
Technical Standard

DRDA, Version 3, Volume 1:

Distributed Relational Database Architecture (DRDA)

The Open Group

 January 2004, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Technical Standard

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA)

ISBN: 1-931624-40-2
Document Number: C043

Published in the U.K. by The Open Group, January 2004.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

This documentation and the software to which it relates are derived in part from copyrighted
materials supplied by International Business Machines. Neither International Business Machines
nor The Open Group makes any warranty of any kind with regard to this material, including but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The Open Group shall not be liable for errors contained herein, or for any direct or indirect,
incidental, special, or consequential damages in connection with the furnishing, performance, or
use of this material.

ii Technical Standard (2004)

Contents

Chapter 1 The DRDA Specification... 1
 1.1 The DRDA Reference ... 2
 1.1.1 What it Means to Implement Different Levels of DRDA 2
 1.1.2 What it Means to Implement DRDA Level 5 3
 1.1.3 What it Means to Implement DRDA Level 4 23
 1.1.4 What it Means to Implement DRDA Level 3 26
 1.1.5 What it Means to Implement DRDA Distributed Unit of Work.... 28
 1.2 The FD:OCA Reference ... 33
 1.3 The DDM Reference ... 34

Part 1 Database Access Protocol... 39

Chapter 2 Introduction to DRDA.. 41
 2.1 DRDA Structure and Other Architectures .. 41
 2.2 DRDA and SQL ... 41
 2.3 DRDA Connection Architecture.. 42
 2.4 Types of Distribution ... 42
 2.5 DRDA Protocols and Functions... 45

Chapter 3 Using DRDA—Overall Flows.. 49
 3.1 Introduction to Protocol Flows .. 49
 3.1.1 Initialization Flows.. 50
 3.1.2 Bind Flows... 53
 3.1.3 SQL Statement Execution Flows .. 55
 3.1.4 Commit Flows .. 57
 3.1.5 Termination Flows... 59
 3.1.6 Utility Flows.. 61
 3.1.6.1 Packet Flow .. 61

Chapter 4 The DRDA Processing Model and Command Flows 63
 4.1 DDM and the Processing Model.. 64
 4.2 DRDA Relationship to DDM.. 65
 4.3 The DRDA Processing Model... 66
 4.3.1 DRDA Managers .. 66
 4.3.1.1 SNA Communications Manager ... 66
 4.3.1.2 SNA Sync Point Communications Manager................................... 67
 4.3.1.3 TCP/IP Communications Manager.. 67
 4.3.1.4 Agent ... 67
 4.3.1.5 Supervisor .. 68
 4.3.1.6 Security Manager .. 68
 4.3.1.7 Directory ... 68
 4.3.1.8 Dictionary... 69

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) iii

Contents

 4.3.1.9 Resynchronization Manager... 69
 4.3.1.10 Sync Point Manager.. 69
 4.3.1.11 SQL Application Manager .. 70
 4.3.1.12 Relational Database Manager .. 72
 4.3.1.13 CCSID Manager .. 72
 4.3.1.14 XA Manager ... 72
 4.3.2 The DRDA Processing Model Flow ... 74
 4.3.3 Product-Unique Extensions... 80
 4.3.4 Diagnostic and Problem Determination Support in DRDA 80
 4.3.5 Intermediate Server Processing .. 81
 4.3.5.1 Overview and Terminology.. 81
 4.3.5.2 Examples... 82
 4.4 DDM Commands and Replies ... 84
 4.4.1 Accessing a Remote Relational Database Manager.......................... 84
 4.4.2 DRDA Security Flows... 91
 4.4.2.1 Identification and Authentication Security Flows......................... 92
 4.4.2.2 Security-Sensitive Data Encryption Security Flow........................ 103
 4.4.2.3 Intermediate Server Processing Security Flow for

 Security-Sensitive Data Encryption .. 109
 4.4.3 Performing the Bind Operation and Creating a Package 111
 4.4.4 Deleting an Existing Package .. 117
 4.4.5 Performing a Rebind Operation.. 119
 4.4.6 Activating and Processing Queries .. 121
 4.4.6.1 Fixed Row Protocol .. 124
 4.4.6.2 Limited Block Protocol (No Externalized LOB Data

 in Answer Set) ... 133
 4.4.6.3 Limited Block Protocol (Externalized LOB Data

 in Answer Set) ... 140
 4.4.7 Executing a Bound SQL Statement .. 147
 4.4.7.1 Executing Ordinary Bound SQL Statements................................... 148
 4.4.7.2 Invoking a Stored Procedure that Returns Result Sets 154
 4.4.7.3 Executing Chained Ordinary Bound SQL Statements

 as an Atomic Operation... 165
 4.4.7.4 Executing Bound SQL Statement with Array Input...................... 170
 4.4.8 Preparing an SQL Statement ... 172
 4.4.9 Retrieving the Data Variable Definitions of an SQL Statement 175
 4.4.10 Executing a Describe Table SQL Statement.. 177
 4.4.11 Executing a Dynamic SQL Statement.. 179
 4.4.12 Returning SQL Diagnostics ... 181
 4.4.13 Controlling the Amount of Describe Information Returned.......... 185
 4.4.14 Interrupting a Running DRDA Request.. 186
 4.4.15 Commitment of Work in DRDA... 189
 4.4.15.1 Commitment of Work in a Remote Unit of Work.......................... 191
 4.4.15.2 Commitment of Work in a Distributed Unit of Work................... 194
 4.4.15.3 Global and Local Transactions... 210
 4.4.16 Connection Reuse .. 215
 4.4.16.1 Connection Pooling .. 215
 4.4.16.2 Transaction Pooling.. 216

iv Technical Standard (2004)

Contents

Chapter 5 Data Definition and Exchange ... 223
 5.1 Use of FD:OCA.. 223
 5.2 Use of Base and Option Sets ... 224
 5.2.1 Basic FD:OCA Object Contained in DDM.. 224
 5.2.2 DRDA FD:OCA Object ... 226
 5.2.3 Early and Late Descriptors... 230
 5.3 Relationship of DRDA and DDM Objects and Commands............... 232
 5.3.1 DRDA Command to Descriptor Relationship................................... 232
 5.3.2 Descriptor Classes ... 235
 5.4 DRDA Descriptor Definitions .. 238
 5.5 Late Descriptors .. 239
 5.5.1 Late Array Descriptors ... 239
 5.5.1.1 SQLDTARD: SQL Communication Area with Data

 Array Description ... 240
 5.5.1.2 SQLDTAMRW: Data Array Description for Multi-Row Input ... 241
 5.5.2 Late Row Descriptors.. 242
 5.5.2.1 SQLDTA: Data Description for One Row of Data 243
 5.5.2.2 SQLCADTA: Data Description for One Row with

 SQL Communication Area and Data.. 244
 5.5.3 Late Group Descriptors .. 245
 5.5.3.1 SQLDTAGRP: Data Descriptions for One Row of Data 247
 5.5.3.2 Overriding Output Formats ... 251
 5.6 Early Descriptors... 254
 5.6.1 Initial DRDA Type Representation .. 254
 5.6.2 Early Array Descriptors.. 254
 5.6.2.1 SQLRSLRD: Data Array of a Result Set ... 255
 5.6.2.2 SQLCINRD: SQL Result Set Column Array Description............. 256
 5.6.2.3 SQLSTTVRB: SQL Statement Variable Description....................... 257
 5.6.2.4 SQLDARD: SQL Descriptor Area Row Description with

 SQL Communication Area.. 258
 5.6.2.5 SQLDCTOKS: SQL Diagnostics Condition Token Array............. 259
 5.6.2.6 SQLDIAGCI: SQL Diagnostics Condition Information Array.... 260
 5.6.2.7 SQLDIAGCN: SQL Diagnostics Connection Array 261
 5.6.3 Early Row Descriptors .. 262
 5.6.3.1 SQLRSROW: SQL Row Description of One Result Set Row....... 262
 5.6.3.2 SQLVRBROW: SQL Statement Variable Row Description 263
 5.6.3.3 SQLSTT: SQL Statement Row Description 264
 5.6.3.4 SQLOBJNAM: SQL Object Name Row Description 265
 5.6.3.5 SQLNUMROW: SQL Number of Elements Row Description 266
 5.6.3.6 SQLCARD: SQL Communication Area Row Description 267
 5.6.3.7 SQLDAROW: SQL Descriptor Area Row Description 268
 5.6.3.8 SQLDHROW: SQL Descriptor Header Row Description 269
 5.6.3.9 SQLCNROW: SQL Diagnostics Connection Row 270
 5.6.3.10 SQLDCROW: SQL Diagnostics Condition Row 271
 5.6.3.11 SQLTOKROW: SQL Diagnostics Token Row 272
 5.6.4 Early Group Descriptors .. 273
 5.6.4.1 SQLRSGRP: SQL Result Set Group Description 273
 5.6.4.2 SQLVRBGRP: SQL Statement Variable Group Description......... 275

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) v

Contents

 5.6.4.3 SQLSTTGRP: SQL Statement or Attributes Group Description. 277
 5.6.4.4 SQLOBJGRP: SQL Object Name Group Description.................... 278
 5.6.4.5 SQLNUMGRP: SQL Number of Elements Group Description... 279
 5.6.4.6 SQLCAGRP: SQL Communication Area Group Description 280
 5.6.4.7 SQLCAXGRP: SQL Communication Area Exceptions

 Group Description... 281
 5.6.4.8 SQLDIAGGRP: SQL Diagnostics Group Description................... 283
 5.6.4.9 SQLDAGRP: SQL Descriptor Area Group Description................ 284
 5.6.4.10 SQLUDTGRP: SQL Descriptor User-Defined Type

 Group Description.. 286
 5.6.4.11 SQLDHGRP: SQL Descriptor Header Group Description........... 288
 5.6.4.12 SQLDOPTGRP: SQL Descriptor Optional Group Description... 290
 5.6.4.13 SQLDXGRP: SQL Descriptor Extended Group Description 292
 5.6.4.14 SQLNUMEXT: SQL Extent Description for Variable Arrays....... 294
 5.6.4.15 SQLEXTROW: SQL Array Row Description for a

 Variable Array.. 295
 5.6.4.16 SQLEXTGRP: SQL Extent Group Description for a

 Variable Array.. 296
 5.6.4.17 SQLDIAGSTT: SQL Diagnostics Statement Group

 Description... 297
 5.6.4.18 SQLCNGRP: SQL Diagnostics Connection Group

 Description... 301
 5.6.4.19 SQLDCGRP: SQL Diagnostics Condition Group

 Description.. 303
 5.6.4.20 SQLDCXGRP: SQL Diagnostics Extended Names Group

 Description... 307
 5.6.4.21 SQLTOKGRP: SQL Diagnostics Token Group 310
 5.6.5 Early Environmental Descriptors ... 311
 5.6.5.1 Four-Byte Integer .. 315
 5.6.5.2 Two-Byte Integer... 316
 5.6.5.3 One-Byte Integer ... 317
 5.6.5.4 Sixteen-Byte Float ... 318
 5.6.5.5 Eight-Byte Float... 319
 5.6.5.6 Four-Byte Float .. 320
 5.6.5.7 Fixed Decimal .. 321
 5.6.5.8 Zoned Decimal .. 322
 5.6.5.9 Numeric Character ... 323
 5.6.5.10 Result Set Locator ... 324
 5.6.5.11 Eight-Byte Integer ... 325
 5.6.5.12 Large Object Bytes Locator ... 326
 5.6.5.13 Large Object Character Locator... 327
 5.6.5.14 Large Object Character DBCS Locator ... 328
 5.6.5.15 Row Identifier.. 329
 5.6.5.16 Date.. 330
 5.6.5.17 Time ... 331
 5.6.5.18 Timestamp.. 332
 5.6.5.19 Fixed Bytes ... 333
 5.6.5.20 Variable Bytes .. 334

vi Technical Standard (2004)

Contents

 5.6.5.21 Long Variable Bytes.. 335
 5.6.5.22 Null-Terminated Bytes... 336
 5.6.5.23 Null-Terminated SBCS... 337
 5.6.5.24 Fixed Character SBCS .. 338
 5.6.5.25 Variable Character SBCS ... 339
 5.6.5.26 Long Variable Character SBCS... 340
 5.6.5.27 Fixed-Character DBCS (GRAPHIC).. 341
 5.6.5.28 Variable-Character DBCS (GRAPHIC)... 342
 5.6.5.29 Long Variable Character DBCS (GRAPHIC) 343
 5.6.5.30 Fixed Character Mixed .. 344
 5.6.5.31 Variable Character Mixed ... 345
 5.6.5.32 Long Variable Character Mixed... 346
 5.6.5.33 Null-Terminated Mixed... 347
 5.6.5.34 Pascal L String Bytes .. 348
 5.6.5.35 Pascal L String SBCS... 349
 5.6.5.36 Pascal L String Mixed... 350
 5.6.5.37 SBCS Datalink.. 351
 5.6.5.38 Mixed-Byte Datalink .. 352
 5.6.5.39 Large Object Bytes .. 353
 5.6.5.40 Large Object Character SBCS ... 354
 5.6.5.41 Large Object Character DBCS (GRAPHIC)..................................... 355
 5.6.5.42 Large Object Character Mixed ... 356
 5.6.6 Late Environmental Descriptors... 357
 5.7 FD:OCA Meta Data Summary ... 359
 5.7.1 Overriding Descriptors to Handle Problem Data 363
 5.7.1.1 Overriding Everything... 363
 5.7.1.2 Overriding Some User Data ... 364
 5.7.1.3 Assigning LIDs to O Triplets .. 365
 5.7.2 MDD Materialization Rules... 366
 5.7.3 Error Checking and Reporting for Descriptors 366
 5.7.3.1 General Errors.. 367
 5.7.3.2 MDD Errors.. 367
 5.7.3.3 SDA Errors.. 367
 5.7.3.4 GDA/CPT Errors .. 367
 5.7.3.5 RLO Errors.. 367
 5.8 DRDA Examples ... 368
 5.8.1 Environmental Description Objects... 368
 5.8.1.1 Late Environmental Descriptors.. 368
 5.8.1.2 Early Data Unit Descriptors.. 370
 5.8.1.3 Late Data Unit Descriptors ... 372
 5.8.2 Command Execution Examples ... 372
 5.8.2.1 EXECUTE IMMEDIATE .. 373
 5.8.2.2 Open Query Statement .. 373
 5.8.2.3 Input Variable Arrays SQL Request.. 377
 5.8.2.4 Call (Stored Procedure) ... 378
 5.8.2.5 Call (Stored Procedure Returning Result Sets)............................... 380

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) vii

Contents

Chapter 6 Names.. 383
 6.1 End Users.. 384
 6.1.1 Support for End-User Names.. 384
 6.2 RDBs .. 385
 6.3 Tables and Views .. 385
 6.4 Packages.. 387
 6.4.1 Package Name .. 387
 6.4.2 Package Consistency Token... 388
 6.4.3 Package Version ID.. 388
 6.4.4 Command Source Identifiers... 389
 6.4.5 Package Collection Resolution.. 389
 6.5 Stored Procedure Names... 391
 6.6 Synonyms and Aliases... 392
 6.7 Default Mechanisms for Standardized Object Names........................ 392
 6.8 Target Program.. 393

Chapter 7 DRDA Rules ... 395
 7.1 Atomic Chaining (AC Rules).. 395
 7.2 Connection Allocation (CA Rules).. 397
 7.3 Mapping of Reply Messages to SQLSTATEs (CD Rules) 399
 7.4 Connection Failure (CF Rules) ... 399
 7.5 Commit/Rollback Processing (CR Rules) ... 400
 7.6 Connection Usage (CU Rules).. 404
 7.7 Conversion of Data Types (DC Rules) ... 408
 7.8 Data Representation Transformation (DT Rules) 410
 7.9 RDB-Initiated Rollback (IR Rules)... 414
 7.10 Optionality (OC Rules).. 415
 7.11 Program Binding (PB Rules) ... 416
 7.12 SQL Diagnostics (SD Rules) ... 419
 7.13 Security (SE Rules).. 420
 7.14 SQL Section Number Assignment (SN Rules)...................................... 421
 7.15 Stored Procedures (SP Rules) ... 424
 7.16 SET Statement (ST Rules).. 425
 7.17 Serviceability (SV Rules) ... 426
 7.18 Update Control (UP Rules)... 428
 7.19 Passing Warnings to the Application Requester (WN Rules) 429
 7.20 Names ... 430
 7.20.1 End-User Names (EUN Rules).. 430
 7.20.2 SQL Object Names (ON Rules)... 430
 7.20.3 Relational Database Names (RN Rules) ... 431
 7.20.4 Target Program Names (TPN Rules) ... 431
 7.21 Query Processing .. 433
 7.21.1 Blocking ... 433
 7.21.1.1 Block Formats (BF Rules) .. 433
 7.21.1.2 Block Size (BS Rules) .. 436
 7.21.1.3 Chaining (CH Rules) .. 436
 7.21.2 Query Instances.. 440
 7.21.2.1 Query Instances (QI Rules)... 440

viii Technical Standard (2004)

Contents

 7.21.3 Query Data Transfer Protocols (QP Rules)... 441
 7.21.4 Query Data or Result Set Transfer (QT Rules)................................... 446
 7.21.5 Additional Query and Result Set Termination Rules....................... 447
 7.21.5.1 Rules for OPNQRY, CNTQRY, CLSQRY, and EXCSQLSTT 448
 7.21.5.2 Rules for FETCH ... 453
 7.21.5.3 Rules for CLOSE ... 456

Chapter 8 SQLSTATE Usage .. 459
 8.1 DRDA Reply Messages and SQLSTATE Mappings............................. 459
 8.2 SQLSTATE Codes Referenced by DRDA... 461

Part 2 Environmental Support ... 467

Chapter 9 Environmental Support.. 469
 9.1 DDM Communications Model and Network Protocol Support 469
 9.2 Accounting ... 470
 9.3 Transaction Processing .. 470

Chapter 10 Security... 471
 10.1 DCE Security Mechanisms with GSS-API... 471
 10.2 User ID-Related Security Mechanisms... 473
 10.2.1 User ID and Password .. 473
 10.2.2 User ID, Password, and New Password ... 474
 10.2.3 User ID-Only... 475
 10.2.4 User ID and Original or Strong Password Substitute 476
 10.2.5 User ID and Encrypted Password .. 477
 10.2.6 Encrypted User ID and Password .. 478
 10.2.7 Encrypted User ID, Password, and New Password 479
 10.3 Kerberos.. 481
 10.3.1 Kerberos Protocol... 481
 10.3.2 Kerberos Security Mechanism with SSPI and GSS-API................... 481
 10.4 User ID and Data-Related Security Mechanisms................................. 483
 10.4.1 Encrypted User ID and Security-Sensitive Data 483
 10.4.2 Encrypted User ID, Password, and Security-Sensitive Data 485
 10.4.3 Encrypted User ID, Password, New Password, and

 Security-Sensitive Data... 487
 10.5 Plug-In Security Mechanism .. 489

Chapter 11 Problem Determination.. 491
 11.1 Network Management Tools and Techniques...................................... 491
 11.1.1 Standard Focal Point Messages... 491
 11.1.2 Focal Point ... 491
 11.1.3 Correlation .. 492
 11.2 Monitoring.. 493
 11.2.1 Verification of Network Connectivity Flag .. 493
 11.2.2 Request and Response Packet Object .. 493
 11.2.3 Elapsed Time .. 493
 11.2.4 Ping ... 494

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) ix

Contents

 11.3 DRDA Required Problem Determination and Isolation
 Enhancements.. 495

 11.3.1 Correlation Displays ... 495
 11.3.2 DRDA Diagnostic Information Collection and Correlation 495
 11.3.2.1 Data Collection.. 495
 11.3.2.2 Correlation Between Focal Point Messages and

 Supporting Data.. 495
 11.4 Generic Focal Point Messages and Message Models........................... 496
 11.4.1 When to Generate Alerts .. 496
 11.4.2 Alerts and Alert Structure.. 496
 11.4.2.1 Alert Implementation Basics .. 496
 11.4.3 Error Condition to Alert Model Mapping .. 497
 11.4.3.1 Specific Alert to DDM Reply Message Mapping 497
 11.4.3.2 Additional Alerts at the Application Requester............................. 499
 11.4.3.3 DRDA-Defined Alert Models ... 499
 11.4.4 Alert Example... 517
 11.4.4.1 Major Vector/Subvector/Subfield Construction........................... 517

Part 3 Network Protocols ... 525

Chapter 12 SNA... 527
 12.1 SNA and the DDM Communications Model.. 527
 12.2 What You Need to Know About SNA and LU 6.2............................... 528
 12.3 LU 6.2... 529
 12.4 LU 6.2 Verb Categories .. 530
 12.5 LU 6.2 Product-Support Subsetting .. 531
 12.6 LU 6.2 Base and Option Sets... 532
 12.6.1 Base Set Functions ... 532
 12.6.1.1 Basic Conversation Verb Category.. 532
 12.6.1.2 Type-Independent Verb Category... 532
 12.6.2 Option Set Functions... 532
 12.6.2.1 Basic Conversation Verb Category.. 532
 12.6.2.2 Type-Independent Verb Category... 533
 12.7 LU 6.2 and DRDA ... 534
 12.7.1 Initializing a Conversation .. 534
 12.7.1.1 LU 6.2 Verbs that the Application Requester Uses 534
 12.7.1.2 LU 6.2 Verbs that the Application Server Uses............................... 536
 12.7.1.3 Initialization Flows... 537
 12.7.2 Processing a DRDA Request.. 542
 12.7.2.1 LU 6.2 Verbs that the Application Requester Uses 543
 12.7.2.2 LU 6.2 Verbs that the Application Server Uses............................... 543
 12.7.2.3 Bind Flows.. 544
 12.7.2.4 SQL Statement Execution Flows ... 547
 12.7.3 Terminating a Conversation.. 549
 12.7.3.1 LU 6.2 Verbs that the Application Requester Uses 550
 12.7.3.2 LU 6.2 Verbs that the Application Server Uses............................... 550
 12.7.3.3 Termination Flow—SYNC_LEVEL(NONE) Conversation 551
 12.7.3.4 Termination Flow—SYNC_LEVEL(SYNCPT) Conversation...... 551

x Technical Standard (2004)

Contents

 12.7.4 Commit Flows on SYNC_LEVEL(NONE) Conversations.............. 552
 12.7.5 Rollback Flows on SYNC_LEVEL(NONE) Conversations............. 553
 12.7.6 Commit Flows on SYNC_LEVEL(SYNCPT) Conversations.......... 553
 12.7.7 Rollback Flows on SYNC_LEVEL(SYNCPT) Conversations......... 554
 12.7.8 Handling Conversation Failures .. 555
 12.7.9 Managing Conversations Using Distributed Unit of Work............ 555
 12.8 SNA Environment Usage in DRDA.. 556
 12.8.1 Problem Determination in SNA Environments................................. 556
 12.8.1.1 LUWID.. 556
 12.8.1.2 DRDA LUWID and Correlation of Diagnostic Information........ 556
 12.8.1.3 Data Collection.. 557
 12.8.1.4 Alerts and Supporting Data in SNA Environments 557
 12.8.2 Rules Usage for SNA Environments.. 557
 12.8.2.1 LU 6.2 Usage of Connection Allocation Rules................................ 557
 12.8.2.2 LU 6.2 Usage of Commit/Rollback Processing Rules................... 558
 12.8.2.3 LU 6.2 Usage of Security (SE Rules).. 559
 12.8.2.4 LU 6.2 Usage of Serviceability Rules .. 559
 12.8.2.5 LU 6.2 Usage of Names ... 560
 12.8.3 Transaction Program Names... 561

Chapter 13 TCP/IP ... 563
 13.1 TCP/IP and the DDM Communications Model 563
 13.2 What You Need to Know About TCP/IP .. 563
 13.3 TCP/IP .. 564
 13.3.1 Transport Control Protocol (TCP) .. 564
 13.3.2 Application Services.. 565
 13.4 Sockets Interface ... 565
 13.5 TCP/IP and DRDA... 566
 13.5.1 Initializing a Connection.. 566
 13.5.1.1 Initialization Flows... 566
 13.5.2 Processing a DRDA Request.. 568
 13.5.2.1 Bind Flows.. 568
 13.5.2.2 SQL Statement Execution Flows ... 569
 13.5.3 Terminating a Connection.. 570
 13.5.4 Commit Flows .. 571
 13.5.4.1 Remote Unit of Work ... 571
 13.5.4.2 Distributed Unit of Work Using DDM Sync Point

 Manager .. 572
 13.5.5 Handling Connection Failures .. 574
 13.6 TCP/IP Environment Usage in DRDA .. 575
 13.6.1 Problem Determination in TCP/IP Environments 575
 13.6.1.1 Standard Focal Point Messages.. 575
 13.6.1.2 Focal Point Support .. 575
 13.6.1.3 Correlation and Correlation Display .. 575
 13.6.2 Rules Usage for TCP/IP Environments .. 576
 13.6.2.1 TCP/IP Usage of Connection Allocation Rules 576
 13.6.2.2 TCP/IP Usage of Commit/Rollback Processing Rules 576
 13.6.2.3 TCP/IP Usage of Security (SE Rules) ... 577

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) xi

Contents

 13.6.2.4 TCP/IP Usage of Serviceability Rules.. 577
 13.6.2.5 TCP/IP Usage of Relational Database Names Rules 577
 13.6.2.6 TCP/IP Usage of PORT for DRDA Service Rules.......................... 577
 13.6.3 Service Names .. 578

Appendix A DDM Managers, Commands, and Reply Messages 579
 A.1 DDM Manager Relationship to DRDA Functions 579
 A.2 DDM Commands and Reply Messages ... 580

Appendix B Scrollable Cursor Overview.. 655
 B.1 Key Definitions.. 655
 B.2 Attributes.. 655
 B.2.1 Scrollability Attribute ... 655
 B.2.2 Sensitivity Attribute .. 655
 B.2.3 Updatability Attribute .. 657
 B.3 Operations.. 657
 B.4 Choice of Query Protocol.. 658
 B.5 DRDA Rowsets.. 659
 B.6 Cursor Position Management .. 660
 B.7 Cursor Position Rules .. 661
 B.8 Cursor Disposition ... 662
 B.9 Scrolling for Stored Procedure Result Sets .. 662
 B.10 Downlevel Requesters ... 662
 B.11 Intermediate Data Server Processing.. 663
 B.11.1 Example: qryrstblk Not Specified... 663
 B.11.2 Example: qryrstblk Set to TRUE ... 664

Appendix C Rowset Processing... 667
 C.1 Rowset Cursors72 .. 667
 C.2 SQL Rowsets .. 667

Appendix D SQL Function Codes... 669

Appendix E Failover Overview ... 671

 Glossary ... 673

 Index... 683

List of Figures

2-1 Degrees of Distribution of Database Function .. 42
2-2 DRDA Network.. 46
2-3 DRDA Network Implementation Example.. 46
3-1 Logical Flow: Initialization Flows with SNA Security........................... 51
3-2 Logical Flow: Initialization Flows with DCE Security........................... 52
3-3 Logical Flow: Bind Flows ... 53
3-4 Logical Flow: SQL Statement Execution Flows....................................... 56

xii Technical Standard (2004)

Contents

3-5 Logical Flow: DRDA Two-Phase Commit.. 58
3-6 Logical Flow: DRDA One-Phase Commit Using DDM Commands .. 58
3-7 Logical Flow: DRDA Two-Phase Commit Termination Flows

Using DDM Commands... 59
3-8 Logical Flow: SNA Termination Flows on Protected Conversations . 60
3-9 Utility Flow: DRDA Packet Flows Using DDM Commands 61
4-1 DRDA Processing Model.. 75
4-2 Establishing a Connection to a Remote Database Manager 85
4-3 Kerberos or DCE Security Flow.. 93
4-4 Encryption and Substitution Flow ... 96
4-5 Plug-In Security Flows.. 100
4-6 Security-Sensitive Data Encryption: Example for Requester

Server Processing ... 103
4-7 Security-Sensitive Data Encryption: Intermediate Server

Processing Using SECTKNOVR... 105
4-8 Security-Sensitive Data Encryption: Example for Intermediate

Server Processing ... 107
4-9 Intermediate Server Security-Sensitive Data Encryption

and Decryption... 109
4-10 Binding and/or Package Creation (Part 1) ... 111
4-11 Binding and/or Package Creation (Part 2) ... 112
4-12 Dropping an Existing Package.. 117
4-13 Rebinding an Existing Package... 119
4-14 Fixed Row Protocol Query Processing (Part 1).. 124
4-15 Fixed Row Protocol Query Processing (Part 2).. 125
4-16 Limited Block Protocol Query Processing

(No Externalized LOB Data) (Part 1) ... 133
4-17 Limited Block Protocol Query Processing

(No Externalized LOB Data) (Part 2) ... 134
4-18 Limited Block Protocol Query Processing

(with Externalized LOB Data, rtnextall) (Part 1) 141
4-19 Limited Block Protocol Query Processing

(with Externalized LOB Data, rtnextall) (Part 2) 142
4-20 Limited Block Protocol Query Processing

(with Externalized LOB Data, rtnextrow)... 145
4-21 Executing a Bound SQL Statement .. 149
4-22 Executing a Stored Procedure (Part 1)... 155
4-23 Executing a Stored Procedure (Part 2)... 156
4-24 Executing a Stored Procedure (Part 3)... 157
4-25 Executing Bound SQL Statements as an Atomic Operation (Part 1) .. 166
4-26 Executing Bound SQL Statements as an Atomic Operation (Part 2) .. 167
4-27 Executing an Array Input SQL Statement .. 170
4-28 Preparing an SQL Statement ... 172
4-29 Describing a Bound SQL Statement... 175
4-30 Describing a Table.. 177
4-31 Immediate Execution of SQL Work ... 179
4-32 Returning SQL Diagnostics ... 182
4-33 Requests to Interrupt DRDA Requests ... 186

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) xiii

Contents

4-34 Interrupted DRDA Request ... 187
4-35 Commit a Remote Unit of Work... 191
4-36 Executing a Bound SQL CALL Statement .. 193
4-37 DRDA Sample Configuration ... 195
4-38 DRDA RDBUPDRM Example Flow... 196
4-39 Single RDB Update at a DRDA Remote Unit of Work

Application Server... 198
4-40 Single RDB Update Using Distributed Unit of Work............................. 201
4-41 Multi-Relational Database Update... 205
4-42 RDB at AS1 Initiates Rollback ... 209
4-43 RDB at AS2 Initiates Rollback ... 209
4-44 RDB at AS3 Initiates Rollback ... 210
4-45 Reuse Connection using Connection Pooling.. 215
4-46 Reuse DUOW Connection using Transaction Pooling 218
4-47 Reuse RUOW Connection using Transaction Pooling........................... 220
5-1 Basic FD:OCA Object .. 224
5-2 Basic FD:OCA Object with Externalized Data... 225
5-3 Conceptual View of a DRDA FD:OCA Object .. 226
5-4 Conceptual View of a DRDA FD:OCA Object with

Externalized LOB Columns ... 229
5-5 SQLDTARD Array Descriptor... 240
5-6 SQLDTAMRW Array Descriptor (Multi-Row Input Data)................... 241
5-7 SQLDTA Row Descriptor... 243
5-8 SQLCADTA Row Descriptor... 244
5-9 SQLDTAGRP Group Descriptor... 248
5-10 SQLRSLRD Array Descriptor.. 255
5-11 SQLCINRD Array Descriptor ... 256
5-12 SQLSTTVRB Array Descriptor.. 257
5-13 SQLDARD Array Descriptor... 258
5-14 SQLDCTOKS Array Descriptor.. 259
5-15 SQLDIAGCI Array Descriptor.. 260
5-16 SQLDIAGCN Array Descriptor.. 261
5-17 SQLRSROW Row Descriptor .. 262
5-18 SQLVRBROW Row Descriptor ... 263
5-19 SQLSTT Row Descriptor (One SQL Statement or SQL Attributes) 264
5-20 SQLOBJNAM Row Descriptor.. 265
5-21 SQLNUMROW Row Descriptor... 266
5-22 SQLCARD Row Descriptor ... 267
5-23 SQLDAROW Row Descriptor... 268
5-24 SQLDHROW Row Descriptor .. 269
5-25 SQLCNROW Row Descriptor... 270
5-26 SQLDCROW Row Descriptor... 271
5-27 SQLTOKROW Row Descriptor... 272
5-28 SQLRSGRP Group Descriptor .. 273
5-29 SQLVRBGRP Group Descriptor ... 275
5-30 SQLSTTGRP Group Descriptor (One SQL Statement or Attributes) . 277
5-31 SQLOBJGRP Group Descriptor .. 278
5-32 SQLNUMGRP Group Descriptor... 279

xiv Technical Standard (2004)

Contents

5-33 SQLCAGRP Group Descriptor ... 280
5-34 SQLCAXGRP Group Descriptor .. 281
5-35 SQLDIAGGRP Group Descriptor .. 283
5-36 SQLDAGRP Group Descriptor ... 284
5-37 SQLUDTGRP Group Descriptor .. 286
5-38 SQLDHGRP Group Descriptor... 288
5-39 SQLDOPTGRP Group Descriptor.. 290
5-40 SQLDXGRP Group Descriptor ... 292
5-41 SQLNUMEXT Row Descriptor... 294
5-42 SQLEXTROW Row Descriptor ... 295
5-43 SQLEXTGRP Row Descriptor ... 296
5-44 SQLDIAGSTT Group Descriptor.. 297
5-45 SQLCNGRP Group Descriptor... 301
5-46 SQLDCGRP Group Descriptor ... 304
5-47 SQLDCXGRP Group Descriptor .. 308
5-48 SQLTOKGRP Group Descriptor... 310
5-49 DRDA Type X’32,33’ SQL Type 448,449 Variable Character SBCS...... 311
5-50 DRDA Type X’02,03’ SQL Type 496,497 INTEGER 315
5-51 DRDA Type X’04,05’ SQL Type 500,501 SMALL INTEGER................. 316
5-52 DRDA Type X’06,07’ SQL Type n/a,n/a... 317
5-53 DRDA Type X’08,09’ SQL Type 480,481 FLOAT (16) 318
5-54 DRDA Type X’0A,0B’ SQL Type 480,481 FLOAT (8).............................. 319
5-55 DRDA Type X’0C,0D’ SQL Type 480,481 FLOAT (4) 320
5-56 DRDA Type X’0E,0F’ SQL Type 484,485 FIXED DECIMAL 321
5-57 DRDA Type X’10,11’ SQL Type 488,489 ZONED DECIMAL............... 322
5-58 DRDA Type X’12,13’ SQL Type 504,505 NUMERIC CHARACTER... 323
5-59 DRDA Type X’14,15’ SQL Type 972,973 RESULT SET LOCATOR...... 324
5-60 DRDA Type X’16,17’ SQL Type 492,493 EIGHT-BYTE INTEGER 325
5-61 DRDA Type X’18,19’ SQL Type 960,961 LARGE OBJECT

BYTES LOCATOR.. 326
5-62 DRDA Type X’1A,1B’ SQL Type 964,965 LARGE OBJ.

CHAR. SBCS LOCATOR.. 327
5-63 DRDA Type X’1C,1D’ SQL Type 968,969 LARGE OBJ.

CHAR. DBCS LOCATOR... 328
5-64 DRDA Type X’1E,1F’ SQL Type 904,905 ROW IDENTIFIER 329
5-65 DRDA Type X’20,21’ SQL Type 384,385 DATE.. 330
5-66 DRDA Type X’22,23’ SQL Type 388,389 TIME .. 331
5-67 DRDA Type X’24,25’ SQL Type 392,393 TIMESTAMP 332
5-68 DRDA Type X’26,27’ SQL Type 452,453 FIXED BYTES......................... 333
5-69 DRDA Type X’28,29’ SQL Type 448,449 VARIABLE BYTES 334
5-70 DRDA Type X’2A,2B’ SQL Type 456,457 LONG VAR BYTES 335
5-71 DRDA Type X’2C,2D’ SQL Type 460,461 NULL-TERMINATED

BYTES... 336
5-72 DRDA Type X’2E,2F’ SQL Type 460,461 NULL-TERMINATED

SBCS.. 337
5-73 DRDA Type X’30,31’ SQL Type 452,453 FIXED CHARACTER

SBCS.. 338
5-74 DRDA Type X’32,33’ SQL Type 448,449 VARIABLE

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) xv

Contents

CHARACTER SBCS.. 339
5-75 DRDA Type X’34,35’ SQL Type 456,457 LONG VAR

CHARACTER SBCS.. 340
5-76 DRDA Type X’36,37’ SQL Type 468,469 FIXED

CHARACTER DBCS ... 341
5-77 DRDA Type X’38,39’ SQL Type 464,465 VARIABLE

CHARACTER DBCS ... 342
5-78 DRDA Type X’3A,3B’ SQL Type 472,473 LONG VAR

CHARACTER DBCS ... 343
5-79 DRDA Type X’3C,3D’ SQL Type 452,453 FIXED

CHARACTER MIXED .. 344
5-80 DRDA Type X’3E,3F’ SQL Type 448,449 VARIABLE

CHARACTER MIXED .. 345
5-81 DRDA Type X’40,41’ SQL Type 456,457 LONG VARIABLE

CHARACTER MIXED .. 346
5-82 DRDA Type X’42,43’ SQL Type 460,461 NULL-TERMINATED

MIXED.. 347
5-83 DRDA Type X’44,45’ SQL Type 476,477 PASCAL L

STRING BYTES .. 348
5-84 DRDA Type X’46,47’ SQL Type 476,477 PASCAL L

STRING SBCS... 349
5-85 DRDA Type X’48,49’ SQL Type 476,477 PASCAL L

STRING MIXED... 350
5-86 DRDA Type X’4C,4D’ SQL Type 396,397 SBCS

DATALINK.. 351
5-87 DRDA Type X’4E,4F’ SQL Type 396,397 MIXED-BYTE

DATALINK.. 352
5-88 DRDA Type X’C8,C9’ SQL Type 404,405 LARGE

OBJECT BYTES... 353
5-89 DRDA Type X’CA,CB’ SQL Type 408,409 LARGE

OBJECT CHAR. SBCS... 354
5-90 DRDA Type X’CC,CD’ SQL Type 412,413 LARGE

OBJECT CHAR. DBCS.. 355
5-91 DRDA Type X’CE,CF’ SQL Type 408,409 LARGE

OBJECT CHAR. MIXED... 356
5-92 DRDA Type X’30’, SQL Type 468, MDD Override

Example—Base... 357
5-93 DRDA Type X’30’, SQL Type 468, MDD Override

Example—Override... 358
10-1 Using GSS-API to Call DCE-Based Security

Flows in DRDA .. 471
10-2 User ID and Password Authentication.. 473
10-3 User ID, Password, and New Password Authentication....................... 474
10-4 User ID and Password Authentication.. 475
10-5 User ID and Password Substitute Authentication.................................. 476
10-6 User ID and Encrypted Password Authentication 477
10-7 Encrypted User ID and Password Authentication 478
10-8 Encrypted User ID, Password, New Password Authentication 479

xvi Technical Standard (2004)

Contents

10-9 Example Kerberos-Based Flow using SSPI and GSS_API in DRDA... 482
10-10 Encrypted User ID and Security-Sensitive Data 483
10-11 Intermediate Server Encrypted User ID and

Security-Sensitive Data... 484
10-12 Encrypted User ID, Password, and Security-Sensitive Data 485
10-13 Encrypted User ID, Password, New Password, and

Security-Sensitive Data... 487
10-14 Example of Plug-In-Based Flows.. 489
11-1 Summary of Required Subvectors and Subfields 497
11-2 Subfield X’85’ for Failure Causes Codepoint X’F0A3’ 501
11-3 Subfield X’85’s for Actions Codepoint X’32D1’ 502
11-4 Subfield X’85’ for Actions Codepoint X’32A0’ .. 502
11-5 Subfield X’85’s for Failure Causes Codepoint X’F0C0’.......................... 514
11-6 Major Vector/Subvector/Subfield Construction.................................... 517
11-7 Alert Example for AGNPRMRM with Severity Code of 64 (Part 1) ... 518
11-8 Alert Example for AGNPRMRM with Severity Code of 64 (Part 2) ... 519
11-9 Alert Example for AGNPRMRM with Severity Code of 64 (Part 3) ... 520
12-1 DRDA Initialization Flows with LU 6.2 Security (Part 1)...................... 538
12-2 DRDA Initialization Flows with LU 6.2 Security (Part 2)...................... 539
12-3 DRDA Initialization Flows with DCE Security (Part 1)......................... 540
12-4 DRDA Initialization Flows with DCE Security (Part 2)......................... 541
12-5 DRDA Initialization Flows with DCE Security (Part 3)......................... 542
12-6 DRDA Bind Flows (Part 1) ... 545
12-7 DRDA Bind Flows (Part 2) ... 546
12-8 DRDA Bind Flows (Part 3) ... 547
12-9 DRDA SQL Statement Execution Flows (Part 1)..................................... 548
12-10 DRDA SQL Statement Execution Flows (Part 2)..................................... 549
12-11 Actual Flow: Termination Flows on SYNC_LEVEL(NONE)

Conversation... 551
12-12 Actual Flow: Termination Flows on SYNC_LEVEL(SYNCPT)

Conversation... 552
12-13 Commit Flow for a SYNC_LEVEL(NONE) Conversation 553
12-14 Actual Flow: Commit Flow on a SYNC_LEVEL(SYNCPT)

Conversation... 554
12-15 Actual Flow: Backout Flow on a SYNC_LEVEL(SYNCPT)

Conversation... 554
13-1 TCP/IP Components .. 564
13-2 DRDA Initialization Flows on TCP/IP with DCE Security 567
13-3 DRDA Bind Flows on TCP/IP .. 569
13-4 DRDA SQL Statement Execution Flows on TCP/IP.............................. 570
13-5 DRDA Termination Flows on TCP/IP .. 571
13-6 DRDA Server Abnormal Termination Flows on TCP/IP...................... 571
13-7 DRDA Commit Flows on TCP/IP.. 572
13-8 TCP/IP Distributed Unit of Work Commit Flow 573
13-9 TCP/IP Distributed Unit of Work Rollback Flow................................... 574
B-1 Scrollable Cursors: Example with qryrstblk Not Specified 664
B-2 Scrollable Cursors: Example with qryrstblk Not Specified 665

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) xvii

Contents

List of Tables

1-1 DDM Modeling and Description Terms.. 34
1-2 DDM Terms of Interest to DRDA Implementers 35
1-3 DDM Command Objects Used by DRDA .. 36
1-4 DDM Reply Data Objects Used by DRDA ... 37
4-1 DDM Commands Used in DRDA Flows .. 71
4-2 Access by the Minimum MGRLVLLS Parameter of EXCSAT

and EXCSATRD.. 87
4-3 Security Mechanism to secmec Value Mapping.. 92
4-4 Example of Global Transaction... 212
4-5 Example of a Local Transaction.. 213
5-1 Data Objects, Descriptors, and Contents for DRDA Commands........ 233
5-2 QRYDSC with Default Formats.. 252
5-3 OUTOVR with One Override Triplet .. 253
5-4 SQL Result Set Field Usage.. 274
5-5 DRDA SQL Data Area Field Usage (DDM Level 6 and Above) 276
5-6 DRDA SQL Data Area Field Usage (DDM Level 6 and Above) 285
5-7 SQLDIAGSTT Field Descriptions... 298
5-8 SQLCNGRP Field Descriptions .. 302
5-9 SQLDCGRP Field Descriptions .. 305
5-10 SQLDCXGRP Field Descriptions.. 309
5-11 MDD References Used in Early Environmental Descriptors................ 359
5-12 MDD References for Early Group Data Units ... 361
5-13 MDD References for Early Row Descriptors ... 361
5-14 MDD References for Early Array Descriptors ... 362
5-15 MDD References Used in Late Environmental Descriptors 362
5-16 MDD References for Late Group Data Units ... 362
5-17 MDD References for Late Row Descriptors ... 362
5-18 MDD References for Late Array Descriptors ... 363
5-19 TYPDEFNAM and TYPDEFOVR... 364
5-20 Complete Set of Late Environmental Descriptors for QTDSQL370.... 368
5-21 Complete Set of Early Data Unit Group Descriptors 370
5-22 Complete Set of Late Data Unit Descriptors.. 372
5-23 STATS Sample Table.. 372
5-24 EXECUTE IMMEDIATE Command Data... 373
5-25 EXECUTE IMMEDIATE Reply Data.. 373
5-26 Open Query Command Data .. 374
5-27 Open Query Reply Data ... 375
5-28 Input Variable Array Command Data... 377
5-29 Object Data Stream Example for Execution of CALL Statement 378
5-30 Reply Data Stream Example for Execution of CALL Statement.......... 379
5-31 Reply Data Stream Example for Summary Component of Response 380
7-1 Maximal Example for EXCSQLSTT... 437
7-2 Maximal Example for EXCSQLSTT... 438
7-3 Application Server Rules for OPNQRY, CNTQRY, CLSQRY,

EXCSQLSTT.. 448
7-4 Application Requester Rules for FETCH.. 453

xviii Technical Standard (2004)

Contents

7-5 Application Requester Rules for CLOSE .. 456
8-1 DRDA Reply Messages (RMs) and Corresponding SQLSTATEs 459
11-1 Alerts Required for DDM Reply Messages .. 498
11-2 Additional Alerts Required at Application Requester........................... 499
11-3 Alert Model AGNPRM ... 500
11-4 Alert Model BLKERR .. 504
11-5 Alert Model CHNVIO... 505
11-6 Alert Model CMDCHK... 506
11-7 Alert Model CMDVLT .. 507
11-8 Alert Model DSCERR.. 508
11-9 Alert Model GENERR... 509
11-10 Alert Model PRCCNV .. 510
11-11 Alert Model QRYERR ... 511
11-12 Alert Model RDBERR.. 512
11-13 Alert Model RSCLMT ... 513
11-14 Alert Model SECVIOL .. 515
11-15 Alert Model SYNTAX ... 516
A-1 DDM Manager Relationship to DRDA Level .. 579
A-2 ABNUOWRM Reply Message Instance Variables.................................. 581
A-3 ACCRDB Command Instance Variables... 582
A-4 Reply Objects for the ACCRDB Command.. 582
A-5 ACCRDBRM Reply Message Instance Variables 583
A-6 ACCSEC Command Instance Variables.. 584
A-7 Reply Objects for the ACCSEC Command .. 584
A-8 ACCSECRD Reply Object Instance Variables.. 585
A-9 AGNPRMRM Reply Message Instance Variables................................... 586
A-10 BGNATMCHN Command Instance Variables .. 587
A-11 BGNBND Command Instance Variables .. 588
A-12 Command Objects for the BGNBND Command.................................... 589
A-13 Reply Objects for the BGNBND Command... 589
A-14 BGNBNDRM Reply Message Instance Variables 590
A-15 BNDSQLSTT Command Instance Variables.. 591
A-16 Command Objects for the BNDSQLSTT Command.............................. 591
A-17 Reply Objects for the BNDSQLSTT Command....................................... 591
A-18 CLSQRY Command Instance Variables.. 592
A-19 Reply Objects for the CLSQRY Command... 592
A-20 CMDATHRM Reply Message Instance Variables................................... 593
A-21 CMDCHKRM Reply Message Instance Variables 594
A-22 CMDNSPRM Reply Message Instance Variables 595
A-23 CMDVLTRM Reply Message Instance Variables.................................... 596
A-24 CMMRQSRM Reply Message Instance Variables................................... 597
A-25 CNTQRY Command Instance Variables .. 598
A-26 Reply Objects for the CNTQRY Command ... 599
A-27 DRPPKG Command Instance Variables ... 600
A-28 Reply Objects for the DRPPKG Command.. 600
A-29 DSCINVRM Reply Message Instance Variables 601
A-30 DSCRDBTBL Command Instance Variables .. 602
A-31 Command Objects for the DSCRDBTBL Command.............................. 602

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) xix

Contents

A-32 Reply Objects for the DSCRDBTBL Command....................................... 602
A-33 DSCSQLSTT Command Instance Variables... 603
A-34 Reply Objects for the DSCSQLSTT Command 603
A-35 DTAMCHRM Reply Message Instance Variables................................... 604
A-36 ENDATMCHN Command Instance Variables .. 605
A-37 ENDBND Command Instance Variables .. 606
A-38 Reply Objects for the ENDBND Command... 606
A-39 ENDQRYRM Reply Message Instance Variables.................................... 607
A-40 ENDUOWRM Reply Message Instance Variables.................................. 608
A-41 EXCSAT Command Instance Variables... 609
A-42 EXCSATRD Reply Object Instance Variables... 610
A-43 EXCSQLIMM Command Instance Variables ... 611
A-44 Command Objects for the EXCSQLIMM Command............................. 611
A-45 Reply Objects for the EXCSQLIMM Command...................................... 611
A-46 EXCSQLSET Command Instance Variables... 612
A-47 Command Objects for the EXCSQLSET Command............................... 612
A-48 Reply Objects for the EXCSQLSET Command.. 612
A-49 EXCSQLSTT Command Instance Variables... 613
A-50 Command Objects for the EXCSQLSTT Command............................... 614
A-51 Reply Objects for the EXCSQLSTT Command.. 614
A-52 INTRDBRQS Command Instance Variables .. 615
A-53 INTTKNRM Reply Message Instance Variables 616
A-54 MGRDEPRM Reply Message Instance Variables.................................... 617
A-55 MGRLVLRM Reply Message Instance Variables 618
A-56 OBJNSPRM Reply Message Instance Variables 619
A-57 OPNQFLRM Reply Message Instance Variables 620
A-58 OPNQRY Command Instance Variables .. 621
A-59 Command Objects for the OPNQRY Command 621
A-60 Reply Objects for the OPNQRY Command... 622
A-61 OPNQRYRM Reply Message Instance Variables.................................... 623
A-62 PKGBNARM Reply Message Instance Variables.................................... 624
A-63 PKGBPARM Reply Message Instance Variables 625
A-64 PRCCNVRM Reply Message Instance Variables 626
A-65 PRMNSPRM Reply Message Instance Variables 627
A-66 PRPSQLSTT Command Instance Variables ... 628
A-67 Command Objects for the PRPSQLSTT Command 628
A-68 Reply Objects for the PRPSQLSTT Command.. 629
A-69 QRYNOPRM Reply Message Instance Variables.................................... 630
A-70 QRYPOPRM Reply Message Instance Variables..................................... 631
A-71 RDBACCRM Reply Message Instance Variables 632
A-72 RDBAFLRM Reply Message Instance Variables 633
A-73 RDBATHRM Reply Message Instance Variables 634
A-74 RDBCMM Command Instance Variables ... 635
A-75 Reply Objects for the RDBCMM Command.. 635
A-76 RDBNACRM Reply Message Instance Variables.................................... 636
A-77 RDBNFNRM Reply Message Instance Variables 637
A-78 RDBRLLBCK Command Instance Variables.. 638
A-79 Reply Objects for the RDBRLLBCK Command 638

xx Technical Standard (2004)

Contents

A-80 RDBUPDRM Reply Message Instance Variables 639
A-81 REBIND Command Instance Variables... 640
A-82 Command Objects for the REBIND Command 640
A-83 Reply Objects for the REBIND Command ... 640
A-84 RSCLMTRM Reply Message Instance Variables..................................... 641
A-85 RSLSETRM Reply Message Instance Variables 642
A-86 SECCHK Command Instance Variables ... 643
A-87 Command Objects for the SECCHK Command 643
A-88 Reply Objects for the SECCHK Command.. 643
A-89 SECCHKRM Reply Message Instance Variables..................................... 644
A-90 SNDPKT Command Instance Variables ... 645
A-91 Command Objects for the SNDPKT Command 645
A-92 Reply Objects for the SNDPKT Command .. 645
A-93 SQLERRRM Reply Message Instance Variables...................................... 646
A-94 SYNCCTL Command Instance Variables... 647
A-95 Command Objects for SYNCCTL .. 647
A-96 SYNCCRD Reply Object Instance Variables .. 648
A-97 SYNCLOG Reply Object Instance Variables .. 649
A-98 SYNCRSY Command Instance Variables ... 650
A-99 Command Objects for SYNCRSY... 650
A-100 SYNCRRD Reply Object Instance Variables .. 651
A-101 Reply Objects for SYNCRRD .. 651
A-102 SYNTAXRM Reply Message Instance Variables 652
A-103 TRGNSPRM Reply Message Instance Variables 653
A-104 VALNSPRM Reply Message Instance Variables 654

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) xxi

Contents

xxii Technical Standard (2004)

Preface

The Open Group

The Open Group, a vendor and technology-neutral consortium, has a vision of Boundaryless
Information Flow achieved through global interoperability in a secure, reliable, and timely
manner. The Open Group’s mission is to drive the creation of Boundaryless Information Flow
by:

• Working with customers to capture, understand, and address current and emerging
requirements, establish policies, and share best practices

• Working with suppliers, consortia, and standards bodies to develop consensus and facilitate
interoperability, to evolve and integrate open specifications and open source technologies

• Offering a comprehensive set of services to enhance the operational efficiency of consortia

• Developing and operating the industry’s premier certification service and encouraging
procurement of certified products

The Open Group provides opportunities to exchange information and shape the future of IT. The
Open Group members include some of the largest and most influential organizations in the
world. The flexible structure of The Open Group membership allows for almost any
organization, no matter what their size, to join and have a voice in shaping the future of the IT
world.

More information is available at www.opengroup.org.

The Open Group has over 15 years’ experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of test
suites used to validate conformance to an open standard or specification.

More information is available at www.opengroup.org/testing.

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business
titles. Full details and a catalog are available at www.opengroup.org/pubs.

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards-compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published at www.opengroup.org/corrigenda.

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) xxiii

Preface

This Document

The Distributed Relational Database Architecture Specification comprises three volumes:

• Distributed Relational Database Architecture (DRDA) (the DRDA Reference)

• Formatted Data Object Content Architecture (FD:OCA) (the FD:OCA Reference)

• Distributed Data Management (DDM) Architecture (the DDM Reference)

This volume, Distributed Relational Database Architecture, describes the connectivity between
relational database managers that enables applications programs to access distributed relational
data.

This volume describes the necessary connection between an application and a relational
database management system in a distributed environment. It describes the responsibilities of
these participants, and specifies when the flows should occur. It describes the formats and
protocols required for distributed database management system processing. It does not describe
an Application Programming Interface (API) for distributed database management system
processing.

This reference is divided into three parts. The first part describes the database access protocols.
The second part describes the environmental support that DRDA requires, which includes
network support. The third part contains the specific network protocols and characteristics of
the environments these protocols run in, along with how these network protocols relate to
DRDA.

Note: To understand DRDA, the reader should be familiar with the following referenced documents:

• Distributed Data Management (DDM)

• Formatted Data Object Content Architecture (FD:OCA)

• Structured Query Language (SQL) and Character Data Representation Architecture
(CDRA)

• Distributed Transaction Processing (DTP)

• At least one of the defined network protocols: Systems Network Architecture (SNA) or
TCP/IP

Intended Audience

This volume is intended for relational database management systems (DBMS) development
organizations. Programmers who wish to code their own connections between database
management systems can use this description of DRDA as a basis for their code.

Typographic Conventions

The following typographical conventions are used throughout this document:

• Bold font is used for system elements that must be used literally, such as interface names and
defined constants.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote function names and variable values such as interface
arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

xxiv Technical Standard (2004)

Preface

• The notation [EABCD] is used to identify an error value EABCD.

• Syntax, code examples, and user input in interactive examples are shown in fixed width
font.

• Variables within syntax statements are shown in italic fixed width font.

Problem Reporting

For any problems with DRDA-based software or vendor-supplied documentation, contact the
software vendor’s customer service department. Comments relating to this Technical Standard,
however, should be sent to the addresses provided on the copyright page.

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) xxv

Trademarks

Boundaryless Information Flow is a trademark and UNIX and The Open Group are registered
trademarks of The Open Group in the United States and other countries.

All other trademarks are the property of their respective owners.

HP-UX is a registered trademark of Hewlett-Packard Company.

The following are trademarks of the IBM Corporation in the United States and other countries:

AIX

AS/400

DATABASE 2

DB2

Distributed Relational Database Architecture

DRDA

IBM

MVS

Netview

OS/2

OS/390

OS/400

RISC System/6000

SQL/DS

System/390

VM

Intel is a registered trademark of Intel Corporation.

Microsoft and Windows NT are registered trademarks of Microsoft Corporation.

NFS is a registered trademark and Network File SystemTM is a trademark of Sun Microsystems,
Inc.

Solaris is a registered trademark of Sun Microsystems, Inc.

VAX is a registered trademark of Digital Equipment Corporation.

xxvi Technical Standard (2004)

Referenced Documents

These publications provide the background for understanding DRDA.

DRDA Overview

For an overview of DRDA, read:

• DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA),
published by The Open Group (this document).

The DRDA Processing Model and Command Flows

These publications help the reader to understand the DDM documentation and what is needed
to implement the base functions required for a DRDA product:

• DRDA, Version 3, Volume 3: Distributed Data Management (DDM) Architecture, published
by The Open Group.

• Distributed Data Management Architecture General Information, GC21-9527 (IBM).

• Distributed Data Management Architecture Implementation Programmer’s Guide, SC21-9529 (IBM).

• Character Data Representation Architecture Reference, SC09-1390 (IBM).

• Character Data Representation Architecture Registry, SC09-1391 (IBM).

Communications, Security, Accounting, and Transaction Processing

For information about distributed transaction processing, see the following:

• Guide, February 1996, Distributed Transaction Processing: Reference Model, Version 3
(ISBN: 1-85912-170-5, G504), published by The Open Group.

• CAE Specification, November 1995, Distributed Transaction Processing: The CPI-C
Specification, Version 2 (ISBN: 1-85912-135-7, C419), published by The Open Group.

• CAE Specification, February 1992, Distributed Transaction Processing: The XA Specification
(ISBN: 1-872630-24-3, C193), published by The Open Group.

• Snapshot, July 1994, Distributed Transaction Processing: The XA+ Specification, Version 2
(ISBN: 1-85912-046-6, S423), published by The Open Group.

The following publications contain background information adequate for an in-depth
understanding of DRDA’s use of TCP/IP:

• Internetworking With TCP/IP Volume I: Principles, Protocols, and Architecture, Douglas E. Corner,
Prentice Hall, Englewood Cliffs, New Jersey, 1991, SC31-6144 (IBM).

• Internetworking With TCP/IP Volume II: Implementation and Internals, Douglas E. Corner,
Prentice Hall, Englewood Cliffs, New Jersey, 1991, SC31-6145 (IBM).

• Internetworking With TCP/IP, Douglas E. Corner, SC09-1302 (IBM).

• UNIX Network Programming, W. Richard Stevens, Prentice Hall, Englewood Cliffs, New
Jersey, 1990, SC31-7193 (IBM).

• UNIX Networking, Kochan and Wood, Hayden Books, Indiana, 1989.

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) xxvii

Referenced Documents

• Introduction to IBM’s Transmission Control Protocol/Internet Protocol Products for OS/2, VM, and
MVS, GC31-6080 (IBM).

• Transmission Control Protocol, RFC 793, Defense Advanced Research Projects Agency
(DARPA).

Many IBM publications contain detailed discussions of SNA concepts and the LU 6.2
architecture. The following publications contain background information adequate for an in-
depth understanding of DRDA’s use of LU 6.2 functions:

• SNA Concepts and Products, GC30-3072 (IBM).

• SNA Technical Overview, GC30-3073 (IBM).

• SNA Transaction Programmer’s Reference Manual for LU Type 6.2, GC30-3084 (IBM).

• SNA LU 6.2 Reference: Peer Protocols, SC31-6808 (IBM).

• SNA Management Services: Alert Implementation Guide, SC31-6809 (IBM).

• SNA Format and Protocol Reference Manual: Architecture Logic For LU Type 6.2 SC30-3269 (IBM).

These are publications that contain background for DRDA’s use of The Open Group OSF DCE
security. A listing of security publications is available on The Open Group website at
http://www.opengroup.org, under publications. Many titles are available for browsing in HTML.

• CAE Specification, December 1995, Generic Security Service API (GSS-API) Base
(ISBN: 1-85912-131-4, C441), published by The Open Group.

• CAE Specification, August 1997, DCE 1.1: Authentication and Security Services (C311),
published by The Open Group.

• The Open Group OSF DCE SIG Request For Comments 5.x, GSS-API Extensions for DCE,
available from The Open Group.

• IETF RFC 1508, Generic Security Service Application Program Interface, September 1993.

• IETF RFC 1510, The Kerberos Network Authentication Service (V5), September 1993.

The following publications contain useful information about security mechanisms:

• FIPS PUB 81, DES Modes of Operation (Cipher Block Chaining), December 1980, NIST.

• FIPS PUB 180-1, Secure Hash Standard, May 1993, NIST.

• IETF RFC 1964, The Kerberos Version 5 GSS-API Mechanism, June 1996.

The following publication contains useful information about applied cryptography:

• Applied Cryptography: Protocols, Algorithms, and Source Code in C, Schneier, Bruce, published by
Wiley, New York, c.1996, 2nd Edition.

Data Definition and Exchange

The following publications describe ISO SQL, FD:OCA, and CDRA:

• DRDA, Version 3, Volume 2: Formatted Data Object Content Architecture (FD:OCA),
published by The Open Group.

• ISO/IEC 9075: 1999, Information Technology — Database Languages — SQL

• Character Data Representation Architecture Reference, SC09-1390 (IBM).

• Character Data Representation Architecture Registry, SC09-1391 (IBM).

xxviii Technical Standard (2004)

Referenced Documents

• Character Data Representation Architecture, Executive Overview, GC09-1392 (IBM).

Other

• ANSI/IEEE Std. 745-1985, Binary Floating Point Arithmetic.

• Technical Standard, October 1993, Application Response Measurement (ARM) Issue 4.0 - C
Binding (ISBN: 1-931624-35-6, C036), published by The Open Group.

• Technical Standard, October 1993, Application Response Measurement (ARM) Issue 4.0 -
Java Binding (ISBN: 1-931624-36-4, C037), published by The Open Group.

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) xxix

Referenced Documents

xxx Technical Standard (2004)

Chapter 1

The DRDA Specification

The Distributed Relational Database Architecture Specification comprises three volumes:

• Distributed Relational Database Architecture (DRDA) (the DRDA Reference)

• Formatted Data Object Content Architecture (FD:OCA) (the FD:OCA Reference)

• Distributed Data Management (DDM) Architecture (the DDM Reference)

DRDA is an open, published architecture that enables communication between applications and
database systems on disparate platforms, whether those applications and database systems are
provided by the same or different vendors and whether the platforms are the same or different
hardware/software architectures. DRDA is a combination of other architectures and the
environmental rules and process model for using them. The architectures that actually comprise
DRDA are Distributed Data Management (DDM) and Formatted Data Object Content
Architecture (FD:OCA).

The Distributed Data Management (DDM) architecture provides the overall command and reply
structure used by the distributed database. Fewer than 20 commands are required to implement
all of the distributed database functions for communication between the Application Requester
(client) and the Application Server.

The Formatted Data Object Content Architecture (FD:OCA) provides the data definition
architectural base for DRDA. Descriptors defined by DRDA provide layout and data type
information for all the information routinely exchanged between the Application Requesters and
Servers. A descriptor organization is defined by DRDA to allow dynamic definition of user data
that flows as part of command or reply data. DRDA also specifies that the descriptors only have
to flow once per answer set, regardless of the number of rows actually returned, thus
minimizing data traffic on the wire.

It is recommended that the DRDA Reference be used as the main source of information and
roadmap for implementing DRDA. This section describes the relationships between the above
three volumes and provides the details on how they are used to develop a DRDA requester
(client) or server. Overviews of DDM and FD:OCA are provided in this section and in more
detail in the introductory sections of their respective volumes.

It is recommended that the introductory chapter of the DDM Reference, which describes its
overall structure and basic concepts, is read either before reading Chapter 4 (on page 63) or in
conjunction with it. The rest of the DDM Reference should be used primarily as a reference when
additional detail is needed to implement the functions and flows as defined in the DRDA
Reference. Similarly, one can use the overview of FD:OCA below and the introductory section
of its respective volume and only refer to the details of the FD:OCA constructs as needed during
implementation.

DRDA can flow over either SNA or TCP/IP transport protocols and the details and differences
in doing so are provided in the third part of the DRDA Reference. It is expected that the
developer is familiar with whichever transport protocol will be supported, as that level of detail
is not provided in this documentation. Even if only implementing for TCP/IP, it is
recommended that the developer be familiar with the two-phase commit recovery model as
described in SNA LU 6.2 since that is the model used by DRDA for either of the transport
protocols.

Besides SNA and TCP/IP, DRDA also uses the following other architectures:

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 1

The DRDA Specification

• Character Data Representation Architecture (CDRA)

• SNA Management Services Architecture (MSA) for problem determination support

• The Open Group Distributed Computing Environment (DCE)

• The Open Group Application Response Measurement (ARM)

• The Open Group XA+ Specification

For a better understanding of DRDA, the reader should have some familiarity with these
architectures. (See Referenced Documents (on page xxv).)

Finally, DRDA is based on the Structured Query Language (SQL) but is not dependent on any
particular level or dialect of it. It is not necessary to know the details of how to construct all the
SQL statements, only to recognize certain types of statements and any host variables they may
contain in order to map them to their DRDA equivalents.

1.1 The DRDA Reference
The DRDA Reference describes the necessary connection between an application and a relational
database management system in a distributed environment. It describes the responsibilities of
these participants, and specifies when the flows should occur. It describes the formats and
protocols required for distributed database management system processing. It does not describe
an Application Programming Interface (API) for distributed database management system
processing.

This reference is divided into three parts. The first part describes the database access protocols.
The second part describes the environmental support that DRDA requires, which includes
network support. The third part contains the specific network protocols and characteristics of
the environments these protocols run in, along with how these network protocols relate to
DRDA.

1.1.1 What it Means to Implement Different Levels of DRDA

This version of the DRDA reference includes:

• DRDA application-directed Remote Unit of Work (RUOW)

• DRDA application-directed Distributed Unit of Work (DUOW),

• DRDA application-directed Distributed Unit of Work (DUOW)/XA Distributed Transaction
Processing (DTP)

• Initial support for DRDA database-directed Distributed Unit of Work (DUOW)

• DRDA database-directed Distributed Unit of Work (DUOW)/XA Distributed Transaction
Processing (DTP)

• The totality of SQL-related functions

It is written with the intention of allowing an implementer to implement any of the DRDA
functions and either Remote Unit of Work or Distributed Unit of Work types of distribution.
DRDA, Version 2 adds support for an RDB implementer to provide support for database-
directed Distributed Unit of Work and database-directed Distributed Unit of Work/XA
Distributed Transaction Processing.

2 Technical Standard (2004)

The DRDA Specification The DRDA Reference

1.1.2 What it Means to Implement DRDA Level 5

Monitoring

The ability for a requester to request the server to return how long it takes to process a request.
The server elapsed time allows the client to analyze where the cost of performing the request is
occurring: in the network or in the server. Monitoring data is not returned as a new reply
message, but as additional data to the reply. If monitoring fails or a specific type of monitoring is
not supported, the request does not fail. Support for DRDA Level 5 consists of the following:

• On the requester:

Request AGENT at level 7 and specify the new MONITOR instance variable on an SQL
command and process the new MONITORRD reply object. The optional MONITOR instance
variable is added to the following commands: CLSQRY, CNTQRY, DSCPVL, DSCRDBTBL,
DSCSQLSTT, EXCSQLIMM, EXCSQLSET, EXCSQLSTT, OPNQRY, and PRPSQLSTT. The
MONITOR instance variable is used to request the server to return the server elapsed time.

• On the server:

Support for AGENT at level 7 which indicates support for the new MONITOR instance
variable and the MONITORRD object. Currently, DRDA defines only the ability to return the
elapsed time. No network costs are included in the time. If the server does not support the
monitor type requested, the optional MONITORRD is not required to be returned in the
reply.

SQL Long Identifiers

The maximum length for certain SQL long identifiers can now be up to 255 characters in length.
To minimize the data stream size because of the increase in length, a default value is allowed to
be used for package names and consistency tokens. Refer to DRDA Connection Usage (CU)
Rules on using default package names. This requires SQL Application Manager (SQLAM) Level
7 support as follows:

DFTRDBCOL Maximum length has been increased from 18 to 255 with no change in format.

PKGID The length is fixed at 18 (with right blank padding if necessary) if the package
identifier is 18 characters long or less. This is the same as the format used prior
to SQLAM Level 7. As of SQLAM Level 7, if the package identifier is longer
than 18, then the PKGID will be of the same length up to a maximum of 255
without right blank padding.

PKGOWNID Maximum length has been increased from 8 to 255 with no change in format.

RDBCOLID The length is fixed at 18 (with right blank padding if necessary) if the
collection identifier is 18 characters long or less. This is the same as the format
used prior to SQLAM Level 7. As of SQLAM Level 7, if the collection identifier
is longer than 18, then the RDBCOLID will be of the same length up to a
maximum of 255 without right blank padding.

RDBNAM The length fixed at 18 (with right blank padding if necessary) if the RDB name
is 18 characters long or less. This is the same as the format used prior to
SQLAM Level 7. As of SQLAM Level 7, if the RDB name is longer than 18,
then the RDBNAM will be of the same length up to a maximum of 255
without right blank padding.

PKGNAM, PKGNAMCSN, PKGNAMCT
The length is no longer fixed and is based on the lengths of the RDBNAM,

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 3

The DRDA Reference The DRDA Specification

RDBCOLID, and PKGID contained therein. As of SQLAM Level 7, the
PKGNAMCSN instance variable is optional. If not specified, the PKGSN is
required to identify the package section number. The package name and
consistency token defaults to the last set of values specified on the connection.

New Security Mechanisms

New security mechanisms are added to allow a user to be authenticated without requiring
security tokens to flow in the data stream as clear text.

• The User ID Encryption and Password Encryption Security Mechanism (EUSRIDPWD)
specifies a method to encrypt both the user ID and password. This mechanism authenticates
the user like the user ID and password mechanism, but the user ID and password are
encrypted and decrypted using the encryption algorithm based on the ENCALG parameter,
with encryption key length based on the ENCKEYLEN parameter. Diffie-Hellman public-
key distribution is used to generate the connection key and shared private key.

• The User ID Encryption, Password Encryption, and New Password Encryption Security
Mechanism (EUSRIDNWPWD) specifies a method to encrypt the user ID, password, and
new password during a change password sequence. The user ID and passwords are
encrypted and decrypted using the encryption algorithm based on the ENCALG parameter,
with encryption key length based on the ENCKEYLEN parameter. Diffie-Hellman public-
key distribution is used to generate the connection key and shared private key.

• The Kerberos Security Mechanism (KERSEC) specifies a method of authenticating users by
the use of an encrypted Kerberos Ticket, as opposed to more conventional methods, such as
user ID and password, which allow security tokens to flow across the network in plain text.

• The Strong Password Substitution Security Mechanism (PWDSSB) specifies the use of a
password substitute. The difference between this and the existing Password Substitution
Security Mechanism (PWDSBS) implemented in DRDA Level 4 is the algorithm used to
generate the password substitute.

Encryption mechanisms require the following DDM support:

• Security Manager (SECMGR) at Level 6

• New Security token instance variable in the access security command (ACCSEC) and reply
data (ACCSECRD).

New security mechanisms are added to provide security for security-sensitive data, in addition
to providing security during user authentication. The security-sensitive DDM/FD:OCA objects
that are encrypted are SQLDTA, SQLDTARD, SQLSTT, SQLDARD, SQLATTR, SQLCINRD,
SQLRSLRD, SQLSTTVRB, QRYDTA, EXTDTA, and SECTKNOVR.

• The User ID Encryption and Security-sensitive Data Encryption Security Mechanism
(EUSRIDDTA) specifies a method to encrypt the user ID and security-sensitive data. Diffie-
Hellman public-key distribution algorithm is used to generate the connection key and shared
private key. The user ID and security-sensitive data are encrypted and decrypted using the
encryption algorithm based on the ENCALG parameter, with encryption key length based on
the ENCKEYLEN parameter.

• The User ID Encryption, Password Encryption, and Security-sensitive Data Encryption
Security Mechanism (EUSRPWDDTA) specifies a method to encrypt the user ID, password,
and security-sensitive data. Diffie-Hellman public-key distribution algorithm is used to
generate the connection key and shared private key. The user ID, password, and security-
sensitive data are encrypted and decrypted using the encryption algorithm based on the
ENCALG parameter, with the encryption key length value based on the ENCKEYLEN

4 Technical Standard (2004)

The DRDA Specification The DRDA Reference

parameter.

• The User ID Encryption, Password Encryption, New Password Encryption, and Security-
sensitive Data Encryption Security Mechanism (EUSRNPWDDTA) specifies a method to
encrypt the user ID, password, new password, and security-sensitive data. Diffie-Hellman
public-key distribution algorithm is used to generate the connection key and shared private
key. The user ID, password, new password, and security-sensitive data are encrypted and
decrypted using the encryption algorithm based on the ENCALG parameter, with encryption
key length based on the ENCKEYLEN parameter.

Data encryption mechanisms require the following DDM support:

• Security Manager (SECMGR) at Level 7

• The instance variables ENCALG and ENCKEYLEN are optional for ACCSEC and
ACCSECRD.

Plug-In Security Mechanism

A security device may choose to use plug-in modules to perform authentication. This affords it
the flexibility to take advantage of many different underlying security mechanisms, all from a
common interface—for example, GSS-API—as well as the extensibility to use authentication
mechanisms beyond the DRDA-defined security mechanisms. This enhancement introduces
support for a plug-in security mechanism and also allows for plug-in negotiation when multiple
plug-in modules are present.

The following DDM support is required:

• Security Manager (SECMGR) at Level 7

• New PLGIN security mechanism

• The new data object PLGINNM which is optional for ACCSEC, but required for SECCHK if
the SECMEC is PLGIN

• The new optional data object PLGINID for ACCSEC and SECCHK

• The required return of a PLGINLST reply data object following the ACCSECRD reply data
object

The PLGINLST object is an ordered list consisting of a PLGINCNT data object followed by
one or more PLGINLSE list entry data objects. Each PLGINLSE object will contain a
PLGINNM data object and, optionally, a PLGINPPL data object and/or a PLGINID data
object.

Scrollable Cursors

The support for scrollable cursors1 is optional in DRDA. If supported, it consists of the
following:

• On the application requester:

— Sending qryrowset parameter on OPNQRY

1. The support for scrollable cursors in DRDA Level 5 supersedes the scrollable cursor support defined in DRDA Level 2; see
Section 1.1.5 (on page 28).

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 5

The DRDA Reference The DRDA Specification

— Receiving qryattscr parameter on OPNQRYRM

— Receiving qryattsns parameter on OPNQRYRM

— Receiving qryattupd parameter on OPNQRYRM

— Sending qryscrorn parameter on CNTQRY

— Sending qryrownbr parameter on CNTQRY

— Sending qryrowsns parameter on CNTQRY

— Sending qryblkrst parameter on CNTQRY

— Sending qryrtndta parameter on CNTQRY

— Sending qryrowset parameter on CNTQRY

— Sending qryrowset on EXCSQLSTT for a CALL statement

• On the application server:

— Receiving qryrowset parameter on OPNQRY

— Sending qryattscr parameter on OPNQRYRM

— Sending qryattsns parameter on OPNQRYRM

— Sending qryattupd parameter on OPNQRYRM

— Receiving qryscrorn parameter on CNTQRY

— Receiving qryrownbr parameter on CNTQRY

— Receiving qryrowsns parameter on CNTQRY

— Receiving qryblkrst parameter on CNTQRY

— Receiving qryrtndta parameter on CNTQRY

— Receiving qryrowset parameter on CNTQRY

— Receiving qryrowset parameter on EXCSQLSTT for a CALL statement

New Begin Bind Option

PRPSTTKP is added to the Begin Binding a Package to an RDB command to control when
prepared statements are released by a target RDB.

• Support the new PRPSTTKP instance variable on the BGNBND command for SQLAM Level
7.

Extended Describe

Descriptive information can be returned from a server on a prepare, a describe, a query, an
execute, or on an execute of a stored procedure. This information allows the requester to
provide descriptive information to the application. Some applications require more descriptive
information than what is currently returned, while other applications require less descriptive
information. In order to satisfy these requirements, describe processing is enhanced to allow a
requester to control the amount and the type of information returned.

• On the requester:

— Support for SQLAM level 7.

6 Technical Standard (2004)

The DRDA Specification The DRDA Reference

— Extended describe information can be returned on the DSCSQLSTT, PRPSQLSTT,
OPNQRY, and EXCSQLSTT commands. Three types of SQLDA groups can be requested:
a light, standard, or extended type. Each type provides a different level of descriptive
information. The light SQLDA provides minimal descriptive information. The standard
SQLDA provides the same descriptive information as in previous versions. The extended
SQLDA provides additional descriptive information required by certain types of APIs
such as JDBC.

Extended describe uses the RSLSETFLG, RTNSQLDA, and TYPSQLDA instance variables
to control the level of descriptive information provided by the target server. The
TYPSQLDA and RSLSETFLG identify the type of SQLDARD to be returned. The
TYPSQLDA instance variable is added to the PRPSQLSTT, OPNQRY, and EXCSQLSTT
commands. The RTNSQLDA instance variable is used to request optional descriptive
information. The RTNSQLDA instance variable is added to the OPNQRY and
EXCSQLSTT commands. The SQLCINRD provides different levels of column descriptive
information for result sets as enumerated on the EXCSQLSTT command. The RSLSETFLG
instance variable is used to identify if and the type of SQLDA returned in the SQLCINRD.

The SQLCIROW and SQLCIGRP descriptors are no longer used. The SQLUDTGRP is
added to the SQLVRBGRP.

— Support the receiving of the three levels of descriptive information described by the
enhanced FD:OCA SQLDARD array.

• On the server:

— Support SQLAM level 7.

— Support the optional RTNSQLDA and TYPSQLDA instance variables on the PRPSQLSTT,
DSCSQLSTT, OPNQRY, and EXCSQLSTT commands. The SQLCIROW and SQLCIGRP
descriptors are no longer used.

— Support the sending of the three levels of descriptive information described by the
enhanced SQLDARD FD:OCA array.

Greater than 32,767 Byte SQL Statements

Existing early descriptor character fields are mapped to a Variable Character Mixed or a Variable
Character SBCS which allow a maximum of 32,767 bytes. SQL Statements described by the SQL
Statement Group use these character fields. To allow SQL Statements to extend beyond the 32K
limit, SQL statements are changed to map to nullable Large Character Objects Mixed and
nullable Large Character Objects SBCS to allow for very large SQL Statements.

• On the requester:

— Support for SQLAM level 7.

— Support the sending of the new SQLSTT and SQLATTR object as described by the
enhanced FD:OCA SQLSTTGRP group.

— Support the receiving of the new SQLSTT and SQLATTR object.

• On the server:

— Support SQLAM level 7.

— Support the receiving of the new SQLSTT and SQLATTR object as described by the
enhanced FD:OCA SQLSTTGRP group.

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 7

The DRDA Reference The DRDA Specification

— Support the sending of the new SQLSTT and SQLATTR object.

Longer SQL Identifiers

In previous levels of the architecture, SQL identifiers were mapped to a Variable Character
Mixed and Variable Character SBCS in FD:OCA descriptors with a maximum length of 30
characters. To allow SQL Identifiers to extend beyond the 30-character limit, the maximum
length allowed is increased to 255 characters.

• On the requester:

— Support for SQLAM level 7.

— Support the sending and receiving of the new level FD:OCA descriptors that increase the
allowable size for SQL identifiers.

• On the server:

— Support SQLAM level 7.

— Support the receiving and sending of the new level FD:OCA descriptors that increase the
allowable size for SQL identifiers.

Enhanced FD:OCA Local Identifiers (LID) Mapping

Every FD:OCA triplet (SDA, GDA, and RLO) is assigned a local identifier (LID). A LID is used as
a short label to reference a triplet eliminating the need to flow the full descriptor. The previous
level of the architecture allowed the assignment of up to 254 LIDs. With the addition of new data
types. additional descriptors, and the use of override triplets, 254 unique values are not enough
to support the growing number of triplets.

To increase the number of available LIDs. early and late descriptors are divided into two
FD:OCA meta data reference types. Late descriptors continue to be described using the existing
meta data reference type of X’01’. Early descriptors are described using a new meta data
reference type of X’02’. Environmental descriptors are described in both meta data reference
types allowing them to be used in both early or late descriptors. With this approach, early and
late (SDA, GDA, and RLO) descriptors can share the same LID values and are distinguishable by
the reference type of the DRDA meta data application class. A late override LID can only
reference late descriptors and does block any references to an early descriptor. This frees up an
additional 96 LIDs reserved for early descriptors and 24 LIDs reserved for environment
descriptors.

• On the requester:

— Support for SQLAM level 7.

— Since early descriptors are never generated or parsed by the requester, this change is
expected to have minimal impact on existing implementations.

• On the server:

— Support SQLAM level 7.

— This change is expected to have minimal impact to existing implementations.

8 Technical Standard (2004)

The DRDA Specification The DRDA Reference

Interrupt Request

Interrupt request support allows an application requester to interrupt a DRDA request running
at the application server. If both the application requester and the application server are at
DRDA Level 5, RDB Level 7, and the application server supports interrupts, it will return the
rdbinttkn parameter in the ACCRDBRM. An application requester at DRDA Level 5, RDB Level 7
must be able to accept a rdbinttkn returned in the ACCRDBRM.

Multi-Row Input

Support for atomic multi-row insert which has been optional since DRDA Level 2 has been
enhanced to include updates and deletes. In addition, support for non-atomic multi-row input
has been added. Support for both flavors of multi-row input is optional. The operation is
considered atomic if, in the event that any of the input data rows fails, then all other changes
made to the database under this operation will be undone.2 Otherwise, the operation is
considered non-atomic.

The following DDM support is required:

• SQLAM manager at level 7

• In the case of an SQL INSERT statement, the use of the BUFINSIND instance variable on the
PRPSQLSTT command to indicate whether the buffered insert3 technique should be used for
an atomic multi-row input operation against a partitioned database

• The use of the ATMIND instance variable on the EXCSQLSTT command to indicate whether
this is an atomic or non-atomic operation

• The use of the NBRROW instance variable on the EXCSQLSTT command to specify the
number of rows

• The use of a null row to indicate to the server to skip a bad row for both atomic and non-
atomic operations

• The return of one reply per input row when the operation is non-atomic

Atomic EXCSQLSTT Chaining

Support for the chaining of multiple EXCSQLSTTs as an atomic operation has been added. Being
atomic means that if any of the EXCSQLSTTs within the chain results in an error, then all other
changes made to the database stemming from any other EXCSQLSTT within the chain will be
undone.4 Support for this feature is optional.

The following DDM support is required:

• SQLAM manager at level 7

• The use of the BGNATMCHN command to indicate the start of the atomic chain

2. What changes get undone is server-specific. For example, all database changes should be backed out, but acquired locks may not
be released.

3. Buffered insert is an optimization for enhancing the performance in inserting multiple rows into a table in a partitioned database
by blocking the rows within the server.

4. What changes get undone are server-specific. For example, all database changes should be backed out, but acquired locks may
not be released.

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 9

The DRDA Reference The DRDA Specification

• The use of the ENDATMCHN command to indicate the end of the atomic chain

• The use of the ENDCHNTYP instance variable on the ENDATMCHN command to indicate
whether to abort the chain

New Query Options

Options have been added for further customizing a query when a cursor is opened in the
following aspects:

• Whether read locks should be released when the query is closed either implicitly by the
server or explicitly by the application requester. The current behavior is that read locks are
not released when the query is closed. This new option can be specified when a cursor is
opened. As well, it can be specified when the application requester explicitly closes the
query, in which case the setting will take precedence over what may have been specified
previously for the query.

• Whether the server should close the query implicitly when there are no more rows
(SQLSTATE 02000) for a non-scrollable cursor regardless of whether the cursor has the
HOLD attribute specified or not. Currently, the server decides whether the query is closed
implicitly or not without input from the application requester.

Also, for a query or stored procedure result set, the server may impose a limit of the number of
rows that can blocked at a time without influence from the application requester in terms of any
parameter that may or may not have been explicitly specified on the command. This limit (called
the blocking factor) may be based on a configuration setting on the server, or it may be the result
of a clause on the SQL statement that is associated with the query. This value is now returned in
the open reply in the OPNQRYRM reply message. The blocking factor is most useful to an
intermediate server which is responsible for repackaging the query data to be sent to an
application requester over DRDA or another communication protocol.

In addition, a database update can occur for a query either at OPEN time for a SELECT with
INSERT statement, or when a row is fetched as a result of an associated UDF or trigger
invocation. The server can now indicate to the requester that an update has taken place for a
query in the reply to an OPNQRY, EXCSQLSTT, or CNTQRY command if necessary.

The following DDM support is required for all the enhancements above:

• SQLAM manager at level 7

• The use of the QRYCLSRLS instance variable on the OPNQRY and CLSQRY commands to
indicate whether read locks held by a cursor should be released when the query is closed
either implicitly (upon SQLSTATE 02000 or otherwise a query terminating condition) or
explicitly5

• The use of the QRYCLSIMP instance variable on the OPNQRY command to indicate for a
non-scrollable cursor whether the server should close the query implicitly when there are no
more rows (SQLSTATE 02000)

• The return of the QRYBLKFCT instance variable on the OPNQRYRM reply message to
indicate, where applicable, the blocking factor that is associated with the query

5. Note that not all read locks held by the cursor will necessarily be released; these locks may be held for other operations or
activities.

10 Technical Standard (2004)

The DRDA Specification The DRDA Reference

• The return of an RDBUPDRM reply message in the reply to the OPNQRY, EXCSQLSTT, or
CNTQRY command to indicate a database update has occurred for a query subject to Update
Control rules UP1 through UP4 (see Section 7.18 (on page 428))

Enhanced Bind Options

New bind option values for existing bind options have been added. Also, the BINDOPTVL (Bind
Option Value) has been enhanced.

The following DDM support is required:

• SQLAM manager at level 7

• Support for new enumerated values for the following bind options: BNDEXPOPT, DECPRC,
STTDATFMT, and STTTIMFMT

• Support for BNDOPTVL values that are up to 32,767 bytes long

Enhanced LOB Processing

When a LOB value is to be externalized in an EXTDTA reply data object, the sender (application
requester or server) can now optionally defer indicating a nullable value is indeed null, and/or
defer setting its length (in the FD:OCA placeholder), from the time its FD:OCA placeholder is
generated within the FDODTA or QRYDTA reply data object, until the time the EXTDTA object
itself gets generated.

The following DDM support is required for all the enhancements above:

• SQLAM manager at level 7

• The sender (application requester or server) of an externalized LOB value can optionally turn
on the high-order bit of its corresponding FD:OCA placeholder value in an FDODTA or
QRYDTA reply data object to indicate that the length of the LOB value is unknown at the
time the FD:OCA placeholder is generated.

• If the FD:OCA placeholder of an externalized non-nullable LOB value indicates an unknown
length, its associated EXTDTA object can have a length of zero.

• In addition to having a null indicator associated with its FD:OCA placeholder value, a
nullable externalized LOB value must also have a null indicator associated with its value in
an EXTDTA. As always, if the null indicator for the FD:OCA placeholder indicates not null,
there must be an EXTDTA object associated with it. However, the null indicator for the
EXTDTA may then still indicate that the nullable LOB value is null. In order for the nullable
LOB value not to be null, both null indicators have to indicate not null.

Streaming

Streaming has been introduced for QRYDTA and EXTDTA data objects for SQLAM manager
level 7. This mechanism allows the sender (application requester or server) to generate the
relevant DDM object without explicitly setting its true length in the Layer B header. No DDM
extended length field is ever employed when streaming is in use. While streaming is optional for
the application requester or server as a sender, the receiver must be able to properly process a
streamed data object. For details, refer to the DSS term in the DDM Reference.

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 11

The DRDA Reference The DRDA Specification

Simplified Query Processing Rules

Query processing rules are revised so that they are simpler to implement, can more readily allow
extensions to the architecture, and yet allow the server greater flexibility in how to generate
query reply data objects.

Blocking applies only to the QRYDTA reply objects.6 Each query block is a QRYDTA DSS. The
maximum query block size value allowed in the qryblksz parameter is increased from 32K to
10M, thus accommodating the larger data volumes required by modern, more data-intensive
applications.

Two types of blocking behavior are supported, depending on the server’s capabilities and
preferences:

1. Exact blocking: The qryblksz is an exact value for a query block’s size. Every query block,
except for the last query block in the reply chain, must be exactly that size. If a row is larger
than the query block size, then the row is blocked into QRYDTAs, each of which is exactly
qryblksz in length, except for the last query block which may be shorter. If the query block
can contain more than one row, then whole rows can added to the query block until no
more whole rows can be added (up to the number of rows allowed by the protocol in
effect). If the query block is not the last query block in the reply chain, then the remaining
space in the query block contains a partial row so that the total length is the exact query
block size. If the query block is the last query block in the reply chain, then the server may
either return a short query block (the query block size less the unused space) or may return
a partial row in the remaining space.

2. Flexible blocking: The qryblksz specifies an initial value for a query block. Each QRYDTA
contains the base row data for at least one complete row (in the case of single-row fetch) or
the base row data for exactly one complete whole rowset (in the case of multi-row fetch).
In the case of single-row fetch, if the QRYDTA can contain additional single rows, then the
additional rows in the QRYDTA are also whole complete rows. If the space remaining in a
QRYDTA can contain part of a row but not the whole complete row, then the QRYDTA is
expanded beyond its initial size to contain the complete row. If this has occurred, then no
additional rows may be added to the QRYDTA. Query block expansion can occur with any
single row added to the query block, including the first row. In the case of multi-row fetch,
only one rowset can be returned.

This supports involves the following:

• On the application requester:

— Sending qryblksz on OPNQRY, CNTQRY, or EXCSQLSTT with a value of up to 10M

— Receiving the qryblktyp parameter on OPNQRYRM

— In response to OPNQRY, CNTQRY, or EXCSQLSTT, parsing query data returned in exact
query blocks

— In response to OPNQRY, CNTQRY, or EXCSQLSTT, parsing query data returned in
flexible query blocks

— In response to OPNQRY, CNTQRY, or EXCSQLSTT, parsing all other query reply DSSs as
unblocked objects

6. Restricting blocking to the QRYDTA eliminates the complexity of applying blocked behavior to other DSSs, such as
OPNQRYRM, QRYDSC, and SQLCINRD, as was done in lower levels of the architecture.

12 Technical Standard (2004)

The DRDA Specification The DRDA Reference

• On the application server:

— Receiving qryblksz on OPNQRY, CNTQRY, or EXCSQLSTT up to 10M

— Sending the qryblktyp parameter on OPNQRYRM

— In response to OPNQRY, CNTQRY, or EXCSQLSTT, either generating query data as exact
query blocks or as flexible query blocks, depending on the server’s capabilities or
preferences

— In response to OPNQRY, CNTQRY, or EXCSQLSTT, generating all other query reply DSSs
as unblocked objects

Command Source Identifier

In an environment where an application requester or database server multiplexes multiple
sources within client applications or multiple client applications over a single database
connection to a server, collisions can occur when multiple requests from more than one client
application source try to operate against an identical section within a package. In such an
environment, the package name, consistency token, and section number (pkgnamcsn) are no
longer sufficient in identifying a unique invocation of a database command. Therefore, the
command source identifier (cmdsrcid) is introduced to allow an application requester to uniquely
identify the source of a database command operating on a particular section within a package in
order to distinguish it from an identical command, albeit from a different source within the same
application or from a different application altogether. For cursor operations, the command
source identifier allows queries from multiple application sources to operate on a single section
all within one package.

The application requester must ensure that all commands stemming from one application source
take on the same command source identifier.

The following DDM support is required:

• SQLAM manager at level 7

• The optional use of the CMDSRCID instance variable on the following commands: CLSQRY,
CNTQRY, DSCSQLSTT, EXCSQLIMM, EXCSQLSTT, OPNQRY, and PRPSQLSTT.

Query Instance Identifier

Prior to SQLAM Level 7, a query is uniquely identified by its package name, consistency token,
and section number (pkgnamcsn). Still, from a single application source, it was not possible to
open the query again unless the previous query was closed. In order to solve this issue, the
concept of a query instance is introduced with this level of DRDA. This support makes it
possible to open a cursor more than once from an application or stored procedure within a single
invocation thereof, which may or may not be the desired behavior. In this regard, the new
duplicate query allowed (dupqryok) option on the OPNQRY command allows the application
requester to choose between the old and new behaviors. Furthermore, with the introduction of
the command source identifier (cmdsrcid), it is now possible to have more than one query, each
originating from a different application source, that all operate on a single pkgnamcsn within a
package. Therefore, the pkgnamcsn, the cmdsrcid, and the query instance identifier are required in
order to uniquely identify the cursor opened by a particular open cursor invocation. For details
on this feature, see Section 4.4.6 (on page 121).

The following DDM support is required:

• SQLAM manager at level 7

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 13

The DRDA Reference The DRDA Specification

• The use of the DUPQRYOK instance variable on the OPNQRY command

• The return of the QRYINSID instance variable on the OPNQRYRM reply message

• The use of the QRYINSID instance variable on the CNTQRY and CLSQRY commands

• The use of the QRYINSID instance variable on the DSCSQLSTT command for any statement
that has an open cursor associated with it

• The use of the QRYINSID instance variable on the EXCSQLSTT and EXCSQLIMM
commands for a positioned DELETE/UPDATE SQL statement

ARM Correlators

The Open Group Application Response Measurement (ARM) API is designed to measure the
response time and status of transactions executed by application software. An ARM correlator
stores contextual information associated with each work request (as defined in an ARM
environment). Servers will accept ARM correlators on ACCRDB, and use this correlator to
associate contextual information with each request. See ARM 4.0 for more information.

The support for ARM correlators requires SQLAM Level 7 and consists of the following:

• On the requester:

— Support for the armcorr parameter on ACCRDB (see Section 4.4.1 (on page 84))

• On the server:

— Receipt of the armcorr parameter on ACCRDB and the semantics of receiving it (see
Section 4.4.1 (on page 84))

Connection Health Check

The SNDPKT command is introduced to provide the ability to send and receive data packets of
arbitrary size. The purpose of this DDM command is to test the connectivity by allowing
between a requester and server. It can also be used to check whether the network connection is
healthy. This command is similar to the ping utility described in Chapter 11 (on page 491),
which is used to determine the status of the network.

This command requires AGENT Level 7 and the following support:

• On the requester:

— Sending the SNDPKT command

— Receiving the PKTOBJ object in response to SNDPKT

• On the server:

— Receiving the SNDPKT command

— Sending the PKTOBJ object in response to SNDPKT

14 Technical Standard (2004)

The DRDA Specification The DRDA Reference

Overriding Collection ID of Package Name

By grouping packages in a collection,7 and creating multiple collections potentially containing
identical package names, applications can switch between packages in different collections
merely by indicating the desired collection, without other changes to application logic. For
example, it may be desirable to create a test collection and a production collection, or to create
multiple collections to allow different bind options to be in effect. A package path provides a list
of collections in which a package may be found. In DRDA Level 5, a new package path
specification mechanism is added to provide package switching functionality for SQL
applications. This mechanism allows for overriding the collection ID of a package name that
flows at execution time.

Prior to DRDA Level 5, the requester was responsible for resolving package references. The SET
CURRENT PACKAGESET statement specifies a single collection in which to search for
packages. The application could test for the existence of the package in the specific packageset
(that is, collection), and repeat the process (setting CURRENT PACKAGESET to a different
collection and testing for the existence of the package in that collection) as many times as
necessary. The resolution of the package name was performed at the requester. When a list of
collections is involved, this algorithm has drawbacks in terms of performance and
inconvenience to the application, which must repeat the steps to search all the possible
collections until the desired package is found. With DRDA Level 5, the CURRENT PACKAGE
PATH value can be used to specify a list of qualifiers for packages which is used by the server
during package resolution. This new mechanism results in reduced network traffic and an
improvement in CPU/elapsed time for applications since it requires crossing the network only
once to resolve the package name at the server, instead of crossing once per collection to
perform resolution at the requester. The CURRENT PACKAGE PATH value is updated through
a new type of environmental SET statement. Refer to Section 7.16 (on page 425) for details on
this new SET statement.

New Reply Flows for DSCRDBTBL, DSCSQLSTT, and PRPSQLSTT

Currently for a DSCRDBTBL command, DSCSQLSTT command, or PRPSQLSTT command with
RTNSQLDA set to true, in the case of an SQL error, as detected by the RDB, an SQLDARD reply
data object must be returned. The architecture is enhanced to also allow an SQLCARD reply
data object to be returned.

The following DDM support is required:

• SQLAM manager at level 7

• If a DSCRDBTBL command, DSCSQLSTT command, or PRPSQLSTT command with
RTNSQLDA set to true results in an SQL error, the server has the additional option of
returning an SQLCARD reply data object which can optionally be preceded by an
SQLERRRM reply message.

7. In some environments, these package collections are known as package schemas (or simply schemas).

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 15

The DRDA Reference The DRDA Specification

XA Distributed Transaction Processing (DTP) Interface

An application that is accessing multiple resources within a distributed unit of work or
transaction must ensure that data integrity is maintained at all resources. An application
interfacing with an XA-compliant Transactional Manager (TM application) can achieve this by
either using the services of the DRDA Sync point manager, which on behalf of the application
will handle the task of protecting these resources. Or the TM application may decide that it
wants to perform the task of protection. This support provides an XA Distributed Transaction
Processing (DTP) interface that will enable an application requester to carry out the operations
involved in protecting a DRDA resource, on behalf of the application.

Note: DRDA does not describe the interface between the Application, XA-compliant Transactional
Manager, and the Resource Manager. The DTP interface is not required in order to support the
XA Manager (XAMGR).

The set of operations involved are:

SYNCCTL(New Unit of Work)
Register a transaction with the DBMS and associate the connection with the transaction’s
XID.

SYNCCTL(End Association)
End a transaction with the DBMS and dissociate the connection from the transaction’s XID.

SYNCCTL(Prepare to Commit)
Request the application server to prepare a transaction for the commit phase.

SYNCCTL(Commit)
Commit the transaction.

SYNCCTL(Rollback)
Roll back the transaction.

SYNCCTL(Return Indoubt List)
Obtain a list of prepared and heuristically completed transactions at the application server.

SYNCCTL(Forget)
Ask the application server to forget about a heuristically completed transaction.

A new DRDA Manager, XA Manager (XAMGR), has been introduced to provide this transaction
processing interface to the application. This TP interface has been modeled after the XA protocol
defined in The Open Group XA+ Specification. The XAMGR is based on DDM syncctl and
synccrd objects with the following enhancements required in implementing this support in the
application requester and application server.

• On the application requester:

— Request for XAMGR support

— Flowing enhanced DDM syncctl objects

Note: These enhancements are only valid when using the XAMGR.

The enhancements include:

1. Addition of two new synctypes:

X’0B’ End association with the Transactional Identifier (XID)

X’0C’ Returning a list of prepared and heuristically completed XIDs

2. Addition of the XAFLAGS parameter on the syncctl request

16 Technical Standard (2004)

The DRDA Specification The DRDA Reference

3. Flowing of the RLSCONV when synctype X’0B’ is specified

4. When using the services of the XAMGR, the UOWID, FORGET, and XIDSHR
parameters cannot be specified on a SYNCCTL object.

• On the application server:

— Support of XAMGR and the enhanced DDM sync point control flows

— Flowing enhanced DDM synccrd objects

Enhancements to the synccrd objects include:

1. Addition of the PRPHRCLST and XARETVAL parameters on the reply object

2. Flowing the RLSCONV parameter when responding to rlsconv on a syncctl request

3. When using the services of the XAMGR, the parameter SYNCTYPE cannot be specified
on a SYNCCRD object

From now on all connections that use the TP interface will be termed as XAMGR protected
connections. The XAMGR also provides Local and Global Transaction support. A Global
Transaction is a unit of work that involves multiple DBMSs operating in support of this unit of
work. The TM is responsible for coordinating the transaction between the DBMSs using two-
phase protocols. A Local Transaction is a unit of work against a DBMS over an XAMGR
protected connection, where commit coordination is provided by the requester and does not
require the use of the two-phase protocol.

Resource Sharing for Protected Connections

This support allows the application server or database server to share recoverable resources so
as to prevent resource deadlocks from other SYNCPTMGR protected connections involved in
the same unit of work. This involves sending two resource sharing identifiers on a
SYNCCTL(New Unit of Work) request, the XIDSHR, and the XID, whose name and format are
based exactly on the Global Transaction Identifier used and defined in The Open Group XA+
Specification (see DTP: The XA+ Specification or the DDM XID for the format of the identifier).
The use of the two identifiers allows the application server or database server to determine
which set of SYNCPTMGR protected connections can share resources.

The XIDSHR indicator supports two modes of sharing, partial and complete. For partial sharing,
the application server or database server is required to prevent deadlocks from other
SYNCPTMGR protected connections whose XIDs match exactly. For complete sharing, the
application server or database server is required to prevent deadlocks from other protected
connections whose Gtrid part of the XID match; the Bqual is ignored (see the DTP: The XA+
Specification for the XID format). The UOWID still identifies the unit of work and not the XID.
See the DDM Reference, SYNCPTOV for details. If the application requires that the transaction
be identified by the XID, then use the XAMGR, not the SYNCPTMGR. Support for
SYNCPTMGR level 7 consists of the following:

• On the application requester:

— Request the SYNCPTMGR at level 7.

— For SYNCPTMGR protected connections, flow the identifier (DDM XID instance variable)
and the new indicator requesting the RDB to perform partial or complete sharing of RDB
resources and locks (DDM XIDSHR instance variable) on the SYNCCTL(New Unit of
Work) request.

— For SNA protected conversations, flow the identifier (DDM XID) instance variable and the
new indicator requesting the RDB to perform partial or complete sharing of RDB

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 17

The DRDA Reference The DRDA Specification

resources and locks (DDM XIDSHR instance variable) on the SYNCCTL(New Unit of
Work) request prior to sending any SQL requests after an SNA syncpoint.

• On the application server:

— Support the SYNCPTMGR at level 7 which indicates that the application server or
database server can share recoverable resources and locks across a set of protected
connections that are identified by the XID parameter.

— Support the processing of the transaction identifier (DDM XID) instance variable and a
new instance variable to indicate to the RDB when to optimize shared resources and locks
(DDM XIDSHR instance variable) on the SYNCCTL(New Unit of Work) request.

Reusing Network Connections

Users are concerned with the time it takes to connect to an application server. The creation of a
connection for every application can be an expensive process, both from a system (CPU and
memory) and a network (delays) standpoint. Users are also concerned about the number of
physical connections to the application server when there are many concurrent client
applications accessing an RDB due to the resources consumed for each connection. This is
especially troublesome when most of the connections are dormant—that is, a user of an
application may connect to an RDB and then rarely access data. In an effort to reduce these
concerns, two types of connection reuse are defined: connection pooling and transaction pooling .

• Connection Pooling

Allows an application requester to reuse an existing network connection for a different
application once an application disconnects from the connection either by terminating or by
releasing the connection.

An application requester or application server at AGENT manager level 7 indicates the
support of flowing the EXCSAT, ACCSEC, SECCHK, and ACCRDB commands after a
successful commit or rollback to initialize a connection on behalf of a new application.

• Transaction Pooling

Allows a requester to share a network connection with other applications. A requester can
switch the application associated with a connection after a completion of a transaction.
Transactions are delimited by the completion of a commit, rollback, or the dissociation of the
transaction at SYNCCTL(End). During the commit or rollback process for remote unit of
work, or distributed unit of work connections not using the services of the XAMGR, an
application server indicates whether the connection can be reused by another application. If
reuse is allowed, a group of SQL SET statements may be provided to establish the
application execution environment prior to the execution of the next transaction for the same
application on possibly another connection.

XAMGR protected connections can be pooled to different applications as long as the
connection is not associated with a transaction branch.

For a requester:

— Support AGENT manager level 7 and RDB manager level 7 which indicates support for
transaction pooling. If using a protected connection, a SYNCPTMGR level 7 or XAMGR
level 7 is required. If using an unprotected connection, SQLAM Level 7 is required.

