of code
which must be assured, and by modularizing it to the Guard.

Typical assurance activities include: disciplined design processes; documentation of all
aspects of system design, implementation, production, delivery, and operation; assurance
inspections; rigorous testing; and formal correctness verification.

• Alternative structures for the Guard

The first variant of this pattern shown in Structure above uses a single Guard instance which
mediates access to all Resources. The client must invoke this Guard in order to perform
operations on any Resource.

The second variant shows separate Guards for each resource type. This is still considered a
single protected system, as there is a common Policy controlling access to all resources,

50 Technical Guide (2004)

Protected System Patterns Protected System

although the access control decisions are triggered in multiple Guarded Types. Note that the
interfaces presented by a Guarded Type may be identical to the Type which is being
protected; in this case, the Guarded Type is a Proxy [GoF] for the underlying Type, and the
Client need not be aware that it is invoking a Guarded Type.

A hybrid between these two variants is possible, such that the Client obtains its initial
reference to the Resource from a centralized Guard, but the reference returned is to a
Guarded Type which will perform supplementary access checks for each operation on the
Resource. In this case, the centralized Guard is acting in a similar manner to an Abstract
Factory [GoF].

Guards can be implemented as Proxies, or they can be embedded directly in the Resource
implementation. Proxy Guards are easier to assure (because policy enforcement functionality
is strongly separated from operational functionality), but they impose a larger performance
penalty, because of the requirement for additional procedure calls or network messages to
communicate requests and responses between the Guard and the Resource.

• Feasibility of externalizing policy enforcement

In some systems, business rules are strongly integrated with policy enforcement, or policy is
strongly dependent on the specific details of a resource request or of the resources to which
access is being requested. In such systems, it may be very difficult or very inefficient to
separate policy enforcement from processing of resource access requests.

For example, if the desired policy depends on the specific values of all parameters of a
resource access request, moving policy enforcement from the Resource to a centralized
Guard may require essentially total duplication of the Resource manager’s request
processing code (and thus will impose substantial performance overhead without any
corresponding gain in assurability of the policy enforcement code).

Known Uses

A very large number of secure system designs are instances of this pattern.

The Anderson Report first defined the structure described in the first variant of this pattern. It
refers to the Guard together with the Resource managers it protects as a ‘‘Reference Monitor’’,
and to the Guard itself as a ‘‘Reference Mediation Mechanism’’. In an operating system whose
kernel is a reference monitor, the Guard is the operating system kernel (syscall) boundary, and
the protected resources are files, pipes, and other operating system objects.

The Java 2 security architecture is an example of the second variant of the pattern. There is a
single AccessController object which is responsible for making the decisions on whether
operations should be permitted, based on Permissions granted to executing code. The
checkPermission method of the AccessController is however invoked separately by each
resource class, specifying the Permission that is to be checked for the requested operation.

The Java 2 AccessController design has one notable advantage over a monolithic reference
monitor: new types of Resource can be introduced into the Protected System by simply defining
a new Permission class. No change is necessary to the AccessController implementation (that is,
the Policy component of this pattern).

A firewall is a Protected System whose guard is a router and whose resources are IP addresses
and ports of systems ‘‘inside’’ the firewall.

A bank vault is a Protected System whose guard is the walls and vault door and whose
resources are cash and gold bars.

Security Design Patterns 51

Protected System Protected System Patterns

Related Patterns

• As noted above, the Guard of a Protected System may be a Proxy [GoF]. GoF refers to a
proxy used for this purpose as a ‘‘Protection Proxy’’.

• Further details relating to the Policy class are covered in the Policy [TG_SDP] pattern below.

• Role-based access control [APLRAC].

• Guard for Protected System [Brown-Fernandez].

• Security policy [Mahmoud].

• Security models, multi-level security [Fernandez-Pan].

• Object Filter access control framework [Object-Filter].

• Enabling application security, single access point, checkpoint [Yoder-Barcalow].

52 Technical Guide (2004)

Protected System Patterns Policy

8.2 Policy

Intent

Isolate policy enforcement to a discrete component of an information system; ensure that policy
enforcement activities are performed in the proper sequence.

Also Known As

Access Decision Function, Policy Decision Point [ISO/IEC 10181-3]

Motivation

Many systems (and components of systems) need to enforce policy. In such systems, the policy
enforcement functions must be invoked, in the correct sequence, every time access is attempted
to a resource which is subject to the policy.

If policy-enforcement code is intermingled with code which services resource requests, it may be
difficult to verify that the policy enforcement functions are always invoked when necessary and
that they are correctly implemented. It may therefore be desirable to isolate policy-enforcement
code from other code in order to simplify verification of the correctness of the policy-
enforcement code.

It may be desirable to use the same policy-enforcement code to protect more than one system
component.

It may also be desirable to support changes in the code which makes policy decisions without
requiring changes to code which enforces policy decisions.

Applicability

Use this pattern when:

• It is desirable to decouple the implementation of security policy from resource manager
implementation.

• It is desirable to isolate policy-enforcement code to a minimum number of simple modules to
simplify verification of correctness.

• It is desirable to isolate policy-enforcement code from policy decision evaluation code.

Do not use this pattern if:

• It is infeasible to make policy decisions outside the context of the resource manager which
responds to requests.

Security Design Patterns 53

Policy Protected System Patterns

Structure

Participants

• Client

— Represents any subject governed by the system’s policy.

— Gains access to resources by submitting requests to the Guard.

