
A
L

C

I

S

N

T
U

H

D

C

Y

E
T

Technical Study

Internationalization of X/Open Specifications

[This page intentionally left blank]

Technical Study

Internationalization of X/Open Specifications

The Open Group

 December 1994, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Technical Study

Internationalization of X/Open Specifications

ISBN: 1-85912-080-6
Document Number: E408

Published in the U.K. by The Open Group, December 1994.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii Technical Study

Contents

Part 1 Internationalisation Overview .. 1

Chapter 1 Introduction... 3

Chapter 2 Internationalisation.. 5
 2.1 Overview .. 5
 2.2 Character Sets and Encodings.. 6
 2.3 The C Programming Language.. 9
 2.4 Internationalisation Support in POSIX .. 11
 2.5 Internationalisation Support in the X/Open CAE............................... 12
 2.5.1 XPG4 Facilities.. 12
 2.5.2 Distributed Internationalisation Requirements 12
 2.6 Current Work... 14
 2.6.1 Revision of the DISS.. 14
 2.6.2 Definition and Registration of Locales .. 14
 2.6.3 Complex Text Languages... 14
 2.6.4 Use of UNICODE/ISO 10646.. 15
 2.6.5 Testing of Internationalised Components .. 15
 2.6.6 Distributed Internationalisation Framework..................................... 15

Part 2 X/Open Interworking Specifications 17

Chapter 3 Introduction... 19

Chapter 4 Potential Issues for Interworking.. 21

Chapter 5 Interworking Specifications .. 23
 5.1 The XTI Specification ... 23
 5.1.1 Overview ... 23
 5.1.2 Internationalisation Implications ... 23
 5.2 The XMPTN Specification... 25
 5.2.1 Overview ... 25
 5.2.2 Internationalisation Implications ... 25
 5.3 The XAP, XAP-TP and XAP-ROSE Specifications 26
 5.3.1 Overview ... 26
 5.3.2 Internationalisation Implications ... 26
 5.4 The XOM Specification.. 27
 5.4.1 Overview ... 27
 5.4.2 Internationalisation Implications ... 28
 5.5 The XFTAM Specification ... 29
 5.5.1 Overview ... 29

Internationalization of X/Open Specifications iii

Contents

 5.5.2 Internationalisation Implications ... 29
 5.6 The BSFT Specification .. 30
 5.6.1 Overview ... 30
 5.6.2 Internationalisation Implications ... 30
 5.7 The X.400 API Specification.. 32
 5.7.1 Overview ... 32
 5.7.2 Internationalisation Implications ... 32
 5.8 The XMS Specification... 33
 5.8.1 Overview ... 33
 5.8.2 Internationalisation Implications ... 33
 5.9 The XDS Specification.. 34
 5.9.1 Overview ... 34
 5.9.2 Internationalisation Implications ... 34
 5.10 The XNFS Specification ... 36
 5.10.1 Overview ... 36
 5.10.2 Internationalisation Implications ... 36
 5.11 The (PC)NFS Specification.. 39
 5.11.1 Overview ... 39
 5.11.2 Internationalisation Implications ... 39
 5.12 The SMB Protocols Specification ... 40
 5.12.1 Overview ... 40
 5.12.2 Internationalisation Implications ... 40
 5.13 The IPC Mechanisms for SMB Specification... 42
 5.13.1 Overview ... 42
 5.13.2 Internationalisation Implications ... 42

Chapter 6 Conclusions and Recommendations.. 43

Chapter 7 Change Requests for Internationalisation 45
 7.1 The XTI Specification ... 46
 7.2 The XAP, XAP-TP and XAP-ROSE Specifications 48
 7.3 The XOM Specification.. 50
 7.4 The BSFT Specification .. 52
 7.5 The XFTAM Specification ... 53
 7.6 The X.400 API Specification.. 54
 7.7 The XDS Specification.. 55
 7.8 The XNFS Specification ... 57
 7.9 The (PC)NFS Specification.. 57
 7.10 The SMB Protocols Specification ... 57
 7.11 The IPC Mechanisms for SMB Specification... 57

iv Technical Study

Contents

Part 3 X/Open Data Management Specifications...................... 59

Chapter 8 Introduction... 61

Chapter 9 Structured Query Language (SQL).. 63
 9.1 Overview .. 63
 9.2 Multiple Character Sets ... 64
 9.3 Use of Standard Names... 64
 9.4 Character Set Not Determined by Locale .. 65
 9.5 Encodings ... 65
 9.6 String Operations.. 67
 9.7 ISO 10646 and C .. 67
 9.8 Reserved Words and Special Characters ... 68
 9.9 Numeric and Date Literals.. 68
 9.10 Diagnostic Information.. 68
 9.11 Arithmetical Expressions .. 69
 9.12 Directionality ... 69

Chapter 10 Data Management Specifications... 71
 10.1 The SQL Specification.. 71
 10.1.1 Overview ... 71
 10.1.2 Internationalisation Implications ... 71
 10.2 The CLI Specification... 72
 10.2.1 Overview ... 72
 10.2.2 Internationalisation Implications ... 72
 10.3 The RDA Specification... 74
 10.3.1 Overview ... 74
 10.3.2 Internationalisation Implications ... 74

Chapter 11 Conclusions and Recommendations.. 77
 11.1 Conclusions.. 77
 11.2 Recommendations .. 78

Part 4 X/Open DTP Specifications.. 81

Chapter 12 Introduction... 83

Chapter 13 DTP Specifications .. 85
 13.1 The TX (Transaction Demarcation) Specification 85
 13.1.1 Overview ... 85
 13.1.2 Internationalisation Implications ... 85
 13.2 The XA Specification.. 87
 13.2.1 Overview ... 87
 13.2.2 Internationalisation Implications ... 87
 13.3 The XA+ Specification ... 89
 13.3.1 Overview ... 89
 13.3.2 Internationalisation Implications ... 89

Internationalization of X/Open Specifications v

Contents

Chapter 14 Conclusions and Recommendations.. 91
 14.1 Summary .. 91
 14.2 Function Names, Arguments, Characteristics and Return Codes.... 91
 14.3 ISO C and Common Usage C... 92

Chapter 15 Change Requests for Internationalisation 93
 15.1 The TX (Transaction Demarcation) Specification 94
 15.2 The XA Specification.. 95
 15.3 The XA+ Specification ... 98

Part 5 X/Open Systems Management Specifications............. 103

Chapter 16 Introduction... 105

Chapter 17 Systems Management Specifications .. 107
 17.1 The XMP Specification... 107
 17.1.1 Overview ... 107
 17.1.2 Internationalisation Implications ... 107
 17.2 The XMPP Specification .. 108
 17.2.1 Overview ... 108
 17.2.2 Internationalisation Implications ... 108
 17.3 The XGDMO Specification.. 109
 17.3.1 Overview ... 109
 17.3.2 Internationalisation Implications ... 109
 17.4 The UMA Specifications.. 110
 17.4.1 Overview ... 110
 17.4.2 Internationalisation Implications ... 111
 17.5 The XBSA Specification ... 114
 17.5.1 Overview ... 114
 17.5.2 Internationalisation Implications ... 114
 17.6 The XSMS Specification... 115
 17.6.1 Overview ... 115
 17.6.2 Internationalisation Implications ... 115

Chapter 18 Conclusions and Recommendations.. 117
 18.1 Conclusions.. 117
 18.1.1 Character String Identifiers.. 117
 18.1.2 Null-Terminated Strings... 118
 18.1.3 Descriptive Text ... 118
 18.1.4 String Comparisons... 119
 18.1.5 Input and Output Character Sets ... 119
 18.1.6 Use of specific Date/Time Formats ... 120
 18.2 Recommendations .. 121
 18.2.1 Character String Identifiers.. 121
 18.2.2 Null-Terminated Strings... 121
 18.2.3 Descriptive Text ... 122
 18.2.4 String Comparisons... 122
 18.2.5 Input and Output Character Sets ... 122

vi Technical Study

Contents

Chapter 19 Change Requests for Internationalisation 123
 19.1 The XMP Specification... 124
 19.2 The XGDMO Specification.. 126
 19.3 The UMA Specifications.. 127
 19.4 The XBSA Specification ... 133
 19.5 The XSMS Specification... 135

Part 6 Glossary and Index ... 137

 Glossary ... 139

 Index... 143

Internationalization of X/Open Specifications vii

Contents

viii Technical Study

Preface

The Open Group

The Open Group, a vendor and technology-neutral consortium, is committed to delivering
greater business efficiency by bringing together buyers and suppliers of information technology
to lower the time, cost, and risks associated with integrating new technology across the
enterprise.

The Open Group’s mission is to offer all organizations concerned with open information
infrastructures a forum to share knowledge, integrate open initiatives, and certify approved
products and processes in a manner in which they continue to trust our impartiality.

In the global eCommerce world of today, no single economic entity can achieve independence
while still ensuring interoperability. The assurance that products will interoperate with each
other across differing systems and platforms is essential to the success of eCommerce and
business workflow. The Open Group, with its proven testing and certification program, is the
international guarantor of interoperability in the new century.

The Open Group provides opportunities to exchange information and shape the future of IT. The
Open Group’s members include some of the largest and most influential organizations in the
world. The flexible structure of The Open Group’s membership allows for almost any
organization, no matter what their size, to join and have a voice in shaping the future of the IT
world.

More information is available on The Open Group web site at http://www.opengroup.org.

The Open Group has over 15 years’ experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of test
suites used to validate conformance to an open standard or specification. The Open Group
portfolio of test suites includes the Westwood family of tests and the associated certification
program for Version 3 of the Single UNIX Specification, as well tests for CDE, CORBA, Motif,
Linux, LDAP, POSIX.1, POSIX.2, POSIX Realtime, Sockets, UNIX, XPG4, XNFS, XTI, and X11.
The Open Group test tools are essential for proper development and maintenance of standards-
based products, ensuring conformance of products to industry-standard APIs, applications
portability, and interoperability. In-depth testing identifies defects at the earliest possible point
in the development cycle, saving costs in development and quality assurance.

More information is available at http://www.opengroup.org/testing.

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business
titles. Full details and a catalog are available at http://www.opengroup.org/pubs.

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards-compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,

Internationalization of X/Open Specifications ix

Preface

both previous and new documents are maintained as current publications.

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published at http://www.opengroup.org/corrigenda.

Full catalog and on-line ordering information on all Open Group publications is available at
http://www.opengroup.org/pubs.

This Document

This document is a Technical Study (see above). It identifies the implications of
internationalisation requirements on the following types of X/Open specification:

• Interworking Specifications

• Data Management Specifications

• Distributed Transaction Processing (DTP) Specifications

• Systems Management Specifications.

The structure of this technical study is as follows:

• Part 1 — Internationalization Overview

— Chapter 1 is an introduction to this technical study.

— Chapter 2 discusses the subject of internationalisation in general terms and describes the
provisions that have been made for it in international standards and in the X/Open CAE.

• Part 2 — X/Open Interworking Specifications

— Chapter 3 introduces the X/Open interworking specifications that are considered by this
technical study.

— Chapter 4 describes the criteria that have been followed in identifying internationalisation
issues in the X/Open interworking specifications.

— Chapter 5 analyses the implications of internationalisation on the X/Open interworking
specifications.

— Chapter 6 presents conclusions and recommendations.

— Chapter 7 contains a set of proposed internationalisation Change Requests (CRs) for the
X/Open interworking specification.

• Part 3 — X/Open Data Management Specifications

— Chapter 8 introduces the X/Open data management specifications that are considered by
this technical study.

— Chapter 9 discusses general internationalisation issues that are associated with SQL.

— Chapter 10 analyses the implications of internationalisation on the X/Open data
management specifications.

— Chapter 11 presents conclusions and recommendations.

• Part 4 — X/Open DTP Specifications

— Chapter 12 introduces the X/Open Distributed Transaction Processing (DTP)
specifications that are considered by this technical study.

— Chapter 13 analyses the implications of internationalisation on the X/Open DTP
specifications.

x Technical Study

Preface

— Chapter 14 presents conclusions and recommendations.

— Chapter 15 contains a set of proposed internationalisation Change Requests (CRs) for the
X/Open DTP specification.

• Part 5 — X/Open Systems Management Specifications

— Chapter 16 introduces the X/Open systems management specifications that are
considered by this technical study.

— Chapter 17 analyses the implications of internationalisation on the X/Open systems
management specifications.

— Chapter 18 presents conclusions and recommendations.

— Chapter 19 contains a set of proposed internationalisation Change Requests (CRs) for the
X/Open systems management specification.

• Part 6 provides a glossary and an index.

Intended Audience

This technical study is aimed in general at all users and suppliers who wish to understand the
issues surrounding internationalisation and how these can be solved. In particular, it is aimed at
implementors and application developers who use X/Open’s interworking, data management,
DTP and systems management specifications.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for filenames, keywords, type names, data structures and their
members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names, for example, substitutable argument prototypes and environment
variables

— C-language functions; these are shown as follows: name()

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a C-language header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values, which may be declared in appropriate C-language header files by
means of the C #define construct.

• The notation [ABCD] is used to identify a coded return value in C.

• Syntax and code examples are shown in fixed width font.

• Variables within syntax statements are shown in italic fixed width font.

Internationalization of X/Open Specifications xi

Trade Marks

The Open Group and Boundaryless Information Flow are trademarks and UNIX is a registered
trademark of The Open Group in the United States and other countries. All other trademarks are
the property of their respective owners.

xii Technical Study

Referenced Documents

The following standards are referenced in this technical study:

ANSI C
American National Standard for Information Systems: Standard X3.159-1989, Programming
Language C.

ASN.1
ISO 8824: 1990, Information Technology — Open Systems Interconnection — Specification
of Abstract Syntax Notation One (ASN.1).

ASN.1 DIS
ISO DIS 8824: 1992-1993 Information Technology — Open Systems Interconnection —
Abstract Syntax Notation One (ASN.1) — Specification of Basic Notation.

CMISP
ISO/IEC 9596-1: 1991, Common Management Information Service Protocol.

FIPS 127-2
US National Institute of Standards and Technology (NIST), Federal Information Processing
Standard, FIPS 127-2, Database Language SQL.

GDMO
ISO/IEC 10165-4:1992, Information Technology — Open Systems Interconnection —
Structure of Management Information — Part 4: Guidelines for the Definition of Managed
Objects.

ISO/IEC 646
ISO/IEC 646: 1991, Information Processing — ISO 7-bit Coded Character Set for Information
Interchange.

ISO 2022
ISO 2022: 1986, Information Processing — ISO 7-bit and 8-bit Coded Character Sets —
Coded Extension Techniques.

ISO 2375
ISO 2375: 1985 Data Processing — Procedure for Registration of Escape Sequences.

ISO 3166
ISO 3166: 1988, Codes for the Representation of Names of Countries, Bilingual edition.

ISO/IEC 8571
ISO/IEC 8571, Information Processing Systems — Open Systems Interconnection — File
Transfer, Access and Management.

Part 1: General Introduction (1988)
Part 2: Virtual Filestore Definition (1988)
Part 3: File Service Definition (1988)
Part 4: File Protocol Specification (1988).

ISO 8859
ISO 8859: 1987 Information Processing — 8-bit Single-byte Coded Graphic Character

Internationalization of X/Open Specifications xiii

Referenced Documents

Part 1, Latin Alphabet No. 1 (1987)
Part 2, Latin Alphabet No. 2 (1987)
Part 3, Latin Alphabet No. 3 (1988)
Part 4, Latin Alphabet No. 4 (1988)
Part 5, Latin/Cyrillic Alphabet (1988)
Part 6, Latin/Arabic Alphabet (1987)
Part 7, Latin/Greek Alphabet (1987)
Part 8, Latin/Hebrew Alphabet (1988)
Part 9, Latin Alphabet No. 5 (1989).

ISO/IEC 9594
ISO/IEC 9594: 1990, Information Technology — Open Systems Interconnection — The
Directory, Parts 1 to 8:

Part 1: Overview of Concepts, Models and Services (1990)
Part 2: Models (1990)
Part 3: Abstract Service Definition (1990)
Part 4: Procedures for Distributed Operation (1990)
Part 5: Protocol Specifications (1990)
Part 6: Selected Attribute Types (1990)
Part 7: Selected Object Classes (1990)
Part 8: Authentication Framework (1990)

ISO/IEC 10021
ISO/IEC 10021, Information Processing Systems — Text Communication — Message
Oriented Text Interchange System:

Part 1: System and Service Overview (1990)
Part 2: Overall Architecture (1990)
Part 3: Abstract Service Definition Conventions (1990)
Part 4: Message Transfer System: Abstract Service
Definition and Procedures (1990)
Part 5: Message Store: Abstract Service Definition (1990)
Part 6: Protocol Specifications (1990)
Part 7: Interpersonal Messaging System (1990).

ISO/IEC ISP 10607-2
ISO/IEC ISP 10607-2: 1990, Information Technology — International Standardized Profiles
AFTnn — File Transfer, Access and Management — Part 2: Definition of Document Types,
Constraint Sets and Syntaxes.

ISO/IEC 10646
ISO/IEC 10646-1: 1993, Information Technology — Universal Multiple-Octet Coded
Character Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

ISO C (1990)
ISO/IEC 9899: 1990, Programming Languages — C, including Amendment 1: 1995 (E), C
Integrity (Multibyte Support Extensions (MSE) for ISO C).

ISO MSE
ISO/IEC 9899: 1990 Amendment 1:1994, Multibyte Support Extensions for ISO C.

ISO RDA

RDA Generic
ISO/IEC 9579-1: 1993, Information Technology — Open Systems Interconnection —
Remote Database Access — Part 1: Generic Model, Service, and Protocol.

xiv Technical Study

Referenced Documents

RDA SQL Specialization
ISO/IEC 9579-2: 1993, Information Technology — Open Systems Interconnection —
Remote Database Access — Part 2: SQL Specialization.

ISO SQL
ISO/IEC 9075: 1992, Information Technology — Database Language SQL (technically
identical to ANSI standard X3.135-1992).

POSIX.1
ISO/IEC 9945-1: 1990 (also IEEE Std. 1003.1:1990), Portable Operating System (POSIX) —
Part 1: System Application Program Interface.

POSIX.2
IEEE Std. 1003.2: 1992, Portable Operating System (POSIX) — Part 2: Shell and Utilities.

SNMP
Internet RFC 1157, The Simple Network Management Protocol.

SQL3
ISO-ANSI Working Draft — Database Language SQL, May 1993.

T.61
CCITT Recommendation T.61: 1984, Character Repertoire and Coded Character Sets for the
International Teletex Service.

T.100
CCITT Recommendation T.100: 1984, International Information Exchange for Interactive
Videotex.

UNICODE
The Unicode Consortium, The Unicode Standard, Worldwide Character Encoding Version
1.0, Volume One, Addison-Wesley, 1991.

X.400
CCITT Recommendations X.400-X.420: 1988, Data Communications Networks — Message
Handling Systems. These recommendations are technically aligned with ISO 10021.

X.500
CCITT Recommendations X.500-X.521: 1988, Data Communications Networks — Directory.
These recommendations are technically aligned with ISO 9594.

The following X/Open documents are referenced in this technical study:

BSFT
CAE Specification, December 1991, Byte Stream File Transfer (BSFT) (ISBN: 1-872630-27-8,
C194), published by The Open Group.

CLI
X/Open Snapshot, October 1992, Data Management: SQL Call Level Interface (CLI)
(ISBN 1-872630-63-4, S203).

CORBA
X/Open CAE Specification, August 1994, Common Object Request Broker: Architecture &
Specification, (ISBN: 1-85912-044-X, C432).

CPI-C, Version 2
CAE Specification, November 1995, Distributed Transaction Processing: The CPI-C
Specification, Version 2 (ISBN: 1-85912-135-7, C419), published by The Open Group.

Internationalization of X/Open Specifications xv

Referenced Documents

DISS, Issue 1
X/Open Snapshot, November 1992, Distributed Internationalisation Services
(ISBN: 1-872630-75-8 S213).

DTP
Guide, February 1996,, Distributed Transaction Processing: Reference Model, Version 3
(ISBN: 1-85912-170-5, G504), published by The Open Group.

UTF-8
CAE Specification, April 1995, File System Safe UCS Transformation Format (UTF-8)
(ISBN: 1-85912-082-2, C501), published by The Open Group.

Internationalisation Guide
Guide, July 1993, Internationalisation Guide, Version 2 (ISBN: 1-859120-02-4, G304),
published by The Open Group.

Interworking Internationalization
X/Open Snapshot, May 1993, Internationalization of Interworking Specifications
(ISBN 1-872630-87-1, S302).

IPC SMB
X/Open Developers’ Specification — IPC Mechanisms for SMB, XO/CAE/91/500, The
X/Open Co. Ltd, 1991.

Layout Services
Snapshot, December 1994, Portable Layout Services: Context-dependent and Directional
Text (ISBN: 1-85912-075-X, S425), published by The Open Group.

Locale Registry
Electronic Publication, October 1993, Locale Registry Procedures (ISBN: 1-872630-94-4,
G303), published by The Open Group.

Migration Guide
Guide, December 1995, XPG3-XPG4 Base Migration Guide, Version 2 (ISBN: 1-85912-156-X,
G501), published by The Open Group.

(PC)NFS
Developers’ Specification, August 1990, Protocols for X/Open PC Interworking: (PC)NFS
(ISBN: 1-872630-00-6, D030), published by The Open Group.

RDA
CAE Specification, August 1993, Data Management: SQL Remote Database Access
(ISBN: 1-872630-98-7, C307), published by The Open Group.

SMB
CAE Specification, October 1992, Protocols for X/Open PC Interworking: SMB, Version 2
(ISBN: 1-872630-45-6, C209), published by The Open Group.

SQL
CAE Specification, August 1992, Structured Query Language (SQL) (ISBN: 1-872630-58-8,
C201), published by The Open Group.

TX
CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification (ISBN: 1-85912-094-6, C504), published by The Open Group.

TxRPC
Preliminary Specification, July 1993, Distributed Transaction Processing: The TxRPC
Specification (ISBN: 1-85912-000-8, P305), published by The Open Group.

xvi Technical Study

Referenced Documents

UCS
Technical Study, February 1994, Universal Multiple-Octet Coded Character Set Coexistence
and Migration (ISBN: 1-85912-031-8, E401), published by The Open Group.

UMA
Forthcoming X/Open Guide, expected to be published in 1995, Guide to Universal
Measurement Architecture (UMA), (ISBN 1-85912-073-3, G414).

The version of UMA used during this technical study was X/Open’s pre-publication draft
dated October 6, 1994.

UMA DCI
Forthcoming X/Open Preliminary Specification, expected to be published in 1995, Systems
Management: UMA Data Capture Interface, (ISBN 1-85912-068-7, P434).

The version of UMA DCI used during this technical study was X/Open’s pre-publication
draft dated November 1, 1994.

UMA DPD
Forthcoming X/Open Preliminary Specification, expected to be published in 1995, Systems
Management: UMA Data Pool Definitions, (ISBN 1-85912-069-5, P435).

The version of UMA DPD used during this technical study was X/Open’s pre-publication
draft dated November 7, 1994.

UMA MLI
Forthcoming X/Open Preliminary Specification, expected to be published in 1995, Systems
Management: UMA Measurement Layer Interface, (ISBN 1-85912-072-5, P426).

The version of UMA MLI used during this technical study was X/Open’s pre-publication
draft dated November 7, 1994.

XA
CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN: 1-872630-24-3, C193), published by The Open Group.

XA+
Snapshot, July 1994, Distributed Transaction Processing: The XA+ Specification, Version 2
(ISBN: 1-85912-046-6, S423), published by The Open Group.

XAP PS
X/Open Preliminary Specification, June 1992, ACSE/Presentation Services API (XAP)
(ISBN: 1-872630-53-7, P203).

XAP
CAE Specification, September 1993, ACSE/Presentation Services API (XAP) (ISBN:
1-872630-91-X, C303), published by The Open Group.

XAP-ROSE
X/Open Preliminary Specification, December 1993, Remote Operations Service Element
(XAP-ROSE) API, (ISBN 1-872630-86-3, P302).

XAP-TP
Preliminary Specification, February 1994, ACSE/Presentation: Transaction Processing API
(XAP-TP) (ISBN: 1-872630-85-5, P216), published by The Open Group.

XATMI
Preliminary Specification, July 1993, Distributed Transaction Processing: The XATMI
Specification (ISBN: 1-872630-99-5, P306), published by The Open Group.

Internationalization of X/Open Specifications xvii

Referenced Documents

XBSA
Forthcoming X/Open Preliminary Specification, expected to be published in 1995, Systems
Management: Backup Services API (XBSA), (ISBN 1-85912-056-3, P424).

The version of XBSA used during this technical study was X/Open’s pre-publication draft
dated October 7, 1994.

XDS
CAE Specification, November 1991, API to Directory Services (XDS) (ISBN: 1-872630-18-9,
C190), published by The Open Group.

XDS, Issue 2
CAE Specification, February 1994, API to Directory Services (XDS), Issue 2
(ISBN: 1-85912-007-5, C317), published by The Open Group.

XFTAM PS
X/Open Preliminary Specification, September 1992, FTAM High-level API (XFTAM)
(ISBN: 1-872630-60-X, P206).

XFTAM
CAE Specification, January 1994, FTAM High-level API (XFTAM) (ISBN: 1-85912-010-5,
C304), published by The Open Group.

XGDMO
Preliminary Specification, March 1994, Systems Management: GDMO to XOM Translation
Algorithm (ISBN: 1-85912-023-7, P319), published by The Open Group.

XMP
CAE Specification, March 1994, Systems Management: Management Protocol API (ISBN 1-
85912-027-X, C306), published by The Open Group.

XMPP
CAE Specification, October 1993, Systems Management: Management Protocol Profiles
(ISBN 1-85912-018-0, C206), published by The Open Group.

XMPTN Access Node
X/Open Preliminary Specification, September 1994, Multiprotocol Transport Networking
(MPTN): Access Node, (ISBN 1-85912-040-7, P408).

XMPTN Address Mapper
X/Open Preliminary Specification, September 1994, Multiprotocol Transport Networking
(MPTN): Address Mapper (ISBN 1-85912-039-3, P407).

XMS
CAE Specification, June 1993, Message Store API (XMS) (ISBN: 1-872630-83-9, C305),
published by The Open Group.

XSMS
Forthcoming X/Open Preliminary Specification, expected to be published in 1995, Systems
Management: Management Services in an OMG Environment, (ISBN 1-85912-047-4, P421).

The version of XSMS used during this technical study was X/Open’s pre-publication draft
dated November 1, 1994.

XNFS, Issue 4
CAE Specification, October 1992, Protocols for X/Open Interworking: XNFS, Issue 4
(ISBN: 1-872630-66-9, C218), published by The Open Group.

XOM
CAE Specification, November 1991, OSI-Abstract-Data Manipulation API (XOM)

xviii Technical Study

Referenced Documents

(ISBN: 1-872630-17-0, C180), published by The Open Group.

XOM, Issue 2
CAE Specification, February 1994, OSI-Abstract-Data Manipulation API (XOM), Issue 2
(ISBN: 1-85912-008-3, C315), published by The Open Group.

XPG1
X/Open Portability Guide, July 1985 (ISBN: 0-444-87839-4).

XPG2
X/Open Portability Guide, five volumes, January 1987 (ISBN: 0-444-70179-6).