— To determine whether the connection can be reused by another application, the requester
issues the SYNCCTL command (if using SYNCPTMGR level 7 or XAMGR level 7) or the
RDBCMM/RDBRLLBCK command (if using SQLAM level 7 on a non-protected
connection) with the RLSCONV parameter set to REUSE. The application requester

18 Technical Standard (2004)

The DRDA Specification The DRDA Reference

processes the reply based on the RLSCONV parameter on the SYNCCRD reply and any
SQLSTT objects.

For a server:

— Support AGENT manager level 7 and RDB manager level 7 which indicates support for
transaction pooling. If using a protected connection, a SYNCPTMGR level 7 or XAMGR
level 7 is required. If using an unprotected connection, SQLAM Level 7 is required.

Support for Input Variable Arrays

Support for input variable arrays is added to the SQLDTA. The SQLDTA is used to pass input
data to the RDB. It flows as command data with the EXCSQLSTT command and the OPNQRY
command. Input variable array data is identified by two additional FD:OCA data objects. These
new data objects are required if the FDODTA contains a repeatable field. A repeatable field is
used to describe an input array where each element in the array has the identical format, all
having the same field length, field type, and type parameter. The existing FDODSC object
describes all input, update, or parameter data for a single SQL statement. The descriptor carries
type information by SDA references with zero extents for each input variable. The SDA extents
for each field are implicitly provided prior to the FDODSC descriptor in the new FDOEXT data
object. It contains the number of times each field is described in the FDODSC and repeated in
the FDODTA. The FDOEXT data is described by the SQLNUMEXT early descriptor. After the
FDODTA data object, offset values are provided for each field in the new FDOOFF data object.
An offset value contains the relative offset in bytes to the start of the data from the start of the
FDODTA. It is described by the SQLNUMOFF early descriptor. If the input data does not contain
any repeatable fields, then the FDOEXT and the FDOOFF objects are not required.

Each input array represents multiple rows of a single column. An option on the array input
statement identifies if the request is to succeed or fail as a unit, or if the database server is to
proceed despite a partial (one or more rows) failure. The SQL clause to do this is ATOMIC or
NOT ATOMIC where ATOMIC specifies that if the request for any row fails, then all changes
made to the database by any other row including changes made by successful requests are
undone. This is the default. When NOT ATOMIC is specified, the rows are processed
independently. This means that if one or more errors occurs during the execution of the request,
processing continues and any changes made during the execution of the statement are not
backed out.

The following DDM support is required:

• On the requester:

— SQLAM manager at level 7

— Support for the optional FD:OCA FDOEXT and FDOOFF data objects

— Sending an SQLDTA with FDOEXT and FDOOFF data on the EXCSQLSTT and/or
OPNQRY command

— Receiving the SQLDIAGGRP in the SQLCARD indicating the status information for each
failure or warning that occurred processing each database row

• On the server:

— SQLAM manager at level 7

— Support for the optional FD:OCA FDOEXT and FDOOFF data objects

— Receiving an SQLDTA with FDOEXT and FDOOFF data on the EXCSQLSTT and/or
OPNQRY commands

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 19

The DRDA Reference The DRDA Specification

— Sending the SQLDIAGGRP in the SQLCARD indicating the status information for each
failure or warning that occurred processing each database row

Enhanced Kerberos Security Mechanism

The Kerberos principal8 for the server, which is required for generating the encrypted Kerberos
V5 ticket by the application requester, must be predetermined at the server and then provided to
the application requester manually prior to attempting the database connection using the
Kerberos Security Mechanism (KERSEC). Because this is not always practical, an enhancement is
introduced to allow the server to optionally return its Kerberos principal if and only if it claims
KERSEC is one of its supported security mechanisms.

The following DDM support is required:

• SECMGR manager at level 7

• The optional return of a KERSECPPL reply data object following the ACCSECRD reply data
object

SQLCARD upon Successful Connection

This enhancement allows the server to return an SQLCARD reply data object to the application
requester for a successful database connection. The SQLCARD may contain an SQL warning
and/or certain server-specific connect tokens. The SQL warning is usually of a nature that
indicates to the user that corrective action should be taken after which the connection should be
re-attempted, whereas connect tokens may include things like the partition number for a
partitioned database.

The following DDM support is required:

• SQLAM manager at level 7

• The optional return of an SQLCARD reply data object following the ACCRDBRM reply
message

Diagnostics Support

The current SQL Communication Area Reply Data was designed with a small number of fields
for use by an RDB to provide error and warning information. The SQL Communication Area is
used by the requester to determine the success or failure of the last SQL statement that was
executed. These fields have, for the most part, been used up and the limitations imposed by the
current SQL Communication Area structure are impacting the ability to obtain additional
diagnostics about an error or warning from an RDB. For example, the SQL Communications
Area SQL error message field is limited to only 70 characters. With the added support for large
SQL identifiers, this field is not large enough to contain complete error tokens.

The contents of the SQL Communication Area are changed to include a new group that can be
returned by the RDB. This new group is used to provide additional diagnostic fields as defined
by the SQL GET DIAGNOSTICS statement. This includes information about the last statement
executed, such as the cursor attributes if the last statement allocated or opened an cursor. It

8. The Kerberos V5 principal is in the format:

component/component/component@realm

For details, refer to http://search.ietf.org/internet-drafts/draft-ietf-krb-wg-kerberos-clarifications-00.txt.

20 Technical Standard (2004)

The DRDA Specification The DRDA Reference

includes additional warning or error conditions with a corresponding message optionally
generated during the execution of the statement. For example, if the last statement generated an
error or warning SQLCODE, a complete message text is provided. Also, connection information
is returned indicating the connection attributes for each RDB that participated in the execution
of the statement.

Requester support:

• Support for SQLAM level 7.

• The requester must detect the SQL GET DIAGNOSTICS statement and not flow the
statement to the server. It is a local-only statement. If the requester wants to receive the new
diagnostic fields, DIAGLVL1 or DIAGLVL2 must be specified on the ACCRDB command. If
the requester wants to receive the new diagnostic fields with no message text, DIAGLVL2
must be specified on the ACCRDB command.

• The requester generates connection diagnostics during connection processing unless the
ACCRDBRM contains an SQLCARD with the connection diagnostic. The optional SQLCARD
on the ACCRDBRM is new in this version.

Server support:

• Support for SQLAM level 7.

• The server generates the SQLDIAGGRP if the ACCRDB command requests diagnostics;
otherwise, the SQLDIAGGRP must be null. The SQLDIAGGRP group is optional for servers
that do not support extended diagnostics even if requested on the ACCRDB command. If
DIAGLVL1 is specified, the SQLDCMSG field should contain the message text for the
condition. If DIAGLVL2 is specified, the SQLDCMSG message text fields should contain null
strings.

• To minimize the amount of diagnostics returned for a query block, each row SQLCA is
generated without connection or statement information. When generating the SQLCADTA
in the query block, the SQLDIAGSTT group and the SQLDIAGCN array fields in the
SQLCAGRP are set to null for each associated row data. An SQLCARD is generated after the
initial query block if the ENDQRYRM and SQLCARD is not generated after the initial block.
This SQLCARD that proceeds after the initial block provides the SQLDIAGSTT group and
the SQLDIAGCN array diagnostic fields for the block.

• If an intermediate server is involved in executing the statement, each intermediate server
appends an SQLDCNGRP to the end of the SQLDIAGCN array representing the connection
from the intermediate server to the remote server.

Specify Statement Attributes when Preparing an SQL Statement

Between the options that can be specified as part of the SELECT statement and the options that
can be specified on DECLARE CURSOR, the combinations of these options are numerous. With
the additional cursor attributes being introduced for cursor scrolling, the number of
combinations is growing exponentially. With the existing architecture, dynamic SQL (for
example, ODBC) applications would have to support a large number of DECLARE CURSOR
statements to support all combinations. To minimize this constraint, attributes can now be
specified when the SQL statement is prepared. Previously, all cursor attributes were hard-coded
as part of the SQL statement itself. The attributes will continue to be supported as part of the
statement for conformance with the SQL99 standard in support of static SQL, but now can be
supported as part of prepare in support of dynamic SQL.

Statement attributes are to be sent as a new DDM data object with the PRPSQLSTT command.
The attributes character string is encoded using the SQLSTT FD:OCA descriptor and flows in a

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 21

The DRDA Reference The DRDA Specification

new SQLATTR DDM object. The optional SQLATTR object contains the attributes string for the
statement that will be in effect if a corresponding attribute has not been specified as part of the
associated SELECT statement. Leading and trailing blanks should be removed when generating
the SQLATTR object.

The following DDM support is required:

• SQLAM manager at level 7

• Generating and receiving the SQLATTR object on the PRPSQLSTT command

Failover Support

The current Server List support is enhanced so that not only can it be used for load balancing on
multi-homed servers, but it can also be used for providing connectivity information on alternate
server locations where a database is replicated for failover. This information allows a requester
to recover from a communications failure by connecting to the database at one such alternate
server location once failover of the database is complete.

Also, in order to be able to reinstate the execution environment after reestablishing a connection
to the database in the event of a communications failure, the requester can specify on the
EXCSQLIMM, EXCSQLSET, EXCSQLSTT, or BGNATMCHN command that, should any special
register setting be changed as a result of the command execution, for every special register
whose setting has been modified on the current connection, the server must return an SQLSTT
reply data object, which contains an SQL SET statement. With this knowledge, immediately after
the database connection has been reestablished, either to the original server or an alternate
failover server following a communications to restore the execution environment.

The following DDM support is required:

• SQLAM manager at level 7

• For TCP/IP, specification of either a host name or an IP address in a server list entry

• The optional use of the RTNSETSTT instance variable on the EXCSQLIMM, EXCSQLSET,
EXCSQLSTT, or BGNATMCHN command to indicate whether the server must return one or
more SQLSTT reply data objects, each containing an SQL SET statement for any special
register that has been modified on the current connection, if any special register setting has
changed as a result of the command execution

Rowset Cursors

A rowset cursor is a cursor defined such that more than one row can be returned for a single
fetch statement called multi-row fetch. A multi-row fetch against a rowset cursor returns an SQL
rowset. The requester is required to provide a statement-level SQLCA for the SQL rowset to the
application.

The support for rowset cursors is optional in DRDA. If supported, it consists of the following:

• On the application requester:

— Receiving qryattset on OPNQRYRM

— Sending qryrowset on CNTQRY

• On the application server:

— Sending qryattset on OPNQRYRM

— Receiving qryrowset on CNTQRY

22 Technical Standard (2004)

The DRDA Specification The DRDA Reference

1.1.3 What it Means to Implement DRDA Level 4

Describe Input

Describe input is a performance and usability enhancement to allow an application requester to
obtain a description of input parameters from the RDB in a consistent format. Input parameters
for dynamic SQL can be described by the characteristics of their related columns, and this
column information is kept in the RDB catalog tables. Prior to DRDA Level 4, an application
requester was required to do SQL statement parsing and expensive catalog lookups to determine
the input parameter marker data types. With DRDA Level 4, to obtain a description of the input
parameters, the Describe SQL statement command can request the RDB to return the description
of input variables for a prepared SQL statement.

Describe input requires the following DDM support:

• Both Agent and SQLAM managers at Level 6.

• Support for the TYPSQLDA instance variable on the DSCSQLSTT command to request a
description of the input parameters of a prepared statement.

Database-Directed Access

In database-directed requests, an application connects to a relational database management
system (RDB) that can execute one or more SQL requests locally or route some or all of the SQL
requests to other RDBs. The RDB determines which system manages the data referenced by the
SQL statement and automatically directs the request to that system. Refer to Section 7.16 (on
page 425) for description on when special registers are propagated.

Database-directed access requires the following DDM support:

• Both Agent and SQLAM managers at Level 6.

• Support for the EXCSQLSET command to propagate the settings of special registers to a
database server.

Two New Security Mechanisms

Two new security mechanisms are added to allow a user to be authenticated without requiring
passwords to flow in the data stream as clear text.

The Password Encryption Security Mechanism (PWDENC) specifies a method to encrypt the
password. This mechanism authenticates the user like the user ID and password mechanism, but
the password is encrypted and decrypted using 56-bit DES. Diffie-Hellman public-key
distribution is used to generate a shared private key. This Diffie-Hellman key and the user ID are
used as the DES encryption and decryption seeds.

The Password Substitution Security Mechanism (PWDSBS) specifies the use of a password
substitute. A password does not flow. A password substitute is generated and sent to the
application server. The application server generates the password substitute and compares it
with the application requester’s password substitute. If equal, the user is authenticated.

Password encryption and password substitute mechanisms require the following DDM support:

• Security Manager (SECMGR) at Level 6

• New security token instance variable in the access security command (ACCSEC) and reply
data (ACCSECRD)

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 23

The DRDA Reference The DRDA Specification

Two New Data Types

Support for a datalink data type and an eight-byte integer data type are added. For details on
eight-byte integers and datalinks, refer to the early environmental descriptors described in
Chapter 5 (on page 223).

Note: Datalinks extend the usefulness of relational databases by allowing SQL tables to reference
non-SQL data that is more appropriately stored in other types of files. Video data, for example,
may be able to be accessed much faster and more efficiently if it is stored on some file server.
With the introduction of the SQL datalink data type, DRDA needs to be able to interchange
this type of data between all RDBs. DRDA does not define the semantics of the contents of the
datalink data type. It only provides the mechanism to pass the datalink value to and from an
application requester and application server.

Datalinks and eight-byte integers require the following DDM support:

• SQLAM Manager (SECMGR) at Level 6

New Bind Option Values

In support of user-defined functions (UDFs) and stored procedures, new bind option values for
package authorization rules are added. The previously supported values, OWNER and
REQUESTER, are inadequate to describe the additional complexity associated with the
definition and invocation of UDFs and stored procedures. Refer to the DDM Reference,
PKGATHRUL for a description of the new values.

The new package authorization rules require the following DDM support:

• SQLAM Manager (SECMGR) at Level 6

Object-Oriented Extensions

The following elements of object-oriented technology have been added:

• Support for User-defined Distinct Types (UDTs)

• Support for Large Objects (LOBs)

Support for User-defined Distinct Types (UDTs) requires an SQLAM manager at Level 6 and
includes the following:

• Support for a new early group, SQLUDTGRP

• Support for an enhanced SQLDAGRP which includes the SQLUDTGRP

Support for Large Objects (LOBs) requires an SQLAM manager at Level 6 and includes the
following:

• Support for two new FD:OCA data types, Generalized Byte String and Generalized Character
String

• Support for two new data types for eight-byte integers, allowing the manipulation of objects
whose lengths are greater than 2,147,483,647 bytes:

— Eight-byte Integers

— Nullable Eight-byte Integers

• Support for two new DRDA types for row identifiers, allowing the association of the data for
a large object column with the row in the base table to which it belongs:

— Row Identifier

24 Technical Standard (2004)

The DRDA Specification The DRDA Reference

— Nullable Row Identifier

• Support for 14 new DRDA types for LOB SQL types, allowing the manipulation of large
object types:

— Large Object Bytes

— Nullable Large Object Bytes

— Large Object Character SBCS

— Nullable Large Object Character SBCS

— Large Object Character DBCS

— Nullable Large Object Character DBCS

— Large Object Character Mixed

— Nullable Large Object Character Mixed

— Large Object Bytes Locator

— Nullable Large Object Bytes Locator

— Large Object Character Locator

— Nullable Large Object Character Locator

— Large Object Character DBCS Locator

— Nullable Large Object Character DBCS Locator

• Support in DRDA for sending and receiving the new LOB DRDA data types:

— SQLDTAGRP supports an FD:OCA placeholder indicator which is set on when LOB data
values flow as externalized data.

— SQLDAGRP supports 8-byte lengths.

— SQLVRBGRP supports 8-byte lengths.

• Support in DDM for sending and receiving the new LOB DRDA data types:

— Support for EXTDTA, a new DDM object to flow externalized FD:OCA data, and support
for the rules for how this data flows in the DDM data stream, as described in the
FIXROWPRC and the LMTBLKPRC terms

— Support for the outovropt instance variable in an OPNQRY command

— Support for the outovropt instance variable in an EXCSQLSTT command for stored
procedure calls

— Support for the rtnextdta instance variable in a CNTQRY command

— Support for an OUTOVR command data object for a CNTQRY command or for an
EXCSQLSTT command which is not a stored procedure call

• Support in DRDA for sending and receiving the new row identifier data types.

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 25

The DRDA Reference The DRDA Specification

1.1.4 What it Means to Implement DRDA Level 3

This section provides an overview of the previous functions and support that were added for
DRDA, Version 1, including support for TCP/IP connections, enhanced security, stored
procedures, work load balancing, and the Data Staging Area for data replication. DRDA Remote
Unit of Work or DRDA Distributed Unit of Work may serve as the base for DRDA, depending on
the type of distribution supported by the requester.

DRDA includes the following functions that enhance the DRDA RUOW or DRDA DUOW
support:

• Data Staging Area which is independent of the DRDA type of distribution.

• Enhanced Bind Options can be supported using a DRDA Distributed Unit of Work base. This
allows unarchitected bind options (generic) to be sent to a server and provides a new
optional package authorization rule bind option.

• Enhanced Security can also be supported on a DRDA RUOW base or DRDA DUOW base.
Enhanced security includes additional support using Distributed Computing Environment
(DCE) security mechanisms and the capability to change a password at a server.

• Enhanced Sync Point Manager with optimized two-phase commit and optional resync server
support requires a DRDA DUOW base. A resync server allows an application requester to
migrate resynchronization responsibilities to an application server eliminating the
requirement of a recovery log at the application requester.

• Server List allows a multi-homed relational database manager server to provide work load
balancing information to an application requester and can be supported using a DRDA
Distributed Unit of Work base.

• Stored Procedures with result sets can be supported using a DRDA Distributed Unit of Work
base.

• TCP/IP Communications manager can be supported on a DRDA RUOW base or DRDA
DUOW base.

It is assumed that all required functions for DRDA Remote Unit of Work or DRDA Distributed
Unit of Work would be implemented as defined in this reference.

Data Staging Area

Data Staging Area support is optional and will be described in a future Data Replication
Reference.

Enhanced Bind Options

Package Authorization Rules bind option and generic bind options consist of the following DDM
support:

• SQL Application Manager (SQLAM) at Level 5

• Support of pkgathrul on BGNBND and the semantics of sending and processing it (see Section
4.4.3 (on page 111))

• Support of bndopt object on BGNBND and the semantics of sending and processing generic
bind options (see Section 4.4.3 (on page 111))

26 Technical Standard (2004)

The DRDA Specification The DRDA Reference

Enhanced Security

New security mechanisms are provided to authenticate end users independent of the
communications manager being used. These are in addition to extending existing mechanisms
such as user ID and password authentication using The Open Group’s OSF DCE and the ability
to change passwords for an authenticated end user. These new and enhanced security
mechanisms require a new security manager level. Both the requester and server must support
the enhanced security manager. Enhanced security requires the following DDM support:

• Security Manager (SECMGR) at Level 5

• Access security (ACCSEC) command and reply data (ACCSECRD) (see Section 4.4.2 (on
page 91) and Chapter 10 (on page 471))

• Security check (SECCHK) command and reply message (SECCHKRM) (see Section 4.4.2 (on
page 91) and Chapter 10 (on page 471))

• SECVIOL alert (see Table 11-1 (on page 498) and Table 11-14 (on page 515))

• Support for at least one security mechanism outside of security provided by the network (see
Section 4.4.2 (on page 91))

Enhanced Sync Point Manager

Distributed unit of work network connections use DDM to flow two-phase commit messages
and perform resynchronizations. Refer to the DDM Sync point overview (SYNCPTOV) for a
description of the enhancement. Enhanced Sync Point Manager support requires the following
DDM support:

• SNA LU 6.2 Communications (CMNAPPC) at Level 3 (see Section 4.3.1.1 (on page 66)) or
TCP/IP Communications Manager (CMNTCPIP) at Level 5 (see Section 4.3.1.3 (on page 67))

• Sync Point Manager (SYNCPTMGR) at Level 5

SNA Sync Point Manager (CMNSYNMGR) at Level 4 is mutually-exclusive with Sync Point
Manager at Level 5.

• Agent Resource Manager (AGENT) at Level 5

A new level is introduced to support a new type of RQSDSS, a request with no expected
reply.

• Resynchronization Manager (RSYNCMGR) at Level 5

Initiates resynchronization to complete in-doubt units of work. If RSYNCMGR at Level 5 and
SYNCPTMGR at Level 5 is exchanged during the initialization of a connection, resync server
support may be used on the connection to perform a two-phase commit. If supported, the
application server performs logging and resynchronization on behalf of the application
requester.

Server List

The Server List is an option on the access RDB reply message. It contains a weighted list of
network addresses that can be used to access the RDB. The list can be used by the requester to
work load balance future connections. Details of the server list and examples are in the DDM
references. Server List requires the following DDM support:

• SQL Application Manager (SQLAM) at Level 5

• Support of srvlston ACCRDBRM and the semantics of sending and processing it (see Section
4.4.3 (on page 111))

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 27

The DRDA Reference The DRDA Specification

Stored Procedures

Stored procedures with multi-row result sets require the following DDM support:

• SQL Application Manager (SQLAM) at Level 5

• Host variables in SQLDTARD that are associated with a CALL (see Section 4.4.7.1 (on page
148))

• Handling commit and rollback in a stored procedure in a remote unit of work (see Commit
and Rollback Scenarios (on page 196))

• Handling commit and rollback in a stored procedure in a distributed unit of work (see
Commit and Rollback Scenarios (on page 196))

• Receipt of prcnamon EXCSQLSTT and the semantics of receiving it (see Section 4.4.7.1 (on
page 148))

• Result sets (see Section 4.4.7.2 (on page 154))

TCP/IP Communications

TCP/IP network connections requires the following DDM support:

• TCP/IP Communications Manager (CMNTCPIP) at Level 5 (see Section 4.3.1.3 (on page 67)
and Chapter 13 (on page 563))

• Security Manager (SECMGR) at Level 5

1.1.5 What it Means to Implement DRDA Distributed Unit of Work

This section provides an overview of the functions and support that are required to implement
DRDA Distributed Unit of Work distribution.

DRDA DUOW is made up of the following functions or support:

• DRDA Remote unit of work

• Distributed unit of work

• VAX and IEEE (non-byte reversed) ASCII machine types

• Multi-row Fetch

• Multi-row Insert

• Scrollable cursors9

• Bind and Rebind options for I/O parallelism

• CCSID Manager

The first two functions listed are required functions for DRDA Distributed Unit of Work. While
not being directly tied to the type of distribution being supported, the rest of the functions
require SQLAM Level 4 and so are often also associated with DUOW. Of these other functions,
only the VAX and IEEE (non-byte reversed) ASCII machine types are required. Although a
function may be optional, it does require some amount of support in the DRDA components to
allow these optional functions to exist in the DRDA Distributed Unit of Work environment.

9. This level of support for scrollable cursors is superseded by DRDA Level 5. See Scrollable Cursors in Section 1.1.2 (on page 3).

28 Technical Standard (2004)

The DRDA Specification The DRDA Reference

Remote Unit of Work

Functionally, DRDA Remote Unit of Work is a proper subset of DRDA Distributed Unit of Work.
To implement DRDA RUOW, implement only the DRDA RUOW functions. The functions that
are DRDA DUOW are marked in the text below.

Distributed Unit of Work

Distributed unit of work consists of support for the following:

• On the application requester:

— CMMRQSRM (see Section 4.4.15.2 (on page 194))

— RDBUPDRM (see Section 4.4.15.2 (on page 194))

— CMDVLTRM (see Section 4.4.15.2 (on page 194), Table 11-1 (on page 498), and Table 11-7
(on page 507))

— Two-phase commit protocols (see Section 3.1.4 (on page 57), Commit and Rollback
Scenarios (on page 196), Section 12.7.3.4 (on page 551), Section 12.7.6 (on page 553),
Section 12.7.7 (on page 554), and Section 12.7.9 (on page 555))

— CRRTKN semantics and alert support (see Section 11.3.2.2 (on page 495))

— Coexistence rules (see Section 4.4.15.2 (on page 194), Section 12.7.8 (on page 555), and
Section 12.7.9 (on page 555))

— CMDVLT alert (see Table 11-1 (on page 498) and Table 11-7 (on page 507))

• On the application server:

— CMMRQSRM (see Section 4.4.15.2 (on page 194))

— RDBUPDRM (see Section 4.4.15.2 (on page 194))

— CMDVLTRM (see Section 4.4.15.2 (on page 194))

— Two-phase commit protocols (see Section 3.1.4 (on page 57), Section 4.4.15.2 (on page
194), Section 12.7.3.4 (on page 551), Section 12.7.6 (on page 553), and Section 12.7.7 (on
page 554))

— CRRTKN (semantics and alert support) (see Section 11.3.2.2 (on page 495), Table 11-1 (on
page 498), and Table 11-7 (on page 507))

— CMDVLT alert (see Table 11-1 (on page 498) and Table 11-7 (on page 507))

VAX and IEEE ASCII (Non-Byte Reversed) Machine Types

The support for VAX and IEEE ASCII (non-byte reversed) machine types are required in DRDA
and consist of the following:

• On the application requester:

— Support for QTDSQLVAX (see Chapter 5 (on page 223))

— Support for QTDSQLASC (see Chapter 5 (on page 223))

• On the application server:

• Support for QTDSQLVAX (see Chapter 5 (on page 223))

• Support for QTDSQLASC (see Chapter 5 (on page 223))

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 29

The DRDA Reference The DRDA Specification

Multi-Row Fetch

The support for multi-row fetch is optional in DRDA. If supported, it consists of the following:

• On the application requester:

— Support for the nbrrow parameter on CNTQRY (see Section 4.4.6.1 (on page 124)), which
includes the ability to receive multiple rows when using the fixed row protocol

— Sending FETCH on bind (see rule PB28 in Section 7.11 (on page 416))

• On the application server:

— Receipt of the nbrrow parameter on CNTQRY and the semantics of receiving it (see
Section 4.4.6.1 (on page 124))

— Receipt of FETCH on bind along with the semantics of receiving it (see rule PB28 in
Section 7.11 (on page 416))

If not supported, the application server must still support the rejection of FETCH at BIND time
(see rule PB28 in Section 7.11 (on page 416)).

Multi-Row Insert

The support for multi-row insert is optional in DRDA. If supported, it consists of the following:

• On the application requester:

— Support for the nbrrow parameter on EXCSQLSTT (see Section 4.4.7 (on page 147))

— Support for the SQLDTAMRW multi-row insert RLO descriptor (see Section 5.2.3 (on
page 230))

• On the application server:

— Receipt of the nbrrow parameter on EXCSQLSTT and the semantics of receiving it (see
Section 4.4.7 (on page 147))

— Support for the SQLDTAMRW multi-row insert RLO descriptor (see Section 5.2.3 (on
page 230))

As of DRDA Level 5, this support has been replaced with the new multi-row input support
described in Multi-Row Input (on page 9).

Scrollable Cursors

The support for scrollable cursors is optional in DRDA. If supported, it consists of the following:

• On the application requester:

— Support for the qryrownbr parameter on CNTQRY (see Section 4.4.6.1 (on page 124))

— Sending FETCH on bind (see rule PB28 in Section 7.11 (on page 416))

• On the application server:

— Receipt of the qryrownbr parameter on CNTQRY and the semantics of receiving it (see
Section 4.4.6.1 (on page 124))

— Receipt of FETCH on bind and the semantics of receiving it (see rule PB28 in Section 7.11
(on page 416))

If not supported, the application server must still support:

30 Technical Standard (2004)

The DRDA Specification The DRDA Reference

• Rejection of FETCH at BIND time (see rule PB28 in Section 7.11 (on page 416))

Bind and Rebind Options for I/O Parallelism

The support for bind and rebind options for I/O parallelism is optional in DRDA. If supported,
it consists of the following:

• On the application requester:

— Support for the dgrioprl parameter on BGNBND (see Section 4.4.3 (on page 111))

— Support for the dgrioprl parameter on REBIND (see Section 4.4.5 (on page 119))

• On the application server:

— Support for the dgrioprl parameter on BGNBND (see Section 4.4.3 (on page 111))

— Support for the dgrioprl parameter on REBIND (see Section 4.4.5 (on page 119))

If not supported, the application server must still support:

• Receipt of dgrioprl on BGNBND and REBIND.

CCSID Manager

The support for the CCSID manager is optional in DRDA. If supported, it consists of the
following:

• On the application requester:

— Support for specifying CCSIDMGR on EXCSAT (see Section 4.3.1.13 (on page 72) and
Section 4.4.1 (on page 84))

— Support for DDM character command parameters in CCSIDs 819, 850, and 500; it might
also support other CCSIDs (see Section 4.3.1.13 (on page 72) and Section 4.4.1 (on page
84))

• On the application server:

— Support for specifying CCSIDMGR on EXCSATRD (see Section 4.3.1.13 (on page 72) and
Section 4.4.1 (on page 84))

— Support for DDM character command parameters in CCSIDs 819, 850, and 500; it might
also support other CCSIDs (see Section 4.3.1.13 (on page 72) and Section 4.4.1 (on page
84))

Intermediate Site Processing

A new object, MGRLVLOVR, allows a sending system to specify that a subset of the objects sent
conform to the SQLAM manager level specified in the MGRLVLOVR rather than to the SQLAM
manager level agreed upon during the EXCSAT/EXCSATRD exchange. The MGRLVLOVR
object contains a manager level value that is less than the manager level agreed upon during the
EXCSAT/EXCSATRD exchange. The intent of this support is to facilitate processing at an
intermediate server by eliminating the need to perform character data, numeric data, or object
format and content manipulations when passing objects between a source requester and a target
server. This support involves the following:

• On the requester:

Receiving the MGRLVLOVR object and using the new SQLAM manager level to parse reply
data objects

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 31

The DRDA Reference The DRDA Specification

• On the server:

Sending the MGRLVLOVR object to change the SQLAM manager level that applies to reply
data objects

For more information about intermediate server processing, refer to Section 4.3.5 (on page 81).

32 Technical Standard (2004)

The DRDA Specification The FD:OCA Reference

1.2 The FD:OCA Reference
The FD:OCA Reference describes the functions and services that make up the Formatted Data
Object Content Architecture (FD:OCA). This architecture makes it possible to bridge the
connectivity gap between environments with different data types and data representation
methods by providing constructs that describe the data being exchanged between systems.

The FD:OCA is embedded in the Distributed Relational Database Architecture, which identifies
and brackets the Formatted Data Object in its syntax. DRDA describes the connectivity between
relational database managers that enables applications programs to access distributed relational
data and uses FD:OCA to describe the data being sent to the server and/or returned to the
requester. For example, when data is being sent to the server for inserting into the database or
being returned to the requester as a result of a database query, the data type (character, integer,
floating point, and so on) and its characteristics (length, precision, byte-reversed or not, and so
on) are all described by FD:OCA.

The FD:OCA Reference is presented in three parts:

• Overview material to give the reader a feel for FD:OCA. This material can be skimmed.

• Example material that shows how the FD:OCA mechanisms are used. This should be read
for understanding.

• References to the detailed FD:OCA descriptions. A few of these topics should be read up
front to gain experience with the style of presentation and the content of the first several
triplets. The rest can be read when the level of detail presented in that chapter is required.
This is reference material.

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 33

The DDM Reference The DRDA Specification

1.3 The DDM Reference
The DDM Reference describes the architected commands, parameters, objects, and messages of
the DDM data stream. This data stream accomplishes the data interchange between the various
pieces of the DDM model.

DDM Guide

Although there are many concepts and terms in Distributed Data Management, there are only a
few that are key to the task of implementing a DRDA product. The suggested reading order for
the DDM material should provide a good starting point in understanding the DDM terms used
in DRDA. The intent is not to provide a complete list of DDM terms used by DRDA. For more
detailed information, see the DDM Reference.

Key DDM Concepts

The first task in dealing with Distributed Data Management (DDM) is to obtain some
background information to help place DDM in context. Table 1-1 lists the description and
modeling terms that provide the necessary background information in understanding DDM.

Table 1-1 DDM Modeling and Description Terms
__

DDM Term Term Title__
DDM Distributed Data Management Architecture__
CONCEPTS Concepts of DDM Architecture__
OOPOVR Object-oriented programming overview__
INHERITANCE Class inheritance__
SUBSETS Architecture subsets__
EXTENSIONS Product extensions to DDM Architecture__
LVLCMP Level compatibility__��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

34 Technical Standard (2004)

The DRDA Specification The DDM Reference

Key DDM Concepts for DRDA Implementation

After becoming familiar with the DDM overview terms in Table 1-1 (on page 34), it needs to be
understood that every DRDA implementation needs to provide the DDM components and
model structures listed in Table 1-2. The concept of a component is described in the overview
term for that component.

Table 1-2 DDM Terms of Interest to DRDA Implementers
__

DDM Term Term Title__
AGENT Agent__

LU 6.2 conversational communications manager (introduced in
DRDA Level 2)

CMNAPPC

__
CMNLYR Communications layers__
CMNMGR DDM communications manager__
CMNOVR Communications overview__

LU 6.2 sync point conversational communications manager
(introduced in DRDA Level 2)

CMNSYNCPT

__
DCESECOVR DCE security overview__
DICTIONARY Dictionary__
DSS Data Stream Structures__
FDOCA Formatted Data Object Content Architecture (FD:OCA)__
MGROVR Manager layer overview__
OBJOVR Object layer overview__
RDB Relational database__
RDBOVR Relational database overview__
SECMGR Security manager__
SQL Structured Query Language__
SQLAM SQL Application Manager__
SQLDTA SQL program variable data__
SUPERVISOR Supervisor__
SYNCPTMGR Sync point manager__
XAMGR XA Manager__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 35

The DDM Reference The DRDA Specification

DDM Command Objects in DRDA

Another important aspect in implementing DRDA is to understand the DDM command objects
used to flow the DRDA. The command objects are part of the DDM Relational Database (RDB)
model. Table 1-3 lists these command objects and groups them by function. None of the
parameters or parameter values associated with each command object are shown.

Table 1-3 DDM Command Objects Used by DRDA

DDM Term �� Term Title___
Connection establishment to a remote database manager___
EXCSAT Exchange server attributes___
ACCRDB �

�
�

Access RDB___
Package creation/rebind/remove___
BGNBND Begin binding of a package to an RDB___
BNDSQLSTT Bind SQL Statement to an RDB package___
ENDBND End binding of a package to an RDB___
REBIND Rebind an existing RDB package___
DRPPKG ��

�
�
�
�
�
�

DROP a package at an RDB___
Query Processing___
OPNQRY Open query___
CNTQRY Continue query___
CLSQRY ��

�
�
�

Close query___
Prepare/describe/execute SQL statements___
PRPSQLSTT Prepare SQL statement___
DSCSQLSTT Describe SQL statement___
DSCRDBTBL Describe RDB table___
EXCSQLSTT Execute SQL statement___
EXCSQLIMM ��

�
�
�
�
�
�

Execute immediate SQL statement___
Commit/rollback unit of work___
RDBCMM RDB commit unit of work used by RUOW connections___
RDBRLLBCK RDB rollback unit of work used by RUOW connections___
SYNCCTL Sync point control request used for DUOW connections___
SYNCRSY �

�
�
�
�
�

Sync point resynchronization request used by DUOW connections___
Security processing___
ACCSEC Access security___
SECCHK �

�
�

Security check___
Propagating special register settings___
EXCSQLSET �� SET SQL environment___
Connection establishment to a remote database manager___
EXCSAT Exchange server attributes___
ACCRDB Access RDB___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

36 Technical Standard (2004)

The DRDA Specification The DDM Reference

Reply Objects and Messages

Table 1-4 gives a list of the normal DDM reply data objects. These include reply messages, reply
data, override data, query data descriptors, and query answer set data.

Table 1-4 DDM Reply Data Objects Used by DRDA
__

DDM Term Term Title__
ACCRDBRM Access to RDB completed__
ACCSECRD Access security reply data__
CMDCMPRM Command processing completed__
ENDQRYRM End of query condition__
ENDUOWRM End unit of work condition__
EXCSATRD Server attributes reply data__
OPNQRYRM Open query complete__
QRYDSC Query answer set description__
QRYDTA Query answer set data__

Update at an RDB condition (Introduced in DRDA Level 2)RDBUPDRM__
RSLSETRM RDB result set reply message__
SECCHKRM Security check complete reply message__
SECTKN Security token reply data__
SQLCARD SQL communications area reply data__
SQLCINRD SQL result set column info reply data__
SQLDARD SQLDA reply data__
SQLDTARD SQL data reply data__
SQLRSLRD SQL result set reply data__

Sync point control reply data in support of distributed unit of
work

SYNCCRD

__
Sync point resynchronization reply data in support of distributed
unit of work

SYNCRRD

__
Identifies the sync point log used for a unit of workSYNCLOG__

TYPDEFNAM Data type definition name__
TYPDEFOVR Data type definition override__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 37

The DRDA Specification

38 DRDA, Version 3, Volume 1

Technical Standard

Part 1:

Database Access Protocol

The Open Group

Part 1: Database Access Protocol 39

40 DRDA, Version 3, Volume 1

Chapter 2

Introduction to DRDA

Distributed Relational Database Architecture (DRDA) is the architecture that meets the needs of
application programs requiring access to distributed relational data. This access requires
connectivity to and among relational database managers operating in like or unlike operating
environments. Structured Query Language (SQL) is the language that application programs use
to access distributed relational data. DRDA is the architecture that provides the needed
connectivity.

2.1 DRDA Structure and Other Architectures
DRDA requires the following architectures:

• Distributed Data Management (DDM) Architecture

• Formatted Data Object Content Architecture (FD:OCA)

DRDA uses Character Data Representation Architecture (CDRA). DRDA describes its use of Logical
Unit type 6.2 (LU 6.2) and Transmission Control Protocol/Internet Protocol (TCP/IP) for network
support, SNA Management Services Architecture (MSA) for problem determination support, The
Open Group Distributed Computing Environment (DCE) for security support, and The Open
Group Distributed Transaction Processing (DTP) Reference Model for transaction processing
support.

For a better understanding of DRDA, some familiarity with these architectures is useful. See
Referenced Documents (on page xxv) for a list of references that can provide helpful
background reading about these architectures.

DRDA uses DDM, FD:OCA, and CDRA as architectural building blocks. DRDA also assumes
the use of a network protocol and network management protocol as pieces of the architectural
building blocks. The specific form of each of the blocks is specified to ensure that system
programmers implement them in the same way for the same situations so that all programmers
can understand the exchanges. DRDA ties these pieces together into a data stream protocol that
supports this distributed cooperation.

2.2 DRDA and SQL
SQL is the database management system language and provides the necessary consistency to
enable distributed data processing across like or unlike operating environments. It allows users
to define, retrieve, and manipulate data across unlike environments. SQL provides access to
distributed relational data among interconnected systems that can be at different locations.

DRDA supports SQL as the standardized Application Programming Interface (API) for execution of
applications and defines flows (logical connections between the application and a database
management system) that the program preparation process can use to bind SQL statements for a
target relational database management system (DBMS).

An application uses SQL to access a relational database. When the requested data is remote, the
function receiving the application SQL request must determine where the data resides and
establish connectivity with the remote relational database system. One method used to make
this determination is the SQL CONNECT statement. An application using the CONNECT

Part 1: Database Access Protocol 41

DRDA and SQL Introduction to DRDA

statement directs the function receiving the application request to establish connectivity with a
named relational database system. The term that DRDA uses to represent the name of the
relational database (RDB) is RDB_NAME. The definition of RDB_NAME can be found in Section
6.2 (on page 385).

Note: A relational database system can have multiple RDB_NAMEs, where each RDB_NAME
represents a subset of the data managed by the relational database system.

Also, SQL includes RDB_NAME as the high order qualifier of relational database objects
managed by the relational database system. See Section 6.3 (on page 385) for details.

2.3 DRDA Connection Architecture
Connectivity in support of remote database management system processing requires a
connection architecture that defines specific flows and interactions that convey the intent and
results of remote database management system processing requests. DRDA provides the
necessary connection between an application and a relational database management system in a
distributed environment.

DRDA uses other architectures to describe what information flows between participants in a
distributed relational database environment.10 It also describes the responsibilities of these
participants and specifies when the flows should occur. DRDA provides the formats and
protocols required for distributed database management system processing, but does not provide
the Application Programming Interface (API) for distributed database management system
processing.

2.4 Types of Distribution
There are four degrees of distribution of database management system functions. Each degree of
distribution has different DRDA requirements. Figure 2-1 illustrates the degrees of distribution.

Figure 2-1 Degrees of Distribution of Database Function

__
Application-Directed Remote Unit of Work (DRDA Level 1)

— 1 DBMS per unit of work

— Multiple requests per unit of work

— 1 DBMS per request

— Application initiates commit

— Commitment at a single DBMS__��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

10. The terms distributed database and distributed relational database have the same meaning in this reference and are used
interchangeably. The term database always means relational database.

42 DRDA, Version 3, Volume 1

Introduction to DRDA Types of Distribution

__
Application-Directed Distributed Unit of Work (DRDA Level 2)

— Several DBMSs per unit of work

— Application directs the distribution of work

— Multiple requests per unit of work

— 1 DBMS per request

— Application initiates commit

— Commitment coordination across multiple DBMSs

— 1 unit of work (uowid) per DBMS__��
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�

__
Database-Directed Access (DRDA Level 4)

— Several DBMSs per unit of work

— Application directs requests to a DBMS

— DBMS distributes the unit of work to multiple DBMSs

— Multiple requests per unit of work

— 1 DBMS per request

— Application initiates commit

— Commitment coordination across multiple DBMSs

— Propagate special registers__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

__
XA Distributed Transaction Processing (DRDA Level 5)

— Unit of work (transaction) identified by an XID

— One application server per application requester instance

— Multiple connections per application requester

— Multiple SQL requests per XID

— Application server can distribute SQL requests to other
downstream database servers (via DSP)

— Application requester, application server, and all database
servers define the XA reply message

— TM registers, coordinates, and recovers transactions with the
registered application requester

— Application server coordinates and recovers all downstream
database servers involved in the XID__�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 43

Types of Distribution Introduction to DRDA

__
Application-Directed Distributed Unit of Work (DRDA Level 5)

— DBMS uses XID to share recoverable resources between a set
of protected connections.__��

�
�
�

��
�
�
�

The degrees of distribution are:

• Application-Directed Remote Unit of Work

With Remote Unit of Work, an application program executing in one system can access data at
a remote database management system using the SQL supported by that remote database
management system. Remote Unit of Work supports access to one database management
system within a unit of work.11 The application can perform multiple SQL statements within
the unit of work. When the application is ready to commit the work, it initiates the commit at
the database management system that is accessed for the unit of work. In the next unit of
work, the application can access the same database management system or another database
management system.

• Application-Directed Distributed Unit of Work

With Distributed Unit of Work, within one unit of work, an application executing in one
system can direct SQL requests to multiple remote database management systems using the
SQL supported by those systems. However, all objects of a single SQL statement are
constrained to be at a single database management system. With SYNCPTMGR Level 7
support, the sync point manager at the application server can share recoverable resources
between a set of SYNCPTMGR protected connections when an XID is specified. The XID
identifies to the sync point manager which protected connections are allowed to share
recoverable resources, in order to prevent deadlocks. The XIDSHR allows the application to
indicate how the RDB should identify this set of SYNCPTMGR protected connections.

When the application is ready to commit the work, it initiates the commit, and commitment
coordination is provided by a synchronization point manager.

Distributed Unit of Work allows:

— Update access to multiple database management systems in one unit of work

— Update access to a single database management system with read access to multiple
database management systems, in one unit of work

Whether an application can update multiple database management systems in a unit of work
is dependent on the existence of a synchronization point manager at the application’s
location, synchronization point managers at the remote systems, and two-phase commit
protocol support between the application’s location and the remote systems. Two-phase
commit protocols are discussed later.

• Database-Directed Distributed Unit of Work

In database-directed requests, an application connects to a relational database management
system (RDB) that can execute one or more SQL requests locally or route some or all of the
SQL requests to other RDBs. The RDB determines which system manages the data referenced
by the SQL statement and automatically propagates any special registers set by the
application and directs the request to that system. The DBMS is expected to support DUOW

11. A unit of work can also be known as a transaction.

44 DRDA, Version 3, Volume 1

Introduction to DRDA Types of Distribution

connections, but allows restricted connectivity if it supports RUOW connections.

• Application-Directed TP Access

The XA-compliant TM is responsible for protecting any DBMS resources changed on the
application server and any downstream database server. Before any work can be performed
on a DBMS, the application requester must register the transaction with the DBMS and
associate the connection with the transaction’s XID using the SYNCCTL(New Unit of Work)
command. Before the application can begin commit coordination, it must end the transaction
with the DBMS and dissociate the transaction’s XID from the connection using the
SYNCCTL(End Association) command.

Only one XID can be associated with a connection at any given time. But a transaction that
has already been end’ed using the SYNCCTL(End association) command at a DBMS, and its
XID is currently not associated or suspended on any connection, can be prepared, committed,
or rolled back from any connection to that DBMS, even if that connection is associated with a
different transaction. A recovery operation to the DBMS is valid at any given time, and will
return a list of all XIDs that are currently in the prepared state or have been heuristically
completed at the DBMS. The application server coordinates any XIDs with any downstream
database servers associated with the application requester connection.

2.5 DRDA Protocols and Functions
At the Remote Unit of Work level, DRDA supports the connection between an application
process and the application server of a database management system (DBMS).

At the Distributed Unit of Work level, DRDA supports the connection between an application
process to application servers of multiple DBMSs, as well as an application server to multiple
database servers of multiple DBMSs.

DRDA provides one kind of connection protocol and two basic kinds of functions.

The connection protocol is:

• Application Support Protocol. Provides connection between application requesters and
application servers.

The application requester supports the application end of the DRDA connection by making
requests to the application server, while the application server supports the database
management system end by answering these requests.

• Database Support Protocol. Provides connections between application servers and database
servers. Prior to executing any SQL statements at a database server, special register settings
set by the application must be propagated to the database server.

The function types are:

• Application Requester Functions. Support SQL and program preparation services from
applications.

• Application Server Functions. Support requests that application requesters have sent and
routes requests to database servers by connecting as an application requester.

• Database Server Functions. Support requests from application servers. Support the
propagation of special register settings.

These three functions are illustrated in Figure 2-2 (on page 46).

Part 1: Database Access Protocol 45

DRDA Protocols and Functions Introduction to DRDA

Application Support Protocol

/

/

Application

Application
Requester

DBMS

Application |
Server

Figure 2-2 DRDA Network

A single system can implement all of the functions. Such a system would behave appropriately
(differently) according to the role it is playing for any particular request.

This relationship is illustrated in Figure 2-3.

Application Support Protocol

/

/

/

/

/

/

/

/

Application

Application
Requester

(OS/2)

Application
Server

Application
Requester

DBMS

Application
Server

Application
Server

DBMS

Application
Server

DBMS

Application

Application
Requester

(NT) Remote
Unit of Work

Distributed
Unit of Work

Figure 2-3 DRDA Network Implementation Example

Any database management systems could be in any position in this figure. Figure 2-3 shows
three places where databases (DBMS) from different vendors—for example, IBM, Microsoft,
Oracle, and so on—may be used. Implementations are based upon business requirements.

A developer might choose to implement either DRDA Remote Unit of Work or Distributed Unit
of Work. If a Remote Unit of Work component is being developed, all functions should be
implemented except those identified as DRDA Distributed Unit of Work. An implementer of a
subset of these functions is not required to support Distributed Unit of Work.

Some functions of this architecture are optional. These are defined in Section 1.1 (on page 2), as
well as the optionality of the DDM commands, replies, and parameters as defined in the DDM
Reference.

This volume describes both Remote Unit or Work and Distributed Unit of Work, plus additional
functions that have been included since DRDA was first introduced. The type of support used is

46 DRDA, Version 3, Volume 1

Introduction to DRDA DRDA Protocols and Functions

dependent on the DRDA manager levels in use. See Chapter 4 (on page 63) for details on DDM
managers.

Part 1: Database Access Protocol 47

Introduction to DRDA

48 DRDA, Version 3, Volume 1

Chapter 3

Using DRDA—Overall Flows

DRDA flows are high-level communication paths that pass information between application
environments and database management systems. Because these flows cross underlying
architecture boundaries, this chapter relates individual pieces of flows to the defining
architecture.

The rest of this volume describes the details of how DRDA uses each of the underlying
architectures and discusses each of these flows in greater detail.

3.1 Introduction to Protocol Flows
Application support protocol flows establish and define the connections for the information
exchange from executing application programs and application development programs to
database management systems.

The logical flow figures in this chapter are examples of the type of information that flows
between an application requester and an application server in support of a DRDA activity. The
figures refer to information flowing from the application requester as application end
information and to information flowing from the application server as database management
system end information. The arrows depict the direction of flow as opposed to the actual time of
flow.

Each figure uses verbs, commands, and terms from the underlying architectures. For the sake of
example, we assume the use of SNA as the network protocol in the example flows of this
chapter. Refer to Chapter 12 (on page 527) for an explanation of the use of SNA verbs. Refer to
Chapter 4 (on page 63) for an explanation of the use of DDM commands and terms. Refer to
Chapter 5 (on page 223) for an explanation of the use of FD:OCA constructs.

Part 1: Database Access Protocol 49

Introduction to Protocol Flows Using DRDA—Overall Flows

3.1.1 Initialization Flows

An initialization flow occurs before, or as part of the response to, the first remote request from an
application program or an end user. The first remote request can be an explicit SQL CONNECT
statement, or an implicit SQL CONNECT due to some other SQL statement that implies a
connect to the database management system. Using DRDA Remote Unit of Work, an application
or end user can only connect to one relational database per unit of work. Using Distributed Unit
of Work, an application or end user can connect to multiple relational databases in a single unit
of work, but only one SQL connection is current at any time. The application or end user defines
which SQL connection is current through SQL calls. The target database of the SQL CONNECT
statement can be a local database, in which case DRDA protocols are not in use. An initialization
flow creates a network connection and prepares a remote DRDA execution environment for
executing a DRDA request.

A successful initialization flow results in an authenticated network connection between specific
products at understood release levels. Authentication processing is required in DRDA.
Authentication can occur by one or more of the following techniques:

• Through the plug-in security mechanism

• Through Distributed Computing Environment (DCE) security mechanisms

• Passing a user ID and password in a DDM command; optionally, these security tokens can be
encrypted to prevent them from flowing in the clear

• Passing a user ID only (equivalent to already verified) in a DDM command

• Passing a user ID, password, and new password in a DDM command; optionally, these
security tokens can be encrypted to prevent them from flowing in the clear

• During SNA initialization processing through use of LU-LU Verification (Partner-LU
verification) and Conversation Level Security (End-user verification) as specified in the SNA
architecture

An initialization flow also propagates information for accounting and problem determination.
For example, the initialization flow specifies an end-user name and a unique correlation token. In
addition, TCP/IP connections provide a unique DDM unit of work identifier (UOWID), the
server’s IP address and PORT number. SNA connections provide a unique SNA logical unit of
work identifier (LUWID), server’s LU name, and transaction program name (TPN). These
provide the who, what, when, and where information useful for accounting in DRDA
environments.

A DRDA initialization flow uses a network protocol and DDM commands to create a connection
to a relational database.

Figure 3-1 (on page 51) and Figure 3-2 (on page 52) show the logical flow of information between
an application requester and an application server. Arrows depict the direction that information
flows rather than the time that actual physical flows occur on the link.

Figure 3-1 (on page 51) assumes SNA security is used. Figure 3-2 (on page 52) assumes the
security information is carried in DDM commands and responses. For this example, it is
assumed that DCE security is in use. Other possible security information, which along with DCE
security is likely for TCP/IP networks are:

• User ID and password

• User ID only

• User ID, password, and new password

50 DRDA, Version 3, Volume 1

Using DRDA—Overall Flows Introduction to Protocol Flows

Both figures assume:

• An SQL CONNECT statement was the remote request that started the initialization flow.

• The application server supports the DDM TYPDEF that the application requester specified.
The DDM TYPDEF specifies the data representation used when transmitting parameters and
values between the application requester and the application server. Other remote requests
(such as DDM BGNBND) cause similar flows of information.

• All SNA verbs and DDM commands execute successfully

Application End Information DBMS End Information

I am USER_ID; --->
I desire to connect to DRDA TPN
at NETID.LU_NAME using MODE_NAME;
I am part of LUWID
(SNA ALLOCATE)

I am RELEASE of AR from DRDA
ENVIRONMENT and request the
following DDM managers
(DDM EXCSAT)

<--- I am RELEASE of AS from DRDA
ENVIRONMENT and support
the following subset of
requested DDM managers
(DDM EXCSATRD)

I wish to access RDB_NAME --->
using DRDA flows with TYPDEF
(DDM ACCRDB)

<--- I support the TYPDEF specified
I will use DRDA flows with
TYPDEF
(DDM ACCRDBRM)

Figure 3-1 Logical Flow: Initialization Flows with SNA Security

Part 1: Database Access Protocol 51

Introduction to Protocol Flows Using DRDA—Overall Flows

Application End Information DBMS End Information

I desire to connect to DRDA TPN --->
at NETID.LU_NAME using MODE_NAME;
I am part of LUWID
(SNA ALLOCATE)

I am RELEASE of AR from DRDA
ENVIRONMENT and request the
following DDM managers
(DDM EXCSAT)

<--- I am RELEASE of AS from DRDA
ENVIRONMENT and support
the following subset of
requested DDM managers
(DDM EXCSATRD)

Here is the security mechanism --->
I wish to use
(DDM ACCSEC)

<--- I accept your security
mechanism
(DDM ACCSECRD)

I am USER_ID and here is --->
information to authenticate me
(DDM SECCHK)

<--- I accept who you are
and here is information to
authenticate me
(DDM SECCHKRM)

I accept who you are and --->
I wish to access RDB_NAME
using DRDA flows with TYPDEF
(DDM ACCRDB)

<--- I support the TYPDEF specified
I will use DRDA flows with
TYPDEF
(DDM ACCRDBRM)

Figure 3-2 Logical Flow: Initialization Flows with DCE Security

In Figure 3-1 (on page 51) and Figure 3-2, the material in parentheses shows the SNA verbs and
DDM commands and responses that carry the information.

For a more in-depth description of the initialization processing flows, see:

• For SNA, Figure 12-1 (on page 538) and Figure 12-3 (on page 540)

• For TCP/IP, Figure 13-2 (on page 567)

52 DRDA, Version 3, Volume 1

Using DRDA—Overall Flows Introduction to Protocol Flows

3.1.2 Bind Flows

A DRDA bind flow results in the creation and storage of a package at an application server.

DRDA bind flows use a network protocol, DDM, FD:OCA, and CDRA. Figure 3-3 shows the
type of information that flows between an application requester and an application server.
Arrows depict the direction that information flows rather than the time that physical link flows
occur. Figure 3-3 assumes:

• The connection has been established.

• The application requester is binding two SQL statements with application variable
definitions into a single package at the application server.

Application End Information DBMS End Information

I desire to Bind SQL --->
statements to PACKAGE with
CONSISTENCY TOKEN using the
following Bind options and
Parser options.
(DDM BGNBND)

<--- I executed BGNBND with the
following results
(DDM SQLCARD using FD:OCA)

Bind SQL STATEMENT as SECTION --->
in PACKAGE with CONSISTENCY
TOKEN referencing the following
application program host language
variable declarations
(DDM BNDSQLSTT, DDM SQLSTT,
and DDM SQLSTTVRB using FD:OCA)

<--- I executed BNDSQLSTT with the
following results
(DDM SQLCARD using FD:OCA)

Bind SQL STATEMENT as SECTION --->
in PACKAGE with CONSISTENCY
TOKEN referencing the following
application program host language
variable declarations
(DDM BNDSQLSTT, DDM SQLSTT,
and DDM SQLSTTVRB using FD:OCA)

<--- I executed BNDSQLSTT with the
following results
(DDM SQLCARD using FD:OCA)

I have completed BIND --->
(DDM ENDBND)

<--- I executed ENDBND with the
following results
(DDM SQLCARD using FD:OCA)

Figure 3-3 Logical Flow: Bind Flows

Part 1: Database Access Protocol 53

Introduction to Protocol Flows Using DRDA—Overall Flows

For a more in-depth description of the bind flows, see:

• For SNA, Figure 12-6 (on page 545)

• For TCP/IP, Figure 13-3 (on page 569)

54 DRDA, Version 3, Volume 1

Using DRDA—Overall Flows Introduction to Protocol Flows

3.1.3 SQL Statement Execution Flows

A DRDA SQL statement execution flow transmits a DDM command to an application server that
requests a relational database management system to execute an SQL statement and returns the
results to the application requester. There are several types of statement execution flows. Figure
3-3 (on page 53) is an example of the flow that executes a previously bound SQL statement
involving a cursor and uses the DDM commands OPNQRY, CNTQRY, and CLSQRY to perform
functions analogous to the SQL cursor statements OPEN, FETCH, and CLOSE. If an application
server determines the SQL statement is for another RDB, the application server must propagate
any special registers set or changed by the application since the last request to that database
server (DS).

DRDA remote SQL statement requests often operate on multiple rows of multiple tables and can
cause the transmission of multiple rows from the application server to the application requester.
DRDA provides two data transfer protocols in support of these operations:

• Fixed row protocol12

• Limited block protocol

The fixed row protocol guarantees the return of exactly the number of rows the application
requested, or the number of rows available if it is less than the number of rows the application
requested, whenever the application requester receives row data. The limited block protocol
optimizes data transfer by guaranteeing the transfer of a minimum amount of data (that can be
part of a row, multiple rows, or multiple rows and part of a row) in response to each DRDA
request. Application requesters and application servers can use the limited block protocol for the
processing of a query that uses a cursor for read-only access to data.

See the terms FIXROWPRC13 and LMTBLKPRC in the DDM Reference for more details on fixed
row and limited block protocols.

DRDA SQL statement execution flows for cursor operations OPEN, FETCH, and CLOSE also
provide support for multiple instances of the same cursor which is a common occurrence in
environments where User-Defined Functions (UDFs) and stored procedures returning result sets
are used. For details on this feature, see Section 4.4.6 (on page 121).

DRDA SQL statement execution flows use a network protocol, DDM, FD:OCA, and CDRA.

Figure 3-4 (on page 56) shows the type of information that flows between an application
requester and an application server. Arrows depict the direction that information flows rather
than the time that physical link flows occur.

This figure assumes that:

• The connection has been established.

• An OPEN and FETCH SQL statement sequence was the remote request that caused the SQL
statement execution flow to occur.

• The query does not require application input variable values.

12. In DRDA Level 1 this was known as single row protocol. DRDA Level 2 introduced the optional support for multi-row fetches.
Single row fetch (single row protocol) is the default and is also a special case of fixed row protocol. DRDA application requesters
and application servers supporting only Remote Unit of Work are not required to support multi-row fetches.

13. The default for fixed row protocol is known as single row protocol (or single row fetch), and can be specified using the term
SNGROWPRC.

Part 1: Database Access Protocol 55

Introduction to Protocol Flows Using DRDA—Overall Flows

• The query processing uses the limited block protocol and that query processing requires the
transmission of two blocks containing row data.

Application End Information DBMS End Information

I desire to Open Query for --->
SECTION of PACKAGE with
CONSISTENCY TOKEN using
BLOCKSIZE
(DDM OPNQRY)

<--- I executed the OPNQRY using
QUERY PROTOCOL TYPE with
the following results
(DDM OPNQRYRM with DDM QRYDSC
and DDM QRYDTA using FD:OCA)

Continue query processing --->
for SECTION of PACKAGE with
CONSISTENCY TOKEN using
BLOCKSIZE
(DDM CNTQRY)

<--- I executed the CNTQRY with
the following results
(DDM QRYDTA using FD:OCA
and DDM ENDQRYRM
with DDM SQLCARD using FD:OCA)

Figure 3-4 Logical Flow: SQL Statement Execution Flows

For a more in-depth description of the actual DRDA execute SQL statement flows, see:

• For SNA, Figure 12-9 (on page 548)

• For TCP/IP, Figure 13-4 (on page 570)

56 DRDA, Version 3, Volume 1

Using DRDA—Overall Flows Introduction to Protocol Flows

3.1.4 Commit Flows

A successful commit of the application’s work involves a coordinated commitment of all work
processed by the application since the last successful commit or startup of the application. This
process is also known as resource recovery processing, and the point where all resources are in a
consistent state is called a synchronization point. The flows involved with the commitment of
resources are dependent on the sync point manager or XA manager in use between the
application requester and the DBMS end of the connection. The SNA communication sync point
manager supports protected network connections which use SNA-defined two-phase commit
flows to commit the work. The DRDA sync point manager and XA manager use DDM-defined
sync point control flows to commit the work. DDM flows are independent of the underlying
communications manager.14

If an application requester requires Resource sharing between a set of protected connections at
the application server or database server, it can send an XID instance variable on the DDM sync
control new unit of work with an indicator specifying whether partial or complete sharing of
RDB recoverable resources is required.

Remote Unit of Work connections use DRDA defined one-phase commit or two-phase commit
flows to commit the work. The type of DRDA commit flow used is dependent on the level of the
sync point manager identified during initialization. Without the support of a sync point
manager, DRDA one-phase commit is used to coordinate all commits. For work that involves
both protected and unprotected network connections, the application requester participates in
the processing of both flows. For information about committing work on Distributed Unit of
Work connections, refer to Figure 12-11 (on page 551).

Figure 3-5 (on page 58) shows the type of information that flows between an application
requester and application server to commit work using DRDA two-phase flows.

Application End Information DBMS End Information

I want to start a new unit of --->
work by sending the new
unit of work identifier
(DDM SYNCCTL new unit of
work identifier command)

<--- Set identifier for current
unit of work and participate
in the next commit

Prepare for commitment of the --->
current unit of work
(DDM SYNCCTL prepare to
commit command)

<--- Prepare for commitment of the
current unit of work
(DDM SYNCCRD request to
commit reply)

Commit the current unit of --->

14. DDM sync point manager supports presumed abort and implied forget processing to optimize performance, eliminating all
logging requirements at an application requester. Also, optional resync server flows are defined to eliminate all logging
requirements for an unsecure requester. Refer to the SYNCPTOV term in the DDM Reference for an overview of DRDA’s two-
phase commit processing.

Part 1: Database Access Protocol 57

Introduction to Protocol Flows Using DRDA—Overall Flows

work
(DDM SYNCCTL committed
command)

<--- Commit and forget the current
unit of work
(DDM SYNCCRD forget unit
of work reply)

Figure 3-5 Logical Flow: DRDA Two-Phase Commit

Figure 3-6 shows the information that flows between an application requester and application
server to commit work using DRDA one-phase commit. In both flows, a request to commit the
work can result in the application server roll backing the unit of work.

Application End Information DBMS End Information

I want to commit the current --->
unit of work
(DDM RDBCMM, DDM EXCSQLSTT, or
DDM EXCSQLIMM)

<--- I committed the work
(DDM ENDUOWRM with SQLCARD
using FD:OCA)

Figure 3-6 Logical Flow: DRDA One-Phase Commit Using DDM Commands

The SQL application should explicitly use commit or rollback functions before termination. It is
the responsibility of the application requester, however, to ensure commit and rollback functions
are invoked at application termination. For details about committing work using SNA refer to
Figure 12-13 (on page 553), or for TCP/IP refer to Figure 13-7 (on page 572).

58 DRDA, Version 3, Volume 1

Using DRDA—Overall Flows Introduction to Protocol Flows

3.1.5 Termination Flows

A successful termination flow results in the orderly close of the network connection between the
application program or the end user and the DBMS. The termination of the network connection
between an application requester and an application server terminates the application server.

The normal or abnormal termination of an application causes the application requester to initiate
terminate network connection processing for the network connection associated with the
execution of the application. The normal termination of a protected connection must be
performed using a commit. The termination of an unprotected connection using DRDA two-
phase commit flows must perform a commit that indicates the connection is to be released when
the commit is successful. In terms of SNA, a DEALLOCATE on protected network connections
must be followed by the SNA command SYNCPT before the conversation is deallocated. In
terms of DRDA, a DDM sync point control is sent with the release connection indicator. The
connection is not disconnected if the unit of work results in a rollback. The semantics of a
disconnect of the network connection include an implied rollback. It is the responsibility of the
application server to ensure a rollback occurs when a network failure is detected.

Figure 3-7 shows the type of information that flows between an application requester and an
application server to terminate a protected connection using DRDA two-phase flow.

Application End Information DBMS End Information

Prepare for commitment of the --->
current unit of work for a
released connection
(DDM SYNCCTL prepare to
commit with RLSCONV set
to TRUE)

<--- Prepare for commitment of
the current unit of work
(DDM SFNCCRD request to
commit reply)

Commit the current unit of --->
work
(DDM SYNCCTL committed)

<--- Commit and forget the current
unit of work
(DDM SYNCCRD forget unit of
work reply)

Terminate the network --->
connection

<--- Terminate the network
connection and application
server process

Figure 3-7 Logical Flow: DRDA Two-Phase Commit Termination Flows Using DDM Commands

Figure 3-8 (on page 60) shows the type of information that flows between an application
requester and an application server to deallocate a single SNA protected conversation.

Application End Information DBMS End Information

I desire to disconnect from --->
DRDA Transaction Program
(SNA DEALLOCATE, SNA SYNCPT)

Part 1: Database Access Protocol 59

Introduction to Protocol Flows Using DRDA—Overall Flows

<--- Receive deallocate and commit
notification. Commit unit of
work and terminate application
server process

Figure 3-8 Logical Flow: SNA Termination Flows on Protected Conversations

60 DRDA, Version 3, Volume 1

Using DRDA—Overall Flows Introduction to Protocol Flows

3.1.6 Utility Flows

3.1.6.1 Packet Flow

Packets will be flowed between application requester and application server. The purpose of
packet flow is to test the connectivity between them. Furthermore, it can also be used to check
whether the connection is healthy or not. The packet flow can occur at any time after the DDM
EXCSAT command.

Figure 3-9 shows the type of information that flows between an application requester and
application server.

Application End Information DBMS End Information

I wish to check on my connection --->
to RDBNAM by means of a response
packet using PACKETSIZE with
request packet (DDM SNDPKT)

<--- Here is the response packet
requested. (DDM PKTOBJ)

Figure 3-9 Utility Flow: DRDA Packet Flows Using DDM Commands

Part 1: Database Access Protocol 61

Using DRDA—Overall Flows

62 DRDA, Version 3, Volume 1

Chapter 4

The DRDA Processing Model and Command Flows

DRDA’s set of models allows the separation of an application from the relational data it will
process. If moving the data does not split it across systems, the process of moving the relational
data from the system containing the application or the application from the system containing
the relational data should not require changes to the application’s source code to get the same
results.

DRDA describes, through protocol models, the necessary interchanges between the application
(or an agent on its behalf) and one or more remote relational databases15 to perform the
following functions:

• Establish a connection between an application and a remote relational database.

• Bind an application’s host language variables and SQL statements to a remote relational
database.

• Execute those bound SQL statements, on the behalf of the application, in the remote
relational database and return the correct data or completion indication to the application.

• Execute dynamic SQL statements, on the behalf of an application, in a remote relational
database and return the correct data or completion indication to the application.

• Maintain consistent unit of work boundaries between an application and one or more remote
relational databases.

• Terminate the connection between an application and a remote relational database.

DRDA describes these functions as a series of commands and command replies that are sent
between the application (or an agent on its behalf) and a remote relational database. DRDA also
describes the correct flow of these commands and command replies between the application (or
an agent on its behalf) and a remote relational database. Included in the description of the
commands and flows are:

• Encoding/decoding rules for commands, parameters, and data

• Parameter values on commands and command replies:

— Optional/required

— Valid/not valid

— Assigned (constant/defined values)

— Defaults

• Valid command replies for each command

• Error messages valid for each command

• Recovery procedures for command error messages, when applicable

• Order in which commands can be sent

15. DRDA Remote Unit of Work is limited to one relational database per unit of work.

Part 1: Database Access Protocol 63

DDM and the Processing Model The DRDA Processing Model and Command Flows

4.1 DDM and the Processing Model
The DDM model, DDM terms, and DDM architecture define the functions and the command
flows that make up DRDA. To further explain the relationship of DRDA and DDM, this chapter:

• Presents the DDM processing model and relates it to SQL, relational database managers, and
DRDA.

• Presents the DDM server model, including manager objects, and relates it to the DRDA
model.

• Describes the normal flow of DDM commands (as examples) between an application
requester and an application server to accomplish the tasks of:

— Establishing connectivity between the application requester and application server

— Determining the functional capabilities of the application server

— Binding SQL statements in an application to a remote relational database

— Dropping a set of bound SQL statements from a remote relational database

— Executing a bound Query against a remote relational database

— Executing SQL statements

— Completing/terminating a unit of work

— Terminating the connection between application requester and application server upon
completion of the application

• Provides some examples of error conditions and the normal processing associated with them
in an application requester or application server.

• References other sections of this document and other documents for descriptions of:

— DDM terms

— FD:OCA descriptors

— DRDA command usage rules

— SNA LU 6.2 two-phase commit protocols

— DDM two-phase commit protocols

— The DCE Security mechanisms

64 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DRDA Relationship to DDM

4.2 DRDA Relationship to DDM
This chapter describes the use of the DDM architecture to perform DRDA functions. The details
for DDM functions and examples are in the DDM references. The figures in this chapter contain
the DDM commands used to perform each of the DRDA functions. The exact syntax and
semantics of the DDM commands are described in the DDM Reference.

DDM is an architected data management interface used for data interchange among like or
unlike systems. The DDM architecture is independent of an implementing system’s hardware
architecture and its operating system. DDM provides a conceptual framework or model for
constructing common interfaces for data interchange between systems. The DDM data stream
(which consists of architected commands, parameters, objects, and messages) accomplishes the
data interchange between the various pieces of this model.

The references cited in Referenced Documents (on page xxv) describe DDM in greater detail.
The reader should be familiar with the DDM Reference before reading this chapter. The level of
DDM documentation that should be referenced is dependent on the level of the DRDA
implementation. For example, for DRDA Level 3, see the DDM Level 5 documentation.

DDM describes the model for distributed relational database processing between relational
database management products. It also provides all the commands, parameters, data objects,
and messages needed to describe the interfaces between the various pieces of that model.

DRDA describes the contents of all the data objects that flow on either commands or replies
between the application requester and the application server. The formats of these objects are
described in Chapter 5 (on page 223). The Formatted Data Object Content Architecture
(FD:OCA) is used in that chapter as the underlying description architecture. FD:OCA is a
powerful architecture for data description, and DRDA uses a subset of that architecture. In this
volume, the terms FD:OCA descriptor (meaning a description expressed using FD:OCA) and the
unqualified word descriptor are used interchangeably and mean the same thing. In either case,
these terms refer to the DRDA data definitions included in Chapter 5 (on page 223). FD:OCA
data, in this volume, means data defined by DRDA descriptions.

DDM describes the common interfaces for the interchange of data between more data models
than relational database management products support. Therefore, there are many more DDM
commands, parameters, data objects, and reply messages (all of which are described as terms in
the referenced documents) than are required in any implementation of distributed relational
database management. This chapter describes which of the DDM terms are part of DRDA.

This chapter also describes additional restrictions on the use of some of the DDM terms in order
to provide a consistent DRDA usage of DDM architecture, efficient implementations of DRDA,
and a more understandable architecture for implementers of relational database management
products. These restrictions are described in detail in Chapter 7 (on page 395) and Chapter 5 (on
page 223). Additionally, the normal or usual usage of the DDM terms is described through the
use of examples in Section 4.4 (on page 84). For more background reading, see DDM Guide (on
page 34) for the suggested reading order of the DDM Reference.

Part 1: Database Access Protocol 65

The DRDA Processing Model The DRDA Processing Model and Command Flows

4.3 The DRDA Processing Model
The system that contains an executing application that is requesting relational database
management functions on another system is called the source system in the DDM processing
model. The system that contains the relational database that provides the function is called target
system in the DDM model. The DDM source system is referred to as the application requester (or,
more simply, requester) in the DRDA processing model, and the DDM target system is referred to
as the application server (or, more simply, server) in the DRDA processing model. DRDA also
allows for more systems to be involved in the processing of a request, as described in Section 2.5
(on page 45), but this section focuses on the behavior of the involved systems in a pairwise
manner—generically, they are known as requester and server, even though the requester may be
a database server sending the request to another database server. For additional discussion when
more than two systems are involved, refer to Section 4.3.5 (on page 81).

The DDM processing model is a set of managers that act on or organize data within a DDM data
stream or within the manager itself. Figure 4-1 (on page 75) shows all of the DDM managers
whose functions are defined in DRDA. The DDM managers shown include all the entities in this
illustration except the application, the relational database, and the communication support. The
support that each of the managers provides is discussed in Section 4.3.1.

For further information on the DDM processing model, the DDM server model, and DDM server
managers, see the introductory chapter of the DDM Reference. These sections also introduce
some of the terms and terminology used in the DDM architecture.

4.3.1 DRDA Managers

The DDM processing model is composed of managers that are grouped together and function as
servers. DRDA defines three DDM servers, the application requester, the application server, and
the database server.

The next sections discuss each DDM manager used in DRDA processing. There are descriptions
for the function of the manager and the relationship between managers. Neither DDM nor
DRDA defines the interfaces between DDM managers. Neither DDM nor DRDA requires an
implementation to package the functions according to the DDM manager model.

A DRDA implementation of an application requester must be able to create the DDM
commands, command parameters, and command data objects to be sent to an application
server, and to receive the DDM reply messages and reply data objects that the application server
returns. A DRDA implementation of an application server must be able to receive the
commands, command parameters, and command data objects that an application requester has
sent, and, based upon the command requests, generate the appropriate reply messages and reply
data objects to be returned to the application requester.

The following sections discuss the managers that make up these servers.

4.3.1.1 SNA Communications Manager

The SNA LU 6.2 conversational communications manager (CMNAPPC) provides unprotected
conversational support for the agent in an application requester or application server. It
provides this support using conversational protocols that the local LU 6.2 communications
facilities provide in accordance with the description provided in Chapter 12 (on page 527).

This DDM communications manager is the program associated with the transaction program
name (TPN) and an instance of it is created in the application server system when a request for
an application server is received.

66 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows The DRDA Processing Model

It manages the DRDA protocols and rules that are to be used on top of the LU 6.2 support.

It builds the DDM data streams from the commands, parameters, data, and replies that the agent
passed to it. It also parses the DDM data stream (only to the data stream structure level) and
passes commands, parameters, data, and replies to the agent.

4.3.1.2 SNA Sync Point Communications Manager

The SNA LU 6.2 sync point conversational communications manager (CMNSYNCPT) is
introduced in DRDA Distributed Unit of Work and is not required to be supported for DRDA
Remote Unit of Work. CMNSYNCPT provides protected conversational support for the agent in
an application requester or application server. It provides this support using conversational
protocols that the local SNA LU 6.2 communications facilities provide in accord with the
description provided in Chapter 12 (on page 527).

This is the program associated with the transaction program name (TPN), and an instance of it is
created in the application server system when a request for an application server is received.

It manages the DRDA protocols and rules that are to be used on top of the LU 6.2 support.

It builds the DDM data streams from the commands, parameters, data, and replies that the agent
passed to it. It also parses the DDM data stream (only to the data stream structure level) and
passes commands, parameters, data, and replies to the agent.

4.3.1.3 TCP/IP Communications Manager

The TCP/IP communications manager (CMNTCPIP) provides TCP/IP network protocol
support for the agent in an application requester or application server. It provides this support
using TCP/IP protocols that the local TCP/IP communications facilities provide in accordance
with the description provided in Chapter 13 (on page 563).

This DDM communications manager is the program associated with the DRDA well known port
and an instance of it is created in the application server system when a request for an application
server is received.

It manages the DRDA protocols and rules that are to be used on top of the TCP/IP support.

It builds the DDM data streams from the commands, parameters, data, and replies that the agent
passed to it. It also parses the DDM data stream (only to the data stream structure level) and
passes commands, parameters, data, and replies to the agent.

4.3.1.4 Agent

The function of an agent (AGENT) is to represent a requester to a server. There is an instance of
the agent present in both an application requester and an application or database server, and,
although there are some common functions in the two agents, there are additional functions that
depend on which of the agent environments is being considered.

In an application requester, the agent interfaces with the SQLAM to receive requests and pass
back responses.

In an application or database server, the agent interfaces to managers in its local server to
determine where the command should be sent to be processed, to allocate resources, to locate
resources, and to enforce security.

The agent in the application or database server represents the requester to the local server’s
supervisor to control and account for the memory, processor, file-storage, spooling, and other
resources a single user job/task uses.

Part 1: Database Access Protocol 67

The DRDA Processing Model The DRDA Processing Model and Command Flows

The agent in an application or database server also represents the requester to its server’s
security manager. The application or database server’s security manager validates each request
the requester makes for a resource.

The agents in an application requester and in an application or database server interface to the
DDM communications manager for any required communications.

To access remote relational databases, an agent in the application requester requests that the
DDM communications manager establish communications with an agent in the application or
database server on the system that owns the relational database. The agent in the application
requester directs all following requests for that relational database to the agent in the application
or database server.

4.3.1.5 Supervisor

The supervisor (SUPERVISOR) manages a collection of managers within a particular operating
environment.

The supervisor provides an interface to its local system services such as resource management,
directory, dictionary, and security services. The supervisor interfaces with the local system
services and the other managers.

The only command defined for the supervisor is the Exchange Server Attributes (EXCSAT)
command that allows two servers to determine their respective server class names and levels of
support.

4.3.1.6 Security Manager

The security manager (SECMGR) is part of the DDM model to represent security functions. Not
all security functions are defined in DRDA. Some of the details of security in DRDA are
described in Chapter 10 (on page 471).

The primary functions of a security manager include:

• Participation in end-user identification and authentication processing for the security
mechanisms listed in Table 4-3 (on page 92). (For example, DCE security, user ID only, user
ID and password, and so on.)

Note: If none of these security mechanisms are in use, the communications facilities must
perform the end-user identification and authentication functions.

• Ensure that the requester, which the agent represents, is only allowed to access relational
databases, commands, dictionaries, or directories in the manner for which it has been
authorized.

The authorization of a user to objects within a relational database is the responsibility of the
relational database manager. DDM provides various reply messages for rejecting commands
due to authorization failures.

4.3.1.7 Directory

A directory is an object that maps the names of instances of manager objects to their locations.
The directory manager (DIRECTORY) provides support for locating the managers that make up
a server (the application server).

The product, not DDM or DRDA, defines the interfaces to the directory manager.

68 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows The DRDA Processing Model

4.3.1.8 Dictionary

A dictionary is a set of named descriptions of objects. A dictionary manager (DICTIONARY)
provides interfaces to use the object descriptions that are stored in the dictionary.

In an application requester, the agent and SQLAM use the dictionary to create valid DDM
command and data objects. They also use the dictionary to parse the reply data and messages
that are returned from the application server to determine what manager should process them
and what data is returned to the application.

In an application server, the agent and SQLAM use the dictionary to parse the DDM command
and data objects that the application server has received from the application requester to
determine which manager is to process the request and what type of processing is to be done.
They also use the dictionary to construct valid reply messages and reply data to be returned to
the application requester.

4.3.1.9 Resynchronization Manager

The resynchronization manager is the system component that recovers protected resources
when a commit operation fails. If a commit operation fails and the outcome of the unit of work
may be in-doubt, the resynchronization manager initiates resynchronization flows to resolve in-
doubt units of work.

Also, in conjunction with the sync point manager, the resynchronization manager provides
resync server support. If supported, an unsecure requester can migrate resynchronization
responsibilities to a server. The resync server logs unit of work state information and performs
resynchronization on behalf of the requester.

4.3.1.10 Sync Point Manager

The sync point manager is the system component that coordinates commit and rollback
operations among the various protected resources. With distributed updates, sync point
managers on different systems cooperate to ensure that resources reach a consistent state. The
protocols and flows used by sync point managers can also be referred to as two-phase commit
protocols.

The sync point manager can be called directly by the application to commit the unit of work or
by the SQLAM at the application requester on behalf of the application.

The sync point manager allows a set of protected connections at the application server or
database server to share recoverable resources in order to prevent deadlocks, by specifying an
XID informing the RDB which set of protected connections can share resources. An XIDSHR
indicator allows the application to specify what degree of sharing is required.

Sync point operations flow as DDM commands, objects, and replies using either TCP/IP or SNA
communications manager. The agent forwards sync point commands and objects to the
SYNCPTMGR which then interfaces to the RDB or SQLAM to perform sync point operations.
Sync point replies are sent from the SYNCPTMGR to the agent in the form of a DDM reply and
objects which are sent using the underlying communications manager.

For SNA protected conversations, the reference SNA LU 6.2 Reference: Peer Protocols (SC31-6808,
IBM) describes in greater detail the functions of a sync point manager as well as its relationship
to the resource managers and applications.

Part 1: Database Access Protocol 69

The DRDA Processing Model The DRDA Processing Model and Command Flows

4.3.1.11 SQL Application Manager

The function of the SQL application manager (SQLAM) is to represent the application to the
remote relational database manager. There is an instance of the SQLAM present in both an
application requester and an application or an application server to a database server. An
SQLAM performs functions depending on which environment the application is in.

The SQLAM handles all DRDA flows. This manager is responsible for ensuring that the
application requester, application server, and database server are using the proper commands
and protocols.

In the application requester, the SQLAM processes the requests it receives from the application
or application server and invokes the corresponding function/operation from the SQLAM in the
application server through DRDA commands. Neither DDM nor DRDA defines the interface
that the SQLAM provides in the application requester for requests from the application.

In the application server, the SQLAM processes the requests it receives and invokes the
corresponding function/operation from the relational database manager. It uses interfaces that
the relational database manager and other managers in its environment have defined. The target
SQLAM responds to the source SQLAM through architected reply messages and reply data.

Both source and target SQLAMs are responsible for data representation conversions as
necessary for DDM command and reply message parameters. Unless overridden by the DDM
Coded Character Set Identifier (CCSID) manager (CCSIDMGR), the character parameter values
are represented in CCSID 500.

The SQLAM is the only manager in either the application requester, application server, or
database server that understands the format of the command data objects and reply data objects.
It is, therefore, responsible for creating and interpreting all the changed FD:OCA descriptors that
the requester and server pass between them. FD:OCA descriptors defined in previous levels are
no longer supported at this level. The sending or receiving of descriptors defined in previous
versions of the architecture is a descriptor error (refer to Section 5.7.3 (on page 366) and the
DSCINVRM term in the DDM Reference for more details) .

The SQLAM at the application requester is responsible for converting numeric and character
data, if necessary, before passing data values to the application programs.

The SQLAM at the application server or database server is responsible for converting numeric
data, if necessary, before passing the data values to the relational database. The relational
database is responsible for performing any necessary character conversion.

The SQLAM at the application requester or application server is responsible for converting
numeric and character data as necessary before sending data on the wire using the
representative format it has chosen. An application requester or application server may select a
representation which differs from its preferred format.

The SQLAM at the application server or database server registers with the sync point manager
so that the SQLAM is kept informed of the status of the unit of work from the viewpoint of the
global environment.16

The SQLAM at the application requester can call the sync point manager to begin the resource
recovery process on behalf of the application. The application requester must also register with
the sync point manager to allow the application requester to manage commit and rollback to the

16. Not supported in DRDA Remote Unit of Work.

70 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows The DRDA Processing Model

application servers that are not under sync point management control.

A list of the DDM commands that the SQLAM understands and handles, for DRDA flows, are
described briefly in Table 4-1. This table contains only those DDM commands that an
implementation of DRDA flows requires. These commands are documented in the DDM
Reference as commands (and corresponding codepoints) of the same names.

DDM Guide (on page 34) contains a full list of the DDM terms that are required to implement
the DRDA flows. Optional commands are indicated in the OPT’L column. See Section 7.10 (on
page 415) for details on optional commands. Section 4.4 (on page 84) discusses the allowed and
recommended usage of these commands and some of the normal replies to these commands.

Table 4-1 DDM Commands Used in DRDA Flows
__

DDM Command Description�� �� ��__
Access Relational Database—establishes a path to a named
relational database

ACCRDB

__
Begin Bind—starts the process of binding a package into a
relational database

BGNBND

__
BNDSQLSTT Bind SQL Statement—binds an SQL statement to a package__

End Bind—indicates that no more Bind commands will be sent
and the package is now complete

ENDBND

__
Drop Package—deletes a named package from a relational
database

DRPPKG

__
Rebind—rebinds an existing package into the same relational
database

REBIND (optional)

__
Prepare SQL Statement—binds, dynamically, a single SQL
statement to a section number in an existing package in a
relational database

PRPSQLSTT

__
Execute SQL Statement—executes a previously bound SQL
statement

EXCSQLSTT

__
Execute SQL Statement Immediate—executes the single SQL
statement sent with the command

EXCSQLIMM

__
Describe SQL Statement—requests definitions of either the
columns of the result table of a prepared/bound statement and
the names and labels of those columns or to obtain definitions of
the input parameters of a prepared statement

DSCSQLSTT

__
Describe Table Statement—describes the columns of a table and
the names and labels of those columns

DSCRDBTBL (optional)

__
Open Query—requests start of Query process (corresponds to a
DCL CURSOR, OPEN, and possibly multiple Fetches)

OPNQRY

__
CNTQRY Continue Query—resumes a Query that was interrupted__
CLSQRY Close Query—terminates a Query (corresponds to a CLOSE)__
RDBCMM Commit Transaction—commits the current unit of work__

Rollback Transaction—rolls back (backs out) the current unit of
work

RDBRLLBCK

__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 71

The DRDA Processing Model The DRDA Processing Model and Command Flows

__
DDM Command Description�� �� ��__

EXCSQLSET (optional) Propagate special registers__
Interrupt RDB Request—interrupts the DDM command
currently executing.

INTRDBRQS

__��
�
�
�

��
�
�
�

��
�
�
�

The commands that the SQLAM handles do not define SQL, but several DDM commands carry
SQL statements. The SQLAM recognizes SQL statements but does not define the syntax and
semantics of those statements.

4.3.1.12 Relational Database Manager

If the relational database manager supports interrupts, it may return a unique token identifier,
interrupt token. If an interrupt token is returned, the relational database manager must be able to
accept this token on another connection and interrupt the current DDM command executing on
the original connection.

For detailed definitions and descriptions of the functions the relational database managers
perform, see the product documentation for relational database management products.

4.3.1.13 CCSID Manager

The CCSIDMGR allows the specification of a single-byte character set CCSID to be associated
with character typed parameters on DDM command and DDM reply messages. The CCSID
manager level of the application requester is sent on the EXCSAT command and specifies the
CCSID that the application requester will use when sending character command parameters.
The application server will return its CCSID manager level on EXCSATRD specifying the CCSID
the application server intends to use for character reply message parameters.

Support for the CCSID manager is optional. The following CCSIDs are required when
supporting the CCSID manager: 500, 819, and 850. Other CCSIDs are optional. The following
CCSID values cannot be sent by the application requester: 65535 and 0. The application server
can reply using the following values:

0 The CCSIDMGR is not supported.

65535 The CCSIDMGR is supported but the CCSID value sent by the application
requester is not supported.

value The CCSID of the application server. This value must be one of the required
CCSIDs if the application requester sent one of the required CCSIDs. This is to
guarantee the application requester and application server will communicate if the
application requester is only capable of supporting the required CCSIDs.

If the CCSIDMGR is not supported, the default value is 500.

4.3.1.14 XA Manager

The XA manager is the system component responsible for providing a datastream architecture
that will allow the application requester to perform the operations involved in protecting a
resource. It provides the application requester with the following functionality:

1. SYNCCTL(New Unit of Work)

Registering a transaction with the DBMS and associating the connection with the
transaction’s XID.

2. SYNCCTL(End Association)

72 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows The DRDA Processing Model

Ending a transaction with the DBMS and dissociating the connection from the transaction’s
XID.

3. SYNCCTL(Prepare to Commit)

Requesting the application server to prepare a transaction for the commit phase.

4. SYNCCTL(Commit)

Committing the transaction.

5. SYNCCTL(Rollback)

Rolling back the transaction.

6. SYNCCTL(Return Indoubt List)

Obtaining a list of prepared and heuristically completed transactions at the application
server.

7. SYNCCTL(Forget)

Asking the application server to forget about a heuristically completed transaction.

The XAMGR on the application requester uses enhanced DDM SYNCCTL objects to convey the
requests required to protect a resource to the application server. While the XAMGR on the
application server conveys the response to the application requester using enhanced DDM
SYNCCRD objects. The connection is always protected by a presumed rollback protocol in case
of network failure or general errors.

Part 1: Database Access Protocol 73

The DRDA Processing Model The DRDA Processing Model and Command Flows

4.3.2 The DRDA Processing Model Flow

Figure 4-1 (on page 75) illustrates DRDA’s usage of DDM. It relates distributed relational
database management processing to the models described in the DDM Reference. The following
discussion relates the terminology and concepts of DRDA to those of the DDM documentation
through this illustration.

The sync point manager17 in Figure 4-1 (on page 75) is only used if the local operating
environment for the application requester and application server support sync point managers.

17. The sync point manager is only supported in Distributed Unit of Work.

74 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows The DRDA Processing Model

[18]

Application

Application Requester
[1]

[2]

[3]

[15]

[16]

[17]

Agent
- AGENT

SQL Appl.
Mgr. - SQLAM

Comm. Mgr.
- CMNxxxx

CCSID Mgr.
- CCSIDMGR

Dictionary
- DICTIONARY

Supervisor
- SUPERVISOR

Resync Mgr.
- RSYNCMGR

XA Manager
- XAMGR

XA Manager
- XAMGR

Security Mgr.
- SECMGR

Sync Point Mgr.
- SYNCPTMGR

Directory
- DIRECTORY

Application Server

CCSID Mgr.
- CCSIDMGR

Dictionary
- DICTIONARY

Supervisor
- SUPERVISOR

Resync Mgr.
- RSYNCMGR

Security Mgr.
- SECMGR

Sync Point Mgr.
- SYNCPTMGR

Directory
- DIRECTORY

[6]

[7]

[8]

[9]
[10]

[11]

[12]

Comm. Mgr.
- CMNxxxx

Agent
- AGENT

SQL Appl.
Mgr - SQLAM

Relational
DB Mgr. RDB

Relational
Database

[4]

[5]

[13]

[14]

Net; Fac;

Net; Fac;

/

Figure 4-1 DRDA Processing Model

Note: The DDM Reference discusses in detail each of the managers represented in Figure 4-1. See the
term referenced in the box (for example, SQLAM in the SQL Application Manager box) for the
detailed DDM description.

Part 1: Database Access Protocol 75

The DRDA Processing Model The DRDA Processing Model and Command Flows

The individual products, not DDM or DRDA, define the interfaces (syntax, semantics) between
any of the managers or other entities shown in Figure 4-1 (on page 75).

DDM also groups managers into servers. In Figure 4-1 (on page 75), all of the managers in the
source system form a server, which DRDA calls the application requester. In the target system,
all of the managers form a server, which DRDA calls the application server.

The numbered paragraphs that follow correspond to the numbers in Figure 4-1 (on page 75) and
are a description of the interaction between each of the entities in the figure. The figure contains
all of the model entities that would exist for an application to access a relational database using
DRDA. This example assumes that the application’s SQL statements and associated host
variables were previously bound to the remote relational database. Some managers
initiate/maintain the connection, others are used by other managers for specific kinds of
services, and the rest are an integral part of the path between the application and the relational
database.

1. The application contains some set of SQL statements that have been previously bound to
the remote relational database. The source code for the application is transparent to the
location of the relational database to which it is bound. This transparency is achieved
when the application uses ISO Database Language SQL. If the application uses SQL that is
not part of ISO SQL, some loss of location or relational database manager transparency can
result.

The SQL application manager (SQLAM) represents the remote relational database to the
application. The entities that are between the application and the relational database
provide the transparency between the differences in hardware architectures, operating
systems, and relational database management products.

An application calls the SQL application manager whenever the application requests
services through the SQL interface. Neither DDM nor DRDA defines this interface, or set of
interfaces, even though some portions of the DDM commands in DRDA resemble parts (or
all) of these interfaces.

Calls to this interface are generated by the program preparation process and can be
different in each implementation. This interface is composed of input variables from the
application, SQL statements or identifiers of previously bound SQL statements, and an
area that is to be used to return completion information to the application. These
parameters and their associated values vary across the different implementations of SQL
application managers (SQLAMs).

In any implementation of an application requester, any manager in the model can access
the security manager to determine the user’s authority to access any of the local resources
(for example, the communications facilities). Neither the DDM architecture nor DRDA
completely defines the interface to the security manager.

2. The SQL application manager (SQLAM), when called, processes the request by checking
the parameters, translating the valid requests, and packaging the requests into zero18 or
more DDM commands and associated parameters and command data.

The SQLAM uses functions modeled in the dictionary manager to determine the
codepoints (each DDM command, command parameter, data object, reply message, and

18. It is possible to have situations where no DDM commands would be generated for an application’s request. In this case, the
application requester would usually provide a proper response to the application. An example would be the application
attempting another FETCH operation after the cursor has been closed.

76 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows The DRDA Processing Model

reply message parameter has a unique codepoint) to be used in the DDM commands.

As it constructs the commands, it also does any required data representation conversion of
command parameter values. Unless overridden by the DDM CCSID manager
(CCSIDMGR),19 the character parameter values are sent in CCSID 500.

Command data objects are constructed using codepoints that either imply the format of
the data or explicitly contain a description of the data that follows. No data representation
conversion is required for command data objects because the target SQLAM is the receiver
of the data object and, therefore, is responsible for any conversion required.

It then passes these DDM commands to the source agent.

3. The agent receives the DDM commands, parameters, and data objects from the SQL
application manager and routes them to the DDM communications manager. It also keeps
track of each individual command, as it does for all commands passed to the DDM
communications manager, until a reply to the command is received.

4. The DDM communications manager (that is, CMNAPPC, CMNSYNCPT, CMNTCPIP, and
so on)20 receives the DDM command and creates a DDM data stream structure that
contains the command.

For each DDM command, a request data stream structure (RQSDSS) is created and the
command placed in it. A request correlation identifier is generated and placed in the data
stream to be used to associate this request with request data, replies to the request, and
data returned for the request. The request correlation identifier is returned to the agent.

For each DDM command data object received, an object data stream structure (OBJDSS) is
created, and the command data object is placed in it. If the command data object is to be
encrypted, the communications manager accesses the security manager to encrypt the
command data object, creates an encrypted object data stream structure (Encrypted
OBJDSS), and places the encrypted command data object in it. Each OBJDSS can contain
multiple command data objects, but they must all be part of the same command. The
request correlation identifier of the associated RQSDSS is also placed in OBJDSS. The agent
provided the request correlation identifier.

The DDM communications manager then invokes the local system’s network facilities.

5. The network facilities of the application requester send the commands, parameters, and
data objects, as data, through the network to their counterpart network facilities on the
application server system. The network facilities in the two systems are responsible for
keeping the network connection intact between the application requester and application
server as well as for error recovery for the network facilities.

6. Upon receipt of the data at the application server’s network facilities, the DDM
communications manager invokes the local network facilities to receive the data.

In any implementation of an application server, any manager that is modeled, must access
the security manager to determine the user’s authority to access any of the local resources

19. This CCSIDMGR is not supported in DRDA Remote Unit of Work.
20. The communications manager at both ends of the communications must match. For example:

• If the network connection is an LU 6.2 protected conversation, CMNSYNCPT is used.

• If the network connection is an LU 6.2 unprotected conversation, CMNAPPC is used.

• If the network connection is a TCP/IP connection, CMNTCPIP is used.

Part 1: Database Access Protocol 77

The DRDA Processing Model The DRDA Processing Model and Command Flows

(for example, the relational database). Neither the DDM architecture nor DRDA
completely defines the interface to the security manager.

7. The DDM communications manager decomposes the data stream it received as data. It
breaks the data stream up into the correct commands, parameters, and data objects. If the
data objects are encrypted, the communications manager accesses the security manager to
decrypt the data objects. It passes them on to the agent along with the request correlation
identifier. The commands, parameters, data objects, and correlation identifier are the exact
ones that the application requester’s DDM communications manager sent.

8. The agent receives the information from the communications manager and validates the
target parameter of the command as well as any other command parameter and value
codepoints in them. If any errors are found, reply messages are created and returned to the
DDM communications manager.

If the command appears to be valid, it is packaged with all data objects (if any) for the
same command (all with the same request correlation identifier) and passed to the SQL
application manager for processing.

9. The SQL application manager (SQLAM) accepts the commands, parameters, and data
objects from the agent and transforms them into one or more calls to the relational
database manager it supports. DRDA does not define the interfaces of the relational
database manager.

The SQLAM is responsible for transforming any descriptors in the command data it
received to the interfaces that the relational database manager expects. It is also
responsible for converting numeric data from the application requester’s representation to
the application server’s representation when these are different. Because the relational
database handles tagged character data,21 the application server passes this data directly to
the relational database without conversion.

The SQLAM also carries out any required data representation conversion of command
parameter values. Unless overridden by the DDM CCSID manager (CCSIDMGR), the
character parameter values are received in CCSID 500.

10. The relational database manager receives the requests from the SQLAM, translates
character data if appropriate, and processes the requests against the relational database
that was indicated when the application server was established for this application’s use.

It generates any answer set data, return codes, and error data, according to its product
specification, and returns these to the SQLAM. DRDA does not define these responses and
associated data.

11. The SQL application manager (SQLAM) transforms the responses and associated data into
DDM command and reply data objects and reply messages. If any of the reply data objects
require explicit descriptions, then the SQLAM creates them, reversing the process of step 9.
Data representation conversion is not normally required because the source SQLAM is the
receiver of the data object and, therefore, is responsible for all data representation
conversions on the reply data objects. An exception is when the target has specifically
agreed to send data using a particular representation to reduce conversion overhead at the
source.

21. Tagged character data is data with coded character set identifiers (CCSIDs) associated with it.

78 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows The DRDA Processing Model

The target SQLAM sends any reply data objects and reply messages on to the agent. The
SQLAM also performs data representation conversion as required for reply message
parameter values that are sent. Unless overridden by the DDM CCSID manager
(CCSIDMGR), the character parameter values are sent and received in CCSID 500.

12. The agent receives the reply data objects and reply messages from the SQLAM and returns
them with the correct request correlation identifier to the DDM communications manager.

13. The DDM communications manager receives the command reply data object or reply
message from the agent and creates a DDM data stream structure that contains the reply.

For each reply message (if any), a reply data stream structure (RPYDSS) is created and the
reply message placed in it. Each RPYDSS can contain multiple reply messages, but they
must all correspond to the same request. The request correlation identifier of the original
request is also placed in the data stream to be used to associate this reply message with
that request.

For each reply data object (if any), an object data stream structure (OBJDSS) is created and
the reply data object placed in it. If the reply data object is encrypted, the communications
manager accesses the security manager to encrypt the reply data object, creates an
encrypted object data stream structure (Encrypted OBJDSS), and places the encrypted
reply data object in it. Each OBJDSS can contain multiple reply messages, but they must all
correspond to the same request. The request correlation identifier of the original request is
also placed in the data stream to be used to associate this reply data object with that
request.

The DDM communications manager then invokes the local system’s network facilities to
pass the reply back to the application requester system.

14. The application server’s network facilities send the replies, as data, through the network
back to its counterpart network facilities on the application requester system.

15. Upon receipt of the data from the application server’s network facilities, the
communications manager invokes the local network facilities to receive the data.

16. The DDM communications manager decomposes the data stream it received as data. Then
it breaks the stream up into the correct reply data objects and reply messages. If the reply
data objects are encrypted, the communications manager accesses the security manager to
decrypt the reply data objects. It passes them on to the agent along with the request
correlation identifier.

17. The agent passes the reply data objects and reply messages to the SQLAM.

18. The SQLAM converts any DDM architecture required format data representation on reply
message parameters to the SQLAM required representation.

The SQLAM is responsible for transforming descriptors it received to the interfaces
expected by the application that made the request. Neither DDM architecture or DRDA
defines the actual form and format of the data/response to the application.

The SQL application manager (SQLAM) does any data representation conversion on reply
data objects to the representation that the application requires from the representation of
the application server. In this case, the SQLAM does both numeric and character
conversions.

Part 1: Database Access Protocol 79

The DRDA Processing Model The DRDA Processing Model and Command Flows

4.3.3 Product-Unique Extensions

In a DRDA environment, which contains multiple operating environment products and/or
multiple relational database management products, the participating DRDA implementations
must use only those code points described in the DDM Reference, according to the limitations
and rules that DRDA describes.

Each DRDA implementing product is required to implement the DDM EXCSAT and ACCRDB
commands (for application requesters) and EXCSATRD and ACCRDBRM replies (for
application servers) as described in Section 4.4.1 (on page 84). Once the application requester
and application server have been introduced by this architected exchange and recognize each
other as a specific product pair, they can use, in addition to the DDM commands listed in Table
4-1 (on page 71), product-unique codepoints in further exchanges between the application
requester and application server.

DRDA implementing products cannot, however, implement unique extensions that are in
conflict with DRDA. For example, a product unique extension in a product that allows the start
of a new bind (package create) before a previous bind process had been completed would not be
allowed because it contradicts the DRDA rules for DRDA BIND flows.

The DDM Reference discusses additional detail on product extensions, specifically under the
DDM terms EXTENSIONS, CODPNT, CODPNTDR, and SUBSETS.

4.3.4 Diagnostic and Problem Determination Support in DRDA

The DRDA-defined flows contain facilities that are available to end users and customer support
organizations to assist in performing problem determination procedures.

The network facilities that support the application requester and application server might
provide many facilities that furnish diagnostics and do problem determination procedures.
These facilities can be used to supplement the DRDA facilities. For example, the LU 6.2 network
facilities are described in SNA LU 6.2 Reference: Peer Protocols (SC31-6808, IBM). Additional
facilities may be provided in specific communications product implementations that enhance
the problem determination capabilities in a particular system, application server, or application
requester.

The application requester and the application server exchange information that is intended to
identify the application requester and the application server to each other when the remote
relational database is accessed. This information includes the products being used, the levels of
those products, the operating systems being used, the name of the system each is executing in,
and the name of the execution thread in each system.

To the extent that this information is passed using values that end users and service personnel
easily understand/recognize, the tasks associated with problem determination and diagnostic
handling are simplified. Therefore, each implementing product is required to accurately reflect
its environment by assigning values in the parameters that carry this information as character
strings that are encoded using Coded Character Set Identifier (CCSID) 500, unless overridden by
the DDM CCSID manager (for additional information see the CDRA Reference). Each
application requester and application server is required to store (for potential use later) the
information the other has provided.

Character Data Representation Architecture (CDRA) defines CCSID values to identify the
codepoints used to represent characters, and the character data conversion of these codepoints,
as needed, to preserve the characters and their meanings.

Every command that an application requester sends to an application server has a number of
architected reply messages that the application server can return to the application requester.

80 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows The DRDA Processing Model

Each reply message contains data that can be used in problem determination procedures. The
return of a particular reply message can, by itself, facilitate problem determination procedures.

Each reply message also contains a severity code and, potentially, server diagnostics. The
severity codes values (see DDM term svrcod) are in the description of each of the reply messages.
The application server returns the data in the server diagnostic information field (see DDM term
srvdgn). The application requester handles the data only as a byte string. The application
requester must store it in its entirety for potential use later. The application server implementing
product provides the definition of the data contained in the server diagnostic information field.
This data can differ across the different application server implementations.

In some cases, the application requester can use information in an SQLCA that one of the
architected reply data objects returned to provide facilities for problem determination
procedures. This type of support can differ across the different application requester product
implementations.

4.3.5 Intermediate Server Processing

4.3.5.1 Overview and Terminology

In general, DRDA defines the interaction between two DRDA partners, one acting as the
requester and one acting as the server. Section 2.5 (on page 45) describes the terminology to be
used when more than two systems are involved in processing a relational database management
function. This section discusses the role of a server that receives a request for a relational
database management function from another system but does not itself perform the function. To
emphasize its role as being neither the system that originates the DRDA request nor the system
that performs the relational database function, the database server is also known as an
intermediate server for the request. In this capacity, the intermediate server acts as the server
system to the requester (without distinction as to whether it is an application server or a
database server). The requested function is sent by the intermediate server to another server. In
this capacity, the intermediate server acts as the requester system to the other server. Scenarios
in which an intermediate server are involved include gateway systems and multi-tier
configurations, as described in Section 2.5. Intermediate servers are also involved in the
processing of some relational database management functions, such as the execution of a stored
procedure on one server system where the stored procedure returns one or more result sets on
another server system.