— May initiate user authentication if it is to operate on behalf of a human user.

• Authenticator

— Authenticates users.

— An optional component (the Security Context may be implicit or inherited).

• Guard (also known as Policy Enforcement Point (PEP))

— Collects client, request, target, and context attributes needed to make access control
decisions.

— Requests access control decisions from the Policy.

— Rejects requests which are not permitted by the Policy.

— Sequences operations related to policy enforcement.

— May cache client identity and attribute information to optimize performance in cases
where a single client submits multiple requests.

• Security Context

— Maintains credentials and security attributes for use in Policy decisions.

• Policy (also known as Policy Decision Point (PDP))

— Makes decisions to grant or deny access to resources based on client attributes, request
attributes, target attributes, context attributes, and policy.

— Encapsulates a set of Rules determining which Clients can perform which operations on
which Resource.

54 Technical Guide (2004)

Protected System Patterns Policy

• Rule

— A component of the Policy expressing the permission for a specified set of Clients to
perform a specified set of operations on a specified set of Resources.

— Structure of rules will vary depending on the Guard, the resources the guard protects, the
structure of Subject Descriptors, naming of resources, and other factors.

Collaborations

• If the Client is operating on behalf of a specific user, and that user’s security attributes have
not previously been retrieved and cached, the Client may invoke the Authenticator to
establish and verify that user’s identity.

• If used, the Authenticator causes the user’s security attributes to be included in the effective
Security Context.

• The Client submits an access request to the Guard.

• The Guard determines the request, target, and context attributes.

• The Guard requests a policy decision (passing in the Client, request, target, and context
attributes) from the Policy.

• The Policy checks which of the set of Rules matches the security attributes, requested
operation, and the targeted Resource.

• If the Rules indicate that the request should be denied, the Policy returns a notification to the
Guard, which then passes a failure notification to the Client.

• If the Policy result indicated that the request should be granted, the Guard passes the request
for fulfillment to the Resource and relays the response back to the Client.

Security Design Patterns 55

Policy Protected System Patterns

Consequences

Use of the Policy pattern:

• Loosens coupling between policy enforcement and resource implementation.

This permits resource managers to be built with no awareness of authentication, attribute
collection, policy evaluation, and policy enforcement.

• Ensures that security policy is checked before client requests for resources are fulfilled.

Sequencing security policy checks and resource request fulfillment can be used to ensure that
policy checks are always performed in the correct order, and that they are always performed
before resource requests are fulfilled.

• Provides a single point of control and management for policy-related activities.

Localizing policy-related operations improves assurability of the system by limiting the
amount of system code which needs to be examined during assurance activities.

Localizing policy-related operations may also create a single point of failure or attack;
designers should take care to address these problems by hardening the Policy component
and by addressing availability of the Policy (perhaps by use of the Redundant System
pattern).

• Requires matching of the Rules parameter signature with resource namespace and operation
signatures.

The policy expressed by the Rules needs to ‘‘speak the same language’’ as the Guard uses
when checking requests for access to resources.

Adding new resources or new operations to a system without changing the Rules policy
language and enforcement capability can weaken the protection provided by the Guard.

For example, adding relational queries to a system whose Policy recognizes and protects only
the files in which the relational tables are stored will leave the system vulnerable to
unauthorized disclosures of information through inference.

• Imposes performance overhead.

Separating policy enforcement from resource request fulfillment will usually introduce
additional procedure calls or network overhead.

Implementation

• Time-of-check versus time-of-use

Many policies are time-sensitive. Security authorization policies, for example, are sensitive to
the status of a user’s account.

In a system which uses the Policy pattern to separate policy enforcement from resource
access request fulfillment, there will be a delay between evaluation of policy and fulfillment
of requests. If this delay is long, there is a possibility that the user’s authorization status will
have changed after the policy is evaluated but before the request is fulfilled (for example, the
user’s account may have been suspended or revoked).

Designers using the Policy pattern should take care to minimize the interval between the
time the Policy makes a decision and the time the request is fulfilled by the Resource.

56 Technical Guide (2004)

Protected System Patterns Policy

• Policy and Rule interface design

Designing Policies which can be extended to support new types of resources and new
operations on existing resources (so that it is not necessary to replace the system’s Policy
whenever a new type or version of a Resource is added to the system) is difficult. Very
broadly extensible Policies are also very hard to assure, because of the difficulty of analyzing
the policy which is actually enforced.

In general, Policies consisting of only monotonic Rules (such as Rules which only express the
granting of access, with denial of access being represented by an absence of any matching
Rules) are easier to manage and assure.

As it is a characteristic of a Protected System that a single Policy makes all access decisions,
use of the Singleton [GoF] pattern may be appropriate to ensure that only a single Policy
object will be instantiated.

Rules are commonly expressed as triplets of (subject, operation, resource).

Known Uses

Firewall Routing Filter, Content Scanner, Reference Monitor, Credit Authorization

CORBASecurity provides three instances of Policy:

1. Client Secure Invocation Policies describe the client’s minimum requirement for Quality of
Protection (QoP) when initiating a Secure Communication.

2. Server Secure Invocation Policies define the range of Quality of Protection options which
are supported when accepting a Secure Communication and also the minimum
requirement for Quality of Protection when accepting a Secure Communication.