XPG3
X/Open Specification, 1988, 1989, February 1992 (ISBN: 1-872630-43-X, T921); this
specification was formerly X/Open Portability Guide, seven volumes, January 1989
(ISBN: 0-13-685819-8, XO/XPG/89/000).

XPG4

XBD, Issue 4
CAE Specification, July 1992, System Interface Definitions, Issue 4 (ISBN: 1-872630-46-4,
C204), published by The Open Group.

XCU, Issue 4
CAE Specification, July 1992, Commands and Utilities, Issue 4 (ISBN: 1-872630-48-0,
C203), published by The Open Group.

XSH, Issue 4
CAE Specification, July 1992, System Interfaces and Headers, Issue 4
(ISBN: 1-872630-47-2, C202), published by The Open Group.

XRM
Guide, August 1993, Systems Management: Reference Model (ISBN: 1-85912-05-9, G207),
published by The Open Group.

XTI
X/Open CAE Specification, January 1992, X/Open Transport Interface (XTI)
(ISBN: 1-872630-29-4, C196 or XO/CAE/91/600).

X.400 API
X/Open CAE Specification, December 1991, API to Electronic Mail (X.400)
(ISBN: 1-872630-19-7, C191 or XO/CAE/91/100).

X.400 API, Issue 2
X/Open CAE Specification, February 1994, API to Electronic Mail (X.400), Issue 2,
(ISBN: 1-85912-009-1, C316).

Internationalization of X/Open Specifications xix

Referenced Documents

xx Technical Study

Technical Study

Part 1

Internationalisation Overview

The Open Group

Part 1 Internationalisation Overview 1

2 Technical Study

Chapter 1

Introduction

Computer systems and applications are increasingly expected to work in an international
environment in which different languages, character sets and cultural conventions are in use.
This poses a number of requirements. The growth of distributed computing, with systems and
applications interworking across networks, is making these requirements more urgent. They
affect the networking technology on which distributed systems are based, and also the methods
by which data is stored, manipulated and administered on behalf of users. If computer systems
do not take the requirements of internationalisation into account, the ability of a distributed
system to work in different languages and cultural environments is limited.

This technical study identifies the implications of internationalisation requirements on the
following types of X/Open specification; each of which is discussed in more detail in the
following parts of this document:

• Interworking Specifications — see Part 2

• Data Management Specifications — see Part 3

• Distributed Transaction Processing (DTP) Specifications — see Part 4

• Systems Management Specifications — see Part 5.

Before these four parts, Chapter 2 discusses the general subject of internationalisation, and in
particular describes the provisions that are made for it in international standards and in the
X/Open Common Applications Environment (CAE).

Part 1 Internationalisation Overview 3

Introduction

4 Technical Study

Chapter 2

Internationalisation

2.1 Overview
Computer systems must meet the needs of users who speak different languages, conform to
different cultural conventions and follow different business practices. This means that the
facilities of the X/Open open systems environment must not impose constraints on the users’
languages, cultural conventions or business practices, and must include facilities that support
the development of applications that can be used in multiple language, cultural and business
environments.

Understanding of the implications of this has evolved as the X/Open open systems environment
has developed. It is evolving still.

The most obvious area in which constraints can be imposed, and the area that has received the
most attention, is that of character sets and their encodings. However, programs have often
imposed other constraints by making assumptions about:

• directionality (whether text is written from right to left or from left to right)

• collation rules used in comparing, ordering and sorting character strings

• rules for character classification into categories such as alphabetic, numeric, punctuation and
so on

• shift rules for character case conversion

• the way in which numbers are written (for example, the use of a comma (,) or decimal-point
(.) as separator)

• the value and positioning of the currency symbol

• the way in which dates are written (for example, dd/mm/yy or mm/dd/yy, or using Asian
formats with dissimilar date component separators)

• the way in which times are written (for example, 10:24 PM, 22.24, 10h24)

• the use of upper and lower case characters

• the language of the user interface (for example, error messages in a particular natural
language have often been hard-coded into a program).

This chapter summarises the provisions that have been made in international standards and in
the X/Open open systems environment for addressing internationalisation issues. The
international standards concerned fall into two categories. The first is that of standards for
character sets and encodings used in data communication. The second is that of standards for
information processing, specifically the C programming language and the POSIX operating
system interface. X/Open publications have always taken account of developments in
international standards, and have often anticipated and influenced them. This chapter therefore
concludes with an indication of the current direction of internationalisation work within
X/Open.

Part 1 Internationalisation Overview 5

Character Sets and Encodings Internationalisation

2.2 Character Sets and Encodings
A wide variety of character sets is used to represent the languages of the world. This document
is written in the English language, represented using the characters of the basic Latin alphabet.
Other Western European languages are represented using character sets that include those of the
basic Latin alphabet plus a few additional characters (different additional characters are used by
each language). Other languages (such as Greek and Russian) use character sets that are
alphabetic but are not variants of the Latin alphabet. Yet other languages, such as Japanese and
Chinese, use ideographic scripts that are not alphabetic. Mathematical and scientific text, in any
language, uses characters borrowed from several different alphabets.

When held in computer storage, and while being transmitted between computers, characters are
encoded as bit patterns. The bit patterns that constitute the encodings of a character set are
called a codeset.

A number of encoding schemes used to represent characters being transmitted between
computers have been standardised by national standards bodies, the CCITT (now the ITU-T)
and ISO. In each of these standards, a character is typically encoded as one or more octets,
where an octet is a sequence of 8 bits, each of which can take the value 0 or 1.

Early communication protocols were designed for communication over low bandwidth lines
and with relatively ‘‘dumb’’ devices such as teletypes. They used the minimum possible
number of bits per character, and distinguished between graphic characters, which would be
printed, and control characters, which would affect the operation of the remote device. Control
characters included characters used to control communication (such as the <SOH> character
that indicated the start of header information) and also characters used to control printing (such
as the <CR> character that, on a teletype, caused the carriage to return to its starting position).

These facts affected the character encoding schemes that were used in conjunction with early
protocols. The American Standard Code for Information Interchange (ASCII) was directly
descended from such schemes. It is the basis of the referenced ISO 646 international standard,
has considerably influenced later schemes, and is still in use. It represents the basic Latin
alphabet, plus some additional control characters, using 7 bits per character. Control characters
are encoded with values in the range 00 to 1F (hexadecimal).

Modern communication protocols, including the OSI protocols standardised by ISO and the
protocols of the Internet protocol suite, transport 8-bit data transparently. This allows the use of
encoding schemes that use all 8 bits of an octet and that do not reserve particular values for
protocol control purposes.

A mechanism, intended for use with 7-bit or 8-bit encoding schemes, by which several different
schemes can be used within a single transmission, is defined in the referenced ISO 2022
international standard. In this mechanism, certain control characters perform a shift function
which determines how subsequent codes are to be interpreted. (This is by analogy with a
typewriter, on which the <Shift> keys determine the symbols that will be printed when other
keys are subsequently pressed.) The mechanism also allows the possibility that the encoding of
a character can occupy more than one octet. Essentially, the unshifted codes represent the
characters of the basic Latin alphabet, while shifted codes represent the characters of some other
character set (as agreed by the communicating parties). With multiple-octet-per-character
encoding schemes, any character set can be encoded.

A register of character sets and encodings is defined in the referenced ISO 2375 international
standard. Encodings for most Western European character sets and for Japanese Kanji are
registered.

6 Technical Study

Internationalisation Character Sets and Encodings

Encodings compatible with ISO 2022 for the character sets of most languages used in Europe
and North America (including Greenlandic, Russian and Turkish) and also of Afrikaans, Arabic,
Esperanto and Hebrew, are defined in the referenced ISO 8859 international standard.

Encoding schemes that use the mechanism of the referenced ISO 2022 international standard
have been standardised for use in the Teletex service (see the referenced T.61 CCITT
Recommendation) and the Videotex service (see the referenced T.100 CCITT Recommendation).

It should be noted that all the above standards use the same encodings as the referenced ISO 646
international standard for the characters of the basic Latin alphabet. They also maintain the
principle, even in multi-octet encodings, that octets in the range 00 to 1F (hexadecimal) are
reserved for control characters.

However, the latest encoding standard, ISO 10646 (which incorporates the work of the
UNICODE consortium), departs from these principles.

ISO 10646 is intended to cover the character sets of all languages that may be used in
conjunction with computer systems. It defines a four-octet representation for each character.
The characters whose representations have zero as their two most significant octets form what is
known as the Basic Multilingual Plane (this includes most alphabetic character sets). Two forms
of encoding are permitted:

UCS-2 This form applies where only characters in the Basic Multilingual plane are used. In it,
the encoding of a character consists of the two least significant octets of its four-octet
representation.

UCS-4 This form permits the encoding of any character. In it, the encoding of a character
consists of the whole of its four-octet representation.

In addition to the UCS-2 and UCS-4 forms, ISO 10646 allows a composite graphical symbol to be
represented by the encoding of a base character followed by the encodings of one or more
combining characters. For example, the <e with acute accent> graphical symbol can be
represented in UCS-4 by (hex) 00 00 00 65 00 00 03 01 which is the encoding for lower case letter
<e> followed by the encoding for a combining <acute accent>. This symbol can also be
represented in UCS-4 by (hex) 00 00 00 E9 which is the encoding for Latin small letter <e with
acute accent>. A composite graphical symbol can thus have more than one encoding in UCS-4
(and also, similarly, in UCS-2). ISO 10646 defines three conformance levels:

1. combining characters are not allowed

2. some combining characters are allowed for certain scripts, such as Arabic, Hebrew, Indic
and Thai

3. combining characters are allowed with no restrictions.

The combinations of the three conformance levels with the two encoding forms gives six
possible ways in which an implementation can support the referenced ISO 10646 international
standard; the referenced UNICODE standard is equivalent to just one of these ways: UCS-2
Level 3.

A degree of compatibility with ISO 646 is maintained, in that the characters encoded by ISO 646
are encoded by the ISO 10646 using the ISO 646 codes preceded by the appropriate number of
null octets (one in the UCS-2 form; three in the UCS-4 form). For example, upper case A of the
Latin alphabet is encoded as (hex) 41 by the ISO 646, and as (hex) 00 41 by ISO 10646.

Part 1 Internationalisation Overview 7

Character Sets and Encodings Internationalisation

However, the ISO 646 encoding of any control or graphic character can appear as the leading
octet of the encoding of a completely different character in the UCS-2 form of ISO 10646, or as
any of the three leading octets of an encoding of the UCS-4 form. For example, the ISO 646
encoding of the End of Text (<ETX>) character appears as an octet of the ISO 10646 encodings of
the characters of the Greek alphabet. This makes it hard to use the UCS-2 or UCS-4 encoding for
data transmitted using communication protocols that assign special meanings to ISO 10646
control codes.

Recognising that this is a problem, the referenced ISO 10646 international standard defines a
UCS Transformation Format (UTF). When applied to an ISO 10646 encoding, this algorithm
yields a 1, 2, 3 or 5 octet value that is guaranteed not to contain the ISO 646 encodings of any
control character, or of the <SPACE> or characters. Data encoded in accordance with the
referenced ISO 10646 international standard, and then transformed by a UTF, can safely be
transmitted using communication protocols that assign special meanings to ISO 646 control
codes.

The algorithm defined by ISO 10646 (known as UTF-1) does not prevent encodings from
containing the ISO 646 encoding of the slash character, (hex) 2F. This limits its use on POSIX-
compliant systems, where the slash character is used to delimit segments of pathnames of files.
(There are similar problems with many systems that are not POSIX-compliant.) A second UTF,
known as FSS-UTF or UTF-8, has therefore been defined by the X/Open-Uniforum Joint
Internationalisation Group (JIG). In this UTF, an octet with bit 8 set to zero can only appear as
the single-octet representation of the identical ISO 646 encoding. As well as being safe for
transmission by common communication protocols, such data can safely be processed by
applications that handle file pathnames on POSIX-compliant systems.

Most current implementations use the UCS-2 form of encoding, because it is much more
economical in its use of storage. A further transformation, known as UTF-16 (or ‘‘shifted
UNICODE’’) has been defined to enable applications on such systems to use some of the
characters that can be represented in UCS-4 but not in UCS-2. It does this by using pairs of
UCS-2 code positions to represent UCS-4 characters.

A full discussion of the issues pertaining to the use of ISO 10646 in Open Systems is contained in
the referenced UCS technical study.

8 Technical Study

Internationalisation The C Programming Language

2.3 The C Programming Language
In internal machine storage, characters are held in bytes. A byte is a unit of machine storage
containing at least 8 bits, each of which can take the value 0 or 1.

Often, the same encodings are used for characters held in machine storage as are used for
characters in transmission.

The facilities of the programming language determine how characters held in machine storage
can be manipulated by applications programs. For applications within the X/Open open
systems environment, the most important programming language is C. The character handling
facilities of the C programming language are of great importance with regard to the
development of internationalised applications.

Early versions of the C programming language, such as that specified in the referenced X/Open
XPG1 Portability Guide, assumed a character encoding scheme similar to ASCII. They defined a
char type such that a value of type char could be held in a single (8-bit) byte, and defined a
character string to be an array of type char terminated by a null character. Many applications
programs written using such versions of C use these facilities, and are not amenable to
internationalisation, since they cannot handle multi-byte character set encodings.

In the version of C standardised by ANSI, and subsequently by ISO, some of the issues
associated with internationalisation are addressed. The char type still has values that can be
represented as single bytes, and character strings are still null-terminated arrays of type char.
However, multi-byte character encodings are possible, and can be held in strings with several
elements of type char representing each character. Also, the type wchar_t is provided for multi-
byte character encodings. In the referenced ISO C international standard it is defined to be such
that its range of values can represent all codes for the largest supported character set.

A set of character and string handling functions that have arguments that are of type wchar_t
and related types are defined in the referenced ISO MSE addendum to ISO C. For example,
function strcat() has been used since the earliest days of C programming, but is unsuitable for
use in internationalised programs because it has arguments of type char *. This constrains the
language to be one that uses an 8-bit character set. Many languages use character sets that are
not representable using 8 bits. The ISO MSE addendum includes function wcscat(), which takes
wide character code arguments (type wchar_t *) and can be used in place of strcat() in
internationalised programs.

Because strings are null-terminated, an encoding scheme used in conjunction with ISO C must
not produce a null byte except as the encoding of the null character. The UCS-4 and UCS-2
encoding schemes do not have this property; therefore, use of the C language char data type as
defined in the referenced ISO C international standard in conjunction with the coded character
set defined in the referenced ISO 10646 international standard is problematic.

In addition to permitting flexibility of character sets and encodings, ISO C specifies a locale
mechanism which can be used to enable applications programs to be written without making
assumptions about language and cultural conventions. ISO 9899 (the ISO C Standard) specifies
functions for handling characters, strings, date and time, and formatted input/output. The
behaviour of these functions is affected by the current locale. This can be set by the applications
program to reflect the language and cultural environment in which the application is executing.
Application programs can also examine the current locale and modify their behaviour
accordingly.

Part 1 Internationalisation Overview 9

The C Programming Language Internationalisation

Character collation, classification and case conversion, and the format of numbers, monetary
values and dates may all be affected by the locale. The ISO C standard does not prescribe
precisely how they are affected in any particular language and cultural environment (other than
a basic default environment); it just specifies a general mechanism whose use is
implementation-defined.

10 Technical Study

Internationalisation Internationalisation Support in POSIX

2.4 Internationalisation Support in POSIX
The locale mechanism of ISO C is extended by the referenced POSIX.1 international standard1.
This provides a means whereby an application program can use a locale that has been
established in its process environment. For example, this allows a system to be shipped with a
repertoire of pre-defined locales. The user or system administrator selects the locales in which
applications run. However, POSIX.1 still specifies the general mechanism only, and contains no
standardised descriptions of specific locales (other than the default locale).

Also, POSIX.1 defines a Portable Filename Character Set, which it recommends for use in
international applications. (It allows other characters to be used in filenames, but advises that
such names are not portable between different language and cultural environments). This
consists of the upper and lower case characters of the Latin alphabet as used in English, the
digits 0-9 and the period, underscore and hyphen characters (as found in ISO 646).

The interface specified in the referenced POSIX.2 IEEE standard2 provides for a system to
support multiple locales and, optionally, to allow the user to define locales. The behaviour of
the system utilities is affected by the currently established locale. For example, the ls utility lists
files, sorted by name according to the collation sequence in the current locale.

The current locale also affects certain aspects of the command interpreter (sh), although the
reserved words that have special meaning are all defined using a particular character set - the
Portable Character Set - that is required to be present in every supported locale. This Portable
Character Set is a superset of the Portable Filename Character Set defined in the referenced
POSIX.1 international standard. It includes additional punctuation characters such as { and }.

Several of the utilities defined in the referenced POSIX.2 IEEE standard can handle character-
patterns called regular expressions. The meaning of ‘‘regular expression’’ is defined in terms of
the current locale. For example, it is possible to specify the range of characters [a-z] as a regular
expression; this would include the e-acute character in a French locale but not in an English one.

The definition of a locale includes the specification of an encoding of its characters. Stateless, but
not stateful, multi-byte encodings are supported3.

1. The ISO 9945-1:1990 POSIX.1 standard is identical to IEEE Standard 1003.1-1990. It specifies a programming interface to
operating system services.

2. IEEE 1003.2-1992 specifies a user interface to operating system services (commands and utilities).
3. A stateful encoding is one in which a code can set the interpreter into a state that affects the meaning of subsequent codes. An

example of a stateful encoding is one that has a shift-lock code that causes subsequent codes for lower-case letters to be
interpreted as the corresponding upper-case letters.

Part 1 Internationalisation Overview 11

Internationalisation Support in the X/Open CAE Internationalisation

2.5 Internationalisation Support in the X/Open CAE
The need for internationalisation was stated in the first issue of the X/Open Portability Guide
(XPG1). A trial-use definition of facilities to enable internationalised applications programs to
be developed was contained in the second issue (XPG2). Issue 3 (XPG3) included some
mandatory facilities for the X/Open System Interface (XSI), which were largely aligned with the
internationalisation facilities of the POSIX.1 standard and the referenced ANSI C standard. They
were expanded and refined in Issue 4 (the referenced XPG4-XSH X/Open CAE specification)
including full conformance with ISO C. (ISO C is based on, and technically equivalent to, ANSI
C.)

A more complete description of the development of internationalisation facilities can be found in
the referenced X/Open Internationalisation Guide. The differences between Issue 3 and Issue 4
of the XSI are summarised in the referenced Migration Guide (Issue 4 is the latest version,
published in July 1992.)

The XSH internationalisation facilities represent the most comprehensive, commonly agreed
understanding of the requirement to date. They are summarised in Section 2.5.1.

Recent further work within the X/Open-Uniforum Joint Internationalisation Group (JIG) has
been concerned with internationalisation within a distributed systems environment. This
concludes that the internationalisation facilities specified in the referenced XPG4-XSH X/Open
CAE specification are not sufficient. It proposes further facilities and places an implicit
requirement on the communication infrastructure. It represents the current direction of thinking
and is summarised in Section 2.5.2.

2.5.1 XPG4 Facilities

Firstly, the referenced XPG4-XSH X/Open CAE specification includes the wchar_t type of ISO C
and the locale mechanism of the referenced POSIX.1 international standard.

Secondly, recognising that many of the traditional open systems facilities do constrain the
language, culture or business environment assumed by the application, XSH includes a parallel
Worldwide Portability Interface facility for each such traditional facility. These facilities are
provided by the functions that are defined in the referenced ISO MSE addendum to ISO C.

While the referenced XPG4-XSH X/Open CAE specification includes both the traditional, non-
internationalised, function definitions and the internationalised, Worldwide Portability function
definitions, it recommends use of the latter for new developments, retaining the traditional
definitions for compatibility with existing systems and applications.

2.5.2 Distributed Internationalisation Requirements

The X/Open-Uniforum Joint Internationalisation Group (JIG) has produced the referenced DISS
Issue 1 X/Open snapshot. This document discusses the issues arising from the need for
internationalised applications programs executing in a distributed environment. In particular,
when distributed internationalised applications cooperate, it is important that they assume the
same locale information. For example, if a list of names created on a system in Denmark is
sorted into alphabetical order on a system in the USA, the American system must use the right
collating rules (placing AA at the end of the list rather than at the beginning, for instance). For
this to be possible the following must be true:

• there must be a standardised means of describing locales

• there must be a way of identifying particular locales

12 Technical Study

Internationalisation Internationalisation Support in the X/Open CAE

• there must be a way of conveying locale information between communicating applications

• it must be possible for an application to use the appropriate locale when processing
information that has been created by another application.

The DISS contains a detailed proposal for a standardised way of describing locales, and
proposes that a registry of standard locales should be established. Methods of conveying locale
information between distributed applications are still being studied.

The DISS also proposes a set of functions for processing self-announcing data. Such data may
include indications of the locale or locales in which it should be processed. (The term tagged data
has also been used). The use of self announcing data would enable the applications to use the
appropriate locale or locales. This would support multi-locale applications that handle
information from several different locales at the same time.

Part 1 Internationalisation Overview 13

Current Work Internationalisation

2.6 Current Work
Work is continuing on the following topics.

2.6.1 Revision of the DISS

The DISS is being revised in the light of developments. The latest draft is significantly changed
from the published snapshot. The set of functions defined has been changed substantially and
provides consistent and comprehensive multi-locale support.

2.6.2 Definition and Registration of Locales

A registry of standard locales has been established by X/Open. The operation of the registry is
described in the X/Open Locale Registry Procedures guide. The locales in the registry can be
obtained from X/Open. At the time of writing, the registry contains some 20 locales, including
Danish, Dutch, English (American and British), Faroese, German (Austrian, German and Swiss),
Greenlandic, Hungarian, Icelandic, Italian, Japanese, Latvian, Lithuanian, Polish, Portuguese and
Romanian locales.

2.6.3 Complex Text Languages

The locale mechanism currently defined in XPG4 covers the most commonly encountered
differences between languages or cultural environments. However, it does not provide for all
differences. In particular, it does not address the special needs of those languages that have been
described as complex text languages. These can be defined as languages that have different
layouts and forms of the text for presentation purposes and for processing purposes. These
differences are generally concerned with:

• directionality
For example, in Arabic, Farsi, Urdu, Hebrew and Yiddish, the text flows mainly from right to
left but includes segments that must be read from left to right.

• shaping and composition of characters
For example, in Arabic, each character has a different form depending on whether it stands
alone, is at the beginning of a word, is in the middle of a word, or is at the end of a word.

• national numbers
For example, in Arabic, Thai, Chinese and Bengali, there are numeric characters other than
the normal Arabic numerals (Arabic uses Hindi numerals), and the encodings of the Arabic
numerals (hex 30-39 in ASCII) should be understood as representing these characters rather
than the Arabic ones when the text of these languages is processed.

The current state of work on complex text languages is embodied in the referenced Layout
Services snapshot. This explains the difficulties associated with processing text written in these
languages, and describes some facilities that could be added to the X/Open CAE to help
overcome them:

• an opaque data structure (a layout object) that can be associated with a locale and that
describes the characteristics of a piece of text written in a complex text language

• functions that:

— manipulate layout objects

and

— transform text in accordance with the characteristics given in layout objects

14 Technical Study

Internationalisation Current Work

• a new locale category (LO_LTYPE) which could be implemented as:

— an extended version of the LC_CTYPE category

or

— as part of the layout object data structure.

2.6.4 Use of UNICODE/ISO 10646

ISO 10646 represents a radical new direction in character set encoding standards. There are a
number of questions relating to its use that are not yet settled. These include:

• Should a standard locale, or perhaps several standard locales, that use the ISO 10646
encoding (or perhaps a related UTF encoding) be defined?

• Should all implementations support all characters defined in the referenced ISO 10646
international standard (that is, treat them as valid input and perform valid comparisons on
them), or should it be possible to define standard subsets so that an implementation need not
support every character?

• How should APIs (and particularly C language APIs) provide for character strings that may
be encoded in accordance with ISO 10646?

• Should ISO 10646, or perhaps a UTF, be specified as the standard encoding for use in certain
situations in Open Systems?

• Should UCS-dependent APIs (that is, APIs that assume that character data is encoded in
accordance with ISO 10646 UCS-2) be defined?

2.6.5 Testing of Internationalised Components

An internationalised system component should work in any language and cultural environment.
This means that it must be tested in conjunction with a number of locales. The question of what
locales should be used for testing purposes has been raised. It may be that new locales,
incorporating particular combinations of characteristics, will be defined for testing purposes.

2.6.6 Distributed Internationalisation Framework

A framework document that sets the context for work on internationalisation in distributed
systems is in preparation. It will provide an overview and analysis of the problem areas, but
will not contain detailed interface specifications, which will be in the DISS.

Part 1 Internationalisation Overview 15

Internationalisation

16 Technical Study

Technical Study

Part 2

X/Open Interworking Specifications

The Open Group

Part 2 X/Open Interworking Specifications 17

18 Technical Study

Chapter 3

Introduction

The chapters in this part of this technical study consider the impact of internationalisation on the
X/Open interworking specifications. These chapters supersede the previously published
X/Open Interworking Internationalisation snapshot.

The X/Open interworking specifications examined in this Technical Study are those that at the
time of writing are already, or are expected shortly to become, CAE specifications. They consist
of the following documents (full details are given in Referenced Documents (on page xiii)).

• the XTI specification

• the XMPTN specifications (Access Node and Address Mapper)

• the XAP, XAP-TP, and XAP-ROSE specifications

• the XOM specification

• the XFTAM specification

• the BSFT specification

• the X.400 API specification

• the XMS specification

• the XDS specification

• the XNFS specification

• the (PC)NFS specification

• the SMB Protocols specification

• the IPC Mechanisms for SMB.

Structure of This Part

Chapter 4 describes the criteria that have been followed in identifying internationalisation issues
in the X/Open interworking specifications.

Chapter 5 examines the implications of internationalisation on the interworking specifications
listed above.

Chapter 6 presents conclusions and recommendations.

After this, Chapter 7 contains a set of internationalisation Change Requests (CRs) for the
interworking specifications listed above. These are edited versions of standard X/Open Change
Requests (CRs), in which the identity of the originator is omitted and the CRs are re-numbered
into a sequential scheme, for the purposes of this document.

Part 2 X/Open Interworking Specifications 19

Introduction

20 Technical Study

Chapter 4

Potential Issues for Interworking

For the purposes of this technical study, occurrences in an X/Open interworking specification of
either of the following requirements has been taken as a sign that there may be an
internationalisation issue:

• A requirement for a particular character set or encoding (for example, ASCII) for textual
information passed across an API or over a communications interface.

Note: A requirement for representation of non-textual information in a specific way has not been
considered to give rise to internationalisation issues. For example, a date in ddmmyy form
can be interpreted by a program operating in any language environment. It is only when
that form is used at the user interface that there are problems. Similarly, a requirement for
a constant text string expressed in a particular language (such as ‘‘LANMAN’’) does not
pose internationalisation problems since it is an arbitrary value that can be processed by
programs as a constant.

• A requirement for any form of user interface.

Although it is possible to specify a user interface in an internationalised way, there are so
many problems in this area that it is right to analyse any user interface requirement.

In considering the internationalisation issues that may arise from occurrences of the above
requirements the following four criteria have been used.

Specification Portability

Can the specification be meaningfully implemented in any language and cultural
environment?