To facilitate discussion of this scenario, the following terminology applies in the case when one
or more intermediate servers is involved in the processing of a relational database management
request. The requester system that receives the request from the application is known as the
source requester, and the server system that performs the requested function is known as the
target server. Requests flow downstream from the application, through the intermediate servers,
to the target server; replies flow upstream through the same path. See below.

Requests flow downstream from application to target server:

Application -> Source Requester -> ... -> Intermediate Server -> ... ->
Target Server

Replies flow upstream from target server to application:

Application <- Source Requester <- ... <- Intermediate Server <- ... <-
Target Server

From the perspective of an intermediate server, each intermediate server has at least two
partners: an upstream requester and at least one downstream server. The upstream requester
may be the source requester or it may be another intermediate server. The downstream server

Part 1: Database Access Protocol 81

The DRDA Processing Model The DRDA Processing Model and Command Flows

may be the target server or it may be another intermediate server. The connection between the
intermediate server and its upstream requester is known as the upstream connection, and the
connection between the intermediate server and its downstream server is known as its
downstream connection. See below.

upstream downstream
connection connection

... -> Upstream -----------> Intermediate -----------> Downstream -> ...
Requester Server Server

The DRDA processing model does not specify how an intermediate server behaves beyond
describing its behavior as a server to the upstream requester and its behavior as a requester to
the downstream server. In its capacity as intermediary between its two partners, the
intermediate server must account for the differences that exist between the upstream connection
and the downstream connection. For example, the upstream connection may have an associated
SQLAM manager level or TYPDEFOVR or TYPDEFNAM that is different from what exists on
the downstream connection. It is then the responsibility of the intermediate server to ensure that
objects coming inbound on one connection are properly converted and reformatted according to
the requirements of the other connection before they are sent outbound, either flowing upstream
or downstream, on that connection.

Since the intermediate server does not itself perform the requested relational database
management function, its primary function is one of transmitting properly-transformed-and-
converted objects between its upstream requester and its downstream server. The process by
which an intermediate server sends requests downstream or sends replies upstream is also
known as hopping. The requests or replies are said to hop in from one partner and, after the
proper conversion and transformation, to hop out to the other partner. When an intermediate
server sends objects that hop out to its partner, the intermediate server is said to hop those
objects.

4.3.5.2 Examples

Below is a simple example of intermediate server processing. The example assumes that each
server has a different CCSID, indicated in the diagram generically as ebcdic, unicode, or ascii. In
the figure, the upstream requester has an EBCDIC CCSID (such as CCSID 37), the intermediate
server has a Unicode CCSID (such as CCSID 1208), while the downstream server has an ASCII
CCSID (such as CCSID 437). In this example, the downstream server has sent an SQLCARD
object, as defined by SQLAM manager level 5, with character and numeric data as specified by
the downstream server’s default TYPDEFOVR(ebcdic) and TYPDEFNAM(QTDSQL370). The
reply object is hopped out by the intermediate server according to the requirements of SQLAM
6, with character and numeric data as specified by the intermediate server’s default
TYPDEFOVR(unicode) and TYPDEFNAM(QTDSQL370).

upstream downstream
connection connection
SQLAM 7 SQLAM 5

hop-out hop-in

SQLCARD SQLCARD
... <- Upstream <------------ Intermediate <------------ Downstream <- ...

Requester Server Server

TYPDEFNAM=QTDSQLX86 TYDEFNAM=QTDSQL370 TYPDEFNAM=QTDSQL370
TYPDEFOVR=ascii TYPDEFOVR=unicode TYPDEFOVR=ebcdic
SQLAM=7 SQLAM=7 SQLAM=5

82 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows The DRDA Processing Model

Alternatively, an intermediate server may hop objects, without transformation, by using one or
more of the override objects, TYPDEFNAM, TYPDEFOVR, or MGRLVLOVR.22 See below for an
example. In this example, the downstream server has sent an SQLCARD object, as defined by
SQLAM manager level 5, with character and numeric data as specified by the downstream
server’s TYPDEFOVR(ebcdic) and TYPDEFNAM(QTDSQL370). The intermediate server
prepends the reply chain with a MGRLVLOVR object and TYPDEFOVR object to override the
intermediate server’s default values. In this case, the intermediate server does not need to
transform or convert the hop-in SQLCARD before hopping it out.

upstream downstream
connection connection
SQLAM 7 SQLAM 5

hop-out hop-in

MGRLVLOVR(SQLAM=5)
TYPDEFOVR(ebcdic)
SQLCARD SQLCARD

... <- Upstream <------------ Intermediate <------------ Downstream <- ...
Requester Server Server

TYPDEFNAM=QTDSQLX86 TYDEFNAM=QTDSQL370 TYPDEFNAM=QTDSQL370
TYPDEFOVR=ascii TYPDEFOVR=unicode TYPDEFOVR=ebcdic
SQLAM=7 SQLAM=7 SQLAM=5

See Section 7.8 (on page 410) for information about the use of TYPDEFNAM and TYPDEFOVR.

See Section 7.6 (on page 404) for information about the use of MGRLVLOVR.

22. MGRLVLOVR is not supported in SQLAM 6 and below.

Part 1: Database Access Protocol 83

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4 DDM Commands and Replies
The following sections describe the DDM commands and command replies that flow in typical
scenarios involving an application requester and an application server.23 These flows are
equivalent between an application server and a database server but are not specifically
described. The terms application requester and application server can be interchanged with an
application server and a database server unless specifically identified in the flow. Furthermore,
the general term requester may be substituted whenever a system acts as an application requester
sending requests to an application server, or as an application server sending requests to a
database server, or as a database server sending requests to another database server. The general
term server may also be substituted whenever a system acts as an application server receiving
requests from an application requester or as a database server receiving requests from an
application server or another database server. In particular, a requester or server may be an
intermediate server, as described in Section 4.3.5 (on page 81). Moreover, the MGRLVLOVR
object may be sent as a reply data object in the flows, even though it is not explicitly listed.

These sections contain flow diagrams and descriptions that show the normal or successful case,
and do not cover all possible error conditions or obscure usages. Errors and replies are
generalized rather than elaborated upon. Complete details of the commands, parameters,
command data, reply data, and error conditions/messages are available in the DDM Reference.

The usage of the underlying communications facilities is presented only when it is an integral
part of the DRDA processing.

4.4.1 Accessing a Remote Relational Database Manager

Figure 4-2 (on page 85) indicates the DDM commands and replies that flow in the normal
process of establishing a connection for remote processing of DRDA requests. This set of flows
establishes a connection from an application requester to a remote application server. After the
application requester establishes the connection and until the connection has been terminated,
either normally or abnormally, the DRDA flows can use the connection.

23. It is possible to intermix DDM commands that are not part of DRDA in with the command flows that this section discusses.
However, these commands and their potential interaction are not discussed in this document.

84 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

DRDA
(Application Requester)

DRDA
(Application Server)

EXCSAT
extnam
mgrlvlls
srvclsnm
srvnam
srvrlslv

Exchange Server Attributes)
(external name)
(manager level list)
(server class name)
(server name)
(server release level)

ACCRDB
rdbnam
rdbacccl
typedefnam
typedefovr
rdbalwupd
prddta
sttstrdel
sttdecdel
prdid
crrtkn
diaglvl

(Access Rel Database)
(RDB_NAME)
(access mgr. class)
(data type definition name)

(statement decimal delimiter)
(product-specific ID)
(correlation token)
(extended)

(data type character spec)
(RDB allow updates)
(product-specific data)
(statement string delimiter)

EXCSATRD
extnam
mgrlvlls
srvclsnm
srvnam
srvrlslv

(Reply Data Obj)
(external name)
(manager level list)
(server class name)
(server name)
(server release level)

ACCRDBRM
svrcod
typedefnam
typedefovr
srvdgn
prdid
pkgdftcst
crrtkn
usrid
srvlst

TYPDEFNAM
TYPDEFOVR
SQLCARD

(ACCRDB Reply Message)
(severity code)
(data type definition name)
(data type character spec)
(server diagnostic information)
(product-specific ID)
(default character subtype)
(correlation token)
(user ID at target system)
(server list for target system)
(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

[1]

[2]

[3]

[4]

[5]

Figure 4-2 Establishing a Connection to a Remote Database Manager

The following is a brief description of some of the parameters for the DDM commands. The
DDM Reference provides a detailed description of the parameters.

1. The application requester makes a connection which includes establishing a network
connection (described in Part 3, Network Protocols) with the application server. Part 3
discusses the protocols and commands used to establish a network connection for each of
the DRDA-supported network protocols.

After establishing the network connection, the application requester describes itself and
the types of services that it desires from the application server.

The application requester builds an Exchange Server Attributes (EXCSAT) command,
identifying what product it is, what release and modification level it is at, and what this
application requester is known as in its environment. EXCSAT also lists the level of the
communications manager, the agent, the SQLAM, the relational database manager, and
any other resource managers that the application requester requires in the manager level

Part 1: Database Access Protocol 85

DDM Commands and Replies The DRDA Processing Model and Command Flows

list. The application requester then sends the command to the application server.

The following example of the EXCSAT command shows the parameters and values that
establish the connection between an application requester and an application server.

EXCSAT(
extnam("015190/JOB39/WSDD1234")
mgrlvlls(

mgrlvl(AGENT,5)
mgrlvl(SECMGR,5)
mgrlvl(CMNTCPIP,5)
mgrlvl(SYNCPTMGR,5)
mgrlvl(SQLAM,5)
mgrlvl(CCSIDMGR,500)
mgrlvl(RDB,3))

srvclsnm("QAS")
srvnam("RCHOLDB")
srvrlslv("QSQ02011"))

• The extnam is the name of a job, task, or process that the application requester services.
It is used for diagnostic/logging purposes. In this example, it is the name of the job that
contains the execution of the application that is invoking application requester
functions on the OS/400 system.

Note: This parameter is required and must contain the name of the application requester’s
execution thread in its operating environment. It must be a name that an observer of
the operating environment can easily associate with its execution.

• The mgrlvlls is the minimum list necessary to determine that the source and target
manager levels are compatible for DRDA functions. The mgrlvlls on EXCSAT represent
the desired support that the application requester needs on the application server. In
this case, a DRDA TCP/IP application requester supports Distributed Unit of Work and
stored procedures, so it requests an agent (AGENT) at Level 5, a security manager
(SECMGR) at Level 5, a TCP/IP communications manager (CMNTCPIP) at Level 5, a
sync point manager (SYNCPTMGR) at Level 5, an SQL application manager (SQLAM)
at Level 5, and a relational database manager (RDB) at Level 3.

If the application requester is a DRDA application requester that does not support
Distributed Unit of Work but does support stored procedures, it requests an agent
(AGENT) at Level 3, an SQL application manager (SQLAM) at Level 5, a relational
database manager (RDB) at Level 3, and an SNA communications manager
(CMNAPPC) at Level 3, or a TCP/IP communications manager (CMNTCPIP) at Level
5 which requires a security manager (SECMGR) at Level 5.

If the application requester is a DRDA Remote Unit of Work application requester, it
requests an agent (AGENT) at Level 4, an SQL application manager (SQLAM) at Level
3, a relational database manager (RDB) at Level 3, and a DDM communications
manager (CMNAPPC) at Level 3, or a TCP/IP communications manager (CMNTCPIP)
at Level 5 which requires a security manager (SECMGR) at Level 5.

Note: At an intermediate server, additional manager-level control is obtained through the
use of the MGRLVLOVR object. See Section 4.3.5 (on page 81).

The value specified for the CCSID manager (CCSIDMGR) indicates what CCSID the
application requester uses when sending character typed command parameters. In this
example, the application requester is sending character command parameters in CCSID
500. If the application server supports the CCSID manager, the CCSID used by the
application server for character reply parameters is returned by the application server

86 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

on EXCSATRD. In this example, the CCSID sent by the application requester is one of
the required CCSIDs (500, 819, or 850) and, assuming the application server supports
the CCSID manager, the application server must return a required CCSID.

Note: The mgrlvlls parameter is required and must include the AGENT, SQLAM, RDB, and
a communication manager. The CCSID manager (CCSIDMGR) is optional and is
included as an example of the negotiation for this function.

The table below, Table 4-2, summarizes the types of read and write access that can be
accomplished based on the mgrlvlls specified on EXCSAT and EXCSATRD.24

Table 4-2 Access by the Minimum MGRLVLLS Parameter of EXCSAT and EXCSATRD
__

AGENT 3 4 4 5 5 5__
SQLAM 3 4 4 4 4 4__
CMNSYNCPT 4__
SYNCPTMGR 5 7__
XAMGR 7__
RUOW Access with Single-RDB Access yes no no no no no__
DUOW Access with Multi-RDB Read and
Single-RDB Write

no no yes yes yes yes

__
DUOW Access with Multi-RDB Read and
Multi-RDB Write

no no yes yes yes yes

__
DUOW Access with Multi-RDB Read, Multi-
RDB Write, and Resource Sharing

no no no no yes yes

__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Note: A blank entry indicates that the DDM manager is not applicable for the requested level.
CMNAPPC, CMNTCPIP, and CMNSYNCPT are mutually exclusive. If CMNTCPIP is
specified, SECMGR at Level 5 must be specified.

• The srvclsnm identifies the application requester. In this case, QAS indicates that the
application requester is the DB2 for OS/400 product. Server class names are assigned
for each product involved in DRDA. Server class names for products involved in
DRDA can be found at http://www.opengroup.org/dbiop/index.htm.

Note: The srvclsnm term in the DDM Reference defines all the values that have been
assigned for srvclsnm. This parameter is required.

• The srvnam is the name of the application requester. This is not the name of the end
user but of the server itself. It is for diagnostic/logging purposes. In this case, the name
corresponds to the system name of the OS/400 in which the application requester is
executing.

Note: This parameter is required and must contain the name of the application requester’s
system identifier in the network of application requester and application server. It
must be a name that an observer of the network containing the system can easily
associate with the system in which the application requester is executing.

• The srvrlslv is the current release level of the application requester and is for
diagnostic/logging purposes. Because this level applies to all managers at the
application requester site (or at the application server site on the EXCSATRD), it cannot

24. The DRDA support for stored procedures, new bind options, and server list require SQLAM Level 5.

Part 1: Database Access Protocol 87

DDM Commands and Replies The DRDA Processing Model and Command Flows

be specific to the DRDA service provider. It is considered optional in DRDA. DRDA has
provided the prdid parameter on ACCRDB and ACCRDBRM to identify the release
levels of the application requester and the application server.

In this example,25 the application requester has identified itself as the DB2 for OS/400
product, running at Version 2, Release 1, Modification Level 1.

2. The application server receives the EXCSAT command, builds the reply data object,
Exchange Server Attributes Reply Data Object (EXCSATRD), and stores the data received
on the EXCSAT command for potential diagnostic/service uses. The application server
does not verify or check values in extnam, srvclsnm, srvnam, or srvrlslv.

The application server places the levels of all managers requested in the reply data along
with the set of information that describes the application server and its environment.

The following example shows the parameters and values that an EXCSATRD reply data
object uses.

EXCSATRD(
extnam("SYSD9876")
mgrlvlls(

mgrlvl(AGENT,5)
mgrlvl(SECMGR,5)
mgrlvl(CMNTCPIP,5)
mgrlvl(SYNCPTMGR,5)
mgrlvl(SQLAM,5)
mgrlvl(CCSIDMGR,500)
mgrlvl(RDB,3))

srvclsnm("QDB2")
srvnam("STLDB2A1")
srvrlslv("DSN03010"))

• The extnam is the name of a job, task, or process (in this example, SYSD9876) that the
application server is running under. It is for diagnostic/logging purposes. In this
example, it is the name of the job that contains the execution of the application server
functions and DB2 for MVS. The rules for assigning a value to this parameter are the
same as in the application requester.

• The application server returns the mgrlvlls, which indicate the levels of the requested
(and only those requested) managers that the application server is capable of
supporting. The values in this example (an agent at Level 5; a DDM communications
manager, CMNTCPIP at Level 5; a security manager at Level 5; an SQL application
manager at Level 5; and a relational database manager at Level 3) indicate that the
application requester and application server can communicate with DRDA flows, using
DDM commands, at the level the application requester requested.

The application server returns the CCSID in which it sends character reply parameters
using the CCSID manager level. This CCSID must be one of the required CCSIDs (500,
819, or 850) if the application server supports the CCSID manager and a required
CCSID was received on EXCSAT. If the CCSID mgrlvl sent by the application requester
is not a required CCSID mgrlvl and the application server cannot accept the CCSID

25. The version, release, and modification levels defined in this example for srvrlslv are for example purposes only and do not
represent actual product levels.

88 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

mgrlvl, the application server returns the EXCSATRD with a −1 CCSID mgrlvl
specification.

Note: At an intermediate server, additional manager-level control is obtained through the
use of the MGRLVLOVR object. See Section 4.3.5 (on page 81).

If the application requester cannot accept the CCSID mgrlvl26 received from the
application server, the conversation is terminated.

• The srvclsnm, srvnam, and srvrlslv have the same semantics as their counterparts on the
EXCSAT command and the rules for assigning values to these parameters are the same
as those at the application requester.

In this example, the application server has identified itself as a DB2 for OS/390
product, running at Version 5, Release 1, Modification Level 0 and executing on system
STLDB2A1.

3. When the application requester receives the reply data from the EXCSAT command, it
determines if the level of support that a target relational database manager can provide is
sufficient to meet its needs. If not, the application requester terminates the conversation
and returns an exception to the application. The application requester does not verify or
check the values in the extnam, srvclsnm, srvnam, or srvrlslv except those that are needed to
determine if the application requester and application server are a specific product pair
(see Section 4.3.3 (on page 80) for details).

These returned values are stored for potential diagnostic/service uses. If the levels of
support are sufficient, the application requester creates the Access Relational Database
(ACCRDB) command and sends it to the application server.

• rdbnam contains the name of the desired relational database.

• The rdbacccl parameter indicates that the process will use DRDA flows for processing a
user application’s SQL requests.

• The typdefnam parameter indicates the data type to data representation mapping
definitions, which the application requester will use. Refer to Table 5-19 (on page 364)
for details.

• The typdefovr parameter indicates the desired Coded Character Set Identifiers (CCSIDs)
in the identified data type to data representation mapping definitions. Refer to Table 5-
19 (on page 364) for details.

• The rdbalwupd parameter specifies whether the application server should allow updates
to occur. An update operation is defined as a change to an object at the relational
database, such that the change to the object is under commit/rollback control of the
work that the application requester initiates.

When the application requester specifies that no updates are allowed, the application
server must enforce this specification and, in addition, must not allow the execution of
a commit or rollback that the DDM command EXCSQLIMM or EXCSQLSTT requested.

• The prddta parameter specifies product-specific information27 that the application
requester conveys to the application server if the srvclsnm of the target is not known at

26. The mgrlvlls defined in this example are for example purposes only and do not imply the product in the example provides
support for the specified managers or levels.

Part 1: Database Access Protocol 89

DDM Commands and Replies The DRDA Processing Model and Command Flows

the time ACCRDB is issued and the application requester must convey such product-
specific information.

• The sttstrdel and sttdecdel parameters respectively specify the statement string delimiter
and decimal delimiter for dynamic SQL.

• The prdid is the current release level of the application requester and is for
diagnostic/logging purposes. The prdid should be unique amongst the DRDA
implementers.

This parameter is required and must be of the form PPPVVRRM where:

ppp A three-character product identifier.

Refer to http://www.opengroup.org/dbiop/index.htm for the current list of product
identifiers.

vv dd, where d is an integer and 0 ≤ d ≤ 9 (for single digit version numbers, pad on
the left with 0).

RR dd, where d is an integer and 0 ≤ d ≤ 9 (for single digit release numbers, pad on
the left with 0; 00 means no release number associated with the level of the
product).

M d, where d is an integer and 0 ≤ d ≤ 9 (0 means no modification level associated
with the level of the product).

• The diaglvl parameter can request standard or extended diagnostics if an SQL statement
fails. If set to extended, the requester is requesting the server provide a non-null
FD:OCA SQLDIAGGRP group with the FD:OCA SQLCAXGRP group. The
SQLDIAGGRP group contains additional diagnostics information on why the SQL
statement failed. If the parameter is not specified or the default value of standard is
specified, the SQLDIAGGRP must be returned as a null group.

• The crrtkn parameter contains a correlation token. This parameter is optional in DRDA
Remote Unit of Work, and is required in DRDA Distributed Unit of Work and DRDA
Level 3. See Section 11.3.2.2 (on page 495) for details on setting the value of this token.

• The armcorr parameter indicates the ARM correlator to associate with all requests for
this connection. This parameter is new in DRDA Level 5.

The application requester then sends the command to the application server.

4. When the application server receives the ACCRDB command, it verifies the command and,
assuming everything is acceptable, establishes a connection to the relational database
manager of the relational database requested, through a new instance of the SQLAM.

It then generates an Access RDB complete reply message (ACCRDBRM) that indicates a
normal completion of this request and provides the application requester with additional
information about the application server.

• The typdefnam parameter indicates the type to representation mapping definition that
the application server uses. Refer to Chapter 5 (on page 223) for details.

27. An application server must ignore product-specific information unless received from a like application requester.

90 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

The application server also indicates its desired CCSIDs in the identified data type to
data representation mapping definitions in the typdefovr parameter. Refer to Chapter 5
(on page 223) for details.

• The application server returns the prdid parameter, specifying the current release level
of the application server.

• The crrtkn parameter contains a correlation token. See Part 3, Network Protocols for the
format and settings of the token value in the specific network environments. The crrtkn
parameter is sent on the ACCRDBRM only if the crrtkn parameter is not received on the
ACCRDB.

• The srvlst parameter contains a weighted list of network addresses or TCP/IP host
names that can be used to access the RDB. The list can be used by the requester to work
load balance future connections. It may also be used by the server to indicate one or
more alternate failover locations where the database is replicated. This parameter is
new in DRDA Level 3. Details of the server list and examples are in the DDM
Reference.

The application server may optionally return an SQLCARD reply data object containing an
SQL warning and/or server-specific connect tokens after the ACCRDMRM reply message.

If the application server finds any abnormal conditions, it would generate and return a
DDM reply message, indicating the error condition and supporting diagnostic information.
The application server also would not complete the connection to the relational database
manager and the relational database.

5. The application server sends the ACCRDBRM or another DDM reply message to the
application requester. The application requester then determines if there is a proper
connection established to the requested relational database. If the typdefnam or typdefovr
parameters on an ACCRDBRM cannot be supported or the DDM reply message indicates
another error, then the error is indicated to the application in the appropriate way. The
errors will be indicated in the SQLCA for SQL errors or according to rules of the specific
product for non-SQL errors, and the conversation will be deallocated. If an SQLCARD
reply data object follows the ACCRDBRM reply message, the application requester may
return the SQL warning and/or server-specific connect tokens contained therein to the
application through the SQLCA.

If the ACCRDBRM indicates no problems have been discovered, the application requester
will continue (either return to the application or begin working with the connected
application server) normal processing.

The application and the remote relational database have now completed the connection.
SQL requests, through defined flows, can now be executed in the application server
environment on behalf of the application in the application requester environment.

4.4.2 DRDA Security Flows

This section describes the DDM commands and replies for flowing security information in
DRDA when not using the underlying communications manager for authentication. DRDA
provides flows for the security mechanisms listed in Table 4-3 (on page 92). (For example, DCE
security, user ID only, user ID and password, and so on.)

Part 1: Database Access Protocol 91

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.2.1 Identification and Authentication Security Flows

The flows in this section indicate the DDM commands and replies that flow in the normal
process of establishing a connection while using DRDA-defined flows to perform identification
and authentication using various security mechanisms. The actual security mechanism that is in
use is dependent on the results of the negotiation during ACCSEC/ACCSECRD flows. The
security mechanism in use also defines the parameter values during SECCHK/SECCHKRM
flows.

Table 4-3 Security Mechanism to secmec Value Mapping
__

Security Mechanism Secmec Value__
Kerberos kersec__
Plug-in plgin__
DCE dcesec__
User ID only usridonl__
User ID and password usridpwd__
Encrypted user ID and password eusridpwd__
User ID and encrypted password usrencpwd__
User ID and password substitute usrsbspwd__
User ID, password, and new password usridnwpwd__
User ID and strong password substitute usrssbpwd__
Encrypted user ID, password, and new password eusridnwpwd__
Encrypted user ID and security-sensitive data eusriddta__
Encrypted user ID, password, and security-sensitive data eusrpwddta__
Encrypted user ID, password, new password, and security-sensitive data eusrnpwddta__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

More information on the security mechanisms is available in Chapter 10 (on page 471).

Figure 4-3 (on page 93) shows the Kerberos or DCE security flows:

92 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

DRDA
(Application Requester)

DRDA
(Application Server)

EXCSAT
mgrlvlls
.
.
.

Exchange Server Attributes)
(manager level list)

ACCRDB
.
.
.

(Access Rel Database)

(Access Security Data)
(security manager name)
(security mechanism)

ACCSEC
secmgrnm
secmec

(Security Check)
(security manager name)
(security mechanism)
(security token)

SECCHK
secmgrnm
secmec

SECTKN

EXCSATRD
mgrlvlls
.
.
.

(Reply Data Obj)
(manager level list)

ACCSECRD
secmec

KERSECPPL

(Access Security Reply Data)
(security mechanism)
(Kerberos Security Principal)

SECCHKRM
svrcod
secchkod
srverrno
srvdgn

SECTKN

(SECCHK Reply Message)
(severity code)
(security check code)
(error number)
(server diagnostics)
(security token)

[1]

[2]

[3]

[4]

[6]

[5]

[7]

Figure 4-3 Kerberos or DCE Security Flow

The following is a brief description of some of the parameters for the DDM commands. The
DDM Reference provides a detailed description of the parameters.

1. The application requester specifies an AGENT at Level 3 and a SECMGR at Level 5 on
EXCSAT when requesting the use of DRDA flows for identification and authentication. The
AGENT and SECMGR requires the ACCSEC and SECCHK commands to flow prior to
ACCRDB. Neither command can flow after ACCRDB. The other mgrlvl values that are
required for establishing a connection are described in Section 4.4.1 (on page 84).

EXCSAT(
mgrlvlls(

mgrlvl(AGENT,3)
mgrlvl(SECMGR,5)
.
.
.))

Part 1: Database Access Protocol 93

DDM Commands and Replies The DRDA Processing Model and Command Flows

2. The application server receives the EXCSAT command and builds a reply data object with
an AGENT at Level 3 and a SECMGR at Level 5 indicating it can operate at that security
level. The application server sends the EXCSATRD reply data to the application requester.

EXCSATRD(
mgrlvlls(

mgrlvl(AGENT,3)
mgrlvl(SECMGR,5)
.
.
.))

3. The application requester receives the EXCSATRD reply data which indicates the
application server supports an AGENT and SECMGR level that allows negotiation for the
type of identification and authentication mechanisms through the ACCSEC command.

The secmec parameter indicates the type of security mechanism that will be used. The
secmec values per security mechanism mapping are defined in Table 4-3 (on page 92).

In this example, the application requester passes a Kerberos (kersec) or DCE security
(dcesec) security mechanism in the secmec parameter.

4. The application server receives the ACCSEC command. It supports the security
mechanism identified in the secmec parameter, so the application server reflects the same
security mechanism back to the application requester in the secmec parameter on the
ACCSECRD reply data object.

If the application server does not support the security class specified in the secmec
parameter on the ACCSEC command, the application server returns a list of security
mechanism values that it does support in the secmec parameter on the ACCSECRD reply
data object.

If Kerberos (kersec) is returned as a supported security mechanism inside the secmec within
the ACCSECRD reply data object, regardless of whether kersec was requested on the
original ACCSEC command, it is highly recommended but nonetheless not mandatory that
the server also return its Kerberos principal in a KERSECPPL reply data object following
the ACCSECRD. This is because the Kerberos principal for the server is required by the
application requester for generating the encrypted ticket that it later needs to send to the
server. If the server does not return its Kerberos principal to the application requester in
reply to the ACCSEC command, the application requester may not have an alternate
means of obtaining this information and may therefore be unable to make use of the
Kerberos security mechanism even though it is supported by both parties.

5. The application requester receives the ACCSECRD reply data object and calls security
services for the mechanism in use, to generate the security token required for security
processing. The actual process to generate the token is not specified by DRDA. The Generic
Security Services-Application Programming Interface (GSS-API) is a security API for
generating a DCE security token. A DRDA implementation might use another interface,
but the generated token must be equivalent to the token generated by GSS-API.

If the values received in the secmec parameter on ACCSECRD do not match the values sent
in the secmec parameter on ACCSEC, the application requester either uses one of the
security mechanisms received on ACCSECRD or the application requester should drop the
connection and return an SQLCA to the application with an SQLSTATE value of X’0A501’
indicating a connection could not be established.

94 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

The application requester passes the security token in a SECTKN object with the SECCHK
command. The secmec parameter value identifies the security mechanism in use.

6. The application server receives the SECCHK command and uses the security context
information to perform end-user identification and authentication checks.

The actual process to perform the security checks using the security context information is
not specified by DRDA. The application server may either process the values itself or it
may call a security resource manager interface to process the values.

Assuming authentication is successful, the application server generates a SECCHKRM
reply message to return to the application requester. The secchkcd parameter identifies the
status of the security processing. The SECTKN carries security context information to
perform identification and authentication of the application server. There will not be a
SECTKN returned for user ID and password mechanism and user ID only mechanism.

A failure to authenticate the end user or successfully pass the security checks results in
breaking the chain if other commands are chained to the SECCHK command. The svrcod
parameter must contain a value of 8 or greater if the chain is broken.

7. The application requester receives the SECCHKRM reply message. Assuming
authentication at the application server is successful, the application requester verifies the
security token received in the SECTKN.

Assuming security processing is successful, the application requester sends an ACCRDB
command to the application server.

If security processing fails, the application requester might attempt recovery before
returning to the application. For example, if the security context information in the security
token has expired as indicated by the secchkcd value, the application requester could
request new security context information to send to the application server. If the error
condition is not recoverable, the application requester returns an SQLCA to the application
with an SQLSTATE value of 42505 indicating a security verification failure.

Figure 4-4 (on page 96) shows the password encryption and substitution flows:

Part 1: Database Access Protocol 95

DDM Commands and Replies The DRDA Processing Model and Command Flows

DRDA
(Application Requester)

DRDA
(Application Server)

EXCSAT
mgrlvlls

(Exchange Server Attributes)
(security manager level 6)

ACCRDB (Access RDB)

Note: Depending on security
mechanism, 1 or more
sectkns may be required.

(Access Security Attributes)
(Security manager name)
(eusridpwd/eusridnwpwd/
eusriddta / eusrpwddta /
eusrnpwddta/usrencpwd/
usrsbspwd, usrssbpwd)
(Security Token)
(Encryption Algorithm)
(Encryption Key Length)

ACCSEC
secmgrnm
secmec

sectkn
encalg
enckeylen

(Security Check)
(Security manager name)
(eusridpwd/eusridnwpwd/
eusriddta /eusrpwddta /
eusrnpwddta/usrencpwd/
usrsbspwd/usrssbpwd)
(Security Token)

SECCHK
secmgrnm
secmec

sectkn

EXCSATRD
mgrlvlls

(EXCSAT Reply)
(security manager level 6)

ACCSECRD
secmec

sectkn
encalg
enckeylen

(ACCSEC Reply)
(eusridpwd/eusridnwpwd/
eusriddta / eusrpwddta /
eusrnpwddta/usrencpwd/
usrsbspwd/usrssbpwd)
(Security Token)
(Encryption Algorithm)
(Encryption Key Length)

SECCHKRM
secchkcd

(Security Check Reply)
(security return code)

[1]

[2]

[3]

[4]

[6]

[5]

[7]

Figure 4-4 Encryption and Substitution Flow

1. The application requester specifies a SECMGR at Level 7 on the EXCSAT command and
requests the use of DRDA for identification and authentication. SECMGR Level 7 is
required to support the ENCALG and ENCKEYLEN instance variables on the ACCSEC
command and the ACCSECRD reply.

2. The application server processes the EXCSAT command and builds a reply data object. If
the ENCALG and ENCKEYLEN instance variables are supported on the ACCSEC
command, SECMGR Level 7 is returned; otherwise, only security mechanisms supported
by SECMGR Level 6 can be used to authenticate.

3. The application requester processes the reply. If the SECMGR is at Level 7, the application
server supports the ENCALG and ENCKEYLEN instance variables. The application
requester builds the ACCSEC command with the desired security mechanism, encryption
algorithm, and encryption key length.

96 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

• eusridpwd, eusridnwpwd, usrencpwd, eusriddta, eusrpwddta, and eusrnpwddta

A random large number x is generated and is used to generate the connection key X
where X is equal to (gx mod n).†

• usrsbspwd for usr ID and password substitution

• usrssbpwd for user ID and strong password substitution

The application requester’s connection key is generated. The application requester’s
connection key is passed in the SECTKN object.

4. The application server processes the ACCSEC command. If the application server does not
support the requested security mechanism, it returns a list of supported mechanisms;
otherwise, the appropriate reply data is generated for the requested security mechanism.

• eusridpwd, eusridnwpwd, usrencpwd, eusriddta, eusrpwddta, and eusrnpwddta

A random large number y is generated and is used to generate the connection key Y
where Y is equal to (gy mod n).28

The application requester’s connection key is used to generate the encryption seed k
where k is equal to (Xy mod n).

• usrsbspwd and usrssbpwd

The application server’s encryption seed is generated.

The application server’s connection key is returned in the SECTKN object. The optional
SECCHKCD instance variable is returned if and only if an error is detected processing the
application requester’s SECTKN. Possible errors are wrong seed length or invalid value (a
trivial seed).

5. The application requester processes the reply. The SECCHK command is built with the
appropriate SECTKN object or objects, depending on the security mechanism.

• eusriddta

The SECTKN is built with the encrypted user ID.

• eusridnwpwd

Three SECTKNs are built. The first contains the encrypted user ID, the second contains
the encrypted password, and the third contains the encrypted new password.

• eusridpwd

Two SECTKNs are built. The first contains the encrypted user ID, the second contains
the encrypted password.

• eusnpwddta

Three SECTKNs are built. The first contains the encrypted user ID, the second contains
the encrypted password, and the third contains the encrypted new password.

† Refer to the DDM Reference, USRENCPWD, for a description of the values used to generate the Diffie-Hellman shared secret key
and the values used to encrypt and decrypt the password using DES.

28. Refer to the DDM Reference, DHENC, for a description of the values used to generate the Diffie-Hellman shared secret key and
the values used to encrypt and decrypt using DES.

Part 1: Database Access Protocol 97

DDM Commands and Replies The DRDA Processing Model and Command Flows

• eusrpwddta

Two SECTKNs are built. The first contains the encrypted user ID, and the second
contains the encrypted password.

• usrencpwd

One SECTKN is built containing the encrypted password.

• usrsbspwd

One SECTKN is built containing the substitute password.

• usrssbpwd

One SECTKN is built containing the strong substitute password.

For encryption security mechanisms, the received application server’s connection key is
used to generate the encryption seed k where k is equal to (Yx mod n). The token is
encrypted using the encryption algorithm, the encryption seed, and the encryption token
as specified by the combination of ENCALG and ENCKEYLEN parameters. For
substitution security mechanisms, the substitute is generated using the application
requester and application server seeds.

6. The application server processes the SECCHK command depending on the security
mechanism.

• eusriddta

The SECTKN is decrypted to obtain the clear text user ID.

• eusridnwpwd

Each of the three SECTKNs are decrypted to obtain the clear text user ID, password,
and new password.

• eusridpwd

Each of the two SECTKNs are decrypted to obtain the clear text user ID and password.

• eusrnpwddta

Each of the three SECTKNs are decrypted to obtain the clear text user ID, password,
and new password.

• eusrpwddta

Each of the two SECTKNs are decrypted to obtain the clear text user ID and password.

• usrencpwd

The SECTKN is decrypted to obtain the clear text password.

• usrsbspwd

The SECTKN is used to generate a substitute password.

• usrssbpwd

The SECTKN is used to generate a strong substitute password.

For encryption security mechanisms, the token is decrypted using the encryption
algorithm, the encryption seed, and the encryption token as specified by the combination
of ENCALG and ENCKEYLEN parameters. For substitution security mechanisms, the
substitute is generated using the application requester and application server seeds.

98 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

The user ID, password, and potentially a new password is authenticated by the local
security manager. The SECCHKRD is generated returning the success or failure of the
authentication.

7. If the user is identified and authenticated by the application server, the RDB can be
accessed.

For security-sensitive data encryption security mechanisms, EUSRIDDTA, EUSRPWDDTA,
and EUSRNPWDDTA, the security-sensitive objects are encrypted and decrypted using the
encryption seed and the encryption token generated during the connect processing. Refer
to Section 4.4.2.2 (on page 103) for details about data encryption.

Figure 4-5 (on page 100) shows the plug-in security flows.

Part 1: Database Access Protocol 99

DDM Commands and Replies The DRDA Processing Model and Command Flows

DRDA
(Application Requester)

DRDA
(Application Server)

EXCSAT
mgrlvlls
. . .

ACCRDB
.
.
.

.

.

.

ACCSEC
secmgrnm
secmec
plginnm (optional)
plginid (optional)

SECCHK
secmgrnm
secmec
plginnm
plginid (optional)

SECTKN

EXCSATRD
mgrlvlls
. . .

ACCSECRD
secmec
plginlst

SECCHKRM
svrcod
secchkcd
srverrno
srvdgn

SECTKN

[1]

[2]

[3]

[4]

[6]

[5]

[7]

Figure 4-5 Plug-In Security Flows

The following is a brief description of some of the parameters for the DDM commands. The
DDM Reference provides a detailed description of the parameters.

1. The application requester specifies a SECMGR at manager level 7 on EXCSAT when
requesting the use of DRDA flows for identification and authentication.

EXCSAT(
MGRLVLS(

MGRLVL(SECMGR, 7)
.
.

100 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

.))

2. The application server receives the EXCSAT command and builds a reply data object with
the SECMGR at manager Level 7 indicating it can operate at that security level. The
application server sends the EXCSATRD reply data to the application server.

EXCSATRD(
MGRLVLLS(

MGRLVL(SECMGR, 7)
.
.
.))

3. The application requester receives the EXCSATRD reply data which indicates the
application server supports a SECMGR level that allows negotiation for the type of
identification and authentication mechanisms through the ACCSEC command.

The SECMEC parameter indicates the security mechanism to use. The SECMEC values per
security mechanism mapping are defined in Table 4-3 (on page 92). Optionally, the
PLGINNM parameter may be used to indicate a preferred plug-in module to use if the
SECMEC is specified as PLGIN. The PLGINID may also optionally be used to further
identify the plug-in.

4. The application server receives the ACCSEC command. It supports the security mechanism
identified in the SECMEC parameter and returns the value in the ACCSECRD. If it also
supports the plug-in module specified in PLGINNM, then it will return a plug-in list in
PLGINLST containing a single entry whose PLGINNM is the same as in the request, and a
service principal name in PLGINPPL if applicable, and optionally the plug-in version
information in PLGINID. If no PLGINNM was received or the specified plug-in module is
not supported, then a plug-in list containing an ordered list (from highest to lowest
preference) is returned in the PLGINLST. Furthermore, the list must contain at least one
entry.

If the application server does not support or accept the security mechanism specified in the
SECMEC parameter on the ACCSEC command, or if the SECMEC is PLGIN and is
supported by the application server but the PLGINNM is unspecified or unrecognized, the
application server returns the security mechanism values that it does support in the
SECMEC parameter in the ACCSECRD object. If the SECMEC includes PLGIN, then the
ACCSECRD must also contain a PLGINLST listing the supported plug-in modules from
highest to lowest preference and there must be at least one entry.

5. The application requester receives the ACCSECRD object and chooses the first plug-in in
the PLGINLST list that it supports. The chosen plug-in generates the security token
containing the security context information required for security processing using the
associated principal name, PLGINPPL, if one was returned and the plug-in requires it.

The actual process to generate the security context information is not specified by DDM.
The application requester may either generate the security context information, or it may
call a security resource manager to generate the security context information.

The application requester passes the security context information in a SECCHK command
with a SECTKN object. For information about the plug-in security context information, see
PLGINSECTKN in the DDM Reference.

6. The application server receives the SECCHK and SECTKN and uses the values to perform
end-user authentication and other security checks.

Part 1: Database Access Protocol 101

DDM Commands and Replies The DRDA Processing Model and Command Flows

The actual process to verify the security context information is not specified by DDM. The
application server may either process the security context information itself or it may call a
security resource manager to process the security context information.

The application server generates a SECCHKRM to return to the application requester. The
SECCHKCD parameter identifies the status of the security processing. A failure to
authenticate the end-user results in the SVRCOD parameter value being set to be greater
than WARNING. Furthermore, if a token is generated by the application server or the
security resource manager in conjunction with the failure, then it will be passed back to the
application requester in a SECTKN object.

7. The application requester receives the SECCHKRM.

Assuming security processing is successful, the application requester sends a data access
starting command to the application server.

SECCHKCD values indicating a failure processing the security information (for example,
bad context information, expired context information) require that the security be retried or
the network connection be terminated. If a token is received in the SECTKN, then it will be
provided to the security resource manager to processing, regardless of the SECCHKCD
value.

If security processing fails, the application requester might attempt recovery before
returning to the application. For example, if the context information has expired, the
application requester could request new security context information to send to the
application server. If the error condition is not recoverable, the application requester returns
to the application with an error indicating a security verification failure.

102 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.2.2 Security-Sensitive Data Encryption Security Flow

Example: Application Requester and Application Server Processing

The flows in this section show an example of the DDM commands and replies that flow during
the execution of an SQL statement, when security-sensitive FD:OCA objects are encrypted.

Figure 4-6 shows an example of the security-sensitive data encryption security flows for
application requester and application server processing.

DRDA
(Application Requester)

DRDA
(Application Server)

EXCSQLSTT
rdbnam
.
.

SQLDTA

EXTDTA

(Execute SQL Statement)
(RDB_NAME)

(SQL application variable data)
[]

(Externalized FD:OCA data)
[]

encrypted

encrypted
TYPDEFNAM
TYPDEFOVR
SQLDTARD

EXTDTA

(Override for typdefnam)
(Override for typdefovr)
(SQLDTARD Reply Data Obj)

[]
(Externalized FD:OCA data)

[]

encrypted

encrypted

[1]

[2]

[3]

Figure 4-6 Security-Sensitive Data Encryption: Example for Requester Server Processing

The following is a discussion of the operations and functions the application requester and the
application server perform for encrypting and decrypting security-sensitive data. See the
EXCSQLSTT flow for a detailed description of the command flow. This section provides a brief
description of some of the parameters for the DDM commands. See the DDM Reference for a
detailed description of the parameters. For details of the list of security-sensitive data, see the
DDM Reference, EDTASECOVR.

1. After the application requester and the application server have established the proper
connection (Security Mechanism — EUSRIDDTA or EUSRPWDDTA or EUSRNPWDDTA
with 56-bit DES, described in Figure 4-4 (on page 96)), a prebound SQL statement
referenced in a package in the remote relational database is executed. The application
requester that is acting as the agent for the application performing the execute SQL
statement function creates the Execute SQL Statement command.

The application requester puts any application variable values and their descriptions, if
any, in the SQLDTA command data object. For each input host variable that is a LOB data
type, the application requester places an FD:OCA placeholder in SQLDTA and the
corresponding value bytes are sent in an EXTDTA following the SQLDTA. The application
requester encrypts the DSS carrier for SQLDTA and EXTDTA FD:OCA objects using the
encryption seed and the encryption token generated during connect processing.

The application requester sets the dsstype, Encrypted OBJDSS to indicate that the object
encapsulated in the DSS is encrypted.

2. The application server receives and processes the EXCSQLSTT command. The application
server decrypts the encrypted security-sensitive objects using the encryption seed and the
encryption token.

Part 1: Database Access Protocol 103

DDM Commands and Replies The DRDA Processing Model and Command Flows

The application server creates SQLDTARD if any data is to be returned by the application
server. For each output host variable that is a LOB data type, an FD:OCA placeholder is
placed in the SQLDTARD and the corresponding value bytes are returned in an EXTDTA
following the SQLDTARD. The application server encrypts the DSS carrier for SQLDTARD
and EXTDTA objects using the encryption seed and the encryption token.

The application server sets the dsstype, Encrypted OBJDSS to indicate that the object is
encrypted.

3. The application requester decrypts the encrypted security-sensitive objects using the
encryption seed and the encryption token.

104 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

Example 1: Intermediate Server Processing for Security-Sensitive Objects

The flows in this section show an example of the DDM commands and replies that flow during
the execution of an SQL statement, which involves intermediate server processing for encrypted
security-sensitive data, using SECTKNOVR.

The flows described in this section are optional for intermediate server processing, when the
intermediate server choose not to decrypt and re-encrypt the security-sensitive data by the use
of the SECTKNOVR object.

Figure 4-7 shows the security-sensitive data encryption security flows for intermediate server
processing using SECTKNOVR.

DRDA
(Application Server)

DRDA
(Intermediate Server)

DRDA
(Database Server)

[2]

[4]

[3]

[5]

EXCSQLSTT
rdbnam
.
.

SQLDTA

EXTDTA

(Execute SQL Statement)
(RDB_NAME)

(SQL application variable data)
[]

(Externalized FD:OCA data)
[]

encrypted

encrypted

[1]

TYPDEFNAM
TYPDEFOVR
SQLDTARD
EXTDTA

(Override for typdefnam)
(Override for typdefovr)
(SQLDTARD Reply Data Obj)

[]
(Externalized FD:OCA data)

[]

encrypted

encrypted

EXCSQLSTT
rdbnam
.
.

SECTKNOVR

sectkn
sectkn

SQLDTA

EXTDTA

(Execute SQL Statement)
(RDB_NAME)

(Security Token Override)
[]

(security token)
(security token)
(SQL application variable data)

[]
(Externalized FD:OCA data)

[]

encrypted

encrypted

encrypted

TYPDEFNAM
TYPDEFOVR
SECTKNOVR

sectkn
sectkn

SQLDTARD

EXTDTA

(Override for typdefnam)
(Override for typdefovr)
(Security Token Override)

[]
(security token)
(security token)
(SQLDTARD Reply Data Obj)

[]
(Externalized FD:OCA data)

[]

encrypted

encrypted

encrypted

Figure 4-7 Security-Sensitive Data Encryption: Intermediate Server Processing Using SECTKNOVR

The following is a discussion of the operations and functions the application server, the
intermediate server, and the database server perform for security-sensitive data using
SECTKNOVR. See the EXCSQLSTT flow for a detailed description of the command flow. This
section provides a brief description of some of the parameters for the DDM commands. See the
DDM Reference for a detailed description of the parameters. For details on the list of security-
sensitive data, see the term EDTASECOVR in the DDM Reference.

1. After the application server and the intermediate server have established the proper
connection (Security Mechanism — EUSRIDDTA or EUSRPWDDTA or EUSRNPWDDTA)
(described in Figure 4-4 (on page 96)), a prebound SQL statement referenced in a package in
the remote relational database is executed. The application server that is acting as the agent
for the application performing the execute SQL statement function creates the Execute SQL
Statement command.

Part 1: Database Access Protocol 105

DDM Commands and Replies The DRDA Processing Model and Command Flows

If the request contains SQLDTA or EXTDTA command data, then the application server
encrypts the DSS carrier for SQLDTA and EXTDTA FD:OCA objects and sets the dsstype to
Encrypted OBJDSS to indicate that the object encapsulated in the DSS is encrypted.

2. The intermediate server receives the EXCSQLSTT command and checks the dsstype in the
DSS header to determine whether the objects are encrypted.

If the security-sensitive objects are encrypted and if the intermediate server does not want
to decrypt and re-encrypt the data, then the intermediate server generates a SECTKNOVR.
The intermediate server sends the encryption seed and the encryption token used for data
encryption in SECTKNOVR, encryption seed SECTKN first and encryption token SECTKN
second. The intermediate server encrypts the SECTKNOVR DSS using the encryption token
and the encryption seed exchanged with the downstream site.

If the intermediate server receives an encrypted SECTKNOVR along with the encrypted
object DSS and the downstream server connection has the same encryption requirements,
then the intermediate server decrypts the SECTKNOVR using the encryption token and the
encryption seed exchanged with the upstream site. The intermediate server then re-encrypts
the SECTKNOVR using the encryption token and the encryption seed exchanged with the
downstream site.

3. The database server receives and processes the EXCSQLSTT command. The database server
first decrypts the SECTKNOVR using the encryption seed and the encryption token. The
database server then decrypts the encrypted object DSS using the encryption seed in the
first SECTKN of SECTKNOVR and the encryption token in the second SECTKN of
SECTKNOVR.

If the reply contains SQLDTARD or EXTDTA reply data, then the database server encrypts
the DSS carrier for SQLDTARD and EXTDTA FD:OCA objects. The database server sets the
dsstype, Encrypted OBJDSS to indicate that the object encapsulated in the DSS is encrypted.

4. The intermediate server receives the reply data objects and determines whether the objects
are encrypted, by checking the dsstype in the DSS header.

If the security-sensitive objects are encrypted, then the intermediate server generates a
SECTKNOVR. The intermediate server sends the encryption seed and the encryption token
used for encrypting the objects in SECTKNOVR, encryption seed SECTKN first and
encryption token SECTKN second. The intermediate server encrypts the SECTKNOVR DSS
using the encryption token and the encryption seed exchanged with the upstream site.

If the intermediate server receives an encrypted SECTKNOVR along with the encrypted
reply objects, then the intermediate server decrypts the SECTKNOVR using the encryption
token and the encryption seed exchanged with the downstream site. The intermediate
server then re-encrypts the SECTKNOVR using the encryption token and the encryption
seed exchanged with the upstream site.

5. The application server receives and processes the reply data object. The application server
first decrypts the SECTKNOVR using the encryption seed and the encryption token. The
application server then decrypts the encrypted reply object DSS using the encryption seed
in the first SECTKN of SECTKNOVR and the encryption token in the second SECTKN of
SECTKNOVR.

106 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

Example 2: Intermediate Server Processing for Security-Sensitive Objects

The flows in this section show an example of the DDM commands and replies that flow during
the execution of an SQL statement, which involves intermediate server processing for encrypted
security-sensitive data, where the data is decrypted and re-encrypted according to the
requirements of the connection.

Figure 4-8 shows the security-sensitive data encryption security flows for an intermediate server
where the intermediate server decrypts and re-encrypts the data:

DRDA
(Application Server)

DRDA
(Intermediate Server)

DRDA
(Database Server)

[2]

[4]

[3]

[5]

EXCSQLSTT
rdbnam
.
.

SQLDTA
EXTDTA

(Execute SQL Statement)
(RDB_NAME)

(SQL application variable data)
(Externalized FD:OCA data)

[1]

TYPDEFNAM
TYPDEFOVR
SQLDTARD
EXTDTA

(Override for typdefnam)
(Override for typdefovr)
(SQLDTARD Reply Data Obj)
(Externalized FD:OCA data)

EXCSQLSTT
rdbnam
.
.

SQLDTA
EXTDTA

(Execute SQL Statement)
(RDB_NAME)

(SQL application variable data)
(Externalized FD:OCA data)

TYPDEFNAM
TYPDEFOVR
SQLDTARD
EXTDTA

(Override for typdefnam)
(Override for typdefovr)
(SQLDTARD Reply Data Obj)
(Externalized FD:OCA data)

Figure 4-8 Security-Sensitive Data Encryption: Example for Intermediate Server Processing

The following is a discussion of the operations and functions the application server, the
intermediate server, and the database server perform for decrypting and re-encrypting the
security-sensitive data. See the EXCSQLSTT flow for a detailed description of the command
flow. This section provides a brief description of some of the parameters for the DDM
commands. See the DDM Reference for a detailed description of the parameters. For details on
the list of security-sensitive data, see the term EDTASECOVR in the DDM Reference.

1. After the application server and the intermediate server have established the proper
connection (Security Mechanism — EUSRIDDTA or EUSRPWDDTA or EUSRNPWDDTA)
(described in Figure 4-4 (on page 96)), a prebound SQL statement referenced in a package in
the remote relational database is executed. The application server that is acting as the agent
for the application performing the execute SQL statement function creates the Execute SQL
Statement command.

If the request contains SQLDTA or EXTDTA command data, then the application server
encrypts the DSS carrier for SQLDTA and EXTDTA FD:OCA objects and sets the dsstype to
Encrypted OBJDSS to indicate that the object encapsulated in the DSS is encrypted.

2. The intermediate server receives the EXCSQLSTT command and checks the dsstype in the
DSS header to determine whether the objects in the command data are encrypted.

Part 1: Database Access Protocol 107

DDM Commands and Replies The DRDA Processing Model and Command Flows

If the security-sensitive objects are encrypted and if the intermediate server chooses not to
use SECTKNOVR, then the intermediate server decrypts and re-encrypts the data.

If the security-sensitive objects are encrypted and if the downstream server requires a
different encryption algorithm or different encryption key length, then the intermediate
server decrypts and re-encrypts the objects.

If the security-sensitive objects are encrypted and if the downstream server does not require
encryption, then the intermediate server decrypts the encrypted objects and sends the
SQLDTA and EXTDTA in clear text.

3. The database server receives and processes the EXCSQLSTT. If security-sensitive objects are
encrypted, the database server decrypts the encrypted objects. If the reply contains
SQLDTARD or EXTDTA reply data, the server encrypts the objects and sets the dsstype in
the DSS header to Encrypted OBJDSS to indicate that the object encapsulated in the DSS is
encrypted.

If encryption is not required, then the database server sends the SQLDTARD and EXTDTA
in clear text.

4. The intermediate server receives the reply data object. The intermediate server determines
whether the objects in the reply data are encrypted, by checking the dsstype in the DSS
header.

If the security-sensitive objects are encrypted and if the intermediate server chooses not to
use SECTKNOVR, then the intermediate server decrypts and re-encrypts the data.

If the security-sensitive objects are encrypted and if the intermediate server determines that
the encryption algorithm or encryption key length negotiated with the upstream server is
different, then the intermediate server decrypts and re-encrypts the objects.

If the security-sensitive objects are not encrypted and if the intermediate server determines
that the objects are to be encrypted before sending to the upstream server, then the
intermediate server encrypts the DSS carrier for the SQLDTARD and EXTDTA objects using
the encryption token and the encryption seed exchanged with the upstream site.

The dsstype in the DSS header is set to Encrypted OBJDSS to indicate that the object
encapsulated in the DSS is encrypted.

5. The application requester decrypts the encrypted security-sensitive objects using the
encryption seed and the encryption token.

108 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.2.3 Intermediate Server Processing Security Flow for Security-Sensitive Data Encryption

The flows in this section indicate the DDM commands and replies that flow during the execution
of an SQL statement, which involves intermediate server processing for encrypted FD:OCA
data. If encrypted FD:OCA objects are present, the first intermediate server is responsible for
encrypting the encryption seed and the encryption token used to encrypt the FD:OCA objects.
Every intermediate server, other than the first intermediate server, is responsible for decrypting
and re-encrypting the encryption seed and the encryption token used to encrypt the FD:OCA
objects.

Figure 4-9 shows the data encryption security flows for intermediate server processing.

DRDA
(Application Requester)

DRDA
(Application Server)
(acting as an Intermediate Server)

DRDA
(Database Server)

[2]

[4]

[3]

[5]

EXCSQLSTT
rdbnam
.
.

SQLDTA
EXTDTA

(Execute SQL Statement)
(RDB_NAME)

(SQL application variable data)
(Externalized FD:OCA data)

[1]

TYPDEFNAM
TYPDEFOVR
SQLDTARD
EXTDTA

(Override for typdefnam)
(Override for typdefovr)
(SQLDTARD Reply Data Obj)
(Externalized FD:OCA data)

EXCSQLSTT
rdbnam
.
.

SQLDTA
EXTDTA
SECTKNOVR

sectkn
sectkn

(Execute SQL Statement)
(RDB_NAME)

(SQL application variable data)
(Externalized FD:OCA data)
(Security Token Override)
(security token)
(security token)

TYPDEFNAM
TYPDEFOVR
SQLDTARD
EXTDTA
SECTKNOVR

sectkn
sectkn

(Override for typdefnam)
(Override for typdefovr)
(SQLDTARD Reply Data Obj)
(Externalized FD:OCA data)
(Security Token Override)
(security token)
(security token)

Figure 4-9 Intermediate Server Security-Sensitive Data Encryption and Decryption

1. After the application requester and the application server have established the proper
connection (Security Mechanism - EUSRIDDTA or EUSRPWDDTA with 56-bit DES,
described in Figure 4-4 (on page 96)), prebound SQL statements referenced in a package in
a remote relational database can be executed. The application requester that is acting as the
agent for the application performing the execute SQL statement function creates the
Execute SQL Statement command.

If the request contains SQLDTA or EXTDTA command data, then the application requester
encrypts the entire FD:OCA objects in the SQLDTA and EXTDTA carrier objects using the
encryption token for the 56-bit DES encryption algorithm and the encryption seed
generated from the Diffie-Hellman shared private key. The middle 8 bytes of the server’s
connection key are used as the encryption token for the DES encryption algorithm with a
56-bit encryption key string value.

Similarly, if any command data flow SQLSTT, SQLDTA, or EXTDTA, then the entire
FD:OCA objects in the SQLSTT, SQLDTA, and EXTDTA carrier objects are encrypted using
the encryption token and the encryption seed generated from the Diffie-Hellman shared

Part 1: Database Access Protocol 109

DDM Commands and Replies The DRDA Processing Model and Command Flows

private key.

2. The intermediate server receives the EXCSQLSTT command and determines whether the
FD:OCA objects in the command data are encrypted. If the FD:OCA objects are encrypted,
then the first intermediate server encrypts the encryption seed and the encryption token
used for data encryption, using the encryption token and the encryption seed generated
from the Diffie-Hellman private key shared with the upstream site. The security tokens are
sent in SECTKNOVR, encryption seed SECTKN first and encryption token SECTKN
second.

Every intermediate server, other than the first intermediate server, receives and processes
the SECTKNOVR. The intermediate server decrypts the SECTKNs in SECTKNOVR using
the encryption token and the encryption seed generated from the Diffie-Hellman private
key shared with the downstream site. The intermediate server then re-encrypts the
SECTKNs in SECTKNOVR using the encryption token and the encryption seed generated
from the Diffie-Hellman private key shared with the upstream site.

3. The application server receives and processes the EXCSQLSTT command and
SECTKNOVR. The application server first decrypts the SECTKNs in the SECTKNOVR
using the encryption seed, and the encryption token. The application server then decrypts
the encrypted FD:OCA objects using the encryption seed in the first SECTKN of
SECTKNOVR, and the encryption token in the second SECTKN of SECTKNOVR.

If the reply contains SQLDTARD or EXTDTA reply data, then the application server
encrypts the entire FD:OCA objects in SQLDTARD and EXTDTA carrier objects, using the
encryption token and the encryption seed generated from the Diffie-Hellman shared
private key. Similarly, if any reply data flows SQLDTARD, QRYDTA, EXTDTA, or
SQLDARD, then the entire FD:OCA objects in the SQLDTARD, QRYDTA, EXTDTA, and
SQLDARD carrier objects are encrypted using the encryption token and the encryption
seed generated from the Diffie-Hellman shared private key.

4. The intermediate server receives the reply data object and determines whether the
FD:OCA objects in the reply data are encrypted. If the FD:OCA objects are encrypted, then
the first intermediate server encrypts the encryption seed and the encryption token used
for data encryption, using the encryption token and the encryption seed generated from
the Diffie-Hellman private key shared with the downstream site. The security tokens are
sent in SECTKNOVR, encryption seed SECTKN first and encryption token SECTKN
second.

Every intermediate server, other than the first intermediate server, receives and processes
the SECTKNOVR. The intermediate server decrypts the SECTKNs in SECTKNOVR using
the encryption token and the encryption seed generated from the Diffie-Hellman private
key shared with the upstream site. The intermediate server then re-encrypts the SECTKNs
in SECTKNOVR using the encryption token and the encryption seed generated from the
Diffie-Hellman private key shared with the downstream site.

5. The application requester receives and processes the reply data object and SECTKNOVR.
The application requester first decrypts the SECTKNs in the SECTKNOVR using the
encryption seed and the encryption token. The application requester then decrypts the
encrypted FD:OCA objects using the encryption seed in the first SECTKN of SECTKNOVR
and the encryption token in the second SECTKN of SECTKNOVR.

110 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.3 Performing the Bind Operation and Creating a Package

Figure 4-10 indicates the DDM commands and replies that would flow in a normal DRDA bind
processing scenario. The usual result of this process is that the application requester and the
application server do the syntactic and semantic checking of the SQL statements embedded in
an application and the creation of a package at the remote relational database that binds the SQL
statements and host program variables in the application to the remote relational database. An
application can have multiple packages on multiple application servers.

DRDA
(Application Requester)

DRDA
(Application Server)

TYPDEFNAM
TYPEDEFOVR
SQLCARD

(Override for Typedefnam)
(Override for Typedefovr)
(SQLCARD Reply Data Obj)

[2]

BGNBND
rdbnam
pkgnamct

vrsnam
bndchkexs

(Begin Bind)
(RDB_NAME)
(package name and
consistency token)
(package version ID)
(bind existence checking)

[1]

pkgrplopt
pkgathopt
sttstrdel
sttdecdel

(package replacement option)
(package authorization options)
(statement string delimiter)
(statement decimal delimiter)

sttdatfmt
stttimfmt
pkgisolvl
bndcrtctl

(statement date format)
(statement time format)
(package isolation levels)
(bind checking level)

bndexpopt
pkgownid
rdbrlsopt
dftrdbcol

(bind explain option)
(package owner ID)
(RDB release option)
(default RDB collection ID)

title
qryblkctl
pkgdftcst
pkgdftcc

(a brief description)
(query block protocol control)
(default character subtype)
(package default CCSIDs)

decprc
pkgrplvrs
dgrioprl
pkgathrul
prpsttkp

BNDOPT (Bind Option)

(decimal precision)
(replace package version)
(degree of I/O parallelism)
(package authorization rules)
(prepared statement keep)

Figure 4-10 Binding and/or Package Creation (Part 1)

Part 1: Database Access Protocol 111

DDM Commands and Replies The DRDA Processing Model and Command Flows

[3]

(End Bind)
(RDB_NAME)
(package name and
consistency token)
(maximum section number)

ENDBND
rdbnam
pkgnamct

maxsctnbr

TYPDEFNAM
TYPDEFOVR
SQLCARD

(Override for Typdefnam)
(Override for Typdefovr)
(SQLCARD Reply Data Obj)

TYPDEFNAM
TYPDEFOVR
SQLCARD

(Override for Typdefnam)
(Override for Typdefovr)
(SQLCARD Reply Data Obj)

[4]

[6]

[5]

[7]

(Bind SQL Statement)
(RDB_NAME)
(package name, consistency
token, and section number)
(SQL statement number)

BNDSQLSTT
rdbnam
pkgnamcsn

sqlsttnbr
bndsttasm

TYPEDEFNAM
TYPDEFOVR
SQLSTT
TYPDEFNAM

(bind statement assumptions)
(Override for Typdefnam)
(Override for Typdefovr)
(SQL Statement)
(Override for Typdefnam)
(Override for Typdefovr)
(SQL Statement Variable
Descriptions)

TYPDEFOVR
SQLSTTVRB

Figure 4-11 Binding and/or Package Creation (Part 2)

The following is a brief description of some of the parameters for the DDM commands that this
document discusses. The DDM Reference provides a more detailed description of the
parameters.

1. After the application requester and the application server have established the proper
connection (described in Figure 4-2 (on page 85)), they can perform a bind operation. Other
flows can precede or follow the bind flow and be part of the same unit of work.

The application requester that is acting as the agent for the application performing the bind
function creates a Begin Bind (BGNBND) command, providing the name of the package
and a consistency token (used to verify that the resulting package and application are
synchronized during application execution) in the pkgnamct parameter, and desired
version ID for the package in the vrsnam parameter. A null value in the vrsnam parameter
indicates that no version ID is to be assigned for the package. The pkgrplvrs parameter can
be used to specify the version name of the package to be replaced with the package being
bound. The BGNBND command can also specify bind options that control various aspects
of bind processing at the application server.

dgrioprl is an optional parameter29 that informs the database to use I/O parallelism at the
specified degree, if available.

29. This parameter is not supported by DRDA Remote Unit of Work (SQLAM Level 3) application requesters and application
servers.

112 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

pkgathrul is an optional ignorable parameter30 that specifies which authorization ID should
be used when executing dynamic SQL in this package.

prpsttkp is an optional parameter that specifies when prepared statements are released by a
target RDB. The prepared statement is typically released when the work associated with it
is committed or rolled back.

The application requester can also send additional bind options in BNDOPT command
objects. This allows the application requester to send a bind option to the server for which
no defined DRDA parameter or value exists.

The application requester then sends the command to the application server.

2. The application server receives the BGNBND command and determines if the package
name already exists in the requested relational database. It then determines if it can
support the options that the BGNBND command passes.

If the application server finds any errors in processing the BGNBND command or the bind
options, it generates and returns a BGNBNDRM reply message (indicating that the Begin
Bind operation failed) to the application requester.

In either case, the application server creates an SQLCARD as a reply data object and
returns it to the application requester. A detailed definition of the SQLCARD is in Section
5.6.4.6 (on page 280).

The optional reply data objects TYPDEFNAM and TYPDEFOVR can be supplied to
override the representation specification supplied on the earlier ACCRDBRM. If specified,
these reply data objects apply only until the end of the current reply; for example, only for
the SQLCA being returned. See Section 5.7.1.1 (on page 363) for more details.

• If the application server returns a BGNBNDRM reply message, it always precedes the
SQLCARD reply data object.

• After the application server processes a BGNBND and returned a SQLCARD reply data
object, which indicates that bind flows can continue for the named package, it rejects
any further BGNBND commands or any other DRDA command, except BNDSQLSTT,
until ENDBND, or processing that successfully ends the unit of work. See Section
4.4.15.1 (on page 191) and Section 4.4.15.2 (on page 194) for a description of commit and
roll back processing in DRDA.

Any commands rejected for this reason receive the relational database Package Binding
Process Active (PKGBPARM) reply message.

The application server also rejects any BNDSQLSTT or ENDBND commands that do not
have the same value for the pkgnamct that appeared on the BGNBND command.

3. If the SQLCARD reply data object that the application server has returned to the
application requester indicates that the BGNBND command was not successful, the
application requester can change any of the parameters or options and send another
BGNBND command to the application server or it can return an exception to the
application that is doing the bind operation.

30. This parameter is only supported by DRDA Level 1 and DRDA Level 2 application requesters and application servers at SQLAM
Level 5.

Part 1: Database Access Protocol 113

DDM Commands and Replies The DRDA Processing Model and Command Flows

Assuming it receives a normal SQLCARD (no errors were indicated), the application
requester continues the bind process by creating and sending Bind SQL Statement
(BNDSQLSTT) commands. It creates each BNDSQLSTT command with the proper
package name, consistency token, and package section number in the pkgnamcsn
parameter, the source application statement number in the sqlsttnbr parameter, whether
there are statement assumptions in the bndsttasm parameter, and a single SQL statement in
the SQLSTT command data object. A detailed definition of the SQLSTT is in Section 5.6.4.3
(on page 277).

If the SQL statement that is being bound references any application variables, then the
SQLSTTVRB command data describes these variables. If a file reference is specified as an
input host variable, the application requester replaces the file reference variable in the
SQLSTTVRB with the underlying base LOB SQL data type. DRDA Level 4 only supports
file reference variables that the source system reads. A detailed description of the contents
of the SQLSTTVRB is in Section 5.6.2.3 (on page 257).

The optional command data objects TYPDEFNAM and TYPDEFOVR can be specified.
When specified, they override the representation specification provided on the earlier
ACCRDB command. They are effective until the end of the command or until overridden
again.

See Section 5.7.1.1 (on page 363) for more details.

• All SQL statements in an application program are input to the bind process at the
application server with some exceptions. See rule PB9 for these exceptions. The
application server determines what to do with each statement.

• The application requester must be tolerant of statements it does not understand. It
cannot fail to send the SQL statement to the application server because it does not
understand the syntax. The application requester must assign a unique non-zero
section number to each statement it does not understand. The application server will
thus be responsible for final validation of the statement. See Section 7.11 (on page 416)
for details.

For all statements, the application requester must replace program variable references
with the :H variable indicator. This is to shield the application server from program
language characteristics in the host variable syntax. The description of each referenced
host variable must appear in the SQLSTTVRB command data object in the exact order
they are referenced in the SQL statement (the SQLSTT command data object). If the
SQL statement references any host application variable more than once, it must restate
that host application variable (in the proper sequence) in the SQLSTTVRB. This
includes a program variable reference that specifies a procedure name within an SQL
statement that invokes a stored procedure. Note, however, that the stored procedure
name value flows in the prcnam parameter rather than in an SQLDTA on the
EXCSQLSTT for that SQL statement.

The original syntax of the referenced host variable is also included in the SQLSTTVRB
description of the host variable. This information is included for diagnostic purposes.

• When both command data objects are present, the SQLSTT data object must come
before the SQLSTTVRB data object.

The application requester then sends the command to the application server.

4. The application server processes the BNDSQLSTT command and creates and returns an
SQLCARD reply data object to the application requester. If the application server
successfully processed SQLSTT, then it returns a normal SQLCARD. If the application

114 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

server finds any errors, it creates and returns an SQLCARD (indicating the error) to the
application requester.

5. If the SQLCARD reply data object that is returned to the application requester indicates
that the BNDSQLSTT command was not successful, the application requester returns an
exception to the application that is doing the bind operation.

Assuming it receives a normal SQLCARD reply data object, the application requester
continues the bind process by creating and sending additional BNDSQLSTT commands to
the application server.

After the application requester has processed all BNDSQLSTT commands to its
satisfaction, it sends an ENDBND command to the application server.

6. The application server receives and processes the ENDBND command and creates an
SQLCARD reply data object. If it finds no errors, it returns a normal SQLCARD.
Otherwise, the application server indicates a single error in the SQLCARD, which is
returned to the application requester. If an error results in no package at the application
server, the application server must generate an SQLSTATE value that does not begin with
characters 00, 01, or 02. The SQLSTATE values that begin with 00, 01, and 02 imply the
package was created. All other values imply the package was not created.

7. Assuming it receives a normal SQLCARD reply data object, the application requester
returns a normal indication to the application that is doing the bind operation. The
application can then either start another bind operation, commit the unit of work to make
the changes permanent, or roll back the unit of work to back out the changes. See Section
4.4.15.1 (on page 191) and Section 4.4.15.2 (on page 194) for a description of commit and
rollback processing in DRDA.

If the SQLCARD reply data object that the application server has returned to the
application requester indicates that the ENDBND command was not successful, the
application requester returns an exception to the application that is doing the bind
operation.

Overriding the Collection ID of a Package Name

A collection31 can be used to group packages, and to provide package switching functionality
(that is, the ability to switch between packages in different collections) to applications. The
CURRENT PACKAGE PATH value, managed at the requester, is used to specify which
collections should be searched, and in what order, to find a specific package. The requester
modifies this value through the SET CURRENT PACKAGE PATH statement. The statement
should not flow to a server during bind processing. Any new or changed value for CURRENT
PACKAGE PATH is propagated to the server via the EXCSQLSET command prior to processing
the next SQL request. The server will search the list to find the first collection that contains the
specified package. When the CURRENT PACKAGE PATH is set, the server ignores the
collection ID in the request. If the CURRENT PACKAGE PATH is not set (that is, the value is the
empty string), the collection ID in the request will be used for package resolution. If the
CURRENT PACKAGE PATH value is set, but the package is not part of any collection specified
in CURRENT PACKAGE PATH, then the package will not be found (that is, the collection ID in
the request is ignored in this case).

31. Also known in some environments as a schema.

Part 1: Database Access Protocol 115

DDM Commands and Replies The DRDA Processing Model and Command Flows

Prior to sending any SQL statement to a remote RDB, the requester must ensure that its
CURRENT PACKAGE PATH special register value is reflected at the remote RDB. To update the
value at the server, the requester uses the SQL set environment command (EXCSQLSET)
specifying the new CURRENT PACKAGE PATH special register value. The server processes the
EXCSQLSET command which sets the server’s CURRENT PACKAGE PATH special register
value. When the server processes the next SQL statement, the new CURRENT PACKAGE PATH
value overrides the RDBCOLID inside any PKGNAMCSN parameter, and is used by the RDB to
resolve the package’s collection name. The CURRENT PACKAGE PATH value does not override
the collection specified as part of the PKGNAM or PKGNAMCT parameters.

116 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.4 Deleting an Existing Package

Figure 4-12 indicates the DDM commands and replies that flow during a process that intends to
drop an existing package from a relational database. The normal result of these flows is that the
identified package no longer exists at the remote relational database, so attempts to execute
statements in that package now result in error conditions.

DRDA
(Application Requester)

DRDA
(Application Server)

DRPPKG
rdbnam
pkgnam
vrsnam

(Drop Package)
(RDB_NAME)
(package name)
(version ID)

TYPDEFNAM
TYPDEFOVR
SQLCARD

(Override for Typdefnam)
(Override for Typdefovr)
(SQLCARD Reply Data Obj)

[1]

[2]

[3]

Figure 4-12 Dropping an Existing Package

The following is a brief description of some of the parameters for the DDM commands that this
volume discusses. The DDM Reference provides a detailed description of the parameters.

1. An application requester can drop a package from a relational database after the
application requester and application server have established the proper connection
(described in Figure 4-2 (on page 85)). Other commands can precede or follow the drop
package command and be part of the same unit of work.

The application requester that is acting as the agent for the application performing the
drop package function creates the Drop Package (DRPPKG) command by providing the
desired package name in the pkgnamct parameter and the version ID of the package in the
vrsnam parameter. It then sends the command to the application server.

2. The application server receives and processes the DRPPKG command and creates an
SQLCARD reply data object. If the version ID in the vrsnam parameter contains a null
value, then the only version of the package identified in the pkgnam to be dropped is the
unnamed version. If the version ID in the vrsnam parameter contains a non-null value, then
the application server drops only that version of the package indicated in the pkgnam
parameter.

If the application server finds no errors, it removes the package from the relational
database (within the scope of the unit of work) and returns a normal SQLCARD reply data
object. Otherwise, the application server indicates a single error in the SQLCARD reply
data object, which is returned to the application requester, and the package remains in the
relational database.

3. Assuming it receives a normal SQLCARD reply data object, the application requester
returns the results to the application. The application either performs other operations
within the same unit of work, which can include dropping another package, or it can
commit or roll back the unit of work. See Section 4.4.15.1 (on page 191) and Section 4.4.15.2
(on page 194) for a description of commit and rollback processing in DRDA.

Part 1: Database Access Protocol 117

DDM Commands and Replies The DRDA Processing Model and Command Flows

If the SQLCARD reply data object that the application server returns to the application
requester indicates that the DRPPKG command was not successful, the application
requester returns an exception to the application that is doing the drop operation.

118 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.5 Performing a Rebind Operation

Figure 4-13 indicates the DDM commands and replies that would flow in a normal DRDA rebind
process. The usual result of this process is that the application server rebinds a previously bound
package at the relational database to the same remote relational database.

DRDA
(Application Requester)

DRDA
(Application Server)

[1]

TYPDEFNAM
TYPDEFOVR
SQLCARD

(Override for Typdefnam)
(Override for Typdefovr)
(SQLCARD Reply Data Obj)

[2]

[3]

REBIND
rdbnam
pkgnam
vrsnam
pkgisolvl
bndexpopt
pkgownid
rdbrlsopt
bndchkexs
dftrdbcol
dgrioprl
pkgathrul

BNDOPT

(Rebind Package)
(RDB_NAME)
(package name)
(version ID)
(package isolation levels)
(bind explain option)
(package owner ID)
(RDB release option)
(bind existence checking)
(default RDB collection ID)
(degree of I/O parallelism)
(package authorization rules)
(Bind Option)

Figure 4-13 Rebinding an Existing Package

The following is a discussion of the operations and functions that the application requester and
the application server perform.

1. After the application requester and the application server have established the proper
connection (described in Figure 4-2 (on page 85)), they can perform a rebind operation.
Other flows can precede or follow the rebind flow and be part of the same unit of work.

The application requester that is acting as the agent for the application performing the
rebind function creates a Rebind Package (REBIND) command, providing the name of the
package in the pkgnam parameter and the version ID of the desired package in the vrsnam
parameter.

The application requester doing the rebind also determines certain options that the
application server rebinding the package needs. These include checking for the existence
of all the referenced database objects and the binder’s authority to access them, updating
the authorizations associated with the package being replaced to show the new owner, and
setting the desired isolation level that the application server will use when it executes the
resulting package. These are all passed as optional parameters of the REBIND command.

dgrioprl is an optional parameter32 that informs the database to use I/O parallelism at the
specified degree, if available.

32. This parameter is not supported by DRDA Level 1 application requesters or application servers.

Part 1: Database Access Protocol 119

DDM Commands and Replies The DRDA Processing Model and Command Flows

pkgathrul is an optional ignorable parameter33 that specifies which authorization ID should
be used when executing dynamic SQL in this package.

The application requester can also send additional bind options in BNDOPT command
objects. This allows the application requester to send a bind option to the server for which
no defined DRDA parameter or value exists.

The application requester then sends the command to the application server.

2. The application server receives the REBIND command and determines if the package
name already exists in the requested relational database, determines if the requested
version ID exists, and determines if it can support the options that the application
requester has passed to it.

If the application server can support the options passed, it attempts to rebind the package
to the relational database. If it successfully rebinds the package, it returns a normal
SQLCA. If any errors occur, the SQLCA indicates them, and the application server cannot
rebind the package. There is only one SQLCA indicating the error. SQLERRD3 contains
the statement number of the first error, and SQLERRD4 contains the total number of
statements with error. See Figure 5-34 (on page 281) for more about SQLERRD3 and
SQLERRD4.

In either case, the application server creates the SQLCA in an SQLCARD reply data object
and returns it to the application requester.

3. If the SQLCARD reply data object that is returned to the application requester indicates
that the REBIND command was not successful, the application requester returns an
exception to the application that is doing the rebind operation.

Assuming it receives a normal SQLCARD reply data object, the application requester
returns the results to the application. The application either performs other operations
within the same unit of work, which can include rebinding another package, or it can
commit or roll back the unit of work. See Section 4.4.15.1 (on page 191) and Section 4.4.15.2
(on page 194) for a description of commit and rollback processing introduced in DRDA.

33. This parameter is only supported by application requesters and application servers at SQLAM Level 5.

120 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.6 Activating and Processing Queries

Figure 4-14 (on page 124) and Figure 4-16 (on page 133) indicate the DDM commands and replies
that occur during normal DRDA query processing. These flows produce the desired effect
needed to satisfy application SQL statements of a DCL CURSOR, followed by an OPEN of the
cursor, and repeated FETCHs. They also accommodate the CLOSE of a cursor before or after all
the rows of the answer set have been fetched. The application requester returns the row data of
the answer set (which the application server has shipped to the application requester) to the
application as the application requests it.

The application server can send the row data of the answer set grouped into blocks containing
varying or fixed number of rows34 of data to the application requester per a single query request,
depending on options established for the query processing. A single row of data is a special case
of a fixed number of rows. For details on the description of query blocks and how they are used
in the fixed row and limited row query processing protocols, see the terms QRYBLK,
QRYBLKCTL, FRCFIXROW,35 FIXROWPRC,36 and LMTBLKPRC in the DDM Reference. Also
see the rules for Section 7.21 (on page 433).

If connection is between an application server and database server, any new or changed special
register settings must be sent using the EXCSQLSET command prior to activating or processing
queries. The EXCSQLSET command is recommended to be chained with the next SQL-related
command.

The EXCSQLSET command requires package name and consistency token parameters, but no
section number parameter, as it is not bound into a package. Support for the SET CURRENT
PACKAGE PATH statement is contingent on support of the EXCSQLSET command, as this
value is propagated from a requester to a database server (possibly through intermediate
servers) using the EXCSQLSET command.

Requesting Describe Information

When activating a query, describe information can be requested to be returned as reply data. A
light describe, a standard describe, or an extended describe may be requested. Refer to
SQLDAGRP for details on the types of describe data that can be returned. The default on the
open query is not to return any describe data.

The following sections describe the various flows that show how the application server returns
row data of the answer set to the application requester and how the application requester
requests more row data of the answer set from the application server, if it is available.

34. A block containing a fixed number of rows is limited to a single row in DRDA Remote Unit of Work.
35. Term defined as FRCSNGROW in DDM Level 3 documentation.
36. Term defined as SNGROWPRC in DDM Level 3 documentation.

Part 1: Database Access Protocol 121

DDM Commands and Replies The DRDA Processing Model and Command Flows

Query Instances

Consider the following scenarios involving stored procedure calls with result sets.

• Scenario 1: Repetitive Stored Procedure Calls

Application
Call STPA -> package DB1.TEST.STPA

OPEN C1 -> section entry 10
Call STPA -> package DB1.TEST.STPA

OPEN C1 -> section entry 10

• Scenario 2: Nested Stored Procedure Calls

Application
Call STPA -> package DB1.TEST.STPA

OPEN C1 -> section entry 10
Call STPA -> package DB1.TEST.STPA

OPEN C1 -> section entry 10

Each scenario above involves only a single application source. The cmdsrcid value used for each
scenario serves only to identify the corresponding application source for a command. All OPEN
SQL statements within each scenario map to a single query which is identified by the cmdsrcid as
specified on the OPNQRY command.

The result of the second attempt to open cursor C1 in each example will vary. In some
implementations, an error may be reported stating the cursor is already open, while in others,
the cursor C1 from the previous stored procedure call may be implicitly closed to allow the
subsequent open to succeed for the same cursor. Similar situations can occur with nested UDFs.
Regardless, with the growing trend of applications exploiting stored procedures with result sets
and UDFs, these situations can only become more common.

In order to allow a cursor to be opened again after the same cursor is already open, DRDA
introduces the concept of a query instance whereby each time a cursor is opened, a unique copy
or instance of the query is created. Note that, as mentioned earlier, the cmdsrcid is only used in
identifying a query from an application source, but not a particular instance of the query. The
query instance identifier is a value that gets generated by the server and returned to the
application requester when the query is opened. The value of a query instance identifier is
unarchitected by DRDA, the only requirement being it identifies the unique query instance. As
such, an open cursor is no longer uniquely identified just by its pkgnamcsn and cmdsrcid values.
Instead, the pkgnamcsn, the cmdsrcid, and the query instance identifier are required for all
subsequent cursor operations (including the describe SQL statement operation and optionally
the execute SQL statement for a positioned delete or update) in order to uniquely identify not
only the query, but the instance thereof corresponding to the open cursor.

When a subsequent open invocation is performed on the same cursor, even though the
pkgnamcsn and cmdsrcid values used have not changed compared to the previous open, the
current open request will be successful, because the query instance identifier that gets generated
for this particular open call will be different, thereby distinguishing this query instance from the
previous one. This is the mechanism used by DRDA to support multiple open query instances
for the same cursor. For more information, refer to rules SN3, SN8, SN10, and SN11 in Section
7.14 (on page 421).

In the case of an EXCSQLSTT or EXCSQLIMM command for a positioned DELETE/UPDATE
SQL statement, the cmdsrcid for the command is used in conjunction with the cursor name as
specified on the SQL statement text for uniquely identifying the query. The query instance
identifier, which is optional if only a single query instance exists for the section, then uniquely

122 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

identifies the instance of the query that corresponds to the referenced cursor. It should be noted
that the pkgnamcsn specified on such an EXCSQLSTT or EXCSQLIMM command identifies the
DELETE/UPDATE SQL statement as opposed to the query itself.

Duplicate Cursors

A duplicate cursor is a cursor that gets opened even though another query instance thereof
already exists as a result of a previous open on the same cursor, all within a single invocation of
an application or stored procedure.

Consider the following scenario involving an application or stored procedure:

Application/Stored procedure
OPEN C2 -> section entry 10
OPEN C2 -> section entry 10

In this example, within a single invocation of an application or stored procedure, a second
attempt is made to open cursor C2 when a query instance for this cursor already exists; that is,
cursor C2 is already open. If this second open is successful, another instance of cursor C2 is
created and it is considered a duplicate of the first cursor C2. Contrast this with either of the 2
scenarios in the previous section where the second instance of cursor C1 is not a duplicate cursor
of the first cursor C1 since the second open takes place in a different invocation of the stored
procedure.

For compatibility, the optional dupqryok parameter can be specified on an OPNQRY command to
indicate to a server whether it should allow opening a query for a duplicate cursor. If the server
is requested to open a query for a duplicate cursor but is not allowed to do so as per the setting
of the dupqryok parameter, it must return a QRYPOPRM reply message in accordance with rule
QI2 in Section 7.21.2.1 (on page 440).

Part 1: Database Access Protocol 123

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.6.1 Fixed Row Protocol

Figure 4-14 indicates the DDM commands used in the fixed row protocol query processing
flows.

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[4]

[3]

OPNQRY
rdbnam
pkgnamcsn

qryblksz
cmdsrcid

qryblkctl
qryrowset
dupqryok
qryclsrls
qryclsimp

(Open Query)
(RDB_NAME)
(package name, consistency
token, and section number)

(query block size)
(command source identifier)

(query block protocol control)
(query rowset size)
(duplicate query allowed)
(query close lock release)
(query close implicit)

[1]

TYPDEFNAM
TYPDEFOVR
SQLDTA

EXTDTA

(override for typdefnam)
(override for typdefovr)
(SQL application variable data)
(exclusively if there is LOB
input variable data)
(Externalized FD:OCA data)

(Continue Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(command source identifier)
(query block size)
(number of fetch rows)

CNTQRY
rdbnam
pkgnamcsn

cmdsrcid
qryblksz
nbrrow
qryscrorn
qryrownbr
qryrowsns
qryblkrst
qryrtndta
qryrowset
qryinsid

OUTOVR

(query scroll orientation)
(query row number)
(query row sensitivity)
(query block reset)
(query return data)
(query rowset size)
(query instance identifier)
(exclusively if LOB output
variable formats to be
overridden)
(Output Override Descriptor)

RDBUPDRM
OPNQRYRM

svrcod
qryprctyp
sqlcsrhld
qryattscr
qryattsns
qryattupd
qryinsid
qryblkfct
qryblktyp
srvdgn

(RDB Update Reply Message)
(Open Query Reply Message)
(severity code)

TYPDEFNAM
TYPDEFOVR
QRYDSC

QRYDTA

EXTDTA
RDBUPDRM

(override for typdefnam)
(override for typdefovr)
(Query Answer Set Desc
Reply Data Object)

(Query Answer Set Data
Reply Data Object)
(exclusively if there is
LOB output variable data)
(Externalized FD:OCA data)
(RDB Update Reply Message)

(query attribute for sensitivity)
(query attribute for updatability)
(query instance identifier)
(query blocking factor)
(query block type)
(server diagnostic information)

(query protocol type)
(hold cursor position)
(query attribute for scrollability)

Figure 4-14 Fixed Row Protocol Query Processing (Part 1)

124 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

[5]

[n+1]

(Continue Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(command source identifier)
(query block size)
(number of fetch rows)

CNTQRY
rdbnam
pkgnamcsn

cmdsrcid
qryblksz
nbrrow
qryscrorn
qryrownbr
qryrowsns
qryblkrst
qryrtndta
qryrowset
qryinsid

pkgnamcsn

qryinsid
qryclsrls

OUTOVR
or
CLSQRY

(query scroll orientation)
(query row number)
(query row sensitivity)
(query block reset)
(query return data)
(query rowset size)
(query instance identifier)

(package name, consistency
token, and section number)
(query instance identifier)
(query close lock release)

(exclusively if LOB output
variable formats to be
overridden)
(Output Override Descriptor)

(End Query Reply Message)
(override for typdefnam)
(override for typdefovr)

[n]

ENDQRYRM
TYPDEFNAM
TYPDEFOVR
SQLCARD
RDBUPDRM
or
TYPDEFNAM
TYPDEFOVR
SQLCARD

(SQLCARD Reply Data Obj)
(exclusively for non-scrolling
multi-row fetches without LOBs)
Query Set Answer Data Reply
Data Object)

SQLCARD
or

QRYDTA

ENDQRYRM
TYPDEFNAM
TYPDEFOVR

(End Query Reply Message)
(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

(RDB Update Reply Message)
(exclusively for CLSQRY)

Figure 4-15 Fixed Row Protocol Query Processing (Part 2)

The following is a discussion of the operations and functions that the application requester and
the application server performs.

When dealing with scrollable or rowset cursors, the explanation assumes that no qryrowset37

parameter is specified on any OPNQRY command. For an example of how to use this parameter,
refer to Section 4.4.6.2 (on page 133). For more information on scrollable cursors, refer to the
Scrollable Cursor Overview description in Appendix B (on page 655).

Here is a brief description of some of the parameters for the DDM commands. The DDM
Reference provides a detailed description of the parameters.

37. The support for qryrowset on OPNQRY and EXCSQLSTT applies only to non-rowset, scrollable cursors that are not dynamic-
sensitive (QRYATTSNS is not equal to QRYSNSDYN). Otherwise, it is ignored. If used, it is equivalent to performing the
specified number of single-row fetches across the network. Using it on these commands can provide a more efficient use of the
network.

Part 1: Database Access Protocol 125

DDM Commands and Replies The DRDA Processing Model and Command Flows

1. After the application requester and the application server establish the proper connection
(described in Figure 4-2 (on page 85)), an application can send an OPEN CURSOR request to
the application requester. The application requester that is acting as the agent for the
application performing the open cursor function creates an Open Query (OPNQRY)
command providing the proper package name, consistency token, and section number in
the pkgnamcsn parameter. The application requester also indicates to the server via the
optional dupqryok parameter whether it should allow opening a query for a duplicate cursor.
The optional cmdsrcid parameter uniquely identifies the source of the command, which in
this case is a query. The application requester also provides the query block size (the size of
the query blocks that the application server can return) that it desires in the qryblksz
parameter. The qryblkctl parameter specifies whether fixed row query protocols38 must be
forced on the opened database cursor. If the query being opened does not contain this
parameter, then the application server selects the query protocol to be used as specified in
the package (see qryblkctl in Figure 4-10 (on page 111)). For the fixed row query protocol,
the qryrowset is a parameter on the OPNQRY command that allows the requester to specify
the return of a rowset with the OPNQRYRM. This parameter applies only to scrollable,
non-sensitive dynamic, non-rowset cursors (QRYATTSCR is TRUE, QRYATTSNS is not
QRYSNSDYN, QRYATTSET is FALSE). For these cursors, qryrowset specifies that a DRDA
rowset is to be returned with the OPNQRYRM (see Appendix B (on page 655) for more
information about DRDA rowsets). For all other cursors, the parameter is ignored and no
data is returned with the OPNQRYRM. This example assumes that the qryrowset parameter
is not specified. To see an example of how the qryrowset parameter is used, refer to Section
4.4.6.2 (on page 133).

The optional qryclsrls parameter specifies whether read locks held by the cursor are to be
released when the query is closed. The optional qryclsimp parameter specifies for a non-
scrollable cursor whether the server should close the query implicitly when there are no
more rows (SQLSTATE 02000).

The application requester places any input variables from the application in the SQLDTA
command data object and sends the command and data to the application server. For each
of the input variables that are of a LOB SQL data type, the following occurs:

• If a LOB locator, the locator is sent with the SQLDTA object as a LOB locator DRDA
type.

• If LOB data, the application requester creates an FD:OCA placeholder for the data in the
SQLDTA and creates an EXTDTA object to contain the LOB value bytes obtained from
memory.

• If LOB file reference variable, the application requester creates an FD:OCA placeholder
for the data in the SQLDTA and creates an EXTDTA object to contain the LOB value
bytes obtained from the referenced file.

The application requester sends the OPNQRY command, the SQLDTA object, and the
associated EXTDTA objects, to the application server in the order listed, with EXTDTAs
flowing in the same order that their corresponding host variables were specified by the
application.

If the application data is not in the representation declared at ACCRDB, then the optional
objects TYPDEFNAM and TYPDEFOVR must be supplied. This will allow the application

38. Also known as single row query protocols.

126 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

server to correctly interpret the data that the application supplied. This override applies to
all the data that follows the override specification until either another override is
encountered or until the end of the command is reached. It is effective for data flowing from
the application requester to the application server.

Note: The block size specified in the qryblksz must be equal to or greater than 512 bytes and
equal to or less than 10M bytes. If not, the application server returns the VALNSPRM
reply message and the application server does not execute the command.

The optional rtnsqlda parameter controls/specifies whether describe information is returned
or not; if not specified, no describe information is returned. The optional typsqlda parameter
requests light, standard, or extended column descriptive information to be returned on the
open query reply. The rtnsqlda parameter is not a required parameter because the QRYDSC
object provides enough row-level information needed to parse the query block and return
the data values to the application. If the application requires more descriptive information,
the rtnsqlda and typsqlda can be specified to provide additional descriptive information such
as column names, and user data type names other than the FD:OCA triplet of the base data
type provided in the QRYDSC. The descriptive information is returned in the SQLDARD as
reply data.

2. The application server receives and processes the OPNQRY command. The server
determines that a fixed number of rows are to be returned per request because one of the
following is true:

• The application can update the rows or delete the rows through the cursor instance.

• The cursor is scrollable and has sensitivity attributes that prevent blocking.

• The cursor has the rowset attribute and can make multi-row fetches.

If the cursor is declared with rowset positioning, the qryattset parameter is returned on the
OPNQRYRM. If the cursor is scrollable, the qryattscr parameter is returned on the
OPNQRYRM.

The application requester might not have been aware of the update capability of this cursor
instance.

If the application server successfully opens the indicated cursor, it creates an OPNQRYRM
reply message which can optionally be preceded by an RDBUPDRM reply message as per
the UP rules in Section 7.18 (on page 428). The qryinsid parameter on the OPNQRYRM reply
message uniquely identifies the instance of the query. If the server chooses to impose a
blocking factor on the query which limits the number of rows that can be blocked at a time
without influence from the application requester on the OPNQRY command, the qryblkfct
parameter will contain the blocking factor. If there is a warning SQLCA returned from the
relational database, an SQLCARD reply object will be built and will follow the
OPNQRYRM. If the query returns any LOB columns, then the application server must select
the FIXROWPRC if the application server indicates that output overrides may be sent with
each CNTQRY command. The application server also generates an FD:OCA data descriptor
of the row data in the QRYDSC reply data object that follows either an OPNQRYRM or the
OPNQRYRM/SQLCARD reply sequence.

The application server then generates an FD:OCA data descriptor that describes each
returned row. The application server places the FD:OCA data descriptor of the row data in
the QRYDSC reply data object and sends it to the application requester. Section 5.5.3.1 (on
page 247) gives a detailed definition of the QRYDSC.

If the data retrieved from the relational database is not in the representation declared at
ACCRDBRM time, then the optional reply data objects TYPDEFNAM and TYPDEFOVR

Part 1: Database Access Protocol 127

DDM Commands and Replies The DRDA Processing Model and Command Flows

must be supplied. These reply data objects will allow the application requester to correctly
interpret the data that the database management system supplied. This override applies to
all the data that follows the override specification. For user data defined by this command,
the overrides stay in effect until the data is exhausted or the cursor is closed. The override
remains in effect for any user data returned by CNTQRY commands. The override does not
apply to an SQLCARD following an ENDQRYRM sent in response to CNTQRY. This
override is in effect for data flowing from the application server to the application requester.

• The application server sends the QRYDSC reply data object. The QRYDSC must follow
the OPNQRYRM reply message and if present, a warning SQLCARD.

• QRYDSC contains the description of an SQLCA and the row data. The application
server sends the SQLCA with each row of data in the QRYDTA reply data object. This
indicates any condition that can be present as a result of the row retrieval. See Section 5.3
(on page 232) for detail on QRYDSC.

• In response to an OPNQRY command, if the application server is not going to send the
QRYDSC reply data object, then a DDM error reply message must be the first or only
DSS in the reply chain. For those reply messages that require an SQLCARD, the
SQLCARD reply data object, indicating the condition, follows the reply message in the
reply chain that is sent.

• In response to an OPNQRY command for a query that is currently suspended
(previously opened and has not been terminated), if the application server is unable to
generate a unique qryinsid for this query instance, it returns a QRYPOPRM reply
message as the first or only object in the reply chain.

If the qryrowset parameter applies to the cursor (in particular, is not a rowset cursor) and is
specified on the OPNQRY command, the server prepares to return a DRDA rowset of the
specified size to the requester. Otherwise, no data rows are returned with the OPNQRY
command. Refer to Appendix B (on page 655) for details regarding when the qryrowset
parameter applies. This example assumes that the qryrowset parameter is not specified on
the OPNQRY, so no data rows are returned at this time. To see an example of how the
qryrowset parameter on the OPNQRY and EXCSQLSTT is used, refer to Section 4.4.6.2 (on
page 133).

Depending on the value of the rtnsqlda and typsqlda parameters on the open query, an
SQLDARD data can be generated to provide descriptive information related to the low-level
row data described in the QRYDSC and returned in the QRYDTA. The level of describe
information returned is identified by the value of the typsqlda parameter.

3. The application requester receives the OPNQRYRM or OPNQRYRM/SQLCARD reply
message and QRYDSC reply data object from the application server and indicates to the
application that open processing was successful.

If the application specified an SQLDA to be used for the FETCH, then the application
requester may create an OUTOVR object to send to the application server as command data
for the CNTQRY command. The OUTOVR object is not required if there are no externalized
LOB data columns in the row, but may be optionally sent by the application requester.39 If
multi-row fetch is requested, then all rows are fetched using the same SQLDA.

39. This is true for all SQLTYPEs that require server resolution of compatible data types. LOB SQLTYPEs are the only such at this
time.

128 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

If any externalized LOB data columns are in the row and the application wishes to receive a
LOB column in a form other than as data, then the application requester must create an
OUTOVR to send to the application server. The application server uses the overriding
OUTOVR to determine the format of the data returned. If no OUTOVR is sent with the
CNTQRY command, the application server fetches the data using the last OUTOVR sent
with a CNTQRY command for this query, or if none has been sent, it uses the QRYDSC
returned with the OPNQRYRM.

Note: At any time after the application requester has sent the OPNQRY command and the
application server has successfully processed it, and before the application server has sent
an ENDQRYRM reply message, the application requester can send a Close Query
(CLSQRY) command with the correct package name, consistency token, and section
number in the pkgnamcsn parameter to the application server.

If the application server processes the CLSQRY command successfully, it terminates the
query and sends the application requester an SQLCARD reply data object indicating that
it has closed the query.

If it has already terminated (or not opened) the query, the application server sends a
QRYNOPRM reply message to the application requester indicating the query is not open.

If the application requester receives a reply message indicating an error occurred, it notifies
the application of an error condition.

When the application requests the first row or rows (if multi-row fetches) from the
application requester, the application requester creates a Continue Query (CNTQRY)
command with the same value for pkgnamcsn that it supplied on the corresponding
OPNQRY command and sends CNTQRY and the optional OUTOVR object to the
application server. The optional cmdsrcid parameter uniquely identifies the source of the
command, which in this case is a query. The mandatory qryinsid parameter is then used to
uniquely identify the instance of the query in use. The application requester reflects the
application requested scrolling options and multi-row fetch operation in the qryscrorn,
qryrownbr, qryrowsns, qryblkrst, qryrtndta, and qryrowset parameters. If the qryattset parameter
identifies a rowset cursor, the qryrowset must be specified on the CNTQRY. When
processing a rowset cursor, flexible blocking is used. See Section 7.21.1.1 (on page 433) for
detail on flexible blocking.

The application requester can supply a different value in the qryblksz parameter.

4. The application server receives the CNTQRY command and the OUTOVR, if present. It
processes the OUTOVR to create an SQLDA for passing to the relational database for use
when fetching the row or rows. It retrieves the first row or rows of the answer set, places it
in a QRYDTA reply data object with an SQLCA preceding each row, and sends it to the
application requester. The row or rows returned depend on the multi-row fetch and
scrolling parameters sent on CNTQRY, as well as the presence of externalized LOB data in
the row.

For multi-row fetch, the requester must provide a statement-level SQLCA to the
application. For rowset cursors, the server returns the statement-level SQLCA for the rowset
for each QRYDTA that contains the rows in the rowset. The row-level SQLCAs in the
QRYDTA are set to null because the fetch for a rowset cursor is an atomic operation and
only one SQLCA is returned to the application. For non-rowset cursors, only row-level
SQLCAs are returned in the QRYDTA.

39. These parameters are not supported in DRDA Level 1.

Part 1: Database Access Protocol 129

DDM Commands and Replies The DRDA Processing Model and Command Flows

If any externalized LOB columns are in the row being retrieved, data will be returned as
follows. All LOB locators are returned in the QRYDTA object. Each LOB column is
represented by an FD:OCA placeholder in the QRYDTA and the LOB value bytes are
returned in an EXTDTA object following the QRYDTA. If more than one EXTDTA is
returned, they are returned in the order that their corresponding FD:OCA placeholders
occur in the QRYDTA object. This reply chain can optionally be followed by an
RDBUPDRM reply message as per the UP rules in Section 7.18 (on page 428).

See Section 5.5.3.1 (on page 247) for a detailed definition of QRYDTA.

If the server sends any QRYDTA objects, then each QRYDTA is either an exact query block
or a flexible query block, according to the server’s requirements or preferences. The rules for
these two Block Formats (BF) are given in Section 7.21.1.1 (on page 433). If the server is
using exact blocking rules to generate the QRYDTA(a) to contain the query data, then:

• If a single row of the answer set data cannot be contained in a single query block of the
exact size specified in the qryblksz parameter, then it will span two or more query blocks.
If the last block is not full, it is truncated at the end of the data and is returned as a query
block shorter than the specified qryblksz parameter (a short block).

• A row that is larger than one query block flows in multiple query blocks, each of which
is a QRYDTA DSS object exactly conforming to the qryblksz parameter, except
(potentially) the last one. The requester must pull the reply data objects back together
into a single QRYDTA data object.

If the server is using flexible blocking rules to generate the QRYDTA(s) to contain the query
data, then:

• If a single row of the answer set data or the answer set of a multi-row fetch (an SQL
rowset) cannot be contained in a query block of the initial size specified in the qryblksz
parameter, then the query block is expanded to the size required to contain the entire
row or SQL rowset. If the query block is not full, it is truncated at the end of the data and
is returned as a query block shorter than the specified qryblksz parameter (a short block).

In response to a CNTQRY command, if the application server is not going to send the
QRYDTA reply data objects, then a DDM error reply message must be the first object in the
reply chain. For those reply messages that require an SQLCARD, the SQLCARD reply data
object, indicating the condition, follows the reply message in the reply chain that is sent.

The response to the previous OPNQRY command defined the data that flows to the
application for this command. Unless these formats are overridden by an OUTOVR object,
this is the format of the data in the query blocks.

If the server sends any QRYDTA objects, then each QRYDTA that conforms is either an
exact query block or flexible query block, according to the server’s requirements or
preferences. The rules for these two Block Formats (BF Rules) are given in Section 7.21.1.1
(on page 433).

If the server is using exact blocking rules to generate the QRYDTA(s) to contain the query
data, then:

• If a single row of the answer set data cannot be contained in a single query block of the
exact size specified in the qryblksz parameter, then it will span two or more query blocks.
If the last block is not full, it is truncated at the end of the data and is returned as a query
block shorter than the specified qryblksz parameter (a short block).

• A row that is larger than one query block flows in multiple query blocks, each of which
is a QRYDTA DSS object exactly conforming to the qryblksz parameter, except

130 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

(potentially) the last one. The requester must pull the reply data objects back together
into a single QRYDTA data object.

If the server is using flexible blocking rules to generate the QRYDTA(s) to contain the query
data, then:

• If a single row of the answer set data or the answer set of a multi-row fetch (an SQL
rowset) cannot be contained in a query block of the initial size specified in the qryblksz
parameter, then the query block is expanded to the size required to contain the entire
row or SQL rowset. If the query block is not full, it is truncated at the end of the data and
is returned as a query block shorter than the specified qryblksz parameter (a short block).

5. The application requester receives the QRYDTA reply data object and maps the row data to
the application’s host variables. The application requester obtains externalized LOB column
value bytes from the associated EXTDTA objects that follow the QRYDTA. When
performing a multi-row fetch operation for a rowset cursor, flexible blocking is used. See
Section 7.21.1.1 (on page 433) for detail on flexible blocking.