3. Object References contain a copy of the object’s Server Secure Invocation Policy
information.

Related Patterns

• Protected System [TG_SDP]

• Redundant System [TG_SDP]

Introducing a centralized Policy implementation may, if done carelessly, create a single point
of failure in a system which otherwise would not have one. Use of the Redundant System
pattern is recommended to avoid this happening.

• Authenticator [Brown-Fernandez]

• Security models, authorization, multi-level security [Fernandez-Pan]

• Security policy [Mahmoud]

Security Design Patterns 57

Authenticator Protected System Patterns

8.3 Authenticator

Intent

Note: We believe it may be useful to include a separate pattern expanding on the Authenticator class
referred to in the Policy pattern above. This section is reserved as a placeholder. The utility of
including such a pattern will be investigated in upcoming patterns workshops.]

Known Uses

PAM, JAAS

58 Technical Guide (2004)

Protected System Patterns Subject Descriptor

8.4 Subject Descriptor

Intent

Provide access to security-relevant attributes of an entity on whose behalf operations are to be
performed.

Also Known As

Subject Attributes. The entity described may be referred to as a subject or principal.

Motivation

There are many security-relevant attributes which may be associated with a subject; that is, an
entity (human or program). Attributes may include properties of, and assertions about, the
subject, as well as security-related possessions such as encryption keys. Control of access by the
subject to different resources may depend on various attributes of the subject. Some attributes
may themselves embody sensitive information requiring controlled access.

Subject Descriptor provides access to subject attributes and facilitates management and
protection of those attributes, as well as providing a convenient abstraction for conveying
attributes between subsystems. For example, an authentication subsystem could establish
subject attributes including an assertion of a user’s identity which could then be consumed and
used by a separate authorization subsystem.

Applicability

Use the Subject Descriptor pattern when:

• A subsystem responsible for checking subject attributes (for example, rights or credentials) is
independent of the subsystem which establishes those attributes.

• Several subsystems establish attributes applying to the same subject.

• Different types or sets of subject attributes may be used in different contexts.

• Selective control of access to particular subject attributes is required.

• Multiple subject identities need to be manipulated in a single operation.

Security Design Patterns 59

Subject Descriptor Protected System Patterns

Structure

Participants

• Subject Descriptor

Encapsulates a current set of attributes for a particular subject.

Supports operations to provide access to the complete current set of attributes, or a filtered
subset of those attributes.

• Attribute List

Controls access to and enables management of a list of attributes for a subject.

A new Attribute List can be created to reference a filtered subset of an existing set of
attributes.

• Attribute

Represents a single security attribute.

• Attribute Type

Allows related attributes to be classified according to a common type.

The following object diagram shows an example instantiation of a Subject Descriptor, with its
internal Attribute List, and a constructed Attribute List referencing a subset of the Attributes.

60 Technical Guide (2004)

Protected System Patterns Subject Descriptor

Collaborations

Attribute List returns an Iterator [GoF] allowing the caller to operate on the individual
Attributes referenced in the list.

Attribute List may be a Guarded Type (see the Protected System pattern above), consulting
Policy in order to determine whether the caller is permitted to access attributes within the list. A
filtered Attribute List can be a way for a caller to pre-select only those attributes which it is
permitted to access.

Consequences

Use of the Subject Descriptor pattern:

• Encapsulates subject attributes

Subject Descriptor allows a collection of attributes to be handled as a single object. New
types of attributes can be added without modifying the Subject Descriptor or code which
uses it.

• Provides a point of access control

Subject Descriptor allows construction of Attribute Lists including access control
functionality to ensure that unauthorized callers will not have access to confidential
attributes (such as authentication tokens).

Security Design Patterns 61

Subject Descriptor Protected System Patterns

Implementation

When implementing Subject Descriptor, it may be helpful to choose a hierarchical representation
for the attribute type. This helps extensibility in that you can have broad categories of attributes
(for example, ‘‘identity’’ for all attributes which are some type of name) which can be
subdivided into more specific categories (for example, ‘‘group identity’’, or even more specific
‘‘UNIX group ID number’’). Callers can then select attributes at varying levels of abstraction
choosing which is most suitable for their specific purpose.

Class names are a ready-made hierarchy which may be suitable.

Known Uses

1. JAAS (Java Authentication and Authorization Service) javax.security.auth.Subject

JAAS divides the subject attributes into three collections: principals, public credentials,
and private credentials. Principals (which might be better called identities, but the class
name ‘‘Identity’’ was already taken) are used to represent user identities and also groups
and roles. There is a defined interface to Principal objects, allowing a name to be retrieved
without requiring the specific implementing class to be known. Public and private
credentials, on the other hand, are arbitrary Java objects and have no defined interface.

Principals and public credentials may be retrieved by any caller which has a reference to
the Subject object. Private credentials require a permission to be granted in order to access
them, which may be specified down to the granularity of a particular credential object class
within Subjects having a particular Principal class with a particular name.

The JAAS Subject class includes a method to set a read-only flag which specifies that the
Sets of Principals returned will be read-only (that is, the add() and remove() methods will
fail). This is useful where a privileged caller gets a reference to a Subject object which it
then wishes to pass on to an untrusted recipient.

62 Technical Guide (2004)

Protected System Patterns Subject Descriptor

2. CORBASecurity SecurityLevel2::Credentials

CORBASecurity credentials lists encapsulate subject attributes. CORBASecurity associates
a set of credentials with each execution context; OwnCredentials represent the security
attributes associated with the process itself; ReceivedCredentials represent the security
attributes associated with a communications session within which the process is the
receiver; and TargetCredentials represent the security attributes which will be used to
represent the process to a partner in a communications session within which the process is
the sender.