For example, a requirement for a user interface which requires particular English language
commands and responses does not meet this criterion. Nor does a requirement for an API
in which the application must pass text encoded as 7-bit ASCII strings.

Applications Portability

Assuming portable specifications, can applications be written in such a way that they can
operate under different language and cultural environments?

For example, a specification that requires text to be passed to the application in the local
language can be implemented in any language environment but will not support
internationally portable applications.

Implementation Interworking

Can implementations written in different language and cultural environments interwork?

For example, a specification that requires use of different national character set encodings
derived from a single international superset would not necessarily produce
implementations that interwork since there could be situations where a character code is
legally usable in one country but not in another.

Part 2 X/Open Interworking Specifications 21

Potential Issues for Interworking

Applications Interworking

Can an application interwork with other applications or service implementations on remote
machines operating under different language and cultural environments?

For example, interworking could be a problem where one application sorts text generated
by another application on another system and the service does not enable the sorting
application to determine the collating sequence to be used. Note that this issue can arise
where two applications interwork using a service (for example, they communicate using
XTI) or where an application interworks with a service in a remote system (for example,
where an application uses XFTAM).

Although use of the POSIX Portable Filename Character Set is recommended in POSIX, it does
restrict users whose natural language is not English. For example, a Dane could not use his
spelling of the name which in English is spelt Aarhus. For this reason, although they may
provide applications portability, character set restrictions are identified in this technical study as
affecting specification portability.

22 Technical Study

Chapter 5

Interworking Specifications

5.1 The XTI Specification

5.1.1 Overview

The X/Open Transport Interface (XTI) Specification defines an API to a transport service that
provides process-to-process communication and can be used in connection with OSI transport
protocols, with TCP or UDP from the Internet Protocol Suite, with OSI Transport over TCP as
defined in RFC 1006, with a minimal 7-layer OSI stack, with X.25, with SNA or with NETBIOS.4

5.1.2 Internationalisation Implications

The t_error() Function

The t_error() function defined in Chapter 6 of the XTI specification takes a null terminated
character string as input, and writes to standard output an error message consisting of the input
character string followed by a colon, a space, a standard error message describing the last
encountered error, and a newline character. This raises a number of issues.

The input is a null terminated string. This is in accordance with the referenced ISO C
international standard, but does not allow use of the referenced ISO 10646 international
standard. This affects specification portability.

There is nothing to prevent, or even to discourage, the applications programmer from hard-
coding the input strings into the program source code, rather than obtaining them from a
catalogue associated with the currently established locale. This relates to applications
portability (applications portability is not precluded, but nothing is done to encourage it).

A character set containing the newline, colon and space characters is assumed. These (in
particular, the colon character) may not be meaningful in all language and cultural
environments. This affects specification portability.

The input string is written to standard output followed by the standard error message. This may
not be the most appropriate order in all language and cultural environments. This affects
specification portability.

The standard error message strings are specified for the English language but are
implementation-defined for other languages. There is nothing, however, to say that the standard
error message string that is output should depend on the currently established locale. This
impacts on applications portability; it will not be possible to write an internationalised
application that is portable between implementations that assume different natural languages.
For example, an application running on an English implementation would display English
messages, even to French users.

4. The appendices dealing with the minimal 7-layer OSI stack, with X.25 and with SNA are yet to be published. Drafts have been
reviewed for this technical study. They contain no internationalisation implications.

Part 2 X/Open Interworking Specifications 23

The XTI Specification Interworking Specifications

A change request to make the error message depend on the current locale (see Change Request
XOP-1 in Chapter 7) has been accepted, and will be implemented in the next published version
of the specification. A further change request to replace type char by type wchar_t in the errmsg
argument of t_error() was not accepted. However, X/Open is to consider specifying a parallel
function that will use wchar_t rather than char.

The t_strerror() Function

In the description of t_strerror() in Chapter 6 of the XTI specification, it is stated that a string is
returned.

The string returned is null terminated. This is in accordance with the referenced ISO C
international standard, but does not allow use of UNICODE or ISO 10646. This affects
specification portability.

Specific text is provided for the case where the natural language is English and it is stated that
‘‘in other languages, an equivalent text is provided.’’ This impacts on applications portability
(as in the case of the string generated by t_error(), described above).

As for t_error(), a change request to make the error message depend on the current locale (see
Change Request XOP-1 in Chapter 7) has been accepted, and will be implemented in the next
published version of the specification, but a further change request to replace type char by type
wchar_t in the errmsg argument of t_error() was not accepted.

NetBIOS

In section D.5 of the XTI specification, the description of NetBIOS names prohibits the first octet
from being null or hexadecimal FF, prohibits the last octet from being in the range (hexadecimal)
00-1F, and reserves special meaning to the ASCII code for the asterisk character. This restricts
the codesets that may be used, and hence affects specification portability.

This problem derives from the NetBIOS specification, rather than the XTI specification. It is not
appropriate to address it by changing XTI.

24 Technical Study

Interworking Specifications The XMPTN Specification

5.2 The XMPTN Specification

5.2.1 Overview

The X/Open Multi-Protocol Transport Networking (XMPTN) architecture supports mixed
protocol networking. It enables an application that was designed to run over a single, specific
protocol (such as SNA, NetBIOS, OSI Transport or TCP/IP) to run over additional networks
using different protocols.

The XMPTN architecture includes:

• Access Nodes

• Address Mappers.

In an XMPTN access node, an application program that uses communications transport services
(a transport user) interfaces, through XMPTN components, to a transport provider that provides
those services. The transport provider may implement a communications protocol other than
the one whose use is assumed by the transport user. The XMPTN components translate the
transport service requests made by the user into the transport service primitives provided by the
transport provider. The XMPTN components also provide compensation for services assumed
by the transport user but not implemented by the transport provider, by implementing those
services using the services that the transport provider does provide. The components of an
XMPTN access node, and the way they operate with transport users that use TCP/IP, UDP/IP,
SNA, NetBEUI and NetBIOS, are described in the referenced XMPTN Access Node X/Open
preliminary specification.

An XMPTN address mapper holds details of the relationships between transport addresses used
by transport users and transport addresses used by transport providers. An access node can
communicate with an address mapper, using a transport service, to register address mappings
and to determine the transport provider addresses corresponding to a transport user address.
The function of an XMPTN address mapper is described in the referenced XMPTN Address
Mapper X/Open preliminary specification.

5.2.2 Internationalisation Implications

There may be internationalisation implications in the address formats of some of the transport
protocols mapped by XMPTN. However, the purpose of XMPTN is to allow existing protocols
to continue to be used in a multi-protocol environment, rather than to provide a new transport
mechanism. In general, these implications should therefore be recognised as limitations
deriving from the use of the existing protocols, rather than as defects in XMPTN that should be
corrected by changing XMPTN.

A slightly different case is that of TCP transport providers, for which transport user addresses
may be resolved by being converted to ASCII host names and looked up using the Internet
Domain Name Service. It is not explained how names expressed in codesets that do not readily
convert to ASCII should be handled. It would be possible to derive coding schemes, such as that
used for the algorithmic mapping used to convert IP addresses to SNA LU names, in which any
address encoding can be converted to ASCII. Unless such schemes are used, there will be
specification portability issues arising from the use of XMPTN with TCP transport providers.

Part 2 X/Open Interworking Specifications 25

The XAP, XAP-TP and XAP-ROSE Specifications Interworking Specifications

5.3 The XAP, XAP-TP and XAP-ROSE Specifications

5.3.1 Overview

The X/Open ACSE/Presentation Services API defines an Application Program Interface to the
Association Control Service Element (ACSE) of the OSI Applications Layer and the OSI
Presentation Layer Service, excluding the encoding of information in ASN.1 (this is left as the
responsibility of the application). It is not based on the XOM API (which provides an interface
to ASN.1), although it can be used in conjunction with XOM.

The XAP-ROSE API is an extension of the XAP API that provides an interface to the OSI Remote
Operation Service Elements (ROSE).

The XAP-TP API is an extension of the XAP API that provides access to the services of the OSI
Transaction Processing (TP) protocol.

5.3.2 Internationalisation Implications

Service Provider Identifiers

Service providers are identified by null-terminated strings. This would cause problems for an
application using the ISO 10646 codeset, and hence affects specification portability.

Diagnostic Messages

The ap_get_env() function returns a diagnostic message in field error of structure ap_diag_t when
passed the AP_DIAGNOSTIC attribute. This message is in the natural language of the currently
defined locale. However, it is contained in a null-terminated character string. There is therefore
a question of specification portability, since null-terminated character strings can not be used in
conjunction with the codeset of ISO 10646. X/Open is to consider specifying a parallel function
that will use wchar_t rather than char.

Error Messages

The ap_error() function returns a pointer to an error message in the language of the currently
specified locale. Again, there is a specification-portability issue, because the message is
contained in a null-terminated string, and X/Open is to consider specifying a parallel function
that will use wchar_t rather than char.

XAP-ROSE

There are no internationalisation implications for the referenced XAP-ROSE X/Open
preliminary specification.

XAP-TP

There are no internationalisation implications for the referenced XAP-TP X/Open preliminary
specification.

26 Technical Study

Interworking Specifications The XOM Specification

5.4 The XOM Specification

5.4.1 Overview

The X/Open Abstract Data Manipulation (XOM) specification defines a general purpose OSI
Abstract Data Manipulation Application Program Interface (API) for use in conjunction with
other X/Open application specific APIs for Open Systems Interconnection (OSI). XOM deals
with information objects that arise in OSI, ie. those that can be expressed in terms of ASN.1 The
specification defines how objects can be created, examined, modified and deleted.

Character String Types

The definition of ASN.1 in the referenced ISO 8824 international standard (the version on which
the XOM was originally based) specifies the characters that can be represented in the various
sorts of string either by explicitly defining them or by referring to character set registration
numbers in ISO 2375. The types of string defined in the referenced ISO 8824 international
standard are as follows:

• General String - all internationally registered graphic and control character sets (plus SPACE
and DELETE)

• Graphic String - all internationally registered graphic character sets (plus SPACE)

• IA5 String , VisibleString (ISO646String), PrintableString - variations of the basic ASCII
character set

• TeletexString (T61String) , VideotexString - certain identified internationally registered graphic
and control character sets.

Since that version, the definition of ASN.1 has been revised. Three new types of character string
have been added. They are:

• Universal Strings - strings of characters encoded according to ISO 10646 UCS-4 form

• BMP Strings - strings of characters encoded according to ISO 10646 UCS-2 form

• Unrestricted Strings - strings of characters with a syntax that has an ASN.1 object identifier
and which either

— are type-compatible with characters of one of the old character string types or the new
Universal String type,

or

— have a possible transfer syntax (that is, an encoding) that has an ASN.1 object identifier.

The Unrestricted String type allows use of any character set and encoding once the necessary
object identifiers have been allocated to them. In particular, it allows use of the character sets
and encodings defined in ISO 2375 and ISO 10646.

The string type definitions in XOM reference the original ASN.1 character string definitions, and
also the new Universal and Unrestricted string types, but not the new BMP String type.

Part 2 X/Open Interworking Specifications 27

The XOM Specification Interworking Specifications

5.4.2 Internationalisation Implications

The referenced XOM X/Open CAE specification does not allow for the ASN.1 BMPString type
introduced in the ISO/IEC 8824:1 1994 standard. The addition to XOM of a BMP character string
syntax corresponding to this ASN.1 type should be considered.

While the string types defined in XOM include types that are capable of representing any
national character set, they also include types that are restricted to representing only some
national character sets. The use of these string types in APIs that use XOM thus requires careful
consideration to ensure that those APIs are fully ‘‘internationalised’’. The possible use in these
APIs of string types corresponding to the new Universal and Unrestricted String types
consideration. These aspects are discussed in Section 5.7 (on page 32) and Section 5.9 (on page
34) of this technical study.

28 Technical Study

Interworking Specifications The XFTAM Specification

5.5 The XFTAM Specification

5.5.1 Overview

The XFTAM specification defines an API to the OSI File Transfer, Access and Management
(FTAM) service. It supports file types FTAM-1, FTAM-2 and FTAM-3. It is defined using the
X/Open OSI Abstract Data Manipulation Service (XOM).

5.5.2 Internationalisation Implications

Identifier Strings

File names, creator identities etc. are represented in the API by XOM Graphic Strings. This
means that any internationally registered character set can be used. It does not allow use of
UNICODE/ISO 10646, however, or have the full generality of the Unrestricted Strings of the
referenced DIS 8824 draft international standard. There is therefore an impact on specification
portability.

The XFTAM API reflects the referenced ISO 8571 international standard and should not be
changed independently of it. Work on the FTAM standards should be kept under review, and
any change in them to permit use of Universal or Unrestricted Strings should be reflected in
XFTAM. At the time of writing, this issue has been raised in ISO, but there is no formal defect
report, and no concrete plan to amend the FTAM standards.

File Contents

The FTAM-1 and FTAM-2 document types specify text files. Conversion of format-effector
characters (in particular, end of line) is specified to occur on input and output. All of the XOM
character string types except Universal String and Unrestricted String are supported. As noted
for Identifier Strings above, this is not completely general, and there is an impact on specification
portability. No change should however be made to XFTAM until a corresponding change has
been made to the referenced ISP 10607-2 international standardised profile, in which the
document types are defined. As with the types of file names etc. (discussed above), there is no
concrete work plan to address this issue.

Although the application using XFTAM will in general be aware of the codeset used in a text file
(from the Content-Class OM attribute of the Content-Type OM attribute of the FTAM-Attributes
objects returned by the interface functions), it will not be aware of the collating sequences, case
conversion rules etc. that apply. There is thus an implication for applications interworking. To
address this, it would be necessary for locale information to be associated with the file in some
way, and to be passed to the remote application. Whether this is desirable and, if so, how it
could be achieved, is for further study.

Diagnostic Text

The FTAM-Output-Parameters OM class, which defines a class of OM object that is returned by
several of the API functions, contains OM attribute FTAM-Diagnostic-List, which is of syntax
Object(FTAM-Diagnostic), and in turn contains an OM attribute, Text-Message, which is of
syntax String(Graphic) and contains an optional text message in natural language.

For applications interworking, this message should be in the natural language of the current
locale. However, since the text is generated in the remote system (the FTAM responder), this
would imply some means of conveying locale information between initiator and responder.
This is an issue for further study.

Part 2 X/Open Interworking Specifications 29

The BSFT Specification Interworking Specifications

5.6 The BSFT Specification

5.6.1 Overview

The X/Open BSFT Specification defines a file transfer utility similar to the IPS ftp utility but
using the OSI FTAM protocol. It includes a specification of a protocol profile and a user
interface.

5.6.2 Internationalisation Implications

User Interface

The user interface (defined in BSFT Appendix A) is specified in English. This clearly impacts on
Specification Portability.

The command and argument names use only the characters of the portable filename character
set of the referenced ISO 9945-1 international standard and the interface should therefore be
usable wherever the character set is derived from the Latin alphabet, although the command and
argument names will not be meaningful in languages other than English.

The user interface should be defined in such a way that a meaningful version of it can be derived
for any natural language environment. This could be done by requiring that standard
Internationalisation facilities are used for display of dates and times and for collating file names
and that command and argument names are held in natural language specific message
catalogues that can be referenced through locale information.

File Types

BSFT supports both text files (type FTAM-1) and binary files (type FTAM-3). There are no
internationalisation issues relating to the contents of binary files, but there are two implications
relating to text files.

First, as for XFTAM, the contents of text files can be of various types, including Visible String,
IA5 String, Graphic String or General String, but this is not sufficiently general to cater for all
possible character sets and encodings, and there is thus an implication for specification
portability.

Secondly, there is a possible impact on implementation interworking relating to text files. BSFT
can be used to transfer text files between two locales that use the same codeset (or that use
codesets that are closely related) but will not effect a meaningful transfer of textual information
between locales that use radically different codesets (for example, Hebrew and Korean). Such a
transfer is clearly beyond the scope of BSFT. However, its behaviour if such a transfer is
attempted is currently not defined. It should ideally be defined in a fully internationalised
specification. (Note that this problem does not arise in relation to the XFTAM specification,
since the codeset used is known to an XFTAM application from the Content-Class OM attribute,
as discussed under File Contents (on page 29) of this technical study.) This issue is not specific
to interworking; the same problem can arise when transferring information between files created
using different locales on a single machine. It raises the question of whether locale information
could or should be associated with files in some way. In an interworking context, it also raises
the question of how the locale information could be conveyed between the communicating
systems.

30 Technical Study

Interworking Specifications The BSFT Specification

Names

Filenames, user identities, account names and passwords can be of type Graphic String, and
wildcard expansion can be requested. Again, there is an impact on specification portability, in
that the possible codesets used are restricted, and there is an impact on implementation
interworking, in that this allows use of BSFT between two locales with similar character sets but
not between locales with different character sets. Again, such use is beyond the scope of BSFT
but the behaviour of BSFT when such use is attempted should be specified.

Natural Language Text in PDUs

Protocol error messages can contain details expressed in natural language and Initialise
Request/Response PDUs may include implementation information expressed in natural
language. This has a possible impact on implementation interworking. If these textual
messages can be displayed at the user interface (BSFT Appendix A does not specify either that
they should be or that they should not be) then similar considerations apply as for filenames,
user identities etc. In addition, even where such information is transferred between two
communicating systems that use similar codesets, the user may not understand it since it may
not be expressed in his natural language.

Part 2 X/Open Interworking Specifications 31

The X.400 API Specification Interworking Specifications

5.7 The X.400 API Specification

5.7.1 Overview

The X/Open X.400 API Specification defines:

• an X.400 Application API that makes the functionality of a message transfer system (MTS)
accessible to a message store (MS) or user agent (UA)

• an X.400 Gateway API that divides a message transfer agent (MTA) into two software
components: a mail system gateway and an X.400 gateway service.

It is defined using the X/Open OSI-Abstract-Data Manipulation service (XOM).

5.7.2 Internationalisation Implications

The API is based on the definitions of the referenced X.400 CCITT Recommendations which are
essentially the same as the referenced ISO 10021 international standard. They can therefore be
expected to be fully international. In fact, the only internationalisation implications of the API
specification derive directly from the CCITT X.400 Series recommendations. This is the fact that
certain class attributes are defined to be Teletex Strings, Videotex Strings or Printable Strings
which (as discussed in the section on XOM) restricts them to certain, internationally registered,
character sets. The permitted character sets include all Western European characters and
Japanese Kanji (set nr. 87 in the ISO register) but not other sets such as Hebrew and Arabic.

In some cases (for example, that of the Teletex Document attribute of the Teletex Body Part
class), this restriction is inevitable and can not be considered to impact on internationalisation. It
makes no sense to use a non-teletex character set in a Teletex Body Part. In other cases, notably
those of many of the attributes of class OR-Address, the restriction is harder to understand.

The definitions meet the needs of Western Europe, North America and Japan but not of other
countries. It is not clear why the X.400 recommendations do not specify Graphic Strings,
General Strings or even Octet Strings, instead of Teletex Strings. This would enable characters of
any internationally registered character set to be printed. It is possible that future versions could
specify the Universal, BMP or Unrestricted Strings of the new DIS 8824.

There is thus an impact on specification portability deriving not from the API specification but
from the underlying X.400 series recommendations of the CCITT.

Changes should not be made in advance of changes to ISO 10021 and the X.400 series
recommendations. The progress of these standards should be kept under review and the X.400
API Specification should be modified to reflect any changes that are made to them to address
this issue.

ISO SC18 WG4 has had an outstanding work item to address this issue for the last three years.
However, no national body has yet made a concrete proposal. ISO SC18 WG4 would welcome
input from X/Open on the appropriate timescale for addressing the issue.

32 Technical Study

Interworking Specifications The XMS Specification

5.8 The XMS Specification

5.8.1 Overview

The X/Open XMS API provides an API to message store functions similar to those described in
X.413 (see the referenced X.400 CCITT Recommendations). It is complementary to the X.400 API
and, like the X.400 API, it is defined using the X/Open OSI-Abstract-Data Manipulation service
(XOM). Also, it uses some of the class definitions from the X.400 and XDS APIs.

5.8.2 Internationalisation Implications

As with the X.400 API, there are a number of attributes that represent text strings and that are
restricted by their syntaxes to certain character sets. These include the following:

• the Content-Identifier OM attribute of OM class Auto-Forward-Arguments, which has
syntax Printable String

• the IA5-String OM attribute of OM class Password, which has syntax IA5 String

• the A-Content-Identifier MS attribute, which has syntax Printable String

• the IM-Auto-Forward-Comment IM attribute, which has syntax Printable String

• the IM-Languages IM attribute, which has syntax Printable String

• the IM-Subject IM attribute, which has syntax Teletex String

• the IM-Suppl-Receipt-Info IM attribute, which has syntax Printable String

• the Subject OM attribute of OM class Heading, which has syntax Teletex String.

As with the X.400 API, there is an impact on specification portability which derives from the
underlying X.400 series recommendations of the CCITT, rather than from the API specification.

Changes should not be made in advance of changes to ISO 10021 and the X.400 series
recommendations. The progress of these standards should be kept under review and the XMS
API specification should be modified to reflect any changes that are made to them to address this
issue.

Part 2 X/Open Interworking Specifications 33

The XDS Specification Interworking Specifications

5.9 The XDS Specification

5.9.1 Overview

The X/Open API to Directory Services (XDS) defines an API to directory services that include,
but are not limited to, those defined in the referenced X.500 CCITT Recommendations. The
assumed model of a Directory, and many of the associated definitions, are directly derived from
those CCITT recommendations (which are aligned with and technically equivalent to the
referenced ISO 9594 international standard).

The API is defined using the X/Open OSI-Abstract-Data Manipulation service (XOM).

5.9.2 Internationalisation Implications

Attribute Character Sets

For certain attributes - notably A-Country-Name and A-Destination-Indicator - there appears to
be an issue because they are defined as (Latin alphabet) printable strings. This is necessary,
however, in order to allow addresses to be recognisable internationally. (The A-Country-Name
attribute, for example, is used to hold the standard country codes defined in ISO 3166). No
action should therefore be taken to modify the XDS in respect of these attributes.

Attribute Comparisons

In the definitions of OM classes Filter-Item and Search-Criterion, various attribute comparison
methods are discussed.

• Attribute matches can be ‘‘approximate’’ using an implementation-dependent algorithm. It
is probable that full internationalisation requires the algorithm to take account of the locale of
the user and/or the subject of the directory entry - approximate matching may well be
different in England and Japan. There is thus again an impact on specification portability.

Consideration could be given to adding a locale OM attribute to OM class filter (to allow the
user’s locale to be specified) and to providing a mechanism for the algorithm to take account
of any locale (directory) attribute in the directory entry. However, it should be noted that the
definition of filter is based closely on definitions in CCITT Recommendation X.511. It should
not be changed by X/Open until corresponding changes have been made to the Directory
Standards by ISO and the CCITT.

• Greater-or-equal/less-or-equal comparisons are made using ‘‘the appropriate ordering
algorithm’’. For strings, it is probable that this algorithm should use collating sequence tables
for the locale of the user and/or the entry and should cater for ‘‘right-to-left’’ (eg. Arabic) as
well as ‘‘left-to-right’’ text strings. Again, these rules are defined in the CCITT X.500 series
recommendations and X/Open should not change the XDS until corresponding changes
have been made to the Directory Standards by ISO and the CCITT.

The 1993 version of the Directory Standards includes provision for strings of ASN.1 type
Universal String (but not for strings of type BMP String or Unrestricted String). Since Universal
String maps to the 4-octet ISO 10646 representation rather than to the 2-octet representation
(which is probably the more commonly used), there is a proposal to add support for BMP String,
which does map directly to the 2-octet representation. There is currently no intention of adding
support for Unrestricted character strings.

34 Technical Study

Interworking Specifications The XDS Specification

There is a further change proposed to the Directory Standards that could enable all the
outstanding internationalisation issues to be resolved. This is that all directory attributes should
be allowed to have a number of properties. The properties that have been considered include
language or locale (language, rather than locale, seems to be favoured currently). (Other properties,
such as the time when the validity of the attribute expires, are being considered also.)

The progress of these proposals should be monitored, and the XDS should be modified to reflect
any resulting changes in the standards. It would indeed be possible to modify XDS now to take
account of the new Universal String type. However, the decision on what changes to make, and
when to make them, should take into account:

• the possibility that the Directory standards will be modified to cater for the BMP String type

• the other possible changes to the Directory standards discussed above

• the fact that further changes (not related to internationalisation) have been made to the
Directory standards, and that it may be desirable to modify the XDS to reflect them.

Part 2 X/Open Interworking Specifications 35

The XNFS Specification Interworking Specifications

5.10 The XNFS Specification

5.10.1 Overview

With the XNFS specification, X/Open provides a temporary but complete solution to the
problem of transparent file access between X/Open-compliant systems. XNFS is described as
temporary because X/Open recognises that the Transparent File Access (TFA) standardisation
work is ongoing within the IEEE P1003.1f project, and X/Open intends to be compliant with
P1003.1f TFA when it becomes an IEEE standard. XNFS is considered complete because it
encompasses both protocols for interoperability (via the XNFS specification) and interfaces for
application/user portability (via the XSI specification and the semantic differences defined in the
appendices of the XNFS specification).

XNFS comprises a number of specifications, namely:

External Data Representation (XDR)
This defines a syntax for describing data formats and data encoding (analogous but not
equivalent to ASN.1). XDR is used to specify the other XNFS protocols.

Remote Procedure Call Protocol (RPC)
This provides a mechanism to allow a client to call a procedure to be executed on a remote
server.

Network File System (NFS)
The X/Open specification for file-sharing services based on the NFS architecture developed
by Sun Microsystems Inc.

Portmap
A service that maps RPC program and version numbers to transport-specific port numbers
thus providing a dynamic binding capability for remote programs.

Mount
A service that looks up server pathnames, validates user identities and checks access
permissions. It then provides the first file handle to clients, which then allows them entry to
a remote file system.

Network Status Monitor (NSM)
A service that provides applications with information on the status of network hosts. It is
used by NLM to track hosts that have established and hold locks.

Network Lock Manager (NLM)
An RPC-based service that provides advisory X/Open CAE file and record locking and
DOS compatible file sharing and locking in an XNFS environment.

5.10.2 Internationalisation Implications

There are two types of potential Internationalisation implication in XNFS: those that are protocol
related and those that arise out of Transparent File Access (TFA). The former correspond to the
issues of Specification Portability and Implementation Interworking and the latter to the issues
of Application Portability and Interworking.

36 Technical Study

Interworking Specifications The XNFS Specification

Protocol Issues

The point at issue here is whether the encoding of parameters is language-dependent. The XNFS
set of protocols uses a variety of parameter types that are clearly language-independent (for
example, boolean and integers) but it also uses string parameters. Strings are used to specify
program names, path names, and user names. However, the specification treats these as octets
and does not process them, other than to transmit, store, retrieve and compare them for equality.
Consequently, as far as the protocol implementation is concerned, string parameters are
language-independent, and protocol implementations are both portable and, when implemented
on systems with different cultural environment, will interwork. The only proviso is that strings
consist of 8-bit octets.

Where the XNFS protocols (such as RPC) are used by other programs, then the unrestricted use
of RPC protocols may gives rise to internationalisation problems. These problems cannot be
easily solved through the use of the current internationalisation features of the X/Open CAE
since the code will be running on one machine (and have access to the machine’s language
dependent features) but will have to code user names, path names etc. using the language-
dependent features of another machine. These issues are being addressed by the Joint X/Open-
Uniforum Internationalisation Group, as discussed in Section 2.5.2 (on page 12) of this technical
study.