When the application requests the next row or rows from the application requester, the
application requester creates another CNTQRY command with the same value for
pkgnamcsn that it supplied on the corresponding OPNQRY command. The optional cmdsrcid
parameter uniquely identifies the source of the command, which in this case is a query. The
mandatory qryinsid parameter is then used to uniquely identify the instance of the query in
use. The requester reflects the application requested rowset and scrolling options in the
qryscrorn, qryrownbr, qryrowsns, qryblkrst, qryrtndta, and qryrowset parameters. The requester
can supply a different value in the qryblksz parameter. It then sends a CNTQRY to the
application server.

Steps 4 and 5 are repeated until the application does not request any more rows, the
application closes the cursor, or in the case of non-scrolling cursors, there are no more rows
of the answer set available.

If the cursor is not closed implicitly by the server, the application requester can close the
cursor by sending a CLSQRY command to the server. The optional qryclsrls parameter
specifies whether read locks held by the cursor are to be freed. Its setting will override any
previous setting that may have been specified earlier on the OPNQRY command.

n For non-scrolling cursors, or queries, if the application server receives a CNTQRY command
and fewer rows than requested are in the answer set (this can even occur on the first
CNTQRY command), the application server may choose to generate an ENDQRYRM reply
message and sends it to the application requester followed by an SQLCARD reply data
object that indicates the end of query processing condition (SQLSTATE=02000). For multi-
row fetches on a non-scrolling cursor, there can be some rows returned before returning the
ENDQRYRM. The application server then closes the cursor. The server may also choose not
to close a non-scrollable cursor implicitly depending on whether it is a query with the
HOLD option, and also on the value of the qryclsimp parameter that has previously been
specified on the OPNQRY command.

For cursors that scroll, a CNTQRY that runs out of rows in the answer set does not result in
an ENDQRYRM and closed cursor; that is, the server does not close the query implicitly.
The condition is reflected in the SQLCARD returned for the CNTQRY and if the cursor is
scrollable, the application can reposition the cursor for future fetches, or the application can
close the cursor.

• At any time during query processing, the relational database might incur a problem that
causes the query to be terminated, regardless of the value of the qryclsimp parameter on
the OPNQRY command. The application server sends the ENDQRYRM reply message,

Part 1: Database Access Protocol 131

DDM Commands and Replies The DRDA Processing Model and Command Flows

followed by an SQLCARD reply data object, which indicates the reason for failing to
return another data row of the answer set. If the error occurs during multi-row fetch, the
good rows are returned with the ENDQRYRM and SQLCARD with the error indication.

• TYPDEFNAM and TYPDEFOVR can be sent before the SQLCARD to override the
descriptions. Any TYPDEFNAM or TYPDEFOVR sent in response to the OPNQRY or a
previous CNTQRY does not affect the description of the SQLCARD.

n+1 When the application requester receives the ENDQRYRM reply message, it knows that it
has received the last row of answer data and that the application server has closed the
query, so it does not send any additional CNTQRY commands to the application server.

The application requester receives an SQLCARD reply data object and reports the indicated
condition to the application.

If the application requester receives a request to CLOSE the cursor at this point, it does not
need to communicate with the application server as it knows the cursor is already closed.

At this point, the application/application requester can continue with additional defined
DRDA flows with the resulting changes being in the same unit of work or it can complete
the unit of work in some defined fashion.

Note: The execution of a ROLLBACK, through any method, causes the termination of a query.
The execution of a COMMIT, through any method, causes the termination of a query,
except for queries with the HOLD option in the DECLARE CURSOR statement.

132 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.6.2 Limited Block Protocol (No Externalized LOB Data in Answer Set)

The limited block protocol applies only to non-rowset cursors.

Figure 4-16 indicates the DDM commands used by the limited block query processing flows
when there are no externalized LOB outputs. Refer to Section 4.4.6.3 (on page 140) if there are
externalized LOB data columns in the answer set.

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[3]

QRYDTA

RDBUPDRM

(QueryAnswer Set Data
Reply Data Object)
(RDB Update Reply Message)

OPNQRY
rdbnam
pkgnamcsn

cmdsrcid
qryblksz
qryblkctl

(Open Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(command source identifier)
(query block size)
(query block protocol control)

[1]

TYPDEFNAM
TYPDEFOVR
SQLDTA
EXTDTA

qryrowset
dupqryok
qryclsrls
qryclsimp

(override for typdefnam)
(override for typdefovr)
(SQL application variable data)
(Externalized FD:OCA data)

(query rowset size)
(duplicate query allowed)
(query close lock release)
(query close implicit))

[4]

(Continue Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(command source identifier)
(query block size)

CNTQRY
rdbnam
pkgnamcsn

cmdsrcid
qryblksz
nbrrow
qryscrorn
qryownbr
qryrowsns
qryblkrst
qryrtndta
qryrowset
qryinsid

qryattscr
qryattsns
qryattupd
qryinsid

RDBUPDRM
OPNQRYRM

svrcod
qryprctyp
sqlcsrhld
qryattset

(RDB Update Reply Message)
(Open Query Reply Message)
(severity code)
(query protocol type)
(hold cursor position)
(query attribute for rowset)

qryblkfct
qryblktyp
srvdgn

TYPDEFNAM
TYPDEFOVR
QRYDSC

QRYDTA

(query attribute for scrollability)
(query attribute for sensitivity)
(query attribute for updatability)
(query instance identifier)
(query blocking factor)
(query block type)
(server diagnostic information)
(override for typdefnam)
(override for typdefovr)
(Query Answer Set Desc
Reply Data Object)
(Query Answer Set Data
Reply Data Object)

(number of fetch rows)
(query scroll orientation)
(query row number)
(query row sensitivity)
(query block reset)
(query return data)
(query rowset size)
(query instance identifier)

Figure 4-16 Limited Block Protocol Query Processing (No Externalized LOB Data) (Part 1)

Part 1: Database Access Protocol 133

DDM Commands and Replies The DRDA Processing Model and Command Flows

[n]

[n+1]

[5]

(Continue Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(command instance identifier)
(query block size)

CNTQRY
rdbnam
pkgnamcsn

cmdsrcid
qryblksz
nbrrow
qryscrorn
qryrownbr
qryrowsns
qryblkrst
qryrtndta
qryrowset
qryinsid

or
CLSQRY

pkgnamcsn

qryinsid
qryclsrls

ENDQRYRM
TYPDEFNAM
TYPDEFOVR
SQLCARD
RDBUPDRM
or
TYPDEFNAM
TYPDEFOVR
SQLCARD

(End Query Reply Message)
(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)
(RDB Update Reply Message
(exclusively for CLSQRY)
(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

QRYDTA (Query Answer Set Data
Reply Data Object)

(number of fetch rows)
(query scroll orientation)
(query row number)
(query row sensitivity)
(query block reset)
(query return data)
(query rowset size)
(query instance identifier)

(package name, consistency
token, and section number)
(query instance identifier)
(query close lock release)

Figure 4-17 Limited Block Protocol Query Processing (No Externalized LOB Data) (Part 2)

The following is a discussion of the operations and functions the application requester and the
application server perform.40 This is just a brief description of some of the parameters for the
DDM commands. See the DDM Reference for a detailed description of the parameters.

1. After the application requester and the application server have established the proper
connection (described in Figure 4-2 (on page 85)), an application can send an OPEN
CURSOR request to the application requester. The application requester acting as the agent
for the application performing the open cursor function, creates an Open Query (OPNQRY)
command providing the proper package name, consistency token, and section number in
the pkgnamcsn parameter. It also provides the desired query block size (the size of the query
blocks that the application server can return) in the qryblksz parameter.

40. When dealing with a scrollable, non-rowset cursor, this example assumes that a qryrowset parameter is specified on every
CNTQRY command but may or may not be specified on the OPNQRY command. Since the application requester is using the
qryrowset parameter, there may be a difference between the cursor position known to the application and the cursor position at
the target server. The application requester has two general methods for handling this difference. The first method requires the
application requester to force the two cursor position values to be equivalent. The second method requires the application
requester to map between the application’s and the target server’s cursor position. In this example, the application requester uses
the second method. These and other topics concerning scrollable cursors are discussed in detail in the Scrollable Cursor
Overview description in Appendix B (on page 655). A qryrowset parameter may also be specified for non-scrollable, non-rowset
limited block protocol cursors, but since the cursor is only forward-moving these considerations do not apply.

134 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

The qryblkctl parameter specifies whether fixed row protocols must be forced on the opened
database cursor. If the query being opened does not include this parameter, then the
application server selects the query protocol to be used based on information in the package
(see qryblkctl in Figure 4-10 (on page 111)). Its absence here allows limited block processing.
The qryrowset parameter applies to both non-scrollable and scrollable cursors and specifies
whether the indicated number of single-row fetches are to be attempted in order to return a
rowset with the OPNQRYRM. This example assumes that a qryrowset value is not sent on
the OPNQRY command. The application requester places any input variables from the
application in the SQLDTA command data object and sends the command and the data to
the application server. Input host variables containing LOB data types are handled as in
Section 4.4.6.1 (on page 124).

The application requester also indicates to the server via the optional dupqryok parameter
whether it should allow opening a query for a duplicate cursor. The optional cmdsrcid
parameter uniquely identifies the source of the command, which in this case is a query.

The optional qryclsrls parameter specifies whether read locks held by the cursor are to be
released when the query is closed. The optional qryclsimp parameter specifies for a non-
scrollable cursor whether the server should close the query implicitly when there are no
more rows (SQLSTATE 02000).

2. The application server receives and processes the OPNQRY command. It then determines
that it will use limited block protocols, for example, because the cursor is a non-rowset
cursor, no SQL UPDATEs or DELETEs are to be performed against the corresponding
cursor, and the OPNQRY command did not include the qryblkctl parameter. The qryblksz,
which the application requester has established and sent on the OPNQRY command, is
used in determining the size of each query block.

If the application server successfully opens the cursor, it creates and sends an OPNQRYRM
reply message to the application requester. The qryinsid parameter on the OPNQRYRM
reply message uniquely identifies the instance of the query. If the server chooses to impose a
blocking factor on the query which limits the number of rows that can be blocked at a time
without influence from the application requester on the OPNQRY command, the qryblkfct
parameter will contain the blocking factor. The OPNQRYRM can optionally be preceded by
an RDBUPDRM reply message as per the UP rules in Section 7.18 (on page 428).

If the relational database returned a warning SQLCA, then an SQLCARD will be sent after
the OPNQRYRM.

The application server then generates an FD:OCA data descriptor that describes an SQLCA
to be returned for each row and the default format for each column in the row. This
description is placed in the QRYDSC reply data object that in turn is placed in the reply
chain after the OPNQRYRM reply message or warning SQLCARD.

The application server can also create a QRYDTA reply data object and place it in the reply
chain after the QRYDSC reply data object. Whether the server returns query data after the
QRYDSC depends in part on the requester’s specification (for example, the qryrowset
parameter). the type of data returned (LOBs or not), and the server’s preference.

If the server sends any QRYDTA objects, then each QRYDTA is either an exact query block
or flexible query block, according to the server’s requirements or preferences. The rules for
these two Block Formats (BF) are given in Section 7.21.1.1 (on page 433).

If the server is using exact blocking rules to generate the QRYDTA(s) containing the query
data, then:

Part 1: Database Access Protocol 135

DDM Commands and Replies The DRDA Processing Model and Command Flows

• If a single row of the answer set data cannot be contained in a single query block of the
exact size specified in the qryblksz parameter, then it will span two or more query blocks.
If the last block is not full, it can be truncated at the end of the data and returned as a
query block shorter than the specified qryblksz parameter (a short block).

• A row that is larger than one query block flows in multiple query blocks, each of which
is a QRYDTA DSS object exactly conforming to the qryblksz parameter, except
(potentially) the last one.

• If the server will return more than one row, then each subsequent row will fill the
remaining unused space in the query block containing the end of the previous row, and
the remainder of the row data will be placed in one or more additional query blocks, so
that each query block returned is of the exact query block size, except (possibly) the last
one.

• If a row or rows spans multiple query blocks, the requester must pull the reply data
objects back together into a single QRYDTA data object.

If the server is using flexible blocking rules to generate the QRYDTA(s) to contain the query
data, then:

• If a single row of the answer set data cannot be contained in a query block of the initial
size specified in the qryblksz parameter, then the query block is expanded to the size
required to contain the entire row. If the query block is not full, it can be truncated at the
end of the data and returned as a query block shorter than the specified qryblksz
parameter (a short block).

• If the server will return more than one row, then each subsequent row will fill the
remaining space in the query block containing the end of the previous row. If the
remaining space in the query block cannot contain the entire row, then the query block is
expanded to the size required to contain the entire row.

• If the query block has been expanded, then no more rows can be added to that query
block. If the server can return one or more additional rows, then it creates a additional
query block of the initial size and adds rows to it as for the first query block.

If the server sends any query data, the number of rows returned depends on the qryblksz
parameter, the actual size of each returned row, the qryrowset parameter (if any), and the
maxblkext parameter (if any). If the cursor is non-scrollable and no qryrowset parameter is
specified, then the number of rows returned depends only on the qryblksz and the maxblkext
value. If the cursor is non-scrollable and a qryrowset parameter is specified, the server
attempts to return a DRDA rowset of the size indicated. If the cursor is scrollable, the
application server attempts to return either a DRDA rowset of the size indicated in the
qryrowset parameter or an implicit rowset (according to Query Data Transfer Protocol rule
QP4) when no qryrowset parameter was sent.

If query data is to be returned, and the data is not returned in a DRDA rowset, then at least
one whole row is returned. Moreover, any other rows that can be fitted into the last query
block for that row may also be returned. If extra query blocks can be returned, then
additional rows can be added to extra query blocks up to the limit allowed by the maxblkext
parameter.

If query data is to be returned, and the data is returned in a DRDA rowset, the DRDA
rowset consists of the first row in the result table followed by the next rows in sequence up
to the number of rows specified explicitly or implicitly by the qryrowset parameter. The
DRDA rowset is complete when all the requested rows are returned, a FETCH request for a
row results in a negative SQLCODE, or a FETCH request results in an SQLSTATE of 02000.

136 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

If the application server cannot return all the requested rows because it has used up all the
query blocks it is allowed to, according to the maxblkext parameter, then the DRDA rowset is
incomplete. The application server returns one or more QRYDTAs with the rows it has
fetched, and expects the CNTQRY request from the application request either to complete
the DRDA rowset (or, optionally) to reset it.

If the application server can place all of the data rows in the answer set in the last query
block, then the query block is complete. The application server may chain an ENDQRYRM
and associated SQLCARD to the reply chain, as indicated in Step n. If this is done, the
application server terminates the query as described in Step n.

The application server then sends the reply chain to the application requester.

3. The application requester receives the OPNQRYRM reply message and QRYDSC reply data
object from the application server and indicates to the application that open processing was
successful.

Note: At any time after the application requester has sent the OPNQRY command and the
application server has successfully processed it, and before the application server has sent
an ENDQRYRM reply message, the application requester can send a Close Query
(CLSQRY) command with the correct package name, consistency token, and section
number in the pkgnamcsn parameter, along with the optional cmdsrcid parameter to
uniquely identify the query, and the mandatory qryinsid parameter to uniquely identify
the instance of the query, and optionally the qryclsrls parameter to the application server.

If the application server processes the CLSQRY command successfully, it terminates the
query and sends the application requester an SQLCARD reply data object indicating the
application server has closed the query.

If the application server had already terminated (or not opened) the query, then it sends a
QRYNOPRM reply message to the application requester indicating the query is not open.

When the application requests a row from the application requester, the application
requester attempts to retrieve the desired row from the received query blocks (QRYDTAs),
if any.

If the cursor is non-scrollable, the desired row is the next row in the received query blocks. If
the cursor is scrollable, the row position may need to be evaluated against the scrolling
parameters on the FETCH request to determine whether the next row satisfies the scroll
requirements of the FETCH request. If not, the desired row is obtained by calculated
position number within the received query blocks.

If the desired row is in the received query blocks, the row data is returned to the application.
The application requester maps the row data it received in the QRYDTA reply data object(s)
to the application’s host variables. The data in the QRYDTA is described either by the
QRYDSC reply data object returned at the beginning of query processing or by the QRYDSC
as modified by the application requester’s OUTOVR specification.

As the application requests each additional row from the application requester, the
application requester repeats this process of retrieving the desired row from the received
QRYDTA objects and returning the received data to the application.

If no query blocks were returned with the OPNQRY command, or if the desired row is not
in the received QRYDTA objects, or if all of the rows in the QRYDTA objects have been
received, then the application requester creates a CNTQRY command with the same value
for pkgnamcsn as the corresponding OPNQRY command supplied, along with the optional
cmdsrcid parameter to uniquely identify the source of the query. The mandatory qryinsid
parameter then uniquely identifies the instance of the query. The qryblksz parameter can
contain a different value from the OPNQRY (or previous CNTQRY) and will result in a new

Part 1: Database Access Protocol 137

DDM Commands and Replies The DRDA Processing Model and Command Flows

size for the query block(s) the application server will return. For non-scrollable cursors and
for scrollable cursors that are not being accessed in a scrollable manner by the application
requester, there are no further considerations. For cursors for which a qryrowset value was
specified, the application requester must consider whether the data was part of a DRDA
rowset and whether that DRDA was complete or incomplete. If the DRDA rowset received
was incomplete, the application requester must either send a request to complete or reset
the pending DRDA rowset according to Appendix B (on page 655). To complete the DRDA
rowset, the application requester sends a CNTQRY request by specifying a qryrowset value
equal to the remaining number of rows in the original DRDA rowset. To reset the DRDA
rowset, the application requester specifies a qryblkrst value of TRUE.

4. When the application server receives the CNTQRY command, it places query data in one or
more query blocks according to whether it sent data with the previous command (OPNQRY
or CNTQRY). If the application server did not return any query data with the previous
command, then it populates one or more QRYDTA objects as described in Step 2. If the
application did return any query data with the previous command, then it must take the
previously returned data into account when returning additional data.

• If exact blocking is in effect for the cursor and there is a partial row from the previous
command, the application server places the remainder of the partial row in the first
query block(s) before adding additional rows. Additional rows are returned according to
the description in Step 2.

• If an incomplete DRDA rowset is pending from the previous command, the application
server first validates that the CNTQRY command either completes the DRDA rowset or
resets it. If the DRDA rowset is to be completed, the application server only returns as
many rows as are needed to complete the DRDA rowset, up to the limits set by the
maxblkext value. It is possible that the DRDA rowset may remain pending after the
CNTQRY command has executed. If the DRDA rowset is to be reset, any partial row that
occurs (when exact blocking is in effect) is discarded and any pending extra query blocks
are discarded before a new DRDA rowset is started, using navigational and sensitivity
controls specified in the CNTQRY command. See Appendix B (on page 655) for more
details.

If the application server can place all of the data rows in the answer set in the last query
block, then the query block is complete. The application server may chain an ENDQRYRM
and associated SQLCARD to the reply chain, as indicated in Step n. If this is done, the
application server terminates the query as described in Step n.

The reply chain can optionally be followed by an RDBUPDRM reply message as per the UP
rules in Section 7.18 (on page 428).

The application server then sends the reply chain to the application requester.

5. When the application requester receives the QRYDTA reply data object(s), it retrieves row
data from the received QRYDTA object(s) to return to the application. If exact blocking is in
effect for the cursor and the row data spanned the last query block from the previous
command and the query block(s) just received, then the application requester must first pull
the separate pieces together to form the first row. Otherwise, the first row is obtained from
the first row contained in the QRYDTA(s) returned with this command. The first row is
returned to the application.

The row data for the first row is returned to the application as described in Step 3.

As the application requests each additional row from the application requester, the
application requester repeats the process of retrieving the desired row from the received
QRYDTA objects and returning the received data to the application.

138 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

When the desired row cannot be obtained from the received query blocks, the application
requester creates a CNTQRY command as described in Step 3.

Steps 4 and 5 are repeated as long as the application can request rows from the cursor or
until the application does not request any more rows. In the case of non-scrollable cursors,
the application cannot request additional rows after it has fetched the last row in the answer
set.

n When the application server receives the CNTQRY command, it places query data in one or
more query blocks as described in Step 4.

If the application server can place all of the data rows in the answer set in the last query
block, then the query block is complete. If permitted by the qryclsimp parameter specified on
the OPNQRY command, by the properties of the query itself (for example, the query is not
WITH HOLD and not scrollable), and by the requirements of Chaining Rule CH5, the
application server may be able to close the query if this occurs.

If it is permitted to close the query or is required to do so by the qryclsimp parameter, the
application server places an ENDQRYRM reply message and the associated SQLCARD
reply data object in the reply chain after the last query block.

If the application server adds the ENDQRYRM reply message and the SQLCARD reply data
object to the reply chain, then the query is terminated. The application server closes the
query and will no longer accept CNTQRY commands for this cursor until an OPNQRY is
again processed for this cursor.

Otherwise, the application server does not send the ENDQRYRM and its associated
SQLCARD to the application requester with this reply chain. They will be sent as the only
responses to the next CNTQRY command. The application server may not close the query
until a CLSQRY command is sent from the application requester, or until the transaction is
rolled back.

The application server then sends the reply chain to the application requester.

n+1 When the application requester receives the reply object(s), it retrieves row data from the
received QRYDTA object(s) to return to the application as described in Step 5.

When the application requester receives the ENDQRYRM reply message, it knows that the
application server has processed the last row of answer set data or a terminating error has
occurred. It knows that the application server has closed the query or that the query has
been terminated and is in a not-opened state, so the application requester will not send any
additional CNTQRY commands to the application server. If the application requester
receives a request to close the cursor at this point, it does not need to communicate with the
application server as it knows the cursor is already closed.

At this point, the application or application requester can continue with additional defined
DRDA flows with the resulting changes being in the same unit of work, or it can complete
the unit of work in some defined fashion.

Note: The execution of a ROLLBACK, through any method, causes the termination of a query.
The execution of COMMIT, through any method, causes the termination of a query,
except for queries with the HOLD option in the DECLARE CURSOR section.

Part 1: Database Access Protocol 139

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.6.3 Limited Block Protocol (Externalized LOB Data in Answer Set)

The limited block protocol applies only to non-rowset cursors.

The rtnextdta parameter determines the major processing flows when there are externalized LOB
data columns in the answer set. The presence of a qryrowset parameter in this case requires that
the rtnextdta value must be rtnextall.

Figure 4-18 (on page 141) and Figure 4-19 (on page 142) indicate the complete limited block
processing flows when the rtnextdta value is rtnextall.

Figure 4-18 (on page 141) and Figure 4-19 (on page 142) also indicate partial limited block
processing flows when the rtnextdta value is rtnextrow. In addition, refer to Figure 4-20 (on page
145) for additional commands that apply in this case.

140 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

OPNQRY
rdbnam
pkgnamcsn

cmdsrcid
qryblksz
qryblkctl
qryrowset
dupqryok
qryclsrls
qryclsimp

(Open Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(command source identifier)
(query block size)

[1]

TYPDEFNAM
TYPDEFOVR
SQLDTA

EXTDTA

(override for typdefnam)
(override for typdefovr)
(SQL application variable data)
(exclusively if there is LOB
input variable data)
(Externalized FD:OCA data)

[3]
(Continue Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(command source identifier)
(query block size)
(number of fetch rows)
(query scroll orientation)
(query row number)
(query row sensitivity)
(query block reset)
(query return data)
(query rowset size)
(query instance identifier)
(return of EXTDTA option)
(exclusively if LOB output
variable formats to be overridden)
(Output Override Descriptor)

CNTQRY
rdbnam
pkgnamcsn

cmdsrcid
qryblksz
nbrrow
qryscrorn
qryrownbr
qryrowsns
qryblkrst
qryrtndta
qryrowset
qryinsid
rtnextdta

OUTOVR

RDBUPDRM
OPNQRYRM

svrcod
qryprctyp
sqlcsrhld
qryattscr
qryattsns
qryattupd

qryinsid
qryblkfct
qryblktyp
srvdgn

(RDB Update Reply Message)
(Open Query Reply Message)
(severity code)
(query protocol type)
(hold cursor position)
(query attribute for scrollability)
(query attribute for sensitivity)
(query attribute for updatability)

(query instance identifier)
(query blocking factor)
(query block type)
(server diagnostic information)

TYPDEFNAM
TYPDEFOVR
QRYDSC

(override for typdefnam)
(override for typdefovr)
(Query Answer Set Desc
Reply Data Object)

(query block protocol control)
(query rowset size)
(duplicate query allowed)
(query close lock release)
(query close implicit)

Figure 4-18 Limited Block Protocol Query Processing (with Externalized LOB Data, rtnextall) (Part 1)

Part 1: Database Access Protocol 141

DDM Commands and Replies The DRDA Processing Model and Command Flows

(Continue Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(command source identifier)
(query block size)
(number of fetch rows)
(query scroll orientation)
(query row number)
(query row sensitivity)
(query block reset)
(query return data)
(query rowset size)
(query instance identifier)
(return of EXTDTA option)
(exclusively if LOB output
variable formats to be overridden)
(Output Override Descriptor)

(package name, consistency
token, and section number)
(query instance identifier)
(query close lock release)

CNTQRY
rdbnam
pkgnamcsn

cmdsrcid
qryblksz
nbrrow
qryscrorn
qryrownbr
qryrowsns
qryblkrst
qryrtndta
qryrowset
qryinsid
rtnextdta

OUTOVR
or
CLSQRY

pkgnamcsn

qryinsid
qryclsrls

QRYDTA

EXTDTA
RDBUPDRM

(Query Answer Set Data
Reply Data Object)
(Externalized FD:OCA data)
(RDB Update Reply Message)

[5]

[4]

DRDA
(Application Requester)

DRDA
(Application Server)

[n+1]

[n]

ENDQRYRM
TYPDEFNAM
TYPDEFOVR
SQLCARD
or
TYPDEFNAM
TYPDEFOVR
SQLCARD

(End Query Reply Message)
(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)
(exclusively for CLSQRY)
(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

Figure 4-19 Limited Block Protocol Query Processing (with Externalized LOB Data, rtnextall) (Part 2)

142 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

Limited Block Protocol (rtnextdta=rtnextall)

This discussion is based on Figure 4-18 (on page 141), Figure 4-19 (on page 142), and the
discussion in Section 4.4.6.2 (on page 133).

1. Refer to Section 4.4.6.2 (on page 133), Step 1.

2. Refer to Section 4.4.6.2 (on page 133), Step 2.

For each LOB data column, the FD:OCA placeholder indicator flag is set on to indicate that
the column data will be externalized and flow in an EXTDTA object. The column data will
flow in this manner unless the application overrides the descriptor using an SQLDA with
the FETCH request.

Since the answer set contains LOB data columns, no query data is returned at this time. The
first row is returned with the first CNTQRY command, allowing the application to specify
an overriding SQLDA with the FETCH request.

3. Refer to Section 4.4.6.2 (on page 133), Step 3.

The parameter rtnextdta must be specified on each CNTQRY if a value other than the
default is desired.

If the application wishes to receive a LOB column in a form other than as data, then it
specifies an SQLDA descriptor on the FETCH request and the application requester must
create an OUTOVR to send to the application server. The application server uses the
overriding OUTOVR to determine the format of the data returned. If no OUTOVR is sent to
the application server, the application server fetches the data using the server description of
the data as given in the QRYDSC returned by the target with the OPNQRYRM.

The application requester sends the CNTQRY command and the optional OUTOVR object
to the application server.

4. Refer to Section 4.4.6.2 (on page 133), Step 4.

The application server receives and processes the CNTQRY. It processes the OUTOVR, if
sent, to specify the format in which the relational database is to fetch the row or rows.

The application server creates a QRYDTA reply object as in Section 4.4.6.2 (on page 133),
Step 4.

In addition, LOB data columns are returned as follows: All LOB locators are returned in the
QRYDTA object. Each LOB column is represented by an FD:OCA placeholder in the
QRYDTA and the LOB value bytes are returned in an associated EXTDTA object following
the QRYDTA. If more than one EXTDTA is returned, they are returned in the order that their
corresponding FD:OCA placeholders occur in the QRYDTA object.

The application server sends the QRYDTA object to the application requester and returns
the EXTDTA objects according to the rtnextdta option.

In this discussion, the rtnextdta value is rtnextall:

The QRYDTA object is returned along with the EXTDTA objects associated with all the
complete rows contained in the QRYDTA object. Thus, in the case of exact blocking, the
EXTDTAs associated with a partial row are not returned until the complete row is returned
in the next QRYDTA object.

The application requester may also request extra query blocks be returned by means of the
maxblkext value. Even if extra query blocks are requested by the application requester, the
application server is not required to return any extra query blocks nor is it required to return
the number requested. The application server may choose to return extra query blocks in

Part 1: Database Access Protocol 143

DDM Commands and Replies The DRDA Processing Model and Command Flows

some cases, but not in others. For example, the application server may choose not to return
extra query blocks if there are LOBs in the answer set. If the application does support the
return of extra query blocks, however, it must adhere to certain rules. For example, if exact
blocking rules are used, the last extra query block sent must contain the end of at least one
complete row.

If the application server returns extra query blocks when there are LOBs in the answer set,
the following applies:

• If maxblkext is zero, then no extra query blocks are returned. The query is suspended
after the last EXTDTA for the last complete row in the QRYDTA object is returned to the
source system.

• If maxblkext is n, where n is a positive value, then the first extra query block to be
returned is sent, followed by the EXTDTA objects associated with complete rows
contained in the extra query block. If the application server determines that it will send
extra query blocks for the query, then it sends the first extra query block followed by the
EXTDTAs associated with complete rows contained in the extra query block. This
repeats for all n extra query blocks to be sent or until the answer set is complete.

• If maxblkext is −1, the application server returns a query block of answer set data,
followed by the EXTDTAs associated with the query block. If the application server
determines that it will send extra query blocks, then it returns the entire answer set,
including all QRYDTA objects and their associated EXTDTA objects.

The QRYDTA reply chain can optionally be followed by an RDBUPDRM reply message as
per the UP rules in Section 7.18 (on page 428).

5. Refer to Section 4.4.6.2 (on page 133), Step 5.

The application requester receives the QRYDTA block. The first row data received in the
QRYDTA are mapped to the application’s host variables. Data represented in the row by
FD:OCA placeholders are to be obtained from EXTDTAs according to the rtnextdta specified.

In this discussion, the rtnextdta value is rtnextall:

The application requester returns data to the application with each application FETCH
request, obtaining non-FD:OCA placeholder data from the QRYDTA block and LOB value
bytes from EXTDTAs associated with the FD:OCA placeholders in the row. If extra blocks
were returned, processing continues with the extra query blocks. If no more complete rows
are contained in the query blocks returned by the application server, the application
requester formats a CNTQRY command and sends it to the application server.

n Refer to Section 4.4.6.2 (on page 133), Step n. If LOB data is returned with the QRYDTA, then
even though the end of the query data is reached, the ENDQRYRM is not returned until the
next CNTQRY, in order to maintain the chaining rules for the QRYDTA and EXTDTA
objects being returned.

n+1 Refer to Section 4.4.6.2 (on page 133), Step n+1.

144 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

Limited Block Protocol (rtnextdta=rtnextrow)

This discussion is based on Figure 4-18 (on page 141), Figure 4-19 (on page 142), and the
discussion in Section 4.4.6.3 (on page 140). Additional commands required for this case are
included in Figure 4-20.

DRDA
(Application Requester)

DRDA
(Application Server)

(Continue Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(query block size)
(query instance identifier)
(return of EXTDTA option)
(exclusively if LOB output
variable formats to be overridden)

CNTQRY
rdbnam
pkgnamcsn

qryblksz
qryinsid
rtnextdta

QRYDTA

RDBUPDRM

EXTDTA

(Query Answer Set Data
Reply Data Object)
(RDB Update Reply Message)

(Externalized FD:OCA data)

[4a]

[5]

[3]

[4]

[4b]

(Output Override Descriptor)OUTOVR

Steps 4a and 4b repeat until the LOBS are returned for the base data returned in Step 4. The flow
then proceeds to Step 5 to get the next set of base data. If any data is returned, Steps 4a and 4b
are repeated again.

Figure 4-20 Limited Block Protocol Query Processing (with Externalized LOB Data, rtnextrow)

1. Refer to Limited Block Protocol (rtnextdta=rtnextall) (on page 143), Step 1.

2. Refer to Limited Block Protocol (rtnextdta=rtnextall) (on page 143), Step 2.

3. Refer to Limited Block Protocol (rtnextdta=rtnextall) (on page 143), Step 3.

4. Refer to Limited Block Protocol (rtnextdta=rtnextall) (on page 143), Step 4.

In this discussion, the rtnextdta value is rtnextrow:

The initial CNTQRY command for the query returns one or more QRYDTA objects
containing one or more base data rows. No EXTDTAs associated with the base data are
returned. See Step 4a and Step 4b for the flow which returns the associated EXTDTA objects.
The QRYDTA reply chain can optionally be followed by an RDBUPDRM reply message as
per the UP rules in Section 7.18 (on page 428).

4a If the base data row is complete and all of its LOB columns are trivial (nullable columns that
are null or columns with zero placeholder values), then there is no pending LOB data for
this row and the application requester returns to the application with the fetched base data.

If the base data row is complete and all of it has non-trivial LOB data columns (nullable
columns that are not null or columns with non-zero placeholder values), the application
requester sends a CNTQRY command to the application server to obtain the associated
EXTDTA objects for the row.

Part 1: Database Access Protocol 145

DDM Commands and Replies The DRDA Processing Model and Command Flows

If a partial base data row is encountered (when exact blocking rules are used) or if there is
no more data in the QRYDTA object, this step reverts to Step 3 in Section 4.4.6.2 (on page
133), where the CNTQRY command is sent to obtain additional base data.

4b The application server receives the CNTQRY command.

For the next previously sent complete row of base data, the application server returns the
associated EXTDTA objects for the LOB columns pending for that base row.

If there are no more pending LOB data columns for previously sent rows, this step reverts to
Step 4 in Section 4.4.6.2 (on page 133), where the CTNQRY command causes the application
server to obtain additional base data, including completing a partial row in the case of exact
blocking.

Steps 4a and 4b are repeated until the application requester processes all the complete rows
in the received QRYDTA objects or until the application does not fetch any more rows.

5. Refer to Section 4.4.6.2 (on page 133), Step 5.

n Refer to Section 4.4.6.2 (on page 133), Step n.

n+1 Refer to Section 4.4.6.2 (on page 133), Step n+1.

146 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.7 Executing a Bound SQL Statement

This section describes the DDM commands and replies that flow during the execution of SQL
statements that have been bound by the bind process or the PRPSQLSTT command. Section
4.4.7.1 (on page 148) describes the commands and replies that flow in most instances. Section
4.4.7.2 (on page 154) describes the commands and replies that flow for an SQL statement that
invokes a stored procedure which returns result sets.

If connection is between an application server and database server, any new or changed special
register settings must be sent using the EXCSQLSET command prior to activating or processing
queries. The EXCSQLSET command is recommended to be chained next SQL command.

The EXCSQLSET command requires package name and consistency token parameters, but no
section number parameter, as it is not bound into a package. Support for the SET CURRENT
PACKAGE PATH statement is contingent on support of the EXCSQLSET command, as this
value is propagated from a requester to a database server (possibly through intermediate
servers) using the EXCSQLSET command.

Part 1: Database Access Protocol 147

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.7.1 Executing Ordinary Bound SQL Statements

Figure 4-21 (on page 149) indicates the DDM commands and replies that flow during the
execution of the majority of SQL statements that can be bound by the bind process or the
PRPSQLSTT command. The usual result is that the application server makes the expected
changes in the relational database (within the unit of work) after the indicated bound SQL
statement has successfully executed. For a description of the commands and replies that flow for
an SQL statement that invokes a stored procedure which returns result sets, refer to Section
4.4.7.2 (on page 154).

148 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[3]

EXCSQLSTT
rdbnam
pkgnamcsn

cmdsrcid
qryinsid
outexp

(Execute SQL Statement)
(RDB_NAME)
(package name, consistency
token, and section number)
(command source identifier)
(query instance identifier)
(output expected)

[1]

TYPDEFNAM
TYPDEFOVR
SQLDTA
EXTDTA
SQLDTA
EXTDTA
SQLDTA
EXTDTA

.

.

.
or
SQLDTA

(override for typdefnam)
(override for typdefovr)
(SQL application variable data)
(Externalized FD:OCA data)
(SQL application variable data)
(Externalized FD:OCA data)
(SQL application variable data)
(Externalized FD:OCA data)

(SQL application variable data)

TYPDEFNAM
TYPDEFOVR
SQLCARD
TYPDEFNAM
TYPDEFOVR
SQLSTT

.

.

.
TYPDEFNAM
TYPDEFOVR
SQLSTT
or
TYPDEFNAM
TYPDEFOVR
SQLCARD
TYPDEFNAM
TYPDEFOVR
SQLCARD
TYPDEFNAM
TYPDEFOVR
SQLCARD

.

.

.

or
TYPDEFNAM
TYPDEFOVR
SQLDTARD
EXTDTA
TYPDEFNAM
TYPDEFOVR
SQLSTT

.

.

.
TYPDEFNAM
TYPDEFOVR
SQLSTT

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)
(override for typdefnam)
(override for typdefovr)
(SQL Statement)

(override for typdefnam)
(override for typdefovr)
(SQL Statement)

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)
(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)
(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

(override for typdefnam)
(override for typdefovr)
(SQLDTARD Reply Data Obj)
(Externalized FD:OCA data)
(override for typdefnam)
(override for typdefovr)
(SQL Statement)

(override for typdefnam)
(override for typdefovr)
(SQL Statement)

atmind
nbrrow
prcnam
rdbcmtok
rtnsetstt

(atomicity indicator)
(number of fetch or insert rows)
(procedure name)
(commit ok)
(return set statement)

Figure 4-21 Executing a Bound SQL Statement

The following is a discussion of the operations and functions the application requester and the
application server perform. This volume provides a brief description of some of the parameters
for the DDM commands. See the DDM Reference for a detailed description of the parameters.

Part 1: Database Access Protocol 149

DDM Commands and Replies The DRDA Processing Model and Command Flows

1. After the application requester and the application server have established proper
connection (described in Figure 4-2 (on page 85)), prebound SQL statements referenced in a
package in a remote relational database can be executed. (See Section 4.4.3 (on page 111) for
a discussion of the DRDA flows needed to perform the bind.) Other DRDA flows can
precede or follow the execution of the prebound SQL statement referenced in the package
and be part of the same unit of work.

The application requester that is acting as the agent for the application performing the
execute SQL statement function creates the Execute SQL Statement (EXCSQLSTT)
command by providing the correct package name, consistency token, and section number in
the pkgnamcsn parameter. The optional cmdsrcid parameter uniquely identifies the source of
the command. If the SQL statement being executed is a positioned delete/update, then the
qryinsid parameter must also be specified in order to indicate the instance of the query in
use, unless only a single query instance exists for the section. The application requester also
indicates in the outexp parameter whether or not it expects output to be returned within an
SQLDTARD reply data object as a result of the execution of the SQL statement. The optional
rtnsetstt parameter specifies whether the server must return one or more SQL SET
statements for any special registers whose settings have been changed on the current
connection, if the execution of the command causes any special register setting to be
updated. For a multi-row input operation, no output is allowed, and the nbrrow parameter
will be mandatory. The optional atmind parameter indicates whether the multi-row input
operation is atomic or non-atomic, and the nbrrow41 parameter indicates the number of rows
for the input operation. The nbrrow parameter is allowed to have a value of 1. The optional
rdbcmtok parameter informs the RDB whether or not to process commit and rollback
operations. The optional prcnam parameter identifies the stored procedure to be executed at
the application server. The application requester also puts any application variable values
and their descriptions in the SQLDTA command data object. If this is a multi-row input
operation, and there is no LOB data in the row, then only one SQLDTA command data
object is required based on the SQLDTAMRW multi-row input RLO descriptor. Otherwise,
each input data row is flowed in a separate SQLDTA command data object, in which case
only the first SQLDTA is allowed to be preceded by a TYPDEFNAM and/or TYPDEFOVR
data object. All data types for host variables associated with a CALL or other statement that
invokes a stored procedure must be nullable when they flow on the wire, so if a data type is
non-nullable, it must be turned into the nullable form of the data type by the application
requester prior to sending to the application server.

All host variables associated with the parameter list of a stored procedure must be reflected
with a null indication or data in the SQLDTA.

If a CALL or other statement that invokes a stored procedure specifies the procedure name
using a host variable, then the prcnam parameter of the EXCSQLSTT specifies the procedure
name value. The procedure name value is not duplicated in any SQLDTA command data
object that might also flow with the EXCSQLSTT.

If the CALL or other statement that invokes a stored procedure does not specify the
procedure name using a host variable, then the value specified by the prcnam parameter, if
present, must match the procedure name value contained within the section identified by
pkgnamcsn. It sends the command and command data to the application server.

41. This parameter is not supported in DRDA Level 1.

150 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

The application requester may send LOB data as input host variables in the SQLDTA that
accompanies an EXCSQLSTT or as input parameters in the SQLDTA for an EXCSQLSTT
statement that is a CALL to a stored procedure. For each input host variable that is a LOB
data type that needs to be externalized, an FD:OCA placeholder is placed in SQLDTA and
the corresponding value bytes are flowed in an EXTDTA following the SQLDTA. The
EXTDTAs flow in the order that the FD:OCA placeholders occur in the associated SQLDTA.

If this is a multi-row input operation, the SQLDTA command data object for an input data
row is followed immediately by any EXTDTA data object(s) containing the externalized
LOB data value(s) for that row. If the application requester encounters an error in setting
up a particular row in an SQLDTA or EXTDTA OBJDSS within the multi-row input chain,
the row can be marked as null using the null indicator for the SQLDTAGRP FD:OCA object.
While typically this null indicator will be used to indicate that a multi-row input row
follows, in the case of a null row, the value of the null indicator will indicate to the server to
either skip over this row, or to issue an error instead.

Note: For a stored procedure, output parameters that are LOBs are sent to the application server
along with input parameters. If an application wishes to avoid sending this data to the
application server, it must explicitly clear the host variable before making the call.

For an SQL statement that is not a stored procedure call, output may or may not be
expected with the execution of the statement. If the expected output includes LOB data,
then the application requester must send an OUTOVR object to the application server if the
application wishes to receive a LOB locator in place of the actual data.

For an SQL statement that is a stored procedure call, if any of the output parameters is a
LOB type, then the SQLDTA describes the desired format of the output. An OUTOVR object
is not sent in this case and is rejected by the target system if it is sent.

The optional rtnsqlda parameter controls whether describe information is returned or not; if
not specified, no describe information is returned. The optional typsqlda parameter can
request light, standard, or extended descriptive information to be returned. The typsqlda is
not a required parameter because the FDODSC object provides enough row-level
information needed to parse the SQLDTARD and return the parameter values to the
application. This describe information provides descriptive information about output
parameters. The descriptive information is returned in the SQLDARD as reply data.

2. The application server receives the EXCSQLSTT command. If the statement call is a CALL
statement, then CALL-specific instance variables, such as qryblksz, maxblkext, maxrslcnt, or
rslsetflg, are applied to the execution of the statement. Otherwise, CALL-specific instance
variables are ignored. The application server processes the EXCSQLSTT command and
creates an SQLCARD reply data object or SQLDTARD reply data object. The requested
statement executes with the input variable values passed with the command, the results are
reflected in the referenced database manager (within the scope of the unit of work), and an
SQLCARD reply data object is returned. If errors occur during the execution of the
statement, the referenced database manager remains unchanged, and the SQLCARD reply
data object contains an indication of the error condition. If this is an atomic multi-row input
operation, there is only one reply for all the input data rows which is normally an
SQLCARD reply data object. If the multi-row input operation is non-atomic, there is one
reply for each input data row. The SQLDTARD reply data object is not applicable for a
multi-row input operation as no output is allowed.

If the execution of the SQL statement (a single row SELECT, statement that invokes a stored
procedure, or SET statement) generates output data, the application server returns this data
in the SQLDTARD reply data object.

Part 1: Database Access Protocol 151

DDM Commands and Replies The DRDA Processing Model and Command Flows

All host variables associated with the parameter list of a stored procedure must be reflected
with a null indication or data in the SQLDTARD. The application server also returns the
SQLCA in the SQLDTARD, ahead of the data, indicating the normal completion of SQL
statement execution.

Note: If the execution of the statement generates output data, which was not expected
(indicated on the outexp parameter), then the application server sends the SQLCARD to
the application requester indicating an error and does not send any output data.

If the section identified by pkgnamcsn exists in the package identified by pkgnamcsn, but the
section is not associated with a stored procedure, then the use of prcnam with pkgnamcsn is
invalid and the application server returns CMDCHKRM to the application requester.

If any special register has been updated during execution of this command, as per the
setting of the optional rtnsetstt parameter, the server may return one or more SQLSTT reply
data objects, each containing an SQL SET statement for a special register whose setting has
been changed on the current connection.

If this is a multi-row input operation, and the value of the nbrrow parameter does not match
the number of input data rows (including any null rows) in the SQLDTA reply data object,
the application server returns PRCCNVRM with a prccnvcd value of X’1E’ to the application
requester. For any null row within the multi-row chain, the server will skip over that row if
its null indicator so indicates. However, if instead the null indicator indicates an error
should be issued over the null row, an error SQLCA containing SQLSTATE 22527 should be
returned by the server. In particular, for an atomic multi-row input operation, such an error
terminates processing of the multi-row input request, and any changes that have resulted
from this request will be undone.

If the executed SQL statement is either a COMMIT or ROLLBACK, see Section 4.4.15.1 (on
page 191) and Section 4.4.15.2 (on page 194) for a description of commit and rollback
processing in DRDA.

If any data is to be returned by the application server, the application server creates an
SQLDTARD. For each output host variable that is a LOB data type, an FD:OCA placeholder
is placed in the SQLDTARD and the corresponding value bytes are flowed in an EXTDTA
following the SQLDTARD. The EXTDTAs flow in the order that the FD:OCA placeholders
occur in the associated SQLDTARD.

If an OUTOVR object is received, it will be used to format the externalized LOB output, if
output is expected and the SQL statement is not a stored procedure call. For a stored
procedure call, the OUTOVR object is rejected. For an SQL statement that does not return
output, the OUTOVR object is rejected.

Depending on the value of the rtnsqlda and typsqlda parameters on the EXCSQLSTT
command, an optional SQLDARD is generated to provide descriptive information about the
statement. The SQLDARD is generated only if the SQL statement is successful. The level of
describe information returned is identified by the value of the typsqlda parameter. The
SQLDARD is returned before the SQLDTARD; otherwise, the rtnsqlda parameter is ignored
if there is no SQLDTARD returned.

3. For a normal completion, the application requester returns to the application with the
successful indication. The application requester also returns any data in the SQLDTARD
reply data object to the application. The application requester also caches all SQL SET
statements that may have been returned from the server in SQLSTT reply data objects so
that they can be used later to restore the execution environment when the connection is
reestablished to the database at either the original location or an alternate failover location
in case of a communications failure.

152 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

At this point, the application/application requester can continue with additional defined
DRDA flows.

If the SQLCARD reply data object that the application server returned to the application
requester indicates that the EXCSQLSTT command was not successful, the application
requester returns an exception to the application that is attempting to execute the SQL
statement.

If this is a non-atomic multi-row input operation, the application requester may be able to
report to the application the outcome for each input data row based on the SQLCARD reply
data object which is returned for each row or it may only return one SQLCA to the
application for all the rows. Details of how the application requester chooses to address this
issue are implementation-specific and may be influenced by the API used by the
application.

Part 1: Database Access Protocol 153

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.7.2 Invoking a Stored Procedure that Returns Result Sets

Figure 4-22 (on page 155) indicates the DDM commands and replies that flow during the
execution of an SQL statement, previously bound by the bind process or the PRPSQLSTT
command, that invokes a stored procedure which returns result sets. These flows produce the
desired effect needed to satisfy an application program that executes a stored procedure and
FETCHes the rows from result sets generated by the execution of that stored procedure. The
application server ships the answer set data to the application requester and the application
requester then returns the row data of the answer sets to the application in whatever order the
application requests them. This example assumes that the application requester desires the
names for columns within results sets and is capable of processing answer set data returned in
the response to EXCSQLSTT. Although this example illustrates a stored procedure that returns
two result sets, DRDA (using SQLAM Level 5) supports the return of any number of result sets.
The example also assumes that the stored procedure has been defined with the commit on return
attribute and the result set cursors within the stored procedure are defined with the HOLD
option. Although result set cursors can return data according to the rules for either the fixed row
protocol or the limited block protocol, the example only shows the use of the limited block
protocol rules.

Since result set cursors are unambiguously read-only, generally the rules for limited block
protocol can be used, so this example shows the predominate scenario. This choice can be
superseded, for example, if the EXCSQLSTT for the call statement specifies an outovropt or
outovrany, causing any result sets that return externalized LOB output values to be returned
using fixed row protocol rules.

The application server sends the row data of the answer sets grouped into blocks following the
rules for limited block protocol and according to the options specified by the application
requester on the EXCSQLSTT and CNTQRY commands. For details on the description of answer
set blocks and how they are supported using the limited block protocol, see the terms QRYBLK,
QRYBLKCTL, QRYBLKSZ, LMTBLKPRC, MAXBLKEXT, and MAXRSLCNT in the DDM
Reference. Also see the rules for query processing in Section 7.21 (on page 433).

The following example describes the various flows that show how the application server returns
row data of the answer sets to the application requester and how the application requester
requests more row data of the answer sets from the application server, if needed. This example
briefly discusses some topics that relate to scrollable result sets. For more information, refer to
Section 4.4.6.1 (on page 124), and Section 4.4.6.2 (on page 133), as well as to the Scrollable Cursor
Overview given in Appendix B (on page 655).

154 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

EXCSQLSTT
rdbnam
pkgnamcsn

cmdsrcid
outexp

(Execute SQL Statement)
(RDB_NAME)
(package name, consistency
token, and section number)
(command source identifer)
(output expected)

[1]

rdbcmtok
rslsetflg
outovropt

TYPDEFNAM
TYPDEFOVR

(commit ok)
(result set flag)
(output override option)
(override for typdefnam)
(override for typdefovr)

prcnam
rdbcmtok
rtnsetstt
qryblksz
maxrslcnt
maxblkext
qryrowset

(procedure name)
(commit ok)
(return set statement)
(query block size)
(maximum result set count)
(maximum no. of extra blocks)
(query rowset size)

ENDUOWRM
uowdsp

RSLSETRM
svrcod

(End unit of work)
(unit of work disposition)
(Result Set Reply Message)
(severity code)

pkgsnlst

srvdgn
TYPDEFNAM

(RDB package name, consistency
token, and section number list)
(server diagnostic information)
(override for typdefnam)

TYPDEFOVR
SQLCARD

TYPDEFNAM
TYPDEFOVR

(override for typdefovr)
(SQLCARD Reply Data Object)

** see note below figure **
(override for typdefnam)
(override for typdefovr)

SQLRSLRD
TYPDEFNAM
TYPDEFOVR
SQLSTT

.

.

.

(SQL Result Set Reply Data Object)
(override for typdefnam)
(override for typdefovr)
(SQL Statement)

TYPDEFNAM
TYPDEFOVR
SQLSTT

OPNQRYRM

svrcod
qryprctyp
sqlcsrhld
qryattscr
qryattsns
qryattupd
qryinsid
qryblkfct
qryblktyp
srvdgn

TYPDEFNAM
TYPDEFOVR
SQLCINRD

(override for typdefnam)
(override for typdefovr)
(SQL Statement)

(Open Query Reply Message)
** result set #1 **

(severity code)
(query protocol type)
(hold cursor position)
(query attribute for scrollability)
(query attribute for sensitivity)
(query attribute for updatability)
(query instance identifier)
(query blocking factor)
(query block type)
(server diagnostic information)
(override for typdefnam)
(override for typdefovr)
(SQL result set column information
Reply Data Object)

QRYDSC

QRYDTA

.

.

.

(Query Answer Set Desc
Reply Data Object)
(Query Answer Set Data
Reply Data Object)

Figure 4-22 Executing a Stored Procedure (Part 1)

Part 1: Database Access Protocol 155

DDM Commands and Replies The DRDA Processing Model and Command Flows

[3]

QRYDTA (Query Answer Set Data
Reply Data Object)

RDBUPDRM (RDB Update Reply Message)

QRYDTA (Query Answer Set Data
Reply Data Object)

** extra block #1 **

[5]

[4]

(Continue Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(command source identifier)
(query block size)
(number of fetch rows)
(query scroll orientation)
(query row number)
(query row sensitivity)
(query block reset)
(query return data)
(query rowset size)
(query instance identifier)
(maximum no. of extra blocks)

(Continue Query)
(RDB_NAME)
(package name, consistency
token, and section number)
(command source identifier)
(query block size)
(number of fetch rows)
(query scroll orientation)
(query row number)
(query row sensitivity)
(query block reset)
(query return data)
(query rowset size)
(query instance identifier)
(maximum no. of extra blocks)

(package name, consistency
token, and section number)
(query instance identifier)
(query close lock release)

CNTQRY
rdbnam
pkgnamcsn

cmdsrcid
qryblksz
nbrrow
qryscrorn
qryrownbr
qryrowsns
qryblkrst
qryrtndta
qryrowset
qryinsid
maxblkext

CNTQRY
rdbnam
pkgnamcsn

cmdsrcid
qryblksz
nbrrow
qryscrorn
qryrownbr
qryrowsns
qryblkrst
qryrtndta
qryrowset
qryinsid
maxblkext

or
CLSQRY

pkgnamcsn

qryinsid
qryclsrls

OPNQRYRM

svrcod
qryprctyp
sqlcsrhld
qryattscr
qryattsns
qryattupd
qryinsid
qryblkfct
qryblktyp
srvdgn

(Open Query Reply Message)
** result set #2 **

(severity code)
(query protocol type)
(hold cursor position)
(query attribute for scrollability)
(query attribute for sensitivity)
(query attribute for updatability)
(query instance identifier)
(query blocking factor)
(query block type)
(server diagnostic information)

TYPDEFNAM
TYPDEFOVR
SQLCINRD

(override for typdefnam)
(override for typdefovr)
(SQL result set column information
Reply Data Object)

QRYDSC

QRYDTA

(Query Answer Set Desc
Reply Data Object)
(Query Answer Set Data
Reply Data Object)

Figure 4-23 Executing a Stored Procedure (Part 2)

156 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

QRYDTA

ENDQRYRM

(Query Answer Set Data
Reply Data Object)
(End Query Reply Message)

** end of result set #1 **

[n]

[n+1]

TYPDEFNAM
TYPDEFOVR
SQLCARD
RDBUPDRM
or
TYPDEFNAM
TYPDEFOVR
SQLCARD

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)
(RDB Update Reply Message)
(exclusively for CLSQRY)
(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

Figure 4-24 Executing a Stored Procedure (Part 3)

Note: If there are host variables in the parameter list of the SQL statement that invoked the stored
procedure, then an SQLDTA command data object flows from the application requester to the
application server on the EXCSQLSTT command and an SQLDTARD reply data object, rather
than an SQLCARD, flows from the application server to the application requester within the
summary component of the response to the EXCSQLSTT command.

The following is a discussion of the operations and functions the application requester and the
application server perform. This volume provides a brief description of some of the parameters
for the DDM commands. See the DDM Reference for a detailed description of the parameters.

Although Figure 4-22 (on page 155) and Figure 4-23 (on page 156) assume that there are no
externalized LOBs in any of the result sets, the following discussion indicates where externalized
LOB-related processing occurs. Refer to Section 4.4.6 (on page 121) for additional discussions of
LOB-related processing for query result sets.

1. After the application requester and the application server have established proper
connection (described in Figure 4-2 (on page 85)), prebound SQL statements referenced in a
package in a remote relational database can be executed. (See Section 4.4.3 (on page 111) for
a discussion of the DRDA flows needed to perform the bind.) Other DRDA flows can
precede or follow the execution of the prebound SQL statement referenced in the package
and be part of the same unit of work.

The application requester that is acting as the agent for the application performing the
execute SQL statement function creates the Execute SQL Statement (EXCSQLSTT)
command by providing the correct package name, consistency token, and section number in
the pkgnamcsn parameter. The optional cmdsrcid parameter uniquely identifies the source of
the command, and in this case one or more result sets. The optional rtnsetstt parameter
specifies whether the server must return one or more SQL SET statements for any special
registers whose settings have been changed on the current connection, if the execution of
the command causes any special register setting to be updated. The application requester
sets the outexp parameter to TRUE or FALSE depending on whether it expects an
SQLDTARD reply data object to be returned within the response to the EXCSQLSTT. The
optional42 prcnam parameter identifies the stored procedure to be executed at the
application server. The application requester specifies the query block size for the reply
data objects and reply messages that the application server can return for this command in

42. SQLAM Level 5 is required to support this parameter.

Part 1: Database Access Protocol 157

DDM Commands and Replies The DRDA Processing Model and Command Flows

the qryblksz parameter.

Note: The block size specified in qryblksz must be equal to or greater than 512 bytes and equal to
or less than 10M bytes. If not, the application server returns the VALNSPRM reply
message and the application server does not execute the command.

The application requester specifies the maximum number of result sets the application
requester is capable of receiving in the maxrslcnt parameter. For this example, assume that
the value of the maxrslcnt parameter is two. The application requester specifies the
maximum number of extra data blocks that the application requester is capable of receiving
per result set in the maxblkext parameter. For this example, assume that the value of the
maxblkext parameter on EXCSQLSTT is two. The application requester is also responsible for
putting any application variable values and their descriptions in the SQLDTA command
data object. For this example, assume that there are no application variable values. Thus, in
this instance, the application requester does not include an SQLDTA object as command
data on the EXCSQLSTT command. The application requester specifies whether it desires
the application server to return name, label, and comment information for the columns of
result sets and whether it desires the application server to return result answer set data in
the response to EXCSQLSTT in the rslsetflg parameter. For this example, assume that the
application requester desires the return of result set column names and answer set data. The
rdbcmtok parameter is set to TRUE in this example to allow the server to process the commit
operation that occurs as a result of the stored procedure call.

The qryrowset parameter on the EXCSQLSTT applies to a result set returned by the stored
procedure only if the result set is a non-scrollable, non-rowset cursor and conforms to the
limited block query protocol or if the result set is scrollable and not sensitive dynamic. The
qryrowset parameter specifies whether the indicated number of single-row fetches are to be
attempted in order to return a DRDA rowset with the OPNQRYRM for each such result set
for which the qryrowset parameter is applicable. The same qryrowset value applies to all such
result sets returned. If there are no result sets to which the parameter applies, including
when all scrollable or rowset result sets are reverted to non-scrolling, non-rowset result sets,
the qryrowset parameter on the EXCSQLSTT is ignored. The application requester sends the
command and command data to the application server.

The optional rtnsqlda parameter controls whether describe information is returned or not; if
not specified, no describe information is returned. The optional typsqlda parameter can
request light, standard, or extended column descriptive information to be returned. The
typsqlda is not a required parameter because the FDODSC object provides enough row-level
information needed to parse the SQLDTARD and return the parameter values to the
application. This describe information provides descriptive information about output
parameters. The descriptive information is returned in the SQLDARD as reply data. The
SQLDARD is returned only if the CALL is successful and there are parameters.

2. The application server receives and processes the EXCSQLSTT command. The maxrslcnt
parameter limits the number of result sets that the application server may return to two and
indicates that the application requester expects result set data to be returned by this
command. Thus, the application server assumes the use of limited block protocols. The
maxblkext parameter limits the number of extra data blocks that the application server may
return per result set to two. The qryblksz parameter determines the size of each query block.
The rslsetflg parameter indicates that the application requester is capable of processing
answer set data in the response to EXCSQLSTT.

The application server invokes the stored procedure. The stored procedure executes and
generates result sets in the order required by the logic and state information of the stored
procedure. In this sample flow, the stored procedure generates two result sets. Before the
execution of the stored procedure completes, the stored procedure specifies the order in

158 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

which the application server is to return the result sets to the application requester.

The execution of the stored procedure completes. Since the stored procedure was defined
with the commit on return attribute and rdbcmtok was specified as TRUE in the EXCSQLSTT
command, the application server initiates commit processing. When commit processing
completes successfully, the application server builds the transaction component of the reply
consisting of the ENDUOWRM43 with uowdsp set to committed. The response continues
with a summary component and at most m result set components, where m is the value of
the maxrslcnt parameter, specified by the application requester on the EXCSQLSTT
command. In this sample flow, the value of the maxrslcnt parameter is two and the number
of result sets is also two. The result set components follow the summary component in the
response and are arranged in the order specified by the stored procedure for the return of
result sets to the application requester.

The application server constructs the summary component, which consists of an
RSLSETRM reply message, an SQLCARD reply data object, and an SQLRSLRD reply data
object. The RSLSETRM reply message contains a pkgsnlst parameter that lists the pkgnamcsn
values for the result sets in the order in which the application server will return the result
sets to the application requester.44 The SQLCARD reply data object conveys information
about the success of the SQL statement that invoked the stored procedure. The SQLRSLRD
reply data object sequences the locator value, name information, and the number of rows
for the result sets in the order in which the application server will return the result sets to
the application requester. As per the setting of the optional rtnsetstt parameter, if any special
register has been updated during execution of the EXCSQLSTT command, following the
SQLRSLRD reply data object, the summary component may contain one or more SQLSTT
reply data objects, each containing an SQL SET statement for a special register whose
setting has been changed on the current connection.

The application server then constructs the result set components for the result sets
generated by the execution of the stored procedure. Each result set component contains at
least the OPNQRYRM (possibly with an optional SQLCARD), an SQLCINRD, and the
FD:OCA description of the data (QRYDSC). The application server may return answer set
data in a query block consisting of a QRYDTA reply data object as long as it is permitted by
the query protocol rules. Additional blocks of answer set data may also be chained to the
block, up to the maximum number of extra blocks of answer set data specified by the
application requester in the maxblkext parameter of the EXCSQLSTT command. The server
may optionally return an RDBUPDRM reply message at the end of the reply chain (as per
the UP rules in Section 7.18 (on page 428)).

For a non-scrollable, non-rowset result set, the server uses the qryrowset parameter specified
on the EXCSQLSTT to return a DRDA rowset in the QRYDTA for the cursor. If any result
sets returned by the stored procedure are scrollable or rowset result sets, then the server
first checks that the requester supports scrollable cursors or rowsets. If the requester is not

43. The reply messages that can be returned as part of the transaction component include ENDUOWRM, RDBUPDRM, or
CMMRQSRM. If RDBUPDRM is returned (as per the UP rules in Section 7.18 (on page 428)), it may be followed by either
ENDUOWRM or CMMRQSRM.

44. At the time the application server constructs the OPNQRYRM reply message for a result set, the application server also
associates a pkgnamcsn, locator value, and name with the result set. Each pkgnamcsn value identifies a section in a package at the
application server that is assigned to the result set. The locator value is a unique identifier for the result set that allows the
application to describe, fetch rows from, or declare a cursor on the associated result set. The name conveys the semantic of the
result set and is returned to the application so that the application can associate the result set with application logic for
processing the result set.

Part 1: Database Access Protocol 159

DDM Commands and Replies The DRDA Processing Model and Command Flows

at SQLAM Level 7 or higher, then the server acts according to whether it is the target server
or an intermediate server. The target data server reverts all scrollable or rowset result sets to
non-scrolling or non-rowset result sets while an intermediate server fails the stored
procedure call with an SQLSTATE of 560B3. When processing a scrollable cursor, the server
then validates that all scrollable result sets are positioned before the first row of the
corresponding result table. If any result sets are invalidly positioned, the stored procedure
call is failed with an SQLSTATE of 560B1. If each non-scrollable, non-rowset result set is
validly positioned, the application server uses the qryrowset parameter to return a DRDA
rowset in the QRYDTA for each such query. If the qryrowset parameter is not provided on
the EXCSQLSTT, the application server either returns no rows (for Fixed Row Protocol,
including for rowset cursors) or returns an implicit DRDA rowset (for Limit Block Protocol)
according to Query Data Transfer Protocol rule QP4.

If any cursors in the stored procedure will result in externalized LOB data being returned in
the answer set, then the application server does not return any QRYDTA for the cursor until
the application at the application requester issues a FETCH request. So, for each such cursor
returned by the stored procedure, the application server returns:

• OPNQRYRM

• SQLCINRD

• QRYDSC

In this sample flow, the response to the EXCSQLSTT command consists of DSSs comprising
the ENDUOWRM reply message in the transaction component, the summary component,
and two result set components. The summary component consists of the DSSs starting with
the RSLSETRM through the SQLSTT reply data objects. The result set component for the
first result set consists of the OPNQRYRM reply message, the SQLCINRD reply data object,
the QRYDSC reply data object, and three QRYDTA reply data objects, each of which is a
query block. The result set component for the second result set consists of the OPNQRYRM
reply message, the SQLCINRD reply data object, the QRYDSC reply data object, a QRYDTA
reply data object which is a query block, an ENDQRYRM reply message, and an SQLCARD
reply data object. In this example, each OPNQRYRM reply message has a qryprctyp
parameter value of LMTBLKPRC. Also, the reply chain ends with an RDBUPDRM reply
message (as per the UP rules in Section 7.18 (on page 428)). The application server sends the
response to the application requester.

For each OPNQRYRM reply message for result sets that do not have the rowset attribute,
the value of the qryprctyp parameter is LMTBLKPRC in this example. For rowset result sets,
the value of the qryprctyp parameter is FIXROWPRC. Depending on whether the cursor is
scrollable and whether the cursor returns LOB data, the qryprctyp can also be FIXROWPRC
instead. This flow is not shown in this example. The server sends the response to the
requester.

Depending on the value of the rtnsqlda, rslsetflg, and typsqlda parameters on the EXCSQLSTT
command, an optional SQLDARD and SQLCINRD, if requested, is generated to provide
descriptive information about the stored procedure parameters and result sets. The
SQLDARD is generated only if the CALL is successful and there are in/out or output
parameters. The level of describe information returned is identified by the value of the
typsqlda parameter. The SQLDARD is returned before the SQLDTARD; otherwise, the
rtnsqlda parameter is ignored if there is no SQLDTARD returned. The rslsetflg controls the
level of describe information returned for each result set.

3. The application requester receives the ENDUOWRM reply message, RSLSETRM reply
message, the SQLCARD reply data object, and the SQLRSLRD reply data object from the

160 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

application server. The receipt of ENDUOWRM informs the application requester that a
commit operation occurred at the application server and the current unit of work has
terminated. As a result of this the application requester may have to perform additional
processing. See Section 4.4.15.2 (on page 194) for details. The receipt of the RSLSETRM
informs the application requester that information about result sets follows the SQLCARD.

The application requester returns the execution results for the SQL statement that invoked
the stored procedure (the information content of the SQLCARD) to the application at the
application requester. If the number of result sets returned by the application server exceeds
the limit (that is, the MAXRSLCNT parameter value) that the application requester is
capable of receiving, the number of extra blocks of answer set data returned by the
application server for a result set exceeds the limit (that is, the MAXBLKEXT parameter
value) that the application requester is capable of receiving, the number of result set entries
within the SQL Result Set Reply Data object (SQLRSLRD) returned by the application server
does not match the number of Open Query Complete reply messages (OPNQRYRMs)
returned by the application server, or the number of result set entries within the SQL Result
Set Reply Data object (SQLRSLRD) returned by the application server does not match the
number of entries within the RDB Package Name, Consistency Token, and Section Number
List (PKGSNLST) returned by the application server, then the application requester may
return SQLSTATE X’58008’ or SQLSTATE X’58009’ to the application.

The application requester also caches all SQL SET statements that may have been returned
from the server in SQLSTT reply data objects so that they can be used later to restore the
execution environment when the connection is reestablished to the database at either the
original location or an alternate failover location in case of a communications failure.

The application requester receives the DSSs in each result set component from the
application server. The application requester associates each DSS with the pkgnamcsn,
qryinsid, locator value, and name of its result set and then stores the description and answer
set data associated with each result set for a subsequent FETCH by the application at the
application requester. Depending on the QRYBLKTYP selected by the server for the result
set, the answer set data may be returned in flexible query blocks or in exact query blocks. If
flexible query blocks are returned, then only complete base data rows are included in the
query blocks. If exact query blocks are returned, the last query block may end with a partial
row.

No further flows are required between the application requester and the application server
for the transmission of additional answer set data unless the application issues a FETCH
that cannot be satisfied by the QRYDTA reply data object already stored at the application
requester for a result set. This sample flow assumes that the client application at the
application requester does issue a FETCH for the first result set that the application
requester cannot satisfy.

If the application at the application requester issues a FETCH using a descriptor, then the
application requester may optionally format an OUTOVR object and flow it to the
application server with the CNTQRY. The OUTOVR is required only if the application
wishes to receive externalized LOB columns in a format other than as LOB data.

When the application performs a FETCH for the first result set and a complete row is no
longer available in the QRYDTA reply data object, the application requester creates a
CNTQRY command that specifies the pkgnamcsn value returned for that result set in the
pkgsnlst parameter of the RSLSETRM reply message, along with the optional cmdsrcid
parameter to uniquely identify the result set. The CNTQRY command also specifies the
mandatory qryinsid value for the rest set as previously. The application requester may also
specify different values for the qryblksz and maxblkext parameters of the CNTQRY command

Part 1: Database Access Protocol 161

DDM Commands and Replies The DRDA Processing Model and Command Flows

from those specified on the EXCSQLSTT command. For this sample flow, assume that the
value of the maxblkext parameter on the CNTQRY command is one.

4. The application server receives the CNTQRY command and identifies the result set
associated with the CNTQRY request through the section number contained within the
pkgnamcsn parameter, the optional cmdsrcid parameter that uniquely identifies the source of
the result set, and also the qryinsid parameter that uniquely identifies the instance of the
result set. If one or more exact query blocks were previously returned and the last block
ended with a partial row, the application server places the remainder of the partial row in
the reply chain, consuming one or more exact query blocks as needed. If flexible query
blocks were previously returned or if this is the first CNTQRY, the application server
retrieves a data row from the answer set and places it in the QRYDTA reply data object
along with an SQLCA. The block containing the row may be completed, if room exists, with
additional answer set data. Additional blocks of answer set data may also be chained to this
block of answer set data up to the maximum number of extra blocks of answer set data
specified by the application requester in the maxblkext parameter of the CNTQRY command.

If the application server receives a CNTQRY with an OUTOVR object, then it either accepts
or rejects the OUTOVR object depending on the outovropt value on the OPNQRY or
EXCSQLSTT command. If it accepts the OUTOVR, it returns the externalized output LOB
data in the format given by the override descriptors.

Columns that will be returned as externalized LOB data flow in the QRYDTA as FD:OCA
placeholders. The externalized LOB data values themselves flow in EXTDTA objects after
the QRYDTA object containing the associated row.

As per the UP rules in Section 7.18 (on page 428), an optional RDBUPDRM reply message
may be flowed at the end of this reply chain.

In this sample flow, the response to the CNTQRY command consists of two blocks,
followed by an RDBUPDRM reply message. Both blocks contain QRYDTA reply data
objects containing answer set data from the first result set. The application server sends the
query blocks to the application requester.

5. When the application requester receives the QRYDTA reply data object, it handles the
received row data according to whether exact or flexible query blocks are received. If exact
query blocks are received and a partial row was received in reply to the previous command,
the application requester must assemble the row data from the previous command with the
remaining row data in the current reply chain before passing the row to the application. If
flexible blocking is in effect or if exact blocking is in effect but there is no pending partial
row, the application requester passes the received row data to the application.

When the application requests the next row from the application requester, the application
requester maps the next row from the QRYDTA reply data object to the application’s host
variables.

When a complete row of the first result set is no longer available in the query block, the
application requester creates a CNTQRY command that specifies the pkgnamcsn value
returned for that result set in the pkgsnlst parameter of the RSLSETRM reply message, along
with the optional cmdsrcid parameter to uniquely identify the result set. The CNTQRY
command also specifies the mandatory qryinsid value for the result set as previously. The
application requester may also specify different values on the qryblksz and maxblkext
parameters for the CNTQRY command than those specified on the EXCSQLSTT command.

Steps 4 and 5 are repeated until the application server returns the QRYDTA reply data
object with all of the last row of the answer set for the first result set to the application
requester, or until the application does not request any more rows.

162 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

The application server then sends the response to the application requester.

n The application server receives the CNTQRY command and identifies the result set
associated with the CNTQRY request through the section number contained within the
pkgnamcsn parameter, the optional cmdsrcid parameter that uniquely identifies the source of
the result set, and also the qryinsid parameter that uniquely identifies the instance of the
result set. As described in Step 4, it places the remaining portion of a partial row or retrieves
the next desired data row from the answer set and places it in the QRYDTA reply data
object along with an SQLCA. The application server continues to retrieve additional rows of
the answer set and to place them in the QRYDTA reply data object until it retrieves the last
row. After it has placed the last row of the answer set (which completes the last QRYDTA
reply data object) in the query block, the query block is complete. The application server
may generate an ENDQRYRM reply message and an SQLCARD reply data object and chain
them to the query block. In such a case, the server closes the query. Otherwise, the server
does not send the ENDQRYRM and does not close the query. This reply chain can
optionally be followed by an RDBUPDRM reply message as per the UP rules in Section 7.18
(on page 428).

For non-scrollable queries, after it has placed the last row of the answer set (which
completes the last QRYDTA reply data object) in the query block, the application server
may either return the query block and leave the query open, or close the query implicitly. In
the case of a scrollable cursor, the query must stay open.

If the cursor is scrollable, or if the server has determined that the query cannot be closed
implicitly based on some other cursor properties, the server does not close the query until a
CLSQRY command is received from the application requester, or until the transaction is
rolled back.

Otherwise, the server may choose to close the non-scrollable query implicitly at this time.
For non-scrollable result sets, after it has placed the last row of the answer set (which
completes the last QRYDTA reply data object) in the query block, then the query block is
complete. The application server can close the query implicitly by placing an ENDQRYRM
reply message and the associated SQLCARD reply data object in the reply chain after the
last query block. If Chaining Rule CH5 prohibits the server from closing the query
implicitly, then the server does not send the ENDQRYRM and its associated SQLCARD to
the application requester with this reply chain. They will be sent as the only responses to the
next CNTQRY command.

If the server sends the ENDQRYRM reply message and the SQLCARD reply data object to
the application requester, then the query is terminated. The server closes the query and will
no longer accept CNTQRY commands for this cursor until it is reopened.

For scrollable cursors and other cursors that the server does not close implicitly, reaching
the end of the query data (SQLSTATE 02000) does not terminate the cursor, so the
ENDQRYRM reply message should not be returned and the query is not closed until the
application requester sends a CLSQRY command. In response to the CLSQRY command,
the server sends back an SQLCARD reply data object.

n+1 When the application requester receives the QRYDTA reply data object, it passes the row
data to the application as described in Step 5.

When the application requests the next row from the application requester, the application
requester maps the next row from the QRYDTA reply data object to the application’s host
variables.

When the application requester receives the ENDQRYRM message, it knows that the
application server has either processed the last row of answer data (for a non-scrollable

Part 1: Database Access Protocol 163

DDM Commands and Replies The DRDA Processing Model and Command Flows

cursor) or that a terminating error has occurred. It knows the application server has closed
the query (for a non-scrollable cursor) or that the cursor has been terminated and is in a
not-opened state, so the application requester will not send any additional CNTQRY
commands to the application server.

If the application requester has previously sent out a CLSQRY command to explicitly close
the open query, the reply will consist of an SQLCARD reply data object.

164 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.7.3 Executing Chained Ordinary Bound SQL Statements as an Atomic Operation

Execute SQL Statement (EXCSQLSTT) commands can be batched as a single atomic operation.
The response consists of a chain of replies, one for each EXCSQLSTT in the command chain.
Because the operation is atomic, all replies except the one corresponding to the last EXCSQLSTT
command processed in the chain must indicate success. Figure 4-25 (on page 166) shows the
flows involved.

Part 1: Database Access Protocol 165

DDM Commands and Replies The DRDA Processing Model and Command Flows

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

pkgnamcsn

cmdsrcid
outexp

EXCSQLSTT
rdbnam
pkgnamcsn

cmdsrcid
outexp

EXCSQLSTT
rdbnam
pkgnamcsn

cmdsrcid
outexp

ENDATMCHN
endchntyp

BGNATMCHN
rtnsetstt

EXCSQLSTT
rdbnam

(package name, consistency
token, and section number)
(command source identifier)
(output expected)

(Execute SQL Statement)
(RDB_NAME)
(package name, consistency
token, and section number)
(command source identifier)
(output expected)

(Execute SQL Statement)
(RDB_NAME)
(package name, consistency
token, and section number)
(command source identifier)
(output expected)

(End Atomic Chain)
(end chain type)

(Begin Atomic Chain)
(return set statement)
(Execute SQL Statement)
(RDB_NAME)

[1]

TYPDEFNAM
TYPDEFOVR
SQLDTA
EXTDTA

TYPDEFNAM
TYPDEFOVR
SQLDTA
EXTDTA

TYPDEFNAM
TYPDEFOVR
SQLDTA
EXTDTA

.

.

.

(override for typdefnam)
(override for typdefovr)
(SQL application variable data)
(Externalized FD:OCA data)

(override for typdefnam)
(override for typdefovr)
(SQL application variable data)
(Externalized FD:OCA data)

(override for typdefnam)
(override for typdefovr)
(SQL application variable data)
(Externalized FD:OCA data)

TYPDEFNAM
TYPDEFOVR
SQLCARD
TYPDEFNAM
TYPDEFOVR
SQLSTT

.

.

.
TYPDEFNAM
TYPDEFOVR
SQLSTT
TYPDEFNAM
TYPDEFOVR
SQLCARD
TYPDEFNAM
TYPDEFOVR
SQLSTT

.

.

.

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)
(override for typdefnam)
(override for typdefovr)
(SQL Statement)

(override for typdefnam)
(override for typdefovr)
(SQL Statement)
(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)
(override for typdefnam)
(override for typdefovr)
(SQL Statement)

Figure 4-25 Executing Bound SQL Statements as an Atomic Operation (Part 1)

166 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

[3]

TYPDEFNAM
TYPDEFOVR
SQLSTT
TYPDEFNAM
TYPDEFOVR
SQLCARD
TYPDEFNAM
TYPDEFOVR
SQLSTT

.

.

.

TYPDEFNAM
TYPDEFOVR
SQLSTT
TYPDEFNAM
TYPDEFOVR
SQLDTARD
EXTDTA
TYPDEFNAM
TYPDEFOVR
SQLSTT

.

.

.
TYPDEFNAM
TYPDEFOVR
SQLSTT
TYPDEFNAM
TYPDEFOVR
SQLDTARD
EXTDTA
TYPDEFNAM
TYPDEFOVR
SQLSTT

.

.

.

or
TYPDEFNAM
TYPDEFOVR
SQLDTARD
EXTDTA
TYPDEFNAM
TYPDEFOVR
SQLSTT

.

.

.

(override for typdefnam)
(override for typdefovr)
(SQL Statement)
(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)
(override for typdefnam)
(override for typdefovr)
(SQL Statement)

(override for typdefnam)
(override for typdefovr)
(SQL Statement)
(override for typdefnam)
(override for typdefovr)
(SQLDTARD Reply Data Obj)
(Externalized FD:OCA Data)
(override for typdefnam)
(override for typdefovr)
(SQL Statement)

(override for typdefnam)
(override for typdefovr)
(SQL Statement)
(override for typdefnam)
(override for typdefovr)
(SQLDTARD Reply Data Obj)
(Externalized FD:OCA Data)
(override for typdefnam)
(override for typdefovr)
(SQL Statement)

TYPDEFNAM
TYPDEFOVR
SQLSTT

.

.

.

(override for typdefnam)
(override for typdefovr)
(SQL Statement)

TYPDEFNAM
TYPDEFOVR
SQLSTT

.

.

.

(override for typdefnam)
(override for typdefovr)
(SQL Statement)

(override for typdefnam)
(override for typdefovr)
(SQLDTARD Reply Data Obj)
(Externalized FD:OCA Data)
(override for typdefnam)
(override for typdefovr)
(SQL Statement)

Figure 4-26 Executing Bound SQL Statements as an Atomic Operation (Part 2)

The following is a discussion of the operations and functions the application requester and the
application server perform. This volume provides a brief description of some of the parameters
for the DDM commands. See the DDM Reference for a detailed description of the parameters.

Part 1: Database Access Protocol 167

DDM Commands and Replies The DRDA Processing Model and Command Flows

1. The application requester starts an atomic chain with a Begin Atomic Chain
(BGNATMCHN) command. The application requester then creates a chain of Execute SQL
Statement (EXCSQLSTT) commands on behalf of the application. Refer to Section 4.4.7.1 (on
page 148) for details of the EXCSQLSTT command. The following restrictions are imposed
on each of the EXCSQLSTT commands in the atomic chain:

1. The EXCSQLSTT command cannot invoke a commit or rollback.

2. The EXCSQLSTT command cannot be for a CALL statement for a stored procedure.

Note that an EXCSQLSTT command in the chain may be for a select statement, in which
case its reply can be an SQLDTARD instead of an SQLCARD.

In addition, it is highly recommended although not mandatory that the application
requester make use of the default package name and consistency token on each
EXCSQLSTT command in the chain as per rule CU14 in Section 7.6 (on page 404) whenever
possible.

For each EXCSQLSTT in the atomic chain, there is no change regarding how input
application variable data (both non-LOB and LOB) is flowed in the SQLDTA command data
object and the optional EXTDTA data object.

It is permissible to have an EXCSQLSTT command representing a multi-row input
operation in the atomic chain. Since the chain is atomic, the multi-row input operation
contained therein must also be atomic.

The application requester terminates the atomic chain with an End Atomic Chain
(ENDATMCHN) command.

2. The BGNATMCHN command informs the application server that this is the start of an
atomic EXCSQLSTT chain. There is no reply required for this command if it is processed
successfully. The application server then receives and processes each of the EXCSQLSTT
commands in the atomic chain in sequence and creates an SQLCARD reply data object or
SQLDTARD reply data object for each command. Any LOB data value in the output which
needs to be externalized will be flowed back in an EXTDTA data object following its
SQLDTARD reply data object. Each requested statement executes with the input variable
values passed with the command, the results are reflected in the referenced database
manager (within the scope of the unit of work), and an SQLCARD reply data object is
returned. For all EXCSQLSTT commands in the atomic chain, if the statement executes
successfully (with or without warnings), an SQLCARD or SQLDTARD reply data object is
returned. As per the setting of the optional rtnsetstt parameter as specified on the
BGNATMCHN command, if any special register has been updated during execution of an
EXCSQLSTT command within the atomic chain, its reply must also contain one or more
SQLSTT reply data objects, each containing an SQL SET statement for a special register
whose setting has been changed on the current connection. Processing of the atomic chain
stops immediately upon the first error condition, or when the ENDATMCHN command has
been processed successfully. If an error has occurred, all changes made as a result of
previous successful statement executions earlier in the atomic chain are undone.

The ENDATMCHN command is only processed if all prior BGNATMCHN and
EXCSQLSTT commands in the atomic chain have been processed successfully. This
command indicates to the application server the end of the atomic chain. The optional
endchntyp parameter enables the application requester to inform the application server
either to terminate the chain normally or to abort the chain. If the ENDATMCHN command
is processed successfully, the application server returns an SQLCARD reply data object
indicating success for the entire atomic chain.

168 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

3. For a normal completion, the application requester returns to the application with the
successful indication which applies to all of the EXCSQLSTT commands in the chain. The
application requester may also choose to return to the application any warning conditions
set in the SQLCAGRP for individual EXCSQLSTT commands in the chain. The application
requester also returns data in each of the SQLDTARD reply data objects in the reply chain,
and if applicable, its associated EXTDTA data object(s) to the application. The application
requester also caches all SQL SET statements that may have been returned from the server
in SQLSTT reply data objects so that they can be used later to restore the execution
environment when the connection is reestablished to the database at either the original
location or an alternate failover location in case of a communications failure.

At this point, the application/application requester can continue with additional defined
DRDA flows.

If the last SQLCARD reply data object that the application server returned to the application
requester indicates that the atomic EXCSQLSTT chain was not successful, the application
requester returns an exception to the application that is attempting to execute the chain of
SQL statements.

Part 1: Database Access Protocol 169

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.7.4 Executing Bound SQL Statement with Array Input

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[3]

EXCSQLSTT
rdbnam
cid
pkgnamcsn

outexp

(Execute SQL Statement)
(RDB_NAME)
(command instance)
(package name, consistency
token, and section number)
(output expected)

[1]

TYPDEFNAM
TYPDEFOVR
SQLDTA
EXTDTA

(override for typdefnam)
(override for typdefovr)
(SQL application array data)
(Externalized FD:OCA data)

TYPDEFNAM
TYPDEFOVR
SQLCARD
TYPDEFNAM
TYPDEFOVR

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)
(override for typdefnam)
(override for typdefovr)

Figure 4-27 Executing an Array Input SQL Statement

1. After the requester and the server have established proper connection (described in Figure
4-2 (on page 85)), prebound SQL statements referenced in a package in a remote relational
database can be executed. (See Section 4.4.3 (on page 111) for a discussion of the DRDA
flows needed to perform the bind.) Other DRDA flows can precede or follow the execution
of the prebound SQL statement referenced in the package and be part of the same unit of
work. In order to flow the variable arrays using the SQLDTA object, the server is required to
return the extended diagnostics in the reply data. Extended diagnostics are described by the
SQLDIAGGRP early descriptor and allows the server to return multiple warning or error
conditions for a single request in the SQLCARD.

The requester that is acting as the agent for the application performing the execute of an
array input SQL statement function creates the Execute SQL Statement (EXCSQLSTT)
command or an Open Query (OPNQRY) command (not illustrated by this example) by
providing the correct command instance, package name, consistency token, and section
number in the pkgnamcsn parameter. For this example, it also indicates in the outexp
parameter whether or not it expects output to be returned within an SQLDTARD reply data
object as a result of the execution of the SQL statement.

The SQLDTA contains the description and the data for each input array. It consists of an
FDOEXT data object, an FDODSC descriptor object, an FDODTA data object, and an
FDOOFF data object. First, the FDOEXT data object is built. The FDOEXT data object
contains the extent specification for each field in the SQLDTA. The extent specification
defines the number of times the field is repeated. Second, the FDODSC descriptor is built.
The FDODSC descriptor object describes each repeatable field. Each field describes an array
where each element in the array has the identical format, all having the same field length,
field type, and type parameter. Next, the FDODTA data object is built. It contains the data
array for each field. Each field is repeated the number of times specified by the FDOEXT
data object. Finally, the FDOOFF is built. It contains the offset values for each field. The
offset value is the relative byte count from the start of the FDODTA data object to the first
byte of the first element of each field. Offsets and extents are placed in the order as they
occur in the associated FDODSC.

170 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

The SQLDTA data object contains the non-LOB input array data. If there is LOB data
associated with a variable then the LOB values are externalized in EXTDTA data objects.
EXTDTA objects flow after the SQLDTA command data. EXTDTA objects flow in database
row order. The EXTDTAs for the first row flow in the order that the FD:OCA placeholders
occur in the associated SQLDTA. All LOB values for the first row (all LOB values defined in
the first entry in each array) flow and then each subsequent row flows. The SQLDTA is
allowed to be preceded by a TYPDEFNAM and/or TYPDEFOVR data object.

2. The server receives and processes each row in the array data in the EXCSQLSTT command
and creates the appropriate reply. In this example, an SQLCARD reply data object is
returned. The request executes passing the input arrays with the command, the results are
reflected in the referenced database manager (within the scope of the unit of work), and an
SQLCARD reply data object is returned. An option on the SQL statement provides the
database server when the requester wants the multiple-row request to succeed or fail as a
unit, or if it wants the database server to proceed despite a partial (one or more rows)
failure. The SQL clause to do this is ATOMIC or NOT ATOMIC where ATOMIC specifies
that if the insert for any row fails, then all changes made to the database by any of the
inserts, including changes made by successful inserts, are undone. This is the default. When
NOT ATOMIC is specified, the inserts are processed independently. This means that if one
or more errors occurs during the execution of an INSERT statement, then processing
continues and any changes made during the execution of the statement are not backed out.

For each row that is processed by the database server, a condition is added to the
SQLDIAGGRP. Each condition is needed to allow the requester to retrieve diagnostics
information about each row processed. After the request is processed, the SQLCAGRP and
SQLCAXGRP completion information is set to the following:

SQLCODE SQLCODE of last error.

SQLSTATE SQLSTATE of last error.

SQLERRD3 Actual number of rows processed.

SQLWARN Accumulation of flags set during any single insert.

Additionally, when NOT ATOMIC is in effect then status information is available for each
failure or warning that occurred while processing the request. The status information for
each row is available in the extended portion of the SQLCARD. If errors occur during the
execution of the statement, the referenced database manager remains unchanged, and the
SQLCARD reply data object contains an indication of the error condition.

3. The requester returns to the application with the indication of the success or failure of the
request. The SQLCARD reply data object contains the SQLDIAGGRP that contains an array
of conditions for each row processed by the database server.

Part 1: Database Access Protocol 171

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.8 Preparing an SQL Statement

Figure 4-28 indicates the DRDA commands and replies that flow during the preparation of a
single SQL statement. The usual result of this command is a prepared SQL statement in the
indicated package that an EXCSQLSTT command can later (within the same unit of work)
execute.

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[3]

PRPSQLSTT
rdbnam
pkgnamcsn

cmdsrcid

bufinsind

typsqlda
rtnsqlda

(Prepare SQL Statement)
(RDB_NAME)

(type SQL Data Area)
(return SQL Data Area)

(package name, consistency
token, and section number)
(command source identifier)

(buffered insert indicator)

[1]

TYPDEFNAM
TYPDEFOVR
SQLATT
SQLSTT

(override for typdefnam)
(override for typdefovr)
(SQL Attributes)
(SQL Statement)

TYPDEFNAM
TYPDEFOVR
SQLDARD
or
TYPDEFNAM
TYPDEFOVR
SQLCARD

(override for typdefnam)
(override for typdefovr)
(SQLDARD Reply Data Object)

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Object)

Figure 4-28 Preparing an SQL Statement

The following is a discussion of the operations and functions the application requester and the
application server perform. This is a brief description of some of the parameters for the DDM
commands. The DDM Reference provides a more detailed description of these parameters.

1. After the application requester and application server have established the proper
connection (described in Figure 4-2 (on page 85)), the application server can prepare
additional dynamic SQL statements (similar to bind), associated with a specified package,
and later, within the same unit of work, the statement can execute. In addition, if the
PRPSTTKP bind option was specified during the bind process, the statement can be
executed across units of work.

Note: Other commands can precede or follow the preparation and execution of the SQL
statement and be part of the same unit of work. The SQL statement can be executed as
many times as needed within the same unit of work that it was prepared, except if the
PRPSTTKP option was specified during bind processing which keeps prepared statements
across units of work.

When the unit of work or the network connection terminates (normally or abnormally),
the package no longer references the prepared statement, so the statement is no longer
available for execution. However, when the unit of work is terminated with a COMMIT,
the package still references the prepared statement for queries with the HOLD option in
the DECLARE CURSOR statement, and the statement is still available for execution.

The application requester creates the Prepare SQL Statement (PRPSQLSTT) command by
providing the correct package name, consistency token, and section number in the
pkgnamcsn parameter. The optional cmdsrcid parameter uniquely identifies the source of the

172 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

command. If the application requester needs a description of the row data that can be
returned (when the statement being prepared is executed) as a result of a SELECT statement
being prepared, then it indicates this in the rtnsqlda parameter. The optional bufinsind
parameter indicates to the server for an SQL INSERT statement what flavor of buffered
insert, if any, should be used when the statement gets executed in an atomic multi-row
input operation against a partitioned database.

The application requester places the SQL statement to be prepared into the SQLSTT
command data object and optionally sends the command to the application server.

The typsqlda parameter identifies the level of describe information to be returned. A light,
standard, or extended column of descriptive information can be requested. Refer to
SQLDAGRP for details on the level of descriptive information that can be requested. If not
specified, the standard describe information is returned.

2. The application server receives and processes the PRPSQLSTT command and SQLSTT and
optionally the SQLATTR command data objects and creates an SQLDARD reply data object
or an SQLCARD reply data object. The application server prepares the requested SQL
statement for later execution within this same unit of work unless the PRPSTTKP option
was specified when the package was bound. The PRPSTTKP option allows prepared
statements to be kept across units of work. The application server performs a DESCRIBE
(SQL verb) on the prepared statement, if indicated in the rtnsqlda parameter, and uses the
returned row data descriptions to create an SQLDARD reply data object, which it returns to
the application requester.

If the statement that the application server was preparing was not an SQL SELECT
statement, then the SQLDARD reply data object will contain an SQLDA with zero data
variable definition entries and a normal SQLCA. (The SQLDARD reply data object also
contains the SQLCA, so the application server does not return the SQLCARD reply data
object.)

If the statement is an SQL INSERT statement, the optional bufinsind parameter indicates to
the server what flavor of buffered insert, if any, should be used when the statement gets
executed in an atomic multi-row input operation against a partitioned database. This
parameter has no effect and is ignored otherwise.

If any errors occurred during the preparation of the SQL statement, the referenced package
will not successfully prepare the new SQL statement, and the application server will return
an SQLCA in either an SQLCARD reply data object or an SQLDARD reply data object
(which will contain an SQLDA with zero data variable definition entries) indicating the
error condition.

The level of SQLDARD generated is dependent on the level specified on the typsqlda
parameter.

3. If an SQLCA that was found in the SQLCARD reply data object or the SQLDARD reply data
object that the application server returned to the application requester indicates the
PRPSQLSTT command was not successful, the application requester returns an exception to
the application that is attempting to prepare the SQL statement.

Assuming it receives an SQLCARD reply data object or an SQLDARD reply data object
indicating a normal completion of the PRPSQLSTT command, the application requester
proceeds to return the successful indication to the application.

At this point, the application/application requester can continue with additional defined
DRDA flows with the resulting database management changes being in the same unit of
work, or it can execute the SQL statement that the process has prepared. A user can prepare

Part 1: Database Access Protocol 173

DDM Commands and Replies The DRDA Processing Model and Command Flows

multiple SQL statements and execute them within the same unit of work unless the
PRPSTTKP option was specified when the package was bound. The PRPSTTKP option
allows prepared statements to be kept across units of work.

If the application requester is going to execute a prepared SQL statement next, it creates and
sends an EXCSQLSTT command as described in step 1 of Figure 4-21 (on page 149) or
creates and sends an OPNQRY command as described in step 1 of Figure 4-14 (on page 124).

174 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.9 Retrieving the Data Variable Definitions of an SQL Statement

Figure 4-29 indicates the DRDA commands and replies that flow during the retrieval of the data
variable definitions associated with a bound SQL statement. The usual result of this command is
the return of the definitions of the data variables that the desired SQL statement has referenced.
The SQL statement can later be executed through an EXCSQLSTT command.

If connection is between an application server and database server, any new or changed special
register settings must be sent using the EXCSQLSET command prior to activating or processing
queries. The EXCSQLSET command is recommended to be chained next SQL command.

The EXCSQLSET command requires package name and consistency token parameters, but no
section number parameter, as it is not bound into a package. Support for the SET CURRENT
PACKAGE PATH statement is contingent on support of the EXCSQLSET command, as this
value is propagated from a requester to a database server (possibly through intermediate
servers) using the EXCSQLSET command.

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[3]

DSCSQLSTT
rdbnam
typsqlda
pkgnamcsn

cmdsrcid
qryinsid

(Describe SQL Statement)
(RDB_NAME)
(input|output)
(package name, consistency
token, and section number)
(command source identifier)
(query instance identifier)

[1]

TYPDEFNAM
TYPDEFOVR
SQLDARD

or
TYPDEFNAM
TYPDEFOVR
SQLCARD

(override for typdefnam)
(override for typdefovr)
(SQLDARD Reply Data Obj)

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

Figure 4-29 Describing a Bound SQL Statement

The following is a discussion of the operations and functions the application requester and the
application server perform. This is a brief description of some of the parameters for the DDM
commands. The DDM Reference provides a detailed description of these parameters.

1. After the application requester and the application server have established the proper
connection (described in Figure 4-2 (on page 85)), it is possible to request the application
server to provide either the description of the data variables that a particular SQL statement
in a specific bound package references or to obtain definitions of the input parameters of a
prepared statement.

The application requester creates the Describe SQL Statement (DSCSQLSTT) command by
providing the correct package name, consistency token, and section number in the
pkgnamcsn parameter. The optional cmdsrcid parameter uniquely identifies the source of the
command. If this operation is performed on an SQL statement that has an open cursor
associated with it, then the qryinsid value returned previously on the OPNQRYRM reply
message must also be supplied on the DSCSQLSTT command. It then sends the command
to the application server.

Part 1: Database Access Protocol 175

DDM Commands and Replies The DRDA Processing Model and Command Flows

The typsqlda parameter identifies the level of describe information to be returned. A light,
standard, or extended column of descriptive information can be requested. Refer to
SQLDAGRP for details on the level of descriptive information that can be requested. If not
specified, the standard describe information is returned.

2. The application server receives and processes the DSCSQLSTT command. Then the
application server creates an SQLDARD containing the requested data variable definitions
for the indicated SQL statement and returns it to the application requester. (The SQLDARD
reply data object also contains the SQLCA, so the application server does not return the
SQLCARD reply data object.) If the application server found any errors while it described
the SQL statement, the SQLDARD reply data object will contain an SQLCA, describing the
error condition, and an SQLDA containing zero data variable definition entries. In either
case, the application server returns the SQLDARD reply data object to the application
requester. In addition, in the case of an SQL error, the server may return an SQLCARD reply
data object instead of an SQLDARD reply data object to the application requester.

Note: If the current unit of work had been abnormally terminated, then the application server
would have returned an SQLCARD reply data object and an ABNUOWRM reply message
instead of the SQLDARD reply data object.

The level of SQLDARD generated is dependent on the level specified on the typsqlda
parameter.

3. If the application server returned an SQLDARD or SQLCARD reply data object to the
application requester indicating the DSCSQLSTT command was not successful, the
application requester returns an exception to the application that is attempting to describe
the SQL statement.

Assuming an SQLDARD reply data object, indicating a normal completion of the
DSCSQLSTT command is received, the application requester proceeds to return the data
variable definitions and the successful completion indication to the application.

At this point, the application/application requester can continue with additional defined
DRDA flows with the resulting database management changes being in the same unit of
work.

176 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.10 Executing a Describe Table SQL Statement

Figure 4-30 indicates the DRDA commands and replies that flow when executing a Describe
Table SQL statement.

If connection is between an application server and database server, any new or changed special
register settings must be sent using the EXCSQLSET command prior to activating or processing
queries. The EXCSQLSET command is recommended to be chained next SQL command.

The EXCSQLSET command requires package name and consistency token parameters, but no
section number parameter, as it is not bound into a package. Support for the SET CURRENT
PACKAGE PATH statement is contingent on support of the EXCSQLSET command, as this
value is propagated from a requester to a database server (possibly through intermediate
servers) using the EXCSQLSET command.

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[3]

DSCRDBTBL
rdbnam
typsqlda
rtnsqlda

TYPDEFNAM
TYPDEFOVR
SQLOBJNAM

(Describe RDB Table)
(RDB_NAME)
(type SQL Data Area)
(return SQL Data Area)
(override for typdefnam)
(override for typdefovr)
(SQL object name)

[1]

TYPDEFNAM
TYPDEFOVR
SQLDARD

or
TYPDEFNAM
TYPDEFOVR
SQLCARD

(override for typdefnam)
(override for typdefovr)
(SQLDARD Reply Data Obj)

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

Figure 4-30 Describing a Table

The following is a discussion of the operations and functions the application requester and the
application server perform. This is a brief description of some of the parameters for the DDM
commands. See the DDM Reference for a detailed description of the parameters.

1. After the application requester and the application server have established the proper
connection (described in Figure 4-2 (on page 85)), the SQL Describe Table statement
command can be executed. This command requests that a description of the relational
database table named in the SQLOBJNAM command data object be returned to the
requester.

The application requester creates the Describe RDB Table (DSCRDBTBL) command. It
places the SQL table name that is to be described in the SQLOBJNAM command data object
and sends it to the application server.

The typsqlda parameter identifies the level of describe information to be returned. A light,
standard, or extended column of descriptive information can be requested. Refer to
SQLDAGRP for details on the level of descriptive information that can be requested. If not
specified, the standard describe information is returned.

2. The application server receives and processes the DSCRDBTBL command. Normal
completion of this command results in the description of the named relational database
table being returned in the SQLDARD reply data object. If errors occur during the execution

Part 1: Database Access Protocol 177

DDM Commands and Replies The DRDA Processing Model and Command Flows

of the command, exception conditions may be reported in an SQLCARD reply data object,
or in an SQLDARD reply data object which contains an SQLDA with zero data variable
definition entries.

Note: If the current unit of work had been abnormally terminated, the application server would
have returned an SQLCARD reply data object and an ABNUOWRM reply message
instead of the SQLDARD reply data object.

The level of SQLDARD generated is dependent on the level specified on the typsqlda
parameter.

3. If the SQLDARD reply data object indicates that the DSCRDBTBL command was successful,
the application requester returns the table description to the application that is attempting
to execute the Describe Table SQL statement.

At this point, the application/application requester can continue with additional defined
DRDA flows.

If the SQLDARD or SQLCARD reply data object that the application server returns to the
application requester indicates that the DSCRDBTBL command was not successful, the
application requester returns an exception to the application that is attempting to execute
the Describe Table SQL statement.

178 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.11 Executing a Dynamic SQL Statement

Figure 4-31 indicates the DDM commands and replies that flow when a user is executing an SQL
statement that has not been previously bound to the relational database or prepared as an SQL
statement within the current unit of work. The usual result is that the application server makes
the expected changes in the relational database (within the scope of the current unit of work)
after the statement successfully executes.

If connection is between an application server and database server, any new or changed special
register settings must be sent using the EXCSQLSET command prior to activating or processing
queries. The EXCSQLSET command is recommended to be chained next SQL command.

The EXCSQLSET command requires package name and consistency token parameters, but no
section number parameter, as it is not bound into a package. Support for the SET CURRENT
PACKAGE PATH statement is contingent on support of the EXCSQLSET command, as this
value is propagated from a requester to a database server (possibly through intermediate
servers) using the EXCSQLSET command.

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[3]

EXSQLIMM
rdbnam
pkgnamcsn

cmdsrcid
qryinsid
rtnsetstt
typsqlda
rtnsqlda

(Execute SQL Stmt. Immediate)
(RDB_NAME)
(package name, consistency
token, and section number)
(command source identifier)
(query instance identifier)
(return set statement)
(type SQL Data Area)
(return SQL Data Area)

[1]

TYPDEFNAM
TYPDEFOVR
SQLCARD
TYPDEFNAM
TYPDEFOVR
SQLSTT

.

.

.

TYPDEFNAM
TYPDEFOVR
SQLSTT

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)
(override for typdefnam)
(override for typdefovr)
(SQL Statement)

(override for typdefnam)
(override for typdefovr)
(SQL Statement)

RDBUPDRM (update occurred)

TYPDEFNAM
TYPDEFOVR
SQLSTT

(override for typdefnam)
(override for typdefovr)
(SQL Statement)

Figure 4-31 Immediate Execution of SQL Work

The following is a discussion of the operations and functions the application requester and the
application server perform. This is a brief description of some of the parameters for the DDM
commands. See the DDM Reference for a detailed description of the parameters.

1. After the application requester and the application server have established the proper
connection (described in Figure 4-2 (on page 85)), the user can execute some SQL statements
without binding them in a package (see Section 4.4.3 (on page 111)) or preparing them (see
Section 4.4.8 (on page 172)). These SQL statements are limited to those with no input host
application variables or output row data. Other commands can precede or follow the

Part 1: Database Access Protocol 179

DDM Commands and Replies The DRDA Processing Model and Command Flows

execution of this SQL statement and be part of the same unit of work.

The application requester creates the EXECUTE IMMEDIATE SQL statement
(EXCSQLIMM) command by providing the correct package name, consistency token, and
section number in the pkgnamcsn parameter. The optional cmdsrcid parameter uniquely
identifies the source of the command. If the SQL statement being executed is a positioned
delete/update, then the qryinsid parameter must also be specified in order to indicate the
instance of the query in use, unless only a single query instance exists for the section. The
optional rdbcmtok parameter informs the RDB whether or not it can process commit and
rollback operations. The optional rtnsetstt parameter specifies whether the server must
return one or more SQL SET statements for any special registers whose settings have been
changed on the current connection, if the execution of the command causes any special
register setting to be updated. The SQL statement that is to be executed is placed in the
SQLSTT command data and sent to the application server.