Related Patterns

• Security Context [TG_SDP] uses Subject Descriptor to represent the attributes of subjects.

• Subject Descriptor uses Iterator [GoF] to return a subject’s attributes to callers.

• Role-based access control [APLRAC].

• Security models, authorization, role-based access, multi-level security [Fernandez-Pan].

• The role object pattern [Role Object].

• Enabling application security, roles [Yoder-Barcalow].

Security Design Patterns 63

Secure Communication Protected System Patterns

8.5 Secure Communication

Intent

Ensure that mutual security policy objectives are met when there is a need for two parties to
communicate in the presence of threats.

Also Known As

None known.

Motivation

A communications channel between two Protected Systems or between a subject and a Protected
System may be subject to various security threats. The security provided by the sending
Protected System will not be effective if it can be subverted by attacks on the communications
channel. Therefore it may be desirable or imperative to protect the channel.

Protected

System
Communications

Channel

Subject

or

Protected

System

Threats

Threats against the communications channel may include:

• Unauthorized disclosure of traffic

• Impersonation of a party to the communication

• Unauthorized modification of traffic

• Diversion or interdiction of traffic

The Secure Communication pattern protects against threats by employing security
countermeasures to protect traffic in the communications channel.

Applicability

Consider using the Secure Communication pattern when:

• A Protected System needs to communicate sensitive information with subjects or with other
Protected Systems over a communications channel.

• Traffic in the communications channel may be subject to security threats.

64 Technical Guide (2004)

Protected System Patterns Secure Communication

Structure

The Secure Communication Pattern has two structural variants.

In the first variant, a Communication Protection Proxy is an inline proxy between the
sender/receiver and the communications channel.

In the second variant, a Communication Protection Proxy is an out-of-band service which is
used by senders and receivers to protect traffic which they submit to or receive from the
Communications Channel. (Note that this variant is more appropriate for use with non-session-
oriented or store-and-forward communication protocols.)

Security Design Patterns 65

Secure Communication Protected System Patterns

Participants

• Communicating Party

The source and/or destination of messages to be sent over a communications channel.

• Communications Channel

Carries information exchanged between a message sender and receiver.

• Communication Protection Proxy

Protects traffic sent over the communications channel using one of a variety of protection
mechanisms.

Collaborations

• A sending Communicating Party submits a message to its Communication Protection Proxy
for protection.

• The Communication Protection Proxy applies appropriate protection to the message.

• If the Communication Protection Proxy is functioning as an inline proxy (variant 1 above)
then it uses the Communications Channel to transmit the message to the Communication
Protection Proxy of the receiving Communicating Party.

• If the Communication Protection Proxy is functioning as an out-of-band service (variant 2
above) then it returns the protected message to the sending Communicating Party, which
uses the Communications Channel to transmit the protected message to the receiving
Communicating Party.

• The receiver obtains messages sent over the Communications Channel; if the receiver’s
Communication Protection Proxy is serving as an inline proxy, then the message’s protection
will already have been verified and any necessary decryption will already have been done by
the Communication Protection Proxy. If the receiver’s Communication Protection Proxy is
serving as an out-of-band service, then the receiver will pass the protected message to its
Communication Protection Proxy, which will verify the message’s protection, do any
necessary decryption, and return the verified message to the receiver.

The figure below illustrates the interactions for variant 1 (inline proxy) of the Secure
Communication pattern.

66 Technical Guide (2004)

Protected System Patterns Secure Communication

The figure below illustrates the interactions for variant 2 (out-of-band service) of the Secure
Communication Proxy.

Security Design Patterns 67

Secure Communication Protected System Patterns

Consequences

Use of the Secure Communication pattern:

• Ensures that data communicated over a potentially insecure communication channel is
protected against a known set of threats.

• May reduce communications throughput or increase communications latency.

• May require the use of cryptography (and therefore may require consideration of
international deployment issues related to cryptography).

• May interfere with the use of other services (for example, content scanners, proxies, filtering
routers) which depend on access to message content between communications endpoints.

Implementation

Secure Communication Proxies may need to apply one or more of the following types of
protection to messages in order to counter threats anticipated in the Communications Channel:

• Data Origin Authentication protects against misrepresentation of the identity of a sender of a
message.

• Peer Entity Authentication protects against impersonation of parties to the communication.

• Data Integrity protects against undetected, unauthorized modification of data in transit in the
communications channel. Data integrity services may provide additional services, including:

— Replay detection

The ability to detect that some unauthorized party that captured a sequence of
communication exchanges subsequently tried to replay that exchange.

68 Technical Guide (2004)

Protected System Patterns Secure Communication

— Sequence ordering

The ability to detect missing or reordered elements of a communication.

• Data Confidentiality protects against disclosure of message contents to unauthorized parties.

One or more of following mechanisms is used to implement the protection features listed above:

• Cryptography

• Cryptographic Key Management

• Hash Functions

• Secure Protocol Handshake Exchanges

For the data content that is to be passed across a communication channel the pattern
implementor will need to identify:

1. The protection services and mechanisms that need to be applied in the context of a security
policy appropriate to use of the communication channel, and the strength of mechanisms
which will be required to counter anticipated threats.

2. The granularity of protection services and mechanisms to be applied (for example,
whether protection characteristics will be able to be changed on a per-message basis or
only on a per-session basis).