TFA Problems

The purpose of XNFS is to provide transparent file access. This gives rise to issues that are,
potentially, much more serious than those associated with the XNFS protocols. These issues are
identified in the referenced DISS Issue 1 X/Open snapshot; they derive from the fact that client
and server do not necessarily have a common locale.

There is a similar problem with the FTAM initiator and responder for XFTAM and BSFT, but the
situation is worse for XNFS. With FTAM, the codeset in use is known to both the initiator and
the responder, it is only case conversion rules, collating sequences etc. that are not known, and
these are only required by a minority of applications. With XNFS, not even the codeset is
known.

The following example illustrates the problem. Suppose that a French user creates a file données
on his system, which supports the codeset of ISO 8859-1. His system is networked to an English
system that does not support this codeset, but simply ignores the most significant bit of any
character code. The two systems are running XNFS. A directory listing of the French system,
requested on the English one, displays the filename as donnies, the code (hex) E9 for the letter e-
with-acute having been displayed as though it were (hex) 69. However, attempts to access the
file donnies are unsuccessful, because the English system transmits code (hex) 69 to the French
one, rather than code (hex) E9.

This problem is pointed out in the XNFS Specification. It can be addressed by enabling the user
to establish identical locales on all the systems that he uses, and by ensuring that the same locale
is used by all co-operating applications in a distributed operation. The user in the above
example could then establish a French locale on the English system and work in it, using files
located on his French system, as though he were working on his French system.

The establishment of identical locales on systems supplied by different vendors implies that
locales must be standardised. Use of the same locale by co-operating distributed systems
implies that there must be some means of conveying locale information between those systems.

Part 2 X/Open Interworking Specifications 37

The XNFS Specification Interworking Specifications

A further issue is that a user application may not be aware of the locale associated with a remote
file. This issue is not confined to distributed operations, as the same situation may arise with an
application accessing a local file, but it is more likely to arise in a distributed system. It raises the
question of whether locale information could, or should, be associated with files.

38 Technical Study

Interworking Specifications The (PC)NFS Specification

5.11 The (PC)NFS Specification

5.11.1 Overview

The X/Open (PC)NFS specification covers one of the two protocols sets that X/Open defines in
order to provide interoperability over Local Area Networks (LANs) between personal
computers and X/Open-compliant systems. (The other protocol, SMB, is discussed in Section
5.12 (on page 40) of this technical study).

The (PC)NFS specification covers all of the protocols specified in the XNFS specification with
the following exceptions:

• the Network Status Monitor (NSM) service is not used

• the Network Lock Manager (NLM) service is extended to provide additional services

• a new service, PCNFSD, is used.

With the exceptions listed above, (PC)NFS reproduces, with editorial changes, the XNFS
specifications rather than referencing them.

The added facilities are as follows:

Network Lock Manager (NLM)
This is an RPC-based service that provides advisory X/Open CAE file and record locking,
and DOS-compatible file sharing and locking in an XNFS environment. The (PC)NFS
definition of NLM defines an upwardly compatible NLM specification, which is defined to
include all the facilities of the XNFS definition and adds to it support for personal
computers (namely non-monitored locks and DOS-compatible file sharing). The extra calls
include parameters that specify file caller names.

Personal Computer NFS Daemon (PCNFSD)
This is a Unix daemon that provides user authentication and print services to single-user
personal computer systems. (PC)NFS includes parameters to define passwords, host
names, printer names, user names, filenames and spool options. The specification includes
the definition of specific English characters for spooler options. However, since these are
fixed (and hence can be treated by programs as arbitrary constants), this is not an
internationalisation issue.

5.11.2 Internationalisation Implications

The discussion with regard to internationalisation of the XNFS protocol specifications also
applies to the equivalent (PC)NFS versions, with the extra complication that PCs handle national
language-dependent features in a different manner to X/Open compliant systems. In particular,
different encodings of characters will be used between PCs and X/Open compliant systems, and
PCs can change their character sets (code pages) without this becoming known to the X/Open
compliant systems to which the PC is connected.

Strings, such as machine names, program identifiers and procedure identifiers will be expressed
by PCs according to the DOS code page they are currently using. This will require 8-bit
character support and a character encoded in the same manner may be displayed differently to
users on Unix and PC systems.

The same sort of problems will arise as were illustrated in the example in Section 5.10 (on page
36), but will be less easy to solve because the code page mechanism used by the PC clients is
different from the locale mechanism used on the X/Open compliant servers and the two
mechanisms may (for example) use different codesets for the same natural language.

Part 2 X/Open Interworking Specifications 39

The SMB Protocols Specification Interworking Specifications

5.12 The SMB Protocols Specification

5.12.1 Overview

SMB is a protocol that can be implemented as an upper layer over any protocol that provides the
NetBIOS service. The X/Open SMB specification describes the SMB protocol itself and its use of
NetBIOS. It also describes an OSI protocol stack and an IPS protocol stack that provide the
NetBIOS service (it does this by reproducing a MAP/TOP Users’ Group Technical Report and
RFCs 1001 and 1002).

5.12.2 Internationalisation Implications

System Names, Resource Names and Passwords

SMB host names are upper-case characters padded with blanks. SMB names for resources (files,
paths, mailslots, pipes, volumes, devices, etc.) and also passwords are encoded as null
terminated ASCII strings. Pathnames may or may not be case-sensitive, and case conversion of
filenames and path names is performed under some circumstances. The character set and
encoding used is assumed to be ASCII and certain encodings — those for asterisk, question mark
and back-slash and other special characters, and those less than (hex) 20 — have reserved
meanings. Encodings greater than or equal to (hex) 80 need not be supported, and case
conversion does not apply to them in any case.

This clearly impacts on specification portability. It would for example be difficult in some
language and cultural environments to write an electronic mail application in which a user could
freely specify mailbox names.

Some of the language and cultural dependencies could be removed by allowing any character
encoding scheme that is an extension of ASCII. This would, however, still leave case conversion
as a problem, and would not allow use of UNICODE/ISO 10646.

On PCs, the algorithm for case conversion is likely to be determined by the code page in use. For
case conversion to be meaningful with an extension of the ASCII encoding scheme, the X/Open
compliant servers would have to be aware of the code pages in use on the PC clients. This
would require an extension to the SMB protocol. The X/Open compliant servers would also
need knowledge of the individual code pages used on the PCs. How this could be achieved
requires further study.

Data

SMB is capable of carrying 8-bit binary data. However, in section 9.1, SMBsplopen has
smb_mode which can specify text mode, allowing the server to expand ASCII tabs to spaces.
This options could have a slight impact on applications portability. If writing an internationally
portable application that used SMBsplopen to create a spool file, the programmer would have to
be careful to use graphics rather than text mode. This represents a restriction on the range of
tools available to the programmer, however, rather than a restriction on what can be achieved
using those tools.

40 Technical Study

Interworking Specifications The SMB Protocols Specification

Management Transactions

In section B.4.1, the parameter descriptor string, the data descriptor string and the auxiliary data
descriptor are null-terminated ASCII strings. These follow a particular coded format and so are
international. However, the type of argument passed can include a null-terminated ASCII string
but not other types of character string.

This impacts slightly on applications portability. If writing an internationally portable
management application, the programmer must be careful to avoid using parameters that are
null-terminated ASCII strings. Again, the programmer is not restricted in what can be achieved,
since it is possible to encode text in parameters in other ways (and, for an internationally
portable application, it may be better in any case to avoid the use of text altogether).

Part 2 X/Open Interworking Specifications 41

The IPC Mechanisms for SMB Specification Interworking Specifications

5.13 The IPC Mechanisms for SMB Specification

5.13.1 Overview

This X/Open specification defines an API to the Server Message Block (SMB) protocol for use on
X/Open compliant systems, provides information on the mapping of the API to SMB protocol
elements and specifies the protocol elements that are required.

5.13.2 Internationalisation Implications

As regards the data passed over the API and transported using the SMB protocol, there are no
limitations that affect internationalisation. The names of resources (mailslots, pipes etc.) are
however required to be null-terminated ASCII strings and some comment strings transferred by
the protocol are also null-terminated ASCII strings.

This clearly impacts on specification portability, as discussed in Section 5.12 (on page 40).

42 Technical Study

Chapter 6

Conclusions and Recommendations

This chapter summarises the implications of internationalisation requirements on X/Open
interworking specifications and presents conclusions and recommendations.

From the point of view of internationalisation, applications programs can be divided into three
classes:

• an application that requires a single, fixed locale can be classed as a single-locale application

• an application can be classed as a variable-locale application if, at any time, it only processes
data from a single locale, but that locale can vary from time to time

• an application that processes data from several different locales at the same time can be
classed as a multi-locale application.

For single-locale applications, the only question is whether there is any restriction on the locales
in which it can be implemented. Instances where an X/Open interworking specification
imposes a restriction, or allows an implementation to impose a restriction, are identified in this
technical study as issues of specification portability. Except for some issues arising from the use
of specifications that X/Open can not change unilaterally, the only restriction now imposed by
X/Open interworking specifications is that some API functions can not be used in conjunction
with UNICODE or ISO 10646 codesets, because the functions rely on strings being null-
terminated.

The question of UNICODE/ISO 10646 has been discussed by X/Open working groups. There
has been a reluctance to replace function arguments of type char with arguments of type
wchar_t. However, X/Open will now consider defining additional functions that perform the
same actions as the API functions that rely on strings being null-terminated, but that use arrays
of type wchar_t rather than arrays of type char. These functions should not replace the existing
functions, but should provide an alternative to them for use by internationalised applications.
The functions affected are the XTI functions t_error() and t_strerror(), and the XAP functions
ap_get_env() (which can return an ap_diag_t value) and ap_error().

For variable-locale applications, there are further questions that arise. These are:

• whether the specification requires the implementation to allow variable-locale applications
to be written

• whether the specification requires the implementation to provide explicit support for
variable-locale applications, for example by tagging information with locale identifiers.

Except for some cases where X/Open can not change the specifications unilaterally (identified as
issues of applications portability), the X/Open interworking specifications considered in this
technical study do require implementations to allow variable-locale applications to be written.
However, they do not require implementations to provide explicit support for variable-locale
applications. This means that interworking applications must make explicit provision for
variable-locale operation where this is required.

The situation for multi-locale applications is similar. Except in some cases where X/Open can
not change the specifications unilaterally, the X/Open Interworking Specifications considered in
this technical study do not contain features that could be implemented in a way that would
prevent multi-locale applications from being written, but they do not require implementations to
provide explicit support for such implementations. Interworking applications must therefore
make explicit provision for multi-locale operation where this is required.

Part 2 X/Open Interworking Specifications 43

Conclusions and Recommendations

In general, the X/Open interworking specifications:

• can be used by single locale applications that do not use codesets (such as UNICODE or ISO
10646) that allow embedded nulls (and changes that would enable such codesets to be used
will be considered)

and

• can be used by variable-locale and multi-locale applications (with the same restriction on the
codesets that they can use)

but

• do not provide explicit support (for example, by attaching locale identifiers to information)
for variable-locale and multi-locale applications.

The exceptions to this (assuming that the change described in Chapter 7 of this technical study is
incorporated in the XTI specification) are listed below:

• XFTAM provides non-locale-dependent diagnostic strings (but this is in accordance with the
FTAM standard)

• XBSFT has an English-language user interface

• some of the OM Attributes of the XOM, XFTAM, BSFT, X.400, XMS and XDS APIs represent
character strings, but the ASN.1 string syntaxes that can be used are not sufficiently general
to cater for all possible codesets (but this is in accordance with the underlying OSI standards)

• the Directory to which the XDS provides an interface carries out character string
comparisons that are not locale-dependent (but this is in accordance with the underlying
X.500 standards)

• NetBIOS and SMB implicitly assume an ASCII codeset and this has implications for the XTI,
SMB and IPC for SMB specifications.

44 Technical Study

Chapter 7

Change Requests for Internationalisation

This chapter contains the formal change requests for the X/Open interworking specifications
that were originally raised in the previously published X/Open Interworking
Internationalisation snapshot. This chapter also describes how each of these change requests
has since been resolved.

These change requests address the issues that could be addressed by X/Open in isolation or in
co-operation with the X.400 API Association. They do not address issues requiring
modifications to international standards or consultation with the PC supplier community.

Part 2 X/Open Interworking Specifications 45

The XTI Specification Change Requests for Internationalisation

7.1 The XTI Specification
The following changes to the XTI specification were proposed.

Document: The XTI Specification
X/Open CAE Specification, C196 or XO/CAE/91/600 (January 1992).

Change number: XOP-1

Source: X/Open / I18n CR from I18n of Interworking Specs SS

Title: Internationalised Error Messages
Functional Upgrade

Qualifier: Major Technical

Rationale: The functions t_error() and t_strerror() return strings. For international
operation, these should be in the natural language of the locale established
by the application program.

Change:

i. In the man page for t_error(), change the description as follows:

a. Remove the text ‘‘language-dependent’’ from the first line.

b. In the first line of the third paragraph, replace the text

‘‘implementation-defined.’’

with

‘‘dependent on the current locale.’’

ii. In the man page for t_strerror(), replace the text in the description:

‘‘language-dependent error message string’’

with

‘‘message string based on the current locale’’

Also, replace the text:

‘‘implementation-defined’’

with

‘‘the natural language based on the current locale’’

46 Technical Study

Change Requests for Internationalisation The XTI Specification

Document: The XTI Specification
X/Open CAE Specification, C196 or XO/CAE/91/600 (January 1992).

Change number: XOP-2

Source: X/Open / I18n CR from I18n of Interworking Specs SS

Title: Internationalised Error Messages
Functional Upgrade

Qualifier: Major Technical

Rationale: Some XTI functions return pointers and character strings as arguments to
function calls or the return value from a function call. For internationalised
operation, this should be in the natural language of the locale established by
the application program.

Change:

i. In the man page for t_error(), replace:

char *errmsg

with:

wchar_t *errmsg

ii. In the man page for t_strerror(), replace:

char *t_strerror

with:

void *t_strerror

Change Request (CR) XOP-1 was accepted (with a minor modification to the wording). It has
not yet been implemented, but will be implemented in the next published version of the XTI
specification.

CR XOP-2 was withdrawn, for reasons discussed in Chapter 6, and X/Open will now consider
the addition of parallel interfaces using wchar_t rather than simply replacing existing interfaces
that use char.

Part 2 X/Open Interworking Specifications 47

The XAP, XAP-TP and XAP-ROSE Specifications Change Requests for Internationalisation

7.2 The XAP, XAP-TP and XAP-ROSE Specifications
The following changes to the XAP specification were proposed:

Document: The XAP Specification
X/Open Preliminary Specification, P203 (June 1992).

Change number: XOP-3

Title: Internationalised Diagnostic Messages

Qualifier: Minor Technical

Rationale: Function ap_get_env() returns a diagnostic message in field error of structure
ap_diag_t when passed the AP_DIAGNOSTIC attribute. For
internationalised operation, this should be in the natural language of the
locale established by the application program. To enable the character set of
any natural language to be used, and to allow for the encoding scheme of ISO
10646, a null-terminated character string should not be used.

Change:

i. In the ENVIRONMENT man pages definition of type ap_diag_t , (page
54) and in the repeat definition in Appendix A (page 195), change:

char *error /* textual message */

to:

wchar_t *error /* textual message */

ii. Change the ENVIRONMENT man pages description of the error field
(near the bottom of page 55) to:

‘‘The error field will be set up to point to a text string, in the natural
language of the current locale, which describes the error condition, or
will consist of a single null character if no such text string is available.’’

48 Technical Study

Change Requests for Internationalisation The XAP, XAP-TP and XAP-ROSE Specifications

Document: The XAP Specification
X/Open Preliminary Specification, P203 (June 1992).

Change number: XOP-4

Title: Internationalised Error Messages

Qualifier: Minor Technical

Rationale: Function ap_error() returns an error message. For internationalised
operation, this should be in the natural language of the locale established by
the application program. To enable the character set of any natural language
to be used, and to allow for the encoding scheme of ISO 10646, a null-
terminated character string should not be used.

Change: In the ap_error() man page:

i. change:

char *ap_error (aperrno)

to:

wchar_t *ap_error (aperrno)

ii. change the DESCRIPTION to"

‘‘This function returns a pointer to a message, in the natural language
of the current locale, that describes the error indicated by aperrno. The
pointer shall point to a null character if no such message is available.
For English language locales, the messages shall be those that are listed
in the XAP interface functions introductory manual pages in this
specification.’’

Part b) of CR XOP-3 and CR XOP-4 were accepted and have been implemented in the referenced
XAP X/Open CAE Specification.

Part a) of CR XOP-3 and CR XOP-4 were not accepted. As discussed in Chapter 6, X/Open will
now consider the addition of parallel interfaces using wchar_t, rather than simply replacing
existing interfaces that use char.

Part 2 X/Open Interworking Specifications 49

The XOM Specification Change Requests for Internationalisation

7.3 The XOM Specification
The following change to the XOM specification was proposed:

Document: The XOM Specification
X/Open CAE Specification, C180 or XO/CAE/91/080 (November 1991).

Change number: XOP-5

Title: Support for Universal and Unrestricted Character Strings

Qualifier: Major Technical

Rationale: The character string types supported by XOM are not sufficiently general to
support all character sets and codesets used internationally. This issue has
been recognised by the standards bodies responsible for ASN.1. A new DIS
8824 is currently in ballot. It includes (among other changes from the present
version) support for two new string types. These are:

Universal String which supports the Universal Multi-Octet Coded
Character Set of ISO DIS 10646

Unrestricted String which supports any character set and encoding
scheme, provided they have OIDs.

These string types are sufficiently general for full international use. It would
be possible to make the changes to XOM that would add support for these
types independently of any other changes that might be suggested to reflect
other changes that have been made to ASN.1

Change:

i. In Section 3.4, Table 2, add, after ‘‘UTC Time’’:

‘‘Universal2 ’’

‘‘Unrestricted4 ’’

and add the following footnote:

‘‘ 4 Values of this syntax are represented in their BER encoded form.’’

ii. In Section 3.8, Table 5, add, after the ‘‘Teletex String’’ line:

‘‘Universal String String(Universal)’’
‘‘Unrestricted String String(Unrestricted)’’

iii. In Section 4.2.12, replace:

‘‘A zero character follows’’

with:

‘‘Universal and Unrestricted strings can contain null octets. Only the
length-specified form shall be used to represent strings of these types.
When either form is used, a null character (that is, an instance of the
character whose encoding is zero) follows’’

In Section 4.2.13, add to clause 4, after:

‘‘teletex string’’

the following:

50 Technical Study

Change Requests for Internationalisation The XOM Specification

‘‘universal string, unrestricted string’’.

iv. In Section 4.5, add to the /* Syntax */ section, after the definition of
OM_S_TELETEX_STRING, the following:

#define OM_S_UNIVERSAL_STRING ((OM_syntax)28)
#define OM_S_UNRESTRICTED_STRING ((OM_syntax)29)

Change Request (CR) XOP-5 was accepted and has been implemented (with minor changes) in
the referenced XOM X/Open CAE specification.

Part 2 X/Open Interworking Specifications 51

The BSFT Specification Change Requests for Internationalisation

7.4 The BSFT Specification
The following change to the BSFT specification was proposed:

Document: The BSFT Specification
X/Open CAE Specification, C194 (December 1991).

Change number: XOP-6

Title: International Support for User Interfaces

Qualifier: Major Technical

Rationale: The user interface for BSFT is defined to use only the English language. This
restricts the use of BSFT internationally.

Change: In Appendix A, immediately after the first paragraph of the Appendix ("This
section defines the user interface for the BSFT facility."), add the following
paragraphs:

‘‘This section specifically defines an English language user interface. An
implementation may, however, support user interfaces in other languages.’’

‘‘In each user interface supported, other than the one specifically defined in
this section, there shall be commands, parameters and responses that are
equivalent to all those that are defined in this section. How the commands,
parameters and responses of each user interface correspond to those defined
in this section shall be documented.’’

‘‘If an implementation supports more than one user interface, and one of the
environment variables LC_ALL, LC_MESSAGES, or LANG is set when the
BSFT facility is invoked, and a user interface appropriate to the locale
referenced by that environment variable is supported, then that user
interface shall apply. If more than one of those environment variables are
set, then the order of precedence shall be LC_ALL first, LC_MESSAGES
second, and LANG third.’’

‘‘It should be noted that a user who attempts to transfer a file that has been
defined using language and cultural conventions other than those of his
current locale may experience problems, and that the BSFT facility does not
provide a means for the user to determine the locale in which a file (on either
the local or the remote system) has been defined, or to determine or influence
the locale assumed by the BSFT responder.’’

This CR was rejected, with the rationale that internationalisation of the BSFT user interface
should be addressed as part of the solution of the larger issue of internationalising the X/Open
commands.

52 Technical Study

Change Requests for Internationalisation The XFTAM Specification

7.5 The XFTAM Specification
The following change to the XFTAM specification was proposed:

Document: The XFTAM Specification
X/Open Preliminary Specification, P206 (September 1992).

Change number: XOP-7

Title: Internationalised Error Messages

Qualifier: Minor Technical

Rationale: Function gperror() returns two strings. For internationalised operation, these
should be in the natural language of the locale established by the application
program. To enable the character set of any natural language to be used, the
requirement that they must be printable strings should be dropped. (The
proposed change would allow any character string type representable in
XOM. In conjunction with CR XOP-5, proposed for XOM, this would allow
Universal and Unrestricted Strings).

Change: In the man page for ft_gperror(),

i. In the description of Return_string, change:

‘‘Return_string(OM_String(Printable))
The printable string ... NULL-terminated.’’

to:

‘‘Return_string(OM_String(*))
A text string in the natural language of the current locale that
represents the Return-Code attribute of the API_out_in parameter.
This is the XFTAM-specified error code and is always returned. The
resulting string is formatted for printing as a self-contained unit (for
example, in an English language locale, it includes a terminating
newline character).’’

ii. In the description of Vendor_string, change:

‘‘Vendor_string(OM_String(Printable))
The printable string ... NULL-terminated.’’

to:

‘‘Vendor_string(OM_String(*))
A text string in the natural language of the current locale that
represents the Vendor-Code attribute of the API_out_in parameter.
This is an optional implementation-specific error code and shall not
be returned if the API_out_in parameter did not contain an
equivalent code. The resulting string is formatted for printing as a
self-contained unit (for example, in an English language locale, it
includes a terminating newline character).’’

CR XOP-7 was accepted and has been implemented in the referenced XFTAM X/Open CAE
Specification.

Part 2 X/Open Interworking Specifications 53

The X.400 API Specification Change Requests for Internationalisation

7.6 The X.400 API Specification
The following change to the X.400 API was proposed:

Document: The X.400 API Specification
X/Open CAE Specification, C191 or XO/CAE/91/100 (December 1991).

Change number: XOP-8

Title: Printable Strings Used Internationally

Qualifier: Minor Technical

Rationale: Following the 1988 version of the X.400 Series Recommendations, the X.400
API requires use of Printable Strings for certain O/R Address attributes
when the API is used to send messages internationally. The corresponding
requirement on the protocol was dropped from ISO 10021 and is expected to
be dropped from the 1992 version of the X.400 Series Recommendations.

Change: In Section 5.2.31, delete the first and last sentences of note 3, that is:

a. delete ‘‘If only one value ... String(Printable).’’

b. delete ‘‘Printable strings are required internationally ...
communication.’’

CR XOP-8 was accepted and has been implemented in the referenced X.400 API, Issue 2 X/Open
CAE Specification.

54 Technical Study

Change Requests for Internationalisation The XDS Specification

7.7 The XDS Specification
The following change to the XDS API was proposed:

Document: The XDS Specification
X/Open CAE Specification, C190 or XO/CAE/91/090 (November 1991).

Change number: XOP-9

Title: Support for Directory Strings

Qualifier: Major Technical

Rationale: Following X.520 (1988), XDS defines a number of Directory Attributes to
have syntax String(Teletex). This is not sufficiently general to support all
character sets and codesets used internationally. This issue has been
recognised by the standards bodies responsible for X.520. A new version of
X.520 has been proposed and (in this respect at least) has been agreed from a
technical point of view, but has not yet been formally adopted by the CCITT.
This introduces a new syntax, "Directory String", for these attributes.
Assuming that CR XOP-5 is accepted for XOM, it would be possible to make
the changes to XDS that would add support for this syntax, and to make
them independently of any other changes that might be suggested to reflect
other changes that are made to the X.500 Series recommendations.

Change:

i. In Section 1.1, add, after ‘‘1988’’, a superscript 1 and place the following
footnote at the bottom of the page:

‘‘ 1 It also takes account of some changes made in the 1992 version of
these standards.’’

ii. In Section 7.2, add, after:

‘‘C constants start with DS_A.)’’

a new paragraph:

‘‘Several of the attribute types are defined in the 1992 version of the
Standards to have ASN.1 syntax DirectoryString. This is a CHOICE of
TeletexString, PrintableString and UniversalString. In these cases, the
values of the corresponding Attribute-Values OM attributes can have
syntaxes String(Teletex), String(Printable) or String(Universal). This is
indicated by describing their syntaxes as String(Directory).’’

iii. In Section 7.2, 4th paragraph:

a. Change

‘‘two general rules’’ to ‘‘three general rules’’

b. Add, at the end of the paragraph:

‘‘For all attribute values whose syntax is indicated as
String(Directory), differences in the case of alphabetical
characters shall be considered insignificant and, if the strings
being compared are of different syntax, the comparison shall
proceed as normal so long as the corresponding characters are in
both character sets, but shall fail otherwise.’’

Part 2 X/Open Interworking Specifications 55

The XDS Specification Change Requests for Internationalisation

iv. In Section 7.2, Table 34, in the entries for A-Business-Category, A-
Common-name, A-Description, A-Knowledge-Information, A-
Locality-Name, A-Organisation-Name, A-Organisational-Unit-Name,
A-Physical-Delivery-Office-Name, A-Post-Office-Box, A-Postal-Code,
A-State-Or-Province-Name, A-Street-Address, A-Surname, A-Title,
change:

‘‘String(Teletex)’’

to:

‘‘String(Directory)’’

(This should remove all occurrences of String(Teletex)" from the table.)

v. In Section 7.12, change the Value Syntax of Postal-Address from:

‘‘String(Teletex)’’

to:

‘‘String(Directory)’’.

Note: Since Teletex String is a special case of Directory String, the uses of
DS_A_COMMON_NAME etc. In the programming examples of XDS
Chapter 9 need not be changed.

CR XOP-9 was accepted and has been implemented in the referenced XDS, Issue 2 X/Open CAE
Specification.

56 Technical Study

Change Requests for Internationalisation The XNFS Specification

7.8 The XNFS Specification
No change requests were proposed for this specification.

7.9 The (PC)NFS Specification
No change requests were proposed for this specification.

7.10 The SMB Protocols Specification
No change requests were proposed for this specification.

7.11 The IPC Mechanisms for SMB Specification
No change requests were proposed for this specification.

Part 2 X/Open Interworking Specifications 57

Change Requests for Internationalisation

58 Technical Study

Technical Study

Part 3

X/Open Data Management Specifications

The Open Group

Part 3 X/Open Data Management Specifications 59

60 Technical Study

Chapter 8

Introduction

The chapters in this part of this technical study consider the impact of internationalisation on the
X/Open data management specifications. These specifications are at present either CAE
specifications or are expected shortly to become preliminary specifications. They consist of the
following documents (full details are given in Referenced Documents (on page xiii)).

