
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

Federated Naming:
The XFN Specification

[This page intentionally left blank]

X/Open CAE Specification

Federated Naming:

The XFN Specification

X/Open Company Ltd.

 July 1995, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

Federated Naming: The XFN Specification

ISBN: 1-85912-052-0
X/Open Document Number: C403

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

ii X/Open CAE Specification

Contents

Chapter 1 Introduction... 1
 1.1 Motivation.. 1
 1.1.1 Uniform Naming Interface .. 1
 1.1.2 Composite Name Support ... 2
 1.1.3 Naming Policy in Federations... 2
 1.2 Scope of Specifications... 3
 1.3 Relationship to Other Services... 3
 1.4 Lineage.. 4
 1.5 Conformance ... 5
 1.5.1 XFN API... 5
 1.5.2 XFN Composite Name String Representation 5
 1.5.3 XFN Naming Policies.. 6
 1.5.4 XFN Reference and Address ... 6
 1.5.5 XFN Protocols (Optional)... 6
 1.5.6 XFN Context Implementations (Optional)... 7
 1.5.7 XFN Enterprise Policies (Optional).. 7
 1.6 Typographical Conventions ... 8

Chapter 2 Model and Definitions.. 9
 2.1 Definitions .. 9
 2.1.1 Names, References, Bindings, Contexts .. 9
 2.1.2 Composite Names, Federated Naming Systems............................... 10
 2.2 Elements of the XFN Model.. 11
 2.2.1 XFN Composite Names.. 11
 2.2.2 XFN References .. 11
 2.2.3 XFN Context ... 12
 2.2.4 XFN Initial Context ... 12
 2.2.5 XFN Links.. 12
 2.2.6 XFN Attributes ... 12
 2.3 XFN Usage and Implementation Models .. 13
 2.3.1 Basic Usage Model... 13
 2.3.2 Basic Implementation Model .. 13
 2.4 Relationship of XFN to other Naming-related Services 15
 2.4.1 Security .. 15
 2.4.2 Caching.. 16
 2.4.3 Replication... 16
 2.5 XFN and Internationalisation... 17

Chapter 3 Interface Overview.. 19
 3.1 Naming Conventions of the C Interface .. 19
 3.2 The Base Context Interface ... 20
 3.2.1 Names in Context Operations... 20

Federated Naming: The XFN Specification iii

Contents

 3.2.2 Requirements for Supporting the Context Operations.................... 20
 3.2.3 Status Objects ... 20
 3.2.4 Context Operations ... 21
 3.2.4.1 Construct Handle to Initial Context ... 21
 3.2.4.2 Lookup.. 21
 3.2.4.3 List Names.. 21
 3.2.4.4 List Bindings .. 22
 3.2.4.5 Bind.. 22
 3.2.4.6 Unbind... 23
 3.2.4.7 Rename.. 23
 3.2.4.8 Create Subcontext ... 24
 3.2.4.9 Destroy Subcontext .. 24
 3.2.4.10 Lookup Link... 24
 3.2.4.11 Construct Context Handle from Reference..................................... 25
 3.2.4.12 Get Reference to Context .. 25
 3.2.4.13 Get Syntax Attributes of Context .. 25
 3.2.4.14 Destroy Context Handle.. 26
 3.2.4.15 Construct an Equivalent Name: Preliminary Specification 26
 3.3 The Base Attribute Interface ... 27
 3.3.1 XFN Attribute Model .. 27
 3.3.2 Relationship to Naming Operations.. 27
 3.3.3 XFN Links.. 28
 3.3.4 Status Objects ... 28
 3.3.5 Single-Attribute Operations .. 28
 3.3.5.1 Get Attribute.. 28
 3.3.5.2 Modify Attribute... 28
 3.3.6 Operations on Multiple Values ... 30
 3.3.6.1 Get Attribute Values... 30
 3.3.7 Operations on Multiple Attributes... 30
 3.3.7.1 Get Attribute Identifiers .. 31
 3.3.7.2 Get Multiple Attributes ... 31
 3.3.7.3 Modify Multiple Attributes .. 32
 3.4 The Extended Attribute Interface.. 33
 3.4.1 The Attribute Search Interface: Preliminary Specification.............. 33
 3.4.1.1 Basic Search.. 33
 3.4.1.2 Extended Search.. 34
 3.4.2 Object Creation With Attributes... 35
 3.4.2.1 Bindwith Attributes... 35
 3.4.2.2 Create Subcontext with Attributes.. 35
 3.5 Status Objects and Status Codes ... 37
 3.6 Parameters Used in the Interface... 42
 3.6.1 Composite Names ... 42
 3.6.2 References and Addresses ... 42
 3.6.3 Identifiers... 42
 3.6.4 Strings... 43
 3.6.5 Attributes and Attribute Values ... 43
 3.6.6 Attribute Sets .. 43
 3.6.7 Attribute Modification Lists .. 43

iv X/Open CAE Specification

Contents

 3.7 Parameters Used in Extended Search: Preliminary Specification..... 44
 3.7.1 Search Control .. 44
 3.7.2 Search Filter... 45
 3.7.2.1 BNF of Filter Expression.. 45
 3.7.2.2 Specification of Filter Expression .. 46
 3.7.2.3 Precedence.. 46
 3.7.2.4 Relational Operators .. 46
 3.7.2.5 Wildcarded Strings... 47
 3.7.2.6 Extended Operations ... 48
 3.8 Parsing Compound Names .. 50
 3.8.1 Syntax Attributes ... 50
 3.8.2 XFN Standard Syntax Model... 50
 3.8.2.1 Compound Names ... 51

Chapter 4 XFN Composite Names .. 55
 4.1 Composite Name String Syntax .. 55
 4.1.1 Encoding of XFN Composite Name Strings 55
 4.1.2 Backus-Naur Form (BNF) of XFN Composite Names..................... 56
 4.1.3 Decomposing a Composite Name String ... 57
 4.1.4 Composing a Composite Name String ... 59
 4.2 Composite Names and Naming System Boundaries.......................... 60
 4.2.1 Strong Separation... 60
 4.2.2 Weak Separation .. 61
 4.2.2.1 Conditions for Supporting Weak Separation.................................. 61
 4.2.3 Strong and Weak Separation Support in Contexts 62
 4.3 Composite Name Resolution Techniques ... 63
 4.3.1 Resolution Using Implicit Next Naming System Pointers 63
 4.3.1.1 Strong Separation and Implicit Next Naming System Pointers . 63
 4.3.1.2 Weak Separation and Implicit Next Naming System Pointers ... 63
 4.3.1.3 Context Requirements ... 65
 4.3.2 Resolution Using Junctions ... 67
 4.3.2.1 Strong Separation and Junctions ... 67
 4.3.2.2 Weak Separation and Junctions ... 67
 4.3.2.3 Context Requirements for Supporting Junctions........................... 67
 4.3.3 Summary ... 68
 4.4 Composite Name Resolution Involving Links..................................... 69

Chapter 5 XFN Policies .. 71
 5.1 Terminology... 71
 5.2 Policy Overview.. 72
 5.3 Naming Enterprises Using Global Naming Services 73
 5.3.1 Bindings in the Initial Context for the Global Context 73
 5.3.2 Support for Other Global Naming Services 74

Chapter 6 Reference Manual Pages.. 75
 FN_attribute_t ... 76
 FN_attrmodlist_t ... 78
 FN_attrset_t ... 80

Federated Naming: The XFN Specification v

Contents

 FN_attrvalue_t ... 82
 FN_composite_name_t .. 83
 FN_compound_name_t .. 87
 FN_ctx_t ... 91
 FN_identifier_t ... 94
 FN_ref_t .. 95
 FN_ref_addr_t .. 98
 FN_search_control_t .. 100
 FN_search_filter_t .. 103
 FN_status_t .. 109
 FN_string_t .. 113
 fn_attr_bind () .. 117
 fn_attr_create_subcontext ().. 118
 fn_attr_ext_search () .. 119
 fn_attr_get ()... 125
 fn_attr_get_ids ().. 126
 fn_attr_get_values ().. 127
 fn_attr_modify () .. 129
 fn_attr_multi_get () ... 131
 fn_attr_multi_modify ()... 134
 fn_attr_search () ... 135
 fn_ctx_bind() ... 140
 fn_ctx_create_subcontext()... 141
 fn_ctx_destroy_subcontext () .. 142
 fn_ctx_equivalent_name () .. 143
 fn_ctx_get_ref () ... 145
 fn_ctx_get_syntax_attrs () .. 146
 fn_ctx_handle_destroy () ... 147
 fn_ctx_handle_from_initial () ... 148
 fn_ctx_handle_from_ref () ... 149
 fn_ctx_list_bindings ()... 151
 fn_ctx_list_names ()... 152
 fn_ctx_lookup ().. 155
 fn_ctx_lookup_link ()... 156
 fn_ctx_rename()... 157
 fn_ctx_unbind()... 158
 XFN_attribute_operations .. 159
 XFN_composite_syntax ... 164
 XFN_compound_syntax .. 165
 XFN_links .. 169
 XFN_status_codes ... 172
 <xfn/xfn.h> ... 176

Appendix A XFN Protocols: Preliminary Specification............................... 177
 A.1 DCE RPC Protocol for XFN .. 178
 A.1.1 fn_dce_ctxb.idl: Data Types for Context Interface........................... 178
 A.1.2 fn_dce_ctx.idl: Context Interface.. 183
 A.1.3 fn_dce_ctx_mgmt.idl: Context Management Interface 188

vi X/Open CAE Specification

Contents

 A.1.4 fn_dce_attrb.idl: Data Types for Attribute Interface 191
 A.1.5 fn_dce_attr.idl: Attribute Interface.. 194
 A.1.6 fn_dce_ctx_locate.idl: Context Location Interface........................... 202
 A.1.7 fn_dce_srchb.idl: Data Types for Attribute Search Interface.......... 206
 A.1.8 fn_dce_srch.idl: Attribute Search Interface 208
 A.2 ONC+ RPC Protocol for XFN... 213

Appendix B Mapping XFN... 225
 B.1 Mapping XFN to DNS ... 226
 B.1.1 Overview... 226
 B.1.2 Representation of XFN Concepts in DNS... 226
 B.1.2.1 Name Syntax.. 226
 B.1.2.2 XFN References ... 226
 B.1.3 Federating DNS With Other Naming Systems.................................. 227
 B.1.3.1 Next Naming System Reference.. 227
 B.1.3.2 Examples of Reference Data... 227
 B.1.3.3 Registry of addrtag .. 228
 B.1.3.4 Recommendations for the DNS Context Implementation........... 228
 B.1.3.5 Resolving Through DNS ... 228
 B.1.4 XFN API Function Mapping.. 229
 B.1.4.1 XFN Operations on DNS names.. 229
 B.1.4.2 XFN Operations on Implicit Next Naming System Pointer 229
 B.2 Mapping XFN to X.500: Preliminary Specification 230
 B.2.1 X.500 Overview .. 230
 B.2.2 Representation of XFN Concepts in X.500 ... 230
 B.2.2.1 Name Syntax.. 230
 B.2.2.2 XFN References ... 231
 B.2.2.3 String Encoding for XFN References .. 234
 B.2.3 Federating X.500 with Other Naming Systems 236
 B.2.3.1 Weak Separation ... 236
 B.2.3.2 Implicit Next Naming System Pointers ... 236
 B.2.3.3 Resolving Through X.500.. 238
 B.2.4 XFN API Function Mapping.. 238
 B.2.4.1 Context Operations .. 238
 B.2.4.2 Attribute Operations .. 239
 B.3 Mapping XFN to CDS: Preliminary Specification................................ 240
 B.3.1 Overview... 240
 B.3.2 Representation of XFN Concepts in CDS ... 240
 B.3.2.1 Context Operations .. 240
 B.3.2.2 XFN Links... 241
 B.3.2.3 Attribute Operations .. 241
 B.3.2.4 Attribute Identifiers and Syntax .. 241
 B.3.2.5 Attribute Values .. 241
 B.3.2.6 Syntax Attributes .. 242
 B.3.2.7 Atomicity of Operations.. 242
 B.3.2.8 DCE Group References.. 242
 B.3.3 Federating CDS With Other Naming Systems 244
 B.3.3.1 Weak and Strong Separation .. 244

Federated Naming: The XFN Specification vii

Contents

 B.3.3.2 Junctions (Explicit Next Naming System Pointers)....................... 244
 B.3.3.3 Implicit Next Naming System Pointers ... 245
 B.3.4 Registered Values and their Encodings... 245
 B.3.4.1 Reference Types... 245
 B.3.4.2 AddressTypes ... 246
 B.3.4.3 CDS Attributes .. 247
 B.3.5 XFN API Function Mapping.. 248
 B.3.5.1 Base Context Interface ... 248
 B.3.5.2 Base Attribute Interface ... 250
 B.3.6 Support Level of CDS Service ... 251
 B.4 Mapping XFN to NIS+... 253
 B.4.1 Overview... 253
 B.4.2 Representation of XFN Concepts in NIS+.. 253
 B.4.2.1 Mapping XFN Enterprise-level Policies to NIS+............................ 254
 B.4.2.2 Name Syntax.. 254
 B.4.2.3 Context Representations ... 255
 B.4.3 XFN References .. 256
 B.4.3.1 Reference Types... 256
 B.4.3.2 AddressFormats and Types ... 256
 B.4.4 XFN API Function Mapping.. 257
 B.4.4.1 Context Operations .. 257
 B.4.4.2 Attribute Operations .. 257
 B.4.4.3 Context Creation... 257

Appendix C Guidelines for Federating a Naming System 259
 C.1 Implementation Models .. 260
 C.2 Federating with other Naming Systems .. 265
 C.2.1 Junctions .. 265
 C.2.2 Implicit Next Naming System Pointers .. 265
 C.3 Name Syntax.. 266
 C.3.1 Weak and Strong Separation ... 266
 C.3.2 Syntax Attributes ... 266
 C.4 Context Operations .. 267
 C.5 Attribute Operations .. 269
 C.5.1 Attributes and Next Naming System Pointers 269
 C.6 Reference and Address Types and its Registration 273

Appendix D Policies for the Enterprise Namespace 275
 D.1 Terminology... 276
 D.2 Policy Overview.. 277
 D.3 The Enterprise Namespace ... 278
 D.3.1 Types of Namespaces and Namespace Identifiers 278
 D.3.2 Structure of the Enterprise Namespace .. 279
 D.3.3 Policies for Naming Organisational Units.. 280
 D.3.4 Policies for Naming Users.. 281
 D.3.5 Policies for Naming Hosts ... 282
 D.3.6 Policies for Naming Services ... 283
 D.3.7 Policies for Naming Files.. 284

viii X/Open CAE Specification

Contents

 D.4 Bindings for the Enterprise in the Initial Context 285
 D.4.1 Host-related Bindings... 285
 D.4.2 User-related Bindings ... 286
 D.4.3 Shorthand Bindings... 287
 D.4.4 Relationships and Usage of Bindings.. 287
 D.5 Examples of Composite Names... 291
 D.5.1 Composing Names Starting with Global Names 291
 D.5.2 Composing Names Starting with the Enterprise Root 291
 D.5.3 Composing Names Starting with Organisational Units 291
 D.5.4 Composing Names Starting with Users ... 292
 D.5.5 Composing Names Starting with Hosts ... 292

Appendix E Integrating File Services .. 293
 E.1 Using the XFN Interface for POSIX.1 File Systems.............................. 294

Appendix F Techniques for Extending XFN ... 295
 F.1 Extending the C Context Interface .. 296

Appendix G Registry of Types, Identifiers and Code Sets 299
 G.1 Reference Types... 300
 G.1.1 XFN Standard References .. 300
 G.1.2 Naming Service-dependent References .. 300
 G.2 Address Types and Address Formats... 301
 G.2.1 XFN Standard Addresses... 301
 G.2.2 Naming Service-dependent Addresses... 301
 G.3 Attribute Identifiers and Attribute Syntaxes .. 302
 G.3.1 Attribute Identifiers... 302
 G.3.2 Attribute Syntaxes ... 302
 G.4 Code Sets .. 303
 G.5 Extended Operations for Search Filter Expression.............................. 304

Appendix H Headers... 305
 H.1 Synopsis .. 305
 H.2 Structures.. 305
 H.3 Enumeration Types... 306
 H.4 Data Types.. 307
 H.5 Functions .. 308
 H.5.1 Operations on FN_string_t .. 308
 H.5.2 Operations on FN_composite_name_t ... 309
 H.5.3 Operations on FN_ref_addr_t ... 311
 H.5.4 Operations on FN_ref_t.. 311
 H.5.5 Operations on FN_attribute_t ... 312
 H.5.6 Operations on FN_attrset_t ... 312
 H.5.7 Operations on FN_attrmodlist_t .. 313
 H.5.8 Operations on FN_status_t .. 313
 H.5.9 Operations on FN_search_control_t .. 315
 H.5.10 Operations on FN_search_filter_t .. 315
 H.5.11 Context Operations on FN_ctx_t.. 316

Federated Naming: The XFN Specification ix

Contents

 H.5.12 Attribute Operations on FN_ctx_t ... 317
 H.5.13 Extended Attribute Operations on FN_ctx_t 318
 H.5.14 Operations on FN_compound_name_t .. 319

 Glossary ... 321

 Index... 323

List of Figures

2-1 Example of an Implementation Model.. 14
4-1 Resolution Using Implicit Next Naming System Pointer 63
4-2 Conflict with Weak Separation and Implicit Next Naming 64
4-3 Example of Resolution Using Junction ... 66
C-1 XFN Configuration using Client Context Implementations 261
C-2 Lightweight XFN Client Configuration .. 262
C-3 XFN Configuration with Surrogate Client ... 263
C-4 Attribute Example with Implicit Next Naming System Pointer 271
C-5 Attribute Example with Junction ... 271
D-1 Example of an Enterprise Namespace... 281
D-2 Example of Enterprise Bindings in the Initial Context 287
D-3 Example of Bindings when U and H are in Different Enterprises 287

List of Tables

3-1 XFN Attribute Modification Operations... 29
3-2 XFN Status Codes .. 38
3-3 XFN Identifier Formats... 43
3-4 Substitute Tokens in Search Filter Expressions 46
3-5 Relational Operators in Search Filter Expressions.................................. 47
3-6 Examples of Wildcarded Strings .. 48
3-7 Examples of Extended Operations in Search Filter Expressions 49
3-8 XFN Standard Syntax Model Attributes... 53
4-1 Examples of String & Structural Forms of XFN Composite Names ... 58
5-1 Global Bindings in the Initial Context ... 73
D-1 XFN-EP Canonical Namespace Identifiers... 278
D-2 Policies for Arranging the Enterprise Namespace.................................. 279
D-3 Enterprise-related Bindings in the Initial Context 285

x X/Open CAE Specification

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Federated Naming: The XFN Specification xi

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

xii X/Open CAE Specification

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This document is a CAE Specification, except for those sections which are explicitly marked as
at Preliminary Specification status. To enable clear identification of these preliminary-status
sections, their titles, or page headers in the case of man-page definitions, include the word
Preliminary. See also Typographical Conventions at the end of this Preface.

The Federated Naming specification defines programmatic interfaces for a federated naming
service, and specifies the naming policies to be used in conjunction with a federated naming
service. Collectively, these are called the XFN specification.

Intended Audience

This document is intended to serve two main classes of readers:

• software developers of applications that use naming services

• application and system software developers who wish to provide the XFN client interface or
add support to federate a new naming system under the XFN interface.

Structure

This document is structured as follows:

• Chapter 1 introduces the subject, and describes conformance criteria for compliant
implementations

• Chapter 2 defines the terminology used in this specification and describes the XFN model

• Chapter 3 gives an overview of the XFN client interface, its organization, operations and
their semantics

• Chapter 4 describes XFN composite names, their syntax and resolution techniques

• Chapter 5 presents the XFN policies

• Chapter 6 gives reference manual pages for each routine in the XFN interface

• Appendix A describes the XFN protocols on two platforms: ONC+ and DCE

Federated Naming: The XFN Specification xiii

Preface

• Appendix B describes how XFN is mapped to a number of popular naming services: X.500,
DNS, ONC/NIS+, and DCE/CDS.

• Appendix C describes guidelines and techniques for federating new and existing naming
systems

• Appendix D describes policies for the enterprise namespace

• Appendix E describes integrating the file service within an XFN federation

• Appendix F describes techniques for extending the XFN interface

• Appendix G is a registry for identifiers and types used by XFN implementations

• Appendix H gives C header descriptions for the XFN interface.

Revision History

The revisions to XFN from XFN Preliminary Specification (July 1994) are summarised below.

• Add operations for attribute-based searching.
Define basic search and extended search operations (and supporting interfaces). See Section
3.3 on page 27 for details.

• Add operations for object creation with attributes.
Define two new operations to allow attributes to be associated with an object at the time the
object is created. See Section 3.3 on page 27 for details.

• Add XFN link argument to operations in base attribute interface.
Add a parameter to the relevant operations in the base attribute interface that indicates
whether an XFN link which is bound to the terminal atomic name should be followed. See
Section 3.3 on page 27 for details.

• Streamline Enterprise Policy (XFN-EP).
XFN-EP was simplified to allow easier mapping to existing naming systems. Many of the
descriptions were clarified as well.

— Remove site, a concept less prevalent than users, hosts, and organizational units in most
existing naming systems.

— Make cleaner delineation between XFN-EP and examples of XFN-EP (to make clearer the
normative parts of the policy).

— Simplify bindings in the Initial Context to make them more flexible and easier to map to
concepts in existing naming systems.

— Move Integrating File Service section to separate appendix.

• Add authoritative argument to fn_ctx_handle_from_ref () and fn_ctx_handle_from_initial ()
Add an argument to fn_ctx_handle_from_ref () and fn_ctx_handle_from_initial () that enables
the client application to select the authoritativeness of the context with respect to
information that the context returns from the naming service.

• Add operation for obtaining equivalent forms of names.
See description of fn_ctx_equivalent_name () in Chapter 3 for details.

• Modify Mapping XFN to X.500 description.
In the Preliminary Specification, the Appendix on Mapping XFN lacked detailed definitions
for the X.500 object classes and attributes needed to support XFN. In addition, operational
aspects of XFN support in X.500 were absent. It is necessary to publish these definitions and
describe these operations in the XFN Specifications to ensure the ability of XFN to

xiv X/Open CAE Specification

Preface

interoperate with any X.500 directory service. The modifications to this section include:

— Overview is renamed to X.500 Overview and reworded

— Representation of XFN Concepts in X.500 is expanded

— Name Syntax is reworded

— XFN References is expanded to describe the X.500 object classes and attributes necessary
to support XFN object references

— String Encoding for XFN References is added

— Federating X.500 with Other Naming Systems is expanded

— Weak Separation is reworded

— Implicit Next Naming System Pointers is expanded to describe the X.500 object classes
and attributes necessary to support XFN next naming system references

— Resolving Through X.500 is reworded

— XFN API Function Mapping is expanded.

• Add names to reach global roots in Initial Context.
Add the names _dns and _x500 to the Initial Context so that one can name the roots of
these respective namespaces.

• Drop status argument from destructors.
Drop the FN_status_t parameter from the iterator destructors, to be consistent with other
destructors in the interface. See fn_ctx_list_names () on page 152, fn_ctx_list_bindings () on
page 151, fn_attr_get_values () on page 127, fn_attr_multi_get () on page 131.

• Accept NULL pointer in destructors.
Specify that all destructors can accept NULL pointers as argument. See manual pages for
data types with destructors.

• Accept NULL pointer as status argument.
For those applications that do not care about the reason behind an operation failure, it can
pass in a NULL pointer for status argument in the context and attribute operations, and a
NULL pointer for status argument in the string-related operations.

• Add FN_E_ATTR_IN_USE status code.

• Add description of fn_status_description () in FN_status_t reference manual page.

• Add fn_composite_name_from_str ().
A common operation that applications perform is to convert a C-string to an
FN_composite_name_t structure. This provides a single operation for achieving this instead
of using multiple operations.

• Clarify compound name syntax model:

— state that escapes and quotes are optional attributes

— make pair up of multiple begin and end quotes possible by changing multivalued quotes
attribute into two single-valued ones

— add rule that escaping a non-meta character returns the non-meta character itself.

See Section 3.8 on page 50 and reference manual page for XFN_compound_syntax.

• Specify semantics of fn_ctx_rename() with respect to attributes.
Any attributes associated with the old name becomes associated with the new name. See

Federated Naming: The XFN Specification xv

Preface

reference manual page for fn_ctx_rename().

• Specify semantics of fn_ctx_bind() with respect to attributes.
In naming systems that support attributes and store the attributes along with the names,
when binding a reference in non-exclusive mode, any attributes associated with the former
binding are removed. See reference manual page for fn_ctx_bind().

• Separate Integrating File Services from the Policies for the Enterprise Namespace
appendix:

— make Integrating File Services into a separate appendix

— delete reference to /... to prevent conflict with DCE.

• Drop FN_ID_ISO_OID_BER from list of FN_identifier_t formats.
FN_ID_ISO_OID_BER is extraneous because of the presence of FN_ID_ISO_OID_STRING.

• Modify semantics of fn_ctx_lookup_link ().
Instead of failing when the name is not bound to an XFN link, fn_ctx_lookup_link () returns
the reference bound to the given name. See Section 3.2.4.10 on page 24 and
fn_ctx_lookup_link () on page 156.

• Correct error return of fn_ctx_unbind().
fn_ctx_unbind() returns [FN_E_NAME_IN_USE] instead of
[FN_E_OPERATION_NOT_SUPPORTED] when name cannot be unbound.

• Clarify descriptions in the Registry of Types, Identifiers and Code Sets appendix.

• Add entries in the Registry of Types, Identifiers and Code Sets appendix.

• Change opaque buffer locale_info, represented in FN_string_t and XFN syntax attributes, to
be language/territory pair.

A language/territory pair of registered identifiers is used to identify locale-specific character
string representations.

• Update the XFN Protocols appendix to reflect XFN API changes betwen the Preliminary and
CAE specification.

• Change XFN ONC protocol to allow for batching.

• Correct typographical errors.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

xvi X/Open CAE Specification

Preface

— functions; these are shown as follows: name(); names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
construct.

• The notation [ABCD] is used to identify an error value ABCD.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items. In syntax the | symbol is used to separate alternatives, and ellipses (...) are used to
show that additional arguments are optional.

• Shading is used to highlight sections of this specification which are at Preliminary
Specification (not CAE Specification) status. Only the first (explanatory) paragraph of the
affected section is shaded, to avoid excessive use of the shading feature.

Federated Naming: The XFN Specification xvii

Trade Marks

UNIX is a registered trade mark of UNIX System Laboratories Inc. in the U.S.A. and other
countries.

X/OpenTM and the "X" device are trade marks of X Company Ltd. in the U.K. and other
countries.

xviii X/Open CAE Specification

Acknowledgements

This document includes text excerpted and/or derived from the Solaris FNS Guide and other
documents from SunSoft, with the permission of SunSoft.

Federated Naming: The XFN Specification xix

Referenced Documents

The following documents are referenced in this specification:

Internet RFC 1034
Domain Names — Concepts and Facilities. Mockapetris, P.V. November 1987.

Internet RFC 1035
Domain names — Implementation and Specification. Mockapetris, P.V. November 1987.

ISO 646
ISO 646: Information Processing Systems — ISO 7-Bit Coded Character Set for Information
Exchange, 1991, International Reference Version.

ISO 10646
ISO/IBC 10646: Information Processing Systems — Universal Multi-Octet Coded Character
Set (UCS), 1993.

ISO ASN.1
ISO 8824: Information Processing Systems — Open Systems Interconnection —
Specification of Abstract Syntax Notation One (ASN.1), 1990.

ISO BER
ISO 8825: Information Processing Systems — Open Systems Interconnection —
Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1), 1990.

ISO 8859-1
ISO 8859-1: 1987, Information Processing Systems — 8-bit Single-byte Coded Graphic
Character Sets.

ISO C
ISO/IEC 9899: 1990, Programming Languages — C (which is technically identical to ANS
X3.159-1989, Programming Language C).

CCITT X.500 (1988/1993)/ISO Directory
ISO/IEC 9594: 1988, 1993, Information Technology — Open Systems Interconnection — The
Directory.

ISO Country Codes
ISO 3166: 1988, Codes for the Representation of Names of Countries.

DCE RFC 40.1
S. Martin O’Donnell (OSF), ‘‘OSF Character And Code Set Registry’’, June 1994, available
per email request to cs_registry@osf.org

X/Open DCE RPC
X/Open Preliminary Specification, October 1993, X/Open DCE : Remote Procedure Call
(ISBN: 1-872630-95-2).

X/Open DCE Directory
X/Open Preliminary Specification, December 1993, X/Open DCE: Directory Services (ISBN:
1-85912-012-P314).

Solaris FNS Guide
Solaris Federated Naming Service Guide, September 1993.

Solaris NIPG
Solaris Network Interface Programming Guide for Solaris 2.3, October 1993.

xx X/Open CAE Specification

Referenced Documents

Administering NIS+
All About Administering NIS+, Ramsey, R. SunSoft Press (ISBN: 0-13-068800-2).

Federated Naming: The XFN Specification xxi

Referenced Documents

xxii X/Open CAE Specification

Chapter 1

Introduction

1.1 Motivation
A fundamental facility in any computing system is the naming service — the means by which
names are associated with objects, and by which objects are found given their names. The
naming service provides operations for:

• associating (binding) names to objects

• resolving names to objects

• removing bindings, listing names, renaming and so on.

In traditional systems, a naming service is seldom a separate service. It is usually integrated
with another service, such as a file system, directory service, database, desktop, mail system,
spreadsheet, or calendar. For example, a file system includes a naming service for files and
directories; an X.500 directory service combines a naming service with an information service;
and a spreadsheet has a naming service for cells and macros.

1.1.1 Uniform Naming Interface

There is a great degree of diversity and incompatibility amongst existing naming services, due in
part to different requirements of scalability, performance, granularity, naming policy, and in part
because naming is often embedded in specific services, such as the file system, and accessed only
through that service’s interface. Not only do the naming interfaces differ widely but the essential
naming operations are obscured.

At present, there is no naming interface that includes the basic naming operations that any
naming service can support. Applications use the interface of a specific service that provides
naming functionality. This means that the application is not portable to an environment where
the equivalent naming functions are provided by a different service. Even within the same
environment, it is not easy to replace the underlying naming service with a different one. The
resulting impediments to building well-integrated distributed systems are substantial.

A standard naming interface that supports the basic naming functionality can help overcome
these problems. The standard naming interface would define a uniform interface to a large class
of naming systems fitting a general model.

The use of a standard naming interface will help improve the modularity and flexibility of the
distributed computing platform. It will allow the basic naming operations supported by
different types of naming services to be applied uniformly without requiring changes to the
client.

Federated Naming: The XFN Specification 1

Motivation Introduction

1.1.2 Composite Name Support

Most applications that were originally conceived and developed for single machine
environments use only a single naming service. Even when these applications are evolved to
work in a distributed environment, they have very limited access to objects in the network.
Historically, a small percentage of applications use composite names — names that span
multiple naming systems — for accessing remote objects. The UNIX commands mount and rcp
are examples of such applications. Microsoft Excel for the Apple Macintosh is another. Each
application defines its own composition rule for names, parses the composite names, and
performs resolution of composite names. Composition rules differ from one application to
another. For example, rcp in UNIX uses composite names such as sylvan:/usr/smith/memo,
which has two components: the host name sylvan and the file pathname /usr/smith/memo.
Microsoft Excel for the Apple Macintosh uses composite names such as
HardDisk:Finance:Budgets:Fiscal 1992:Household!B4 which has two components: the
pathname of the spreadsheet HardDisk:Finance:Budgets:Fiscal 1992:Household, and the
spreadsheet cell name, B4.

The user must remember which applications permit composite naming and which do not. For
example, in UNIX, the composite name sylvan:/tmp/foo is accepted by the command rcp, but not
by the command cp. The user must also remember the composition rules. Different composition
rules can be found among different applications, even in the same operating system.
Applications which support composite names on their own can use only a small and specific set
of naming services, and must be changed whenever a new type of naming service is added.

Incorporating composite naming into the operating system permits any application to use
composite names. Some operating systems have incorporated composite naming at the system
level. Two examples are Sun Microsystems Automounter and the OSF DCE Naming Service.
However, these approaches are limited to a fixed number of naming services and are restricted
to services that integrate them.

A federated naming system is an aggregation of autonomous naming systems that cooperate to
offer a standard interface for resolution for composite names. It has the following advantages
over the more traditional specialised approaches to handling composite names:

• A single uniform naming interface is provided to clients.

• The addition of new types of naming services does not require changes to applications, or to
existing member naming systems.

• Any number of naming services can be added, and composite names may have a large
number of components.

• By enabling flexible composition of names from different naming systems, federated naming
facilitates coherent naming by encouraging shared contexts and shared names.

1.1.3 Naming Policy in Federations

The computing environment of an enterprise typically consists of several naming services. There
are naming services that provide contexts for naming common entities in an enterprise such as
organisations, physical sites, human users and computers. Naming services are also
incorporated in applications offering services such as file service, mail service, printer service,
and so on. These different naming services are the result of different requirements. Yet, from a
user’s perspective, there exist several natural and logical relationships between these naming
services. For example, it is natural to think of naming a variety of services such as mail,
appointment calendar, files, and so on., in the context of a user. It is also natural to think of a
user in the context of a department, within a division of an enterprise. Meaningful names can be
composed using useful arrangements of naming services reflecting these relationships.

2 X/Open CAE Specification

Introduction Motivation

If applications are not provided with a common set of policies, naming across applications will
not be logically coherent, even within a homogeneous distributed environment. In addition,
without a common set of policies across distributed computing platforms, applications will have
to deal with gratuitous differences in policies. This not only reduces application portability but
also complicates applications that need to work when spanning more than one type of
distributed computing platform.

1.2 Scope of Specifications
The primary service provided by a federated naming system is to map a composite name to a
reference. A composite name is composed of name components from one or more naming
systems. A reference consists of one or more communication endpoints. An additional service
provided by a federated naming system is to provide access to attributes associated with named
objects. This extension is to satisfy most applications’ additional naming service needs without
cluttering the basic naming service model.

This document contains a specification of programming interfaces for a federated naming
service. Application programming interfaces are specified as well as RPC interfaces. In
addition, this document specifies naming policies to be used in conjunction with a federated
naming service. These specifications are called the XFN specifications.

The primary goals of XFN are:

• to provide a federated naming service interface comprising a set of common naming
operations

• to provide sufficient policy infrastructure to allow applications to construct and use
composite names uniformly.

XFN does not specify administrative interfaces. The administrative models of different
individual naming services vary too widely to permit a useful generic treatment. These are
outside the scope of XFN.

1.3 Relationship to Other Services
XFN provides a uniform interface to a basic set of naming service operations and a means to
federate naming systems. The interface is intended to be implemented over a number of existing
naming services, using their existing programming interfaces and protocols, as well as with new
naming services in the future.

Federated Naming: The XFN Specification 3

Lineage Introduction

1.4 Lineage
The XFN model has been based on the federated naming model ("Ivy") originally developed by
Sun Microsystems Inc. from 1989 to 1991. In 1991, Sun Microsystems provided a description of
Federated Naming requirements in response to X/Open’s interest in this. In May 1993, as a result
of this request, the champions of Federated Naming (Sun, OSF, HP, Siemens Nixdorf, IBM and
DEC) agreed to produce the XFN specifications contained herein.

The XFN model has evolved from the Ivy model in two main aspects. First, it has added a
generalised attribute interface. This aspect has been influenced by the Remote Network
Directory developed by Hewlett-Packard in 1989 and appeared as OSF RFC 18 in 1992. Second,
the XFN model specifies a string representation for composite names which is different from that
specified in Ivy.

Readers interested in the revisions to XFN from the XFN Preliminary Specification (July 1994)
may refer to the Revision History in the Preface.

4 X/Open CAE Specification

Introduction Conformance

1.5 Conformance
XFN conformance has four main facets:

• XFN API

• XFN composite name string representation

• XFN naming policies

• XFN reference and address.

In addition, there are optional components:

• XFN protocols

• XFN context implementations

• XFN enterprise policies.

1.5.1 XFN API

An XFN conformant naming service must provide the following interfaces (Chapter 3):

• base context interface

• base attribute interface

• extended attribute interface

• abstract data types of objects passed across the base context, base attribute and extended
attribute interfaces.

These are specified as C interfaces in the manual pages (Chapter 6). These manual pages are the
definitive source of the API. Conformance to the XFN API is based on the definitions in these
manual pages.

The lookup operation must be enabled. Enabling the remaining operations in the APIs is
optional. However, resolution implicit in any of the other operations must be enabled.

If the naming system being provided is a non-terminal naming system in the federation, support
must be provided to resolve composite names through this naming system.

The following are the optional subcomponents of the XFN API:

• compound name object (FN_compound_name_t)

• XFN Standard Syntax Model for compound names.

1.5.2 XFN Composite Name String Representation

An XFN compliant naming system must specify the string representation of names from its
namespace and how these names will be composed in the string form of an XFN composite
name. Composition adhere to the rules specified in Section 4.1.2 on page 56.

The minimum requirement for all XFN implementations is to support the portable
representation of ISO 646 (same encoding as ASCII) for communication of name strings. All
other representations are optional. See Section 2.5 on page 17.

Federated Naming: The XFN Specification 5

Conformance Introduction

1.5.3 XFN Naming Policies

Naming systems can exist at various levels in a computing environment, providing a range of
naming scope (Section 5.1 on page 71).

For naming systems with a global scope in naming, XFN conformance means that access to
either or both X.500 and Internet Domain Naming System (DNS) must be provided by supplying
in the Initial Context a binding of both the atomic names ‘‘... ’’ and ‘‘/... ’’ to the root of
either or both system (Section 5.3 on page 73). In addition, if DNS is supported, the atomic
name _dns must be present in the Initial Context and be bound to the root of the DNS
namespace. If X.500 is supported, the atomic name _x500 must be present in the Initial
Context and be bound to the root of the X.500 namespace.

It is permissible for XFN conformant naming systems to add policies in addition to those in this
specification.

1.5.4 XFN Reference and Address

Identifiers for the XFN reference types and address types must be supported as described in
Section 3.6.3 on page 42.

An XFN implementation that supports XFN links must use the reference type defined in
Appendix G.

1.5.5 XFN Protocols (Optional)

An XFN implementation is not required to support any particular XFN protocol but if a protocol
for a specific platform is supported, it must comply with the behaviour specified in Appendix A.

In any protocol implementation, the lookup operation must be enabled. Enabling the remaining
operations in the protocol is optional. However, resolution implicit in any of the other
operations must be enabled.

If the naming system that exports the protocol is a non-terminal naming system in the
federation, support must be provided to resolve composite names through this naming system.

An XFN conformant naming system that exports an XFN protocol using DCE IDL must use the
protocol specified in Section A.1. It must provide the following interfaces:

• base context interface

• base attribute interface

• context management interface

• attribute search interface.

The following interface is optional:

• context location interface.

An XFN conformant naming system that exports an XFN protocol using ONC RPCL must use
the protocol specified in Section A.2.

6 X/Open CAE Specification

Introduction Conformance

1.5.6 XFN Context Implementations (Optional)

Implementations that provide the XFN API for the Internet Domain Name Service must conform
to the specification described in Section B.1.

Implementations that provide the XFN API for the CCITT X.500 must conform to the
specification described in Section B.2.

Implementations that provide the XFN API for the DCE CDS must conform to the specification
described in Section B.3.

Implementations that provide the XFN API for the ONC NIS+ must conform to the specification
described in Section B.4.

1.5.7 XFN Enterprise Policies (Optional)

For naming systems with an enterprise-wide scope in naming, an XFN conformant system
should use the policies indicated in Appendix D. This includes providing an enterprise
namespace with the structure described, and using the syntax of names described to name
objects within the enterprise.

Not all policies in Appendix D are applicable in all environments. For example, some
environments may have no notion of users. In an environment where only some of the policies
are meaningful, the parts of the policies that are meaningful are used and those parts that are not
meaningful are not used. There may be gradations of support of XFN enterprise policies among
systems. The purpose of the conformance statement and questionnaire for the XFN Enterprise
Policies of any particular system is to enable the application developer to decide when to use
these policies or some environment-specific policies.

It is permissible for XFN conformant naming systems to add policies for naming objects within
an enterprise in addition to those described in Appendix D.

Federated Naming: The XFN Specification 7

Typographical Conventions Introduction

1.6 Typographical Conventions
The typographical conventions used in this specification are defined at the end of the Preface.

In particular, this specification contains certain material which is assigned X/Open Preliminary
Specification status (not CAE Specification status).

Where this applies to a section, the title of the affected section includes the words Preliminary
Specification. Where it applies to a man-page definition, the word PRELIMINARY appears in
the centre of each page header for that definition. In addition, shading is used in the first
paragraph of each affected section to highlight the preliminary specification status of those
sections.

8 X/Open CAE Specification

Chapter 2

Model and Definitions

This chapter provides an overview of the XFN naming model and a description of the elements
in the model.

2.1 Definitions

2.1.1 Names, References, Bindings, Contexts

Every name is generated by a set of syntactic rules called a naming convention.

An atomic name is an indivisible component of a name, as defined by the naming convention.

A compound name represents a sequence of one or more atomic names composed according to the
naming convention.

For example, in UNIX pathnames, atomic names are ordered from left to right, and are delimited
by slash (’/’) characters. The UNIX pathname usr/local/bin is a compound name representing
the sequence of atomic names, usr, local, and bin. In names from the Internet Domain Naming
System (DNS) , atomic names are ordered from right to left, and are delimited by dot (’.’)
characters. Thus, the DNS name sales.Wiz.COM is a compound name representing the sequence
of atomic names, COM, Wiz, sales.

A naming convention enables the definition of functions for parsing any compound name to
produce its sequence of atomic names. Two basic name parsing functions are first(), that returns
the first atomic component of name, and rest(), that returns the remainder of name after first() is
removed. The following examples illustrate the first() and rest() functions of two different
naming conventions:

first UNIX (usr/local/bin) = usr
rest UNIX (usr/local/bin) = local/bin
first DNS(sales.Wiz.COM) = COM
rest DNS(sales.Wiz.COM) = sales.Wiz

The naming convention also determines equivalence amongst names. For example, the naming
convention for UNIX pathnames regards case as distinguishing, whereas the convention for
Internet DNS is case insensitive. So the UNIX pathname home/smith/memo is not equivalent to
the name home/Smith/memo, while the Internet DNS name sales.Wiz.COM is equivalent to the
name sales.wiz.com.

The reference of an object contains one or more communication endpoints (address).

The association of an atomic name with an object reference is called a binding. For simplicity, an
object reference and the object it refers to are sometimes used interchangeably.

A context is an object whose state is a set of bindings with distinct atomic names. Every context
has an associated naming convention. A context provides a lookup (resolution) operation, which
returns the reference bound to an object, and may provide operations such as for binding names,
unbinding names, listing bound names.

An atomic name in one context object can be bound to a reference to another context object of
the same type, called a subcontext, giving rise to compound names. In the earlier UNIX pathname
example, the atomic name local is bound in the context of usr to a directory context (and
subcontext) in which bin is bound. Resolution of compound names proceeds by looking up

Federated Naming: The XFN Specification 9

Definitions Model and Definitions

each successive atomic component in each successive context. The reader will find a familiar
model in UNIX file naming, where directories serve as contexts, and pathnames may be
compound names.

A naming system is a connected set of contexts of the same type (having the same naming
convention) and providing the same set of operations with identical semantics. In UNIX, for
example, the set of directories in a given file system (and the naming operations on directories)
constitute a naming system.

A naming service is the service offered by a naming system. It is accessed using its interface.

A namespace is the set of all names in a naming system.

2.1.2 Composite Names, Federated Naming Systems

A composite name is a name that spans multiple naming systems. It consists of an ordered list of
zero or more components. Each component is a string name from the namespace of a single
naming system.

A federated naming system is an aggregation of autonomous naming systems that cooperate to
support name resolution of composite names through a standard interface. Each member of a
federation has autonomy in its choice of operations other than name resolution.

A federated naming service is the service offered by a federated naming system.

A federated namespace is the set of all possible names generated according to the policies that
govern the relationships among member naming systems and their respective namespaces.

In a federated naming system, a naming system boundary is the point where the namespace under
the control of one member of the federation ends, and where the namespace under the control of
the next member of the federation begins.

Composite name resolution is the process of resolving a name that spans multiple naming systems.

When one naming system is federated with another naming system, the naming system that is
involved first during composite name resolution is called the superior naming system. The
naming system that is involved next, after resolution through the superior naming system has
completed, is called the subordinate naming system.

10 X/Open CAE Specification

Model and Definitions Elements of the XFN Model

2.2 Elements of the XFN Model

2.2.1 XFN Composite Names

An XFN composite name is a composite name that has the syntactic and structural properties
defined by XFN. XFN defines the basic semantics of composite name resolution, in a manner
analogous to compound name resolution. Individual naming systems determine the resolution
of each component. The composite name resolution process is described in more detail in
Section 4.3 on page 63.

An XFN composite name is represented by the type FN_composite_name_t. Operations are
provided to manipulate the type as a list of string components. For example, the composite
name:

(sales.Wiz.COM, usr/local/bin)

has two components, a DNS name (sales.Wiz.COM) and a UNIX pathname (usr/local/bin).

XFN also defines a standard string form for composite names, and provides functions to
translate from the standard string form to the structural form, and vice-versa. These are
described in detail in Section 4.1 on page 55.

2.2.2 XFN References

An XFN reference consists of a type and a list of addresses. The type at this level is intended to
identify the type of object. An address is an item which can be used with some communication
mechanism to invoke operations on an object or service. Multiple addresses are intended to
identify multiple communication endpoints for a single conceptual object or service. These
multiple addresses may be required because the object is distributed or because the object can be
accessed through more than one communication mechanism. Although the XFN reference
representation does not have a size limit, XFN recommends that they contain address
information of objects, rather than the objects themselves.

An address in an XFN reference consist of an opaque data buffer and an address type identifier.
The address type determines the format and interpretation of the address data. Together, the
address’s type and data should specify the scheme to reach the object. Specifically, they
determine a communication mechanism, an interface over this communication mechanism, and
the object’s address for this communication mechanism. Many specific schemes are possible.
XFN does not specify a particular scheme in general. However, XFN does specify the
interpretation of certain types of addresses encountered during the resolution of composite
names. Appendix G contains a list of these address types.

Because the types of addresses and the communication mechanisms that can be represented are
not restricted, the XFN specifications do not imply any specific properties of addresses such as
their stability, validity, or reachability. The ability of a client to lookup a name carries no
guarantee that the client can use the returned reference. The client may not have support for any
of the necessary communication mechanisms, or may lack the necessary network connectivity to
reach the address. The address may be invalid from that origin, or stale; these issues are the
province of convention between the name’s binder, the clients, and the service provider specified
in the address.

In a context, a name must be bound to a reference. Some naming services may not always have
reference information for all names in their contexts; for those names, such naming services may
return a special reference whose type indicates that the name is not bound to any address. This
reference may be naming service-specific or it may be the conventional NULL reference defined
in Appendix G.

Federated Naming: The XFN Specification 11

Elements of the XFN Model Model and Definitions

2.2.3 XFN Context

An XFN context is a context that exports the XFN context interface described in Section 3.2 on
page 20.

In an XFN context, an atomic name is bound to an XFN reference.

2.2.4 XFN Initial Context

Every XFN name is interpreted relative to some context, and every XFN naming operation is
performed on a context object. The XFN interface provides a function that allows the client to
obtain an initial context object that provides a starting point for resolution of composite names.

XFN policies described in Chapter 5 and optional additional policies described in Appendix D
specify a set of names that the client can expect to find in this context and the semantics of the
bindings. This provides the initial pathway to other XFN contexts.

2.2.5 XFN Links

An XFN link is a special form of XFN reference which has a composite name as an address. Like
any other type of XFN reference, an XFN link is bound to an atomic name in an XFN context.

Normal resolution of names in context operations always follows XFN links. See Section 4.4 on
page 69 for details of how resolution is affected by links.

A link is bound to a name using the normal bind operation, and unbound using the normal
unbind operation. Operations are provided for constructing a link from a composite name.
Since normal resolution always follows links, a separate operation is provided to lookup the link
itself.

Many naming systems support a native notion of link that may be used within the naming
system itself. XFN does not specify whether there is any relationship between such native links
and XFN links.

2.2.6 XFN Attributes

Each named object is associated with a set of zero or more XFN attributes. Each attribute in the
set has a unique attribute identifier, an attribute syntax, and a set of zero or more distinct attribute
values.

As is the case with XFN references, the XFN attribute representation does not have a size limit.
However, XFN recommends that XFN attributes be used to store attribute information about an
object, rather than store the object itself.

XFN defines the base attribute interface for examining and modifying the values of attributes
associated with existing named objects. These objects may be contexts or other types of objects.
XFN also defines additional interfaces for doing attribute-based searches.

XFN specifies that the attribute set associated with a context contains the attribute
fn_syntax_type , which describes how the context parses compound names (see Section 3.8 on
page 50).

12 X/Open CAE Specification

Model and Definitions XFN Usage and Implementation Models

2.3 XFN Usage and Implementation Models
This section describes how the XFN interface can be used and implemented. The usage model is
from a client’s perspective. The implementation model is from a service provider’s perspective.

2.3.1 Basic Usage Model

Most clients of the XFN interface will only be interested in lookups. Their usage of the XFN
interface will amount essentially to:

• obtaining the Initial Context

• looking up one or more names relative to the Initial Context.

Once the client obtains a desired reference, it constructs a client-side representation of the object
from the reference. This need not involve code within the application layer. For example, RPC
services can provide clients with a means of constructing client-side handles from a composite
name for the service, or from a reference containing an RPC address for the service. After
getting this handle, the client performs all further operations on the object or service by
supplying the handle.

This is the basic model of how the XFN interface is expected to be used. The XFN enterprise
policies presented in Appendix D further encourage a bind/lookup model for how services and
clients may rendezvous through the use of the naming service.

Applications may also use federated naming services indirectly through other interfaces. For
example, consider a UNIX application that obtains a filename that it later supplies to the UNIX
open() function. If the system provides XFN support for resolution of filenames, the application
need not be aware that the strings it deals with are composite names rather than the traditional
local pathnames. Some applications can thereby support the use of composite names without
modification.

2.3.2 Basic Implementation Model

The XFN specifications do not dictate a specific way of providing support for the XFN interface.
The implementor has great flexibility in terms of how to provide implementations of the XFN
service for new and existing naming systems in different environments, based on different
requirements in those environments. A potential implementor may find the basic model
described below useful in order to understand how to provide the required functionality. This
model and additional models are described in more detail in Appendix C, which provides the
implementor guidelines on how different configurations of XFN with new and existing naming
systems might be implemented.

The XFN client interface can be implemented in a layered manner. Figure 2-1 shows examples of
this approach for a few existing naming services.

The top layer (labeled XFN API) is the XFN client interface with which callers interact directly. It
implements the types of parameters used in the XFN interface.

In the bottom layer (labeled Context Implementation) are implementations of the XFN interface
over specific naming services. Each such implementation over a specific naming service is based
on knowledge of that naming service and essentially maps the XFN interface onto that service.
It is expected that most of these implementations will work over existing naming services using
the existing naming service interfaces and protocols.

Alternatively, the bottom layer could be a generic implementation that supports the XFN
interface using a client/server model instead of a naming service-specific implementation. For
example, there could be an XFN/DCE service to which the client invokes XFN requests. No

Federated Naming: The XFN Specification 13

XFN Usage and Implementation Models Model and Definitions

particular naming service-specific implementation or generic implementation is a mandatory
component of XFN.

The middle layer (labeled XFN Framework) implements operations that span naming systems
using interfaces presented in the bottom layer. This layer is responsible for guiding composite
name resolution and invoking the proper operations for each context as required.

resolver APIXDS

DUA

DSA

X.500 protocol RFC 1035

DNS server

libresolv

XFN

XFN ONC RPC

XFN API

XFN
Framework

Client application

Composite Names

XFN DCE RPC

XFN
server

CDS NIS+ BST

server

Legend
XFN API

XFN Framework

Context Implementation

XFN Client

BST
CDS
DNS
DSA
DUA
NIS+

Banyon Street Talk
DCE Cell Directory Service
Internet Domain Naming System
X.500 Directory Service Agent
X.500 Directory User Agent
ONC Network Information Service Plus

Figure 2-1 Example of an Implementation Model

14 X/Open CAE Specification

Model and Definitions Relationship of XFN to other Naming-related Services

2.4 Relationship of XFN to other Naming-related Services

2.4.1 Security

XFN does not define a security model nor a common security interface for contexts. Security-
related operations, such as those required for authentication or access control, fall into the
category of administrative interfaces which are expected to differ widely amongst federation
members. Any single choice of security model at the XFN layer is prone to be fundamentally
incompatible with the security provided by other direct interfaces, thereby giving rise to
inconsistent protection that is susceptible to compromise. Consequently, the security
administration interface is kept entirely separate from the federated naming service interface,
outside the scope of XFN.

XFN does, however, provide means by which security can be integrated with specific XFN
implementations. Operations that fail due to security-related problems can indicate in the status
code the nature of the failure.

Authentication

Authentication is to be handled in the modules that implement the service interfaces for each
particular member naming system. It occurs as part of the communication that occurs between
the client and the naming service. Significant engineering issues remain when multiple security
mechanisms and administrative domains are involved. These problems can be addressed on a
one-to-one basis, or via a general federated security model, outside the scope of XFN.

XFN provides the status code [FN_E_AUTHENTICATION_FAILURE] to indicate that an
operation failed due to authentication errors.

Access Control

Given the ability to authenticate the principal making a service request, a context service
provider must then decide whether this principal should be granted or denied the request.
Access control is to be handled through additional interfaces in the specific contexts. This can be
done by having operations that control default authorisation at context creation and binding
creation times, and having interfaces that modify the current authorisation settings. This is
analogous to the umask and chmod scheme for POSIX.1 files.

The access control model is outside the scope of XFN.

XFN provides the status codes [FN_E_CTX_NO_PERMISSION] and
[FN_E_ATTR_NO_PERMISSION] to indicate that an operation failed due to access control
errors. In the case that the principal is not authorised to know that access has been denied due
to permission problems, the status code [FN_E_NAME_NOT_FOUND] or
[FN_E_NO_SUCH_ATTRIBUTE] is returned.

Federated Naming: The XFN Specification 15

Relationship of XFN to other Naming-related Services Model and Definitions

2.4.2 Caching

Caching techniques are primarily used for performance improvement. Any aspect of the
mechanism that manifests to the client interface is specific to the implementation. Each
underlying naming service typically has its own caching mechanism, with its own specific
strategies for caching and cache invalidation. Hence, caching at the federation level is not
necessary, nor is it likely to be substantially helpful if naming service-specific caches can be
reached without doing expensive operations. Caching services such as prefix caching at
component boundaries may be supported but should be designed so as not to counter the
intended semantics provided by naming service-specific caches.

Caching interfaces for context service providers are outside the scope of XFN.

2.4.3 Replication

Naming services typically use replication to improve fault tolerance and possibly provide better
failure semantics through group masking of the underlying server failures.

The XFN model is designed to accommodate and maximise the intended benefits of different
replication models. For example, the semantics of the unbind operation are defined so as to not
need precise serialising capabilities — semantics that can be readily supported by most existing
replication schemes.

XFN references provide a flexible means by which replication can be supported. An XFN
reference can have multiple addresses. Some naming services can choose to use this capability
to support replication. Others might encode service location information in one address, and use
the facilities provided by the client side of the naming service for service location and selection.

Interfaces for administering replication are outside the scope of XFN.

16 X/Open CAE Specification

Model and Definitions XFN and Internationalisation

2.5 XFN and Internationalisation
Within XFN, different representations (encodings) may be used to represent character strings.
The possible representations can be classified into one of the following:

Portable representation
This is the set of characters listed in Section 4.1.2 on page 56. The encoding used for the
portable representation is ISO 646 (same encoding as ASCII). Use of characters within the
portable representation guarantees that the character strings are handled correctly by all
implementations. All XFN implementations are required to support the portable characters
for component names.

Locale-specific representation
This is the set of locale-specific characters whose representation is implementation-
dependent. Use and proper handling of strings that consist of locale-specific characters is
implementation-dependent. Support for locale-specific representations is optional for XFN
implementations.

Universal representation
This is a single format into which all character strings, and thus, all characters within all
strings, can be converted. The encoding used for the universal representation is UTF-8 (also
known as File System Safe UCS Transformation Format, FSS-UTF) form of ISO 10646. Use
and proper handling of strings consisting of characters in the universal representation is
implementation-dependent. Support for universal representations is optional for XFN
implementations.

For all representations, XFN provides the ability to associate locale-specific information with
strings. Specifically, this information includes the encoding (code set/character set), byte size,
character count, and language/territory. Code set information within XFN is specified by an
OSF code set registry currently defined in DCE RFC 40.1. This registry is being extended to
include language/territory registration.

Names that are in the portable representation maximise the benefits of portability and world-
wide interoperability. Names that use characters other than the portable representation might
improve local usability at the expense of portability and interoperability.

Specially defined XFN characters and names have the same encoding as they would in ISO 646
unless qualified otherwise.

Federated Naming: The XFN Specification 17

Model and Definitions

18 X/Open CAE Specification

Chapter 3

Interface Overview

This chapter presents an overview of the XFN client interfaces.

The XFN client interfaces consist primarily of two basic interfaces — the basic context interface
and the basic attribute interface — and one extended attribute interface.

The base context interface provides the operations for naming, such as binding a name to a
reference, looking up the reference bound to a name, unbinding a name.

The base attribute interface provides operations to examine and modify attributes associated
with named objects.

The XFN client interface also contains an extended attribute interface consisting of operations to
do searching and creation of objects in the namespace with attributes.

In addition, the XFN interface contains:

• operations on the status object and status codes used in the context and attribute operations

• a number of abstract data types defined to represent objects passed to and returned from the
context and attribute operations, such as composite names, references and attributes. The
XFN client interface defines these types and operations on these types.

• a standard model and operations for parsing compound names, whose syntax is specific to a
naming system. These are of primary interest to service implementors.

• operations for manipulating objects that are used to specify the criteria of extended search
operations.

An overview of these are provided in this chapter; detailed descriptions of them are given in
Chapter 6.

3.1 Naming Conventions of the C Interface
The XFN interface is presented in ISO standard C, which is equivalent to ANSI standard C (see
reference ISO C).

The symbols defined by the interface are prefixed by ‘‘fn_’’ or ‘‘FN_’’, for ‘‘Federated Naming’’.

The ‘‘FN_’’ prefix is used for data types and predefined constants.

The ‘‘fn_’’ prefix is used for function names.

Predefined constants appear in all upper case.

Names of functions in the base context interface have the prefix ‘‘fn_ctx_’’.

Names of functions in the attribute interfaces have the prefix ‘‘fn_attr_’’.

Federated Naming: The XFN Specification 19

The Base Context Interface Interface Overview

3.2 The Base Context Interface
This section describes the operations in the base context interface. The interfaces of the
parameters and return values of these operations are described in Section 3.6 on page 42.

3.2.1 Names in Context Operations

In most of the operations of the base context interface, the caller supplies a context and a
composite name argument. The supplied composite name is always interpreted relative to the
supplied context.

The operation may eventually be effected on a different context called the operation’s target
context. Each operation has an initial resolution phase that conveys the operation to its target
context, following which the operation is applied. The effect (but not necessarily the
implementation) is that of:

1. doing a lookup on that portion of the name that represents the target context

and then:

2. invoking the operation on the target context.

The contexts involved only in the resolution phase are called intermediate contexts.

Normal resolution of names in context operations always follows XFN links.

3.2.2 Requirements for Supporting the Context Operations

The lookup operation, fn_ctx_lookup (), must be supported by all contexts. Contexts may indicate
that they do not support other operations by returning a
[FN_E_OPERATION_NOT_SUPPORTED] status code (see Section 3.5 on page 37).

XFN contexts are required to support the resolution phase of every operation in the XFN base
context and attribute interfaces when involved in the operation as intermediate contexts. That is,
each intermediate context must participate in the process of conveying the operation to the
target context, even if it does not support that operation itself. For example, though not all XFN
contexts need allow binding and listing names, they must support the resolution phase of these
operations.

A name is passed to an XFN context implementation in a structural form as an ordered sequence
of components. When resolving a name, the context implementation is responsible for:

1. determining which set of leading components it must resolve

2. resolving that portion to a reference

3. returning a status object containing this reference and the portion of the name unresolved.

More discussion on this topic appears in Section 4.3 on page 63.

3.2.3 Status Objects

In each context operation, the caller may supply an FN_status_t parameter, which the called
function will set as described in Section 3.5 on page 37. The caller may supply a NULL pointer
for this parameter, in which case, no status information is returned.

This holds true for each operation in the base context interface and will not be restated in the
individual operation descriptions.

20 X/Open CAE Specification

Interface Overview The Base Context Interface

3.2.4 Context Operations

This section describes each context operation, its syntax (in C) and semantics.

3.2.4.1 Construct Handle to Initial Context

Interface:

FN_ctx_t *fn_ctx_handle_from_initial(
unsigned int authoritative ,
FN_status_t * status);

Description:

This operation returns a handle to the caller’s Initial Context. On successful return, the handle
points to a context which meets the specification of the XFN Initial Context described in Section
5.3 on page 73.

authoritative specifies whether the handle to the Initial Context returned should be authoritative
with respect to information the context obtains from the naming service. When the flag is non-
zero, subsequent operations on this context handle will access the most authoritative
information. When authoritative is zero, the handle to the Initial Context returned need not be
authoritative. Authoritativeness is determined by specific naming services.

3.2.4.2 Lookup

Interface:

FN_ref_t *fn_ctx_lookup(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

Description:

This operation returns the reference bound to name relative to the context ctx.

3.2.4.3 List Names

Interface:

FN_namelist_t *fn_ctx_list_names(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

FN_string_t *fn_namelist_next(
FN_namelist_t * nl ,
FN_status_t * status);

void fn_namelist_destroy(
FN_namelist_t * nl);

Description:

This set of operations is used to list the names bound in the target context named name relative
to the context ctx. name must name a context. If the intent is to list the contents of ctx, name
should be an empty composite name.

Federated Naming: The XFN Specification 21

The Base Context Interface Interface Overview

The call to fn_ctx_list_names () initiates the enumeration process for the target context. It returns
a handle to an FN_namelist_t object that can be used to enumerate the names in the target
context.

The operation fn_namelist_next() returns the next name in the enumeration identified by nl and
updates nl to indicate the state of the enumeration. Successive calls to fn_namelist_next() using
nl return successive names in the enumeration and further update the state of the enumeration.
fn_namelist_next() returns a NULL pointer when the enumeration has been completed.

fn_namelist_destroy () is used to release resources used during the enumeration. This may be
invoked before the enumeration has completed to terminate the enumeration.

The names enumerated using the list names operations are not ordered in any way. There is no
guaranteed relation between the order in which names are added to a context and the order of
names obtained by enumeration. The specification does not guarantee that any two series of
enumerations will return the names in the same order.

When a name is added to or removed from a context, this may not necessarily invalidate the
enumeration handle that the client holds for that context. If the enumeration handle remains
valid, the update may or may not be visible to the client.

3.2.4.4 List Bindings

Interface:

FN_bindinglist_t *fn_ctx_list_bindings(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

FN_string_t *fn_bindinglist_next(
Fn_bindinglist_t * bl ,
FN_ref_t ** ref ,
FN_status_t * status);

void fn_bindinglist_destroy(
Fn_bindinglist_t * bl);

Description:

This set of operations is used to list the names and bindings in the target context named by name
relative to the context ctx. name must name a context. If the intent is to list the contents of ctx,
name should be an empty composite name.

The semantics of these operations are similar to those for listing names. In addition to a name
string being returned, fn_bindinglist_next () also returns the reference of the binding for each
member of the enumeration.

3.2.4.5 Bind

Interface:

int fn_ctx_bind(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_ref_t * ref ,
unsigned int exclusive ,
FN_status_t * status);

22 X/Open CAE Specification

Interface Overview The Base Context Interface

Description:

This operation binds the supplied reference ref to the supplied composite name name, resolved
relative to ctx. The binding is made in the target context — that named by all but the terminal
atomic part of name. The operation binds the terminal atomic name to the supplied reference in
the target context. The target context must already exist.

The value of exclusive determines what happens if the terminal atomic part of the name is
already bound in the target context. If exclusive is non-zero and name is already bound, the
operation fails. If exclusive is zero, the new binding replaces any existing binding.

The value of ref cannot be NULL. If the intent is to reserve a name using the fn_ctx_bind()
operation, a reference containing no address should be bound. This reference may be naming
service-specific or it may be the conventional NULL reference defined in Appendix G.

3.2.4.6 Unbind

Interface:

int fn_ctx_unbind(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

Description:

This operation removes the terminal atomic name in name from the target context — that named
by all but the terminal atomic part of name.

This operation is successful even if the terminal atomic name was not bound in the target
context, but fails if any of the intermediate names are not bound. fn_ctx_unbind() is idempotent.

3.2.4.7 Rename

Interface:

int fn_ctx_rename(
FN_ctx_t * ctx ,
const FN_composite_name_t * oldname ,
const FN_composite_name_t * newname,
unsigned int exclusive ,
FN_status_t * status);

Description:

This operation binds the reference currently bound to oldname, resolved relative to ctx, to the
name newname, and unbinds oldname. newname is resolved relative to the target context — that
named by all but the terminal atomic part of oldname.

If exclusive is zero, rename overwrites any old binding of newname. If exclusive is non-zero, the
operation fails if newname is already bound.

The only restriction that XFN places on newname is that it be resolved relative to the target
context. XFN does not specify further restrictions on newname. For example, in some
implementations, newname might be restricted to be a name in the same naming system as the
terminal component of oldname. In another implementation, newname might be restricted to be an
atomic name.

Federated Naming: The XFN Specification 23

The Base Context Interface Interface Overview

3.2.4.8 Create Subcontext

Interface:

FN_ref_t *fn_ctx_create_subcontext(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

Description:

This operation creates a new XFN context of the same type as the target context — that named
by all but the terminal atomic component of name — and binds it to the composite name name
relative to the context ctx, and returns a reference to the newly created context.

As with the bind operation, the target context must already exist. The new context is created
and bound in the target context using the terminal atomic name in name.

The operation fails if the terminal atomic name already exists in the target context.

The new subcontext is an XFN context and is created in the same naming system as the target
context. XFN does not specify any further properties of the new subcontext. The target context
and its naming system determine these.

3.2.4.9 Destroy Subcontext

Interface:

int fn_ctx_destroy_subcontext(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

Description:

This operation destroys the subcontext named by name, interpreted relative to ctx, and unbinds
the name.

As in the unbind operation, the operation succeeds if the terminal atomic name is not bound in
the target context — that named by all but the terminal atomic name in name.

Some aspects of this operation are not specified by XFN, but are determined by the target
context and its naming system. For example, XFN does not specify what happens if the named
subcontext is non-empty when the operation is invoked.

3.2.4.10 Lookup Link

Interface:

FN_ref_t *fn_ctx_lookup_link(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

Description:

This operation returns the XFN link bound to name if name is bound to an XFN link; otherwise, it
returns the reference bound to name.

The normal fn_ctx_lookup () operation follows all links encountered, including any bound to the
terminal atomic part of name. This operation differs from the normal lookup in that when the

24 X/Open CAE Specification

Interface Overview The Base Context Interface

terminal atomic part of name is an XFN link, this link is not followed, and the operation returns
the link.

3.2.4.11 Construct Context Handle from Reference

Interface:

FN_ctx_t* fn_ctx_handle_from_ref(
const FN_ref_t * ref ,
unsigned int authoritative ,
FN_status_t * status);

Description:

This operation creates a handle to an FN_ctx_t object using an FN_ref_t object for that context.

authoritative specifies whether the handle to the context returned should be authoritative with
respect to information the context obtains from the naming service. When the flag is non-zero,
subsequent operations on the context will access the most authoritative information. When
authoritative is zero, the handle to the context returned need not be authoritative.
Authoritativeness is determined by specific naming services.

3.2.4.12 Get Reference to Context

Interface:

FN_ref_t *fn_ctx_get_ref(
const FN_ctx_t * ctx ,
FN_status_t * status);

Description:

This operation returns a reference to the supplied context object.

3.2.4.13 Get Syntax Attributes of Context

Interface:

FN_attrset_t *fn_ctx_get_syntax_attrs(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

Description:

This operation returns the syntax attributes associated with the context named by name relative
to the context ctx.

The syntax attributes are described in Section 3.8 on page 50.

This operation is different from other XFN attribute operations in that these syntax attributes
could be obtained directly from the context. Attributes obtained through other XFN attribute
operations may not necessarily be associated with the context; they may be associated with the
reference of the context, rather than the context itself (see Section 3.3.2 on page 27).

Federated Naming: The XFN Specification 25

The Base Context Interface Interface Overview

3.2.4.14 Destroy Context Handle

Interface:

void fn_ctx_handle_destroy(FN_ctx_t * ctx);

Description:

This operation destroys the context handle ctx and allows the implementation to free resources
associated with the context handle. This operation does not affect the state of the context itself.

3.2.4.15 Construct an Equivalent Name: Preliminary Specification

This section is assigned X/Open Preliminary Specification status (not CAE Specification
status). For explanation of the difference between Preliminary and CAE specifications, see the
description under X/Open Technical Publications in the Preface.