2. The application server receives and processes the EXCSQLIMM command. It executes the
requested statement. The relational database reflects the results (within the scope of the unit
of work), and the application server returns an SQLCARD reply data object. If any special
register has been updated during execution of this command, as per the setting of the
optional rtnsetstt parameter, the server may return one or more SQLSTT reply data objects,
each containing an SQL SET statement for a special register whose setting has been changed
on the current connection. If errors occur during the execution of the statement, the
relational database remains unchanged and the SQLCARD reply data object contains an
error condition indicator.

If the executed SQL statement is either a COMMIT or ROLLBACK, then see Section 4.4.15.1
(on page 191) and Section 4.4.15.2 (on page 194) for a description of commit and rollback
processing in DRDA.

3. If the SQLCARD reply data object that the application server returned to the application
requester indicates that the EXCSQLIMM command was not successful, the application
requester returns an exception to the application that is attempting to execute the SQL
statement.

Assuming it has received an SQLCARD reply data object indicating normal completion, the
application requester proceeds to return an indication of the normal completion to the
application. The application requester also caches all SQL SET statements that may have
been returned from the server in SQLSTT reply data objects so that they can be used later to
restore the execution environment when the connection is reestablished to the database at
either the original location or an alternate failover location in case of a communications
failure.

At this point, the application/application requester can continue with additional defined
DRDA flows.

180 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.12 Returning SQL Diagnostics

The figure below indicates the DDM commands and replies that flow during the execution of an
SQL statement when the RDB is accessed with diagnostics defined at Level 1. Diagnostics
information is returned in the SQLCA reply data. The SQL GET DIAGNOSTIC statement does
not flow. The diagnostic group is optional and must be requested using the DIAGLVL instance
variable when accessing the remote RDB. Servers do not have to provide the diagnostics group
at the completion of an SQL statement unless the command is performing a multi-row
operation. Multi-row operations can return multiple error and warning conditions that cannot
be returned unless the new diagnostic object is provided.

Part 1: Database Access Protocol 181

DDM Commands and Replies The DRDA Processing Model and Command Flows

Application Requester Application Server (RDBNAM1)
(acting as an Intermediate Server)

Database Server (RDBNAM2)

[2]

[4]

[3]

[5]

[6]

[7]

[8]

[9]

EXCSAT
ACCSEC
SECCHK
ACCRDB

rdbaccl
rdbnam
prdid
typdefnam
typdefovr
diaglvl

(Exchange Server Attr)
(Access Security Mgr)
(Security Check)
(Access RDB)
(access manager class)
(remote database name)
(product-specific identifier)
(data type def name)
(data type def override)
(diagnostic level 1/2)

[1]

EXCSAT
ACCSEC
SECCHK
ACCRDB

rdbaccl
rdbnam
prdid
typdefnam
typdefovr
diaglvl

(Exchange Server Attr)
(Access Security Mgr)
(Security Check)
(Access RDB)
(access manager class)
(remote database name)
(product-specific identifier)
(data type def name)
(data type def override)
()diagnostic level 1/2

EXCSATRD
ACCSECRD
SECCHKRM
ACCRDBRM

typdefnam
typdefovr

SQLCARD
sqlcagrp
sqlcaxgrp
sqldiaggrp
sqldiagstt
sqldiagcn
sqldiagci

(Exchange Server Reply)
(Access Security Reply)
(Security Check Reply)
(Access RDB Reply)
(data type def name)
(data type def override)

(SQLCA group)
(SQLCA exceptions)
(diagnostics group)
(statement info)
(connection info)
(condition info)

EXCSATRD
ACCSECRD
SECCHKRM
ACCRDBRM

typdefnam
typdefovr

SQLCARD
sqlcagrp
sqlcaxgrp
sqldiaggrp
sqldiagstt
sqldiagcn
sqldiagci

SQLCARD
sqlcagrp
sqlcaxgrp
sqldiaggrp
sqldiagstt
sqldiagcn
sqldiagci

SQLCARD
sqlcagrp
sqlcaxgrp
sqldiaggrp
sqldiagstt
sqldiagcn
sqldiagci

EXCSQLIMM

pkgnamcsn

SQLSTT

(Exchange Server Reply)
(Access Security Reply)
(Security Check Reply)
(Access RDB Reply)
(data type def name)
(data type def override)

(SQLCA group)
(SQLCA exceptions)
(diagnostics group)
(statement info)
(connection info)
(condition info)

SQL Comm Area
(SQLCA group)
(SQLCA exceptions)
(diagnostics group)
(statement info)
(connection info)
(condition info)

SQL Comm Area
(SQLCA group)
(SQLCA exceptions)
(diagnostics group)
(statement info)
(connection info)
(condition info)

EXCSQLIMM

pkgnamcsn

SQLSTT

(Execute SQL Statement
Immediate)
(package name, consistency
token, and section number)
(insert into
rdbnam2.schema.table
values (1))

(Execute SQL Statement
Immediate)
(package name, consistency
token, and section number)
(insert into
rdbnam2.schema.table
values (1))

Figure 4-32 Returning SQL Diagnostics

182 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

1. An application issues the SQL CONNECT statement to access RDB RDBNAM1. The
application requester resets the local diagnostic area and then accesses the remote RDB
requesting diagnostic Level 1 or 2.

2. The server authenticates the user, creates a process to process requests, and builds a
diagnostic area. Optionally, it can build an SQLCARD to return diagnostics for the SQL
CONNECT.

3. If the reply does not contain the optional SQLCARD, the requester generates the
connection information for the SQL CONNECT statement based on information provided
on the EXCSAT, SECCHK, ACCSEC, and ACCRDB commands and replies. The application
can then issue SQL GET DIAGNOSTICS to get information about the statement connection
and any conditions generated processing the SQL CONNECT statement. The application
then executes an SQL immediate statement to insert data into RDB RDBNAM2. The
application requester builds and sends the EXCSQLIMM with the SQL statement text.

4. The server processes the EXCSQLIMM command. It parses the SQL statement text and
determines the statement for a remote server. The application server acting as an
intermediate server resets the local diagnostic area and then accesses the remote RDB
requesting diagnostic Level 1 or 2. The connection information for the EXCSQLIMM is
added to the local diagnostic area from the information generated during the execution of
the EXCSAT, ACCSEC, SECCHK, and ACCRDB commands.

5. The server authenticates the user, creates a process to process requests, and builds a
diagnostic area. Optionally, it builds an SQLCA to return statement information,
connection information, and any conditions generated during the processing of the
EXCSAT, SECCHK, and ACCRDB commands.

6. If the SQLCA is not returned, the server generates the connection information based on
information returned on the EXCSAT, ACCSEC, and ACCRDB replies. It adds the
connection information to the diagnostic area for the EXCSQLIMM command. Conditions
may be added to the local diagnostics if warnings occur during the processing of the
EXCSAT, ACCSEC, SECCHK, and ACCRDB replies. The intermediate server then sends
the EXCSQLIMM with the SQL statement text.

7. The server receives and processes the EXCSQLIMM command. During the execution of the
statement, diagnostics are collected in the diagnostic area during the execution of the
statement. At completion of the statement, the server builds the SQLCARD with the
diagnostics group. The diagnostic group contains statement information for the SQL
INSERT command, a null connection array, and the condition array with any warning or
error condition entries generated during the execution of the statement. The server returns
the SQLCARD to the intermediate server.

8. The server receives and processes the SQLCARD reply. A connection entry is appended to
the connection array in the diagnostic area. Condition entries are appended to any existing
warning entries generated during the processing of the statement. If DIAGLVL1 is
specified, one of the SQLDCMSG fields should contain the message text for the condition.
If DIAGLVL2 is specified, the SQLDCMSG fields should be NULL. The SQLCARD is
generated from the diagnostic area which contains statement information for the SQL
INSERT command, one connection entry, and the condition array with any warning or
error condition entries generated during the processing of the statement. The intermediate
server returns the SQLCARD to the application requester.

9. The application requester receives the SQLCARD reply. The SQLCARD is parsed. The
statement information for the SQL INSERT statement is added to the diagnostic area. The
connection information is appended to the connection array. In this case two connection

Part 1: Database Access Protocol 183

DDM Commands and Replies The DRDA Processing Model and Command Flows

entries exist in the diagnostic area. Conditions are appended to any existing warning entry
conditions in the condition array generated during the local processing of the statement. If
the application issues the GET DIAGNOSTICS statement, the local diagnostic area
contains all the diagnostics required to process the statement.

184 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.13 Controlling the Amount of Describe Information Returned

The early SQL Descriptor Area defines an area that provides descriptive information for each
input variable and output variable related to an SQL statement. An SQL DESCRIBE, an SQL
EXECUTE, an SQL CALL, an SQL OPEN, or an SQL PREPARE statement may require different
kinds of descriptive information to be provided to an application depending on the type of
application. For example, some dynamic SQL applications (that is, JDBC) may require more
descriptive information than static SQL applications. To allow a requester to control the amount
of describe information to be generated and returned by the server, a light descriptor, a standard
descriptor, or an extended descriptor area can be requested. The DDM TYPSQLDA instance
variable on the DDM DSCRDBTBL (DESCRIBE TABLE), DDM DSCSQLSTT (DESCRIBE
STATEMENT), DDM EXCSQLSTT (CALL or EXECUTE), DDM OPNQRY (OPEN), or DDM
PRPSQLSTT (PREPARE) commands controls the type of descriptor area to be contained in the
SQLDARD. The RSLSETFLG controls the type of descriptor area to be contained in the
SQLCINRD.

If the requester requests a light descriptor, the SQL Descriptor Header group, the SQL Descriptor
Optional group, the SQL Descriptor UDT group, and the SQL Descriptor Extended group are
returned as null groups. For a standard descriptor, the SQL Descriptor Header fields are
returned as null, the SQL Descriptor Optional fields are returned and the group must not be null,
the SQL Descriptor UDT group fields are returned if the variable or column described is a user-
defined data type, and the SQL Descriptor Extended group must be null. For an extended
descriptor, all the SQL Descriptor groups are returned. The SQL Descriptor Header fields are
returned, the SQL Descriptor Optional fields are returned, the SQL Descriptor UDT fields are
returned if the variable or column described is a user-defined data type, and the SQL Descriptor
Extended fields are returned. Refer to the identified group descriptor for the type of descriptive
information returned by each group.

Part 1: Database Access Protocol 185

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.14 Interrupting a Running DRDA Request

Figure 4-33 indicates the DDM commands and replies that flow when a user or process requests
the interrupt of a running DRDA request.

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[4]

[3]

[5]

EXCSAT
.
.
.

(Exchange Server Attributes)

[1]

CMDCMPRM (Command Complete
Reply Message)

EXCSATRD
.
.
.

(Server Attributes Reply Data)

INTRDBRQS
rdbnam
rdbinttkn

(Interrupt RDB Request)
(RDB_NAME)
(rel database interrupt token)

Figure 4-33 Requests to Interrupt DRDA Requests

The following is a discussion of the operations and functions the application requester and the
application server perform. This is a brief description of some of the parameters for the DDM
command. For a detailed description of the parameters, see the DDM Reference.

1.&2. After the application request establishes a separate connection using the same
communications manager as well as the same communication settings as the connection to
be interrupted, the application requester and the application server exchange attributes. The
required managers on EXCSAT should be at DDM Level 5.

3. The application requester sends the INTRDBRQS command to the application server to
request an interrupt of the DRDA request running on the other connection. See Figure 4-34
(on page 187) for the flow of an Interrupted DRDA request. The application requester
received the value for the rdbinttkn parameter in the ACCRDBRM reply message at access
relational database time for the connection running the DRDA request to be interrupted.
This value must be available at the application requester.

Notes:

1. The INTRDBRQS command is not valid after an Access Relational Database
command (ACCRDB) on the same connection.

2. The ACCRDB command is not valid after an INTRDBRQS command on the same
network connection.

3. Multiple INTRDBRQS commands, however, may be sent on the same network
connection.

4. The application server receives and processes the INTRDBRQS command and creates a
reply message. After validity checking, the application server sends a CMDCMPRM reply
message back to the application requester to indicate a successful completion. The
application server will send this message even if the actual interrupt has not taken place.

186 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

(The database manager may not be in an interruptible state or the process may already be
finished.) See Figure 4-34 for a flow of an interrupted DRDA request.

5. When the application requester receives the reply message, the connection is de-allocated.
Figure 4-34 indicates the DDM commands and replies that flow when a DRDA request is
interrupted.

Figure 4-34 indicates the DDM commands and replies that flow when a DRDA request is
interrupted.

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[4]

[3]

[1]

TYPDEFOVR
SQLDTARD

(override for typdefovr)
(SQLDTARD Reply Data Obj)

(ACCRDB Reply)
(rel database interrupt token)

(DRDA Request)

TYPDEFNAM
TYPDEFOVR
SQLCARD
or
TYPDEFNAM

ACCRDBRM
rdbinttkn
.
.
.

(override for typdefname)
(override for typdefovr)
(SQLCARD Reply Data Obj)

(override for typdefname)

Figure 4-34 Interrupted DRDA Request

The following is a discussion of the operations and functions the application requester and the
application server perform. This is a brief description of some of the parameters for the DDM
commands. For a detailed description of the parameters, see the DDM Reference.

1. After the application requester and the application server establish a connection to execute
DRDA requests, the application server returns a token in the rdbinttkn parameter of the
ACCRDBRM reply message. This token is for interrupting a DRDA in this connection. If an
application server does not support the interrupt function, it will not return this parameter.

2. When the connection is established, SQL requests can begin flowing.

3. When an INTRDBRQS command executes against a DRDA request in this connection (see
Figure 4-33 (on page 186)), it aborts execution of the DRDA request. This application server
returns an SQLSTATE of 57014 in the SQLCA for the interrupted DRDA request. The
database manager returns to the state it was in prior to execution of the DRDA request. This
does not imply the database manager is committed or rolled back.

Notes:

1. The interrupt does not affect the execution of a commit or rollback function.

2. If there is no DRDA request executing, the interrupt is ignored.

3. If the interrupt occurs during processing of an OPNQRY or CNTQRY, an
ENDQRYRM and an SQLCARD are returned.

4. If the interrupt occurs during processing of a BNDSQLSTT statement, an SQLERRM
and SQLCARD are returned.

Part 1: Database Access Protocol 187

DDM Commands and Replies The DRDA Processing Model and Command Flows

5. It is possible that the command being interrupted will have almost completed before
it receives the INTRDBRQS command. DRDA can allow the original command to
complete and to ignore the interrupt. DRDA does not define almost condition.

6. It is possible that the command being interrupted cannot be interrupted, in which
case the interrupt is ignored.

7. The application server returns the SQLCA for the interrupted request using the
normal carrier for that request.

4. The application requester receives the response from the application server and informs the
application of the condition.

188 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.15 Commitment of Work in DRDA

An application program normally initiates commit or rollback processing by calling the sync
point manager, or by executing a COMMIT or ROLLBACK SQL statement. An application
requester that is not using the XAMGR normally initiates commit or rollback processing by
either calling the sync point manager, or by executing a COMMIT or ROLLBACK SQL
statement. An application requester that is using the XAMGR must perform two-phase commit
against each resource updated within the transaction. Both static and dynamic SQL COMMIT
and ROLLBACK requests are valid in DRDA. In addition, a commit operation can also occur as
a result of an application program executing a stored procedure that has been defined with the
commit on return attribute. See rule CR9 in Section 7.5 (on page 400) for exceptions on the commit
on return attribute. DRDA, however, does not support any COMMIT or ROLLBACK options
that might affect cursor positioning. In particular, cursor positioning, except for cursors with the
HOLD option, is lost during commit and rollback processing in DRDA environments.

The SQL application should explicitly commit or roll back before termination. If the SQL
application is using the services of the sync point manager, and it terminates normally but does
not explicitly commit or rollback, the sync point manager will invoke the commit function. If the
application requester is using the services of the XAMGR, and it terminates normally, but does
not explicitly commit (two-phase) or rollback, than the application server must follow the
presumed abort protocol and initiate rollback. If the SQL application is not using the services of
the sync point manager, and it terminates normally but does not explicitly commit or rollback,
then the application requester must invoke the commit function. The scope of the commit
includes all relational databases that were part of the unit of work as defined by SQL connection
semantics. This can include local relational databases that are not using DRDA protocols but
might be under application requester control. If the SQL application is not using the services of
the sync point manager, and it terminates abnormally, the application requester can invoke the
rollback function, and it can depend on the implicit rollback that accompanies network
connection termination for databases connected using DRDA. If the application requester is
using the services of the XAMGR, and it terminates abnormally, the application server must
follow the presumed abort protocol and initiate rollback.

On unprotected network connections, the application server must inform the application
requester whenever commit or rollback processing completes at the application server, except
when the rollback is a result of the network connection termination. For application servers
supported by protected network connections, the sync point manager informs the application
requester when commit or rollback processing is complete. The application server must inform
the application requester the result of all transactional processing requests, whether successful
or not.

Deadlocks or abnormal ending conditions at the application server can also cause rollback
processing at the application server. If the application requester is using the services of the sync
point manager at level 7, then the application can share recoverable resources at the application
server, so as to prevent deadlocks. The XA manager will share recoverable resources
automatically as specified by DTP: The XA+ Specification dealing with tightly and loosely-
coupled transactions. The XAFLAG(TM_LCS) flag must also be sent to enable loosely-coupled
transactions; see the DDM Reference, XAMGROV for more details.

Within DRDA environments, all forms of commit and rollback requests are equivalent.

In DRDA, the application requester that is not using the services of the XA manager plays an
important role in helping coordinate the commitment or roll back of work at all application
servers involved in the unit of work. For Remote Unit of Work, this is one application server; for
Distributed Unit of Work, it can be many application servers. The application requester is
responsible for interoperating with the local sync point manager, if it is involved in the unit of

Part 1: Database Access Protocol 189

DDM Commands and Replies The DRDA Processing Model and Command Flows

work. For Distributed Unit of Work, this interoperation includes coordinating the work that is
not supported by two-phase commit protected network connections, and with the sync point
manager that coordinates the work supported by two-phase commit protected network
connections. The responsibility of the application requester also includes the proper
management of the update privileges at all the application servers, so that the integrity of the
unit of work can be preserved during commit processing. Also included in the commitment and
rollback processing is the proper management of the network connections that support the
connections to the application servers. The application requester must terminate these network
connections when they are no longer needed, as defined by SQL connection semantics. When
using the services of the XAMGR, the application is responsible for the management of all
XAMGR protected connections, for the management of commitment and rollback processing, for
the management of update privileges, and also for ensuring complete data integrity of all
resources involved within that transaction. The application is also responsible for proper
termination of these connection.

190 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.15.1 Commitment of Work in a Remote Unit of Work

Figure 4-35 indicates the DDM commands and replies that flow to commit the unit of work on
DRDA Level 3 connections. Figure 4-36 (on page 193) indicates the flows when commit is
included in a stored procedure on a DRDA Level 1 application server.

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[3]

RDBCMM
rdbnam

(RDB Commit Unit of Work)
(RDB_NAME)

[1]

TYPDEFNAM
TYPDEFOVR
SQLCARD

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

ENDUOWRM

svrcod
uowdsp
rdbnam
srvdgn

(end unit-of-work condition
Reply Message)
(severity code)
(unit-of-work disposition)
(RDB_NAME)
(server diagnostic information)

Figure 4-35 Commit a Remote Unit of Work

The following is a discussion of the operations and functions the application requester and the
application server perform. This is a brief description of some of the parameters for the DDM
commands. For a detailed description of the parameters, see the DDM Reference.

1. Assuming that all required work for the application requester is complete, and the last
application command is a static commit, or the application terminates normally without
issuing a commit, the application requester generates a Relational Database Commit Unit of
Work (RDBCMM) command.

The application requester can alternatively have created an RDB Rollback Unit of Work
(RDBRLLBCK) command if the changes made during the last unit of work should not be
made a permanent part of the relational database.

The application requester sends the command (in this case the RDBCMM command) to the
application server.

Note: Other acceptable DRDA flows can accomplish the commit or rollback of a unit of work,
but this method is preferred. However, for compatibility with existing applications, the
following methods are also acceptable.

The application can use the EXECUTE IMMEDIATE flows described in Section 4.4.11 (on
page 179), where the SQL statement to be executed (specified in the SQLSTT command
data) is COMMIT <WORK> or ROLLBACK <WORK>.

The application can use the prepare and execute flows described in Section 4.4.8 (on page
172), where the SQL statement to be prepared and then executed (specified in the SQLSTT
command data) is COMMIT <WORK> or ROLLBACK <WORK>.

Occurrences of COMMIT <WORK> or ROLLBACK <WORK> in the application source do
not result in BNDSQLSTT commands being sent from the application requester to the
application server during BIND processing. At application execution time, the application
requester sends the corresponding RDBCMM or RDBRLLBCK command when these SQL
statements are to be executed.

Part 1: Database Access Protocol 191

DDM Commands and Replies The DRDA Processing Model and Command Flows

The information enclosed in the < > is optional.

2. The application server receives and processes the RDBCMM command. If the application
server finds no errors, the application server makes the remaining changes in the relational
database permanent, completes the unit of work, and returns an ENDUOWRM reply
message (indicating the application server completed the unit of work) and a normal
SQLCARD reply data object.

• The ENDUOWRM reply message always precedes the SQLCARD reply data object
when they are in response to an RDBCMM command.

• The application server returns the ENDUOWRM reply message as a result of any
command that causes normal termination of a unit of work. These commands include
RDBCMM, RDBRLLBCK, EXCSQLIMM (where the SQL statement being executed is
either a COMMIT or ROLLBACK), and EXCSQLSTT (where the dynamically prepared
SQL statement being executed is COMMIT or ROLLBACK).

Otherwise, the SQLCARD reply data object indicates a single error. The application server
returns the ENDUOWRM reply message and the SQLCARD to the application requester
and rolls back the unit of work.

3. The application requester:

• Receives the ENDUOWRM and SQLCARD from the application server.

• Checks the uowdsp parameter for the status of the unit of work (committed or rolled
back).

• Resets its indication of what cursors are open.

• Returns the SQLCA to the application if the application has not terminated.

A rollback will close all cursors.

If the application has terminated, the application requester terminates the network
connection to the application server using verbs and calls described in Part 3, Network
Protocols.

Figure 4-36 (on page 193) indicates the DDM commands and replies that flow during the
execution of a statement that invokes a stored procedure such as a CALL statement that was
bound by the bind process or the PRPSQLSTT command. The stored procedure referenced by
the CALL performs a series of SQL statements which includes one or more requests to commit.

192 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

DRDA
(Application Requester)

DRDA
(Application Server)

[2]

[3]

EXCSQLSTT
.
.
.

(Execute SQL Statement)

[1]

TYPDEFNAM
TYPDEFOVR
SQLDTARD

TYPDEFNAM
TYPDEFOVR
SQLDTA

(override for typdefnam)
(override for typdefovr)
(SQLDTARD Reply Data Obj)

(override for typdefnam)
(override for typdefovr)
(SQL application variable data)

ENDUOWRM
uowdsp

(update occurred reply message)
(unit of work disposition)

Process Stored Procedure
.
.
.

Figure 4-36 Executing a Bound SQL CALL Statement

The following is a discussion of the operations and functions the application requester and the
application server perform. This document provides a brief description of some of the
parameters for the DDM commands. See the DDM Reference for a detailed description of the
parameters.

1. After the application requester and the application server have established proper
connection, the application requester sends the command and command data to the
application server. In this case, the EXCSQLSTT references a CALL statement for a stored
procedure located at the application server.

2. The application server receives and processes the EXCSQLSTT command which invokes the
stored procedure. In this example, the stored procedure processing includes some SQL
requests to commit the unit of work. The requests to commit are processed at the
application server and the stored procedure continues processing until the procedure is
exited. The application server returns an ENDUOWRM with the uowdsp set to indicate at
least one commit occurred in the stored procedure. Regardless of the number of commit or
rollbacks that occur within the stored procedure, only one ENDUOWRM is returned. If a
rollback occurred along with a commit, then uowdsp is set to indicate a rollback occurred.

If there are host variables, an SQLDTARD is returned along with the ENDUOWRM.

3. The application requester receives the results from the EXCSQLSTT statement and returns
the results to the application. See Section 4.4.7 (on page 147) for details.

The application requester also performs cursor management operations dependent on the
value of the uowdsp parameter.

Part 1: Database Access Protocol 193

DDM Commands and Replies The DRDA Processing Model and Command Flows

4.4.15.2 Commitment of Work in a Distributed Unit of Work

The following sections describe the environment where the application directs the distribution
of work. The application explicitly connects to multiple databases within the same unit of work,
performs operations, commits, or rollbacks, and expects all resources to commit or roll back
together. It is the responsibility of the application requester to manage the connections and
coordinate or participate in the coordination of the commitment or rollback of all application
server participants in the unit of work.

Coexistence

To help the application requester manage the application server connections and still provide
coexistence support for old applications, the application requester must have information
available to it that describes whether the application is going to use resource recovery in the unit
of work. For example, if the application is to update multiple resources (database and possibly
non-database) per unit of work, then the application requires the services of a sync point
manager to coordinate resource recovery, and the application requester must know this to aid in
managing the connections to the application servers and update restrictions at the application
servers. This information is the basis for defining the DRDA update rules defined later in this
section. The application requester’s acquisition of this application information is not defined by
DRDA, but it is required to be available at the application requester.

There are two possible environments that result from the application’s use of the services of a
sync point manager for resource recovery. These environments are Single Relational Database
Update and Multi-Relational Database Update.

The Single Relational Database Update environment is where the services of a sync point
manager are not required to perform resource recovery for the unit of work. Because of this, only
one resource can be updated. This resource may or may not be a database resource, but within
the scope of this document, it is restricted to a database resource. All other resources are
restricted to read-only.

The Multi-Relational Database Update environment is where the services of a sync point
manager are required to perform resource recovery for the unit of work. Because of this, all
application servers that are on network connections protected by two-phase commit protocols
have update privileges. All application servers that are not on network connections protected by
two-phase commit protocols are restricted to read-only.

Application servers that share recoverable resources between a set of protected connections,
must prevent deadlocks from occurring between these connections. The degree of sharing
depends on whether the application requires partial or complete sharing. For partial sharing the
RDB will examine the XID of all the SYNCPTMGR protected connections. The set of
SYNCPTMGR protected connections whose XIDs match exactly, will share recoverable
resources between themselves so as to prevent any deadlocks from occurring. If the application
has requested complete sharing, then the RDB will only examine the XIDs gtrid value (see XID in
the DDM Reference for format details). The set of SYNCPTMGR protected connections whose
gtrid part of the XID match will share resources between themselves so as to prevent any
deadlocks from occurring.

Figure 4-37 (on page 195) displays a Distributed Unit of Work application requester with
connections to three application servers. AS1 is using DRDA Remote Unit of Work protocols.
AS2 and AS3 are using Distributed Unit of Work protocols, but with different levels—the sync
point manager (SYNCPTMGR Levels 4 and 5, respectively).

In Figure 4-37 (on page 195), if the application is not using the services of the sync point manager
for resource recovery in the unit of work, then either AS1, AS2, or AS3 can have update

194 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

privileges, and the other two are restricted to read-only. This is an example of single relational
database update. If the application is using the sync point manager for resource recovery in the
unit of work, AS1 and AS2 are always restricted read-only, AS3 and any other application
servers supported by two-phase commit protected network connections can have update
privileges. This is an example of multi-relational database update.

Unprotected RUW connection

SNA or TCP/IP

SNA or TCP/IP

SNA or TCP/IP

Unprotected DUW connection

Protected by a Sync Point Mgr.

DRDA RUOW AS1

DRDA DUOW AS3
(SYNCPTMGR L5

and greater)

DRDA DUOW AS2
(SYNCPTMGR L4)

DRDA
AR

Figure 4-37 DRDA Sample Configuration

The application requester is responsible for managing the operation of the environment to make
sure that any update restrictions in effect are enforced and to take the necessary steps to ensure
rollback of the unit of work if any update restrictions are violated. The application requester, in
cooperation with the sync point manager (if available), is also responsible for coordinating the
commit or rollback of all DRDA participants in the unit of work.

The rules for deciding which application server gets update privileges and when are as follows.

Note: The rules are based on the goal that the full set of functions in SQLAM Level 5 are available, no
matter what type of distribution (or sync point manager level) is supported.

• If the application is not using the services of a sync point manager in the unit of work:

— When connecting to an application server using Remote Unit of Work protocols, the
application server is allowed updates if only:

— There are no existing connections to any other application servers.

— All existing connections are to application servers using Remote Unit of Work
protocols, and these application servers are restricted to read-only.

— If a connection exists to an application server using Remote Unit of Work protocols with
update privileges, all other application servers are restricted to read-only. Otherwise, for
the duration of any single unit of work, the first application server using Distributed Unit
of Work protocols that performs an update is given update privileges, and all other
application servers are restricted to read-only.

• If the application is using the services of a sync point manager for the unit of work, only
connections to application servers using Distributed Unit of Work protocols that are
supported by two-phase commit protected network connections are allowed update
privileges.

The application requester uses the RDBALWUPD parameter on ACCRDB as defined in rule CR6
to control the update, dynamic COMMIT, and dynamic ROLLBACK privileges on application
servers.

Part 1: Database Access Protocol 195

DDM Commands and Replies The DRDA Processing Model and Command Flows

For Distributed Unit of Work application servers, the application requester is notified by the
application servers the first time a DDM command results in an update at the application server
within the unit of work. This information is passed to the application requester on the DDM
reply message RDBUPDRM. Figure 4-38 is an example of this flow for EXCSQLIMM.

DRDA
(Application Requester)

DRDA
(Application Server)

EXCSQLIMM
rdbnam
pkgnamcsn

cmdsrcid
qryinsid

(Exec SQL Stmt. Immediate)
(RDB_NAME)
(package name, consistency
token, and section number)
(command source identifier)
(query instance identifier)

TYPDEFNAM
TYPDEFOVR
SQLSTT

[1]

[2]

[3]

(override for typdefnam)
(override for typdefovr)
(SQL Statement)

TYPDEFNAM
TYPDEFOVR
SQLCARD

(override for typdefnam)
(override for typdefovr)
(SQLCARD Reply Data Obj)

RDBUPDRM (update occurred)

Figure 4-38 DRDA RDBUPDRM Example Flow

When the application requester receives the RDBUPDRM, it checks whether this application
server is allowed updates. If not, the application requester must ensure that the unit of work
rolls back.

An application server can return an RDBUPDRM after every update, but it is required only after
the first update.

Commit and Rollback Scenarios

This section provides several scenarios to show the steps for committing and rolling back a
logical unit of work. The scenarios are categorized by configurations. The configurations are
different in terms of single relational database update using Remote Unit of Work protocols at an
application server, single relational database update using Distributed Unit of Work protocols at
an application server, and multi-relational database update. The single relational database
update scenarios are by definition not working under sync point management control for
resource recovery. The multi-relational database update scenarios are, by definition, working
under sync point management control for resource recovery.

In the scenarios, the steps for dynamic commit requests, dynamic rollback requests or execution
requests of stored procedures defined with the commit on return attribute assume the request is
directed to an application server that is allowed updates. If the request is directed to a read-only
(as a result of rdbalwupd on ACCRDB) restricted application server operating in a Remote Unit of
Work environment introduced in DRDA Level 1, an SQLSTATE of X’2D528’ for commit or
SQLSTATE X’2D529’ for rollback is returned to the application requester. If the local
environment allows it, the application requester should initiate processing of commit or rollback
based on the SQLSTATE. If the local environment does not allow the application requester to
initiate commit or rollback, the SQLSTATE should be returned to the application.

If a commit or rollback request is application-directed to a read-only application server
operating in a Distributed Unit of Work environment, a DDM reply message CMMRQSRM, with
the cmmtyp parameter indicating a commit or rollback, is returned to the application requester. If

196 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

the local environment allows it, the application requester will initiate commit or rollback
processing based on the value in the cmmtyp parameter. If the local environment does not allow
the application requester to initiate commit or rollback, an SQLCA should be returned to the
application with SQLSTATE X’2D528’ enclosed for commit or SQLSTATE X’2D529’ enclosed for
rollback.

An application server only begins commit processing if it is requested to commit. When using
the communications sync point manager, if an application requester receives a request to
commit (for example, an LU 6.2 TAKE_SYNCPT or DDM SYNCCTL request to commit
command) on a network connection with an application server, the application requester must
ensure that a rollback occurs.

Part 1: Database Access Protocol 197

DDM Commands and Replies The DRDA Processing Model and Command Flows

Single RDB Update When Using Remote Unit of Work

In the following commit and rollback scenario, the application is not using the services of the
sync point manager to coordinate resource recovery for the unit of work. The application server
that is allowed updates is operating at DRDA Remote Unit of Work (see AS1 in Figure 4-39) on
an unprotected network connection.

Unprotected RUW connection

SNA or TCP/IP

SNA or TCP/IP

Unprotected DUW connection

DRDA RUOW AS (AS1)

DRDA DUOW AS (AS2)

DRDA
DUOW

AS With
Updates

Figure 4-39 Single RDB Update at a DRDA Remote Unit of Work Application Server

All other application servers are restricted to read-only and, for this scenario, are assumed to be
on unprotected network connections. The scenario only describes the commit and rollback
flows. The application requester is responsible for performing all other local processing that is
required to complete the commit or rollback at the application requester.

• Dynamic Commit Steps

1. The commit request passes to the application server that is allowed updates using
either the EXCSQLIMM command or the EXCSQLSTT command. The EXCSQLIMM
command flow is described in Figure 4-31 (on page 179). The EXCSQLSTT command
flow is described in Figure 4-21 (on page 149).

2. The update application server is operating at DRDA Remote Unit of Work, so commit
processing occurs at the application server. The application server returns an
ENDUOWRM and SQLCARD to the application requester with the uowdsp parameter
on the ENDUOWRM indicating a commit succeeded at the application server.

3. The application requester receives the ENDUOWRM and SQLCARD from the update
application server. The application requester checks the value in the uowdsp parameter
and sends an RDBCMM command to all read-only application servers. See Figure 4-35
(on page 191) for a description of the command flows for RDBCMM.

4. The read-only application servers receive the RDBCMM command and perform the
commit. The application servers return the results of the commits using ENDUOWRMs
and SQLCARDs.

5. The application requester receives the results from the read-only application servers.

Regardless of the outcome from the read-only application servers, the result returned to
the application must reflect the status of the work at the update application server.

If a read-only application server rolls back when it is asked to commit, the next time the
application performs a request to any application server, the application requester
returns SQLSTATE X’51021’ to the application to inform it that it must issue a static
rollback. The application requester does not need to return an SQLSTATE X’51021’ if
the application requester performed an implicit rollback and informed the application
the commit was successful and an implicit rollback occurred.

198 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

• Dynamic Rollback Steps

1. The rollback request passes to the application server that is allowed updates using
either the EXCSQLIMM command or the EXCSQLSTT command. The EXCSQLIMM
command flow is described in Figure 4-31 (on page 179). The EXCSQLSTT command
flow is described in Figure 4-21 (on page 149).

2. The update application server is operating at DRDA Remote Unit of Work, so rollback
processing occurs at the application server. The application server returns an
ENDUOWRM and SQLCARD to the application requester with the uowdsp parameter
on the ENDUOWRM indicating the rollback succeeded at the application server.

3. The application requester receives the ENDUOWRM and SQLCARD from the update
application server. The application requester checks the value in the uowdsp parameter
and sends an RDBRLLBCK command to all read-only application servers.

4. The read-only application servers receive the RDBRLLBCK command and perform the
rollback. The application servers return the results of the rollbacks using
ENDUOWRMs and SQLCARDs.

5. The application requester receives the results from the read-only application servers
and returns to the application the status of the work at the update application server.

Because the unit of work rolled back, the application requester resets all cursors to a
closed state.

• Static Commit Steps

1. The application requester receives the request for the embedded commit.

If the local environment does not allow static commits, the application requester must
return to the application an SQLCA with an SQLSTATE value of X’2D521’.

2. The application requester sends an RDBCMM command to all read-only application
servers.

3. The read-only application servers receive the RDBCMM command and perform the
commit. The application servers return the results of the commits using ENDUOWRMs
and SQLCARDs.

4. The application requester receives the results from the read-only application servers. If
all read-only application servers commit successfully, the application requester sends
an RDBCMM command to the application server that is allowed updates.

If a read-only application server rolls back when it is asked to commit, the application
requester sends an RDBRLLBCK command to the application server that performed the
update. The application requester also rolls back the read-only application servers by
sending an RDBRLLBCK command to the application servers.

5. The application server that performed the update receives the RDBCMM command
and performs the commit. The application server returns the result of the commit using
an ENDUOWRM and SQLCARD.

6. The application requester receives the result from the update application server and
returns the status of the work at the update application server to the application.

If the update application server rolls back when it is asked to commit, the application
requester rolls back the read-only application servers by sending an RDBRLLBCK
command to the application servers.

Part 1: Database Access Protocol 199

DDM Commands and Replies The DRDA Processing Model and Command Flows

If the unit of work rolled back, the application requester resets all cursors to a closed
state.

• Static Rollback Steps

1. The application requester receives the request for the embedded rollback.

If the local environment does not allow static commits, the application requester must
return to the application an SQLCA with an SQLSTATE value of X’2D521’.

2. The application requester sends an RDBRLLBCK command to all application servers.

3. The application servers receive the RDBRLLBCK command and perform the rollback.
The application servers return the results of the rollbacks using ENDUOWRMs and
SQLCARDs.

4. The application requester receives the results from the application servers and returns
to the application the status of the work at the update application server.

Because the unit of work rolled back, the application requester resets all cursors to a
closed state.

• Commit Steps

(For a stored procedure defined with the commit on return attribute.)

1. The application server initiates commit processing when a stored procedure defined
with the commit on return attribute terminates.

2. The update application server is operating at DRDA Remote Unit of Work, so commit
processing occurs at the application server. The application server returns an
ENDUOWRM and either an SQLCARD or SQLDTARD to the application requester
with the uowdsp parameter on the ENDUOWRM indicating a commit succeeded at the
application server.

3. The application requester receives the ENDUOWRM and the SQLCARD or
SQLDTARD from the update application server. The application requester checks the
value in the uowdsp parameter and sends an RDBCMM command to all read-only
application servers.

4. The read-only application servers receive the RDBCMM command and perform the
commit. The application servers return the results of the commits using ENDUOWRMs
and SQLCARDs.

5. The application requester receives the results from the read-only application servers.

Regardless of the outcome from the read-only application servers, the result returned to
the application must reflect the status of the work at the update application server.

If a read-only application server rolls back when it is asked to commit, the next time the
application performs a request to any application server, the application requester
returns SQLSTATE X’51021’ to the application to inform it that it must issue a static
rollback. The application requester does not need to return an SQLSTATE X’51021’ if
the application requester performed an implicit rollback and informed the application
the commit was successful and an implicit rollback occurred.

200 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

Single RDB Update Using Distributed Unit of Work

In this commit and rollback scenario, the application is not using the services of the sync point
manager to coordinate resource recovery for the unit of work. The application server that is
allowed updates is operating using Distributed Unit of Work (see AS2 in Figure 4-40). AS1 is
operating using Remote Unit of Work, and is restricted to read-only. AS1 is restricted to an
unprotected network connection. For this scenario, AS2 is on an unprotected network
connection. The scenario describes only the commit and rollback flows. The application
requester is responsible for performing all other local processing that is required to complete the
commit or rollback at the application requester. There are slightly different scenarios depending
on whether the parameter rdbcmtok has the value TRUE.

Unprotected RUW connection

SNA or TCP/IP

SNA or TCP/IP

Unprotected DUW connection

DRDA RUOW AS (AS1)

DRDA DUOW AS (AS2)

DRDA
DUOW

AS With
Updates

Figure 4-40 Single RDB Update Using Distributed Unit of Work

• Dynamic Commit Steps

(rdbcmtok value is FALSE)

1. The commit request passes to the application server that is allowed updates using
either the EXCSQLIMM command or the EXCSQLSTT command. The EXCSQLIMM
command flow is described in Figure 4-31 (on page 179). The EXCSQLSTT command
flow is described in Figure 4-21 (on page 149).

2. Dynamic commits are not processed at application servers in this situation, so the
application server sends a CMMRQSRM with the value of the cmmtyp parameter set to
commit.

3. The application requester receives the CMMRQSRM, checks the value in the cmmtyp
parameter and sends an RDBCMM command to all read-only application servers.

The local environment can require the results of a failed dynamic commit to be
returned to the application instead of continuing with the commit processing. In this
case, the application requester returns to the application an SQLCA with an SQLSTATE
value of X’2D528’.

4. The read-only application servers receive the RDBCMM command and perform the
commit. The application servers return the results of the commits using an
ENDUOWRM and SQLCARDs.

5. The application requester receives the results from the read-only application servers. If
all read-only application servers commit successfully, the application requester sends
an RDBCMM command to the application server that is allowed updates.

If a read-only application server rolls back when it is asked to commit, the application
requester sends an RDBRLLBCK to the update application server. The application
requester also rolls back the read-only application servers by sending an RDBRLLBCK
command to those application servers.

6. The update application server receives the RDBCMM command and performs the
commit. The application server returns the result of the commit using an ENDUOWRM

Part 1: Database Access Protocol 201

DDM Commands and Replies The DRDA Processing Model and Command Flows

and SQLCARD.

7. The application requester receives the result from the update application server and
returns the status of the work at the update application server to the application.

If the update application server rolls back when it is asked to commit, the application
requester rolls back the read-only application servers by sending an RDBRLLBCK
command to those application servers.

If the unit of work rolled back, the application requester resets all cursors to a closed
state.

• Dynamic Commit Steps

(rdbcmtok value is TRUE)

1. The commit request passes to the application server that is allowed updates using
either the EXCSQLIMM command or the EXCSQLSTT command.

2. Since rdbcmtok was specified as TRUE in the command, the application server processes
the commit request and sends an ENDUOWRM with uowdsp set to committed and an
SQLCARD. RDBUPDRM may also have to be sent.

3. The application requester receives the ENDUOWRM and SQLCARD. In a fashion
similar to a DRDA Distributed Unit of Work application requester that receives
ENDUOWRM from a DRDA Remote Unit of Work application server, the application
requester sends RDBCMM to all other read-only servers.

4. The read-only application servers receive the RDBCMM command and perform the
commit. The application servers return the results of the commits using ENDUOWRMs
and SQLCARDs.

5. The application requester receives the results from the read-only application servers.

Regardless of the outcome from the read-only application servers, the result returned to
the application must reflect the status of the work at the update application server.

If a read-only application server rolls back when it is asked to commit, the next time the
application performs a request to any application server, the application requester
returns SQLSTATE X’51021’ to the application to inform it that it must issue a static
rollback. The application requester does not need to return an SQLSTATE X’51021’ if
the application requester performed an implicit rollback and informed the application
the commit was successful and an implicit rollback occurred.

• Dynamic Rollback Steps

(rdbcmtok value of FALSE)

1. The rollback request passes to the application server that is allowed updates using
either the EXCSQLIMM command or the EXCSQLSTT command. The EXCSQLIMM
command flow is described in Figure 4-31 (on page 179). The EXCSQLSTT command
flow is described in Figure 4-21 (on page 149). The application server sends a
CMMRQSRM with the value of the cmmtyp parameter set to rollback.

2. The application requester receives CMMRQSRM and then sends an RDBRLLBCK
command to all application servers.

The local environment can require the results of the failed dynamic rollback to be
returned to the application instead of continuing with the rollback processing. The
application requester returns to the application an SQLCA with an SQLSTATE value of
X’2D529’.

202 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

3. The application servers receive the RDBRLLBCK command and perform the rollback.
The application servers return the results of the rollbacks using ENDUOWRMs and
SQLCARDs.

4. The application requester receives the results from the application servers and returns
to the application the status of the work at the update application server.

Because the unit of work rolled back, the application requester resets all cursors to a
closed state.

• Dynamic Rollback Steps

(rdbcmtok value of TRUE)

1. The rollback request passes to the application server that is allowed updates using
either the EXCSQLIMM command or the EXCSQLSTT command.

2. Since rdbcmtok was specified as TRUE, the RDB processes the rollback and sends
ENDUOWRM with the value of uowdsp set to rolled back and an SQLCARD to the
application requester.

3. The application requester receives the ENDUOWRM and the SQLCARD. The
application requester then sends RDBRLLBCK to all the other servers.

4. The application servers receive the RDBRLLBCK command and perform the rollback.
The application servers return the results of the rollbacks using ENDUOWRMs and
SQLCARDs.

5. The application requester receives the results from the application servers and returns
to the application the status of the work at the update application server.

Because the unit of work rolled back, the application requester resets all cursors to a
closed state.

• Commit Steps

(for a Stored Procedure defined with the commit on return attribute, rdbcmtok value is FALSE)

1. The application server initiates commit processing when the stored procedure defined
with the commit on return attribute terminates.

2. Commits are not processed at the application server in this situation, so the application
server sends a CMMRQSRM with the value of the cmmtyp parameter set to commit.

3. The remaining steps are the same as steps 3 through 7 of the dynamic commit (rdbcmtok
value is FALSE) scenario above.

• Commit Steps

(for a Stored Procedure defined with the commit on return attribute, rdbcmtok value is TRUE)

1. The application server initiates commit processing when the stored procedure defined
with the commit on return attribute terminates.

2. Since rdbcmtok was specified as TRUE in the command, the application server processes
the commit request and sends an ENDUOWRM with uowdsp set to committed and
either an SQLCARD or SQLDTARD. Note that RDBUPDRM may also have to be sent.

3. The application requester receives the ENDUOWRM and the SQLCARD or
SQLDTARD. In a fashion similar to a DRDA Distributed Unit of Work application
requester that receives ENDUOWRM from a DRDA Remote Unit of Work application
server, the application requester sends RDBCMM to all other read-only servers.

Part 1: Database Access Protocol 203

DDM Commands and Replies The DRDA Processing Model and Command Flows

4. The read-only application servers receive the RDBCMM command and perform the
commit. The application servers return the results of the commits using ENDUOWRMs
and SQLCARDs.

5. The application requester receives the results from the read-only application servers.

Regardless of the outcome from the read-only application servers, the result returned to
the application must reflect the status of the work at the update application server.

If a read-only application server rolls back when it is asked to commit, the next time the
application performs a request to any application server, the application requester
returns SQLSTATE X’51021’ to the application to inform it that it must issue a static
rollback. The application requester does not need to return an SQLSTATE X’51021’ if
the application requester performed an implicit rollback and informed the application
the commit was successful and an implicit rollback occurred.

• Static Commit Steps

1. The application requester receives the request for the embedded commit.

If the local environment does not allow static commits, the application requester must
return to the application an SQLCA with an SQLSTATE value of X’2D521’.

2. The application requester sends an RDBCMM command to all read-only application
servers.

3. The rest of the steps are identical to steps 4 through 7 for the dynamic commit steps in
this scenario.

• Static Rollback Steps

1. The application requester receives the request for the embedded commit rollback.

If the local environment does not allow static commits, the application requester must
return to the application an SQLCA with an SQLSTATE value of X’2D521’.

2. The application requester sends an RDBRLLBCK command to all application servers.

3. The rest of the steps are identical to steps 4 through 7 for the dynamic rollback steps in
this scenario.

204 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

Multi-RDB Update

In this commit and rollback scenario, the application uses the services of the sync point manager
to coordinate resource recovery for the unit of work. All application servers using protected
Distributed Unit of Work connections are allowed updates (see AS3 in Figure 4-41). AS1 is
operating using Remote Unit of Work. AS2 is operating using Distributed Unit of Work but not
protected by a sync point manager. AS1 and AS2 are restricted to read-only. This scenario
describes only the commit and rollback flows. The application requester is responsible for all
other local processing that is required to complete the commit or rollback at the application
requester.

Unprotected RUW connection

SNA or TCP/IP

SNA or TCP/IP

SNA or TCP/IP

Unprotected DUW connection

Protected by a Sync Point Mgr.

DRDA RUOW (AS1)

DRDA DUOW (AS3)

DRDA DUOW (AS2)DRDA
AR

AS With
Updates

Figure 4-41 Multi-Relational Database Update

When the application requester calls the sync point manager on behalf of the application, the
local sync point manager interface is being used. This scenario assumes a Resource Recovery
Manager interface is being used or the DDM sync point manager Level 5 was identified on the
DDM EXCSAT command, although a private interface is also valid. For example, assume the
Resource Recovery Manager calls SRRCMIT and SRRBACK, which are examples of a sync point
manager interface for COMMIT and ROLLBACK. When the application requester participates as
a resource manager, the syntax for the sync point manager interface is not described because it is
specific to the operating environment.

• Dynamic Commit Steps

1. The commit request passes to one of the application servers that is allowed updates
using either the EXCSQLIMM command or the EXCSQLSTT command. The
EXCSQLIMM command flow is described in Figure 4-31 (on page 179). The
EXCSQLSTT command flow is described in Figure 4-21 (on page 149).

2. Dynamic commits are not allowed at application servers operating at DRDA
Distributed Unit of Work, so the application server sends a CMMRQSRM with the
value of the cmmtyp parameter set to commit.

Note that DRDA rules do not allow rdbcmtok to be sent to a server that is using a sync
point manager.

3. The application requester receives CMMRQSRM, checks the value in the cmmtyp
parameter, and acting on behalf of the application, calls the Resource Recovery
interface with SRRCMIT to commit all application servers that are allowed updates.
This initiates the sync-point flows as described in Part 3, Network Protocols.

The local environment can require the results of the failed dynamic commit to be
returned to the application instead of continuing with the commit processing. The
application requester returns to the application an SQLCA with an SQLSTATE value of
X’2D528’.

Part 1: Database Access Protocol 205

DDM Commands and Replies The DRDA Processing Model and Command Flows

4. Because the application requester is registered with the sync point manager, the sync
point manager contacts the application requester to participate in the resource recovery
process.

5. When contacted during phase one of the two-phase commit process, the application
requester sends an RDBCMM command to all read-only application servers.

6. The read-only application servers receive the RDBCMM command and perform the
commit. The application servers return the results of the commits using ENDUOWRMs
and SQLCARDs. See Part 3, Network Protocols for a discussion of the levels of sync
point managers required to support update servers on protected network connections.

If an application server is on a protected network connection, and it receives an
RDBCMM command, the RDBCMM command is rejected. The application server
generates an alert and returns a CMDVLTRM to the application requester.

7. The application requester receives the results from the read-only application servers. If
all read-only application servers commit successfully, the application requester
responds to the sync point manager interface in phase one to commit.

If a read-only application server rolls back when it is asked to commit, or the
application requester receives a CMDVLTRM from an application server, or the
application requester receives any error reply message that does not allow the
application requester to proceed, the application requester responds with a rollback to
the sync point manager interface. The application requester also rolls back the read-
only application servers by sending an RDBRLLBCK command to the application
servers.

8. The sync point manager completes the resource recovery process, which includes
another call to the application requester during phase two of the two-phase commit
protocols.

If the phase two call from the sync point manager is rollback, the application requester
sends an RDBRLLBCK to the read-only application servers.

9. The application requester, acting on behalf of the application, receives the response
from the call to the sync point manager, and returns the result of the commit to the
application.

If the unit of work rolled back, the application requester resets all cursors to a closed
state.

• Dynamic Rollback Steps

1. The rollback request tells one of the application servers that is allowed updates using
either the EXCSQLIMM command or the EXCSQLSTT command. The EXCSQLIMM
command flow is described in Figure 4-31 (on page 179). The EXCSQLSTT command
flow is described in Figure 4-21 (on page 149).

2. Dynamic rollbacks are not allowed at application servers operating at DRDA
Distributed Unit of Work, so the application server sends a CMMRQSRM with the
value of the cmmtyp parameter set to rollback.

3. The application requester receives CMMRQSRM, checks the value in the cmmtyp
parameter, and acting on behalf of the application, calls the Resource Recovery
interface with SRRBACK to roll back all application servers that are allowed updates.
This initiates the rollback flows as described in Part 3, Network Protocols.

206 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

The local environment can require the results of the failed dynamic rollback to be
returned to the application instead of continuing with the rollback processing. The
application requester returns to the application an SQLCA with an SQLSTATE value of
X’2D529’.

4. Because the application requester is registered with the sync point manager, the sync
point manager contacts the application requester to participate in the resource recovery
process.

5. When contacted during phase one of the two-phase commit process, the application
requester sends an RDBRLLBCK command to all read-only application servers.

6. The read-only application servers receive the RDBRLLBCK command and perform the
rollback. The application servers return the results of the rollbacks using
ENDUOWRMs and SQLCARDs.

If an application server is on a protected network connection and it receives an
RDBRLLBCK command, the RDBRLLBCK command is rejected. The application server
generates an alert and returns a CMDVLTRM to the application requester.

7. The application requester receives the results from the read-only application servers
and replies to the sync point manager with an acknowledgement to roll back.

8. The sync point manager completes the resource recovery process and returns the
results to the application requester.

9. The application requester, acting on behalf of the application, receives the response
from the call to the Resource Recovery interface, and returns the result of the rollback
to the application.

Because the unit of work was rolled back, the application requester resets all cursors to
a closed state.

• Commit Steps for a Stored Procedure defined with the commit on return attribute

1. The application servers initiate commit processing when the stored procedure defined
with the commit on return attribute terminates.

2. Commits are not processed at the application server in this situation, so the application
server sends a CMMRQSRM with the value of the cmmtyp parameter set to commit.

3. The rest of the steps are identical to steps 3 through 9 under dynamic commit for this
scenario.

• Static Commit Steps

1. The application requester receives the request for the embedded commit.

If the local environment does not allow static commits, the application requester must
return to the application an SQLCA with an SQLSTATE of X’2D521’.

2. The application requester, acting on behalf of the application, calls the Resource
Recovery interface or the DDM sync point manager, to commit all application servers
that are allowed updates.

3. The rest of the steps are identical to steps 4 through 9 under dynamic commit for this
scenario.

• Static Rollback Steps

1. The application requester receives the request for the embedded rollback.

Part 1: Database Access Protocol 207

DDM Commands and Replies The DRDA Processing Model and Command Flows

If the local environment does not allow static commits, the application requester must
return to the application an SQLCA with an SQLSTATE of X’2D521’.

2. The application requester, acting on behalf of the application, calls the DDM sync point
manager, to roll back all application servers that are allowed updates.

3. The rest of the steps are identical to steps 4 through 9 under dynamic rollback for this
scenario.

• Sync Point Manager Originating Commit Steps

1. The application commits the unit of work by calling the DDM sync point manager.

2. The rest of the steps are identical to steps 4 through 8 under dynamic commit for this
scenario.

3. The DDM sync point manager returns the results to the application.

If the unit of work rolled back, the application requester resets all cursors to a closed
state.

• Sync Point Manager Originating Rollback Steps

1. The application rolls back the unit of work by calling the DDM sync point manager.

2. The rest of the steps are identical to steps 4 through 8 under dynamic rollback for this
scenario.

3. The DDM sync point manager returns the results to the application.

Because the unit of work rolled back, the application requester resets all cursors to a
closed state.

Post-Commit Processing

After the commit processing completes as defined in Commit and Rollback Scenarios (on page
196), the application can continue using the existing connections, and/or new ones. The
connections that remain active for the new unit of work are defined by the SQL semantics. These
semantics are defined by ISO/IEC 9075: 1992, Database Language SQL.

The update privileges for the existing connections and any new connections for the new unit of
work follow the rules defined in Coexistence (on page 194).

208 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

RDB-Initiated Rollback

In the following scenarios, a relational database has initiated rollback. A relational database
initiated rollback is due to an uncontrollable event on the relational database that requires it to
roll back immediately. The following scenarios describe the steps that occur, depending on
which application server initiates the rollback. Figure 4-42 and Figure 4-43 show unprotected
network connections between the application requester and application servers.

Unprotected RUW connection

SNA or TCP/IP

SNA or TCP/IP

SNA or TCP/IP

Unprotected DUW connection

Protected by a Sync Point Mgr.

DRDA RUOW AS (AS1)

DRDA DUOW AS (AS3)

DRDA DUOW AS (AS2)DRDA
DUOW

RDB
Initiates
Rollback

Figure 4-42 RDB at AS1 Initiates Rollback

The network connection between the application requester and AS1 is unprotected, so there is
not a sync point manager involved at AS1.

1. The relational database at AS1 rolls back.

2. AS1 returns an ABNUOWRM and SQLCARD to the application requester.

3. The application requester initiates rollback processing to all other application servers
involved in the unit of work. The steps for rolling back the other application servers are
described in Commit and Rollback Scenarios (on page 196). The application requester
returns to the application the SQLCA received from AS1.

Unprotected RUW connection

SNA or TCP/IP

SNA or TCP/IP

SNA or TCP/IP

Unprotected DUW connection

Protected by a Sync Point Mgr.

DRDA RUOW AS (AS1)

DRDA DUOW AS (AS3)

DRDA DUOW AS (AS2)DRDA
DUOW

RDB
Initiates
Rollback

Figure 4-43 RDB at AS2 Initiates Rollback

The network connection between the application requester and AS2 is unprotected, so there is
not a sync point manager involved at AS2. The steps for this scenario are the same as the
previous scenario for rollback at AS1.

Part 1: Database Access Protocol 209

DDM Commands and Replies The DRDA Processing Model and Command Flows

Unprotected RUW connection

SNA or TCP/IP

SNA or TCP/IP

SNA or TCP/IP

Unprotected DUW connection

Protected by a Sync Point Mgr.

DRDA RUOW AS (AS1)

DRDA DUOW AS (AS3)

DRDA DUOW AS (AS2)DRDA
DUOW

RDB
Initiates
Rollback

Figure 4-44 RDB at AS3 Initiates Rollback

The network connection between the application requester and AS3 is protected, so there is a
sync point manager involved at AS3. This scenario is dependent on whether the sync point
manager at the application server is informed to roll back before responding to the application
requester. If the sync point manager is not informed to roll back at the application server before
responding to the application requester, the steps are the same as the previous scenario for
rollback at AS1. Replace AS1 in the steps with AS3. If the sync point manager is informed at the
application server before responding to the application requester, then the following steps are in
effect.

1. The sync point manager at the application server is invoked to roll back the unit of work.
The process of invoking the sync point manager is dependent on the operating
environment.

2. The sync point manager drives rollback, which includes sending the DDM SYNCCRD
rollback reply or an LU 6.2 BACKOUT to the application requester. AS3 does not have the
opportunity to send back an SQLCARD.

Informing the application server that a rollback has occurred depends on the operating
system and application server implementation. For example, if the SQLAM
implementation registers itself as a protected resource manager, it will be a participant in
the rollback processing.

3. The application requester receives a DDM SYNCCRD rollback reply or a
TAKE_BACKOUT on the connection to the application server. Assuming the use of a
Resource Recovery interface, the application requester issues a ROLLBACK request
(SRRBACK) and also rolls back all other application servers. If using the DDM sync point
manager, it sends the DDM SYNCCTL rollback command to roll back each of the other
application servers. The steps for rolling back the other application servers are described in
Commit and Rollback Scenarios (on page 196). The application requester returns to the
application an SQLCA with an SQLSTATE of X’40504’.

The local environment can require the application requester to respond back to the
application instead of issuing the SRRBACK command. For this case, the application
requester returns to the application an SQLCA with an SQLSTATE of X’51021’.

4.4.15.3 Global and Local Transactions

All transactions on an XAMGR protected connection must be identified by a Transaction
Identifier. The identifier must always be registered with the DBMS before any work is
performed, and ended with the DBMS after the work is completed. The identifier represents the
unit of work that was performed on the connection between the start and end blocks. The
application uses this identifier to coordinate and recover transactions. The application must

210 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

associate each distributed unit of work or transaction with an XID, modeled after XA’s XID. The
XID has two portions, the GTRID and the BQUAL.

The GTRID is the Global Transaction identifier, and represents the distributed unit of work or
transaction in its entirety. Each Global Transaction may have one or more DBMSs within the
transaction. Work occurring anywhere in the system must be committed atomically. The
application must coordinate the DBMS’s recoverable unit of work that is part of a Global
Transaction.

The BQUAL is the Branch Qualifier, and represents one or more transaction branches in support
of a Global Transaction for which the application will engage in a separate but coordinated
transaction. Each DBMS’s internal unit of work in support of a Global Transaction is part of
exactly one branch. A Global Transaction may have more than one branch; for example, a Global
Transaction may span one or more DBMSs. The application may associate a different branch to
each DBMS within the Global Transaction. All branches are related in that they must be
completed atomically; however, the application coordinates each branch separately.

In addition to the XID, a flag representing lock sharing will also be transmitted to the RDB. The
flag requires the RDB to optimize shared resources and locks to prevent any deadlocks from
occurring between connections involved in the same Global Transaction but with different
branches. If the flag is not sent, the RDB is required to treat each XID as a unique transaction. If
the RDB cannot support sharing locks and resources, than it should ignore the flag and revert to
its default behavior regarding locks (see XAMGROVR for more details).

An application may want to perform an unprotected transaction on an XAMGR protected
connection. Such transactions are known as Local Transactions, and require no ending, two-
phase coordination, or recovery. Local Transactions behave exactly like a transaction over a
non-protected connection. The first SQL statement initiates the local transaction at the DRDA
application server. At any given time, the XA protected connection can either be IDLE, in a
Global Transaction, or in a Local Transaction. The application then issues an RDBCMM or
RDBRLLBCK to end the Local Transaction. At which point, the connection can be reused to start
another Local Transaction or Global Transaction. Attempts to use SYNCCTL to commit or
rollback the transaction are a protocol violation. If the application terminates normally but does
explicitly commit or roll back the Local Transaction, the XAMGR will drive an implicit rollback.
If the application terminates abnormally, than the DBMS will drive an implicit rollback.

The following diagrams show high-level flows illustrating Global and Local Transactions. Table
4-4 (on page 212) shows the steps involved in a Global Transaction. The first step is to open the
connection requesting the services of the XA manager. The application server responds whether
or not it can support the XA manager. Once the connection has been established—that is,
security check and RDB access—the Global Transaction can now begin (Step 2). To start the
Global Transaction, a SYNCCTL(New UOW) request is sent to the application server with the
Transaction Identifier (XID). The application server passes this information to the DBMS to
register the transaction, and responds to the New Unit of Work request.

The application requester issues work on the connection (Step 3). This work will be associated
with the XID. The application requester than informs the application server that the Unit of
Work is completed (Step 4). This is done by sending a SYNCCTL(End Association) request. The
application server will pass this information to the DBMS, which will end the transaction. At this
point the application requester may start another Global Transaction (repeat Steps 2 to 4), start a
Local Transaction (see next diagram), or commit/rollback the transaction. The commit process
requires the use of the two-phase protocol; the application requester would send the
SYNCCTL(Prepare to Commit) request to begin the first phase of the protocol (Step 5). Once the
DBMS has written the log record, the application server responds to the SYNCCTL(Prepare to
Commit) request. At this point the application requester can start the second phase (Step 6). This

Part 1: Database Access Protocol 211

DDM Commands and Replies The DRDA Processing Model and Command Flows

is done by sending the SYNCCTL(Commit) request to the application server.

Table 4-4 Example of Global Transaction

DRDA (Application Requester) DRDA (Application Server)__
1. Open Conversation Accept connection

EXCSAT (Exchange Server Attributes,
XAMGR 7) →

← EXCSATRD (XAMGR7)
ACCSEC (Access Security)
SECCHK (Security Check)
ACCRDB (Access RDB) →

ACCSECRD (ACCSEC Reply)
SECCHKRM (SECCHK Reply)

← ACCRDBRM (ACCRDB Reply)

2. Start Global Transaction

SYNCCTL (New Unit of Work:
SYNCTYPE(X’09’)
XID
XAFLAGS
TIMEOUT) →

← SYNCCRD (SYNCCTL Reply:
XARETVAL - XA return code)

3. Execute Work (SQL)

EXCSQLIMM (Execute Immediate) →
← RDBUPDRM (RDB Update)

SQLCARD (SQLCA)

4. End Global Transaction

SYNCCTL (End Association:
SYNCTYPE(X’08’)
XID
XAFLAGS
RLSCONV) →

← SYNCCRD (SYNCCTL Reply:
XARETVAL)

5. First Phase of Two-phase Commit Protocol

SYNCCTL(Prepare to Commit:
SYNCCTYPE(X’01’)
XID
XAFLAGS
RLSCONV) →

← SYNCCRD (SYNCCTL Reply:
XARETVAL

212 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

DRDA (Application Requester) DRDA (Application Server)__
6. Second Phase of Two-phase Commit Protocol

SYNCCTL (Commit:
SYNCCTYPE(X’03’)
XID
XAFLAGS
RLSCONV) →

← SYNCCRD (SYNCCTL Reply:
XARETVAL)

Table 4-5 shows an example of a Local Transaction. The difference between a Local and Global
transaction is:

1. The XID that represents a Local Transaction always has a FormatID equal to −1 (see XID in
the DDM Reference for more details).

2. No coordination is required during a commit/rollback process for Local Transactions.

3. No recovery is required for Local Transactions.

The application requester establishes a connection with XA manager support (Step 1), just like a
Global Transaction. At this point (Step 2), the application requester begins a Local Transaction by
sending the first SQL statement. Because this is an XAMGR protected connection, the
application server puts itself into Local Transaction state and should not expect an End
Association or two-phase coordination. The application requester than continues to issue work
on the connection (Step 3). When the application requester is ready to commit the unit of work,
it sends the services of the RDB manager.

After the commit, the application requester can begin any type of transaction; that is, a Local
(repeat the above steps) or Global (use the above diagram).

Table 4-5 Example of a Local Transaction

DRDA Application Requester DRDA Application Server___
1. Open Conversation Accept connection

EXCSAT (Exchange Server Attributes,
XAMGR 7) →

← EXCSATRD (XAMGR 7)
ACCSEC (Access Security)
SECCHK (Security Check)
ACCRDB (Access RDB) →

ACCSECRD (ACCSEC Reply)
SECCHKRM (SECCHK Reply)

← ACCRDBRM (ACCRDB Reply)

2. Start Local Transaction (1st SQL)

EXCSQLIMM (Execute Immediate) →
← RDBUPDRM (RDB Update)

SQLCARD (SQLCA)

Part 1: Database Access Protocol 213

DDM Commands and Replies The DRDA Processing Model and Command Flows

DRDA Application Requester DRDA Application Server___
3. Execute Work (SQL)

EXCSQLIMM (Execute Immediate) →
← RDBUPDRM (RDB Update)

SQLCARD (SQLCA)

4. Commit Local Transaction

RDBCMM (RDB Commit) →
← ENDUOWRM

214 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

4.4.16 Connection Reuse

4.4.16.1 Connection Pooling

Allows an application requester to reuse a network connection for a different application once an
application disconnects from the connection (the application terminates or releases the
connection). Thus, this level of connection reuse requires the connection flow to authenticate the
new user and establish the connection environment as if a new connection is being established.
Refer to the Connection Allocation (CA) and Control Usage (CU) rules for the rules that must be
obeyed regarding connection reuse when the requester is performing connection pooling.

DRDA
(Application Requester)

DRDA
(Application Server)

(Reply Message)
svrcod (severity code)

svrcod (severity code)

EXCSATRD

ACCSECRD

SECCHKRM

ACCRDBRM

(Reply Data)
mgrlvlls (AGENT 7, ...)
(Reply Data)
secmec (security mechanism)

(Reply Message)
svrcod (severity code)

svrcod (severity code)

EXCSATRD

ACCSECRD

SECCHKRM

ACCRDBRM

(Reply Data)
mgrlvlls (AGENT 7, ...)
(Reply Data)
secmec (security mechanism)

[1]
EXCSAT

ACCSEC

SECCHK
ACCRDB

(Security Check)
(Access RDB)
rdbnam (RDB name)

(Exchange Server Attributes)
mgrlvlls (AGENT 7, ...)
(Access Security Manager)
secmec (security mechanism)

[4]
EXCSAT

ACCSEC

SECCHK
ACCRDB

(Security Check)
(Access RDB)
rdbnam (RDB name)

(Exchange Server Attributes)
mgrlvlls (AGENT 7, ...)
(Access Security Manager)
secmec (security mechanism)

[2]
EXCSQLSTT

EXCSQLSTT

(Execute SQL statement)

(Execute SQL statement)

[3]
RDBCOM (RDB Commit UOW)

SQLCARD (SQLCA Reply Data)

SQLCARD (SQLCA Reply Data)

ENDUOWRM (End UOW Reply Message)

Figure 4-45 Reuse Connection using Connection Pooling

The following is a brief description of some of the parameters for the DDM commands for an
unprotected connection using 1-phase commit. This example illustrates the flow when all DDM

Part 1: Database Access Protocol 215

DDM Commands and Replies The DRDA Processing Model and Command Flows

commands used to initialize a connection are chained together to minimize the network costs.
The DDM Reference provides a detailed description of the parameters and chaining
requirements.

1. The application requests a connection. The application requester establishes a network
connection (described in Chapter 12 (on page 527) and Chapter 13 (on page 563) which
describe Network Protocols) with the application server. The application requester issues
the commands to access the RDB. The EXCSAT requests AGENT manager level 7 which is
required to perform connection pooling. The application server returns the replies for the
connection supporting AGENT manager level 7 indicating connection pooling is
supported.

2. The application requester requests the execution of an SQL statement for the connected
application. The application server replies with the SQL communications area.

3. The application requester commits the unit of work. The application server returns the end
unit of work condition and the SQL communications area.

4. The application then terminates and the application requester keeps the existing
connection to be reused by another application. When another application connects with
the same network requirements as with the existing connection, the application requester
again issues the commands in order to establish the connection with the RDB for the new
application. When the connection commands are re-issued on the existing connection, the
application server must close and destroy all RDB resources associated with the previous
application. All held cursors are closed. Any RDB temporary tables are destroyed. The
application server execution environment is initialized as if for a new connection.

5. The application requester requests the execution of an SQL statement for the connected
application. The application server replies with the SQL communications area.

4.4.16.2 Transaction Pooling

Transaction pooling allows an application requester to share a network connection with other
applications after completion of a transaction. Transactions are delimited by a commit, rollback,
or the dissociation of a transaction from the connection at SYNCCTL(End). An application may
establish environment variables required by a transaction on the server that only the RDB knows
about. As a result, if the application requester were to temporarily relinquish control of the
connection to another application and then reuse the connection for the original application to
resume its processing, environment variables and other RDB resources may have changed
causing undeterministic results. The release connection parameter set to reuse on the SYNCCTL,
RDBCMM, or RDBRLLBCK command is required to request the server to report environment
information to the requester and to indicate whether the connection can be reused to execute a
transaction for another application. The release connection parameter indicating reuse can be
specified on any remote unit of work or distributed unit of work connection. If the server
determines the connection can be reused, the release connection parameter is returned set to
reuse; otherwise, the release connection parameter is returned set to false. Refer to the
Connection Allocation (CA) and Control Usage (CU) rules for the rules that must be obeyed
regarding connection reuse when the requester is performing transaction pooling.

The table below shows the DDM requests that represent the transaction boundary for all
connection types.

216 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

__
Connection Type Transactional Boundary (DDM Request)__

RUOW - Remote Unit of Work RDBCMM - Commit
RDBRLLBCK - Rollback__

SYNCPTMGR protected connections SYNCCTL(Commit)
SYNCCTL(Rollback)__

XAMGR protected connections in SYNCCTL(End) with
a Global Transaction flag TMSUCCESS, TMFAIL, or TMSUSPEND

(if application server can support
dissociation of transaction)__

XAMGR protected connections in RDBCMM - Commit
a Local Transaction RDBRLLBCK - Rollback__��
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 217

DDM Commands and Replies The DRDA Processing Model and Command Flows

Pooling DUOW Network Connections

DRDA
(Application Requester)

DRDA
(Application Server)

(Reply Message)
svrcod (severity code)

svrcod (severity code)
(Log Information)

(Reply Message)
svrcod (severity code)

svrcod (severity code)

EXCSATRD

ACCSECRD

SECCHKRM

ACCRDBRM

SYNCLOG

EXCSATRD

ACCSECRD

SECCHKRM

ACCRDBRM

(Reply Data)
mgrlvlls (AGENT 7,
SYNCPTMGR 7, RDB 7 ...)
(Reply Data)
secmec (security mechanism)

(Reply Data)
mgrlvlls (AGENT 7,
SYNCPTMGR 7, RDB 7 ...)
(Reply Data)
secmec (security mechanism)

[1]
EXCSAT

ACCSEC

SECCHK
ACCRDB

SYNCCTL

EXCSAT

ACCSEC

SECCHK
ACCRDB

(Security Check)
(Access RDB)
rdbnam (RDB name)
(Sync Point Control)
synctype (request log info)

(Security Check)
(Access RDB)
rdbnam (RDB name)

(Exchange Server Attributes)
mgrlvlls (AGENT 7,
SYNCPTMGR 7, RDB 7, ...)
(Access Security Manager)
secmec (security mechanism)

(Exchange Server Attributes)
mgrlvlls (AGENT 7,
SYNCPTMGR 7, RDB 7, ...)
(Access Security Manager)
secmec (security mechanism)

[2]
SYNCCTL

EXCSQLSTT

[6]
SYNCCTL

EXCSQLSET
SQLSTT
SQLSTT

EXCSQLSTT

[3]
SYNCCTL

SYNCLOG

[5]
SYNCCTL

[4]
SYNCCRD

SQLSTT
SQLSTT

SYNCCRD

SQLCARD
SQLCARD

SQLCARD

(Sync Point Control)
synctype (new unit of work)
uowid (unit of work identifier)
Execute SQL statement)

(Sync Point Control)
synctype (new unit of work)
uowid (unit of work identifier)

(Sync Point Control)
synctype (committed)

(Sync Point Reply Data)
synctype (request to commit)
rlsconv (reuse)
(SET SQLID)
(SET CURRENT RULES)

(Sync Point Reply Data)
synctype (forget)

(SQLCA Reply Data)
(SQLCA Reply Data)

(SQLCA Reply Data)

(RDB Commit UOW)

(Set Execution Environment)
(SET SQLID)
(SET CURRENT RULES)
Execute SQL statement)

(Sync Point Control)
synctype (prepare to commit)
rlsconv (reuse)

Figure 4-46 Reuse DUOW Connection using Transaction Pooling

The following is a brief description of some of the parameters for the DDM commands that flow
on a protected connection. This example illustrates the flow using DDM chaining to minimize
the network costs. The DDM Reference provides a detailed description of the parameters and

218 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

chaining requirements. If using the CMNSYNCPT manager (SNA 2-phase commit) on a
protected connection or using an unprotected connection, the requester can issue the SYNCCTL
command with the synctype parameter set to none and the release connection parameter set to
reuse immediately after a commit or rollback prior to any other commands to request connection
reuse.

1. The application requests a connection. The application requester establishes a network
connection (as described in Chapter 12 (on page 527) and Chapter 13 (on page 563) which
describe Network Protocols) with the application server. The requester issues the
commands to establish the connection, authenticate the user, and access the RDB. The
EXCSAT requests AGENT manager level 7, SYNCPTMGR level 7, and RDB manager level
7 to indicate support for transaction pooling. The application server replies indicating
support for transaction pooling.

2. The application requester starts a transaction by sending an execute SQL statement for the
connected application. The application server replies with the SQL communications area.

3. The application commits the transaction. The application requester initiates the first phase
of commit. The Prepare to Commit request indicates the network connection is to be
released for reuse at the end of commit. If the requester rolls back the unit of work, the
rollback request needs to indicate the network connection is to be released for reuse.

Note: If the requester rolls back the unit of work, the rollback request needs to indicate the
network connection is to be released for reuse.

4. If the sync control requests the connection be released for reuse, the server always returns
the release connection indicator. If the transaction closed all cursors, closed all protected
RDB resources, and did not establish any special execution environment associated with
the application which may impact the execution of a transaction by another application,
the server returns an indicator that the connection is available for reuse; otherwise, the
release connection indicator is returned as false. The server also provides the SQL SET
statements to be issued to establish the application environment when another transaction
is executed for the same application on possibly another connection. The SET statements
are used to set all special registers associated with the application.

5. The second phase of commit completes. At the end of commit processing, the server must
close and destroy all RDB resources associated with the server process related to the
previous application.

6. When another application accesses the requester to execute a transaction, the requester
checks for an existing available network connection. If an existing connection is available
and has the same network requirements, the requester again issues the required
commands to establish the connection, authenticate the user, access the RDB, and establish
the application execution environment prior to executing the transaction.

Part 1: Database Access Protocol 219

DDM Commands and Replies The DRDA Processing Model and Command Flows

Pooling RUOW Network Connections

DRDA
(Application Requester)

DRDA
(Application Server)

(Reply Message)
svrcod (severity code)

svrcod (severity code)
(Log Information)

(Reply Message)
svrcod (severity code)

svrcod (severity code)

EXCSATRD

ACCSECRD

SECCHKRM

ACCRDBRM

SYNCLOG

EXCSATRD

ACCSECRD

SECCHKRM

ACCRDBRM

(Reply Data)
mgrlvlls (AGENT 7,
SYNCPTMGR 7, RDB 7 ...)
(Reply Data)
secmec (security mechanism)

(Reply Data)
mgrlvlls (AGENT 7,
SYNCPTMGR 7, RDB 7 ...)
(Reply Data)
secmec (security mechanism)

[1]
EXCSAT

ACCSEC

SECCHK
ACCRDB

SYNCCTL

[5]
EXCSAT

ACCSEC

SECCHK
ACCRDB

(Security Check)
(Access RDB)
rdbnam (RDB name)
(Sync Point Control)
synctype (request log info)

(Security Check)
(Access RDB)
rdbnam (RDB name)

(Exchange Server Attributes)
mgrlvlls (AGENT 7,
SYNCPTMGR 7, RDB 7, ...)
(Access Security Manager)
secmec (security mechanism)

(Exchange Server Attributes)
mgrlvlls (AGENT 7, RDB 7, ...)
(Access Security Manager)
secmec (security mechanism)

[2]
SYNCCTL

EXCSQLSTT

[6]
EXCSQLSET
SQLSTT
SQLSTT

EXCSQLSTT

[3]
RDBCMM

[4]
ENDUOWRM

SQLCARD
SQLSTT
SQLSTT

SQLCARD
SQLCARD

SQLCARD

(Sync Point Control)
synctype (new unit of work)
uowid (unit of work identifier)
Execute SQL statement)

(End UOW Reply Message)
rlsconv (reuse)
(SQLCA Reply Data)
(SET SQLID)
(SET CURRENT RULES)

(SQLCA Reply Data)
(SQLCA Reply Data)

(SQLCA Reply Data)

(RDB Commit UOW)

(Set Execution Environment)
(SET SQLID)
(SET CURRENT RULES)
Execute SQL statement)

(RDB Cpommit UOW)
rlsconv (reuse)

Figure 4-47 Reuse RUOW Connection using Transaction Pooling

The following is a brief description of some of the parameters for the DDM commands that flow
on an unprotected connection. This example illustrates the flow using DDM chaining to
minimize the network costs. The DDM Reference provides a detailed description of the
parameters and chaining requirements.

220 DRDA, Version 3, Volume 1

The DRDA Processing Model and Command Flows DDM Commands and Replies

1. The application requests a connection. The application requester establishes a network
connection (as described in Chapter 12 (on page 527) and Chapter 13 (on page 563) which
describe Network Protocols) with the application server. The requester issues the
commands to establish the connection, authenticate the user, and access the RDB. The
EXCSAT requests AGENT manager level 7, and RDB manager level 7 to indicate support
for transaction pooling. The application server replies indicating support for transaction
pooling.

2. The application requester starts a transaction by sending an execute SQL statement for the
connected application. The application server replies with the SQL communications area.

3. The application commits the transaction. The RDB commit request indicates the network
connection is to be released for reuse at the end of commit. If the requester rolls back the
unit of work, the RDBRLLBCK request needs to indicate that the network connection is to
be released for reuse.

4. If the RDB commit requests the connection be released for reuse, the server always returns
the release connection indicator. If the transaction closed all cursors, closed all protected
RDB resources, and did not establish any special execution environment associated with
the application which may impact the execution of a transaction by another application,
the server returns an indicator that the connection is available for reuse; otherwise, the
release connection indicator is returned as false. The server also provides the SQL SET
statements to be issued to establish the application environment when another transaction
is executed for the application on another connection. At the end of commit processing, the
server must close and destroy all RDB resources associated with the server process related
to the previous application. The SET statements are used to set all special registers
associated with the application.

5. When another application accesses the requester to execute a transaction, the requester
checks for an existing available network connection. If an existing connection is available
and has the same network requirements, the requester again issues the required
commands to establish the connection, authenticate the user, access the RDB, and establish
the application execution environment prior to executing the transaction.

Part 1: Database Access Protocol 221

The DRDA Processing Model and Command Flows

222 DRDA, Version 3, Volume 1

Chapter 5

Data Definition and Exchange

The DRDA environment has several objectives for data description and data transmission.
Principal among these objectives are:

• Providing a faithful representation of SQL data

• Minimizing or eliminating data conversion activity between compatible environments

• Minimizing communications traffic

• Allowing staged implementation of DRDA

5.1 Use of FD:OCA
Formatted Data Object Content Architecture (FD:OCA) is the architecture for handling exchange
and interchange of field formatted information. The SQL Application Programming Interface
(API) shields application programmers from the actual underlying descriptive architecture.
FD:OCA provides means to describe both numeric and character information.

DRDA provides flexibility in the transmitted format of data. For example, when two identical
systems are using data, no conversions should be necessary. However, when they are different,
they must use clearly understood formats.

With FD:OCA, the descriptions can be sent along with the data, can be sent as a separate object
before the data is sent, or can be cached for use much later. DRDA uses only a subset of the total
FD:OCA function as defined in the FD:OCA documentation. Furthermore, DRDA imposes
restrictions on FD:OCA as described in this chapter.

FD:OCA allows specification of Simple Data Arrays with an arbitrary number of dimensions;
DRDA uses them to define only scalars. Similarly, Row LayOut (RLO) can be used repetitively to
produce an arbitrarily complex structure; for DRDA RLO usage is restricted to produce two
dimensional tables as the most complex data aggregate.

For more information on FD:OCA and other major terms in this chapter, see Referenced
Documents (on page xxv). These references are also useful for background reading.

Part 1: Database Access Protocol 223

Use of Base and Option Sets Data Definition and Exchange

5.2 Use of Base and Option Sets
DRDA uses a subset of the descriptive architecture that FD:OCA provides. DRDA uses the
following FD:OCA triplets45 or their abbreviations in describing data.

MDD Meta Data Definition

SDA Simple Data Array

GDA Group Data Array

CPT Continue Preceding Triplet

RLO Row LayOut

The following sections illustrate their usage.

To begin this discussion, it is important to see how data is described and presented applying
DRDA concepts in the use of the FD:OCA architecture.

5.2.1 Basic FD:OCA Object Contained in DDM

Figure 5-1 is the Basic FD:OCA Object:

Start the data

Describe the data

Define any array
data (optional)

Provide the data

Provide offsets into
data (optional)

FDODSC

FDODTA

FDOOFF

FDOEXT

SQLDTA

Figure 5-1 Basic FD:OCA Object

DDM defines the terms EXTDTA (Externalized Data), FDODSC (FD:OCA Descriptor), FDODTA
(FD:OCA Data), FDOEXT (FD:OCA Extent Data), FDOOFF (FD:OCA Offset Data), OUTOVR
(Output Override Descriptor), QRYDSC (Query Descriptor), and QRYDTA (Query Data).
Descriptor objects are carriers for descriptors. The data objects are carriers for data. In
commands where the descriptor and the data are available simultaneously (as is the case for

45. Triplet is a word used in FD:OCA almost the same way the term is used in DDM. A triplet consists of three parts:

1. A length

2. A type

3. The rest

Triplets are referred to by their type, such as the RLO or Row LayOut triplet.

224 DRDA, Version 3, Volume 1

Data Definition and Exchange Use of Base and Option Sets

command data flowing to the relational database) the DDM command has a command data
object (such as SQLDTA) that contains both the FDODSC (optionally the FDOEXT and FDOOFF
objects) and the FDODTA objects. Where the presentation of the descriptor and data can be
separated in time and supplied with different commands (as is the case for query processing
with OPNQRY and CNTQRY), the QRYDSC and the QRYDTA objects are used separately
without an outer object. In both cases, the descriptor in the FDODSC or QRYDSC describes the
data contained in the following FDODTA object or QRYDTA objects.

This FDODSC object describes all input, update, or parameter data for a single SQL statement.
The descriptor carries type information by SDA references with zero extents for each input
variable. The FDOEXT provides the extent specification for the input data when the input data
contains a repeatable field. A repeatable field is used to describe an input array where each
element in the array has the identical format, all having the same field length, field type, and
type parameter. The SDA extents are implicitly specified in the FDOEXT carrier object and
described by the SQLNUMEXT early descriptor. The FDOEXT contains the SDA extent
specification and the FDOOFF contains the offset value for each field described in the FDODSC.
If the input data does not contain any repeatable fields, then the FDOEXT and FDOOFF is not
needed.

EXTDTA is a data object that allows data to flow as base data in an FDODTA or QRYDTA object
or as externalized data in a separate object. If a data item is to flow as externalized data, the
descriptor object contains a descriptor for the item with the FD:OCA placeholder indicator flag
set on and the data object contains an FD:OCA placeholder for the data item instead of the actual
data. OUTOVR is a descriptor object that allows the application requester to control the format
of output variables returned by the application server. The descriptor flows from the application
requester with the command. It describes completely the data to be returned by the application
server, including GDAs, SDAs, and override LEDs and MDDs as required. As with QRYDSC
objects which flow separately from the corresponding QRYDTAs containing the data they
describe, there is no outer object for an OUTOVR object.

Start the data

Describe the data

Define any array
data (optional)

Provide the data

Provide offsets into
data (optional)

FDODSC

FDODTA

FDOOFF

FDOEXT

SQLDTA

Externalized data

Start the DDM object

Optionally provide the
extents for each field

Describe each field of
the data

Provide the base data
with placeholders for
externalized data

Optionally provide the
offsets for each field
in the data

Provide the externalized
data associated with
one placeholder

EXTDTA

Figure 5-2 Basic FD:OCA Object with Externalized Data

Part 1: Database Access Protocol 225

Use of Base and Option Sets Data Definition and Exchange

5.2.2 DRDA FD:OCA Object

To accomplish all data representation objectives, some special (DRDA-defined) usage of
FD:OCA descriptors is required. Figure 5-3 shows this usage.

Start the object

Describe mappings from DRDA types
to their FD:OCA representations. These
mappings vary depending on the intended
data uasge and machine environment.

Describe the common objects, such as the
SQLCA or SQLDA in terms of the DRDA
types above. These descriptions are
invariant between environments.

User data is described by reference to the
environmental and DRDA object specs. The
data can be input data (from host variables)
or output data (from the database).

Provide the data

SQLDTA

ENVIRONMENTAL
DESCRIPTIONS,
a collection of
MDDs and SDAs.

FDODSC

DRDA OBJECT
DESCRIPTIONS,
a collection of
MDDs, GDAs,
and RLOs.

FDODSC

MDD, GDA, and CPTs
for Row Fields
MDD and RLO
for Row Desc.
MDD and RLO
for Table Desc.

FDODSC

Contains offset data for each SDA that the
FDODSC describes. Defines the offset to
the start of the data array in the FDODTA
for each field.Array offsets spec.

FDOOFF

FDODTA

Contains extent data for each SDA
that the FDODSC describes. Defines
the number of times each field is
repeated in the FDODTA object.

FDOEXT

Array dimensions spec.

Figure 5-3 Conceptual View of a DRDA FD:OCA Object

The discussion that follows covers the concepts behind the DRDA FD:OCA objects. The FD:OCA
descriptors sections are shown in DDM FDODSC carrier objects. The FD:OCA data is shown in

226 DRDA, Version 3, Volume 1

Data Definition and Exchange Use of Base and Option Sets

the DDM FDOEXT, FDODTA, and FDOOFF objects. These are shown as being contained in an
SQLDTA carrier. When these descriptors actually flow, not all of these parts will be physically
present and in many cases the carriers will be different.

The ENVIRONMENTAL DESCRIPTION section of the descriptor has a Simple Data Array
(SDA) to describe how each DRDA type is represented.46 DRDA defines an entire set of data
types for each environment supported. See Section 5.6.5 (on page 311) for a complete listing.

An immediately preceding Meta Data Definition (MDD) specification relates each DRDA type
representation to its SDA (or GDA or RLO). DRDA defines meta data type references for each
DRDA type. FD:OCA defines that MDDs apply to other triplets that follow. The following SDA,
GDA, or RLO, thus, is the presentation for a particular DRDA type for this environment.

Each of the SDA, GDA, and RLO triplets is assigned a local identifier (LID) that is used as a short
label for references to these triplets. Using LIDs, triplets can refer to other triplets, which in turn
can refer to yet other triplets, and so on. A direct mapping from DRDA types can then be made
from DRDA type to LID and back. DRDA provides named sets of descriptors that establish a
firm relationship between LID and DRDA type. All types are provided in each set of
environmental descriptors; the representations vary from environment to environment.

The next section of the descriptor contains DRDA OBJECT DESCRIPTIONS. Objects such as the
SQLDA or SQLCA are defined in terms of the DRDA types described in the previous section.
These descriptions are not sensitive to environment. Everyone uses one set of identical
descriptors. However, the exact bits that flow when one implementation sends one of the
described objects to another implementation vary depending on the environmental descriptors
in use. These descriptors are also preceded with MDD triplets that define the DRDA semantics
of the FD:OCA descriptors.

The first and last sections are optional. It provides the FD:OCA extent specifications when the
input data contains a repeatable field. It also provides the relative offset in bytes to the data for
each field from the start of the FDODTA. A repeatable field is used to describe an input array
where each element in the array has the identical format, all having the same field length, field
type, and type parameter. This FDODSC object describes all input, update, or parameter data for
a single SQL statement. The descriptor carries type information by SDA reference with zero
extents for each input variable. The SDA extents are implicitly specified in the FDOEXT carrier
object and described by the SQLNUMEXT early descriptor. After the FDODTA carrier, the offset
value for each field described in the FDODSC is specified in the FDOOFF carrier object. If the
input data does not contain any repeatable fields, then the FDOEXT and FDOOFF are not
needed.

The DDM FDODTA object section contains the description of user data. In most cases,
environmental and DRDA object descriptions form this description. The referenced SDAs and
GDAs are assembled to reflect the order and characteristics of the user and system data that
flow. In some cases, additional SDAs are required to handle data the database management
system has returned. For example, if the database management system has returned data in an
unusual CCSID, an SDA and an MDD (defining the DRDA semantics) are built to indicate that
situation to the requester. See Section 5.6.6 (on page 357) for more detail.

46. For individual fields, DRDA types map very closely to SQL data types. Exceptions occur where inconsistencies in type
assignment method have occurred in SQL. For example, 4-byte and 2-byte integers are different SQL types, but 4-byte and 8-byte
floating point are not. DRDA also has types for common collections of fields where SQL does not.

Part 1: Database Access Protocol 227

Use of Base and Option Sets Data Definition and Exchange

The organization of the FD:OCA descriptive triplets as shown in Figure 5-3 (on page 226) gives
the benefits of environment-independent specification of user data and commonly used
information blocks. This is tailored with environment definitions that show exactly (to the bit)
how each of these blocks really appears in each environment. They are different from
environment to environment. However, systems that use identical type representations will
exchange data with no conversion or translation.

A conceptual view of a DRDA FD:OCA object with externalized input LOB data is given below.
It includes the definition and flow of externalized FD:OCA data. Figure 5-4 (on page 229) shows
this usage.

228 DRDA, Version 3, Volume 1

Data Definition and Exchange Use of Base and Option Sets

Start the object

Describe mappings from DRDA types
to their FD:OCA representations. These
mappings vary depending on the intended
data uasge and machine environment.

Describe the common objects, such as the
SQLCA or SQLDA in terms of the DRDA
types above. These descriptions are
invariant between environments.

User data is described by reference to the
environmental and DRDA object specs. The
data can be input data (from host variables)
or output data (from the database).

Provide the data. For LOB data, provide an
FD:OCA placeholder value (ph).

SQLDTA

ENVIRONMENTAL
DESCRIPTIONS,
a collection of
MDDs and SDAs.

FDODSC

DRDA OBJECT
DESCRIPTIONS,
a collection of
MDDs, GDAs,
and RLOs.

FDODSC

MDD, GDA, and CPTs
for Row Fields
MDD and RLO
for Row Desc.
MDD and RLO
for Table Desc.

FDODSC

column 1 value
column 2 LOB ph
column 3 value
column 4 LOB ph

FDODTA

Provide the LOB data as externalized
FD:OCA data.

column 2 LOB value

EXTDTA

Provide the LOB data as externalized
FD:OCA data.

column 4 LOB value

EXTDTA

Contains extent data for each SDA
that the FDODSC describes. Defines
the number of times each field is
repeated in the FDODTA object.

FDOEXT

Array dimensions spec.

Array offsets spec.

Contains offset data for each SDA that the
FDODSC describes. Defines the offset to
the start of the data array in the FDODTA
for each field.

FDOOFF

Figure 5-4 Conceptual View of a DRDA FD:OCA Object with Externalized LOB Columns

This DRDA FD:OCA object contains a row with four columns, two of which are LOB columns.
Note that the LOB columns are represented by FD:OCA placeholder values in FDODTA. The
actual externalized LOB data values are carried in the EXTDTA object in the order in which they
appear in the FDODTA object.

Part 1: Database Access Protocol 229

Use of Base and Option Sets Data Definition and Exchange

5.2.3 Early and Late Descriptors

The environmental descriptors are the same for all data flowing in one direction over any
conversation. At the very latest, this information could flow with the data. At the very earliest,
DRDA for some set of known environments could define this information and reference it by
name. The named descriptor would contain a full set of SDAs to cover all SQL data types for a
particular environment. The actual FD:OCA SDAs are virtual. The products could do the proper
conversions, knowing at code design time the appropriate conversions to do under each
circumstance. These conversions are based strictly on the DRDA type used to represent the
value without interpretation of a real SDA. That saves both implementation cost and line time.

Section 5.6.5 (on page 311) defines six DRDA environments: QTDSQL370, QTDSQL400,
QTDSQLX86, QTDSQLASC, QTDSQLVAX, and QTDSQLJVM machine representations. The
TYPDEFNAM on the ACCRDB command references these environments, and the associated
early descriptors never flow.

Common objects (such as SQLCAs) are the same for every product operating at the same level of
DRDA. These objects can be identified early. The latest time the user needs to determine the
descriptor set is at EXCSAT time. Descriptions of the common objects can be made with DRDA
named sets of descriptors that relate to the DRDA level being supported. By staying within the
set of DRDA defined common blocks, no runtime interpretation of FD:OCA triplets is required.

Section 5.6.4 (on page 273) and the sections following the figure define these descriptors. These
are agreed to at EXCSAT time by means of the MGRLVL parameter for the SQL Application
Manager, SQLAM X’2407’. (See the DDM Reference for definitions of these variables.) At an
intermediate server, additional manager-level control is obtained through the use of the
MGRLVLOVR object. See Section 4.3.5 (on page 81).

The descriptor of the final object is built of descriptions provided or implied at three separate
times: EXCSAT, ACCRDB, and finally right before user data transmission.

Objects defined by early descriptors need only contain the data; objects defined by late
descriptors must include the FD:OCA descriptor and the data. Often the DDM codepoint of the
command or reply implies the format of the data. In other cases, the descriptor must be sent.
There are three distinct cases:

1. The data format is completely implied by the DDM codepoint.

2. The data format varies from one instance to another of the DDM command or reply.

3. The data format varies but was defined in a preceding command or reply.

In the first case, the FD:OCA descriptor is not sent. The DDM codepoint relates to a DRDA-
defined FD:OCA descriptor. The FD:OCA descriptors for these fixed format data are known
early, and they reference the environment descriptors to set final representations. Thus, in the
case of fixed command data and reply data formats, the data immediately follows the DDM
codepoint. This case includes all commands in Table 5-1 (on page 233), except for Execute SQL
Statement (EXCSQLSTT), Open Query (OPNQRY), and Continue Query (CNTQRY).

The second case corresponds to DRDA transmission of database rows or database input (host
variable) values. For these, the descriptor cannot be constructed until the data is presented for
transmission. These descriptors are late descriptors. There are four subcases:

2a. For some commands or replies, the DDM codepoint enclosing the command or reply
data provides a complete FD:OCA object using SQLDTA or SQLDTARD. Inside that
object, the FD:OCA descriptors are sent in an FDODSC object followed by the data in
an FDODTA object. This case includes the command data for Execute SQL Statement
(EXCSQLSTT) and Open Query (OPNQRY). This case also applies directly to reply

230 DRDA, Version 3, Volume 1

Data Definition and Exchange Use of Base and Option Sets

data when the size of the result is known in advance. This is the case for the result of
Execute SQL Statement (EXCSQLSTT), which can return at most one row of result data.

If there are LOB values in the input row or answer set, the descriptors indicate whether
an FD:OCA placeholder will flow for a column, and if so, each LOB data value will flow
in an EXTDTA following the SQLDTA or SQLDTARD in the order they appear in the
FDODTA.

2b. For the result of Open Query (OPNQRY) and Continue Query (CNTQRY), the size of
the result is not known in advance. A Query Descriptor (QRYDSC) object is built to
describe the following data. The application server constructs as many Query Data
(QRYDTA) objects as are necessary to contain the entire result.

If there are LOB values in the answer set when the application server processes the
OPNQRY command, it assumes that externalized LOB data values are to be returned
for LOB data columns. The QRYDSC indicates that FD:OCA placeholders will flow for
each externalized LOB column. At CNTQRY time, the application requester may
override the QRYDSC description by sending an OUTOVR object. In this way, the
application server knows whether to send LOB data values or LOB locators for an
externalized LOB column. Because the application server does not know the desired
format of the data to be returned, it does not send a QRYDTA object until the first
CNTQRY is received.

2c. For an Execute SQL Statement (EXCSQLSTT) that invokes a stored procedure that
returns one or more result sets, the number and the size of the result sets is not known
in advance. A Query Descriptor (QRYDSC) object is built for each result set to describe
the data that follows. The application server constructs as many Query Data
(QRYDTA) objects for each result set as are necessary to contain the entire result.

If there are LOB values in any result set when the stored procedure is executed, the
application server assumes that externalized LOB data values are to be returned for
LOB data columns in a query result set. The QRYDSC carries FD:OCA placeholders for
each externalized LOB column. At CNTQRY time, the application requester may
override the QRYDSC description by sending an OUTOVR object. In this way, the
application server knows whether to send LOB data values or LOB locators for an
externalized LOB column. Because the application server does not know the desired
format of the data to be returned, it does not send a QRYDTA object until the first
CNTQRY is received.

2d. If there are LOB data columns in the output of a command, then the Output Override
Descriptor Object (OUTOVR) may be sent with the command to specify the format of
the externalized LOB columns. The command may either be a Continue Query
(CNTQRY) requesting additional rows in a query result set, or an Execute SQL
Statement (EXCSQLSTT) where the statement is not a stored procedure invocation.

The third case corresponds to the continuation of an interrupted set of rows in response to a
query or the execution of a stored procedure, such as the response to Continue Query
(CNTQRY). In this case, it is not necessary to describe the format of the rows being sent again
because the format is the same as the format of the rows of the query that were already sent
using the second form of DDM/FD:OCA data description and transmission. Therefore, the
receiver of a query result must retain the data description sent in response to the Open Query
and associate that description with the opened query.

Part 1: Database Access Protocol 231

Relationship of DRDA and DDM Objects and Commands Data Definition and Exchange

5.3 Relationship of DRDA and DDM Objects and Commands
This section describes the relationship between DRDA and DDM objects and commands.

5.3.1 DRDA Command to Descriptor Relationship

Data objects defined by DDM for DRDA can contain command data or reply data described by
either early or late FD:OCA descriptors. For the SQLCARD, SQLDARD, SQLRSLRD,
SQLCINRD, SQLSTT, SQLSTTVRB, SQLOBJNAM, FDOEXT, and FDOOFF, the description of
the data is completed by the time ACCRDB completes. In these cases, the early descriptors are
sufficient to define the data that is flowing. The SQLDTA and SQLDTARD contain descriptors
and data defined by those late descriptors. The QRYDTA contains data defined by the QRYDSC
late descriptor. One or more FDODSCs or QRYDSCs are required to describe the data, and one
or more FDODTAs or QRYDTAs are required to contain the data. The FDOEXT is required if the
SQLDTA contains an input array. An FDODSC, an FDODTA, and an optional FDOEXT and
FDOOFF are contained within SQLDTA. An FDODSC and an FDODTA are contained within the
SQLDTARD. When a QRYDSC or a QRYDTA is used, one of each is all that is logically required.
Also, the transmission of the data can begin before the entire result has been fetched from the
database, so the result will be sent in pieces. TYPDEFNAM and/or TYPDEFOVR can precede
command data or reply data objects as environmental overrides.

Table 5-1 (on page 233) shows data associated with each DRDA command described in Section
4.3.1.11 (on page 70). All descriptors named here are described later in this chapter.

Table 5-1 (on page 233) consists of five columns. The first column names the command being
described. The second states whether command data (from application requester to application
server) or reply data (from application server to application requester) is described; therefore,
there are two rows for each command. The third column names the DDM carrier object, which is
a DDM codepoint defined in the DDM Reference. It will contain information described by the
DRDA descriptor named in the fourth column. In most cases, the third and fourth columns are
the same. In cases where several different DDM commands are required to carry the DRDA
object, these names will not match. This is most often the case when a command requires both
descriptor and data objects to flow on the link, and the DRDA object is split over command
boundaries. Note that CNTQRY has only the QRYDTA carrier because the descriptor has been
completely carried in the preceding OPNQRY or EXCSQLSTT command. The DRDA query
result will flow in response to an OPNQRY and zero or more CNTQRY commands. One or more
DRDA stored procedure result sets will flow in response to an EXCSQLSTT and zero or more

232 DRDA, Version 3, Volume 1

Data Definition and Exchange Relationship of DRDA and DDM Objects and Commands

CNTQRY commands. The fifth column is a description of the data content of the object.

Table 5-1 Data Objects, Descriptors, and Contents for DRDA Commands
__

DRDA
DRDA Command or DDM Object Descriptor Data Content

Command Reply Data Name Name Description__�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

ACCRDB Command None. None. None.__
ACCRDB Reply None or None or None.