3. What key management and key exchange functionality will be required to support the
necessary protection services and mechanisms.

Known Uses

The following are instances of Secure Communication (variant 1, inline proxy):

• Secure Sockets Layer (SSL) and Transport Layer Security (TLS) [IETF RFC 2246 and others]

• Internet Protocol Security [IETF RFC 2401 and others]

• IEEE Standard for Interoperable LAN/MAN (SILS) [IEEE Std 802.10-1998]

The following are instances of Secure Communication (variant 2, out-of-band service):

• Secure Multipurpose Internet Mail Extensions (S/MIME) [IETF RFC 2311]

• Cryptographic Message Syntax [IETF RFC 2630]

• Generic Security Service (GSS-API) [IETF RFC 1508 and others]

• Independent Data Unit Protection (IDUP-GSS-API) [IETF RFC 2479]

Security Design Patterns 69

Secure Communication Protected System Patterns

Related Patterns

• Protected System [TG_SDP] instances use Secure Communication to protect messages
transmitted between their guards.

• Secure Communication uses Security Association [TG_SDP] to store state information about
the security parameters to be used to protect messages.

• Single sign-on, role-based access control [APLRAC].

• Authenticated session [NAI].

• Pattern language for cryptographic software [Tropyc].

• Enabling application security, session [Yoder-Barcalow].

70 Technical Guide (2004)

Protected System Patterns Security Context

8.6 Security Context

Intent

Provide a container for security attributes and data relating to a particular execution context,
process, operation, or action.

Also Known As

None known.

Motivation

When a single execution context, program, or process needs to act on behalf of multiple subjects,
the subjects need to be differentiated from one another, and information about each subject
needs to be made available for use. When an execution context, program, or process needs to act
on behalf of a single subject on multiple occasions over a period of time, it needs to be able to
have access to information about the subject whenever it needs to take an action. The Security
Context pattern provides access to subject information in these cases.

Applicability

Use the Security Context pattern when:

• A process or execution context acts on behalf of a single subject over time but needs to
establish secure communications with a variety of different partners on behalf of this single
subject.

• A process or execution context is able to act on behalf of different subjects and needs to
manage which subject is currently active.

Structure

Security Design Patterns 71

Security Context Protected System Patterns

Participants

• Communication Protection Proxy

Responsible for establishing Security Associations; used by Secure Communication to apply
protection described in Security Association to messages.

• Security Context

Stores information about a single subject, including secret attributes such as long-term keys
to be used to establish Security Associations. A Communication Protection Proxy may create
and retain several security contexts simultaneously, but it must always know which Security
Context is active (that is, will be used to establish Security Associations).

• Subject Descriptor

Stores the identity-related attributes of a subject.

Collaborations

Whenever a process becomes active in an execution context, the execution context’s
Communication Protection Proxy creates an instance of Security Context and populates it with
the necessary information about the process. The execution context may perform some
authentication challenge to verify the identity of the subject before creating a Security Context;
the execution context may also set an expiration time for the Security Context to ensure that it is
not re-used by a party other than the subject it refers to.

Consequences

Use of the Security Context pattern:

• Encapsulates security attributes relating to a process and user.

Use of Security Context allows a user’s security attributes, cryptographic keys, and process
security attributes to be handled as a single object.

• Provides a point of access control.

The Security Context will include attributes or accessors allowing callers to retrieve
extremely sensitive information (such as long-term cryptographic keys belonging to the
subject). This information must be protected against disclosure or misuse.

Implementation

As noted above, the Security Context implementation will need to protect the sensitive
information contained within it.

Access control can be implicit, if the system is architected such that only authorized callers can
obtain a reference to a Security Context. If it is possible for unauthorized callers to discover
references to Security Contexts, the implementation will need to provide accessors which check
the authorization of the caller before returning sensitive information (see the Guard class in the
Protected System pattern).

72 Technical Guide (2004)

Protected System Patterns Security Context

Known Uses

1. UNIX — Per-process User Information (‘‘u area’’)

The UNIX process table includes a ‘‘u area’’ which stores the identity of the logged-on user
as well as the identity of an ‘‘effective user’’; the real user and the effective user are the
same unless the user identity has been modified by executing a setuid operation. Retention
of the real user ID allows switching back to the user’s original account after performing
operations under the effective (setuid) identity.

2. Java 2 Standard Edition — java.security.AccessControlContext

The Java2 Access Control Context records the identity of the source of the executing code,
together with the identity of the active user. The code source is recorded in a
ProtectionDomain object, while the user identity is stored in a Principal object.

Security Design Patterns 73

Security Context Protected System Patterns

3. GSS-API — org.ietf.jgss.GSSContext

What GSS-API calls a ‘‘Security Context’’ is an instance of our Security Association
pattern. The GSS-API structure which instantiates the Security Context pattern is the GSS
Credential, which records the name and cryptographic key of the subject, together with an
indication of whether the GSS Credential can be used to initiate outgoing GSS Security
Contexts, or only to accept incoming GSS Security Contexts.

4. CORBA — SecurityLevel2::Current

CORBASecurity’s Current object (which represents an execution context) creates and
stores three CORBA Credential objects; these objects are instances of Security Context;
each Credential object contains information about a subject; the InvocationCredential object
always refers to the active subject, and it is used by the Communications Protection Proxy
(called a Security Interceptor) of the CORBA ORB (which is an instance of our Secure
Communication pattern) to create CORBASecurity Context objects (which are instances of
our Security Association pattern).