Interface:

FN_composite_name_t *fn_ctx_equivalent_name(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_string_t * leading_name ,
FN_status_t * status);

Description:

Given the name of an object name relative to the context ctx, this operation returns an equivalent
name for that object, relative to the same context ctx, that has leading_name as its initial atomic
name. Two names are said to be equivalent if they have prefixes that resolve to the same
context, and the parts of the names immediately following the prefixes are identical.

If an equivalent name cannot be constructed, the value 0 is returned and the status argument is
set appropriately.

26 X/Open CAE Specification

Interface Overview The Base Attribute Interface

3.3 The Base Attribute Interface
This section describes the operations in the base attribute interface. The interfaces of the
parameters and return values of these operations are described in Section 3.6 on page 42.

3.3.1 XFN Attribute Model

XFN assumes the following model for attributes. A set of zero or more attributes is associated
with a named object. Each attribute in the set has a unique attribute identifier, an attribute
syntax and a set of zero or more distinct attribute values. Each attribute value has an opaque
data type. The attribute identifier serves as a name for the attribute. The attribute syntax
indicates how the value is encoded in the buffer.

The operations in the base attribute interface may be used to examine and modify the settings of
attributes associated with existing named objects. These objects may be contexts or other types
of objects.

The range of support for attribute operations may vary widely. Some naming systems may not
support any attribute operations. Other naming systems may only support read operations, or
operations on attributes whose identifiers are in some fixed set. A naming system may limit
attributes to have a single value, or may require at least one value. Some naming systems may
only associate attributes with context objects, while others may allow associating attributes with
non-context objects.

The resolution phase of every attribute operation must be supported.

Typically, attributes of an object are manipulated through operations that operate on a single
attribute, such as reading or updating a single attribute. In addition, it is expected that a client is
able to read all attribute values of a single attribute in one call. However, sometimes there is a
requirement to manipulate several attributes of a single object, or to obtain individual attribute
values of a single attribute from the naming service. To address these requirements, XFN
defines two kinds of attribute operations:

• single attribute operations

• multiple value and multiple attribute operations.

3.3.2 Relationship to Naming Operations

In XFN, an attribute operation using a composite name is not necessarily equivalent to an
independent fn_ctx_lookup () operation followed by an attribute operation in which the caller
supplies the resulting reference and an empty name. This is because there are a range of attribute
models in which an attribute is associated with a name in a context, or an attribute is associated
with the object named, or both. XFN accommodates all of these alternatives. Invoking an
attribute operation using the target context and the terminal atomic name accesses either the
attributes that are associated with the target name or target named object — this is dependent on
the underlying attribute model. This document uses the term attributes associated with a named
object to refer to all of these cases.

XFN provides no guarantee about the relationship between the attributes and the reference
associated with a given name. Some naming systems may store the reference bound to a name in
one or more attributes associated with a name. Attribute operations might affect the information
used to construct a reference.

To avoid undefined results, applications that intend to manipulate references must use the
operations in the context interface and not the attribute operations. Applications should avoid
the use of specific knowledge about how an XFN context implementation over a particular
naming system constructs references.

Federated Naming: The XFN Specification 27

The Base Attribute Interface Interface Overview

3.3.3 XFN Links

Operations in the base attribute interface that involve name resolution accept a follow_link
parameter. The value of follow_link determines the behaviour of the operation when the
terminal atomic part of the name being resolved is bound to an XFN link:

• If follow_link is non-zero, such a link is followed and the attribute associated with the final
named object is examined or modified.

• If follow_link is zero, such a link is not followed.

Any XFN links encountered before the terminal atomic name are always followed.

XFN does not specify how follow_links affects the following of native naming system links.

3.3.4 Status Objects

In each attribute operation, the caller may supply an FN_status_t parameter, which the called
function will set as described in Section 3.5 on page 37. The caller may supply a NULL pointer
for this parameter, in which case, no status information is returned.

This holds true for each operation in the base attribute interface and will not be restated in the
individual operation descriptions.

3.3.5 Single-Attribute Operations

3.3.5.1 Get Attribute

Interface:

FN_attribute_t *fn_attr_get(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_identifier_t * attribute_id ,
unsigned int follow_link ,
FN_status_t * status);

Description:

This operation returns the identifier, syntax and values of a specified attribute for the object
named name relative to ctx. If name is empty, the attribute associated with ctx is returned.

fn_attr_get_values () and its related functions (described below) are for getting individual values
of an attribute and should be used if the combined size of all the values are expected to be too
large to be returned in a single invocation of fn_attr_get ().

3.3.5.2 Modify Attribute

Interface:

int fn_attr_modify(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
unsigned int mod_op,
const FN_attribute_t * attr ,
unsigned int follow_link ,
FN_status_t * status);

28 X/Open CAE Specification

Interface Overview The Base Attribute Interface

Description:

This operation modifies according to mod_op the attribute attr associated with the object named
name relative to ctx. If name is empty, the attribute associated with ctx is modified.

The modification is made on the attribute identified by the attribute identifier of attr. The syntax
and values of attr are use according to the modification operation. The modification operations
are described in Table 3-1.

Operation Code Meaning
Add an attribute with given attribute identifier
and set of values. If an attribute with this
identifier already exists, replace the set of values
with those in the given set. The set of values
may be empty if the target naming system
permits.

FN_ATTR_OP_ADD

Add an attribute with the given attribute
identifier and set of values. The operation fails
with [FN_E_ATTR_IN_USE] if an attribute with
this identifier already exists. The set of values
may be empty if the target naming system
permits.

FN_ATTR_OP_ADD_EXCLUSIVE

Remove the attribute with the given attribute
identifier and all of its values. The operation
succeeds even if the attribute does not exist. The
values of the attribute supplied with this
operation are ignored.

FN_ATTR_OP_REMOVE

Add the given values to those of the given
attribute (resulting in the attribute having the
union of its prior value set with the set given).
Create the attribute if it does not exist already.
The set of values may be empty if the target
naming system permits.

FN_ATTR_OP_ADD_VALUES

Remove the given values from those of the given
attribute (resulting in the attribute having the set
difference of its prior value set and the set
given). This succeeds even if some of the given
values are not in the set of values that the
attribute has. In naming systems that require an
attribute to have at least one value, removing
the last value will remove the attribute as well.

FN_ATTR_OP_REMOVE_VALUES

Table 3-1 XFN Attribute Modification Operations

Federated Naming: The XFN Specification 29

The Base Attribute Interface Interface Overview

3.3.6 Operations on Multiple Values

3.3.6.1 Get Attribute Values

This set of operations allows the caller to obtain attribute values associated with a single
attribute individually.

Interface:

FN_valuelist_t *fn_attr_get_values(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_identifier_t * attribute_id ,
unsigned int follow_link ,
FN_status_t * status);

FN_attrvalue_t *fn_valuelist_next(
FN_valuelist_t * vl ,
FN_identifier_t ** attr_syntax ,
FN_status_t * status);

void fn_valuelist_destroy(
FN_valuelist_t * vl);

Description:

This set of operations is used to obtain the values of a single attribute, identified by attribute_id,
associated with the object named name, resolved in the context ctx. If name is empty, the
attribute values associated with ctx are obtained.

This interface should be used instead of fn_attr_get () if the combined size of all the values is
expected to be too large to be returned by fn_attr_get ().

The operation fn_attr_get_values () initiates the enumeration process. It returns a handle to an
FN_valuelist_t object that can be used for subsequent fn_valuelist_next () calls to enumerate the
values requested.

The operation fn_valuelist_next () returns the next attribute value in the enumeration and
updates vl to indicate the state of the enumeration. It also returns the attribute’s syntax identifier
(this is the same for all values of a single attribute).

The operation fn_valuelist_destroy () frees the resources used during with the enumeration. This
may be invoked before the enumeration has completed to terminate the enumeration.

3.3.7 Operations on Multiple Attributes

These operations allow the caller to specify an operation that operates on multiple attributes
using one or more calls.

The failure semantics of these operations may vary widely across naming systems. In some
systems the single function call may comprise multiple individual naming system operations,
with no guarantees of atomicity.

30 X/Open CAE Specification

Interface Overview The Base Attribute Interface

3.3.7.1 Get Attribute Identifiers

Interface:

FN_attrset_t *fn_attr_get_ids(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
unsigned int follow_link ,
FN_status_t * status);

Description:

This operation returns a list of the attribute identifiers of all attributes associated with the object
named by name relative to the context ctx. If name is empty, the attribute identifiers associated
with ctx are returned.

3.3.7.2 Get Multiple Attributes

Interface:

FN_multigetlist_t *fn_attr_multi_get(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_attrset_t * attr_ids ,
unsigned int follow_link ,
FN_status_t * status);

FN_attribute_t *fn_multigetlist_next(
FN_multigetlist_t * ml ,
FN_status_t * status);

void fn_multigetlist_destroy(
FN_multigetlist_t * ml);

Description:

This set of operations returns one or more attributes associated with the object named by name
relative to the context ctx. If name is empty, the attributes associated with ctx are returned.

The attributes returned are those specified in attr_ids. If the value of attr_ids is 0, all attributes
associated with the named object are returned. Any attribute values in attr_ids provided by the
caller are ignored; only the attribute identifiers are relevant for this operation. Each attribute
(identifier, syntax, values) is returned one at a time using an enumeration scheme similar to that
for listing a context.

fn_attr_multi_get () initiates the enumeration process. It returns a handle to an FN_multigetlist_t
object that can be used for subsequent fn_multigetlist_next () calls to enumerate the attributes
requested.

The operation fn_multigetlist_next () returns the next attribute (identifier, syntax, and values) in
the enumeration and updates ml to indicate the state of the enumeration. Successive calls to
fn_multigetlist_next () using ml return successive attributes in the enumeration and further
update the state of the enumeration.

The operation fn_multigetlist_destroy () frees the resources used during with the enumeration.
This may be invoked before the enumeration has completed to terminate the enumeration.

Implementations are not required to return all attributes requested by attr_ids. Some may
choose to return only the attributes found successfully; such implementations may not

Federated Naming: The XFN Specification 31

The Base Attribute Interface Interface Overview

necessarily return identifiers for attributes that could not be read.

3.3.7.3 Modify Multiple Attributes

Interface:

int fn_attr_multi_modify(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_attrmodlist_t * mods,
unsigned int follow_link ,
FN_attrmodlist_t ** unexecuted_mods ,
FN_status_t * status);

Description:

This operation modifies the attributes associated with the object named name relative to ctx. If
name is empty, the attributes associated with ctx are modified.

In the mods parameter, the caller specifies a sequence of modifications that are to be done in
order on the attributes. Each modification in the sequence specifies a modification operation
code (Table 3-1) and an attribute on which to operate.

If all the modifications were performed successfully, unexecuted_mods is a NULL pointer.

If an error is encountered while performing the list of modifications, status indicates the type of
error and unexecuted_mods is set to a list of unexecuted modifications. The contents of
unexecuted_mods do not share any state with mods; items in unexecuted_mods are copies of items in
mods and appear in the same order in which they were originally supplied in mods. The first
operation in unexecuted_mods is the first one that failed and the code in status applies to this
modification operation in particular. If status indicates failure and a NULL pointer is returned in
unexecuted_mods, that indicates no modifications were executed.

32 X/Open CAE Specification

Interface Overview The Extended Attribute Interface

3.4 The Extended Attribute Interface
The XFN extended attribute interface consists of operations to do searching and creation of
objects in the namespace with attributes.

3.4.1 The Attribute Search Interface: Preliminary Specification

This section (including all its sub-sections) is assigned X/Open Preliminary Specification status
(not CAE Specification status). For explanation of the difference between Preliminary and CAE
specifications, see the description under X/Open Technical Publications in the Preface.

There are two operations in the search interface: a basic search operation which performs
associative lookup in a single context, and an extended search operation that allows the search
criterion to be specified using an expression and allows the scope of the search to encompass a
wider scope than just a single context.

This section gives an overview of these two search operations. The interfaces of the parameters
and return values of these operations are described in Section 3.7 on page 44. The search filter
expression used in the extended search is also described in detail in Section 3.7 on page 44.

3.4.1.1 Basic Search

Interface:

FN_searchlist_t *fn_attr_search(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_attrset_t * match_attrs ,
unsigned int return_ref ,
const FN_attrset_t * return_attr_ids ,
FN_status_t * status);

FN_string_t *fn_searchlist_next(
FN_searchlist_t * sl ,
FN_ref_t ** returned_ref ,
FN_attrset_t ** returned_attrs ,
FN_status_t * status);

void fn_searchlist_destroy(
FN_searchlist_t * sl);

Description:

This set of operations is used to enumerate names of objects bound in the target context named
name relative to the context ctx with attributes whose values match all those specified by
match_attrs. return_ref specifies whether to return the references of named objects in the search
while return_attr_ids specifies the attributes to be returned in the search.

The call to fn_attr_search () initiates the search in the target context. It returns a handle to an
FN_searchlist_t object that is used to enumerate the names of the objects whose attributes
match match_attrs.

Federated Naming: The XFN Specification 33

The Extended Attribute Interface Interface Overview

fn_searchlist_next () returns the next name in the enumeration identified by sl. The reference of
the name, if requested, is returned in returned_ref. The attributes specified by return_attr_ids are
returned in returned_attrs. Successive calls to fn_searchlist_next () using sl return successive
names, and optionally, references and attributes, in the enumeration and further update the state
of the enumeration.

fn_searchlist_destroy () releases resources used during the enumeration. It can be called at any
time to terminate the enumeration.

3.4.1.2 Extended Search

Interface:

FN_ext_searchlist_t *fn_attr_ext_search(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_search_control_t * control ,
const FN_search_filter_t * filter ,
FN_status_t * status);

FN_composite_name_t *fn_ext_searchlist_next(
FN_ext_searchlist_t * esl ,
FN_ref_t ** returned_ref ,
FN_attrset_t ** returned_attrs ,
FN_status_t * status);

void fn_ext_searchlist_destroy(
FN_ext_searchlist_t * esl);

Description:

This set of operations is used to list names of objects whose attributes satisfy the filter expression
filter. The control argument encapsulates the option settings for the search. These options are:

1. the scope of the search. This can be one of:

• search the named object

• search the context named by name.

• search the entire subtree rooted at the context named by name.

• search the context implementation-defined subtree rooted at the context named by
name.

2. whether XFN links are followed during the search

3. a limit on the number of names returned

4. whether the reference associated with the named object is returned

5. which attributes associated with the named object are returned

The filter expression is evaluated against the attributes of the objects bound in the scope of the
search. The filter evaluates to either TRUE or FALSE.

The call to fn_attr_ext_search () initiates the search and, if successful, returns a handle to an
FN_ext_searchlist_t object, esl, that is used to enumerate the names of the objects that satisfy the
filter.

34 X/Open CAE Specification

Interface Overview The Extended Attribute Interface

fn_ext_searchlist_next () returns the next name, and optionally, its reference and attributes, in the
enumeration identified by esl. The name returned is a composite name, to be resolved relative to
the starting context for the search. The starting context is the context named name relative to ctx
unless the scope of the search is only the named object. If the scope of the search is only the
named object, the terminal atomic name is returned. Successive calls to fn_ext_searchlist_next ()
using esl return successive names, and optionally, references and attributes, in the enumeration
and further update the state of the enumeration.

fn_ext_searchlist_destroy () releases resources used during the search and enumeration. It can be
called at any time to terminate the enumeration.

3.4.2 Object Creation With Attributes

There are times when it is useful or necessary to associate attributes with an object at the time
the object is created. The XFN extended attribute interface contains functions that provide these
capabilities. The two functions in this interface, fn_attr_bind () and fn_attr_create_subcontext (),
are analogous to their counterparts in the base context interface, fn_ctx_bind() and
fn_ctx_create_subcontext(), respectively, except the versions in the extended attribute interface
allow an extra parameter for specifying attributes to be associated with the new binding.

3.4.2.1 Bind with Attributes

Interface:

int fn_attr_bind(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_ref_t * ref ,
const FN_attrset_t * attrs ,
unsigned int exclusive ,
FN_status_t * status);

Description:

This operation binds the supplied reference ref to the supplied composite name name relative to
ctx, and associates the attributes specified in attrs with the named object. The binding is made in
the target context — that context named by all but the terminal atomic part of name. The
operation binds the terminal atomic name to the supplied reference in the target context. The
target context must already exist.

The value of exclusive determines what happens if the terminal atomic part of the name is
already bound in the target context. If exclusive is non-zero and name is already bound, the
operation fails. If exclusive is zero, the new binding replaces any existing binding, and attrs, if not
NULL, replaces any existing attributes associated with the named object.

3.4.2.2 Create Subcontext with Attributes

Interface:

FN_ref_t *fn_attr_create_subcontext(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_attrset_t * attrs ,
FN_status_t * status);

Federated Naming: The XFN Specification 35

The Extended Attribute Interface Interface Overview

Description:

This operation creates a new XFN context of the same type as the target context — that named
by all but the terminal atomic component of name — and binds it to the supplied composite
name. In addition, attributes given in attrs are associated with the newly created context. The
target context must already exist. The new context is created and bound in the target context
using the terminal atomic name in name. The operation returns a reference to the newly created
context.

36 X/Open CAE Specification

Interface Overview Status Objects and Status Codes

3.5 Status Objects and Status Codes
The result status of operations in the context interface and the attribute interfaces is
encapsulated in an FN_status_t object. The caller may supply a NULL pointer for this
parameter, in which case, no status information is returned. If the caller supplies an FN_status_t
object to the operation, upon return from the operation, this object will contain information
about how the operation completed: whether an error occurred in performing the operation, the
nature of the error, and information that helps locate where the error occurred. In the case that
the error occurred while resolving an XFN link, the status object contains additional information
about that error.

The context status object consists of several items of information:

primary status code An unsigned int code describing the disposition of the operation.

resolved name In the case of a failure during the resolution phase of the operation,
this is the leading portion of the name that was resolved successfully.
Resolution may have been successful beyond this point, but the error
might not be pinpointed further.

resolved reference The reference to which resolution was successful (in other words, the
reference to which the resolved name is bound).

remaining name The remaining unresolved portion of the name.

diagnostic message This contains any diagnostic message returned by the context
implementation. This message provides the context implementation
a way of notifying the end-user or administrator of any
implementation-specific information related to the returned error
status. The diagnostic message could then be used by the end-user
or administrator to take appropriate out-of-band action to rectify the
problem.

link status code In the case that an error occurred while resolving an XFN link, the
primary status code has the value [FN_E_LINK_ERROR] and the
link status code describes the error that occurred while resolving the
XFN link.

resolved link name In the case of a link error, this contains the resolved portion of the
name in the XFN link.

resolved link reference In the case of a link error, this contains the reference to which the
resolved link name is bound.

remaining link name In the case of a link error, this contains the remaining unresolved
portion of the name in the XFN link.

link diagnostic message In the case of a link error, this contains any diagnostic message
related to the resolution of the link.

Both the primary status code and the link status code are values of type unsigned int that are
drawn from the same set of meaningful values. XFN reserves the values 0 through 127 for
standard meanings. Currently, values and interpretations for the following codes are determined
by XFN.

Federated Naming: The XFN Specification 37

Status Objects and Status Codes Interface Overview

Table 3-2 XFN Status Codes

Code Meaning
The operation succeeded.FN_SUCCESS

When an attribute is being modified using the
operation FN_ATTR_OP_ADD_EXCLUSIVE
and an attribute with the same identifier already
exists, the operation fails with
FN_E_ATTR_IN_USE.

FN_E_ATTR_IN_USE

The caller did not have permission to perform
the attempted attribute operation.

FN_E_ATTR_NO_PERMISSION

The operation attempted to create an attribute
without a value, and the specific naming system
does not allow this.

FN_E_ATTR_VALUE_REQUIRED

The identity of the client principal could not be
verified.

FN_E_AUTHENTICATION_FAILURE

An error occurred in communicating with one of
the contexts involved in the operation.

FN_E_COMMUNICATION_FAILURE

A problem was detected that indicated an error
in the installation of the XFN implementation.

FN_E_CONFIGURATION_ERROR

The operation should be continued using the
remaining name and the resolved reference
returned in the status.

FN_E_CONTINUE

The client did not have permission to perform
the operation.

FN_E_CTX_NO_PERMISSION

(Applies only to fn_ctx_destroy_subcontext ().)
The naming system required that the context be
empty before its destruction, and it was not
empty.

FN_E_CTX_NOT_EMPTY

Service could not be obtained from one of the
contexts involved in the operation. This may be
because the naming system is busy, or is not
providing service. In some implementations this
may not be distinguished from a communication
failure.

FN_E_CTX_UNAVAILABLE

38 X/Open CAE Specification

Interface Overview Status Objects and Status Codes

Code Meaning
The name supplied to the operation was not a
well-formed XFN composite name, or one of the
component names was not well-formed
according to the syntax of the naming system(s)
involved in its resolution.

FN_E_ILLEGAL_NAME

The operation involved character strings of
incompatible code sets, or the supplied code set
is not supported by the implementation.

FN_E_INCOMPATIBLE_CODE_SETS

The operation involved character strings of
incompatible language or territory locale
information, or the specified locale is not
supported by the implementation.

FN_E_INCOMPATIBLE_LOCALES

Either the client or one of the involved contexts
could not obtain sufficient resources (for
example, memory, file descriptors,
communication ports, stable media space, and
so on.) to complete the operation successfully.

FN_E_INSUFFICIENT_RESOURCES

The attribute identifier was not in a format
acceptable to the naming system, or its contents
were not valid for the format specified for the
identifier.

FN_E_INVALID_ATTR_IDENTIFIER

One of the values supplied was not in the
appropriate form for the given attribute.

FN_E_INVALID_ATTR_VALUE

The enumeration handle supplied was invalid,
either because it was from another enumeration,
or because an update operation occurred during
the enumeration, or because of some other
reason.

FN_E_INVALID_ENUM_HANDLE

The syntax attributes supplied are invalid or
insufficient to fully specify the syntax.

FN_E_INVALID_SYNTAX_ATTRS

There was an error encountered resolving an
XFN link encountered during resolution of the
supplied name.

FN_E_LINK_ERROR

Federated Naming: The XFN Specification 39

Status Objects and Status Codes Interface Overview

Code Meaning
A non-terminating loop (cycle) in the resolution
can arise due to XFN links encountered during
the resolution of a composite name. This code
indicates either the definite detection of such a
cycle, or that resolution exceeded an
implementation-defined limit on the number of
XFN links allowed for a single operation
invoked by the caller.

FN_E_LINK_LOOP_LIMIT

A malformed link reference was encountered.FN_E_MALFORMED_LINK

A context object could not be constructed from
the supplied reference, because the reference
was not properly formed.

FN_E_MALFORMED_REFERENCE

(Only for operations that bind names.) The
supplied name was already in use.

FN_E_NAME_IN_USE

Resolution of the supplied composite name
proceeded to a context in which the next atomic
component of the name was not bound.

FN_E_NAME_NOT_FOUND

No equivalent name can be constructed, either
because there is no meaningful equivalence
between name and leading_name , or the system
does not support constructing the requested
equivalent name, for implementation-specific
reasons.

FN_E_NO_EQUIVALENT_NAME

The object did not have an attribute with the
given identifier.

FN_E_NO_SUCH_ATTRIBUTE

A context object could not be constructed from a
particular reference. The reference contained no
address type over which the context interface
was supported.

FN_E_NO_SUPPORTED_ADDRESS

Either one of the intermediate atomic names did
not name a context, and resolution could not
proceed beyond this point, or the operation
required that the caller supply the name of a
context, and the name did not resolve to a
reference for a context.

FN_E_NOT_A_CONTEXT

The operation attempted is not supported.FN_E_OPERATION_NOT_SUPPORTED

40 X/Open CAE Specification

Interface Overview Status Objects and Status Codes

Code Meaning
The operation attempted is returning a partial
result.

FN_E_PARTIAL_RESULT

The filter expression had a syntax error or some
other problem.

FN_E_SEARCH_INVALID_FILTER

An operator in the filter expression is not
supported or, if the operator is an extended
operator, the number of types of arguments
supplied does not match the signature of the
operation.

FN_E_SEARCH_INVALID_OP

A supplied search control option could not be
supported.

FN_E_SEARCH_INVALID_OPTION

The syntax type specified is not supported.FN_E_SYNTAX_NOT_SUPPORTED

The operation attempted to associate more
values with an attribute than the naming system
supported.

FN_E_TOO_MANY_ATTR_VALUES

An error occurred that could not be classified by
any of the other error codes.

FN_E_UNSPECIFIED_ERROR

Federated Naming: The XFN Specification 41

Parameters Used in the Interface Interface Overview

3.6 Parameters Used in the Interface
This section gives an overview of the types of parameters that are passed and returned by
operations in the base context and attribute interfaces. Detailed descriptions of these are in
Chapter 6.

Manipulation of these objects using their corresponding interfaces (described in detail in
Chapter 6) does not affect their representation in the underlying naming system. Changes to
objects in the underlying naming system can only be effected through the use of the interfaces
described in Section 3.2 on page 20, Section 3.3 on page 27 and Section 3.4 on page 33.

3.6.1 Composite Names

A composite name is represented by an object of type FN_composite_name_t. Abstractly, a
composite name is a sequence of components, where each component is a string (of type
FN_string_t) intended to contain a name from a single naming system. (See Section 4.1 on page
55 for a description of composite name syntax and structure.) Operations are provided to iterate
over this sequence, modify it, and compare two composite names.

3.6.2 References and Addresses

An XFN reference is represented by the type FN_ref_t. An object of this type contains a reference
type and a list of addresses. The ordering in this list at the time of binding might not be
preserved when the reference is returned upon lookup.

The reference type is represented by an object of type FN_identifier_t. The reference type is
intended to identify the class of object referenced. XFN does not dictate the precise use of this.

Each address is represented by an object of type FN_ref_addr_t. An address consists of an
opaque data buffer and a type field, again of type FN_identifier_t. The address type is intended
to identify the mechanism that should be used to reach the object using that address. Multiple
addresses in a single reference are intended to identify multiple communication endpoints for
the same conceptual object. Multiple addresses may arise for various reasons, such as the object
offering interfaces over more than one communication mechanism.

The client process must interpret the contents of the opaque buffers based on the type of the
address and the type of the reference. However, this interpretation is intended to occur below
the application layer. Most applications developers should not have to manipulate the contents
of either address or reference objects themselves. These interfaces would generally be used
within service libraries.

3.6.3 Identifiers

Identifiers are used to identify reference types and address types in the reference, and to identify
attributes and their syntax in the attribute operations.

The type FN_identifier_t is used to represent an identifier. It consists of an unsigned int, which
determines the format of identifier, and the actual identifier, which is expressed as a sequence of
octets.

XFN defines a small number of standard forms for identifiers.

42 X/Open CAE Specification

Interface Overview Parameters Used in the Interface

Identifier Format Description
The identifier is an ASCII string (ISO 646).FN_ID_STRING

The identifier is an OSF DCE UUID in string
representation. (See the X/Open DCE RPC.)

FN_ID_DCE_UUID

The identifier is an ISO OID in ASN.1 dot-
separated integer list string format. (See the ISO
ASN.1.)

FN_ID_ISO_OID_STRING

Table 3-3 XFN Identifier Formats

3.6.4 Strings

The FN_string_t type is used to represent character strings in the XFN interface. It provides
insulation from specific string representations.

The FN_string_t supports multiple code sets. An XFN implementation is required to support
ISO 646; all other code sets are optional.

FN_string_t contains operations for string comparison, substring searches and string
manipulation.

3.6.5 Attributes and Attribute Values

An attribute has an attribute identifier, a syntax and a set of distinct values. An attribute is
represented by the type FN_attribute_t. The attribute identifier and its syntax are specified
using an FN_identifier_t. Each value is a sequence of octets, represented by the type
FN_attrvalue_t.

There are operations to allow the construction, destruction and manipulation of an attribute and
its value set.

3.6.6 Attribute Sets

An attribute set is composed of attribute objects with distinct identifiers. Attribute sets are
represented by the type FN_attrset_t.

There are operations to allow the construction, destruction and update of an attribute set.

3.6.7 Attribute Modification Lists

An attribute modification list allows for multiple modification operations to be made on the
attributes associated with a single named object. An attribute modification list is represented by
the type FN_attrmodlist_t. An attribute modification specifier consists of an operation specifier
and an attribute object. The attribute’s identifier indicates the attribute that is to be operated
upon. The attribute’s values are used in a manner depending on the operation. The operation
specifier is one of the values described in Table 3-1 on page 29. The operations are to be
performed in the order in which they appear in the list.

Federated Naming: The XFN Specification 43

Parameters Used in Extended Search: Preliminary Specification Interface Overview

3.7 Parameters Used in Extended Search: Preliminary Specification
This complete section (including all its sub-sections) is assigned X/Open Preliminary
Specification status (not CAE Specification status). For explanation of the difference between
Preliminary and CAE specifications, see the description under X/Open Technical Publications
in the Preface.

There are two types of objects used to specify the scope and details of an extended search
operation:

• the search control options (FN_search_control_t)

• the search filter expression (FN_search_filter_t).

3.7.1 Search Control

The FN_search_control_t object encapsulates the different options that the application can
specify in controlling the scope and the return values of the extended search operation,
fn_attr_ext_search (). These options are:

scope of search
This determines which contexts and objects will be searched.

Scope Meaning
FN_SEARCH_NAMED_OBJECT Search just the given named object.
FN_SEARCH_ONE_CONTEXT Search just the given context.

Search given context and all its
subcontexts.

FN_SEARCH_SUBTREE

Search given context and its
subcontexts as constrained by the
context-specific policy in place at the
named context.

FN_SEARCH_CONSTRAINED_SUBTREE

Default:
{FN_SEARCH_ONE_CONTEXT}.

follow links during search
This determines whether links encountered during the search will be followed. Note that
the initial resolution phase of the operation (the resolution up to the target context) always
follow links. This option controls the following of links after reaching the target context.

Default:
Do not follow links.

maximum names returned
This specifies the maximum number of names to be returned before terminating the search.
A value of 0 indicates that the search is terminated only when all the context and objects
specified by the scope have been searched.

Default:
Return all named objects found.

return reference
This determines whether the reference of the object is returned.

44 X/Open CAE Specification

Interface Overview Parameters Used in Extended Search: Preliminary Specification

Default:
Do not return the reference.

return attributes
This determines which attributes associated with the named object, if any, are returned.

Default:
Do not return any attributes.

3.7.2 Search Filter

The fn_attr_ext_search () operation allows the search for named objects whose attributes satisfy a
given filter expression. The filter is expressed in terms of logical expressions involving attribute
identifiers and their values of named objects examined during the search. The filter is created
from an expression string and a list of arguments that replace substitution tokens within the
expression string.

3.7.2.1 BNF of Filter Expression

<FilterExpr> ::= [<Expr>]

<Expr> ::= <Expr> "or" <Expr>
| <Expr> "and" <Expr>
| "not" <Expr>
| "(" <Expr> ")"
| <Attribute> [<Rel_Op> <Value>]
| <Ext>

<Rel_Op> ::= "==" | "!=" | "<" | "<=" | ">" | ">=" | "˜="

<Attribute> ::= "%a"

<Value> ::= <Integer>
| "%v"
|<Wildcarded_string>

<Wildcarded_string> ::= "*"
| <String>
| {<String> "*"}+ [<String>]
| {"*" <String>}+ ["*"]

<String> ::= "’" { <Char > } * "’"
| "%s"

<Char> ::= <PCS> // See BNF in Section 4.1.2 for PCS definition
| Characters in the repertoire of a string
| representation

<Identifier> ::= "%i"

<Ext> ::= <Ext_Op> "(" [Arg_List] ")"

<Ext_Op> ::= <String> | <Identifier>

<Arg_List> ::= <Arg> | <Arg> "," <Arg_List>

<Arg> ::= <Value> | <Attribute> | <Identifier>

Federated Naming: The XFN Specification 45

Parameters Used in Extended Search: Preliminary Specification Interface Overview

3.7.2.2 Specification of Filter Expression

The arguments to fn_search_filter_create() are a return status, an expression string, and a list of
arguments. The string contains the filter expression with substitution tokens for the attributes,
attribute values, strings and identifiers that are part of the expression. The remaining list of
arguments contains the attributes and values in the order of appearance of their corresponding
substitution tokens in the expression. The arguments are of types FN_attribute_t*,
FN_attrvalue_t*, FN_string_t* or FN_identifier_t*. Except when attributes appear as
arguments in specially-defined extended operations, any attribute values in an FN_attribute_t
type of argument are ignored; only the attribute identifier and attribute syntax are relevant. The
argument type expected by each substitution token are listed in Table 3-4.

Token Argument Type
%a FN_attribute_t*
%v FN_attrvalue_t*
%s FN_string_t*
%i FN_identifier_t*

Table 3-4 Substitute Tokens in Search Filter Expressions

3.7.2.3 Precedence

The following precedence relations hold in the absence of parentheses, in the order of lowest to
highest:

• or

• and

• not

• relational operators.

These boolean and relational operators are left associative.

3.7.2.4 Relational Operators

Table 3-5 on page 47 contains descriptions of the relational operators.

Comparisons and ordering are specific to the syntax or rules of the supplied attribute.

Locale (code set, language or territory) mismatches that occur during string comparisons and
ordering operations are resolved in an implementation-dependent way. Relational operations
that have ordering semantics may be used for strings of locales in which ordering is meaningful,
but is not of general use in internationalized environments.

An attribute that occurs in the absence of any relational operator tests for the presence of the
attribute.

46 X/Open CAE Specification

Interface Overview Parameters Used in Extended Search: Preliminary Specification

Operator Meaning
the sub-expression is TRUE if at least one value of the specified attribute
is equal to the supplied value.

==

the sub-expression is TRUE if no values of the specified attribute equal
the supplied value.

!=

the sub-expression is TRUE if at least one value of the attribute is greater
than or equal to the supplied value.

>=

the sub-expression is TRUE if at least one value of the attribute is greater
then the supplied value.

>

the sub-expression is TRUE if at least one value of the attribute is less
than or equal to the supplied value.

<=

the sub-expression is TRUE if at least one value of the attribute is less
than the supplied value.

<

the sub-expression is TRUE if at least one value of the specified attribute
matches the supplied value according to some context-specific
approximate matching criterion. This criterion must subsume strict
equality.

˜=

Table 3-5 Relational Operators in Search Filter Expressions

3.7.2.5 Wildcarded Strings

A wildcarded string consists of a sequence of alternating wildcard specifiers and strings. The
sequence can start with either a wildcard specifier or a string, and end with either a wildcard
specifier or a string.

The wildcard specifier is denoted by the asterisk character (‘*’) and means 0 or more occurrences
of any character.

Wildcarded strings can be used to specify substring matches. Table 3-6 on page 48 contains
examples of wildcarded strings and their meaning.

Federated Naming: The XFN Specification 47

Parameters Used in Extended Search: Preliminary Specification Interface Overview

Wildcarded String Meaning
* any string
‘tom’ the string tom
’harv’* any string starting with harv
*’ing’ any string ending with ing
‘a’*’b’ any string starting with a and ending with b
‘a*b’ the string a*b

any string starting with jo, and containing the
substring ph, and which contains the substring
ne in the portion of the string following ph, and
which ends with er

‘jo’*’ph’*’ne’*’er’

%s* any string starting with the supplied string
any string starting with bix and ending with the
supplied string

‘bix’*%s

Table 3-6 Examples of Wildcarded Strings

3.7.2.6 Extended Operations

In addition to the relational operators, extended operators can be specified. All extended
operators return either TRUE or FALSE. A filter expression can contain both relational and
extended operations.

Extended operators are specified using an identifier (FN_identifier_t) or a string. If the operator
is specified using a string, the string is used to construct an identifier of format
{FN_ID_STRING}. Identifiers of extended operators and signatures of the corresponding
extended operations, as well as their suggested semantics, are registered with X/Open (see
Appendix G).

The following three extended operations are currently defined:

’name’(<Wildcarded String>)
The identifier for this operation is name ({FN_ID_STRING}). The argument to this
operation is a wildcarded string. The operation returns TRUE if the name of the object
matches the supplied wildcarded string.

’reftype’(%i)
The identifier for this operation is reftype ({FN_ID_STRING}). The argument to this
operation is an identifier. The operation returns TRUE if the reference type of the object is
equal to the supplied identifier.

’addrtype’(%i)
The identifier for this operation is addrtype ({FN_ID_STRING}). The argument to this
operation is an identifier. The operation returns TRUE if any of the address types in the
reference of the object is equal to the supplied identifier.

48 X/Open CAE Specification

Interface Overview Parameters Used in Extended Search: Preliminary Specification

Support and exact semantics of extended operations are context-specific. If a context does not
support an extended operation, or if the filter expression supplies the extended operation with
either an incorrect number or type of arguments, the error [FN_E_SEARCH_INVALID_OP] is
returned.1

Table 3-7 contains examples of filter expressions that contain extended operations.

Expression Meaning
evaluates to TRUE if the name of the object
starts with bill

’name’(’bill’*)

evaluates to result of applying the specified
operation to the supplied arguments.

%i(%a, %v)

evaluates to TRUE if the specified attribute has
the given value and if the name of the object
starts with joe .

(%a == %v) and ’name’(’joe’*)

Table 3-7 Examples of Extended Operations in Search Filter Expressions

1. [FN_E_OPERATION_NOT_SUPPORTED] is returned when fn_attr_ext_search () is not supported.

Federated Naming: The XFN Specification 49

Parsing Compound Names Interface Overview

3.8 Parsing Compound Names
Most applications treat names as opaque data and therefore, the majority of clients of the XFN
interface will not need to parse compound names from specific naming systems. Some
applications, however, such as browsers, need such capabilities. For these applications, XFN
provides support in the form of syntax attributes, the XFN Standard Syntax Model, and the
FN_compound_name_t object.

3.8.1 Syntax Attributes

Each context has an associated set of syntax-related attributes. The attribute fn_syntax_type
(FN_ID_STRING format) identifies the naming syntax supported by the context. The value
standard (ASCII attribute syntax) in the fn_syntax_type attribute specifies that the context
supports the XFN standard syntax model that is by default supported by the
FN_compound_name_t object.

Implementations may choose to support other syntax types in addition to, or in place of, the
XFN standard syntax model, in which case, the value of the fn_syntax_type attribute would be set
to an implementation-specific string, and different or additional syntax attributes will be in the
set.

Syntax attributes of a context may be generated automatically by a context, in response to
fn_ctx_get_syntax_attrs (), or they may be created and updated using the attribute operations
described in Section 3.3 on page 27. This is implementation-dependent.

3.8.2 XFN Standard Syntax Model

Each naming system in an XFN federation has a naming convention. XFN defines a standard
model of expressing compound name syntax that covers a large number of specific name
syntaxes and is expressed in terms of syntax properties of the naming convention. The model
uses the attributes in Table 3-8 on page 53 to describe properties of the syntax. Unless otherwise
qualified, the syntax attributes described in Table 3-8 have attribute identifiers that use the
FN_ID_STRING format. This does not specify or restrict the use of other formats for identifiers
of additional syntax attributes supported by specific implementations.

The XFN standard syntax attributes are interpreted according to the following rules:

1. In a string without quotes or escapes, any instance of the separator string delimits two
atomic names.

2. A separator, quotation or escape string is escaped if preceded immediately (on the left) by
the escape string.

3. A non-escaped begin-quote which precedes a component must be matched by a non-
escaped end-quote at the end of the component. Quotes embedded in non-quoted names
are treated as simple characters and do not need to be matched. An unmatched quotation
fails with the status code [FN_E_ILLEGAL_NAME].

4. If there are multiple values for begin-quote and end-quote, a specific begin-quote value
must be matched with its corresponding end-quote value.

5. When the separator appears between a (non-escaped) begin quote and the end quote, it is
ignored.

6. When the separator is escaped, it is ignored. An escaped begin-quote or end-quote string
is not treated as a quotation mark. An escaped escape string is not treated as an escape
string.

50 X/Open CAE Specification

Interface Overview Parsing Compound Names

7. A non-escaped escape string appearing within quotes is interpreted as an escape string.
This can be used to embed an end-quote within a quoted string.

8. An escape string which precedes a character other than an escape string, a begin-quote or
an end-quote is consumed (in other words, escaping a non-meta character returns the
non-meta character itself).

After constructing a compound name from a string, the resulting component atoms have one
level of escape strings and quotations interpreted and consumed.

Locale (code set, language, or territory) mismatches that occur during the construction of the
compound name’s string form are resolved in an implementation-dependent way. When an
implementation discovers that a compound name has components with incompatible code sets,
it returns the error code [FN_E_INCOMPATIBLE_CODE_SETS]. When an implementation
discovers that a compound name has components with incompatible language or territory locale
information, it returns the error code [FN_E_INCOMPATIBLE_LOCALES].

3.8.2.1 Compound Names

The FN_compound_name_t type is used to represent a compound name.

The FN_compound_name_t object has associated operations for applications to process
compound names that conform to the XFN standard syntax model of expressing compound
name syntax. Operations are provided to iterate over the list of atomic components of the name,
modify the list, and compare two compound names.

An FN_compound_name_t object is constructed using the operation
fn_compound_name_from_attrset (), with arguments consisting of a string name and an attribute
set that contains the attribute fn_syntax_type with the value standard.

Federated Naming: The XFN Specification 51

Parsing Compound Names Interface Overview

Attribute Identifier Attribute Value
Its value is the ASCII string standard if the context
supports the XFN standard syntax model. Its value is an
implementation-specific value if another syntax model is
supported.

fn_syntax_type

Its value is an ASCII string, one of left_to_right,
right_to_left or flat. This determines whether the order of
components in a compound name string goes from left to
right, right to left, or whether the namespace is flat (in
other words, not hierarchical — all names are atomic).

fn_std_syntax_direction

Its value is the separator string for this name syntax. This
attribute is required unless the fn_std_syntax_direction is
flat.

fn_std_syntax_separator

If present, its value is the escape string for this name
syntax.

fn_std_syntax_escape

If this attribute is present, it indicates that names that
differ only in case are considered identical. If this attribute
is absent, it indicates that case is significant. If a value is
present, it is ignored.

fn_std_syntax_case_insensitive

If present, its value is one of the begin-quote strings for
this syntax. If fn_std_syntax_end_quote1 is absent but
fn_std_syntax_begin_quote1 is present, the quote-string
specified in fn_std_syntax_begin_quote1 is used as both the
begin and end quote-strings. If fn_std_syntax_end_quote1 is
present but fn_std_syntax_begin_quote1 is absent, the
quote-string specified in fn_std_syntax_end_quote1 is used
as both the begin and end quote-strings.

fn_std_syntax_begin_quote1

If present, its value is the end-quote string that matches
the begin-quote string specified in
fn_std_syntax_begin_quote1. If fn_std_syntax_end_quote1 is
absent but fn_std_syntax_begin_quote1 is present, the
quote-string specified in fn_std_syntax_begin_quote1 is
used as both the begin and end quote-strings. If
fn_std_syntax_end_quote1 is present but
fn_std_syntax_begin_quote1 is absent, the quote-string
specified in fn_std_syntax_end_quote1 is used as both the
begin and end quote-strings.

fn_std_syntax_end_quote1

If present, its value is one of the begin-quote strings for
this syntax. If fn_std_syntax_end_quote2 is absent but
fn_std_syntax_begin_quote2 is present, the quote-string
specified in fn_std_syntax_begin_quote2 is used as both the
begin and end quote-strings. If fn_std_syntax_end_quote2 is
present but fn_std_syntax_begin_quote2 is absent, the
quote-string specified in fn_std_syntax_end_quote2 is used
as both the begin and end quote-strings.

fn_std_syntax_begin_quote2

52 X/Open CAE Specification

Interface Overview Parsing Compound Names

Attribute Identifier Attribute Value

If present, its value is the end-quote string that matches
the begin-quote string specified in
fn_std_syntax_begin_quote2. If fn_std_syntax_end_quote2 is
absent but fn_std_syntax_begin_quote2 is present, the
quote-string specified in fn_std_syntax_begin_quote2 is
used as both the begin and end quote-strings. If
fn_std_syntax_end_quote2 is present but
fn_std_syntax_begin_quote2 is absent, the quote-string
specified in fn_std_syntax_end_quote2 is used as both the
begin and end quote-strings.

fn_std_syntax_end_quote2

If present, its value is the attribute value assertion
separator string for this syntax.

fn_std_syntax_ava_separator

If present, its value is the attribute type-value separator
string for this syntax.

fn_std_syntax_typeval_separator

If this attribute is not present, or if the value is empty, the
only locale supported by the context is the ‘‘C’’ locale. The
‘‘C’’ locale’s repertoire of characters includes those
characters defined by ISO 646. Interoperability as well as
portability can be guaranteed within the ‘‘C’’ locale by
limiting the use to the repertiore of characters which are
defined in ISO 646. This is the repertoire of characters
defined for the Portable Character Set (PCS) in Section
4.1.2 on page 56.

If present, the attribute’s value identifies the locales of
string representations that can be supported by the
context. The value consists of an array of structures. Each
element in the array contains:

unsigned long code_set,
unsigned long lang_terr

Arguments code_set and lang_terr together
identify a locale. The values for the code sets are defined
in the OSF code set registry currently defined in DCE RFC
40.1 (OSF Character and Code Set Registry). This registry
is being extended to include language/territory
registrations.

fn_std_syntax_locales

Table 3-8 XFN Standard Syntax Model Attributes

Federated Naming: The XFN Specification 53

Interface Overview

54 X/Open CAE Specification

Chapter 4

XFN Composite Names

This chapter describes the composite name string syntax and the resolution techniques for
composite names.

4.1 Composite Name String Syntax
An XFN composite name consists of an ordered list of zero or more components. Each component
is a string name from the namespace of a single naming system and uses the naming syntax of
that naming system. A component may be an atomic or a compound name from that
namespace. XFN does not specify any syntax for regular expressions at the composite name
level. However, an individual naming system may allow a component to contain expressions
(for example, wildcard characters).

XFN defines an abstract data type, FN_composite_name_t, for representing the structural form
of a composite name. XFN also defines a standard string form for composite names. This form
is the concatenation of the components of a composite name from left to right with the XFN
component separator character (’/’) separating each component.

The XFN client interface includes operations to convert a composite name from its string form to
its structural form, and vice versa. This section describes the syntax of XFN composite names
and the rules for converting the string form of XFN composite names to and from its structural
form.

4.1.1 Encoding of XFN Composite Name Strings

Special characters used in the XFN composite name syntax, such as the component separator or
escape characters, have the same encoding as they would in ISO 646.

The minimum requirement for all XFN implementations is to support the portable
representation of ISO 646 (same encoding as ASCII) for communication of name strings. All
other representations are optional. See Section 2.5 on page 17.

All characters of the string form of an XFN composite name use a single encoding. This does not
preclude component names of a composite name in its structural form from having different
encodings. Locale (code set, language, or territory) mismatches that occur during the process of
converting a composite name structure to its string form are resolved in an implementation-
dependent way. When an implementation discovers that a composite name has components
with incompatible locales, it returns an appropriate error:

[FN_E_INCOMPATIBLE_CODE_SETS]

or

[FN_E_INCOMPATIBLE_LOCALES].

Federated Naming: The XFN Specification 55

Composite Name String Syntax XFN Composite Names

4.1.2 Backus-Naur Form (BNF) of XFN Composite Names

This section defines the standard string form of XFN composite names in BNF. Note that all the
characters of the string representation of one name must uniformly use the same encoding and
locale information.

The notations used are as follows:

Symbol Meaning
::= Is defined to be
| Alternatively
<text> Non-terminal element
"" Literal expression
* The preceding syntactic unit can appear 0 or more times.
+ The preceding syntactic unit can appear 1 or more times.
{} The enclosed syntactic units are grouped as a single syntactic unit (can be nested).

The XFN composite name syntax in BNF is as follows.

NULL ::= // Empty set

<PCS> ::= // Portable Character Set
// The set consists of the glyphs:
// !"#$%&’()*+,-./0123456789:;<=>?
// @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]ˆ_
// ‘abcdefghijklmnopqrstuvwxyz{|}˜

<CharSet> ::= <PCS>
| Characters from the repertoire of a string representation

<EscapeChar> ::= \

<ComponentSep> ::= /

<Quote1> ::= "

<Quote2> ::= ´

<MetaChar> ::= <EscapeChar> | <ComponentSep>

<SimpleChar> ::= // any character from <CharSet> with <ComponentSep>, <Quote1>,
// and <Quote2> excluded. An <EscapeChar> <MetaChar>, or
// <EscapeChar> <Quote1>, or <EscapeChar> <Quote2> is
// substituted by the corresponding unescaped character and
// is equivalent to a <SimpleChar>.

<Component> ::= <SimpleChar>*
| <SimpleChar>+ {<Quote1> | <Quote2> | <SimpleChar>}*
| <Quote1> <CharSet>* {<EscapeChar><Quote1>}* <CharSet>*
<Quote1>

// <CharSet> must not contain unescaped <Quote1>
// (note that <Quote2> can appear unescaped)

| <Quote2> <CharSet>* {<EscapeChar><Quote2>}* <CharSet>*
<Quote2>

// <CharSet> must not contain unescaped <Quote2>
// (note that <Quote1> can appear unescaped)

56 X/Open CAE Specification

XFN Composite Names Composite Name String Syntax

<CompositeName> ::= NULL
| <Component> {<ComponentSep> <Component>}*

4.1.3 Decomposing a Composite Name String

This section defines the rules for converting the string representation of a composite name into
the internal composite name object (FN_composite_name_t). This defines the semantics of the
function fn_composite_name_from_string ().

A composite name is decomposed into an ordered set of components (<Component>). Each
component represents:

• a compound name

or:

• a single atomic name of a compound name if the compound name’s syntax uses the XFN
component separator (‘‘/’’) as a separator for its atomic parts and the compound name is not
quoted.

The following are the rules for parsing a composite name:

1. Any <ComponentSep> character that is neither escaped nor enclosed in quoted strings is
considered to be a component separator.

2. Any string enclosed by component separators is a component (<Component>).

3. A composite name is parsed and decomposed into components from left to right:

• The first component is the string preceding the first occurrence of a component
separator.

• Empty components are processed as follows:

— A leading component separator (the composite name begins with a component
separator) means a leading null component.

— A trailing component separator (the composite name ends with a component
separator) means a trailing null component.

— Two consecutive component separators mean a null component.

• The name string that immediately follows the last component separator of the
composite name is the terminal component.

4. A component string is evaluated from left to right and converted into its standard form
according to the following rules:

• A component string is considered to be quoted if it is enclosed in a pair of matching
unescaped quote characters (either a <Quote1> or a <Quote2> pair). The quoted string
must represent the full component; that is, a begin quote must immediately be
preceded by a component separator or no character, and the end quote must
immediately be followed by a component separator or no character.

• If a component does not contain a valid begin quote (a <Quote1> or <Quote2>
immediately preceded by either a component separator or no character), any
occurrence of <Quote1> or <Quote2> within that component is not treated as a quote
but is treated just as any other <SimpleChar>.

• An unmatched begin quote (missing or misplaced end quote) fails with an
[FN_E_ILLEGAL_NAME] status.

Federated Naming: The XFN Specification 57

Composite Name String Syntax XFN Composite Names

• Quotes are considered to be escaped in quoted strings if a matching quote character is
preceded immediately by the unescaped <EscapeChar>.

• Quoted components are resolved by eliminating the quote characters from the
component name and substituting possibly escaped quotes by simple quote characters.
<MetaChar>s and the not matching quote characters enclosed in quoted strings are
treated just as any other <SimpleChar>.

• Any of the defined meta characters (<ComponentSep> and <EscapeChar>) or quote
characters (<Quote1> and <Quote2>) is considered to be escaped in an unquoted
component name string if preceded immediately by the unescaped <EscapeChar> (for
instance, the sequence <EscapeChar> <EscapeChar> <ComponentSep> denotes an
escaped <EscapeChar> but an unescaped <ComponentSep>).

• Any occurrence of escaped <MetaChar>, or escaped <Quote1> or escaped <Quote2> in
unquoted components is substituted by the corresponding unescaped character and is
treated as a <SimpleChar>.

• No substitution is done for <EscapeChar> <SimpleChar>. <EscapeChar>
<SimpleChar> simply maps to <EscapeChar> <SimpleChar>.

Table 4-1 contains some examples of how the string form of a composite name are decomposed
into components in accordance with the BNF syntax of composite names.

String Form Components in FN_composite_name_t
a a
a/b/c a, b, c
a/ a, ""
/a "", a
a// a, "", ""
a//b a, "", b
"" ""
/ "", ""
// "", "", ""
"a/b/c"/d a/b/c, d
"a.b.c"/d a.b.c, d
a.b.c/d a.b.c, d
a"b/c a"b, c
a\"b a"b
a’b/c a’b, c
"a/b/c illegal name
\"a/b/c "a, b, c
a\b\c/d a\b\c, d
a\b\/c a\b/c
"a\"b"/c a"b, c
’"a/b/c"’ "a/b/c"
’a\/b’/c a\/b, c
a\\b/c a\b, c
a/\"b a, "b

Table 4-1 Examples of String & Structural Forms of XFN Composite Names

58 X/Open CAE Specification

XFN Composite Names Composite Name String Syntax

4.1.4 Composing a Composite Name String

This section describes the rules used for converting the composite name object
(FN_composite_name_t), representing an ordered set of components, into the composite name
string representation. This defines the semantics of the operation
fn_string_from_composite_name ().

1. The components are added to the composite name string in left to right order (in other
words, rightmost is the tail).

2. Successive components are separated by the component separator (<ComponentSep>).

3. Empty components are handled in the following way:

• A leading empty component is represented by a leading <ComponentSep>.

• A trailing empty component is represented by a trailing <ComponentSep>>

• An empty component occurring within a composite name is represented by two
consecutive <ComponentSep>s.

4. A composite name denoting a single non-empty component does not contain any
unescaped component separator.

5. Any occurrence of <ComponentSep> in a component is escaped by inserting
<EscapeChar> immediately preceding <ComponentSep>.

6. If the first character of a component is either <Quote1> or <Quote2>, it will be escaped by
inserting <EscapeChar> immediately preceding the quote.

7. Any occurrence of <EscapeChar> before <ComponentSep> in a component is escaped by
inserting <EscapeChar> immediately preceding the <EscapeChar>.

8. Any occurrence of <EscapeChar> as the first character of a component with <Quote1> or
<Quote2> as the second character in a component is escaped by inserting <EscapeChar>
immediately preceding the <EscapeChar>. Subsequent <EscapeChar> occurring before
any matching quote character is also escaped by inserting <EscapeChar> immediately
preceding the <EscapeChar>.

Federated Naming: The XFN Specification 59

Composite Names and Naming System Boundaries XFN Composite Names

4.2 Composite Names and Naming System Boundaries
The correspondence between component separators and naming system boundaries may not be
one to one if a composite name contains names from naming systems that use the same
character as the XFN component separator to separate their atomic names. A component of a
composite name may represent an atomic name from a hierarchical naming system that uses the
XFN component separator, or a compound name. A single component cannot straddle more
than one naming system.

4.2.1 Strong Separation

An XFN context that treats the XFN component separator as a naming system boundary
supports strong separation .

Support for strong separation is a property of a context. A context that supports strong
separation expects to receive the name that it is going to resolve entirely in one component of
the composite name structure. When a composite name is supplied to such a context, it
consumes the leading component of the name; any remaining components are left to be resolved
by subordinate naming systems.

An XFN context with a name syntax that is either flat or hierarchical, but does not use the XFN
component separator as its atomic separator, supports strong separation. An XFN context with
a name syntax that is hierarchical and uses the XFN component separator as its atomic separator
supports strong separation if it requires its atomic separator to be quoted or escaped whenever it
appears in compound names within composite names.

For example, assume A/B, and A=B/C=D/E=F are compound names from naming systems that
use the XFN component separator as their atomic component separator and compose atomic
components left to right. Assume also that M is an atomic name from a naming system with a
hierarchical left-to-right name syntax that uses the XFN component separator as its atomic
component separator. Assume also that B.A is a compound name from a hierarchical naming
system with a dot-separated, right-to-left name syntax. Finally, assume that V is a name from
another naming system. The following are then examples of composite names intended for a
context that supports strong separation.

A\/B/V

"A=B/C=D/E=F"/V

M/V

B.A/V

An XFN context that supports strong separation can be federated with arbitrary subordinate
naming systems, with no restriction on the name syntax of subordinate naming systems.
Naming systems federated in this way need not be changed as new naming systems (regardless
of their name syntax) are added to the federation.

60 X/Open CAE Specification

XFN Composite Names Composite Names and Naming System Boundaries

4.2.2 Weak Separation

An XFN context that does not always treat the XFN component separator as a naming system
boundary supports weak separation . This arises when the component naming system associated
with the context uses the same character as the XFN component separator as its atomic
component separator, and the context allows its atomic separator to appear unescaped and
unquoted in its compound names when they occur in composite names. This means that an
XFN component separator may not necessarily signify a naming system boundary. XFN
component separators that appear within an atomic component must be escaped or quoted.

Support for weak separation is a property of a context. A context that supports weak separation
expects to receive its atomic names in separate components of the composite name structure.
When a composite name is supplied to a context that supports weak separation, the context
consumes the leading components of the name (and treats them as atomic components); any
remaining components are resolved by subordinate naming systems. The number of
components consumed is determined either syntactically or dynamically as described below.

For example, assume A/B and A=B/C=D/E=F are compound names from naming systems that
use the XFN component separator as their atomic component separator and compose atomic
components left to right. Also, assume that M is an atomic name from a naming system with a
hierarchical left-to-right name syntax that uses the XFN component separator as its atomic
component separator. Finally, assume that V is a name from another naming system. The
following are then examples of composite names intended for a context that supports weak
separation:

A/B/V

A=B/C=D/E=F/V

M/V

CDS names and X.500 names are examples of names that use the XFN component separator as
their atomic name separator. See Section B.2 on page 230 and Section B.3 on page 240 for details
of how XFN context implementations for these naming systems should deal with this issue.

4.2.2.1 Conditions for Supporting Weak Separation

XFN contexts of naming systems that use the same character as the XFN component separator to
separate their atomic names may support weak separation if and only if their atomic component
ordering is left to right, and at least one of the following conditions apply:

• The naming system is a terminal naming system; that is, its component name(s) always
appear at the end of a composite name.

• The naming system is non-terminal and the context can do syntax-specific discovery of the
boundary between its naming system and subordinate naming systems.

• The naming system is non-terminal and the context can return the unresolved remaining
components.

Naming systems that use the same character as the XFN component separator as their atomic
separator, and which do not meet the above conditions must provide context implementations
that support strong separation. This means that occurrences of atomic separators must be
quoted or escaped when they appear in compound names within composite names.

It may not always be possible for an XFN context that supports weak separation using only
syntax-specific discovery of its naming system boundary to be federated with arbitrary
subordinate naming systems. This is because if the subordinate naming system has a naming

Federated Naming: The XFN Specification 61

Composite Names and Naming System Boundaries XFN Composite Names

syntax that is indistinguishable from that of the superior naming system, the superior naming
system would not be able to identify the naming system boundary.

4.2.3 Strong and Weak Separation Support in Contexts

An XFN context may support either strong separation or weak separation. An XFN context is
not required to support both forms of separation, though some may choose to do so. A context
that supports strong separation can coexist with one that supports weak separation in the same
federation.

A context that supports strong separation should expect to receive its component name in one
component of the composite name structure. A context that supports weak separation should
expect to receive its atomic names in separate components of the composite name structure. A
context that supports both strong and weak separation must be prepared to receive its
component name in either one component or multiple components, and must be able to
disambiguate between a component that identifies a compound name and a component that
identifies an atomic name.

62 X/Open CAE Specification

XFN Composite Names Composite Name Resolution Techniques

4.3 Composite Name Resolution Techniques
A composite name consists of names from multiple naming systems. Composite name
resolution combines resolution in each component naming system and resolution across
federated naming system boundaries.

A next naming system pointer is the XFN reference of an XFN context in which composite name
components from subordinate naming systems are to be resolved.

This section describes two implementation techniques for composite name resolution across a
naming system boundary. One technique uses an explicitly named next naming system pointer
— junction — to resolve across a naming system boundary. The other uses an implicit next
naming system pointer to resolve across a naming system boundary.

A junction is an atomic name that is bound to a next naming system pointer. It is a terminal
name in the superior naming system. There is no limit on the number of junctions bound in a
single context, except that imposed by the context. A context may reserve certain names for use
as junctions, or have other policies for selecting names for use as junction. The conventions used
for identifying junctions and their references are context-specific.

When a context does not want to use part of its namespace for junctions, it uses implicit next
naming system pointers for federating subordinate naming systems. An implicit next naming
system pointer is named using the XFN component separator. For example, the name B.A/
names the implicit next naming system pointer of B.A. Each context can have one implicit next
naming system pointer.

Naming systems that implement either technique may coexist in a federation. A naming system
that supports composite name resolution using junctions can be federated with one that
supports implicit next naming system pointers, and vice versa.

4.3.1 Resolution Using Implicit Next Naming System Pointers

4.3.1.1 Strong Separation and Implicit Next Naming System Pointers

An XFN context that supports strong separation and resolves composite names using an implicit
next naming system pointer consumes the first component of the composite name supplied to it.
Any remaining components are resolved in the context pointed to by the implicit next naming
system pointer of the first component.

For example, the composite name A:B/E.D (Figure 4-1) has two components, A:B (a left-to-right
colon-separated name) and E.D (a right-to-left dot-separated name). Resolution in the first
naming system starts with A, then B, and then the implicit next naming system pointer
associated with B, which takes resolution into a new naming system, where resolution continues
on D and then E.

4.3.1.2 Weak Separation and Implicit Next Naming System Pointers

An XFN context that supports weak separation and implicit next naming system pointers in its
implementation needs to distinguish the use of the XFN component separator character as an
XFN component separator or an atomic separator. This means that such a context needs to know
when to exit the current (native) naming system and follow the implicit next naming system
pointer. This can be achieved using a static, syntactic policy or a dynamic, resolution policy.

With the syntactic policy, a context syntactically discovers where the boundary between its
naming system and the subordinate naming system lies. This may impose certain restrictions on
the syntax of subordinate naming systems. Subordinate naming systems must not permit as
valid top level names names that are syntactically indistinguishable from names allowed in the

Federated Naming: The XFN Specification 63

Composite Name Resolution Techniques XFN Composite Names

A

B

starting context

context named by A

context named by B

D

E

context pointed to by implicit nns of B

context named by D

implicit nns
pointer associated
with B

one naming system

another naming system

Figure 4-1 Resolution Using Implicit Next Naming System Pointer

superior naming system. For example, assume the superior naming system has a name syntax
whose distinguishing feature is that each atomic part must have an equal character (’=’). The
superior naming system might impose as a policy that subordinate naming systems must not
have top level names that have an equal character in them. Resolution in the superior naming
system continues until all leading components of the supplied composite name fitting the
syntactic rule are consumed. Any remaining components are resolved in the context of the
implicit next naming system pointer of the last component fitting the syntactic rule.

If a context is not able to syntactically differentiate between atomic components and composite
name components, or does not want to impose any syntactic restrictions, it may be able to
determine the naming system boundary at runtime during resolution. The policy is to continue
resolution in the current naming system until resolution fails, at which point, the implicit next
naming system pointer associated with the last context at which resolution succeeded is used to
continue the resolution. A conflict arises if the same atomic name is bound both in the last
context and the context pointed to by the last context’s implicit next naming system pointer. In
this case, the binding in the last context takes precedence. Note that this way of supporting
weak separation requires the context to have the capability of returning remaining unresolved
parts of a given name. Figure 4-2 illustrates this conflict and shows how resolution would
proceed for a context that supports weak separation and the implicit next naming system
pointer when there is a conflict. The name A/B/D refers to the object D in the first naming
system, not the one reached using the implicit next naming system pointer of B. This ambiguity
is introduced by the fact that the context supports weak separation. With strong separation, both
can be named precisely; with weak separation, the component separator can mean continue
resolution either in the current naming system or in the subordinate naming system.

64 X/Open CAE Specification

XFN Composite Names Composite Name Resolution Techniques

A

B

starting context

context named by A

context named by B

D

E

context pointed to by implicit nns of B

context named by D

implicit nns
pointer associated
with B

one naming system

another naming system

D

object named by D

Figure 4-2 Conflict with Weak Separation and Implicit Next Naming

Consider another example in which A/B and A=B/C=D are compound names from naming
systems with hierarchical left-to-right name syntax that use the XFN component separator as
their atomic component separator. Assume also that F is an atomic name from another naming
system. The following are then examples of names intended for contexts that support weak
separation and implicit next naming system pointers:

A=B/C=D/F

A/B/F

The first name is intended for a context that determines how many leading components to
consume based on a syntactic rule of checking for equal characters (’=’) in the component name.
The second name is intended for a context that determines when to follow the implicit next
naming system pointer dynamically during resolution. The context attempts to resolve A/B/F
and returns F as the remaining component. F is then resolved in the context pointed to by the
implicit next naming system pointer of B.

4.3.1.3 Context Requirements

The implicit next naming system pointer is named using the XFN component separator.

As with any other XFN contexts, the context in which the implicit next naming system pointer is
bound needs only to support the fn_ctx_lookup () operation and the resolution phase of all other
operations in the base context and attribute interfaces when the composite name argument is the
XFN component separator (see Section 3.2.2 on page 20).

An enumeration of the context in which the implicit next naming system pointer is bound does
not include the implicit next naming system pointer.

Federated Naming: The XFN Specification 65

Composite Name Resolution Techniques XFN Composite Names

The creation of the binding for the implicit next naming system pointer is implementation-
dependent. There is no requirement that the binding for the next naming system pointer be
stored in the same way that other bindings in the same context are stored. Some contexts may
support the binding to be set using the fn_ctx_bind() operation. Another context may require
that the binding be set using operations native to the naming system. Some other context may
use the attribute operations to store and manipulate such bindings. While yet another context
may generate the reference during resolution (for example, this may be the case if the implicit
next naming system pointer is hard wired to a specific value based on the individual naming
system’s policy).

For contexts that support weak separation and implicit next naming system pointers, update
operations to the context pointed to by implicit next naming system pointers, such as
fn_ctx_bind() and fn_ctx_unbind(), should be done in separate steps in order to have the desired
effect:

1. Resolve the name of the target context explicitly using the fn_ctx_lookup () operation,
supplying it with the name of the implicit next naming system pointer’s context (by use of
the trailing XFN component separator).

2. Get a handle to the target context by passing the reference returned from step 1 to the
fn_ctx_handle_from_ref () operation.

3. Perform the intended operation (fn_ctx_bind() or some other operation) on the target
context using the atomic name of the target object.

Trying to perform the operation in one step (by using the full composite name of the object) may
not necessarily have the intended effect because for contexts that support weak separation and
implicit next naming system pointers, an XFN component separator occurring within a
composite name does not necessarily denote a naming system boundary.

A

B

starting context

context named by A

context named by B

D

E

context named by C

context named by D

one naming system

another naming system

C

Figure 4-3 Example of Resolution Using Junction

66 X/Open CAE Specification

XFN Composite Names Composite Name Resolution Techniques

Using the example in Figure 4-2, fn_ctx_unbind() on the name A/B/D results in the removal of D
from the naming system on the left, while doing a lookup first on A/B/, followed by an
fn_ctx_unbind() of D in the resulting context results in the removal of D from the naming system
on the right.

4.3.2 Resolution Using Junctions

4.3.2.1 Strong Separation and Junctions

A context that supports strong separation and junctions consumes the first component of the
composite name supplied to it. The last atomic name of the first component must be a junction.
Any remaining components are resolved in the context named by the junction.

For example, the composite name A:B:C/E.D (Figure 4-3) has two components, A:B:C (a left-to-
right colon-separated name) and E.D (a right-to-left dot-separated name). C is a junction.
Resolution in the first naming system starts with A, then B, then C, which resolves to a context
in a new naming system, where resolution continues on D and then E.

4.3.2.2 Weak Separation and Junctions

An XFN context that supports weak separation and uses junctions resolves a composite name by
consuming leading components until a junction is reached, at which point, resolution of any
remaining components is continued in the context bound to the junction. Determination of
whether a component is a junction can be done statically using a syntactic policy or dynamically
during resolution. For the latter, the context must be able to return the remaining unresolved
components.

For example, assume that A/B/J and A=B/C=D/E=J are compound names from naming systems
with hierarchical left-to-right name syntax that use the XFN component separator as their
atomic component separator. Assume also that C is a name from another naming system. The
following are then examples of names intended for contexts that support weak separation and
junctions:

A/B/J/C

A=B/C=D/E=J/C

Given the first name, the starting context resolves the components, A, B, and J and discovers that
J is a junction. The remaining component C is resolved in the context named by the J junction.
In the second example, the starting context might syntactically determine that the first three
components are to be resolved in its naming system. If the component E=J is a junction, the last
component, C is resolved in the context named by E=J.

4.3.2.3 Context Requirements for Supporting Junctions

As with any other XFN contexts, the context in which the junction is bound needs only to
support the fn_ctx_lookup () operation and the resolution phase of all other operations in the base
context and attribute interfaces for the junction (see Section 3.2.2 on page 20).

The creation of the binding for a junction is implementation-dependent. Some contexts may
require that the binding be manipulated using the context operations fn_ctx_bind() and
fn_ctx_unbind(). Others may require that the binding be set using operations native to the
naming system.