• the SQL specification

• the CLI specification

• the RDA specification.

Structure of This Part

Chapter 9 discusses general internationalisation issues that are associated with SQL, as defined
by the ISO standards. Many of these issues are also common to the X/Open data management
specifications.

Chapter 10 examines the implications of internationalisation on the data management
specifications listed above.

After this, Chapter 11 presents conclusions and recommendations.

Part 3 X/Open Data Management Specifications 61

Introduction

62 Technical Study

Chapter 9

Structured Query Language (SQL)

9.1 Overview
The X/Open data management specifications (SQL, CLI and RDA) are all related to Structured
Query Language (SQL). This chapter discusses the internationalisation issues associated with
SQL in general. It is a prelude to Chapter 10 which discusses the X/Open data management
specifications individually.

SQL has been standardised by ISO. The most recently approved SQL standard is ISO/IEC
9075: 1992; this is sometimes called SQL 92 or SQL2 (see the referenced ISO SQL 92 standard).
This technical study uses the term SQL 92 when referring to this standard. The standard
specifies the syntax and semantics of SQL, for use where SQL statements are used in the
following ways:

• invoked directly (for example from a user interface)

• stored as procedures that can be called from programs

• embedded in programs written in other programming languages.

For direct invocation, SQL 92 does not define how the statements are invoked or how any results
are returned. For calling SQL procedures from, or embedding SQL statements in, a
programming language, SQL 92 includes syntax for the particular programming languages Ada,
C, COBOL, Fortran, MUMPS, Pascal and PL/I.

SQL 92 defines three levels of conformance:

• Entry Level SQL

• Intermediate SQL

• Full SQL.

Intermediate SQL is a subset of Full SQL, and Entry Level SQL is a subset of Intermediate SQL.

Work is currently proceeding on a new version of the SQL standard, currently referred to as
SQL3. This is documented in the referenced ISO SQL3 draft standard, which incorporates the
following significant new features:

• active ‘‘rules’’, called triggers

• abstract data types

• multiple null states

• PENDANT referential integrity

• a recursive union operation for query expressions

• enumerated and boolean data types

• SENSITIVE cursors.

The SQL3 draft standard does not include any significant features related to internationalisation
beyond those already contained in Full SQL 92.

Part 3 X/Open Data Management Specifications 63

Multiple Character Sets Structured Query Language (SQL)

9.2 Multiple Character Sets
Character strings constitute one of the types of data that can be stored in relational databases
and manipulated using SQL. SQL provides means for entering and retrieving character string
data, and for sorting and ordering character string data.

Clearly, users may wish to use character string data that relates to any language and cultural
environment. They may even wish to store, in the same table, character string data that relates
to several different language and cultural environments. For example, a user might wish to use
a table to store a multi-lingual glossary, with columns containing equivalent terms and
definitions in English, French, Russian, Arabic and Japanese. The same user might then wish to
derive an appropriately sorted copy of the table for each of these languages.

If users are to be able to carry out such operations, SQL must allow:

• the use of the appropriate character sets

• several different character sets to be used in a single table

• the sorting operation to use the collation order appropriate to the character set or sets of the
data to be sorted.

Generally, these conditions are satisfied by Full SQL (as defined in SQL 92), which is rich in
features relating to international use. The conditions are however only partly satisfied by
Intermediate SQL, and they are not satisfied at all by Entry Level SQL. In particular:

• Full SQL and Intermediate SQL, but not Entry Level SQL, allow character set specifications that
allow an application to use several different sets of characters.

• Full SQL, but not Intermediate SQL or Entry Level SQL, also allows collation definitions ,
which allow an application to specify collating sequences other than the default collating
sequence for a character set.

9.3 Use of Standard Names
Although Full SQL has features that allow an application to specify multiple character sets and
collating sequences, it does not require that the implementation supports standard identifiers for
them. So, for example, one implementation might support a character set called ISO8859-1,
while another might support the same character set but call it ISO1. This clearly inhibits
portability of applications.

This problem would be overcome if there were a set of standard character set identifiers which
all SQL implementations must use. It would be advantageous if these identifiers were the ones
defined for locales in the registry proposed in the DISS Issue 1 snapshot. An application could
then make SQL statements such as:

CREATE TABLE foo (
col_a CHARACTER (10) CHARACTER SET ge_GE.8859-1

COLLATE ge_GE.8859-1@foobar,
col_b CHARACTER (20) COLLATE fr_FR.8859-1

)

and be assured of portability across a wide range of implementations.

Failing the definition of standard names for the whole user community, functional profiles and
corporate or national procurement standards may define their own sets of names to ensure
portability. For example, the FIPS 127-2 standard defines the character set names LATIN1,
ASCII_FULL, and ASCII_GRAPHIC.

64 Technical Study

Structured Query Language (SQL) Character Set Not Determined by Locale

9.4 Character Set Not Determined by Locale
In order to write a fully internationalised application — that is, an application that exploits all
the features of SQL and which can be used without re-compilation in any language and cultural
environment — it is necessary that the character set assumed by the SQL processor in direct
execution and dynamic execution of SQL statements can be determined by the locale
mechanism.

SQL 92 does not refer to locale mechanisms. Instead it provides the SET NAMES statement
which allows the application programmer to nominate the default character set for dynamic
SQL statements and for direct invocation of SQL statements. This statement is only available in
Full SQL.

An application could thus:

• determine the codeset of the current locale by calling nl_langinfo (CODESET)

• use the SQL SET NAMES statement to set the default character set names for identifiers and
character string literals in preparable statements.

The problem is that the application must be able to convert the codeset name obtained by means
of nl_langinfo () into the character set name required by SQL. This cannot be done in a portable
way (except in the context of a local standard for such names, such as that defined in FIPS 127-2),
since neither XPG4 nor the SQL 92 standard defines standard character set names.

An internationalised program that uses locales may make use of the features of Full SQL to run
in different language and cultural environments, but is not able to achieve full
internationalisation in a portable way. The character set and collation features are however not
available in Entry Level SQL, and only some of them are available in Intermediate SQL. It is
hard to see how an application can have any significant degree of internationalisation if only the
facilities of Entry Level SQL are available.

Multiple character set facilities (as in Full SQL) and locales (as in XPG4) are not the only ways in
which internationalisation could be provided. For example, each item of data could be self-
announcing, that is, could contain an indication of the language and cultural environment in
which it should be processed. A mechanism to support this is described in the DISS Issue 1
snapshot. Such a mechanism could be used in conjunction with SQL — even with Entry Level
SQL. The use of such a mechanism in conjunction with SQL forms no part of current SQL
standardisation work, however.

9.5 Encodings
SQL 92 does not specify how character (or other) data is represented internally by an SQL
implementation, nor does it say how data is represented when passed between the SQL
implementation and other system components. However, SQL 92 does attach semantics to the
data. For example, each item of character data is understood to consist of a set of characters
from some known character set. Clearly, other components of a system that includes SQL must
attach the same semantics to the data as the SQL component. This means that the components
must all use the same character set encodings.

Part 3 X/Open Data Management Specifications 65

Encodings Structured Query Language (SQL)

Direct Invocation

In direct invocation, the manner in which the statements are invoked and the results are
returned (and hence the manner in which data is passed) is implementation-defined. This means
that vendors must document the character sets and encodings (the codesets) that they can accept,
so that the SQL implementation can be used in conjunction with other products.

Non-direct Invocation

In other cases, the system components that pass data to or receive data from an SQL
implementation are typically:

• the text editors used to create SQL statements

• the host language processors (including compilers, interpreters, and run-time libraries) that
process host language programs that call SQL procedures, or in which SQL statements are
embedded.

Integration with Text Editors

The issue of text editors (the term is used here to include text processing programs of all types)
arises when an SQL application refers to particular character strings. Such strings may be used
as names (table names, column names and so on), or as application data (for example, in
WHERE clauses of SELECT statements). If such strings are to be meaningful, the SQL
implementation must use the same encoding scheme as the text editor. Literal character strings
are likely to be specific to a particular language, however, and their use for applications data
should therefore be avoided in internationalised applications. This might be done, for example,
by using character string variables whose values are obtained from message catalogues.

Integration with Host Language Processors

Data can be passed between SQL and a host language processor in several ways: for example, in
the parameters of SQL procedures, or in variables of embedded SQL statements.

A programmer can hard code character encodings into a program, for example, with the C
statement:

c = (char) 65;

The use of such constructs should however be avoided when writing internationalised software,
as discussed in the referenced Internationalisation Guide. If the advice given in the
Internationalisation Guide is followed, the character encodings are determined entirely by the
host language processor and the currently established locale.

Although SQL 92 requires an implementation to state which character sets it can handle, SQL 92
does not clearly state a requirement for implementations to describe the encodings that are used
to represent the characters of those character sets. For example, an implementation could
support an English character set, without saying whether it is encoded using ASCII, EBCDIC,
UNICODE, or some other encoding scheme. This information is needed to determine whether a
particular implementation of SQL and a particular host language processor can interwork. It is
therefore important that an SQL implementation should specify the character set encodings that
may be used by a host language processor for procedure parameters, embedded variables and
executable SQL statements.

66 Technical Study

Structured Query Language (SQL) String Operations

9.6 String Operations
The use of encodings such as UNICODE and ISO 10646 in which a single graphic symbol may be
represented by a combination of several members of the codeset raises questions with regard to
string comparisons and related operations. These concern whether a graphic symbol represented
by a combination of several codeset elements should be treated as a single character or as
multiple characters for collation purposes. SQL 92 appears to treat such a combination as
several characters rather than one5.

Although the use of combining characters in UNICODE is a particularly topical instance of this
issue, it also arises for other character set encodings. Spanish, for example, requires the
character ch to collate as a single entity. This character does not have a single codeset element in
ISO Latin-1, and the collation mechanism must take account of this.

As far as collation operations are concerned, collating sequences are regarded in SQL 92 as
operating on strings rather than on individual characters. However, the default collating
sequences for standard character repertoires and standard universal forms of use are based on
the numerical order of codeset elements; they process strings character by character. Also, such
orders have no intended relationship to natural language collation orders, so they may not
produce the desired ordering. This may lead to counter-intuitive results in some cases. For
example, a string containing lower case <e> followed by an acute accent combining character
would collate differently from one that contains a single <e with acute accent> character, and
neither collation would be that required by French, where <e with acute accent> is generally
treated for collation purposes as though it were the simple letter <e>.

Counter-intuitive results may also be obtained from operations involving wildcard characters
and from those in which substrings are indicated by their numeric positions within strings. For
example, the second letter in the French string "défense de fumer" is <e with acute>. Is <f> the
third or the fourth character of that string?

9.7 ISO 10646 and C
The introduction of UNICODE or ISO 10646 encodings raises questions concerning the use of
SQL in conjunction with a C host program. An SQL implementation based on UNICODE or
ISO-10646 might use 2-byte or 4-byte character encodings, but these cannot conveniently be
handled as character strings by a C host program. Moreover, SQL character data is represented
in C by null-terminated strings, while UNICODE and ISO 10646 allow character encodings that
include null bytes, as discussed in Section 2.3 (on page 9). How these difficulties should be
handled is not yet clear, but possibilities include:

• The C program encodes the characters using an encoding that is legal for C (such as that in
the ISO 8859 standard or a UTF) and the SQL implementation converts this to
UNICODE/ISO 10646.

5. The recommendation by many members of the Unicode Consortium is to decompose the pre-combined characters (for example,
A-Umlaut = A + Umlaut), then conduct sorting based on letter, case, cultural and accent weights.

Part 3 X/Open Data Management Specifications 67

ISO 10646 and C Structured Query Language (SQL)

• The C program stores characters as quantities of type wchar_t, but the SQL implementation
treats them as arrays of type char. A future version of the SQL standard will require strings
to be terminated by the number of null bytes appropriate to the encoding scheme (two null
bytes or four null bytes for ISO 10646, as opposed to a single null byte for ASCII). A recent
Erratum to the SQL 92 standard does in fact clarify that the two or four null bytes are
required.

These difficulties do not arise with languages such as COBOL, which do not constrain the way
that character strings are encoded.

9.8 Reserved Words and Special Characters
SQL 92 defines a number of reserved words (ABSOLUTE, ACTION, ADD and so on) and gives a
special importance to characters such as double quote, percent and ampersand. These have an
English language flavour in that the reserved words are meaningful in English. The usage of
some of the special characters is similar to their usage in English (for example, the use of quote
characters to begin and end a character string literal; many languages use different characters for
these purposes). This is undoubtedly an inconvenience to anyone developing an SQL
application in a non-English environment. However, it does not affect the degree to which an
SQL application can be internationalised. It is probably acceptable, given the technical
difficulties of implementing a multi-lingual or internationalised version of SQL.

9.9 Numeric and Date Literals
SQL 92 defines character string representations of numbers and dates (numeric literals and date
literals) that use the period character as a decimal separator, and have a year-month-day format
for dates. These are not the natural representations in all cultural environments. In an
internationalised application, they would have to be converted to a locale-dependent format
before being displayed at the user interface.

9.10 Diagnostic Information
The GET DIAGNOSTICS statement specified by SQL 92 can include character strings
representing alpha-numeric codes (SQLSTATE) and implementation-defined character strings
(MESSAGE_TEXT). The SQLSTATE strings, which are limited to using the 10 digits and the 26
upper-case Latin alphabetic characters, are a possible inconvenience to application developers in
some language and cultural environments, but do not affect the degree to which applications can
be internationalised. Applications that use implementation-defined MESSAGE_TEXT strings
may be dependent on the language in which those strings are written. Internationalised
applications should not use such strings as a source of error message text.

68 Technical Study

Structured Query Language (SQL) Diagnostic Information

SQL 92 says that when MESSAGE_TEXT is requested by the application, an implementation
may set the string returned to spaces, to a zero length string, or to a character string describing
the condition indicated by the returned SQL_STATE value. If implementations follow this
precept (which is in a non-normative note) then applications should not need to use
MESSAGE_TEXT strings since the relevant information should also be given by SQL_STATE. Of
course, it is possible that an implementation could return a string obtained from a message
catalogue and determined by the current locale. There is no requirement on implementations to
do this; an application that relied on such behaviour would not be portable.

9.11 Arithmetical Expressions
The English representation of arithmetical expressions and numbers may not be appropriate for
all language and cultural environments. For example, some environments may use a notation
other than the ‘‘arabic’’ one for representing numbers. This implies a requirement for the
application to convert such information to the form required by the local language and cultural
environment, but does not prevent an application that performs such a conversion from being
internationalised. It should be noted, however, that the locale facilities currently specified by
X/Open do not provide for differing arithmetical conventions.

9.12 Directionality
SQL 92 (and other SQL specifications) appear to assume a left to right and top to bottom, row-
wise, display scheme. Such a scheme is not appropriate to languages (like Hebrew and Arabic)
which scan right to left, or to languages that scan not only right to left but also column-wise
rather than row-wise.

In fact, these issues are concerned with the way that information is presented at the user
interface, rather than how it is organised in the database. A row can be presented in any
direction: left to right, right to left, top to bottom or bottom to top. SQL 92 does not specify how
information is to be presented at the user interface; furthermore none of the X/Open data
management specifications are concerned with the user interface. These issues are therefore not
relevant to this technical study.

Part 3 X/Open Data Management Specifications 69

Structured Query Language (SQL)

70 Technical Study

Chapter 10

Data Management Specifications

10.1 The SQL Specification

10.1.1 Overview

The X/Open SQL specification defines the application programming interface for X/Open-
compliant relational database management systems. It includes almost all of the Entry Level
provisions of SQL 92 relating to embedding SQL in C and COBOL host language programs. It
also includes some features (in particular, Dynamic SQL) from the Intermediate and Full levels
of SQL 92.

10.1.2 Internationalisation Implications

The Intermediate and Full level SQL features in the X/Open SQL specification do not include
the multiple character set and collation sequence features. All of the issues identified for Entry
Level SQL in Chapter 9 of this technical study therefore apply to the SQL specification. There
are no additional issues.

Part 3 X/Open Data Management Specifications 71

The CLI Specification Data Management Specifications

10.2 The CLI Specification

10.2.1 Overview

The CLI specification describes an API for database access that is an alternative to the API
defined in the X/Open SQL specification. The SQL specification describes how to create SQL
statements that can be embedded in a C or COBOL source program and, after suitable pre-
processing, can be compiled by a C or COBOL compiler. This approach is not always the best
one. The CLI specification defines C functions and COBOL subroutines that can be called from
C or COBOL programs and that will provide the functionality that is provided by the SQL
Specification. It also provides functions and subroutines that enable the programmer to control
connections between database clients and servers.

Note that this is a different approach from the use of procedures as defined in SQL 92.
Procedures are SQL statements that can be called from a host program, whereas the CLI
comprises C or COBOL routines that cause SQL statements to be executed.

10.2.2 Internationalisation Implications

General Implications

As for the SQL specification, all the issues identified for Entry Level SQL in Chapter 9 of this
technical study apply to the CLI specification.

Passing of Character Strings

There is a difference between the CLI specification and the SQL specification in the way that
character strings are passed between the host language processor and the SQL implementation.

For the SQL specification:

• character strings are passed in variables

• dynamic SQL statements are passed in variables

• other SQL statements are embedded in the host source program (and so are part of the input
to the SQL pre-processor).

For the CLI specification:

• all SQL statements and character string data are passed as function and subroutine
arguments — for example, the vcSqlStr argument of prepare() and the vcColName argument of
DescribeCol().

The same considerations apply to such arguments as apply to character string variables in
embedded SQL. In particular, there are the same problems with UNICODE/ISO 10646 and null
terminated strings in C. Thus, this difference between the CLI specification and the SQL
specification introduces no new internationalisation issues.

72 Technical Study

Data Management Specifications The CLI Specification

Character String Conversions

CLI provides for automatic conversion between numeric values and character strings. The
application can supply or retrieve a numeric value in the form of a character string; the
implementation performs the conversion to or from numeric format. The character string
representation of numeric values is that defined for numeric literals in SQL 92. It is not the
natural representation in all language and cultural environments but, as discussed in Chapter 9
of this technical study, its use does not prevent the internationalisation of applications.

Part 3 X/Open Data Management Specifications 73

The RDA Specification Data Management Specifications

10.3 The RDA Specification

10.3.1 Overview

The RDA specification defines the format for remote communications with an SQL database. It
is based on the ISO RDA standard, and describes OSI Application Protocol Data Units (APDUs)
and their use in conjunction with the Association Control Service Element (ACSE) and the
Presentation and Session services.

10.3.2 Internationalisation Implications

General Implications

The RDA specification does not impose constraints on the types of SQL statement that can be
executed remotely. The issues pertaining specifically to Intermediate and Entry Level SQL
therefore do not apply.

The RDA specification states the following:

• SQL statement text and SQL character string data are represented as octet strings

• object identifiers for their encodings are associated with them.

The issues pertaining to locale-dependence of the character sets and to the definition of the
encodings of such character data therefore do not apply to it (but see Visible Strings (below) for
issues pertaining to the encodings of other character data).

The other issues pertaining to Full SQL apply.

Visible Strings

The RDA specification requires that certain information is represented by ASN.16 Visible Strings.
This effectively means that the information must be encoded in basic ASCII. The information
concerned includes diagnosticInformation (various services), identityOfUser (R-Initialise), aborted
(R-Status) dataResourceName (R-Open), and colName , classOrigin , subclassOrigin, messageText,
sQLState, sQLErrorText (R-ExecuteDBL).

In the case of sQLState, which contains formally coded information, this is an inconvenience to
the application developer, but nothing worse (see the discussion of SQLSTATE in Section 9.10
(on page 68) of this technical study).

In other cases, the developer of an internationalised application, or of an application in a
language and cultural environment other than English, is hampered to a more serious extent.
The developer may, for example, wish to display column names at the user interface of the client
system. The names typically include non-ASCII characters. Therefore they cannot be passed to
the server, because they cannot be encoded as Visible Strings. It would, of course, be possible to
define a second set of column names that use only ASCII characters, and to translate them to the
non-ASCII names before displaying them at the user interface, but this is an overhead which is
undesirable.

6. Abstract Syntax Notation 1 (ASN.1) is a formal notation for describing information types. It is used to describe the types of
information conveyed by the OSI presentation service. It is defined in the referenced ASN.1 standard.

74 Technical Study

Data Management Specifications The RDA Specification

With information such as sQLErrorText, which is generated by the server and returned to the
client, the situation is more serious still as the application may not be able to determine the
corresponding text for the user’s language and cultural environment; it is therefore unable to
display the information.

These issues apply not only to the RDA specification but also to the ISO RDA standard on which
it is based.

Work is proceeding in ISO (ISO/IEC JTC1/SC21) on the addition to ASN.1 of base types dealing
with ISO 10646. Once this work is stable, it would be possible for the RDA specification and the
ISO RDA standard to refer to it. However, the following points must be considered:

• it would mean that data that already exists and is encoded using some other character set,
such as that in the ISO 8859 standard, would have to be converted to the ISO 10646 standard
form

• it would not enable collating sequences, conversions, and other information pertinent to the
language and cultural environment to be identified.

Part 3 X/Open Data Management Specifications 75

Data Management Specifications

76 Technical Study

Chapter 11

Conclusions and Recommendations

This chapter presents conclusions and recommendations regarding the internationalisation of
X/Open data management specifications.

11.1 Conclusions
The following conclusions can be drawn from the analysis of internationalisation issues in this
technical study:

(C-01) The internationalisation problems associated with the X/Open data management
specifications are not introduced by additions to or divergences from the related
International Standards; those standards have the same problems.

(C-02) A portable application that uses an implementation of the SQL specification or the CLI
specification cannot in general be fully internationalised, because the character sets are
not determined by the current locale. The SQL implementation need not be aware of
the currently established locale. Therefore it may not correctly interpret the character
encodings presented to it. This issue is discussed in Section 9.4 (on page 65).

(C-03) Internationalisation of applications that use implementations of the RDA specification
is limited, because of the requirement that certain character data be represented by
ASN.1 Visible Strings, which means that it is essentially restricted to being
representable using ASCII. This issue is discussed under Visible Strings (on page 74).

(C-04) The use of diagnostic message text (MESSAGE_TEXT) to convey information to
applications is inappropriate for internationalised applications. This issue is discussed
in Section 9.10 (on page 68).

(C-05) The Entry Level SQL facilities upon which the SQL specification and the CLI
specification are based are inadequate for the development of applications that handle
data that have multiple languages or cultural environments. This issue is discussed in
Section 9.4 (on page 65).

(C-06) The requirements for implementations of SQL and CLI to document the character sets
and encodings (the codesets) that they can accept should be stated clearly. This issue is
discussed in Section 9.5 (on page 65) and Section 10.2.2 (on page 72).

(C-07) There are issues that require clarification relating to the use of codesets that permit a
single graphic symbol to be represented by a combination of codeset elements. This
issue is discussed in Section 9.6 (on page 67).

(C-08) There are issues relating to the use of UNICODE and ISO 10646 in conjunction with the
C programming language that require clarification. This issue is discussed in Section
9.7 (on page 67).

Part 3 X/Open Data Management Specifications 77

Recommendations Conclusions and Recommendations

11.2 Recommendations
The above conclusions lead to the following recommendations.

• X/Open should draw the attention of standards bodies to the internationalisation problems
that result from the fact that the character set in which dynamically executed SQL statements
are written is not locale-dependent (see conclusion (C-02)), and should consider requiring
one or both of the following solutions in X/Open-compliant systems.

— X/Open could state in its SQL specification and CLI specification that this character set
should be locale-dependent.

— X/Open could add the SET NAMES statement to its SQL specification and CLI
specification; it could also require the character set names recognised by this statement to
include those of standard locales.

• In any case, it is clearly desirable that SQL applications should be able to refer to the
character sets and collation sequences of standard locales, as discussed in Section 9.3 (on
page 64). Implementors should be encouraged to support the character sets and collation
sequences of locales specified by X/Open.

• X/Open should draw the attention of the bodies responsible for the standardisation of RDA
to the internationalisation problems that result from the requirements in RDA for certain
data to be represented by ASN.1 Visible Strings. It should work with those bodies to define
other means of representing such data (see conclusion (C-03)).

• The X/Open Data Management Working Group and the Joint Internationalisation Group
should work with each other and with the bodies responsible for the standardisation of SQL
to develop alternative methods of returning the information that implementations currently
supply in the form of diagnostic message text (see conclusion (C-04)). This could include the
use of locale-dependent natural language text.

• X/Open should consider enhancing the SQL specification and CLI specification to
incorporate those features of Intermediate and Full SQL that allow an application to handle
data that has multiple language or cultural environments (see conclusion (C-05)). While a
requirement to implement Full SQL might be considered to impose too great a burden on
implementors at the present time, it might be possible to identify a subset of Full SQL that
would provide sufficient internationalisation capabilities, which need not be too expensive to
implement.

• The SQL specification should require that implementations state clearly in their
documentation which codesets are allowed to be used for:

— embedded SQL statements

— dynamically created executable SQL statements

— embedded variables.

The CLI specification should require that implementations state clearly in their
documentation which codesets are allowed to be used for C function and COBOL subroutine
arguments (see conclusion (C-06)).

78 Technical Study

Conclusions and Recommendations Recommendations

• X/Open should work with bodies responsible for the standardisation of codesets and of SQL
to clarify the following questions (with particular attention to how UNICODE and ISO 10646
combining characters should be treated):

• How should collating sequences be defined for encoding schemes that represent single
graphic symbols by combinations of codeset elements?

• How are wildcard characters to work and how are numeric positions within strings to be
defined for such encoding schemes?

(See conclusion (C-07)).

• X/Open should work with bodies responsible for the standardisation of UNICODE, ISO-
10646, the C programming language and SQL, to clarify how character strings are to be
passed in SQL embedded variables or CLI function arguments between C programs and SQL
implementations that use UNICODE or ISO 10646 (see conclusion (C-08)).

Part 3 X/Open Data Management Specifications 79

Conclusions and Recommendations

80 Technical Study

Technical Study

Part 4

X/Open DTP Specifications

The Open Group

Part 4 X/Open DTP Specifications 81

82 Technical Study

Chapter 12

Introduction

The chapters in this part of this technical study consider the impact of internationalisation on the
X/Open Distributed Transaction Processing (DTP) specifications. These specifications are at
present either snapshots, preliminary specifications or CAE specifications. They consist of the
following documents (full details are given in Referenced Documents (on page xiii)).

• the TX (Transaction Demarcation) specification

• the XA specification

• the XA+ specification.

Structure of This Part

Chapter 13 examines the implications of internationalisation on the DTP specifications listed
above.

Chapter 14 presents conclusions and recommendations.

After this, Chapter 15 contains a set of internationalisation Change Requests (CRs) for each of the
DTP specifications listed above. These are edited versions of standard X/Open Change
Requests (CRs), in which the identity of the originator is omitted and the CRs are re-numbered
into a sequential scheme, for the purposes of this document.

Note: This version of this technical study does not consider the impact of internationalisation on the
following X/Open DTP specifications:

• the TxRPC specification

• the XATMI specification

• the CPI-C specification.