Related Patterns

Security Context uses Subject Descriptor [TG_SDP] to store identity-related information
about subjects.

• Secure Association [TG_SDP] uses Security Context to store information about subjects and
processes.

74 Technical Guide (2004)

Protected System Patterns Security Association

8.7 Security Association

Intent

Define a structure which provides each participant in a Secure Communication with the
information it will use to protect messages to be transmitted to the other party, and with the
information which it will use to understand and verify the protection applied to messages
received from the other party.

Also Known As

None known.

Motivation

Instantiating the Secure Communication pattern to protect messages in a communications
channel is expensive and often slow, because it requires cryptographic operations to
authenticate partners and exchange keys, and it often requires negotiating which protection
services need to be applied to the channel. When two parties want to communicate securely they
often want to send more than one message, but the cost of creating an instance of Secure
Communication for each message would be prohibitive. Therefore it is desirable to enable an
instance of Secure Communication to protect more than one message. Doing this requires
storing a variety of security-related state information at each end of the communications
channel. The Security Association pattern defines what state information needs to be stored, and
how it is created during the establishment of an instance of the Secure Communication pattern.

Applicability

Use this pattern when:

• The Secure Communication pattern is used to protect messages in a communications
channel.

• Some security parameters of the Secure Communication pattern are established by
negotiation each time communication is initiated, rather than being pre-configured at each
endpoint of the communication link out-of-band.

• It is desirable to send multiple messages over a secure communications channel without re-
negotiating the security parameters of the channel for each message.

Structure

A Security Association may contain some or all of the following information:

• Association Identifier

Used to distinguish this instance of the Security Association pattern from other instances.

• Partner Identifier

Used to identify the entity with which this instance of the Security Association pattern
enables communication.

• Association Expiration

The time after which the instance of the Security Association pattern is no longer valid and
must not be used to protect messages.

Security Design Patterns 75

Security Association Protected System Patterns

• Cryptographic Keys

Used by the Secure Communication pattern owning this instance of Security Association to
protect messages.

• Quality of Protection (QoP) Settings

Used by the Secure Communication pattern to determine which security services need to be
applied to messages.

• Delegation Tokens

Used by the Secure Communication pattern to implement delegation functionality.

Participants

• Protection Proxy

Creates Security Associations and protects messages using information in Security
Associations.

• Security Association

Defines parameters used to protect messages.

• Security Context

Contains information used to set up Security Association.

76 Technical Guide (2004)

Protected System Patterns Security Association

Collaborations

• Each Protection Proxy creates an instance of Security Association and assigns it a unique
Association Identifier.

• The Protection Proxies determine the required QoP by reading configuration information or
by negotiation with one another.

• If necessary, the Protection Proxies authenticate partner identifiers.

• If necessary, the Protection Proxies exchange session keys.

• Each Protection Proxy determines an expiration time for its Security Association (this will
typically be a pre-configured interval, though it might be limited by a variety of factors
including remaining key lifetimes).

• The sender’s Protection Proxy transmits delegation tokens to the receiver’s Protection Proxy,
if appropriate.

Security Design Patterns 77

Security Association Protected System Patterns

Consequences

Use of the Secure Association pattern:

• Permits re-use of a single instance of Secure Communication to protect more than one
message.

• Reduces the time required to set up Secure Communications by eliminating the need to re-
negotiate protection parameters and cryptographic keys.

• Creates a data structure which stores cryptographic key material; this structure needs to be
strongly protected against disclosure of keys and against modification of identity
information associated with keys.

Implementation

Security Association can be used to protect both session-oriented and store-and-forward
message traffic, but the negotiation and key distribution mechanisms differ for the two types of
messaging environments. In general, Security Association instance information can be
developed via online, real-time negotiations in session-oriented protocol contexts, whereas they
typically need to be derived from configuration information, target object reference information,
or information in a directory or other repository in non-session-oriented protocol contexts.

Known Uses

Generalized Security Service (GSS-API) [IETF RFC 1508 and others]; the Security Association
instances are called ‘‘Security Contexts’’.

OMG CORBASecurity; Security Association instances are called ‘‘Security Contexts’’.

Related Patterns

Secure Communication [TG_SDP] uses Security Association to store information used to protect
message traffic.

Security Context [TG_SDP] contains information used by Secure Communication to create
Security Association instances.

78 Technical Guide (2004)

Protected System Patterns Secure Proxy

8.8 Secure Proxy

Intent

Define the relationship between the guards of two instances of Protected System in the case
when one instance is entirely contained within the other.

Also Known As

Defense In Depth, Single Sign-on, Delegation, Security Protocol Encapsulation, Tunneling,
Nested Protected Systems

Motivation

Security properties, especially authentication, often do not compose. Nevertheless, information
systems are often built by composition. When composition results in one instance of Protected
System being encapsulated inside another instance of Protected System, the requirements of
both instances of Protected System need to be satisfied before resources inside the inner instance
can be accessed.

Guard

1

Guard

2
resourcesrequesters

A number of forces constrain solutions to this problem:

• The user would like to sign on only once.

• Both guards would like to authenticate the user.

• Both guards would like to enforce a policy based on the user’s identity.

• The authentication protocol may not authenticate the user to more than one partner.

• The user may not want (or be allowed, or be able) to divulge a password or other
authentication data to Guard 1.

Security Design Patterns 79

Secure Proxy Protected System Patterns

Applicability

Use Secure Proxy when:

• One instance of Protected System is encapsulated inside another.