Federated Naming: The XFN Specification 67

Composite Name Resolution Techniques XFN Composite Names

4.3.3 Summary

The following table provides examples that summarises the four combinations of using implicit
next naming system pointer and junctions techniques for contexts supporting strong and weak
separation.

These examples assume that B.A (dot-separated, right-to-left name syntax) and A/B (slash-
separated, left-to-right name syntax) are compound names. J is a junction.

Strong Separation Weak Separation
T{Implicit Next Naming System Pointer
T} B.A/X A/B/X

Junction J.B.A/X A/B/J/X

68 X/Open CAE Specification

XFN Composite Names Composite Name Resolution Involving Links

4.4 Composite Name Resolution Involving Links
A link affects name resolution in the following way. Suppose lname is a link bound to the atomic
name aname in the context ctx. If at some point, resolution of a composite name cname reaches
the context ctx and the next atomic name is aname, resolution of aname results in the resolution of
the link name lname. This is termed following the link. If the first composite name component of
the link lname is the atomic name ".", the remaining components of lname are resolved relative to
ctx; otherwise, lname is resolved from the Initial Context. The resolution of any remaining
portion of the name cname proceeds from the reference that results by resolving lname.

The link name may itself cause resolution to resolve through other links. This gives rise to the
possibility of a cycle of links whose resolution could not terminate normally. As a simple means
to avoid such non-terminating resolutions, implementations may define limits on the number of
XFN links that may be resolved in any single operation invoked by the caller.

Federated Naming: The XFN Specification 69

XFN Composite Names

70 X/Open CAE Specification

Chapter 5

XFN Policies

Computing environments for enterprises are becoming world-wide in scope and encompass a
wide range of services. Applications will be increasingly expected to reflect to the user the scope
and range by enabling access anywhere in this environment. The goals of XFN are to promote
the portability of applications and global interoperability. As a first step towards that goal, XFN
specifies a minimal set of essential naming policies for naming objects across enterprises.

An XFN implementation is not required to support all the policies defined in this chapter, but for
the XFN policies that are supported, their behaviour must comply with the behaviour specified
herein. An XFN implementation is free to add policies that are not specified by, and which do
not conflict with, XFN policies.

5.1 Terminology
Global naming service

A global naming service is a naming service that has world-wide scope. Internet DNS and
X.500 are examples of global naming services. The types of entities named at this global
level are typically countries, states, provinces, cities, companies, universities, institutions,
and government departments and ministries. These entities are referred to as enterprises.
Specific global naming services might name other types of entities. For example, in addition
to enterprises, DNS is also used to name hosts and electronic mailboxes. X.500 is also used
to name users and organizational units within enterprises.

Enterprise-level naming service
Enterprise-level naming services are used to name entities within an enterprise. Within an
enterprise, there are naming services that provide contexts for naming common entities
such as organizational units, physical sites, human users and computers. Enterprise-level
naming services are below the global naming services. Global naming services provide
contexts in which the root contexts of enterprise-level naming systems can be bound.

Application-level naming service
Application-level naming services are incorporated in applications offering services such as
file service, mail service, print service, and so on. Application-level naming services are
below enterprise-level naming services. The enterprise-level naming services provide
contexts in which contexts of application-level naming systems can be bound.

Federated Naming: The XFN Specification 71

Policy Overview XFN Policies

5.2 Policy Overview

Global

XFN policy specifies that DNS and X.500 are global naming services that are used to name
enterprises.

XFN policy does not preclude the use of other global naming services to name enterprises.
Furthermore, XFN policy does not restrict the use of DNS or X.500 to provide naming service for
entities other than enterprises.

Enterprise

XFN recommends optional policies for the enterprise namespace. These are described in
Appendix D.

Applications

Naming within applications is left to individual applications or groups of related applications
and not specified by XFN.

Initial Context

Each XFN client has an Initial Context that provides a starting point for resolution of composite
names. XFN policy specifies names and bindings present in the Initial Context of an XFN client.

The bindings for the global context are specified in this chapter. Optional bindings for the
enterprise-related contexts are specified in Appendix D.

Not all of the specified names are required to appear in all XFN Initial Contexts, but when they
do appear, they must have the specified bindings. Implementations are free to have other names
in the Initial Context but any such extensions are not part of XFN policies.

72 X/Open CAE Specification

XFN Policies Naming Enterprises Using Global Naming Services

5.3 Naming Enterprises Using Global Naming Services
XFN policy specifies that the Internet Domain Naming Service (DNS) and X.500 provide global-
level naming service for naming enterprises. XFN policy does not restrict the type of
information that these global naming services can support in addition to naming enterprises.

Enterprise-level naming services are below the global naming services. The boundary of the
namespace of the global naming system and that of the enterprise systems varies depending on
many factors such as performance, granularity, update requirements, and flexibility of the global
system. The boundary may differ from configuration to configuration and is not defined by XFN
policy. Specifically, XFN policy does not preclude installations from using DNS and X.500 to
offer enterprise-level or application-level naming services. For example, in one configuration, an
X.500 system might support the organizational unit and user namespaces, with lower level
namespaces supported by a local network naming system. In another configuration, an
enterprise might choose to use DNS to support naming other enterprises and use ONC/NIS+ or
DCE/CDS for all naming within the enterprise.

5.3.1 Bindings in the Initial Context for the Global Context

Namespace Identifier Binding
‘‘... ’’ and ‘‘/... ’’ The global context for naming DNS or X.500 names.

_dns The root of the DNS namespace.

_x500 The root of the X.500 namespace.

Table 5-1 Global Bindings in the Initial Context

Table 5-1 lists the bindings in the Initial Context for global names.

XFN policy specifies that the atomic name ‘‘... ’’ appears in the Initial Context of every XFN
client if the client has access to a global naming service. The atomic name ‘‘... ’’ is bound to a
context from which global names can be resolved.

Global names can be either fully-qualified Internet Domain Names or X.500 distinguished
names; support for other types of global names is not specified by XFN. Internet domain names
are to appear in the syntax specified by Internet RFC 1035. X.500 names are to appear in the
syntax determined by the X/Open DCE Directory.

For example, .../Wiz.COM specifies a name to be resolved by DNS, whereas,
.../c=us/o=Wiz specifies a name to be resolved by X.500.

XFN policy also specifies that the names ‘‘... ’’ and ‘‘/... ’’ are equivalent when resolved in the
Initial Context.2 An Initial Context implementation must support the resolution of both atomic
names, ‘‘... ’’ and ‘‘/... ’’, to the same context, or neither of the two atomic names.

For example, the names /.../c=us/o=Wiz and .../c=us/o=Wiz resolved in the Initial
Context must refer to the same object.

XFN policy specifies that the atomic names _dns and _x500 name the root context in the DNS
and X.500 namespaces, respectively, when supplied to the Initial Context. These names are

2. The motivation for supporting ‘‘/... ’’ in the Initial Context is for compatibility with DCE names.

Federated Naming: The XFN Specification 73

Naming Enterprises Using Global Naming Services XFN Policies

useful for browsing these global namespaces and for explicitly specifying the target global
naming service.

For example, _dns/Wiz.COM specifies a name to be resolved by DNS while
_x500/c=us/o=Wiz specifies a name to be resolved by X.500.

The atomic names ‘‘... ’’, ‘‘/... ’’, ‘‘_dns’’ and ‘‘_x500’’ are encoded using ISO 646
(same encoding as ASCII). An XFN implementation might support additional encodings for
these names, or additional names that convey the same meaning as these. Such support is not
part of XFN policies and may not necessarily be supported by other XFN implementations. This
has implications on portability and interoperability of applications and systems that use them.

5.3.2 Support for Other Global Naming Services

XFN policy does not preclude the use of other global naming services for naming enterprises.
However, XFN policy does not guarantee that arbitrary global naming services can be used
without changes to the current policy — all global names must appear after ‘‘... ’’ in the Initial
Context and syntax-based heuristics are used to select the target global naming service. The rate
and number that global naming services will emerge make this technique feasible.

74 X/Open CAE Specification

Chapter 6

Reference Manual Pages

This chapter describes the XFN context and attribute interfaces in detail. Also described are the
objects used in operations in the XFN context and attribute interfaces. There is one reference
page per object type containing a description of the object and operations used to manipulate the
object.

The interfaces described in this chapter follow the naming conventions for symbols described in
Section 3.1 on page 19.

Reference pages appear in alphabetical order.

Federated Naming: The XFN Specification 75

FN_attribute_t Reference Manual Pages

NAME
FN_attribute_t — an XFN attribute

SYNOPSIS
#include <xfn/xfn.h>

FN_attribute_t *fn_attribute_create(
const FN_identifier_t * attribute_id ,
const FN_identifier_t * attribute_syntax);

void fn_attribute_destroy(FN_attribute_t * attr);

FN_attribute_t *fn_attribute_copy(const FN_attribute_t * attr);

FN_attribute_t *fn_attribute_assign(
FN_attribute_t * dst ,
const FN_attribute_t * src);

const FN_identifier_t *fn_attribute_identifier(
const FN_attribute_t * attr);

const FN_identifier_t *fn_attribute_syntax(const FN_attribute_t * attr);

unsigned int fn_attribute_valuecount(const FN_attribute_t * attr);

const FN_attrvalue_t *fn_attribute_first(
const FN_attribute_t * attr ,
void* * iter_pos);

const FN_attrvalue_t *fn_attribute_next(
const FN_attribute_t * attr ,
void* * iter_pos);

int fn_attribute_add(
FN_attribute_t * attr ,
const FN_attrvalue_t * attribute_value ,
unsigned int exclusive);

int FN_attribute_remove(
FN_attribute_t * attr ,
const FN_attrvalue_t * attribute_value);

DESCRIPTION
An attribute has an attribute identifier, a syntax, and a set of distinct values. Each value is a
sequence of octets. The operations associated with objects of type FN_attribute_t allow the
construction, destruction, and manipulation of an attribute and its value set.

The attribute identifier and its syntax are specified using an FN_identifier_t. fn_attribute_create()
creates a new attribute object with the given identifier and syntax, and an empty set of values.
fn_attribute_destroy () releases the storage associated with attr; if attr is NULL, no action is taken.
fn_attribute_copy () returns a copy of the object pointed to by attr. fn_attribute_assign () makes a
copy of the attribute object pointed to by src and assigns it to dst, releasing any old contents of
dst. A pointer to the same object as dst is returned.

76 X/Open CAE Specification

Reference Manual Pages FN_attribute_t

fn_attribute_identifier() returns the attribute identifier of attr. fn_attribute_syntax () returns the
attribute syntax of attr. fn_attribute_valuecount () returns the number of attribute values in attr.

fn_attribute_first() and fn_attribute_next() are used to enumerate the values of an attribute.
Enumeration of the values of an attribute may return the values in any order. fn_attribute_first()
returns an attribute value from attr and sets the iteration marker iter_pos. Subsequent calls to
fn_attribute_next() return the next attribute value identified by iter_pos and advance iter_pos.
Adding or removing values from an attribute invalidates any iteration markers that the caller
holds.

fn_attribute_add () adds a new value attribute_value to attr. The operation succeeds (but no
change is made) if attribute_value is already in attr and exclusive is zero; the operation fails if
attribute_value is already in attr and exclusive is non-zero. fn_attribute_remove() removes
attribute_value from attr. The operation succeeds even if attribute_value is not amongst attr’s
values.

RETURN VALUE
fn_attribute_first() returns 0 if the attribute contains no values. fn_attribute_next() returns 0 if
there are no more values to be returned in the attribute (as identified by the iteration marker) or
if the iteration marker is invalid.

fn_attribute_add () and fn_attribute_remove() return 1 if the operation succeeds, 0 if it fails.

APPLICATION USAGE
Manipulation of attributes using the operations described in this manual page does not affect
their representation in the underlying naming system. Changes to attributes in the underlying
naming system can only be effected through the use of the interfaces described in the reference
manual page for XFN_attribute_operations.

SEE ALSO
FN_attrvalue_t, FN_attrset_t, FN_identifier_t, fn_attr_get (), fn_attr_modify (),
XFN_attribute_operations, <xfn/xfn.h>.

Federated Naming: The XFN Specification 77

FN_attrmodlist_t Reference Manual Pages

NAME
FN_attrmodlist_t — a list of attribute modifications

SYNOPSIS
#include <xfn/xfn.h>

FN_attrmodlist_t *fn_attrmodlist_create(void);

void fn_attrmodlist_destroy(FN_attrmodlist_t * modlist);

FN_attrmodlist_t *fn_attrmodlist_copy(const FN_attrmodlist_t * modlist);

FN_attrmodlist_t *fn_attrmodlist_assign(
FN_attrmodlist_t * dst ,
const FN_attrmodlist_t * src);

unsigned int fn_attrmodlist_count(const FN_attrmodlist_t * modlist);

const FN_attribute_t *fn_attrmodlist_first(
const FN_attrmodlist_t * modlist ,
void* * iter_pos ,
unsigned int * first_mod_op);

const FN_attribute_t *fn_attrmodlist_next(
const FN_attrmodlist_t * modlist ,
void* * iter_pos ,
unsigned int * mod_op);

int fn_attrmodlist_add(
FN_attrmodlist_t * modlist ,
unsigned int mod_op,
const FN_attribute_t * attr);

DESCRIPTION
An attribute modification list allows for multiple modification operations to be made on the
attributes associated with a single named object. It is used in the fn_attr_multi_modify ()
operation.

An attribute modification list is a list of attribute modification specifiers. An attribute
modification specifier consists of an attribute object and an operation specifier. The attribute’s
identifier indicates the attribute that is to be operated upon. The attribute’s values are used in a
manner depending on the operation. The operation specifier is an unsigned int that must have
one of the values: FN_ATTR_OP_ADD, FN_ATTR_OP_ADD_EXCLUSIVE,
FN_ATTR_OP_REMOVE, FN_ATTR_OP_ADD_VALUES, or
FN_ATTR_OP_REMOVE_VALUES. (See fn_attr_modify () for detailed descriptions of these
specifiers.) The operations are to be performed in the order in which they appear in the
modification list.

fn_attrmodlist_create () creates an empty attribute modification list. fn_attrmodlist_destroy ()
releases the storage associated with modlist; if modlist is NULL, no action is taken.
fn_attrmodlist_copy () returns a copy of the attribute modification list modlist.
fn_attrmodlist_assign () makes a copy of src and assigns it to dst, releasing any old contents of dst.
It returns a pointer to the same object as dst.

78 X/Open CAE Specification

Reference Manual Pages FN_attrmodlist_t

fn_attrmodlist_count () returns the number attribute modification items in the attribute
modification list.

The iterators fn_attrmodlist_first() and fn_attrmodlist_next () return a handle to the attribute part
of the modification and return the operation specifier part through an unsigned int * parameter.
fn_attrmodlist_first() returns the attribute of the first modification item from modlist and sets
mod_op to be the code of the modification operation of that item; iter_pos is set after the first
modification item. fn_attrmodlist_next () returns the attribute of the next modification item from
modlist after iter_pos and advances iter_pos; mod_op is set to the code of the modification
operation of that item. The order of the items returned during an enumeration is the same as the
order by which the items were added to the modification list.

fn_attrmodlist_add () adds a new item consisting of the given modification operation code mod_op
and attribute attr to the end of the modification list modlist. attr’s identifier indicates the attribute
that is to be operated upon. attr’s values are used in a manner depending on the operation.

RETURN VALUE
fn_attrmodlist_first() returns 0 if the modification list is empty. fn_attrmodlist_next () returns 0 if
there are no more items on the modification list to be enumerated or if the iteration marker is
invalid.

fn_attrmodlist_add () returns 1 if the operation succeeds, 0 if the operation fails.

APPLICATION USAGE
Manipulation of attributes using the operations described in this manual page does not affect
their representation in the underlying naming system. Changes to attributes in the underlying
naming system can only be effected through the use of the interfaces described in the manual
page for XFN_attribute_operations.

SEE ALSO
FN_attribute_t, FN_attrset_t, FN_identifier_t, fn_attr_multi_modify (), fn_attr_modify (),
XFN_attribute_operations, <xfn/xfn.h>.

Federated Naming: The XFN Specification 79

FN_attrset_t Reference Manual Pages

NAME
FN_attrset_t — a set of XFN attributes

SYNOPSIS
#include <xfn/xfn.h>

FN_attrset_t *fn_attrset_create(void);

void fn_attrset_destroy(FN_attrset_t * aset);

FN_attrset_t *fn_attrset_copy(const FN_attrset_t * aset);

FN_attrset_t *fn_attrset_assign(
FN_attrset_t * dst ,
const FN_attrset_t * src);

const FN_attribute_t *fn_attrset_get(
const FN_attrset_t * aset ,
const FN_identifier_t * attr_id);

unsigned int fn_attrset_count(const FN_attrset_t * aset);

const FN_attribute_t *fn_attrset_first(
const FN_attrset_t * aset ,
void* *iter_pos);

const FN_attribute_t *fn_attrset_next(
const FN_attrset_t * aset ,
void* *iter_pos);

int fn_attrset_add(
FN_attrset_t * aset ,
const FN_attribute_t * attr ,
unsigned int exclusive);

int fn_attrset_remove(
FN_attrset_t * aset ,
const FN_identifier_t * attr_id);

DESCRIPTION
An attribute set is a set of attribute objects with distinct identifiers. The fn_attr_multi_get ()
operation takes an attribute set as parameter and returns an attribute set. The fn_attr_get_ids ()
operation returns an attribute set containing the identifiers of the attributes.

Attribute sets are represented by the type FN_attrset_t. The following operations are defined for
manipulating attribute sets.

fn_attrset_create() creates an empty attribute set. fn_attrset_destroy () releases the storage
associated with the attribute set aset; if aset is NULL, no action is taken. fn_attrset_copy () returns
a copy of the attribute set aset. fn_attrset_assign () makes a copy of the attribute set src and
assigns it to dst, releasing any old contents of dst. A pointer to the same object as dst is returned.

fn_attrset_get() returns the attribute with the given identifier attr_id from aset. fn_attrset_count ()
returns the number attributes found in the attribute set aset.

80 X/Open CAE Specification

Reference Manual Pages FN_attrset_t

fn_attrset_first() and fn_attrset_next() are functions that can be used to return an enumeration of
all the attributes in an attribute set. The attributes are not ordered in any way. There is no
guaranteed relation between the order in which items are added to an attribute set and the order
of the enumeration. The specification does guarantee that any two enumeration will return the
members in the same order, provided that no fn_attrset_add () or fn_attrset_remove() operation
was performed on the object in between or during the two enumerations. fn_attrset_first()
returns the first attribute from the set and sets iter_pos after the first attribute. fn_attrset_next()
returns the attribute following iter_pos and advances iter_pos.

fn_attrset_add () adds the attribute attr to the attribute set aset, replacing the attribute’s values if
the identifier of attr is not distinct in aset and exclusive is zero. If exclusive is non-zero and the
identifier of attr is not distinct in aset, the operation fails. fn_attrset_remove() removes the
attribute with the identifier attr_id from aset. The operation succeeds even if no such attribute
occurs in aset.

RETURN VALUE
fn_attrset_first() returns 0 if the attribute set is empty. fn_attrset_next() returns 0 if there are no
more attributes in the set.

fn_attrset_add () and fn_attrset_remove() return 1 if the operation succeeds, and 0 if the operation
fails.

APPLICATION USAGE
Manipulation of attributes using the operations described in this manual page does not affect
their representation in the underlying naming system. Changes to attributes in the underlying
naming system can only be effected through the use of the interfaces described in the manual
page for XFN_attribute_operations.

SEE ALSO
FN_attribute_t, FN_attrvalue_t, FN_identifier_t, fn_attr_multi_get (), fn_attr_get_ids (),
XFN_attribute_operations, <xfn/xfn.h>.

Federated Naming: The XFN Specification 81

FN_attrvalue_t Reference Manual Pages

NAME
FN_attrvalue_t — an XFN attribute value

SYNOPSIS
#include <xfn/xfn.h>

DESCRIPTION
The type FN_attrvalue_t is used to represent the contents of a single attribute value, within an
attribute of type FN_attribute_t.

The representation of this structure is defined by XFN as follows:

typedef struct {
size_t length;
void *contents;

} FN_attrvalue_t;

SEE ALSO
FN_attribute_t, fn_attr_get_values (), <xfn/xfn.h>.

82 X/Open CAE Specification

Reference Manual Pages FN_composite_name_t

NAME
FN_composite_name_t — a sequence of component names spanning multiple naming systems

SYNOPSIS
#include <xfn/xfn.h>

FN_composite_name_t *fn_composite_name_create(void);

void fn_composite_name_destroy(FN_composite_name_t * name);

FN_composite_name_t *fn_composite_name_from_str(
const unsigned char * cstr);

FN_composite_name_t *fn_composite_name_from_string(
const FN_string_t * str);

FN_string_t *fn_string_from_composite_name(
const FN_composite_name_t * name,
unsigned int * status);

FN_composite_name_t *fn_composite_name_copy(
const FN_composite_name_t * name);

FN_composite_name_t *fn_composite_name_assign(
FN_composite_name_t * dst ,
const FN_composite_name_t * src);

int fn_composite_name_is_empty(const FN_composite_name_t * name);

unsigned int fn_composite_name_count(const FN_composite_name_t * name);

const FN_string_t *fn_composite_name_first(
const FN_composite_name_t * name,
void* * iter_pos);

const FN_string_t *fn_composite_name_next(
const FN_composite_name_t * name,
void* * iter_pos);

const FN_string_t *fn_composite_name_prev(
const FN_composite_name_t * name,
void* * iter_pos);

const FN_string_t *fn_composite_name_last(
const FN_composite_name_t * name,
void* * iter_pos);

FN_composite_name_t *fn_composite_name_prefix(
const FN_composite_name_t * name,
const void* iter_pos);

FN_composite_name_t *fn_composite_name_suffix(
const FN_composite_name_t * name,

Federated Naming: The XFN Specification 83

FN_composite_name_t Reference Manual Pages

const void* iter_pos);

int fn_composite_name_is_equal(
const FN_composite_name_t * name,
const FN_composite_name_t * name2,
unsigned int * status);

int fn_composite_name_is_prefix(
const FN_composite_name_t * name,
const FN_composite_name_t * prefix ,
void* * iter_pos ,
unsigned int * status);

int fn_composite_name_is_suffix(
const FN_composite_name_t * name,
const FN_composite_name_t * suffix ,
void* * iter_pos ,
unsigned int * status);

int fn_composite_name_prepend_comp(
FN_composite_name_t * name,
const FN_string_t * newcomp);

int fn_composite_name_append_comp(
FN_composite_name_t * name,
const FN_string_t * newcomp);

int fn_composite_name_insert_comp(
FN_composite_name_t * name,
void* * iter_pos ,
const FN_string_t * newcomp);

int fn_composite_name_delete_comp(
FN_composite_name_t * name,
void* * iter_pos);

int fn_composite_name_prepend_name(
FN_composite_name_t * name,
const FN_composite_name_t * newcomps);

int fn_composite_name_append_name(
FN_composite_name_t * name,
const FN_composite_name_t * newcomps);

int fn_composite_name_insert_name(
FN_composite_name_t * name,
void* * iter_pos ,
const FN_composite_name_t * newcomps);

DESCRIPTION
A composite name is represented by an object of type FN_composite_name_t. Each component
is a string name, of type FN_string_t, from the namespace of a single naming system. It may be
an atomic name or a compound name in that namespace.

84 X/Open CAE Specification

Reference Manual Pages FN_composite_name_t

fn_composite_name_create () creates an FN_composite_name_t object with zero components.
Components may be subsequently added to the composite name using the modify operations
described below. fn_composite_name_destroy () releases any storage associated with the given
FN_composite_name_t handle. If the argument to fn_composite_name_destroy () is NULL, no
action is taken.

fn_composite_name_from_str () creates an FN_composite_name_t from the given null-terminated
string based on the code set of the current locale setting, using the XFN composite name syntax.
fn_composite_name_from_string () creates an FN_composite_name_t from the string str using the
XFN composite name syntax. fn_string_from_composite_name () returns the standard string form
of the given composite name, by concatenating the components of the composite name in a left
to right order, each separated by the XFN component separator.

fn_composite_name_copy () returns a copy of the given composite name object.
fn_composite_name_assign () makes a copy of the composite name object pointed to by src and
assigns it to dst, releasing any old contents of dst. A pointer to the same object as dst is returned.

fn_composite_name_is_empty () returns 1 if the given composite name is an empty composite
name (that is, consists of a single, empty component name); otherwise, it returns 0.
fn_composite_name_count () returns the number of components in the given composite name.

The iteration scheme is based on the exchange of an opaque void * argument, iter_pos, that
serves to record the position of the iteration in the sequence. Conceptually, iter_pos records a
position between two successive components (or at one of the extreme ends of the sequence).

The function fn_composite_name_first() returns a handle to the FN_string_t that is the first
component in the name, and sets iter_pos to indicate the position immediately following the first
component. It returns 0 if the name has no components. Thereafter, successive calls of the
fn_composite_name_next () function return pointers to the component following the iteration
marker, and advance the iteration marker. If the iteration marker is at the end of the sequence,
fn_composite_name_next () returns 0. Similarly, fn_composite_name_prev () returns the component
preceding the iteration pointer and moves the marker back one component. If the marker is
already at the beginning of the sequence, fn_composite_name_prev () returns 0. The function
fn_composite_name_last () returns a pointer to the last component of the name and sets the
iteration marker immediately preceding this component (so that subsequent calls to
fn_composite_name_prev () can be used to step through leading components of the name).

The fn_composite_name_suffix() function returns a composite name consisting of a copy of those
components following the supplied iteration marker. The method fn_composite_name_prefix()
returns a composite name consisting of those components that precede the iteration marker.
Using these functions with an iteration marker that was not initialized using
fn_composite_name_first(), fn_composite_name_last (), fn_composite_name_is_prefix(), or
fn_composite_name_is_suffix() yields undefined and generally undesirable behavior.

The functions fn_composite_name_is_equal (), fn_composite_name_is_prefix(),
fn_composite_name_is_suffix(), test for equality between composite names or between parts of
composite names. For these functions, equality is defined as exact string equality, not name
equivalence. A name’s syntactic property, such as case-insensitivity, is not taken into account by
these functions.

The function fn_composite_name_is_prefix() tests if one composite name is a prefix of another. If
so, it returns 1 and sets the iteration marker immediately following the prefix. (So for example, a
subsequent call to fn_composite_name_suffix() will return the remainder of the name.) Otherwise
it returns 0 and value of the iteration marker is undefined. The function
fn_composite_name_is_suffix() is similar. It tests if a one composite name is a suffix of another. If
so it returns 1 and sets the iteration marker immediately preceding the suffix.

Federated Naming: The XFN Specification 85

FN_composite_name_t Reference Manual Pages

fn_composite_name_prepend_comp () and fn_composite_name_append_comp () prepends and appends
a single component to the given composite name, respectively. These operations invalidate any
iteration marker the client holds for that object. fn_composite_name_insert_comp () inserts a single
component before iter_pos to the given composite name and sets iter_pos to be immediately after
the component just inserted. fn_composite_name_delete_comp () deletes the component located
before iter_pos from the given composite name and sets iter_pos back one component.

The functions fn_composite_name_prepend_name(), fn_composite_name_append_name () and
fn_composite_name_insert_name() perform the same update functions as their _comp counterparts,
respectively, except that multiple components are being added, rather than single components.
fn_composite_name_insert_name() sets iter_pos to be immediately after the name just added.

RETURN VALUE
The functions fn_composite_name_is_empty (), fn_composite_name_is_equal (),
fn_composite_name_is_suffix() and fn_composite_name_is_prefix() return 1 if the test indicated is
TRUE; 0 otherwise.

The update functions fn_composite_name_prepend_comp (), fn_composite_name_append_comp (),
fn_composite_name_insert_comp (), fn_composite_name_delete_comp () and their _name counterparts
return 1 if the update was successful; 0 otherwise.

If a function is expected to return a pointer to an object, a null pointer (0) is returned if the
function fails.

ERRORS
Locale (code set, language, or territory) mismatches that occur during the composition of the
string form or during comparisons of composite names are resolved in an implementation-
dependent way. fn_string_from_composite_name (), fn_composite_name_is_equal (),
fn_composite_name_is_suffix() and fn_composite_name_is_prefix() set status to the appropriate error
code ([FN_E_INCOMPATIBLE_CODE_SETS] or [FN_E_INCOMPATIBLE_LOCALES]) for
composite names whose components have code sets or locales that are determined by the
implementation to be incompatible. If the status argument to these functions is NULL, no status
is set upon return of the function.

SEE ALSO
FN_string_t, <xfn/xfn.h>.

86 X/Open CAE Specification

Reference Manual Pages FN_compound_name_t

NAME
FN_compound_name_t — an XFN compound name

SYNOPSIS
#include <xfn/xfn.h>

FN_compound_name_t *fn_compound_name_from_syntax_attrs(
const FN_attrset_t * aset ,
const FN_string_t * name,
FN_status_t * status);

FN_attrset_t *fn_compound_name_get_syntax_attrs(
const FN_compound_name_t * name);

void fn_compound_name_destroy(FN_compound_name_t * name);

FN_string_t *fn_string_from_compound_name(
const FN_compound_name_t * name);

FN_compound_name_t *fn_compound_name_copy(
const FN_compound_name_t * name);

FN_compound_name_t *fn_compound_name_assign(
FN_compound_name_t * dst ,
const FN_compound_name_t * src);

unsigned int fn_compound_name_count(const FN_compound_name_t * name);

const FN_string_t *fn_compound_name_first(
const FN_compound_name_t * name,
void* * iter_pos);

const FN_string_t *fn_compound_name_next(
const FN_compound_name_t * name,
void* * iter_pos);

const FN_string_t *fn_compound_name_prev(
const FN_compound_name_t * name,
void* * iter_pos);

const FN_string_t *fn_compound_name_last(
const FN_compound_name_t * name,
void* * iter_pos);

FN_compound_name_t *fn_compound_name_prefix(
const FN_compound_name_t * name,
const void* iter_pos);

FN_compound_name_t *fn_compound_name_suffix(
const FN_compound_name_t * name,
const void* iter_pos);

int fn_compound_name_is_empty(const FN_compound_name_t * name);

Federated Naming: The XFN Specification 87

FN_compound_name_t Reference Manual Pages

int fn_compound_name_is_equal(
const FN_compound_name_t * name1,
const FN_compound_name_t * name2,
unsigned int * status);

int fn_compound_name_is_prefix(
const FN_compound_name_t * name,
const FN_compound_name_t * pre ,
void* * iter_pos ,
unsigned int * status);

int fn_compound_name_is_suffix(
const FN_compound_name_t * name,
const FN_compound_name_t * suffix ,
void* * iter_pos ,
unsigned int * status);

int fn_compound_name_prepend_comp(
FN_compound_name_t * name,
const FN_string_t * atomic_comp ,
unsigned int * status);

int fn_compound_name_append_comp(
FN_compound_name_t * name,
const FN_string_t * atomic_comp ,
unsigned int * status);

int fn_compound_name_insert_comp(
FN_compound_name_t * name,
void* * iter_pos ,
const FN_string_t * atomic_comp ,
unsigned int * status);

int fn_compound_name_delete_comp(
FN_compound_name_t * name,
void* * iter_pos);

int fn_compound_name_delete_all(FN_compound_name_t * name);

DESCRIPTION
Most applications treat names as opaque data and hence, the majority of clients of the XFN
interface will not need to parse names. Some applications, however, such as browsers, need to
parse names. For these applications, XFN provides support in the form of the
FN_compound_name_t object.

Each naming system in an XFN federation potentially has its own naming conventions. The
FN_compound_name_t object has associated operations for applications to process compound
names that conform to the XFN model of expressing compound name syntax. The XFN syntax
model for compound names covers a large number of specific name syntaxes and is expressed in
terms of syntax properties of the naming convention. See XFN_compound_syntax.

An FN_compound_name_t object is constructed by the operation
fn_compound_name_from_syntax_attrs (), using a string name and an attribute set containing the

88 X/Open CAE Specification

Reference Manual Pages FN_compound_name_t

fn_syntax_type (FN_ID_STRING syntax) attribute identifying the namespace syntax of the string
name. The value standard (FN_ID_STRING syntax) in the fn_syntax_type specifies a syntax
model that is by default supported by the FN_compound_name_t object. An implementation
may support other syntax types instead of the XFN standard syntax model, in which case, the
value of the fn_syntax_type attribute would be set to an implementation specific string.
fn_compound_name_get_syntax_attrs () returns an attribute set containing the syntax attributes
that describes the given compound name. fn_compound_name_destroy () releases the storage
associated with the given compound name. If the argument to fn_compound_name_destroy () is
NULL, no action is taken.

fn_string_from_compound_name () returns the string form of the given compound name.
fn_compound_name_copy () returns a copy of the given compound name.
fn_compound_name_assign () makes a copy of the compound name src and assigns it to dst,
releasing any old contents of dst. A pointer to the object pointed to by dst is returned.
fn_compound_name_count () returns the number of atomic components in the given compound
name.

The function fn_compound_name_first() returns a handle to the FN_string_t that is the first
atomic component in the compound name, and sets iter_pos to indicate the position immediately
following the first component. It returns 0 if the name has no components. Thereafter,
successive calls of the fn_compound_name_next() function return pointers to the component
following the iteration marker, and advance the iteration marker. If the iteration marker is at the
end of the sequence, fn_compound_name_next() returns 0. Similarly, fn_compound_name_prev()
returns the component preceding the iteration pointer and moves the marker back one
component. If the marker is already at the beginning of the sequence, fn_compound_name_prev()
returns 0. The function fn_compound_name_last () returns a pointer to the last component of the
name and sets the iteration marker immediately preceding this component (so that subsequent
calls to fn_compound_name_prev() can be used to step through trailing components of the name).

The fn_compound_name_suffix() function returns a compound name consisting of a copy of those
components following the supplied iteration marker. The function fn_compound_name_prefix()
returns a compound name consisting of those components that precede the iteration marker.
Using these functions with an iteration marker that was not initialized using
fn_compound_name_first(), fn_compound_name_last (), fn_compound_name_is_prefix(), or
fn_compound_name_is_suffix() yields undefined and generally undesirable behavior.

The function fn_compound_name_is_equal (), fn_compound_name_is_prefix(),
fn_compound_name_is_suffix(), tests for equality between compound names or between parts of
compound names. For these functions, equality is defined as name equivalence. A name’s
syntactic property, such as case-insensitivity, is taken into account by these functions.

The function fn_compound_name_is_prefix() tests if one compound name is a prefix of another. If
so, it returns 1 and sets the iteration marker immediately following the prefix. (So for example, a
subsequent call to fn_compound_name_suffix() will return the remainder of the name.) Otherwise
it returns 0 and value of the iteration marker is undefined. The function
fn_compound_name_is_suffix() is similar. It tests if a one compound name is a suffix of another. If
so it returns 1 and sets the iteration marker immediately preceding the suffix.

fn_compound_name_prepend_comp () and fn_compound_name_append_comp () prepends and
appends a single atomic component to the given compound name, respectively. These
operations invalidates any iteration marker the client holds for that object.
fn_compound_name_insert_comp () inserts an atomic component before iter_pos to the given
compound name and sets iter_pos to be immediately after the component just inserted.
fn_compound_name_delete_comp () deletes the atomic component located before iter_pos from the
given compound name and sets iter_pos back one component. fn_compound_name_delete_all ()

Federated Naming: The XFN Specification 89

FN_compound_name_t Reference Manual Pages

deletes all the atomic components from name.

RETURN VALUE
The functions fn_compound_name_is_empty (), fn_compound_name_is_equal (),
fn_compound_name_is_suffix() and fn_compound_name_is_prefix() return 1 if the test indicated is
TRUE; 0 otherwise.

The update functions fn_compound_name_prepend_comp (), fn_compound_name_append_comp (),
fn_compound_name_insert_comp (), fn_compound_name_delete_comp () and
fn_compound_name_delete_all () return 1 if the update was successful; 0 otherwise.

If a function is expected to return a pointer to an object, a null pointer (0) is returned if the
function fails.

ERRORS
When the function fn_compound_name_from_syntax_attrs () fails, it returns in status a status code.
The possible status codes are:

[FN_E_ILLEGAL_NAME]
The name supplied to the operation was not a well- formed XFN compound name, or one of
the component names was not well-formed according to the syntax of the naming system(s)
involved in its resolution.

[FN_E_INCOMPATIBLE_CODE_SETS]
The code set of the given string is incompatible with that supported by the compound
name.

[FN_E_INCOMPATIBLE_LOCALES]
Language or territory locale information of the given string is incompatible with that
supported by the compound name.

[FN_E_INVALID_SYNTAX_ATTRS]
The syntax attributes supplied are invalid or insufficient to fully specify the syntax.

[FN_E_SYNTAX_NOT_SUPPORTED]
The syntax type specified is not supported.

The following functions:
fn_compound_name_from_syntax_attrs (),
fn_compound_name_is_equal (),
fn_compound_name_is_suffix(),
fn_compound_name_is_prefix(),
fn_compound_name_prepend_comp (),
fn_compound_name_append_comp ()
fn_compound_name_insert_comp ()
returns in status an appropriate error code ([FN_E_INCOMPATIBLE_CODE_SETS] or
[FN_E_INCOMPATIBLE_LOCALES]) when the code set or locale of the given string is
incompatible with that of the compound name. If the status argument to these functions is
NULL, no status is set upon return of the function.

SEE ALSO
FN_attribute_t, FN_attrset_t, FN_composite_name_t, FN_status_t, FN_string_t,
fn_ctx_get_syntax_attrs (), XFN_compound_syntax, <xfn/xfn.h>.

90 X/Open CAE Specification

Reference Manual Pages FN_ctx_t

NAME
FN_ctx_t — an XFN context

SYNOPSIS
#include <xfn/xfn.h>

FN_ctx_t*
fn_ctx_handle_from_initial(

unsigned int authoritative ,
FN_status_t* status);

FN_ctx_t*
fn_ctx_handle_from_ref(

const FN_ref_t* ref,
unsigned int authoritative,
FN_status_t* status);

FN_ref_t *fn_ctx_get_ref(
const FN_ctx_t * ctx ,
FN_status_t * status);

void fn_ctx_handle_destroy(FN_ctx_t * ctx);

FN_ref_t *fn_ctx_lookup(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

FN_namelist_t *fn_ctx_list_names(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

FN_string_t *fn_namelist_next(
FN_namelist_t * nl ,
FN_status_t * status);

void fn_namelist_destroy(
FN_namelist_t * nl);

FN_bindinglist_t *fn_ctx_list_bindings(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

FN_string_t *fn_bindinglist_next(
FN_bindinglist_t * iter ,
FN_ref_t * * ref ,
FN_status_t * status);

void fn_bindinglist_destroy(
FN_bindinglist_t * iter_pos);

Federated Naming: The XFN Specification 91

FN_ctx_t Reference Manual Pages

int fn_ctx_bind(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_ref_t * ref ,
unsigned int exclusive ,
FN_status_t * status);

int fn_ctx_unbind(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

int fn_ctx_rename(
FN_ctx_t * ctx ,
const FN_composite_name_t * oldname ,
const FN_composite_name_t * newname,
unsigned int exclusive ,
FN_status_t * status);

FN_ref_t *fn_ctx_create_subcontext(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

int fn_ctx_destroy_subcontext(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

FN_ref_t *fn_ctx_lookup_link(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

FN_attrset_t *fn_ctx_get_syntax_attrs(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

FN_composite_name_t *fn_ctx_equivalent_name(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_string_t * leading_name ,
FN_status_t * status);

DESCRIPTION
An XFN context consists of a set of name to reference bindings. An XFN context is represented
by the type FN_ctx_t in the client interface. The operations for manipulating an FN_ctx_t object
are described in detail in separate reference manual pages. The following contains a brief
summary of these operations.

fn_ctx_handle_from_initial () returns a pointer to an Initial Context that provides a starting point
for resolution of composite names. fn_ctx_handle_from_ref () returns a handle to an FN_ctx_t

92 X/Open CAE Specification

Reference Manual Pages FN_ctx_t

object using the given reference ref. fn_ctx_get_ref () returns the reference of the context ctx.
fn_ctx_handle_destroy () releases the resources associated with the FN_ctx_t object ctx; it does not
affect the state of the context itself. If the argument to fn_ctx_handle_destroy () is NULL, no action
is taken.

fn_ctx_lookup () returns the reference bound to name resolved relative to ctx. fn_ctx_list_names ()
is used to enumerate the atomic names bound in the context named by name resolved relative to
ctx. fn_ctx_list_bindings () is used to enumerate the atomic names and their references in the
context named by name resolved relative to ctx.

fn_ctx_bind() binds the composite name name to a reference ref resolved relative to ctx.
fn_ctx_unbind() unbinds name resolved relative to ctx. fn_ctx_rename() binds newname to the
reference bound to oldname and unbinds oldname. oldname is resolved relative to ctx; newname is
resolved relative to the target context.

fn_ctx_create_subcontext() creates a new context with the given composite name name resolved
relative to ctx. fn_ctx_destroy_subcontext () destroys the context named by name resolved relative
to ctx.

Normal resolution always follow links. fn_ctx_lookup_link () lookups up name relative to ctx,
following links except for the last atomic part of name.

fn_ctx_get_syntax_attrs () returns an attribute set containing attributes that describes a context’s
syntax. name must name a context.

fn_ctx_equivalent_name () returns an equivalent name for an object named name relative to the
context ctx. The equivalent name returned has leading_name as its initial atomic name and is to
resolved relative to the same context, ctx.

ERRORS
In each context operation, the caller supplies an FN_status_t object as a parameter. The called
function sets this status object as described in the reference manual pages for FN_status_t and
XFN_status_code. If the caller supplies a NULL pointer for the status object, no status
information is returned.

APPLICATION USAGE
In most of the operations of the base context interface, the caller supplies a context and a
composite name. The supplied name is always interpreted relative to the supplied context.

The operation may eventually be effected on a different context called the operation’s target
context. Each operation has an initial resolution phase that conveys the operation to its target
context, and the operation is then applied. The effect (but not necessarily the implementation) is
that of

1. doing a lookup on that portion of the name that represents the target context, and then

2. invoking the operation on the target context.
The contexts involved only in the resolution phase are called intermediate contexts.

Normal resolution of names in context operations always follows XFN links.

SEE ALSO
FN_attrset_t, FN_composite_name_t, FN_ref_t, FN_status_t, fn_ctx_create_subcontext(),
fn_ctx_bind(), fn_ctx_destroy_subcontext (), fn_ctx_equivalent_name (), fn_ctx_handle_destroy (),
fn_ctx_handle_from_initial (), fn_ctx_handle_from_ref (), fn_ctx_get_ref (), fn_ctx_get_syntax_attrs (),
fn_ctx_list_names (), fn_ctx_list_bindings (), fn_ctx_lookup (), fn_ctx_lookup_link (), fn_ctx_rename(),
fn_ctx_unbind(), XFN_links, XFN_status_codes, <xfn/xfn.h>.

Federated Naming: The XFN Specification 93

FN_identifier_t Reference Manual Pages

NAME
FN_identifier_t — an XFN identifier

SYNOPSIS
#include <xfn/xfn.h>

DESCRIPTION
Identifiers are used to identify reference types and address types in an XFN reference, and to
identify attributes and their syntax in the attribute operations.

An XFN identifier consists of an unsigned int, which determines the format of identifier, and the
actual identifier, which is expressed as a sequence of octets.

The representation of this structure is defined by XFN as follows:

typedef struct {
unsigned int format;
size_t length;
void *contents;

} FN_identifier_t;

XFN defines a small number of standard forms for identifiers.

Identifier Format Description
The identifier is an ASCII string (ISO 646).FN_ID_STRING

The identifier is an OSF DCE UUID in string
representation. (See the X/Open DCE RPC.)

FN_ID_DCE_UUID

The identifier is an ISO OID in ASN.1 dot-
separated integer list string format. (See the ISO
ASN.1.)

FN_ID_ISO_OID_STRING

SEE ALSO
FN_ref_t, FN_ref_addr_t, FN_attribute_t, <xfn/xfn.h>.

94 X/Open CAE Specification

Reference Manual Pages FN_ref_t

NAME
FN_ref_t — an XFN reference

SYNOPSIS
#include <xfn/xfn.h>

FN_ref_t *fn_ref_create(const FN_identifier_t * ref_type);

void fn_ref_destroy(FN_ref_t * ref);

FN_ref_t *fn_ref_copy(const FN_ref_t * ref);

FN_ref_t *fn_ref_assign(FN_ref_t * dst , const FN_ref_t * src);

const FN_identifier_t *fn_ref_type(const FN_ref_t * ref);

unsigned int fn_ref_addrcount(const FN_ref_t * ref);

const FN_ref_addr_t *fn_ref_first(const FN_ref_t * ref , void* * iter_pos);

const FN_ref_addr_t *fn_ref_next(const FN_ref_t * ref , void* * iter_pos);

int fn_ref_prepend_addr(FN_ref_t * ref , const FN_ref_addr_t * addr);

int fn_ref_append_addr(FN_ref_t * ref , const FN_ref_addr_t * addr);

int fn_ref_insert_addr(
FN_ref_t * ref ,
void* * iter_pos ,
const FN_ref_addr_t * addr);

int fn_ref_delete_addr(FN_ref_t * ref , void* * iter_pos);

int fn_ref_delete_all(FN_ref_t * ref);

FN_ref_t *fn_ref_create_link(const FN_composite_name_t * link_name);

int fn_ref_is_link(const FN_ref_t * ref);

FN_composite_name_t *fn_ref_link_name(const FN_ref_t * link_ref);

FN_string_t *fn_ref_description(
const FN_ref_t * ref ,
unsigned int detail ,
unsigned int * more_detail);

DESCRIPTION
An XFN reference is represented by the type FN_ref_t. An object of this type contains a reference
type and a list of addresses. The ordering in this list at the time of binding might not be
preserved when the reference is returned upon lookup.

The reference type is represented by an object of type FN_identifier_t. The reference type is
intended to identify the class of object referenced. XFN does not dictate the precise use of this.

Federated Naming: The XFN Specification 95

FN_ref_t Reference Manual Pages

Each address is represented by an object of type FN_ref_addr_t.

fn_ref_create() creates a reference with no address, using ref_type as its reference type. Addresses
can be later added to the reference using the functions described below. fn_ref_destroy() releases
the storage associated with ref; if ref is NULL, no action is taken. fn_ref_copy () creates a copy of
ref and returns it. fn_ref_assign() creates a copy of src and assigns it to dst, releasing any old
contents of dst. A pointer to the same object as dst is returned.

fn_ref_type() returns the reference type of ref.

fn_ref_addrcount () returns the number of addresses in the reference ref.

fn_ref_first() returns the first address in ref and sets iter_pos to be after the address. It returns 0 if
there is no address in the list. fn_ref_next() returns the address following iter_pos in ref and sets
iter_pos to be after the address. If the iteration marker iter_pos is at the end of the sequence,
fn_ref_next() returns 0.

fn_ref_prepend_addr() adds addr to the front of the list of addresses in ref. fn_ref_append_addr ()
adds addr to the end of the list of addresses in ref. fn_ref_insert_addr() adds addr to ref before
iter_pos and sets iter_pos to be immediately after the new reference added. fn_ref_delete_addr ()
deletes the address located before iter_pos in the list of addresses in ref and sets iter_pos back one
address. fn_ref_delete_all () deletes all addresses in ref.

fn_ref_create_link () creates a reference using the given composite name link_name as an address.
The reference type of this reference is defined in Appendix G on page 299. fn_ref_is_link () tests if
ref is a link. It returns 1 if it is; 0 if it is not. fn_ref_link_name () returns the composite name stored
in a link reference. It returns 0 if link_ref is not a link.

fn_ref_description () returns a string description of the given reference. It takes as argument an
integer, detail, and a pointer to an integer more_detail. detail specifies the level of detail for which
the description should be generated; the higher the number, the more detail is to be provided. If
more_detail is zero, it is ignored. If more_detail is non-zero, it is set by the description operation to
indicate the next level of detail available, beyond that specified by detail. If no higher level of
detail is available, more_detail is set to detail.

RETURN VALUE
The operations fn_ref_prepend_addr(), fn_ref_append_addr (), fn_ref_insert_addr(),
fn_ref_delete_addr () and fn_ref_delete_all () return 1 if the operation succeeds, 0 if the operation
fails.

APPLICATION USAGE
The reference type is intended to identify the class of object referenced. XFN does not dictate the
precise use of this.

Multiple addresses in a single reference are intended to identify multiple communication
endpoints for the same conceptual object. Multiple addresses may arise for various reasons,
such as the object offering interfaces over more than one communication mechanism.

The client must interpret the contents of a reference based on the type of the addresses and the
type of the reference. However, this interpretation is intended to occur below the application
layer. Most applications developers should not have to manipulate the contents of either
address or reference objects themselves. These interfaces would generally be used within
service libraries.

Manipulation of references using the operations described in this manual page does not affect
their representation in the underlying naming system. Changes to references in the underlying
naming system can only be effected through the use of the interfaces described in the reference
manual page for FN_ctx_t.

96 X/Open CAE Specification

Reference Manual Pages FN_ref_t

SEE ALSO
FN_composite_name_t, FN_ctx_t, FN_identifier_t, FN_string_t, FN_ref_addr_t, FN_string_t,
fn_ctx_lookup (), fn_ctx_lookup_link (), XFN_links, <xfn/xfn.h>.

Federated Naming: The XFN Specification 97

FN_ref_addr_t Reference Manual Pages

NAME
FN_ref_addr_t — an address in an XFN reference

SYNOPSIS
#include <xfn/xfn.h>

FN_ref_addr_t *fn_ref_addr_create(
const FN_identifier_t * type ,
size_t length ,
const void * data);

void fn_ref_addr_destroy(FN_ref_addr_t * addr);

FN_ref_addr_t *fn_ref_addr_copy(const FN_ref_addr_t * addr);

FN_ref_addr_t *fn_ref_addr_assign(
FN_ref_addr_t * dst ,
const FN_ref_addr_t * src);

const FN_identifier_t *fn_ref_addr_type(const FN_ref_addr_t * addr);

size_t fn_ref_addr_length(const FN_ref_addr_t * addr);

const void* fn_ref_addr_data(const FN_ref_addr_t * addr);

FN_string_t *fn_ref_addr_description(
const FN_ref_addr_t * addr ,
unsigned int detail ,
unsigned int * more_detail);

DESCRIPTION
An XFN reference is represented by the type FN_ref_t. An object of this type contains a reference
type and a list of addresses. Each address in the list is represented by an object of type
FN_ref_addr_t. An address consists of an opaque data buffer and a type field, of type
FN_identifier_t.

fn_ref_addr_create () creates and returns an address with the given type and data. length indicates
the size of the data. fn_ref_addr_destroy () releases the storage associated with the given address.
If the argument to fn_ref_addr_destroy () is NULL, no action is taken. fn_ref_addr_copy () returns a
copy of the given address object. fn_ref_addr_assign () makes a copy of the address pointed to by
src and assigns it to dst, releasing any old contents of dst. A pointer to the same object as dst is
returned.

fn_ref_addr_type () returns the type of the given address. fn_ref_addr_length () returns the size of
the address in bytes. fn_ref_addr_data () returns the contents of the address.

fn_ref_addr_description () returns the implementation-defined textual description of the address.
It takes as arguments a number, detail, and a pointer to a number more_detail. detail specifies the
level of detail for which the description should be generated; the higher the number, the more
detail is to be provided. If more_detail is zero, it is ignored. If more_detail is non-zero, it is set by
the description operation to indicate the next level of detail available, beyond that specified by
detail. If no higher level of detail is available, more_detail is set to detail.

98 X/Open CAE Specification

Reference Manual Pages FN_ref_addr_t

APPLICATION USAGE
The address type of an FN_ref_addr_t object is intended to identify the mechanism that should
be used to reach the object using that address. The client must interpret the contents of the
opaque data buffer of the address based on the type of the address, and on the type of the
reference that the address is in. However, this interpretation is intended to occur below the
application layer. Most applications developers should not have to manipulate the contents of
either address or reference objects themselves. These interfaces would generally be used within
service libraries.

Multiple addresses in a single reference are intended to identify multiple communication
endpoints for the same conceptual object. Multiple addresses may arise for various reasons,
such as the object offering interfaces over more than one communication mechanism.

Manipulation of addresses using the operations described in this manual page does not affect
their representation in the underlying naming system. Changes to addresses in the underlying
naming system can only be effected through the use of the interfaces described in the reference
manual page for FN_ctx_t.

SEE ALSO
FN_ctx_t, FN_identifier_t, FN_ref_t, FN_string_t, <xfn/xfn.h>.

Federated Naming: The XFN Specification 99

FN_search_control_t PRELIMINARY Reference Manual Pages

NAME
FN_search_control_t — options for attribute search

SYNOPSIS
#include <xfn/xfn.h>

FN_search_control_t *fn_search_control_create(
unsigned int scope ,
unsigned int follow_links ,
unsigned int max_names,
unsigned int return_ref ,
const FN_attrset_t * return_attr_ids ,
unsigned int * status);

void fn_search_control_destroy(
FN_search_control_t * scontrol);

FN_search_control_t *fn_search_control_copy(
const FN_search_control_t * scontrol);

FN_search_control_t *fn_search_control_assign(
FN_search_control_t * dst ,
const FN_search_control_t * src);

unsigned int fn_search_control_scope(
const FN_search_control_t * scontrol);

unsigned int fn_search_control_follow_links(
const FN_search_control_t * scontrol);

unsigned int fn_search_control_max_names(
const FN_search_control_t * scontrol);

unsigned int fn_search_control_return_ref(
const FN_search_control_t * scontrol);

const FN_attrset_t *fn_search_control_return_attr_ids(
const FN_search_control_t * scontrol);

DESCRIPTION
The FN_search_control_t object is used to specify options for the attribute search operation
fn_attr_ext_search ().

fn_search_control_create () creates an FN_search_control_t object using information in scope,
follow_links, max_names, return_ref and return_attr_ids to set the search options. If the operation
succeeds, fn_search_control_create () returns a pointer to an FN_search_control_t object;
otherwise it returns a NULL pointer.

The scope of the search is either the named object, the named context, the named context and its
subcontexts, or the named context and a context implementation defined set of subcontexts. The
values for scope are:

FN_SEARCH_NAMED_OBJECT
Search just the given named object.

100 X/Open CAE Specification

Reference Manual Pages PRELIMINARY FN_search_control_t

FN_SEARCH_ONE_CONTEXT
Search just the given context.

FN_SEARCH_SUBTREE
Search given context and all its subcontexts.

FN_SEARCH_CONSTRAINED_SUBTREE
Search given context and its subcontexts as constrained by the context-specific policy in
place at the named context.

follow_links further defines the scope and nature of the search. If follow_links is non-zero, the
search follows XFN links. If follow_links is 0, XFN links are not followed. The description of
fn_attr_ext_search () gives more detail about how XFN links are treated.

max_names specifies the maximum number of names to return in an FN_ext_searchlist_t
enumeration. The names of all objects whose attributes satisfy the filter are returned when
max_names is 0.

If return_ref is non-zero, the reference bound to the named object is returned with the object’s
name by fn_ext_searchlist_next (). If return_ref is 0, the reference is not returned .

Attribute identifiers and values associated with named objects that satisfy the filter may be
returned by fn_ext_searchlist_next (). The attributes returned are those listed in return_attr_ids. If
the value of return_attr_ids is 0, all attributes are returned. If return_attr_ids is an empty
FN_attrset_t object, no attributes are returned. Any attribute values in return_attr_ids are
ignored; only the attribute identifiers are relevant for this operation.

fn_attr_ext_search () interprets a value of 0 for the search control argument as a default search
control which has the following option settings:

• scope is {FN_SEARCH_ONE_CONTEXT}

• follow_links is 0 (do not follow links)

• max_names is 0 (return all named objects that match filter)

• return_ref is 0 (do not return the reference of the named object)

• return_attr_ids is an empty FN_attrset_t (do not return any attributes of the named object).

fn_search_control_destroy () releases the storage associated with scontrol; if scontrol is NULL, no
action is taken.

fn_search_control_copy () returns a copy of the search control scontrol. fn_search_control_assign ()
makes a copy of the search control src and assigns it to dst, releasing the old contents of dst. A
pointer to the same object as dst is returned.

fn_search_control_scope () returns the scope for the search. fn_search_control_follow_links () returns
non-zero if links are followed; 0 if not. fn_search_control_max_names () returns the maximum
number of names. fn_search_control_return_ref () returns non-zero if the reference is returned; 0 if
not. fn_search_control_return_attr_ids () returns a pointer to the list of attributes; a NULL pointer
indicates that all attributes and values are returned.

ERRORS
fn_search_control_create () returns a NULL pointer if the operation fails and sets status as follows:

[FN_E_SEARCH_INVALID_OPTION]
A supplied search option was invalid or inconsistent.

Other status codes are possible as described in the reference manual pages for
XFN_status_codes.

Federated Naming: The XFN Specification 101

FN_search_control_t PRELIMINARY Reference Manual Pages

SEE ALSO
fn_attr_ext_search (), fn_ext_searchlist_next (), FN_attrset_t, XFN_status_codes, <xfn/xfn.h>.

102 X/Open CAE Specification

Reference Manual Pages PRELIMINARY FN_search_filter_t

NAME
FN_search_filter_t — filter expression for attribute search

SYNOPSIS
#include <xfn/xfn.h>

FN_search_filter_t *fn_search_filter_create(
unsigned int * status ,
const unsigned char * estr ,
...);

void fn_search_filter_destroy(FN_search_filter_t * sfilter);

FN_search_filter_t *fn_search_filter_copy(
const FN_search_filter_t * sfilter);

FN_search_filter_t *fn_search_filter_assign(
FN_search_filter_t * dst ,
const FN_search_filter_t * src);

const unsigned char *fn_search_filter_expression(
const FN_search_filter_t * sfilter);

const void **fn_search_filter_arguments(
const FN_search_filter_t * sfilter ,
size_t * number_of_arguments);

DESCRIPTION
The FN_search_filter_t type is an expression that is evaluated against the attributes of named
objects bound in the scope of the search operation fn_attr_ext_search (). The filter evaluates to
TRUE or FALSE. If the filter is empty, it evaluates to TRUE. Names of objects whose attribute
values satisfy the filter expression are returned by the search operation.

If the identifier in any subexpression of the filter does not exist as an attribute of an object then
the innermost logical expression containing that identifier is FALSE. A subexpression that is only
an attribute tests for the presence of the attribute; the subexpression evaluates to TRUE if the
attribute has been defined for the object and FALSE otherwise.

fn_search_filter_create() creates a search filter from the expression string estr and the remaining
arguments. fn_search_filter_destroy() releases the storage associated with the search filter sfilter; if
sfilter is NULL, no action is taken. fn_search_filter_copy () returns a copy of the search filter sfilter.
fn_search_filter_assign() makes a copy of the search filter src and assigns it to dst, releasing old
contents of dst. A pointer to the same object as dst is returned.

fn_search_filter_expression() returns the filter expression of sfilter. fn_search_filter_arguments()
returns an array of pointers to arguments supplied to the filter constructor. number_of_arguments
is set to the size of this array. The types of the arguments are determined by the substitution
tokens in the expression in sfilter.

BNF of Filter Expression

<FilterExpr> ::= [<Expr>]

<Expr> ::= <Expr> "or" <Expr>
| <Expr> "and" <Expr>
| "not" <Expr>

Federated Naming: The XFN Specification 103

FN_search_filter_t PRELIMINARY Reference Manual Pages

| "(" <Expr> ")"
| <Attribute> [<Rel_Op> <Value>]
| <Ext>

<Rel_Op> ::= "==" | "!=" | "<" | "<=" | ">" | ">=" | "˜="

<Attribute> ::= "%a"

<Value> ::= <Integer>
| "%v"
|<Wildcarded_string>

<Wildcarded_string> ::= "*"
| <String>
| {<String> "*"}+ [<String>]
| {"*" <String>}+ ["*"]

<String> ::= "’" { <Char > } * "’"
| "%s"

<Char> ::= <PCS> // See BNF in Section 4.1.2 for PCS definition
| Characters in the repertoire of a string representation

<Identifier> ::= "%i"

<Ext> ::= <Ext_Op> "(" [Arg_List] ")"

<Ext_Op> ::= <String> | <Identifier>

<Arg_List> ::= <Arg> | <Arg> "," <Arg_List>

<Arg> ::= <Value> | <Attribute> | <Identifier>

Specification of Filter Expression
The arguments to fn_search_filter_create() are a return status, an expression string, and a list of
arguments. The string contains the filter expression with substitution tokens for the attributes,
attribute values, strings and identifiers that are part of the expression. The remaining list of
arguments contains the attributes and values in the order of appearance of their corresponding
substitution tokens in the expression. The arguments are of types FN_attribute_t*,
FN_attrvalue_t*, FN_string_t* or FN_identifier_t*. Except when attributes appear as arguments
in specially-defined extended operations, any attribute values in an FN_attribute_t type of
argument are ignored; only the attribute identifier and attribute syntax are relevant. The
argument type expected by each substitution token are listed in the following table.

Token Argument Type
%a FN_attribute_t*
%v FN_attrvalue_t*
%s FN_string_t*
%i FN_identifier_t*

Precedence
The following precedence relations hold in the absence of parentheses, in the order of lowest to
highest:

• or

• and

104 X/Open CAE Specification

Reference Manual Pages PRELIMINARY FN_search_filter_t

• not

• relational operators.

These boolean and relational operators are left associative.

Relational Operators
Comparisons and ordering are specific to the syntax or rules of the supplied attribute.

Locale (code set, language or territory) mismatches that occur during string comparisons and
ordering operations are resolved in an implementation-dependent way. Relational operations
that have ordering semantics may be used for strings of locales in which ordering is meaningful,
but is not of general use in internationalized environments.

An attribute that occurs in the absence of any relational operator tests for the presence of the
attribute.

Operator Meaning
The sub-expression is TRUE if at least one value of the
specified attribute is equal to the supplied value.

==

The sub-expression is TRUE if no values of the specified
attribute equal the supplied value.

!=

The sub-expression is TRUE if at least one value of the
attribute is greater than or equal to the supplied value.

>=

The sub-expression is TRUE if at least one value of the
attribute is greater then the supplied value.

>

The sub-expression is TRUE if at least one value of the
attribute is less than or equal to the supplied value.

<=

The sub-expression is TRUE if at least one value of the
attribute is less than the supplied value.

<

The sub-expression is TRUE if at least one value of the
specified attribute matches the supplied value according
to some context-specific approximate matching criterion.
This criterion must subsume strict equality.

˜=

Wildcarded Strings
A wildcarded string consists of a sequence of alternating wildcard specifiers and strings. The
sequence can start with either a wildcard specifier or a string, and end with either a wildcard
specifier or a string.

The wildcard specifier is denoted by the asterisk character (‘*’) and means 0 or more occurrences
of any character.

Wildcarded strings can be used to specify substring matches. The following are examples of
wildcarded strings and what they mean:

Federated Naming: The XFN Specification 105

FN_search_filter_t PRELIMINARY Reference Manual Pages

Wildcarded String Meaning
* any string
’tom’ the string tom
’harv’* any string starting with harv
*’ing’ any string ending with ing
’a’*’b’ any string starting with a and ending with b
’a*b’ the string a*b

any string starting with jo, and containing the
substring ph, and which contains the substring
ne in the portion of the string following ph, and
which ends with er

’jo’*’ph’*’ne’*’er’

%s* any string starting with the supplied string
any string starting with bix and ending with the
supplied string

’bix’*%s

String matches involving strings of different locales (code set, language, or territory) are resolved
in an implementation-dependent way.

Extended Operations
In addition to the relational operators, extended operators can be specified. All extended
operators return either TRUE or FALSE. A filter expression can contain both relational and
extended operations.

Extended operators are specified using an identifier (FN_identifier_t) or a string. If the operator
is specified using a string, the string is used to construct an identifier of format
{FN_ID_STRING}. Identifiers of extended operators and signatures of the corresponding
extended operations, as well as their suggested semantics, are registered with X/Open (
Appendix G).

The following three extended operations are currently defined:

’name’(<Wildcarded String>)
The identifier for this operation is ’name’ ({FN_ID_STRING}). The argument to this
operation is a wildcarded string. The operation returns TRUE if the name of the object
matches the supplied wildcarded string.

’reftype’(%i)
The identifier for this operation is ’reftype’ ({FN_ID_STRING}). The argument to this
operation is an identifier. The operation returns TRUE if the reference type of the object is
equal to the supplied identifier.

’addrtype’(%i)
The identifier for this operation is ’addrtype’ ({FN_ID_STRING}). The argument to this
operation is an identifier. The operation returns TRUE if any of the address types in the
reference of the object is equal to the supplied identifier.

Support and exact semantics of extended operations are context-specific. If a context does not
support an extended operation, or if the filter expression supplies the extended operation with
either an incorrect number or type of arguments, the error [FN_E_SEARCH_INVALID_OP] is
returned.3

3. [FN_E_OPERATION_NOT_SUPPORTED] is returned when fn_attr_ext_search () is not supported.

106 X/Open CAE Specification

Reference Manual Pages PRELIMINARY FN_search_filter_t

The following are examples of filter expressions that contain extended operations:

Expression Meaning
evaluates to TRUE if the name of the object
starts with bill

’name’(’bill’*)

evaluates to result of applying the specified
operation to the supplied arguments.

%i(%a, %v)

evaluates to TRUE if the specified attribute has
the given value and if the name of the object
starts with joe.

(%a == %v) and ’name’(’joe’*)

RETURN VALUE
fn_search_filter_create() returns a pointer to an FN_search_filter_t object if the operation
succeeds; otherwise it returns a NULL pointer.

ERRORS
fn_search_filter_create() returns a NULL pointer if the operation fails and sets status in the
following way:

[FN_E_SEARCH_INVALID_FILTER]
The filter expression had a syntax error or some other problem.

[FN_E_SEARCH_INVALID_OP]
An operator in the filter expression is not supported or, if the operator is an extended
operator, the number of types of arguments supplied does not match the signature of the
operation.

[FN_E_INVALID_ATTR_IDENTIFIER]
The left hand side of an operator expression was not an attribute.

[FN_E_INVALID_ATTR_VALUE]
The right hand side of an operator expression was not an integer, attribute value, or
(wildcarded) string.

Other status codes are possible as described in the reference manual pages for
XFN_status_codes.

EXAMPLES
The following illustrates how to create three different filters.

The first example shows how to construct a filter involving substitution tokens and literals in the
same filter expression. This example creates a filter for named objects whose ‘‘color’’ attribute
contains a string value of ‘‘red’’, ‘‘blue’’ or ‘‘white’’. The first two values are specified using
substitution tokens, the last value ‘‘white’’ is specified as a literal in the expression.

Federated Naming: The XFN Specification 107

FN_search_filter_t PRELIMINARY Reference Manual Pages

unsigned int status;
extern FN_attribute_t *attr_color;
FN_string_t *red = fn_string_from_str((unsigned char *)"red");
FN_string_t *blue = fn_string_from_str((unsigned char *)"blue");
FN_search_filter_t *sfilter;

sfilter = fn_search_filter_create(
&status,
"(%a == %s) or (%a == %s) or (%a == ’white’)",
attr_color, red, attr_color, blue,
attr_color);

The second example illustrates how to construct a filter involving a wildcarded string. This
example creates a filter for searching for named objects whose "last_name" attribute has a value
that begins with the character ‘‘m’’:

unsigned int status;
extern FN_attribute_t *attr_last_name;
FN_search_filter_t *sfilter;
sfilter = fn_search_filter_create(

&status, "%a == ’m’*", attr_last_name);

The third example illustrates how to construct a filter involving extended operations. This
example creates a filter for finding all named objects whose name ends with ‘‘ton’’.

unsigned int status;
FN_search_filter_t *sfilter;
sfilter= fn_search_filter_create(&status, "’name’(*’ton’)");

SEE ALSO
fn_attr_ext_search (), fn_ext_searchlist_next (), XFN_status_codes, <xfn/xfn.h>.