SQLCARD SQLCARD Return Code/Status__
BGNBND Command None. None. None.__
BGNBND Reply SQLCARD SQLCARD Return Code/Status__

SQLSTT and
SQLSTTBRV

SQLSTT and
SQLSTTVRB

Modified SQL Statement
Description of Variables that
appeared in the Statement

BNDSQLSTT Command

__
BNDSQLSTT Reply SQLCARD SQLCARD Return Code/Status__
CLSQRY Command None. None. None.__
CLSQRY Reply SQLCARD SQLCARD Return Code/Status__
CNTQRY Command OUTOVR SQLDTA Output Override Descriptor
(Note 2)__
CNTQRY Reply SQLCARD or SQLCARD or Return Code/Status
(Note 2) QRYDTA or SQLDTARD or Reply Data Descriptor and Values

QRYDTA SQLDTARD Reply Data Descriptor and Values
and EXTDTA__

DRPPKG Command None. None. None.__
DRPPKG Reply SQLCARD SQLCARD Return Code/Status__
DSCRDBTBL Command SQLOBJNAM SQLOBJNAM SQL Table Name__
DSCRDBTBL Reply SQLCARD or SQLCARD or Return Code/Status

SQLDARD SQLDARD Table Description__
DSCSQLSTT Command None. None. None.__
DSCSQLSTT Reply SQLCARD or SQLCARD or Return Code/Status

Result Row or Input Parameter
Description Including Labels

SQLDARD SQLDARD

__
ENDBND Command None. None. None.__
ENDBND Reply SQLCARD SQLCARD Return Code/Status__

SQL Statement (No Variable
References)

EXCSQLIMM Command SQLSTT SQLSTT

__
EXCSQLIMM Reply SQLCARD SQLCARD Return Code/Status__
EXCSQLSET Command None. None. None.__
EXCSQLSET Reply SQLCARD SQLCARD Return Code/Status__
EXCSQLSTT Command SQLDTA SQLDTA or Data Descriptors and Values
(Notes 1, 2) SQLDTAMRW Data Descriptors and Values

or OUTOVR SQLDTA
and SQLDTA SQLDTA or__��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 233

Relationship of DRDA and DDM Objects and Commands Data Definition and Exchange

__
DRDA

DRDA Command or DDM Object Descriptor Data Content
Command Reply Data Name Name Description__�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

SQLDTAMRW
or SQLDTA SQLDTA or

SQLDTAMRW
and EXTDTA
or OUTOVR SQLDTA
and SQLDTA SQLDTA or

SQLDTAMRW
and EXTDTA__

EXCSQLSTT Reply SQLCARD SQLCARD Return Code/Status
(Notes 2,3,4,5) and and

SQLRSLRD SQLRSLRD Information about Result Sets
and and
SQLCINRD SQLCINRD Column Information for a Result Set
and and
QRYDSC and SQLDTARD Reply Data Descriptor and Values
QRYDTA
or SQLDTARD or SQLDTARD Return Code/Status and
and and Output Parameter Values
SQLRSLRD SQLRSLRD Information about Result Sets
and and
SQLCINRD SQLCINRD Column Information for a Result Set
and and
QRYDSC SQLDTARD Reply Data Descriptor and Values
and
QRYDTA
or SQLDTARD or SQLDTARD Return Code/Status and
and and Output Parameter Values
SQLRSLRD SQLRSLRD Information about Result Sets
and and
SQLCINRD SQLCINRD Column Information for a Result Set
and and
QRYDSC SQLDTARD Reply Data Descriptor and Values
and EXTDTA Externalized FD:OCA Data
or SQLDTARD or SQLDTARD Reply Data Descriptor and Values
or SQLDTARD or SQLDTARD Reply Data Descriptor and Values
and EXTDTA Externalized FD:OCA Data__

OPNQRY Command SQLDTA or SQLDTA or Parameter Descriptor and Values
(Note 2) SQLDTA SQLDTA

and EXTDTA EXTDTA__
OPNQRY Reply SQLCARD or SQLCARD or Return Code/Status
(Note 6) QRYDSC SQLDTARD Reply Data Descriptors and Values

and QRYDTA

__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

234 DRDA, Version 3, Volume 1

Data Definition and Exchange Relationship of DRDA and DDM Objects and Commands

__
DRDA

DRDA Command or DDM Object Descriptor Data Content
Command Reply Data Name Name Description__�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

SQLATTR and
SQLSTT

SQL Statement or Attributes (No
Variable Reference)

PRPSQLSTT Command SQLSTT

__
PRPSQLSTT Reply SQLCARD or SQLCARD or Return Code/Status

Result Row Description including
Labels

SQLDARD SQLDARD

__
RDBCMM Command None. None. None.__
RDBCMM Reply SQLCARD SQLCARD Return Code/Status__
RDBRLLBCK Command None. None. None.__
RDBRLLBCK Reply SQLCARD SQLCARD Return Code/Status__
REBIND Command None. None. None.__
REBIND Reply SQLCARD SQLCARD Return Code/Status__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Notes:

1. SQLDTAMRW is not supported in DRDA Level 1.

2. EXTDTA and OUTOVR for externalized LOB data are not supported in DRDA Levels 1,
2, or 3.

3. SQLRSLRD and SQLCINRD are not supported in DRDA Levels 1 or 2.

4. If any LOB data is in the CALL parms, then the associated EXTDTAs must be the last in
the reply chain, so must flow after the result set objects.

5. If any LOB data is in a result set, then no QRYDTA is returned until the first CNTQRY for
the result set.

6. If any LOB data is in the query, then no QRYDTA is returned until the first CNTQRY.

SQLDTA, SQLDTAMRW (SQLDTAMRW is not supported in DRDA Remote Unit of Work), and
SQLDTARD are the only late descriptors in Table 5-1 (on page 233). SQLDTA, SQLDTAMRW,
and SQLDTARD have a dependency on the late descriptor, SQLDTAGRP. SQLDTARD also has a
dependency on SQLCADTA, which is another late descriptor. These are the only ones that must
be transmitted by FDODSC, or QRYDSC. Early descriptors and flows describe all other
command and reply data as stand-alone data in the appropriate DDM object.

5.3.2 Descriptor Classes

FD:OCA provides a powerful and flexible mechanism to model data or collections of data. To
describe DRDA objects, the FD:OCA constructs Simple Data Array (SDA), Group Data Array
(GDA), and Row Layout (RLO) triplets are used. Each SDA, GDA, and RLO is assigned, through
the Meta Data Definition triplet (MDD), a unique DRDA type. In the case of SDAs, the DRDA
type is always a data type that DRDA supports. Each group is assigned a DRDA type and
describes an ordered collection of other groups or Simple Data Arrays (possibly including length
overrides). A row is assigned a DRDA type and describes an ordered set of elements, each of
which is selected from one or more groups. An array is assigned a DRDA type and describes a
finite number of rows.

DRDA has four classes of descriptors that participate in defining user data. These classes are
described below:

1. Environmental descriptors show how each SQL and DRDA data type are represented on
the link. These descriptors are built from FD:OCA Meta Data Definition (MDD) triplets and

Part 1: Database Access Protocol 235

Relationship of DRDA and DDM Objects and Commands Data Definition and Exchange

Simple Data Array (SDA) triplets.

These descriptors set maximum limits for lengths and indicate how floating point numbers
should be represented. The SDAs also represent integer data, such as byte reversed.

2. Simple group descriptors instantiate one or more fields into a collection or group. Groups
can be nullable as a whole, independent of the nullability of the individual component
fields. These descriptors are built from FD:OCA MDDs and GDA triplets (and Continue
Preceding Triplet (CPT) if needed).

These descriptors provide overrides for lengths or precision and scale of previously
specified environmental descriptors. For example, the general fixed decimal specification
allows up to 31 digits. Those 31 digits can be to the right of the decimal point. The group
descriptor specifies the actual values for some particular instance of a fixed decimal
number; for example, 5 digits with 2 to the right of the decimal point. A group of fields, so
defined, acquires a local identifier (LID) and can be subsequently referenced in later
descriptors by name.

DRDA requires a length override for each referenced environmental descriptor for input
and output data to optimize the amount of storage allocated. The default SDA length for
character data is 32,767, which allows an override up to that value. For an SQLDTAGRP
late group descriptor, the length override can sometimes be zero (X’0000’), as detailed in
Section 5.5.3.1 (on page 247).

To form nullable sets of fields, a group descriptor is used. A nullable group provides one
indicator byte that indicates the presence or absence of the whole group. The triplets that
such a descriptor references can be Environmental Descriptor SDAs (in which case the
overrides described above are applied as well) or other Group Descriptor GDAs (in which
case no overrides occur). The referenced GDAs can be either nullable or non-nullable.

3. Row descriptors instantiate a row of fields. Each row, like a row in a relational table, has
the same number of fields represented. Some fields can be null; some groups of fields can
be null (with just one null indicator); however, all fields are accounted for. These
descriptors are built from FD:OCA MDDs and RLO triplets.

The rows are constructed from previously specified groups. Where the group provided
specific length information about each field, the row strings the fields out into a one
dimensional vector. The groups that become part of the row can be a mixture of objects.
For example, the user data values that are returned as the result of a query are carried in a
row containing an SQLCA as well as the user data.

4. Array descriptors define open ended data structures. SQLDAs and user data are organized
as open ended repetitions of column descriptions and table data. These descriptions make
rows into tables, the size of which is determined by the amount of data that follows. These
descriptors are built from FD:OCA MDDs and RLO triplets.

References to row descriptors build these descriptors. The descriptors take one
dimensional vectors or rows and produce two dimensional tables. In the previous
example, the entire query result would be an array. There would be as many rows in the
array as there were rows in the answer set. Each of these rows would be the special
SQLCA/user data hybrid described above. (Nullability of the SQLCA group allows it to be
transmitted as a single byte in the normal case.)

5. Complex group descriptors contain one or more complex fields to form a collection or a
group of fields. A complex group may consist of one or more environmental descriptors,
simple group descriptors, other complex group descriptors, and/or array descriptors. A
complex field is an array descriptor that instantiates a field as an open-ended structure

236 DRDA, Version 3, Volume 1

Data Definition and Exchange Relationship of DRDA and DDM Objects and Commands

within the group. Each array in a group consists of a row which provides the number of
rows in the array. Nullable fields within the group provide an indicator that indicates the
presence or absence of the whole field. The triplets for such a descriptor can be
Environmental Descriptor SDAs (in which case the overrides are applied), Group
Descriptor GDAs, and other Array Descriptor RLOs. No overrides can occur for GDAs and
RLOs. The referenced GDAs and RLOs can be either nullable or non-nullable. Nullability
of a field is transmitted as a single byte. Array descriptors in a complex group consist of a
row. A row consists of other groups. A group can contain simple groups and complex
groups. A simple group consists of fields made up of other groups or simple data arrays. A
complex group consists of fields made up of one or more arrays and other groups or
simple data arrays.

The relationship between these DRDA classes is such that FD:OCA triplets of any class can
reference descriptors of the next lower numbered class only. This consistently maintains the
dimensionality of each class. The only exceptions to this next-lower rule are GDAs that build
Group Descriptors can reference both Environmental Descriptors and other Group Descriptors;
the result is still a group. Each of these classes corresponds to a meta data type used in MDD
descriptors for relational databases.

In addition, to comply with FD:OCA reference rules, all FD:OCA triplets referenced by any
triplet must precede that triplet. Therefore, all environmental triplets must precede the group
descriptor that references them. Similarly, all group triplets must precede the row triplets, and
these must precede the array describing triplets. See examples in Section 5.8.2 (on page 372).

The early descriptors never actually flow on the link. By default, the Environmental Descriptors
are determined by ACCRDB processing by means of TYPDEFNAM and TYPDEFOVR. By
default, the Group, Row, and Array descriptors are agreed during EXCSAT processing by means
of the MGRLVL parameter for the SQL application manager. The default TYPDEFNAM and/or
TYPDEFOVR values can be overridden. See Section 7.8 (on page 410). At an intermediate server,
additional manager-level control is obtained through the use of the MGRLVLOVR object. See
Section 4.3.5 (on page 81).

The late descriptors physically flow on the link. These FD:OCA descriptors are always contained
within a DDM FDODSC, or QRYDSC. (See the blocking discussion in Chapter 7 (on page 395).)

The data inside an FDODSC, or QRYDSC is always presented in high to low order byte ordering.
Other machines that use byte reversed numbers must translate the data because the numbers are
not byte reversed. There are no alphabetics, so CCSID is of no concern. There is also no floating
point data, so that is of no concern. The application requester and application server must send
the data exactly as shown in these examples. See the DDM Reference for more details and
diagrams.

Part 1: Database Access Protocol 237

DRDA Descriptor Definitions Data Definition and Exchange

5.4 DRDA Descriptor Definitions
Section 5.3.2 (on page 235) described the logical dependency and physical ordering of the
descriptor triplets. This order is the proper sequence. First, define the basic descriptor building
blocks, assemble them into larger descriptor components, and finally assemble the descriptor
needed.

However, for DRDA, there are a large number of basic descriptor building blocks (such as the
data type information), which can obscure understanding of how descriptors are built. To avoid
this confusion, descriptor assembly will be explained using a top-down approach. Beginning
with the end product, which is the final descriptor, assembly will be broken down into its
component parts. Late arrays are discussed first, followed by late rows and late groups and then
early arrays, rows, and groups are presented. The environmental descriptors, early and late, are
discussed last. Until implementation time, the fine details of data types and machine
representation are not needed.

238 DRDA, Version 3, Volume 1

Data Definition and Exchange Late Descriptors

5.5 Late Descriptors
One class of DRDA objects’ descriptions are not known at connection time, but can only be
known at SQL statement execution time. These include descriptions of input host variables
passed by the application in support of OPNQRY and EXCSQLSTT, and descriptions of the
answer set returned in response to an OPNQRY or an EXCSQLSTT for an SQL static SELECT or
for an SQL CALL that invokes a stored procedure. In these cases, the number of host variables
or columns and their SQL data types and lengths are only known when the application executes
the statement. The description of the data is assembled dynamically and sent to the application
requester/application server along with (but preceding) the data. These are called late
descriptors.

The DRDA types are fixed at ACCRDB/ACCRDBRM processing. The SQL types of all input host
variables and constituent columns of an answer set must be mappable to one of these DRDA
types.

5.5.1 Late Array Descriptors

The following figures describe DRDA defined Late Array Descriptors. These array descriptors
are built on the one-dimensional row descriptors defined in Section 5.5.2 (on page 242). These
array descriptors add one dimension to the structure of the objects (defined by rows). These
objects are all constructed with the FD:OCA Row Layout (RLO) triplet. Each descriptor consists
of a single RLO.

The format of these descriptors is described in Figure 5-5 (on page 240) and Figure 5-6 (on page
241). Each DRDA type consists of a Meta Data Definition (MDD) that states the DRDA
semantics of the descriptor followed by one RLO triplet that refers to the other RLO triplets.

The result is the definition of a two-dimensional object. This object is a logical array of
information. It can begin with a fixed number of occurrences of zero or more formats of lower
level rows. It can end with an indefinite number of occurrences of a single row format.

Part 1: Database Access Protocol 239

Late Descriptors Data Definition and Exchange

5.5.1.1 SQLDTARD: SQL Communication Area with Data Array Description

SQLDTARD Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’04’ X’01’ X’F0’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
6 X’71’ X’F0’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDTARD Data
__

byte 10 byte 11 byte 12__
Descriptor Name Ref Type Row LID Elem_Taken Rep_Factor__

SQLCADTA X’01’ X’E0’ 0 (all) 0 (all)__��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:077800050401F0 0671F0 E00000

Figure 5-5 SQLDTARD Array Descriptor

These are the descriptions for the Late Array Descriptor parameters shown in Figure 5-5.

The Meta Data Definition applies to the descriptor that follows it. For DRDA, it specifies exactly
what the descriptor is used for. The same FD:OCA triplet can be used for several purposes.

Byte 0 Length of the FD:OCA Meta Data Definition (MDD) triplet is always 7 for DRDA.

Byte 1 MDD type indicator is always X’78’ for MDDs.

Byte 2 Identity identified by the Local Identifier (LID) for the MDD is always 0.

Byte 3 Application Class for the MDD. The relational database is class X’05’ for DRDA. This
byte is always X’05’.

Byte 4 Meta Data Type for the MDD is defined within the application class. DRDA has
defined four data types as described in Section 5.7 (on page 359).

Byte 5 Meta Data Reference type for the MDD. The type identifies that the next byte identifies
a late or early descriptor. The type is an X’01’ if the next byte references a DRDA late
descriptor. The type is an X’02’ if the next bye references DRDA early Descriptors.
Environmental Descriptors are defined as an early descriptor but can be overridden as a
late descriptor.

Byte 6 Meta Data Reference value for the MDD. DRDA uses this value as the DRDA Type
indicator. Table 5-11 (on page 359) describes the acceptable values.

Byte 7 Length of the data triplets for the MDD.

Byte 8 Data Definition type indicator for the MDD.

Byte 9 Identify the local identifier (LID) for the referenced DRDA data type for the MDD.

240 DRDA, Version 3, Volume 1

Data Definition and Exchange Late Descriptors

5.5.1.2 SQLDTAMRW: Data Array Description for Multi-Row Input

SQLDTAMRW Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’04’ X’01’ X’F4’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
6 X’71’ X’F4’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDTAMRW Data
__

byte 10 byte 11 byte 12__
Descriptor Name Ref Type Row LID Elem_Taken Rep_Factor__

SQLDTA X’01’ X’E4’ 0 (all) 0 (all)__��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:077800050401F4 0671F4 E40000

Figure 5-6 SQLDTAMRW Array Descriptor (Multi-Row Input Data)

Part 1: Database Access Protocol 241

Late Descriptors Data Definition and Exchange

5.5.2 Late Row Descriptors

This section describes DRDA-defined Late Row Descriptors. These objects are all constructed
with the FD:OCA Row Layout (RLO) triplet and result in a one dimensional structure.

The format of these descriptors is only slightly different from the array descriptors. The top and
bottom are just like the late array descriptors (see Figure 5-5 (on page 240)). However, in the
middle there is one RLO triplet that refers to one or more group descriptors (GDAs) described in
Section 5.5.3 (on page 245) and in Section 5.6.4 (on page 273).

For each occurrence of a reference to a group descriptor GDA (a line in the box), there is a label
associated with the field, a pointer to the appropriate GDA, a parameter containing a count of
elements taken (always 0 indicating that all of the elements of the group should be taken), and a
repetition factor (always 1 indicating that exactly one occurrence of the group should be taken).

The result is the definition of a one dimensional object, a row or vector, or a control block
without any repeating groups.

242 DRDA, Version 3, Volume 1

Data Definition and Exchange Late Descriptors

5.5.2.1 SQLDTA: Data Description for One Row of Data

SQLDTA Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’03’ X’01’ X’E4’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
6 X’71’ X’E4’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDTA Data

byte 10 byte 11 byte 12___
Descriptor Name Ref Type Group LID Elem_Taken Rep_Factor___
SQLDTAGRP X’01’ X’D0’ 0 (all) 1___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:077800050301E4 0671E4 D00001

Figure 5-7 SQLDTA Row Descriptor

The SQLDTA describes all Input, Update, or Parameter fields for a single SQL statement or the
fields for one row of result data.

This descriptor carries type information (by SDA references from the SQLDTAGRP descriptor)
and length, precision, and scale information (in the SQLDTAGRP descriptor) and is packaged as
a single block (row).

Part 1: Database Access Protocol 243

Late Descriptors Data Definition and Exchange

5.5.2.2 SQLCADTA: Data Description for One Row with SQL Communication Area and Data

SQLCADTA Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’03’ X’01’ X’E0’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
9 X’71’ X’E0’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLCADTA Data

1 byte 1 byte 1 byte___
Descriptor Name Ref Type Group LID Elem_Taken Rep_Factor___

SQLCAGRP X’02’ X’54’ 0 (all) 1___
SQLDTAGRP X’01’ X’D0’ 0 (all) 1___��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

Descriptor in HEX:077800050301E0 0971E0 540001 D00001

Figure 5-8 SQLCADTA Row Descriptor

244 DRDA, Version 3, Volume 1

Data Definition and Exchange Late Descriptors

5.5.3 Late Group Descriptors

The group descriptors that follow collect field definitions together, specify length attributes,
provide ordering of the fields, provide nullability of the collection (with one null indicator), and
provide a local identifier (LID) for the group. The groups are all constructed with the FD:OCA
Group Data Array (GDA) triplet. For large groups (more than 84 fields), Continue Preceding
Triplet (CPT) is used repeatedly, as necessary, to contain enough GDA repeating groups.

The format of these descriptors is only slightly different from the row descriptors. The top and
bottom are the same as Figure 5-5 (on page 240). However, in the middle is one GDA descriptor
(with 0 or more CPT triplets) where there was one RLO triplet. The GDA has a header section
(the small box with 3 parts) containing the length, FD:OCA type, and LID for the GDA. The box
below that (a box with 2 parts) can be short or long. It contains one or more occurrences of the
GDA repeating group, one occurrence for each field to be included in the group.

For each occurrence of a reference to an environmental SDA (a line in the box), there is a label
associated with the field, a pointer to the appropriate SDA, and the overriding length parameter.

The overriding length parameter is a 2-byte field.

• For all FD:OCA data types, except FD:OCA Generalized Strings, the last 15 bits of the
overriding length parameter is a signed 2-byte integer indicating the length of the data
described, according to the FD:OCA type of the data.

The first bit is ’0’b.

• For FD:OCA Generalized String data types, the overriding length parameter is a signed 2-
byte integer indicating the length of the length portion of the data.

The first bit is the FD:OCA placeholder indicator flag.

— If the FD:OCA placeholder indicator flag in the 2-byte length override is set on (’1’b), the
DRDA object carrying the data described by the SQLDTAGRP contains only the length
portion of the generalized string. This data acts as FD:OCA placeholder for the value
portion of the FD:OCA Generalized String which is itself externalized to another DRDA
object called the EXTDTA.

— The FD:OCA placeholder indicator flag in the 2-byte length override may not be set off
(’0’b) in DRDA for this type of data. Thus, all such data must be externalized and must
flow in an EXTDTA.

DRDA specifies a maximum length override value of 8, indicating that allowable
placeholder sizes are 2, 4, or 8. The placeholder size must be large enough for holding the
maximum possible length of a value belonging to the corresponding LOB column.
However, the sender is allowed to use a placeholder size larger than the minimum
necessary for the LOB column.

An EXTDTA object must flow for each FD:OCA Generalized String described, except
under the following conditions:

1. It can be determined at the time its FD:OCA placeholder is generated that the
nullable LOB data is null.

2. It can be determined at the time its FD:OCA placeholder is generated that the
nullable or non-nullable LOB data has a length of zero bytes.

Therefore, an externalized LOB value must have an EXTDTA reply data object associated
with it under all other conditions, which include but are not limited to the following
special circumstances:

Part 1: Database Access Protocol 245

Late Descriptors Data Definition and Exchange

1. It cannot be determined at the time the FD:OCA placeholder is generated whether
the corresponding nullable LOB data is null or not.

2. The FD:OCA placeholder indicates an unknown length for the LOB data because its
length cannot be determined at that time.

For details, refer to EXTDTAOVR in the DDM Reference.

All of the numbers in the boxes are in decimal unless otherwise noted. See Section 5.6.6 (on page
357) and Section 5.6.5 (on page 311) for a discussion of environmental descriptors. The length
overrides are required (must not be zero) when referring to SDAs for output data (data
originating at the application server) unless otherwise noted.

246 DRDA, Version 3, Volume 1

Data Definition and Exchange Late Descriptors

5.5.3.1 SQLDTAGRP: Data Descriptions for One Row of Data

SQLDTAGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’02’ X’01’ X’D0’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDTAGRP Data Descriptor and Column Data

(Describe up to 84 columns.)
__

byte 7 byte 8 byte 9__
Data Length Data Type Identity__

3n+3 where n<85 N-GDA X’76’ X’D0’__��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

__
1 byte 2 bytes__

Descriptor Label Ref Type Env LID Length Override__
Column 1 X’01’ Data Type Data Length Override__
Column 2 X’01’ Data Type Data Length Override__

...__
Column n−1 X’01’ Data Type Data Length Override__

Column n where n<85 X’01’ Data Type Data Length Override__�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Each column is described by this group up to a maximum of 84 columns.

n is the total number of columns described by the group of columns.

If n>84, then the next group of columns is described using the continue preceding triplet (CPT)
descriptor.

SQLDTAGRP Continue Data Descriptor

(Additional groups required to describe every column.)
__

byte y byte y+1 byte y+2__
Data Length Data Type Identity__

3n+3 where n<85 CPT X’7F’ X’00’__��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Part 1: Database Access Protocol 247

Late Descriptors Data Definition and Exchange

byte 3(x−1)+(y+3) for 1 byte byte 3(x−1)+(y+4) for 2 bytes___

Descriptor Label Ref Type Env LID Length Override___
Column x X’01’ Data Type Data Length Override___

Column x+1 X’01’ Data Type Data Length Override___
...___

Column n−1 X’01’ Data Type Data Length Override___
Column n where n<85 X’01’ Data Type Data Length Override___�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

y is the first byte of the continue preceding triplet (CPT).

x is the next column to be described by the current group.

n is the total number of columns described by the current group of columns up to a maximum of
84 columns.

As many continue preceding triplets (CPT) are used as needed to describe the total number of
columns.

Descriptor in HEX:077800050201D0 ...76D0...
(1st group of column descriptions)
...7F00...
(Continued group of column descriptions)

Figure 5-9 SQLDTAGRP Group Descriptor

The dots for the descriptor in hex indicate that the values are not known until runtime.

The SQLDTAGRP descriptor indicates the corresponding FD:OCA object is nullable. For output
data that is originating at a server, the null indicator is used to indicate for an error condition
that the row is null.

For input data that is originating at an application requester, the null indicator must be zero or
the server must reject it with a DTAMCHRM reply message, except in the case of a multi-row
input operation where the following applies:

• A null indicator value of zero (X’00’) indicates row data is present. This is not an error
condition.

• Any other indicator value indicates the row is null (that is, there is no row data). Specifically:

— A null indicator value of −1 (X’FF’) indicates that the server should skip over the null row.
This is not an error condition.

— A null indicator value of −2 (X’FE’) indicates that the server should return an error
SQLCA containing SQLSTATE 22527.

— A null indicator value of −3 (X’FD’) indicates that the server should skip over the null row
which is also the last row for a multi-row input operation. This is not an error condition.
Therefore, if there are fewer rows than indicated previously by the NBRROW instance
variable on the EXCSQLSTT command, a PRCCNVRM reply message should not be
returned.

— For all other non-zero (X’FC’-X’80’, X’01’-X’7F’) null indicator values, the server must
return a DTAMCHRM reply message.

• Null rows count towards the total number of rows for a multi-row input operation as
indicated by the NBRROW instance variable on the EXCSQLSTT command.

248 DRDA, Version 3, Volume 1

Data Definition and Exchange Late Descriptors

• Null rows are allowed for both atomic and non-atomic multi-row input operations.

The length override used for each column in the N-GDA or CPT triplet must not be zero
(X’0000’) for either input or output data except for the following types:

__
Application Meta Data Meta Data Reference

Class Type DRDA-Type and Name SQL Type Description��
�

��
�

��
�

��
�

��
�

��
�

__
X’05’ X’01’ X’26’ (FB) 452 Fixed Bytes__
X’05’ X’01’ X’27’ (NFB) 453 Nullable Fixed Bytes__
X’05’ X’01’ X’28’ (VB) 448 Variable Bytes__
X’05’ X’01’ X’29’ (NVB) 449 Nullable Variable Bytes__
X’05’ X’01’ X’2A’ (LVB) 456 Long Variable Bytes__
X’05’ X’01’ X’2B’ (NLVB) 457 Nullable Long Variable Bytes__
X’05’ X’01’ X’2C’ (NTB) 460 Null-Terminated Bytes__
X’05’ X’01’ X’2D’ (NNTB) 461 Nullable Null-Terminated Bytes__
X’05’ X’01’ X’2E’ (NTCS) 460 Null-Terminated SBCS__
X’05’ X’01’ X’2F’ (NNTCS) 461 Nullable Null-Terminated SBCS__
X’05’ X’01’ X’30’ (FCS) 452 Fixed Character SBCS__
X’05’ X’01’ X’31’ (NFCS) 453 Nullable Fixed Character SBCS__
X’05’ X’01’ X’32’ (VCS) 448 Variable Character SBCS__
X’05’ X’01’ X’33’ (NVCS) 449 Nullable Variable Character SBCS__
X’05’ X’01’ X’34’ (LVCS) 456 Long Variable Character SBCS__
X’05’ X’01’ X’35’ (NLVCS) 457 Nullable Long Variable Character SBCS__
X’05’ X’01’ X’36’ (FCD) 468 Fixed Character DBCS__
X’05’ X’01’ X’37’ (NFCD) 469 Nullable Fixed Character DBCS__
X’05’ X’01’ X’38’ (VCD) 464 Variable Character DBCS__
X’05’ X’01’ X’39’ (NVCD) 465 Nullable Variable Character DBCS__
X’05’ X’01’ X’3A’ (LVCD) 472 Long Variable Character DBCS__
X’05’ X’01’ X’3B’ (NLVCD) 473 Nullable Long Variable Character DBCS__
X’05’ X’01’ X’3C’ (FCM) 452 Fixed Character Mixed__
X’05’ X’01’ X’3D’ (NFCM) 453 Nullable Fixed Character Mixed__
X’05’ X’01’ X’3E’ (VCM) 448 Variable Character Mixed__
X’05’ X’01’ X’3F’ (NVCM) 449 Nullable Variable Character Mixed__
X’05’ X’01’ X’40’ (LVCM) 456 Long Variable Character Mixed__
X’05’ X’01’ X’41’ (NLVCM) 457 Nullable Long Variable Character Mixed__
X’05’ X’01’ X’42’ (NTM) 460 Null-Terminated Mixed__
X’05’ X’01’ X’43’ (NNTM) 461 Nullable Null-Terminated Mixed__
X’05’ X’01’ X’44’ (PLB) 476 Pascal L String Bytes__
X’05’ X’01’ X’45’ (NPLB) 477 Nullable Pascal L String Bytes__
X’05’ X’01’ X’46’ (PLS) 476 Pascal L String SBCS__
X’05’ X’01’ X’47’ (NPLS) 477 Nullable Pascal L String SBCS__
X’05’ X’01’ X’48’ (PLM) 476 Pascal L String Mixed__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 249

Late Descriptors Data Definition and Exchange

__
Application Meta Data Meta Data Reference

Class Type DRDA-Type and Name SQL Type Description��
�

��
�

��
�

��
�

��
�

��
�

__
X’05’ X’01’ X’49’ (NPLM) 477 Nullable Pascal L String Mixed__�
� �� �� �� �� ��

Note that any allowed length override of zero (X’0000’) on input or output indicates the length
of the column value is literally zero. This is not equivalent to the column value being null.

250 DRDA, Version 3, Volume 1

Data Definition and Exchange Late Descriptors

5.5.3.2 Overriding Output Formats

For most output columns, the target system returns data for the column in a format determined
by the target. This format will be designated as the default format for the output column and is
dependent on the data type of the column. The default format is described in an FDODSC or
QRYDSC object returned by the target to the source system. The source system is responsible for
performing numeric conversions and character translations from the default format to the actual
format desired by the application.

LOB Externalization

This protocol is expanded for LOB data since applications may request that a LOB data column
be returned either as value bytes or as a locator value. Since a locator value is generated by the
target to represent the LOB column, the source system can only return a locator value to the
application if the target system generated it and returned it in that format.

The default format for a LOB output column is as data value bytes. If the application wants to
receive a locator value for the column, the source system sends a descriptor object, called the
OUTOVR command data object, with the command that returns LOB data columns as output.

The OUTOVR object contains descriptors that override the format of output data columns. It
consists of an SQLDTARD descriptor, including an SQLDTAGRP which overrides each output
column as follows:

• Each column whose format is not to be overridden is represented in the SQLDTAGRP by a
triplet consisting of a LID value of zero and a length override value of zero. Each such triplet
is known as a default triplet.

• Each column whose format is to be overridden is represented by a valid triplet. Each such
triplet is known as an override triplet.

• Only LOB locator LIDs may be specified in an override triplet.

• Each column in the output must be represented in the SQLDTAGRP by either a default triplet
or an override triplet.

• The ith triplet overrides the ith output column.

When an OUTOVR object is received with a command that returns output, then:

— If the ith triplet is a default triplet, then the ith column in the output is returned in the
default format.

— If the ith triplet is an override triplet, then the ith column in the output is returned in the
override format, if it is valid.

• If the OUTOVR command data object is flowed following an EXCSQLSTT command which
is not a stored procedure call, and the number of triplets in the SQLDTAGRP FD:OCA
descriptor does not match the number of columns in the select list, the following applies:

— If the number of triplets in the OUTOVR SQLDTAGRP FD:OCA descriptor is greater than
the number of columns in the select list, then the server ignores the outstanding trailing
triplets in the OUTOVR SQLDTAGRP FD:OCA descriptor.

— If the number of triplets in the OUTOVR SQLDTAGRP FD:OCA descriptor is fewer than
the number of columns in the select list, then the server can either return only those
columns in the SQLDTARD reply data object, or it can return the same number of
columns as the select list by treating the missing triplets in the OUTOVR SQLDTAGRP
FD:OCA descriptor as default triplets.

Part 1: Database Access Protocol 251

Late Descriptors Data Definition and Exchange

• If the OUTOVR command data object is flowed following a CNTQRY command, and the
number of triplets in the SQLDTAGRP FD:OCA descriptor does not match the number of
columns in the select list, the following applies:

— If the number of triplets in the OUTOVR SQLDTAGRP FD:OCA descriptor is greater than
the number of columns in the select list, then the server ignores the outstanding trailing
triplets in the OUTOVR SQLDTAGRP FD:OCA descriptor.

— If the number of triplets in the OUTOVR SQLDTAGRP FD:OCA descriptor is fewer than
the number of columns in the select list, then the server must return the same number of
columns as the select list by treating the missing triplets in the OUTOVR SQLDTAGRP
FD:OCA descriptor as default triplets.

• The nullability of a LOB locator as returned by the server in an SQLDTARD or QRYDTA
reply data object in response to an OUTOVR command data object must match that of the
corresponding LOB value that is being overridden. As such, the nullability of a LOB locator
override triplet as specified in the OUTOVR command data object that is associated with an
EXCSQLSTT or CNTQRY command is ignored by the server.

The following QRYDSC describes an answer set with three columns, an NFCS column, an NOCS
column, and an NRI column.

Table 5-2 QRYDSC with Default Formats

Reference Hex Representation Description___
DDM codepointQRYDSC 001F241A
Start nullable group descriptorSQLDTAGRP 0C76D0
Continue—one CHAR, one CLOB, and one
ROWID column

SQLDTAGRP 310014CB 00021F00 28

Start row descriptorSQLCADTA 0971E0
Continue—one group X’54’SQLCADTA 540001
Continue—one group X’D0’SQLCADTA D00001
Start array descriptorSQLDTARD 0671F0
Continue—all row X’E0’SQLDTARD E00000___�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

To override the NOCS column (X’CB’ LID) in the above QRYDSC with an NOCL format (X’1B’
LID), the following OUTOVR object is sent with the CNTQRY command:

252 DRDA, Version 3, Volume 1

Data Definition and Exchange Late Descriptors

Table 5-3 OUTOVR with One Override Triplet

Reference Hex Representation Description___
DDM codepointOUTOVR 001F2415
Start nullable group descriptorSQLDTAGRP 0C76D0
Continue—one default triplet, one override
triplet for NOCL, one default triplet

SQLDTAGRP 0000001B 00040000 00

Start row descriptorSQLCADTA 0971E0
Continue—one group X’54’SQLCADTA 540001
Continue—one group X’D0’SQLCADTA D00001
Start array descriptorSQLDTARD 0671F0
Continue—all row X’E0’SQLDTARD E00000___�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 253

Early Descriptors Data Definition and Exchange

5.6 Early Descriptors
During application requester to application server connection processing, a subset of the DRDA
object descriptions is fixed and cannot be changed for the duration of that connection. These
descriptors are called the DRDA early descriptors and consist of Simple Data Arrays (SDAs),
Group Data Arrays (GDAs), and rows and arrays (RLOs). The Simple Data Arrays describe each
data type supported by DRDA and are called the Early Environmental Descriptors. Additionally,
the early descriptors include a small number of groups, rows, and arrays (GDAs and RLOs).
Once the connection process has been established, the application requester/application server
need only send the DRDA object to the application server/application requester; the descriptor
will not be sent.

A requester or server commits default support to the early descriptors at two distinct points
during connection processing:

1. The Early DRDA Group, Row, and Array Descriptors are established during
EXCSAT/EXCSATRD processing by the manager level (MGRLVL) of the SQLAM.

2. The Early Environmental Descriptors (SDAs) are established during
ACCRDB/ACCRDBRM processing by TYPDEFNAM and TYPDEFOVR.

These descriptors represent the supported DRDA types and are fixed and identical across all six
environments: QTDSQL370, QTDSQLX86, QTDSQL400, QTDSQLASC, QTDSQLVX, and
QTDSQLJVM. Accepting one of these environments commits the requester or server to support
all DRDA types in a specific machine representation. While the DRDA types cannot change, data
type representations can be changed at various points in the processing of commands and
replies. The default TYPDEFNAM and/or TYPDEFOVR values can be overridden. See Section
7.8 (on page 410). At an intermediate server, additional manager-level control is obtained
through the use of the MGRLVLOVR object. See Section 4.3.5 (on page 81).

5.6.1 Initial DRDA Type Representation

The DRDA type representations are initially established from TYPDEFNAM and TYPDEFOVR
on ACCRDB/ACCRDBRM. These are required parameters, and there are no defaults. The
representation of numeric DRDA types is defined by the TYPDEFNAM parameter, while the
representation of character data (Single Byte, Mixed, Graphic) is defined by the CCSIDs specified
by the TYPDEFOVR parameter. Once the DRDA data type representations have been resolved
(TYPDEFNAM and TYPDEFOVR), the Early Environmental Descriptors are complete.
Command and reply data can then be assembled or parsed subject to those representations.

5.6.2 Early Array Descriptors

Figure 5-12 (on page 257) describes DRDA-defined Early Array Descriptors. These are similar to
the late array descriptors in that they make two dimensional structures from one dimensional
ones.

The arrays described contain database management system and application parameter
information. They describe only structures that the database management system knows of well
in advance. Because of this early understanding, these descriptors do not flow on the link. Rather
they are the foundation for DRDA Command and Reply data objects.

254 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.2.1 SQLRSLRD: Data Array of a Result Set

SQLRSLRD Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’04’ X’02’ X’7F’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
9 X’71’ X’7F’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLRSLRD Data
__

1 byte 1 byte 1 byte__
Descriptor Name Ref Type Row LID Elem_Taken Rep_Factor__
SQLNUMROW X’02’ X’68’ 0 (all) 1__

SQLRSROW X’02’ X’6F’ 0 (all) 0 (all)__��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

Descriptor in HEX:0778000504027F 09717F 680001 6F0000

Figure 5-10 SQLRSLRD Array Descriptor

The SQLRSLRD Array Descriptor figure describes information about the result sets contained
within the reply data of EXCSQLSTT.

Part 1: Database Access Protocol 255

Early Descriptors Data Definition and Exchange

5.6.2.2 SQLCINRD: SQL Result Set Column Array Description

SQLCINRD Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’04’ X’02’ X’7B’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
12 X’71’ X’7B’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLCINRD Data
__

1 byte 1 byte 1 byte__
Descriptor Name Ref Type Row LID Elem_Taken Rep_Factor__
SQLDHROW X’02’ X’E0’ 0 (all) 1__

SQLNUMROW X’02’ X’68’ 0 (all) 1__
SQLDAROW X’02’ X’60’ 0 (all) 0 (all)__��

�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

Descriptor in HEX:0778000504027B 0C717B E00001 680001 6F0000

Figure 5-11 SQLCINRD Array Descriptor

The SQLCINRD Array Descriptor figure describes column name information for result sets
contained within the reply data of EXCSQLSTT.

256 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.2.3 SQLSTTVRB: SQL Statement Variable Description

SQLSTTVRB Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’04’ X’02’ X’7E’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
9 X’71’ X’7E’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLSTTVRB Data
__

1 byte 1 byte 1 byte__
Descriptor Name Ref Type Row LID Elem_Taken Rep_Factor__
SQLNUMROW X’02’ X’68’ 0 (all) 1__
SQLVRBROW X’02’ X’6E’ 0 (all) 0 (all)__��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

Descriptor in HEX:0778000504027E 09717E 680001 6E0000

Figure 5-12 SQLSTTVRB Array Descriptor

The SQLSTTVRB Array Descriptor figure describes the variables appearing in an SQL statement.

Part 1: Database Access Protocol 257

Early Descriptors Data Definition and Exchange

5.6.2.4 SQLDARD: SQL Descriptor Area Row Description with SQL Communication Area

A requester can control how an SQLDARD object is generated. Refer to Section 4.4.16 (on page
215) for more details on a light descriptor, a standard descriptor, or an extended descriptor. The
SQLNUMROW object identifies the number of variables described. The number of
SQLDAROWs must match the number in the SQLNUMROW object. The SQLDHGRP object
provides statement-level descriptive information. The SQLDARD contains only one
SQLDHGRP object.

SQLDARD Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’04’ X’02’ X’74’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
15 X’71’ X’74’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDARD Data
__

1 byte 1 byte 1 byte__
Descriptor Name Ref Type Row LID Elem_Taken Rep_Factor__

SQLCARD X’02’ X’64’ 0 (all) 1__
SQLDHROW X’02’ X’E0’ 0 (all) 1__

SQLNUMROW X’02’ X’68’ 0 (all) 1__
SQLDAROW X’02’ X’60’ 0 (all) 0 (all)__��

�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Descriptor in HEX:07780005040174 0F7174 640001 E00001 680001 600000

Figure 5-13 SQLDARD Array Descriptor

258 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.2.5 SQLDCTOKS: SQL Diagnostics Condition Token Array

SQLDCTOKS Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’04’ X’02’ X’F7’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
9 X’71’ X’F7’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDCTOKS Data
__

1 byte 1 byte 1 byte__
Descriptor Name Ref Type Row LID Elem_Taken Rep_Factor__
SQLNUMROW X’02’ X’68’ 0 (all) 1__
SQLTOKROW X’02’ X’E7’ 0 (all) 0 (all)__��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

Descriptor in HEX:077800050402F7 0971F7 680001 E70000

Figure 5-14 SQLDCTOKS Array Descriptor

Part 1: Database Access Protocol 259

Early Descriptors Data Definition and Exchange

5.6.2.6 SQLDIAGCI: SQL Diagnostics Condition Information Array

SQLDIAGCI Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’04’ X’02’ X’F5’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
9 X’71’ X’F5’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDIAGCI Data
__

1 byte 1 byte 1 byte__
Descriptor Name Ref Type Row LID Elem_Taken Rep_Factor__
SQLNUMROW X’02’ X’68’ 0 (all) 1__

SQLDCROW X’02’ X’E5’ 0 (all) 0 (all)__��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

Descriptor in HEX:077800050402F5 0971F5 680001 E50000

Figure 5-15 SQLDIAGCI Array Descriptor

260 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.2.7 SQLDIAGCN: SQL Diagnostics Connection Array

SQLDIAGCN Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’04’ X’02’ X’F6’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
9 X’71’ X’F6’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDIAGCN Data
__

1 byte 1 byte 1 byte__
Descriptor Name Ref Type Row LID Elem_Taken Rep_Factor__
SQLNUMROW X’02’ X’68’ 0 (all) 1__
SQLCNROW X’02’ X’E6’ 0 (all) 0 (all)__��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

Descriptor in HEX:077800050402F6 0971F6 680001 E60000

Figure 5-16 SQLDIAGCN Array Descriptor

Part 1: Database Access Protocol 261

Early Descriptors Data Definition and Exchange

5.6.3 Early Row Descriptors

The next figures describe DRDA-defined Early Row Descriptors. These define one dimensional
rows or vectors of information that the database management system understands.

5.6.3.1 SQLRSROW: SQL Row Description of One Result Set Row

SQLRSROW Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’03’ X’02’ X’6F’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
6 X’71’ X’6F’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLRSROW Data

byte 10 byte 11 byte 12___
Descriptor Name Ref Type Group LID Elem_Taken Rep_Factor___

SQLRSGRP X’02’ X’5F’ 0 (all) 1___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:0778000503026F 06716F 5F0001

Figure 5-17 SQLRSROW Row Descriptor

262 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.3.2 SQLVRBROW: SQL Statement Variable Row Description

SQLVRBROW Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’03’ X’02’ X’6E’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
6 X’71’ X’6E’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLVRBROW Data

byte 10 byte 11 byte 12___
Descriptor Name Ref Type Group LID Elem_Taken Rep_Factor___

SQLVRBGRP X’02’ X’5E’ 0 (all) 1___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:0778000503026E 06716E 5E0001

Figure 5-18 SQLVRBROW Row Descriptor

Part 1: Database Access Protocol 263

Early Descriptors Data Definition and Exchange

5.6.3.3 SQLSTT: SQL Statement Row Description

SQLSTT Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’03’ X’02’ X’6C’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
6 X’71’ X’6C’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLSTT Data

byte 10 byte 11 byte 12___
Descriptor Name Ref Type Group LID Elem_Taken Rep_Factor___

SQLSTTGRP X’02’ X’5C’ 0 (all) 1___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:0778000503026C 06716C 5C0001

Figure 5-19 SQLSTT Row Descriptor (One SQL Statement or SQL Attributes)

This row descriptor consists of a single long variable character string that contains a full SQL
statement or the SQL attributes. The statement begins with the first character of the SQL verb
(such as U for UPDATE) and ends with the last non-blank character before any terminating
punctuation. The attributes should have leading and trailing blanks removed.

The binder must specially treat SQL statements that contain references to program variables.
Detailed rules are listed in Section 7.11 (on page 416).

Valid statements are defined in ISO/IEC 9075: 1992, Database Language SQL (hereafter abbreviated
to ISO SQL). Product-specific non-ISO SQL statements are described in the individual product
references.

264 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.3.4 SQLOBJNAM: SQL Object Name Row Description

SQLOBJNAM Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’03’ X’02’ X’6A’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
6 X’71’ X’6A’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLOBJNAM Data

byte 10 byte 11 byte 12___
Descriptor Name Ref Type Group LID Elem_Taken Rep_Factor___

SQLOBJGRP X’02’ X’5A’ 0 (all) 1___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:0778000503026A 06716A 5A0001

Figure 5-20 SQLOBJNAM Row Descriptor

Part 1: Database Access Protocol 265

Early Descriptors Data Definition and Exchange

5.6.3.5 SQLNUMROW: SQL Number of Elements Row Description

SQLNUMROW Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’03’ X’02’ X’68’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
6 X’71’ X’68’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLNUMROW Data

byte 10 byte 11 byte 12___
Descriptor Name Ref Type Group LID Elem_Taken Rep_Factor___
SQLNUMGRP X’02’ X’58’ 0 (all) 1___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:07780005030268 067168 580001

Figure 5-21 SQLNUMROW Row Descriptor

266 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.3.6 SQLCARD: SQL Communication Area Row Description

SQLCARD Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’03’ X’02’ X’64’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
6 X’71’ X’64’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLCARD Data

byte 10 byte 11 byte 12___
Descriptor Name Ref Type Group LID Elem_Taken Rep_Factor___

SQLCAGRP X’02’ X’54’ 0 (all) 1___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:07780005030264 067164 540001

Figure 5-22 SQLCARD Row Descriptor

Part 1: Database Access Protocol 267

Early Descriptors Data Definition and Exchange

5.6.3.7 SQLDAROW: SQL Descriptor Area Row Description

SQLDAROW Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’03’ X’02’ X’60’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
6 X’71’ X’60’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDAROW Data

byte 10 byte 11 byte 12___
Descriptor Name Ref Type Group LID Elem_Taken Rep_Factor___

SQLDAGRP X’02’ X’50’ 0 (all) 1___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:07780005030260 067160 500001

Figure 5-23 SQLDAROW Row Descriptor

268 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.3.8 SQLDHROW: SQL Descriptor Header Row Description

SQLDHROW Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’03’ X’02’ X’E0’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
6 X’71’ X’E0’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDHROW Data

byte 10 byte 11 byte 12___
Descriptor Name Ref Type Group LID Elem_Taken Rep_Factor___

SQLDHGRP X’02’ X’D0’ 0 (all) 1___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:077800050302E0 0671E0 D00001

Figure 5-24 SQLDHROW Row Descriptor

Part 1: Database Access Protocol 269

Early Descriptors Data Definition and Exchange

5.6.3.9 SQLCNROW: SQL Diagnostics Connection Row

SQLCNROW Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’03’ X’02’ X’E6’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
9 X’71’ X’E6’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLCNROW Data

byte 10 byte 11 byte 12___
Descriptor Name Ref Type Group LID Elem_Taken Rep_Factor___

SQLCNGRP X’02’ X’D6’ 0 (all) 1___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:077800050302E6 0671E6 D60001

Figure 5-25 SQLCNROW Row Descriptor

270 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.3.10 SQLDCROW: SQL Diagnostics Condition Row

SQLDCROW Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’03’ X’02’ X’E5’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
6 X’71’ X’E5’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDCROW Data

byte 10 byte 11 byte 12___
Descriptor Name Ref Type Group LID Elem_Taken Rep_Factor___

SQLDCGRP X’02’ X’D5’ 0 (all) 1___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:077800050302E5 0671E5 D50001

Figure 5-26 SQLDCROW Row Descriptor

Part 1: Database Access Protocol 271

Early Descriptors Data Definition and Exchange

5.6.3.11 SQLTOKROW: SQL Diagnostics Token Row

SQLTOKROW Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’03’ X’02’ X’E7’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
6 X’71’ X’E7’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLTOKROW Data

byte 10 byte 11 byte 12___
Descriptor Name Ref Type Group LID Elem_Taken Rep_Factor___
SQLTOKGRP X’02’ X’D7’ 0 (all) 1___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:077800050302E7 0671E7 D70001

Figure 5-27 SQLTOKROW Row Descriptor

272 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.4 Early Group Descriptors

Figure 5-28 to Figure 5-36 (on page 284) describe DRDA-defined Early Group Descriptors. These
define database management system understood groups of fields. As with the late descriptors,
length attributes, sequence, and collection nullability are specified.

5.6.4.1 SQLRSGRP: SQL Result Set Group Description

SQLRSGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’02’ X’02’ X’5F’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
15 X’75’ X’5F’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLRSGRP Data

1 byte 1 byte___
Descriptor Label DRDA Type Ref Type Env LID Length Override___

SQLRSLOCATOR RSL X’02’ X’14’ 4___
SQLRSNAME_m VCM X’02’ X’3E’ 255___
SQLRSNAME_s VCS X’02’ X’32’ 255___

SQLRSNUMROWS I4 X’02’ X’02’ 4___��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Descriptor in HEX:0778000502025F 0F755F 140004 3E00FF 3200FF 020004

Figure 5-28 SQLRSGRP Group Descriptor

Table 5-4 (on page 274) describes the usage of each of the fields of the SQL Result Set group.

Part 1: Database Access Protocol 273

Early Descriptors Data Definition and Exchange

Table 5-4 SQL Result Set Field Usage
__

Field Name Usage__
Result set locator value. The value of this field should be unique
within the final SQL Result array.

SQLRSLOCATOR

__
SQLRSNAME_m
SQLRSNAME_s

Name of the result set as provided by the stored procedure that
generated the result set. This string can have any syntax that the
application requester can handle. The value of this field should
be unique within the final SQL Result array. SQLRSNAME_m
and SQLRSNAME_s are mutually-exclusive; that is, only one can
be specified with a non-zero length. If both are non-zero, return
DTAMCHRM.__
The number of rows (or estimated number of rows) in the result
set.

SQLRSNUMROWS

__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Note: All fields above are required.

274 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.4.2 SQLVRBGRP: SQL Statement Variable Group Description

SQLVRBGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’02’ X’02’ X’5E’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9___________________________________

Data Length Data Type Identity___________________________________
33 GDA X’75’ X’5E’___________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLVRBGRP Data
__

1 byte 2 bytes__
Descriptor Label DRDA Type Ref Type Env LID Length Override__

SQLPRECISION I2 X’02’ X’04’ 2__
SQLSCALE I2 X’02’ X’04’ 2__

SQLLENGTH I8 X’02’ X’16’ 8__
SQLTYPE I2 X’02’ X’04’ 2__

SQLCCSID FB X’02’ X’26’ 2__
SQLNAME_m VCM X’02’ X’3E’ 255__
SQLNAME_s VCS X’02’ X’32’ 255__

SQLDIAGNAME_m VCM X’02’ X’3E’ 255__
SQLDIAGNAME_s VCS X’02’ X’32’ 255__

SQLUDTGRP N-GDA X’02’ X’5B’ 0__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Descriptor in HEX:0778000502025E 21755E 040002 040002 160008 040002
260002 3E00FF 3200FF 3E00FF 3200FF
5B0000

The abbreviations _m and _s stand for mixed and single, respectively.

Figure 5-29 SQLVRBGRP Group Descriptor

Table 5-5 (on page 276) describes the usage of each of the fields of the DRDA SQL Data Area.

Part 1: Database Access Protocol 275

Early Descriptors Data Definition and Exchange

Table 5-5 DRDA SQL Data Area Field Usage (DDM Level 6 and Above)
__

Field Name Usage__
Precision of a fixed decimal field—0 for other types.SQLPRECISION__
Scale of a fixed decimal or zoned decimal field—0 for other
types.

SQLSCALE

__
Length of the field—not counting the length field.SQLLENGTH__

SQLTYPE SQL Data Type associated with this field.__
SQLCCSID 0 or the CCSID for this column.__
SQLNAME_m
SQLNAME_s

Name of the program variable as it appeared in the original SQL
statement. This string can have any syntax that the application
requester can handle. The same name can be used several times
when structure expansions are performed. SQLNAME_m and
SQLNAME_s are mutually-exclusive; that is, only one can be
specified with a non-zero length. If both are non-zero, return
DTAMCHRM.__

SQLDIAGNAME_m
SQLDIAGNAME_s

Some fully qualified name of a program variable. This string can
have any syntax that the application requester can handle. When
the values in this field are identical for different rows in the final
SQL Statement Variables Array, they refer to the same program
variable instance. A length of zero specifies the default. The
default value for this field is the value of the related SQLNAME.
SQLDIAGNAME_m and SQLDIAGNAME_s are mutually-
exclusive; that is, only one can be specified with a non-zero
length. If both are non-zero, return DTAMCHRM.__��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Note: All fields above are required.

276 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.4.3 SQLSTTGRP: SQL Statement or Attributes Group Description

SQLSTTGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’02’ X’02’ X’5C’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9___________________________________

Data Length Data Type Identity___________________________________
9 GDA X’75’ X’5C’___________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLSTTGRP Data
__

1 byte 2 bytes__
Descriptor Label DRDA Type Ref Type Env LID Length Override__

SQLSTATEMENT_m NOCM X’02’ X’CF’ 4__
SQLSTATEMENT_s NOCS X’02’ X’CB’ 4__��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

Descriptor in HEX:0778000502025C 09755C CF0004 CB0004

Figure 5-30 SQLSTTGRP Group Descriptor (One SQL Statement or Attributes)

This group defines a pair of variable character strings, one of which contains an SQL statement
or SQL attributes. SQLSTATEMENT_m and SQLSTATEMENT_s are mutually-exclusive; that is,
only one non-zero length value can be specified for the duplicated field SQLSTATEMENT. If
both are non-zero, return DTAMCHRM.

Part 1: Database Access Protocol 277

Early Descriptors Data Definition and Exchange

5.6.4.4 SQLOBJGRP: SQL Object Name Group Description

SQLOBJGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’02’ X’02’ X’5A’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9___________________________________

Data Length Data Type Identity___________________________________
9 GDA X’75’ X’5A’___________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLOBJGRP Data
__

1 byte 2 bytes__
Descriptor Label DRDA Type Ref Type Env LID Length Override__

SQLOBJECTNAME_m VCM X’02’ X’3E’ 255__
SQLOBJECTNAME_s VCS X’02’ X’32’ 255__��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

Descriptor in HEX:0778000502025A 09755A 3E00FF 3200FF

Figure 5-31 SQLOBJGRP Group Descriptor

This group defines a pair of variable character strings, one of which contains the name of a
collection, package, index, table, or view. The name can be a one, two, or three-part relational
database object name. SQLOBJECTNAME_m and SQLOBJECTNAME_s are mutually-exclusive;
that is, only one non-zero length value can be specified for the duplicated field. If both are non-
zero, return DTAMCHRM.

278 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.4.5 SQLNUMGRP: SQL Number of Elements Group Description

SQLNUMGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’02’ X’02’ X’58’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9___________________________________

Data Length Data Type Identity___________________________________
6 GDA X’75’ X’58’___________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLNUMGRP Data

1 byte 2 bytes___
Descriptor Label DRDA Type Ref Type Env LID Length Override___

SQLNUM I2 X’02’ X’04’ 2___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:07780005020258 067558 040002

Figure 5-32 SQLNUMGRP Group Descriptor

This group defines the number of entries in some DRDA array objects. It is used to allocate
internal storage for the object before the entire object is received.

Part 1: Database Access Protocol 279

Early Descriptors Data Definition and Exchange

5.6.4.6 SQLCAGRP: SQL Communication Area Group Description

SQLCAGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’02’ X’02’ X’54’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_____________________________________

Data Length Data Type Identity_____________________________________
18 N-GDA X’76’ X’54’_____________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLCAGRP Data

1 byte 2 bytes___
Descriptor Label DRDA Type Ref Type Env LID Length Override___

SQLCODE I4 X’02’ X’02’ 4___
SQLSTATE FCS X’02’ X’30’ 5___

SQLERRPROC FCS X’02’ X’30’ 8___
SQLCAXGRP N-GDA X’02’ X’52’ 0___
SQLDIAGGRP N-GDA X’02’ X’D1’ 0___�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Descriptor in HEX:07780005020254 127654 020004 300005 300008 520000 D10000

Figure 5-33 SQLCAGRP Group Descriptor

SQL and individual implementations define the semantics of the values of SQLCODE and
SQLSTATE.

The values default to 0 or the normal or non-error condition. Therefore, a null SQLCA indicates
everything is fine: SQLSTATE=’00000’. See ISO SQL and specific product references for details.
See also Chapter 8 (on page 459).

280 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.4.7 SQLCAXGRP: SQL Communication Area Exceptions Group Description

SQLCAXGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’02’ X’02’ X’52’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_____________________________________

Data Length Data Type Identity_____________________________________
63 N-GDA X’76’ X’52’_____________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLCAXGRP Data

1 byte 2 bytes___
Descriptor Label DRDA Type Ref Type Env LID Length Override___

SQLERRD1 I4 X’02’ X’02’ 4___
SQLERRD2 I4 X’02’ X’02’ 4___
SQLERRD3 I4 X’02’ X’02’ 4___
SQLERRD4 I4 X’02’ X’02’ 4___
SQLERRD5 I4 X’02’ X’02’ 4___
SQLERRD6 I4 X’02’ X’02’ 4___

SQLWARN0 FCS X’02’ X’30’ 1___
SQLWARN1 FCS X’02’ X’30’ 1___
SQLWARN2 FCS X’02’ X’30’ 1___
SQLWARN3 FCS X’02’ X’30’ 1___
SQLWARN4 FCS X’02’ X’30’ 1___
SQLWARN5 FCS X’02’ X’30’ 1___
SQLWARN6 FCS X’02’ X’30’ 1___
SQLWARN7 FCS X’02’ X’30’ 1___
SQLWARN8 FCS X’02’ X’30’ 1___
SQLWARN9 FCS X’02’ X’30’ 1___
SQLWARNA FCS X’02’ X’30’ 1___

SQLRDBNAME VCS X’02’ X’32’ 255___
SQLERRMSG_m VCM X’02’ X’3E’ 70___
SQLERRMSG_s VCS X’02’ X’32’ 70___�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Descriptor in HEX:07780005020252 3F7652 020004 020004 020004 020004
020004 020004 300001 300001 300001
300001 300001 300001 300001 300001
300001 300001 300001 3200FF 3E0046
320046

Figure 5-34 SQLCAXGRP Group Descriptor

Part 1: Database Access Protocol 281

Early Descriptors Data Definition and Exchange

SQL and individual implementations define the semantics of the values in each of the fields in
Figure 5-34 (on page 281). All fields default to normal or non-error condition. A null SQLCA
indicates everything is fine. See ISO SQL and product references for details.

SQLERRMSG_m and SQLERRMSG_s are mutually-exclusive; that is, only one non-zero length
can be specified for the field SQLERRMSG. If both are non-zero, then process as if DTAMCHRM
had been received.

282 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.4.8 SQLDIAGGRP: SQL Diagnostics Group Description

SQLDIAGGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’02’ X’05’ X’D1’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_____________________________________

Data Length Data Type Identity_____________________________________
12 N-GDA X’76’ X’D1’_____________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDIAGGRP Data

1 byte 2 bytes___
Descriptor Label DRDA Type Ref Type Env LID Length Override___
SQLDIAGSTT N-GDA X’52’ X’D3’ 0___
SQLDIAGCI N-RLO X’72’ X’F5’ 0___

SQLDIAGCN N-RLO X’72’ X’F6’ 0___��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

Descriptor in HEX:077800050202D1 0C76D1 D30000 F50000 F60000

Figure 5-35 SQLDIAGGRP Group Descriptor

Part 1: Database Access Protocol 283

Early Descriptors Data Definition and Exchange

5.6.4.9 SQLDAGRP: SQL Descriptor Area Group Description

SQLDAGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’02’ X’02’ X’50’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9___________________________________

Data Length Data Type Identity___________________________________
21 GDA X’75’ X’50’___________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDAGRP Data
__

1 byte 2 bytes__
Descriptor Label DRDA Type Ref Type Env LID Length Override__

SQLPRECISION I2 X’02’ X’04’ 2__
SQLSCALE I2 X’02’ X’04’ 2__

SQLLENGTH I8 X’02’ X’16’ 8__
SQLTYPE I2 X’02’ X’04’ 2__

SQLCCSID FB X’02’ X’26’ 2__
SQLDOPTGRP N-GDA X’02’ X’D2’ 0__��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

Descriptor in HEX:07780005020250 157550 040002 040002 160008 040002
260002 D20000

Figure 5-36 SQLDAGRP Group Descriptor

A requester can specify which SQLDAGRP group fields are to be returned by the server. The
fields to be returned are identified by the DDM TYPSQLDA instance variable or the DDM
RSLSETFLG on the SQL command. A light, standard, or extended SQLDAGRP can be requested.

• A light descriptor is when the SQLDOPTGRP returned is null.

• A standard descriptor is when the SQLDOPTGRP is returned without the SQLDXGRP. The
SQLUDTGRP group is returned if the variable or column described is a user-defined type.
The SQLDXGRP group is not returned and must be null.

• An extended descriptor is when the SQLDOPTGRP is returned with the SQLDXGRP group.
The SQLUDTGRP group is returned if the variable or column being described is a user-
defined data type. The SQLDXGRP group must be returned and should not be null.

Table 5-6 (on page 285) describes the usage of each of the fields of the DRDA SQL Data Area.

284 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

Table 5-6 DRDA SQL Data Area Field Usage (DDM Level 6 and Above)
__

Field Name Usage__
Precision of a fixed decimal field—0 for other types.SQLPRECISION__
Scale of a fixed decimal or zoned decimal field—0 for other
types.

SQLSCALE

__
Length of the field not counting the length field.SQLLENGTH__

SQLTYPE SQL Data Type associated with this field.__
SQLCCSID 0 or the CCSID for this column.__
SQLNAME_m
SQLNAME_s

Name of the column as it would appear in an SQL statement.
This field, at times, contains host variable names or the
derivation expression for derived columns (Col1+Col2).
SQLNAME_m and SQLNAME_s are mutually-exclusive; that is,
only one can be specified with a non-zero length. If both are
non-zero, then process as if DTAMCHRM had been received.__

SQLLABEL_m
SQLLABEL_s

Descriptive label associated with this column. SQLLABEL_m
and SQLLABEL_s are mutually-exclusive; that is, only one can
be specified with a non-zero length. If both are non-zero, then
process as if DTAMCHRM had been received.__

SQLCOMMENTS_m
SQLCOMMENTS_s

Comments or remarks (long description) associated with this
column. SQLCOMMENTS_m and SQLCOMMENTS_s are
mutually-exclusive; that is, only one can be specified with a
non-zero length. If both are non-zero, then process as if
DTAMCHRM had been received.__��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

DRDA requires each field of the SQL Data Area mentioned in Table 5-6. If a value is available
through DESCRIBE at the machine that is constructing this SQL Data Area, the relational
database manager at the application server must provide it and send it to the other end. When
SQLNAME, SQLLABEL, or SQLCOMMENTS is unavailable, two zero-length strings (four bytes
containing X’00000000’) are returned for each.

Part 1: Database Access Protocol 285

Early Descriptors Data Definition and Exchange

5.6.4.10 SQLUDTGRP: SQL Descriptor User-Defined Type Group Description

SQLUDTGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’02’ X’02’ X’51’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_____________________________________

Data Length Data Type Identity_____________________________________
21 N-GDA X’76’ X’51’_____________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLUDTGRP Data

1 byte 2 bytes___
Descriptor Label DRDA Type Ref Type Env LID Length Override___

SQLUDTXTYPE I4 X’02’ X’02’ 4___
SQLUDTRDB VCS X’02’ X’32’ 255___

SQLUDTSCHEMA_m VCM X’02’ X’3E’ 255___
SQLUDTSCHEMA_s VCS X’02’ X’32’ 255___
SQLUDTNAME_m VCM X’02’ X’3E’ 255___
SQLUDTNAME_s VCS X’02’ X’32’ 255___��

�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

Descriptor in HEX:07780005020251 157651 020004 3200FF 3E00FF 3200FF
3E00FF 3200FF

Figure 5-37 SQLUDTGRP Group Descriptor

This group defines pairs of variable-length character strings. SQLUDTNAME_m and
SQLUDTNAME_s are mutually-exclusive; SQLUDTSCHEMA_m and SQLUDTSCHEMA_s are
mutually-exclusive; that is, only one with a non-zero length can be specified for the duplicated
field. If both fields have a non-zero length, return an FD:OCA data mismatch reply message.
(Refer to the DTAMCHRM term in the DDM Reference.) If both the SQLUDTSCHEMA fields
have a zero length, the value for the field is defaulted to the value in the SQLDHSCHEMA field
in the SQL Descriptor Header Group (SQLDHGRP) if present. If the SQLUDTRDB has a zero
length, the value for the field is the value in the SQLRDBNAM field in the SQL Descriptor
Header Group (SQLDHGRP) if present; otherwise, the default RDB name is the RDBNAM used
to access the RDB.

286 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

__
Field Name Usage__

This field contains the user-defined type code for the field. The
semantics of the type code are as follows: 0 means not a UDT; 1
means distinct type; 2 means structured type; and 3 means
reference type. All other values are invalid or undefined.

SQLUDTXTYPE

__
This field contains the default RDB name to which this SQL
user-defined data type is defined. This is the high-level qualifier
for this user-defined data type. The RDB name uniquely
identifies the catalog associated with the SQL user-defined data
type. If the SQLUDTRDB has a zero length, the SQLDRDBNAM
identifies the value for this field if the SQLDHDRGRP is present;
otherwise, the default RDB is the RDBNAM used to access the
RDB.

SQLUDTRDB

__
This field contains the schema name to which this SQL user-
defined data type is defined. This is the second-level qualifier for
this user-defined data type. The SQLUDTSCHEMA_m or
SQLUDTSCHEMA_s are mutually-exclusive. If both
SQLUDTSCHEMA_m or SQLUDTSCHEMA_s have a zero
length, the SQLDSCHEMA identifies the value for this field if the
SQLDHDRGRP is present.

SQLUDTSCHEMA

__
This field contains the name of the user-defined data type. This is
the unqualified name of this user-defined data type.

SQLUDTNAME

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 287

Early Descriptors Data Definition and Exchange

5.6.4.11 SQLDHGRP: SQL Descriptor Header Group Description

SQLDHGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’02’ X’02’ X’D0’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_____________________________________

Data Length Data Type Identity_____________________________________
30 N-GDA X’76’ X’D0’_____________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDHGRP Data

1 byte 2 bytes___
Descriptor Label DRDA Type Ref Type Env LID Length Override___

SQLDHOLD I2 X’02’ X’04’ 2___
SQLDRETURN I2 X’02’ X’04’ 2___
SQLDSCROLL I2 X’02’ X’04’ 2___

SQLDSENSITIVE I2 X’02’ X’04’ 2___
SQLDFCODE I2 X’02’ X’04’ 2___

SQLDKEYTYPE I2 X’02’ X’04’ 2___
SQLDRDBNAM VCS X’02’ X’32’ 255___

SQLDSCHEMA_m VCM X’02’ X’3E’ 255___
SQLDSCHEMA_s VCS X’02’ X’32’ 255___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Descriptor in HEX:077800050202D0 1E76D0 040002 040002 040002 040002
040002 040002 3200FF 3E00FF 3200FF

Figure 5-38 SQLDHGRP Group Descriptor

The SQL Descriptor Header provides statement-level descriptive information. A requester
specifies when a non-null SQL Descriptor Header is to be returned in the SQLDARD reply data.
The DDM TYPSQLDA instance variable on the SQL command specifies when this group is
returned. If the requester requests an extended descriptor, the SQLDHGRP must be returned.
The group must not be null; otherwise, the group must be specified as null. If the server does not
return the correct level of SQLDARD, an FD:OCA data mismatch should be generated. (Refer to
the DTAMCHRM term in the DDM Reference.)

288 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

__
Field Name Usage__

This field can have a value of 0 or 1. A value of 1 indicates this
statement is related to a cursor which is defined using the WITH
HOLD clause. Otherwise, the value is 0.

SQLDHOLD

__
This field can have a value of 0, 1, or 2. A value of 1 indicates this
statement is related to a cursor which is defined using the WITH
RETURN CLIENT clause. A value of 2 indicates that the cursor is
defined using the WITH RETURN CALLER clause. Otherwise,
the value is 0.

SQLDRETURN

__
This field can have a value of 0 or 1. A value of 1 indicates this
statement is related to a cursor which is defined using the
SCROLL clause. Otherwise, the value is 0.

SQLDSCROLL

__
This field can have the following values:

0 The statement is not related to a cursor and the
SQLDSCROLL field has a value of 0.

1 The statement is related to a cursor which is defined as
SENSITIVE DYNAMIC.

2 The statement is related to a cursor which is defined as
SENSITIVE STATIC.

3 The statement is related to a cursor which is defined as
INSENSITIVE.

SQLDSENSITIVE

__
This field represents the type of SQL statement. Possible function
code values are defined in ISO SQL as SQL statement codes.

SQLDFCODE

__
The type of key included in the select list for this statement.
Possible values are:

0 Key type when the descriptor is not describing the columns
of a query; for example, a describe input.

1 The select list includes all the columns of the primary key of
the base table referenced by the query.

2 The table referenced by the query does not have a primary
key but the select list includes a set of columns that are
defined as the preferred candidate key.

SQLDKEYTYPE

__
This field contains the default RDB name to which this SQL
statement belongs. This is the high-level qualifier for this SQL
statement. The RDB name uniquely identifies the catalog
associated with the statement. If the SQLDRDBNAM has a zero
length, the RDB name is the RDBNAM used to access the RDB.

SQLDRDBNAM

__
This field contains the default schema name to which this SQL
statement belongs. This is the second-level qualifier for this
statement.

SQLDSCHEMA

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 289

Early Descriptors Data Definition and Exchange

5.6.4.12 SQLDOPTGRP: SQL Descriptor Optional Group Description

SQLDOPTGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’02’ X’02’ X’D2’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_____________________________________

Data Length Data Type Identity_____________________________________
30 N-GDA X’76’ X’D2’_____________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDOPTGRP Data
__

1 byte 2 bytes__
Descriptor Label DRDA Type Ref Type Env LID Length Override__

SQLUNNAMED I2 X’02’ X’04’ 2__
SQLNAME_m VCM X’02’ X’3E’ 255__
SQLNAME_s VCS X’02’ X’32’ 255__
SQLLABEL_m VCM X’02’ X’3E’ 255__
SQLLABEL_s VCS X’02’ X’32’ 255__

SQLCOMMENTS_m VCM X’02’ X’3E’ 255__
SQLCOMMENTS_s VCS X’02’ X’32’ 255__

SQLUDTGRP N-GDA X’02’ X’5B’ 0__
SQLDXGRP N-GDA X’02’ X’D4’ 0__��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Descriptor in HEX:077800050202D2 1E76D2 040002 3E00FF 3200FF 3E00FF
3200FF 3E00FF 3200FF 5B0000 D40000

Figure 5-39 SQLDOPTGRP Group Descriptor

This group defines pairs of variable-length character strings. SQLNAME_m and SQLNAME_s
are mutually-exclusive; SQLLABEL_m and SQLLABEL_s are mutually-exclusive;
SQLCOMMENTS_m and SQLCOMMENTS_s are mutually-exclusive; that is, only one non-zero
value can be specified for the duplicated field. If both mutually-exclusive fields have a non-zero
length, return an FD:OCA data mismatch reply message. (Refer to the DTAMCHRM term in the
DDM Reference.)

290 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

__
Field Name Usage__

Name of the column or variable as it appeared in the original
SQL statement. This string can have any syntax that the
requester can handle. The name can be used several times when
structure expansions are performed. SQLNAME_m and
SQLNAME_s are mutually-exclusive; that is, only one can be
specified with a non-zero length. If both are non-zero, return
DTAMCHRM.

SQLNAME

__
Descriptive label associated with this column or variable.
SQLLABEL_m and SQLLABEL_s are mutually-exclusive; that is,
only one can be specified with a non-zero length. If both are
non-zero, return DTAMCHRM. SQLCOMMENTS_m and
SQLCOMMENTS_s are mutually-exclusive; that is, only one can
be specified with a non-zero length. If both are non-zero, return
DTAMCHRM.

SQLLABEL

__
Comments are remarks (long description) associated with this
column or variable.

SQLCOMMENTS

__
This field can have a value of 0 or 1. This field is returned if the
variable describes a column. A value of 1 indicates the column
name is generated by the RDB. Otherwise, the value is 0. The
unnamed attribute refers to the name of the column or variable
and whether it is the derived name of the column from the select
list, or whether the name is generated by the RDB.

SQLUNNAMED

__
This group is returned as a non-null group only if the column or
variable is a user-defined type.

SQLUDTGRP

__
This group is returned as a non-null group only if extended
describe is requested as specified by the TYPSQLDA parameter
on he command.

SQLDXGRP

__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 291

Early Descriptors Data Definition and Exchange

5.6.4.13 SQLDXGRP: SQL Descriptor Extended Group Description

SQLDXGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’02’ X’02’ X’D4’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_____________________________________

Data Length Data Type Identity_____________________________________
42 N-GDA X’76’ X’D4’_____________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDXGRP Data

1 byte 2 bytes___
Descriptor Label DRDA Type Ref Type Env LID Length Override___
SQLXKEYMEM I2 X’02’ X’04’ 2___

SQLXUPDATEABLE I2 X’02’ X’04’ 2___
SQLXGENERATED I2 X’02’ X’04’ 2___
SQLXPARMMODE I2 X’02’ X’04’ 2___

SQLXRDBNAM VCS X’02’ X’32’ 255___
SQLXCORNAME_m VCM X’02’ X’3E’ 255___
SQLXCORNAME_s VCS X’02’ X’32’ 255___

SQLXBASENAME_m VCM X’02’ X’3E’ 255___
SQLXBASENAME_s VCS X’02’ X’32’ 255___
SQLXSCHEMA_m VCM X’02’ X’3E’ 255___
SQLXSCHEMA_s VCS X’02’ X’32’ 255___
SQLXNAME_m VCM X’02’ X’3E’ 255___
SQLXNAME_s VCS X’02’ X’32’ 255___��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Descriptor in HEX:077800050202D4 2A76D4 040002 040002 040002 040002
3200FF 3200FF 3200FF 3200FF 3200FF
3E00FF 3200FF 3E00FF 3200FF

Figure 5-40 SQLDXGRP Group Descriptor

This group defines pairs of variable-length character strings. The *_m and *_s strings are
mutually-exclusive; that is, only one non-zero value can be specified for the duplicated field. If
both mutually-exclusive fields have a non-zero length, return an FD:OCA data mismatch reply
message. (Refer to the DTAMCHRM term in the DDM Reference.) If the SQLXRDBNAM is null,
the value for the field is defaulted based on the value in the SQLDRDBNAM field in the SQL
Descriptor Header Group (SQLDHGRP).

292 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

__
Field Name Usage__

This field can have a value of 0 or 1. A value of 1 indicates that
this is a column that is a member of the primary key. Otherwise,
the value is 0.

SQLXKEYMEM

__
This field can have a value of 0 or 1. A value of 1 indicates that
this is a column that is updatable. Otherwise, the value is 0.

SQLXUPDATEABLE

__
This field can have a value of 0 or 1, 2, or 3. A value of 1 indicates
that the data for this column was generated because of an
expression. A value of 2 indicates that the data for this column
was generated because of an identity. A value of 3 indicates the
data for the column was generated when the row was inserted
into the table as a ROWID value. Otherwise, the value is 0.

SQLXGENERATED

__
This field can have a value of 1, 2, or 4 if the field represents a
parameter for a CALL statement:

0 The field is not for use with a CALL statement.

1 The field describes an input-only parameter.

2 The field describes an input and output parameter.

3 The field describes an output-only parameter.

SQLXPARMMODE

__
This field contains the table correlation name related to the
column. This field is only specified when there is a correlation
name specified in the SQL statement; otherwise, the length of
this field is zero.

SQLXCORNAME

__
This field contains the name of the underlying table or view
referenced by the SQL statement if this column is related to a
result set. If this field is a parameter of a CALL statement, then
this field contains the procedure name. If the column is an
expression or the result of a join, the length of this field is zero.

SQLXBASENAME

__
This field contains the default RDB name to which this field
belongs. This is the high-level qualifier for this field. The RDB
name uniquely identifies the catalog associated with the
statement. If the SQLXRDBNAM has a zero length, the
SQLDRDBNAM identifies the value for this field if the
SQLDHGRP is not null. If the SQLDRDBNAM has a zero length
or the SQLDHGRP is null, the RDB name is the RDBNAM used
to access the RDB.

SQLXRDBNAM

__
This field contains the schema name to which this data object
belongs. The SQLXSCHEMA_m or SQLXSCHEMA_s are
mutually-exclusive. If the mixed and SBCS character strings have
a zero length, the SQLDSCHEMA identifies the default value for
this field if the SQLDHGRP is not null.

SQLXSCHEMA

__
This field contains the column or parameter name. This is the
unqualified name for this field.

SQLXNAME

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 293

Early Descriptors Data Definition and Exchange

5.6.4.14 SQLNUMEXT: SQL Extent Description for Variable Arrays

SQLNUMEXT Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’03’ X’02’ X’76’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
6 X’71’ X’76’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLNUMEXT Data
__

1 byte 1 byte 1 byte__
Descriptor Name Ref Type Row LID Elem_Taken Rep_Factor__
SQLEXTROW X’01’ X’66’ 0 (all) 0 (all)__��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:07780005030276 067176 660000

Figure 5-41 SQLNUMEXT Row Descriptor

294 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.4.15 SQLEXTROW: SQL Array Row Description for a Variable Array

SQLEXTROW Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’03’ X’02’ X’66’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
6 X’71’ X’66’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLEXTROW Data

1 byte 1 byte 1 byte___
Descriptor Name Ref Type Group LID Elem_Taken Rep_Factor___

SQLEXTGRP X’01’ X’71’ 0 (all) 1___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:07780005030266 067166 0001

Figure 5-42 SQLEXTROW Row Descriptor

Part 1: Database Access Protocol 295

Early Descriptors Data Definition and Exchange

5.6.4.16 SQLEXTGRP: SQL Extent Group Description for a Variable Array

SQLEXTGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’03’ X’02’ X’56’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
9 X’75’ X’56’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLEXTGRP Data

1 byte 2 bytes___
Descriptor Label DRDA Type Ref Type Env LID Length Override___
ARRAY_EXT 14 X’02’ X’02’ 4___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Descriptor in HEX:07780005030256 097556 020004 020004

Figure 5-43 SQLEXTGRP Row Descriptor

__
Field Name Usage__

The extent specification for the variable. The extent provides the
number of data elements that are required to be provided for the
variable. It is the dimension of the array of the type described.
Each SDA described in the FDODSC in relative order is required
to contain an extent value.

ARRAY_EXT

__
The offset value is an index to the start of each input variable
array. It is the relative byte count from the start of the FDODTA
data object to the first byte of the first element of the variable
array. The offset value is from the beginning of the FDODTA
length field (LL). Each SDA described in the FDODSC in relative
order is required to contain an offset value.

ARRAY_OFF

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

296 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.4.17 SQLDIAGSTT: SQL Diagnostics Statement Group Description

SQLDIAGSTT Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’02’ X’02’ X’D1’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_____________________________________

Data Length Data Type Identity_____________________________________
51 N-GDA X’76’ X’D3’_____________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDIAGSTT Data
__

1 byte 2 bytes__
Descriptor Label DRDA Type Ref Type Env LID Length Override__
SQLDSFCOD I4 X’02’ X’02’ 4__
SQLDSCOST I4 X’02’ X’02’ 4__
SQLDSLROW I4 X’02’ X’02’ 4__
SQLDSNPM I4 X’02’ X’02’ 4__
SQLDSNRS I4 X’02’ X’02’ 4__
SQLDSRNS I4 X’02’ X’02’ 4__

SQLDSDCOD I4 X’02’ X’02’ 4__
SQLDSROWC I8 X’02’ X’16’ 8__
SQLDSNROW I8 X’02’ X’16’ 8__
SQLDSROWCS I8 X’02’ X’16’ 8__
SQLDSACON FCS X’02’ X’30’ 1__
SQLDSACRH FCS X’02’ X’30’ 1__
SQLDSACRS FCS X’02’ X’30’ 1__
SQLDSACSL FCS X’02’ X’30’ 1__
SQLDSACSE FCS X’02’ X’30’ 1__
SQLDSACTY FCS X’02’ X’30’ 1__
SQLDSCERR FCS X’02’ X’30’ 1__
SQLDSMORE FCS X’02’ X’30’ 1__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Descriptor in HEX:077800050202D3 3376D3 020004 020004 020004 020004
020004 020004 020004 160008 160008
160008 300001 300001 300001 300001
300001 300001 300001 300001

Figure 5-44 SQLDIAGSTT Group Descriptor

Part 1: Database Access Protocol 297

Early Descriptors Data Definition and Exchange

Table 5-7 SQLDIAGSTT Field Descriptions
__

Field Name Usage__�� �� ��

FUNCTION_CODE: Returns an integer that identifies the previous
SQL statement. Possible values are identified in Appendix D (on
page 669). If not known, the value zero is returned.

SQLDSFCOD

__
COST_ESTIMATE: For a PREPARE statement, contains a relative
number estimate of the resources required for every execution. It
does not reflect an estimate of the time required. When preparing a
dynamically defined statement, this value can be used as an indicator
of the relative cost of the prepared statement. The value varies
depending on changes to statistics in the catalog and can vary
between releases of the product. It is an estimated cost for the access
plan chosen by the optimizer. The value is zero if not a PREPARE
statement or if no estimate is available.

SQLDSCOST

__
LAST_ROW: For a multiple-row FETCH statement, contains a value
of SQLSTATE 02000 in the SQLCARD if the last row currently in the
table is in the set of rows that have been fetched. For cursors that are
not sensitive to updates, there would be no need to do a subsequent
FETCH, since the result would be an end of data indication
(SQLSTATE 02000). For cursors that are sensitive to updates, a
subsequent FETCH may return more data if the row had been
inserted before the FETCH was executed. This option is not
applicable for single-row FETCH statements because if it is the last
row that is FETCHED, the FETCH is like any other that returned
data. In a multi-row FETCH case, when the full set of rows requested
was not returned because the set included the last row in the table,
this option indicates that this is what happened and it gives the
application the opportunity to not bother issuing the next FETCH
that, for the INSENSITIVE CURSOR case, will return SQLSTATE
02000. Otherwise, the value zero is returned.

SQLDSLROW

__
NUMBER_PARAMETER_MARKER: For a PREPARE statement,
contains the number of parameter markers in the prepared
statement. Otherwise, the value zero is returned.

SQLDSNPM

__
NUMBER_RESULT_SETS: For a CALL statement, contains the actual
number of result sets returned by the procedure. Otherwise, the
value zero is returned.

SQLDSNRS

__
RETURN_STATUS: Identifies the status value returned from the
stored procedure associated with the previously executed SQL
statement, provided that the statement was a CALL statement
invoking a procedure that returns a status. If the previous statement
is not such a statement, the value returned has no meaning and could
be any integer.

SQLDSRNS

__
DYNAMIC_FUNCTION_CODE: If the previous SQL statement was
an EXECUTE, returns an integer that identifies the prepared
statement that was executed. Possible values are identified in
Appendix D (on page 669). If not known, the value zero is returned.

SQLDSDCOD

__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

298 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

__
Field Name Usage__�� �� ��

ROW_COUNT: Identifies the number of rows associated with the
previous SQL statement that was executed.

1. If the previous statement is a DELETE, INSERT, or UPDATE
statement, this field identifies the number of rows deleted,
inserted, or updated by that statement, excluding rows affected
by either triggers or referential integrity constraints.

2. If the previous statement is a multiple-row FETCH, this field
identifies the number of rows fetched.

3. If the previous statement is a PREPARE statement, this field
identifies the estimated number of result rows in the prepared
statement.

Otherwise, the value zero is returned.

SQLDSROWC

__
NUMBER_ROWS: If the previous SQL statement was an OPEN or a
FETCH which caused the size of the result table to be known, this
field identifies the number of rows in the result table. Otherwise, the
value zero is returned.

SQLDSNROW

__
ROW_COUNT_SECONDARY: Identifies the number of rows
associated with secondary actions from the previous SQL statement
that was executed. Otherwise, the value zero is returned.

SQLDSROWCS

__
SQL_ATTR_CONCURRENCY: For an ALLOCATE or OPEN
statement, indicates the concurrency control option of read-only,
locking, optimistic using timestamps, or optimistic using values.

• R indicates read-only.

• L indicates locking.

• T indicates comparing row versions using timestamps or rowids.

• V indicates comparing values.

• Blank otherwise.

SQLDSACON

__
SQL_ATTR_CURSOR_HOLD: For an ALLOCATE or OPEN
statement, indicates cursor holdability, whether a cursor can be held
open across multiple units of work or not.

• N indicates that this cursor will not remain open across multiple
units of work.

• Y indicates that this cursor will remain open across multiple units
of work.

• Blank otherwise.

SQLDSACRH

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 299

Early Descriptors Data Definition and Exchange

__
Field Name Usage__�� �� ��

SQL_ATTR_CURSOR_ROWSET: For an ALLOCATE or OPEN
statement, indicates rowset accessibility, whether a cursor can be
accessed using rowset positioning or not.

• N indicates that this cursor only supports row positioned
operations.

• Y indicates that this cursor supports rowset positioned
operations.

• Blank otherwise.

SQLDSACRS

__
SQL_ATTR_CURSOR_SCROLLABLE: For an ALLOCATE or OPEN
statement, indicates cursor scrollability, whether a cursor can be
scrolled forward and backward or not.

• N indicates that this cursor is not scrollable.

• Y indicates that this cursor is scrollable.

• Blank otherwise.

SQLDSACSL

__
SQL_ATTR_CURSOR_SENSTIVITY: For an ALLOCATE or OPEN
statement, indicates cursor sensitivity, whether a cursor does or does
not show updates to cursor rows made by other connections.

• A indicates asensitive.

• I indicates insensitive.

• S indicates sensitive.

• Blank otherwise.

SQLDSACSE

__
SQL_ATTR_CURSOR_TYPE: For an ALLOCATE or OPEN
statement, indicates the type of cursor, whether a cursor type is
dynamic or static.

• D indicates a dynamic cursor.

• F indicates a forward-only cursor.

• S indicates a static cursor.

• Blank otherwise.

SQLDSACTY

__
CONVERSION_ERROR:

• 1 indicates there was a conversion error when converting a
character data value for one of the diagnostic fields.

• Blank otherwise.

SQLDSCERR

__
MORE:

• N indicates that all the warnings and errors from the previous
SQL statement were stored in the diagnostic area.

• Y indicates that some of the warnings and errors from the
previous SQL statement were discarded.

SQLDSMORE

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

300 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.4.18 SQLCNGRP: SQL Diagnostics Connection Group Description

SQLCNGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’02’ X’02’ X’D6’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9___________________________________

Data Length Data Type Identity___________________________________
27 GDA X’75’ X’D6’___________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLCNGRP Data

1 byte 2 bytes___
Descriptor Label DRDA Type Ref Type Env LID Length Override___
SQLCNSTATE I4 X’02’ X’02’ 4___

SQLCNSTATUS I4 X’02’ X’02’ 4___
SQLCNATYPE FCS X’02’ X’30’ 1___
SQLCNETYPE FCS X’02’ X’30’ 1___
SQLCNPRDID FCS X’02’ X’30’ 8___

SQLCNRDB VCS X’02’ X’32’ 255___
SQLCNCLASS VCS X’02’ X’32’ 255___

SQLCNAUTHID VCS X’02’ X’32’ 255___��
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�

Descriptor in HEX:077800050202D6 1B75D6 020004 020004 300001 300001
300008 3200FF 3200FF 3200FF

Figure 5-45 SQLCNGRP Group Descriptor

Part 1: Database Access Protocol 301

Early Descriptors Data Definition and Exchange

Table 5-8 SQLCNGRP Field Descriptions
__

Field Name Usage__
CONNECTION_STATE: Contains a value of −1 if the connection
is unconnected; 1 if the connection is connected to an RDB.
Otherwise, the value zero is returned.

SQLCNSTATE

__
CONNECTION_STATUS: Contains a value of 1 if committable
updates can be performed on the connection for this unit of
work; 2 if no committable updates can be performed on the
connection for this unit of work. Otherwise, the value zero is
returned.

SQLCNSTATUS

__
AUTHENTICATION_TYPE: Contains a type value of ’S’ for a
serverr authentication; ’C’ for client authentication; blank for
unspecified authentication.

SQLCNATYPE

__
ENCRYPTION_TYPE: Contains a type value of ’P’ for password
encryption;

SQLCNETYPE

__
PRDID: Contains the registered server product signature. The
form is pppvvrrm, where:

• ppp identifies the product. This value should be registered
with The Open Group.

• vv is a two-digit version identifier such as ’04’.

• rr is a two-digit release identifier such as
’01’. ..

• m is a one-digit modification level such as
’0’...

SQLCNPRDID

__
SQLCNRDB RDBNAM: Contains the RDB name of the server.__

CLASS_NAME: Contains the registered RDB server class name.
Refer to the DDM Reference for the EXCSATRD class name.

SQLCNCLASS

__
AUTHID: Authorization identifier used by connected server.
This may be different than the local user ID because of user ID
translation and authorization exits.

SQLCNAUTHID

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

302 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.4.19 SQLDCGRP: SQL Diagnostics Condition Group Description

SQLDCGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’05’ X’02’ X’D5’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9___________________________________

Data Length Data Type Identity___________________________________
78 GDA X’75’ X’D5’___________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDCGRP Data
__

1 byte 2 bytes__
Descriptor Label DRDA Type Ref Type Env LID Length Override__
SQLDCCODE I4 X’02’ X’02’ 4__
SQLDCSTATE FCS X’02’ X’30’ 5__

SQLDCREASON I4 X’02’ X’02’ 4__
SQLDCLINEN I4 X’02’ X’02’ 4__
SQLDCROWN I8 X’02’ X’16’ 8__

SQLDCER01 I4 X’02’ X’02’ 4__
SQLDCER02 I4 X’02’ X’02’ 4__
SQLDCER03 I4 X’02’ X’02’ 4__
SQLDCER04 I4 X’02’ X’02’ 4__
SQLDCPART I4 X’02’ X’02’ 4__
SQLDCPPOP I4 X’02’ X’02’ 4__

SQLDCMSGID FCS X’02’ X’30’ 10__
SQLDCMDE FCS X’02’ X’30’ 8__

SQLDCPMOD FCS X’02’ X’30’ 5__
SQLDCRDB VCS X’02’ X’32’ 255__

SQLDCTOKS N-RLO X’02’ X’F7’ 0__
SQLDCMSG_m NVCM X’02’ X’3F’ 32,672__
SQLDCMSG_s NVCS X’02’ X’33’ 32,672__

SQLDCCOLN_m NVCM X’02’ X’3F’ 255__
SQLDCCOLN_s NVCS X’02’ X’33’ 255__
SQLDCCURN_m NVCM X’02’ X’3F’ 255__
SQLDCCURN_s NVCS X’02’ X’33’ 255__

SQLDCPNAM_m NVCM X’02’ X X’3F’ 255__
SQLDCPNAM_s NVCS X’02’ X’33’ 255__

SQLDCXGRP N-GDA X’02’ X’D3’ 1__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 303

Early Descriptors Data Definition and Exchange

Descriptor in HEX:077800050202D5 4E75D5 020004 300005 020004 020004
160008 020004 020004 020004 020004
020004 020004 30000A 300008 300005
F70000 3F7FA0 337FA0 3F00FF 3300FF
3F00FF 3300FF 3F00FF 3300FF D30001

Figure 5-46 SQLDCGRP Group Descriptor

304 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

Table 5-9 SQLDCGRP Field Descriptions
__

Field Name Usage�� �� ��__
SQLDCCODE SQLCODE: Returns the SQLCODE for the specified diagnostic.__
SQLDCSTATE SQLSTATE: Returns the SQLSTATE for the specified diagnostic.__

REASON_CODE: Contains the reason code for errors that have a
reason code token in the message text. Otherwise, the value zero
is returned.

SQLDCREASON

__
LINE_NUMBER: Contains the line number where the error was
encountered in an SQL procedure where an error is encountered
parsing the SQL procedure body. Otherwise, the value zero is
returned.

SQLDCLINEN

__
ROW_NUMBER: Returns the number of the row where the
condition was encountered, when such a value is available and
applicable. Otherwise, the value zero is returned.

SQLDCROWN

__
ERROR_CODE1: Contains an internal error code. Otherwise, the
value zero is returned.

SQLDCER01

__
ERROR_CODE2: Contains an internal error code. Otherwise, the
value zero is returned.

SQLDCER02

__
ERROR_CODE3: Contains an internal error code. Otherwise, the
value zero is returned.

SQLDCER03

__
ERROR_CODE4: Contains an internal error code. Otherwise, the
value zero is returned.

SQLDCER04

__
PARTITION_NUMBER: For a partitioned database, contains the
partition number of the partition that encountered the error or
warning. Otherwise, the value zero is returned.

SQLDCPART

__
PARAMETER_ORDINAL_NUMBER: Condition is related to the
ith parameter of the CALL, the value of i is returned. Otherwise,
zero is returned.

SQLDCPPOP

__
MESSAGE_ID: Server-specific message identifier that
corresponds to the message text if provided. Otherwise, blanks
are returned.

SQLDCMSGID

__
MODULE_DETECTING_ERROR: Identifier indicating which
module detected the error. Otherwise, blanks are returned.

SQLDCMDE

__
PARAMETER_MODE: Related to the ith parameter of the CALL,
the parameter mode (IIN, OUT, or INOUT) of the ith parameter
is returned. Otherwise, blanks are returned.

SQLDCPMOD

__
SQLDCRDB RDBNAM: RDB name of the server that generated the condition.__
SQLDCTOKS MESSAGE_TOKENS: Message token array.__

MESSAGE_TEXT: Condition-related message text. If message
text is not null, SQLDMSGID must be provided to uniquely
identify the message text. This field must be NULL, if DIAGLVL2
is specified on the ACCRDB command.

SQLDCMSG

__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 305

Early Descriptors Data Definition and Exchange

__
Field Name Usage�� �� ��__

COLUMN_NAME: If condition was caused by an inaccessible
column, the name of the column that caused the error is
returned. Otherwise, the null string is returned.

SQLDCCOLN

__
CURSOR_NAME: If condition was caused by an invalid cursor,
the name of the cursor is returned. Otherwise, the null string is
returned.

SQLDCCURN

__
PARAMETER_NAME: If condition is related to the ith parameter
of the CALL, and a parameter name was specified for the
parameter when the routine was created, the parameter name of
the ith parameter is returned. Otherwise, the null string is
returned.

SQLDCPNAM

__
SQLDCXGRP EXTENDED_NAMES: Extended Diagnostic Name Group.__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

306 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.4.20 SQLDCXGRP: SQL Diagnostics Extended Names Group Description

SQLDCXGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’02’ X’02’ X’D8’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_____________________________________

Data Length Data Type Identity_____________________________________
69 N-GDA X’76’ X’D8’_____________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLDCXGRP Data

1 byte 2 bytes___
Descriptor Label DRDA Type Ref Type Env LID Length Override___
SQLDCXRDB VCS X’02’ X’32’ 255___

SQLDCXSCH_m NVCM X’02’ X’3F’ 255___
SQLDCXSCH_s NVCS X’02’ X’33’ 255___

SQLDCXNAM_m NVCM X’02’ X’3F’ 255___
SQLDCXNAM_s NVCS X’02’ X’33’ 255___

SQLDCXTBLN_m NVCM X’02’ X’3F’ 255___
SQLDCXTBLN_s NVCS X’02’ X’33’ 255___
SQLDCXCRDB VCS X’02’ X’32’ 255___

SQLDCXCSCH_m NVCM X’02’ X’3F’ 255___
SQLDCXCSCH_s NVCS X’02’ X’33’ 255___

SQLDCXCNAM_m NVCM X’02’ X’3F’ 255___
SQLDCXCNAM_s NVCS X’02’ X’33’ 255___

SQLDCXRRDB VCS X’02’ X’32’ 255___
SQLDCXRSCH_m NVCM X’02’ X’3F’ 255___
SQLDCXRSCH_s NVCS X’02’ X’33’ 255___

SQLDCXRNAM_m NVCM X’02’ X’3F’ 255___
SQLDCXRNAM_s NVCS X’02’ X’33’ 255___

SQLDCXTRDB VCS X’02’ X’32’ 255___
SQLDCXTSCH_m NVCM X’02’ X’3F’ 255___
SQLDCXTSCH_s NVCS X’02’ X’33’ 255___

SQLDCXTNAM_m NVCM X’02’ X’3F’ 255___
SQLDCXTNAM_s NVCS X’02’ X’33’ 255___�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 307

Early Descriptors Data Definition and Exchange

Descriptor in HEX:077800050202D8 4576D8 3200FF 3F00FF 3300FF 3F00FF
3300FF 3F00FF 3300FF 3200FF 3F00FF
3300FF 3F00FF 3300FF 3200FF 3F00FF
3300FF 3F00FF 3300FF 3200FF 3F00FF
3300FF 3F00FF 3300FF 3200FF 3F00FF
3300FF 3F00FF 3300FF

Figure 5-47 SQLDCXGRP Group Descriptor

308 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

Table 5-10 SQLDCXGRP Field Descriptions
__

Field Name Usage__
OBJECT_RDBNAM: Contains the RDB name that contains the
object that caused the condition. Otherwise, a zero-length string
is returned.

SQLDCXRDB

__
OBJECT_SCHEMA: Contains the schema name that contains the
object that caused the condition. Otherwise, the empty string is
returned.

SQLDCXSCH

__
SPECIFIC_NAME: Contains the specific name of the object that
caused the condition. The specific name is qualified by
SQLDCXRDB and SQLDCXSCH fields. Otherwise, the empty
string is returned.

SQLDCXNAME

__
TABLE_NAME: Contains the table name of the object that
caused the condition. The table name is uniquely identified by
the SQLDCXRDB and SQLDCXSCH fields. Otherwise, the empty
string is returned.

SQLDCXTBLN

__
CONSTRAINT_RDBNAM: Contains the RDB name that
contains the constraint that caused the condition. Otherwise, the
empty string is returned.

SQLDCXCRDB

__
CONSTRAINT_SCHEMA: Contains the schema name that
contains the object that caused the condition. Otherwise, the
empty string is returned.

SQLDCXCSCH

__
CONSTRAINT_NAME: Contains the constraint name of the
object that caused the condition. The constraint name is uniquely
identified by the SQLDCXCRDB and SQLDCXCSCH fields.
Otherwise, the empty string is returned.

SQLDCXCNAM

__
ROUTINE_RDBNAM: Contains the RDB name that contains the
routine that caused the condition. Otherwise, a zero-length string
is returned.

SQLDCXRRDB

__
ROUTINE_SCHEMA: Contains the schema name that contains
the routine that caused the condition. Otherwise, the empty
string is returned.

SQLDCXRSCH

__
ROUTINE_NAME: Contains the routine name of the object that
caused the condition. The constraint name is uniquely identified
by the SQLDCRRDB and SQLDCXRSCH fields. Otherwise, the
empty string is returned.

SQLDCXRNAM

__
TRIGGER_RDBNAM: Contains the RDB name that contains the
trigger that caused the condition. Otherwise, a zero-length string
is returned.

SQLDCXTRDB

__
TRIGGER_SCHEMA: Contains the schema name that contains
the trigger that caused the condition. Otherwise, the empty
string is returned.

SQLDCXTSCH

__
TRIGGER_NAME: Contains the trigger name of the object that
caused the condition. The constraint name is uniquely identified
by the SQLDCXTRDB and SQLDCXTSCH fields. Otherwise, the
empty string is returned.

SQLDCXTNAM

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 309

Early Descriptors Data Definition and Exchange

5.6.4.21 SQLTOKGRP: SQL Diagnostics Token Group

SQLTOKGRP Meta Data and Data Descriptor

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6___
MDD Length MDD Type Identity Class MD Type MD Ref Type DRDA Type___

7 X’78’ 0 X’05’ X’03’ X’02’ X’D7’___��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

byte 7 byte 8 byte 9_________________________________

Data Length Data Type Identity_________________________________
9 X’71’ X’D7’_________________________________��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

SQLTOKGRP Data

byte 10 byte 11 byte 12___
Descriptor Name Ref Type Group LID Elem_Taken Rep_Factor___
SQLDCTOK_m NVCM X’02’ X’3F’ 255___
SQLDCTOK_s NVCS X’02’ X’33’ 255___��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

Descriptor in HEX:077800050302D7 0971D7 3F00FF 3300FF

Figure 5-48 SQLTOKGRP Group Descriptor

310 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5 Early Environmental Descriptors

Figure 5-49 through Figure 5-83 (on page 348) show how each of the DRDA database
management system environments represent each of the DRDA and SQL data types.

Figure 5-49 shows each of the parameters in the environment descriptor for one data type,
namely Variable Character SBCS data. Each type consists of a Meta Data Definition (MDD) that
states the DRDA semantics of the descriptor followed by a Simple Data Array (SDA) that says
how that type is to be represented.

Variable Character SBCS (Example)

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Rel.DB
X'05'

Data Type
X'01'

Next Byte
X'02’

X'32' (VCS)
X'33' (NVCS)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Chr
Siz

Mode Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

X'70'
X'70'

X'32'
X'32'

X'11'
X'91'

00000-00500(e)
00000-00500(e)

1
1

1
1

32767
32767

QTDSQL370 (System/370* Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005 010133
0C703391 000001F4 01017FFF

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

or by a late environmental descriptor.

Figure 5-49 DRDA Type X’32,33’ SQL Type 448,449 Variable Character SBCS

The upper box (the meta data triplet) is identical for all machine environments. There is only one
triplet defined per DRDA type. It is environment-independent.

The lower boxes in these figures are unique to each machine. The contents of these boxes are
described below. These are the descriptions for the parameters shown in Figure 5-49.

Above Lower Box
The name of the environment to which this descriptor belongs. A parenthetical description
follows the name. DRDA defines six environments:

• QTDSQL370 (System/390 processors)

• QTDSQL400 (AS/400 processors)

• QTDSQLX86 (Intel 80X86 processors)

• QTDSQLASC47 (IEEE non-byte-reversed ASCII processors)

Part 1: Database Access Protocol 311

Early Descriptors Data Definition and Exchange

• QTDSQLVAX (VAX processors)

• QTDSQLJVM (Java Virtual Machine)

These are the names of type definitions and appear as values in the TYPDEFNAM
parameter of DDM commands.

The example describes part of the ’QTDSQL370’ environment.

Lower Box
Each of the lower boxes contains the SDAs for the non-nullable and nullable form for each
environment specified.

Byte 0 The length of the FD:OCA SDA triplet. For DRDA, all SDAs are 12 bytes long.

Byte 1 Simple Data Array type indicator is always X’70’ for SDAs.

Byte 2 The Local Identifier of this SDA. DRDA assigns this LID in the standard
environments and directly maps the LID to the DRDA Type. The formal
mapping from DRDA type to LID is through the associated FD:OCA MDD
specifications. DRDA types provide a mapping path from SQL Types to
FD:OCA representations.

Nullable SQL and DRDA types are all odd numbers and nullable type is one
number higher than the related non-nullable type. These values are shown in
hex.

For the example, two DRDA types are defined: X’32’ corresponding to the SQL
type for non-nullable Variable Character SBCS strings and X’33’
corresponding to the nullable SQL type.

Byte 3 The FD:OCA data type indicator shows exactly how the data is represented in
this environment. These values are shown in hex. For a detailed explanation of
these types, see the FD:OCA Reference.

The null indicator, when defined to be present, flows as an extra byte in front
of the actual data that can follow. This indicator is a one byte signed binary
integer (I1) and is filled with the least significant byte that SQL returned in its
indicator variable. All negative values (X’80’-X’FF’) represent various null
data conditions. Zero indicates a complete data value follows. Positive values
indicate truncation has occurred, but positive values do not occur due to
DRDA’s use of natural SQLDAs. SQL, not DRDA, specifies the following
values:

• 0 (X’00’) data value follows

• −1 (X’FF’) no data value follows

• −2 (X’FE’) undefined result, no data value follows

• −3 to −128 (X’FD’-X’80’) reserved, no data value follows

In the example, FD:OCA type X’11’ Character Variable Length represents
non-nullable strings in the System 390 environment. The Nullable type uses
FD:OCA type X’91’.