Part 4 X/Open DTP Specifications 83

Introduction

84 Technical Study

Chapter 13

DTP Specifications

13.1 The TX (Transaction Demarcation) Specification

13.1.1 Overview

The TX Specification provides an Application Program (AP) with an Application Programming
Interface (API) by which the AP can coordinate global transaction management with a
Transaction Manager (TM).

The TX specification provides application programmers with an API in the following languages:

• ISO C or Common Usage C

• X/Open COBOL.

These interfaces are functionally identical.

For full details of this interface, see the referenced TX (Transaction Demarcation) specification.

13.1.2 Internationalisation Implications

Function Names, Arguments, Characteristics and Return Codes

In both C and Cobol, the TX function names, arguments and return codes have an English
language flavour. For example, to instruct the TM about transaction timeout information, the
AP uses the tx_set_transaction_timeout() function in C, or the TXSETTIMEOUT function in
COBOL.

Similarly, the timeout value is specified in timeout (or TRANSACTION-TIMEOUT, and the
function ultimately returns [TX_OK] on successful completion.

The TX interface is therefore convenient for English-speaking application programmers but not
for those of other nationalities. (The end user is not affected because the TX interface is not
directly visible at run time.)

The current version of the X/Open Internationalisation Guide only discusses
internationalisation in terms of the end user. It focuses on providing internationalised
applications that can modify their behaviour at run time for specific language operation. At the
present time, there is no basis for internationalising the names of functions, arguments and
return codes such as those provided by the TX interface. Changes to this aspect of the TX
interface are therefore beyond the scope of this technical study.

Part 4 X/Open DTP Specifications 85

The TX (Transaction Demarcation) Specification DTP Specifications

The <tx.h> Header

The <tx.h> header defines a public structure called an XID to identify a transaction branch. The
contents of XID are used between all components that take part in a global transaction, within or
across TM domains.

The XID structure is specified in the <tx.h> header as follows:

#define XIDDATASIZE 128 /* size in bytes */
struct xid_t {

long formatID; /* format identifier */
long gtrid_length; /* value not to exceed 64 */
long bqual_length; /* value not to exceed 64 */
char data[XIDDATASIZE]; /* may contain binary data */
};

typedef struct xid_t XID;
/*
* A value of -1 in formatID means that the XID is null.
*/

Although the field data is of type char and might, at first sight, be a candidate for conversion to
type wchar_t to allow for multi-byte character encodings, this is not necessary because its
significant length at any moment is defined by gtrid_length plus bqual_length. It does not rely on
being null terminated.

However, Section 4.2 of the TX specification states that ‘‘APs may use XIDs for administrative
purposes such as auditing and logging’’. It then warns that ‘‘the AP should treat each
component of data as an arbitrary collection of octets because, for instance, a component may
contain binary data as well as printable text’’.

Section 4.2 should contain an additional warning for APs that use XIDs for administrative
purposes such as auditing and logging. Because an XID may be encoded using a different,
possibly mult-byte, character set to the one specified by the current locale, the AP should take
care only to record (for these additional purposes) the contents of XID as the exact sequence of
bits in which it was received. The AP should not rely on being able to interpret these bits as
printable characters and should certainly avoid trying to display the value of any XID to an end
user at run time.

86 Technical Study

DTP Specifications The XA Specification

13.2 The XA Specification

13.2.1 Overview

The XA interface is the bidirectional interface between a Transaction Manager (TM) and a
Resource Manager (RM). It lets a TM structure the work of RMs into global transactions and
coordinate transaction completion or recovery.

The XA specification provides an API in the following languages:

• ISO C or Common Usage C.

For full details of this interface, see the referenced XA specification.

13.2.2 Internationalisation Implications

Function Names, Arguments, Characteristics and Return Codes

In the same way as already described for the TX (Transaction Demarcation) specification (see
Section 13.1.2 (on page 85) of this technical study), the XA function names, arguments and return
codes have an English language flavour, and are therefore convenient for English-speaking
software developers but not for those of other nationalities. (The XA interface is not directly
visible to either the application programmer or the end user.)

Changes to this aspect of the XA specification are therefore beyond the scope of this document.

The <xa.h> Header

The <xa.h> header defines a public structure called an XID to identify a transaction branch. The
contents of XID are used between all components that take part in a global transaction, within or
across TM domains.

The XID structure is specified in the <xa.h> header as follows:

#define XIDDATASIZE 128 /* size in bytes */
#define MAXGTRIDSIZE 64 /* maximum size in bytes of gtrid */
#define MAXBQUALSIZE 64 /* maximum size in bytes of bqual */
struct xid_t {

long formatID; /* format identifier */
long gtrid_length; /* value 1-64 */
long bqual_length; /* value 1-64 */
char data[XIDDATASIZE];
};

typedef struct xid_t XID;
/*
* A value of -1 in formatID means that the XID is null.
*/

Although the field data is of type char and might, at first sight, be a candidate for conversion to
type wchar_t to allow for mult-byte character encodings, this is not necessary because its
significant length at any moment is defined by gtrid_length plus bqual_length. It does not rely on
being null terminated.

However, unlike the TX (Transaction Demarcation) specification, the XA specification does not
explicitly highlight that the field data should be treated as an arbitrary collection of octets that
might contain binary data.

Part 4 X/Open DTP Specifications 87

The XA Specification DTP Specifications

Resource Manager Name

The Resource Manager Switch (xa_switch_t) includes the field name[RMNAMESZ] to contain the
name of the resource manager. This field is of type char and has a defined length of 32
characters including the null terminator.

The XA specification does not say why this field is both fixed length and null terminated. The
specification also does not define the purpose of this field and the possible ways that it might be
used at run time by the different DTP components.

There seem to be two alternative ways of making this field suitable for internationalisation:
either

• drop the null terminator, leave the field as a fixed length of 32 characters of type char, and
specify that all characters must be initialised

or

• retain the null terminator and define that the field has a maximum length of 32 characters of
type wchar_t, including the null terminator.

In either case, because the field may be initialised with multi-byte characters encodings, the XA
specification should warn that the field should be treated as an arbitrary collection of characters
that may have been encoded using a different, possibly multi-byte, encoding scheme to the one
currently defined for the present locale.

In this technical study, the related Change Request (CR XA/I18N-02) specified in Section 15.2
(on page 95) takes the second of these two options.

XA Information String

The Transaction Manager (TM) uses the functions xa_open() and xa_close () respectively to open
and close a Resource Manager (RM). Both functions have an argument, xa_info, which points to
a null-terminated character string that may contain instance-specific information for the RM.
This field requires conversion to type wchar_t to allow for information strings that are encoded
using multi-byte characters.

88 Technical Study

DTP Specifications The XA+ Specification

13.3 The XA+ Specification

13.3.1 Overview

The XA+ interface provides an interface between a Transaction Manager (TM) and a
Communication Resource Manager (CRM) to allow global transaction information to flow
across TM domains. It also includes the XA interface described in Section 13.2 (on page 87) of
this technical study.

The XA+ specification provides an API in the following languages:

• ISO C or Common Usage C.

For full details of this interface, see the referenced XA+ specification.

13.3.2 Internationalisation Implications

Function Names, Arguments, Characteristics and Return Codes

In the same way as already described for the TX (Transaction Demarcation) specification (see
Section 13.1.2 (on page 85) of this technical study), the XA+ function names, arguments and
return codes have an English language flavour, and are therefore convenient for English-
speaking software developers but not for those of other nationalities. (The XA+ interface is not
directly visible to either the application programmer or the end user.)

Changes to this aspect of the XA+ specification are therefore beyond the scope of this document.

The <xa.h> Header

In the same way as already described for the XA specification (see Section 13.2.2 (on page 87) of
this technical study), The <xa.h> header in the XA+ specification defines a public structure called
an XID to identify a transaction branch.

Like XA, the XA+ specification does not explicitly highlight that the field data, which contains
the global transaction identifier gtrid plus branch qualifier bqual, should be treated as an arbitrary
collection of octets that might contain binary data.

Resource Manager Name

In the same way as already described for the XA specification (see Section 13.2.2 (on page 87) of
this technical study), the Resource Manager Switch (xa_switch_t) includes the field
name[RMNAMESZ] to contain the name of the resource manager. Like XA, the XA+
specification defines this field as type char with a defined length of 32 characters including the
null terminator.

The XA+ specification does not say why this field is both fixed length and and null terminated.
The specification also does not define the purpose of this field and the possible ways that it
might be tested at run time by the different DTP components.

Like XA, there are two alternative ways of making this field suitable for internationalisation:
either

• drop the null terminator, leave the field as a fixed length of 32 characters of type char, and
specify that all characters must be initialised

or

Part 4 X/Open DTP Specifications 89

The XA+ Specification DTP Specifications

• retain the null terminator and define that the field has a maximum length of 32 characters of
type wchar_t, including the null terminator.

In either case, because the field may be initialised with multi-byte characters encodings, the XA+
specification should warn that the field should be treated as an arbitrary collection of characters
that may have been encoded using a different, possibly multi-byte, encoding scheme to the one
currently defined for the present locale.

In this technical study, the related Change Request (CR XA+/I18N-02) specified in Section 15.3
(on page 98) takes the second of these two options.

XA Information String

In the same way as already described for the XA specification (see Section 13.2.2 (on page 87)),
the functions that the TM uses to open and close an RM, xa_open() and xa_close () respectively,
have an argument xa_info which points to a null-terminated character string that may contain
instance-specific information for the RM. This field requires conversion to type wchar_t to allow
for information strings that are encoded using multi-byte characters.

Blob Data

A Communication Resource Manager (CRM) can use the function ax_set_branch_info() to save
information about a transaction branch. The CRM can later access this information using the
function ax_get_branch_info().

The blob argument points to the character string of information to be saved. This argument is of
type char. Although this field might, at first sight, be a candidate for conversion to type wchar_t
to allow for mult-byte character encodings, this is not necessary because, in each instance of its
use, its length is defined by the argument blob_len. Its length does not rely on null termination.

However, the XA+ specification does not explicitly state that blob may contain characters
encoded using a different character set to the one being used in the current locale, and it does not
explicitly highlight that blob should be treated as an arbitrary collection of characters that might
contain binary data.

The XA+ specification should also warn implementors that the only valid method of
determining the length of blob is by reference to blob_len and that any reliance on null
termination may give unreliable results.

90 Technical Study

Chapter 14

Conclusions and Recommendations

This chapter summarises the implications of internationalisation requirements on X/Open
Distributed Transaction Processing (DTP) specifications and presents conclusions and
recommendations.

14.1 Summary
In general, there are few problems in using the X/Open DTP specifications internationally.
None of the DTP specifications examined are directly concerned with the control or display of
data that is used or manipulated by the end user, and are therefore not directly impacted by the
internationalisation requirements of different national languages and cultural conventions.

The changes that are required relate mainly to:

• converting to wide characters (wchar_t) those character strings that could be misinterpreted
by different DTP components using different, and possibly multi-byte, encoding methods

• inserting clarifications where data stored by one DTP component in an apparently character
format should only be treated by connected DTP components as arbitrary collections of
binary data.

The changes that this technical study recommends are shown as a set of X/Open Change
Requests (CRs) in Chapter 15.

14.2 Function Names, Arguments, Characteristics and Return Codes
As described in Section 13.1.2 (on page 85), the function names, arguments and return codes
used in the DTP specifications have an English language flavour. For example, to set transaction
timeout information in the Transaction Manager (TM), the AP uses the function
tx_set_transaction_timeout().

The DTP interfaces are therefore convenient for English-speaking application programmers and
software developers but not for those of other nationalities.

The current version of the X/Open Internationalisation Guide only discusses
internationalisation in terms of the end user, and changes in this area are therefore beyond the
scope of this technical study.

Part 4 X/Open DTP Specifications 91

ISO C and Common Usage C Conclusions and Recommendations

14.3 ISO C and Common Usage C
Chapter 4 of the XA and XA+ specifications states that the <xa.h> header file is suitable for both
ISO C and Common Usage C implementations.

Chapter 15 of this technical study includes Change Requests (CRs) that specify changing certain
fields of type char into the wide character type wchar_t. Although ISO C supports the typedef
name wchar_t, it not certain that all implementations of Common Usage C support it also. If
they do not, then the statement in XA and XA+ that the <xa.h> header file is suitable for both
ISO C and Common Usage C becomes invalid.

This document does not include CRs that address this point. However, if not all Common
Usage C implementations support wchar_t, then the XA and XA+ specifications should either
remove the statement about Common Usage C, or should qualify the statement by saying: ‘‘...
suitable for ISO C and for Common Usage C implementations that support the typedef name
wchar_t’’.

The problem does not affect the TX (Transaction Demarcation) specification because no changes
to use wchar_t are proposed.

92 Technical Study

Chapter 15

Change Requests for Internationalisation

This chapter contains formal change requests for the X/Open distributed transaction processing
specifications.

The X/Open Transaction Processing Working Group is currently evaluating these change
requests.

Part 4 X/Open DTP Specifications 93

The TX (Transaction Demarcation) Specification Change Requests for Internationalisation

15.1 The TX (Transaction Demarcation) Specification
Document: The TX (Transaction Demarcation) Specification

X/Open Preliminary Specification, P209 (October 1992).

Change number: TX/I18N-01

Title: Unique Transaction Identifier (XID)

Qualifier: Minor Technical

Rationale: An Application Program (AP) uses tx_info () to obtain XID information to
identify in which global transaction it is currently located. After the
Transaction Manager (TM) has returned this information, the AP may use it
for its own administrative purposes, such as auditing and logging.

Because the data component contained within the XID may have been
encoded using a different, possibly multi-byte, character set to the one
specified by the current locale, the AP should take care only to record (for
such purposes) the contents of data as the exact sequence of bits in which it
was received. The AP should not rely on being able to interpret these bits as
printable characters and should not attempt to display the value of any XID
to an end user at run time.

Change: In Section 4.2, at the end of the paragraph that currently says:

‘‘An important attribute of the XID is global uniqueness, based on the exact
order of the bits in the data element of the XID for the lengths specified. The
AP should treat each component of data as an arbitrary collection of octets
because, for instance, a component may contain binary data as well as
printable text.’’

Add the following text:

‘‘Because the data component contained within the XID may have been
encoded using a different, possibly multi-byte, character set to the one
specified by the current locale, the AP should take care only to record the
contents of data as the exact sequence of bits in which it was received. The
AP should not rely on being able to interpret these bits as printable
characters and should not attempt to display the value of any XID to an end
user at run time.’’

94 Technical Study

Change Requests for Internationalisation The XA Specification

15.2 The XA Specification
Document: The XA Specification

X/Open CAE Specification, C193 (October 1991).

Change number: XA/I18N-01

Title: Unique Transaction Identifier (XID)

Qualifier: Minor Technical

Rationale: The <xa.h> header defines a public structure called an XID to identify a
transaction branch. The contents of XID are used between all components
that take part in a global transaction, within or across TM domains. Unlike
the TX (Transaction Demarcation) specification, the XA specification does
not explicitly warn that each component of the data portion of the XID
should be treated as a string of bits rather than as recognisable characters.

Change: In Section 4.2, at the end of the paragraph that currently says:

‘‘Although "xa.h" constrains the length and byte alignment of ... that the XID
is null.’’

Add the following text:

‘‘An important attribute of the XID is global uniqueness, based on the exact
order of the bits in the data element of the XID for the lengths specified. Each
component of data should be treated as an arbitrary collection of octets
because, for instance, a component may contain binary data as well as
printable text, and it may have been encoded using a different, and possibly
multi-byte, encoding scheme to the one active for the current locale.’’

Part 4 X/Open DTP Specifications 95

The XA Specification Change Requests for Internationalisation

Document: The XA Specification
X/Open CAE Specification, C193 (October 1991).

Change number: XA/I18N-02

Title: Internationalised Resource Manager Name

Qualifier: Minor Technical

Rationale: The Resource Manager Switch (xa_switch_t) includes the field
name[RMNAMESZ] to contain the name of the resource manager. This field
is of type char and is null terminated. This field requires conversion to type
wchar_t to allow for Resource Managers (RMs) that define their names using
multi-byte character encodings.

Change:

i. In the second paragraph of Section 4.3, add the following text:

‘‘The RM name is a field of type wchar_t that may contain characters
from the character set of any natural language, encoded using any
encoding scheme. The TM should not rely on this field being encoded
in any particular encoding scheme and should treat its contents only as
an arbitrary collection of characters. The TM should not display the
field in the form of printable characters to users (who may be working
in a different locale to the one in which the field was originally
encoded).’’

ii. Add the above text also at the end of the second dash item of Public
Information in section 7.2.

iii. In the switch structure in Section 4.3, change:

char name[RMNAMESZ];
/* name of resource manager */

to

wchar_t name[RMNAMESZ];
/* name of resource manager */

iv. Make the above change also in the equivalent section of Appendix A.

96 Technical Study

Change Requests for Internationalisation The XA Specification

Document: The XA Specification
X/Open CAE Specification, C193 (October 1991).

Change number: XA/I18N-03

Title: XA Information Strings

Qualifier: Minor Technical

Rationale: The functions that the TM uses to open and close an RM, xa_open() and
xa_close () respectively, have an argument xa_info which points to a null-
terminated character string that may contain instance-specific information
for the RM. This field requires conversion to type wchar_t to allow for
information strings that are encoded using multi-byte characters.

Change:

i. In Section 4.3, change:

int (*xa_open_entry)(char *, int, long);
/* xa_open function pointer */

int (*xa_close_entry)(char *, int, long);
/* xa_close function pointer */

to:

int (*xa_open_entry)(wchar_t *, int, long);
/* xa_open function pointer */

int (*xa_close_entry)(wchar_t *, int, long);
/* xa_close function pointer */

ii. Make the above change also in the equivalent section of Appendix A.

iii. Make the equivalent change in the SYNOPSIS section in the manual
page for xa_close () in Chapter 5.

iv. Make the equivalent change in the SYNOPSIS section in the manual
page for xa_open() in Chapter 5.

Part 4 X/Open DTP Specifications 97

The XA+ Specification Change Requests for Internationalisation

15.3 The XA+ Specification
Document: The XA+ Specification

X/Open Snapshot, Version 2, S423 (July 1994).

Change number: XA+/I18N-01

Title: Unique Transaction Identifier (XID)

Qualifier: Minor Technical

Rationale: The <xa.h> header defines a public structure called an XID to identify a
transaction branch. The contents of XID are used between all components
that take part in a global transaction, within or across TM domains. Unlike
the TX (Transaction Demarcation) specification, the XA+ specification does
not explicitly warn that each component of the data portion of the XID
should be treated as a string of bits rather than as recognisable characters.

Change: In Section 4.2, at the end of the paragraph that currently says:

‘‘Although <xa.h> constrains the length and byte-alignment of ... that the
XID is null.’’

Add the following text:

‘‘An important attribute of the XID is global uniqueness, based on the exact
order of the bits in the data element of the XID for the lengths specified. Each
component of data should be treated as an arbitrary collection of octets
because, for instance, a component may contain binary data as well as
printable text, and it may have been encoded using a different, and possibly
multi-byte, encoding scheme to the one active for the current locale.’’

98 Technical Study

Change Requests for Internationalisation The XA+ Specification

Document: The XA+ Specification
X/Open Snapshot, Version 2, S423 (July 1994).

Change number: XA+/I18N-02

Title: Internationalised Resource Manager Name

Qualifier: Minor Technical

Rationale: The Resource Manager Switch (xa_switch_t) includes the field
name[RMNAMESZ] to contain the name of the resource manager. This field
is of type char and is null terminated. This field requires conversion to type
wchar_t to allow for Resource Managers (RMs) that define their names using
multi-byte character encodings.

Change:

i. In the second paragraph of Section 4.4, add the following text:

‘‘The RM name is a field of type wchar_t that may contain characters
from the character set of any natural language, encoded using any
encoding scheme. The TM should not rely on this field being encoded
in any particular encoding scheme and should treat its contents only as
an arbitrary collection of characters. The TM should not display the
field in the form of printable characters to users (who may be working
in a different locale to the one in which the field was originally
encoded).’’

ii. Add the above text also at the end of the second dash item of Public
Information in section 7.2.

iii. In the switch structure in Section 4.4, change:

char name[RMNAMESZ];
/* name of resource manager */

to

wchar_t name[RMNAMESZ];
/* name of resource manager */

iv. Make the above change also in the equivalent section of Appendix A.

Part 4 X/Open DTP Specifications 99

The XA+ Specification Change Requests for Internationalisation

Document: The XA+ Specification
X/Open Snapshot, Version 2, S423 (July 1994).

Change number: XA+/I18N-03

Title: XA Information Strings

Qualifier: Minor Technical

Rationale: The functions that the TM uses to open and close an RM, xa_open() and
xa_close () respectively, have an argument xa_info which points to a null-
terminated character string that may contain instance-specific information
for the RM. This field requires conversion to type wchar_t to allow for
information strings that are encoded using multi-byte characters.

Change:

i. In Section 4.4, change:

int (*xa_open_entry)(char *, int, long);
/* xa_open function pointer */

int (*xa_close_entry)(char *, int, long);
/* xa_close function pointer */

to:

int (*xa_open_entry)(wchar_t *, int, long);
/* xa_open function pointer */

int (*xa_close_entry)(wchar_t *, int, long);
/* xa_close function pointer */

ii. Make the above change also in the equivalent section of Appendix A.

iii. Make the equivalent change in the SYNOPSIS section in the manual
page for xa_close () in Chapter 5.

iv. Make the equivalent change in the SYNOPSIS section in the manual
page for xa_open() in Chapter 5.

100 Technical Study

Change Requests for Internationalisation The XA+ Specification

Document: The XA+ Specification
X/Open Snapshot, Version 2, S423 (July 1994).

Change number: XA+/I18N-04

Title: Transaction Branch Information (blob data)

Qualifier: Minor Technical

Rationale: A Communication Resource Manager (CRM) can use the function
ax_set_branch_info() to save information about a transaction branch. The
CRM can later access this information using the function
ax_get_branch_info().

The blob argument points to the character string of information to be saved.
This argument is of type char. Its length is defined by the argument blob_len.
Its does not rely on being null terminated.

However, the XA+ specification does not explicitly state that blob may
contain characters encoded using a different character set to the one being
used in the current locale, and it does not explicitly highlight that blob should
be treated as an arbitrary collection of characters that might contain binary
data.

The XA+ specification should also warn implementors that the only valid
method of determining the length of blob is by reference to blob_len and that
any reliance on null termination may give unreliable results.

Change:

i. In the manual page for ax_get_branch_info() in Chapter 5, after the
paragraph that reads:

‘‘The blob_len argument is a pointer to an area in which the transaction
manager returns the size of blob.’’

Add the following new paragraph:

‘‘The blob argument may contain characters encoded using a different
character set to the one being used in the current locale. It should
therefore be treated as an arbitrary collection of characters that might
contain binary data. The only valid method of determining the length
of blob is by reference to blob_len. Any reliance on null termination may
give unreliable results.’’

ii. In the manual page for ax_set_branch_info() in Chapter 5, add the same
new paragraph as described above.

Part 4 X/Open DTP Specifications 101

Change Requests for Internationalisation

102 Technical Study

Technical Study

Part 5

X/Open Systems Management Specifications

The Open Group

Part 5 X/Open Systems Management Specifications 103

104 Technical Study

Chapter 16

Introduction

Systems management applications are among those most likely to be affected by
internationalisation issues. This is because management of a distributed, multi-national system
implies management of resources owned or used by all of the users of the system. These users
are likely to work in diverse language and cultural environments. As an added complication,
there may be several systems managers, who may themselves work in diverse language and
cultural environments. The systems management components must be designed to support this.

The chapters in this part of this technical study consider the impact of internationalisation on the
X/Open systems management specifications. These specifications are at present either
snapshots, preliminary specifications or CAE specifications.

They consist of the following documents (full details are given in Referenced Documents (on
page xiii)).

• the XMP specification

• the XMPP specification

• the XGDMO specification

• the Performance Management specification (contained in the UMA guide, the UMA DCI
specification, the UMA MLI specification and the UMA DPD specification)

• the XBSA specification

• the XSMS specification.

Structure of This Part

Chapter 17 examines the implications of internationalisation on the systems management
specifications listed above.

Chapter 18 presents conclusions and recommendations.

After this, Chapter 19 contains a set of internationalisation Change Requests (CRs) for each of the
systems management specifications listed above. These are edited versions of standard X/Open
Change Requests (CRs), in which the identity of the originator is omitted and the CRs are re-
numbered into a sequential scheme, for the purposes of this document.

Part 5 X/Open Systems Management Specifications 105

Introduction

106 Technical Study

Chapter 17

Systems Management Specifications

17.1 The XMP Specification

17.1.1 Overview

The XMP specification defines an Application Programming Interface (API) to management
information services. It can be used in conjunction with the OSI systems management protocol
defined in the CMISP standard or with the Internet systems management protocol defined in the
SNMP Internet RFC. Its use in conjunction with other protocols is not precluded, but is not
specified by the XMP specification.

For full details of this interface, see the referenced XMP specification.

17.1.2 Internationalisation Implications

Error Messages

The Error-Message function returns a text string that describes an error. Its description refers to
the ‘‘X/Open Native Language System (NLS)’’, but does not specify how use of the NLS affects
the string returned, or constrain the character set that may be used. The length of the string is
given explicitly, and the string is null-terminated. Presumably, this means that it is terminated
by a single null element of type char; this means that encodings such as ISO 10646 or UNICODE
that have character representations containing embedded nulls would cause applications that
use the null terminator to behave incorrectly.

Use of Latin Alphabet Strings

The specification of class Entity-Name defines attribute entity as a printable string. This means
that management application names and system names are essentially restricted to using ASCII
characters.

Note: The specification of class Name-String defines attribute name-String as an IA5 string. This
does not mean that names are restricted to using the characters of International Alphabet nr. 5
(which is a subset of the ASCII character set), since a name can be of class DS-DN or SNMP-
Object-Name , and these are not restricted to particular character sets.)

String Comparisons

The specification of class Filter-Item defines attribute substrings whose meaning in an
internationalised context is unclear. For example:

• the interpretation of ‘‘Initial Substring’’ and ‘‘Final Substring’’ for languages with mixed
directionality requires some thought

• what constitutes a substring is open to question for languages in which a single character can
have different representations (for example, <e-acute>/<e>+<acute accent>)?

Similarly, the meanings in an internationalised context of attributes greater-or-equal and less-
or-equal of class Filter-Item are unclear (what collating order is assumed?)

Part 5 X/Open Systems Management Specifications 107

The XMPP Specification Systems Management Specifications

17.2 The XMPP Specification

17.2.1 Overview

A protocol profile is the specification of a set of communication protocols, and of options within
those protocols, to be used by communicating systems for a particular purpose. The XMPP
specification defines the protocol profiles to be used for systems management within the
X/Open CAE. The profiles include OSI communication protocols, Internet communication
protocols, and some proprietary communication protocols. The XMPP specification defines the
profiles by referring to OSI and Internet protocol and profile specifications.

For full details of this interface, see the referenced XMPP specification.

17.2.2 Internationalisation Implications

There are no internationalisation implications for the XMPP specification.

108 Technical Study

Systems Management Specifications The XGDMO Specification

17.3 The XGDMO Specification

17.3.1 Overview

Managed objects are abstract representations of parts of computer systems and networks. They
are used by systems management applications. Different managed objects are defined for
different types of computer systems and networks but, because they have a common format,
they can be handled by generic systems management software.