108 X/Open CAE Specification

Reference Manual Pages FN_status_t

NAME
FN_status_t — an XFN status object

SYNOPSIS
#include <xfn/xfn.h>

FN_status_t *fn_status_create(void);

void fn_status_destroy(FN_status_t * stat);

FN_status_t *fn_status_copy(const FN_status_t * stat);

FN_status_t *fn_status_assign(
FN_status_t * dst , const FN_status_t * src);

unsigned int fn_status_code(const FN_status_t * stat);

const FN_composite_name_t *fn_status_remaining_name(
const FN_status_t * stat);

const FN_composite_name_t *fn_status_resolved_name(
const FN_status_t * stat);

const FN_ref_t *fn_status_resolved_ref(
const FN_status_t * stat);

const FN_string_t* fn_status_diagnostic_message(
const FN_status_t * stat);

unsigned int fn_status_link_code(const FN_status_t * stat);

const FN_composite_name_t *fn_status_link_remaining_name(
const FN_status_t * stat);

const FN_composite_name_t *fn_status_link_resolved_name(
const FN_status_t * stat);

const FN_ref_t *fn_status_link_resolved_ref(const FN_status_t * stat);

const FN_string_t* fn_status_link_diagnostic_message(
const FN_status_t * stat);

int fn_status_is_success(const FN_status_t * stat);

int fn_status_set_success(FN_status_t * stat);

int fn_status_set(
FN_status_t * stat ,
unsigned int code ,
const FN_ref_t * resolved_ref ,
const FN_composite_name_t * resolved_name ,
const FN_composite_name_t * remaining_name);

Federated Naming: The XFN Specification 109

FN_status_t Reference Manual Pages

int fn_status_set_code(FN_status_t * stat , unsigned int code);

int fn_status_set_remaining_name(
FN_status_t * stat ,
const FN_composite_name_t * name);

int fn_status_set_resolved_name(
FN_status_t * stat ,
const FN_composite_name_t * name);

int fn_status_set_resolved_ref(
FN_status_t * stat ,
const FN_ref_t * ref);

int fn_status_set_diagnostic_message(
FN_status_t * stat ,
const FN_string_t * msg);

int fn_status_set_link_code(FN_status_t * stat , unsigned int code);

int fn_status_set_link_remaining_name(
FN_status_t * stat ,
const FN_composite_name_t * name);

int fn_status_set_link_resolved_name(
FN_status_t * stat ,
const FN_composite_name_t * name);

int fn_status_set_link_resolved_ref(
FN_status_t * stat ,
const FN_ref_t * ref);

int fn_status_set_link_diagnostic_message(
FN_status_t * stat ,
const FN_string_t * msg);

int fn_status_append_resolved_name(
FN_status_t * stat ,
const FN_composite_name_t * name);

int fn_status_append_remaining_name(
FN_status_t * stat ,
const FN_composite_name_t * name);

int fn_status_advance_by_name(
FN_status_t * stat ,
const FN_composite_name_t * prefix ,
const FN_ref_t * resolved_ref);

FN_string_t *fn_status_description(
const FN_status_t * stat ,
unsigned int detail ,

110 X/Open CAE Specification

Reference Manual Pages FN_status_t

unsigned int * more_detail);

DESCRIPTION
The result status of operations in the context interface and the attribute interfaces is
encapsulated in an FN_status_t object. The caller may supply a NULL pointer for this
parameter, in which case, no status information is returned. If the caller supplies an FN_status_t
object to the operation, upon return from the operation, this object will contain information
about how the operation completed: whether an error occurred in performing the operation, the
nature of the error, and information that helps locate where the error occurred. In the case that
the error occurred while resolving an XFN link, the status object contains additional information
about that error.

The context status object consists of several items of information.

primary status code
An unsigned int code describing the disposition of the operation.

resolved name
In the case of a failure during the resolution phase of the operation, this is the leading
portion of the name that was resolved successfully. Resolution may have been successful
beyond this point, but the error might not be pinpointed further.

resolved reference
The reference to which resolution was successful (in other words, the reference to which the
resolved name is bound).

remaining name
The remaining unresolved portion of the name.

diagnostic message
This contains any diagnostic message returned by the context implementation. This
message provides the context implementation a way of notifying the end-user or
administrator of any implementation-specific information related to the returned error
status. The diagnostic message could then be used by the end-user or administrator to take
appropriate out-of-band action to rectify the problem.

link status code
In the case that an error occurred while resolving an XFN link, the primary status code has
the value [FN_E_LINK_ERROR] and the link status code describes the error that occurred
while resolving the XFN link.

resolved link name
In the case of a link error, this contains the resolved portion of the name in the XFN link.

resolved link reference
In the case of a link error, this contains the reference to which the resolved link name is
bound.

remaining link name
In the case of a link error, this contains the remaining unresolved portion of the name in the
XFN link.

link diagnostic message
In the case of a link error, this contains any diagnostic message related to the resolution of
the link.

Both the primary status code and the link status code are values of type unsigned int that are
drawn from the same set of meaningful values. XFN reserves the values 0 through 127 for
standard meanings. The values and interpretations for the codes are determined by XFN (see the

Federated Naming: The XFN Specification 111

FN_status_t Reference Manual Pages

reference manual page for XFN_status_code).

fn_status_create() creates a status object with status [FN_SUCCESS]. fn_status_destroy() releases
the storage associated with stat; if stat is NULL, no action is taken. fn_status_copy () returns a
copy of the status object stat. fn_status_assign () makes a copy of the status object src and assigns
it to dst, releasing any old contents of dst. A pointer to the same object as dst is returned.

fn_status_code () returns the status code. fn_status_remaining_name() returns the remaining part
of name to be resolved. fn_status_resolved_name() returns the part of the composite name that
has been resolved. fn_status_resolved_ref () returns the reference to which resolution was
successful. fn_status_diagnostic_message () returns any diagnostic message set by the context
implementation.

fn_status_link_code () returns the link status code. fn_status_link_remaining_name () returns the
remaining part of the link name that has not been resolved. fn_status_link_resolved_name ()
returns the part of the link name that has been resolved. fn_status_link_resolved_ref () returns the
reference to which resolution of the link was successful. fn_status_link_diagnostic_message ()
returns any diagnostic message set by the context implementation during resolution of the link.

fn_status_is_success() returns 1 if the status indicates success, 0 otherwise.

fn_status_set_success() sets the status code to [FN_SUCCESS] and clears all other parts of stat.
fn_status_set() sets the non-link contents of the status object stat. fn_status_set_code() sets the
primary status code field of the status object stat. fn_status_set_remaining_name() sets the
remaining name part of the status object stat to name. fn_status_set_resolved_name() sets the
resolved name part of the status object stat to name. fn_status_set_resolved_ref () sets the resolved
reference part of the status object stat to ref. fn_status_set_diagnostic_message () sets the diagnostic
message part of the status object to msg.

fn_status_set_link_code () sets the link status code field of the status object stat to indicate why
resolution of the link failed. fn_status_set_link_remaining_name () sets the remaining link name
part of the status object stat to name. fn_status_set_link_resolved_name () sets the resolved link
name part of the status object stat to name. fn_status_set_link_resolved_ref () sets the resolved link
reference part of the status object stat to ref. fn_status_set_link_diagnostic_message () sets the link
diagnostic message part of the status object to msg.

fn_status_append_resolved_name () appends as additional components name to the resolved name
part of the status object stat. fn_status_append_remaining_name () appends as additional
components name to the remaining name part of the status object stat.
fn_status_advance_by_name () removes prefix from the remaining name, and appends it to the
resolved name. The resolved reference part is set to resolved_ref. This operation returns 1 on
success, 0 if the prefix is not a prefix of the remaining name.

fn_status_description () returns a string description of the given status object. It takes as
argument an integer, detail, and a pointer to an integer, more_detail. Integer detail specifies the
level of detail for which the description should be generated; the high the number, the more
detail is to be provided. If more_detail is zero, it is ignored. If more_detail is non-zero, it is set by
the description operation to indicate the next level of detail available, beyond that specified by
detail. If no higher level of detail is available, more_detail is set to detail.

RETURN VALUE
The fn_status_set_*() operations return 1 if the operation succeeds, 0 if the operation fails.

SEE ALSO
FN_composite_name_t, FN_ref_t, FN_string_t, XFN_status_codes, <xfn/xfn.h>.

112 X/Open CAE Specification

Reference Manual Pages FN_string_t

NAME
FN_string_t — a character string

SYNOPSIS
#include <xfn/xfn.h>

FN_string_t *fn_string_create(void);

void fn_string_destroy(FN_string_t * str);

FN_string_t *fn_string_from_str(const unsigned char * cstr);

FN_string_t *fn_string_from_str_n(
const unsigned char * cstr ,
size_t n);

const unsigned char *fn_string_str(
const FN_string_t * str ,
unsigned int * status);

FN_string_t *fn_string_from_contents(
unsigned long code_set ,
unsigned long lang_terr ,
size_t charcount ,
size_t bytecount ,
const void * contents ,
unsigned int * status);

unsigned long fn_string_code_set(const FN_string_t *str);

unsigned long fn_string_lang_terr(const FN_string_t *str);

size_t fn_string_charcount(const FN_string_t * str);

size_t fn_string_bytecount(const FN_string_t * str);

const void *fn_string_contents(const FN_string_t * str);

FN_string_t *fn_string_copy(const FN_string_t * str);

FN_string_t *fn_string_assign(
FN_string_t * dst , const FN_string_t * src);

FN_string_t *fn_string_from_strings(
unsigned int * status ,
const FN_string_t * s1 ,
const FN_string_t * s2 , ...);

FN_string_t *fn_string_from_substring(
const FN_string_t * str ,
int first ,
int last);

Federated Naming: The XFN Specification 113

FN_string_t Reference Manual Pages

int fn_string_is_empty(const FN_string_t * str);

int fn_string_compare(
const FN_string_t * str1 ,
const FN_string_t * str2 ,
unsigned int string_case ,
unsigned int * status);

int fn_string_compare_substring(
const FN_string_t * str1 ,
int first ,
int last ,
const FN_string_t * str2 ,
unsigned int string_case ,
unsigned int * status);

int fn_string_next_substring(
const FN_string_t * str ,
const FN_string_t * sub ,
int index ,
unsigned int string_case ,
unsigned int * status);

int fn_string_prev_substring(
const FN_string_t * str ,
const FN_string_t * sub ,
int index ,
unsigned int string_case ,
unsigned int * status);

DESCRIPTION
The FN_string_t type is used to represent character strings in the XFN interface. It provides
insulation from specific string representations.

The FN_string_t supports multiple locales. It provides creation functions for character strings of
the current locale and a generic creation function for arbitrary locales. A locale is identified by
its code set, language and territory. The degree of support for the functions that manipulate
FN_string_t for arbitrary locales is implementation-dependent. An XFN implementation is
required to support the ‘‘C’’ locale. The ‘‘C’’ locale’s repertoire of characters is restricted to that
defined by the portable representation of ISO 646 (same encoding as ASCII). Support for other
locales is optional.

fn_string_destroy() releases the storage associated with the given string. If the argument to
fn_string_destroy() is NULL, no action is taken.

fn_string_create() creates an empty string.

fn_string_from_str() creates an FN_string_t object from the given null terminated string based on
the code set of the current locale setting. The number of characters in the string is determined by
the code set of the current locale setting. fn_string_from_str_n() is like fn_string_from_str()
except only n characters from the given string are used. fn_string_str() returns the contents of
the given string str in the form of a null terminated string in the code set and current locale
setting.

114 X/Open CAE Specification

Reference Manual Pages FN_string_t

fn_string_from_contents () creates an FN_string_t object using the specified code set code_set
language and territory lang_terr and data in the given buffer contents. bytecount specifies the
number of bytes in contents and charcount specifies the number of characters represented by
contents.

fn_string_code_set() returns the code set associated with the given string object.
fn_string_lang_terr () returns the language and territory associated with the given string object.
fn_string_charcount () returns the number of characters in the given string object.
fn_string_bytecount() returns the number of bytes used to represent the given string object.
fn_string_contents() returns a pointer to the contents of the given string object.

fn_string_copy () returns a copy of the given string object. fn_string_assign () makes a copy of the
string object src and assigns it to dst, releasing any old contents of dst. A pointer to the same
object as dst is returned. fn_string_from_strings() is a function that takes a variable number of
arguments (minimum of 2), the last of which must be NULL (0); it returns a new string object
composed of the left to right concatenation of the given strings, in the given order. The support
for strings with different code sets and/or locales as arguments to a single invocation of
fn_string_from_strings() is implementation-dependent. fn_string_from_substring() returns a new
string object consisting of the characters located between first and last inclusive from str.
Indexing begins with 0. If last is {FN_STRING_INDEX_LAST} or exceeds the length of the string,
the index of the last character of the string is used.

fn_string_is_empty() returns whether str is an empty string.

Comparison of two strings must take into account code set and locale information. If strings are
in the same code set and same locale, case sensitivity is applied according to the case sensitivity
rules applicable for the code set and locale; case sensitivity may not necessarily be relevant for
all string encodings. If string_case is non-zero, case is significant and equality for strings of the
same code set is defined as equality between byte-wise encoded values of the strings. If
string_case is zero, case is ignored and equality for strings of the same code set is defined using
the definition of case-insensitive equality for the specific code set. Support for comparison
between strings of different code sets, or lack thereof, is implementation-dependent.

fn_string_compare() compares strings str1 and str2 and returns 0 if they are equal, non-zero if
they are not equal. If two strings are not equal, fn_string_compare() returns a positive value if the
difference of str2 precedes that of str1 in terms of byte-wise encoded value (with case-sensitivity
taken into account when string_case is non-zero), and a negative value if the difference of str1
precedes that of str2, in terms of byte-wise encoded value (with case-sensitivity taken into
account when string_case is non-zero). Such information (positive versus negative return value)
may be used by applications that use strings of code sets in which ordering is meaningful; this
information is not of general use in internationalized environments.
fn_string_compare_substring() is similar to fn_string_compare() except
fn_string_compare_substring() compares characters between first and last inclusive of str2 with
str1. Comparison of strings with incompatible code sets returns a negative or positive value
(never 0) depending on the implementation.

fn_string_next_substring() returns the index of the next occurrence of sub at or after index in the
string str. {FN_STRING_INDEX_NONE} is returned if sub does not occur.
fn_string_prev_substring() returns the index of the previous occurrence of sub at or before index in
the string str. {FN_STRING_INDEX_NONE} is returned if sub does not occur. In both of these
functions, string_case specifies whether the search should take case-sensitivity into account.

ERRORS
fn_string_str() returns 0 and sets status to [FN_E_INCOMPATIBLE_CODE_SETS] if the given
string’s representation cannot be converted into the code set of the current locale setting. It is
implementation-dependent which code sets can be converted into the code set of the current

Federated Naming: The XFN Specification 115

FN_string_t Reference Manual Pages

locale.

Locale (code set, language, or territory) mismatches that occur during concatenation, searches,
or comparisons are resolved in an implementation-dependent way. When an implementation
discovers that arguments to substring searches and comparison operations have incompatible
code sets, it sets status to [FN_E_INCOMPATIBLE_CODE_SETS]. When an implementation
discovers that the arguments have incompatible language or territory locale information, it sets
status to [FN_E_INCOMPATIBLE_LOCALES]. In such cases, fn_string_from_strings() returns 0.
The returned value for comparison operations when there is such incompatibilities is either
negative or positive (greater than 0); it is never 0.

Function fn_string_from_contents () returns 0 and sets status to an appropriate error code (
[FN_E_INCOMPATIBLE_CODE_SETS] or [FN_E_INCOMPATIBLE_LOCALES]) if the code set
or locale of the given string object is not supported by the XFN implementation.

The status argument to the following functions may be NULL, in which case no status is set
upon return of the function:
fn_string_from_contents (),
fn_string_str(),
fn_string_from_strings(),
fn_string_compare(),
fn_string_compare_substring(),
fn_string_next_substring(),
fn_string_prev_substring().

SEE ALSO
<xfn/xfn.h>.

116 X/Open CAE Specification

Reference Manual Pages fn_attr_bind()

NAME
fn_attr_bind — bind a reference to a name and associate attributes with named object

SYNOPSIS
#include <xfn/xfn.h>

int fn_attr_bind(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_ref_t * ref ,
const FN_attrset_t * attrs ,
unsigned int exclusive ,
FN_status_t * status);

DESCRIPTION
This operation binds the supplied reference ref to the supplied composite name name relative to
ctx, and associates the attributes specified in attrs with the named object. The binding is made in
the target context — that context named by all but the terminal atomic part of name. The
operation binds the terminal atomic name to the supplied reference in the target context. The
target context must already exist.

The value of exclusive determines what happens if the terminal atomic part of the name is
already bound in the target context. If exclusive is nonzero and name is already bound, the
operation fails. If exclusive is zero, the new binding replaces any existing binding, and, if attrs is
not NULL, attrs replaces any existing attributes associated with the named object. If attrs is
NULL and exclusive is zero, any existing attributes associated with the named object are left
unchanged.

RETURN VALUE
fn_attr_bind () returns 1 upon success, 0 upon failure.

ERRORS
fn_attr_bind () sets status as described in the reference manual pages for FN_status_t and
XFN_status_codes. Of special relevance for this operation is the following status code:

[FN_E_NAME_IN_USE]
The supplied name is already in use.

APPLICATION USAGE
The value of ref cannot be NULL. If the intent is to reserve a name using fn_attr_bind (), a
reference containing no address should be supplied. This reference may be name service-
specific or it may be the conventional NULL reference defined in Appendix G.

If multiple sources are updating a reference or attributes associated with a named object, they
must synchronize amongst each other when adding, modifying, or removing from the address
list of a bound reference, or manipulating attributes associated with the named object.

SEE ALSO
FN_composite_name_t, FN_ctx_t, FN_ref_t, FN_status_t, fn_ctx_lookup (), fn_ctx_bind(),
fn_ctx_unbind(), XFN_attribute_operations, XFN_status_codes, <xfn/xfn.h>.

Federated Naming: The XFN Specification 117

fn_attr_create_subcontext() Reference Manual Pages

NAME
fn_attr_create_subcontext — create a subcontext in a context and associate attributes with newly
created context

SYNOPSIS
#include <xfn/xfn.h>

FN_ref_t *fn_attr_create_subcontext(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_attrset_t * attrs ,
FN_status_t * status);

DESCRIPTION
This operation creates a new XFN context of the same type as the target context — that named
by all but the terminal atomic component of name — and binds it to the supplied composite
name. In addition, attributes given in attrs are associated with the newly created context.

The target context must already exist. The new context is created and bound in the target
context using the terminal atomic name in name. The operation returns a reference to the newly
created context.

RETURN VALUE
fn_attr_create_subcontext () returns a reference to the newly created context; if the operation fails,
it returns a NULL pointer (0).

ERRORS
fn_attr_create_subcontext () sets status as described in the reference manual pages for FN_status_t
and XFN_status_codes. Of special relevance for this operation is the following status code:

[FN_E_NAME_IN_USE]
The terminal atomic name already exists in the target context.

SEE ALSO
FN_composite_name_t, FN_ctx_t, FN_ref_t, FN_status_t, fn_attr_bind (), fn_ctx_bind(),
fn_ctx_create_subcontext(), fn_ctx_lookup (), fn_ctx_destroy (), XFN_status_codes,
XFN_attribute_operations, <xfn/xfn.h>.

118 X/Open CAE Specification

Reference Manual Pages PRELIMINARY fn_attr_ext_search()

NAME
fn_attr_ext_search, FN_ext_searchlist_t, fn_ext_searchlist_next, fn_ext_searchlist_destroy —
search for names in the specified context(s) whose attributes satisfy the filter

SYNOPSIS
#include <xfn/xfn.h>

FN_ext_searchlist_t *fn_attr_ext_search(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_search_control_t * control ,
const FN_search_filter_t * filter ,
FN_status_t * status);

FN_composite_name_t *fn_ext_searchlist_next(
FN_ext_searchlist_t * esl ,
FN_ref_t ** returned_ref ,
FN_attrset_t ** returned_attrs ,
FN_status_t * status);

void fn_ext_searchlist_destroy(
FN_ext_searchlist_t * esl);

DESCRIPTION
This set of operations is used to list names of objects whose attributes satisfy the filter
expression. The references to which these names are bound and specified attributes and their
values may also be returned.

control encapsulates the option settings for the search. These options are:

• the scope of the search

• whether XFN links are followed

• a limit on the number of names returned

• whether references and specific attributes associated with the named objects that satisfy the
filter are returned.

The scope of the search is one of:

• the object named name relative to the context ctx

• the context named name relative to the context ctx

• the context named name relative to the context ctx, and its subcontexts

or:

• the context named name relative to the context ctx, and a context implementation-defined set
of subcontexts.

If the value of control is 0, default control option settings are used. The default settings are:

• scope is search named context

• links are not followed

• all names of objects that satisfy the filter are returned

Federated Naming: The XFN Specification 119

fn_attr_ext_search() PRELIMINARY Reference Manual Pages

• references and attributes are not returned.

The FN_search_control_t type is described in the reference manual page for
FN_search_control_t.

The filter expression filter in fn_attr_ext_search () is evaluated against the attributes of the objects
bound in the scope of the search. The filter evaluates to either TRUE or FALSE. The names and,
optionally, the references and attributes of objects whose attributes satisfy the filter are
enumerated. If the value of filter is 0, all names within the search scope are enumerated. The
FN_search_filter_t type is described in the reference manual page for FN_search_filter_t.

The call to fn_attr_ext_search () initiates the search process. It returns a handle to an
FN_ext_searchlist_t object that is used to enumerate the names of the objects that satisfy the
filter.

The operation fn_ext_searchlist_next () returns the next name in the enumeration identified by esl;
it also updates esl to indicate the state of the enumeration. If the reference to which the name is
bound was requested, it is returned in returned_ref. Requested attributes associated with the
name are returned in returned_attrs; each attribute consists of an attribute identifier, syntax and
value(s). Successive calls to fn_ext_searchlist_next () using esl return successive names and,
optionally their references and attributes, in the enumeration and further update the state of the
enumeration.

The names that are returned are composite names, to be resolved relative to the starting context
for the search. This starting context is the context named name relative to ctx unless the scope of
the search is only the named object. If the scope of the search is only the named object, the
terminal atomic name in name is returned.

fn_ext_searchlist_destroy () releases resources used during the enumeration. This may be invoked
at any time to terminate the enumeration. If the argument to fn_ext_searchlist_destroy () is NULL,
no action is taken.

RETURN VALUE
fn_attr_ext_search () returns a pointer to an FN_ext_searchlist_t object if the search is
successfully initiated; it returns a NULL pointer if the search cannot be initiated or if no named
object with attributes whose values satisfy the filter expression is found.

fn_ext_searchlist_next () returns a pointer to an FN_composite_name_t object that is the next
name in the enumeration; it returns a NULL pointer if no more names can be returned. If
returned_attrs is a NULL pointer, no attributes are returned; otherwise, returned_attrs contains the
attributes associated with the named object, as specified in the control parameter to
fn_attr_ext_search. If returned_ref is a NULL pointer, no reference is returned; otherwise, if control
specified the return of the reference of the named object, that reference is returned in returned_ref.

In the case of a failure, these operations return in the status argument a code indicating the
nature of the failure.

ERRORS
If successful, fn_attr_ext_search () returns a pointer to an FN_ext_searchlist_t object and sets
status to [FN_SUCCESS].

fn_attr_ext_search () returns a NULL pointer when no more names can be returned. status is set in
the following way:

[FN_SUCCESS]
A named object could not be found whose attributes satisfied the filter expression.

[FN_E_NOT_A_CONTEXT]
The object named for the start of the search was not a context and the search scope was the

120 X/Open CAE Specification

Reference Manual Pages PRELIMINARY fn_attr_ext_search()

given context or the given context and its subcontexts.

[FN_E_SEARCH_INVALID_FILTER]
The filter could not be evaluated TRUE or FALSE, or there was some other problem with the
filter.

[FN_E_SEARCH_INVALID_OPTION]
A supplied search control option could not be supported.

[FN_E_SEARCH_INVALID_OP]
An operator in the filter expression is not supported or, if the operator is an extended
operator, the number of types of arguments supplied does not match the signature of the
operation.

[FN_E_ATTR_NO_PERMISSION]
The caller did not have permission to read one or more of the attributes specified in the
filter.

[FN_E_INVALID_ATTR_VALUE]
A value type in the filter did not match the syntax of the attribute against which it was
being evaluated.

Other status codes are possible as described in the reference manual pages for FN_status_t and
XFN_status_codes.

Each successful call to fn_ext_searchlist_next () returns a name and, optionally, its reference in
returned_ref and requested attributes in returned_attrs. status is set in the following way:

[FN_SUCCESS]
All requested attributes were returned successfully with the name.

[FN_E_ATTR_NO_PERMISSION]
The caller did not have permission to read one or more of the requested attributes.

[FN_E_INVALID_ATTR_IDENTIFIER]
A requested attribute identifier was not in a format acceptable to the naming system, or its
contents was not valid for the format specified.

[FN_E_NO_SUCH_ATTRIBUTE]
The named object did not have one of the requested attributes.

[FN_E_INSUFFICIENT_RESOURCES]
Insufficient resources are available to return all the requested attributes and their values.

The status codes [FN_E_ATTR_NO_PERMISSION], [FN_E_INVALID_ATTR_IDENTIFIER],
[FN_E_NO_SUCH_ATTRIBUTE] and [FN_E_INSUFFICIENT_RESOURCES] indicate that some
of the requested attributes may have been returned in returned_attrs but one or more of them
could not be returned. Use fn_attr_get () or fn_attr_multi_get () to discover why these attributes
could not be returned.

If fn_ext_searchlist_next () returns a name, it can be called again to get the next name in the
enumeration.

fn_ext_searchlist_next () returns a NULL pointer if no more names can be returned. status is set in
the following way:

[FN_SUCCESS]
The search has completed successfully.

[FN_E_PARTIAL_RESULT]
The enumeration is not yet complete but cannot be continued.

Federated Naming: The XFN Specification 121

fn_attr_ext_search() PRELIMINARY Reference Manual Pages

[FN_E_ATTR_NO_PERMISSION]
The caller did not have permission to read one or more of the attributes specified in the
filter.

[FN_E_INVALID_ENUM_HANDLE]
The supplied enumeration handle was not valid. Possible reasons could be that the handle
was from another enumeration, or the context being enumerated no longer accepts the
handle (due to such events as handle expiration or updates to the context).

Other status codes are possible as described in the reference manual pages for FN_status_t and
XFN_status_codes.

EXAMPLE
The following code fragment illustrates how the fn_attr_ext_search () operation may be used. The
code consists of three parts, preparing the arguments for the search, performing the search, and
cleaning up.

The first part involves getting the name of the context to start the search and constructing the
search filter that named objects in the context must satisfy. This is done in the declarations part
of the code and by the routine get_search_query(). See the reference manual page for
FN_search_filter_t for the description of sfilter and the filter creation operation.

The next part involves doing the search and enumerating the results of the search. This is done
by first getting a context handle to the Initial Context, and then passing that handle along with
the name of the target context and search filter to fn_attr_ext_search (). This particular call to
fn_attr_ext_search () uses the default search control options (by passing in 0 as the control
argument). This means that the search will be performed in the context named by target_name
and that no reference or attributes will be returned. In addition, any XFN links encountered will
not be followed and all named objects that satisfy the search filter will be returned (that is, no
limit). If successful, fn_attr_ext_search () returns esl, a handle for enumerating the results of the
search. The results of the search are enumerated using calls to fn_ext_searchlist_next (), which
returns the name of the object. (The arguments returned_ref and returned_attrs to
fn_ext_searchlist_next () are 0 because the default search control used in fn_attr_ext_search () did
not request them to be returned.)

The last part of the code involves cleaning up the resources used during the search and
enumeration. The call to fn_ext_searchlist_destroy () releases resources reserved for this
enumeration. The other calls release the context handle, name, filter and status objects created
earlier.

FN_ctx_t *ctx;
FN_ext_searchlist_t *esl;
FN_composite_name_t *name;
FN_status_t *status = fn_status_create();
FN_composite_name_t *target_name = get_name_from_user_input();
FN_search_filter_t *sfilter = get_search_query();

ctx = fn_ctx_handle_from_initial(0, status);
/* error checking on ‘status’ */

if ((esl=fn_attr_ext_search(ctx, target_name,
/* default controls */ 0, sfilter, status)) == 0) {
/* report ‘status’, cleanup, and exit */

}

while (name=fn_ext_searchlist_next(esl, 0, 0, status)) {

122 X/Open CAE Specification

Reference Manual Pages PRELIMINARY fn_attr_ext_search()

/* do something with ‘name’ */
fn_composite_destroy(name);

}

/* check ‘status’ for reason for end of enumeration */

/* Clean up */
fn_ext_searchlist_destroy(esl);
fn_search_filter_destroy(sfilter);
fn_ctx_handle_destroy(ctx);
fn_composite_name_destroy(target_name);
fn_status_destroy(status);

/*
* Procedure for constructing the filter object for search:
* "age" attribute is greater than or equal to 17
* AND less than or equal to 25
* AND the "student" attribute is present.
*/

FN_search_filter_t *
get_search_query()
{

extern FN_attribute_t *attr_age;
extern FN_attribute_t *attr_student;
FN_search_filter_t *sfilter;
unsigned int filter_status;

sfilter = fn_search_filter_create(
&filter_status,
"(%a >= 17) and (%a <= 25) and %a",
attr_age, attr_age, attr_student);

/* error checking on ‘filter_status’ */

return (sfilter);
}

APPLICATION USAGE
The search performed by fn_attr_ext_search () is not ordered in any way, including the traversal
of subcontexts. The names enumerated using fn_ext_searchlist_next () are not ordered in any way.
Furthermore, there is no guarantee that any two series of enumerations with the same
arguments to fn_attr_ext_search () will return the names in the same order.

XFN links encountered during the resolution of name are followed, regardless of the follow links
control setting, and the search starts at the final named object or context.

If control specifies that the search should follow links, XFN link names encountered during the
search are followed and the terminal named object is searched. If the terminal named object is
bound to a context and the scope of the search includes subcontexts, that context and its
subcontexts are also searched. For example, if aname is bound to an XFN link, lname, in a context
within the scope of the search, and aname is returned by fn_ext_searchlist_next (), this means that
the object identified by lname satisfied the filter expression. aname is returned instead of lname
because aname can always be named relative to the starting context for the search.

Federated Naming: The XFN Specification 123

fn_attr_ext_search() PRELIMINARY Reference Manual Pages

If control specifies that the search should not follow links, the attributes associated with the
names of XFN links are searched. For example, if aname is bound to an XFN link, lname, in a
context within the scope of the search, and aname is returned by fn_ext_searchlist_next (), this
means that the object identified by aname satisfied the filter expression.

When following XFN links, fn_attr_ext_search () may search contexts outside of scope. In addition,
if the link name’s terminal atomic name is bound in a context within scope, the operation may
return the same object more than once.

XFN does not specify how control affects the following of native naming system links during the
search.

SEE ALSO

FN_attrset_t, FN_composite_name_t, FN_ctx_t, FN_ref_t, FN_search_control_t,
FN_search_filter_t, FN_status_t, fn_attr_get (), fn_attr_multi_get (), fn_attr_search (),
XFN_status_codes, <xfn/xfn.h>.

124 X/Open CAE Specification

Reference Manual Pages fn_attr_get()

NAME
fn_attr_get — return specified attribute associated with name

SYNOPSIS
#include <xfn/xfn.h>

FN_attribute_t *fn_attr_get(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_identifier_t * attribute_id ,
unsigned int follow_link ,
FN_status_t * status);

DESCRIPTION
This operation returns the identifier, syntax and values of a specified attribute for the object
named name relative to ctx. If name is empty, the attribute associated with ctx is returned.

The value of follow_link determines what happens when the terminal atomic part of name is
bound to an XFN link. If follow_link is non-zero, such a link is followed and the attribute
associated with the final named object is returned; if follow_link is zero, such a link is not
followed. Any XFN links encountered before the terminal atomic name are always followed.

RETURN VALUE
fn_attr_get () returns a pointer to an FN_attribute_t object if the operation succeeds; it returns a
NULL pointer (0) if the operation fails.

ERRORS
fn_attr_get () sets status as described in the reference manual page for FN_status_t and
XFN_status_codes.

APPLICATION USAGE
fn_attr_get_values () and its related operations are used for getting individual values of an
attribute. They should be used if the combined size of all the values are expected to be too large
to be returned in a single invocation of fn_attr_get ().

SEE ALSO
FN_attribute_t, FN_composite_name_t, FN_ctx_t, FN_identifier_t, FN_status_t,
fn_attr_get_values (), XFN_attribute_operations, XFN_status_codes, <xfn/xfn.h>.

Federated Naming: The XFN Specification 125

fn_attr_get_ids() Reference Manual Pages

NAME
fn_attr_get_ids — get a list of the identifiers of all attributes associated with named object

SYNOPSIS
#include <xfn/xfn.h>
FN_attrset_t *fn_attr_get_ids(

FN_ctx_t * ctx ,
const FN_composite_name_t * name,
unsigned int follow_link ,
FN_status_t * status);

DESCRIPTION
This operation returns a list of the attribute identifiers of all attributes associated with the object
named by name relative to the context ctx. If name is empty, the attribute identifiers associated
with ctx are returned.

The value of follow_link determines what happens when the terminal atomic part of name is
bound to an XFN link. If follow_link is non-zero, such a link is followed and the identifiers of the
attributes associated with the final named object are returned; if follow_link is zero, such a link is
not followed. Any XFN links encountered before the terminal atomic name are always followed.

RETURN VALUE
This operation returns a pointer to an object of type FN_attrset_t; if the operation fails, a NULL
pointer (0) is returned.

ERRORS
This operation sets status as described in the reference manual pages for FN_status_t and
XFN_status_codes.

APPLICATION USAGE
The attributes in the returned set do not contain the syntax or values of the attributes, only their
identifiers.

SEE ALSO
FN_attrset_t, FN_attribute_t, FN_composite_name_t, FN_ctx_t, FN_status_t, fn_attr_get (),
fn_attr_multi_get (), XFN_attribute_operations, XFN_status_codes, <xfn/xfn.h>.

126 X/Open CAE Specification

Reference Manual Pages fn_attr_get_values()

NAME
fn_attr_get_values, FN_valuelist_t, fn_valuelist_next, fn_valuelist_destroy, — return values of
an attribute

SYNOPSIS
#include <xfn/xfn.h>

FN_valuelist_t *fn_attr_get_values(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_identifier_t * attribute_id ,
unsigned int follow_link ,
FN_status_t * status);

FN_attrvalue_t *fn_valuelist_next(
FN_valuelist_t * vl ,
FN_identifier_t ** attr_syntax ,
FN_status_t * status);

void fn_valuelist_destroy(
FN_valuelist_t * vl);

DESCRIPTION
This set of operations is used to obtain the values of a single attribute, identified by attribute_id,
associated with the object named name, resolved in the context ctx. If name is empty, the
attribute values associated with ctx are obtained.

The value of follow_link determines what happens when the terminal atomic part of name is
bound to an XFN link. If follow_link is non-zero, such a link is followed and the values of the
attribute associated with the final named object are returned; if follow_link is zero, such a link is
not followed. Any XFN links encountered before the terminal atomic name are always followed.

The operation fn_attr_get_values () initiates the enumeration process. It returns a handle to an
FN_valuelist_t object that can be used to enumerate the values of the specified attribute.

The operation fn_valuelist_next () returns a new FN_attrvalue_t object containing the next value
in the attribute and may be called multiple times until all values are retrieved. The syntax of the
attribute is returned in attr_syntax.

The operation fn_valuelist_destroy () is used to release the resources used during the
enumeration. This may be invoked before the enumeration has completed to terminate the
enumeration. If the argument to fn_valuelist_destroy () is NULL, no action is taken.

These operations work in a similar fashion as the fn_ctx_list_names () operations.

RETURN VALUE
fn_attr_get_values () returns a pointer to an FN_valuelist_t object if the enumeration process is
successfully initiated; it returns a NULL pointer if the process failed.

fn_valuelist_next () returns a NULL pointer if no more attribute value can be returned.

In the case of a failure, these operations set status to indicate the nature of the failure.

ERRORS
Each successful call to fn_valuelist_next () returns an attribute value. status is set to
[FN_SUCCESS].

Federated Naming: The XFN Specification 127

fn_attr_get_values() Reference Manual Pages

When fn_valuelist_next () returns a NULL pointer, it indicates that no more values can be
returned. status is set in the following way:

[FN_SUCCESS]
The enumeration has completed successfully.

[FN_E_INVALID_ENUM_HANDLE]
The given enumeration handle is not valid. Possible reasons could be that the handle was
from another enumeration, or the context being enumerated no longer accepts the handle
(due to such events as handle expiration or updates to the context).

[FN_E_PARTIAL_RESULT]
The enumeration is not yet complete but cannot be continued.

In addition to these status codes, other status codes are also possible in calls to these operations.
In such cases, status is set as described in the reference manual pages for FN_status_t and
XFN_status_codes.

APPLICATION USAGE
This interface should be used instead of fn_attr_get () if the combined size of all the values is
expected to be too large to be returned by fn_attr_get ().

There may be a relationship between the ctx argument supplied to fn_attr_get_values () and the
FN_valuelist_t object it returns. For example, some implementations may store the context
handle ctx within the FN_valuelist_t object for subsequent fn_valuelist_next () calls. In general, a
fn_ctx_handle_destroy () should not be invoked on ctx until the enumeration has terminated.

SEE ALSO
FN_attribute_t, FN_attrvalue_t, FN_composite_name_t, FN_ctx_t, FN_identifier_t,
FN_status_t, fn_attr_get (), fn_ctx_list_names (), XFN_attribute_operations, XFN_status_codes,
<xfn/xfn.h>.

128 X/Open CAE Specification

Reference Manual Pages fn_attr_modify()

NAME
fn_attr_modify — modify specified attribute associated with name

SYNOPSIS
#include <xfn/xfn.h>

int fn_attr_modify(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
unsigned int mod_op,
const FN_attribute_t * attr ,
unsigned int follow_link ,
FN_status_t * status);

DESCRIPTION
This operation modifies according to mod_op the attribute attr associated with the object named
name relative to ctx. If name is empty, the attribute associated with ctx is modified.

The value of follow_link determines what happens when the terminal atomic part of name is
bound to an XFN link. If follow_link is non-zero, such a link is followed and the attribute
associated with the final named object is modified; if follow_link is zero, such a link is not
followed. Any XFN links encountered before the terminal atomic name are always followed.

The modification is made on the attribute identified by the attribute identifier of attr. The syntax
and values of attr are use according to the modification operation.

The modification operations are described in the following table.

Federated Naming: The XFN Specification 129

fn_attr_modify() Reference Manual Pages

Operation Code Meaning
Add an attribute with given attribute identifier
and set of values. If an attribute with this
identifier already exists, replace the set of values
with those in the given set. The set of values
may be empty if the target naming system
permits.

FN_ATTR_OP_ADD

Add an attribute with the given attribute
identifier and set of values. The operation fails
with [FN_E_ATTR_IN_USE] if an attribute with
this identifier already exists. The set of values
may be empty if the target naming system
permits.

FN_ATTR_OP_ADD_EXCLUSIVE

Remove the attribute with the given attribute
identifier and all of its values. The operation
succeeds even if the attribute does not exist. The
values of the attribute supplied with this
operation are ignored.

FN_ATTR_OP_REMOVE

Add the given values to those of the given
attribute (resulting in the attribute having the
union of its prior value set with the set given).
Create the attribute if it does not exist already.
The set of values may be empty if the target
naming system permits.

FN_ATTR_OP_ADD_VALUES

Remove the given values from those of the given
attribute (resulting in the attribute having the set
difference of its prior value set and the set
given). This succeeds even if some of the given
values are not in the set of values that the
attribute has. In naming systems that require an
attribute to have at least one value, removing
the last value will remove the attribute as well.

FN_ATTR_OP_REMOVE_VALUES

RETURN VALUE
This operation returns 1 if the operation succeeds, 0 if the operation fails.

ERRORS
fn_attr_modify () sets status as described in the reference manual pages for FN_status_t and
XFN_status_codes.

SEE ALSO
FN_composite_name_t, FN_ctx_t, FN_attribute_t, FN_status_t, fn_attr_multi_modify (),
XFN_attribute_operations, XFN_status_codes, <xfn/xfn.h>.

130 X/Open CAE Specification

Reference Manual Pages fn_attr_multi_get()

NAME
fn_attr_multi_get, FN_multigetlist_t, fn_multigetlist_next, fn_multigetlist_destroy — return
multiple attributes associated with named object

SYNOPSIS
#include <xfn/xfn.h>

FN_multigetlist_t *fn_attr_multi_get(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_attrset_t * attr_ids ,
unsigned int follow_link ,
FN_status_t * status);

FN_attribute_t *fn_multigetlist_next(
FN_multigetlist_t * ml ,
FN_status_t * status);

void fn_multigetlist_destroy(
FN_multigetlist_t * ml);

DESCRIPTION
This set of operations returns one or more attributes associated with the object named by name
relative to the context ctx. If name is empty, the attributes associated with ctx are returned.

The value of follow_link determines what happens when the terminal atomic part of name is
bound to an XFN link. If follow_link is non-zero, such a link is followed and attributes associated
with the final named object are returned; if follow_link is zero, such a link is not followed. Any
XFN links encountered before the terminal atomic name are always followed.

The attributes returned are those specified in attr_ids. If the value of attr_ids is 0, all attributes
associated with the named object are returned. Any attribute values in attr_ids provided by the
caller are ignored; only the attribute identifiers are relevant for this operation. Each attribute
(identifier, syntax, values) is returned one at a time using an enumeration scheme similar to that
for listing a context.

fn_attr_multi_get () initiates the enumeration process. It returns a handle to an FN_multigetlist_t
object that can be used for the enumeration.

The operation fn_multigetlist_next () returns a new FN_attribute_t object containing the next
attribute (identifiers, syntaxes, and values) requested and updates ml to indicate the state of the
enumeration.

The operation fn_multigetlist_destroy () releases the resources used during the enumeration. It
may be invoked before the enumeration has completed to terminate the enumeration. If the
argument to fn_multigetlist_destroy () is NULL, no action is taken.

RETURN VALUE
fn_attr_multi_get () returns a pointer to an FN_multigetlist_t object if the enumeration has been
initiated successfully; a NULL pointer is returned if it failed.

fn_multigetlist_next () returns a pointer to an FN_attribute_t object if an attribute was returned, a
NULL pointer (0) if no attribute was returned.

In the case of a failure, these operations set status to indicate the nature of the failure.

Federated Naming: The XFN Specification 131

fn_attr_multi_get() Reference Manual Pages

ERRORS
Each call to fn_multigetlist_next () sets status as follows:

[FN_SUCCESS]
If an attribute was returned, there are more attributes to be enumerated. If no attribute was
returned, the enumeration has completed successfully.

[FN_E_ATTR_NO_PERMISSION]
The caller did not have permission to read this attribute.

[FN_E_INSUFFICIENT_RESOURCES]
Insufficient resources are available to return the attribute’s values.

[FN_E_INVALID_ATTR_IDENTIFIER]
This attribute identifier was not in a format acceptable to the naming system, or its contents
was not valid for the format specified for the identifier.

[FN_E_INVALID_ENUM_HANDLE]
(No attribute should be returned with this status code). The given enumeration handle is
not valid. Possible reasons could be that the handle was from another enumeration, or the
object being processed no longer accepts the handle (due to such events as handle
expiration or updates to the object’s attribute set).

[FN_E_NO_SUCH_ATTRIBUTE]
The object did not have an attribute with the given identifier.

[FN_E_PARTIAL_RESULT]
(No attribute should be returned with this status code). The enumeration is not yet
complete but cannot be continued.

For
[FN_E_ATTR_NO_PERMISSION],
[FN_E_INVALID_ATTR_IDENTIFIER],
[FN_E_INSUFFICIENT_RESOURCES],
[FN_E_NO_SUCH_ATTRIBUTE],
the returned attribute contains only the attribute identifier (no value or syntax). For these four
status codes and [FN_SUCCESS] (when an attribute was returned), fn_multigetlist_next () can be
called again to return another attribute. All other status codes indicate that no more attributes
can be returned by fn_multigetlist_next ().

Other status codes, such as [FN_E_COMMUNICATION_FAILURE], are also possible, in which
case, no attribute is returned. In such cases, status is set as described in the reference manual
pages for FN_status_t and XFN_status_codes.

EXAMPLES
The following code fragment illustrates how to obtain all attributes associated with a given
name using the fn_attr_multi_get () operations.

/* list all attributes associated with given name */

extern FN_string_t *input_string;
FN_ctx_t *ctx;
FN_composite_name_t *target_name = fn_composite_name_from_string(

input_string);
FN_multigetlist_t *ml;
FN_status_t *status = fn_status_create();
FN_attribute_t *attr;
int done = 0;

132 X/Open CAE Specification

Reference Manual Pages fn_attr_multi_get()

ctx = fn_ctx_handle_from_initial(0, status);
/* error checking on ’status’ */

/* attr_ids == 0 indicates all attributes are to be returned */
/* follow_link == 1 means if terminal atom is link, follow it */
if ((ml=fn_attr_multi_get(ctx, target_name, 0, 1, status)) == 0) {

/* report ’status’ and exit */
}

while ((attr=fn_multigetlist_next(ml, status)) && !done) {
switch (fn_status_code(status)) {
case FN_SUCCESS:

/* do something with ’attr’ */
break;

case FN_E_ATTR_NO_PERMISSION:
case FN_E_INVALID_ATTR_IDENTIFIER:
case FN_E_NO_SUCH_ATTRIBUTE:

/* report error using identifier in ’attr’ */
break;

default:
/* other error handling */
done = 1;

}
if (attr)

fn_attribute_destroy(attr);
}

/* check ’status’ for reason for end of enumeration */
/* and report if necessary */

/* clean up */
fn_multigetlist_destroy(ml);

}

APPLICATION USAGE
Implementations are not required to return all attributes requested by attr_ids. Some may
choose to return only the attributes found successfully, followed by a status of
[FN_E_PARTIAL_RESULT]; such implementations may not necessarily return attributes
identifying those that could not be read. Implementations are not required to return the
attributes in any order.

There may be a relationship between the ctx argument supplied to fn_attr_multi_get () and the
FN_multigetlist_t object it returns. For example, some implementations may store the context
handle ctx within the FN_multigetlist_t object for subsequent fn_multigetlist_next () calls. In
general, a fn_ctx_handle_destroy () should not be invoked on ctx until the enumeration has
terminated.

SEE ALSO
FN_attrset_t, FN_attribute_t, FN_composite_name_t, FN_ctx_t, FN_identifier_t, FN_status_t,
fn_attr_get (), fn_ctx_list_names (), XFN_attribute_operations, XFN_status_codes, <xfn/xfn.h>.

Federated Naming: The XFN Specification 133

fn_attr_multi_modify() Reference Manual Pages

NAME
fn_attr_multi_modify — modify multiple attributes associated with named object

SYNOPSIS
#include <xfn/xfn.h>

int fn_attr_multi_modify(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_attrmodlist_t * mods,
unsigned int follow_link ,
FN_attrmodlist_t ** unexecuted_mods ,
FN_status_t * status);

DESCRIPTION
This operation modifies the attributes associated with the object named name relative to ctx. If
name is empty, the attributes associated with ctx are modified.

The value of follow_link determines what happens when the terminal atomic part of name is
bound to an XFN link. If follow_link is non-zero, such a link is followed and the attributes
associated with the final named object are modified; if follow_link is zero, such a link is not
followed. Any XFN links encountered before the terminal atomic name are always followed.

In the mods parameter, the caller specifies a sequence of modifications that are to be done in
order on the attributes. Each modification in the sequence specifies a modification operation
code (see reference manual page for fn_attr_modify ()) and an attribute on which to operate.

The FN_attrmodlist_t type is described in the reference manual page for FN_attrmodlist_t.

RETURN VALUE
fn_attr_multi_modify () returns 1 if all the modification operations were performed successfully.
The function returns 0 if any error occurs. If the operation fails, status and unexecuted_mods are
set as described below.

ERRORS

If an error is encountered while performing the list of modifications, status indicates the type of
error and unexecuted_mods is set to a list of unexecuted modifications. The contents of
unexecuted_mods do not share any state with mods; items in unexecuted_mods are copies of items in
mods and appear in the same order in which they were originally supplied in mods. The first
operation in unexecuted_mods is the first one that failed and the code in status applies to this
modification operation in particular. If status indicates failure and a NULL pointer is returned in
unexecuted_mods, that indicates no modifications were executed.

SEE ALSO
FN_attrmodlist_t, FN_composite_name_t, FN_ctx_t, FN_status_t, fn_attr_modify (),
XFN_attribute_operations, XFN_status_codes, <xfn/xfn.h>.

134 X/Open CAE Specification

Reference Manual Pages PRELIMINARY fn_attr_search()

NAME
fn_attr_search, FN_searchlist_t, fn_searchlist_next, fn_searchlist_destroy — search for the
atomic name of objects with the specified attributes in a single context

SYNOPSIS
#include <xfn/xfn.h>

FN_searchlist_t *fn_attr_search(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_attrset_t * match_attrs ,
unsigned int return_ref ,
const FN_attrset_t * return_attr_ids ,
FN_status_t * status);

FN_string_t *fn_searchlist_next(
FN_searchlist_t * sl ,
FN_ref_t ** returned_ref ,
FN_attrset_t ** returned_attrs ,
FN_status_t * status);

void fn_searchlist_destroy(
FN_searchlist_t * sl);

DESCRIPTION
This set of operations is used to enumerate names of objects bound in the target context named
name relative to the context ctx with attributes whose values match all those specified by
match_attrs.

The attributes specified by match_attrs form a conjunctive AND expression against which the
attributes of each named object in the target context are evaluated. For multi-valued attributes,
the list order of values is ignored and attribute values not specified in match_attrs are ignored. If
no value is specified for an attribute in match_attrs, the presence of the attribute is tested. If the
value of match_attrs is 0, all names in the target context are enumerated.

If a non-zero value of return_ref is passed to fn_attr_search (), the reference bound to the name is
returned in the returned_ref argument to fn_searchlist_next ().

Attribute identifiers and values associated with named objects that satisfy match_attrs may be
returned by fn_searchlist_next (). The attributes returned are those listed in the return_attr_ids
argument to fn_attr_search (). If the value of return_attr_ids is 0, all attributes are returned. If
return_attr_ids is an empty FN_attrset_t object, no attributes are returned. Any attribute values
in return_attr_ids are ignored; only the attribute identifiers are relevant for return_attr_ids.

The call to fn_attr_search () initiates the enumeration process. It returns a handle to an
FN_searchlist_t object that is used to enumerate the names of the objects whose attributes
match the attributes specified by match_attrs.

The operation fn_searchlist_next () returns the next name in the enumeration identified by the sl.
The reference of the name is returned in returned_ref if return_ref was set in the call the
fn_attr_search (). The attributes specified by return_attr_ids are returned in returned_attrs.
fn_searchlist_next () also updates sl to indicate the state of the enumeration. Successive calls to
fn_searchlist_next () using sl return successive names, and optionally, references and attributes, in
the enumeration and further update the state of the enumeration.

Federated Naming: The XFN Specification 135

fn_attr_search() PRELIMINARY Reference Manual Pages

fn_searchlist_destroy () releases resources used during the enumeration. This can be invoked at
any time to terminate the enumeration. If the argument to fn_searchlist_destroy () is NULL, no
action is taken.

fn_attr_search () does not follow XFN links that are bound in the target context.

APPLICATION USAGE
The names enumerated using fn_searchlist_next () are not ordered in any way. Furthermore, there
is no guarantee that any two series of enumerations on the same context with identical
match_attrs will return the names in the same order.

RETURN VALUE
fn_attr_search () returns a pointer to an FN_searchlist_t object if the enumeration is successfully
initiated; it returns a NULL pointer if the enumeration cannot be initiated or if no named object
with attributes whose values match those specified in match_attrs is found.

fn_searchlist_next () returns a pointer to an FN_string_t object; it returns a NULL pointer if no
more names can be returned in the enumeration. If returned_ref is a NULL pointer, or if the
return_ref parameter to fn_attr_search () was zero, no reference is returned; otherwise, returned_ref
contains the reference bound to the name. If returned_attrs is a NULL pointer, no attributes are
returned; otherwise, returned_attrs contains the attributes associated with the named object, as
specified by the return_attr_ids parameter to fn_attr_search ().

In the case of a failure, these operations return in the status argument a code indicating the
nature of the failure.

ERRORS
fn_attr_search () returns a NULL pointer if the enumeration could not be initiated. The status
argument is set in the following way:

[FN_SUCCESS]
A named object could not be found whose attributes satisfied the implied filter of equality
and conjunction.

[FN_E_ATTR_NO_PERMISSION]
The caller did not have permission to read one or more of the specified attributes.

[FN_E_INVALID_ATTR_VALUE]
A value type in the specified attributes did not match the syntax of the attribute against
which it was being evaluated.

Other status codes are possible as described in the reference manual pages for FN_status_t and
XFN_status_codes.

Each successful call to fn_searchlist_next () returns a name and, optionally, the reference and
requested attributes. status is set in the following way:

[FN_SUCCESS]
All requested attributes were returned successfully with the name.

[FN_E_ATTR_NO_PERMISSION]
The caller did not have permission to read one or more of the requested attributes.

[FN_E_INVALID_ATTR_IDENTIFIER]
A requested attribute identifier was not in a format acceptable to the naming system, or its
contents was not valid for the format specified.

[FN_E_NO_SUCH_ATTRIBUTE]
The named object did not have one of the requested attributes.

136 X/Open CAE Specification

Reference Manual Pages PRELIMINARY fn_attr_search()

[FN_E_INSUFFICIENT_RESOURCES]
Insufficient resources are available to return all the requested attributes and their values.

Errors
[FN_E_ATTR_NO_PERMISSION],
[FN_E_INVALID_ATTR_IDENTIFIER],
[FN_E_NO_SUCH_ATTRIBUTE],
[FN_E_INSUFFICIENT_RESOURCES]
indicate that some of the requested attributes may have been returned in returned_attrs but one
or more of them could not be returned. Use fn_attr_get () or fn_attr_multi_get () to discover why
these attributes could not be returned.

fn_searchlist_next () returns a NULL pointer if no more names can be returned. The status
argument is set in the following way:

[FN_SUCCESS]
The search has completed successfully.

[FN_E_PARTIAL_RESULT]
The enumeration is not yet complete but cannot be continued.

[FN_E_ATTR_NO_PERMISSION]
The caller did not have permission to read one or more of the specified attributes.

[FN_E_INVALID_ENUM_HANDLE]
The supplied enumeration handle was not valid. Possible reasons could be that the handle
was from another enumeration, or the context being enumerated no longer accepts the
handle (due to such events as handle expiration or updates to the context).

Other status codes are possible as described in the reference manual pages for FN_status_t and
XFN_status_codes.

EXAMPLE
The following code fragment illustrates how the fn_attr_search () operation may be used. The
code consists of three parts, preparing the arguments for the search, performing the search, and
cleaning up. The first part involves getting the name of the context to start the search and
constructing the set of attributes that named objects in the context must satisfy. This is done in
the declarations part of the code and by the routine get_search_query().

The next part involves doing the search and enumerating the results of the search. This is done
by first getting a context handle to the Initial Context, and then passing that handle along with
the name of the target context and matching attributes to fn_attr_search (). This particular call to
fn_attr_search () is requesting that no reference be returned (by passing in 0 for return_ref), and
that all attributes associated with the named object be returned (by passing in 0 as the
return_attr_ids argument). If successful, fn_attr_search () returns sl, a handle for enumerating the
results of the search. The results of the search are enumerated using calls to fn_searchlist_next (),
which returns the name of the object and the attributes associated with the named object in
returned_attrs.

The last part of the code involves cleaning up the resources used during the search and
enumeration. The call to fn_searchlist_destroy () releases resources reserved for this enumeration.
The other calls release the context handle, name, attribute set and status objects created earlier.

Federated Naming: The XFN Specification 137

fn_attr_search() PRELIMINARY Reference Manual Pages

/* Declarations */
FN_ctx_t *ctx;
FN_searchlist_t *sl;
FN_string_t *name;
FN_attrset_t *returned_attrs;
FN_status_t *status = fn_status_create();
FN_composite_name_t *target_name = get_name_from_user_input();
FN_attrset_t *match_attrs = get_search_query();

/* Get context handle to Initial Context */
ctx = fn_ctx_handle_from_initial(0, status);

/* error checking on ‘status’ */

/* Initiate search */
if ((sl=fn_attr_search(ctx, target_name, match_attrs,

/* no reference */ 0, /* return all attrs */ 0, status)) == 0) {
/* report ‘status’, cleanup, and exit */

}

/* Enumerate names and attributes requested */

while (name=fn_searchlist_next(sl, 0, &returned_attrs, status)) {
/* do something with ‘name’ and ‘returned_attrs’*/
fn_string_destroy(name);
fn_attrset_destroy(returned_attrs);

}

/* check ‘status’ for reason for end of enumeration */

/* Clean up */
fn_searchlist_destroy(sl); /* Free resources of ‘sl’ */
fn_status_destroy(status);
fn_attrset_destroy(match_attrs);
fn_ctx_handle_destroy(ctx);
fn_composite_name_destroy(target_name);

/*
* Procedure for constructing attribute set containing
* attributes to be matched:
* "zip_code" attribute value is "02158"
* AND "employed" attribute is present.

*/

FN_attrset_t *
get_search_query()
{
/* Zip code and employed attribute identifier, syntax */

extern FN_attribute_t *attr_zip_code;
extern FN_attribute_t *attr_employed;

FN_attribute_t *zip_code = fn_attribute_copy(attr_zip_code);

138 X/Open CAE Specification

Reference Manual Pages PRELIMINARY fn_attr_search()

FN_attrvalue_t zc_value = {5, "02158"};
FN_attrset_t *match_attrs = fn_attrset_create();

fn_attribute_add(zip_code, &zc_value, 0);
fn_attrset_add(match_attrs, zip_code, 0);
fn_attrset_add(match_attrs, attr_employed, 0);

return (match_attrs);
}

SEE ALSO
FN_attrvalue_t, FN_attribute_t, FN_attrset_t, FN_composite_name_t, FN_ctx_t, FN_status_t,
FN_string_t, fn_attr_ext_search (), fn_ctx_list_names (), XFN_status_codes, <xfn/xfn.h>.

Federated Naming: The XFN Specification 139

fn_ctx_bind() Reference Manual Pages

NAME
fn_ctx_bind — bind a reference to a name

SYNOPSIS
#include <xfn/xfn.h>

int fn_ctx_bind(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_ref_t * ref ,
unsigned int exclusive ,
FN_status_t * status);

DESCRIPTION
This operation binds the supplied reference ref to the supplied composite name name relative to
ctx. The binding is made in the target context — that context named by all but the terminal
atomic part of name. The operation binds the terminal atomic name to the supplied reference in
the target context. The target context must already exist.

The value of exclusive determines what happens if the terminal atomic part of the name is
already bound in the target context. If exclusive is non-zero and name is already bound, the
operation fails. If exclusive is zero, the new binding replaces any existing binding.

RETURN VALUE
When the bind operation is successful it returns 1; on error it returns 0.

ERRORS
fn_ctx_bind() sets status as described in the reference manual pages for FN_status_t and
XFN_status_codes. Of special relevance for this operation is the following status code:

[FN_E_NAME_IN_USE]
The supplied name is already in use.

APPLICATION USAGE
The value of ref cannot be NULL. If the intent is to reserve a name using fn_ctx_bind(), a
reference containing no address should be supplied. This reference may be name service-
specific or it may be the conventional NULL reference defined in Appendix G.

If multiple sources are updating a reference, they must synchronize amongst each other when
adding, modifying, or removing from the address list of a bound reference.

In naming systems that support attributes and store the attributes along with the names, when
binding a reference in non-exclusive mode, any attributes associated with the former binding are
removed.

SEE ALSO
FN_composite_name_t, FN_ctx_t, FN_ref_t, FN_status_t, fn_attr_bind (), fn_ctx_lookup (),
fn_ctx_unbind(), XFN_status_codes, <xfn/xfn.h>.

140 X/Open CAE Specification

Reference Manual Pages fn_ctx_create_subcontext()

NAME
fn_ctx_create_subcontext — create a subcontext in a context

SYNOPSIS
#include <xfn/xfn.h>

FN_ref_t *fn_ctx_create_subcontext(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

DESCRIPTION
This operation creates a new XFN context of the same type as the target context — that named
by all but the terminal atomic component of name — and binds it to the supplied composite
name.

As with fn_ctx_bind(), the target context must already exist. The new context is created and
bound in the target context using the terminal atomic name in name. The operation returns a
reference to the newly created context.

RETURN VALUE
fn_ctx_create_subcontext() returns a reference to the newly created context; if the operation fails,
it returns a NULL pointer (0).

ERRORS
fn_ctx_create_subcontext() sets status as described in the reference manual pages for FN_status_t
and XFN_status_codes. Of special relevance for this operation is the following status code:

[FN_E_NAME_IN_USE]
The terminal atomic name already exists in the target context.

APPLICATION USAGE
The new subcontext is an XFN context and is created in the same naming system as the target
context. The new subcontext also inherits the same syntax attributes as the target context. XFN
does not specify any further properties of the new subcontext. The target context and its naming
system determine these.

SEE ALSO
FN_composite_name_t, FN_ctx_t, FN_ref_t, FN_status_t, fn_attr_create_subcontext (),
fn_ctx_bind(), fn_ctx_lookup (), fn_ctx_destroy (), XFN_status_codes, <xfn/xfn.h>.

Federated Naming: The XFN Specification 141

fn_ctx_destroy_subcontext() Reference Manual Pages

NAME
fn_ctx_destroy_subcontext — destroy the named context and remove its binding from the
parent context

SYNOPSIS
#include <xfn/xfn.h>

int fn_ctx_destroy_subcontext(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

DESCRIPTION
This operation destroys the subcontext named by name relative to ctx, and unbinds the name.

As with fn_ctx_unbind(), this operation succeeds even if the terminal atomic name is not bound
in the target context — the context named by all but the terminal atomic name in name.

RETURN VALUE
fn_ctx_destroy_subcontext () returns 1 on success and 0 on failure.

ERRORS
fn_ctx_destroy_subcontext () sets status as described in the reference manual pages for
FN_status_t and XFN_status_codes. Of special relevance for fn_ctx_destroy_subcontext () are the
following status codes:

[FN_E_CTX_NOT_A_CONTEXT]
name does not name a context.

[FN_E_CTX_NOT_EMPTY]
The naming system being asked to do the destroy does not support removal of a context
that still contains bindings.

APPLICATION USAGE
Some aspects of this operation are not specified by XFN, but are determined by the target
context and its naming system. For example, XFN does not specify what happens if the named
subcontext is non-empty when the operation is invoked.

In naming systems that support attributes, and store the attributes along with names or contexts,
this operation removes the name, the context, and its associated attributes.

Normal resolution always follows links. In a fn_ctx_destroy_subcontext () operation, resolution of
name continues to the target context; the terminal atomic name is not resolved. If the terminal
atomic name is bound to a link, the link is not followed and the operation fails with
[FN_E_CTX_NOT_A_CONTEXT] because the name is not bound to a context.

SEE ALSO
FN_ctx_t, FN_composite_name_t, FN_status_t, fn_attr_create_subcontext (),
fn_ctx_create_subcontext(), fn_ctx_unbind(), XFN_status_codes, <xfn/xfn.h>.

142 X/Open CAE Specification

Reference Manual Pages PRELIMINARY fn_ctx_equivalent_name()

NAME
fn_ctx_equivalent_name — construct an equivalent name in same context

SYNOPSIS
#include <xfn/xfn.h>

FN_composite_name_t *fn_ctx_equivalent_name(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_string_t * leading_name ,
FN_status_t * status);

DESCRIPTION
Given the name of an object name relative to the context ctx, this operation returns an equivalent
name for that object, relative to the same context ctx, that has leading_name as its initial atomic
name. Two names are said to be equivalent if they have prefixes that resolve to the same
context, and the parts of the names immediately following the prefixes are identical.

The existence of a binding for leading_name in ctx does not guarantee that a name equivalent to
name can be constructed. The failure may be because such equivalence is not meaningful, or due
to the inability of the system to construct a name with the equivalence. For example, supplying
_thishost as leading_name when name starts with _myself to fn_ctx_equivalent_name () in the
Initial Context would not be meaningful; this results in the return of the error code
[FN_E_NO_EQUIVALENT_NAME].

RETURN VALUE
If an equivalent name cannot be constructed, the value 0 is returned and status is set
appropriately.

ERRORS
fn_ctx_equivalent_name () sets status as described in the reference manual pages for FN_status_t
and XFN_status_codes. The following status code is especially relevant for this operation.

[FN_E_NO_EQUIVALENT_NAME]
No equivalent name can be constructed, either because there is no meaningful equivalence
between name and leading_name, or the system does not support constructing the requested
equivalent name, for implementation-specific reasons.

EXAMPLES
In the Initial Context supporting the XFN enterprise policies described in Appendix D, a user
jsmith is able to name one of her files relative to this context in several ways:

_myself/_fs/map.ps
_user/jsmith/_fs/map.ps
_orgunit/finance/_user/jsmith/_fs/map.ps

The first of these may be appealing to the user jsmith in her day-to-day operations. This name
is not, however, appropriate for her to use when referring to the file in an electronic mail
message sent to a colleague. The second of these names would be appropriate if the colleague
were in the same organizational unit, and the third appropriate for anyone in the same
enterprise.

When the following sequence of instructions is executed by the user jsmith in the
organizational unit finance , enterprise_wide_name would contain the composite name
_orgunit/finance/_user/jsmith/_fs/map.ps .

FN_composite_name_t* name = fn_composite_name_from_str(
(const unsigned char *)"_myself/_fs/map.ps");

Federated Naming: The XFN Specification 143

fn_ctx_equivalent_name() PRELIMINARY Reference Manual Pages

FN_string_t* org_lead =
fn_string_from_str((const unsigned char*)"_orgunit");

FN_status_t* status = fn_status_create();
FN_composite_name_t* enterprise_wide_name;

FN_ctx_t* init_ctx = fn_ctx_handle_from_initial(0, status);
/* check status of from_initial() */

enterprise_wide_name = fn_ctx_equivalent_name(init_ctx, name, org_lead, status);

When the following sequence of instructions is executed by the user jsmith in the
organizational unit finance , shortest_name would contain the composite name
_myself/_fs/map.ps .

FN_composite_name_t* name = fn_composite_name_from_str(
(const unsigned char *)"_orgunit/finance/_user/jsmith/_fs/map.ps");

FN_string_t* mylead = fn_string_from_str((const unsigned char*)"_myself");
FN_status_t* status = fn_status_create();
FN_composite_name_t* shortest_name;

FN_ctx_t* init_ctx = fn_ctx_handle_from_initial(0, status);
/* check status of from_initial() */

shortest_name = fn_ctx_equivalent_name(init_ctx, name, mylead, status);

SEE ALSO
FN_composite_name_t, FN_ctx_t, FN_status_t, FN_string_t, XFN_status_codes, <xfn/xfn.h>.

144 X/Open CAE Specification

Reference Manual Pages fn_ctx_get_ref()

NAME
fn_ctx_get_ref — return a context’s reference

SYNOPSIS
#include <xfn/xfn.h>

FN_ref_t *fn_ctx_get_ref(
const FN_ctx_t * ctx ,
FN_status_t * status);

DESCRIPTION
This operation returns a reference to the supplied context object.

RETURN VALUE
fn_ctx_get_ref () returns a pointer to an FN_ref_t object if the operation succeeds, it returns 0 if
the operation fails.

ERRORS
fn_ctx_get_ref () sets status as described in the reference manual pages for FN_status_t and
XFN_status_codes. The following status code is of particular relevance to this operation:

[FN_E_OPERATION_NOT_SUPPORTED]
Using the fn_ctx_get_ref () operation on the Initial Context returns this status code.

APPLICATION USAGE
fn_ctx_get_ref () cannot be used on the Initial Context. fn_ctx_get_ref () can be used on contexts
bound in the Initial Context (in other words, the bindings in the Initial Context have references).

If the context handle was created earlier using the fn_ctx_handle_from_ref () operation, the
reference returned by the fn_ctx_get_ref () operation may not necessarily be exactly the same in
content as that originally supplied. For example, fn_ctx_handle_from_ref () may construct the
context handle from one address from the list of addresses. The context implementation may
return with a call to fn_ctx_get_ref () only that address, or a more complete list of addresses than
what was supplied in fn_ctx_handle_from_ref ().

SEE ALSO
FN_ctx_t, FN_ref_t, FN_status_t, fn_ctx_handle_from_initial (), fn_ctx_handle_from_ref (),
XFN_status_codes, <xfn/xfn.h>.

Federated Naming: The XFN Specification 145

fn_ctx_get_syntax_attrs() Reference Manual Pages

NAME
fn_ctx_get_syntax_attrs — return syntax attributes associated with named context

SYNOPSIS
#include <xfn/xfn.h>

FN_attrset_t *fn_ctx_get_syntax_attrs(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

DESCRIPTION
Each context has an associated set of syntax-related attributes. This operation returns the syntax
attributes associated with the context named by name relative to the context ctx.

The attributes must contain the attribute fn_syntax_type (FN_ID_STRING format). If the context
supports a syntax that conforms to the XFN standard syntax model, fn_syntax_type is set to
standard (ASCII attribute syntax) and the attribute set contains the rest of the relevant syntax
attributes described the reference manual page for XFN_compound_syntax.

This operation is different from other XFN attribute operations in that these syntax attributes
could be obtained directly from the context. Attributes obtained through other XFN attribute
operations may not necessarily be associated with the context; they may be associated with the
reference of context, rather than the context itself (see reference manual page for
XFN_attributes).

RETURN VALUE
fn_ctx_get_syntax_attrs () returns an attribute set if successful; it returns a NULL pointer (0) if the
operation fails.

ERRORS
fn_ctx_get_syntax_attrs () sets status as described in the reference manual pages for FN_status_t
and XFN_status_codes.

APPLICATION USAGE
Implementations may choose to support other syntax types in addition to, or in place of, the
XFN standard syntax model, in which case, the value of the "fn_syntax_type" attribute would be
set to an implementation-specific string, and different or additional syntax attributes will be in
the set.

Syntax attributes of a context may be generated automatically by a context, in response to
fn_ctx_get_syntax_attrs (), or they may be created and updated using the base attribute
operations. This is implementation-dependent.