Structure

There are a number of approaches to resolving the forces described in the Motivation section; see
Consequences for a description of how each of the Secure Proxy variants below addresses the
various forces.

The first variant is the Trusted Proxy; in this variant, the user authenticates to Guard 1. Guard 1
then authorizes the user to access resources owned by Guard 2, and passes the request on to
Guard 2 under its own (that is, Guard 1’s) identity:

resourcesrequesters

The second variant is the Authenticating Impersonator; in this variant, the user authenticates to
Guard 1 and provides to Guard 1 the password (or other secret authentication data) which
serves to authenticate the user to Guard 2; Guard 1 uses the user’s password to authenticate ‘‘as
the user’’ to Guard 2. Guard 2 authorizes the user’s access to resources.

resourcesrequesters

The third variant is the Identity-Asserting Impersonator. This variant is the same as the
Authenticating Impersonator, except that Guard 2 ‘‘trusts’’ Guard 1 to assert the user’s correct

80 Technical Guide (2004)

Protected System Patterns Secure Proxy

identity and does not require the presentation of a password by Guard 1. This means that Guard
1 does not need the user’s password, but it does not eliminate the risk that Guard 1 will
impersonate the user in unauthorized transactions with Guard 2.

requesters resources

The fourth variant is the Delegate. In this variant, the security protocol shared by the user’s
system, Guard 1, and Guard 2, supports ‘‘delegation’’; that is, the ability of the user to authorize
Guard 1 to assume the user’s identity for the purposes of a single transaction with Guard 2 (and
not with any other party).

requesters resources

The fifth variant is the Authorizing Proxy. In this variant, Guard 1 authenticates and authorizes
the user, and Guard 2 simply ‘‘steps out of the way’’ and allows all requests originating from
Guard 1 to pass through.

Security Design Patterns 81

Secure Proxy Protected System Patterns

requesters resources

The sixth and last variant is the Login Tunnel. In this case, Guard 1 authenticates the user and
then permits traffic to flow through to Guard 2 unimpeded. Guard 2 then authenticates the user
for a second time and authorizes access to resources.

requesters resources

Participants

• User requests access to resources.

• Protected System 1 guards access to its own resources but also encapsulates Protected
System 2.

• Guard 1 enforces Protected System 1’s policy and authenticates users.

• Protected System 2 guards access to resources the user wishes to use.

• Guard 2 enforces Protected System 2’s policy and authenticates users.

82 Technical Guide (2004)

Protected System Patterns Secure Proxy

Collaborations

See Structure.

Consequences

No solution to the Secure Proxy problem is ideal; each of the variants described imposes a
tradeoff between desired properties. The table below summarizes the tradeoffs.

passwd userid guard2 guard2 delegation

to guard1 to guard2 authn authz sso protocol___
ideal no yes user user yes no
trusted proxy no no guard1 guard1 yes no
authn impers yes yes user user yes no
id-assert impers no yes no user yes no
delegate no yes user user yes yes
authz proxy no no no no yes no
login tunnel no yes user user no no___��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

The table is read as follows: the column labels describe desirable properties of a solution to the
Secure Proxy problem.

• passwd to guard1 means that the user must disclose a password or other secret authentication
data to guard1 , thus creating a risk that guard1 will later impersonate the user in an
unauthorized transaction.

• userid to guard2 means that the user’s Subject Descriptor information is provided to guard2 , so
that guard2 can use it to make policy decisions.

• guard2 authn means that guard2 authenticates a particular party — either the user, guard1 , or
no one at all.

• guard2 authz means that guard2 ’s authorization policy is based on Subject Descriptor
information for a particular party — either the user, guard1 , or no one at all.

• sso means that the user only needs to engage in one authentication dialog.

• delegation protocol means that the user’s system, guard1 , and guard2 all have access to the
same security protocol, and that protocol implements delegation functionality.

The first row of the table describes the ‘‘ideal’’ solution to the Secure Proxy problem; this
solution meets all of the user’s usability and risk mitigation requirements, meets all of guard1 ’s
policy requirements, meets all of guard2 ’s policy requirements, and does not require ubiquitous
implementation of complicated, inefficient, and difficult-to-manage delegation protocols.

Each subsequent row of the table describes the characteristics of one of the variant solutions to
the problem described in Structure. Undesirable characteristics are highlighted in Bold-Italic
font.

Implementation

Future Writer’s Workshops will identify appropriate text for this section.

Security Design Patterns 83

Secure Proxy Protected System Patterns

Known Uses

• Identity-Asserting Impersonator: IBM SNA LU6.2 ‘‘Already Verified’’

• Delegate: OSF DCE Kerberos

• Login Tunnel: Many VPN servers

Related Patterns

• Protected System [TG_SDP]

• Policy Enforcement Point [TG_SDP]

• Secure Communication [TG_SDP]

• Trusted Proxy [NAI]

• Layered Security [Romanowsky]

84 Technical Guide (2004)

Glossary

API
Application Programming Interface. The interface between the application software and the
application platform, across which all services are provided. The application programming
interface is primarily in support of application portability, but system and application
interoperability are also supported by a communication API. See IEEE Std 1003.0/D15.

assertion
Explicit statement in a system security policy that security measures in one security domain
constitute an adequate basis for security measures (or lack of them) in another. See CESG
Memorandum No.1.

authentication
Verify claimed identity; see data origin authentication and peer entity authentication in
ISO/IEC 10181-2.