The referenced GDMO standard describes how managed objects should be defined. It specifies
templates into which the information for each managed object can be inserted in order to
produce a formal definition of it. Although they are formal enough that they can be processed
automatically, these descriptions are intended to be read by people.

In the X/Open CAE, management applications can use the API defined in the XMP specification
to invoke management communications services. In doing so, they will use the API defined in
the XOM specification to manipulate the complex information structures that are
communicated. The implementation of the XMP specification can include specific packages that
support particular managed objects. Alternatively, it can provide a configuration utility that
enables the required packages to be generated at compile time from a formalised description of
the managed objects that they must support.

The XGDMO specification describes how such a formalised description can be generated
mechanically from the templates defined in the GDMO standard. The algorithm described also
produces the header files that an application program written in the C programming language
will need in order to use the XOM API to manipulate the information structures that represent
the managed objects, and generates documentation that describes the packages that it has
generated.

For full details of this interface, see the referenced XGDMO specification.

17.3.2 Internationalisation Implications

The XGDMO specification in effect defines a language translator, and similar issues arise as for
a programming language. In particular, there is the question of what character sets can be used
in the input to the translator, and of what character sets can appear in its output. This question
is not addressed in the XGDMO specification.

It is implicitly assumed that the input character set includes the distinct lowercase and
uppercase versions of the basic Latin alphabet, the decimal digits, and spacing and punctuation
characters. Generated output includes specific characters (as in the "OMP_O-" prefix). OM
classes and attributes are identified and alphabetised in ascending order.

Lack of support for characters outside the basic Latin alphabet would mean that the natural
names could not be used for managed objects and attributes that have been defined and named
in a language and cultural environment other than an English one. This would affect the
applications programmer, but should not affect the user of the applications programs.

Part 5 X/Open Systems Management Specifications 109

The UMA Specifications Systems Management Specifications

17.4 The UMA Specifications

17.4.1 Overview

The X/Open Universal Measurement Architecture (UMA) supports the collection, management
and reporting of performance data and events. It defines four layers of functionality:

Measurement Application Layer
This consists of the various Measurement Application Programs (MAPs) that provide
services for technical support of management goals. Examples of MAPs are performance
monitors, capacity planning tools, and tuning advisors.

Data Services Layer
This accepts measurement requests from MAPs and supplies measurement data to the
MAPs or to other destinations requested by them. Other destinations can include private
files or a facility for access and maintenance of historical data known as UMA Data Storage.

Measurement Control Layer
This schedules and synchronises data collection and supplies the collected data to the Data
Services Layer.

Data Capture Layer
This layer is responsible for collecting raw data and supplying it to the Measurement
Control Layer.

X/Open has produced the following UMA specifications:

• the UMA guide, which provides an overview of the UMA

• the UMA MLI specification, which defines:

— the interface through which the Measurement Application Layer invokes the services of
the Data Services Layer

— the protocol used by implementations of the Data Services Layer in different machines to
communicate with each other

• the UMA DCI specification, which defines the interface through which the Measurement
Control Layer invokes the services of the Data Capture Layer

• the UMA DPD specification, which defines the format of data passed across the
Measurement Layer Interface, and which may also be used internally within the Data
Services Layer.

Note: The interface between the Data Services and Measurement Control layers is not specified.

For full details of these interfaces, see the referenced UMA specifications.

110 Technical Study

Systems Management Specifications The UMA Specifications

17.4.2 Internationalisation Implications

Use of Character Strings in the Data Pool

A number of data pool message fields defined in the UMA DPD specification consist of
character strings. They include, for example:

• the class name, subclass name and subclass abbreviated name from the Names subclass of
the Configuration class

• the command name from the Remote Terminal Monitor Measures subclass of the Response
Time class

• the partition name from the Disk Partition Data subclass of the Disk Device Data class.

It is not clear what will happen:

• when messages containing such data are processed by an internationalised application that
uses a character set and encoding that is not compatible with those used by the Data Services
Layer

• when messages are passed between implementations of the Data Services Layer in different
machines that use incompatible character sets and encodings.

The strings are null-terminated, so the use of encodings such as ISO 10646 or UNICODE that
include nulls in character encodings is problematic. However, the sizes of the text fields are
given in the count that is provided in the Text Descriptor or the size that is provided in the Array
Descriptor. The application therefore need not rely on the null terminator when determining the
lengths of such fields.

It is probable that the underlying assumption is that all applications will use character sets and
encodings that are compatible with basic ASCII, and that the character strings in the messages
will only use basic ASCII. If this is so, it is probably true for most systems today, but it does
restrict the internationalisation of systems in future.

It is also probable that many of these strings will be the same as the ASCII text strings in labels
used in the Data Capture Interface. This facilitates the development of measurement control
layer programs, but not in an internationalised context. For example, what would happen if a
machine in Japan with a filesystem partition named using Kanji characters was managed by a set
of management applications running on a machine in which the only supported character set
encoding was ASCII?

Use of Character Strings in the Logical Message Protocol

The Logical Message Protocol is defined in the UMA MLI specification for communications
between implementations of the Data Services Layer in different machines. A number of the
message fields defined for this protocol are text strings (for example, the source and destination
fields of the Create message). It is not clear what character set encodings are to be used for these
fields, and it is not clear what happens when messages are passed between machines that use
different character set encodings.

The strings are null-terminated, so the use of encodings such as ISO 10646 or UNICODE that
include nulls in character encodings is problematic. The specification should either preclude the
use of such encodings or advise applications to rely on the count that is provided in the Text
Descriptor or the size that is provided in the Array Descriptor, rather than relying on the null
terminator, when determining the lengths of such fields.

Part 5 X/Open Systems Management Specifications 111

The UMA Specifications Systems Management Specifications

Note: The UMA MLI specification does not explicitly list these descriptors in the way that the UMA
DPD specification does, but section 6.3.5 (Variable Length Data) of the UMA MLI specification
appears to imply that they are present, immediately preceding the fields that they describe.

It is probable that there is an implicit assumption that only basic ASCII encodings will be used.
Again, this represents a restriction on the development of internationalised systems.

Textual Descriptions in UDU Control Segments

UMA API messages, called UMA Data Units (UDUs), are defined in the UMA MLI specification.
They are passed across the Measurement Layer Interface. They can include control segments
which, when passed from the Data Services Layer to a MAP, can contain status information.

The bodies of such UDU control segments can contain textual descriptions of problems
encountered. These are stated to be ‘‘useful for reporting the condition back to a user’’ but
would not be usable by internationalised applications. It would be better to state that
applications should use a message cataloguing mechanism to generate status messages.

String Arguments of Measurement Layer Interface Functions

A number of arguments of the functions defined in the UMA MLI specification are character
strings. It is not clear what character set encodings can be used for these strings.

For an internationalised application, it should be possible to use the character set encoding of the
currently established locale.

If this encoding allows a null byte to appear as part of the encoding of a character (as ISO 10646
and UNICODE do), then the use of null terminators for strings becomes problematic. This
problem can be avoided by specifying that the arguments are arrays of elements of type
wchar_t.

String Data Capture Interface Data Types

Metric data objects passed across the Data Capture Interface described in the UMA DCI
specification can be text strings. It is not clear what character set encodings can be used in such
strings. It is also not clear what happens when the strings are passed between different
machines that use different character set encodings.

The strings are null-terminated, so the use of encodings such as ISO 10646 or UNICODE that
include nulls in character encodings is problematic. The specification should either preclude the
use of such encodings or advise applications to rely on the length field that is provided, rather
than the null terminator, when determining the lengths of such fields.

Use of ASCII Strings in Data Capture Interface Labels

The UMA DCI specification states that it is a goal that any textual information should be
capable of supporting an internationalised application. It defines structure type DCILabel which
contains an ASCII text string and may also contain an internationalised label. The structure of
such an internationalised label is unspecified, but it is suggested that it could identify a message
catalogue and a message within that catalogue.

Since the structure of an internationalised label is unspecified, it is not possible to write a
portable application that uses it. However, the Data Capture Interface is not used by MAPs; it is
used by programs of the Measurement Control Layer. In view of the way that strings are used in
the Data Pool, in the Measurement Layer Interface, and elsewhere in the Data Capture Interface,
it is unlikely that the availability of internationalised labels in the Data Capture Interface can
very much affect the degree to which a MAP can be internationalised.

112 Technical Study

Systems Management Specifications The UMA Specifications

The structure of internationalised labels could be specified, but it does not seem worthwhile to
do this except as part of a general solution to the problem of string usage.

Part 5 X/Open Systems Management Specifications 113

The XBSA Specification Systems Management Specifications

17.5 The XBSA Specification

17.5.1 Overview

The XBSA Specification defines an API to services that can be used to back-up or to archive data,
and to restore the data that has been backed up or archived. It is intended to be used by non-
management applications that need back-up or archive services, and by management back-up
and archive applications.

For full details of this interface, see the referenced XBSA specification.

17.5.2 Internationalisation Implications

Each item of information that is backed-up or archived is created in a particular locale and, more
importantly, resides in a file whose name is created in a particular locale. Different users who
created the files may have names that assume different locales and may use different locales for
their filenames.

An internationalised application uses the locale established by the current user. In the case of
the XBSA API, the current user could be a system administrator (in the case of a back-up or
archive management application) or an ordinary user (in the case of a non-management
application).

The names of users and files are passed over the API in character strings. The strings can be
lexicographically compared with each other, and these comparisons can use wildcards.

There is no mention of the locale that is to be used to interpret these strings. (Does ‘‘A
o

lborg’’
come before ‘‘Amsterdam’’ or after ‘‘Zurich’’?) There is no mention of how wildcards are to be
interpreted in locales that include combining characters. (Does ‘‘e*’’ match ‘‘écoutez’’?)

Different names may have been encoded using different character set encodings. For example,
one user might name files in EBCDIC while another uses UNICODE. This is more likely to occur
in distributed system, in which different computers may have different native codesets and
character encodings, but may also occur in a single computer that supports multiple locales.

In addition to filenames and information-creator names, there are other attributes that are
passed over the API as character strings (for example, domain names and policy set names).
Also, rules and schedules are character strings. There is no mention of these strings being in the
character set of the current locale.

Although the XBSA specification does not say so, the variable length character strings that are
passed across the API are presumably null-terminated. This would give problems if the
characters are encoded in UNICODE or ISO 10646.

There are also attributes that are date/time specifications in particular formats, for example
ddmmyy/hh:mm:ss. This is stated in Section 2.8 (Object Descriptors and the BSA Catalog), but
there is no description of the specific attributes concerned.

114 Technical Study

Systems Management Specifications The XSMS Specification

17.6 The XSMS Specification

17.6.1 Overview

The XSMS specification presents a system administration framework that includes both object-
oriented programming (based on the CORBA architecture and specification) and the X/Open
distributed systems management reference model (described in the XRM specification).

The framework consists of a set of services. They include both systems management services
(such as the policy management service) and OMG object management7 services (such as the object
life cycle service).

The systems management services are specified using OMG Interface Definition Language
(OMG IDL). The OMG object management services that are required for systems management
are discussed, but are mostly not specified in detail. Specifications of these services either have
already been created by the OMG, or are expected to be created by the OMG in the future.

So that the services can be accessed from shell scripts, a set of type mappings and a set of
commands are defined. These effectively specify a shell binding for the OMG IDL.

For full details of this interface, see the referenced XSMS specification.

17.6.2 Internationalisation Implications

General

While the XSMS specification states the importance of the requirement for internationalisation,
it also states that internationalisation requirements for implementations are outside its scope.
Internationalisation requirements have not been addressed in detail in the definition of the
interfaces.

Names

Types of objects, and instances of those types, have human-readable names. Their purpose is to
identify the object types and instances at the user interface. The XSMS specification does not
define the user interface. The user interface would be implemented by application programs
and shell scripts using the IDL interfaces that XSMS specification does define. In these
interfaces, the names are represented as character strings.

Other entities, including filters and actions, have similar names. These names are also
represented by strings.

The XSMS specification does not specify how these strings are encoded.

There may be a need in some systems to make the names of object types depend on the current
locale. For example, an English administrator might wish to use the term computer and a French
one might wish to use ordinateur to refer to the same type of object. There could also be a need to
use locale-dependent names for object instances, just as locale-dependent names may be used
for files (see Section 17.5 (on page 114)).

7. The concept of object as used by the OMG must be distinguished from the concept of managed object. OMG objects may be used as
the programming constructs that represent managed objects.

Part 5 X/Open Systems Management Specifications 115

The XSMS Specification Systems Management Specifications

Null-Terminated Strings

The description of the filter operation refers to the value argument being a null-terminated string.
The operation is defined in IDL, and the representation of the string datatype is presumably a
feature of the binding of IDL to the programming language (eg. C or C++) that is used. If this
binding maps IDL strings to null-terminated strings, then use of UNICODE or ISO 10646
character encodings becomes problematic.

String Arguments to Commands

In the command line interface, strings are typically delimited by white space characters (space,
tab, newline etc.) or by quote or double-quote characters. The characters that can be used, and
their encodings, depend on the currently established locale.

String Comparisons

The filter operations include string comparisons. The semantics of these operations should be
locale-dependent. This is however not discussed in the XSMS specification.

Exceptions

The IDL data types used in handling exception conditions are defined in the SysAdminExcept
module. They include strings giving resource names, operation names and default messages.
The semantics of these strings are not described in the XSMS specification. They should be
locale-dependent.

116 Technical Study

Chapter 18

Conclusions and Recommendations

This chapter summarises the implications of internationalisation requirements on X/Open
systems management specifications and presents conclusions and recommendations.

18.1 Conclusions
In a multi-national enterprise, the users of a system, and even the managers of a system, may
work in a number of different language and cultural environments. Systems management
applications must be able to support the management of such systems.

This gives rise to a number of issues in the specifications covered by this part of this technical
study. They are discussed in the following subsections.

18.1.1 Character String Identifiers

A number of entities - including managed object classes, managed object instances, systems, files
and filters - are identified by character strings. In some cases, those strings are specified to
consist of ASCII text. In other cases, the character set and encoding are not specified, but there is
no provision for them to depend on the current locale.

This issue affects

• the UMA Data Pool, since character string identifiers can appear in data pool messages

• the UMA logical message protocol, since character string identifiers can appear in fields of
messages of this protocol

• the UMA measurement layer interface, since character string identifiers can appear as
function arguments in this interface

• the UMA data capture interface, since labels can include text strings

• the Backup/Restore interface, which uses character strings to name files, systems, domains,
policy sets and other entities

• the Management Services for an OMG Environment, since character strings are used for
names in IDL operations (and in the mappings of those operations to the command line
interface) and in exception descriptions.

Use of character strings to identify entities creates problems when the user of the entity and the
manager of the entity use different character sets and encodings. It may be difficult for the user,
for the manager, or for both of them to work effectively. For example, the manager may be
unable to restore a file from archive because his locale does not include some of the characters
used in the filename.

There are some cases where it would be wrong to use anything other than a character string. For
example, user names are normally stored as character strings, and it is hard to envisage how else
they could be stored. Thus, it is necessary to find a solution that enables character strings to be
used in some cases, as opposed to a solution that replaces all character strings by some other
form of identification.

Part 5 X/Open Systems Management Specifications 117

Conclusions Conclusions and Recommendations

Where use of the Latin alphabet (as in IA5 strings or printable strings) is an option that is open to
the application programmer, but is not essential, the writing of internationalised applications is
not precluded. However, writers of applications who assume an English language and cultural
environment have a facility at their disposal that is not available to writers of other applications.
If any change is made, it should be to add similar facilities for other language and cultural
environments, rather than to remove the existing facility.

Where there is no alternative to using the Latin alphabet, the writing of internationalised
applications, and of applications that assume language and cultural environments other than
English ones, is inhibited. In such cases it is desirable to change the specification, either to
require a more general type of string (for example, a graphic string) in place of the IA5 or
printable string, or to allow a more general type of string as an alternative. However, where the
use of the Latin alphabet string derives from an International Standard, such a change should be
made in consultation with the relevant international standards body.

18.1.2 Null-Terminated Strings

The use of null-terminated strings gives problems arising in connection with use of encoding
schemes such as ISO 10646 and UNICODE that allow embedded nulls in character encodings.

This issue affects

• the XMP, in which error message strings are null-terminated

• the UMA data pool, in which character string message fields are null-terminated

• the UMA logical message protocol, in which text fields are null-terminated

• the UMA measurement layer interface, in which a number of function arguments are null-
terminated strings

• the UMA data capture interface, in which metric data objects can be null-terminated strings

• the XBSA, which allows variable length strings (presumably null-terminated) to be passed
across the interface

• the Management Services for an OMG Environment, if the OMG IDL string data type is
mapped onto a null-terminated string datatype in a programming language.

18.1.3 Descriptive Text

Descriptive text assumes a particular natural language and locale. It presents problems for
system users or managers who do not understand the natural language or who do not use the
locale. For example, error messages in Japanese would be incomprehensible to most English or
American users, and could in any case probably not be displayed on their terminals.

This affects

• the error messages generated by XMP

• textual descriptions in UMA UDU control segments

• exception descriptions in the Management Services for an OMG Environment specification.

118 Technical Study

Conclusions and Recommendations Conclusions

All error messages and other textual descriptions generated by an implementation should be
displayed to the user in the language of the current locale. This means that, if they have to be
transmitted between different system components before being displayed to the user, they
should be held internally in some coded form from which appropriate text for various locales
can be generated. The message cataloguing mechanism described in XPG4 provides a means of
achieving this.

18.1.4 String Comparisons

Comparisons between strings should take account of the locale (or locales) in which those
strings were defined. This affects:

• the Filter-Item class in XMP

• character string names in XBSA

• string comparisons in the Management Services for an OMG Environment specification.

Ideally, comparisons should be based on information, such as collation order, that is contained
in the current locale. In practice, there are a number of questions as to how this information
should be interpreted, and the necessary information has not all been defined (for example,
directionality information for complex text languages is still being studied).

Also, some of these definitions (those in XMP, for example) are based on definitions in
International Standards, and X/Open should not adopt a solution unless it is also adopted for
the International Standards from which the definitions are derived.

18.1.5 Input and Output Character Sets

The input and output character sets used by language translators may restrict the locales in
which the programs that they help to produce can be used. This affects the GDMO-XOM
translation specification.

There has been some consideration given by workers in the field of Internationalisation to
characterless programming languages, in which the lexical tokens are standardised but their
representations in specific character sets are not. At present, however, programming language
specifications typically require particular characters to be present in the input character set.
They also specify particular keywords, which may convey semantic meaning in particular
language and cultural environments (usually English ones). For example, the C programming
language requires the input character set to include the basic Latin alphabet, and uses the
English word "if" as a keyword.

For the purposes of this technical study, it is assumed that it is reasonable to require the
programmer to use a particular character set and particular keywords. (After all, learning a
programming language is in many ways like learning a natural language, which has its own
alphabet and vocabulary.) However, the programmer must be able to have the facilities needed
to produce an application that assumes any particular language and cultural environment or,
preferably, is internationalised. This does not mean that the compiler must support all language
and cultural environments; it means that the compiler standard does not preclude support for
any particular environment.

Part 5 X/Open Systems Management Specifications 119

Conclusions Conclusions and Recommendations

In the case of the XGDMO specification, the position is more complicated, because the output of
the translator is not an application program; it is input to other programs, and is used by
applications programmers. The principle that applies here is that it should be possible for the
programs that use the output of the translator to produce an application that assumes any
particular language and cultural environment or, preferably, is internationalised. This is
possible with the specification in its current form. However, the recommendations in Section
18.2.5 (on page 122) of this technical study are made with the aim of ensuring that implementors
make clear their positions with regard to support of character sets.

18.1.6 Use of specific Date/Time Formats

This affects the XBSA specification.

Dates and times should be displayed to the user in the format prescribed by that user’s current
locale. They should be stored internally in a form from which any locale-dependent
representation can be generated. However, as it is possible to generate locale dependent
representations from any fixed format representation, the XBSA specification does not preclude
(in this respect) the writing of internationalised applications.

120 Technical Study

Conclusions and Recommendations Recommendations

18.2 Recommendations

18.2.1 Character String Identifiers

• In XMP, class Entity-Name should be redefined to allow more general strings as
representations of entity names.

• Either:

1. the character strings in the UMA Data Pool, the UMA logical message protocol, the
UMA measurement layer interface, the UMA data capture interface, the
Backup/Restore interface and the Management Services for an OMG Environment
should be tagged with an indication of the locale in which they were created

or

2. users working in a multi-locale environment should be advised to use only the
characters of the POSIX portable filename character set.

These alternatives have been presented to the X/Open Systems Management working group.
This group did not resolve to undertake the work required for alternative 1. Accordingly,
alternative 2, which can easily be implemented, should be adopted.

18.2.2 Null-Terminated Strings

• The description of Error-Message in XMP should warn applications programmers not to use
the null terminator unless they are sure that the character set encoding does not allow
embedded nulls.

• Either:

1. the use of encodings that can include null bytes should be forbidden for character string
message fields in the UMA data pool and the UMA logical message protocol

or

2. applications should be advised to rely on the length fields that are provided, rather
than the null terminator, when determining the lengths of such fields.

• In the UMA measurement layer interface, the UMA data capture interface and the XBSA,
either:

1. the use of character encodings that can include null bytes should be prohibited

or

2. the interface should be modified to use arrays of type wchar_t in place of, or as an
alternative to, null-terminated arrays of type char.

• The possibility that the OMG IDL string data type could be mapped onto a null-terminated
string datatype in a programming language, and the internationalisation implications of this,
should be discussed with the OMG. The impact on the Management Services for an OMG
Environment specification should then be assessed.

Part 5 X/Open Systems Management Specifications 121

Recommendations Conclusions and Recommendations

18.2.3 Descriptive Text

• The description of Error-Message in XMP should state that the string returned is dependent
on the current locale.

• The use of textual descriptions in UMA UDU control segments and in OMG Environment
Management Services exception descriptions should be deprecated for internationalised
applications; they should be encouraged to use message catalogs.

18.2.4 String Comparisons

• No changes should be made to the specifications at this time. X/Open should work with
international standards bodies to resolve the issue.

18.2.5 Input and Output Character Sets

• The XGDMO specification should require implementations to document the character sets
that can be used for input and that will appear in the output.

122 Technical Study

Chapter 19

Change Requests for Internationalisation

This chapter contains formal change requests for the X/Open systems management
specifications.

Note: Some of the change requests contained in this chapter are against pre-publication draft
versions of the specifications concerned.

Part 5 X/Open Systems Management Specifications 123

The XMP Specification Change Requests for Internationalisation

19.1 The XMP Specification
Document: The XMP specification

X/Open CAE Specification, P306 (March 1994).

Change number: DL-1

Title: Error Message Text Strings

Qualifier: Minor Technical

Rationale: The Error-Message function returns a text string that describes an error. Its
description refers to the ‘‘X/Open Native Language System (NLS)’’, but does
not specify how use of the NLS affects the string returned, or constrain the
character set that may be used. The length of the string is given explicitly,
and the string is null-terminated. Presumably, this means that it is
terminated by a single null element of type char; this means that encodings
such as ISO 10646 or UNICODE that have character representations
containing embedded nulls would cause applications that use the null
terminator to behave incorrectly.

Change: On the Error-Message() man page:

i. In the description of the Length argument, delete ‘‘This is necessary ...
Native Language System).’’

ii. In the description of the Error-text result, add the following new
paragraph between the two existing paragraphs:

‘‘The language and character set encoding of the message text depend
on the currently established locale.’’

iii. In the description of the Length-return result, add the following new
paragraph:

‘‘Internationalised applications, and other applications that use
character set encodings (such as that defined by ISO 10646) that allow
embedded nulls, should use the length_return value to determine the
length of the message string rather than relying on the null terminator.’’

124 Technical Study

Change Requests for Internationalisation The XMP Specification

Document: The XMP specification
X/Open CAE Specification, P306 (March 1994).

Change number: DL-2

Title: Entity name syntax

Qualifier: Minor Technical

Rationale: The specification of class Entity-Name defines attribute entity as a printable
string. This means that management application names and system names
are essentially restricted to using ASCII characters.

Change: Change the Value Syntax of attribute entity of class Entity-Name from
String(Printable) to String(any).

Part 5 X/Open Systems Management Specifications 125

The XGDMO Specification Change Requests for Internationalisation

19.2 The XGDMO Specification
Document: The XGDMO specification

X/Open Preliminary Specification, P319 (March 1994).

Change number: DL-3

Title: Character Sets

Qualifier: Minor Technical

Rationale: The XGDMO specification in effect defines a language translator, and similar
issues arise as for a programming language. In particular, there is the
question of what character sets can be used in the input to the translator, and
of what character sets can appear in its output. This question is not
addressed in the XGDMO specification.

It is implicitly assumed that the input character set includes the distinct
lowercase and uppercase versions of the basic Latin alphabet, the decimal
digits, and spacing and punctuation characters. Generated output includes
specific characters (as in the "OMP_O-" prefix). OM classes and attributes are
identified and alphabetised in ascending order.

Lack of support for characters outside the basic Latin alphabet would mean
that the natural names could not be used for managed objects and attributes
that have been defined and named in a language and cultural environment
other than an English one. This would affect the applications programmer,
but should not affect the user of the applications programs.

Change: Add a new Section 3.6 entitled "Output Character Sets" (and renumber the
existing Section 3.6 as 3.7). The new section should contain the following
text:

‘‘Implementations may generate outputs using various character set
encodings. Each encoding used must satisfy the conditions defined in
ISO/IEC 9899 (the ISO C Standard) for source and execution character sets.
Each implementation must document the character set encodings that it
uses.’’

126 Technical Study

Change Requests for Internationalisation The UMA Specifications

19.3 The UMA Specifications
Documents: The UMA DPD specification

X/Open Preliminary Specification, P435 (Pre-publication Draft).

The UMA DCI specification
X/Open Preliminary Specification, P434 (Pre-publication Draft).

The UMA MLI specification
X/Open Preliminary Specification, P426 (Pre-publication Draft).

Change number: DL-4

Title: Use of Text Strings in Messages

Qualifier: Minor Technical

Rationale: Character strings are used in fields of data pool messages, in the Logical
Message Protocol, in Data Capture Interface data types and in Data Capture
Interface labels. It is not clear what will happen if different programs assume
different character set encodings when processing these strings.

It might be possible to solve this problem in a way that allows for fully
internationalised applications using arbitrary character set encodings. For
example, all text strings in messages might be replaced by fields encoded
using an extension of the heirarchical scheme used in the Data Capture
metric name space. This would require a major revision of the whole UMA.
The following change is proposed on the assumption that such a major
revision will not be undertaken.

Change:

i. In each of the following sections:

a. Section 2.4.3 (UMA Type Definitions) of the UMA DPD
specification, after the definition of UMATextDescr,

b. Chapter 6 (UMA Message and Header Formats) of the UMA MLI
specification, before the start of section 6.1,

c. Section 3.3.1.1 (DCILabel) of the UMA DCI specification, after the
definition of the DCILabel structure (and see also below for other
changes to this section), and,

d. Section 3.3.4 (Data Types) of the UMA DCI specification, after the
definition of DCITextDescr,

insert the following new paragraph:

‘‘Note that all programs that use this data must assume the same
character set and encoding scheme. Where different character sets are
in use (for example, in distributed multinational systems), it is
recommended that text strings use only the characters of the POSIX
portable file name character set. It is recognised that this pragmatic
recommendation places some limitations on the degree to which
applications can be internationalised.’’

ii. In Section 1.3.1 (Goals) of the UMA DCI specification, delete the
"internationalisation" list item.