SEE ALSO
FN_attrset_t, FN_composite_name_t, FN_compound_name_t, FN_ctx_t, FN_status_t,
fn_attr_get (), fn_attr_multi_get (), XFN_compound_syntax, XFN_attribute_operations,
XFN_status_codes, <xfn/xfn.h>.

146 X/Open CAE Specification

Reference Manual Pages fn_ctx_handle_destroy()

NAME
fn_ctx_handle_destroy — release storage associated with context handle

SYNOPSIS
#include <xfn/xfn.h>

void fn_ctx_handle_destroy(FN_ctx_t * ctx);

DESCRIPTION
This operation destroys the context handle ctx and allows the implementation to free resources
associated with the context handle. This operation does not affect the state of the context itself.
If the argument to fn_ctx_handle_destroy () is NULL, no action is taken.

SEE ALSO
FN_ctx_t, fn_ctx_handle_from_initial (), fn_ctx_handle_from_ref (), <xfn/xfn.h>.

Federated Naming: The XFN Specification 147

fn_ctx_handle_from_initial() Reference Manual Pages

NAME
fn_ctx_handle_from_initial — return a handle to the Initial Context

SYNOPSIS
#include <xfn/xfn.h>

FN_ctx_t *fn_ctx_handle_from_initial(
unsigned int authoritative ,
FN_status_t * status);

DESCRIPTION
This operation returns a handle to the caller’s Initial Context. On successful return, the handle
points to a context which meets the specification of the XFN Initial Context.

authoritative specifies whether the handle to the context returned should be authoritative with
respect to information the context obtains from the naming service. When the flag is non-zero,
subsequent operations on the context will access the most authoritative information. When
authoritative is zero, the handle to the context returned need not be authoritative.

RETURN VALUE
fn_ctx_handle_from_initial () returns a pointer to an FN_ctx_t object if the operation succeeds; it
returns a NULL pointer (0) otherwise.

ERRORS
fn_ctx_handle_from_initial () sets only the status code portion of the status object status.

APPLICATION USAGE
Authoritativeness is determined by specific naming services. For example, in a naming service
that supports replication using a master/slave model, the source of authoritative information
would come from the master server. In some naming systems, bypassing the naming service
cache may reach servers which provide the most authoritative information. The availability of
an authoritative context might be lower due to the lower number of servers offering this service.
For the same reason, it might also provide poorer performance than contexts that need not be
authoritative.

Applications should set authoritative to zero for typical day-to-day operations. Applications
should only set authoritative to a non-zero value when they require access to the most
authoritative information, possibly at the expense of lower availability and/or poorer
performance.

It is implementation-dependent whether authoritativeness is transferred from one context to the
next as composite name resolution proceeds. Getting an authoritative context handle to the
Initial Context means that operations on bindings in the Initial Context are processed using the
most authoritative information. Contexts referenced implicitly through an authoritative Initial
Context (for example, through the use of composite names) may not necessarily themselves be
authoritative.

SEE ALSO
FN_ctx_t, FN_status_t, fn_ctx_get_ref (), fn_ctx_handle_from_ref (), XFN_status_codes,
<xfn/xfn.h>.

148 X/Open CAE Specification

Reference Manual Pages fn_ctx_handle_from_ref()

NAME
fn_ctx_handle_from_ref — construct a handle to a context object using the given reference

SYNOPSIS
#include <xfn/xfn.h>

FN_ctx_t *fn_ctx_handle_from_ref(
const FN_ref_t * ref ,
unsigned int authoritative ,
FN_status_t * status);

DESCRIPTION
This operation creates a handle to an FN_ctx_t object using an FN_ref_t object for that context.

authoritative specifies whether the handle to the context returned should be authoritative with
respect to information the context obtains from the naming service. When the flag is non-zero,
subsequent operations on the context will access the most authoritative information. When
authoritative is zero, the handle to the context returned need not be authoritative.

RETURN VALUE
This operations returns a pointer to an FN_ctx_t object if the operation succeeds, otherwise, it
returns a NULL pointer (0).

ERRORS
fn_ctx_handle_from_ref () sets status as described in the reference manual page for FN_status_t
and XFN_status_codes. The following status code is of particular relevance to this operation.

[FN_E_NO_SUPPORTED_ADDRESS]
A context object of the specified authoritativeness could not be constructed from a
particular reference. The reference contained no address type over which the context
interface was supported.

APPLICATION USAGE

Authoritativeness is determined by specific naming services. For example, in a naming service
that supports replication using a master/slave model, the source of authoritative information
would come from the master server. In some naming systems, bypassing the naming service
cache may reach servers which provide the most authoritative information. The availability of
an authoritative context might be lower due to the lower number of servers offering this service.
For the same reason, it might also provide poorer performance than contexts that need not be
authoritative.

Applications set authoritative to zero for typical day-to-day operations. Applications only set
authoritative to a non-zero value when they require access to the most authoritative information,
possibly at the expense of lower availability and/or poorer performance.

To control the authoritativeness of the target context, the application first resolves explicitly to
the target context using fn_ctx_lookup (). It then uses fn_ctx_handle_from_ref () with the
appropriate authoritative argument to obtain a handle to the context. This returns a handle to a
context with the specified authoritativeness. The application then uses the XFN operations, such
as lookup and list, with this context handle.

It is implementation-dependent whether authoritativeness is transferred from one context to the
next as composite name resolution proceeds. The application should use the approach
recommended above to achieve the desired level of authoritativeness on a per context basis.

Federated Naming: The XFN Specification 149

fn_ctx_handle_from_ref() Reference Manual Pages

SEE ALSO
FN_ctx_t, FN_ref_t, FN_status_t, fn_ctx_handle_destroy (), fn_ctx_get_ref (), XFN_status_codes,
<xfn/xfn.h>.

150 X/Open CAE Specification

Reference Manual Pages fn_ctx_list_bindings()

NAME
fn_ctx_list_bindings, FN_bindinglist_t, fn_bindinglist_next, fn_bindinglist_destroy — list the
atomic names and references bound in a context

SYNOPSIS
#include <xfn/xfn.h>

FN_bindinglist_t *fn_ctx_list_bindings(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

FN_string_t *fn_bindinglist_next(
FN_bindinglist_t * bl ,
FN_ref_t ** ref ,
FN_status_t * status);

void fn_bindinglist_destroy(
FN_bindinglist_t * bl);

DESCRIPTION
This set of operations is used to list the names and bindings in the context named by name
relative to the context ctx. Note that name must name a context. If the intent is to list the
contents of ctx, name should be an empty composite name.

The semantics of these operations are similar to those for listing names (see the reference manual
page for fn_ctx_list_names ()). In addition to a name string being returned, fn_bindinglist_next ()
also returns the reference of the binding for each member of the enumeration. If the argument to
fn_binding_list_destroy () is NULL, no action is taken.

SEE ALSO
FN_composite_name_t, FN_ctx_t, FN_ref_t, FN_status_t, FN_string_t, fn_ctx_list_names (),
XFN_status_codes, <xfn/xfn.h>.

Federated Naming: The XFN Specification 151

fn_ctx_list_names() Reference Manual Pages

NAME
fn_ctx_list_names, FN_namelist_t, fn_namelist_next, fn_namelist_destroy — list the atomic
names bound in a context

SYNOPSIS
#include <xfn/xfn.h>

FN_namelist_t *fn_ctx_list_names(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

FN_string_t *fn_namelist_next(
FN_namelist_t * nl ,
FN_status_t * status);

void fn_namelist_destroy(
FN_namelist_t * nl);

DESCRIPTION
This set of operations is used to list the names bound in the target context named name relative
to the context ctx. Note that name must name a context. If the intent is to list the contents of ctx,
name should be an empty composite name.

The call to fn_ctx_list_names () initiates the enumeration process. It returns a handle to an
FN_namelist_t object that can be used to enumerate the names in the target context.

The operation fn_namelist_next() returns the next name in the enumeration identified by nl and
updates nl to indicate the state of the enumeration. Successive calls to fn_namelist_next() using
nl return successive names in the enumeration and further update the state of the enumeration.
fn_namelist_next() returns a NULL pointer when the enumeration has been completed.

fn_namelist_destroy () is used to release resources used during the enumeration. This may be
invoked before the enumeration has completed to terminate the enumeration. If the argument
to fn_namelist_destroy () is NULL, no action is taken.

RETURN VALUE
fn_ctx_list_names () returns a pointer to an FN_namelist_t object if the enumeration is
successfully initiated; otherwise it returns a NULL pointer.

fn_namelist_next() returns a NULL pointer if no more names can be returned in the enumeration.

In the case of a failure, these operations return in status a code indicating the nature of the
failure.

ERRORS
Each successful call to fn_namelist_next() returns a name and sets status to [FN_SUCCESS].

When fn_namelist_next() returns a NULL pointer, it indicates that no more names can be
returned. status is set in the following way:

[FN_SUCCESS]
The enumeration has completed successfully.

[FN_E_INVALID_ENUM_HANDLE]
The supplied enumeration handle is not valid. Possible reasons could be that the handle
was from another enumeration, or the context being enumerated no longer accepts the
handle (due to such events as handle expiration or updates to the context).

152 X/Open CAE Specification

Reference Manual Pages fn_ctx_list_names()

[FN_E_PARTIAL_RESULT]
The enumeration is not yet complete but cannot be continued.

Other status codes, such as [FN_E_COMMUNICATION_FAILURE], are also possible in calls to
fn_ctx_list_names () and fn_namelist_next(). These functions set status for these other status codes
as described in the reference manual pages for FN_status_t and XFN_status_codes.

EXAMPLE
The following code fragment illustrates a how the list names operations may be used.

extern FN_string_t *user_input;
FN_ctx_t *ctx;
FN_composite_name_t *target_name = fn_composite_name_from_string(

user_input);
FN_status_t *status = fn_status_create();
FN_string_t *name;
FN_namelist_t *nl;

ctx = fn_ctx_handle_from_initial(0, status);
/* error checking on ’status’ */

if ((nl=fn_ctx_list_names(ctx, target_name, status)) == 0) {
/* report ’status’ and exit */

}

while (name=fn_namelist_next(nl, status)) {
/* do something with ’name’ */
fn_string_destroy(name);

}

/* check ’status’ for reason for end of enumeration */
/* and report if necessary */

/* clean up */
fn_namelist_destroy(nl);

APPLICATION USAGE
The names enumerated using fn_namelist_next() are not ordered in any way. There is no
guaranteed relation between the order in which names are added to a context and the order of
names obtained by enumeration. The specification does not guarantee that any two series of
enumerations will return the names in the same order.

When a name is added to or removed from a context, this may or may not invalidate the
enumeration handle that the client holds for that context. If the enumeration handle becomes
invalid, the status code [FN_E_INVALID_ENUM_HANDLE] is returned in status. If the
enumeration handle remains valid, the update may or may not be visible to the client.

In addition, there may be a relationship between the ctx argument supplied to
fn_ctx_list_names () and the FN_namelist_t object it returns. For example, some
implementations may store the context handle ctx within the FN_namelist_t object for
subsequent fn_namelist_next() calls. In general, a fn_ctx_handle_destroy () should not be invoked
on ctx until the enumeration has terminated.

Federated Naming: The XFN Specification 153

fn_ctx_list_names() Reference Manual Pages

SEE ALSO
FN_composite_name_t, FN_ctx_t, FN_status_t, FN_string_t, fn_ctx_handle_destroy (),
XFN_status_codes, <xfn/xfn.h>.

154 X/Open CAE Specification

Reference Manual Pages fn_ctx_lookup()

NAME
fn_ctx_lookup — look up name in context

SYNOPSIS
#include <xfn/xfn.h>

FN_ref_t *fn_ctx_lookup(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

DESCRIPTION
This operation returns the reference bound to name relative to the context ctx.

RETURN VALUE
If the operation succeeds, the fn_ctx_lookup () function returns a handle to the reference bound to
name. Otherwise, 0 is returned and status is set appropriately.

ERRORS
fn_ctx_lookup () sets status as described in the reference manual pages for FN_status_t and
XFN_status_codes.

APPLICATION USAGE
Some naming services may not always have reference information for all names in their
contexts; for such names, such naming services may return a special reference whose type
indicates that the name is not bound to any address. This reference may be name service specific
or it may be the conventional NULL reference defined in Appendix G.

SEE ALSO
FN_composite_name_t, FN_ctx_t, FN_ref_t, FN_status_t, XFN_status_codes, <xfn/xfn.h>.

Federated Naming: The XFN Specification 155

fn_ctx_lookup_link() Reference Manual Pages

NAME
fn_ctx_lookup_link — look up the link reference bound to a name

SYNOPSIS
#include <xfn/xfn.h>

FN_ref_t *fn_ctx_lookup_link(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

DESCRIPTION
This operation returns the XFN link bound to name if name is bound to an XFN link; otherwise, it
returns the reference bound to name.

The normal fn_ctx_lookup () operation follows all links encountered, including any bound to the
terminal atomic part of name. This operation differs from the normal lookup in that when the
terminal atomic part of name is an XFN link, this link is not followed, and the operation returns
the link.

RETURN VALUE
If fn_ctx_lookup_link () fails, a NULL pointer (0) is returned.

ERRORS
fn_ctx_lookup_link () sets status as described in the reference manual pages for FN_status_t and
XFN_status_codes.

SEE ALSO
FN_composite_name_t, FN_ctx_t, FN_ref_t, FN_status_t, fn_ctx_lookup (), XFN_status_codes,
XFN_links, <xfn/xfn.h>.

156 X/Open CAE Specification

Reference Manual Pages fn_ctx_rename()

NAME
fn_ctx_rename — rename the name of a binding

SYNOPSIS
#include <xfn/xfn.h>

int fn_ctx_rename(
FN_ctx_t * ctx ,
const FN_composite_name_t * oldname ,
const FN_composite_name_t * newname,
unsigned int exclusive ,
FN_status_t * status);

DESCRIPTION
The fn_ctx_rename() operation binds the reference currently bound to oldname relative to ctx, to
the name newname, and unbinds oldname. newname is resolved relative to the target context (that
named by all but the terminal atomic part of oldname).

If exclusive is zero, the operation overwrites any old binding of newname. If exclusive is non-zero,
the operation fails if newname is already bound.

RETURN VALUE
fn_ctx_rename() returns 1 if the operation is successful, 0 otherwise.

ERRORS
fn_ctx_rename() sets status as described in the reference manual pages for FN_status_t and
XFN_status_codes.

APPLICATION USAGE
The only restriction that XFN places on newname is that it be resolved relative to the target
context. XFN does not specify further restrictions on newname. For example, in some
implementations, newname might be restricted to be a name in the same naming system as the
terminal component of oldname. In another implementation, newname might be restricted to be an
atomic name.

Normal resolution always follows links. In a fn_ctx_rename() operation, resolution of oldname
continues to the target context; the terminal atomic name is not resolved. If the terminal atomic
name is bound to a link, the link is not followed and the operation binds newname to the link and
unbinds the terminal atomic name of oldname.

In naming systems that support attributes and store the attributes along with the names, any
attributes associated with the terminal atomic name of oldname become associated with
newname. Any attributes associated with the terminal atomic name of oldname are removed.

SEE ALSO
FN_composite_name_t, FN_ctx_t, FN_ref_t, FN_status_t, fn_ctx_bind(), fn_ctx_unbind(),
XFN_status_codes, <xfn/xfn.h>.

Federated Naming: The XFN Specification 157

fn_ctx_unbind() Reference Manual Pages

NAME
fn_ctx_unbind — unbind a name from a context

SYNOPSIS
#include <xfn/xfn.h>

int fn_ctx_unbind(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

DESCRIPTION
This operation removes the terminal atomic name in name from the the target context — that
named by all but the terminal atomic part of name.

This operation is successful even if the terminal atomic name was not bound in target context,
but fails if any of the intermediate names are not bound. fn_ctx_unbind() is idempotent.

RETURN VALUE
The operation returns 1 if successful, and 0 otherwise.

ERRORS
fn_ctx_unbind() sets status as described in the reference manual pages for FN_status_t and
XFN_status_codes.

Certain naming systems may disallow unbinding a name if the name is bound to an existing
context in order to avoid orphan contexts that cannot be reached via any name. In such
situations, the status code [FN_E_NAME_IN_USE] is returned.

APPLICATION USAGE
In naming systems that support attributes, and store the attributes along with the names, the
unbind operation removes the name and its associated attributes.

Normal resolution always follows links. In an fn_ctx_unbind() operation, resolution of name
continues to the target context; the terminal atomic name is not resolved. If the terminal atomic
name is bound to a link, the link is not followed and the link itself is unbound from the terminal
atomic name.

SEE ALSO
FN_composite_name_t, FN_ctx_t, FN_ref_t, FN_status_t, fn_attr_bind (), fn_ctx_bind(),
fn_ctx_lookup (), XFN_status_codes, <xfn/xfn.h>.

158 X/Open CAE Specification

Reference Manual Pages XFN_attribute_operations

NAME
XFN attribute operations — an overview of XFN attribute operations

SYNOPSIS
#include <xfn/xfn.h>

int fn_attr_bind(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_ref_t * ref ,
const FN_attrset_t * attrs ,
unsigned int exclusive ,
FN_status_t * status);

FN_searchlist_t *fn_attr_search(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_attrset_t * match_attrs ,
unsigned int return_ref ,
const FN_attrset_t * return_attr_ids ,
FN_status_t * status);

FN_string_t *fn_searchlist_next(
FN_searchlist_t * sl ,
FN_ref_t ** returned_ref ,
FN_attrset_t ** returned_attrs ,
FN_status_t * status);

void fn_searchlist_destroy(
FN_searchlist_t * sl);

FN_ref_t *fn_attr_create_subcontext(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_attrset_t * attrs ,
FN_status_t * status)

FN_ext_searchlist_t *fn_attr_ext_search(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_search_control_t * control ,
const FN_search_filter_t * filter ,
FN_status_t * status);

FN_composite_name_t *fn_ext_searchlist_next(
FN_ext_searchlist_t * esl ,
FN_ref_t ** returned_ref ,
FN_attrset_t ** returned_attrs ,
FN_status_t * status);

void fn_ext_searchlist_destroy(
FN_ext_searchlist_t * esl);

Federated Naming: The XFN Specification 159

XFN_attribute_operations Reference Manual Pages

FN_attribute_t *fn_attr_get(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_identifier_t * attribute_id ,
unsigned int follow_link ,
FN_status_t * status);

int fn_attr_modify(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
unsigned int mod_op,
const FN_attribute_t * attr ,
unsigned int follow_link ,
FN_status_t * status);

FN_attrset_t *fn_attr_get_ids(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
unsigned int follow_link ,
FN_status_t * status);

FN_valuelist_t *fn_attr_get_values(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_identifier_t * attribute_id ,
unsigned int follow_link ,
FN_status_t * status);

FN_attrvalue_t *fn_valuelist_next(
FN_valuelist_t * vl ,
FN_identifier_t ** attr_syntax ,
FN_status_t * status);

void fn_valuelist_destroy(
FN_valuelist_t * vl);

FN_multigetlist_t *fn_attr_multi_get(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_attrset_t * attr_ids ,
unsigned int follow_link ,
FN_status_t * status);

FN_attribute_t *fn_multigetlist_next(
FN_multigetlist_t * ml ,
FN_status_t * status);

void fn_multigetlist_destroy(
FN_multigetlist_t * ml);

int fn_attr_multi_modify(
FN_ctx_t * ctx ,

160 X/Open CAE Specification

Reference Manual Pages XFN_attribute_operations

const FN_composite_name_t * name,
const FN_attrmodlist_t * mods,
unsigned int follow_link ,
FN_attrmodlist_t ** unexecuted_mods ,
FN_status_t * status);

FN_attrset_t *fn_ctx_get_syntax_attrs(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

DESCRIPTION
XFN assumes the following model for attributes. A set of zero or more attributes is associated
with a named object. Each attribute in the set has a unique attribute identifier, an attribute
syntax and a (possibly empty) set of distinct data values. Each attribute value has an opaque
data type. The attribute identifier serves as a name for the attribute. The attribute syntax
indicates the how the value is encoded in the buffer.

The operations of the base attribute interface may be used to examine and modify the settings of
attributes associated with existing named objects. These objects may be contexts or other types
of objects.

The range of support for attribute operations may vary widely. Some naming systems may not
support any attribute operations. Other naming systems may only support read operations, or
operations on attributes whose identifiers are in some fixed set. A naming system may limit
attributes to have a single value, or may require at least one value. Some naming systems may
only associate attributes with context objects, while others may allow associating attributes with
non-context objects.

The following describes briefly the operations in the base and extended attribute interfaces.
Detailed descriptions are given in the respective reference manual pages for these operations:

fn_attr_bind()
binds the supplied reference ref to the supplied composite name name, resolved relative to
ctx. In addition, it associates attributes specified in attrs with the named object.

fn_attr_create_subcontext()
creates a new context of the same type as the target context binds it to the composite name
name relative to the context ctx, and returns a reference to the newly created context. In
addition, it associates the attributes specified in attrs with the new context.

fn_attr_get()
returns the attribute identified

fn_attr_modify()
modifies the attribute identified as described by mod_op

fn_attr_get_ids()
returns the identifiers of the attributes of the named object

fn_attr_get_values()
and its set of related operations are used for returning the individual values of an attribute

fn_attr_multi_get()
and its set of related operations are used for returning the requested attributes associated
with the named object

Federated Naming: The XFN Specification 161

XFN_attribute_operations Reference Manual Pages

fn_attr_multi_modify()
modifies multiple attributes associated with the named object in a single invocation

fn_ctx_get_syntax_attrs()
returns the syntax attributes associated with the named context

fn_attr_search()
and its related operations are used for returning the objects with attributes that match the
given attributes

fn_attr_ext_search()
and its related operations are used for returning the objects with attributes that match the
specified search criteria.

The value of the follow_link parameter determines what happens when the terminal atomic part
of name is bound to an XFN link. If follow_link is non-zero, such a link is followed and attributes
associated with the final named object are examined or modified. If follow_link is zero, such a
link is not followed. Any XFN links encountered before the terminal atomic name are always
followed.

ERRORS
status is set as described in the reference manual pages for FN_status_t and XFN_status_codes.
The following status codes are of special relevance to attribute operations:

[FN_E_ATTR_IN_USE]
When an attribute is being modified using the operation FN_ATTR_OP_ADD_EXCLUSIVE
and an attribute with the same identifier already exists, the operation fails with
FN_E_ATTR_IN_USE.

[FN_E_ATTR_VALUE_REQUIRED]
The operation attempted to create an attribute without a value, and the specific naming
system does not allow this.

[FN_E_ATTR_NO_PERMISSION]
The caller did not have permission to perform the attempted attribute operation.

[FN_E_INSUFFICIENT_RESOURCES]
There is insufficient resources to retrieve the requested attribute(s).

[FN_E_INVALID_ATTR_IDENTIFIER]
The attribute identifier was not in a format acceptable to the naming system, or its contents
was not valid for the format specified for the identifier.

[FN_E_INVALID_ATTR_VALUE]
One of the values supplied was not in the appropriate form for the given attribute.

[FN_E_NO_SUCH_ATTRIBUTE]
The object did not have an attribute with the given identifier.

[FN_E_SEARCH_INVALID_FILTER]
The filter expression had a syntax error or some other problem.

[FN_E_SEARCH_INVALID_OP]
An operator in the filter expression is not supported or, if the operator is an extended
operator, the number of types of arguments supplied does not match the signature of the
operation.

[FN_E_SEARCH_INVALID_OPTION]
A supplied search control option could not be supported.

162 X/Open CAE Specification

Reference Manual Pages XFN_attribute_operations

[FN_E_TOO_MANY_ATTR_VALUES]
The operation attempted to associate more values with an attribute than the naming system
supported.

APPLICATION USAGE
Except for fn_ctx_get_syntax_attrs (), an attribute operation using a composite name is not
necessarily equivalent to an independent fn_ctx_lookup () operation followed by an attribute
operation in which the caller supplies the resulting reference and an empty name. This is
because there are a range of attribute models in which an attribute is associated with a name in a
context, or an attribute is associated with the object named, or both. XFN accommodates all of
these alternatives. Invoking an attribute operation using the target context and the terminal
atomic name accesses either the attributes that are associated with the target name or target
named object — this is dependent on the underlying attribute model. This document uses the
term attributes associated with a named object to refer to all of these cases.

XFN specifies no guarantees about the relationship between the attributes and the reference
associated with a given name. Some naming systems may store the reference bound to a name in
one or more attributes associated with a name. Attribute operations might affect the information
used to construct a reference.

To avoid undefined results, programmers must use the operations in the context interface and
not attribute operations when the intention is to manipulate a reference. Programmers should
avoid the use of specific knowledge about how an XFN context implementation over a
particular naming system constructs references.

SEE ALSO
FN_attribute_t, FN_attrvalue_t, FN_attrset_t, FN_composite_name_t, FN_ctx_t,
FN_identifier_t, FN_ref_t, FN_status_t, fn_attr_bind (), fn_attr_create_subcontext (), fn_attr_get (),
fn_attr_get_ids (), fn_attr_get_values (), fn_attr_modify (), fn_attr_multi_get (),
fn_attr_multi_modify (), fn_attr_search (), fn_attr_ext_search (), fn_ctx_get_syntax_attrs (),
fn_ctx_lookup (), XFN_status_codes, <xfn/xfn.h>.

Federated Naming: The XFN Specification 163

XFN_composite_syntax Reference Manual Pages

NAME
XFN composite syntax — an overview of the syntax for XFN composite name

SYNOPSIS
#include <xfn/xfn.h>

FN_composite_name_t *fn_composite_name_from_string(
const FN_string_t * str);

FN_string_t *fn_string_from_composite_name(
const FN_composite_name_t * name);

DESCRIPTION
An XFN composite name consists of an ordered list of zero or more components. Each component
is a string name from the namespace of a single naming system. It may be an atomic or a
compound name in that namespace.

XFN defines an abstract data type, FN_composite_name_t, for representing the structural form
of a composite name. XFN also defines a standard string form for composite names. This form
is the concatenation of the components of a composite name from left to right with the XFN
component separator (’/’) character to separate each component.

The function fn_composite_name_from_string () parses the string representation of a composite
name into its corresponding composite name object FN_composite_name_t. The function
fn_string_from_composite_name () composes the string representation of a composite name given
its composite name object form FN_composite_name_t.

The details of the syntax and the semantics of these functions are described in Section 4.1 on
page 55.

APPLICATION USAGE
Special characters used in the XFN composite name syntax, such as the separator or escape
characters, have the same encoding as they would in ISO 646.

The minimum requirement for all XFN implementations is to support the portable
representation of ISO 646 (same encoding as ASCII) for communication of name strings. All
other representations are optional. See Section 2.5 on page 17.

All characters of the string form of a XFN composite name use a single encoding. This does not
preclude component names of a composite name in its structural form from having different
encodings. Code set mismatches that occur during the process of converting a composite name
structure to its string form are resolved in an implementation-dependent way. When an
implementation discovers that a composite name has components with incompatible code sets,
it returns the error code [FN_E_INCOMPATIBLE_CODE_SETS]. Incompatibility between
language or territory locale information are indicated by use of the error code
[FN_E_INCOMPATIBLE_LOCALES].

SEE ALSO
FN_string_t, FN_composite_t, <xfn/xfn.h>.

164 X/Open CAE Specification

Reference Manual Pages XFN_compound_syntax

NAME
XFN compound syntax — an overview of XFN model for compound name parsing

SYNOPSIS
#include <xfn/xfn.h>

FN_attrset_t *fn_ctx_get_syntax_attrs(
const FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

FN_compound_name_t *fn_compound_name_from_syntax_attrs(
const FN_attrset_t * aset ,
const FN_string_t * name,
FN_status_t * status);

DESCRIPTION
Each naming system in an XFN federation has a naming convention. XFN defines a standard
model of expressing compound name syntax that covers a large number of specific name
syntaxes and is expressed in terms of syntax properties of the naming convention.

The model uses the attributes in the following table to describe properties of the syntax. Unless
otherwise qualified, these syntax attributes have attribute identifiers that use the
FN_ID_STRING format. A context that supports the XFN standard syntax model has an
attribute set containing the fn_syntax_type (FN_ID_STRING format) attribute with the value
standard (ASCII attribute syntax).

The XFN standard syntax attributes are interpreted according to the following rules:

1. In a string without quotes or escapes, any instance of the separator string delimits two
atomic names.

2. A separator, quotation or escape string is escaped if preceded immediately (on the left) by
the escape string.

3. A non-escaped begin-quote which precedes a component must be matched by a non-
escaped end-quote at the end of the component. Quotes embedded in non-quoted names
are treated as simple characters and do not need to be matched. An unmatched quotation
fails with the status code [FN_E_ILLEGAL_NAME].

4. If there are multiple values for begin-quote and end-quote, a specific begin-quote value
must be matched with its corresponding end-quote value.

5. When the separator appears between a (non-escaped) begin quote and the end quote, it is
ignored.

6. When the separator is escaped, it is ignored. An escaped begin-quote or end-quote string
is not treated as a quotation mark. An escaped escape string is not treated as an escape
string.

7. A non-escaped escape string appearing within quotes is interpreted as an escape string.
This can be used to embed an end-quote within a quoted string.

8. An escape string which precedes a character other than an escape string, a begin-quote or
an end-quote is consumed (in other words, escaping a non-meta character returns the
non-meta character itself).

After constructing a compound name from a string, the resulting component atoms have one
level of escape strings and quotations interpreted and consumed.

Federated Naming: The XFN Specification 165

XFN_compound_syntax Reference Manual Pages

fn_ctx_get_syntax_attrs () is used to obtain the syntax attributes associated with a context.

fn_compound_name_from_syntax () is used to construct a compound name object using the string
form of the name and the syntax attributes of the name.

Attribute Identifier Attribute Value
Its value is the ASCII string standard if the context
supports the XFN standard syntax model. Its value is an
implementation-specific value if another syntax model is
supported.

fn_syntax_type

Its value is an ASCII string, one of left_to_right,
right_to_left, or flat. This determines whether the order
of components in a compound name string goes from
left to right, right to left, or whether the namespace is flat
(in other words, not hierarchical — all names are
atomic).

fn_std_syntax_direction

Its value is the separator string for this name syntax.
This attribute is required unless the
fn_std_syntax_direction is flat.

fn_std_syntax_separator

If present, its value is the escape string for this name
syntax.

fn_std_syntax_escape

If this attribute is present, it indicates that names that
differ only in case are considered identical. If this
attribute is absent, it indicates that case is significant. If
a value is present, it is ignored.

fn_std_syntax_case_insensitive

If present, its value is one of the begin-quote strings for
this syntax. If fn_std_syntax_end_quote1 is absent but
fn_std_syntax_begin_quote1 is present, the quote-string
specified in fn_std_syntax_begin_quote1 is used as both
the begin and end quote-strings. If
fn_std_syntax_end_quote1 is present but
fn_std_syntax_begin_quote1 is absent, the quote-string
specified in fn_std_syntax_end_quote1 is used as both the
begin and end quote-strings.

fn_std_syntax_begin_quote1

If present, its value is the end-quote string that matches
the begin-quote string specified in
fn_std_syntax_begin_quote1. If fn_std_syntax_end_quote1
is absent but fn_std_syntax_begin_quote1 is present, the
quote-string specified in fn_std_syntax_begin_quote1 is
used as both the begin and end quote-strings. If
fn_std_syntax_end_quote1 is present but
fn_std_syntax_begin_quote1 is absent, the quote-string
specified in fn_std_syntax_end_quote1 is used as both the
begin and end quote-strings.

fn_std_syntax_end_quote1

166 X/Open CAE Specification

Reference Manual Pages XFN_compound_syntax

Attribute Identifier Attribute Value

If present, its value is one of the begin-quote strings for
this syntax. If fn_std_syntax_end_quote2 is absent but
fn_std_syntax_begin_quote2 is present, the quote-string
specified in fn_std_syntax_begin_quote2 is used as both
the begin and end quote-strings. If
fn_std_syntax_end_quote2 is present but
fn_std_syntax_begin_quote2 is absent, the quote-string
specified in fn_std_syntax_end_quote2 is used as both the
begin and end quote-strings.

fn_std_syntax_begin_quote2

If present, its value is the end-quote string that matches
the begin-quote string specified in
fn_std_syntax_begin_quote2. If fn_std_syntax_end_quote2
is absent but fn_std_syntax_begin_quote2 is present, the
quote-string specified in fn_std_syntax_begin_quote2 is
used as both the begin and end quote-strings. If
fn_std_syntax_end_quote2 is present but
fn_std_syntax_begin_quote2 is absent, the quote-string
specified in fn_std_syntax_end_quote2 is used as both the
begin and end quote-strings.

fn_std_syntax_end_quote2

If present, its value is the attribute value assertion
separator string for this syntax.

fn_std_syntax_ava_separator

If present, its value is the attribute type-value separator
string for this syntax.

fn_std_syntax_typeval_separator

If this attribute is not present, or if the value is empty,
the only locale supported by the context is the ‘‘C’’
locale. The ‘‘C’’ locale’s repertoire of characters is
restricted to that defined by the portable representation
of ISO-646 (same encoding as ASCII).

If present, the attribute’s value identifies the locales of
string representations that can be supported by the
context. The value consists of an array of structures.
Each element in the array contains:

unsigned long code_set,
unsigned long lang_terr

Arguments code_set and lang_terr together
identify a locale. The values for the code sets are defined
in the OSF code set registry currently defined in DCE
RFC 40.1. This registry is being extended to
include language/territory registrations.

fn_std_syntax_locales

Federated Naming: The XFN Specification 167

XFN_compound_syntax Reference Manual Pages

ERRORS

[FN_E_ILLEGAL_NAME]
The name supplied to the operation was not a well-formed component according to the
name syntax of the context.

[FN_E_INCOMPATIBLE_CODE_SETS]
Code set mismatches that occur during the construction of the compound name’s string
form are resolved in an implementation-dependent way. When an implementation
discovers that a compound name has components with incompatible code sets, it returns
the error code [FN_E_INCOMPATIBLE_CODE_SETS].

[FN_E_INCOMPATIBLE_LOCALES]
Mismatches in language or territory locale information that occur during the construction of
the compound name’s string form are resolved in an implementation-dependent way.
When an implementation discovers that a compound name has components with
incompatible locales, it returns the error code [FN_E_INCOMPATIBLE_LOCALES].

[FN_E_INVALID_SYNTAX_ATTRS]
The syntax attributes supplied are invalid or insufficient to fully specify the syntax.

[FN_E_SYNTAX_NOT_SUPPORTED]
The syntax specified is not supported.

APPLICATION USAGE
Most applications treat names as opaque data and hence, the majority of clients of the XFN
interface will not need to parse compound names from specific naming systems. Some
applications, however, such as browsers, need such capabilities. These applications would use
fn_ctx_get_syntax_attrs () to obtain the syntax related attributes of a context and, if the context
uses the XFN standard syntax model, it would examine these attributes to determine the name
syntax of the context.

SEE ALSO
FN_attribute_t, FN_attrset_t, FN_compound_t, FN_identifier_t, FN_string_t ,
fn_ctx_get_syntax_attrs (), <xfn/xfn.h>.

168 X/Open CAE Specification

Reference Manual Pages XFN_links

NAME
XFN links — an overview of XFN links

SYNOPSIS
#include <xfn/xfn.h>

FN_ref_t *fn_ref_create_link(const FN_composite_name_t * link_name);

int fn_ref_is_link(const FN_ref_t * ref);

FN_composite_name_t *fn_ref_link_name(const FN_ref_t * link_ref);

FN_ref_t *fn_ctx_lookup_link(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
FN_status_t * status);

unsigned int fn_status_link_code(const FN_status_t * stat);

const FN_composite_name_t *fn_status_link_remaining_name(
const FN_status_t * stat);

const FN_composite_name_t *fn_status_link_resolved_name(
const FN_status_t * stat);

const FN_ref_t *fn_status_link_resolved_ref(const FN_status_t * stat)

const FN_string_t* fn_status_link_diagnostic_message(
const FN_status_t * stat);

int fn_status_set_link_code(FN_status_t * stat , unsigned int code);

int fn_status_set_link_remaining_name(
FN_status_t * stat ,
const FN_composite_name_t * name);

int fn_status_set_link_resolved_name(
FN_status_t * stat ,
const FN_composite_name_t * name);

int fn_status_set_link_resolved_ref(
FN_status_t * stat ,
const FN_ref_t * ref);

int fn_status_set_diagnostic_message(
FN_status_t * stat ,
const FN_string_t * msg);

DESCRIPTION
An XFN link is a special form of reference that contains a composite name, the link name, and that
may be bound to an atomic name in an XFN context. Because the link name is a composite
name, it may span multiple namespaces.

Federated Naming: The XFN Specification 169

XFN_links Reference Manual Pages

Normal resolution of names in context operations always follows XFN links. If the first
composite name component of the link name is the atomic name ".", the link name is resolved
relative to the same context in which the link is bound, otherwise, the link name is resolved
relative to the XFN Initial Context of the client. The link name may itself cause resolution to
pass through other XFN links. This gives rise to the possibility of a cycle of links whose
resolution could not terminate normally. As a simple means to avoid such non-terminating
resolutions, implementations may define limits on the number of XFN links that may be
resolved in any single operation invoked by the caller.

Links are bound to names using the normal fn_ctx_bind() and unbound using the normal
fn_ctx_unbind() operation. The operation fn_ref_create_link () is provided for constructing a link
reference from a composite name. Since normal resolution always follows links, a separate
operation, fn_ctx_lookup_link () is provided to lookup the link itself.

In the case that an error occurred while resolving an XFN link, the status object set by the
operation contains additional information about that error and sets the corresponding link status
fields using fn_status_set_link_code (), fn_status_set_link_remaining_name (),
fn_status_set_link_resolved_name (), fn_status_set_link_resolved_ref () and
fn_status_set_link_diagnostic_message (). The link status fields can be retrieved using
fn_status_link_code (), fn_status_link_remaining_name (), fn_status_link_resolved_name (),
fn_status_link_resolved_ref () and fn_status_link_diagnostic_message ().

ERRORS
The following status codes are of special relevance when performing operations involving XFN
links:

[FN_E_LINK_ERROR]
There was an error encountered resolving an XFN link encountered during resolution of the
supplied name. Check the link part of the status object to determine cause of the link error.

[FN_E_LINK_LOOP_LIMIT]
A non-terminating loop (cycle) in the resolution can arise due to XFN links encountered
during the resolution of a composite name. This code indicates either the definite detection
of such a cycle, or that resolution exceeded an implementation-defined limit on the number
of XFN links allowed for a single operation invoked by the caller.

[FN_E_MALFORMED_LINK]
A malformed link reference was encountered.

APPLICATION USAGE
For the fn_ctx_bind(), fn_ctx_unbind(), fn_ctx_rename(), fn_ctx_lookup_link (),
fn_ctx_create_subcontext(), fn_ctx_destroy_subcontext (), fn_attr_bind () and
fn_attr_create_subcontext () operations, resolution of the given name continues to the target
context — that named by all but the terminal atomic part of the given name; the terminal atomic
name is not resolved. Consequently, for operations that involve unbinding the terminal atomic
part such as fn_ctx_unbind(), if the terminal atomic name is bound to a link, the link is not
followed and the link itself is unbound from the terminal atomic name.

Operations in the base attribute interface that involve name resolution accept a follow_link
parameter. The value of follow_link determines the behaviour of the operation when the
terminal atomic part of the name being resolved is bound to an XFN link. If follow_link is non-
zero, such a link is followed and the attribute associated with the final named object is examined
or modified. If follow_link is zero, such a link is not followed. Any XFN links encountered before
the terminal atomic name are always followed.

170 X/Open CAE Specification

Reference Manual Pages XFN_links

Many naming systems support a native notion of link that may be used within the naming
system itself. XFN does not determine whether there is any relationship between such native
links and XFN links.

SEE ALSO
FN_composite_name_t, FN_ref_t, FN_status_t, fn_ctx_bind(), fn_ctx_destroy_subcontext (),
fn_ctx_lookup (), fn_ctx_lookup_link (), fn_ctx_rename(), fn_ctx_unbind(), XFN_status_codes,
<xfn/xfn.h>.

Federated Naming: The XFN Specification 171

XFN_status_codes Reference Manual Pages

NAME
XFN status codes — descriptions of XFN status codes

SYNOPSIS
#include <xfn/xfn.h>

DESCRIPTION
The result status of operations in the context interface and the attribute interfaces is
encapsulated in an FN_status_t object. The caller may supply a NULL pointer for this
parameter, in which case, no status information is returned. If the caller supplies an FN_status_t
object to the operation, upon return from the operation, this object will contain information
about how the operation completed: whether an error occurred in performing the operation, the
nature of the error, and information that helps locate where the error occurred. In the case that
the error occurred while resolving an XFN link, the status object contains additional information
about that error.

The context status object consists of several items of information. One of them is the primary
status code, describing the disposition of the operation. In the case that an error occurred while
resolving an XFN link, the primary status code has the value [FN_E_LINK_ERROR], and link
status code describes the error that occurred while resolving the XFN link.

Both the primary status code and the link status code are values of type unsigned int that are
drawn from the same set of meaningful values. XFN reserves the values 0 through 127 for
standard meanings. Currently values and interpretations for the following codes are determined
by XFN.

Code Meaning

The operation succeeded.FN_SUCCESS

When an attribute is being modified using the
operation FN_ATTR_OP_ADD_EXCLUSIVE
and an attribute with the same identifier already
exists, the operation fails with
FN_E_ATTR_IN_USE.

FN_E_ATTR_IN_USE

The caller did not have permission to perform
the attempted attribute operation.

FN_E_ATTR_NO_PERMISSION

The operation attempted to create an attribute
without a value, and the specific naming system
does not allow this.

FN_E_ATTR_VALUE_REQUIRED

The identity of the client principal could not be
verified.

FN_E_AUTHENTICATION_FAILURE

An error occurred in communicating with one of
the contexts involved in the operation.

FN_E_COMMUNICATION_FAILURE

172 X/Open CAE Specification

Reference Manual Pages XFN_status_codes

Code Meaning
A problem was detected that indicated an error
in the installation of the XFN implementation.

FN_E_CONFIGURATION_ERROR

The operation should be continued using the
remaining name and the resolved reference
returned in the status.

FN_E_CONTINUE

The client did not have permission to perform
the operation.

FN_E_CTX_NO_PERMISSION

(Applies only to fn_ctx_destroy_subcontext ().)
The naming system required that the context be
empty before its destruction, and it was not
empty.

FN_E_CTX_NOT_EMPTY

Service could not be obtained from one of the
contexts involved in the operation. This may be
because the naming system is busy, or is not
providing service. In some implementations this
may not be distinguished from a communication
failure.

FN_E_CTX_UNAVAILABLE

The name supplied to the operation was not a
well-formed XFN composite name, or one of the
component names was not well-formed
according to the syntax of the naming system(s)
involved in its resolution.

FN_E_ILLEGAL_NAME

The operation involved character strings of
incompatible code sets; or the supplied code set
is not supported by the implementation.

FN_E_INCOMPATIBLE_CODE_SETS

The operation involved character strings of
incompatible language or territory locale
information, or the specified locale is not
supported by the implementation.

FN_E_INCOMPATIBLE_LOCALES

Either the client or one of the involved contexts
could not obtain sufficient resources (for
example, memory, file descriptors,
communication ports, stable media space, and
so on.) to complete the operation successfully.

FN_E_INSUFFICIENT_RESOURCES

The attribute identifier was not in a format
acceptable to the naming system, or its contents
was not valid for the format specified for the
identifier.

FN_E_INVALID_ATTR_IDENTIFIER

Federated Naming: The XFN Specification 173

XFN_status_codes Reference Manual Pages

Code Meaning

One of the values supplied was not in the
appropriate form for the given attribute.

FN_E_INVALID_ATTR_VALUE

The enumeration handle supplied was invalid,
either because it was from another enumeration,
or because an update operation occurred during
the enumeration, or because of some other
reason.

FN_E_INVALID_ENUM_HANDLE

The syntax attributes supplied are invalid or
insufficient to fully specify the syntax.

FN_E_INVALID_SYNTAX_ATTRS

There was an error encountered resolving an
XFN link encountered during resolution of the
supplied name.

FN_E_LINK_ERROR

A non-terminating loop (cycle) in the resolution
can arise due to XFN links encountered during
the resolution of a composite name. This code
indicates either the definite detection of such a
cycle, or that resolution exceeded an
implementation-defined limit on the number of
XFN links allowed for a single operation
invoked by the caller.

FN_E_LINK_LOOP_LIMIT

A malformed link reference was encountered.FN_E_MALFORMED_LINK

A context object could not be constructed from
the supplied reference, because the reference
was not properly formed.

FN_E_MALFORMED_REFERENCE

(Only for operations that bind names.) The
supplied name was already in use.

FN_E_NAME_IN_USE

Resolution of the supplied composite name
proceeded to a context in which the next atomic
component of the name was not bound.

FN_E_NAME_NOT_FOUND

No equivalent name can be constructed, either
because there is no meaningful equivalence
between name and leading_name, or the system
does not support constructing the requested
equivalent name, for implementation-specific
reasons.

FN_E_NO_EQUIVALENT_NAME

174 X/Open CAE Specification

Reference Manual Pages XFN_status_codes

Code Meaning
The object did not have an attribute with the
given identifier.

FN_E_NO_SUCH_ATTRIBUTE

A context object could not be constructed from a
particular reference. The reference contained no
address type over which the context interface
was supported.

FN_E_NO_SUPPORTED_ADDRESS

Either one of the intermediate atomic names did
not name a context, and resolution could not
proceed beyond this point, or the operation
required that the caller supply the name of a
context, and the name did not resolve to a
reference for a context.

FN_E_NOT_A_CONTEXT

The operation attempted is not supported.FN_E_OPERATION_NOT_SUPPORTED

The operation attempted is returning a partial
result.

FN_E_PARTIAL_RESULT

The filter expression had a syntax error or some
other problem.

FN_E_SEARCH_INVALID_FILTER

An operator in the filter expression is not
supported or, if the operator is an extended
operator, the number of types of arguments
supplied does not match the signature of the
operation.

FN_E_SEARCH_INVALID_OP

A supplied search control option could not be
supported.

FN_E_SEARCH_INVALID_OPTION

The syntax type specified is not supported.FN_E_SYNTAX_NOT_SUPPORTED

The operation attempted to associate more
values with an attribute than the naming system
supported.

FN_E_TOO_MANY_ATTR_VALUES

An error occurred that could not be classified by
any of the other error codes.

FN_E_UNSPECIFIED_ERROR

SEE ALSO
FN_status_t, <xfn/xfn.h>.

Federated Naming: The XFN Specification 175

<xfn/xfn.h> Reference Manual Pages

NAME
<xfn/xfn.h> — header file for XFN interface

SYNOPSIS
#include <xfn/xfn.h>

DESCRIPTION
This header file contains the interface declarations, as defined by this specification, for

1. the XFN base context interface

2. the XFN extended attribute interface

3. the XFN base attribute interface

4. status object and status codes used by operations in these three interfaces

5. abstract data types passed as parameters to and returned as values from operations in
these three interfaces

6. the interface for the XFN standard syntax model for parsing compound names.

SEE ALSO
FN_ctx_t, FN_status_t, XFN_attribute_operations, XFN_compound_syntax, XFN_status_codes.

176 X/Open CAE Specification

Appendix A

XFN Protocols: Preliminary Specification

The whole of Appendix A is assigned X/Open Preliminary Specification status (not CAE
Specification status). For explanation of the difference between Preliminary and CAE
specifications, see the description under X/Open Technical Publications in the Preface. Readers
should appreciate that the header title on each page of this Appendix correctly identifies its status
as Preliminary, while the footer on each odd-numbered pages also correctly identifies this
Appendix as a part of the XFN CAE Specification.

This Appendix contains definitions of the XFN protocol for the DCE and ONC+ platforms.

An XFN implementation is not required to support any particular XFN protocol but if a protocol
for a particular platform is supported, it must comply with the behaviour specified herein.

Three different types of servers are expected to export an XFN protocol:

• a legacy naming system that exports its own native protocol as well as an XFN protocol

• a new naming system that only exports an XFN protocol

• a server that is a surrogate XFN client.

These types of servers are described in more detail Appendix C.

Federated Naming: The XFN Specification 177

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

A.1 DCE RPC Protocol for XFN
This section defines the RPC interface of the XFN service for DCE platforms. The interface is
specified in eight IDL files:

fn_dce_ctxb.idl Definition of the data types for the XFN base context interface.

fn_dce_ctx.idl Definition of the XFN base context interface except for create and destroy
context operations.

fn_dce_ctx_mgmt.idl Definition of the XFN context create and destroy interface.

fn_dce_attrb.idl Definition of the data types for the XFN base attribute interface.

fn_dce_attr.idl Definition of the XFN base attribute interface.

fn_dce_srchb.idl Definition of the data types for the XFN search interface.

fn_dce_ctx_locate.idl Definition of the XFN context location interface.

fn_dce_srch.idl Definition of the XFN attribute search interface.

See X/Open DCE RPC for descriptions of DCE RPC and IDL.

A.1.1 fn_dce_ctxb.idl: Data Types for Context Interface

[
pointer_default(ptr)
]

interface fn_dce_ctxb {

import "dce/nbase.idl";

/*
* Basic context datatypes
*/

typedef struct {
unsigned32 len;
[size_is(len)] byte byte_array[];

} fn_dce_byte_str_t, *fn_dce_byte_str_p_t;

/*
* XFN string
*
* "code_set" and "lang_terr" identify the string’s locale.
*
* All XFN implementations must support the "C" locale.
* The "C" locale’s repertoire of characters is restricted to that
* defined by the portable representation of ISO-646 (same encoding
* as ASCII).
*
* Support for non-ASCII code sets is implementation-dependent.
*/

typedef struct {
unsigned32 code_set;

178 X/Open CAE Specification

XFN Protocols: Preliminary Specification DCE RPC Protocol for XFN

unsigned32 lang_terr;
unsigned32 charcount;
fn_dce_byte_str_p_t string;

} fn_dce_string_t, *fn_dce_string_p_t;

typedef struct {
unsigned32 num_comps;
[size_is(num_comps)]
fn_dce_string_p_t components[];

} fn_dce_composite_name_t, *fn_dce_composite_name_p_t;

typedef [context_handle] void *fn_dce_cursor_t;

/*
* Status report
*
* standard DCE error and some additional, optional text
*/

typedef struct {
error_status_t status;
fn_dce_string_p_t diag_msg;

} fn_dce_status_t;

/*
* Identifier
*/

typedef struct {
unsigned32 format;
fn_dce_byte_str_p_t contents;

} fn_dce_id_t, *fn_dce_id_p_t;

/*
* Address
*/

typedef struct {
fn_dce_id_t addr_type;
fn_dce_byte_str_p_t address;

} fn_dce_addr_t, *fn_dce_addr_p_t;

/*
* Object Reference
*
* A name in an XFN context must be bound to a reference.
* The reference may be an XFN NULL reference which has the
* following values:
*
* ref_type FN_ID_STRING format
* "fn_null_ref" value
* num_addrs 0

Federated Naming: The XFN Specification 179

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

*/

typedef struct {
fn_dce_id_t ref_type;
unsigned32 num_addrs;
[size_is(num_addrs)]
fn_dce_addr_p_t addrs[];

} fn_dce_ref_t, *fn_dce_ref_p_t;

/*
* Binding
*/

typedef struct {
fn_dce_string_p_t name;
fn_dce_ref_p_t ref;

} fn_dce_binding_t;

/*
* Caching information:
* A caching hint is passed from the client to the server with
* each reference and attribute that is read.
*/

typedef enum {
/*

* unspecified
*/

cache_unspec,

/*
* don’t cache
*/

dont_cache,

/*
* already cached
*/

already_cached,

/*
* cache until failure
*/

cache_til_fail,

/*
* cache for time to live seconds
*/

cache_ttl

} fn_dce_cache_type_t;

180 X/Open CAE Specification

XFN Protocols: Preliminary Specification DCE RPC Protocol for XFN

/*
* Cache information:
*
* A caching hint is passed from the server to the client with
* each reference and attribute that is read.
*
* cache_type kind of caching, if any, that should be done.
*
* ttl if type is cache_ttl, number of seconds that
* the data should be cached.
*
* public TRUE if data may be read by any principal;
* otherwise false.
*/

typedef struct {
fn_dce_cache_type_t type;
unsigned32 ttl;
boolean32 public;

} fn_dce_cache_info_t, *fn_dce_cache_info_p_t;

/*
* Most operations take a starting context and composite name,
* relative to the starting context, to identify the target
* of the operation. Before the real work of the operation
* can be done, the operation’s target name must be resolved.
* The progress record is used to pass information about
* the path resolution phase of an operation between
* the client and server.
*
************* On Input **************************************
*
* ref reference of starting context
*
* unresolved_name
* composite name to be resolved relative to "ref"
*
* resolved_name
* NULL or a composite name
*
* link_ctx_ref NULL
*
************* Intermediate Output ***************************
*
* Sometimes path resolution will traverse more than one server
* and will use a referral method to carry the resolution from
* one server to the next. In such cases, the intermediate
* servers must return the following information to the client;
* the client will then invoke the next server to continue resolution.
*
* When an XFN link is encountered during path resolution,
* it is returned to the client for further resolution.

Federated Naming: The XFN Specification 181

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

*
* resolved_name
* the part of the composite name that was resolved
*
* ref reference that is bound to "resolved_name"
*
* unresolved_name
* the part of the name that remains to be resolved.
*
* cache_info caching hints for the resolved name and its reference
*
* link_ctx_ref if "resolved_name" is bound to an XFN link,
* the reference of the context in which "resolved_name"
* is bound.
* Otherwise NULL.
*
**************** Final Output ***************************************
*
* When the name has been completely resolved the
* progress record contains:
*
* resolved_name
* depends on the operation
*
* ref reference that is bound to "resolved_name".
*
* unresolved_name
* NULL
*
* cache_info caching hints for the resolved name and its reference
*
* link_ctx_ref if "resolved_name" is bound to an XFN link,
* the reference of the context in which "resolved_name"
* is bound.
* Otherwise NULL.
*
* Implementations that support the FN DCE protocol must support
* the path resolution phase of all operations even though they
* may not support the actual operation.
*/

typedef struct {
fn_dce_ref_p_t ref;
fn_dce_composite_name_p_t unresolved_name;
fn_dce_composite_name_p_t resolved_name;
fn_dce_cache_info_t cache_info;
fn_dce_ref_p_t link_ctx_ref;

} fn_dce_progress_t, *fn_dce_progress_p_t;

}

182 X/Open CAE Specification

XFN Protocols: Preliminary Specification DCE RPC Protocol for XFN

A.1.2 fn_dce_ctx.idl: Context Interface

[
uuid(80981362-aba2-11cc-87d4-08000932b6f8),
version(1.0),
pointer_default(ptr)
]

interface fn_dce_ctx {

import "fn_dce_ctxb.idl";

/*
* Context interface (DCE RPC)
*
* The FN context interface specifies operations to lookup a composite
* name and get its reference. The interface also includes operations
* to bind a name to a reference, to unbind a name, to rename, to get
* the list of names bound in a context, and to get a list of the
* bindings in a context.
*
* Most operations in the context interface take the following two
* initial arguments:
*
* h a handle that identifies the server to which
* the operation should be directed.
*
* progress structure that guides the path resolution phase of
* an operation.
*
* input:
*
* ref reference of starting context
*
* unresolved_name
* target name for the operation, relative to "ref"
*
*
* resolved_name
* NULL
*
* link_ctx_ref NULL
*
*
* final output:
*
* resolved_name
* depends on operation (described with each operation)
*
* ref reference that is bound to "resolved_name"
*
* unresolved_name
* NULL

Federated Naming: The XFN Specification 183

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

*
* cache_info caching hints for the resolved name and its reference
*
* link_ctx_ref if "resolved_name" is bound to an XFN link,
* the reference of the context in which "resolved_name"
* is bound.
* Otherwise NULL.
*
* fn_dce_ctxb.idl describes the use of the progress structure.
*/

/*
* F N _ D C E _ C T X _ B I N D
*
* Bind a name to a reference.
*
* Name is specified in "progress". The binding is made in the
* target context, that context named by all but the final atomic
* part of the supplied name. The operation binds the final
* atomic name to the supplied reference in the target context.
*
* The target context must already exist.
*
* progress final output:
* resolved_name target context
* (other fields described above)
*
* ref reference to be bound to name
* A name in an XFN context must be bound to a
* reference. The reference may be an XFN NULL
* reference, as specified in fn_dce_ctxb.idl.
*
* exclusive if TRUE, the operation fails if the name is
* already bound. If FALSE, the new binding
* supersedes any existing binding, and any
* attributes associated with the name are removed.
*/

void fn_dce_ctx_bind(
[in] handle_t h,
[in, out] fn_dce_progress_t *progress,
[in] fn_dce_ref_p_t ref,
[in] boolean32 exclusive,
[out] fn_dce_status_t *status

);

/*
* F N _ D C E _ C T X _ U N B I N D
*
* Unbind a name from a context. If any attributes are associated
* with the name, this operation removes the name and its attributes.
*

184 X/Open CAE Specification

XFN Protocols: Preliminary Specification DCE RPC Protocol for XFN

* The operation succeeds if the name is not bound in the context.
*
* progress output:
* resolved_name target context
* (other fields described above)
*/

void fn_dce_ctx_unbind(
[in] handle_t h,
[in, out] fn_dce_progress_t *progress,
[out] fn_dce_status_t *status

);

/*
* F N _ D C E _ C T X _ L O O K U P
*
* Lookup a composite name. Return a reference to the named object.
*
* progress final output:
* resolved_name target name
* (other fields described above)
*/

void fn_dce_ctx_lookup(
[in] handle_t h,
[in, out] fn_dce_progress_t *progress,
[out] fn_dce_status_t *status

);

/*
* F N _ D C E _ C T X _ L I S T _ N A M E S
*
* Return the list of names that are bound in a context.
*
* progress final output:
* resolved_name target context
* (other fields described above)
*
* iter_pos a cursor into the context’s list of names. It is
* maintained by the server.
* Its state is initialized by the server at the first
* request (client passes in a pointer to NULL) and
* freed when the last name has been returned.
* Its state may also be freed by the operation
* fn_dce_ctx_free_iterator.
*
* max_names maximum length of the output array "names"
*
* num_names count of names listed in "names"
*
* names list of atomic names that are bound in the context.
*/

void fn_dce_ctx_list_names(

Federated Naming: The XFN Specification 185

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

[in] handle_t h,
[in, out] fn_dce_progress_t *progress,
[in, out] fn_dce_cursor_t *iter_pos,
[in] unsigned32 max_names,
[out] unsigned32 *num_names,
[out, size_is(max_names), length_is(*num_names)]

fn_dce_string_p_t names[],
[out] fn_dce_status_t *status

);

/*
* F N _ D C E _ C T X _ L I S T _ B I N D I N G S
*
* Return the set of bindings present in a context. A binding
* consists of an atomic name and the object reference that
* is bound to it.
*
* progress final output:
* resolved_name target context
* (other fields described above)
*
* iter_pos a cursor into the context’s list of bindings.
* It is maintained by the server. Its state is
* initialized by the server at the first request
* (client passes in a pointer to NULL) and freed
* when the last binding has been returned.
* Its state may also be freed by the operation
* fn_dce_ctx_free_iterator.
*
* max_bindings maximum length of the output array "bindings"
*
* num_bindings count of bindings listed in "bindings"
*
* bindings list of bindings in the context.
*/

void fn_dce_ctx_list_bindings(
[in] handle_t h,
[in, out] fn_dce_progress_t *progress,
[in, out] fn_dce_cursor_t *iter_pos,
[in] unsigned32 max_bindings,
[out] unsigned32 *num_bindings,
[out, size_is(max_bindings), length_is(*num_bindings)]

fn_dce_binding_t bindings[],
[out] fn_dce_status_t *status

);

/*
* F N _ D C E _ C T X _ F R E E _ I T E R A T O R
*
* Free any state associated with the list cursor "iter_pos".
*

186 X/Open CAE Specification

XFN Protocols: Preliminary Specification DCE RPC Protocol for XFN

* ctx reference of context with which the list cursor
* is associated.
*
* iter_pos list cursor whose state is to be freed.
*/

void fn_dce_ctx_free_iterator(
[in] handle_t h,
[in] fn_dce_ref_p_t ctx,
[in, out] fn_dce_cursor_t *iter_pos,
[out] fn_dce_status_t *status

);

/*
* F N _ D C E _ C T X _ R E N A M E
*
* Bind the reference and attributes associated with old_name to
* new_name and unbind old_name.
*
* This operation fails if old_name does not exist.
*
* If the operation fails, old_name remains bound to its reference
* and attributes.
*
* XFN does not specify whether this operation is atomic; that is
* left to the underlying name system. Also, XFN does not specify
* the restrictions placed on new_name. In some name systems,
* new_name might be restricted to be a name in the same naming
* system as the final component of old_name. In others new_name
* might be restricted to be a name in the same context in which
* the final atomic part of old_name is bound.
*
* h a handle that identifies the server to which the
* operation should be directed.
*
* old_name_progress
* name whose reference and attributes will be bound
* with new_name. See above for a description of
* the fields and use of the progress argument.
*
* final output:
* resolved_name target context of "old_name"
*
* new_name_ctx target context in which new_name will be bound.
*
* new_name atomic name which will be bound to old_name’s
* reference and attributes in new_name_ctx context.
*
* exclusive if TRUE, the operation fails if new_name is
* already bound. If FALSE, old_name’s reference
* and attributes supersede any existing information
* associated with new_name.
*

Federated Naming: The XFN Specification 187

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

* status the status of the operation, returned by the server.
* FN_DCE_E_CTX_NOT_LOCAL
* FN_DCE_E_RENAME_TARGET_CTXS_DIFFERENT
*
* Other possible status codes: TBD
*/

void fn_dce_ctx_rename(
[in] handle_t h,
[in, out] fn_dce_progress_t *old_name_progress,
[in] fn_dce_ref_p_t new_name_ctx,
[in] fn_dce_string_p_t new_name,
[in] boolean32 exclusive,
[out] fn_dce_status_t *status

);

}

A.1.3 fn_dce_ctx_mgmt.idl: Context Management Interface

[
uuid(8381dc5e-0e9c-11cd-bd6e-08000932b6f8),
version(1.0),
pointer_default(ptr)
]

interface fn_dce_ctx_mgmt {

import "fn_dce_ctxb.idl";
import "fn_dce_attrb.idl";
import "dce/aclbase.idl";

/*
* Context management interface (DCE RPC)
*
* The FN context management interface specifies
* operations to create and destroy contexts.
*
* Some operations in the context management
* interface take the following two initial
* arguments:
*
* h a handle that identifies the server to which
* the operation should be directed.
*
* progress structure that guides the path resolution phase
* of an operation.
*
* input:
*
* ref reference of starting context
*
* unresolved_name
* target name for the operation, relative to "ref"

188 X/Open CAE Specification

XFN Protocols: Preliminary Specification DCE RPC Protocol for XFN

*
*
* resolved_name
* NULL
*
* link_ctx_ref NULL
*
* progress final output:
* resolved_name target context.
* The target context is the context named by all
* but the final atomic part of the supplied name.
*
* ref reference that is bound to "resolved_name".
*
* unresolved_name
* NULL
*
* cache_info caching hints for the resolved name and its reference
*
* link_ctx_ref NULL
*
* fn_dce_ctxb.idl describes the use of the progress structure.
*/

/*
* F N _ D C E _ C T X _ M G M T _ C R E A T E _ S U B C O N T E X T
*
* Create a context, bind its reference to the name specified
* in "progress", and associate any supplied attributes with
* the new context.
*
* The target context, that context named by all but the final atomic
* part of the supplied name, must already exist. The new context
* is created and its reference is bound in the target context using
* the final atomic name.
*
* The new context is created at the same nameserver as the target
* context and inherits the target context’s acls. This operation
* fails if "name" already exists in the target context.
*
*
* num_attrs count of attributes in "attrs".
* 0 if attrs is NULL.
*
* attrs attributes to be associated with the new context.
*
* ref reference to the new context.
*
* cache_info contains caching hints for the new context’s name
* and its reference.
*/

Federated Naming: The XFN Specification 189

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

void fn_dce_ctx_create_subcontext(
[in] handle_t h,
[in, out] fn_dce_progress_t *progress,
[in] unsigned32 num_attrs,
[in, size_is(num_attrs)] fn_dce_attr_p_t attrs[],
[out] fn_dce_ref_p_t *ref,
[out] fn_dce_cache_info_t cache_info,
[out] fn_dce_status_t *status

);

/*
* F N _ D C E _ C T X _ M G M T _ D E S T R O Y _ S U B C O N T E X T
*
* Destroy a subcontext and unbind its name, which is specified
* in "progress".
*
* This operation fails if the subcontext is not empty.
*/

void fn_dce_ctx_destroy_subcontext(
[in] handle_t h,
[in, out] fn_dce_progress_t *progress,
[out] fn_dce_status_t *status

);

/*
* F N _ D C E _ C T X _ M G M T _ C R E A T E _ C O N T E X T
*
* Create a context and associate the specified
* acls and attributes with the new context.
*
* ctx_server reference of the server where the context should
* be created.
*
* acl_list initial acls for the new context
*
* num_attrs count of attributes in "attrs".
* 0 if attrs is NULL.
*
* attrs attributes to be associated with the new context.
*
* ref reference to the new context.
*/

void fn_dce_ctx_create_context(
[in] handle_t h,
[in] fn_dce_ref_p_t ctx_server,
[in] sec_acl_list_t *acl_list,
[in] unsigned32 num_attrs,
[in, size_is(num_attrs)] fn_dce_attr_p_t attrs[],
[out] fn_dce_ref_p_t *ref,
[out] fn_dce_status_t *status

);

190 X/Open CAE Specification

XFN Protocols: Preliminary Specification DCE RPC Protocol for XFN

/*
* F N _ D C E _ C T X _ M G M T _ D E S T R O Y _ C O N T E X T
*
* Destroy a context. This operation fails if the context is not empty.
*
* target_ctx the context to be destroyed.
*/

void fn_dce_ctx_destroy_context(
[in] handle_t h,
[in] fn_dce_ref_p_t target_ctx,
[out] fn_dce_status_t *status

);

}

A.1.4 fn_dce_attrb.idl: Data Types for Attribute Interface

[pointer_default(ptr)]

interface fn_dce_attrb {

import "fn_dce_ctxb.idl";

/*
* Common Data Types for Attribute Interfaces
*/

/*
* Locale identifier
*/

typedef struct {
unsigned32 code_set;
unsigned32 lang_terr;

} fn_dce_attr_locale_t;

typedef struct {
unsigned32 num_locales;
[size_is(num_locales)] fn_dce_attr_locale_t

locales[];
} fn_dce_attr_locales_t, *fn_dce_attr_locales_p_t;

/* attribute value syntaxes */

typedef enum {
fn_dce_attr_val_stx_int,
fn_dce_attr_val_stx_uns_int,
fn_dce_attr_val_stx_uuid,
fn_dce_attr_val_stx_str,
fn_dce_attr_val_stx_fn_str,
fn_dce_attr_val_stx_fn_name,

Federated Naming: The XFN Specification 191

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

fn_dce_attr_val_stx_bytes,
fn_dce_attr_val_stx_locales

} fn_dce_attr_value_syntax_t;

/* attribute value */

typedef union switch (fn_dce_attr_value_syntax_t syntax_of_value)
syntax {
case fn_dce_attr_val_stx_int:

signed32 integer;

case fn_dce_attr_val_stx_uns_int:
unsigned32 unsigned_integer;

case fn_dce_attr_val_stx_uuid:
uuid_t uuid;

case fn_dce_attr_val_stx_str:
[string] unsigned char *string;

case fn_dce_attr_val_stx_fn_str:
fn_dce_string_p_t fn_string;

case fn_dce_attr_val_stx_fn_name:
fn_dce_composite_name_p_t fn_name;

case fn_dce_attr_val_stx_bytes:
fn_dce_byte_str_p_t bytes;

case fn_dce_attr_val_stx_locales:
fn_dce_attr_locales_p_t locales;

} fn_dce_attr_value_t, *fn_dce_attr_value_p_t;

/* attribute (identifier/syntax/value(s)) */

typedef struct {
fn_dce_id_t attrib_id;
fn_dce_id_t attrib_syntax;
unsigned32 num_vals;
[size_is(num_vals)] fn_dce_attr_value_t

attrib_values[];
} fn_dce_attr_t, *fn_dce_attr_p_t;

typedef struct {
fn_dce_status_t status;
fn_dce_cache_info_t cache_info; /* caching hints for attribute */
fn_dce_attr_p_t attrib;

} fn_dce_attr_bulk_get_t, *fn_dce_attr_bulk_get_p_t;

192 X/Open CAE Specification

XFN Protocols: Preliminary Specification DCE RPC Protocol for XFN

/*
* Operations on an attribute that is associated with a name
* in a context
*/

typedef enum {
/*

* Add an attribute with the given identifier and set of values.
* If the attribute already exists, replace its value(s).
*/

fn_dce_attr_op_add,

/*
* Add an attribute with the given identifier and set of values.
* If the attribute already exists, return an error.
*/

fn_dce_attr_op_add_exclusive,

/*
* Remove the attribute, with the given identifier, and all its
* values. Succeeds even if the attribute does not exist.
*/

fn_dce_attr_op_remove,

/*
* Add the given values to those of the given attribute, resulting
* in the attribute having the union of its prior value set with
* the set given.
* Create the attribute if the attribute does not already exist.
*/

fn_dce_attr_op_add_values,

/*
* Remove the given values from those of the given attribute,
* resulting in the attribute having the set difference of its
* prior value set and the set given.
* This succeeds even if some of the values are not in the set
* of values that the attribute has.
* In naming systems that require an attribute to have at least
* one value, removing the last value will remove the attribute
* as well.
*/

fn_dce_attr_op_remove_values

} fn_dce_attr_op_t;

typedef struct {
/*

* Operation to be performed on an attribute
*/

fn_dce_attr_op_t operation;

Federated Naming: The XFN Specification 193

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

/*
* Attribute identifier, syntax, and value(s) for the operation
*/

fn_dce_attr_p_t attribute;

} fn_dce_attr_modify_t;

}

A.1.5 fn_dce_attr.idl: Attribute Interface

[
uuid(da605554-ef53-11cc-8c52-08000932b6f8),
version(1.0),
pointer_default(ptr)
]

interface fn_dce_attr {

import "fn_dce_ctxb.idl";
import "fn_dce_attrb.idl";

/*
* Attribute interface (DCE RPC)
*
* The attribute interface provides operations to read and modify
* the attributes associated with a name.
*
* XFN recommends that attributes which are used to store a reference
* are not examined or modified through the attribute interface.
*/

/*
* Most operations in the attribute interface take the following
* three initial arguments:
*
* h a handle that identifies the server to which
* the operation should be directed.
*
**
*
* progress a structure that guides the path resolution phase
* of an operation.
*
* input:
*
* ref reference of starting context
*
* unresolved_name

* target name for the operation, relative to "ref"
*
*
* resolved_name

194 X/Open CAE Specification

XFN Protocols: Preliminary Specification DCE RPC Protocol for XFN

* NULL
*
* link_ctx_ref NULL
*
* final output:
*
* resolved_name
* normally the target context.
*
* For all operations except fn_dce_attr_get_ctx_syntax()
* and fn_dce_attr_get_ctx_locales(), the target context
* is the context named by all but the final atomic part
* of the supplied name.
*
* For operations that return an iterator,
* "resolved_name" and its "ref" will be used to free
* the iterator. If the target context is not the
* target for the free iterator operation, then the
* target for that operation should be returned in
8 "resolved_name" and "ref".
*
* ref reference that is bound to "resolved_name".
*
* unresolved_name
* NULL
*
* cache_info caching hints for the resolved name and its reference
*
* link_ctx_ref if "resolved_name" is bound to an XFN link, the
* reference of the context in which "resolved_name"
* is bound.
* Otherwise NULL.
*
* fn_dce_ctxb.idl describes the use of the progress structure.
*
**
*
* follow_link The value of "follow_link" determines the behaviour

of the operation when the terminal atomic part of
* the name being resolved is bound to an XFN link.
*
* If "follow_link" is TRUE, such a link is returned
* for further resolution. If "follow_link" is FALSE,
* the attributes associated with the name bound to
* the link are examined or modified.
*
* Any XFN links encountered before the terminal atomic
* name are always followed.
*/

/*

Federated Naming: The XFN Specification 195

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

* F N _ D C E _ A T T R _ B I N D
*
* Bind a name to a reference and associate attributes with the name.
*
* Name is specified in "progress".
*
* The binding is made in the target context, that context named by
* all but the final atomic part of the supplied name. The operation
* binds the final atomic name to the supplied reference and
* associates the specified attributes with the name.
*
* The target context must already exist.
*
* ref reference to be bound to name.
*
* A name in an XFN context must be bound to a reference.
* The reference may be an XFN NULL reference, as
* specified in fn_dce_ctxb.idl.
*
* num_attrs count of attributes in "attrs".
* 0 if attrs is NULL.
*
* attrs attributes to be associated with name.
*
* exclusive if TRUE, the operation fails if the name is already
* bound in the target context.
* If FALSE, the new binding supersedes an existing
* binding. If "attrs" is NULL, any attributes
* associated with the name are not changed.
* If attributes are specified in "attrs" these
* attributes replace any attributes associated with
* the name.
*/

void fn_dce_attr_bind(
[in] handle_t h,
[in, out] fn_dce_progress_t *progress,
[in] fn_dce_ref_p_t ref,
[in] unsigned32 num_attrs,
[in, size_is(num_attrs)] fn_dce_attr_p_t attrs[],
[in] boolean32 exclusive,
[out] fn_dce_status_t *status

);

/*
* F N _ D C E _ A T T R _ G E T
*
* The operation that looks up a name in a context and returns the
* specified attribute associated with the name. This operation
* can be called multiple times if all of the attribute’s values
* cannot fit in the returned list of values, until the last value

196 X/Open CAE Specification

XFN Protocols: Preliminary Specification DCE RPC Protocol for XFN

* has been returned.
*
* attr_id identifies the attribute whose values are to be
* returned.
*
* max_num_vals
* the maximum length of the output array "values"
*
* max_vals_size
* the maximum aggregate size of the buffers that return
* the attribute’s values. If zero, any buffer size
* may be returned.
*
* iter_pos a cursor into the list of values associated with
* "attr_id", maintained by the server. Its state is
* initialized by the server at the first request
* (client passes in a pointer to NULL) and freed when
* the last value has been returned. Its state may also
* be freed by the operation fn_dce_ctx_free_iterator().
*
* attr_syntax the syntax of the attribute’s values.
*
* attr_cache_info
* caching hints for the attribute’s values.
*
* num_vals the count of values returned in "values"
*
* values the list of values
*
* status the status of the operation, returned by the server.
* FN_DCE_E_GET_ATTRS_FROM_OBJECT
* Other possible status codes: TBD
*/

[idempotent] void fn_dce_attr_get(
[in] handle_t h,
[in, out] fn_dce_progress_t *progress,
[in] boolean32 follow_link,
[in] fn_dce_id_p_t attr_id,
[in] unsigned32 max_num_vals,
[in] unsigned32 max_vals_size,
[in, out] fn_dce_cursor_t *iter_pos,
[out] fn_dce_id_t *attr_syntax,
[out] fn_dce_cache_info_t *attr_cache_info,
[out] unsigned32 *num_vals,
[out, size_is(max_num_vals), length_is(*num_vals)]

fn_dce_attr_value_t values[],
[out] fn_dce_status_t *status

);

/*

Federated Naming: The XFN Specification 197

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

* F N _ D C E _ A T T R _ G E T _ I D S
*
* The operation that looks up a name in a context and returns
* the identifiers of the attributes associated with the name.
* This operation can be called multiple times if the buffer size
* is exceeded, until the last attribute id has been returned.
*
* max_num_attr_ids
* the maximum size of the output array "attr_ids".
*
* iter_pos a cursor into the list of attribute ids associated
* with "name", maintained by the server. Its state is
* initialized by the server at the first request
* (client passes in a pointer to NULL) and freed when the
* last identifier has been returned. Its state may also
* be freed by the operation fn_dce_ctx_free_iterator().
*
* num_attr_ids
* the count of attribute ids returned in "attr_ids".
*
* attr_ids the list of attribute ids
*
* status the status of the operation, returned by the server.
* Possible status codes: TBD
*/

[idempotent] void fn_dce_attr_get_ids(
[in] handle_t h,
[in, out] fn_dce_progress_t *progress,
[in] boolean32 follow_link,
[in] unsigned32 max_num_attr_ids,
[in, out] fn_dce_cursor_t *iter_pos,
[out] unsigned32 *num_attr_ids,
[out, size_is(max_num_attr_ids), length_is(*num_attr_ids)]

fn_dce_id_t attr_ids[],
[out] fn_dce_status_t *status

);

/*
* F N _ D C E _ A T T R _ M O D I F Y
*
* The operation that adds, deletes, or modifies an attribute
* associated with a name. The name must exist in the context.
*
* mod_op the modify operation that is to be applied to "attr".