authorization
The granting of rights, which includes the granting of access based on access rights. See ISO
7498-2.

authorization policy
A set of rules, part of an access control policy, by which access by security subjects to
security objects is granted or denied. An authorization policy may be defined in terms of
access control lists, capabilities or attributes assigned to security subjects, security objects,
or both. See ECMA TR/46.

availability
The property of being accessible and usable upon demand by an authorized entity. See ISO
7498-2.

confidentiality
The property that information is not made available or disclosed to unauthorized
individuals, entities, or processes. See ISO 7498-2.

contextual information
Information derived from the context in which an access is made (for example, time of day).
See ISO/IEC 10181-3.

data integrity
The property that data has not been altered or destroyed in an unauthorized manner. See
ISO 7498-2.

design pattern
See Chapter 1 and www.hillside.net.

identification
The assignment of a name by which an entity can be referenced. The entity may be high-
level (such as a user) or low-level (such as a process or communication channel).

Hillside
The well-established web reference site at www.hillside.net for information at all levels and
on all aspects of design patterns.

Security Design Patterns 85

Glossary

PLoP
Pattern Languages of Programming.

privacy
The right of individuals to control or influence what information related to them may be
collected and stored and by whom and to whom that information may be disclosed. Note
that because this term relates to the right of individuals, it cannot be very precise and its use
should be avoided except as a motivation for requiring security. See ISO 7498-2.

repudiation
Denial by one of the entities involved in a communication of having participated in all or
part of the communication. See ISO 7498-2.

secure association
An instance of secure communication (using communication in the broad sense of space
and/or time) which makes use of a secure context.

secure context
The existence of the necessary information for the correct operation of the security
mechanisms at the appropriate place and time.

security architecture
A high-level description of the structure of a system, with security functions assigned to
components within this structure. See CESG Memorandum No.1.

security attribute
A security attribute is a piece of security information which is associated with an entity.

security domain
A set of elements, a security policy, a security authority, and a set of security-relevant
operations in which the set of elements are subject to the security policy, administered by
the security authority, for the specified operations. See ISO/IEC 10181-1.

security policy
The set of laws, rules, and practices that regulate how assets including sensitive information
are managed, protected, and distributed within a user organization. See ITSEC.

security service
A service which may be invoked directly or indirectly by functions within a system that
ensures adequate security of the system or of data transfers between components of the
system or with other systems.

security state
State information that is held in an open system and which is required for the provision of
security services.

security vulnerabilities
The weaknesses in the construction, capability, and operation of information systems that
expose them to the accidental or intentional realization of security threats.

system security function
A capability of an open system to perform security-related processing. See CESG
Memorandum No.1.

target
An entity to which access may be attempted. See ISO/IEC 10181-3.

threat
A potential violation of security; see ISO 7498-2. An action or event that might prejudice

86 Technical Guide (2004)

Glossary

security; see ITSEC.

Security threats include unauthorized disclosure, unauthorized use of resources, denial of
service, and repudiation. These threats represent security vulnerabilities. They are often
evaluated by considering the methods of attack that each involves.

trojan horse
Computer program containing an apparent or actual useful function that contains
additional (hidden) functions that allow unauthorized collection, falsification, or
destruction of data. See Federal Criteria V1.0.

trust
A relationship between two elements—a set of operations and a security policy—in which
element X trusts element Y if and only if X has confidence that Y behaves in a well-defined
way (with respect to the operations) that does not violate the given security policy. See
ISO/IEC 10181-1.

Security Design Patterns 87

Glossary

88 Technical Guide (2004)

Index

Alexander, Christopher...1
API ...85
assertion..85
authentication..85
authenticator pattern ...58
authorization ...85
authorization policy...85
availability..85
available system patterns27
available system sequence13-14
checkpointed system pattern28
comparator-checked fault-tolerant system...14, 35
confidentiality ...85
contextual information..85
critical processing element14
critical repository..14
data integrity ...85
definition ..5
design methodology ..13
design pattern..85

definition ..1
technique ..1

error detection/correction pattern..................14, 42
firewall ..51
Gang of Four..2
generative sequence...13
Hillside..85
identification..85
methodology..13
pattern

authenticator ...58
checkpointed system ...28
comparator-checked fault-tolerant system14, 35
error detection/correction............................14, 42
minimal definition..5
policy...53
protected system ..46
recognition of ..6
replicated system ...14, 39
secure communication..................................15, 64
secure proxy ..14, 79
security association..75
security context...71
standby...14, 31
subject descriptor ...59
system of ..11

template..9
pattern catalog...11
patterns...27, 45
PLoP ..86
policy...15
policy pattern ..53
privacy ..86
protected system pattern ..46
protected system patterns45
protected system sequence13-14
protection proxy ...52
replicated system pattern14, 39
repudiation...86
secure association...86
secure communication pattern........................15, 64
secure context..86
secure mail ...17
secure proxy pattern..14, 79
security architecture...86
security association..15
security association pattern....................................75
security attribute...86
security context ...15
security context pattern...71
security domain ..86
security policy ...86
security service..86
security state..86
security vulnerabilities ..86
sequence

available system..13-14
protected system...13-14
system security ...13

standby pattern...14, 31
subject descriptor..15
subject descriptor pattern59
system security function...86
system security sequence..13
target ...86
threat ...86
trojan horse ..87
trust..87

Security Design Patterns 89

Index

90 Technical Guide (2004)