47. An example of an QTDSQLASC machine is the IBM RS/6000, which has an IEEE floating point format and non-byte reversed
numbers. This contrasts with the Intel floating point format that has byte-reversed floating point and integer numbers.

312 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

Bytes 4-7 The CCSID identifies the encoding of the character data. Converting the
CCSID into binary form generates the four byte representation. This
information is in decimal. The FD:OCA rules state that if the high order 16 bits
of the CCSID field are zero, then the low order 16 bits are to be interpreted as a
CCSID rather than as a code page identification. DRDA uses the CCSID
format.

The CCSID is a pointer (16 bits) to a description of an encoding scheme, one or
more pairs of character set and code page, and possible additional coding-
related information (ACRI). See character data types in the FD:OCA Reference
and CDRA Reference for information about CCSIDs.

In FD:OCA, the containing architecture is allowed to establish its own
mechanisms for constructing valid FD:OCA descriptors. For DRDA, DDM
provides the TYPDEFOVR parameter on the ACCRDB command as the
means of establishing the CCSIDs to use for a connection. For any parameter
not sent on TYPDEFOVR (such as CCSIDMBC or CCSIDDBC) no character
data of any length greater than zero can flow with that type representation.

The CCSIDs shown in bytes 4 through 7 of the following figures are examples
only and not part of DRDA. DRDA does not define default CCSID values.
When a CCSID is required for one or more data value descriptions, either the
application requester or application server must provide a Late
Environmental Descriptor. When a CCSID is required for one or more data
value descriptors, specify it in one of the following ways:

1. TYPDEFOVR parameter on ACCRDB/ACCRDBRM

This requires an MDD and an SDA. The MDD is exactly like the one for
the type being specified, and the SDA is the same except that a specific
CCSID is filled in. The GDA, which defines the data field characteristics,
references this new SDA. (See Section 5.6.6 (on page 357).)

2. TYPDEFOVR DDM command/reply

3. Late environmental descriptor

See the CDRA Reference for additional information on available CCSIDs.

Byte 8 Character Size. This field indicates the number of bytes each character takes in
storage. The value 2 is used for GRAPHIC SQL Types; 1 is used for all other
character, date, time, timestamp, and numeric character fields. It must be 0 for
all other types.

For this example, the data is SBCS characters, so the character length is
specified as 1.

Byte 9 Mode. This field is used to specify mode of interpretation of FD:OCA
architecture for all variable-length data types (including null terminated), such
as the SBCS variable character type used in the example. The low order bit of
this byte is used to control interpretation of Length Fields in SDAs for
variable-length types. A ’0’ in that bit indicates that non-zero length field
values indicate the space reserved for data and that all the space is transmitted
(or laid out in storage) whether or not it contains valid data. In the case of the
example, the first two bytes of the data itself determine valid data length.

A ’1’ in this bit shows that non-zero length field values indicate the maximum
value of the length fields that the data will contain. Only enough space to

Part 1: Database Access Protocol 313

Early Descriptors Data Definition and Exchange

contain each data value is transmitted for each value.

The example above is a variable-length field. Because DRDA does not want to
transmit unnecessary bytes, Mode is set to ’1’.

Bytes 10-11 The interpretation of these bytes for the example, as well as for most other
data types, is as follows:

This is the length of the field and is shown in decimal. It represents the
maximum valid value. When the Group Data Array triplet overrides it, the
value can be reduced. For character fields with only DBCS characters, this is
the length in characters (bytes/2). For all other cases, the length is in bytes. It
does not include the length of the length field (variable-length types) or null
indicator (nullable types).

For the example, the maximum length of data allowed is 32,767 bytes. On the
link, DRDA type X’32’ could be up to 32769 bytes long and DRDA type X’33’
up to 32770, which allows space for the length field and null indicators. The
maximum value is reduced, with a Group Data Array specification, to match
the actual field or column size.

Below Lower Box
Notes about values in the box. A lowercase alphabetic character identifies each note. Inside
the box, all lowercase alphabetic characters are references to notes.

In the example, note (e) is referenced from the CCSID field.

The following figures show the Simple Data Arrays (SDAs) that define the representations for
each DRDA type in each of the planned environments. These SDAs are bundled together
logically into an environmental descriptor set for each environment. The choice of which set to
use is made at ACCRDB time.

314 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.1 Four-Byte Integer

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'02' (I4)
X'03' (NI4)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'02'
X'03'

X'02'
X'03'

X'02'
X'03'

X'02'
X'03'

X'23'
X'A3'

X'23'
X'A3'

X'24'
X'A4'

X'23'
X'A3'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
4

4
4

4
4

4
4

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'02'
X'03'

X'24'
X'A4'

0
0

0
0

0
0

4
4

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'02'
X'03'

X'23'
X'A3'

0
0

0
0

0
0

4
4

QTDSQLJVM (JAVA Virtual Machine)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C7003A3

010103
00000000 00000004

Figure 5-50 DRDA Type X’02,03’ SQL Type 496,497 INTEGER

The Intel Processor is the OS/2 processor.

Part 1: Database Access Protocol 315

Early Descriptors Data Definition and Exchange

5.6.5.2 Two-Byte Integer

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'04' (I2)
X'05' (NI2)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'04'
X'05'

X'04'
X'05'

X'04'
X'05'

X'04'
X'05'

X'23'
X'A3'

X'23'
X'A3'

X'24'
X'A4'

X'23'
X'A3'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
2

2
2

2
2

2
2

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'04'
X'05'

X'24'
X'A4'

0
0

0
0

0
0

2
2

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'04'
X'05'

X'23'
X'A3'

0
0

0
0

0
0

2
2

QTDSQLJVM (JAVAA Virtual Machine)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C7005A3

010105
00000000 00000002

Figure 5-51 DRDA Type X’04,05’ SQL Type 500,501 SMALL INTEGER

316 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.3 One-Byte Integer

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'06' (I1)
X'07' (NI1)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'06'
X'07'

X'06'
X'07'

X'06'
X'07'

X'06'
X'07'

X'23'
X'A3'

X'23'
X'A3'

X'24'
X'A4'

X'23'
X'A3'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'06'
X'07'

X'24'
X'A4'

0
0

0
0

0
0

1
1

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'06'
X'07'

X'23'
X'A3'

0
0

0
0

0
0

1
1

QTDSQLJVM (JAVA Virtual Machine)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C7007A3

010107
00000000 00000001

Figure 5-52 DRDA Type X’06,07’ SQL Type n/a,n/a

Part 1: Database Access Protocol 317

Early Descriptors Data Definition and Exchange

5.6.5.4 Sixteen-Byte Float

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'08' (BF16)
X'09' (NBF16)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'08'
X'09'

X'08'
X'09'

X'08'
X'09'

X'08'
X'09'

X'40'
X'C0'

X'48'
X'C8'

X'47'
X'C7'

X'48'
X'C8'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

16
16

16
16

16
16

16
16

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'08'
X'09'

X'49'
X'C9'

0
0

0
0

0
0

0
0

0
0

16
16

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'08'
X'09'

X'48'
X'C8'

0
0

0
0

0
0

0
0

0
0

16
16

QTDSQLJVM (JAVA Virtual Machine)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C7009C0

010109
00000000 00000010

ModeBiasRes-
erved

Res-
erved

Figure 5-53 DRDA Type X’08,09’ SQL Type 480,481 FLOAT (16)

318 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.5 Eight-Byte Float

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'0A' (BF8)
X'0B' (NBF8)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'0A'
X'0B'

X'0A'
X'0B'

X'0A'
X'0B'

X'0A'
X'0B'

X'40'
X'C0'

X'48'
X'C8'

X'47'
X'C7'

X'48'
X'C8'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

8
8

8
8

8
8

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'0A'
X'0B'

X'49'
X'C9'

0
0

0
0

0
0

0
0

0
0

8
8

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'0A'
X'0B'

X'48'
X'C8'

0
0

0
0

0
0

0
0

0
0

8
8

QTDSQLJVM (JAVA Virtual Machine)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C700BC0

01010B
00000000 00000008

ModeBiasRes-
erved

Res-
erved

Figure 5-54 DRDA Type X’0A,0B’ SQL Type 480,481 FLOAT (8)

Part 1: Database Access Protocol 319

Early Descriptors Data Definition and Exchange

5.6.5.6 Four-Byte Float

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'0C' (BF4)
X'0D' (NBF4)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'0C'
X'0D'

X'0C'
X'0D'

X'0C'
X'0D'

X'0C'
X'0D'

X'40'
X'C0'

X'48'
X'C8'

X'47'
X'C7'

X'48'
X'C8'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
4

4
4

4
4

4
4

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'0C'
X'0D'

X'49'
X'C9'

0
0

0
0

0
0

0
0

0
0

4
4

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'0C'
X'0D'

X'48'
X'C8'

0
0

0
0

0
0

0
0

0
0

4
4

QTDSQLJVM (JAVA Virtual Machine)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C700DC0

01010D
00000000 00000004

ModeBiasRes-
erved

Res-
erved

Figure 5-55 DRDA Type X’0C,0D’ SQL Type 480,481 FLOAT (4)

320 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.7 Fixed Decimal

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'0E' (FD)
X'0F' (NFD)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Reserved

0 1 2 3 4 5 6 7 8 9 10 11

12
12

X'70'
X'70'

X'0E'
X'0F'

X'30'
X'B0'

0
0

0
0

0
0

31
31

31
31

12
12

X'70'
X'70'

X'0E'
X'0F'

X'30'
X'B0'

0
0

0
0

0
0

31
31

31
31

12
12

X'70'
X'70'

X'0E'
X'0F'

X'30'
X'B0'

0
0

0
0

0
0

31
31

31
31

12
12

X'70'
X'70'

X'0E'
X'0F'

X'30'
X'B0'

0
0

0
0

0
0

31
31

31
31

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'0E'
X'0F'

X'30'
X'B0'

0
0

0
0

0
0

31
31

31
31

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'0E'
X'0F'

X'30'
X'B0'

0
0

0
0

0
0

31
31

31
31

QTDSQLJVM (JAVA Virtual Machine)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C700FB0

01010F
00000000 00001F1F

Mode Fld Length
and

Prec;/Scale

Figure 5-56 DRDA Type X’0E,0F’ SQL Type 484,485 FIXED DECIMAL

Part 1: Database Access Protocol 321

Early Descriptors Data Definition and Exchange

5.6.5.8 Zoned Decimal

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'10' (ZD)
X'11' (NZD)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Reserved

0 1 2 3 4 5 6 7 8 9 10 11

12
12

X'70'
X'70'

X'10'
X'11'

X'33'
X'B3'

0
0

0
0

0
0

31
31

31
31

12
12

X'70'
X'70'

X'10'
X'11'

X'33'
X'B3'

0
0

0
0

0
0

31
31

31
31

12
12

X'70'
X'70'

X'10'
X'11'

X'35'
X'B5'

0
0

0
0

0
0

31
31

31
31

12
12

X'70'
X'70'

X'10'
X'11'

X'35'
X'B5'

0
0

0
0

0
0

31
31

31
31

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'10'
X'11'

X'35'
X'B5'

0
0

0
0

0
0

31
31

31
31

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'10'
X'11'

X'35'
X'B5'

0
0

0
0

0
0

31
31

31
31

QTDSQLJVM (JAVA Virtual Machine)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C7011B3

010111
00000000 00001F1F

Mode Fld Length
and

Prec;/Scale

Figure 5-57 DRDA Type X’10,11’ SQL Type 488,489 ZONED DECIMAL

322 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.9 Numeric Character

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'12' (N)
X'13' (NN)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID

0 1 2 3 4 5 6 7 8 9 10 11

12
12

X'70'
X'70'

X'12'
X'13'

X'32'
X'B2'

00000-00500(e)
00000-00500(e)

1
1

0
0

31
31

31
31

12
12

X'70'
X'70'

X'12'
X'13'

X'32'
X'B2'

00000-00500(e)
00000-00500(e)

1
1

0
0

31
31

31
31

12
12

X'70'
X'70'

X'12'
X'13'

X'32'
X'B2'

00000-00850(e)
00000-00850(e)

1
1

0
0

31
31

31
31

12
12

X'70'
X'70'

X'12'
X'13'

X'32'
X'B2'

00000-00819(e)
00000-00819(e)

1
1

0
0

31
31

31
31

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'12'
X'13'

X'32'
X'B2'

00000-00819(e)
00000-00819(e)

1
1

0
0

31
31

31
31

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'12'
X'13'

X'32'
X'B2'

00000-00367(e)
00000-00367(e)

1
1

0
0

31
31

31
31

QTDSQLJVM (JAVA Virtual Machine)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C7013B2

010113
000001F4 01001F1F

Mode Fld Length
and

Prec;/Scale

Figure 5-58 DRDA Type X’12,13’ SQL Type 504,505 NUMERIC CHARACTER

Part 1: Database Access Protocol 323

Early Descriptors Data Definition and Exchange

5.6.5.10 Result Set Locator

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'14' (RSL)
X'15' (NRSL)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'14'
X'15'

X'14'
X'15'

X'14'
X'15'

X'14'
X'15'

X'23'
X'A3'

X'23'
X'A3'

X'24'
X'A4'

X'23'
X'A3'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
4

4
4

4
4

4
4

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'14'
X'15'

X'24'
X'A4'

0
0

0
0

0
0

4
4

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'14'
X'15'

X'23'
X'A3'

0
0

0
0

0
0

4
4

QTDSQLJVM (JAVA Virtual Machine)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C7015A3

010115
00000000 00000004

Figure 5-59 DRDA Type X’14,15’ SQL Type 972,973 RESULT SET LOCATOR

324 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.11 Eight-Byte Integer

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'16' (I8)
X'17' (NI8)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'16'
X'17'

X'16'
X'17'

X'16'
X'17'

X'16'
X'17'

X'23'
X'A3'

X'23'
X'A3'

X'24'
X'A4'

X'23'
X'A3'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
8

8
8

8
8

8
8

0
0

0
0

0
0

0
0

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C7017A3

010117
00000000 00000008

12
12

X'70'
X'70'

X'16'
X'17'

X'24'
X'A4'

0
0

0
0

0
0

8
8

0
0

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'16'
X'17'

X'23'
X'A3'

0
0

0
0

0
0

8
8

0
0

QTDSQLJVM (JAVA Virtual Machine)

Figure 5-60 DRDA Type X’16,17’ SQL Type 492,493 EIGHT-BYTE INTEGER

Part 1: Database Access Protocol 325

Early Descriptors Data Definition and Exchange

5.6.5.12 Large Object Bytes Locator

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'18' (OBL)
X'19' (NOBL)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'18'
X'19'

X'18'
X'19'

X'18'
X'19'

X'18'
X'19'

X'01'
X'81'

X'01'
X'81'

X'01'
X'81'

X'01'
X'81'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C701981

010119
00000000 00000004

4
4

4
4

4
4

4
4

12
12

X'70'
X'70'

X'18'
X'19'

X'01'
X'81'

0
0

0
0

0
0

QTDSQLVAX (VAX Processors)

4
4

12
12

X'70'
X'70'

X'18'
X'19'

X'01'
X'81'

0
0

0
0

0
0

QTDSQLJVM (JAVA Virtual Machine)

4
4

Figure 5-61 DRDA Type X’18,19’ SQL Type 960,961 LARGE OBJECT BYTES LOCATOR

326 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.13 Large Object Character Locator

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'1A' (OCL)
X'1B' (NOCL)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'1A'
X'1B'

X'1A'
X'1B'

X'1A'
X'1B'

X'1A'
X'1B'

X'01'
X'81'

X'01'
X'81'

X'01'
X'81'

X'01'
X'81'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C701B81

01011B
00000000 00000004

4
4

4
4

4
4

4
4

12
12

X'70'
X'70'

X'1A'
X'1B'

X'01'
X'81'

0
0

0
0

0
0

QTDSQLVAX (VAX Processors)

4
4

12
12

X'70'
X'70'

X'1A'
X'1B'

X'01'
X'81'

0
0

0
0

0
0

QTDSQLJVM (JAVA Virtual Machine)

4
4

Figure 5-62 DRDA Type X’1A,1B’ SQL Type 964,965 LARGE OBJ. CHAR. SBCS LOCATOR

Part 1: Database Access Protocol 327

Early Descriptors Data Definition and Exchange

5.6.5.14 Large Object Character DBCS Locator

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'1C' (OCDL)
X'1D' (NOCDL)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'1C'
X'1D'

X'1C'
X'1D'

X'1C'
X'1D'

X'1C'
X'1D'

X'01'
X'81'

X'01'
X'81'

X'01'
X'81'

X'01'
X'81'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C701D81

01011D
00000000 00000004

4
4

4
4

4
4

4
4

12
12

X'70'
X'70'

X'1C'
X'1D'

X'01'
X'81'

0
0

0
0

0
0

QTDSQLVAX (VAX Processors)

4
4

12
12

X'70'
X'70'

X'1C'
X'1D'

X'01'
X'81'

0
0

0
0

0
0

QTDSQLJVM (JAVA Virtual Machine)

4
4

Figure 5-63 DRDA Type X’1C,1D’ SQL Type 968,969 LARGE OBJ. CHAR. DBCS LOCATOR

328 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.15 Row Identifier

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'1E' (RI)
X'1F' (NRI)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'1E'
X'1F'

X'1E'
X'1F'

X'1E'
X'1F'

X'1E'
X'1F'

X'02'
X'82'

X'02'
X'82'

X'02'
X'82'

X'02'
X'82'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C701F82

01011F
00000000 00010028

40
40

40
40

40
40

40
40

12
12

X'70'
X'70'

X'1E'
X'1F'

X'02'
X'82'

0
0

0
0

1
1

QTDSQLVAX (VAX Processors)

40
40

12
12

X'70'
X'70'

X'1E'
X'1F'

X'02'
X'82'

0
0

0
0

1
1

QTDSQLJVM (JAVA Virtual Machine)

40
40

Figure 5-64 DRDA Type X’1E,1F’ SQL Type 904,905 ROW IDENTIFIER

Part 1: Database Access Protocol 329

Early Descriptors Data Definition and Exchange

5.6.5.16 Date

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'20' (D)
X'21' (ND)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'20'
X'21'

X'20'
X'21'

X'20'
X'21'

X'20'
X'21'

X'10'
X'90'

X'10'
X'90'

X'10'
X'90'

X'10'
X'90'

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

0
0

0
0

0
0

0
0

10
10

10
10

10
10

10
10

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'20'
X'21'

X'10'
X'90'

00000-00819(e)
00000-00819(e)

1
1

0
0

10
10

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'20'
X'21'

X'10'
X'90'

00000-00367(e)
00000-00367(e)

1
1

0
0

10
10

QTDSQLJVM (JAVA Virtual Machine)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C702190

010121
000001F4 0100000A

Chr
Siz

Res-
erved

Figure 5-65 DRDA Type X’20,21’ SQL Type 384,385 DATE

330 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.17 Time

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'22' (T)
X'23' (NT)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'22'
X'23'

X'22'
X'23'

X'22'
X'23'

X'22'
X'23'

X'10'
X'90'

X'10'
X'90'

X'10'
X'90'

X'10'
X'90'

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

0
0

0
0

0
0

0
0

8
8

8
8

8
8

8
8

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'22'
X'23'

X'10'
X'90'

00000-00819(e)
00000-00819(e)

1
1

0
0

8
8

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'22'
X'23'

X'10'
X'90'

00000-00367(e)
00000-00367(e)

1
1

0
0

8
8

QTDSQLJVM (JAVA Virtual Machine)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C702390

010123
000001F4 01000008

Chr
Siz

Res-
erved

Figure 5-66 DRDA Type X’22,23’ SQL Type 388,389 TIME

Part 1: Database Access Protocol 331

Early Descriptors Data Definition and Exchange

5.6.5.18 Timestamp

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'24' (TS)
X'25' (NTS)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'24'
X'25'

X'24'
X'25'

X'24'
X'25'

X'24'
X'25'

X'10'
X'90'

X'10'
X'90'

X'10'
X'90'

X'10'
X'90'

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

0
0

0
0

0
0

0
0

26
26

26
26

26
26

26
26

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'24'
X'25'

X'10'
X'90'

00000-00819(e)
00000-00819(e)

1
1

0
0

26
26

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'24'
X'25'

X'10'
X'90'

00000-00367(e)
00000-00367(e)

1
1

0
0

26
26

QTDSQLJVM (JAVA Virtual Machine)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C702590

010125
000001F4 0100001A

Chr
Siz

Res-
erved

Figure 5-67 DRDA Type X’24,25’ SQL Type 392,393 TIMESTAMP

332 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.19 Fixed Bytes

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'26' (FB)
X'27' (NFB)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'26'
X'27'

X'26'
X'27'

X'26'
X'27'

X'26'
X'27'

X'01'
X'81'

X'01'
X'81'

X'01'
X'81'

X'01'
X'81'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'26'
X'27'

X'01'
X'81'

0
0

0
0

0
0

32767
32767

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'26'
X'27'

X'01'
X'81'

0
0

0
0

0
0

32767
32767

QTDSQLJVM (JAVA Virtual Machine)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C702781

010127
00000000 00007FFF

Figure 5-68 DRDA Type X’26,27’ SQL Type 452,453 FIXED BYTES

Part 1: Database Access Protocol 333

Early Descriptors Data Definition and Exchange

5.6.5.20 Variable Bytes

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'28' (VB)
X'29' (NVB)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'28'
X'29'

X'28'
X'29'

X'28'
X'29'

X'28'
X'29'

X'02'
X'82'

X'02'
X'82'

X'02'
X'82'

X'02'
X'82'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'28'
X'29'

X'02'
X'82'

0
0

0
0

1
1

32767
32767

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'28'
X'29'

X'02'
X'82'

0
0

0
0

1
1

32767
32767

QTDSQLJVM (JAVA Virtual Machine)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C702982

010129
00000000 00017FFF

Mode

Figure 5-69 DRDA Type X’28,29’ SQL Type 448,449 VARIABLE BYTES

334 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.21 Long Variable Bytes

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'2A' (LVB)
X'2B' (NLVB)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'2A'
X'2B'

X'2A'
X'2B'

X'2A'
X'2B'

X'2A'
X'2B'

X'02'
X'82'

X'02'
X'82'

X'02'
X'82'

X'02'
X'82'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'2A'
X'2B'

X'02'
X'82'

0
0

0
0

1
1

32767
32767

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'2A'
X'2B'

X'02'
X'82'

0
0

0
0

1
1

32767
32767

QTDSQLJVM (JAVA Virtual Machine)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C702B82

01012B
00000000 00017FFF

Mode

Figure 5-70 DRDA Type X’2A,2B’ SQL Type 456,457 LONG VAR BYTES

Part 1: Database Access Protocol 335

Early Descriptors Data Definition and Exchange

5.6.5.22 Null-Terminated Bytes

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'2C' (NTB)
X'2D' (NNTB)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'2C'
X'2D'

X'2C'
X'2D'

X'2C'
X'2D'

X'2C'
X'2D'

X'03'
X'83'

X'03'
X'83'

X'03'
X'83'

X'03'
X'83'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'2C'
X'2D'

X'03'
X'83'

0
0

0
0

1
1

32767
32767

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'2C'
X'2D'

X'03'
X'83'

0
0

0
0

1
1

32767
32767

QTDSQLJVM (JAVA Virtual Machine)

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C702D83

01012D
00000000 00017FFF

Mode

Figure 5-71 DRDA Type X’2C,2D’ SQL Type 460,461 NULL-TERMINATED BYTES

336 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.23 Null-Terminated SBCS

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'2E' (NTCS)
X'2F' (NNTCS)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'2E'
X'2F'

X'2E'
X'2F'

X'2E'
X'2F'

X'2E'
X'2F'

X'14'
X'94'

X'14'
X'94'

X'14'
X'94'

X'14'
X'94'

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'2E'
X'2F'

X'14'
X'94'

00000-00819(e)
00000-00819(e)

1
1

1
1

32767
32767

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'2E'
X'2F'

X'14'
X'94'

00000-00367(e)
00000-00367(e)

1
1

1
1

32767
32767

QTDSQLJVM (JAVA Virtual Machine)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C702F94

01012F
000001F4 01017FFF

ModeChr
Siz

Figure 5-72 DRDA Type X’2E,2F’ SQL Type 460,461 NULL-TERMINATED SBCS

Part 1: Database Access Protocol 337

Early Descriptors Data Definition and Exchange

5.6.5.24 Fixed Character SBCS

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'30' (FCS)
X'31' (NFCS)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'30'
X'31'

X'30'
X'31'

X'30'
X'31'

X'30'
X'31'

X'10'
X'90'

X'10'
X'90'

X'10'
X'90'

X'10'
X'90'

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

0
0

0
0

0
0

0
0

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'30'
X'31'

X'10'
X'90'

00000-00819(e)
00000-00819(e)

1
1

0
0

32767
32767

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'30'
X'31'

X'10'
X'90'

00000-00367(e)
00000-00367(e)

1
1

0
0

32767
32767

QTDSQLJVM (JAVA Virtual Machine)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C703190

010131
000001F4 01007FFF

Res-
erved

Chr
Siz

Figure 5-73 DRDA Type X’30,31’ SQL Type 452,453 FIXED CHARACTER SBCS

338 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.25 Variable Character SBCS

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'32' (VCS)
X'33' (NVCS)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'32'
X'33'

X'32'
X'33'

X'32'
X'33'

X'32'
X'33'

X'11'
X'91'

X'11'
X'91'

X'11'
X'91'

X'11'
X'91'

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'32'
X'33'

X'11'
X'91'

00000-00819(e)
00000-00819(e)

1
1

1
1

32767
32767

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'32'
X'33'

X'11'
X'91'

00000-00367(e)
00000-00367(e)

1
1

1
1

32767
32767

QTDSQLJVM (JAVA Virtual Machine)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C703391

010133
000001F4 01017FFF

ModeChr
Siz

Figure 5-74 DRDA Type X’32,33’ SQL Type 448,449 VARIABLE CHARACTER SBCS

Part 1: Database Access Protocol 339

Early Descriptors Data Definition and Exchange

5.6.5.26 Long Variable Character SBCS

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'34' (LVCS)
X'35' (NLVCS)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'34'
X'35'

X'34'
X'35'

X'34'
X'35'

X'34'
X'35'

X'11'
X'91'

X'11'
X'91'

X'11'
X'91'

X'11'
X'91'

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'34'
X'35'

X'11'
X'91'

00000-00819(e)
00000-00819(e)

1
1

1
1

32767
32767

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'34'
X'35'

X'11'
X'91'

00000-00367(e)
00000-00367(e)

1
1

1
1

32767
32767

QTDSQLJVM (JAVA Virtual Machine)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C703591

010135
000001F4 01017FFF

ModeChr
Siz

Figure 5-75 DRDA Type X’34,35’ SQL Type 456,457 LONG VAR CHARACTER SBCS

340 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.27 Fixed-Character DBCS (GRAPHIC)

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'36' (FCD)
X'37' (NFCD)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'36'
X'37'

X'36'
X'37'

X'36'
X'37'

X'36'
X'37'

X'10'
X'90'

X'10'
X'90'

X'10'
X'90'

X'10'
X'90'

00000-00300(f)
00000-00300(f)

00000-00300(f)
00000-00300(f)

00000-00301(f)
00000-00301(f)

00000-01200(f)
00000-01200(f)

2
2

2
2

2
2

2
2

0
0

0
0

0
0

0
0

32767
32767

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'36'
X'37'

X'10'
X'90'

00000-01200(f)
00000-01200(f)

2
2

0
0

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'36'
X'37'

X'10'
X'90'

00000-01200(f)
00000-01200(f)

2
2

0
0

32767
32767

QTDSQLJVM (JAVA Virtual Machine)

(f) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C703790

010137
0000012C 02003FFF

Res-
erved

Chr
Siz

Figure 5-76 DRDA Type X’36,37’ SQL Type 468,469 FIXED CHARACTER DBCS

Part 1: Database Access Protocol 341

Early Descriptors Data Definition and Exchange

5.6.5.28 Variable-Character DBCS (GRAPHIC)

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'38' (VCD)
X'39' (NVCD)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'38'
X'39'

X'38'
X'39'

X'38'
X'39'

X'38'
X'39'

X'11'
X'91'

X'11'
X'91'

X'11'
X'91'

X'11'
X'91'

00000-00300(f)
00000-00300(f)

00000-00300(f)
00000-00300(f)

00000-00301(f)
00000-00301(f)

00000-01200(f)
00000-01200(f)

2
2

2
2

2
2

2
2

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'38'
X'39'

X'11'
X'91'

00000-01200(f)
00000-01200(f)

2
2

1
1

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'38'
X'39'

X'11'
X'91'

00000-01200(f)
00000-01200(f)

2
2

1
1

32767
32767

QTDSQLJVM (JAVA Virtual Machine)

(f) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C703991

010139
0000012C 02013FFF

ModeChr
Siz

Figure 5-77 DRDA Type X’38,39’ SQL Type 464,465 VARIABLE CHARACTER DBCS

342 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.29 Long Variable Character DBCS (GRAPHIC)

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'3A' (LVCD)
X'3B' (NLVCD)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'3A'
X'3B'

X'3A'
X'3B'

X'3A'
X'3B'

X'3A'
X'3B'

X'11'
X'91'

X'11'
X'91'

X'11'
X'91'

X'11'
X'91'

00000-00300(f)
00000-00300(f)

00000-00300(f)
00000-00300(f)

00000-00301(f)
00000-00301(f)

00000-01200(f)
00000-01200(f)

2
2

2
2

2
2

2
2

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'3A'
X'3B'

X'11'
X'91'

00000-01200(f)
00000-01200(f)

2
2

1
1

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'3A'
X'3B'

X'11'
X'91'

00000-01200(f)
00000-01200(f)

2
2

1
1

32767
32767

QTDSQLJVM (JAVA Virtual Machine)

(f) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C703B91

01013B
0000012C 02013FFF

ModeChr
Siz

Figure 5-78 DRDA Type X’3A,3B’ SQL Type 472,473 LONG VAR CHARACTER DBCS

Part 1: Database Access Protocol 343

Early Descriptors Data Definition and Exchange

5.6.5.30 Fixed Character Mixed

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'3C' (FCM)
X'3D' (NFCM)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'3C'
X'3D'

X'3C'
X'3D'

X'3C'
X'3D'

X'3C'
X'3D'

X'10'
X'90'

X'10'
X'90'

X'10'
X'90'

X'10'
X'90'

00000-00930(g)
00000-00930(g)

00000-00930(g)
00000-00930(g)

00000-00932(g)
00000-00932(g)

00000-01200(g)
00000-01200(g)

1
1

1
1

1
1

1
1

0
0

0
0

0
0

0
0

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'3C'
X'3D'

X'10'
X'90'

00000-01200(g)
00000-01200(g)

1
1

0
0

32767
32767

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'3C'
X'3D'

X'10'
X'90'

00000-01208(g)
00000-01208(g)

1
1

0
0

32767
32767

QTDSQLJVM (JAVA Virtual Machine)

(g) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C703D90

01013D
000003A2 01007FFF

Res-
erved

Chr
Siz

Figure 5-79 DRDA Type X’3C,3D’ SQL Type 452,453 FIXED CHARACTER MIXED

344 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.31 Variable Character Mixed

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'3E' (VCM)
X'3F' (NVCM)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'3E'
X'3F'

X'3E'
X'3F'

X'3E'
X'3F'

X'3E'
X'3F'

X'11'
X'91'

X'11'
X'91'

X'11'
X'91'

X'11'
X'91'

00000-00930(g)
00000-00930(g)

00000-00930(g)
00000-00930(g)

00000-00932(g)
00000-00932(g)

00000-01200(g)
00000-01200(g)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'3E'
X'3F'

X'11'
X'91'

00000-01200(g)
00000-01200(g)

1
1

1
1

32767
32767

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'3E'
X'3F'

X'11'
X'91'

00000-01208(g)
00000-01208(g)

1
1

1
1

32767
32767

QTDSQLJVM (JAVA Virtual Machine)

(g) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C703F91

01013F
000003A2 01017FFF

ModeChr
Siz

Figure 5-80 DRDA Type X’3E,3F’ SQL Type 448,449 VARIABLE CHARACTER MIXED

Part 1: Database Access Protocol 345

Early Descriptors Data Definition and Exchange

5.6.5.32 Long Variable Character Mixed

X'40' (LVCM)
X'41' (NLVCM)

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'40'
X'41'

X'40'
X'41'

X'40'
X'41'

X'40'
X'41'

X'11'
X'91'

X'11'
X'91'

X'11'
X'91'

X'11'
X'91'

00000-00930(g)
00000-00930(g)

00000-00930(g)
00000-00930(g)

00000-00932(g)
00000-00932(g)

00000-01200(g)
00000-01200(g)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'40'
X'41'

X'11'
X'91'

00000-01200(g)
00000-01200(g)

1
1

1
1

32767
32767

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'40'
X'41'

X'11'
X'91'

00000-01208(g)
00000-01208(g)

1
1

1
1

32767
32767

QTDSQLJVM (JAVA Virtual Machine)

(g) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C704191

010141
000003A2 01017FFF

ModeChr
Siz

Figure 5-81 DRDA Type X’40,41’ SQL Type 456,457 LONG VARIABLE CHARACTER MIXED

346 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.33 Null-Terminated Mixed

X'42' (NTM)
X'43' (NNTM)

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'42'
X'43'

X'42'
X'43'

X'42'
X'43'

X'42'
X'43'

X'14'
X'94'

X'14'
X'94'

X'14'
X'94'

X'14'
X'94'

00000-00930(g)
00000-00930(g)

00000-00930(g)
00000-00930(g)

00000-00932(g)
00000-00932(g)

00000-01200(g)
00000-01200(g)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'42'
X'43'

X'14'
X'94'

00000-01200(g)
00000-01200(g)

1
1

1
1

32767
32767

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'42'
X'43'

X'14'
X'94'

00000-01208(g)
00000-01208(g)

1
1

1
1

32767
32767

QTDSQLJVM (JAVA Virtual Machine)

(g) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C704394

010143
000003A2 01017FFF

ModeChr
Siz

Figure 5-82 DRDA Type X’42,43’ SQL Type 460,461 NULL-TERMINATED MIXED

Part 1: Database Access Protocol 347

Early Descriptors Data Definition and Exchange

5.6.5.34 Pascal L String Bytes

X'44' (PLB)
X'45' (NPLB)

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'44'
X'45'

X'44'
X'45'

X'44'
X'45'

X'44'
X'45'

X'07'
X'87'

X'07'
X'87'

X'07'
X'87'

X'07'
X'87'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

255
255

255
255

255
255

255
255

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'44'
X'45'

X'07'
X'87'

0
0

0
0

1
1

255
255

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'44'
X'45'

X'07'
X'87'

0
0

0
0

1
1

255
255

QTDSQLJVM (JAVA Virtual Machine)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C704587

010145
00000000 000100FF

Mode

Figure 5-83 DRDA Type X’44,45’ SQL Type 476,477 PASCAL L STRING BYTES

348 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.35 Pascal L String SBCS

X'46' (PLS)
X'47' (NPLS)

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'46'
X'47'

X'46'
X'47'

X'46'
X'47'

X'46'
X'47'

X'19'
X'99'

X'19'
X'99'

X'19'
X'99'

X'19'
X'99'

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

255
255

255
255

255
255

255
255

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'46'
X'47'

X'19'
X'99'

00000-00819(e)
00000-00819(e)

1
1

1
1

255
255

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'46'
X'47'

X'19'
X'99'

00000-00367(e)
00000-00367(e)

1
1

1
1

255
255

QTDSQLJVM (JAVA Virtual Machine)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C704799

010147
000001F4 010100FF

ModeChr
Siz

Figure 5-84 DRDA Type X’46,47’ SQL Type 476,477 PASCAL L STRING SBCS

Part 1: Database Access Protocol 349

Early Descriptors Data Definition and Exchange

5.6.5.36 Pascal L String Mixed

X'48' (PLM)
X'49' (NPLM)

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'48'
X'49'

X'48'
X'49'

X'48'
X'49'

X'48'
X'49'

X'19'
X'99'

X'19'
X'99'

X'19'
X'99'

X'19'
X'99'

00000-00930(g)
00000-00930(g)

00000-00930(g)
00000-00930(g)

00000-00932(g)
00000-00932(g)

00000-01200(g)
00000-01200(g)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

255
255

255
255

255
255

255
255

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'48'
X'49'

X'19'
X'99'

00000-01200(g)
00000-01200(g)

1
1

1
1

255
255

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'48'
X'49'

X'19'
X'99'

00000-01208(g)
00000-01208(g)

1
1

1
1

255
255

QTDSQLJVM (JAVA Virtual Machine)

(g) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C704999

010149
000003A2 010100FF

ModeChr
Siz

Figure 5-85 DRDA Type X’48,49’ SQL Type 476,477 PASCAL L STRING MIXED

350 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.37 SBCS Datalink

X'4C' (DLS)
X'4D' (NDLS)

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'4C'
X'4D'

X'4C'
X'4D'

X'4C'
X'4D'

X'4C'
X'4D'

X'11'
X'91'

X'11'
X'91'

X'11'
X'91'

X'11'
X'91'

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

1
1

(x)
(x)

(x)
(x)

(x)
(x)

(x)
(x)

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'4C'
X'4D'

X'11'
X'91'

00000-00819(e)
00000-00819(e)

1
1

(x)
(x)

1
1

32767
32767

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'4C'
X'4D'

X'11'
X'91'

00000-00367(e)
00000-00367(e)

1
1

(x)
(x)

1
1

32767
32767

QTDSQLJVM (JAVA Virtual Machine)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

(x) The contents of this VARCHAR-like data type
must conform to DRDA rule DT20.

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C704D91

01014D
000001F4 01017FFF

ModeChr
Siz

Figure 5-86 DRDA Type X’4C,4D’ SQL Type 396,397 SBCS DATALINK

Part 1: Database Access Protocol 351

Early Descriptors Data Definition and Exchange

5.6.5.38 Mixed-Byte Datalink

X'4E' (DLM)
X'4F' (NDLM)

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'4E'
X'4F'

X'4E'
X'4F'

X'4E'
X'4F'

X'4E'
X'4F'

X'11'
X'91'

X'11'
X'91'

X'11'
X'91'

X'11'
X'91'

00000-00930(e)
00000-00930(e)

00000-00930(e)
00000-00930(e)

00000-00932(e)
00000-00932(e)

00000-01200(e)
00000-01200(e)

1
1

1
1

1
1

1
1

1
1

(x)
(x)

(x)
(x)

(x)
(x)

(x)
(x)

1
1

1
1

1
1

32767
32767

32767
32767

32767
32767

32767
32767

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'4E'
X'4F'

X'11'
X'91'

00000-01200(e)
00000-01200(e)

1
1

(x)
(x)

1
1

32767
32767

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'4E'
X'4F'

X'11'
X'91'

00000-01208(e)
00000-01208(e)

1
1

(x)
(x)

1
1

32767
32767

QTDSQLJVM (JAVA Virtual Machine)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

(x) The contents of this VARCHAR-like data type
must conform to DRDA rule DT20.

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C704F91

01014F
00000930 01017FFF

ModeChr
Siz

Figure 5-87 DRDA Type X’4E,4F’ SQL Type 396,397 MIXED-BYTE DATALINK

352 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.39 Large Object Bytes

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

X'C8' (OB)
X'C9' (NOB)

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

Reserved Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'C8'
X'C9'

X'C8'
X'C9'

X'C8'
X'C9'

X'C8'
X'C9'

X'50'
X'D0'

X'50'
X'D0'

X'50'
X'D0'

X'50'
X'D0'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

(h) The placeholder indicator bit is set to `1'B.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C70C9D0

0101C9
00000000 00018008

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

12
12

X'70'
X'70'

X'C8'
X'C9'

X'50'
X'D0'

0
0

0
0

0
0

QTDSQLVAX (VAX Processors)

8 (h)
8 (h)

12
12

X'70'
X'70'

X'C8'
X'C9'

X'50'
X'D0'

0
0

0
0

0
0

QTDSQLJVM (JAVA Virtual Machine)

8 (h)
8 (h)

Figure 5-88 DRDA Type X’C8,C9’ SQL Type 404,405 LARGE OBJECT BYTES

Part 1: Database Access Protocol 353

Early Descriptors Data Definition and Exchange

5.6.5.40 Large Object Character SBCS

X'CA' (OCS)
X'CB' (NOCS)

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'CA'
X'CB'

X'CA'
X'CB'

X'CA'
X'CB'

X'CA'
X'CB'

X'51'
X'D1'

X'51'
X'D1'

X'51'
X'D1'

X'51'
X'D1'

00000-00500(e)
00000-00500(e)

00000-00500(e)
00000-00500(e)

00000-00850(e)
00000-00850(e)

00000-00819(e)
00000-00819(e)

1
1

1
1

1
1

1
1

0
0

0
0

0
0

0
0

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'CA'
X'CB'

X'51'
X'D1'

00000-00819(e)
00000-00819(e)

1
1

0
0

8 (h)
8 (h)

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'CA'
X'CB'

X'51'
X'D1'

00000-00367(e)
00000-00367(e)

1
1

0
0

8 (h)
8 (h)

QTDSQLJVM (JAVA Virtual Machine)

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

(h) The placeholder indicator bit is set to `1'B.

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C70CBD1

0101CB
000001F4 01018008

RsvdChr
Siz

Figure 5-89 DRDA Type X’CA,CB’ SQL Type 408,409 LARGE OBJECT CHAR. SBCS

354 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.5.41 Large Object Character DBCS (GRAPHIC)

X'CC' (OCD)
X'CD' (NOCD)

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'CC'
X'CD'

X'CC'
X'CD'

X'CC'
X'CD'

X'CC'
X'CD'

X'51'
X'D1'

X'51'
X'D1'

X'51'
X'D1'

X'51'
X'D1'

00000-00300(f)
00000-00300(f)

00000-00300(f)
00000-00300(f)

00000-00301(f)
00000-00301(f)

00000-01200(f)
00000-01200(f)

2
2

2
2

2
2

2
2

0
0

0
0

0
0

0
0

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'CC'
X'CD'

X'51'
X'D1'

00000-01200(f)
00000-01200(f)

2
2

0
0

8 (h)
8 (h)

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'CC'
X'CD'

X'51'
X'D1'

00000-01200(f)
00000-01200(f)

2
2

0
0

8 (h)
8 (h)

QTDSQLJVM (JAVA Virtual Machine)

(f) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

(h) The placeholder indicator bit is set to `1'B.

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C70CDD1

0101CD
0000012C 02018008

RsvdChr
Siz

Figure 5-90 DRDA Type X’CC,CD’ SQL Type 412,413 LARGE OBJECT CHAR. DBCS

Part 1: Database Access Protocol 355

Early Descriptors Data Definition and Exchange

5.6.5.42 Large Object Character Mixed

X'CE' (OCM)
X'CF' (NOCM)

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X'02’

Rel.DB
X'05'

Data Type
X'01'

MDD
X'78'

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
'SDA'

FD:OCA
Tripl
LID

FD:OCA
Field
Type

CCSID Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12
12

12
12

12
12

12
12

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'70'
X'70'

X'CE'
X'CF'

X'CE'
X'CF'

X'CE'
X'CF'

X'CE'
X'CF'

X'51'
X'D1'

X'51'
X'D1'

X'51'
X'D1'

X'51'
X'D1'

00000-00930(g)
00000-00930(g)

00000-00930(g)
00000-00930(g)

00000-00932(g)
00000-00932(g)

00000-01200(g)
00000-01200(g)

1
1

1
1

1
1

1
1

0
0

0
0

0
0

0
0

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

8 (h)
8 (h)

QTDSQL370 (System/370 Processors)

QTDSQL400 (AS/400 Processors)

QTDSQLX86 (Intel 80X86 Processors)

QTDSQLASC (IEEE ASCII Processors)

12
12

X'70'
X'70'

X'CE'
X'CF'

X'51'
X'D1'

00000-01200(g)
00000-01200(g)

1
1

0
0

8 (h)
8 (h)

QTDSQLVAX (VAX Processors)

12
12

X'70'
X'70'

X'CE'
X'CF'

X'51'
X'D1'

00000-01208(g)
00000-01208(g)

1
1

0
0

8 (h)
8 (h)

QTDSQLJVM (JAVA Virtual Machine)

(g) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,

(h) The placeholder indicator bit is set to `1'B.

or by a late environmental descriptor.

Example Descriptor in Hex
(QTDSQL370 nullable form)

07780005
0C70CFD1

0101CF
000003A2 01018008

RsvdChr
Siz

Figure 5-91 DRDA Type X’CE,CF’ SQL Type 408,409 LARGE OBJECT CHAR. MIXED

356 DRDA, Version 3, Volume 1

Data Definition and Exchange Early Descriptors

5.6.6 Late Environmental Descriptors

DRDA does not define environmental descriptors that are used exclusively as Late
Environmental Descriptors. These descriptors are provided late because of a specific
representational situation that could not be determined until the user’s data was examined.

The Late Environmental Descriptors are constructed from an MDD triplet (to specify the
required DRDA semantics) and an SDA to describe the representation desired. In every case, the
MDD entry is exactly like the one for the DRDA type being overridden. An appropriately
different SDA follows this MDD.

Consider the following situation. An application running in the OS/2 environment is using the
extended box drawing characters provided in Character Set 919 in Code Page 437 (CCSID 437
defines this). The rest of the operations of the database manager are in Multilingual Latin-1
characters (CCSID 850). CCSID 850 would be specified in the TYPDEFOVR parameter that flows
with the ACCRDB DDM command at the time that a connection is made to the appropriate
server.

The fields containing the boxes are fixed-length character fields containing data coded in a
Single-Byte Character Set. Figure 5-92 is the standard representation for this information in this
environment. (This is taken from Section 5.6.5.24 (on page 338).)

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

DRDA Type
X’30’ (FCS)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID

Chr
Siz Mode Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12 X’70’ X’30’ X’10’ 00000-00850(e) 1 0 32767

QTDSQLX86 (Intel 80X86 Processors)

Example Descriptor in Hex
(QTDSQLX86 nullable form)

07780005 010130
0C703010 00000352 01007FFF

(e) The CCSID specified here is an example.
The actual CCSID is specified via a DDM
TYPDEFOVR parameter or object,
or by a late environmental descriptor.

Res-
erved

Prec;/Scale
or

Figure 5-92 DRDA Type X’30’, SQL Type 468, MDD Override Example—Base

The definition in Figure 5-93 (on page 358) specifies the other character set needed to properly
represent the box drawing character data.

Part 1: Database Access Protocol 357

Early Descriptors Data Definition and Exchange

Length
0

Identity
2

Class
3

MD Ref Ty
5

MD Type
4

DRDA Type
6

Type
1

7 0 Next Byte
X’01’

Rel.DB
X’05’

Data Type
X’01’

DRDA Type
X’30’ (FCS)

MDD
X’78’

Meta Data (Environment-independent)

FD
Tr
Ln

FD:OCA
Tripl
’SDA’

FD:OCA
Tripl
LID

FD:OCA
Field
Type CCSID

Chr
Siz Mode Fld Length

0 1 2 3 4 5 6 7 8 9 10 11

12 X’70’ X’99’ X’10’ 00000-00437(h) 1 0 32767

QTDSQLX86 (Intel 80X86 Processors)

Example Descriptor in Hex
(QTDSQLX86 nullable form)

07780005 010130
0C709910 000001B5 01007FFF

(h) As a late descriptor, this CCSID value
overrides the TYPDEFOVR that flows
with ACCRDB.

Res-
erved

Prec;/Scale
or

Figure 5-93 DRDA Type X’30’, SQL Type 468, MDD Override Example—Override

Only the SDA part of the descriptor has changed. In the original descriptor, LID X’30’ specified
850 as the CCSID. In the new descriptor, LID X’99’ specifies 437 as the CCSID.

The MDD specification is exactly the same for both. They are both DRDA Fixed-Length Single
Byte Character Set strings.

When the application requester or application server assembles the user data group descriptor,
references to LID X’30’ imply SBCS data encoded in the standard way. References to LID X’99’
imply SBCS data encoded using the specially defined CCSID. Both types of data can be included
in the same row of user data. As many occurrences of either type as are necessary to describe the
data are included in the GDA triplet that defines the group.

Section 5.7.1 (on page 363) provides more discussion of overriding descriptors.

This concludes the detailed discussion of building DRDA descriptor triplets. The remainder of
this chapter lists descriptors and examples in the order that the triplets must be assembled to be
processed correctly. That is, Environmental Descriptors precede Group Descriptors, which
precede Row Descriptors, which precede Array Descriptors. Early descriptors precede late
descriptors.

358 DRDA, Version 3, Volume 1

Data Definition and Exchange FD:OCA Meta Data Summary

5.7 FD:OCA Meta Data Summary
A data unit is the link representation of something that can be in a control block in storage.
DRDA defines the data units. SQL or the implementing product defines the control blocks.

DRDA uses the FD:OCA Meta Data Definition (MDD) to relate DRDA types and data units to
their FD:OCA representations. FD:OCA has defined the value 5 as the application class for
relational database. DRDA defines the meta data types and meta data references within that
application class.

DRDA defines five meta data types. These types are:

1. Relate DRDA and SQL data types to their representations.

2. Relate names of simple group data units to their representations.

3. Relate names of single row data units to their representations.

4. Relate names of array data units to their representations.

5. Relate names of complex group data units to their representations.

DRDA reserves all other meta data type values within application class 5 for future use.

Within each meta data type, DRDA provides a coded value as the meta data reference. Each of
these values corresponds to a particular data type or data unit. All meta data reference values
not shown in the tables below are reserved.

The following tables show all valid values that DRDA defines.

Table 5-11 MDD References Used in Early Environmental Descriptors

Meta Data
Reference

Application Meta Data DRDA-Type SQL Data
Class Type and Name Type Description___�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

X’05’ X’02’ X’02’(I4) 496 4-byte Integer
X’05’ X’02’ X’03’(NI4) 497 Nullable 4-byte Integer
X’05’ X’02’ X’04’(I2) 500 2-byte Integer
X’05’ X’02’ X’05’(NI2) 501 Nullable 2-byte Integer
X’05’ X’02’ X’06’(I1) n/a 1-byte Integer
X’05’ X’02’ X’07’(NI1) n/a Nullable 1-byte Integer
X’05’ X’02’ X’08’(BF16) (480) 16-byte Binary Floating Point
X’05’ X’02’ X’09’(NBF16) (481) Nullable 16-byte Binary Floating Point
X’05’ X’02’ X’0A’(BF8) 480 8-byte Binary Floating Point
X’05’ X’02’ X’0B’(NBF8) 481 Nullable 8-byte Binary Floating Point
X’05’ X’02’ X’0C’(BF4) 480 4-byte Binary Floating Point
X’05’ X’02’ X’0D’(NBF4) 481 Nullable 4-byte Binary Floating Point
X’05’ X’02’ X’0E’(FD) 484 Fixed Decimal
X’05’ X’02’ X’0F’(NFD) 485 Nullable Fixed Decimal
X’05’ X’02’ X’10’(ZD) 488 Zoned Decimal
X’05’ X’02’ X’11’(NZD) 489 Nullable Zoned Decimal
X’05’ X’02’ X’12’(N) 504 Numeric Character
X’05’ X’02’ X’13’(NN) 505 Nullable Numeric Character___�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 359

FD:OCA Meta Data Summary Data Definition and Exchange

Meta Data
Reference

Application Meta Data DRDA-Type SQL Data
Class Type and Name Type Description___�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

X’05’ X’02’ X’14’(RSL) 972 Result Set Locator
X’05’ X’02’ X’15’(NRSL) 973 Nullable Result Set Locator
X’05’ X’02’ X’16’(I8) 492 Eight-byte Integer
X’05’ X’02’ X’17’(NI8) 493 Nullable Eight-byte Integer
X’05’ X’02’ X’18’(OBL) 960 Large Object Bytes Locator
X’05’ X’02’ X’19’(NOBL) 961 Nullable Large Object Bytes Locator
X’05’ X’02’ X’1A’(OCL) 964 Large Object Character Locator
X’05’ X’02’ X’1B’(NOCL) 965 Nullable Large Object Character Locator
X’05’ X’02’ X’1C’(OCDL) 968 Large Object Character DBCS Locator
X’05’ X’02’ X’1D’(NOCDL) 969 Nullable Large Obj. Char. DBCS Locator
X’05’ X’02’ X’1E’(RI) 904 Row Identifier
X’05’ X’02’ X’1F’(NRI) 905 Nullable Row Identifier
X’05’ X’02’ X’20’(D) 384 Date
X’05’ X’02’ X’21’(ND) 385 Nullable Date
X’05’ X’02’ X’22’(T) 388 Time
X’05’ X’02’ X’23’(NT) 389 Nullable Time
X’05’ X’02’ X’24’(TS) 392 Timestamp
X’05’ X’02’ X’25’(NTS) 393 Nullable Timestamp
X’05’ X’02’ X’26’(FB) 452 Fixed Bytes
X’05’ X’02’ X’27’(NFB) 453 Nullable Fixed Bytes
X’05’ X’02’ X’28’(VB) 448 Variable Bytes
X’05’ X’02’ X’29’(NVB) 449 Nullable Variable Bytes
X’05’ X’02’ X’2A’(LVB) 456 Long Variable Bytes
X’05’ X’02’ X’2B’(NLVB) 457 Nullable Long Variable Bytes
X’05’ X’02’ X’2C’(NTB) 460 Null-Terminated Bytes
X’05’ X’02’ X’2D’(NNTB) 461 Nullable Null-Terminated Bytes
X’05’ X’02’ X’2E’(NTCS) 460 Null-Terminated SBCS
X’05’ X’02’ X’2F’(NNTCS) 461 Nullable Null-Terminated SBCS
X’05’ X’02’ X’30’(FCS) 452 Fixed Character SBCS
X’05’ X’02’ X’31’(NFCS) 453 Nullable Fixed Character SBCS
X’05’ X’02’ X’32’(VCS) 448 Variable Character SBCS
X’05’ X’02’ X’33’(NVCS) 449 Nullable Variable Character SBCS
X’05’ X’02’ X’34’(LVCS) 456 Long Variable Character SBCS
X’05’ X’02’ X’35’(NLVCS) 457 Nullable Long Variable Character SBCS
X’05’ X’02’ X’36’(FCD) 468 Fixed Character DBCS
X’05’ X’02’ X’37’(NFCD) 469 Nullable Fixed Character DBCS
X’05’ X’02’ X’38’(VCD) 464 Variable Character DBCS
X’05’ X’02’ X’39’(NVCD) 465 Nullable Variable Character DBCS
X’05’ X’02’ X’3A’(LVCD) 472 Long Variable Character DBCS
X’05’ X’02’ X’3B’(NLVCD) 473 Nullable Long Variable Character DBCS
X’05’ X’02’ X’3C’(FCM) 452 Fixed Character Mixed
X’05’ X’02’ X’3D’(NFCM) 453 Nullable Fixed Character Mixed
X’05’ X’02’ X’3E’(VCM) 448 Variable Character Mixed
X’05’ X’02’ X’3F’(NVCM) 449 Nullable Variable Character Mixed___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

360 DRDA, Version 3, Volume 1

Data Definition and Exchange FD:OCA Meta Data Summary

Meta Data
Reference

Application Meta Data DRDA-Type SQL Data
Class Type and Name Type Description___�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

X’05’ X’02’ X’40’(LVCM) 456 Long Variable Character Mixed
X’05’ X’02’ X’41’(NLVCM) 457 Nullable Long Variable Character Mixed
X’05’ X’02’ X’42’(NTM) 460 Null-Terminated Mixed
X’05’ X’02’ X’43’(NNTM) 461 Nullable Null-Terminated Mixed
X’05’ X’02’ X’44’(PLB) 476 Pascal L String Bytes
X’05’ X’02’ X’45’(NPLB) 477 Nullable Pascal L String Bytes
X’05’ X’02’ X’46’(PLS) 476 Pascal L String SBCS
X’05’ X’02’ X’47’(NPLS) 477 Nullable Pascal L String SBCS
X’05’ X’02’ X’48’(PLM) 476 Pascal L String Mixed
X’05’ X’02’ X’49’(NPLM) 477 Nullable Pascal L String Mixed
X’05’ X’02’ X’4C’(DLS) 396 SBCS Datalink
X’05’ X’02’ X’4D’(NDLS) 397 Nullable SBCS Datalink
X’05’ X’02’ X’4E’(DLM) 396 Mixed-byte Datalink
X’05’ X’02’ X’4F’(NDLM) 396 Nullable Mixed-byte Datalink
X’05’ X’02’ X’C8’(OB) 404 Large Object Bytes
X’05’ X’02’ X’C9’(NOB) 405 Nullable Large Object Bytes
X’05’ X’02’ X’CA’(OCS) 408 Large Object Character SBCS
X’05’ X’02’ X’CB’(NOCS) 409 Nullable Large Object Character SBCS
X’05’ X’02’ X’CC’(OCD) 412 Large Object Character DBCS
X’05’ X’02’ X’CD’(NOCD) 413 Nullable Large Object Character DBCS
X’05’ X’02’ X’CE’(OCM) 408 Large Object Character Mixed
X’05’ X’02’ X’CF’(NOCM) 409 Nullable Large Object Character Mixed___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Note: Multiple DRDA types can correspond to the same SQL data type. For example, the DRDA
types for FB, FCS, and FCM all correspond to SQL type 452.

Table 5-12 MDD References for Early Group Data Units

Meta Data
Application Meta Data Reference Data Unit

Class Type DRDA-Type Name Description��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

X’05’ X’02’ X’D1’ SQLDIAGGRP SQL Diagnostic Group___
X’05’ X’02’ X’D3’ SQLDIAGSTT SQL Diagnostic Statement Group___
X’05’ X’02’ X’D5’ SQLDDCGRP SQL Diagnostic Condition Group___
X’05’ X’02’ X’D6’ SQLCNGRP SQL Diagnostic Connection Group___
X’05’ X’02’ X’D7’ SQLTOKGRP SQL Diagnostic Token Group___
X’05’ X’02’ X’D8’ SQLDCXGRP SQL Diagnostic External Name Group___�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Table 5-13 MDD References for Early Row Descriptors

Part 1: Database Access Protocol 361

FD:OCA Meta Data Summary Data Definition and Exchange

__
Meta Data

Application Meta Data Reference Data Unit
Class Type DRDA-Type Name Description��

�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

__
X’05’ X’03’ X’E5’ SQLDCROW SQL Diagnostic Condition Row__
X’05’ X’03’ X’E6’ SQLCNROW SQL Diagnostic Connection Row__
X’05’ X’03’ X’E7’ SQLTOKROW SQL Diagnostic Token Row__��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Table 5-14 MDD References for Early Array Descriptors
__

Meta Data
Application Meta Data Reference Data Unit

Class Type DRDA-Type Name Description��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

__
X’05’ X’04’ X’F5’ SQLDIAGCI SQL Diagnostic Condition Array__
X’05’ X’04’ X’F6’ SQLDIAGCN SQL Diagnostic Connection Array__
X’05’ X’04’ X’F7’ SQLDCTOKS SQL Condition Token Array__��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Table 5-15 MDD References Used in Late Environmental Descriptors
__

Meta Data
Reference

Application Meta Data DRDA-Type SQL Data
Class Type and Name Type Description�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

__
Same values as allowed for
Early Environmental
Descriptors

X’05’ X’01’ ∗∗∗ ∗∗∗∗∗∗

__��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Table 5-16 MDD References for Late Group Data Units

Meta Data
Application Meta Data Reference Data Unit

Class Type DRDA-Type Name Description��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

X’05’ X’02’ X’D0’ SQLDTAGRP SQL Data Value Group___�� �� �� �� �� ��

Table 5-17 MDD References for Late Row Descriptors
__

Meta Data
Application Meta Data Reference Data Unit

Class Type DRDA-Type Name Description��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

__
Row description for one row
with SQLCA and data

X’05’ X’03’ X’E0’ SQLCADTA

__
Row description for one data
row

X’05’ X’03’ X’E4’ SQLDTA

__�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

362 DRDA, Version 3, Volume 1

Data Definition and Exchange FD:OCA Meta Data Summary

Table 5-18 MDD References for Late Array Descriptors
__

Meta Data
Application Meta Data Reference Data Unit

Class Type DRDA-Type Name Description��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

��
�
�

__
X’05’ X’04’ X’F0’ SQLDTARD SQLCA and Data Array__

Row description for multi-row
data

X’05’ X’04’ X’F4’ SQLDTAMRW

__��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

The MDDs in the previous tables show DRDA Types. The SDA, GDA, or RLO that follows the
MDD is the representation of that type. For ease of use, the standard DRDA descriptor examples
have LIDs equal to their DRDA types. This is not a permanent relationship. The relationship
exists for early descriptors only. When late environmental descriptors are required, this
relationship does not hold. The DRDA semantics are represented in the MDD. The MDD value
(DRDA type) should not be inferred from the LID of the descriptor that follows it.

5.7.1 Overriding Descriptors to Handle Problem Data

Descriptors are overridden using two distinct and interacting methods in DRDA.

• The first method overrides environmental specifications originally established at the time a
conversation is initiated. This is accomplished with TYPDEFNAM and TYPDEFOVR
specifications associated with the data that does not conform to the current specification.
This is a global method and can override environmental definitions for everything. See Table
5-19 (on page 364) for explanation.

• The second method provides specific field level overrides for user data that does not conform
to the TYPDEFNAM and TYPDEFOVR specifications currently in effect. These overrides are
accomplished by specification of MDD/SDA pairs of FD:OCA triplets for each class of user
data that must be handled. The grouping triplets then refer to the new (special) SDAs to
specify the actual representation of the user’s data.

Detail concerning each method follows.

5.7.1.1 Overriding Everything

The example below shows the sequence of FD:OCA triplets that participate in the definition of
DRDA data.

TTTTTTTTTTTTTTTTTTTT
0x 1x 2x 3x 4x

Environmental

5x 6x 7x
MMMMMMMMMMMM

Grp Row Arr

Dx Ex Fx
MMMMMMMMMMMM

Grp Row Arr

Bx Cx
TTTTTTTT

Environmental

8x 9x Ax
MMMMMMMMMMMM

Grp Row Arr

Early

TTTTTTTTTTTTTTTTTTTT
0x 1x 2x 3x 4x

Environmental

5x 6x 7x 8x 9x Ax
OOOOOOOOOOOOOOOOOOOOOOOO

Overrides

Dx Ex Fx
UUUUUUUUUUUU

Grp Row Arr

Bx Cx
TTTTTTTT

Environmental

Late

Some early descriptor triplets are taken from the high-end of the late environmental descriptor
range to accommodate additional DRDA data types added to DRDA Level 4. They are treated
exactly like other early descriptor triplets at the low-end of the early environmental descriptor
range.

Part 1: Database Access Protocol 363

FD:OCA Meta Data Summary Data Definition and Exchange

The early descriptor triplets are broken into two groups: the T triplets and the M triplets. The T
triplet values establish the basic representations for all DRDA data. The values are the same for
the early and late descriptors. They are established by specifying TYPDEFNAM and/or
TYPDEFOVR. The M triplets define DRDA information units (such as SQLCA). The defaults are
established with the MGRLVL parameter on EXCSAT. The defaults may be overridden at
subsequent points in processing by the MGRLVLOVR object (see Section 4.3.5 (on page 81)). The
T triplet values can be overridden by a late descriptor for any command or reply by specifying a
new value for TYPDEFNAM or TYPDEFOVR. The override is effective for the life of the
command or reply and applies to all DRDA data not subsequently overridden. (See Section
5.7.1.2.) In some cases, TYPDEFNAM and TYPDEFOVR can be specified to override the
representation specification provided on the earlier ACCRDB command.

Table 5-19 illustrates the cases:

Table 5-19 TYPDEFNAM and TYPDEFOVR

Description in Description in
Effect for Effect for

Condition SQLSTT SQLSTTVRB___
Not supplied ACCRDB ACCRDB___
Supplied only before
SQLSTT

Override Supplied before
SQLSTT

Override Supplied before
SQLSTT___

Supplied only before
SQLSTTVRB

Override Supplied before
SQLSTTVRB

ACCRDB

Override supplied before
SQLSTT

Override Supplied before
SQLSTTVRB

Supplied both places

___��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

The M triplet values cannot be overridden. These are all grouping and structuring triplets. Any
changes to these would mean a change in what information was exchanged rather than just how
that information would be represented.

The T and M triplets persist across and throughout a connection to a relational database.
Overrides to these triplets and the O and U triplets persist only for the processing of one
command or reply.

Similarly, the late descriptor triplets are broken into three groups: the T triplets, the O triplets,
and the U triplets. The O triplets provide specific overrides and are described in Section 5.7.1.2.
The T triplet values establish the basic representations for all DRDA data. The values are the
same for the early and late descriptors. The U triplets define actual user data, sometimes in
combination with DRDA information units. The U triplets reference O triplets and both T triplets
and M triplets (which in turn reference T triplets). Data described through the T and M triplets is
affected by specification of TYPDEFNAM and TYPDEFOVR.

5.7.1.2 Overriding Some User Data

The key to overriding the representation specification for some or all user data without affecting
the rest of the user data and the DRDA information units lies within the override or O triplets.
These triplets are placed between the M triplets (which describe DRDA information units) and
the U triplets (which describe user data). Based on FD:OCA referencing rules, the U triplets can
reference the O triplets and thus provide special representations for user data. The M triplets,
however, cannot reference to the right, and, therefore, all the DRDA-defined early information
units are bound only to themselves and the T triplets.

364 DRDA, Version 3, Volume 1

Data Definition and Exchange FD:OCA Meta Data Summary

MDD/SDA triplet pairs are provided for each class (such as Fixed-Length Character Strings with
Single Byte Characters) of user data that must be overridden. The SDA triplets are then referred
to appropriately by the grouping triplet to include the field in the data definition and to assign
length values as needed. The MDD triplet defines what sort of data is being defined in the
DRDA sense. The following SDA triplet describes the pattern of bits that will be used to
represent the data.

The TYPDEFNAM and TYPDEFOVR parameters have no effect on the O triplets. For example, if
CCSID 437 is specified in an O triplet, then the data must be in CCSID 437 independent of
whatever TYPDEFOVR parameter had been specified previously.

5.7.1.3 Assigning LIDs to O Triplets

There are only two considerations. First, stay within a range of 1 to 255, and second, select a LID
that does not interfere with references to the T and U triplets or other O triplets.

The example below shows the LID ranges used by this level of DRDA. Use this only as a guide.
These LID assignments are not fixed for all time. What is fixed is that the O triplets will never
overlap the U and T triplets, and, therefore, O triplet LIDs that match M or T triplet LIDs will
block reference to those triplets (SDAs, GDAs, or RLOs).

Late LID assignments are as follows:

TTTTTTTTTTTTTTTTTTTT
0x 1x 2x 3x 4x

Environmental

5x 6x 7x 8x 9x Ax
OOOOOOOOOOOOOOOOOOOOOOOO

Overrides

Dx Ex Fx
UUUUUUUUUUUU

Grp Row Arr

Bx Cx
TTTTTTTT

Environmental

Late

Observations when assigning O triplet LIDs:

1. The O triplet LIDs have space reserved from X’50’ to X’AF’. If assignments are restricted to
this range, no conflicts will occur. This range provides LIDs that can be used without
concern for conflict.

2. O triplets (like T triplets) are not length-specific and can be reused for several fields of user
data. All character fields of the same style and CCSID can refer to the same O triplet with
length specification being tailored for each field with the GDA in the late group descriptor.

3. References to triplets are resolved one triplet at a time. In DRDA terms that means that all
of the triplets referenced from late group descriptors are resolved before any of the late
row descriptor references, and so on.

This fact allows any of the LIDs to the right of the late group descriptors to be used for late
environmental descriptors. This also allows reuse of LIDs assigned by DRDA to late row or
late array descriptors. This provides 32 more LIDs that can be used without consideration
of what the user’s data looks like.

4. If more override LIDS (more than 128) are required, specific user data must be examined.
In addition, the FD:OCA rules must be used that state that LID references are resolved to
the first LID that matches to the left of or earlier than the referencing triplet. Duplicates are
legal.

Once an LID is selected for an O triplet, any triplet to the left of that O triplet with the same
LID will be inaccessible by triplets to the right of that O triplet.

However, for important cases, indirect reference through M triplets solves this. Assume,
for example, there is some user data where all the user 4-byte integer fields are byte
reversed, but the DRDA information units (such as the SQLCA) has integer fields in the

Part 1: Database Access Protocol 365

FD:OCA Meta Data Summary Data Definition and Exchange

normal sequence. If X’02’ is selected as the LID for the O triplet to specify this, no late
group descriptor (for example, no user data) could reference the regular 4-byte integer
format for the environment. However, the U triplets that define the user data will reference
M triplets to include DRDA information units. The first match to the left of the M triplet
will produce the normal environment’s integer. Thus, for some of the data that will flow
(the SQLCA) LID X’02’ will mean regular sequence and for other data (the user’s data) it
will mean byte-reversed.

5. There are cases when a late MDD (MD Ref Type = X’01’) reference an early MDD (MD Ref
Type = X’02’). For example, the late SQLCADTA row descriptor uses the early SQLCAGRP
group descriptor to describe an SQLCA. An O triplet only references user data and does
not interfere with early M triplets. A late O triplet only references late M and T triplets and
does not block references to early descriptors. Thus, if X’54’ is assigned an O triplet which
is also the value assigned to the early SQLCAGRP group, the O triplet does not prevent the
use of the M triplet for the SQLCAGRP in the SQLCADTA.

Using all these methods in combination, 250 unique LID values can be approached for O triplets.

5.7.2 MDD Materialization Rules

As shown for each of the specific definitions of triplets for DRDA types, each representation is
really a pair of triplets; an MDD that states the type followed by another triplet that states how it
is represented.

Section 5.2.3 (on page 230) described several cases for which descriptors were required to
accompany DRDA data. In some cases, no descriptor information flowed and in others the late
descriptors flowed. This section further defines when MDD triplets must be included in late
descriptors, and when they can be omitted.

MD-1 Late descriptors that contain No Override Triplets can be built with no MDD triplets.
The receiver of the descriptors understands the descriptor format (the sequence of
triplets) for each command. DRDA has fixed these formats.

MD-2 Each Late Environmental triplet must be preceded by an MDD triplet that specifies its
DRDA type. All Override Triplets require preceding MDDs.

MD-3 Any descriptor that contains an MDD triplet must have an MDD triplet specification
for every other triplet to the right of the first MDD. If Override Triplets are provided
(these require an MDD), then the subsequent group, row, and array triplets must also
be preceded by MDDs that define their types.

A simplified restatement of these rules is that if Override Triplets are required, then every triplet
in the late descriptor requires a corresponding MDD; otherwise, no MDD triplets are required.

The use of TYPDEFNAM and TYPDEFOVR specifications does not force the use of MDDs in any
late descriptors.

5.7.3 Error Checking and Reporting for Descriptors

Both FD:OCA and DRDA define error conditions. However, this volume defines all possible
FD:OCA descriptor syntax error conditions for DRDA. Therefore, descriptors need only pass
DRDA validity checks. If the receiver of an FDODSC finds it in error, the error must be reported
with a DDM message DSCINVRM. If the descriptor passes DRDA validity checks, but the data
does not to match the descriptors, the mismatch must be reported with a DDM message
DTAMCHRM.

366 DRDA, Version 3, Volume 1

Data Definition and Exchange FD:OCA Meta Data Summary

5.7.3.1 General Errors

01 FD:OCA Triplet not used in DRDA descriptors or Type code invalid.

02 Triplet Sequence Error: the two possible sequences are:

1. GDA,(CPT,)RLO<,RLO> <== normal case with no overrides

2. MDD,SDA,(MDD,SDA,)MDD,GDA,(CPT,)\
MDD,RLO<,MDD,RLO>

where () indicates an optional repeating group and <> indicates a field allowed
only when arrays are expected.

03 An array description is required, and this one does not describe an array (probably too
many or too few RLO triplets).

04 A row description is required, and this one does not describe a row (probably too many
or too few RLO triplets).

05 Late Environmental Descriptor just received not supported (probably due to non-
support of requested overrides).

06 Malformed triplet; missing required parameter.

07 Parameter value not acceptable.

5.7.3.2 MDD Errors

11 MDD present is not recognized as DRDA Descriptor.

12 MDD Class not recognized as valid DRDA class.

13 MDD type not recognized as a valid DRDA type.

5.7.3.3 SDA Errors

21 Representation incompatible with DRDA type (in prior MDD).

22 CCSID not supported.

5.7.3.4 GDA/CPT Errors

32 GDA references an LID that is not an SDA or GDA.

33 GDA length override exceeds limits.

34 GDA precision exceeds limits.

35 GDA scale > precision or scale negative.

36 GDA length override missing or incompatible with data type.

5.7.3.5 RLO Errors

41 RLO references an LID that is not an RLO or GDA.

42 RLO fails to reference a required GDA or RLO (for example, QRYDSC must include a
reference to SQLCAGRP).

Part 1: Database Access Protocol 367

DRDA Examples Data Definition and Exchange

5.8 DRDA Examples
This section provides DRDA examples for environmental descriptions and command execution.

5.8.1 Environmental Description Objects

The following is a sample of all the FD:OCA triplets required to specify the representations of
every DRDA type for one specific environment, QTDSQL370. As discussed earlier, the default
early environment descriptor set is determined during the Access RDB phase of communication
establishment between requester and server. The default early data unit descriptor set is
determined during EXCSAT based on the SQLAM’s MGRLVL.48 The late data unit descriptors
must be sent over the link as needed to accompany user data.

This example shows all data type and data unit representations. The descriptors shown are for
the System 390 environment. Each is contained in a DDM FDODSC object. The task to construct
an equivalent descriptor set for any other environment is straightforward. Just take all the
values listed in the boxes for that environment and construct the table.

The descriptors are divided into three groups based on when they are agreed to: Early
Environmental, Early Data, or Late Data (ACCRDB, EXCSAT, or user data transfer).

The FDODSC entry in Table 5-20 is a different format than the rest of the table (and the
headings). However, it is included to illustrate the assembly of the complete descriptor.

5.8.1.1 Late Environmental Descriptors

The Environmental Descriptors in Table 5-20 apply to both early and late descriptors.

Table 5-20 Complete Set of Late Environmental Descriptors for QTDSQL370
__

DRDA Type MDD Descriptor—HEX SDA, GDA, CPT, or RLO Descriptor—HEX__�� �� �� ��

FDODSC name=QTDSQL370 03860010 (Descriptor Object)
I4 07780005 010102 0C700223 00000000 00000004
NI4 07780005 010103 0C7003A3 00000000 00000004
I2 07780005 010104 0C700423 00000000 00000002
NI2 07780005 010105 0C7005A3 00000000 00000002
I1 07780005 010106 0C700623 00000000 00000001
NI1 07780005 010107 0C7007A3 00000000 00000001
BF16 07780005 010108 0C700840 00000000 00000010
NBF16 07780005 010109 0C7009C0 00000000 00000010
BF8 07780005 01010A 0C700A40 00000000 00000008
NBF8 07780005 01010B 0C700BC0 00000000 00000008
BF4 07780005 01010C 0C700C40 00000000 00000004
NBF4 07780005 01010D 0C700DC0 00000000 00000004
FD 07780005 01010E 0C700E30 00000000 00001F1F__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

48. Defaults may be overridden after connection by means of the TYPDEFOVR, TYPDEFNAM, and MGRLVLOVR objects. Refer to
Section 7.8 (on page 410) and Section 4.3.5 (on page 81) for details.

368 DRDA, Version 3, Volume 1

Data Definition and Exchange DRDA Examples

__
DRDA Type MDD Descriptor—HEX SDA, GDA, CPT, or RLO Descriptor—HEX__�� �� �� ��

NFD 07780005 01010F 0C700FB0 00000000 00001F1F
ZD 07780005 010110 0C701033 00000000 00001F1F
NZD 07780005 010111 0C7011B3 00000000 00001F1F
N 07780005 010112 0C701232 000001F4 01001F1F
NN 07780005 010113 0C7013B2 000001F4 01001F1F
RSL 07780005 010114 0C701423 00000000 00000004
NRSL 07780005 010115 0C7015A3 00000000 00000004
I8 07780005 010116 0C701623 00000000 00000008
NI8 07780005 010117 0C7017A3 00000000 00000008
OBL 07780005 010118 0C701801 00000000 00000004
NOBL 07780005 010119 0C701981 00000000 00000004
OCL 07780005 01011A 0C701A01 00000000 00000004
NOCL 0778000 01011B 0C701B81 00000000 00000004
OCDL 07780005 01011C 0C701C01 00000000 00000004
NOCDL 07780005 01011D 0C701D81 00000000 00000004
RI 07780005 01011E 0C701E02 00000000 00010028
NRI 07780005 01011F 0C701F82 00000000 00010028
D 07780005 010120 0C702010 000001F4 0100000A
ND 07780005 010121 0C702190 000001F4 0100000A
T 07780005 010122 0C702210 000001F4 01000008
NT 07780005 010123 0C702390 000001F4 01000008
TS 07780005 010124 0C702410 000001F4 0100001A
NTS 07780005 010125 0C702590 000001F4 0100001A
FB 07780005 010126 0C702601 00000000 00007FFF
NFB 07780005 010127 0C702781 00000000 00007FFF
VB 07780005 010128 0C702802 00000000 00017FFF
NVB 07780005 010129 0C702982 00000000 00017FFF
LVB 07780005 01012A 0C702A02 00000000 00017FFF
NLVB 07780005 01012B 0C702B82 00000000 00017FFF
NTB 07780005 01012C 0C702C03 00000000 00017FFF
NNTB 07780005 01012D 0C702D83 00000000 00017FFF
NTCS 07780005 01012E 0C702E14 000001F4 01017FFF
NNTCS 07780005 01012F 0C702F94 000001F4 01017FFF
FCS 07780005 010130 0C703010 000001F4 01007FFF
NFCS 07780005 010131 0C701990 000001F4 01007FFF
VCS 07780005 010132 0C703211 000001F4 01017FFF
NVCS 07780005 010133 0C703391 000001F4 01017FFF
LVCS 07780005 010134 0C703411 000001F4 01017FFF
NLVCS 07780005 010135 0C703591 000001F4 01017FFF
FCD 07780005 010136 0C703610 0000012C 02003FFF
NFCD 07780005 010137 0C703790 0000012C 02003FFF
VCD 07780005 010138 0C703811 0000012C 02013FFF
NVCD 07780005 010139 0C703991 0000012C 02013FFF
LVCD 07780005 01013A 0C703A11 0000012C 02013FFF
NLVCD 07780005 01013B 0C703B91 0000012C 02013FFF
FCM 07780005 01013C 0C703C10 000003A2 01007FFF
NFCM 07780005 01013D 0C703D90 000003A2 01007FFF__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 369

DRDA Examples Data Definition and Exchange

__
DRDA Type MDD Descriptor—HEX SDA, GDA, CPT, or RLO Descriptor—HEX__�� �� �� ��

VCM 07780005 01013E 0C703E11 000003A2 01017FFF
NVCM 07780005 01013F 0C703F91 000003A2 01017FFF
LVCM 07780005 010140 0C704011 000003A2 01017FFF
NLVCM 07780005 010141 0C704191 000003A2 01017FFF
NTM 07780005 010142 0C704214 000003A2 01017FFF
NNTM 07780005 010143 0C704394 000003A2 01017FFF
PLB 07780005 010144 0C704407 00000000 000100FF
NPLB 07780005 010145 0C704587 00000000 000100FF
PLS 07780005 010146 0C704619 000001F4 010100FF
NPLS 07780005 010147 0C704799 000001F4 010100FF
PLM 07780005 010148 0C704819 000003A2 010100FF
NPLM 07780005 010149 0C704999 000003A2 010100FF
DLS 07780005 01014C 0C704C11 000001F4 01017FFF
NDLS 07780005 01014D 0C704D91 000001F4 01017FFF
DLM 07780005 01014E 0C704E11 000003A2 01017FFF
NDLM 07780005 01014F 0C704F91 000003A2 01017FFF
OB 07780005 0101C8 0C70C850 00000000 00018008
NOB 07780005 0101C9 0C70C9D0 00000000 00018008
OCS 07780005 0101CA 0C70CA51 000001F4 01018008
NOCS 07780005 0101CB 0C70CBD1 000001F4 01018008
OCD 07780005 0101CC 0C70CC51 0000012C 02018008
NOCD 07780005 0101CD 0C70CDD1 0000012C 02018008
OCM 07780005 0101CE 0C70CE51 000003A2 01018008
NOCM 07780005 0101CF 0C70CFD1 000003A2 01018008__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

5.8.1.2 Early Data Unit Descriptors

The Early Data Unit Descriptors in Table 5-21 apply for SQLAM Level 3, SQLAM Level 4, and
SQLAM Level 5. The only exceptions are SQLRSGRP, SQLRSROW, SQLRSLRD, SQLCIROW,
SQLCIGRP, and SQLCINRD, which are not supported at SQLAM Level 3 and SQLAM Level 4.

Table 5-21 Complete Set of Early Data Unit Group Descriptors
__

DRDA Type MDD Descriptor in HEX SDA, GDA, CPT, or RLO Descriptor in HEX__�� �� �� ��

157550 040002 040002 160008 040002 260002
D20000

SQLDAGRP 07780005020250

__
157651 020004 3200FF 3E00FF 3200FF 3E00FF
3200FF

SQLUDTGRP 07780005020251

__
3F7652 020004 020004 020004 020004 020004
020004 300001 300001 300001 300001 300001
300001 300001 300001 300001 300001 300001
3200FF 3E0046 320046

SQLCAXGRP 07780005020252

__
127654 020004 300005 300008 520000 560000SQLCAGRP 07780005020254__

SQLARYGRP 07780005020256 097556 020004 020004__
SQLNUMGRP 07780005020258 067558 040002

__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

370 DRDA, Version 3, Volume 1

Data Definition and Exchange DRDA Examples

__
DRDA Type MDD Descriptor in HEX SDA, GDA, CPT, or RLO Descriptor in HEX__�� �� �� ��

SQLOBJGRP 0778000502025A 09755A 3E00FF 3200FF__
SQLSTTGRP 0778000502025C 09755C CF0004 CB0004__

21755E 040002 040002 160008 040002 260002
3E00FF 3200FF 3E00FF 3200FF 5B0000

SQLVRBGRP 0778000502025E

__
SQLRSGRP 0778000502025F 0F755F 140004 3E00FF 3200FF 020004__
SQLDAROW 07780005030260 067160 500001__
SQLCARD 07780005030264 067164 540001__
SQLARYROW 07780005030266 067166 560001__
SQLNUMROW 07780005030268 067558 040002__
SQLOBJNAM 0778000503026A 06716A 5A0001__
SQLSTT 0778000503026C 06716C 5C0001__
SQLVRBROW 0778000503026E 06716E 5E0001__
SQLRSROW 0778000503026F 06716F 5F0001__
SQLDARD 07780005040174 0F7174 640001 E00001 680001 600000__
SQLNUMEXT 07780005040276 067176 660001__
SQLCINRD 0778000504027B 0C717B E00001 680001 6F0000__
SQLSTTVRB 0778000504027E 09717E 680001 6E0000__
SQLRSLRD 0778000504027F 0971F6 680001 6F0000__

1E76D0 040002 040002 040002 040002 040002
040002 3200FF 3E00FF 3200FF

SQLDHGRP 077800050202D0

__
0C76D1 D30000 F50000 F60000SQLDIAGGRP 077800050202D1__
1E76D2 040002 3E00FF 3200FF 3E00FF
3200FF 3E00FF 3200FF 5B0000 D40000

SQLDOPTGRP 077800050202D2

__
3376D3 020004 020004 020004 020004 020004
020004 020004 1 60008 160008 160008 300001
300001 300001 300001 300001 300001 300001
300001

SQLDIAGSTT 077800050202D3

__
2A76D4 040002 040002 040002 040002 3200FF
3200FF 3200FF 3200FF 3200FF 3E00FF
3200FF 3E00FF 3200FF

SQLDXGRP 077800050202D4

__
4E75D5 020004 300005 020004 020004 160008
020004 020004 020004 020004 020004 020004
30000 A 300008 300005 F70000 3F7FA0
337FA0 3F00FF 3300FF 3F00FF 3300FF
3F00FF 3300FF D30001

SQLDCGRP 077800050202D5

__
1B75D6 020004 020004 300001 300001 300008
3200 FF 3200FF 3200FF

SQLCNGRP 077800050202D6

__
SQLTOKGRP 077800050302D7 0971D7 3F00FF 3300FF

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 371

DRDA Examples Data Definition and Exchange

__
DRDA Type MDD Descriptor in HEX SDA, GDA, CPT, or RLO Descriptor in HEX__�� �� �� ��

4576D8 3200FF 3F00FF 3300FF 3F00FF
3300FF 3F00FF 3300FF 3200FF 3F00FF
3300FF 3F00FF 3300FF 3200FF 3F00FF
3300FF 3F00FF 3300FF 3200FF 3F00FF
3300FF 3F00FF 3300FF 3200FF 3F00FF
3300FF 3F00FF 3300FF

SQLDCXGRP 077800050202D8

__
SQLDHROW 077800050302E0 0671E0 D00001__
SQLDCROW 077800050302E5 0671E5 D50001__
SQLCNROW 077800050302E6 0671E6 D60001__
SQLTOKROW 077800050302E7 0671E7 D70001__
SQLDIAGCI 077800050402F5 0971F5 680001 E50000__
SQLDIAGCN 077800050402F6 0971F6 680001 E60000__
SQLDCTOKS 077800050402F7 0971F7 680001 E70000__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

5.8.1.3 Late Data Unit Descriptors

The Late Data Unit Descriptors in Table 5-22 apply for both SQLAM Level 3 and SQLAM Level
4. The only exception is SQLDTAMRW, which is not supported at SQLAM Level 3.

Table 5-22 Complete Set of Late Data Unit Descriptors
__

DRDA Type MDD Descriptor—HEX SDA, GDA, CPT, or RLO Descriptor—HEX__�� �� �� ��

FDODSC unnamed LLLL0010 (Descriptor Object)__
. . 76D0. . . 7F00..SQLDTAGRP 07780005 0201D0__

SQLCADTA 07780005 0301E0 0971E054 0001D000 01__
SQLDTA 07780005 0301E4 0671E4D0 0001__
SQLDTARD 07780005 0401F0 0671F0E0 0000__
SQLDTAMRW 07780005 0401F4 0671F4E4 0000__��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

5.8.2 Command Execution Examples

The following examples of DRDA command execution illustrate how the descriptors would be
assembled to produce actual flows.

These examples use Table 5-23, which is resident in a QTDSQL370 machine and is called STATS.

Table 5-23 STATS Sample Table

AGE SMALLINT WEIGHT SMALLINT NAME VARCHAR(20)
Nullable Nullable Not Null___

21 160 BOB___
30 190 JIM___
35 180 SAM___
25 170 JOE___
40 150 ROD___��

�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

These examples assume that the application requester prefers the QTDSQLX86 environment.

372 DRDA, Version 3, Volume 1

Data Definition and Exchange DRDA Examples

5.8.2.1 EXECUTE IMMEDIATE

This is the SQL statement for the first example:

EXEC SQL EXEC IMMEDIATE ’GRANT SELECT ON STATS TO BRUCE’

Because this is an EXECUTE IMMEDIATE command, the application requester sends the
statement to the application server using DDM’s EXCSQLIMM. Table 5-1 (on page 233) shows
that command data flows according to early descriptor SQLSTT and that reply data will always
be an SQLCA.

The actual bytes that flow to show this data are in Table 5-24. This table does not show the DDM
command proper and its parameters.

Table 5-24 EXECUTE IMMEDIATE Command Data
__

Reference Hex Representation Description__
SQLSTT 00242414 DDM Length and Code

Point for SQL Statement__
SQLSTT FF NOCM - null__

00
0000001E
4752414E542053454C454354204F4E205354
41545320544F204252554345

NOCS - Length and
"GRANT SELECT ON
STATS TO BRUCE"

SQLSTT

__��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

The length of the variable-length field is not byte reversed, but all the characters are sent in the
application requester’s preferred code (ASCII).

After the application server processes it, the application requester expects an SQLCA in
response. If it worked as expected, it would have an SQLCODE of 0 (SQLSTATE ’00000’). (See
Table 5-25.)

Table 5-25 EXECUTE IMMEDIATE Reply Data
__

Reference Hex Representation Description__
SQLCARD 00052408 DDM codepoint for SQLCARD__
SQLCARD FF Null SQLCARD—all OK__��
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

5.8.2.2 Open Query Statement

These are the SQL statements for this example (in PL/I):

EXEC SQL DECLARE mycursor CURSOR FOR
SELECT * FROM STATS WHERE WEIGHT > :WGT;

EXEC SQL OPEN mycursor;
EXEC SQL FETCH mycursor

INTO :VAGE:VAGEI, :VWGT:VWGTI, :VNAME;

Variable WGT has been declared as FLOAT(8) and has the value 175.07. Variable VNAME has
been declared as CHARACTER VARYING (30). All other variables have been declared as
FIXED(15).

This example shows execution of an Open Query request. The statement is previously bound
and the request to execute is sent from the application requester to the application server using
DDM’s OPNQRY command. Table 5-1 (on page 233) shows that for OPNQRY command data
flows according to late descriptor SQLDTA and that reply data will be an SQLCARD (for error
cases) or data that the late descriptor SQLDTARD described.

Part 1: Database Access Protocol 373

DRDA Examples Data Definition and Exchange

Table 5-26 shows the actual bytes that flow to show the command data. It does not show the
DDM command proper and its parameters.

Table 5-26 Open Query Command Data

Reference Hex Representation Description___
OBJDSS 0027D003 xxxx Object Data Stream Structure___

DDM codepoint for SQL objects with FD:OCA
Descriptors and Data

SQLDTA 00212412

DDM codepoint for FD:OCA Descriptor objects

Note: MDD/SDA pairs for unusual data would
be here if they were required. Also the
presence of MDD/SDA pairs here would
force inclusion of MDDs before each GDA
and RLO that follows.

FDODSC 00100010

SQLDTAGRP 0676D0 Start Nullable Group Descriptor—GDA Header___
SQLDTAGRP 0A0008 Continue—One Eight-Byte Float Field___
SQLDTA 0671E4 Start Row Descriptor—RLO Header___

Continue—One occurrence of all elements of
group X’D0’, user data

SQLDTA D00001

FDODTA 000D147A DDM codepoint for FD:OCA Data objects___
FDODTA 000AD7A3 703DE265 40 The data—175.07 (in a nullable group)___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

The application requester sent the data as FLOAT(8) even though the table column being
compared was SMALLINT. The application requester also sent the data in its preferred format,
byte reversed. The database manager at the application server end does the conversion based on
the SQLDA that describes the input data.

After the application server processes the data, the application requester expects to see a
description of the data being returned and the data from the table. In addition, the application
server must handle all situations in which an error from the relational database can be reported
as a warning in the manner that produces the warning. The application requester is then
responsible for upgrading the warning to an error if the application has not made the request in
the manner that allows the warning to be passed. See Section 7.19 (on page 429) for a
description of these responsibilities. If it worked as expected, it returns the descriptor, two rows
of data, the End of Query Reply Message, and an End of File SQLCA.

374 DRDA, Version 3, Volume 1

Data Definition and Exchange DRDA Examples

Table 5-27 Open Query Reply Data

Reference Hex Representation Description___
RPYDSS 0016D052 xxxx Reply Data Stream Structure___

00102205 00061149
00000006 21022417

OPNQRYRM Open Query Reply Message

OBJDSS 0043D053 xxxx Object Data Stream Structure___

DDM codepoint for FD:OCA Descriptor objects

Note: MDD/SDA pairs for unusual data would
be here if they were required.

QRYDSC 001F241A

SQLDTAGRP 0C76D0 Start Nullable Group Descriptor—GDA Header___

Continue—Two nullable SMALLINT and one
VARCHAR(20) field

SQLDTAGRP 05000205 00023200 14

SQLCADTA 0971E0 Start Row Descriptor—RLO Header X’E0’___

Continue—One occurrence of all elements of
group X’54’, SQLCA

SQLCADTA 540001

Continue—One occurrence of all elements of
group X’D0’, User Data

SQLCADTA D00001

SQLDTARD 0671F0 Start Array Descriptor—RLO Header___

Continue—All occurrences of all elements of
row X’E0’, SQLCA with user data

SQLDTARD E00000

QRYDTA 001E241B DDM codepoint for FD:OCA Data objects___

FF000000 230000B4
0003E2C1 D4

QRYDTA First Row—null SQLCA, 35, 180, SAM(3)

FF000000 1E0000BE
0003D1C9 D4

QRYDTA Second Row—null SQLCA, 30, 190, JIM(3)

RPYDSS 0010D052 xxxx Reply Data Stream Structure___
ENDQRYRM 000A220B 00061149 0004 End of Query Reply Message___
OBJDSS 001ED003 xxxx Object Data Stream Structure___

DDM codepoint for the SQLCARD (stand alone)SQLCARD 00182408___
00000064 F0F2F0F0F0
C4E2D5E7D9C6C3C8
FF FF

EOF SQLCA (SQLCODE, SQLSTATE,
SQLERRPROC only). No exceptions or
extended diagnostics (Null SQLXCAGRP and
SQLDIAGGRP groups)

SQLCARD

___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

The EOF SQLCA becomes null after SQLERRPROC because of the presence of the nullable
group SQLCAXGRP inside the SQLCARD.

The entire answer set was short enough to be included in the first query block returned as a
result of the command. The program has issued three fetches subsequent to the Open to get all
of the data and the EOF indicator. This data flows in DDM OBJDSSs and RPYDSSs.

Because EOF was reached within this block for the OPNQRY command, the server has to decide
whether or not the query should be closed implicitly based on the type of query, and the
qryclsimp parameter as previously sent on the OPNQRY command. In this example, the server
indicates that it has closed the query implicitly by sending back an ENDQRYRM reply message
and its associated SQLCARD reply data object that contains SQLSTATE 02000. On the third
fetch, the application requester receives the ENDQRYRM and the SQLCA. The application

Part 1: Database Access Protocol 375

DRDA Examples Data Definition and Exchange

requester can then respond to that fetch with the EOF SQLCA and give an SQLSTATE 00000
SQLCA to the Close Cursor request when the application issues it.

376 DRDA, Version 3, Volume 1

Data Definition and Exchange DRDA Examples

5.8.2.3 Input Variable Arrays SQL Request

An example of an SQL statement with input variable arrays:

EXEC SQL INSERT INTO STATS :NBR ROWS VALUES (:HA1, :HA2, :HA3)

Variable NBR is declared as a one-byte integer and has the value 2. The variable arrays are
declared as arrays with dimension 2. The array structure matches the columns of the STATS
table and has the following values:

40 170 ROBERT
25 160 STEVE

This example shows execution of a multi-row INSERT request. The INSERT statement was
previously bound, and the request to execute is sent from the requester to the server using the
EXCSQLSTT command.

Table 5-28 shows the actual bytes that flow to show the SQLDTA command data. It does not
show the proper command and its parameters.

Table 5-28 Input Variable Array Command Data

Reference Hex Representation Description___
OBJDSS 006F D003 0001 Object Data Stream Structure___
SQLDTA 0069 2412 Input Data Object___
FDOEXT 0014 147B Extent Object___
SQLARYGRP 0000 0002 Extent for :HA1___
SQLARYGRP 0000 0002 Extent for :HA2___
SQLARYGRP 0000 0002 Extent for :HA3___
SQLARYGRP 0000 0001 Extent for :NBR___
FDODSC 0019 0010 Input Data Descriptor___
SQLDTAGRP 0F76D0 Nullable GDA Header___
SQLDTAGRP 050002 :HA1 SMALLINT Array Descriptor___
SQLDTAGRP 050002 :HA2 SMALLINT Array Descriptor___
SQLDTAGRP 320014 :HA3 VARCHAR Array Descriptor___
SQLDTAGRP 020004 :NBR INTEGER Array Descriptor___
SQLDTA 0671E4 D00001 Row Descriptor___
FDODTA 0024 147A Input Data___
FDODTA 00 Null Indicator for Variable Array Group___
FDODTA 00 0028 00 0019 :HA1 Nullable SMALLINT[2] Data Array Values___
FDODTA 00 00AA 00 00A0 :HA2 Nullable SMALLINT[2] Data Array Values___

0006D9D6C2C5D9E2
0005E2E3C5E5C5

FDODTA :HA3 VARCHAR[20] Data Array Values

FDODTA 0000 0002 :NBR INTEGER[1] Data Array Value___
FDOOFF 0014 147D Offset Object___
SQLARYGRP 0000 0000 Offset for :HA1___
SQLARYGRP 0000 0006 Offset for :HA2___
SQLARYGRP 0000 000C Offset for :HA3___
SQLARYGRP 0000 001B Offset for :NBR___�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 377

DRDA Examples Data Definition and Exchange

5.8.2.4 Call (Stored Procedure)

The following example of DRDA command execution illustrates how the descriptors would be
assembled to produce actual flows for a CALL statement. The SQL statement for this example is:

EXEC SQL CALL RMTPROC
(:VAGE:VAGEI, :VWGT:VWGTI, :VNAME, ’ABC’, NULL, USER);

In this example the host variables are declared and set as follows:

• VWGT is FLOAT(8) and set to 175.07.

• VNAME is CHARACTER VARYING (20) and set to ’FRED’.

• VAGE is FIXED(15) and is not set.

The host indicator variables are set as follows:

• VAGEI is −1.

• VWGTI is 0.

The modes of all parameters are INPUT except for VAGE, which is OUTPUT.

Table 5-29 shows the data that flows in the OBJDSS (object data stream structure) which follows
the EXCSQLSTT command. Notice only host variable parameters flow.

Table 5-30 (on page 379) shows an example reply data stream. Notice the use of −128 (X’80’)
indicator values in the FDODTA to flag the second and third parameters as being INPUT only.

Table 5-29 Object Data Stream Example for Execution of CALL Statement

Reference Hex Representation Description___
OBJDSS 002C D003 xxxx Object Data Stream Structure___

DDM Length and codepoint (LLCP) for
SQLDTA

SQLDTA 0026 2412

DDM Length and codepoint (LLCP) for
FDODSC

FDODSC 0016 0010

Start Nullable Group Desc.-GDA headerSQLDTAGRP 0C76D0___
Continue-SMALLINT, 8 byte FLOAT,
VARCHAR(20), all nullable

SQLDTAGRP 050002 0B0008 330014

SQLDTA 0671E4 Start Row Descriptor - RLO Header___

Continue-One occurrence of all elements of
group X’D0’, user data

SQLDTA D00001

DDM Length and codepoint (LLCP) for
FDODTA

FDODTA 0016147A

FDODTA 00 Non-null nullable group indicator___
FDODTA FF Null indicator for first parameter___

Data for second parameter (175.07) in nullable
field

FDODTA 000AD7A3 703DE265 40

Data for third parameter (’FRED’) in nullable
field

FDODTA 000004C6 D9C5C4

___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

378 DRDA, Version 3, Volume 1

Data Definition and Exchange DRDA Examples

Table 5-30 Reply Data Stream Example for Execution of CALL Statement

Reference Hex Representation Description___
OBJDSS 0034 D002 xxxx Object Data Stream Structure___

DDM Length and codepoint (LLCP) for
SQLDTARD

SQLDTARD 002E 2413

FDODSC 001F 0010 DDM LLCP for FDODSC___

Start Nullable Group Desc.-GDA headerSQLDTAGRP 0C76D0___
Continue-SMALLINT, 8 byte FLOAT,
VARCHAR(20), all nullable

SQLDTAGRP 050002 0B0008 330014

Start Row Descriptor - RLO Header X’E0’SQLCADTA 0971E0___
Continue-One occurrence of all elements of
group X’54’, SQLCA

SQLCADTA 540001

Continue-One occurrence of all elements of
group X’D0’, user data

SQLCADTA D00001

SQLDTARD 0671F0 Start Row Descriptor - RLO Header___

Continue-ALL occurrences of all elements of
group X’E0’, SQLCA with user data

SQLDTARD E00000

FDODTA 000B147A DDM LLCP for FDODTA___
FDODTA FF Null SQLCA___
FDODTA 00 Non-null nullable group indicator___

Non-null first parameter (32) in nullable fieldFDODTA 000020___
Special INPUT-only null indicator values (−128)
for second and third parameters

FDODTA 8080

___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 379

DRDA Examples Data Definition and Exchange

5.8.2.5 Call (Stored Procedure Returning Result Sets)

The following example illustrates the actual flow for the summary component of the response to
an SQL statement that invokes a stored procedure and returns result sets. The example flow is
for the summary component of Figure 4-22 (on page 155). The example assumes that the
RSLSETRM reply message does not contain a server diagnostic information (SRVDGN) reply
parameter, that there was no need for the application server to specify TYPDEFNAM and
TYPDEFOVR overrides, and that the SQLSTATE for the SQL statement that invoked the stored
procedure is X’00000’.

Table 5-31 Reply Data Stream Example for Summary Component of Response
__

Reference Hex Representation Description__�� �� �� ��

RPYDSS 009CD052 xxxx Reply Data Stream Structure__
DDM length and codepoint (LLCP) for RDB
Result Set Reply Message

RSLSETRM 00962219

__
RDB Result Set Reply Message Severity CodeSVRCOD 00061149 0000__
DDM length and codepoint (LLCP) for RDB
Package Name, Consistency Token, and Section
Number List

PKGSNLST 008C2139

__
00442113 xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx

PKGNAMCSN PKGNAMCSN for result set #1

__
00442113 xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx

PKGNAMCSN PKGNAMCSN for result set #2

__
OBJDSS 0065D003 xxxx Object Data Stream Structure__

DDM length and codepoint (LLCP) for SQL
Communication Area Reply Data

SQLCARD 00052408

__
SQLCARD FF Null SQLCARD__

DDM length and codepoint (LLCP) for SQL
Result Set Reply Data

SQLRSLRD 005A240E

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

380 DRDA, Version 3, Volume 1

Data Definition and Exchange DRDA Examples

__
Reference Hex Representation Description__�� �� �� ��

SQLRSLRD 0002 Number of result set entries__
xxxxxxxx 001Exxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx 0000xxxx
xxxx

Locator value, name, and number of rows for
result set #1

SQLRSLRD

__
xxxxxxxx 001Exxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx 0000xxxx
xxxx

Locator value, name, and number of rows for
result set #2

SQLRSLRD

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 381

Data Definition and Exchange

382 DRDA, Version 3, Volume 1

Chapter 6

Names

For DRDA, many named resources, such as SQL tables, must be uniquely accessible from
anywhere within a set of interconnected networks. The names must also be convertible as
necessary to addresses or routings in order to complete the connection between the application
that needs the data and the database management system that supplies the stored data.

In the DRDA environment, database management systems join networks, networks merge,
networks split, data moves from one database management system to another, and programs
migrate from one system to another. In short, the DRDA environment is constantly evolving.
Careful attention to the naming of users and resources is crucial for success in such a dynamic
environment.

A user’s identification and the authorities that go along with the ID should not change if the user
enters the environment from different machines. For example, all PCs in a pool of LAN-
connected PCs should have equivalent access to host data. As data migrates about the set of
interconnected networks to help performance or reliability, programs and stored queries should
not require modification. Physical changes to data configurations should not directly affect
users or programs.

In short, named entities in the DRDA environment need to be identified uniquely in their
operating environment. This can include worldwide global uniqueness. Global uniqueness can
be achieved through standardized naming structures or name registration organizations or a
combination of both.

This chapter describes DRDA naming conventions for:

• Names for end users

— The environment defines the allowable name structure.

— DRDA places restrictions on the name structure.

— The name structure does not guarantee uniqueness. The environment must guarantee
uniqueness.

• Names for relational databases

— DRDA defines name structure.

— RDB_NAME prefix registration allows for global uniqueness.

• Names for tables and views

— SQL defines name structure.

— Structure allows for global uniqueness.

• Names for packages

— SQL defines name structure.

— Structure allows for global uniqueness.

• Names for target programs

— Target program name structures will be different dependent on the communications
environment in effect (See Part 3, Network Protocols.)

Part 1: Database Access Protocol 383

Names

See Referenced Documents (on page xxv) for sources that provide background information for
better understanding of this chapter.

6.1 End Users
An end-user name must be unique or uniquely identifiable at the relational database that is
being accessed.

6.1.1 Support for End-User Names

DRDA implementations provide the following support for DRDA end user names.