* attr the attribute identifier, its syntax, and values.
*
* When deleting an attribute, IDL requires that all the
* attribute’s fields be filled with data that is valid
* for transmission. This means that the attrib_syntax

198 X/Open CAE Specification

XFN Protocols: Preliminary Specification DCE RPC Protocol for XFN

* must be set to a NULL char string pointer and that the
* num_vals field must be set to zero.
*
* status the status of the operation, returned by the server.
* Possible status codes: TBD
*/

void fn_dce_attr_modify(
[in] handle_t h,
[in, out] fn_dce_progress_t *progress,
[in] boolean32 follow_link,
[in] fn_dce_attr_op_t mod_op,
[in] fn_dce_attr_p_t attr,
[out] fn_dce_status_t *status

);

/*
* F N _ D C E _ A T T R _ M U L T I _ G E T
*
* The operation that looks up a name in a context and returns
* the specified attributes or all of the attributes associated
* with the name.
*
* This operation can be called multiple times if either of the
* buffer sizes is exceeded, until the last attribute has been
* returned. The arguments "num_attr_ids" and "attr_ids" must
* be the same for all iterations of this call; otherwise the
* results are indeterminate.
*
* num_attr_ids
* the count of attribute identifiers listed in attr_ids.
* 0 if all attributes associated with the name are to be
* returned.
*
* attr_ids identifies the attributes that are to be returned.
* NULL if all attributes are to be returned.
*
* max_num_attrs
* the maximum length of the output array "attribs".
*
* max_vals_size
* the maximum aggregate size of the buffers that return
* the attributes’ values. If zero, any buffer size may
* be returned.
*
* iter_pos a cursor into the name’s attribute list, maintained
* by the server. Its state is initialized by the server
* at the first request (client passes in a pointer to
* NULL) and freed when the last attribute has been
* returned. Its state may also be freed by the
* operation fn_dce_ctx_free_iterator.

Federated Naming: The XFN Specification 199

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

*
* num_attrs the count of attributes listed in "attribs".
*
* attribs a list of the name’s attribute ids with each attribute’s
* syntax and values. If an attribute’s syntax and values
* could not be returned, an error status is returned with
* the attribute id.
*
* status the status of the operation, returned by the server.
* FN_DCE_E_GET_ATTRS_FROM_OBJECT
* Other possible status codes: TBD
*/

[idempotent] void fn_dce_attr_multi_get(
[in] handle_t h,
[in, out] fn_dce_progress_t *progress,
[in] boolean32 follow_link,
[in] unsigned32 num_attr_ids,
[in, size_is(num_attr_ids)]

fn_dce_id_t attr_ids[],
[in] unsigned32 max_num_attrs,
[in] unsigned32 max_vals_size,
[in, out] fn_dce_cursor_t *iter_pos,
[out] unsigned32 *num_attrs,
[out, size_is(max_num_attrs), length_is(*num_attrs)]

fn_dce_attr_bulk_get_t attribs[],
[out] fn_dce_status_t *status

);

/*
* F N _ D C E _ A T T R _ G E T _ C T X _ S Y N T A X
*
* The operation that gets the syntax attributes associated with the
* context, named in "progress". The attribute set must contain the
* attribute "syntax type".
*
* This operation can be called multiple times if either of the
* buffer sizes is exceeded, until the last attribute has been
* returned.
*
* max_num_attrs
* the maximum length of the output array "attribs".
*
* max_vals_size
* the maximum aggregate size of the buffers that return
* the attributes’ values. If zero, any buffer size may
* be returned.
*
* iter_pos a cursor into the name’s attribute list, maintained
* by the server. Its state is initialized by the server
* at the first request (client passes in a pointer to
* NULL) and freed when the last attribute has been

200 X/Open CAE Specification

XFN Protocols: Preliminary Specification DCE RPC Protocol for XFN

* returned. Its state may also be freed by the operation
* fn_dce_ctx_free_iterator().
*
* num_attrs the count of attributes listed in "attribs".
*
* attribs a list of the name’s attribute ids with each
* attribute’s syntax, values, and caching hint. If an
* attribute’s syntax and values could not be returned,
* an error status is returned with the attribute id.
*
* status the status of the operation, returned by the server.
* FN_DCE_E_GET_ATTRS_FROM_OBJECT
* Other possible status codes: TBD
*/

[idempotent] void fn_dce_attr_get_ctx_syntax(
[in] handle_t h,
[in, out] fn_dce_progress_t *progress,
[in] unsigned32 max_num_attrs,
[in] unsigned32 max_vals_size,
[in, out] fn_dce_cursor_t *iter_pos,
[out] unsigned32 *num_attrs,
[out, size_is(max_num_attrs), length_is(*num_attrs)]

fn_dce_attr_bulk_get_t attribs[],
[out] fn_dce_status_t *status

);

/*
* F N _ D C E _ A T T R _ M U L T I _ M O D I F Y
*
* The operation that adds, deletes, and/or modifies one or more
* attributes associated with a name. The name must exist in
* the context.
*
* num_mods length of "modify_attrs".
*
* modify_attrs
* a list of operations on attributes. Each entry in
* the list includes a modify operation and the
* attribute identifier, syntax and value(s) for the
* operation. Operations are executed in the order in
* which they appear in the list.
*
* When deleting an attribute, IDL requires that all
* the attribute’s fields be filled with data that is
* valid for transmission. This means that the
* attrib_syntax must be set to a NULL char string
* pointer and that the num_vals field must be set
* to zero.
*
* num_unexecuted_mods
* number of operations that failed. 0 if all

Federated Naming: The XFN Specification 201

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

* operations succeeded or all operations failed.
*
* unexecuted_mods
* list of operations that failed.
* This array must be able to hold up to num_mods
* elements. The array is empty if all operations
* succeeded or all operations failed.
*
* status the status of the operation, returned by the server.
* It is set to success if all operations succeeded.
* If status is bad, it is the status associated with
* the first unexecuted operation.
*
* Possible status codes: TBD
*/

void fn_dce_attr_multi_modify(
[in] handle_t h,
[in, out] fn_dce_progress_t *progress,
[in] boolean32 follow_link,
[in] unsigned32 num_mods,
[in, size_is(num_mods)]

fn_dce_attr_modify_t modify_attrs[],
[out] unsigned32 *num_unexecuted_mods,
[out, size_is(num_mods), length_is(*num_unexecuted_mods)]

fn_dce_attr_modify_t *unexecuted_mods[],
[out] fn_dce_status_t *status

);

}

A.1.6 fn_dce_ctx_locate.idl: Context Location Interface

[
uuid(e693d1de-f3f4-11cc-9357-08000932b6f8),
version(1.0),
pointer_default(ptr)
]

interface fn_dce_ctx_loc {

import "fn_dce_ctxb.idl";

/*
* Context location interface (DCE RPC)
*
* The FN context location interface specifies operations to
* locate servers for the root contexts of the global naming
* systems, to locate surrogate client servers for various
* naming systems, and to locate the update or authoritative
* sites for a context.
*/

202 X/Open CAE Specification

XFN Protocols: Preliminary Specification DCE RPC Protocol for XFN

/*
* F N _ D C E _ C T X _ L O C A T E _ R O O T S
*
* Locate servers for the global root contexts.
*
* ns_id Identifier for the global name service to be located.
* If "ns_id" is NULL, then locate any global name service.
*
* max_num_refs
* maximum length of the output array "global_roots".
*
* num_refs count of references in "global_roots".
*
* global_roots
* array of references. Each reference identifies the
* servers for the root context of a global naming service.
*/

[broadcast]
void fn_dce_ctx_locate_roots
(

[in] handle_t h,
[in] fn_dce_id_p_t ns_id,
[in] unsigned32 max_num_refs,
[out] unsigned32 *num_refs,
[out, size_is(max_num_refs), length_is(*num_refs)]

fn_dce_ref_p_t global_roots[]
);

/*
* F N _ D C E _ C T X _ L O C A T E _ N S _ C L I E N T
*
* Locate a server that is a surrogate client for for a name service.
*
* ns_id Identifier for the name service whose surrogate client
* is to be located. If "ns_id" is NULL, then locate a
* server that is a surrogate client for any name service.
*
* max_num_refs
* maximum length of the output array "ns_clients".
*
* num_refs count of references in "ns_clients".
*
* ns_clients
* array of references. Each reference identifies a
* server that is a surrogate client for one or more
* naming services.
*/

[broadcast]
void fn_dce_ctx_locate_ns_client
(

Federated Naming: The XFN Specification 203

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

[in] handle_t h,
[in] fn_dce_id_p_t ns_id,
[in] unsigned32 max_num_refs,
[out] unsigned32 *num_refs,
[out, size_is(max_num_refs), length_is(*num_refs)]

fn_dce_ref_p_t ns_clients[]
);

/*
* F N _ D C E _ C T X _ L O C _ L I S T _ N S _ C L I E N T S
*
* Get the identifiers of the name services that a server, which
* is a surrogate client, supports.
*
* h a handle that identifies the server to which the
* operation should be directed.
*
* max_num_ids
* maximum length of the output array "ns_ids".
*
* num_ids count of identifiers in "ns_ids".
*
* ns_ids array of name service identifiers. An identifier
* of each naming service, for which this server is
* a surrogate client, is listed.
*/

void fn_dce_ctx_loc_list_ns_clients
(

[in] handle_t h,
[in] unsigned32 max_num_ids,
[out] unsigned32 *num_ids,
[out, size_is(max_num_ids), length_is(*num_ids)]

fn_dce_id_p_t ns_ids[],
[out] fn_dce_status_t *status

);

/*
* F N _ D C E _ C T X _ L O C A T E _ U P D A T E
*
* Get update server(s) for a context
*
* h a handle that identifies the server to which the
* operation is directed.
*
* ctx reference of context whose update servers are requested.
*
* max_num_refs
* maximum length of the output array "update_ctx".
*
* num_refs
* count of references in "update_ctx".

204 X/Open CAE Specification

XFN Protocols: Preliminary Specification DCE RPC Protocol for XFN

*
* update_ctx
* array of references. Each reference identifies update
* server(s) for the context.
*/

void fn_dce_ctx_locate_update
(

[in] handle_t h,
[in] fn_dce_ref_p_t ctx,
[in] unsigned32 max_num_refs,
[out] unsigned32 *num_refs,
[out, size_is(max_num_refs), length_is(*num_refs)]

fn_dce_ref_p_t update_ctx[],
[out] fn_dce_status_t *status

);

/*
* F N _ D C E _ C T X _ L O C A T E _ A U T H O R I T A T I V E
*
* Get authoritative server(s) for a context
*
* h a handle that identifies the server to which the
* operation is directed.
*
* ctx reference of context whose authoritative servers
* are requested.
*
* max_num_refs
* maximum length of the output array "authoritative_ctx".
*
* num_refs count of references in "authoritative_ctx".
*
* authoritative_ctx
* array of references. Each reference identifies
* authoritative server(s) for the context.
*/

void fn_dce_ctx_locate_authoritative
(

[in] handle_t h,
[in] fn_dce_ref_p_t ctx,
[in] unsigned32 max_num_refs,
[out] unsigned32 *num_refs,
[out, size_is(max_num_refs), length_is(*num_refs)]

fn_dce_ref_p_t authoritative_ctx[],
[out] fn_dce_status_t *status

);

}

Federated Naming: The XFN Specification 205

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

A.1.7 fn_dce_srchb.idl: Data Types for Attribute Search Interface

[
pointer_default(ptr)
]

interface fn_dce_srchb {

import "fn_dce_ctxb.idl";
import "fn_dce_attrb.idl";

/*
* Base Datatypes for Search Operations
*/

/*
* Scope of the search
*
* srch_named_object search named object
* srch_one_context search given context
* srch_subtree search given context and its sub-contexts
* srch_local_subtree search given context and its sub-contexts
* within local server.
*/

typedef enum {
srch_named_object,
srch_one_context,
srch_subtree,
srch_local_subtree

} fn_dce_srch_scope_t;

/*
* Controls the scope and other characteristics of the search.
*
* follow_links if TRUE, follow XFN links encountered during the
* search. if FALSE, do not follow XFN links.
*
* If XFN links are followed, the name of the link
* and its reference are returned for further
* resolution. The attributes associated with the
* name of the link are not included in the search.
*
* If XFN links are not followed, the attributes
* associated with the name of an XFN link are
* searched and the name of the link is returned
* if its attribute values satisfy the search filter.
*
* The effect of the follow_links control on native
* links is implementation specific.
*
* return_ref if TRUE, return object references bound to names
* whose attribute values satisfy the filter expression.

206 X/Open CAE Specification

XFN Protocols: Preliminary Specification DCE RPC Protocol for XFN

* If FALSE, do not return references.
*/

typedef struct {
fn_dce_srch_scope_t scope;
boolean32 follow_links;
boolean32 return_ref;

} fn_dce_srch_control_t, *fn_dce_srch_control_p_t;

/*
* Search Filter Expression
*
* The search filter is an expression that is evaluated against the
* attributes of named objects bound in the scope of the search
* operation "fn_dce_srch_ext()".
*
* For a complete description of the search filter see the man page
* for FN_search_filter_t.
*
* The filter expression and arguments passed to the filter contructor
* "fn_search_filter_create()" are the same as those passed to
* "fn_dce_srch_ext()".
*/

/*
* Search Filter Arguments
*/

/* argument syntaxes */

typedef enum {
fn_dce_srch_arg_stx_id,
fn_dce_srch_arg_stx_attr,
fn_dce_srch_arg_stx_val,
fn_dce_srch_arg_stx_str

} fn_dce_srch_arg_syntax_t;

/*
* argument
*/

typedef union switch (fn_dce_srch_arg_syntax_t syntax_of_arg) syntax {
case fn_dce_srch_arg_stx_id:

fn_dce_id_p_t id;

case fn_dce_srch_arg_stx_attr:
fn_dce_attr_p_t attr_id;

case fn_dce_srch_arg_stx_val:
fn_dce_attr_value_p_t value;

Federated Naming: The XFN Specification 207

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

case fn_dce_srch_arg_stx_str:
fn_dce_string_p_t str;

} fn_dce_srch_arg_t, *fn_dce_srch_arg_p_t;

/*
* Results of Search
*
* name Name of object.
*
* An implicit next naming system pointer is identified
* by a name with a trailing ’/’.
*
* passed_filter TRUE if attributes associated with "name" passed the
* filter; otherwise FALSE.
*
* continue_search
* TRUE if "name" is bound to a link that should be
* followed or a context that should be searched.
*
* ref Object reference to which "name" is bound. NULL if
* the reference was not requested or is not needed
* to continue the search.
*
* cache_info Caching hints for "name" and its "ref"
*/

typedef struct {
fn_dce_composite_name_p_t name;
boolean32 passed_filter;
boolean32 continue_search;
fn_dce_ref_p_t ref;
fn_dce_cache_info_t cache_info;

} fn_dce_srch_name_t, *fn_dce_srch_name_p_t;

}

A.1.8 fn_dce_srch.idl: Attribute Search Interface

************************* fn_dce_srch.idl ***************************

[
uuid(4e13f1ca-c4f3-11cd-80d8-080009352555),
version(1.0),
pointer_default(ptr)
]

interface fn_dce_srch_ {

import "fn_dce_ctxb.idl";
import "fn_dce_attrb.idl";
import "fn_dce_srchb.idl";

208 X/Open CAE Specification

XFN Protocols: Preliminary Specification DCE RPC Protocol for XFN

/*
* Search interface (DCE RPC)
*
* The search interface provides operations to lookup names of objects
* with specific attribute values.
*
* The operations in the search interface take the following two
* initial arguments:
*
*
* h a handle that identifies the server to which the
* operation should be directed.
*
* progress structure that guides the path resolution phase of
* an operation.
*
* input:
*
* ref reference of starting context
*
* unresolved_name
* name of target object or context for the search,
* relative to "ref"
*
*
* resolved_name
* NULL
*
* link_ctx_ref NULL
*
* final output:
*
* resolved_name
* target context for the search.
* For extended search, this is the starting context
* of the search.
*
* ref reference that is bound to "resolved_name".
*
* unresolved_name
* NULL
*
* cache_info caching hints for the resolved name and its reference
*
* link_ctx_ref NULL
*
* fn_dce_ctxb.idl describes the use of the progress structure.
*/

/*
* Enumerate the names, bound in the target context, whose attribute
* values match those specified in "attrs". If "attrs" is NULL,

Federated Naming: The XFN Specification 209

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

* return all names bound in the context.
*
* For multi-valued attributes, order of attributes is ignored and
* attributes values not specified in "attrs" are ignored. If no
* values are specified for an attribute, the presence of the
* attribute is tested.
*
* num_attrs the count of attributes listed in "attrs".
* 0 if "attrs" is NULL.
*
* attrs the attributes to compare with those of named
* objects bound in the target context.
* Each attribute in "attrs" contains an identifier,
* syntax, and 0 or more values.
* NULL if all names are to be returned.
*
* return_ref if TRUE, return object references bound to names
* whose attribute values match "attrs".
* If FALSE, do not return references.
*
* iter_pos a cursor into the list of names. It is maintained
* by the server. Its state is initialized by the
* server at the first request (client passes in a
8 pointer to NULL) and freed when the last name has
* been returned. Its state may also be freed by the
* operation fn_dce_ctx_free_iterator.
*
* max_names maximum length of the output array "names"
*
* num_names count of names listed in "names"
*
* names list of atomic names whose attribute values match
* those specified in "attrs". Optionally, the object
* reference to which the name is bound and its caching
* information are returned with each name.
*/

void fn_dce_srch(
[in] handle_t h,
[in, out] fn_dce_progress_t *progress,
[in] unsigned32 num_attrs,
[in, size_is(num_attrs)]

fn_dce_attr_p_t attrs[],
[in] boolean32 return_ref,
[in, out] fn_dce_cursor_t *iter_pos,
[in] unsigned32 max_names,
[out] unsigned32 *num_names,
[out, size_is(max_names), length_is(*num_names)]

fn_dce_srch_name_p_t names[],
[out] fn_dce_status_t *status

);

210 X/Open CAE Specification

XFN Protocols: Preliminary Specification DCE RPC Protocol for XFN

/*
* Enumerate the names, bound in the scope of the search, whose
* attribute values satisfy the specified filter expression.
*
* control controls the scope of the search, whether links
* are followed during the search, and whether
* object references bound to the names whose
* attribute values satisfy the filter expression
* are returned.
*
* expression expression that is evaluated against the attributes
* of named objects bound in the scope of the search.
*
* For a complete description of the search filter
* expression and its arguments see the man page for
* FN_search_filter_t.
*
* num_args count of arguments on array "srch_args"
*
* srch_args arguments to the search filter expression
* "expression"
*
* iter_pos a cursor into the list of names. It is maintained
* by the server. Its state is initialized by the
* server at the first request (client passes in a
* pointer to NULL) and freed when the last name has
* been returned. Its state may also be freed by the
* operation fn_dce_ctx_free_iterator.
*
* max_names maximum length of the output array "names"
*
* num_names count of names listed in "names"
*
* names list of names whose attribute values satisfy the
* filter expression. Optionally, the object reference
* to which the name is bound and its caching
* information are returned with each name.
*
* The names of links to follow and sub-contexts to
* search may also appear in the list.
*
* Names are relative to the starting context for
* the search.
*/

void fn_dce_srch_ext(
[in] handle_t h,
[in, out] fn_dce_progress_t *progress,
[in] fn_dce_srch_control_p_t control,
[in, string] unsigned char *expression,
[in] unsigned32 num_args,
[in, size_is(num_args)]

Federated Naming: The XFN Specification 211

DCE RPC Protocol for XFN XFN Protocols: Preliminary Specification

fn_dce_srch_arg_p_t srch_args[],
[in, out] fn_dce_cursor_t *iter_pos,
[in] unsigned32 max_names,
[out] unsigned32 *num_names,
[out, size_is(max_names), length_is(*num_names)]

fn_dce_srch_name_p_t names[],
[out] fn_dce_status_t *status

);

}

212 X/Open CAE Specification

XFN Protocols: Preliminary Specification ONC+ RPC Protocol for XFN

A.2 ONC+ RPC Protocol for XFN
This section defines the RPC interface of the XFN service for ONC+ platforms. The interface is
specified in ONC/RPCL and closely mirrors the XFN client context and attribute interfaces.

See Solaris NIPG for descriptions of RPC and RPCL in ONC+.

/*
* The interface definition for the XFN service for ONC+/RPC.
*/

/* Basic data structures used in interface.
* Mirror the data structures defined in the context and attribute
* interfaces defined in the XFN specification.
*/

struct xFN_string {
unsigned long code_set;
unsigned long lang_terr;
unsigned long char_count;
opaque contents<>;

};

struct xFN_composite_name {
xFN_string compound<>;

};

struct xFN_ctx_handle {
opaque cookie[8];

};

struct xFN_identifier {
unsigned int format;
opaque contents<>;

};

struct xFN_attrvalue {
opaque value<>;

};

struct xFN_attribute {
xFN_identifier *attr_id;
xFN_identifier *attr_syntax;
xFN_attrvalue values<>;

};

struct xFN_attrmod {
xFN_attribute *attr;
unsigned int mod_op;

};

struct xFN_attrmodlist {
xFN_attrmod mods<>;

};

Federated Naming: The XFN Specification 213

ONC+ RPC Protocol for XFN XFN Protocols: Preliminary Specification

struct xFN_attrset {
xFN_attribute attrs<>;

};

struct xFN_namelist {
opaque cookie[8];

};

struct xFN_bindinglist {
opaque cookie[8];

};

struct xFN_valuelist {
opaque cookie[8];

};

struct xFN_multigetlist {
opaque cookie[8];

};

struct xFN_ref_addr {
xFN_identifier *type;
opaque data<>;

};

struct xFN_ref {
xFN_identifier *type;
xFN_ref_addr addrs<>;

};

struct xFN_status {
unsigned int code;
xFN_ref *resolved_ref;
xFN_composite_name *resolved_name;
xFN_composite_name *remaining_name;
xFN_string *diagnostic_msg;
unsigned int link_code;
xFN_ref *link_resolved_ref;
xFN_composite_name *link_resolved_name;
xFN_composite_name *link_remaining_name;
xFN_string *link_diagnostic_msg;

};

/*
* The context interface argument and result types.
*/

struct fn_ctx_handle_from_initial_arg {
unsigned int authoritative;
xFN_string *user_info;
xFN_string *host_info;

};
struct fn_ctx_handle_from_initial_res {

214 X/Open CAE Specification

XFN Protocols: Preliminary Specification ONC+ RPC Protocol for XFN

xFN_ctx_handle ctx;
xFN_status *status;

};

struct fn_ctx_lookup_arg {
xFN_ctx_handle ctx;
xFN_composite_name *name;

};
struct fn_ctx_lookup_res {

xFN_ref *ref;
xFN_status *status;

};

/*
* ’batch_size’ is the maximum number of entries that the client
* wants the server to return at one time. The server can return
* any number of entries at one time up to a limit of ’batch_size’.
* If ’batch_size’ is 0, the client does not place a limit on
* how many entries are returned at a time.
*
* This definition of ’batch_size’ applies to all the iteration
* operations in this interface.
*/

struct fn_ctx_list_names_arg {
xFN_ctx_handle ctx;
xFN_composite_name *name;
unsigned int batch_size;

};
struct fn_ctx_list_names_res {

xFN_namelist namelist;
xFN_string names<>;
xFN_status *status;

};
struct fn_namelist_next_arg {

xFN_namelist namelist;
};
struct fn_namelist_next_res {

xFN_namelist namelist;
xFN_string names<>;
xFN_status *status;

};

struct fn_namelist_destroy_arg {
xFN_namelist namelist;

};

struct xFN_binding {
xFN_string *name;
xFN_ref *ref;

};

Federated Naming: The XFN Specification 215

ONC+ RPC Protocol for XFN XFN Protocols: Preliminary Specification

struct fn_ctx_list_bindings_arg {
xFN_ctx_handle ctx;
xFN_composite_name *name;
unsigned int batch_size;

};
struct fn_ctx_list_bindings_res {

xFN_bindinglist bindinglist;
xFN_binding bindings<>;
xFN_status *status;

};
struct fn_bindinglist_next_arg {

xFN_bindinglist bindinglist;
};
struct fn_bindinglist_next_res {

xFN_bindinglist bindinglist;
xFN_binding bindings<>;
xFN_status *status;

};

struct fn_bindinglist_destroy_arg {
xFN_bindinglist bindinglist;

};

struct fn_ctx_bind_arg {
xFN_ctx_handle ctx;
xFN_composite_name *name;
xFN_ref *ref;
unsigned int exclusive;

};
struct fn_ctx_bind_res {

int rval;
xFN_status *status;

};
struct fn_ctx_unbind_arg {

xFN_ctx_handle ctx;
xFN_composite_name *name;

};
struct fn_ctx_unbind_res {

int rval;
xFN_status *status;

};
struct fn_ctx_create_subcontext_arg {

xFN_ctx_handle ctx;
xFN_composite_name *name;

};
struct fn_ctx_create_subcontext_res {

xFN_ref *ref;
xFN_status *status;

};
struct fn_ctx_destroy_subcontext_arg {

xFN_ctx_handle ctx;
xFN_composite_name *name;

216 X/Open CAE Specification

XFN Protocols: Preliminary Specification ONC+ RPC Protocol for XFN

};
struct fn_ctx_destroy_subcontext_res {

int rval;
xFN_status *status;

};
struct fn_ctx_rename_arg {

xFN_ctx_handle ctx;
xFN_composite_name *oldname;
xFN_composite_name *newname;
unsigned int exclusive;

};
struct fn_ctx_rename_res {

int rval;
xFN_status *status;

};
struct fn_ctx_lookup_link_arg {

xFN_ctx_handle ctx;
xFN_composite_name *name;

};
struct fn_ctx_lookup_link_res {

xFN_ref *ref;
xFN_status *status;

};

struct fn_ctx_get_ref_arg {
xFN_ctx_handle ctx;

};
struct fn_ctx_get_ref_res {

xFN_ref *ref;
xFN_status *status;

};

struct fn_ctx_handle_from_ref_arg {
xFN_ref *ref;
unsigned int authoritative;

};
struct fn_ctx_handle_from_ref_res {

xFN_ctx_handle ctx;
xFN_status *status;

};

struct fn_ctx_equivalent_name_arg {
xFN_ctx_handle ctx;
xFN_composite_name *name;
xFN_string *leading_name;

};

struct fn_ctx_equivalent_name_res {
xFN_composite_name *name;
xFN_status *status;

};

Federated Naming: The XFN Specification 217

ONC+ RPC Protocol for XFN XFN Protocols: Preliminary Specification

/*
* The attribute interface argument and result types.
*/

struct fn_attr_get_arg {
xFN_ctx_handle ctx;
xFN_composite_name *name;
xFN_identifier *attr_id;
unsigned int follow_link;

};
struct fn_attr_get_res {

xFN_attribute *attr;
xFN_status *status;

};
struct fn_attr_modify_arg {

xFN_ctx_handle ctx;
xFN_composite_name *name;
unsigned int mod_op;
xFN_attribute *attr;
unsigned int follow_link;

};
struct fn_attr_modify_res {

int rval;
xFN_status *status;

};
struct fn_attr_get_values_arg {

xFN_ctx_handle ctx;
xFN_composite_name *name;
xFN_identifier *attr_id;
unsigned int follow_link;
unsigned int batch_size;

};
struct fn_attr_get_values_res {

xFN_valuelist valuelist;
xFN_identifier *attr_syntax;
xFN_attrvalue attrvals<>;
xFN_status *status;

};

struct fn_valuelist_next_arg {
xFN_valuelist valuelist;

};

struct fn_valuelist_next_res {
xFN_valuelist valuelist;
xFN_identifier *attr_syntax;
xFN_attrvalue attrvals<>;
xFN_status *status;

};

struct fn_valuelist_destroy_arg {
xFN_valuelist valuelist;

};

218 X/Open CAE Specification

XFN Protocols: Preliminary Specification ONC+ RPC Protocol for XFN

struct fn_attr_get_ids_arg {
xFN_ctx_handle ctx;
xFN_composite_name *name;
unsigned int follow_link;

};
struct fn_attr_get_ids_res {

xFN_attrset *attrset;
xFN_status *status;

};
struct fn_attr_multi_get_arg {

xFN_ctx_handle ctx;
xFN_composite_name *name;
xFN_attrset *attr_ids;
unsigned int follow_link;
unsigned int batch_size;

};
struct fn_attr_multi_get_res {

xFN_multigetlist multigetlist;
xFN_attribute attrs<>;
xFN_status *status;

};

struct fn_multigetlist_next_arg {
xFN_multigetlist multigetlist;

};
struct fn_multigetlist_next_res {

xFN_multigetlist multigetlist;
xFN_attribute attr<>;
xFN_status *status;

};
struct fn_multigetlist_destroy_arg {

xFN_multigetlist multigetlist;
};

struct fn_attr_multi_modify_arg {
xFN_ctx_handle ctx;
xFN_composite_name *name;
xFN_attrmodlist *mods;
unsigned int follow_link;

};
struct fn_attr_multi_modify_res {

int rval;
xFN_status *status;
xFN_attrmodlist *unexecuted_mods;

};

/* Arguments for the extended attribute interface */

struct fn_attr_bind_arg {
xFN_ctx_handle ctx;
xFN_composite_name *name;
xFN_ref *ref;

Federated Naming: The XFN Specification 219

ONC+ RPC Protocol for XFN XFN Protocols: Preliminary Specification

xFN_attrset *attrs;
unsigned int exclusive;

};
struct fn_attr_bind_res {

int rval;
xFN_status *status;

};
struct fn_attr_create_subcontext_arg {

xFN_ctx_handle ctx;
xFN_composite_name *name;
xFN_attrset *attrs;

};
struct fn_attr_create_subcontext_res {

xFN_ref *ref;
xFN_status *status;

};

struct xFN_searchlist {
opaque cookie[8];

};

struct xFN_ext_searchlist {
opaque cookie [8];

};

struct xFN_search_control {
unsigned int scope;
unsigned int follow_links;
unsigned int max_names;
unsigned int return_ref;
xFN_attrset *return_attrs;

};

enum xFN_search_filter_item_type {
XFN_ATTR_TYPE = 1,
XFN_ATTRVALUE_TYPE = 2,
XFN_STRING_TYPE = 3,
XFN_IDENTIFIER_TYPE = 4

};

union xFN_search_filter_item switch (xFN_search_filter_item_type ftype) {
case XFN_ATTR_TYPE:

xFN_attribute *attr;
case XFN_ATTRVALUE_TYPE:

xFN_attrvalue *attrvalue;
case XFN_STRING_TYPE:

xFN_string *str;
case XFN_IDENTIFIER_TYPE:

xFN_identifier *identifier;
default:

void;
};

220 X/Open CAE Specification

XFN Protocols: Preliminary Specification ONC+ RPC Protocol for XFN

struct xFN_search_filter {
xFN_string *expression;
xFN_search_filter_item filter_item<>;

};

struct xFN_searchitem {
xFN_string *name;
xFN_ref *ref;
xFN_attrset *attrs;

};

struct fn_attr_search_arg {
xFN_ctx_handle ctx;
xFN_composite_name *name;
xFN_attrset *match_attrs;
unsigned int return_ref;
xFN_attrset *return_attr_ids;
unsigned int batch_size;

};

struct fn_attr_search_res {
xFN_searchlist searchlist;
xFN_searchitem items<>;
xFN_status *status;

};
struct fn_searchlist_next_arg {

xFN_searchlist searchlist;
};
struct fn_searchlist_next_res {

xFN_searchlist searchlist;
xFN_searchitem items<>;
xFN_status *status;

};
struct fn_searchlist_destroy_arg {

xFN_searchlist searchlist;
};

struct xFN_ext_searchitem {
xFN_composite_name *name;
xFN_ref *ref;
xFN_attrset *attrs;

};

struct fn_attr_ext_search_arg {
xFN_ctx_handle ctx;
xFN_composite_name *name;
xFN_search_control *control;
xFN_search_filter *filter;
unsigned int batch_size;

};
struct fn_attr_ext_search_res {

xFN_ext_searchlist ext_searchlist;

Federated Naming: The XFN Specification 221

ONC+ RPC Protocol for XFN XFN Protocols: Preliminary Specification

xFN_ext_searchitem items<>;
xFN_status *status;

};
struct fn_ext_searchlist_next_arg {

xFN_ext_searchlist ext_searchlist;
};
struct fn_ext_searchlist_next_res {

xFN_ext_searchlist ext_searchlist;
xFN_ext_searchitem items<>;
xFN_status *status;

};
struct fn_ext_searchlist_destroy_arg {

xFN_ext_searchlist ext_searchlist;
};

struct fn_ctx_get_syntax_attrs_arg {
xFN_ctx_handle ctx;
xFN_composite_name *name;

};
struct fn_ctx_get_syntax_attrs_res {

xFN_attrset *attrset;
xFN_status *status;

};

/*
* This is the basic context interface.
*/

program XFN_SERVICE_PROG {
version XFN_SERVICE_VERS {

fn_ctx_handle_from_initial_res fn_ctx_handle_from_initial(
fn_ctx_handle_from_initial_arg) = 100;

fn_ctx_lookup_res fn_ctx_lookup(fn_ctx_lookup_arg) = 101;
fn_ctx_list_names_res fn_ctx_list_names(

fn_ctx_list_names_arg) = 102;
fn_namelist_next_res fn_namelist_next(

fn_namelist_next_arg) = 103;
void fn_namelist_destroy(fn_namelist_destroy_arg) = 104;
fn_ctx_list_bindings_res fn_ctx_list_bindings(

fn_ctx_list_bindings_arg) = 105;
fn_bindinglist_next_res fn_bindinglist_next(

fn_bindinglist_next_arg) = 106;
void fn_bindinglist_destroy(fn_bindinglist_destroy_arg) = 107;
fn_ctx_bind_res fn_ctx_bind(fn_ctx_bind_arg) = 108;
fn_ctx_unbind_res fn_ctx_unbind(fn_ctx_unbind_arg) = 109;
fn_ctx_create_subcontext_res fn_ctx_create_subcontext(

fn_ctx_create_subcontext_arg) = 110;
fn_ctx_destroy_subcontext_res fn_ctx_destroy_subcontext(

fn_ctx_destroy_subcontext_arg) = 111;
fn_ctx_rename_res fn_ctx_rename(fn_ctx_rename_arg) = 112;
fn_ctx_lookup_link_res fn_ctx_lookup_link(

fn_ctx_lookup_link_arg) = 113;
fn_ctx_get_ref_res fn_ctx_get_ref(fn_ctx_get_ref_arg) = 114;

222 X/Open CAE Specification

XFN Protocols: Preliminary Specification ONC+ RPC Protocol for XFN

fn_ctx_handle_from_ref_res fn_ctx_handle_from_ref(
fn_ctx_handle_from_ref_arg) = 115;

void fn_ctx_handle_destroy(xFN_ctx_handle) = 116;
fn_ctx_equivalent_name_res fn_ctx_equivalent_name(

fn_ctx_equivalent_name_arg) = 117;

/*
* The basic attribute interface.
*/

fn_attr_get_res fn_attr_get(fn_attr_get_arg) = 200;
fn_attr_modify_res fn_attr_modify(fn_attr_modify_arg) = 201;

/*
* Operations on multiple attribute values.
*/

fn_attr_get_values_res fn_attr_get_values(
fn_attr_get_values_arg) = 202;

fn_valuelist_next_res fn_valuelist_next(
fn_valuelist_next_arg) = 203;

void fn_valuelist_destroy(fn_valuelist_destroy_arg) = 204;
fn_attr_get_ids_res fn_attr_get_ids(fn_attr_get_ids_arg) = 205;
fn_attr_multi_get_res fn_attr_multi_get(

fn_attr_multi_get_arg) = 206;
fn_multigetlist_next_res fn_multigetlist_next(

fn_multigetlist_next_arg) = 207;
void fn_multigetlist_destroy(fn_multigetlist_destroy_arg) = 208;
fn_attr_multi_modify_res fn_attr_multi_modify(

fn_attr_multi_modify_arg) = 209;

/*
* The extended attribute interface.
*/

fn_attr_bind_res fn_attr_bind(fn_attr_bind_arg) = 210;
fn_attr_create_subcontext_res fn_attr_create_subcontext(

fn_attr_create_subcontext_arg) = 211;
fn_attr_search_res fn_attr_search(fn_attr_search_arg) = 212;
fn_searchlist_next_res fn_searchlist_next(

fn_searchlist_next_arg) = 213;
void fn_searchlist_destroy(fn_searchlist_destroy_arg) = 214;
fn_attr_ext_search_res fn_attr_ext_search(

fn_attr_ext_search_arg) = 215;
fn_ext_searchlist_next_res fn_ext_searchlist_next(

fn_ext_searchlist_next_arg) = 216;
void fn_ext_searchlist_destroy(

fn_ext_searchlist_destroy_arg) = 217;

Federated Naming: The XFN Specification 223

ONC+ RPC Protocol for XFN XFN Protocols: Preliminary Specification

/*
* Operation for syntax attributes.
*/

fn_ctx_get_syntax_attrs_res fn_ctx_get_syntax_attrs(
fn_ctx_get_syntax_attrs_arg) = 300;

} = 1;
} = 100220;

224 X/Open CAE Specification

Appendix B

Mapping XFN

This appendix contains descriptions of how the XFN interfaces can be implemented using some
existing naming systems.

Federated Naming: The XFN Specification 225

Mapping XFN to DNS Mapping XFN

B.1 Mapping XFN to DNS
This section describes how DNS can be used to federate enterprise-level naming systems and
how the XFN interfaces can be implemented using DNS operations.

B.1.1 Overview

DNS is the Internet Domain Name System. It is a naming system that names resources in a large
global network — the Internet. It has been used primarily to name enterprises, such as
universities, institutions and companies, and entities within enterprises such as machines. The
DNS namespace is hierarchically structured, in which atomic names are ordered right-to-left and
are delimited by dot characters (’.’). Names representing non-leaf nodes identify domains. Leaf
nodes typically identify machines (or hosts).

In DNS, resource records are associated with names. Each resource record has a type that
indicates the type of information stored.

See Internet RFC 1034 and Internet RFC 1035 for a description of DNS.

B.1.2 Representation of XFN Concepts in DNS

XFN policies specify that DNS is one of the global naming systems that can be reached from the
Initial Context using the atomic name "...".

B.1.2.1 Name Syntax

The syntax of DNS names is described in Internet RFC 1035. It maps into the XFN standard
syntax model (see Section 3.8 on page 50) using the following syntax-related attribute values:

Attribute Identifier Attribute Value
fn_syntax_type standard
fn_std_syntax_direction right-to-left
fn_std_syntax_separator .
fn_std_syntax_escape \
fn_std_syntax_case_insensitive
fn_std_syntax_begin_quote1 "
fn_std_syntax_end_quote1 "
fn_std_syntax_code_sets 0x00010020 (ASCII)

B.1.2.2 XFN References

The XFN context for DNS uses the following reference types: ‘‘inet_domain’’ and ‘‘inet_host’’.
DNS domains and hosts, respectively. These references contain a list of IP addresses. An IP
address has type ‘‘inet_ipaddr_string’’ and is represented as an ASCII string of Internet
addresses (for example, ‘‘128.199.235.10’’).

Description Identifier Format Identifier Value
Internet domain reference type FN_ID_STRING inet_domain
Internet host reference type FN_ID_STRING inet_host

Internet IP address type FN_ID_STRING inet_ipaddr_string

226 X/Open CAE Specification

Mapping XFN Mapping XFN to DNS

B.1.3 Federating DNS With Other Naming Systems

When DNS is federated, composite name resolution is supported using strong separation and
implicit next naming system pointers, as described in Section 4.3.1.1 on page 63.

B.1.3.1 Next Naming System Reference

DNS provides resource records of type TXT. The reference of the implicit next naming system
pointer of a DNS domain name is derived from information stored in TXT records of that
domain. For example, given a DNS domain name Wiz.COM, the information required for
constructing the corresponding next naming system reference (FN_ref_t) is obtained using the
TXT records associated with the DNS entry Wiz.COM.

Each DNS domain that is to be federated has TXT records of the following format:

TXT XFNREF rformat reftype
TXT addrtag addrinfo

A TXT record with the tag XFNREF specifies the reference type of the reference. rformat specifies
the format of the reference type identifier. It can be one of STRING, UUID, or OID. reftype is
the contents of the reference type. If this TXT record is not present, the default reference type is
"XFN_SERVICE" (FN_ID_STRING format).

TXT records with the XFN prefix in their addrtag field identify addresses within a reference.
addrtag specifies how the information in addrinfo is to be interpreted to construct the contents of
an FN_ref_t object. Each TXT record so tagged may generate one or more addresses — this is
determined by the implementation for each addrtag. There can be multiple TXT records with the
same addrtag; how such multiple records are related is, again, determined by the implementation
for each addrtag. If a single address spans multiple TXT records, or if the order of records with
the same addrtag is significant, sequencing must be done amongst TXT records with the same
addrtag. It is up to the implementation identified by addrtag to specify how such sequencing is
supported.

B.1.3.2 Examples of Reference Data

Assume that the following TXT records are associated with the domain Wiz.COM:

TXT XFNONC doggone.Wiz.COM 100220 1 3
TXT XFNONC pagin.Wiz.COM 100220 1 3
TXT XFNLONG 2 0 longaddressbegin
TXT XFNLONG 2 1 longaddressend

These records represent three addresses, two with the addrtag XFNONC and one with the
addrtag XFNLONG. The address information for XFNONC consists of a host name, a program
number, and a version number range. The address information for XFNLONG spans two TXT
records. The address format is that of a sequence size and sequence number, followed by the
address contents.

Federated Naming: The XFN Specification 227

Mapping XFN to DNS Mapping XFN

The resulting reference for this set of records contains:

XFN_SERVICE (reference type)
SUNW_xfn_onc (address type)
doggone.Wiz.COM 10022 0 1 3 (address contents)

SUNW_xfn_onc (address type)
pagin.Wiz.COM 10022 0 1 3 (address contents)

VENDORX_xfn_xprot (address type)
someveryverylongaddress (address contents)

In another example, assume that the following TXT records are associated with the domain
Biz.COM:

TXT XFNREF OID 1.3.22.1.6.1.3
TXT XFNDCE (1 fd33328c4-2a4b-11ca-af85-09002b1c89bb)
TXT XFNCDS (1 fd33328c4-2a4b-11ca-af85-09002b1c89bb)

The first record represents the reference type. The TXT record with the addrtag XFNDCE
represents an XFN DCE service address. The TXT record with the addrtag XFNCDS represents a
XFN/CDS context service address. The resulting reference for this set of records contains:

1.3.22.1.6.1.3 (reference type)
1.3.22.1.6.2.1 (address type)
<encoded address> (address contents)

1.3.22.1.6.2.1 (address type)
<encoded address> (address contents)

B.1.3.3 Registry of addrtag

addrtag can be general purpose or platform-specific. For example, a general purpose addrtag
might define a way of encoding address information using uuencode and ISO BER. Such a
scheme would allow arbitrary addresses to be encoded. XFNONC and XFNDCE are examples
of platform-specific addrtags.

A registry will be maintained by X/Open for addrtag and their formats.

B.1.3.4 Recommendations for the DNS Context Implementation

A DNS context implementation should be flexible in supporting various addrtag and reference
type combinations. It should use the addrtag and reference type to select code that does the
translation of addrinfo into data for the FN_ref_t object. Such a mechanism should be extensible
and not hardwired for any specific addrtag.

Note that such a mechanism is private to the DNS context implementation and is unrelated to
the context implementation for the specified reference and address types except for the fact that
they both know the specific address formats expected in the reference data structure, FN_ref_t.

B.1.3.5 Resolving Through DNS

The primary operation on the implicit next naming system pointer of a DNS domain is expected
to be lookup. Resolution through DNS proceeds exactly as described in Section 4.3.1.1 on page
63:

1. The DNS name component is resolved in DNS.

228 X/Open CAE Specification

Mapping XFN Mapping XFN to DNS

2. The query to DNS returns TXT records associated with the supplied DNS name.

3. A reference for the implicit next naming system pointer is constructed based on
information obtained from the appropriate TXT records associated with the DNS name.

4. fn_ctx_handle_from_ref () is used to return a handle to the context in the naming system
subordinate to DNS.

5. Resolution of the remaining components of the composite name proceeds from this
context.

For example, resolution of the name:

.../Wiz.COM/_orgunit/finance

involves resolving ... in the Initial Context to get a handle to the global context, from which the
DNS name Wiz.COM is resolved in DNS to obtain a reference (using the TXT records
associated with Wiz.COM) to a context in which the rest of the name _orgunit/finance can be
resolved.

B.1.4 XFN API Function Mapping

B.1.4.1 XFN Operations on DNS names

The lookup operation is supported for host and domain names by sending queries to DNS.

DNS supports the ability to use a query to list all entries in a particular DNS domain. The list
operations are supported using this type of queries.

No update operations are supported because DNS does not support updates at the protocol
level. All updates must be effected through changes to the data file on DNS servers.

The get syntax attributes operation is supported by generating the attributes algorithmically
upon demand. All other attribute operations are not supported.

B.1.4.2 XFN Operations on Implicit Next Naming System Pointer

Updates operations on the implicit next naming system pointer are not supported through the
XFN interfaces because the DNS protocol does not support updates. The status
[FN_E_OPERATION_NOT_SUPPORTED] is returned for fn_ctx_bind(), fn_ctx_unbind(),
fn_ctx_rename(), fn_ctx_create_subcontext() and fn_ctx_destroy_subcontext ().

The effects of the fn_ctx_bind(), fn_ctx_unbind() and fn_ctx_rename() operations on the implicit
next naming system pointer can be achieved by editing the data file of the domain. A simple
administrative command can be provided to give a more user-friendly means of entering
reference information.

List operations are supported by invoking the function fn_ctx_handle_from_ref () on the implicit
next naming system pointer’s reference and performing the corresponding list operations on the
resulting context.

Only the get syntax attributes operation is supported. This is done by looking up the syntax
attributes of the context bound to the implicit next naming system pointer.

Federated Naming: The XFN Specification 229

Mapping XFN to X.500: Preliminary Specification Mapping XFN

B.2 Mapping XFN to X.500: Preliminary Specification
The whole of this section (Mapping XFN to X.500) is assigned X/Open Preliminary
Specification status (not CAE Specification status). For explanation of the difference between
Preliminary and CAE specifications, see the description under X/Open Technical Publications
in the Preface. Readers should appreciate that the header title on each page of this section of
Section B.2 correctly identifies its status as Preliminary, while the footer on each of its
odd-numbered pages also correctly identifies this section of the Appendix as a part of the XFN
CAE Specification.

This section describes how XFN concepts can be supported in the X.500 directory service. It
defines X.500 object classes and attributes and describes how X.500 can be used to federate
enterprise-level naming systems.

B.2.1 X.500 Overview

The X.500 directory service is a global directory service. Its components cooperate to manage
information about objects in a worldwide scope. Such objects include countries, organizations,
people and machines. It provides the capability to lookup information by name (a white-pages
service), and to browse and search for information (a yellow-pages service).

The information is held in a directory information base (DIB). Entries in the DIB are arranged in a
tree structure. Each entry is a named object and comprises a set of attributes. Each attribute has a
defined attribute type and one or more values. The directory schema defines the mandatory and
optional attributes for each class of object.

The X.500 namespace is hierarchical. An entry is unambiguously identified by a distinguished
name. A distinguished name is the concatenation of selected attributes from each entry in the
tree along a path leading from the root down to the named entry.

Users of the X.500 directory may, subject to access controls, interrogate and modify the entries
and attributes in the DIB.

For more information on X.500, refer to CCITT X.500 (1988/1993)/ISO Directory and X/Open
DCE Directory.

B.2.2 Representation of XFN Concepts in X.500

XFN policies specify that X.500 is one of the global naming systems that can be reached from the
Initial Context using the atomic name ‘‘... ’’.

B.2.2.1 Name Syntax

The distinguished name (DN) syntax described in X/Open DCE Directory is used to name X.500
entries when they appear as the global component of an XFN composite name. From the Initial
Context, the atomic name ‘‘... ’’ prefixes such global components. For example,

.../c=us/o=wiz/ou=sales/cn=smith

is a string representation of a distinguished name which identifies a person named Smith in the
Sales unit of the Wiz organization in the USA. (Note that countries are identified by the two-
letter codes defined in ISO Country Codes.)

In this string representation name parts are separated by the ‘‘/ ’’ (slash) character and attribute
type/value pairs are separated by the ‘‘=’’ (equals) character. Abbreviations are defined for some
commonly used attribute types (for example, ‘‘c ’’ represents Country Name, ‘‘o’’ represents
Organization Name).

230 X/Open CAE Specification

Mapping XFN Mapping XFN to X.500: Preliminary Specification

The distinguished name syntax of X/Open DCE Directory adheres to the XFN standard syntax
model (see Section 3.8 on page 50). The syntax-related attribute values are as follows:

Attribute Identifier Attribute Value
fn_syntax_type standard
fn_std_syntax_direction left_to_right
fn_std_syntax_separator /
fn_std_syntax_escape \
fn_std_syntax_begin_quote1 ‘
fn_std_syntax_begin_quote2 "
fn_std_syntax_end_quote1 ’
fn_std_syntax_end_quote2 "
fn_std_syntax_ava_separator ,
fn_std_syntax_typeval_separator =
fn_std_syntax_code_sets 0x00010001 (ISO 8859-1/Latin-1)

B.2.2.2 XFN References

The X.500 directory holds information about named objects. A new X.500 object class is
introduced to provide XFN support for such objects. Each X.500 object can have an XFN object
reference and may contain additional XFN information. The new object class is defined in ASN.1
as follows:

xFN OBJECT-CLASS ::= {
SUBCLASS OF { top }
KIND auxiliary
MAY CONTAIN { objectReferenceId |

objectReferenceAddresses |
nNSReferenceId |
nNSReferenceAddresses }

ID id-oc-xFN
}

id-oc-xFN OBJECT IDENTIFIER ::= {
iso(1) member-body(2) ansi(840) sun(113536)
ds-oc-xFN(24)

}

It is defined as an auxiliary object class so that it may be inherited by all X.500 object classes. This
permits XFN support to be present at any X.500 object.

Federated Naming: The XFN Specification 231

Mapping XFN to X.500: Preliminary Specification Mapping XFN

The xFN object class contains four optional attributes. The attributes nNSReferenceId and
nNSReferenceAddresses are described in Section B.2.3.2 on page 236. The attributes
objectReferenceId and objectReferenceAddresses are defined in ASN.1 below.

objectReferenceId ATTRIBUTE ::= {
WITH SYNTAX XFNId
EQUALITY MATCHING RULE XFNIdMatch
SINGLE VALUE TRUE
ID id-at-objectReferenceId

}

XFNId ::= CHOICE {
stringId [0] IA5String,
uUId [1] PrintableString,
objectId [2] OBJECT IDENTIFIER

}

XFNIdMatch MATCHING-RULE ::= {
SYNTAX XFNId
ID id-mr-xFNIdMatch

}

id-at-objectReferenceId OBJECT IDENTIFIER ::= {
iso(1) member-body(2) ansi(840) sun(113536)
ds-at-objectReferenceId(26)

}

id-mr-xFNIdMatch OBJECT IDENTIFIER ::= {
iso(1) member-body(2) ansi(840) sun(113536)
ds-mr-xFNId(32)

}

The attribute objectReferenceId stores the reference identifier for a given object. It may be
a string (for example, onc_fn_user), a universal unique identifier in string format (for
example, fd3328c4-2a4b-11ca-af85-09002b1c89bb), or an object identifier.

232 X/Open CAE Specification

Mapping XFN Mapping XFN to X.500: Preliminary Specification

The attribute objectReferenceAddresses is defined in ASN.1 as follows:

objectReferenceAddresses ATTRIBUTE ::= {
WITH SYNTAX XFNReference
EQUALITY MATCHING RULE XFNReferenceMatch
ID id-at-objectReferenceAddresses

}

XFNReference ::= SEQUENCE {
addressId XFNId,
addressValue OCTET STRING

}

XFNReferenceMatch MATCHING-RULE ::= {
SYNTAX XFNReference
ID id-mr-xFNReferenceMatch

}

id-at-objectReferenceAddresses OBJECT IDENTIFIER ::= {
iso(1) member-body(2) ansi(840) sun(113536)
ds-at-objectReferenceAddresses(27)

}

id-mr-xFNReferenceMatch OBJECT IDENTIFIER ::= {
iso(1) member-body(2) ansi(840) sun(113536)
ds-mr-xFNReference(33)

}

The attribute objectReferenceAddresses stores a list of addresses for a given object. The
addressId component contains an address identifier. It may be a string (for example,
onc_fn_nisplus), a universal unique identifier (UUID) in string format (for example,
fd3328c4-2a4b-11ca-af85-09002b1c89cc), or an object identifier. The addressValue
component encodes an address in an OCTET STRING.

If the addressId is a string or a UUID string then the actual address is stored in the
addressValue component. However, if the addressId is an object identifier then it identifies
the attribute at the X.500 entry which actually stores the address; the addressValue
component is then unused.

Federated Naming: The XFN Specification 233

Mapping XFN to X.500: Preliminary Specification Mapping XFN

B.2.2.3 String Encoding for XFN References

As an interim measure, the following X.500 object class is also defined. It accommodates those
X.500 implementations that have schemas which cannot easily support new attributes with
compound ASN.1 syntaxes. The object class xFNSupplement is defined in ASN.1 as follows:

xFNSupplement OBJECT-CLASS ::= {
SUBCLASS OF { top }
KIND auxiliary
MAY CONTAIN { objectReferenceString |

nNSReferenceString }
ID id-oc-xFNSupplement

}

id-oc-xFNSupplement OBJECT IDENTIFIER ::= {
iso(1) member-body(2) ansi(840) sun(113536)
ds-oc-xFNSupplement(25)

}

It contains two optional attributes. Both attributes store a string encoding of an XFN reference.
The nNSReferenceString attribute is described further in Section B.2.3.2 on page 236. The
attribute objectReferenceString is defined in ASN.1 as follows:

objectReferenceString ATTRIBUTE ::= {
WITH SYNTAX OCTET STRING
EQUALITY MATCHING RULE octetStringMatch
SINGLE VALUE TRUE
ID id-at-objectReferenceString

}

id-at-objectReferenceString OBJECT IDENTIFIER ::= {
iso(1) member-body(2) ansi(840) sun(113536)
ds-at-objectReferenceString(30)

}

234 X/Open CAE Specification

Mapping XFN Mapping XFN to X.500: Preliminary Specification

Its OCTET STRINGsyntax is further constrained to conform to the following BNF definition:

<ref> ::= <id> ’$’ <ref-addr-set>
<ref-addr-set> ::= <ref-addr> | <ref-addr> ’$’ <ref-addr-set>
<ref-addr> ::= <id> ’$’ <addr>
<addr> ::= <hex-string>

<id> ::= ’id’ ’$’ <string> |
’uuid’ ’$’ <uuid-string> |
’oid’ ’$’ <oid-string>

<string> ::= <char> | <char> <string>
<char> ::= <PCS> | ’´ <PCS>
<PCS> ::= // Portable Character Set:

// !"#$%&’()*+,-./0123456789:;<=>?
// @ABCDEFGHIJKLMNOPQRSTUVWXYZ[]ˆ_
// ‘abcdefghijklmnopqrstuvwxyz{|}˜

<uuid-string> ::= <uuid-char> | <uuid-char> <uuid-string>
<uuid-char> ::= <hex-digit> | ’-’

<oid-string> ::= <oid-char> | <oid-char> <oid-string>
<oid-char> ::= <digit> | ’.’

<hex-string> ::= <hex-octet> | <hex-octet> <hex-string>
<hex-octet> ::= <hex-digit> <hex-digit>
<hex-digit> ::= <digit> |

’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ |
’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’

<digit> ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ |
’6’ | ’7’ | ’8’ | ’9’

The two attributes defined in the xFNSupplement object class enable XFN references to be
conveniently stored as strings in X.500. The following are examples of string form XFN
references:

"id$x500$oid$2.5.4.29$00"

"idonc_fn_userid$onc_fn_nisplus$aabbccddeeff"

"uuid$f5fd3328c4-2a4b-11ca-af85-09002b1c89bb$uuid$f5fd3328c4-
2a4b-11ca-af85-09002b1c89cc$aabbccddeeff"

In the first example the reference identifier is x500 . This indicates that it is a reference to an
X.500 object. The address identifier is the object identifier for the OSI presentation address
attribute. The address value is stored at that specified attribute.

In the second example the reference identifier is onc_fn_user . This indicates that it is a
reference to a user in an enterprise. The address identifier is onc_fn_nisplus . The address
value is a hexadecimal string.

The third example has a reference identifier and an address identifier in UUID format. The
address value is a hexadecimal string.

Appendix G provides a registry of reference and address identifiers.

Federated Naming: The XFN Specification 235

Mapping XFN to X.500: Preliminary Specification Mapping XFN

B.2.3 Federating X.500 with Other Naming Systems

X.500 federates other naming systems by supplying the necessary support to permit other
namespaces to appear to be seamlessly attached below the X.500 namespace.

When X.500 is used to federate other naming systems it supports composite name resolution
using weak separation and implicit next naming system pointers. These concepts are described
in Section 4.3 on page 63.

B.2.3.1 Weak Separation

An X.500 context uses a syntactic policy to determine the boundary between the global naming
system and the subordinate naming system. According to this policy, components from a
composite name that form a distinguished name have the distinguishing feature that each
component contains the ‘‘=’’ (equals) character. The first name component that does not have an
unescaped and unquoted ‘‘=’’ character is considered to be in the subordinate naming system.

This imposes the minor restriction that a subordinate naming system must not permit the ‘‘=’’
character to appear unescaped or unquoted in its top level names.

For example, given the composite name

.../c=us/o=wiz/_orgunit/finance

the syntactic policy specifies that only the two components c=us and o=wiz should be
extracted to form a distinguished name for resolution in X.500.

B.2.3.2 Implicit Next Naming System Pointers

An implicit next naming system pointer is an XFN reference to a subordinate naming system.
Such an XFN reference is stored in the X.500 entry at the boundary between X.500 and the
subordinate naming system.

The xFN object class defined above has support for next naming system references. The
attribute nNSReferenceId stores a reference identifier and has the same syntax as
objectReferenceId . The attribute nNSReferenceAddresses stores a list of addresses and
has the same syntax as objectReferenceAddresses .

They are defined in ASN.1 as follows:

236 X/Open CAE Specification

Mapping XFN Mapping XFN to X.500: Preliminary Specification

nNSReferenceId ATTRIBUTE ::= {
WITH SYNTAX XFNId
EQUALITY MATCHING RULE XFNIdMatch
SINGLE VALUE TRUE
ID id-at-nNSReferenceId

}

nNSReferenceAddresses ATTRIBUTE ::= {
WITH SYNTAX XFNReference
EQUALITY MATCHING RULE XFNReferenceMatch
SINGLE VALUE TRUE
ID id-at-nNSReferenceAddresses

}

id-at-nNSReferenceId OBJECT IDENTIFIER ::= {
iso(1) member-body(2) ansi(840) sun(113536)
ds-at-nNSReferenceId(28)

}

id-at-nNSReferenceAddresses OBJECT IDENTIFIER ::= {
iso(1) member-body(2) ansi(840) sun(113536)
ds-at-nNSReferenceAddresses(29)

}

The xFNSupplement object class also defines a string form for next naming system references.
The attribute nNSReferenceString has the same syntax as objectReferenceString . It is
defined in ASN.1 as follows:

nNSReferenceString ATTRIBUTE ::= {
WITH SYNTAX OCTET STRING
EQUALITY MATCHING RULE octetStringMatch
SINGLE VALUE TRUE
ID id-at-nNSReferenceString

}

id-at-nNSReferenceString OBJECT IDENTIFIER ::= {
iso(1) member-body(2) ansi(840) sun(113536)
ds-at-nNSReferenceString(31)

}

The next naming system reference attribute enables an XFN reference to a subordinate naming
system to be stored in X.500. The following example is an XFN reference which may be used to
attach an NIS+ namespace below an entry in the X.500 namespace. The example uses the string
form.

"id$onc_fn_enterprise$id$onc_fn_nisplus_root$0000000f77697a2e
636f6d2e2062696762696700"

It points to the root of an NIS+ domain in an enterprise. Its reference identifier is
onc_fn_enterprise . Its address identifier is onc_fn_nisplus_root and it contains a
single address value. The address value is an XDR encoded string, comprising the domain name
‘‘wiz.com. ’’ followed by the hostname bigbig .

Federated Naming: The XFN Specification 237

Mapping XFN to X.500: Preliminary Specification Mapping XFN

A next naming system reference may be added and removed from an X.500 entry by naming the
entry with a trailing ‘‘/ ’’ character when using the functions fn_ctx_bind() and fn_ctx_unbind()
respectively. For example, the next naming system reference at the X.500 entry
.../c=us/o=wiz is identified by the name,

.../c=us/o=wiz/

Note however that in order to add or remove such references the X.500 entry must already exist.

B.2.3.3 Resolving Through X.500

Once a next naming system pointer is in place at an X.500 entry then name resolution through
X.500 proceeds as described in Section 4.3.1.2 on page 63:

1. The X.500 name components are first extracted from the composite name using the
syntactic policy described above.

2. A distinguished name is constructed using these components and a read operation is
performed at the X.500 directory. The next naming system reference attribute is requested.

3. An FN_ref_t object is constructed from the next naming system reference attribute(s).

4. fn_ctx_handle_from_ref () is called with that reference to return a handle to the root context
object in the naming system subordinate to X.500.