Part 5 X/Open Systems Management Specifications 127

The UMA Specifications Change Requests for Internationalisation

iii. Delete Section 1.3.10 (Internationalisation) of the UMA DCI
specification.

iv. In Section 3.3.1.1 (DCILabel) of the UMA DCI specification, change
‘‘The label attributes structure ... The DCILabel structure is:’’ to the
following text:

‘‘The label attributes structure contains a variable length text field (an
array of type char, null-terminated) and a field that gives the size of the
text field (the number of elements in the array, including the null
terminator). The field must be padded out to a four byte boundary.
The DCILabel structure is:’’

v. In the definition of DCILabel in Section 3.3.1.1 (DCILabel) of the UMA
DCI specification:

a. Delete the line defining field ‘‘ascii’’

b. On the next line (defining field "i18n"), change ‘‘i18n’’ to ‘‘desc’’
and delete ‘‘ for I18N’’

c. On the following line (defining field ‘‘data’’), delete ‘‘ for ascii and
i18n’’

vi. Delete the paragraph following the definition of DCILabel in Section
3.3.1.1 (DCILabel) of the UMA DCI specification (‘‘The
internationalised label ... four byte boundary.’’)

128 Technical Study

Change Requests for Internationalisation The UMA Specifications

Documents: The UMA DPD specification
X/Open Preliminary Specification, P435 (Pre-publication Draft).

The UMA DCI specification
X/Open Preliminary Specification, P434 (Pre-publication Draft).

The UMA MLI specification
X/Open Preliminary Specification, P426 (Pre-publication Draft).

Change number: DL-5

Title: Null-Terminated Message Strings

Qualifier: Minor Technical

Rationale: When null-terminated strings are used, the use of encodings such as ISO
10646 or UNICODE that include nulls in character encodings is problematic.
The specification should either preclude the use of such encodings or advise
applications to rely on the length field that is provided, rather than the null
terminator, when determining the lengths of such fields.

Change: Two (mutually exclusive) alternatives are proposed. They affect the
following text:

a. Section 2.4.3 (UMA Type Definitions) of the UMA DPD specification,
after the definition of UMATextDescr

b. Chapter 6 (UMA Message and Header Formats) of the UMA MLI
specification, before the start of Section 6.1

c. Section 3.3.1.1 (DCILabel) of the UMA DCI specification, after the
definition of the DCILabel structure (and see also below for other
changes to this section)

d. Section 3.3.4 (Data Types) of the UMA DCI specification, after the
definition of DCITextDescr.

The alternatives are:

i. When making the change requested by CR DL-4, use the following text
in place of that given in CR DL-4:

‘‘Note that all programs that use this data must assume the same
character set and encoding scheme. This scheme must not allow
embedded nulls in character encodings. Where different character sets
are in use (for example, in distributed multinational systems), it is
recommended that text strings use only the characters of the POSIX
portable file name character set. It is recognised that these pragmatic
recommendations place some limitations on the degree to which
applications can be internationalised.’’

ii. Insert the following text, as a separate paragraph, before the text
requested by CR DL-4:

‘‘Some character set encodings allow embedded nulls. Unless an
application can assume that it is not dealing with such an encoding, it
should not rely on the null terminator to determine the length of the
string.’’

Part 5 X/Open Systems Management Specifications 129

The UMA Specifications Change Requests for Internationalisation

Document: The UMA MLI specification
X/Open Preliminary Specification, P426 (Pre-publication Draft).

Change number: DL-6

Title: MLI Function Arguments

Qualifier: Minor Technical

Rationale: A number of arguments of the functions defined in the UMA MLI
specification are character strings. It is not clear what character set
encodings can be used for these strings.

Change: In Section 5.2 (MLI Call Parameters), insert the following paragraph before
the description of the first parameter (attrpairs).

‘‘For string parameters, the character set and encoding used will be that of
the currently established locale. Note that all programs that use this data
must assume the same character set and encoding scheme. Where different
character sets are in use (for example, in distributed multinational systems),
it is recommended that text strings use only the characters of the POSIX
portable file name character set. It is recognised that this pragmatic
recommendation places some limitations on the degree to which applications
can be internationalised.’’

130 Technical Study

Change Requests for Internationalisation The UMA Specifications

Document: The UMA MLI specification
X/Open Preliminary Specification, P426 (Pre-publication Draft).

Change number: DL-7

Title: Null-Terminated Function Arguments

Qualifier: Minor Technical

Rationale: When null-terminated strings are used, the use of encodings such as ISO
10646 or UNICODE that include nulls in character encodings is problematic.

Change: Three mutually exclusive possible changes are proposed:

i. When making the change to Section 5.2 (MLI Call Parameters)
requested by CR DL-6, use the following text in place of that given in
CR DL-6:

‘‘For string parameters, the character set and encoding used will be that
of the currently established locale. The encoding scheme must not
allow embedded nulls in character encodings. Note that all programs
that use this data must assume the same character set and encoding
scheme. Where different character sets are in use (for example, in
distributed multinational systems), it is recommended that text strings
use only the characters of the POSIX portable file name character set. It
is recognised that these pragmatic recommendations place some
limitations on the degree to which applications can be
internationalised.’’

ii. Change all function arguments that are of type char* to be of type
wchar_t*.

iii. For each function that has arguments that are of type char*, keep that
function unchanged, but introduce an additional function that
performs the same tasks but with the char* arguments replaced by
arguments of type wchar_t*.

Part 5 X/Open Systems Management Specifications 131

The UMA Specifications Change Requests for Internationalisation

Document: The UMA MLI specification
X/Open Preliminary Specification, P426 (Pre-publication Draft).

Change number: DL-8

Title: UDU Error Descriptions

Qualifier: Minor Technical

Rationale: The bodies of UDU control segments can contain textual descriptions of
problems encountered. These are not usable by internationalised
applications.

Change: In Section 6.2 (UDU Control Segments) replace the text:

‘‘In addition, ... user’s terminal’’

by

‘‘The application should use the catalogue mechanism to generate a textual
description of the problem in the language of the currently established
locale’’.

132 Technical Study

Change Requests for Internationalisation The XBSA Specification

19.4 The XBSA Specification
Document: The XBSA specification

X/Open Preliminary Specification, P424 (Pre-publication Draft).

Change number: DL-9

Title: Use of Character Strings

Qualifier: Minor Technical

Rationale: Names of users, files and other entities (such as domains and policy sets) are
passed across the API in character strings. Different users and applications
will create these names in different locales. Difficulties will arise if the locale
assumed by the implementation to process a name is not the same as the
locale in which the name was created. This could happen if, for example, a
system administration facility running in one locale is used to archive or
restore files that have been created (and named) in other locales.

Change: Add a new Section 2.7 entitled ‘‘Internationalisation’’ (and renumber the
remaining subsections of Section 2). The new section should contain the
following text:

‘‘Names of users, files and other entities (such as domains and policy sets)
are passed across the API in character strings. Different users and
applications will create these names in different locales. Difficulties will arise
if the locale assumed by the implementation to process a name is not the
same as the locale in which the name was created. This could happen if, for
example, a system administration facility running in one locale is used to
backup, archive or restore files that have been created (and named) in other
locales.’’

‘‘Implementations of the XBSA will process character strings in a locale-
dependent manner. Each function will assume the locale that is established
at the time that it is invoked. Applications should ensure that the
appropriate locale is established when an XBSA function is called.’’

Part 5 X/Open Systems Management Specifications 133

The XBSA Specification Change Requests for Internationalisation

Document: The XBSA specification
X/Open Preliminary Specification, P424 (Pre-publication Draft).

Change number: DL-10

Title: Null-terminated strings

Qualifier: Minor Technical

Rationale: Although the XBSA specification does not say so, the variable length
character strings that are passed across the API are presumably null-
terminated. This will give problems if the characters are encoded in
UNICODE or ISO 10646.

Change: Three mutually exclusive possible changes are proposed:

i. When adding the new Section 2.7 requested by Change Request (CR)
DL-9, include in it the following text in addition to that given in CR
DL-9:

‘‘The encoding scheme of the established locale must not allow
embedded nulls in character encodings.’’

ii. Change ‘‘char’’ to ‘‘wchar_t’’ in the definitions of the following types:

Administrator
AdminName
AppUserName
BSAUserName
CGName
CopyGPDest
CopyGPName
Description
DomainName
EventInfo
FilterRuleSet
LGName
MethodName
ObjInfo
ObjectName
PolicySetName
ResourceType

iii. For each function that has arguments that include arrays of characters,
keep that function unchanged, but introduce an additional function
that performs the same tasks but with the arguments replaced by
arguments that have arrays of type wchar_t in place of the arrays of
type char.

134 Technical Study

Change Requests for Internationalisation The XSMS Specification

19.5 The XSMS Specification
Document: The XSMS specification

X/Open Preliminary Specification, P421 (Pre-publication Draft).

Change number: DL-11

Title: Use of Text Strings

Qualifier: Minor Technical

Rationale: Character strings are used in the following:

— Names of objects, object types, filters, actions and other entities

— Arguments to commands in the command line interface

— Exception data types.

Ideally, there should be provision for internationalised applications to use
Management Services in an OMG Environment. The possibilities of different
users requiring different character sets and encodings, and the possibilities
that these encodings could allow embedded nulls, should be taken into
account in the architecture of Management Services in an OMG
Environment. At present, the architecture does not take these possibilities
into account. There are complex issues involved, and the matter requires
further study.

Change:

i. Change the title of Chapter 4 to ‘‘Components and Issues Not
Addressed’’.

ii. Add a new Section 4.3 entitled ‘‘Internationalisation’’. The new section
should contain the following text:

‘‘There should be provision for internationalised applications to use
Management Services in an OMG Environment. Character strings are
used in:

— Names of objects, object types, filters, actions and other entities

— Arguments to commands in the command line interface

— Exception data types.’’

‘‘The possibilities of different users requiring different character sets
and encodings, and the possibility that these encodings could allow
embedded nulls, should be taken into account. At present, the
architecture does not take these possibilities into account. There are
complex issues involved, and the matter requires further study.’’

‘‘Meanwhile:

— Implementations should document any restrictions on character
sets and encodings that they impose.

— Where different character sets are in use (for example, in distributed
multinational systems), it is recommended that text strings use only
the characters of the POSIX portable file name character set.

— Applications that may be used internationally should not use the
textual descriptions in exception descriptions but should establish

Part 5 X/Open Systems Management Specifications 135

The XSMS Specification Change Requests for Internationalisation

and use locale-dependent message catalogues instead.’’

‘‘It is recognised that this pragmatic recommendation places
limitations on the degree to which applications can be
internationalised.’’

136 Technical Study

Technical Study

Part 6

Glossary and Index

The Open Group

Part 6 Glossary and Index 137

138 Technical Study

Glossary

ANSI
American National Standards Institute

ANSI C
American National Standards Institute specification of the C programming language

API
In X/Open, an Application Programming Interface. This is a set of services (such as
functions in a given programming language) by which the application program
communicates with other software components.

ASCII
American Standard Code for Interchange of Information. It is a 7-bit code with no parity
recommendation, providing 128 different bit patterns for character representation. The
internationally agreed version is called ISO-7 and is specified in ISO/IEC 646.

BMP
Basic Multilingual Plane. ISO IS 10646 is intended to be able to cover the character sets of all
languages which may be used in conjunction with computer systems. It defines a four-octet
representation for each character. The characters whose representations have zero as their
two most significant octets form what is known as the Basic Multilingual Plane (this
includes most alphabetic character sets).

byte
A binary expression forming a basic character combination that usually, but not always,
comprises 8 bits.

CAE
X/Open’s Common Applications Environment.

CCITT
(Consultative Committee of International Telegraph and Telephone) An international
committee whose membership is largely composed of government postal, telephone and
telegraph agencies (PTTs). This body is now a division of the ITU, and is now called the
ITU-T.

Change Request (CR)
In X/Open, a formal presentation of a request to change a document. It has a prescribed set
of headings, which identify the document, the originator, the subject, the qualifier
(critical/major/minor and technical/editorial), the rationale for the change proposal, and
the proposed detailed change(s).

codeset
The bit patterns that constitute the encodings of a character set.

CR
See Change Request.

FSS-UTF
UCS Transformation Format. an algorithm which, when applied to an IS 10646 encoding,
yields a 1, 2, 3 or 5 octet value which is guaranteed not to contain the ISO 646 encodings of
any control character, or of the SPACE or DEL characters.

Part 6 Glossary and Index 139

Glossary

IEC
International Electrotechnical Commission.

IEEE
In U.S.A., the Institute of Electrical and Electronic Engineers.

interoperability
The ability of software and hardware on multiple machines and from multiple vendors to
work together effectively.

internationalization
The provision within a computer program of the capability to make itself adaptable to the
requirements of different native languages, cultural environments and coded character sets.

ISO
International Organisation for Standardisation. A standards organisation with the
membership composed of the standards organisations from each participating country. ISO
working groups generate the OSI Protocol Suite standards.

ISO C
The ISO definition of the C programming language, technically the same as ANSI C.

ITU
International Telecommunications Union. See also CCITT.

I18n
Abbreviation for Internationalization, there being 18 letters between the first and last letters
in this long word.

locale
The definition of the subset of a user’s environment that depends on language and cultural
conventions.

octet
8 contiguous bits. The term is used instead of byte to prevent confusion with machines that
use non-8-bit bytes.

OSI
Open Systems Interconnection. A set of ISO standards for the interconnection of
cooperative (open) computer systems, using the ISO 7-layer reference model.

portability
Machine-independent — applied to software which can be readily ported to different
machines.

POSIX
A set of IEEE and ISO standards for a portable operating system, based on UNIX.

presentation
OSI Presentation Layer — the 6th layer in the 7-layer OSI Reference Model. It preserves the
meaning of the data transferred between Application Entities, and also provides access to
the services of the Session Layer.

140 Technical Study

Glossary

protocol
A specification for an agreed procedure to enable exchange of information between
cooperating entities, via interfaces which provide the necessary functionality to cover
format of messages, data checks, flow control, and error handling. A set of protocols
governing the exchange of information between remote systems, and set of interfaces
covering the exchange between adjacent protocol levels, are collectively referred to as a
protocol hierarchy or protocol stack.

teletype
An electrical typewriter machine equipped with a signal interface through which it provides
hard copy output and keyboard input for a computer.

UCS
Universal Multiple-Octet Coded Character Set — defined in ISO 10646.

User Datagram Protocol
The connectionless transport layer protocol of the Internet Protocol Suite.

UTF-8
See FSS-UTF.

XPG
X/Open Portability Guide

XSI
X/Open System Interface (to an operating system).

Part 6 Glossary and Index 141

Glossary

142 Technical Study

Index

(PC)NFS specification..19, 39
Change Request (CR) ..57

 character ...8
<ETX> character ...8
<SPACE> character ..8
<tx.h> header ..86, 92
<xa.h> header..87, 89, 92
/ character..8
ACSE/Presentation APIs..26
action entity ...115
alphabetic classification ..5
ANSI..139
ANSI C..9, 139
API ...139
application

communicating with other application...........13
archive...114
argument..85, 87, 89, 91
arithmetical expression ...69
array descriptor...111
ASCII...6, 9, 139
attribute..107, 114
attribute character sets ..34
backup...114
Backup Services API (XBSA)................................114
Basic Multilingual Plane..7
BMP ...139
BSFT specification ..19, 30

Change Request (CR) ..52
business practice...5
byte ..139
C...116, 119
C programming language.....................................5, 9

char ..9
C++ ..116
CAE ...139
case convention...5
CCITT ...6, 139
Change Request (CR) ...19, 45, 83, 93, 105, 123, 139

(PC)NFS specification..57
BSFT specification ..52
IPC mechanisms for SMB specification...........57
SMB protocols specification...............................57
TX specification ..94
UMA specifications..127
X.400 API specification..54

XA specification..95
XA+ specification ...98
XAP specification ...48
XBSA specification...133
XDS specification..55
XFTAM specification ...53
XGDMO specification126
XMP specification...124
XNFS specification...57
XOM specification..50
XSMS specification...135
XTI specification...46

char ..9
character ...9

...8
<ETX> ...8
<SPACE>..8
composition ...14
directionality ...14
lower case...5
null...9
shaping ...14
upper case ..5
/..8

character case conversion ...5
character classification...5
character encoding ...6, 65
character set ...5-6, 21, 65

input ..119
output ...119

character set register ..6
character string conversion

CLI specification...73
character string passing

CLI specification...72
character string type ..27
characteristic ...85, 87, 89, 91
class ...107

disk device ...111
Entity-Name..121

class name
response time ..111

classification rules ..10
CLI specification...61, 72

character string conversion................................73
character string passing72

Internationalization of X/Open Specifications 143

Index

internationalisation implications72
COBOL..85
codeset ..6, 139
collation rules ..5, 10
command line interface...117
Common Usage C..................................85, 87, 89, 92
communication

applications ...13
communications interface21
comparison of strings....................................116, 119
complex text languages...14
composition of characters.......................................14
control character..6-7
CPI-C specification...83
CR.....................................19, 45, 83, 93, 105, 123, 139

(PC)NFS specification..57
BSFT specification ..52
IPC mechanisms for SMB specification...........57
SMB protocols specification...............................57
TX specification ..94
UMA specifications..127
X.400 API specification..54
XA specification..95
XA+ specification ...98
XAP specification ...48
XBSA specification...133
XDS specification..55
XFTAM specification ...53
XGDMO specification126
XMP specification...124
XNFS specification...57
XOM specification..50
XSMS specification...135
XTI specification...46

Create message
destination field..111
source field...111

cultural convention ..5, 9
currency symbol..5
data capture interface111-112

label ..112
data type...112

data management
arithmetical expression.......................................69
character encoding...65
character set...65
date literal ..68
diagnostic information..68
direct invocation...66
directionality ...69
host language processor66

ISO 10646 and C..67
multiple character set ..64
non-direct invocation ..66
numeric literal ...68
reserved word ...68
special character ...68
standard name ..64
string operation...67
text editor ...66

data management specification.......................61, 71
CLI specification...61
RDA specification...61
SQL..61, 63

data pool message field...111
data services layer ..111
data type

data ..capture
date..114, 120
date format...9
date literal...68
date representation...5
decimal separator ...5
delete () character ..8
descriptor

array ..111
text ...111

destination field of Create Message....................111
diagnostic information ..68
diagnostic message ..26
diagnostic text ...29
direct invocation...66
directionality ...5, 69

of ..14
disk device class..111
disk partition data subclass..................................111
distributed internationalisation.............................12
domain name...114
DTP specification..83, 85

CPI-C specification...83
TX specification ..83
TxRPC specification...83
XA specification..83
XA+ specification ...83
XATMI specification ..83

encoding...6, 21, 40
UCS-2 form ..7, 9
UCS-2 Level 3 ..7
UCS-4 form ..7, 9

End of Text (<ETX>) character.................................8
entity ...107

action...115

144 Technical Study

Index

filter ...115
Entity-Name class ..121
entry level SQL..63
error message ..26, 107
Error-Message in XMP...................................121-122
exception condition in IDL...................................116
file ..114
file content..29
file type ...30
filename ..114
filter entity..115
filter operation...116
Filter-Item class in XMP..119
four-octet representation ..7
framework..15
FSS-UTF..139
FSS-UTF algorithm...8
full SQL...63
function Name..85, 87, 89, 91
GDMO to XOM Translation Algorithm.............109
graphic character ..6

composite symbol ..7
graphic string ..118
host language processor..66
I18n ..140
I18n change request19, 83, 105
I18n considerations ..5
IA5 ...107, 118
identifier string..29
IDL ...116-117

exception condition ...116
IDL in OMG...115, 121
IEC ...140
IEEE ...140
information processing..5
information-creator name.....................................114
input character set ..119
intermediate SQL..63
international alphabet 5 ..107
International Alphabet 5 (IA5).............................118
internationalisation

conclusions..43, 77, 91, 117
recommendations43, 77, 91, 121

internationalisation considerations5
internationalisation framework.............................15
internationalisation implications

CLI specification...72
RDA specification...74
SQL specification..71

internationalization..140
Internet protocol ...6

interoperability ...21, 140
interworking..22
interworking specification................................19, 23

(PC)NFS..19
BSFT ..19
IPC mechanisms for SMB19
SMB ...19
X.400 API..19
XAP..19
XAP-ROSE ...19
XAP-TP...19
XDS..19
XFTAM..19
XMPTN...19
XMS ...19
XNFS ...19
XOM..19
XTI ...19

introduction ...3
IPC mechanisms for SMB19, 42
IPC mechanisms for SMB specification

Change Request (CR) ..57
ISO ...6, 140
ISO 10646..15, 43
ISO 10646 and C..67
ISO C ..9, 85, 87, 89, 92, 140

null character...9
ITU...140
JIG ..8
Joint Internationalisation Group (JIG)8
language ...5-6, 9, 22, 37

C programming language.....................................9
language translator ..119
Latin alphabet..118-119

string ...107
locale9, 11-12, 43, 114-115, 140

conveying information..13
conveying information between13
use by application ..13

locale definition...14
locale registration ...14
logical message protocol.......................................111
lower case character...5
managed objects ...109

templates..109
Management Protocol Profiles (XMPP)108
Management Protocols API (XMP).....................107
Management Services for OMG115, 117, 121
MAP...112
measurement layer interface................................112

string argument ..112

Internationalization of X/Open Specifications 145

Index

message ..118
message catalogue in XPG4119
migration..12
MPTN..25
multi-byte character...9
multi-locale ..43
multi-locale support...14
multiple character set ..64
name..31, 115
native language system (NLS).............................107
natural language text ...31
NetBIOS..24
NLS..107
non-direct invocation...66
null character ...9
null terminator ..121
null-terminated string116, 118
number representation..5, 14
numeric classification ..5
numeric literal ...68
object in OMG ...115
object management ..115
object-oriented programming..............................115
octet ...6, 140

four-octet representation7
OMG

IDL...115, 121
Management Services117, 121

OMG object..115
OMG object management.....................................115
open systems environment.......................................5
OSI ...140
OSI protocol...6
output character set ...119
PDU ...31
policy set name ...114
portability ..21, 140
Portable Filename Character Set11, 22
portable filename character set

POSIX..121
POSIX..5, 140

Portable Filename Character Set11
portable filename character set121

POSIX locale mechanism ..11
presentation...140
process environment..11
protocol ..37, 40, 141

Internet..6
OSI ...6

punctuation..5
RDA specification...61, 74

internationalisation implications74
visible string ..74

remote terminal monitor measures subclass....111
reserved word ...68
response time class...111
return Code ...85, 87, 89, 91
service provider ..26
shaping of characters ...14
shift rules ..5
slash (/) character...8
SMB

Protocols...40
SMB data...40
SMB host names..40
SMB management transaction...............................41
SMB protocols specification

Change Request (CR) ..57
SMB specification...19, 40, 42
source field of Create message111
space (<SPACE>) character......................................8
special character..68
specification...105
SQL ..63

entry level...63
full..63
intermediate...63

SQL specification..61, 71
internationalisation implications71

standard name...64
string ...9, 112, 114-117

graphic ..118
identifier ...117
Latin alphabet ...107
null terminator..121
null-terminated...116, 118

string argument ..112
string comparison..................................107, 116, 119
string operation...67
subclass

disk partition data..111
subclass name

remote terminal monitor measures................111
systems management

reference model ..115
specification ..105, 107

Teletex ...7
teletype ...6, 141
templates

managed objects ...109
testing..15
text...112, 118

146 Technical Study

Index

text descriptor ...111
text editor ...66
TFA ..37
time ...9, 114, 120
time of day representation..5
transparent file access..37
TX specification ..83, 85

Change Request (CR) ..94
TxRPC specification ...83
type mapping ..115
t_error..23
t_strerror...24
UCS..141
UCS Transformation Format (UTF)8
UCS-2 encoding ..7, 9
UCS-2 Level 3 encoding ..7
UCS-4 encoding ..7, 9
UDU ..112, 122
UMA

backup/restore interface117, 121
data capture interface................................117, 121
data pool ..117, 121
logical message protocol117, 121
measurement layer interface117, 121

UMA Data Unit (UDU)112, 122
UMA specifications..110

Change Request (CR) ..127
UNICODE..7, 15, 43
Universal Measurement Architecture (UMA)..110
upper case character ..5
User Datagram Protocol..141
user interface ...5, 21, 30
user name...114
UTF ..8
UTF-1 algorithm..8
UTF-2 algorithm..8
UTF-8...141
variable-locale ...43
Videotex..7
visible string

RDA specification...74
wchar_t...9, 12, 43, 91
wide character ...91
wide characters ...9
wildcard..114
worldwide portability interface12
X.400 API specification......................................19, 32

Change Request (CR) ..54
X/Open

(PC)NFS specification19, 39, 57
ACSE/Presentation APIs....................................26

BSFT specification....................................19, 30, 52
Change Request (CR)19, 45, 83, 93, 105, 123
CLI specification...61, 72
CPI-C specification...83
data management specification61, 71
DTP specification ...83, 85
interworking specification19, 23
IPC mechanisms for SMB19
IPC mechanisms for SMB specification...........57
Portability Guide (XPG)......................................12
RDA specification ..61, 74
SMB protocols specification...............................57
SMB specification.....................................19, 40, 42
specification...105
SQL specification..61, 71
systems management specification........105, 107
TX specification..83, 85, 94
TxRPC specification...83
UMA specifications110, 127
X.400 API specification19, 32, 54
XA specification83, 87, 95
XA+ specification.....................................83, 89, 98
XAP specification.....................................19, 26, 48
XAP-ROSE specification...............................19, 26
XAP-TP specification.....................................19, 26
XATMI specification ..83
XBSA specification.....................................114, 133
XDS specification19, 34, 55
XFTAM specification...............................19, 29, 53
XGDMO specification...............................109, 126
XMP specification107, 124
XMPP specification..108
XMPTN specification19, 25
XMS specification...19, 33
XNFS specification...................................19, 36, 57
XOM specification19, 27, 50
XSMS specification115, 135
XTI specification.......................................19, 23, 46

X/Open-Uniforum
Joint Internationalisation Group.........................8

XA specification..83, 87
Change Request (CR) ..95

XA+ specification ...83, 89
Change Request (CR) ..98

XAP specification ...19, 26
Change Request (CR) ..48

XAP-ROSE specification19, 26
XAP-TP specification...19, 26
XATMI specification...83
XBSA specification ...114

Change Request (CR) ..133

Internationalization of X/Open Specifications 147

Index

XDS specification..19, 34
Change Request (CR) ..55

XFTAM specification ...19, 29
Change Request (CR) ..53

XGDMO specification..109
Change Request (CR) ..126

XID structure ...86-87, 89
XMP specification...107

Change Request (CR) ..124
Error-Message ...121-122
Filter-Item class...119

XMPP specification ..108
XMPTN specification...19, 25
XMS specification...19, 33
XNFS specification...19, 36

Change Request (CR) ..57
XOM specification..19, 27

Change Request (CR) ..50
XPG ...12, 141
XPG4

message catalogue ...119
XPG4 facilities ...12
XSI..141
XSMS specification...115

Change Request (CR) ..135
XTI specification...19, 23

Change Request (CR) ..46

148 Technical Study

	e408cov.pdf
	Page 1

	blank.pdf
	Page 1