5. Resolution of the remaining components in the composite name now proceeds from this
new context.

For example, resolution of the name:

.../c=us/o=Wiz/_orgunit/finance

involves resolving the atomic name ‘‘... ’’ in the Initial Context to get a handle to the global
context. From there the distinguished name /c=us/o=Wiz is resolved in X.500 to obtain a next
naming system reference. That reference identifies a context in which the rest of the name
_orgunit/finance can be resolved.

B.2.4 XFN API Function Mapping

The X.500 directory access protocol offers a rich set of query and manipulation operations which
makes it suitable for supporting the context and attribute operations of the XFN API. The one-
to-one correspondence between XFN and X.500 operations ensures atomicity.

B.2.4.1 Context Operations

All XFN context operations (except as noted below) can be fully supported by X.500.

The fn_ctx_bind() and fn_ctx_create_subcontext() functions cannot be used to introduce new
names in the X.500 namespace. This is because the creation of a new entry in X.500 requires that
all mandatory attributes (for example, object class) be supplied. Instead, the functions
fn_attr_bind () and fn_attr_create_subcontext () may be used to create a new entry and set its
attributes in a single atomic operation.

If fn_ctx_lookup () is performed on an X.500 object then its XFN reference is returned. The default
reference identifier is x500 ; it denotes a reference to any X.500 object. If a more specific
reference identifier is available at the X.500 object then that is used instead. The object reference
will contain at least one reference address. That address identifier will be x500 and its address
value will be the string form of the X.500 object’s distinguished name. If more addresses are
present at the X.500 object then they too are included in the XFN reference.

238 X/Open CAE Specification

Mapping XFN Mapping XFN to X.500: Preliminary Specification

B.2.4.2 Attribute Operations

All XFN attribute operations can be fully supported by X.500.

The functions fn_attr_bind () and fn_attr_create_subcontext () may be used to create a new entry
and set its attributes in a single atomic operation.

Federated Naming: The XFN Specification 239

Mapping XFN to CDS: Preliminary Specification Mapping XFN

B.3 Mapping XFN to CDS: Preliminary Specification
The whole of this section (Mapping XFN to CDS) is assigned X/Open Preliminary
Specification status (not CAE Specification status). For explanation of the difference between
Preliminary and CAE specifications, see the description under X/Open Technical Publications
in the Preface. Readers should appreciate that the header title on each page of this section of
Section B.3 correctly identifies its status as Preliminary, while the footer on each of its
odd-numbered pages also correctly identifies this section of the Appendix as a part of the XFN
CAE Specification.

This section describes the mapping of XFN to CDS.

B.3.1 Overview

DCE Cell Directory Service (CDS) is a naming system in the enterprise namespace. It is a generic
directory service and provides a replicated information system. Its primary use is as an
information service for server locations and bindings.

CDS controls the DCE cell namespaces that consist of names denoting directory, object (terminal
nodes), and soft link entries. Any entry controlled by CDS consists of a set of operational
attributes and optional application specific attributes. Attributes are identified by attribute
identifiers. Attributes have associated values with a defined syntax (data type). Attributes are
either single-valued or set-valued.

The cell namespace is a hierarchical structure of untyped names. The syntax for naming entries
is a left-to-right ordered set of atomic names, corresponding to the top-to-bottom lineage of the
named entry. Atomic names are separated by a slash (’/’), same as the XFN component
separator.

For more information on CDS, see reference X/Open DCE Directory.

Policies and rules defined in this appendix section must be applied to client context
implementations that provide for integration of CDS into the naming federation. Portability of
applications requires conformance to the specified API mappings and the appropriate reference,
address, and attribute types. Furthermore, the conformance requirements also apply to a CDS
server implementation that directly exports the XFN DCE IDL, as specified in Section A.1.

Note that the CDS programming interface is internal to CDS implementations and not a
published API. The mappings specified here define the behaviour of the CDS service as specified
in X/Open DCE Directory. CDS context implementations may use the internal CDSPI but its
behaviour is neither guaranteed nor specified here.

B.3.2 Representation of XFN Concepts in CDS

The following subsections specify how the XFN concepts and policies are represented in CDS.

B.3.2.1 Context Operations

Context operations are fully supported, with the exception of fn_ctx_rename() (unless a CDS
directory version greater than 3.0 - equivalent to DCE 1.1 and up - is supported).

240 X/Open CAE Specification

Mapping XFN Mapping XFN to CDS: Preliminary Specification

B.3.2.2 XFN Links

XFN links are controlled by the attribute XFN_Link, associated with an CDS object entry. The
reference and address types of a XFN link are FN_LINK_REF and FN_LINK_ADDR. XFN links
are not integrated with CDS soft links.

B.3.2.3 Attribute Operations

The full set of attribute operations is supported.

The operations on multiple attributes are supported but it shall be noted that this may be a
limited support due to the lack of appropriate protocol elements in the native CDS IDL interface.

fn_attr_get_ids ()
No restrictions apply.

fn_attr_multi_get ()
The CDS protocol has a read-ahead option (flag maybemore in operation cds_ReadAttribute())
that implementations may use. However, in cases where CDS servers do not support the
maybemore option and where the requested information exceeds the buffer size, multiple
calls to the server have to be performed. Therefore, no atomicity guarantees for the returned
set can be made. Also, the CDS specification does not guarantee that CDS servers return
this "read-ahead" buffer if the request on the initially specified attribute fails (for example,
attribute does not exist).

fn_attr_multi_modify ()
This function may be implemented as multiple calls of the remote procedure
cds_ModifyAttribute () that performs a single modification operation.

If the name supplied to an attribute operation is non-empty, the operation performs on the
attributes of the named CDS entry (CDS child pointer, object entry, or soft link entry). If the
name argument is empty, the attribute operation performs on the entity that is referenced by the
resolved ctx. This can be a CDS directory entry or an object external to CDS.

Unless further specified in the following sections, the behaviour of attribute operations conforms
to the specification X/Open DCE Directory. For instance, size limitations, and some operational
attributes in CDS are determined as read-only or write-once.

B.3.2.4 Attribute Identifiers and Syntax

The representation of attribute identifiers is FN_ID_ISO_OID_BER. Operational XFN attributes
registered by OSF contain the following object identifier prefix:

1.3.22.1.6
{iso(1) identified-org(3) osf(22) dce(1) xfn(6) ... }

CDS implementations store the syntax of attribute values typically in an attributes table local to
the CDS clerk.

B.3.2.5 Attribute Values

Any XFN operation that creates an attribute, instantiates the attribute as multi-valued. The
creation of attributes with no values (empty set) is permitted.

XFN attribute fn_attr_get () operations read both single-valued and set-valued attributes. No
distinction can be made through the XFN interfaces.

The behaviour of the XFN attribute fn_attr_modify () operation is further specified in
fn_attr_modify () on page 129.

Federated Naming: The XFN Specification 241

Mapping XFN to CDS: Preliminary Specification Mapping XFN

B.3.2.6 Syntax Attributes

The CDS context implementation supports the XFN standard syntax model. These attributes are
maintained by the context implementations (not stored as attributes in CDS) and contain fixed
values as follows:

Attribute Identifier Attribute Value
fn_syntax_type standard
fn_std_syntax_direction left_to_right
fn_std_syntax_separator /
fn_std_syntax_escape \
fn_std_syntax_case_insensitive absent
fn_std_syntax_begin_quote1 ‘
fn_std_syntax_end_quote1 ’
fn_std_syntax_begin_quote2 "
fn_std_syntax_end_quote2 "
fn_std_syntax_ava_separator absent
fn_std_syntax_typeval_separator absent
fn_std_syntax_code_sets 0x00010001 (ISO 8859-1/Latin-1)

Its interpretation depends on the
values of fn_std_syntax_code_sets.

fn_std_syntax_locale_info

B.3.2.7 Atomicity of Operations

There is no guarantee of atomicity for XFN interface functions that translate into multiple CDS
operations. Target entities may change during the course of executing the XFN function due to
concurrent access to CDS servers. Data may have become partially invalid or errors may be
detected (such as [FN_E_NAME_NOT_FOUND]) that indicate changed state.

Particularly, the atomicity of the following XFN API functions is not guaranteed, unless the
application provides other means for synchronization:

• fn_ctx_list_bindings ()

• fn_attr_multi_get ()

• fn_attr_multi_modify ().

B.3.2.8 DCE Group References

A DCE group is a reference that contains a set of addresses (type
FN_DCE_GROUP_MEMBER_ADDR) whose value is a composite name, called group member.

The DCE group describes a group of equivalent servers. The group members are names that
may point to further groups and finally resolve into references that contain communications
endpoints of servers. DCE groups can be used as an aid for replication.

The values of the RPC_Group attribute are used to construct a XFN reference with a set of
addresses of type FN_DCE_GROUP_MEMBER_ADDR.

These addresses are resolved in an implementation specific order (preferably random) until one
valid communications endpoint (for example, reference address of type
FN_DCE_RPC_SERVER_ADDR) has been found for further resolution of the (residual) name.
This may be a recursive operation due to nested groups, therefore, may involve multiple calls to
CDS for resolving the compound name of a group member entry. The context implementation
maintains the state of this execution loop to permit an exhaustive resolution of a DCE group

242 X/Open CAE Specification

Mapping XFN Mapping XFN to CDS: Preliminary Specification

(which is possibly nested) by avoiding duplications.

To take advantage of the additional reliability provided by group references, the CDS context
will repeatedly select different members of this group to retry an XFN operation if the operation
fails. An algorithm for retry of failed operations is given below. It is not necessary for an
implementation to follow this algorithm, however, the externally visible results appearing at the
XFN API must be indistinguishable from the results produced by this algorithm.

The algorithms assume that calls made on behalf of a user call to the XFN API are all part of the
same thread of execution and that this execution is independent of any other user calls. For
example, if concurrent calls are made by users to the XFN API, these calls do not interfere with
each other. A separate instantiation of the CDS context is associated with each user call.

In order to detect possible cycles in nested group references, this model assumes there exists
state global to the thread of execution.

Let FN_<op> represent a call to the XFN API invoking the function denoted by <op>. For each
FN_<op>, there exists a procedure CDS_CTX_<op> which will be invoked when the parameters
associated with the FN_<op> call indicate use of the CDS context for the operation.

Each invocation of CDS_CTX_<op> on the CDS context operates as follows.

1. Extract the name components to be resolved to a context from the parameters passed on
invocation. Note that for some operations, such as listing the names in a context, the entire
name must be resolved. Other operations, such as bind, must resolve all but the terminal
atomic name. Resolve as much of the relevant name as possible in CDS and retrieve the
attributes associated with the resolved name. If this fails, then return an error; otherwise
go to step 2.

2. If attributes retrieved from CDS map to an object reference, then go to step 5; otherwise, go
to step 3.

3. If there are any unresolved residual name components, then return an error, along with the
unresolved residual name components, because the name could not be resolved;
otherwise, go to step 4.

4. Since there are no residual name components, the target context for the operation is within
CDS. Perform <op> on the object specified by the call parameters and return the results.

5. If the object reference formed from the attributes is a group reference, then go to step 6;
otherwise, return the object reference and any unresolved residual name along with other
relevant parameters.

6. If the group is empty, then return an error because the reference to the context could not be
found; otherwise, go to step 7.

7. Select a member (a name) from the group and remove this member from the group. Check
for a cycle. A cycle occurs if the selected member of the group was previously resolved as
part of this thread of execution. If a cycle is detected, then go to step 6; otherwise, go to
step 8.

8. Compose this member name with the unresolved residual name, if any, such that the
residual name components trail the member name components. Based upon the input
parameters and using the initial context, generate call parameters and invoke FN_<op>. If
FN_<op> returned successfully, then return the results; otherwise, go to step 6.

Notes:

1. The CDS context implementation expects the XFN_Reference attribute to be
present to identify a XFN reference. However, in order to preserve backward

Federated Naming: The XFN Specification 243

Mapping XFN to CDS: Preliminary Specification Mapping XFN

compatibility with RPC server registration of group entries that does not create
this attribute, the CDS context implementation must also identify a DCE group
even in the absence of the XFN_Reference attribute.

2. The system administration must take precautions that a group resolves into
addresses that logically (it may be represented by different replicas or multiple
communication protocols) bind the same context.

3. CDS does not preclude the existence of both CDS_Towers and RPC_Group
attributes in a single object entry. If an object entry contains both attributes (and
the XFN_Reference attribute contains pointers to both), the CDS_Towers
attribute takes precedence for constructing the address; that is, RPC_Group is
ignored for resolution.

4. Although DCE groups provide a mechanism for organizing RPC servers into
groups, the target of the names listed in groups do not need to be RPC server
references. Refer to context implementation specifications for details.

B.3.3 Federating CDS With Other Naming Systems

The following subsections specify how other naming systems can be federated using CDS and
what the composition rules are.

B.3.3.1 Weak and Strong Separation

The CDS context implementation supports weak separation. The CDS atomic name separator is
the same as the XFN component separator and the CDS compound name does not need to be
quoted or escaped.

The weak separation model is implemented on a resolution basis. The unresolved residual of a
name is returned if a name cannot be further resolved within CDS. The only syntactical
restriction is that the first name component of the unresolved name must be a syntactically valid
CDS name.

The strong separation model is implicitly supported by the context implementation. Both
models behave exactly the same on the interface level.

B.3.3.2 Junctions (Explicit Next Naming System Pointers)

Subordinate naming systems are federated with CDS using junctions. Junctions are CDS object
entries that are identified by the presence of the attribute XFN_Reference that identifies a XFN
reference to a context of a subordinate naming system. The reference types controlled by
junctions is determined by the bound context.

Note that CDS object entries may control references (presence of XFN_Reference) to objects
external to CDS that are not contexts of subordinate next naming systems. For instance,
referenced RPC servers might not support naming and do not export any XFN interfaces. The
same mechanisms are used for identifying and managing these types of references.

244 X/Open CAE Specification

Mapping XFN Mapping XFN to CDS: Preliminary Specification

B.3.3.3 Implicit Next Naming System Pointers

The implementation of implicit next naming system pointers in CDS is not supported.

B.3.4 Registered Values and their Encodings

This section defines the encodings for XFN references and addresses, and for XFN specific CDS
attributes. The mapping from CDS attributes to XFN references is defined where appropriate.

B.3.4.1 Reference Types

The following reference types are registered for DCE CDS XFN implementations. They are
represented as ISO object identifiers (FN_ID_ISO_OID_STRING).

FN_DCE_CDS_REF — 1.3.22.1.6.1.1
This is the reference type denoting a CDS entity. The valid address type for this reference
type is FN_DCE_RPC_SERVER_ADDR. Each address defines a set of communication
endpoints (protocol towers) for a clearinghouse replica. Multiple replicas are referenced in
multiple addresses.

For reference type FN_DCE_CDS_REF, the fields of the address (type
FN_DCE_RPC_SERVER_ADDR) are interpreted as follows:

tower_set
A set of protocol towers for the clearinghouse named in address_option.

object_uuids
This field contains one UUID that is the identifier of the clearinghouse that is named in
address_option and whose communication endpoints are defined in tower_set.

address_option
This field contains information necessary for communicating with a clearinghouse and
identifying the named entry in a clearinghouse and is structured as follows:

typedef struct {
unsigned small ch_type;
cds_FullName_t ch_name;
cds_FullName_t entry_name;

};

ch_type
The type of the clearinghouse that is either a RT_master or RT_readonly replica.

ch_name
The name of the clearinghouse that holds the replica of the requested entry.

entry_name
The CDS compound name of the requested entry.

FN_DCE_RPC_SERVER_REF — 1.3.22.1.6.1.2
This reference type is used to generate a reference that consists of a
FN_DCE_RPC_SERVER_ADDR address constructed with the absence of a
XFN_Reference attribute in a DCE RPC server entry in CDS (see the definition of
FN_DCE_RPC_SERVER_ADDR for details).

FN_DCE_XFN_SERVER_REF — 1.3.22.1.6.1.3
The reference type that identifies a DCE RPC server exporting the XFN protocol (see Section
A.1 on page 178).

Federated Naming: The XFN Specification 245

Mapping XFN to CDS: Preliminary Specification Mapping XFN

FN_DCE_GROUP_REF — 1.3.22.1.6.1.4
This reference type is used to generate a reference that consists of a
FN_DCE_GROUP_MEMBER_ADDR address constructed with the absence of a
XFN_Reference attribute in a DCE group entry in CDS (see Section B.3.2.8 on page 242 for
details).

FN_DCE_DFS_REF — 1.3.22.1.6.1.5
This reference type denotes a CDS junction to DCE Distributed File Service. Its usage is not
further specified here.

FN_DCE_SEC_REF — 1.3.22.1.6.1.6
This reference type denotes a CDS junction to DCE Security Service. Its usage is not further
specified here.

B.3.4.2 Address Types

Following address types represented as ISO object identifiers (FN_ID_ISO_OID_STRING) are
registered for DCE CDS:

FN_DCE_RPC_SERVER_ADDR — 1.3.22.1.6.2.1
Its value is encoded as:

typedef struct {
protocol_tower_set_t *tower_set;
object_uuids_t *object_uuids;
fn_dce_byte_str_t *address_option;

};

typedef struct {
unsigned16 num_towers;
[length_is(num_towers)] protocol_tower_t *towers;

} protocol_tower_set_t;

typedef struct {
unsigned16 num_objects;
[length_is(num_objects)] uuid_t *objects;

} object_uuids_t;

For the encodings of the uuid_t and protocol_tower_t data types refer to X/Open DCE RPC.

The DCE RPC server address describes an instance of a single RPC server and its protocol
and addressing information that is used for building the XFN reference with addresses of
type FN_DCE_RPC_SERVER_ADDR. If present, the values of attribute
RPC_ObjectUUIDs are also used for constructing the XFN reference.

If the XFN_Reference attribute is present (see also note below), the address is constructed
based on the contents of the attribute_id array. This attribute_id array must always contain
CDS_Towers as first and RPC_ObjectUUIDs as second element. A third attribute
identified by this array is optionally permitted. The address_id field is set to
FN_DCE_RPC_SERVER_ADDR. The reference type (reference_id field) is determined by
the XFN_Reference attribute.

Note: The CDS context implementation expects the XFN_Reference attribute to be
present to identify a XFN reference. However, in order to preserve backward
compatibility with RPC server registration of server entries that does not create
this attribute, the CDS context implementation must also identify a RPC server
address even in the absence of the XFN_Reference attribute. In this case, the type

246 X/Open CAE Specification

Mapping XFN Mapping XFN to CDS: Preliminary Specification

of the constructed reference is FN_DCE_RPC_SERVER_REF, and CDS_Towers
and RPC_ObjectUUIDs are the only attributes used to construct the address.

FN_DCE_GROUP_MEMBER_ADDR — 1.3.22.1.6.2.2
Its value is encoded as:

typedef struct {
unsigned16 member_size;
[length_is(member_size)] fn_dce_byte_str_t member;

};

Note: In order to preserve backward compatibility to RPC NSI function calls, RPC group
entries shall only contain composite names with the global initial context (in DCE
terms, fully qualified global names).

B.3.4.3 CDS Attributes

Following XFN related attribute identifiers represented as BER encoded object identifiers
(FN_ID_ISO_OID_BER) are registered for DCE CDS. For further information refer to X/Open
DCE Directory:

XFN_Reference — 1.3.22.1.6.3.1
Its value’s syntax is VT_byte, encoded as:

typedef struct {
fn_dce_id_t reference_id;
fn_dce_id_t address_id;
unsigned32 num_attrs;
[length_is(num_attrs)] fn_dce_id_t attribute_id[];

};

The attribute can be multi-valued, each value defining the attribute information for different
address types. The reference_id field must be the same for every value, otherwise an
[FN_E_MALFORMED_REFERENCE] error will be generated.

The attribute_id array defines the attribute or possibly set of attributes that contain the
address value information.

If the attribute_id array defines an XFN_Addresses attribute, a single address (type identifier
and value) is constructed for each attribute value, according to the XFN_Addresses
structure defined below. If the attribute_id array defines XFN_Addresses, the address_id
field in the XFN_Reference attribute is not significant and the array must not have multiple
values.

For any other attribute type defined in the attribute_id array, an address is constructed by
taking the address_id from the XFN_Reference attribute and copying the value of the
specified attribute into the address value. If the attribute contains multiple values, these are
concatenated in an unspecified order to a single address value. If multiple attribute
identifiers are defined in the attribute_id array, the address value is constructed by
concatenating the values of these attributes in the listed order.

XFN_Addresses — 1.3.22.1.6.3.2
Its value’s syntax is VT_byte, encoded as:

typedef struct {
fn_dce_id_t address_id;
unsigned32 addr_size;
[length_is(addr_size)] fn_dce_addr_p_t address_value;

Federated Naming: The XFN Specification 247

Mapping XFN to CDS: Preliminary Specification Mapping XFN

};

XFN_Link — 1.3.22.1.6.3.3
Its value’s syntax is VT_byte, encoded as fn_dce_composite_name_t.

CDS_Towers — 1.3.22.1.3.30
Its value’s syntax is VT_byte. See also X/Open DCE RPC.

RPC_ObjectUUIDs — 1.3.22.1.1.2
Its value’s syntax is VT_byte. See also X/Open DCE RPC.

RPC_Group — 1.3.22.1.1.3
Its value’s syntax is VT_byte. See also X/Open DCE RPC.

RPC_CodeSets — 1.3.22.1.1.5
Its value’s syntax is VT_char, encoded as:

typedef struct {
unsigned32 version; /* version of this structure */
long size; /* number of code sets defined */
[size_is(size)] long *code_sets;

};

This code set attribute is encoded by the IDL Encoding Services before it is exported to the
namespace. Refer to DCE RFC 40.1 for more details on code sets.

B.3.5 XFN API Function Mapping

B.3.5.1 Base Context Interface

fn_ctx_lookup ()
The fn_ctx_lookup () function resolves a name in CDS and returns the reference bound to the
name.

XFN links are followed by resolution. For DCE groups, one of the group entries is resolved
to its completion according to the algorithm described in Section B.3.2.8 on page 242.

fn_ctx_list_names ()
If the fn_ctx_list_names () operation resolves to a context controlled by CDS (directory
entry), the listed names represent CDS directory, soft link, or object entries.

If fn_ctx_list_names () resolves to a CDS object entry, the operation can only proceed to its
completion if the name can be identified as a junction (appropriate address and reference
information); otherwise fn_ctx_list_names () returns with status [FN_E_NOT_A_CONTEXT].

If the reference type identifies a junction to a federated naming system, the names bound to
that referenced context are listed and returned in the name set.

fn_ctx_list_bindings ()
If the fn_ctx_list_bindings () operation resolves to a context controlled by CDS (directory
entry), the returned list represents names and bindings of CDS directory, soft link, or object
entries.

If fn_ctx_list_bindings () resolves to a CDS object entry, the operation can only proceed to its
completion if the name can be identified as a junction (similar to the behaviour of
fn_ctx_list_names ()).

Due to the mapping to multiple remote operations in the native CDS protocol, it is not
guaranteed that the results reflect a consistent snapshot of the CDS directory (if updates
have occurred within the window of the call).

248 X/Open CAE Specification

Mapping XFN Mapping XFN to CDS: Preliminary Specification

fn_ctx_bind()
The
function binds a reference to the supplied name in the specified context. The terminal
atomic name in the name argument always determines an CDS object entry. Depending on
the reference type supplied, the following actions are taken:

FN_NULL_REF
A regular CDS object entry is created. This function creates the initial operational
attributes, specified for CDS object entries. The CDS_ObjectUUID attribute cannot be
written by performing this function. Other attributes may be added by performing
subsequent attribute manipulation operations.

If the CDS object entry already exists, the call fails, even if the exclusive flag is zero.

FN_LINK_REF
If the reference contains a FN_LINK_ADDR address, a CDS object entry is created
including the creation of the XFN_Reference and XFN_Link attributes. The XFN_Link
attribute is a multi-valued type with a single value, containing the link-text.

If the CDS object entry already exists, the exclusive flag is zero, and the entry has no
XFN_Reference attribute, then the XFN_Reference and XFN_Link attributes are
created.

If the CDS object entry already exists, the exclusive flag is zero, and the entry is already
a XFN link, then the XFN_Link attribute is updated.

If the CDS object entry exists and the exclusive flag is non-zero, the call fails.

Any other reference type
This is treated as a request for binding an external object that is named by the CDS
object entry. The CDS object entry is created or updated with the presence of an
XFN_Reference attribute.

If the CDS object entry does not exist, an object entry is created including the creation
of the associate attributes (XFN_Reference and those related to the supplied address
types in the reference). Implementations must provide appropriate support for
addresses of type FN_DCE_RPC_SERVER_ADDR and
FN_DCE_GROUP_MEMBER_ADDR. For any other address type contained in the
reference, the operation creates the default attributes XFN_Reference and
XFN_Addresses.

If the CDS object entry already exists, the exclusive flag is zero, and the entry is not a
XFN link, then all attributes used to represent a XFN reference are replaced.

If the CDS object entry exists and the exclusive flag is non-zero, the call fails.

fn_ctx_unbind()
The fn_ctx_unbind() function deletes CDS object or soft link entries.

fn_ctx_create_subcontext()
The fn_ctx_create_subcontext() function creates a new CDS directory entry with its
associated operational attributes in the same clearinghouse as its parent directory. The
appropriate child pointer in the parent directory is created implicitly by the CDS server.

fn_ctx_destroy_subcontext ()
The fn_ctx_destroy_subcontext () function deletes an existing CDS directory entry (and
implicitly, the child pointer in the parent directory). If a directory entry is not empty
(contains child pointers), the call fails.

Federated Naming: The XFN Specification 249

Mapping XFN to CDS: Preliminary Specification Mapping XFN

fn_ctx_rename()
The fn_ctx_rename() function is only supported for CDS directory versions greater than V3.0
(DCE Release 1.1 and up). The newname must reside in the same context (parent directory)
as oldname.

fn_ctx_lookup_link ()
The fn_ctx_lookup_link () function returns the reference bound to name if name is a XFN link
entry (CDS object entry, containing an XFN_Link attribute).

fn_ctx_handle_from_ref ()
The fn_ctx_handle_from_ref () function constructs a context handle from the list of addresses
in the given reference. The type of this handle differs depending on whether the context
implementation maps XFN to the native CDS interfaces or the request is directed to a CDS
server that exports the XFN DCE IDL remote interface.

If the reference denotes a DCE group (address type FN_DCE_GROUP_MEMBER_ADDR),
the implementation of fn_ctx_handle_from_ref () resolves the DCE group to its completion
according to the algorithm specified in Section B.3.2.8 on page 242.

fn_ctx_get_ref ()
The fn_ctx_get_ref () function returns a reference containing the address that was taken by
fn_ctx_handle_from_ref () for constructing the context handle.

The reference may contain a list of addresses that is different to the one originally supplied
to fn_ctx_handle_from_ref () if an FN_DCE_GROUP_MEMBER_ADDR address was
processed. It then contains the resolved reference addresses.

fn_ctx_get_syntax_attrs ()
The fn_ctx_get_syntax_attrs () function retrieves the syntax attributes that are fixed and
known to the CDS context implementation. These syntax attributes are not actually stored
as attributes in CDS servers.

B.3.5.2 Base Attribute Interface

fn_attr_get ()
The fn_attr_get () function reads the attribute values of the specified attribute in the target
entry (can be directory, child pointer, object, or soft link).

fn_attr_modify ()
The fn_attr_modify () function updates the specified attribute in the target entry. Only
attributes in entries of type directory or object can be modified. If the entry is of type
directory, only certain attributes may be modified (see X/Open DCE Directory for details).

If the operation code is FN_ATTR_OP_ADD and the attribute does not exist, it creates a
set-valued attribute with the supplied values (the set of values may be empty). If the
attribute already exists as set-valued, CDS performs a delete and subsequent create attribute
operation with no guarantee of atomicity (The operation may fail if another create operation
takes place concurrently). If the attribute exists as single-valued, the operation replaces the
value (in this case, the supplied value set must contain exactly one member).

If the operation code is FN_ATTR_OP_ADD_EXCLUSIVE and the attribute does not exist, it
creates a set-valued attribute with the supplied values (the set of values may be empty).

If the operation code is FN_ATTR_OP_REMOVE, it removes single-valued as well as set-
valued attributes from the entry.

If the operation code is FN_ATTR_OP_ADD_VALUES, it adds the supplied values to a set-
valued attribute. If the attribute is a single-valued type, the operation fails with

250 X/Open CAE Specification

Mapping XFN Mapping XFN to CDS: Preliminary Specification

[FN_E_TOO_MANY_ATTR_VALUES].

If the operation code is FN_ATTR_OP_REMOVE_VALUES, it removes the supplied values
from a set-valued attribute. This operation may result in an empty set-valued attribute. If
the specified attribute is single-valued and the supplied value set contains exactly one
member, a match will result in the deletion of the attribute. If the supplied values set
contains more than one member, the call fails on single-valued attributes.

fn_attr_get_ids ()
The fn_attr_get_ids () function enumerates the attributes of the specified entry (whose type
can be any of the supported CDS entry types).

fn_attr_get_values ()
The fn_attr_get_values () function behaves the same as fn_attr_get ().

fn_attr_multi_get ()
The fn_attr_multi_get () function reads the set of specified attributes.

If the operation performs over the native CDS protocol, this operation is not atomic.

fn_attr_multi_modify ()
The fn_attr_multi_modify () function has a behaviour similar to fn_attr_modify (). If the
operation performs over the native CDS protocol, neither is the operation atomic nor can
performance gains be expected (separate remote operation for each modification in the
specified sequence).

B.3.6 Support Level of CDS Service

The XFN context implementation for CDS supports the following basic service primitives of
CDS, as specified in X/Open DCE Directory. Possible restrictions and specific behaviour is
specified elsewhere in this appendix section:

• CreateDirectory()

• CreateObject()

• DeleteDirectory()

• DeleteObject()

• DeleteSoftLink()

• EnumerateAttribute()

• EnumerateChildren()

• EnumerateObject()

• EnumerateSoftLinks()

• ModifyAttribute ()

• ReadAttribute()

• ResolveName().

The following CDS service primitives are not supported by the XFN context implementation for
CDS:

• Advertise()

• CreateSoftLink ()

Federated Naming: The XFN Specification 251

Mapping XFN to CDS: Preliminary Specification Mapping XFN

• CreateChild ()

• DeleteChild()

• Solicit ()

• SolicitServer()

• TestAttribute().

Note, that a number of flags that control the CDS clerk to server communication such as the
confidence level, cache timeout, soft link resolution, and maybemore cannot be manipulated
through the XFN API. CDS context implementations support default settings (for example,
confidence level to LOW) and other appropriate values (for example, maybemore set TRUE for
fn_attr_multi_get ()). Refer to implementation specifications for identifying the behaviour.

252 X/Open CAE Specification

Mapping XFN Mapping XFN to NIS+

B.4 Mapping XFN to NIS+
This section describes the mapping of XFN to NIS+. It describes how the XFN interface and
XFN enterprise-level policies are be implemented and represented in NIS+.

B.4.1 Overview

NIS+ is the network information service in Solaris. It is an information retrieval system for
well-known UNIX databases, such as the password tables, host tables and mail aliases maps. It
also supports Solaris specific databases such as the automount maps and the credential tables.
NIS+ is an enterprise-wide information service. The enterprise is partitioned into organizational
units that are arranged into a tree and assigned hierarchical domain names. For example, an
enterprise with the domain name, wiz.com., may have the following organizational units:

sales.wiz.com.
engineering.wiz.com.
marketing.wiz.com.
corp.wiz.com.

Any of these organizational units might have suborganizations, which have further
suborganizations, and so on.

The type of objects that NIS+ understands are principals, directories, tables, entries and groups.
There is no concept of a user or host context, per se. Information about an object, such as a user,
appears in various different tables, such as the credentials table, the password table, the
automount maps and the mail aliases map. This information is retrieved using NIS+ index
names. For example, the password entry for a user mjones is obtained by using the name:

[name=mjones]passwd.org_dir.sales.wiz.com.

The credentials for the same user are obtained using the name:

[name=mjones.sales.wiz.com.]cred.org_dir.sales.wiz.com.

See Administering NIS+ for an overview of NIS+ concepts and Solaris NIPG for a description of
the NIS+ programming interface.

B.4.2 Representation of XFN Concepts in NIS+

Because NIS+ is an enterprise-wide service, it makes sense for the mapping of XFN over NIS+ to
adopt the XFN enterprise-level policies (see Appendix D) as well as supporting the XFN
interface. This means the XFN/NIS+ service should provide an Initial Context that conforms to
the XFN Initial Context (see Section 5.3 on page 73 and Section D.4 on page 285), and naming
contexts for organizations, users and hosts. Consequently, an XFN service implemented on top
of NIS+ provides additional naming functionality over NIS+:

• XFN/NIS+ associates contexts to organizations, users and hosts and allows one to name
objects and services relative to these entities.

• XFN/NIS+ can support the resolution of composite names across enterprise boundaries.

• XFN/NIS+ provides an XFN Initial Context.

Composite name resolution is supported using strong separation and implicit next naming
system pointers, as described in Section 4.3.1.1 on page 63.

Federated Naming: The XFN Specification 253

Mapping XFN to NIS+ Mapping XFN

B.4.2.1 Mapping XFN Enterprise-level Policies to NIS+

XFN organizations are analogous to NIS+ domains. A NIS+ domain comprises logical
collections of users and machines and information about them, arranged to reflect some form of
hierarchical organizational structure within an enterprise.

NIS+ Domains and XFN Organizations
The top XFN organizational namespace is mapped to the NIS+ root domain. It is accessed
using the name _hostorg or _userorg from the Initial Context (depending on whether the
enterprise of interest is that of the host or user, respectively). Non-root XFN organizational
units are mapped to NIS+ non-root domains.

In NIS+, users and hosts have a notion of a home domain . It is the primary NIS+ domain that
maintains information associated with them. A user’s or host’s home domain can be
determined directly using its NIS+ principal name. An NIS+ principal name is composed of
the atomic user (login) name or the atomic host name with the name of the NIS+ home
domain. For example, user jsmith in the home domain wiz.com. has an NIS+ principal
name of jsmith.wiz.com..

A user’s NIS+ home domain corresponds to the user’s XFN organizational unit,
_userorgunit. Similarly, a host’s home domain corresponds to the host’s XFN
organizational unit, _hostorgunit. These correspondences are used to determine the
bindings for _user, _host.

NIS+ Users and XFN Users
An XFN user corresponds to an NIS+ user. Users in NIS+ are found in the passwd.org_dir
table of a domain. Users in a particular XFN organizational unit correspond to the users in
the passwd.org_dir table of the corresponding NIS+ domain. The passwd.org_dir table is
used to obtain the list of user names for the context of _user.

NIS+ Hosts and XFN Hosts
An XFN host corresponds to an NIS+ host. Hosts in NIS+ are found in the hosts.org_dir
table of a domain. Hosts in a particular XFN organizational unit correspond to the hosts in
the hosts.org_dir table of the corresponding NIS+ domain. The hosts.org_dir table is used
to obtain the list of host names for the context of _host.

XFN Sites and Services
There are no corresponding NIS+ concepts for the XFN site and service contexts. These are
represented using additional NIS+ tables.

B.4.2.2 Name Syntax

The XFN/NIS+ contexts have the following syntax attributes:

254 X/Open CAE Specification

Mapping XFN Mapping XFN to NIS+

Context Type Attribute Identifier Attribute Value
Organizational Unit fn_syntax_type standard
or Site fn_std_syntax_direction right_to_left

fn_std_syntax_separator .
fn_std_syntax_case_insensitive
fn_std_syntax_escape \
fn_std_syntax_begin_quote1 "
fn_std_syntax_end_quote1 "
fn_std_syntax_code_sets 0x00010020 (ASCII)

Host fn_syntax_type standard
fn_std_syntax_direction flat
fn_std_syntax_case_insensitive
fn_std_syntax_escape \
fn_std_syntax_begin_quote1 "
fn_std_syntax_end_quote1 "
fn_std_syntax_code_sets 0x00010020 (ASCII)

User fn_syntax_type standard
fn_std_syntax_direction flat
fn_std_syntax_escape \
fn_std_syntax_begin_quote1 "
fn_std_syntax_end_quote1 "
fn_std_syntax_code_sets 0x00010020 (ASCII)

Service fn_syntax_type standard
fn_std_syntax_direction left_to_right
fn_std_syntax_separator /
fn_std_syntax_case_insensitive
fn_std_syntax_escape \
fn_std_syntax_begin_quote1 "
fn_std_syntax_end_quote1 "
fn_std_syntax_code_sets 0x00010020 (ASCII)

B.4.2.3 Context Representations

The implementation of XFN contexts in NIS+ uses NIS+ directories and tables. Some of these
are existing NIS+ objects; others are newly created to represent data that do not exist in NIS+.

Organization objects map directly to NIS+ directories.

The hostname and username contexts for an organization use existing NIS+ tables as their
source of host names and user names, respectively, as well as new tables to hold context data for
users and hosts.

Other types of context objects such as user, host, service, site require new representations for
their contexts. The storage for these types of context objects are implemented in a similar way:
name to reference bindings of a context are stored using a bindings table. A bindings table
contains atomic name to reference mappings. Each binding has a flag to prevent orphan
contexts. In addition, a bindings table has one or more columns for storing attributes.
Implementations for specific context types might differ in how they parse names and how they
construct the reference or attributes to return. If the context allows next naming system pointer
to be bound, the special name _FNS_nns_ is used to bind the reference of the nns pointer. Some
contexts may share a single physical bindings table (the bindings within the table are logically
separated by context); for example, all contexts and subcontexts owned by a user may share the
same bindings table.

Federated Naming: The XFN Specification 255

Mapping XFN to NIS+ Mapping XFN

To keep NIS+ objects that are used for the context implementation separate from other NIS+
objects, NIS+ objects used for context objects of an organization are kept under the ctx_dir
subdirectory, at the same level as org_dir.

B.4.3 XFN References

B.4.3.1 Reference Types

The following reference type identifiers are defined for the types of XFN/NIS+ contexts. Their
format is FN_ID_STRING.

Object Type Reference Type Identifier
enterprise context onc_fn_enterprise
file system context onc_fn_fs
organization onc_fn_organization
printername context onc_fn_printername
printer context onc_printers
site context onc_fn_site
user name context onc_fn_username
host name context onc_fn_hostname
user object onc_fn_user
host object onc_fn_host
service context onc_fn_service
namespace id context onc_fn_nsid
null context onc_fn_null
generic context onc_fn_generic

B.4.3.2 Address Formats and Types

An XFN/NIS+ FN_ref_t object consists of one address; the address has type "onc_fn_nisplus"
(FN_ID_STRING format). There are different subtypes of addresses, reflecting the different
types of XFN/NIS+ contexts. The different addresses are differentiated for the following
reasons:

• the names might have different syntax (for example, service names are slash separated left-
to-right, organization names are dot separated right-to-left)

• operations (such as lookup and bind) might have different semantics.

An address of type "onc_fn_nisplus" has the following format:

context type repr type version unused internal name or reference

context type (byte) is an unsigned number indicating the type of context. repr type (byte) is an
unsigned number with information regarding the context’s representation. version (byte) is an
unsigned number indicating the version number of the address. The last field is a variable-sized
byte string that contains either an internal name of the NIS+ object that represents the context, or
a serialised reference if this reference is that of a null context. An internal name is represented as
an XDR encoded string. A serialised reference is an XDR encoded reference.

The fn_ctx_handle_from_ref () operation supported by XFN/NIS+ examines the context and
representation type information in the address and returns a context of the appropriate subclass.

256 X/Open CAE Specification

Mapping XFN Mapping XFN to NIS+

In addition, the following address type is used for Internet addresses associated with hosts:
"inet_ipaddr_string" (see Section B.1).

B.4.4 XFN API Function Mapping

B.4.4.1 Context Operations

Lookup operations involve checking for the existence of corresponding NIS+ objects or looking
up the binding in the appropriate bindings table.

List operations involve listing the appropriate NIS+ table or directory.

The create and destroy operations involve creation/destruction of the corresponding directory,
bindings table or the set of bindings associated with the context.

The bind, unbind and rename operations involve updating the corresponding binding in the
appropriate bindings table.

B.4.4.2 Attribute Operations

Syntax attributes requested through fn_ctx_get_syntax_attrs () are generated algorithmically on
demand.

There are different levels of support for the attribute operations depending on the type of object.
This is implementation-dependent.

B.4.4.3 Context Creation

Because supplemental information, such as the type of context to create and information about
its representation, is required for creation of some contexts, XFN/NIS+ provides an extended
context interface with the following additions:

FN_ref_t *fn_nis_ctx_create_context(
FN_nis_ctx_t * ctx ,
const FN_composite_name_t * name,
unsigned int context_type ,
unsigned int repr_type ,
FN_status_t * status);

FN_ref_t *fn_nis_ctx_create_context_with_attrset(
FN_nis_ctx_t * ctx ,
const FN_composite_name_t * name,
unsigned int context_type ,
unsigned int repr_type ,
const FN_attrset_t * attrs ,
FN_status_t * status);

Federated Naming: The XFN Specification 257

Mapping XFN

258 X/Open CAE Specification

Appendix C

Guidelines for Federating a Naming System

These guidelines are intended for naming system implementors who either want to integrate an
existing naming system into the federation or develop a new XFN-conformant naming system
(including any application that exports naming interfaces).

These guidelines are to be used in conjunction with the native specifications of the naming
system to be federated and the implementation specification of the XFN client library.

The first section of this appendix describes some typical implementation models that an
implementor can use to provide XFN service.

The remaining sections summarise information contained in Chapter 3 and Chapter 4. These
contain guidelines to help integrate a naming system into the XFN federation. It is
recommended that integrators publish specifications that define the behaviour of their XFN-
conformant naming systems. This provides application writers that use XFN with necessary
information for writing portable applications and administrators with the necessary information
to integrate that naming system into the federation.

Federated Naming: The XFN Specification 259

Implementation Models Guidelines for Federating a Naming System

C.1 Implementation Models
These guidelines do not prescribe any particular implementation model but in order to
appreciate the features of the different possible configurations of the XFN system, it might be
helpful to understand the various building blocks and its required functionality.

The three diagrams Figure C-1, Figure C-2 and Figure C-3 serve as examples of the conceptual
models of the different possible configurations. The dark shaded boxes shown in these diagrams
are building blocks that a naming service integrator needs to provide in order to integrate the
naming system with XFN. The modules depicted in the three diagrams are defined as follows:

XFN API
The XFNAPI is the complete set of interface operations defined in this XFN specification.

XFN Framework
The XFN frameworkis the implementation of the XFN API, including the client library and
the service provider interfaces necessary for integrating native naming systems.

Context Implementation
The context implementationis the naming service-specific module on the XFN client system
that is required to integrate legacy naming systems with XFN. The code of the context
implementation is a wrapper that maps the XFN API to the API exported by the legacy
naming system. The complexity of the context implementation depends on how well the
XFN API maps to the native naming service API and which XFN operations are to be
supported. At a minimum, the name resolution phase of all operations must be supported.

The techniques used to access the naming service-specific context implementations from the
XFN framework may vary. For systems that support shared libraries and dynamic linking,
a common approach might be that the context implementations are dynamically loadable
modules.

This approach of integrating a naming service using a context implementation module does
not require any modification to the existing naming service’s source code nor does it require
access to the naming service’s source code. All that is needed is access to the module
(library) that exports the naming service-specific API. This approach is by far the easiest
and fastest way of adding an existing naming system into the XFN federation.

XFN Client
The XFN client is a module that implements the client protocol machines for the XFN
protocols.

Two XFN protocols are specified in Appendix A, the RPC based protocols for ONC+
systems (specified in RPCL) and for DCE environments (specified in IDL). The list of
supported protocols might evolve over time.

In addition to supporting the protocols, the XFN client might provide services typically
offered by naming clients, such as caching. The extent of this support is implementation-
specific.

XFN Protocol Exporter
The XFN protocol exporteris the module required on systems that export one of the XFN
protocols. This could be a new naming system, an existing naming system that was
modified to also support XFN protocols, or a system that supports the XFN client library
and also exports XFN protocols (capable of acting as surrogate client).

The advantage for naming systems that support one of the specified protocols is that any
existing XFN client that imports the protocols can be used to communicate with it. This is
particularly useful for applications that need to export naming interfaces. Application

260 X/Open CAE Specification

Guidelines for Federating a Naming System Implementation Models

programmers do not have to duplicate the client-side implementation and they do not have
to invent new naming interfaces. This provides additional benefits such as the ability to
utilise caching and other mechanisms provided by the XFN client implementations, and a
direct (and possibly more efficient) mapping of XFN operations to the application’s naming
operations.

Implementation

Context

Naming application

Implementation

Context

Implementation

Context

Implementation

Context

Implementation

Context

XFN System

Implementation

Context

XFN Library / Service Provider Framework

XFN API

NIS+

libnsl / nisXDS

DUA

libresolv

Internet DNS

CDSPI

CDS Clerk

XFN Client

Figure C-1 XFN Configuration using Client Context Implementations

Figure C-1 shows the layering of the XFN client library on top of existing naming system clients
on the same system. None of the legacy naming systems needs to be modified.

Federated Naming: The XFN Specification 261

Implementation Models Guidelines for Federating a Naming System

Legend:

Native Naming Service Modules

APIs

Modules to Integrate with XFN

System Boundaries

XFN Client Applications

XFN Server
(Protocol Machine)

XFN Server
(Protocol Machine)

XFN Server
(Protocol Machine)

Native

Naming application

XFN Client

XFN Library / Service Provider Framework

XFN API

XFN System

(Lightweight Client)

XFN Protocol

DesktopNS_1 Server NS_2 Server

NS_2 Protocol

Figure C-2 Lightweight XFN Client Configuration

Figure C-2 shows multiple XFN systems that are connected via one of the specified XFN
protocols. The client in this picture is a lightweight XFN client. The servers shown are name
servers that directly export one of the specified XFN protocols.

262 X/Open CAE Specification

Guidelines for Federating a Naming System Implementation Models

The two modules shown in Figure C-3 are a lightweight XFN client and a server that acts as an
intermediary. Similar to the client in Figure C-2, the client in Figure C-3 is a truly lightweight
XFN client. None of the legacy naming system clients needs to be installed at that system.
Depending on the client system’s requirements, the XFN client can be implemented and
configured to consume more or less resources, determined based on needs and availability. The
XFN client might simply defer to mechanisms (such as for caching and replication) provided by
the native naming system clients.

The legacy naming system clients in Figure C-3 reside on a remote system (similar to Figure C-1)
that also exports at least one of the XFN protocols. This remote client can be viewed as a
surrogate or proxy client that acts on behalf of the initial requestor and performs the native
naming system functions.

Legend:

Native Naming Service Modules

APIs

Modules to Integrate with XFN

System Boundaries

XFN Client Applications

Implementation

Context

Implementation

Context

Implementation

Context

Implementation

Context

XFN Protocol

XFN Protocol
Exporter

XFN Client

Naming application

XFN Library / Service Provider Framework

XFN API

XFN System

(Lightweight Client)

XFN Library / Service Provider Framework

XFN API

NIS+

libnsl / nisXDS

DUA

libresolv

Internet DNS

CDSPI

CDS Clerk

XFN Client

XFN System

(Acting as Surrogate Client)

Figure C-3 XFN Configuration with Surrogate Client

Another aspect shown in Figure C-1 and Figure C-3 is the capability of the surrogate client to
also import the XFN protocol (XFN client module). Such a configuration could serve emerging
XFN servers or existing name servers that export one of the specified XFN protocols in addition
to, or in replacement of, the native protocol.

Note that a context implementation precisely defines the set of modules that are co-located with
the XFN framework to map the XFN API to the native naming service API. However, in the
context of this appendix, we also use the term context implementation to mean the XFN mapping

Federated Naming: The XFN Specification 263

Implementation Models Guidelines for Federating a Naming System

code that is necessary at the server of a naming system that directly exports one of the XFN
protocols (XFN Protocol Exporter and XFN Server in the diagrams).

264 X/Open CAE Specification

Guidelines for Federating a Naming System Federating with other Naming Systems

C.2 Federating with other Naming Systems
The role and potential configuration of the naming system to be federated must be determined.
The naming system might be a global naming system, and therefore should provide some means
for registering enterprises and possibly other application naming systems. Or, the naming
system could be an enterprise-level or application-specific naming system.

Furthermore, it must be specified whether the naming system must always be joined at the root
or whether other entry points are also supported.

Any naming system that participates in the federation must define whether other naming
systems can be federated as subordinate naming systems. Naming systems in the application
namespaces (such as file systems) might not permit further federation.

Subordinate naming systems are federated through next naming system pointers (nns pointers).
There are two flavours of XFN nns pointers: junctions and implicit. Both may be supported
concurrently in a single naming system.

The criteria for whether a naming systems support junctions or implicit nns pointers, or both, are
in Section 4.3 on page 63. For example, if a distinct name for naming the subordinate naming
system is either not available (for example, already in use) or not desired (for example, it would
not be a terminal name in that naming system), using implicit nns pointers is the preferred
technique. An instance where junctions are better suited could be if subordinate naming
systems must be selectable by explicit names. One might want to apply the rule of the thumb
that implicit nns pointers are preferred for the global namespace (because X.500 and DNS names
cannot be guaranteed to be leaf names) and most enterprise naming systems are expected to
support junctions.

C.2.1 Junctions

Junctions are terminal names in a naming system that hold the reference information of
subordinate naming system contexts.

The context implementation defines how references are constructed from information that is
associated with the named entry. A common approach might be to use attributes for storing the
appropriate reference and address information. Implementations might or might not permit the
use of bind and unbind operations to create and delete references of junctions.

If junctions are supported, the context implementation must ensure the correct behaviour of
XFN operations on junctions. In particular, the name resolution phase in XFN operations must
follow a junction and resolve to the context that is bound by the reference of the junction.

C.2.2 Implicit Next Naming System Pointers

If the context implementation supports implicit next naming system pointers for federating
naming systems, the context implementation must determine how references are managed.

The context implementation must ensure the correct behaviour of XFN operations on implicit
nns pointers. If a name resolution is performed on a name that has a trailing XFN component
separator, the implicit nns pointer must be followed.

Federated Naming: The XFN Specification 265

Name Syntax Guidelines for Federating a Naming System

C.3 Name Syntax
For naming systems participating in the naming federation it is necessary to specify the syntax
of the compound name and to specify if the context supports the weak or strong separation
model.

C.3.1 Weak and Strong Separation

If the component separator for atomic names of the naming system is distinct from the XFN
component separator (’/’) and if this XFN component separator character is not used in the
compound name in unescaped and unquoted form, only the strong separation model applies.

If the atomic name separator is the same as the XFN component separator and the ordering of
atomic names is not left-to-right, strong separation must be enforced by either quoting the
compound name or escaping the atomic name separators. It must be specified which rule —
quoting or escaping — applies (possibly both).

If the atomic name separator is the same as the XFN component separator and the ordering of
atomic names is left-to-right, either strong or weak separation might be supported, or both.
Please note, that in the instance where both forms of separation are supported, the context
implementation must be prepared to receive in a XFN component name either a full compound
name or a single atomic name. Weak separation can only be supported if at least one of the
conditions that are specified in Section 4.2 on page 60 apply, namely the naming system must:

• be a terminal naming system

• if not terminal, the context must be able to do a syntax-specific discovery of naming system
boundaries

• if not terminal, the context must be able to return the remaining unresolved components.

It must be specified which rule applies. If syntax-specific checking is done, the restriction for the
subordinate naming systems must be clearly specified in order to avoid the use of (top level)
names that conflict with the syntax rules. For instance, if the name syntax defines typed names
for the atomic name component that uses the equal character (’=’) as the type separator, the first
name component of the subordinate naming system must not contain an unescaped equal
character.

C.3.2 Syntax Attributes

In order to permit applications to use the operations on compound names, the context
implementation must provide for a means of supporting the interface function for retrieving the
syntax attributes (fn_ctx_get_syntax_attrs ()). If the "fn_syntax_type" attribute indicates the
support of the XFN standard model, it can be assumed that the XFN framework implementation
provides the support for interpreting the syntax attribute values. If the XFN standard model is
not supported, the context implementation must provide the appropriate module for evaluating
the syntax attributes and for compound name resolution. (Refer to Section 3.8 on page 50, for
more information on the syntax attributes and the XFN standard model).

If the syntax attributes are fixed for a given naming system, the context implementation might
not provide interfaces for modifying these attributes; in fact they might not be implemented as
regular attributes of the naming system. It should be specified how these attributes are
determined and whether they can be set and modified (through XFN attribute operations, for
instance).

266 X/Open CAE Specification

Guidelines for Federating a Naming System Context Operations

C.4 Context Operations
A conformance statement for the federated naming system must specify the level of support of
the XFN context operations. The minimum requirement for XFN conformance is the support of
the fn_ctx_lookup () operation and the support of the name resolution phase of the other
operations.

Depending on the semantics of operations in the underlying naming system and the desired
level of integration, other context operations might also be supported.

Operations that are not supported still must be provided with implementations that perform at
least the name resolution phase to the target context. If the target context does not support the
actual operation, the implementation returns the status
[FN_E_OPERATION_NOT_SUPPORTED].

The context implementation may support operations such as fn_ctx_list_names (),
fn_ctx_list_bindings () and fn_ctx_create_subcontext(), but the native naming system might not
provide these as atomic operations. The atomicity guarantees for such operations must be
specified.

There are a number of context operations whose behaviour depends on the semantics of
operations in the underlying naming system. The implementation specifications must specify
how the XFN operations effect the state of the underlying naming system. The XFN context
operations that might incur different behaviour on different naming systems are detailed in the
following subsections (For details on the operation’s semantics, refer to the manual reference
pages in Chapter 6.):

fn_ctx_bind()
Naming systems might or might not support the exclusive flag.

Naming systems might or might not permit binding a name without also creating some
attributes first. Also, the fn_ctx_bind() operation might only permit creation of certain types
of objects in the namespace.

If next naming system pointers are supported, implementations might not permit binding of
these references through the fn_ctx_bind() operation.

fn_ctx_unbind()
The failure semantics of this operation is different depending on the type of object in the
namespace. For example, an fn_ctx_unbind() on some contexts might not be permitted if it
is not terminal (for example, if it is a directory).

fn_ctx_create_subcontext()
Similar to fn_ctx_bind(), some naming systems might not permit creating a subcontext
without also creating some attributes first.

If naming systems support namespace partitioning or replicated servers, the
fn_ctx_create_subcontext() might not provide the sufficient information to perform the
creation.

fn_ctx_destroy_subcontext ()
Similar to fn_ctx_unbind().

fn_ctx_rename()
The scope of the fn_ctx_rename() operation must be specified. Some naming systems might
have restrictions on the semantics of rename. For example, only renames within the same
context or on the same server might be permitted.

Federated Naming: The XFN Specification 267

Context Operations Guidelines for Federating a Naming System

fn_ctx_lookup_link ()
The implementation of XFN links must be specified (the information could possibly be
stored in specific attributes). Also, the relationship of XFN links to any support for native
soft links or aliases in the underlying naming system needs to be specified.

fn_ctx_handle_from_ref ()
The implementation of the XFN framework in conjunction with the different context
implementations determine the details of this operation. It is the responsibility of specific
context implementations to define the properties of the FN_ctx_t object that is returned and
to maintain the context handle and appropriate state information.

fn_ctx_get_ref ()
Implementations may vary in their support for this operation in that the returned reference
may contain a list of addresses that is different from the originally supplied to
fn_ctx_handle_from_ref ().

268 X/Open CAE Specification

Guidelines for Federating a Naming System Attribute Operations

C.5 Attribute Operations
Similar to the context operations, a conformance statement for the federated naming system
must specify the level of support of the XFN attribute operations.

The operations on attributes might be partially, fully, or not supported. Typically, partial
support would contain the operations on single attributes and exclude the multi-attribute
operations.

Operations that are not supported still must be provided with implementations that perform at
least the name resolution phase to the target context. If the target context does not support the
operation, the function returns the status [FN_E_OPERATION_NOT_SUPPORTED].

The context implementation may support operations such as fn_attr_get_ids (),
fn_attr_multi_get () and fn_attr_multi_modify () but the native naming system might not provide
these as atomic operations. The atomicity guarantees for such operations must be specified.

If the attribute operations are at least partially supported, the implementation specification of
the naming service must specify how its attribute model maps to the XFN attribute operations.
Section 3.3.2 on page 27 discusses that the attribute model is not dictated by XFN. Some naming
systems might associate attributes with the named objects, others might support attributes that
are associated with names in contexts that are bound to objects, or naming systems support a
combination of both. Some naming systems might not even distinguish between the two
models.

Implementations might only support the attribute operations for certain types of attributes or
attributes that are associated with certain type of entries in the namespace (for instance,
directories or soft links may be excluded).

For the attribute modify operations, implementations must determine how the operation codes
FN_ATTR_OP_ADD, FN_ATTR_OP_ADD_EXCLUSIVE, FN_ATTR_OP_REMOVE,
FN_ATTR_OP_ADD_VALUES and FN_ATTR_OP_REMOVE_VALUES apply and what the
exact semantics are.

C.5.1 Attributes and Next Naming System Pointers

In order to support next naming system pointers, the implementation specification must define
how access to objects that the next naming system pointers is bound to (the contexts of the
subordinate naming systems) can be disambiguated from access to attributes in the superior
naming system. This disambiguation is particularly necessary for junctions where attributes are
maintained in both the name of the junction in the superior naming system and the root context
of the subordinate naming system.

If implicit nns pointers are used and one wants to access attributes that are associated with the
subordinate naming system context, a trailing slash (XFN component separator) used for the
resolution of the context disambiguates the access. If a trailing slash is passed in the name
argument of an attribute operation, an implementation might support operations on attributes
that are associated with the implicit nns pointer. (The analogy to the behaviour of junctions
becomes obvious if one considers a trailing slash as a trailing empty name — this nns pointer is
implicit).

For junctions, no trailing XFN component separators are permitted, but one typically accesses
attributes associated with the subordinate naming system context if the context of the fully
resolved name is passed as an argument to the attribute operation (the name argument is empty).
In contrast, if the name of the junction is passed in the name argument, one might access
attributes associated with the junction name (this might or might not be supported by naming
system implementations).

Federated Naming: The XFN Specification 269

Attribute Operations Guidelines for Federating a Naming System

Figure C-4 and Figure C-5 demonstrate possible associations between attributes, objects and
names in a naming system. These diagrams show how one might use attributes to maintain
references for next naming system pointers.

In the first example, Figure C-4, the reference of an implicit next naming system pointer is
supported in the global namespace as an attribute that is associated with a context object.

If we take the name .../umass.edu/ as an example (both with and without trailing slash), we find
that there are four possible ways how this name can be represented to the attribute operations,
depending on what the starting context (the object passed to the ctx argument) is set to:

ctx of name # in Diagram Attribute Operation Refers To
Attributes associated with name umass
in the context of edu

.../edu umass (1)

Attribute associated with the context of
umass

.../umass.edu empty (2)

Attributes associated with anonymous
nns pointer maintained in context umass

.../umass.edu "/" (3)

Attributes associated with root context
of next naming system

.../umass.edu/ empty (4)

The second example, Figure C-5, depicts a possible implementation for junctions. The junction’s
reference is maintained in an attribute (or conceivably set of attributes) that is associated with a
terminal name of the enterprise naming system.

If we take the name /.../umass.edu/science/service/spreadsheet as an example for naming a
junction, we have two ways of passing this to one of the attribute operations (note that trailing
slashes are not permitted for junctions):

ctx of name # in Diagram Attribute Operations Refers To
Attributes associated with
junction name spreadsheet in
the context of service

service spreadsheet (5)

Attributes associated with root
context of next naming system

service/spreadsheet empty (6)

270 X/Open CAE Specification

Guidelines for Federating a Naming System Attribute Operations

3

2

4

implicit next naming system pointer

Attribute

Named Object

Namespace

Legend:

Names in Context
1umass

mit

hostx

"/"hostx context: "/" context:

naming system

enterprise naming system

global
umass context:

edu context:

Figure C-4 Attribute Example with Implicit Next Naming System Pointer

Federated Naming: The XFN Specification 271

Attribute Operations Guidelines for Federating a Naming System

service

hosts

spreadsheet

6

5

spreadsheet

print
hosts context:

service context:
junction

science context:

enterprise
naming system

naming system

Figure C-5 Attribute Example with Junction

272 X/Open CAE Specification

Guidelines for Federating a Naming System Reference and Address Types and its Registration

C.6 Reference and Address Types and its Registration
The values and encodings of reference and address types exported by the naming system need
to be specified in order to support its federation by other naming systems. The implementor of
the context implementation must decide which of these types are necessary to be registered with
X/Open.

Generally, a single distinct reference type is specified for uniquely identifying a particular
naming service. This reference type is used by the XFN framework as the discriminator for
locating and dispatching to the context implementation.

XFN framework implementations may also permit default fallbacks where reference type
specific implementations are not available. The address types can be used as discriminator
instead. If a reference contains multiple address types, the order of selection is unspecified.

In cases where servers of a naming system directly export one of the XFN protocols, the
appropriate reference types (for example, FN_DCE_SERVICE_REF) are used for selecting the
client implementation. If implementations for the reference types are available, the XFN
framework dispatches to the XFN client module that imports these protocols.

It might also be relevant for users and administrators of a federated naming system to know
how XFN references and addresses map to its representation in the naming system. Since these
might typically be stored in attributes, it is necessary for implementors of a federated naming
system to define the format and encodings.

Federated Naming: The XFN Specification 273

Guidelines for Federating a Naming System

274 X/Open CAE Specification

Appendix D

Policies for the Enterprise Namespace

Computing environments contain several independent naming systems that are interrelated in a
navigational sense meaningful to users. Support for composite names in the base context and
attribute interfaces enables applications and users to compose and use names that span these
naming systems. The lack of common naming policies within a computing environment
promotes incoherence in naming across different applications. Furthermore, the lack of common
policies across different computing environments makes applications less portable and presents
an impediment to developing distributed applications that span multiple computing
environments. This appendix addresses these problems by providing policies for the enterprise
namespace.

This appendix provides policies for XFN implementations that deal with enterprise naming
systems. These policies are referred to as XFN-EP, for XFN enterprise policies. XFN-EP
describes the arrangement of naming systems within an enterprise and how such naming
systems can be used by applications. Global naming systems that already have policies for
naming enterprise-level objects, such as users and hosts, are not covered under these policies.
XFN-EP does not specify how these globally named objects are related to the objects named in
the enterprise namespace.

The goals of XFN-EP are to promote the portability of applications and development of
applications that span heterogeneous distributed computing environments. Applications and
services that follow these policies benefit from these goals. Applications and services that
extend these policies, or use modified versions of these policies may improve their usability with
respect to certain environments, but are not guaranteed the same degree of portability.

Not all policies in XFN-EP are applicable in all environments. For example, some environments
may have no notion of users. The intent of XFN-EP is to provide a minimal, yet sufficiently rich,
set of policies so that applications need not invent or use ad hoc policies for specific
environments. In an environment where only some of the policies in XFN-EP are meaningful,
the parts of XFN-EP that are meaningful are used and those parts that are not meaningful are not
used. There may be gradations of support of XFN-EP among systems. The purpose of the
XFN-EP conformance statement of any particular system is to enable the application developer
to decide when to use XFN-EP or some environment-specific policies.

Federated Naming: The XFN Specification 275

Terminology Policies for the Enterprise Namespace

D.1 Terminology
In addition to the terminology described in Section 5.1 on page 71, this appendix uses the
following terms:

Organisational Units
An enterprise is organized into organisational units4 such as centers, laboratories,
departments, divisions, campuses, geographical sites and so on. An organisational unit is a
subunit of an enterprise.

Namespace Identifier
A namespace identifier is an atomic name used to refer to the root of a namespace.

User Context
A context for naming objects related to a human user.

Username Context
A context for naming users.

Host Context
A context for naming objects related to a computer.

Hostname Context
A context for naming computers.

Organisational Unit Context
A context for naming objects related to an organisational unit.

4. The term organisation is used by some naming systems to refer to an enterprise (for example, X.500), and by others to mean an
organisational unit. In this document, the terms enterprise and organisational unit are used to avoid ambiguity.

276 X/Open CAE Specification

Policies for the Enterprise Namespace Policy Overview

D.2 Policy Overview

The Enterprise Namespace

Within an enterprise, XFN-EP specifies:

• that there are namespaces for organisational units, hosts, users, files and services

• the namespace identifiers of these namespaces

• composition policies of how names from these namespaces should be composed, and
consequently, the relationships among the underlying contexts.

XFN-EP does not specify:

• the syntax of names within each individual namespace

• how specific names are chosen for objects within these namespaces.

Initial Context

Each XFN client has an Initial Context that provides a starting point for resolving composite
names. XFN-EP specifies names and bindings in the Initial Context for naming enterprise-related
contexts.

Federated Naming: The XFN Specification 277

The Enterprise Namespace Policies for the Enterprise Namespace

D.3 The Enterprise Namespace

D.3.1 Types of Namespaces and Namespace Identifiers

Within an enterprise, XFN-EP specifies that there are namespaces for organisational units, hosts,
users, files and services. There can be one or multiple namespaces of the same type within an
enterprise. If there are multiple namespaces of the same type, XFN-EP does not specify the
relationship between them.

XFN-EP specifies that these namespaces are referred to by the atomic names _orgunit ,
_host , _user , _fs and _service , respectively, as their canonical namespace identifiers (see
Table D-1). These names are encoded using ISO 646 (same encoding as ASCII).

Canonical Namespace Identifier Resolves to
_orgunit context for naming organisational units

_host context for naming hosts

_user context for naming users

_fs context for naming files

_service context for naming services

Table D-1 XFN-EP Canonical Namespace Identifiers

A namespace identifier has a canonical representation and optionally one or more customized
representations. Customized representations are implementation-dependent and defined by
each context. A context implementation must accept both the canonical representation and its
own customized representations of a namespace identifier and resolve them to the same
reference. Because customized namespace identifiers are context implementation-dependent,
they may not necessarily be portable to other contexts whereas canonical namespace identifiers
are always portable to other contexts that accept namespace identifiers. For coherence,
customized namespace identifiers should be consistent within an enterprise.

For example, the canonical namespace identifier for the user namespace is _user ,
while, as a local policy in the Wiz.COM enterprise, a customized namespace identifier
for the user namespace might be employee . The name _user can be used in any
environment to mean the user namespace, whereas only contexts in the Wiz.COM
enterprise accept the name employee to refer the user namespace.

The XFN component separator is used to delimit namespace identifiers.

For example, composing the namespace identifier _orgunit with the organisational
unit name finance/accounts_payable gives the composite name

_orgunit/finance/accounts_payable .

Composing the global name .../Wiz.COM with an organisational unit name
_orgunit/finance/accounts_payable gives the composite name

.../Wiz.COM/_orgunit/finance/accounts_payable .

In another example, composing the name _orgunit/finance/accounts_payable
with the name _user/jsmith gives the composite name

_orgunit/finance/accounts_payable/_user/jsmith .

278 X/Open CAE Specification

Policies for the Enterprise Namespace The Enterprise Namespace

These namespaces may be supported by a federation of one or more naming systems.

If a naming system uses the same character as the XFN component separator as its atomic
component separator and supports naming more than one type of these entities (organisational
units, hosts, users, file systems or services), these types of entities may be represented by
contexts within the same naming system.

For example, if a naming system supports a single namespace for both organisational
units and users, and uses a left-to-right, slash-separated syntax, a name for a user name
might look like:

_orgunit/finance/accounts_payable/_user/jsmith .

If a naming system supports naming more than one type of these entities but does not use the
XFN component separator, the context implementation should still support the federated
namespace structure as specified in this appendix.5

For example, if two separate naming systems are used for organisational unit names
(dot-separated, right-to-left syntax), user names (flat namespace), using similar names as
the previous example, a user name might look like:

_orgunit/accounts_payable.finance/_user/jsmith .

XFN-EP reserves for future extension the use of all atomic names beginning with the underscore
character (’_’) in contexts in which namespace identifiers can appear. XFN-EP does not
otherwise restrict the use of these atomic names within other contexts or component naming
systems. Some component naming systems, however, might have restrictions on the use of
these names.

For example, the atomic name _service is used as a canonical namespace identifier
relative to a user name, as in _user/jsmith/_service/calendar , to mean the root
of user jsmith ’s service namespace. This does not preclude a system from using the
name _service as a user name, as in _user/_service , because XFN-EP specifies
that the context to which _user/ is bound is for user names and not for namespace
identifiers. Thus, in this example, _service is unambiguously interpreted as a user
name.

D.3.2 Structure of the Enterprise Namespace

XFN-EP defines the structure of the enterprise namespace. The goal of this structure is to allow
easy and uniform composition of names. This structure uses two main rules:

1. Objects with narrower scopes are named relative to objects with wider scopes.

2. Namespace identifiers are used to denote the transition from one namespace to the next.6

Table D-2 contains a summary of XFN-EP for arranging the enterprise namespace. Figure D-1
on page 281 shows an example of a namespace layout that uses XFN-EP.

XFN-EP specifies that the root context of an enterprise is a context for namespace identifiers.
The namespace identifiers that may appear in this context are _orgunit, _host, _user,
_fs and _service . They are bound to the contexts for naming organisational units, hosts,
users, files and services, respectively.

5. For efficiency, the context implementation for such a naming system may support some syntactic mapping of composite names
to names native to the naming system as part of the resolution process.

6. These namespaces could be implemented by the same or different naming systems.

Federated Naming: The XFN Specification 279

The Enterprise Namespace Policies for the Enterprise Namespace

Context Subordinate Parent Arrangement of
Type Context Context Contexts of Same Type

organisational unit service enterprise root hierarchical
user
host
file system

user service enterprise root not specified
file system organisational unit

host service enterprise root not specified
file system organisational unit

service not specified enterprise root not specified
organisational unit
user
host

file system not specified enterprise root not specified
organisational unit
user
host

Table D-2 Policies for Arranging the Enterprise Namespace

The namespace of an enterprise is structured around the hierarchical structure of organisational
units of an enterprise. Names of hosts, users, files and services may be named relative to names
of organisational units by composing the organisational unit name with the appropriate
namespace identifier and object name. In a similar fashion (with the use of appropriate
namespace identifiers), names of files and services may also be named relative to names of users
or hosts.

For example, the user jsmith in the Florida campus of an enterprise is named using
the name _orgunit/east/florida/_user/jsmith (organisational unit names in
this example have left-to-right, slash-separated name syntax). Note the use of the
namespace identifier _user to denote the transition from the organisational unit
namespace into the user namespace.

XFN-EP does not define the containment semantics among objects named in the hierarchical
enterprise namespace. For example, XFN-EP does not specify the relationship between the users
named relative to one organisational unit to those of another, possibly subordinate,
organisational unit. Furthermore, the same type of object in different parts of the enterprise
namespace need not be supported by the same naming system. Each organisational unit may
maintain its own user and host namespace, possibly using different naming system technologies.

D.3.3 Policies for Naming Organisational Units

The organisational unit namespace provides a namespace for naming subunits of an enterprise.
An example is shown in Figure D-1 on page 281.

XFN-EP specifies that the string _orgunit is the canonical namespace identifier for the
organisational unit namespace. An organisational unit is named by composing _orgunit , or
any of its customized representations, with its organisational unit name using the XFN
component separator.

XFN-EP specifies that organisational units are named using compound names, where each
atomic part names an organisational unit within a larger unit. XFN-EP does not specify the

280 X/Open CAE Specification

Policies for the Enterprise Namespace The Enterprise Namespace

syntax of organisational unit names.

For example, using ONC/NIS+, the name accounts_payable.finance names an
organisational unit accounts_payable within a larger one named finance .
Similarly, another organisational unit is named in DCE/CDS using the name
east/chelmsford . Composing these names with _orgunit , the resulting composite
names for these organisational units are _orgunit/accounts_payable.finance
and _orgunit/east/chelmsford , respectively.

XFN-EP specifies that organisational units may be named relative to the root context of an
enterprise.

XFN-EP specifies that an organisational unit name is bound to an organisational unit context.
An organisational unit context provides a context in which namespace identifiers can be bound.
XFN-EP specifies that names of users, hosts, services and file systems, as well as organisational
subunits, can be named relative to organisational unit names. When an organisational subunit is
named, the atomic name separator of the compound name syntax is used to compose the
subunit’s name. When a user, host, service or file system is named relative to an organisational
unit name, the XFN component separator is used.

For example, a subunit accounts_payable of the organisational unit finance is
named in NIS+ using the name _orgunit/accounts_payable.finance whereas a
user in the finance organisational unit is named using the name
_orgunit/finance/_user/jsmith .

XFN-EP does not specify the syntax of organisational unit names. XFN-EP also does not specify
how organisational units are defined or assigned names.

For example, one enterprise may choose to define their organisational units based on
their corporate structure; another enterprise may choose to define their organisational
units based on their geographical dispositions; yet another enterprise may choose to use
a combination of geographic and corporate information.

D.3.4 Policies for Naming Users

The user namespace provides a namespace for naming human users in a computing
environment.

XFN-EP specifies that the atomic name _user is the namespace identifier for the user
namespace. A user is named by composing the namespace identifier for the user namespace,
_user , or any of its customized representations, with the user name using the XFN component
separator.

For example, given an organisational unit name _orgunit/finance , the name
_orgunit/finance/_user names the context for naming users.

XFN-EP does not specify the valid arrangement of names within the user namespace — it can be
flat or hierarchical. For example, a hierarchical user naming system might reserve the top level
of the user namespace for names of users; lower level names might further delineate different
identity aspects of a user, such as his roles and capabilities. If user names have a hierarchical
syntax, lower level names are composed using the atomic name separator of the user namespace
syntax; objects in XFN-EP namespaces subordinate to a user name are named using the XFN
component separator and the appropriate namespace identifier.

XFN-EP does not specify the syntax of user names or how the names are assigned.

XFN-EP specifies that user names can be named relative to an organisational unit or the root
context of an enterprise.

Federated Naming: The XFN Specification 281

The Enterprise Namespace Policies for the Enterprise Namespace

east

_orgunit

eng

desktop

_user

jsmith
rlee

joe

_service

scarabease

_host

abc

sales

west

Figure D-1 Example of an Enterprise Namespace

XFN-EP specifies that a user name is bound to a user context. A user context provides a context
in which namespace identifiers can be bound. XFN-EP specifies that names of files and services
can be named relative to user names (using the XFN component separator and the appropriate
namespace identifiers).

The user namespaces of different organisational units may be served by different naming
systems, possibly using different naming technologies. XFN-EP does not specify the relationship
between user namespaces.

D.3.5 Policies for Naming Hosts

The host namespace provides a namespace for naming computers.

XFN-EP specifies that the atomic name _host is the namespace identifier for the host
namespace. A host is named by composing _host , or any of its customized representations,
with its host name using the XFN component separator.

For example, given an organisational unit name _orgunit/finance , the name
_orgunit/finance/_host names the context for naming hosts.

XFN-EP does not specify the valid arrangement of names within the host namespace — it can be
flat or hierarchical. For example, a hierarchical host naming system might reserve the top level

282 X/Open CAE Specification

Policies for the Enterprise Namespace The Enterprise Namespace

of the host namespace for machine names; lower level names might further delineate different
identity aspects of a machine, such as its interfaces and capabilities. If host names have a
hierarchical syntax, lower level names are composed using the atomic name separator of the
host namespace syntax; objects in XFN-EP namespaces subordinate to a host name are named
using the XFN component separator and the appropriate namespace identifier.

XFN-EP does not specify the syntax of host names or how the names are assigned.

XFN-EP specifies that hosts can be named relative to an organisational unit or the root context of
an enterprise.

For example, if .../c=us/o=Wiz/_orgunit/accounts_payable.finance names an
organisational unit, then the name

.../c=us/o=Wiz/_orgunit/accounts_payable.finance/_host/grande
names a host grande within that organisational unit.

XFN-EP specifies that a host name is bound to a host context. A host context provides a context
in which namespace identifiers can be bound. XFN-EP specifies that names of files and services
can be named relative to host names (using the XFN component separator and the appropriate
namespace identifiers).

The host namespaces of different organisational units may be served by different naming
systems, possibly using different naming technologies. XFN-EP does not specify the relationship
between host namespaces.

D.3.6 Policies for Naming Services

The service namespace provides a namespace for services used by or associated with objects
within an enterprise. Examples of such services might be electronic calendars, faxes, mail and
printing. XFN-EP does not specify which specific services use this namespace and whether it is
utilized by object-based systems or procedural.

XFN-EP specifies that the atomic name _service is the namespace identifier for the service
namespace. A service is named by composing _service , or any of its customized
representations, with its service name using the XFN component separator.

XFN-EP does not specify the valid arrangement of names within the service namespace — it can
be flat or hierarchical. If service names have a hierarchical syntax, lower level names are
composed using the atomic name separator of the service namespace syntax; objects in XFN-EP
namespaces subordinate to a service name are composed using the XFN component separator as
a delimiter.

XFN-EP does not specify the syntax of service names or how service names are chosen. These
are determined by service providers that share the service namespace.

A service can be named relative to an enterprise, an organisational unit, a user or a host.

For example, if _orgunit/accounts_payable.finance names an organisational
unit, then _orgunit/accounts_payable.finance/_service/calendar names
its calendar service.

The service namespaces of different organisational units, users or hosts may be served by
different naming systems, possibly using different naming technologies. XFN-EP does not
specify the relationship between service namespaces.

XFN-EP does not specify what types of objects (for example, resources), if any, are named
relative to a service object. Also, the XFN-EP does not specify the relationship between services,
resources, and other types of objects controlled by object systems. Implementations determine
the organisation of this namespace and the possible utilization of resource discovery

Federated Naming: The XFN Specification 283

The Enterprise Namespace Policies for the Enterprise Namespace

mechanisms. In some instances, the service namespace may be structured according to
operations performed on objects, in others it might be data driven.

D.3.7 Policies for Naming Files

A file naming system (or simply file system) provides a namespace for naming files.

XFN-EP specifies that the atomic name _fs is the namespace identifier for the file namespace.
A file is named by composing _fs , or any of its customized representations, with its file name
using the XFN component separator.

For example, if _user/jsmith names a user jsmith , the name
_user/jsmith/_fs/highlights93.mif names her file highlights93.mif .

XFN-EP does not specify the file name syntax. The file name syntax depends on the file system
being federated.

For example, the name _host/deedum/_fs/C:doc\strategy94.txt is an example
of a composite file name when the DOS file system is federated. The name
_user/jsmith/_fs/doc/orgchart.ps is an example of a composite file name
when a Unix file system is federated.

XFN-EP specifies that files can be named relative to an enterprise, an organisational unit, a user
or a host.

XFN-EP does not specify what types of objects, if any, are named relative to a file.

The reference bound to _fs need not be one physical file system. It may be made up of
multiple file systems, possibly of different types, composed into a single, virtual file system.

284 X/Open CAE Specification

Policies for the Enterprise Namespace Bindings for the Enterprise in the Initial Context

D.4 Bindings for the Enterprise in the Initial Context
In addition to the global policies specified by XFN (see Section 5.3 on page 73), XFN-EP specifies
additional properties to be associated with the Initial Context.

XFN-EP specifies that fn_ctx_handle_from_initial () is invoked on behalf of a user and host pair:

1. There is a user associated with the process when fn_ctx_handle_from_initial () is invoked. In
the following discussion this user is denoted by U. The association of user to process may
change during the life of a process but does not affect the context handle originally
returned by fn_ctx_handle_from_initial ().

2. The process is running on a host when fn_ctx_handle_from_initial () is invoked. In the
following discussion this host is denoted by H. The process to host association may
change during the life of a process and may be interpreted differently on systems that
support process migration or distributed processing. However, this does not affect the
context handle originally returned by fn_ctx_handle_from_initial ().

XFN-EP specifies the following atomic names as namespace identifiers in the Initial Context:
_thishost , _thisorgunit , _thisens , _myself , _myorgunit , _myens , _orgunit ,
_user and _host .7 These names are encoded using ISO 646 (same encoding as ASCII). The
bindings for these names are summarized in Table D-3. They have the same properties as the
namespace identifiers described in Section D.3.1 on page 278.

Not all of these names need to appear in all Initial Contexts. For example, some machines or
environments do not have the notion of a user, in which case, all atomic names relating to U will
not appear in the Initial Context of those clients. Implementations are free to add names and
bindings to the Initial Context but any such additions are not part of XFN-EP.

D.4.1 Host-related Bindings

The namespace identifiers _thishost , _thisens and _thisorgunit name contexts
related to the machine the process is on when fn_ctx_handle_from_initial () is invoked.

XFN-EP specifies that the namespace identifier _thishost resolves to the host context of H.

For example, if the process is on the host gofer , _thishost resolves to the host
context of gofer and the name _thishost/_service/display refers to the
display service of gofer .

XFN-EP assumes that there is an association of a host to an enterprise. XFN-EP specifies that the
namespace identifier _thisens resolves to the root context of the enterprise to which H
belongs.

For example, _thisens/_service resolves to the root of the service naming system
in the enterprise of H.

XFN-EP assumes that there is an association of a host to an organisational unit of an enterprise.
A host may be associated with multiple organisational units, but there must be one that is
distinguished. XFN-EP does not specify how the determination of a host’s affiliation with its
distinguished organisational unit is made. The namespace identifier _thisorgunit resolves to
the context of H’s distinguished organisational unit.

7. In addition to these bindings, the Initial Context also contains bindings for resolving global names: ... , _dns and _x500 (see
Section 5.3 on page 73).

Federated Naming: The XFN Specification 285

Bindings for the Enterprise in the Initial Context Policies for the Enterprise Namespace

Namespace Identifier Binding
H’s host context._thishost

the root context of the enterprise of H._thisens

H’s distinguished organisational unit context._thisorgunit

U’s user context._myself

the root context of the enterprise of U._myens

U’s distinguished organisational unit context._myorgunit

the distinguished context in which users are named._user

the distinguished context in which hosts are named._host

the distinguished context in which organisational units are
named.

_orgunit

Table D-3 Enterprise-related Bindings in the Initial Context

For example, if H is in the organisational unit accounts_payable.finance ,
_thisorgunit resolves to the organisational unit context for
accounts_payable.finance and _thisorgunit/_service/fax refers to the fax
service of accounts_payable.finance .

D.4.2 User-related Bindings

The namespace identifiers _myself , _myens and _myorgunit name contexts related to the
user associated with the process when fn_ctx_handle_from_initial () is invoked.

XFN-EP specifies that the namespace identifier _myself resolves to the user context of U.

For example, if U is jsmith , _myself resolves to jsmith ’s user context, and
_myself/_fs/.cshrc names the file .cshrc of jsmith .

XFN-EP assumes that each user is affiliated with an enterprise. XFN-EP specifies that the
namespace identifier _myens resolves to the root context of the enterprise to which U belongs.

For example, _myens/_orgunit resolves to the root of the organisational unit naming
system in the enterprise of U.

XFN-EP assumes that each user is affiliated with an organisational unit of an enterprise. A user
may be affiliated with multiple organisational units but there must be one that is distinguished,
perhaps by its position in the organisational unit namespace or by the user’s role in the
organisational unit. XFN-EP does not specify how the determination of a user’s affiliation with
its distinguished organisational unit is made. XFN-EP specifies that the namespace identifier
_myorgunit resolves to the context of U’s distinguished organisational unit.

286 X/Open CAE Specification

Policies for the Enterprise Namespace Bindings for the Enterprise in the Initial Context

For example, if U is in the organisational unit accounts_payable.finance ,
_myorgunit resolves to the organisational unit context for
accounts_payable.finance , and _myorgunit/_service/calendar resolves to
the calendar service of accounts_payable.finance .

D.4.3 Shorthand Bindings

The namespace identifiers _orgunit , _user and _host are the other bindings in the Initial
Context. The exact bindings of these namespace identifiers are not specified by XFN-EP but are
instead determined by the implementation and possibly customized by specific installations if
allowed by the implementation. They are provided as shorthands for contexts for naming
organisational units, hosts and users expected to be most frequently referenced in a particular
environment. Applications or end-users needing a more precise association can use names
starting with the user-related or host-related namespace identifiers described above.

For example, assume _orgunit is bound to the root of the organisational unit
namespace of U, then the name _orgunit/accounts_payable.finance names an
organisational unit accounts_payable.finance in the enterprise of U, and is
equivalent to the name _myens/_orgunit/accounts_payable.finance .

For example, if _host is bound to the hostname context of H’s distinguished
organisational unit, then using _host allows other hosts in the same organisational
unit as H to be named from this context, and the names _host and
_thisorgunit/_host resolve to the same context.

For example, if _user is bound to the username context of U’s distinguished
organisational unit, _user/jsmith names the user jsmith at the same
organisational unit as U, and the names _user and _myorgunit/_user resolve to
the same context.

The meanings of _orgunit , _user and _host can vary among configurations. However,
once the end-user is familiar with the configuration of a particular installation, she can use these
namespace identifiers in her day-to-day operations. When she uses a system from another
environment, with possibly a different and not-so-familiar configuration, she can use the longer
forms to name precisely what she intends (for example, _thisorgunit/_user/ instead of
_user/). These namespace identifiers can also be used by applications that do not care about
the precise definition but are instead interested in naming, for example, users in the
distinguished context for users in any environment.

D.4.4 Relationships and Usage of Bindings

A typical situation is one in which many of the host-related and user-related bindings are the
same.

_thisens and _myens are often bound to the same reference. They will be different only if the
user using the system is from a foreign enterprise.

_thisorgunit and _myorgunit will be bound to the same reference if both H and U have the
same distinguished organisational unit. For example, in a situation in which host-to-
organisational unit assignments are based on the organisational units of machine owners (users),
_thisorgunit and _myorgunit would often be bound to the same reference; they would be
different only when U uses a machine from another organisational unit.

Federated Naming: The XFN Specification 287

Bindings for the Enterprise in the Initial Context Policies for the Enterprise Namespace

east

_orgunit

eng

desktop

_user

jsmith
rlee

joe

_service

scarabease

_host

abc

sales

west

_thisens
_myens

_thisorgunit
_myorgunit

_orgunit

_user

_myself

_host

_thishost

Bound in Initial Context

Figure D-2 Example of Enterprise Bindings in the Initial Context

Figure D-2 is an example of an Initial Context, in which H and U share many common
affiliations. U is user jsmith , who is using machine scarab , H. Both jsmith and scarab
belong to the same enterprise, and both have east/sales/desktop as their distinguished
organisational unit. _orgunit is associated with H; _user and _host are associated with
H’s distinguished organisational unit.

With the advent of mobile systems and globally accessible enterprises, situations in which many
of the host-related and user-related bindings are different will become increasingly common.
Therefore, instead of having a single set of bindings, XFN-EP defines two sets, one for the host
and one for the user.

Figure D-3 contains another example of an Initial Context, in which H and U are in different
enterprises. U is user mjones , of the finance organisational unit in some enterprise.

288 X/Open CAE Specification

Policies for the Enterprise Namespace Bindings for the Enterprise in the Initial Context

east

_orgunit

eng

desktop

_user

jsmith
rlee

joe

_service

scarabease

_host

abc

sales

west

_thisens

_myens

_thisorgunit

_myorgunit

_orgunit

_user

_myself

_host

_thishost

Bound in Initial Context

_user
_host

_orgunit finance

mjones

Figure D-3 Example of Bindings when U and H are in Different Enterprises

mjones is using machine scarab , H, in another enterprise. scarab ’s distinguished
organisational unit is east/sales/desktop . As in Figure D-2, _orgunit is associated with
H; _user and _host are associated with H’s distinguished organisational unit.

When an enterprise is bound in a global namespace, the application and end-user have the
additional capability of naming objects using global names.

In Figure D-3, suppose user mjones is in the c=jp/o=utokyo enterprise, and the
machine scarab is in the c=us/o=Wiz enterprise. Then, instead of using the name

_thisens/_orgunit/east/sales/desktop/_user/jsmith
to refer to a user in scarab ’s enterprise, the user mjones could have used the name

.../c=us/o=Wiz/_orgunit/east/sales/desktop/_user/jsmith .

Federated Naming: The XFN Specification 289

Bindings for the Enterprise in the Initial Context Policies for the Enterprise Namespace

Furthermore, if the user mjones wants to give out a name that can be used globally, he
might give out the name

.../c=jp/o=utokyo/_orgunit/finance/_user/mjones/_fs/memo.txt
for a file that he usually accesses using the name _myself/_fs/memo.txt .

290 X/Open CAE Specification

Policies for the Enterprise Namespace Examples of Composite Names

D.5 Examples of Composite Names
In the following examples, note that the specific choices of organisational unit names, user
names, host names, file names and service names, and their syntaxes are just illustrative. They
are not specified by XFN or XFN-EP.

D.5.1 Composing Names Starting with Global Names

Here are examples of names that begin with global components.

.../c=jp/o=utokyo/_orgunit/grads.ai.cs/_user/mtakuda/_service/calendar
names the calendar service of a user mtakuda in the organisational unit grads.ai.cs at
the University of Tokyo in Japan.

.../c=us/o=Wiz/_fs/export\usoft\products.txt
names the file export\usoft\products.txt from the enterprise Wiz .

.../c=us/o=Wiz/_service/fax
names the fax service of the enterprise Wiz .

.../Wiz.com/_orgunit/accounts_payable.finance/_service/fax
names a fax service in the accounts_payable.finance organisational unit of the
enterprise named by the DNS name Wiz.com .

.../Wiz.com/_orgunit/b1.palo_alto.west.us/_service/fax
names a fax service in Building 1 at the Palo Alto campus of Wiz.

D.5.2 Composing Names Starting with the Enterprise Root

The types of objects that may be named relative to the enterprise root are user, host, service,
organisational unit, and file. Here are some examples of names that begin the enterprise root.

_thisens/_orgunit/engineering/servers/multimedia
names an organisational unit engineering/servers/multimedia in H’s enterprise.

_myens/_user/hdiffie
names the user hdiffie in U’s enterprise.

_myens/_service/teletax
names the teletax service of U’s enterprise.

D.5.3 Composing Names Starting with Organisational Units

The types of objects that may be named relative to an organisational unit name are: user, host,
service and file. Here are some examples of names that begin with organisational unit names
(either explicitly via _orgunit , or implicitly via _thisorgunit or _myorgunit), and name
objects relative to organisational unit names when resolved in the Initial Context.

_orgunit/finance/_user/mjones
names a user mjones in the organisational unit finance .

_orgunit/finance/_host/inmail
names a machine inmail belonging to the organisational unit finance.

_orgunit/accounts_payable.finance/_fs/pub/blue-and-whites/FY92-124
names a file pub/blue-and-whites/FY92-124 belonging to the organisational unit
accounts_payable.finance .

Federated Naming: The XFN Specification 291

Examples of Composite Names Policies for the Enterprise Namespace

_orgunit/accounts_payable.finance/_service/calendar
names the calendar service of the organisational unit accounts_payable.finance .
This might manage the meeting schedules of the organisational unit.

_thisorgunit/_user/cmead
names the user cmead in H’s organisational unit.

_myorgunit/_fs/pub/project_plans/widget.ps
names the file pub/project_plans/widget.ps exported by U’s organisational unit’s
file system.

D.5.4 Composing Names Starting with Users

The types of objects that may be named relative to a user name are services and files. Here are
some examples of names that begin with user names (explicitly via _user or implicitly via
_myself), and name objects relative to users when resolved in the Initial Context.

_user/jsmith/_service/calendar
names the calendar service of the user jsmith .

_user/jsmith/_fs/bin/games/riddles
names the file bin/games/riddles of the user jsmith .

_user/rjones/_fs/games\crash.exe
names the file games\crash.exe of user rjones .

_myself/_service/printer/default
names the default printer service of U.

D.5.5 Composing Names Starting with Hosts

The types of objects that may be named relative to a host name are services and files. Here are
some examples of names that begin with host names (explicitly via _host or implicitly via
_thishost), and name objects relative to hosts when resolved in the Initial Context.

_host/mailhop/_service/mailbox
names the mailbox service associated with the machine mailhop .

_host/mailhop/_fs/pub/saf/archives.91
names the directory pub/saf/archives.91 found under the root directory of the
machine mailhop .

_host/labpc/_fs/D:\udir\jsmith\games\mario.exe
names a file \udir\jsmith\games\mario.exe on drive D found on the machine
labpc .

_thishost/_fs/D:\udir\jsmith\games\mario.exe
names a file \udir\jsmith\games\mario.exe on drive D found on H.

_thishost/_service/printer/default
names the default printer service of H.

292 X/Open CAE Specification

Appendix E

Integrating File Services

A file service is an important service in distributed computing platforms today. It is an example
of a service that incorporates a naming system for naming files.

Typically, a file namespace is hierarchically structured. Names representing non-leaf nodes
identify directories. Leaf nodes generally identify files. A directory can be viewed as inheriting
a naming context in which other directories and files are bound.

The main motivation for federating a file naming system is to enable clients of the file service to
use composite names to access files through the file interface.

Federated Naming: The XFN Specification 293

Using the XFN Interface for POSIX.1 File Systems Integrating File Services

E.1 Using the XFN Interface for POSIX.1 File Systems
In most systems, XFN naming operations will not be exposed directly to the client of the file
service. Systems typically provide a file service interface. The implementation of operations
which accept file names as parameters needs to be modified to accept composite names and use
the XFN interface. An example of such an operation is the open() system call in POSIX.1, which
returns a descriptor of the file specified by the given name. The following outlines how this can
be done in POSIX.1.

In POSIX.1, when a pathname (name of file or directory) that begins with a slash (’/’) is
specified as a parameter to a file operation, it is resolved with respect to the root directory of the
local file system. Otherwise, it is resolved with respect to the current working directory, which is
a context (directory) that is associated with the process.

Operations in the file interface are implemented as system calls. One or more file systems can be
‘‘mounted’’ at different points in the file namespace and are distinguished by the prefix of the
pathname supplied to the operations.

Because all pathnames are interpreted with respect to the root directory or current working
directory, the first question is how to incorporate an XFN composite name in a pathname. One
solution is to effectively ‘‘mount’’ the XFN Initial Context in the root directory, thereby
providing access to other federated file services. This requires reserving a directory name in the
root directory of the file system. XFN recommends the name xfn . Thus, any pathname with a
prefix /xfn is an XFN composite name.

The process that is mounted at /xfn is the name resolver and thus a client of the XFN interface.
In ONC+, this can be the Automounter. In DCE, this can be the DFS cache-manager. Upon
receiving a request for name resolution, the name resolver uses the fn_ctx_lookup () operation to
obtain an XFN reference (FN_ref_t). The XFN reference is then used to derive the information
for accessing the named file. The structure of the reference depends on the distributed file
service.

294 X/Open CAE Specification

Appendix F

Techniques for Extending XFN

The XFN interface is designed to be extensible.

Except for the types FN_attrvalue_t and FN_identifier_t, all other data types defined in the
interface are defined so as to hide their actual data representation from the client. The actual
representations of these types are not defined by XFN but by XFN implementations.

The methods for extending the set of operations on any of the abstract types, including those on
the context, are similar. The following discussion focuses on extending the context interface.
The same techniques can be applied to any of the other abstract data types.

Federated Naming: The XFN Specification 295

Extending the C Context Interface Techniques for Extending XFN

F.1 Extending the C Context Interface
In the C context interface, the client performs operations on a context through an interface that
XFN defines, and refers to the context through a pointer to the object.

There are two approaches for extending the C context interface:

1. Make the FN_ctx_t object extensible.

Operations are added that operate on objects of type FN_ctx_t. For example, one might
add an operation fn_ctx_list_with_filter(), which is similar to fn_ctx_list_names () except it
accepts a filter for selecting which names to return.

FN_filtered_namelist_t *fn_ctx_list_with_filter(
FN_ctx_t * ctx ,
const FN_filter_t * filter ,
FN_status_t * status);

Support for some of these extended operations may require access to additional data
related to the context. For example, if the extended context is a user context, the extended
operations may require access to data related to the user. The implementation that
supplies the FN_ctx_t object determines whether such support is possible. Using an
extended operation on a non-extended FN_ctx_t object is undefined and if at all possible,
should be reported to the client.

2. Declare new types of context objects.

Both context and extended operations are supported through newly defined operations
that take the new type as parameter. One of these operations must be a function
analogous to fn_ctx_handle_from_ref (), which, given a reference, returns the handle to an
object of the new context type. For example, FN_user_ctx_t is a new type of context, and
the following are examples of declarations for a context operation and an extended
operation.

FN_ref_t *fn_user_ctx_lookup(
FN_user_ctx_t * uctx ,
const FN_composite_name_t * name,
FN_status_t * status);

uid_t fn_ctx_get_uid(
FN_user_ctx_t * ctx ,
FN_status_t * status);

The extended type, FN_user_ctx_t in the example, would encapsulate the object that it is
extending, FN_ctx_t in the example. For example, fn_user_ctx_lookup () might be
implemented by extracting an FN_ctx_t pointer from the given uctx, and passing the
FN_ctx_t pointer to fn_ctx_lookup ().

In both approaches, an extended operation cannot be invoked with a composite name argument
where the intent is to perform composite name resolution to the target context and then perform
the extended operation. This is not possible because the intermediate contexts may not
necessarily be extended in the same way. The steps for invoking an extended operation are:

1. Obtain a reference to the target extended context.

2. Use fn_ctx_handle_from_ref () or an equivalent of this for the extended context object to
create a handle to the extended context object.

296 X/Open CAE Specification

Techniques for Extending XFN Extending the C Context Interface

3. Invoke the extended operation using the handle.

The following example illustrates how a client could access an extended operation
fn_user_ctx_get_uid(), using the second approach of extension described above.

FN_string_t *input_username;
FN_composite_name_t *uname;
FN_ref_t *eref;
FN_status_t *status = fn_status_create();

/* 1. Obtain reference to extended context */
uname = fn_composite_name_from_string(input_username);
eref = fn_ctx_lookup(init_ctx, uname, status);
/* check status */

if (eref) {
/* 2. Obtain handle to extended context object */
FN_user_ctx_t *uctx = fn_user_ctx_handle_from_ref(eref, status);
/* check status */

/* 3. Perform extended operation on object */
if (uctx) {

uid_t thisuid;
thisuid = fn_user_ctx_get_uid(uctx, status);
/* check status */

}
...

}

Federated Naming: The XFN Specification 297

Techniques for Extending XFN

298 X/Open CAE Specification

Appendix G

Registry of Types, Identifiers and Code Sets

This appendix contains a registry of identifiers and codes used by XFN implementations. These
include:

• reference types

• address types and address formats

• attribute syntaxes and identifiers

• code sets used in character strings

• extended operations for search filter expression.

When an implementation requires the use of an item (such as a reference type or address type)
and an item with the same semantics is already defined in the registry, the item in the registry
should be used. If the item has different semantics than the items already in the registry, a new
item should be defined. If the scope of use of the item is expected to be external to the
environment that defines it, the item should be added to the registry.

The registry in this Appendix will be maintained by X/Open as a part of maintaining this
document.

Federated Naming: The XFN Specification 299

Reference Types Registry of Types, Identifiers and Code Sets

G.1 Reference Types

G.1.1 XFN Standard References

Reference Type Description Identifier Format Identifier Value
XFN link reference FN_ID_STRING fn_link_ref
XFN null reference FN_ID_STRING fn_null_ref

An XFN link reference consists of a single address, with address type fn_link_addr .

An XFN null reference contains no addresses.

G.1.2 Naming Service-dependent References

Reference Type Description Identifier Format Identifier Value
FN_DCE_CDS_REF FN_ID_ISO_OID_STRING 1.3.22.1.6.1.1
FN_DCE_RPC_SERVER_REF FN_ID_ISO_OID_STRING 1.3.22.1.6.1.2
FN_DCE_XFN_SERVER_REF FN_ID_ISO_OID_STRING 1.3.22.1.6.1.3
FN_DCE_GROUP_REF FN_ID_ISO_OID_STRING 1.3.22.1.6.1.4
FN_DCE_DFS_REF FN_ID_ISO_OID_STRING 1.3.22.1.6.1.5
FN_DCE_SEC_REF FN_ID_ISO_OID_STRING 1.3.22.1.6.1.6
FN_CPIC_PGM_INST_REF FN_ID_ISO_OID_STRING 1.3.18.0.2.6.7

ONC Enterprise Context FN_ID_STRING onc_fn_enterprise
ONC File System Context FN_ID_STRING onc_fn_fs
ONC Organization Context FN_ID_STRING onc_fn_organization
ONC Printername Context FN_ID_STRING onc_fn_printername
ONC Printer Context FN_ID_STRING onc_printers
ONC Site Context FN_ID_STRING onc_fn_site
ONC Username Context FN_ID_STRING onc_fn_username
ONC Hostname Context FN_ID_STRING onc_fn_hostname
ONC User Context FN_ID_STRING onc_fn_user
ONC Host Context FN_ID_STRING onc_fn_host
ONC Service Context FN_ID_STRING onc_fn_service
ONC Namespace Id Context FN_ID_STRING onc_fn_nsid
ONC Null Context FN_ID_STRING onc_fn_null
ONC Generic Context FN_ID_STRING onc_fn_generic

Internet domain FN_ID_STRING inet_domain
Internet host FN_ID_STRING inet_host

X.500 Object FN_ID_STRING x500

300 X/Open CAE Specification

Registry of Types, Identifiers and Code Sets Address Types and Address Formats

G.2 Address Types and Address Formats

G.2.1 XFN Standard Addresses

Address Type Description Identifier Format Identifier Value
XFN link address FN_ID_STRING fn_link_addr

An XFN link address contains the string form of the composite name (that returned by
fn_string_from_composite_name () when applied to an FN_composite_name_t object.)

G.2.2 Naming Service-dependent Addresses

Address Type Description Identifier Format Identifier Value
FN_DCE_RPC_SERVER_ADDR FN_ID_ISO_OID_STRING 1.3.22.1.6.2.1
FN_DCE_GROUP_MEMBER_ADDR FN_ID_ISO_OID_STRING 1.3.22.1.6.2.2
FN_CPIC_PGM_INST_ADDR FN_ID_ISO_OID_STRING 1.3.18.0.2.4.14

ONC FN/NIS+ Address FN_ID_STRING onc_fn_nisplus
ONC FN/NIS+ Root Address FN_ID_STRING onc_fn_nisplus_root
ONC FN/NIS (YP) Address FN_ID_STRING onc_fn_nis
ONC FN Service Address FN_ID_STRING onc_fn_generic
ONC RPC Address FN_ID_STRING onc_rpc

IP Address FN_ID_STRING inet_ipaddr_string

X.500 Address FN_ID_STRING x500

OSI Presentation Address FN_ID_STRING osi_paddr

Internet Domain FN_ID_STRING inet_domain

Federated Naming: The XFN Specification 301

Attribute Identifiers and Attribute Syntaxes Registry of Types, Identifiers and Code Sets

G.3 Attribute Identifiers and Attribute Syntaxes

G.3.1 Attribute Identifiers

Attribute Identifier Description Identifier Format Identifier Value
syntax model type FN_ID_STRING fn_syntax_type
syntax direction FN_ID_STRING fn_std_syntax_direction
atomic component separator FN_ID_STRING fn_std_syntax_separator
escape character(s) FN_ID_STRING fn_std_syntax_escape
begin-quote from first quote set FN_ID_STRING fn_std_syntax_begin_quote1
end-quote from first quote set FN_ID_STRING fn_std_syntax_end_quote1
begin-quote from second quote set FN_ID_STRING fn_std_syntax_begin_quote2
end-quote from second quote set FN_ID_STRING fn_std_syntax_end_quote2
attribute-value-assertion_separator FN_ID_STRING fn_std_syntax_ava_separator
typed-value_separator FN_ID_STRING fn_std_syntax_typeval_separator
locales supported FN_ID_STRING fn_std_syntax_locales
FN_CPIC_PGM_PFID FN_ID_ \

ISO_OID_STRING 1.3.18.0.2.4.13

G.3.2 Attribute Syntaxes

Attribute Syntax Description Identifier Format Identifier Value
ASCII string FN_ID_STRING fn_attr_syntax_ascii
Locale array FN_ID_STRING fn_attr_syntax_locale_array

An attribute value with syntax fn_attr_syntax_ascii contains a linear sequence of ASCII
characters.

fn_attr_syntax_locale_array is defined by the following structures:

struct {
unsigned long code_set;
unsigned long lang_terr;

} fn_attr_syntax_locale_info_t;

struct {
size_t num_locales;
fn_attr_syntax_locale_info_t

locales; / pointer to array of locales */
} fn_attr_syntax_locales_t;

302 X/Open CAE Specification

Registry of Types, Identifiers and Code Sets Code Sets

G.4 Code Sets
XFN uses the code sets as defined by the DCE RFC 40.1.

The default code set is ISO 646 (code set ID 0x00010020).

Federated Naming: The XFN Specification 303

Extended Operations for Search Filter Expression Registry of Types, Identifiers and Code Sets

G.5 Extended Operations for Search Filter Expression
The following three extended operations are currently defined:

’name’(<Wildcarded String>)
The identifier for this operation is ’name’ ({FN_ID_STRING}). The argument to this
operation is a wildcarded string. The operation returns TRUE if the name of the object
matches the supplied wildcarded string.

’reftype’(%i)
The identifier for this operation is ’reftype’ ({FN_ID_STRING}). The argument to this
operation is an identifier. The operation returns TRUE if the reference type of the object is
equal to the supplied identifier.

’addrtype’(%i)
The identifier for this operation is ’addrtype’ ({FN_ID_STRING}). The argument to this
operation is an identifier. The operation returns TRUE if any of the address types in the
reference of the object is equal to the supplied identifier.

304 X/Open CAE Specification

Appendix H

Headers

This chapter defines the header file used in the XFN client interface. The <xfn/xfn.h> header
contains the XFN interface declarations for:

1. the XFN base context interface

2. the XFN extended attribute interface

3. the XFN base attribute interface

4. status object and status codes used by operations in these three interfaces

5. abstract data types passed as parameters to, and returned as values from, operations in
these three interfaces

6. the interface for the XFN standard syntax model for parsing compound names.

H.1 Synopsis
The XFN client interface can be referenced using the following directive:

#include <xfn/xfn.h>

H.2 Structures
The <xfn/xfn.h> header declares the following structures:

FN_identifier_t

struct {
unsigned int format;
size_t length;
void *contents;

} FN_identifier_t;

FN_attrvalue_t

struct {
size_t length;
void *contents;

} FN_attrvalue_t;

Federated Naming: The XFN Specification 305

Enumeration Types Headers

H.3 Enumeration Types
The <xfn/xfn.h> header defines the following enumeration types:

String Index Operation Types

enum {
FN_STRING_INDEX_NONE = -1,
FN_STRING_INDEX_FIRST = 0,
FN_STRING_INDEX_LAST = INT_MAX

};

Identifier Types

enum {
FN_ID_STRING,
FN_ID_DCE_UUID,
FN_ID_ISO_OID_STRING,
/* others...*/

};

Status Codes

enum {
FN_SUCCESS = 1,
FN_E_LINK_ERROR,
FN_E_CONFIGURATION_ERROR,
FN_E_NAME_NOT_FOUND,
FN_E_NOT_A_CONTEXT,
FN_E_LINK_LOOP_LIMIT,
FN_E_MALFORMED_LINK,
FN_E_ILLEGAL_NAME,
FN_E_CTX_NO_PERMISSION,
FN_E_NAME_IN_USE,
FN_E_OPERATION_NOT_SUPPORTED,
FN_E_COMMUNICATION_FAILURE,
FN_E_CTX_UNAVAILABLE,
FN_E_NO_SUPPORTED_ADDRESS,
FN_E_MALFORMED_REFERENCE,
FN_E_AUTHENTICATION_FAILURE,
FN_E_INSUFFICIENT_RESOURCES,
FN_E_CTX_NOT_EMPTY,
FN_E_NO_SUCH_ATTRIBUTE,
FN_E_INVALID_ATTR_IDENTIFIER,
FN_E_INVALID_ATTR_VALUE,
FN_E_TOO_MANY_ATTR_VALUES,
FN_E_ATTR_VALUE_REQUIRED,
FN_E_ATTR_NO_PERMISSION,
FN_E_PARTIAL_RESULT,
FN_E_INVALID_ENUM_HANDLE,
FN_E_SYNTAX_NOT_SUPPORTED,
FN_E_INVALID_SYNTAX_ATTRS,
FN_E_INCOMPATIBLE_CODE_SETS

306 X/Open CAE Specification

Headers Enumeration Types

FN_E_CONTINUE,
FN_E_UNSPECIFIED_ERROR,
FN_E_NO_EQUIVALENT_NAME,
FN_E_ATTR_IN_USE,
FN_E_INCOMPATIBLE_LOCALES,
FN_E_SEARCH_INVALID_FILTER,
FN_E_SEARCH_INVALID_OP,
FN_E_SEARCH_INVALID_OPTION

};

Attribute Modification Types

enum {
FN_ATTR_OP_ADD = 1,
FN_ATTR_OP_ADD_EXCLUSIVE,
FN_ATTR_OP_REMOVE,
FN_ATTR_OP_ADD_VALUES,
FN_ATTR_OP_REMOVE_VALUES

};

H.4 Data Types
The <xfn/xfn.h> header defines the following data types through typedef:

FN_identifier_t

typedef struct {
unsigned int format;
size_t length;
void *contents;

} FN_identifier_t;

FN_attrvalue_t

typedef struct {
size_t length;
void *contents;

} FN_attrvalue_t;

Other data types used in the XFN client interface are defined as abstract data types. They
contain no explicit data type definitions and can only be manipulated through operations on the
type.

Federated Naming: The XFN Specification 307

Functions Headers

H.5 Functions
The <xfn/xfn.h> header declares the following as functions.

H.5.1 Operations on FN_string_t

extern FN_string_t *fn_string_create(void);
extern void fn_string_destroy(FN_string_t *);

extern FN_string_t *fn_string_from_str(const unsigned char *str);
extern FN_string_t *fn_string_from_str_n(

const unsigned char *str, size_t storlen);
extern const unsigned char *fn_string_str(

const FN_string_t *, unsigned int *status);

extern FN_string_t *fn_string_from_contents(
unsigned long code_set,
unsigned long lang_terr,
size_t charcount,
size_t bytecount,
const void *contents,
unsigned int *status);

unsigned long fn_string_code_set(
const FN_string_t *str);

unsigned long fn_string_lang_terr(
const FN_string_t *str);

extern size_t fn_string_charcount(const FN_string_t *);
extern size_t fn_string_bytecount(const FN_string_t *);
extern const void *fn_string_contents(const FN_string_t *);

extern FN_string_t *fn_string_copy(const FN_string_t *);
extern FN_string_t *fn_string_assign(

FN_string_t *dst,
const FN_string_t *src);

extern FN_string_t *fn_string_from_strings(
unsigned int *status,
const FN_string_t *s1,
const FN_string_t *s2,
...);

extern FN_string_t *fn_string_from_substring(
const FN_string_t *,
int first,
int last);

extern int fn_string_is_empty(const FN_string_t *);
extern int fn_string_compare(

const FN_string_t *s1,
const FN_string_t *s2,
unsigned int string_case,
unsigned int *status);

308 X/Open CAE Specification

Headers Functions

extern int fn_string_compare_substring(
const FN_string_t *s1,
int first,
int last,
const FN_string_t *s2,
unsigned int string_case,
unsigned int *status);

extern int fn_string_next_substring(
const FN_string_t *str,
const FN_string_t *sub,
int index,
unsigned int string_case,
unsigned int *status);

extern int fn_string_prev_substring(
const FN_string_t *str,
const FN_string_t *sub,
int index,
unsigned int string_case,
unsigned int *status);

H.5.2 Operations on FN_composite_name_t

extern FN_composite_name_t *fn_composite_name_create(void);
extern void fn_composite_name_destroy(FN_composite_name_t *);
extern FN_composite_name_t *fn_composite_name_from_string(

const FN_string_t *);
extern FN_composite_name_t *fn_composite_name_from_str(

const unsigned char *cstr);
extern FN_string_t *fn_string_from_composite_name(

const FN_composite_name_t *,
unsigned int *status);

extern FN_composite_name_t *fn_composite_name_copy(
const FN_composite_name_t *);

extern FN_composite_name_t *fn_composite_name_assign(
FN_composite_name_t *dst,
const FN_composite_name_t *src);

extern int fn_composite_name_is_empty(const FN_composite_name_t *);
extern unsigned int fn_composite_name_count(

const FN_composite_name_t *);

extern const FN_string_t *fn_composite_name_first(
const FN_composite_name_t *,
void **iter_pos);

extern const FN_string_t *fn_composite_name_next(
const FN_composite_name_t *,
void **iter_pos);

extern const FN_string_t *fn_composite_name_prev(
const FN_composite_name_t *,
void **iter_pos);

extern const FN_string_t *fn_composite_name_last(
const FN_composite_name_t *,
void **iter_pos);

Federated Naming: The XFN Specification 309

Functions Headers

extern FN_composite_name_t *fn_composite_name_prefix(
const FN_composite_name_t *,
const void *iter_pos);

extern FN_composite_name_t *fn_composite_name_suffix(
const FN_composite_name_t *,
const void *iter_pos);

extern int fn_composite_name_is_equal(
const FN_composite_name_t *n1,
const FN_composite_name_t *n2,
unsigned int *status);

extern int fn_composite_name_is_prefix(
const FN_composite_name_t *,
const FN_composite_name_t *prefix,
void **iter_pos,
unsigned int *status);

extern int fn_composite_name_is_suffix(
const FN_composite_name_t *,
const FN_composite_name_t *suffix,
void **iter_pos,
unsigned int *status);

extern int fn_composite_name_prepend_comp(
FN_composite_name_t *,
const FN_string_t *);

extern int fn_composite_name_append_comp(
FN_composite_name_t *,
const FN_string_t *);

extern int fn_composite_name_insert_comp(
FN_composite_name_t *,
void **iter_pos,
const FN_string_t *);

extern int fn_composite_name_delete_comp(
FN_composite_name_t *,
void **iter_pos);

extern int fn_composite_name_prepend_name(
FN_composite_name_t *,
const FN_composite_name_t *);

extern int fn_composite_name_append_name(
FN_composite_name_t *,
const FN_composite_name_t *);

extern int fn_composite_name_insert_name(
FN_composite_name_t *,
void **iter_pos,
const FN_composite_name_t *);

310 X/Open CAE Specification

Headers Functions

H.5.3 Operations on FN_ref_addr_t

extern FN_ref_addr_t *fn_ref_addr_create(
const FN_identifier_t *type,
size_t len,
const void *data);

extern void fn_ref_addr_destroy(FN_ref_addr_t *);

extern FN_ref_addr_t *fn_ref_addr_copy(const FN_ref_addr_t *);
extern FN_ref_addr_t *fn_ref_addr_assign(

FN_ref_addr_t *dst,
const FN_ref_addr_t *src);

extern const FN_identifier_t *fn_ref_addr_type(const FN_ref_addr_t *);
extern size_t fn_ref_addr_length(const FN_ref_addr_t *);
extern const void *fn_ref_addr_data(const FN_ref_addr_t *);

extern FN_string_t *fn_ref_addr_description(
const FN_ref_addr_t *,
unsigned int detail,
unsigned int *more_detail);

H.5.4 Operations on FN_ref_t

extern FN_ref_t *fn_ref_create(const FN_identifier_t *ref_type);
extern void fn_ref_destroy(FN_ref_t *);
extern FN_ref_t *fn_ref_copy(const FN_ref_t *);
extern FN_ref_t *fn_ref_assign(FN_ref_t *dst, const FN_ref_t *src);

extern const FN_identifier_t *fn_ref_type(const FN_ref_t *);
extern unsigned int fn_ref_addrcount(const FN_ref_t *);

extern const FN_ref_addr_t *fn_ref_first(
const FN_ref_t *,
void **iter_pos);

extern const FN_ref_addr_t *fn_ref_next(
const FN_ref_t *,
void **iter_pos);

extern int fn_ref_prepend_addr(FN_ref_t *, const FN_ref_addr_t *);
extern int fn_ref_append_addr(FN_ref_t *, const FN_ref_addr_t *);
extern int fn_ref_insert_addr(

FN_ref_t *,
void **iter_pos,
const FN_ref_addr_t *);

extern int fn_ref_delete_addr(FN_ref_t *, void **iter_pos);
extern int fn_ref_delete_all(FN_ref_t *);

extern FN_ref_t *fn_ref_create_link(
const FN_composite_name_t *link_name);

extern int fn_ref_is_link(const FN_ref_t *);
extern FN_composite_name_t *fn_ref_link_name(const FN_ref_t *link_ref);

extern FN_string_t *fn_ref_description(

Federated Naming: The XFN Specification 311

Functions Headers

const FN_ref_t *,
unsigned int detail,
unsigned int *more_detail);

H.5.5 Operations on FN_attribute_t

extern FN_attribute_t *fn_attribute_create(
const FN_identifier_t *attr_id,
const FN_identifier_t *attr_syntax);

extern void fn_attribute_destroy(FN_attribute_t *);

extern FN_attribute_t *fn_attribute_copy(const FN_attribute_t *);
extern FN_attribute_t *fn_attribute_assign(

FN_attribute_t *dst,
const FN_attribute_t *src);

extern const FN_identifier_t *fn_attribute_identifier(
const FN_attribute_t *);

extern const FN_identifier_t *fn_attribute_syntax(
const FN_attribute_t *);

extern unsigned int fn_attribute_valuecount(const FN_attribute_t *);

extern const FN_attrvalue_t *fn_attribute_first(
const FN_attribute_t *,
void **iter_pos);

extern const FN_attrvalue_t *fn_attribute_next(
const FN_attribute_t *,
void **iter_pos);

extern int fn_attribute_add(
FN_attribute_t *,
const FN_attrvalue_t *,
unsigned int exclusive);

extern int fn_attribute_remove(
FN_attribute_t *,
const FN_attrvalue_t *);

H.5.6 Operations on FN_attrset_t

extern FN_attrset_t *fn_attrset_create(void);
extern void fn_attrset_destroy(FN_attrset_t *);

extern FN_attrset_t *fn_attrset_copy(const FN_attrset_t *);
extern FN_attrset_t *fn_attrset_assign(

FN_attrset_t *dst,
const FN_attrset_t *src);

extern const FN_attribute_t *fn_attrset_get(
const FN_attrset_t *,
const FN_identifier_t *attr);

extern unsigned int fn_attrset_count(const FN_attrset_t *);

extern const FN_attribute_t *fn_attrset_first(

312 X/Open CAE Specification

Headers Functions

const FN_attrset_t *,
void **iter_pos);

extern const FN_attribute_t *fn_attrset_next(
const FN_attrset_t *,
void **iter_pos);

extern int fn_attrset_add(
FN_attrset_t *,
const FN_attribute_t *attr,
unsigned int exclusive);

extern int fn_attrset_remove(
FN_attrset_t *,
const FN_identifier_t *attr_id);

H.5.7 Operations on FN_attrmodlist_t

extern FN_attrmodlist_t *fn_attrmodlist_create(void);
extern void fn_attrmodlist_destroy(FN_attrmodlist_t *);

extern FN_attrmodlist_t *fn_attrmodlist_copy(const FN_attrmodlist_t *);
extern FN_attrmodlist_t *fn_attrmodlist_assign(

FN_attrmodlist_t *dst,
const FN_attrmodlist_t *src);

extern unsigned int fn_attrmodlist_count(const FN_attrmodlist_t *);

extern const FN_attribute_t *fn_attrmodlist_first(
const FN_attrmodlist_t *,
void **iter_pos,
unsigned int *first_mod_op);

extern const FN_attribute_t *fn_attrmodlist_next(
const FN_attrmodlist_t *,
void **iter_pos,
unsigned int *mod_op);

extern int fn_attrmodlist_add(
FN_attrmodlist_t *,
unsigned int mod_op,
const FN_attribute_t *mod_args);

H.5.8 Operations on FN_status_t

extern FN_status_t *fn_status_create(void);
extern void fn_status_destroy(FN_status_t *);
extern FN_status_t *fn_status_copy(const FN_status_t *);
extern FN_status_t *fn_status_assign(

FN_status_t *dst,
const FN_status_t *src);

extern unsigned int fn_status_code(const FN_status_t *);
extern const FN_composite_name_t *fn_status_remaining_name(

const FN_status_t *);
extern const FN_composite_name_t *fn_status_resolved_name(

const FN_status_t *);

Federated Naming: The XFN Specification 313

Functions Headers

extern const FN_ref_t *fn_status_resolved_ref(const FN_status_t *);
extern const FN_string_t* fn_status_diagnostic_message(

const FN_status_t *);

extern unsigned int fn_status_link_code(const FN_status_t *);
extern const FN_composite_name_t *fn_status_link_remaining_name(

const FN_status_t *);
extern const FN_composite_name_t *fn_status_link_resolved_name(

const FN_status_t *);
extern const FN_ref_t *fn_status_link_resolved_ref(

const FN_status_t *);
extern const FN_string_t* fn_status_link_diagnostic_message(

const FN_status_t *);

extern int fn_status_is_success(const FN_status_t *);
extern int fn_status_set_success(FN_status_t *);
extern int fn_status_set(

FN_status_t *,
unsigned int code,
const FN_ref_t *resolved_ref,
const FN_composite_name_t *resolved_name,
const FN_composite_name_t *remaining_name);

extern int fn_status_set_code(FN_status_t *, unsigned int code);
extern int fn_status_set_remaining_name(

FN_status_t *,
const FN_composite_name_t *);

extern int fn_status_set_resolved_name(
FN_status_t *,
const FN_composite_name_t *);

extern int fn_status_set_resolved_ref(FN_status_t *, const FN_ref_t *);
extern int fn_status_set_diagnostic_message(

FN_status_t *,
const FN_string_t *);

extern int fn_status_set_link_code(FN_status_t *, unsigned int code);
extern int fn_status_set_link_remaining_name(

FN_status_t *,
const FN_composite_name_t *);

extern int fn_status_set_link_resolved_name(
FN_status_t *,
const FN_composite_name_t *);

extern int fn_status_set_link_resolved_ref(
FN_status_t *, const FN_ref_t *);

extern int fn_status_set_link_diagnostic_message(
FN_status_t *,
const FN_string_t *);

extern int fn_status_append_resolved_name(
FN_status_t *,
const FN_composite_name_t *);

extern int fn_status_append_remaining_name(
FN_status_t *,

314 X/Open CAE Specification

Headers Functions

const FN_composite_name_t *);

extern int fn_status_advance_by_name(
FN_status_t *,
const FN_composite_name_t *prefix,
const FN_ref_t *resolved_ref);

extern FN_string_t *fn_status_description(
const FN_status_t *,
unsigned int detail,
unsigned int *more_detail);

H.5.9 Operations on FN_search_control_t

extern FN_search_control_t *fn_search_control_create(
unsigned int scope ,
unsigned int follow_links ,
unsigned int max_names,
unsigned int return_ref ,
const FN_attrset_t * return_attr_ids ,
unsigned int * status);

extern void fn_search_control_destroy(
FN_search_control_t * scontrol);

extern FN_search_control_t *fn_search_control_copy(
const FN_search_control_t * scontrol);

extern FN_search_control_t *fn_search_control_assign(
FN_search_control_t * dst ,
const FN_search_control_t * src);

extern unsigned int fn_search_control_scope(
const FN_search_control_t * scontrol);

extern unsigned int fn_search_control_follow_links(
const FN_search_control_t * scontrol);

extern unsigned int fn_search_control_max_names(
const FN_search_control_t * scontrol);

extern unsigned int fn_search_control_return_ref(
const FN_search_control_t * scontrol);

extern const FN_attrset_t *fn_search_control_return_attr_ids(
const FN_search_control_t * scontrol);

H.5.10 Operations on FN_search_filter_t

extern FN_search_filter_t *fn_search_filter_create(
unsigned int * status ,
const unsigned char * estr ,
...);

extern void fn_search_filter_destroy(FN_search_filter_t * sfilter);
extern FN_search_filter_t *fn_search_filter_copy(

const FN_search_filter_t * sfilter);
extern FN_search_filter_t *fn_search_filter_assign(

FN_search_filter_t * dst ,
const FN_search_filter_t * src);

extern const unsigned char *fn_search_filter_expression(
const FN_search_filter_t * sfilter);

extern const void **fn_search_filter_arguments(

Federated Naming: The XFN Specification 315

Functions Headers

const FN_search_filter_t * sfilter ,
size_t * number_of_arguments);

H.5.11 Context Operations on FN_ctx_t

extern FN_ctx_t *fn_ctx_handle_from_initial(
unsigned int authoritativeness ,
FN_status_t *status);

extern FN_ref_t *fn_ctx_lookup(
FN_ctx_t *ctx,
const FN_composite_name_t *name,
FN_status_t *status);

extern FN_namelist_t *fn_ctx_list_names(
FN_ctx_t *ctx,
const FN_composite_name_t *name,
FN_status_t *status);

extern FN_string_t *fn_namelist_next(
FN_namelist_t *nl,
FN_status_t *status);

extern void fn_namelist_destroy(
FN_namelist_t *nl);

extern FN_bindinglist_t *fn_ctx_list_bindings(
FN_ctx_t *ctx,
const FN_composite_name_t *name,
FN_status_t *status);

extern FN_string_t *fn_bindinglist_next(
FN_bindinglist_t *bl,
FN_ref_t **ref,
FN_status_t *status);

extern void fn_bindinglist_destroy(
FN_bindinglist_t *bl);

extern int fn_ctx_bind(
FN_ctx_t *ctx,
const FN_composite_name_t *name,
const FN_ref_t *ref,
unsigned int exclusive,
FN_status_t *status);

extern int fn_ctx_unbind(
FN_ctx_t *ctx,
const FN_composite_name_t *name,
FN_status_t *status);

extern FN_ref_t *fn_ctx_create_subcontext(
FN_ctx_t *ctx,
const FN_composite_name_t *name,
FN_status_t *status);

extern int fn_ctx_destroy_subcontext(
FN_ctx_t *ctx,
const FN_composite_name_t *name,
FN_status_t *status);

316 X/Open CAE Specification

Headers Functions

extern int fn_ctx_rename(
FN_ctx_t *ctx,
const FN_composite_name_t *oldname,
const FN_composite_name_t *newname,
unsigned int exclusive,
FN_status_t *status);

extern FN_ref_t *fn_ctx_lookup_link(
FN_ctx_t *ctx,
const FN_composite_name_t *name,
FN_status_t *status);

FN_composite_name_t *fn_ctx_equivalent_name(
FN_ctx_t *ctx,
const FN_composite_name_t *name,
const FN_string_t *leading_name,
FN_status_t *status);

extern FN_ref_t *fn_ctx_get_ref(
const FN_ctx_t *ctx, FN_status_t *status);

extern FN_ctx_t *fn_ctx_handle_from_ref(const FN_ref_t *ref,
unsigned int authoritativeness ,
FN_status_t * status);

extern void fn_ctx_handle_destroy(FN_ctx_t *ctx);

H.5.12 Attribute Operations on FN_ctx_t

extern FN_attribute_t *fn_attr_get(
FN_ctx_t *ctx,
const FN_composite_name_t *name,
const FN_identifier_t *attr_id,
unsigned int follow_link,
FN_status_t *status);

extern int fn_attr_modify(
FN_ctx_t *ctx,
const FN_composite_name_t *name,
unsigned int mod_op,
const FN_attribute_t *attr,
unsigned int follow_link,
FN_status_t *status);

extern FN_valuelist_t *fn_attr_get_values(
FN_ctx_t *ctx,
const FN_composite_name_t *name,
const FN_identifier_t *attr_id,
unsigned int follow_link,
FN_status_t *status);

extern FN_attrvalue_t *fn_valuelist_next(
FN_valuelist_t *vl,
FN_identifier_t **attr_syntax,
FN_status_t *status);

extern void fn_valuelist_destroy(
FN_valuelist_t *vl);

extern FN_attrset_t *fn_attr_get_ids(

Federated Naming: The XFN Specification 317

Functions Headers

FN_ctx_t *ctx,
const FN_composite_name_t *name,
unsigned int follow_link,
FN_status_t *status);

extern FN_multigetlist_t *fn_attr_multi_get(
FN_ctx_t *ctx,
const FN_composite_name_t *name,
const FN_attrset_t *attr_ids,
unsigned int follow_link,
FN_status_t *status);

extern FN_attribute_t *fn_multigetlist_next(
FN_multigetlist_t *ml,
FN_status_t *status);

extern void fn_multigetlist_destroy(
FN_multigetlist_t *ml);

extern int fn_attr_multi_modify(
FN_ctx_t *ctx,
const FN_composite_name_t *name,
const FN_attrmodlist_t *mods,
unsigned int follow_link,
FN_attrmodlist_t **unexecuted_mods,
FN_status_t *status);

extern FN_attrset_t *fn_ctx_get_syntax_attrs(
FN_ctx_t *ctx,
const FN_composite_name_t *name,
FN_status_t *status);

H.5.13 Extended Attribute Operations on FN_ctx_t

extern int fn_attr_bind(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_ref_t * ref ,
const FN_attrset_t * attrs ,
unsigned int exclusive ,
FN_status_t * status);

extern FN_ref_t *fn_attr_create_subcontext(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_attrset_t * attrs ,
FN_status_t * status);

extern FN_searchlist_t *fn_attr_search(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_attrset_t * match_attrs ,
unsigned int return_ref ,
const FN_attrset_t * return_attr_ids ,
FN_status_t * status);

318 X/Open CAE Specification

Headers Functions

extern FN_string_t *fn_searchlist_next(
FN_searchlist_t * sl ,
FN_ref_t ** returned_ref ,
FN_attrset_t ** returned_attrs ,
FN_status_t * status);

extern void fn_searchlist_destroy(
FN_searchlist_t * sl);

extern FN_ext_searchlist_t *fn_attr_ext_search(
FN_ctx_t * ctx ,
const FN_composite_name_t * name,
const FN_search_control_t * control ,
const FN_search_filter_t * filter ,
FN_status_t * status);

extern FN_composite_name_t *fn_ext_searchlist_next(
FN_ext_searchlist_t * esl ,
FN_ref_t ** returned_ref ,
FN_attrset_t ** returned_attrs ,
FN_status_t * status);

extern void fn_ext_searchlist_destroy(
FN_ext_searchlist_t * esl);

H.5.14 Operations on FN_compound_name_t

extern FN_compound_name_t *fn_compound_name_from_syntax_attrs(
const FN_attrset_t *,
const FN_string_t *name,
FN_status_t *);

extern FN_attrset_t *fn_compound_name_get_syntax_attrs(
const FN_compound_name_t *);

extern void fn_compound_name_destroy(FN_compound_name_t *);

extern FN_string_t *fn_string_from_compound_name(
const FN_compound_name_t *);

extern FN_compound_name_t *fn_compound_name_copy(
const FN_compound_name_t *);

extern FN_compound_name_t *fn_compound_name_assign(
FN_compound_name_t *dst,
const FN_compound_name_t *src);

extern unsigned int fn_compound_name_count(const FN_compound_name_t *);

extern const FN_string_t *fn_compound_name_first(
const FN_compound_name_t *,
void **iter_pos);

extern const FN_string_t *fn_compound_name_next(
const FN_compound_name_t*,
void **iter_pos);

extern const FN_string_t *fn_compound_name_prev(
const FN_compound_name_t *,
void **iter_pos);

extern const FN_string_t *fn_compound_name_last(
const FN_compound_name_t *,
void **iter_pos);

Federated Naming: The XFN Specification 319

Functions Headers

extern FN_compound_name_t *fn_compound_name_prefix(
const FN_compound_name_t *,
const void *iter_pos);

extern FN_compound_name_t *fn_compound_name_suffix(
const FN_compound_name_t *,
const void *iter_pos);

extern int fn_compound_name_is_empty(const FN_compound_name_t *);

extern int fn_compound_name_is_equal(
const FN_compound_name_t *,
const FN_compound_name_t *,
unsigned int *status);

extern int fn_compound_name_is_prefix(
const FN_compound_name_t *,
const FN_compound_name_t *prefix,
void **iter_pos,
unsigned int *status);

extern int fn_compound_name_is_suffix(
const FN_compound_name_t *,
const FN_compound_name_t *suffix,
void **iter_pos,
unsigned int *status);

extern int fn_compound_name_prepend_comp(
FN_compound_name_t *,
const FN_string_t *,
unsigned int *status);

extern int fn_compound_name_append_comp(
FN_compound_name_t *,
const FN_string_t *,
unsigned int *status);

extern int fn_compound_name_insert_comp(
FN_compound_name_t *,
void **iter_pos,
const FN_string_t *,
unsigned int *status);

extern int fn_compound_name_delete_comp(
FN_compound_name_t *,
void **iter_pos);

extern int fn_compound_name_delete_all(FN_compound_name_t *);

320 X/Open CAE Specification

Glossary

address
An unambiguous name, label or number which identifies the location of a particular entity or
service. See also presentation address.

API
Application Programming Interface.

argument
Information which is passed to a function or operation and which specifies the details of the
processing to be performed.

atom
An atom is a unique ID corresponding to a string name. Atoms are used to identify properties,
types and selections.

BER
Basic Encoding Rules.

cache
Either a copy of an entry stored in other DSA(s) through bilateral agreement, or a locally and
dynamically stored copy of an entry resulting from a request (a cache copy).

CDS
DCE Cell Directory Service: a naming system in the enterprise namespace.

composite name
A name that spans multiple naming systems.

Directory
A collection of open systems which cooperate to hold a logical database of information about a
set of objects in the real world.

DNS
Domain Name Service. A name and address lookup protocol used by the Internet.

federated naming
An aggregation of autonomous naming systems that cooperate to support name resolution of
composite names through a standard interface.

Function
A programming language construct, modelled after the mathematical concept. A function
encapsulates some behaviour. It is given some arguments as input, performs some processing,
and returns some results. Also known as procedures, subprograms or subroutines. See
Operation.

internationalisation
The provision within a computer program of the capability of making itself adaptable to the
requirements of different native languages, local customs and coded character sets.

name
A construct that singles out a particular (directory) object from all other objects. A name must
be unambiguous (that is, denote just one object), however, it need not be unique (that is, be the
only name which unambiguously denotes the object). Network Information System, in Solaris.

Federated Naming: The XFN Specification 321

Glossary

nns
Next Naming System: subordinate nasming systems are federated through nns pointers.

Operation
Processing performed within the directory to provide a service, such as a read operation. It is
given some arguments as input, performs some processing, and returns some results. An
application process invokes an operation by calling an interface Function.

service
Software that implements the interface.

322 X/Open CAE Specification

Index

<xfn/xfn.h>..176
access control...15
address..321
API...321
application-level naming service71
argument ..321
atom...321
atomic name...9
attribute ..12, 28
attribute identifier...31
attribute interface ...75
attribute operations..269
attribute value ...30
authentication..15
base context interface ..20
basic implementation model..................................13
basic usage model...13
BER ..321
bind..22
binding..9
bnf ..56
C interface ..19
cache..321
caching ..16
CDS ...240, 321
component ...57
composing..59
composite name....................................10-11, 55, 321
composite name resolution10, 63
composite name support ..2
compound name...9, 51
conformance ..5
construct an equivalent name................................26
context ..9, 12, 20, 65
context handle ...25-26
context operations ..267
create subcontext ..24
DCE CDS ..240
decomposing ...57
destroy subcontext ...24
Directory...321
DNS...226, 321
encoding ...55
enterprise..71
enterprise-level naming service.............................71
extensibility..295

federated namespace ...10
federated naming..321
federated naming system..10
federation ...2
FN_attribute_t ...76
FN_attrmodlist_t ..78
FN_attrset_t ...80
FN_attrvalue_t ..82
fn_attr_bind()..117
fn_attr_create_subcontext().................................118
fn_attr_ext_search()...119
fn_attr_get() ..125
fn_attr_get_ids()...126
fn_attr_get_values() ..127
fn_attr_modify()...129
fn_attr_multi_get() ..131
fn_attr_multi_modify()...134
fn_attr_search() ..135
FN_composite_name_t ...83
FN_compound_name_t ..87
fn_ctx_bind()...140
fn_ctx_create_subcontext()..................................141
fn_ctx_destroy_subcontext()142
fn_ctx_equivalent_name()143
fn_ctx_get_ref() ..145
fn_ctx_get_syntax_attrs().....................................146
fn_ctx_handle_destroy().......................................147
fn_ctx_handle_from_initial()...............................148
fn_ctx_handle_from_ref()149
fn_ctx_list_bindings() ...151
fn_ctx_list_names() ...152
fn_ctx_lookup() ..155
fn_ctx_lookup_link()...156
fn_ctx_rename() ...157
FN_ctx_t ...91
fn_ctx_unbind()..158
FN_identifier_t ..94
FN_ID_STRING..48, 304

in FN_search_filter_t ...106
FN_ref_addr_t ...98
FN_ref_t..95
FN_search_control_t ..100
FN_search_filter_t ..103
FN_SEARCH_ONE_CONTEXT44

in FN_search_control_t101
FN_status_t ..109

Federated Naming: The XFN Specification 323

Index

FN_STRING_INDEX_LAST
in FN_string_t ...115

FN_STRING_INDEX_NONE
in FN_string_t ...115

FN_string_t ..113
Function..321
global naming service..71
handle..21
header file...305
identifiers..299
implementation models ..260
implicit next naming..63
implicit nns pointers ..265
initial context ...12
interface ..75
interface overview..19
internationalisation..17, 321
Internet..226
junction ...63, 66-67
junctions ...265
lineage ...4
link ...12
list binding ...22
list names..21
lookup ...21
lookup link...24
manpages ...75
motivation ..1
multiple attributes ..31-32
name..9, 321
name syntax...266
namespace..10
naming association...9
naming convention...9
naming conventions...19
naming interface ...1
naming model..9
naming service ..10
naming system ..10
next naming ...63
next naming system ...265
NIS ...253
nns ...265, 322
Operation ...322
OSI X.500 ..230
policy...2, 71
reference ...9, 11
reference to context ..25
registry..11, 299

codes ...299
identifiers ...299

relationship ..3
rename ..23
replication ..16
resolution..63
scope..3
security..15
separation support ...62
service ...322
Solaris NIS..253
string syntax ..55
strong separation..60, 67, 266
syntactic rule..9
syntax ..55
syntax attribute ...266
syntax attributes of context25
terminology..71
unbind...23
weak separation ...61, 67, 266
X.500 directory ..230
XFN client interface ...305
XFN interface declarations305
XFN_attribute_operations159
XFN_composite_syntax ..164
XFN_compound_syntax165
XFN_links...169
XFN_status_codes ..172

324 X/Open CAE Specification

	c403cov.pdf
	Page 1

	blank.pdf
	Page 1