An end-user identification at the application requester consists of a single token that makes the
identification unique at one, or possibly more than one, application server.

Syntax

USER_ID
255 (255 bytes total)

The character string that represents an end user-name within the DRDA flows has a maximum
length of 255 bytes and must consist of characters in the character set identified by the
CCSIDMGR for the connection. Restrictions on the size and character set may be imposed by
the local security server on the target server or the network protocols49 used to connect to the
RDB.

Semantics

USER_ID
Uniquely identifies a user within the scope of the user ID name space of an application
server. The application server should attempt to match the USER_ID to the name space of
the local security manager. For example, if USER_IDs are required to be in uppercase,
USER_IDs should be folded to uppercase before authentication.

The application requester passes the USER_ID to the application server by one of the following
methods:

• Through the network protocol; for example, in the LU 6.2 ALLOCATE verb

• Through the security context information passed in a DDM SECTKN object

• Through DDM usrid parameter passed on the SECCHK command

This support assumes the following:

• It is the responsibility of the end user to obtain a unique USER_ID at an application server.

• An end user can need a different USER_ID at each application server that contains data the
end user desires to access.

49. The SNA LU6.2 ALLOCATE verb restricts the USER_ID to a maximum length of 8 bytes and must consist of letters (A through Z)
and numerics (0 through 9).

384 DRDA, Version 3, Volume 1

Names RDBs

6.2 RDBs
The name for a relational database is RDB_NAME.

Syntax

RDB_NAME
255 (255 bytes total, the first 6 bytes are registered)

An RDB_NAME has the same syntactic constraints as SQL identifiers with the exception that
RDB_NAME cannot contain the alphabetic extenders for national languages (#, @, and $, for
example). The valid characters are uppercase letters (A through Z), the numerics (0 through 9),
and the underscore character (_). The maximum length of an RDB_NAME is 255 bytes.

The description of the syntax of the RDB_NAME does not imply syntax checking is required in
DRDA. When the application tries to access the relational database, it finds the invalid
RDB_NAMEs. Invalid RDB_NAMEs are based on the non-existence of the RDB_NAMEs and not
on their syntax. The syntax of the RDB_NAME should be checked when the relational database
is created.

Semantics

RDB_NAME
Identifies a relational database. A relational database consists of a relational database
management system catalog and all the relational database objects that the catalog
describes, as well as the algorithms that access and manipulate the catalog and database
objects that the catalog describes. A relational database can be unpartitioned, in which case
all user table data resides at one location. If, instead, data in user tables is spread across
multiple locations, the relational database is considered partitioned.

Note: The SNA Netid Registry registers the first six bytes of the RDB_NAME. The Open Group
submits requests to register the first six bytes of an RDB_NAME to the registrar of the
SNA Netid Registry in response to customer requests. For more details on the registration
process, contact The Open Group.

6.3 Tables and Views
The globally unique name for a table or view is RDB_NAME.COLLECTION.OBJECTID.

Syntax

RDB_NAME.COLLECTION.OBJECTID
255 . 255 . 255 (765 bytes plus period delimiters)

Section 6.2 defines the syntax of RDB_NAME.COLLECTION and OBJECTID which have the
same syntactic constraints as SQL identifiers. COLLECTION and OBJECTID are further
restricted to be only in the single-byte character set (SBCS). The maximum length of
COLLECTION is 255 bytes. The maximum length of OBJECTID is 255 bytes.

Part 1: Database Access Protocol 385

Tables and Views Names

Semantics

RDB_NAME
Identifies the relational database whose catalog contains information for the object. Refer to
Section 6.2 (on page 385) for further detail.

DRDA requires that an application server support the receipt of RDB_NAME in table and
view names. DRDA defines the semantic characteristics of RDB_NAME.

COLLECTION
Identifies a unique collection of objects contained within the relational database that
RDB_NAME identifies.

OBJECTID
The combination of COLLECTION and OBJECTID uniquely identifies a table or view
within the identified relational database.

386 DRDA, Version 3, Volume 1

Names Packages

6.4 Packages
Each relational database management system provides a program preparation process that
prepares an SQL application program for execution.

A package is one of the outputs of applying the program preparation process to an SQL
application program. A package consists of sections that bind the SQL statements in an
application program to access paths at the relational database management system, which stores
the tables that the SQL statements reference. The relational database management system that
stores the tables also stores and manages the packages that reference the tables.

The package creation process consists of two logical steps:

• The first step extracts the SQL statements and any associated application variable
declarations from the application program and replaces the SQL statements with calls to
runtime database programs. In doing so, the first step also generates the runtime structures
that the application program passes to the runtime database programs during execution.

• The second step binds the extracted SQL statements to access paths at the relational database
management system that stores the tables.

The name of the package relates an application program to its selected access paths. The runtime
structures stored in the application program contain part of this name.

6.4.1 Package Name

The fully qualified name for a package, or database management system access module, is
RDB_NAME.COLLECTION.PACKAGEID.

Syntax

RDB_NAME.COLLECTION.PACKAGEID
255 255 255 (767 bytes total)

Section 6.2 (on page 385) defines the syntax of RDB_NAME. COLLECTION and PACKAGEID
have the same syntactic constraints as SQL identifiers. COLLECTION and PACKAGEID are
further restricted to be in the Single-Byte Character Set (SBCS) only. The maximum length of
PACKAGEID is 255 bytes. For more information, see ISO/IEC 9075: 1992, Database Language SQL.

Semantics

RDB_NAME
Identifies the relational database that is the application server database manager for the
package (such as the relational database where creation of the access module occurs). Refer
to Section 6.2 (on page 385) for further detail.

COLLECTION
Identifies a unique collection of packages contained within the relational database that
RDB_NAME identifies.

PACKAGEID
The combination of COLLECTION and PACKAGEID uniquely identifies a package within
the application server relational database.

The bind process provides the RDB_NAME, the COLLECTION, and the PACKAGEID for
the fully qualified package name.

Part 1: Database Access Protocol 387

Packages Names

6.4.2 Package Consistency Token

Each package also has an associated consistency token. The consistency token uniquely
identifies the SQL application program preparation process that prepared the source SQL
statements for execution. The relational database management system uses the consistency
token during SQL program execution to verify that the package it selects for database
management access is the instance of the package that the program preparation process
generated for the executing instance of the application program. Both the package name and the
consistency token flow at execution time to identify the package and confirm the relationship
between the package and the application program.

The first step of the program preparation process (see Section 6.4 (on page 387)) establishes the
consistency token. The first step can either generate the consistency token or receive the
consistency token as an input parameter.

Syntax

PACKAGE_CONSISTENCY_TOKEN
8 (8 bytes total)

A consistency token is a byte string of length 8.

Semantics

The consistency token uniquely identifies the SQL application program preparation process that
prepared the source SQL statements for execution. As such, it associates an execution instance of
an SQL application program with a particular instance of a package.

6.4.3 Package Version ID

In order to support orderly management of SQL application programs, it is necessary to
recognize that programs can exist in several versions, that the several versions can exist
simultaneously, and that each version will have its own package.

The objective of SQL application program version management is to allow a single SQL
application program to exist in multiple versions. All versions share the same identity as the
application program but must be distinguishable when the application creates new versions of
an SQL program, destroys existing versions, or selects the instance of the application program
used in other operations such as compile, link edit, and execute.

DRDA does not define how program management components externalize and support versions
of programs. However, because a package is the representation of database management access
requests for a version of an application program, DRDA incorporates a mechanism to name
versions of a package and to resolve an application program database management access
request to the proper version of the package.

DRDA supports SQL application program versions by associating a version ID attribute with a
package name that serves as the external identifier of the package. DRDA requires specification
of the version ID attribute during the creation or dropping of a package and during the granting
and revoking of package execution privileges. When a version of an application program
executes, the consistency token that the precompiler assigned is used as the execution time
selector of the package version.

The existence of a version ID attribute means that every version of a package has two unique
names: the package name plus version ID qualifier and the package name plus consistency token
qualifier. Users specify the version ID at the user interfaces. The relational database
management system uses the consistency token internally to uniquely identify the correct

388 DRDA, Version 3, Volume 1

Names Packages

package version for a particular instance of an SQL application program.

A package can have a null version ID. This means that the package has no versions or that one
version of the package is not qualified with an external identifier. A consistency token must exist
for each package and must be unique across all versions of a package.

Syntax

PACKAGE_VERSION_ID
254 (254 bytes total)

A version ID is a varying-length character string having a maximum length of 254 bytes.

Semantics

The version ID uniquely identifies an instance of a package to users.

6.4.4 Command Source Identifiers

A single database connection can be used for multiplexing requests from different application
sources. The sources can be nested UDFs or stored procedures all stemming from a single user
application, or they may be distinct applications altogether. In this environment, requests from
multiple application sources may try to operate against an identical section within a package.
For example, multiple sources may attempt to prepare different SQL statements into a single
section. In order to avoid collisions amongst such requests, the application requester has the
option of flowing a command source identifier (CMDSRCID) to the server for each request. The
command source identifier complements the package name, consistency token, and section
number (PKGNAMCSN) by uniquely identifying the source of the database request, thereby
distinguishing it from an otherwise identical request, albeit from a different application source.
The command source identifier can be specified on the following commands: CLSQRY,
CNTQRY, DSCSQLSTT, EXCSQLIMM, EXCSQLSTT, OPNQRY, and PRPSQLSTT.

For cursor operations, the command source identifier, in conjunction with the package name,
consistency token, and section number, uniquely identifies a query for a particular application
source. Furthermore, it is possible to have multiple instances of such a query through the use of
the query instance identifier (QRYINSID). For more information on the query instances, refer to
Section 4.4.6 (on page 121).

6.4.5 Package Collection Resolution

Two mechanisms currently exist for managing package collection resolution50 at the requester.
The first mechanism is the specification of a default collection ID inside the PKGNAMCSN that
is specified at execution time. The second mechanism is the use of the SET CURRENT
PACKAGESET command to indicate what the qualifier is for a package that is to be invoked for
all subsequent SQL operations. The CURRENT PACKAGESET value, if set, takes precedence
over the default collection ID.

In order to support package switching functionality for SQL applications, it is desirable to be
able to select the appropriate package from a list of package collections. Given an ordered list of
package qualifiers, the server will select the first collection in which a match is found for the
package name, consistency token, and version ID. The CURRENT PACKAGE PATH value

50. Also known in some environments as schema resolution.

Part 1: Database Access Protocol 389

Packages Names

provides such an ordered list to allow for server management of package collection resolution,
and this value will override the value provided in the PKGNAMCSN parameter flowed at
execution time. In other words, at the server, the CURRENT PACKAGE PATH value (if set) will
override any package collection resolution ordering defined by either the collection inside the
PKGNAMCSN parameter or a collection explicitly indicated via the SET CURRENT
PACKAGESET command. The CURRENT PACKAGE PATH value does not override the
collection specified as part of the PKGNAM or PKGNAMCT parameters.

390 DRDA, Version 3, Volume 1

Names Stored Procedure Names

6.5 Stored Procedure Names
The qualified form for a stored procedure name is RDB_NAME.COLLECTION.PROCEDURE.

Syntax

RDB_NAME.COLLECTION.PROCEDURE
255 . 255 . 255 (765 bytes plus period delimiters)

Section 6.2 (on page 385) defines the syntax of RDB_NAME.COLLECTION and PROCEDURE
which have the same syntactic constraints as SQL identifiers. COLLECTION and PROCEDURE
are further restricted to be only in the single-byte character set (SBCS). The maximum length of
COLLECTION is 255 bytes. The maximum length of PROCEDURE is 255 bytes.

Semantics

RDB_NAME
Identifies the relational database whose catalog contains information for the procedure.
Refer to Section 6.2 (on page 385) for further detail.

DRDA requires that an application server support the receipt of RDB_NAME in stored
procedure names. DRDA defines the semantic characteristics of RDB_NAME.

COLLECTION
Identifies a unique collection of procedures contained within the relational database that
RDB_NAME identifies.

PROCEDURE
The combination of COLLECTION and PROCEDURE uniquely identifies a stored
procedure within the identified relational database.

Part 1: Database Access Protocol 391

Synonyms and Aliases Names

6.6 Synonyms and Aliases
The resolution of synonyms and aliases for DRDA tables and views occurs at the application
server for DRDA flows. DRDA, however, does not define the mechanism that resolves
synonyms and aliases. The particular resolution mechanisms are specific to the environment.

6.7 Default Mechanisms for Standardized Object Names
Refer to Section 6.3 (on page 385) for a discussion of the DRDA-defined default values within
DRDA object names.

In general, DRDA does not define the mechanism that provides the default values for
components of DRDA table, view, and package names for DRDA flows. The particular
mechanisms for providing product default values are implementation-specific.

392 DRDA, Version 3, Volume 1

Names Target Program

6.8 Target Program
DRDA requires that an application requester (AR) specify the target program name of the
application server (AS) when allocating a network connection. The application requester
determines the program name of the application server during the process of resolving the
RDB_NAME of the application server to a network location. DRDA allows the use of any valid
program name that meets the standards of the communications environment that is in use (see
Part 3, Network Protocols) and that the application server supports.

To avoid potential name conflicts, the application server program name should be, but need not
be, a registered target program name.

DDM might also provide a registered target program name that can be used. The DDM target
program name would be used if the DDM implementation at the application server provided file
server functions in addition to DRDA functions.

DRDA defines default target program names. The default target program name must be
definable at each location that has an application server providing DRDA capabilities. An
application requester can then assume the existence of the default target program name at any
location providing DRDA capabilities, and default to a target program name when a request
requiring an initialization of a network connection does not specify a target program name.
Because target programs can have aliases, the default target program name can also have the
DDM default target program name or some other registered DRDA target program name.
DRDA, however, does not require that a DRDA target program have multiple target program
names.

See the following sections for an interpretation of target program names per environment:

• Section 12.8.3 (on page 561)

• Section 13.6.3 (on page 578)

Part 1: Database Access Protocol 393

Names

394 DRDA, Version 3, Volume 1

Chapter 7

DRDA Rules

This chapter consists of a topical collection of all the rules pertaining to DRDA usage. These
rules have been either described, alluded to, implied, or referenced in other chapters of the
DRDA reference.

The major exception to the collection of rules is the omission of architecture usage rules
contained in Chapter 5 (on page 223). Chapter 5 (on page 223) precisely describes the
description and formats of data exchanged between application requesters and application
servers. See Section 5.3 (on page 232) for rules pertaining to this topic.

The following sections define the DRDA rules between an application requester and an
application server. The rules are equivalent between an application server and a database server
but are not specifically described unless noted in the rule. The terms application requester and
application server can be interchanged with application server and database server unless
specifically identified in the rule.

7.1 Atomic Chaining (AC Rules)
AC1 Only EXCSQLSTT commands can be part of an atomic chain. The chain is considered

atomic if in the event that any one of the EXCSQLSTT commands fails, then all other
changes made to the database under this chain will be undone. The optional atmind
parameter, if flown on an EXCSQLSTT command within the atomic chain, must be set
to its default value of X’00’. Otherwise, the application server must return SYNTAXRM
with synerrcd set to X’1E’.

There can be zero or more EXCSQLSTT commands within the atomic chain.

AC2 The atomic chain is initiated by the BGNATMCHN command and terminated by the
ENDATMCHN command.

If the chain as initiated by the BGNATMCHN command contains any command other
than EXCSQLSTT and ENDATMCHN commands, the application server must return
PRCCNVRM with prccnvcd set to X’1C’.

If the ENDATMCHN command is sent without a prior matching BGNATMCHN
command, the application server must return PRCCNVRM with prccnvcd set to X’1D’.

AC3 Processing of an atomic chain by the application server terminates when an error
occurs on an EXCSQLSTT command in the chain, or when the ENDATMCHN
command has been processed, whichever occurs first.

Each EXCSQLSTT command that gets processed by the application server in the atomic
chain except for the one returning an error that terminates processing of the chain must
result in an SQLCARD or SQLDTARD reply data object indicating success.

The last EXCSQLSTT command that gets processed by the application server is either
also the last EXCSQLSTT command in the chain, or is one that results in an error. If an
EXCSQLSTT command results in an error, then the reply to this EXCSQLSTT must be
an error reply message indicating the termination of processing of the atomic chain, to
be optionally followed by an SQLCARD. If this is an SQL error which does not
otherwise have an error reply message associated with it, the application server must
send back an SQLERRRM reply message to be followed by the SQLCARD in

Part 1: Database Access Protocol 395

Atomic Chaining (AC Rules) DRDA Rules

accordance with rule CU4 in Section 7.6 (on page 404).

AC4 If processing of an atomic chain terminates because of an error condition or a valid
INTRDBRQS command, all changes made as a result of previous successful statement
executions earlier in the atomic chain are undone.

396 DRDA, Version 3, Volume 1

DRDA Rules Connection Allocation (CA Rules)

7.2 Connection Allocation (CA Rules)
CA1 Only the application requester can initiate network connections between an application

requester and an application server.

CA2 Network connections between an application requester and an application server must
be started with the required characteristics as defined in the rule usage for the specific
network protocol in use (see Part 3, Network Protocols).

See rules usage for environment in these sections:

• Section 12.8.2.1 (on page 557)

• Section 13.6.2.1 (on page 576)

CA3 A connection between an application requester and an application server using remote
unit of work protocols must not be protected by a sync point manager.

A connection between an application requester and an application server using
distributed unit of work can be protected by a sync point manager or be unprotected. If
either the application requester or application server does not support a protected
connection, the connection must be established without a sync point manager.

A connection between an application requester and an application server using
distributed unit of work can be either protected by the SyncPoint manager or the XA
manager. If either the application requester or application server does not support a
protected connection, the connection should be established as a DUOW unprotected
connection.

See rules usage for environment in these sections:

• Section 12.8.2.1 (on page 557)

• Section 13.6.2.1 (on page 576)

CA5 ACCRDB or INTRDBRQS must be rejected with MGRDEPRM when DRDA-required
network connection parameters are not specified or are specified incorrectly.

See rules usage for environment in this section:

• Section 12.8.2.1 (on page 557)

Not applicable in a TCP/IP environment.

CA10 Receivers of ACCRDB must understand the values of TYPDEFNAM and the
CCSIDSBC specification of TYPDEFOVR. If the receiver does not understand the
values, then it should return VALNSPRM. This should be handled like any other
VALNSPRM error on ACCRDB.

Values of CCSIDMBC and CCSIDDBC that the receiver does not understand should be
reported with an ACCRDBRM with a WARNING severity. Application requesters can
report the warning with SQLSTATE X’01539’. If additional SQL statements use any
misunderstood CCSIDs, errors occur. These errors are then reported with an SQLCA
indicating data errors along with any reply message that is appropriate to the
command that encountered the error.

An optional SQLCARD reply data object may follow the ACCRDBRM reply message
for a successful connection if the receiver of ACCRDB encounters an SQL warning
condition upon a successful connection and/or if there are server-specific connect
tokens that need to be returned.

Part 1: Database Access Protocol 397

Connection Allocation (CA Rules) DRDA Rules

CA11 Receivers of ACCRDBRM must understand the values of TYPDEFNAM and the
CCSIDSBC specification of TYPDEFOVR. If the receiver does not understand the
values, then it should terminate the connection. This should be handled like a receipt
of a VALNSPRM error in the ACCRDBRM.

Values of CCSIDMBC and CCSIDDBC that the receiver does not understand should be
saved for possible problem determination actions later. Application requesters can
report the warning with an SQLSTATE of X’01539’. If additional SQL statements use
any misunderstood CCSIDs, errors occur. These errors are then reported with an
SQLCA indicating data errors along with any reply message that would be appropriate
to the command that encountered the error.

If the ACCRDBRM reply message is followed by an optional SQLCARD reply data
object, the SQL code contained therein must be greater than or equal to zero to indicate
the connection is successful. If the SQL code contained in this SQLCARD is less than
zero, the application requester must report the error to the application with an
SQLSTATE of X’58009’. Otherwise, how the application requester processes this
SQLCARD is not defined by DRDA. For example, the application may choose to return
the contents of this SQLCARD directly to the application through the SQLCA. Or if
there is an aforementioned local CCSIDMBC/CCSIDDBC warning, or a server
CCSIDMBC/CCSIDDBC warning in the ACCRDBRM as documented under rule CA10,
the requester may choose to merge the contents of this SQLCARD and the CCSID
warning into one SQLCA to return to the application. The application requester may
also ignore this SQLCARD altogether.

CA12 An application requester using distributed unit of work protocols can initialize a
connection with one or more application servers in a unit of work.

CA13 This rule is retired.

CA14 An application requester and application server must provide support for at least one
network protocol defined in Part 3, Network Protocols).

398 DRDA, Version 3, Volume 1

DRDA Rules Mapping of Reply Messages to SQLSTATEs (CD Rules)

7.3 Mapping of Reply Messages to SQLSTATEs (CD Rules)
CD1 If an application requester receives a valid reply message with a valid svrcod, the

application requester must return the SQLSTATE listed in Section 4.3.1 (on page 66). If
an application requester receives a reply message that is not valid in DRDA, or a valid
reply message with an svrcod that is not valid in DRDA, the application requester
returns SQLSTATE 58018.

CD2 If an SQLCARD accompanies a reply message, the SQLCODE and SQLSTATE in the
SQLCARD should be passed to the application.

7.4 Connection Failure (CF Rules)
CF1 When a network connection fails, the application server must implicitly roll back the

effects of the unit of work and deallocate all database management resources
supporting the application.

CF2 When a network connection fails, the application requester must report the failure to
the application in the SQLCA.

Part 1: Database Access Protocol 399

Commit/Rollback Processing (CR Rules) DRDA Rules

7.5 Commit/Rollback Processing (CR Rules)
CR2 Application servers using remote unit of work protocols and application servers using

distributed unit of work but not protected by a sync point manager must inform the
application requester when the current unit of work at the application server ends as a
result of a commit or rollback request by an application or application requester
request. This information is returned in the RPYDSS, containing the ENDUOWRM
reply message. This RPYDSS is followed by an OBJDSS containing an SQLCARD with
information that is input to the SQLCA to be returned to the application. If multiple
commit or rollbacks occur prior to exiting a stored procedure, only one ENDUOWRM
is returned. See rule CR13 for setting the uowdsp parameter when multiple commit
and/or rollbacks occur in a stored procedure. See CR6 for the SQLSTATEs to return.

See rules usage for environment in these sections:

• Section 12.8.2.2 (on page 558)

• Section 13.6.2.2 (on page 576)

CR3 When a unit of work ends, the application requester must ensure, for all opened cursors
that did not have the HOLD option specified, that all query buffers containing
unprocessed data (Limited Block Protocols) are purged and that all cursors are in the
not open state.

When the HOLD option has been specified for a cursor, a commit does not close that
cursor; the application requester must leave that cursor open with its current position
in the buffer for the next Fetch.

Note: This includes cursors that were opened with the HOLD option specified within a
stored procedure invoked within the unit of work.

CR4 The ending of a network connection causes an application server initiated rollback. The
application server assumes termination of the SQL application associated with the
connection.

The SQL application should initiate commit or rollback functions prior to termination.
If the SQL application terminates normally but does not explicitly commit or rollback,
then the application requester must invoke the commit function before terminating the
network connection. If the SQL application terminates abnormally, the application
requester must invoke the rollback function before terminating the network connection.

The above implies only to connections that are not using the services of the XA
manager (see footnote †). For XAMGR protected connections, the application must
initiate commit or rollback before terminating. If the application does not explicitly
drive a two-phase commit or roll back on normal termination, or terminates
abnormally, the application server will implement the presumed abort protocol and
implicitly roll back the transaction in both cases.

CR5 An SQL COMMIT or ROLLBACK, when embedded in the application, is mapped to the
DDM commands RDBCMM and RDBRLLBCK, respectively. An SQL COMMIT or
ROLLBACK, when executed as dynamic SQL, is mapped to the DDM commands for
dynamic SQL—either EXCSQLIMM for EXECUTE_IMMEDIATE or PRPSQLSTT and
EXCSQLSTT for PREPARE followed by EXECUTE.

CR6 The parameter rdbalwupd of the DDM command ACCRDB is an application requester
specification of whether or not the application server is to allow update operations. An
update operation is defined as a change to an object at the relational database, such that
the change to the object is under commit/rollback control of the unit of work that the
application requester initiates.

400 DRDA, Version 3, Volume 1

DRDA Rules Commit/Rollback Processing (CR Rules)

When the application requester specifies that no updates are allowed, the application
server must enforce this specification and, in addition, must not allow the execution of
a commit or rollback that the DDM command EXCSQLIMM or EXCSQLSTT requested.

An application requester request that violates the no-update specification is to be
rejected with SQLSTATE X’25000’ for update operations, SQLSTATE X’2D528’ for
dynamic requests to commit, and SQLSTATE X’2D529’ for dynamic requests to
rollback.

If the local environment allows it, the application requester should initiate processing
of commit or rollback for SQLSTATEs X’2D528’ and X’2D529’. If the local environment
does not allow the application requester to initiate commit or rollback, the SQLSTATEs
should be returned to the application.

The application requester may use rdbalwupd to ensure that the application performs
read-only operations while the application is executing in an environment that
supports access to a set of resources such that each member of the set is managed by a
distinct resource manager and consistency of the set is controlled by a two-phase
commit protocol initiated to the resource managers by the application manager.

CR8 An application server begins commit processing only if it is requested to commit by the
sync point manager. If an application requester receives a request to commit from the
sync point manager on the connection with an application server, the application
requester must ensure a rollback occurs for the unit of work.

See rules usage for environment in this section:

• Section 12.8.2.2 (on page 558)

Not applicable to TCP/IP.

CR9 An application server using distributed unit of work not protected by the sync point
manager or XA manager (see footnote †) can only process dynamic commit or rollback
requests or commit requests generated via a stored procedure defined with the commit
on return attribute if the parm rdbcmtok has a value of TRUE indicating the server is
allowed to process the commit or rollback.

Otherwise, the application server must refuse the commit or rollback request by
returning a CMMRQSRM to the application requester. The cmmtyp parameter must
indicate the type of request (commit or rollback).

CR10 If an application server is protected by a sync point manager or using the XA manager
(see footnote †) and it receives an RDBCMM or RDBRLLBCK, the RDBCMM or
RDBRLLBCK must be rejected and a CMDVLTRM must be returned to the application
requester with the cmmtyp value identifying the type of request (RDBCMM or
RDBRLLBCK).

CR11 If an application server successfully commits through either a EXCSQLSTT or
EXCSQLIMM command but a read-only application server with held cursors rolls back,
the application requester must inform the application the commit successfully
completed. If the next application request is not a static rollback request, the
application requester must reject the request and return SQLSTATE 51021 to the
application unless the application requester has performed an implicit rollback and
informed the application both the commit was successful and an implicit rollback
occurred.

In the above situation the server performing the commit could be either a remote unit
of work server that is allowed updates or a distributed unit of work server not

Part 1: Database Access Protocol 401

Commit/Rollback Processing (CR Rules) DRDA Rules

protected by the sync point manager or XA manager (see footnote †) that is allowed to
commit via the rdbcmtok parameter.

CR12 An application server using distributed unit of work or the XA manager (see footnote
†) must refuse SQL commit and SQL rollback requests that are inside stored
procedures. The refusal to perform the commit or rollback is returned to the stored
procedure. The stored procedure logic is responsible to provide the appropriate results
to the application.

CR13 The application server must return the results of the rollback in the uowdsp on
ENDUOWRM if both a rollback and a commit occur inside a stored procedure.

CR14 An application requester cannot send an rdbcmtok parameter set to the value TRUE to
an application server if that server is connected by a sync point manager or XA
manager (see footnote †), if that server is read-only, or if there is another server with
uncommitted updates involved in the transaction.

If an application server protected by a sync point manager or XA manager (see footnote
†) receives rdbcmtok set to the value TRUE the application server should generate an
alert and return CMDVLTRM to the application requester.

If a read-only application server receives rdbcmtok set to TRUE on a command and a
commit or rollback request occurs during execution of the command, then the commit
or rollback request should be rejected and an SQLSTATE X’2D528’ for commit or
X’2D529’ for rollback should be returned to the application requester.

CR15 An EXCSQLSTT command in an atomic chain enclosed within a BGNATMCHN-
ENDATMCHN command pair must not invoke a commit or rollback either implicitly
or explicitly through a commit or rollback request. If the application server receives
such a command, it should terminate processing of the atomic chain with SQLSTATE
’2D522’.

CR16 An interrupt request (INTRDBRQS) has no effect on the execution of a commit or
rollback.

CR17 When using the services of the XAMGR, the application must protect all connections.
All XAMGR protected connections must comply with the following. The application
server must reject any request that does not comply.

• All Global Transactions must be registered before any work can be performed on
that connection. Any work started without registering will be considered a Local
Transaction. Attempts to mix a Global Transaction with a Local Transaction or vice
versa should be rejected.

• The application must signal the end of all Global Transactions, but should not do so
for Local Transactions. Attempts to do so should be rejected by the application
server.

• The application must use the two-phase protocols to commit/rollback all Global
Transactions. For Local Transactions, the application must drive a local
commit/rollback using the RDB manager (that is, RDBCMM/RDBRLLBCK).

• A connection is associated with an XID when it has successfully registered with the
application server. The XID is dissociated from the connection at end time, unless
the application server indicates to the application requester that connection should
not be dissociated from the transaction.

• The application may prepare, commit, or roll back any XID on any XAMGR
protected connection, as long as that XID has completed, and does not exist in a

402 DRDA, Version 3, Volume 1

DRDA Rules Commit/Rollback Processing (CR Rules)

suspended state on any connection.

CR18 Connections protected by the sync point manager or XA manager, where the
connection is active with a Global Transaction, cannot issue any static/dynamic
commit or rollback. Any attempts by the application or stored procedure to perform
any sort of Static/Dynamic commit or rollback should be rejected. If the application is
using the XA manager, but the connection is active with a Local Transaction, then any
static/dynamic commit or rollback is valid from the application or stored procedure
only when the RDBCMTOK is set to TRUE). Following are the SQLSTATEs that should
be relayed back to the application when either a static/dynamic commit or rollback is
rejected.

• SQLSTATE 2D521 for both static COMMIT and ROLLBACK

• SQLSTATE 2D528 for both dynamic COMMIT and ROLLBACK

† These rules only apply to XAMGR protected connections that are in a Global Transaction, and do not apply to connections in a
Local Transaction. See CR16 for more details.

Part 1: Database Access Protocol 403

Connection Usage (CU Rules) DRDA Rules

7.6 Connection Usage (CU Rules)
See the DDM Reference for descriptions of the DDM commands.

CU2 The first DDM command required to flow over a connection is the EXCSAT command.
The EXCSAT command can flow anytime on a connection.

CU3 The first DDM command is either ACCRDB or INTRDBRQS. SQLAM uses DDM
commands in the QDDRDBD dictionary. This dictionary contains all DDM classes that
describe the commands, replies, and data objects required to communicate with an
RDB.

CU4 If the application server desires to terminate DDM command chaining, and there is no
appropriate DDM reply message associated with the SQLCA, the application server
must return SQLERRRM to break the chain, if SQLERRRM is a valid reply to the
command (for instance, SQLERRRM is not a valid response to BNDSQLSTT).

CU5 Continue on error must not be specified in the Data Stream Structure (DSS) header. If
specified, a SYNTAXRM with a synerrcd =X’04’ should be returned.

CU7 On the same connection, the INTRDBRQS is not valid after an ACCRDB command.

CU8 On the same connection, the ACCRDB is not valid after an INTRDBRQS command.

CU10 The DRDA level selected for use between an application requester and an application
server can be no higher than the highest common support level of the two participants.
This does not restrict an application requester from operating at different levels to
different application servers in the same unit of work.

CU11 An application server that supports the CCSID manager must return a required CCSID
manager-level value if the CCSID value received on EXCSAT is one of the required
CCSID manager-level values. The required CCSID manager-level values are 500, 819,
and 850.

The CCSID manager is not supported using SQLAM Level 3 protocols.

CU12 If a DRDA connection is supported by a SECMGR at Level 5, the initializing EXCSAT
must be immediately followed by one and only one ACCSEC/SECCHK exchange. Any
other attempts to send ACCSEC or SECCHK when SECMGR is Level 5 should be
rejected with PRCCNVRM with prccnvcd set to X’10’.

CU13 If commands are chained, then any command which returns EXTDTA reply objects
must be the last command in the chain with the same correlation ID. If another
command with the same correlation ID is chained after that command, the application
server rejects the command with PRCCNVRM with prccnvcd set to X’13’.

CU14 A network connection can only be reused for another application at the end of a
transaction.

CU15 The fully qualified package name and package consistency token are not required to be
specified on every SQL-related request. If the package name and consistency token are
not specified on a request, the last request that specified the package name and
consistency token is used to identify the package name and consistency token for the
request. The package section number is not optional and is required if the package
name and consistency token are not specified. If the package name and consistency
token were not specified on a previous request to establish the default, the request is
rejected by the application server with a conversational protocol error with the error
code set to X’20’ (default package name not established).

404 DRDA, Version 3, Volume 1

DRDA Rules Connection Usage (CU Rules)

CU16 A network connection established as a remote unit of work connection cannot be
reused by the requester for another application as a distributed unit of work
connection. A network connection established as a distributed unit of work connection
cannot be reused by the requester as a remote unit of work connection.

CU17 A network connection can only be reused for another application on a connection
boundary if and only if the application releases or disconnects from the connection
(such as issuing an SQL RELEASE or when the application terminates). When a
connection is reused, the requester issues the same commands used to establish the
connection and access the RDB (that is, EXCSAT, ACCSEC, SECCHK, ACCRDB). The
server must close or destroy all RDB resources associated with the current application
prior to executing any new commands for the new application. All held cursors are
closed. All temp tables are destroyed. Special registers are set to default values. The
application execution environment is set to a default state as if it was a new connection
being established.

CU18 A network connection can only be reused for another application on a transaction
boundary if and only if the application server returns an indicator on the availability of
the connection to be reused by another application. The following illustrates which
DDM requests represent a transactional boundary:

Transactional Boundary
Connection Type (DDM Request)___

RUOW - Remote Unit of Work RDBCMM - Commit
RDBRLLBCK - Rollback___

SYNCPTMGR protected connections SYNCCTL(Commit)
SYNCCTL(Rollback)___

XAMGR protected connections in a
Global Transaction

SYNCCTL(End) with flag TMSUCCESS,
TMFAIL, or TMSUSPEND (if
application server can support
dissociation of transaction)___

XAMGR protected connections in a
Local Transaction

RDBCMM - Commit
RDBRLLBCK - Rollback___�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

At the transactional boundary (for all connection types), the target server can only
indicate that the connection is available for reuse when the following conditions are
met:

1. The transaction closed all cursors related to the application.

2. The transaction closed all RDB resources associated with the application (for
example, temp tables).

3. The transaction did not establish a special execution environment that may
impact the execution of a transaction by another application (for example, the
degree special register changed to a non-default value).

4. The requester requested the connection be released for reuse.

5. The server indicated that the connection can released for reuse.

For XAMGR protected connection, that performed a SYNCCTL(End) with
TMSUSPEND. If the application requester cannot satisfy conditions 1 to 3, and resume
them later, then it should not send the reuse indicator. And both application requester
and application server should remain associated with the XID. If the application server
cannot satisfy conditions 1 to 3 and resume them later, then it should respond with

Part 1: Database Access Protocol 405

Connection Usage (CU Rules) DRDA Rules

RLSCON(NO). Both application requester and application server should remain
associated with the XID.

If both application requester and application server can save conditions 1 to 3, and
resume them later, it is expected that both should dissociate the connection from the
XID, and satisfy conditions 4 and 5; that is, the application requester should send the
reuse indicator, and the application server should respond with REUSE.

CU19 If a server returns a group of SET statements to be used to establish the application
execution environment for the next transaction, these SET statements must be sent to
the server using the set environment (EXCSQLSTT) command prior to executing
another transaction for the application. If a server is an intermediate database server, all
SET statements sent to all database servers involved in the transaction must be
included in the group of SET statements. When a released for reuse connection is
reused, the requester must issue the same commands used to establish the connection,
access the RDB, and then issue the set execution environment command with any SET
statements returned on the last commit or rollback executed on behalf of the
application (that is, EXCSAT, ACCSEC, SECCHK, ACCRDB, EXCSQLSET).

CU20 Prior to a released network connection being reused, the server must close or destroy
all RDB resources associated with the current application. All held cursors are closed.
All temp tables are destroyed. Special registers are set to default values. The
application execution environment is set to a default state as if it was a new connection
being established.

CU21 If a requester reuses a network connection without the server indicating the connection
is available for reuse, all resources associated with the connection are released as per
rule CU19.

CU22 SNA security cannot be used to authenticate users on a reused network connection.

CU23 If a reply data object to be sent does not conform to the manager level selected for use
between the server and the requester as described in rule CU10, then the server adds a
MGRLVLOVR object to reply data objects, as necessary, to correctly describe the format
and content of the object being sent.

For the reply objects returned for a given command, the MGRLVLOVR object is sent as
a reply data object. The format and content of all the following reply data objects of that
command are affected.

CU24 MGRLVLOVR may be specified as many times as necessary to correctly describe all
objects returned in reply to a command. Each MGRLVLOVR remains in effect for all
subsequent data objects until the end of the reply, or until another MGRLVLOVR is
encountered with its own override, whichever occurs first.

The override is in effect for only the reply to one command, except as specified by rules
CU27 and CU28.

CU25 The manager level specified in the MGRLVLOVR parameter must be a value less than
or equal to the corresponding value selected for use between the requester and the
server as described in rule CU10. A PRCCNVRM with PRCCNVCD of ’22’X (an
override manager level in an MGRLVLOVR is greater than the corresponding manager
level negotiated between the requester and server by EXCSAT/EXCSATRD) is returned
if this rule is violated.

CU26 The only manager whose level that may be overridden by use of the MGRLVLOVR
parameter is the SQL Application Manager.

406 DRDA, Version 3, Volume 1

DRDA Rules Connection Usage (CU Rules)

CU27 If a requester cannot process a new value for MGRLVLOVR (assuming that the value is
valid according to the other CU rules) that is received from a server as part of a reply
data object, then it must produce an SQLCA for the application. The SQLCA indicates
SQLSTATE 56072, specifying the parameter that the server requested, but that the
requester cannot support.

CU28 The manager level that applies to all data from a single query received in QRYDTA
objects (SQLCAs and user data) and their associated EXTDTA objects is determined by
the default manager level selected for use between the requester and the server as
described in rule CU10 or by the override value in effect at the time the QRYDSC is
received.

CU29 The Query Processing rules in effect for the reply objects returned for a query or result
set are determined by the default manager level selected for use between the requester
and the server as described in rule CU10 or by the override value in effect at the time
the QRYDSC is received, except as follows:

In response to OPNQRY or EXCSQLSTT for a stored procedure result set:

• If the first QRYDSC object is preceded by a MGRLVLOVR object with an SQLAM
level of 6 or lower, then the OPNQRYRM is not to contain a QRYBLKTYP
parameter.

• If the first QRYDSC object is preceded by a MGRLVLOVR object with an SQLAM
level of 6 or lower, then one or more QRYDSC objects will follow in sequence after
the MGRLVLOVR object. The QRYDSC objects are not to be considered as part of a
query block. The QRYDSC or QRYDSC objects will be formatted according to the
Blocking rules in effect for the override SQLAM level, except that the first QRYDSC
and the last QRYDSC object may be smaller than the specified QRYBLKSZ.

• If the first QRYDSC object is preceded by a MGRLVLOVR object with an SQLAM
level of 6 or lower, then one or more optional SQLCINRD objects will follow in
sequence after the last QRYDSC object. The optional SQLCINRD objects are not to
be considered as part of a query block. The SQLCINRD object or SQLCINRD objects
will be formatted according to the Blocking rules in effect for the override SQLAM
level, except that the first SQLCINRD and the last SQLCINRD object may be
smaller than the specified QRYBLKSZ.

• If the first QRYDSC object is preceded by a MGRLVLOVR object with an SQLAM
level of 6 or lower, then one or more QRYDTA objects will follow in sequence after
the last optional SQLCINRD object, if any optional SQLCINRD objects are present,
or after the last QRYDSC, if no optional SQLCINRD objects are present. The
QRYDTA objects are not to be considered as part of a query block. The QRYDTA or
QRYDTA objects will be formatted according to the Blocking rules in effect for the
override SQLAM level, except that the first QRYDTA and the last QRYDTA object
may be smaller than the specified QRYBLKSZ. If only one QRYDTA is returned, it
contains only a partial row.

• If the first QRYDSC object is preceded by a MGRLVLOVR object with an SQLAM
level of 6 or lower, then an ENDQRYRM and SQLCARD object may be returned for
the query for result set. The ENDQRYRM and SQLCARD objects are not to be
considered as part of a query block.

These exceptions do not apply to the responses to a CNTQRY request.

Part 1: Database Access Protocol 407

Conversion of Data Types (DC Rules) DRDA Rules

7.7 Conversion of Data Types (DC Rules)
DC2 Conversion between a DRDA data stream data type and an application variable data

type is the responsibility of the application requester.

When converting floating point numbers, use the default rounding rule. That is, round
to the nearest value and away from zero in the case of two nearest values.

Exceptions may occur when converting from DRDA data stream data types to
application variable data types. The application program receives an SQLSTATE of
X’22001’ for this error.

DC3 To promote interoperability among partners at different SQLAM levels, data types that
are supported starting at a given minimum SQLAM level will be subject to data
conversion.

If the application requester is at the minimum SQLAM level or higher, then the data
description and the data itself are converted before being sent to an application server
at a lower SQLAM level as follows:

1. Map any SQL host variable description X in an SQLVRBGRP to that of SQL type
Y before sending the SQLVRBGRP.

2. Map any data description X in an SQLDTAGRP to an equivalent DRDA type for Y
and convert its corresponding FD:OCA data from its source representation to its
equivalent SQL representation as type Y data before sending it.

__
Minimum

Source Type (X) Mapped Type (Y) SQLAM Level__
8-byte integer decimal(19,0) 6
row identifier varchar(40) for BIT data 6
datalink - SBCS long varchar(n) for SBCS data 6
datalink - MBCS long varchar(n) for MIXED data 6
BLOB Not defined. 6
CLOB - SBCS Not defined. 6
CLOB - MBCS Not defined. 6
DBCLOB Not defined. 6
BLOB locator Not defined. 6
CLOB locator Not defined. 6
DBCLOB locator Not defined. 6__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

If no data conversion is defined, the behavior depends on the descriptor group. If the
descriptor group is the SQLVRBGRP, the source SQL descriptor is sent to the
application server. If the descriptor group is the SQLDTAGRP, the application
requester rejects the command with an SQLSTATE of 56084.

DC4 To promote interoperability among partners at different SQLAM levels, data types that
are supported starting at a given minimum SQLAM level will be subject to data
conversion.

If the application server is at the minimum SQLAM level or higher, then the data
description and the data itself are converted before being sent to an application
requester at a lower SQLAM level as follows:

1. Map any SQL host variable description X in an SQLDAGRP to that of SQL type Y
before sending the SQLDAGRP.

408 DRDA, Version 3, Volume 1

DRDA Rules Conversion of Data Types (DC Rules)

2. Map any data description X in an SQLDTAGRP to an equivalent DRDA type for Y
and convert its corresponding FD:OCA data from its source representation to its
equivalent SQL representation as type Y data before sending it.

__
Minimum

Source Type (X) Mapped Type (Y) SQLAM Level__
8-byte integer decimal(19,0) 6
row identifier varchar(40) for BIT data 6
datalink - SBCS long varchar(n) for SBCS data 6
datalink - MBCS long varchar(n) for MIXED data 6
BLOB Not defined. 6
CLOB - SBCS Not defined. 6
CLOB - MBCS Not defined. 6
DBCLOB Not defined. 6
BLOB locator Not defined. 6
CLOB locator Not defined. 6
DBCLOB locator Not defined. 6__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

If no data conversion is defined, the behavior depends on the descriptor group. If the
descriptor group is the SQLDAGRP, the source SQL descriptor is sent to the application
requester. If the descriptor group is the SQLDTAGRP, the application server rejects the
command with an SQLSTATE of 56084.

DC5 To promote consistent behavior among DRDA partners who choose to provide
differing levels of support for DRDA types, data types that are supported starting at a
minimum SQLAM level will be subject to data conversion.

If an application requester at a given SQLAM level does not support a given data type
defined at that SQLAM level, then before presenting the data or its description to the
application, it must use the mapping defined in rule DC3 to convert the data or
descriptor received from an application server that does support that data type. If no
mapping is defined, the application requester rejects the command with an SQLSTATE
of 56084.

If an application server at a given SQLAM level does not support a given data type
defined at that SQLAM level, then before presenting the data or its description to the
relational database, it must use the mapping defined in rule DC4 to convert the data or
descriptor received from an application requester that does support that data type. If
no mapping is defined, the application server rejects the command with an SQLSTATE
of 56084.

Part 1: Database Access Protocol 409

Data Representation Transformation (DT Rules) DRDA Rules

7.8 Data Representation Transformation (DT Rules)
DT2 The data representation for all DRDA command input and output data other than

ACCRDB is in the format defined by the TYPDEFNAM and overrides (TYPDEFOVR)
exchanged on ACCRDB and ACCRDBRM or included in command or reply data
objects to override specifications for a particular command or object.

Note: DDM command parameters and reply message parameters are not considered as
input and output data. DDM defines representation of these parameters. Only
command data objects and reply data objects are affected by the TYPDEFNAM that
the ACCRDB command specified. Refer to Section 4.4.1 (on page 84) for more details
on the ACCRDB DDM command.

DT3 All data representation transformations are the responsibility of the receiver of the data
object. With the exception of character data types, application servers do data
representation transformation for data received from application requesters;
application requesters do data representation transformation for data received from
application servers.

Note: There are no restrictions on the data representation format chosen by the application
server or application requester. In order to support a format different from the
preferred format of the machine, conversion may be required at the sender. The
receiver is still responsible for any data transformation needed to support the
sender’s format.

For all character data types that are received from the application requester (such as
data types that carry CCSIDs) the relational database has the responsibility of data
representation transformation when necessary.

For all data types that are received from the application server, the SQLAM has the
responsibility of data representation transformation when necessary. The DRDA
Reference defines all conversions of character data between CCSIDs.

DT4 A data representation transformation error (no representation of the character in the
application server CCSID) may occur when the application server transforms
application input string variable values, which the application server received from the
application requester, to its representation. The application program receives an
SQLSTATE of 22021 for this error.

DT5 A data representation transformation error (no representation of the character in the
application requester code page) may occur when the application requester transforms
string values, which the application requester received from the application server, to
its representation.

If the string value cannot be assigned to an application variable that has an indicator
variable, then the application program receives a warning SQLSTATE of 01520. If the
string value cannot be assigned to an application variable that does not have an
indicator variable, then the application program receives an error SQLSTATE of 22021.

DT6 An overflow error may occur when the application requester transforms a floating
point number, which the application requester received from the application server, to
its representation.

If an application variable size mismatch occurs for a value being returned to the
application program and the application variable has an indicator variable, then the
application program receives a warning SQLSTATE of 01515.

If an arithmetic exception occurs for a value being returned to the application program
and the application variable has an indicator variable, then the application program
receives a warning SQLSTATE of 01519.

410 DRDA, Version 3, Volume 1

DRDA Rules Data Representation Transformation (DT Rules)

If an application variable size mismatch occurs for a value being returned to an
application program and the application variable does not have an indicator variable,
then the application program receives an error SQLSTATE of 22001.

If an arithmetic exception occurs for a value being returned within an inner SELECT or
for a value being returned to an application variable in an application program that
does not have an indicator variable, then the application program receives an error
SQLSTATE of 22003, 22012, 22502, or 22504.

DT7 When transforming a floating point number (such as 370 floating point to IEEE floating
point), round to the nearest value and away from zero in the case of two nearest values.

DT8 If the representation of the data to be sent is different than the representations agreed to
at ACCRDB, then the application requester or the application server adds
TYPDEFNAM and TYPDEFOVR parameters to command or reply data objects, as
necessary, to correctly describe the data being sent. FDODSC and QRYDSC objects do
not change.

For a given command, the TYPDEFNAM and TYPDEFOVR objects are sent as
command data objects. The data representations of all the following command data
objects of that command are affected. The early and late group, row, and array
descriptors for these command data objects take their representations from these
TYPDEFNAM and TYPDEFOVR values. The same rules apply when TYPDEFNAM
and TYPDEFOVR objects precede any reply data objects returned to the command.

DT9 TYPDEFNAM may be specified as many times as necessary to correctly describe all
objects required for a command or returned in the reply to a command.

The overrides are in effect for only one command or the reply to one command.

DT10 The representation for all data received in QRYDTA objects from a single query
(SQLCAs and user data, including EXTDTA objects) is determined by
ACCRDB/ACCRDBRM or overrides effective at the time the QRYDSC is received. If
the application requester sends an OUTOVR object with a CNTQRY command, the
TYPDEFNAM, TYPDEFOVR associated with the QRYDSC applies to the OUTOVR
object as well.

An SQLDARD is intended to be converted to an SQLDA for the application program
and should not be used as a description of the data on the wire. If the application
requester has received an SQLDARD for this section, then the description contained in
the SQLDA is returned to the application. The application requester does not use the
SQLDA as the basis for determining the representation of the data sent from the
application server. The sole determinant of data representation is the QRYDSC with the
TYPDEFNAM, TYPDEFOVR, specified on ACCRDBRM or any override received prior
to the QRYDSC object.

DT11 If an application requester cannot process a new value for TYPDEFNAM that is
received from an application server as part of a reply data object, then it must produce
an SQLCA for the application. The SQLCA indicates SQLSTATE 58017, specifying the
parameter that the application server requested, but that the application requester
could not support.

DT12 If an application server cannot process the new values for TYPDEFNAM that it
received from an application requester as part of a command data object, then it must
return VALNSPRM to the application requester. The application requester will handle
this like any other VALNSPRM error.

Part 1: Database Access Protocol 411

Data Representation Transformation (DT Rules) DRDA Rules

DT13 If an application requester cannot process data according to the CCSID specified for
this data, then it must produce an SQLCA for the application indicating SQLSTATE
57017 specifying the pair of CCSIDs for which conversion could not be performed.

DT14 If an application server cannot process data according to the CCSID specification for
this data then it must return an SQLCA indicating SQLSTATE 57017 specifying the pair
of CCSIDs for which conversion could not be performed.

DT15 The CCSID specified on a TYPDEFOVR overrides only the corresponding CCSID type
on the ACCRDB/ACCRDBRM for the duration of the command or reply, and only
until the corresponding CCSID type in the next TYPDEFOVR is found on the command
or reply. At completion of the command or reply, all CCSID specifications revert to
those established by ACCRDB or ACCRDBRM.

DT16 If the sender has not specified CCSIDMBC or CCSIDDBC on an
ACCRDB/ACCRDBRM, nor on a TYPDEFOVR of a command/reply data object, then
character data of that representation should not be sent unless explicitly defined by
MDD/SDA pairs.

The receiver of this data should return an SQLCA indicating SQLSTATE 57017 with
zero as the source CCSID token.

DT17 An application requester must change all non-nullable data types for host variables
associated with a statement that invokes a stored procedure (that is, CALL statement)
to the nullable version of the data type before sending the request to the application
server.

DT18 An application server must set the indicator variables for INPUT host variables
associated with a statement that invokes a stored procedure (that is, CALL statement)
to −128 prior to returning the host variables to the application requester.

DT19 TYPDEFNAM or TYPDEFOVR objects are ignored for any EXTDTA blocks or for extra
query blocks. For any given EXTDTA object, the overrides in effect for the object
containing the associated FD:OCA placeholder are also in effect for the EXTDTA.

DT20 A DATALINK data column may exist in a database management system and be
presented to an application as a structure containing non-character (viz, binary) data.
However, when a DATALINK column flows on the wire it must conform to the
following format. The two-byte length prefix must be set to the length of the string that
follows, as with a LONG VARCHAR type, and the contents of the string be as shown
below:

412 DRDA, Version 3, Volume 1

DRDA Rules Data Representation Transformation (DT Rules)

__
Position Field Name Description__

Character form of INTEGER version number,
padded with leading zeros.

1-5 VERSION

Four-byte character string indicating the link
type.

6-9 LINK_TYPE

Character form of INTEGER length of the
following URL field, padded with leading zeros
(assumes a length ≤ 99999).

10-14 URL_LENGTH

Eight blanks in initial version.15-22 (reserved)
Character string containing the URL of the
associated file, whose ending position, xx, is
URL_LENGTH + 22.

23-xx URL

Character string containing a comment about
the DATALINK, whose starting and ending
positions are URL_LENGTH + 23 (yy) and the
value of the 2-byte string prefix (zz).

yy-zz COMMENT

__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Note: The implementer of a DRDA application requester has complete freedom of choice as
to what to do with a received string for a DATALINK column. One reasonable option
is to extract the URL portion and return that to the user. An application requester
may choose to include the comment with the URL. The DRDA architecture does not
specify how the string is used. Normally, an application would use a scaler function
on the column to extract the desired potion of the complete structure, in which case
the DRDA type would be that of the function and not be the DATALINK type.

DT21 A data representation transformation error (no representation of the character in the
coded character set) may occur when an application requester or application server
transforms string values to the sending data format representation as defined by the
overrides (TYPDEFOVR) sent on ACCRDB or ACCRDBRM. The application program
receives an SQLSTATE of 22021 for this error.

Part 1: Database Access Protocol 413

RDB-Initiated Rollback (IR Rules) DRDA Rules

7.9 RDB-Initiated Rollback (IR Rules)
IR1 If the local environment at the application server attempts to initiate a global rollback

when the server detects a relational database-initiated rollback, it must send an
ABNUOWRM (RDB-initiated rollback) for an unprotected connection or a
CMMRQSRM (type set to rollback) for a protected connection as part of the response to
the request.

However, if the request is an OPNQRY, EXCSQLSTT, or CNTQRY using the Limited
Block Protocol, the response may have to be deferred until the next CNTQRY, adhering
to rules QT2 through QT4 (see Section 7.21.4 (on page 446)). If the application server
defers the ABNUOWRM (RDB-initiated rollback) for an unprotected connection or the
CMMRQSRM (type set to rollback) for a protected connection, it must return the
message as the response to the next command, regardless of the type of request.

IR2 If an application requester receives a request to back out from the network facility on a
network connection with an application server, the application requester must ensure
that rollback occurs at all application servers involved in the unit of work.

414 DRDA, Version 3, Volume 1

DRDA Rules Optionality (OC Rules)

7.10 Optionality (OC Rules)
OC2 Application requesters do not have to send optional commands or optional parameters

on any command or all possible values of any parameter unless explicitly stated in this
volume.

OC3 Application servers must recognize all optional commands, parameters, and values.
They are allowed to reject optional commands and any commands that have optional
parameters that contain values other than the default for the optional components. The
application server might also reject required parameters that contain values not defined
by DDM as permissible values or that have lengths within the permissible range
supported by DDM but beyond the maximum length supported by the application
server. This should be reported with one of the four DDM not supported reply messages.
These are:

• CMDNSPRM for unsupported commands

• PRMNSPRM for unsupported parameters

• VALNSPRM for unsupported values

• OBJNSPRM for unsupported objects

OC4 Application servers do not have to send optional parameters of reply messages or reply
data objects. Application servers do not have to send every possible reply message. In
fact, the circumstances at a particular application server might make it impossible to
get to the situation a reply message covered.

OC5 Application requesters must recognize all optional parameters and values sent in reply
messages and reply data objects. They are allowed to discard any optional information
unless explicitly stated otherwise in this volume.

OC6 Application requesters must be prepared to receive Not Supported reply messages for
any optional components they send to an application server.

OC8 When an application requester does not specify an optional parameter that the target
application server supported, the application server must apply the default rules
specified in DDM.

OC9 When the end user and/or the application does not supply a parameter value, and the
parameter is required, the application requester must return an error message or apply
an application requester value to the parameter and specify the parameter on the
command.

OC10 When the end user and/or the application does not supply a parameter value, and the
parameter is optional, the application requester must not include the parameter on the
command but must allow the application server to apply the default value.

Part 1: Database Access Protocol 415

Program Binding (PB Rules) DRDA Rules

7.11 Program Binding (PB Rules)
PB1 The relational database name (RDB_NAME) contained in the package name supplied

on the BGNBND command must be the same as the RDB_NAME supplied on the
ACCRDB command.

PB2 After the application requester sends a BGNBND command to the application server
and receives a non-error response, the only valid command request to this application
server before ENDBND, RDBCMM, RDBRLLBCK, or resource recovery processing is
BNDSQLSTT.

PB3 The BNDSQLSTT command is valid only between the BGNBND and resource recovery
processing or between BGNBND and one of these commands: ENDBND, RDBCMM,
or RDBRLLBCK.

PB4 After the application requester sends a BGNBND command to the application server
and receives a non-error response, the package name supplied on the BNDSQLSTT and
ENDBND commands must be the same as the package name supplied on the BGNBND
command.

PB5 A new package that DRDA bind command sequence has bound becomes persistent
only after a commit.

PB6 If a rollback occurs prior to a commit, a DRDA bind command sequence does not
replace an old package.

PB7 A commit performs an implicit ENDBND.

PB8 A package can be dropped and then recreated without an intervening commit.
Conversely, a package can be created and then dropped without an intervening
commit.

PB9 SQL statements in an application program are input to the BIND process by a
BNDSQLSTT. The following statements are exceptions and should not flow at bind:
INCLUDE, WHENEVER, PREPARE, EXECUTE, EXECUTE IMMEDIATE, DESCRIBE,
OPEN, FETCH,51 CLOSE, COMMIT, CONNECT, ROLLBACK, RELEASE, SET
CONNECTION, DISCONNECT, BEGIN DECLARE SECTION, END DECLARE
SECTION, and local statements.52

The SQL statement is the SQLSTT command data object of the BNDSQLSTT command.

The processing for an individual SQL statement that the target relational database
performs is specific to the environment.

PB11 The order in which SQL statements must be submitted to the relational database’s
BIND process is defined in ISO/IEC 9075: 1992, Database Language SQL. For example,
the declaration of a SELECT must precede the corresponding OPEN, FETCH, and
CLOSE.

PB12 Each application variable referenced in an SQL statement to be bound must be
described by an SQLDTA FD:OCA description in the order in which the application

51. A connection using distributed unit of work protocols, the FETCH statement can flow to distributed application servers during
the bind process. (See rule Section 7.11).

52. A local statement is understood by the precompiler and either processed completely by the precompiler, or it results in a call to
the application requester at runtime, which does not cause any flows to the application server.

416 DRDA, Version 3, Volume 1

DRDA Rules Program Binding (PB Rules)

variable appears in the SQL statement.

This includes a program variable reference that specifies a procedure name within an
SQL statement that invokes a stored procedure. Note, however, that the stored
procedure name value flows in the prcnam parameter rather than in an SQLDTA on the
EXCSQLSTT for that SQL statement. The set of application variables so described is the
SQLSTTVRB command data object of the BNDSQLSTT command.

PB13 Any application variable references that show indicator variable usage map to a pair of
variables. The first variable has the characteristics of the user’s true data. The second
variable is a SMALL INTEGER and represents the indicator variable.

When the user’s data is sent at execution time, it is just one variable. That variable is
nullable if the corresponding column is nullable.

PB14 If an application server, or the relational database associated with the application
server, does not include in its BIND process a particular SQL statement, the response to
the application requester for such an SQL statement is an SQLCARD reply data object
with an error SQLSTATE.

PB17 The character string :H replaces each application variable reference (user data or
indicator) before it is sent to the application server for BIND.

It is allowable to have one or more blanks between the : and H.

PB19 SQL statements that the application requester does not understand are sent with the
following assumptions:

• All host variables are input variables.

• The statement is assigned a unique section number.

• The section is executed by an EXCSQLSTT command.

The BNDSQLSTT bndsttasm parameter is used to alert the application server of these
assumptions. If the assumptions are incorrect, the application server returns an
SQLSTATE of X’42932’ for that statement. The application server has the final word on
validity of the statement.

A statement is not understood when the application requester cannot classify the
statement properly. That is, the application requester does not know the statement
type, or the application requester cannot tell which host variables are input or output.

PB20 If the application requester language processor supports structure or array references
to provide shorthand notation to refer to many program variable fields, then :Hs are
inserted into the SQL statement for each element of the structure or array. Commas
separate these :Hs (for example, :H,:H,:H for a three element structure or array).

If there is an indicator structure specified in the program variable reference, and if the
data structure has m more variables than the indicator structure, then the last m
variables of the data structures do not have the indicator variables.

If the data structure has m less variables than the indicator structure, the last m
variables of the indicator structure are ignored. Each substitution, if there is an
indicator variable, then becomes a pair of :Hs (for example, :H:H,:H:H,:H for a data
structure with 3 variables, and an indicator array with 2 elements).

It is allowable to have one or more blanks between the : and H.

PB26 A single variable represents any application variable references that do not show
indicator variable usage. That variable must use the non-nullable data type. See rule

Part 1: Database Access Protocol 417

Program Binding (PB Rules) DRDA Rules

PB13 for nullable cases.

PB27 If the application server receives an ENDBND to terminate bind processing, and an
error occurred during bind processing that prevents the successful generation of the
package, the SQLSTATE in the SQLCARD that the application server generates must
not begin with the characters 00, 01, or 02. The values 00, 01, and 02 imply the package
was created. All other values imply the package was not created.

PB29 BNDOPT should not be used to flow bind options and values for which codepoints are
explicitly defined in DRDA. For example, do not use BNDOPT to send the option
ISOLATION_ LEVEL = CURSOR_STABILITY to a server since PKGISOLVL has been
created for this purpose. Conflicts in bind options are detected by the application
server and are reported by returning an SQLSTATE of X’56096’ to the application
requester.

418 DRDA, Version 3, Volume 1

DRDA Rules SQL Diagnostics (SD Rules)

7.12 SQL Diagnostics (SD Rules)
SD1 Statement-level SQL diagnostics is requested when accessing a remote RDB. Support

for SQL diagnostics is optional.

SD2 If a server does not support SQL diagnostics, the diagnostics group is returned as a null
group. Any specific field not supported by the target server is set to null, an empty
string, or a 0 value.

SD3 The SQLCODE and SQLSTATE in the last condition must match the SQLCODE field
and the SQLSTATE field defined in the SQLCAGRP.

SD4 The diagnostics connection array is returned in the SQLCARD if and only if the target
server is acting as an intermediate server or when the target server returns an optional
SQLCARD as reply data to an ACCRDB command.

SD5 Diagnostics returned in query blocks only contain conditions generated fetching the
row. The query block contains a null statement and connection information. Statement
and connection information is provided in a separate block SQLCARD. The block
SQLCARD must follow the QRYDTA. If a row contains a query terminating
SQLCARD, then the block SQLCARD is not required. Block SQLCARD rules:

• Block SQLCARD contains a null condition array and must be chained after the first
QRYDTA.

• Block SQLCARD precedes any EXTDTA externalized objects even when the query
block contains a query terminating condition.

• Block SQLCARD is returned if and only if diagnostics contains a statement group or
a connection array.

• Block SQLCARD is required to be returned once per cursor instance.

SD6 Diagnostics are required to be returned when an SQL statement generates multiple
error or warning conditions per command. The diagnostics group is required for
cursors that support rowset processing or statements that contain array data. In these
cases, multiple error and warning conditions are returned in the SQLCARD diagnostics
group.

Part 1: Database Access Protocol 419

Security (SE Rules) DRDA Rules

7.13 Security (SE Rules)
SE2 The application server must be able to obtain the verified end user name associated

with the connection.

See rules usage for environment in these sections:

• Section 12.8.2.3 (on page 559)

SE3 If user identification and authentication security is not provided using SECMGR Level
5 and above, an application requester must have send support for the types of security
defined for the specific network protocols defined in Part 3, Network Protocols. An
application server must have receive support for the types of security defined for the
specific network protocols defined in Part 3, Network Protocols. For example, if an
end-user name is provided on a network connection, the end-user name supplied in the
DCE security token takes precedence over the end-user name received from the
network facility.

See rules usage for environment in this section:

• Section 12.8.2.3 (on page 559)

SE5 If SECMGR is at Level 5 and above, the application requester and application server
must support at least one of the security mechanisms defined in Chapter 10 (on page
471).

SE6 Connections using the DCE security mechanism do not use GPSS channel bindings.

SE7 If the application server does not support the SECMEC requested, then the application
server must return the list of SECMEC values that it supports. The application
requester must select one of the SECMEC combinations to use. If the application
requester does not support any of the SECMEC values returned, then the application
requester must terminate the network connection and return a security error to the
user.

SE8 If the application server supports the SECMEC but does not support the ENCALG or
ENCKEYLEN requested, then the application server must return one or more values in
ENCALG and ENCKEYLEN that it supports for the requested SECMEC. The
application requester must select one of the ENCALG and ENCKEYLEN combinations
to use. If the application requester does not support any of the ENCALG or
ENCKEYLEN values returned, then the application requester must terminate the
network connection and return a security error to the user.

SE9 With the data encryption SECMECs, the sender must always encrypt the security-
sensitive objects, SQLDTA, SQLDTARD, SQLSTT, SQLSTTVRB, SQLATTR, SQLDARD,
SQLCINRD, SQLRSLRD, QRYDTA, EXTDTA, and SECTKNOVR. When encrypting the
security-sensitive objects, the entire DSS containing the security-sensitive objects must
be encrypted.

If the security-sensitive objects are not encrypted, then the PRCCNVCD value of ’24’X
must be returned.

420 DRDA, Version 3, Volume 1

DRDA Rules SQL Section Number Assignment (SN Rules)

7.14 SQL Section Number Assignment (SN Rules)
SN1 A section number is between 1 and 32,767 inclusive.

SN2 When a statement requires the assignment of a unique section number, a section
number one larger than the previous number allocated is assigned. If this is the first
statement to be assigned a number, then it is assigned section number 1.

During the bind process, the application server can receive section numbers out of
sequence. The same section number is assigned to related SQL statements (see rule
SN3), but not all of these statements are sent to the application server during bind
processing (see rule Section 7.11 (on page 416)). Therefore, the first occurrence of a
section number the application server receives might not be the first SQL statement in
the related group. Unrelated statements can be interspersed among related statements
that share a section number.

An application server can, but is not required to, allow SQL statements that are not part
of a related statement group to arrive out of sequence.

At the conclusion of bind processing, gaps in the section numbers can exist in the
package. These gaps are the result of dynamic SQL statements that were not sent
during the bind process (see rule Section 7.11 (on page 416)), but may be referenced at
execution time.

SN3 The application requester assigns the same section number to all related SQL
statements that have execution time dependencies. Specifically, the application
requester assigns each declared statement or cursor a unique section number. A cursor
declared for a statement shares the statement section number.

Each SQL statement that references the declared statement or cursor (FETCH,
EXECUTE, OPEN, CLOSE, PREPARE) receives the same section number as the
referenced statement or cursor. Specifically, both the mandatory pkgnamcsn and the
optional cmdsrcid parameters as specified on the OPNQRY command are used to
uniquely identify a query. A successfully opened cursor constitutes a unique instance
of the query as identified by a query instance identifier which is returned by the server
in the OPNQRYRM reply. Subsequently, all query commands (CNTQRY or CLSQRY)
issued against the server related to this cursor must also include the query instance
identifier in order to uniquely identify the cursor. The optional cmdsrcid parameter, if
specified for such operations, must be identical to what was specified previously on the
EXCSQLSTT or OPNQRY command. Furthermore, the cmdsrcid parameter must also be
identical to what was specified on the PRPSQLSTT command for a dynamically
prepared query. See also rules QI1 through QI5 in Section 7.21.2.1 (on page 440).

SN4 The application requester assigns a unique section number to the statements ALTER,
CALL, COMMENT ON, CREATE, DELETE, DROP, EXPLAIN, GRANT, INSERT,
LABEL ON, LOCK, SELECT (embedded), REVOKE, and UPDATE.

SN5 Each occurrence of EXECUTE_IMMEDIATE may be assigned a unique section number,
share a section number of one or more other EXECUTE_IMMEDIATEs, or all
EXECUTE_IMMEDIATEs may share the same section number.

SN7 The largest section number the application requester assigns to any statement is
communicated to the application server by the maxsctnbr parameter on the DDM
command ENDBND. Any gap between the highest section seen and the value of
maxsctnbr will be available for sections with dynamic statements.

SN8 Each section number that the application requester sends to the application server must
be unique. (For the related statements OPEN, FETCH, CLOSE, and DECLARE

Part 1: Database Access Protocol 421

SQL Section Number Assignment (SN Rules) DRDA Rules

CURSOR, the DECLARE CURSOR is sent and FETCH is conditionally sent. See Section
7.11 (on page 416).) The application server can process or discard any statement with a
duplicate section number that is subsequently received.

As stated in rule SN3, once a cursor has been opened, for any subsequent query
command (CNTQRY or CLSQRY) related to this cursor, the application requester must
also send the query instance identifier to the server in order to uniquely identify the
cursor. In addition, the optional cmdsrcid parameter, if specified for any such operation,
must be identical to what was specified previously on the EXCSQLSTT or OPNQRY
command. Furthermore, the cmdsrcid parameter must also be identical to what was
specified on the PRPSQLSTT command for a dynamically prepared query. See also
rules QI1 through QI5 in Section 7.21.2.1 (on page 440).

SN9 A section number may be repeated in flows to the application server when the
immediately prior statement was bound with errors and the current statement’s section
number matches that on the prior statement. In this case, the same section number may
be sent again.

The result of subsequent binds of the same section number reset error indicators
previously set for that section number.

SN10 Once assigned to a particular application source on the database connection by the
application requester, the command source identifier remains in effect for the life of the
application source and the application requester must specify this parameter either
implicitly or explicitly on all the following commands: CLSQRY, CNTQRY,
DSCSQLSTT, EXCSQLIMM, EXCSQLSTT, OPNQRY, and PRPSQLSTT. As such, the
command source identifier and the pkgnamcsn parameters together uniquely identify a
particular invocation of a command. No error is necessarily issued by the server if the
application requester fails to specify the correct command source identifier on a
command stemming from a particular application source because the server will be
misled to handle the command as being from another application source altogether.

For additional information on how the command source identifier affects cursor
operations, refer to rules SN3, SN8, and SN11 in this section.

SN11 If an intermediate server is connected to a downstream server that is operating at
SQLAM level 6 or below, the former is responsible for mapping requests from the
upstream requester and replies from the downstream server so that both flows conform
to the DRDA level at which the receiver is operating.

If explicitly specified, the command source identifier must be stripped off by the
intermediate server before the command is forwarded on to the downstream server.
Furthermore, the intermediate server must allow no more than one command source
identifier value to be specified either explicitly or implicitly by the upstream requester
for a database connection. In essence the first command source identifier specified
explicitly or implicitly on a command on the database connection is also the only one
that is supported. The intermediate server must therefore reject any command on the
existing database connection bearing another command source identifier value either
explicitly or implicitly. The method used to reject the command depends on the
command:

• If the command is OPNQRY, then the OPNQFLRM reply message is returned with
an SQLCARD specifying 56072.

• For any other command, then an SQLCARD is returned specifying 56072.

422 DRDA, Version 3, Volume 1

DRDA Rules SQL Section Number Assignment (SN Rules)

Also see rule QI5 in Section 7.21.2.1 (on page 440).

Part 1: Database Access Protocol 423

Stored Procedures (SP Rules) DRDA Rules

7.15 Stored Procedures (SP Rules)
SP1 If both pkgnamcsn and prcnam are specified on an EXCSQLSTT for a CALL or other SQL

statement that invokes a stored procedure, then:

• If the section identified by pkgnamcsn exists in the package identified by pkgnamcsn,
but the section is not associated with a stored procedure, then the use of prcnam
with pkgnamcsn is invalid and the application server returns CMDCHKRM to the
application requester.

• If the CALL or other SQL statement specifies the procedure name using a host
variable, the section identified by pkgnamcsn exists in the package identified by
pkgnamcsn, and the section is associated with a stored procedure, then the
application server invokes the stored procedure by using the prcnam value.

• If the CALL or other statement that invokes a stored procedure does not specify the
procedure name using a host variable, then the value specified by the prcnam
parameter, if present, must match the procedure name value contained within the
section identified by pkgnamcsn.

SP2 If there are any host variables in the parameter list of a stored procedure (that is, CALL
statement), the presence of all variables should be reflected (by a null indication or
data) in both the SQLDTA that flows from the application requester, and the
SQLDTARD that is returned from the application server.

SP3 If a CALL or other statement that invokes a stored procedure specifies the procedure
name using a host variable, then the prcnam parameter of the EXCSQLSTT specifies the
procedure name value. The procedure name value is not duplicated in any SQLDTA
command data object that might also flow with the EXCSQLSTT.

SP4 In situations where a single application requester connects to more that one application
server during the execution of a client application, the application requester may
receive the same locator value within the SQLRSLRD from more than one application
server. It is the responsibility of the application requester to ensure that a locator value
returned to a client application is unique for a particular execution of that client
application.

SP5 An EXCSQLSTT command in an atomic chain enclosed within a BGNATMCHN-
ENDATMCHN command pair must not be for a CALL statement for a stored
procedure. If the application server receives such a command, it should terminate
processing of the atomic chain with SQLSTATE ’560B6’.

SP6 If the value of the rtnsqlda and typsqlda parameters on the execute SQL Call statement
command request descriptive information for stored procedure parameters, the SQL
descriptor area reply data is returned before the SQL data reply data. The rtnsqlda
parameter is ignored if no SQLDTARD is returned describing the returned parameters.

424 DRDA, Version 3, Volume 1

DRDA Rules SET Statement (ST Rules)

7.16 SET Statement (ST Rules)
ST1 Local SET statements are SET statements that do not flow to the server. The following

are local SET statements:

• SET CONNECTION

• SET CURRENT PACKAGESET

All other or unrecognized SET statements are considered non-local. Non-local SET
statements may flow with the BNDSQLSTT, EXCSQLSET, EXCSQLIMM, and
EXCSQLSTT commands.

ST2 An application requester does not automatically propagate the setting of special
registers at the current application server when the application requester connects to a
new application server.

An application requester that flows non-local SET statements need not track the effect
of SET statements that set the contents of special registers at an application server.

Any application server that connects to a database server must track the execution of
SET statements and the effect of the contents of special registers. Prior to executing an
SQL command at a database server, any new or changed settings must be propagated
using the DDM EXCSQLSET command. EXCSQLSET contains an ordered list of SET
statements. The SET statements are used to set the special registers to the values at the
application server.

ST3 Non-local SET statements should be executed at an application server and a database
server in the order received.

ST4 If an application server or database server does not recognize a SET statement, it must
return a warning SQLSTATE with an SQLCARD object.

If a database server recognizes the SET statement but the processing of the statement
fails that should prevent the processing of any other SQL statements, the database
server must return an SQLERRRM reply message with an SQLCARD object.

ST5 The SET CURRENT PACKAGE PATH statement is a special type of non-local SET
statement that can only flow with the EXCSQLSET command. The requester manages
the CURRENT PACKAGE PATH value, and propagates the value to the server in the
event that the value has been changed by the application since the last request was
sent. In this case, the value will flow to the server prior to sending the next remote SQL
request. The EXCSQLSET command is used to propagate the setting of the CURRENT
PACKAGE PATH value. The value cannot be sent as part of the PREPARE or
EXCSQLIMM commands. Any attempt to send this value as part of these commands
will result in the SQLSTATE 42612.

ST6 When a non-local SET statement is executed, only the execution environment identified
by the value of the cmdsrcid parameter as specified on the command is affected.

ST7 When a server returns a group of SET statements in order to allow the connection to be
reused for another application on a transaction boundary as per rule CU17 in Section
7.6 (on page 404), the special register settings apply solely to the execution environment
identified by the default cmdsrcid parameter value of 0.

ST8 When a server returns a group of SET statements as per the setting of the rtnsetstt
parameter on the command, the special register settings apply solely to the execution
environment identified by the cmdsrcid parameter as specified on the command.

Part 1: Database Access Protocol 425

Serviceability (SV Rules) DRDA Rules

7.17 Serviceability (SV Rules)
SV1 The application requester must generate diagnostic information and may notify a

network focal point when it receives an abnormal disconnect of the network connection
from the application server.

See rules usage for environment in these sections:

• Section 12.8.2.4 (on page 559)

• Section 13.6.2.4 (on page 577)

SV2 The application requester must generate diagnostic information and may notify a
network focal point when it receives the following DDM reply messages:

• AGNPRMRM svrcods 16,32,64

• CMDCHKRM svrcods 8,16,32,64

• CMDVLTRM svrcod 8

• DSCINVRM svrcod 8

• DTAMCHRM svrcod 8

• PRCCNVRM svrcods 8,16,128

• QRYNOPRM svrcod 8

• QRYPOPRM svrcod 8

• RDBNACRM svrcod 8

• RDBACCRM svrcod 8

• SECCHKRM svrcod 16

• SYNTAXRM svrcod 8

SV3 The application requester must generate diagnostic information and may notify a
network focal point when the application requester reaches a resource limit that
prevents continued normal processing.

SV4 The application requester must generate diagnostic information and may notify a
network focal point when a blocking rule is violated in the data received from the
application server.

SV5 The application requester must generate diagnostic information and may notify a
network focal point when a chaining rule is violated in the data received from the
application server.

SV6 The application server must generate diagnostic information and may notify a network
focal point when it generates the following DDM reply messages:

• AGNPRMRM svrcods 16,32,64

• CMDCHKRM svrcods 8,16,32,64

• CMDVLTRM svrcod 8

• DSCINVRM svrcod 8

• DTAMCHRM svrcod 8

• PRCCNVRM svrcods 8,16,128

426 DRDA, Version 3, Volume 1

DRDA Rules Serviceability (SV Rules)

• QRYNOPRM svrcod 8

• QRYPOPRM svrcod 8

• RSCLMTRM svrcods 8,16,32,64,128

• RDBNACRM svrcod 8

• RDBACCRM svrcod 8

• SECCHKRM svrcod 16

• SYNTAXRM svrcod 8

SV8 The unit of work identifier must be present in the network focal point message, in the
supporting data information, and in diagnostic information.

See rules usage for environment in these sections:

• Section 12.8.2.4 (on page 559)

• Section 13.6.2.4 (on page 577)

SV9 In a distributed unit of work environment, an application requester must send a
correlation token to the application server at ACCRDB using the crrtkn parameter. If a
correlation token exists for this unit of work, and it has the format the correlation token
as defined in Part 2, Environmental Support, then this token is used. If the existing
token does not have the correct format, or the token does not exist, then the application
requester must generate a correlation token.

See rules usage for environment in this section:

• Section 12.8.2.4 (on page 559)

SV10 In a distributed unit of work environment, the crrtkn value must be present in the
network focal point message, in the supporting data information, and in diagnostic
information.

Part 1: Database Access Protocol 427

Update Control (UP Rules) DRDA Rules

7.18 Update Control (UP Rules)
UP1 If the application is not using the services of a sync point manager or XA manager in

the logical unit of work:

• When connecting to an application server using remote unit of work, the
application server is only allowed updates if either there are no existing connections
to any other application servers, or all existing connections are to application
servers using remote unit of work, and these application servers are restricted to
read-only.

• If a connection exists to an application server using remote unit of work with
update privileges, all other application servers are restricted to read-only.
Otherwise, for the duration of any single logical unit of work, the first application
server using distributed unit of work that performs an update is given update
privileges, and all other application servers are restricted to read-only.

UP2 If the application is using the services of a sync point manager in a unit of work, only
connections to application servers using distributed unit of work and protected by a
sync point manager are allowed update privileges.

UP3 Within a distributed unit of work, an application server must return an RDBUPDRM
the first time a DDM command results in an update at the application server. An
application server can, but is not required to, return an RDBUPDRM after subsequent
commands in the same logical unit of work that result in an update at the application
server.

In particular, no more than one RDBUPDRM reply message can be sent back by the
server in the reply chain in response to a DDM command. The application requester
must report SQLSTATE 58009 to the application if this is not the case.

The sending and receipt of RDBUPDRM is not supported when using SQLAM Level 3.

UP4 If there are multiple DDM reply messages and/or data objects in response to a DDM
command of which one is an RDBUPDRM, the RDBUPDRM must be at the beginning
of the reply chain if the reply does not contain an OPNQRYRM reply message or a
QRYDTA reply data object.

UP5 If there are multiple DDM reply messages and/or data objects in response to a DDM
command of which one is an RDBUPDRM, the RDBUPDRM must be at the beginning
or the end of the reply chain if the reply contains an OPNQRYRM reply message
and/or a QRYDTA reply data object.

If located at the end of the reply chain, the RDBUPDRM reply message must still come
before the MONITORRD reply data object if it is present.

428 DRDA, Version 3, Volume 1

DRDA Rules Passing Warnings to the Application Requester (WN Rules)

7.19 Passing Warnings to the Application Requester (WN Rules)
WN1 When constructing a response to OPNQRY or EXCSQLSTT that contains answer set

data, the application server is responsible for obtaining an SQLDA for the answer set
that the relational database will deliver. This data area (DA) specifies:

• The maximum lengths of all variable-length results

• The nullability of any result value

• The derivation of a result value (such as col1/col2 is derived)

• CCSID of a character result value

This data area is used to determine which fields require the application server to
provide indicator variables.

WN2 For all variable-length result fields, the application server must provide space to
accommodate the maximum length result so that truncation does not occur when the
data is delivered from the relational database. This allows the relational database to
avoid all truncation warning or error reports.

WN3 For all nullable and derived fields, an indicator variable must be provided so that the
null conditions can be reported and errors can be avoided. For derived result values
(such as col1/col2), an indicator variable must be provided to allow the relational
database to report problems as warnings instead of errors.

WN4 The FD:OCA descriptor for all nullable and derived fields must use an FD:OCA
nullable data type.

WN5 The application requester is responsible for taking null indicators from FD:OCA data (1
leading byte) and converting them to values for indicator values. The following cases
can occur:

• Null indicator 0 to 127 (positive); a data value will follow. The data should be
placed in the host value. If truncation occurs, handle as SQL describes and fill in any
indicator variable the application provides.

• Null indicator −1 to −128 (negative); no data value will follow.

— If indicator variable is available, fill it with the value from the null indicator.

— If indicator variable is unavailable, turn SQL warning code into corresponding
error code. The application requester may also need to issue CLSQRY to the
application server that issues a close query to the relational database in order to
enforce the SQL semantics that the cursor is unusable after the error.

Part 1: Database Access Protocol 429

Names DRDA Rules

7.20 Names
The following sections define the rules for end-user names, SQL object names, relational
database names, and target program names.

7.20.1 End-User Names (EUN Rules)

EUN1 Character strings that represent end-user names or components of end-user names
within DRDA flows must contain only printable characters. Some security managers
require end-user names to be in uppercase or in lowercase, and some allow mixed-case
end-user names. The receiver of an end-user name is required to fold the end-user
name to the appropriate case prior to authenticating the end-user name by the local
security manager. End-user names must be in the character set identified by the
CCSIDMGR used for the connection.

7.20.2 SQL Object Names (ON Rules)

ON1 DRDA requires that an application server support the receipt of three-part names for
tables, views, and packages. The following rules summarize the DRDA three-part
naming convention for tables, views, and packages (refer to Chapter 6 (on page 383) for
a detailed description of the syntax and semantics of three-part names).

ON1A The globally unique fully qualified name for a table or view is
RDB_NAME.COLLECTION.OBJECTID. The maximum length of
COLLECTION is 255 bytes. The maximum length of an OBJECTID is 255
bytes. COLLECTION and OBJECTID have the same syntactic constraints as
SQL identifiers but are limited to SBCS CCSIDs.

ON1B The fully qualified name for a package (database management system access
module) is RDB_NAME.COLLECTION.PACKAGEID. The maximum length
of COLLECTION is 255 bytes. The maximum length of a PACKAGEID is 255
bytes. The COLLECTION and PACKAGEID have the same syntactic
constraints as SQL identifiers but are limited to SBCS CCSIDs.

The period is the delimiter for components of a package name.

ON1C The fully qualified name for a section is
PACKAGENAME.SECTION_NUMBER. The maximum length of a
SECTION_NUMBER is 2 bytes. A section number is a 2 byte non-negative
binary integer and cannot be zero.

ON1D The fully qualified name for a stored procedure is
RDB_NAME.COLLECTION.PROCEDURE. The maximum length of
COLLECTION is 255 bytes. The maximum length of a PROCEDURE is 255
bytes. The COLLECTION and PROCEDURE have the same syntactic
constraints as SQL identifiers but are limited to SBCS CCSIDs.

The period is the delimiter for components of a stored procedure.

430 DRDA, Version 3, Volume 1

DRDA Rules Names

7.20.3 Relational Database Names (RN Rules)

RN1 The first six bytes of an RDB_NAME must be registered with The Open Group. See
Section 6.2 (on page 385) for an explanation of how to register RDB_NAMEs. The first
two bytes are a country code defined in ISO 3166. The characters of the country code
are chosen from the uppercase letters (A through Z). The next four bytes are an owning
enterprise code of the enterprise registering the first six bytes of the RDB_NAME. The
owning enterprise code must be chosen from the uppercase letters (A through Z) and
the numerics (0 through 9).

The remaining bytes of an RDB_NAME have the same syntactic constraints as SQL
identifiers with the exception that RDB_NAME cannot contain the alphabetic extenders
for national languages (#, @, and $, for example). The valid characters are uppercase
letters (A through Z), the numerics (0 through 9), and the underscore character (_).

The maximum length of an RDB_NAME is 255 bytes.

RN2 DRDA associates an RDB_NAME with a specific program at a unique network location.
DRDA, however, does not define the mechanism that derives the program and network
location from the RDB_NAME. The particular derivation mechanisms are specific to
the environment.

It is the responsibility of the application requester to determine the RDB_NAME name
of the relational database and to map this name to a program and network location.

See rules usage for environment in these sections:

• LU 6.2 Usage of Relational Database Names Rules (on page 560)

• Section 13.6.2.5 (on page 577)

RN3 More than one RDB_NAME may exist for a single network location.

See rules usage for environment in these sections:

• LU 6.2 Usage of Relational Database Names Rules (on page 560)

• Section 13.6.2.5 (on page 577)

RN4 DRDA permits the association of more than one RDB_NAME with a single program at
a network location.

See rules usage for environment in these sections:

• LU 6.2 Usage of Relational Database Names Rules (on page 560)

• Section 13.6.2.5 (on page 577)

7.20.4 Target Program Names (TPN Rules)

TPN1 The program names identifying implemented DRDA application servers can be a
registered DRDA program name, a registered DDM program name, or any non-
registered program name.

See rules usage for environment in these sections:

• LU 6.2 Usage of Transaction Program Names Rules (on page 560)

• Section 13.6.2.6 (on page 577)

TPN2 DRDA allows DDM file servers and DRDA SQL servers to use either the same program
name or different program names.

Part 1: Database Access Protocol 431

Names DRDA Rules

See rules usage for environment in these sections:

• LU 6.2 Usage of Transaction Program Names Rules (on page 560)

• Section 13.6.2.6 (on page 577)

TPN3 Registered DRDA program name structures for the specific network protocols are
defined in Part 3, Network Protocols.

See rules usage for environment in these sections:

• LU 6.2 Usage of Transaction Program Names Rules (on page 560)

• Section 13.6.2.6 (on page 577)

TPN4 Multiple DRDA program names may exist for a single network location.

See rules usage for environment in these sections:

• LU 6.2 Usage of Transaction Program Names Rules (on page 560)

• Section 13.6.2.6 (on page 577)

TPN5 A DRDA program name is unique within a network location.

See rules usage for environment in these sections:

• LU 6.2 Usage of Transaction Program Names Rules (on page 560)

• Section 13.6.2.6 (on page 577)

TPN6 Target programs that are registered DRDA program names must provide all the
capabilities that DRDA requires.

See rules usage for environment in these sections:

• LU 6.2 Usage of Transaction Program Names Rules (on page 560)

• Section 13.6.2.6 (on page 577)

TPN7 Target programs that provide DRDA capabilities may perform additional non-DRDA
work. These target programs are not required to perform additional non-DRDA work.

See rules usage for environment in these sections:

• LU 6.2 Usage of Transaction Program Names Rules (on page 560)

• Section 13.6.2.6 (on page 577)

TPN8 The registered default DRDA program names for the specific network protocols are
defined in Part 3, Network Protocols. The default DRDA program name must be
definable at each system that supports at least one application server providing DRDA
capabilities.

See rules usage for environment in these sections:

• LU 6.2 Usage of Transaction Program Names Rules (on page 560)

• Section 13.6.2.6 (on page 577)

432 DRDA, Version 3, Volume 1

DRDA Rules Query Processing

7.21 Query Processing
For query processing, there are rules for blocking, query data transfer protocols, and terminating,
interrupting, continuing query data or result set transfer, and query instances.

7.21.1 Blocking

Blocking refers to the process of sending query reply data in units known as query blocks. Each
query block is a QRYDTA OBJDSS.53 The purpose of blocking is to allow the application
requester to pace the amount of query data it receives for query replies that contain more than
one row. Other methods in DRDA are used in conjunction with blocking to control how many
rows are returned with a reply.

Each query block is a QRYDTA object containing query data returned in reply to a command
that requests such data. On the command, the application requester specifies the qryblksz
parameter that is to apply to each query block returned for the command. The actual size of each
query block returned depends both on the query block size specified by the application
requester, the type of query blocks the server chooses to return, the size of the rows returned,
and the number of rows returned. The server indicates the type of query blocks it will return in
the OPNQRYRM. If the server chooses to return exact query blocks, then every query block is
exactly the specified query block size, except for possibly the last query block which may be
shorter. If the server chooses to return flexible query blocks, then every query block is at least as
large as the specified query block size, except for possibly the last query block which may be
shorter. In the case of flexible query blocks, the size of the QRYDTA may be greater than the
query block size limit if the query block must be expanded beyond its initial size to contain a
complete row.54 A flexible query block can only be expanded beyond its initial size once. The
size of the last (or only) QRYDTA may be less than the specified query block size if the number
of rows returned is less than the maximum number of rows that can fit into the query block.

The blocking rules are based on a minimum block size of 512 bytes (see rule BS2 in Section
7.21.1.2 (on page 436)). This size should be kept in mind when reading the rules. To get a good
understanding of any one rule, other blocking rules must be understood. Apparent errors and
misunderstandings in some rules may be resolved when read in conjunction with other rules.

7.21.1.1 Block Formats (BF Rules)

Given that each DDM Data Stream Structure (DSS) is one SNA logical record, DRDA defines a
query data or result set transfer block to consist of one or more SNA logical records such that:

BF21 Blocking refers to the construction of reply objects containing data from one or more
rows of a query answer set where the size of the generated object is governed by a size
parameter.

Only QRYDTA objects are governed by this size parameter and are said to be blocked
when they adhere to the rules governing the size of the object. When discussing a
QRYDTA object as a blocked object, it is called a query block.

A query block can be one of two types: flexible or exact. Additional rules governing
exact query blocks and flexible query blocks are given in the remaining BF rules.

53. In SQLAM Level 6 and below, blocking refers to the blocking of all query reply objects, including OPNQRYRM, SQLCINRD,
QRYDSC, QRYDTA, ENDQRYRM, and SQLCARD.

54. In SQLAM Level 6 and below, the query block size limit is exact and every query block, except the last one, must be filled
completely and must have exactly the size specified by the query block size parameter specified by the application requesters.

Part 1: Database Access Protocol 433

Query Processing DRDA Rules

The application server chooses the type of query blocks to be returned for a query and
indicates its choice on the OPNQRYRM reply message, with the following restriction:

The application server may only return flexible blocks for rowset cursors (that is, if
QRYATTSET=TRUE).

BF22 Blocking applies to query answer set data as follows:

Query answer set data consists of base row data and optional externalized row data.

All base row data flows in QRYDTA objects. Base row data for an answer set row
consists of two nullable groups, the first containing the SQLCARD and the second
containing the base row data values. Either or both of these groups may be null.

Externalized row data flows in EXTDTA objects according to Chaining rules CH3
through CH5 (see Section 7.21.1.3 (on page 436)). EXTDTA data objects are not
governed by the size parameter and thus are not blocked.

Base row data for an answer set row includes each column in the answer set row, either
as the column data itself or as an FD:OCA placeholder for the column data. If the base
row contains an FD:OCA placeholder for a column, the column data may flow in an
associated EXTDTA object as externalized row data. A nullable column that is null has
no associated EXTDTA if it can be determined at the time the FD:OCA placeholder is
generated that the column is null. A column with a placeholder also has no associated
EXTDTA if at the time the FD:OCA placeholder is generated it can be determined that
the value has a length of zero.

An answer set row may consist only of base row data or may consist of base row data
and externalized data. A base row is complete when the base row data for an answer
set row has been sent. An answer set row consisting only of base row data is complete
when the base row is complete; that is, when all the columns in the answer set row
have been sent to the application requester as base row data. An answer set row
consisting of both base row data and externalized row data is complete when the base
row is complete and all the associated EXTDTAs for the row have been sent.

Only columns that are FD:OCA Generalized Strings may be externalized. All other
data types must flow as base row data.

BF23 The base row data for an answer set row or an SQL rowset must be completely
contained in a flexible query block when flexible blocking is in effect for the query.

BF24 The base row data for an answer set row may span exact query blocks when exact
blocking is in effect for the query.

BF25 If an exact query block ends with a partial row of data that does not contain the end of
that row, the partial row must fill the remaining space in the query block.

BF26 In the case of single row fetch, if one or more query blocks are returned as a reply to a
command, then the query block(s) must contain either the completion of a partial row
sent in exact query blocks for a previous command or they must contain the complete
base row data for at least one answer set row.

If the last query block returned has space for additional row data, then additional row
data can be added to the query block according to rules BF27 and BF28.

BF27 The initial size of a flexible query block is given by Block Size rule BS1. Aside from the
DSS header and the length and codepoint fields for the QRYDTA object, all other space
in the query block is available to contain base row data.

434 DRDA, Version 3, Volume 1

DRDA Rules Query Processing

In the case of single-row fetch, one or more rows are retrieved from the relational
database and the base row data for the retrieved rows are added to the space remaining
in the flexible query block as follows:

A base row can be retrieved and added to the flexible query block as long as the flexible
query block can contain any part of a base row. If the complete base row can be added
to the flexible query block, then the row is added to the flexible query block and the
space remaining can be used to contain one or more additional base rows. If the space
remaining in the flexible query block cannot contain the complete base row, the flexible
query block is expanded beyond its initial size to contain the complete base row and
the row thus added is the last row that can be added to the flexible query block.
Additional rows may be retrieved and added to extra query blocks as allowed by the
maxblkext parameter. If the flexible query block does not have room for any part of an
additional base row, then no additional row should be retrieved from the relational
database for inclusion in this flexible query block.

In the case of multi-row fetch against a rowset cursor, a single SQL rowset is retrieved
from the relational database and the base row data for the retrieved rows in the SQL
rowset is added to the flexible query block. If the initial query block size for the flexible
query block is too small to contain the entire SQL rowset, the flexible query block is
enlarged to contain the entire SQL rowset.

BF28 The size of an exact query block is given by Block Size rule BS1. Aside from the DSS
header and the length and codepoint fields for the QRYDTA object, all other space in
the query block is available to contain base row data.

In the case of single row fetch, one or more rows are retrieved from the relational
database and the base row data for the retrieved rows are added to the space remaining
in the exact query block as follows:

If a partial row was not returned by a previous command, a base row can be retrieved
and added to the exact query block as long as space is available in the remainder of the
exact query block to contain any part of a base row. If the complete base row can be
added to the exact query block, then the row is added to the exact query block and the
space remaining can be used to contain one or more additional base rows. If the space
remaining in the query block cannot contain the complete base row, only that part of
the row data that can fit in the remainder of the exact query block is added to the query
block. If this is the first row added to the exact query block, then additional exact query
blocks are generated to contain the remainder of the base row data. If this is not the first
row added to the exact query block, then either a partial row is returned in the last
exact query block or extra query blocks can be generated to contain the remainder of
the row (and possibly, additional rows) as allowed by the maxblkext parameter. If the
exact query block does not have room for any part of an additional base row, then no
additional row should be retrieved from the relational database inclusion in this flexible
query block.

If a partial row was returned by a previous command, then the remainder of the row is
added to the exact query block. If the remainder of the row is not completely contained
in the query block, then additional exact query blocks are generated to contain the
remainder of the base row data. Additional row data can be added to the space
remaining in the exact query block that contains the end of the row as described above.

BF29 If more than one flexible query block is returned for a query or result set in response to
a command, then the size of each flexible query block, except possibly the last one,
must be at least as large as the initial query block size specified on the command.

Part 1: Database Access Protocol 435

Query Processing DRDA Rules

If the command is EXCSQLSTT, then this rule applies separately for each result set
component returned.

BF30 If more than one exact query block is returned for a query or result set in response to a
command, then the size of each exact query block, except possibly the last one, must be
exactly equal to the query block size specified on the command.

If the command is EXCSQLSTT, then this rule applies separately for each result set
component returned.

For additional description of possible block formats, see the DDM terms OPNQRY, CNTQRY,
EXCSQLSTT, LMTBLKPRC (Limited Block Protocol), and FIXROWPRC (Fixed Row Protocol).

7.21.1.2 Block Size (BS Rules)

BS1 The application requester specifies the size value that governs the generation of a query
block by means of a parameter on the OPNQRY, CNTQRY, and EXCSQLSTT
commands. Query block size may change on any or each CNTQRY request.

For flexible query blocks, the size value specifies an initial size for the query block. The
size of a flexible query block can expand beyond its initial size.

For exact query blocks, the size value specifies the exact size for the query block.

If a MGRLVLOVR object precedes the QRYDSC object, then rule CU28 applies.

BS2 The minimum block size parameter value is 512 bytes.

BS3 The maximum block size parameter value is 10,485,760 (10M).

7.21.1.3 Chaining (CH Rules)

CH1 The DDM RPYDSS or OBJDSS objects returned for an open query or result set as the
replies to an OPNQRY, CNTQRY, or EXCSQLSTT command are chained together in a
fixed order.

In the non-error case, the replies returned in response to an OPNQRY or EXCSQLSTT
command for an open cursor or stored procedure result set are the OPNQRYRM
RPYDSS and an optional SQLCARD OBJDSS, followed by the QRYDSC OBJDSS,
followed by zero, one, or more objects containing answer set data. In addition, in
response to the EXCSQLSTT command, the optional SQLCINRD OBJDSS may be
returned between the OPNQRYRM and QRYDSC objects or between the SQLCARD
OBJDSS and the QRYDSC if an optional SQLCARD is returned.

Table 7-1 (on page 437) gives the ordering of the maximal set of reply objects that can
be returned in response to an EXCSQLSTT command that returns one result set with
only one query block of data (the query-related reply objects, starting with
OPNQRYRM through ENDQRYRM and SQLCARD repeat for additional result sets).

436 DRDA, Version 3, Volume 1

DRDA Rules Query Processing

Table 7-1 Maximal Example for EXCSQLSTT

DDM Object DDM Carrier______________________________
RDBUPDRM RPYDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
SQLDTARD OBJDSS
RSLSETRM RPYDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
SQLRSLRD OBJDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
SQLSTT OBJDSS
OPNQRYRM RPYDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
SQLCARD OBJDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
SQLCINRD OBJDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
QRYDSC OBJDSS
QRYDTA OBJDSS
ENDQRYRM RPYDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
SQLCARD OBJDSS
EXTDTA OBJDSS
RDBUPDRM RPYDSS______________________________�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Note that only one of the two RDBUPDRM reply messages in Table 7-1 can exist in the
reply chain as per the UP rules in Section 7.18 (on page 428).

If the stored procedure has no parameters, then an SQLCARD is returned instead of the
SQLDTARD and associated EXTDTA objects. Further, where the RDBUPDRM is
shown, any one of the reply messages ENDUOWRM, RDBUPDRM, or CMMRQSRM
may be returned. If RDBUPDRM is returned, either ENDUOWRM or CMMRQSRM
may also be returned after the RDBUPDRM. Also note that the SQLSTT OBJDSS is
repeated for each SQL SET statement that is returned, as per the setting of the rtnsetstt
parameter as specified on the EXCSQLSTT command.

Table 7-2 (on page 438) gives the ordering of the maximal set of reply objects that can
be returned in response to an EXCSQLSTT command that returns one result set with
only one query block of data (the query-related reply objects, starting with
OPNQRYRM through ENDQRYRM and SQLCARD repeat for additional result sets).

Part 1: Database Access Protocol 437

Query Processing DRDA Rules

Table 7-2 Maximal Example for EXCSQLSTT

DDM Object DDM Carrier______________________________
RDBUPDRM RPYDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
SQLDTARD OBJDSS
RSLSETRM RPYDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
SQLRSLRD OBJDSS
OPNQRYRM RPYDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
SQLCARD OBJDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
SQLCINRD OBJDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
QRYDSC OBJDSS
QRYDTA OBJDSS
ENDQRYRM RPYDSS
TYPDEFNAM OBJDSS
TYPDEFOVR OBJDSS
SQLCARD OBJDSS
EXTDTA OBJDSS
RDBUPDRM RPYDSS______________________________��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Note that only one of the two RDBUPDRM reply messages in Table 7-2 can exist in the
reply chain as per the UP rules in Section 7.18 (on page 428).

If the stored procedure has no parameters, then an SQLCARD is returned instead of the
SQLDTARD and associated EXTDTA objects. Further, where the RDBUPDRM is
shown, any one of the reply messages ENDUOWRM, RDBUPDRM, or CMMRQSRM
may be returned. If RDBUPDRM is returned, either of ENDUOWRM or CMMRQSRM
may also be returned after the RDBUPDRM.

Each DDM object carried in an OBJDSS, except for QRYDTA and EXTDTA objects, may
be carried in its own OBJDSS or combined with other objects to reduce the number of
OBJDSSs sent.

Each QRYDTA object always flows in its own OBJDSS.

Each EXTDTA object always flows in its own OBJDSS. If EXTDTAs are associated with
the row or rows in the single query block, then each flows in its own OBJDSS following
the QRYDTA object containing the last column of its containing row. The EXTDTA
objects associated with a row in a QRYDTA may be chained to the query block(s)
containing the row and flow in the same reply chain (for example, when rtnextdta is
RTNEXTALL), or they may be returned as reply objects to a subsequent CNTQRY that
returns only the EXTDTA (for example, when rtnextdta is RTNEXTROW).

CH2 In all cases where more than one block of answer set data is returned in response to a
single request, except for the last block, the last (or only) DDM DSS in a block is
chained to the first (or only) DDM DSS in the next block.

438 DRDA, Version 3, Volume 1

DRDA Rules Query Processing

CH3 The EXTDTA objects associated with a row cannot flow until the associated base row is
complete (that is, all columns in the corresponding base row have been sent).

CH4 The EXTDTA objects associated with an answer set row flow in the same order that
their corresponding FD:OCA placeholders appear in the base row.

All EXTDTA objects associated with a row must flow before other EXTDTAs from
subsequent rows can flow.

If the application requester can accept extra query blocks, all EXTDTA objects
associated with the row or rows in a previous query block must flow before each
subsequent extra query block can flow. If the EXTDTA objects do not flow in the reply
chain with the query block (for example, when rtnextdta is RTNEXTROW), then no
subsequent extra query block can flow.

CH5 If a base data object contains FD:OCA placeholders, then any associated EXTDTA
objects to be sent in the chain with the base data object must be chained in sequence
after the base data object.

The only object that can be chained after an EXTDTA is another EXTDTA object or a
QRYDTA object for the same query. A query-terminating reply message may also be
chained after an EXTDTA according to Query Termination rule QT5 (see Section 7.21.4
(on page 446)).

If the command is a CNTQRY, and the query is completed by the command, and rule
QT5 allows an ENDQRYRM and chained SQLCARD to be added to the reply chain,
then the ENDQRYRM is chained after the last EXTDTA for the last row that has
EXTDTAs associated with it. If the EXTDTAs are chained to the associated QRYDTA
object, then the ENDQRYRM and SQLCARD are chained to the last EXTDTA in the
chain. If the EXTDTAs are returned in response to a CNTQRY according to the rtnextdta
option of RTNEXTROW, then the ENDQRYRM reply message and its associated
SQLCARD reply data object are chained to the last EXTDTA associated with the
previously sent QRYDTA containing the associated base data.

The EXTDTA may not be associated with the last row returned in the QRYDTA. If an
ENDQRYRM is sent after an EXTDTA that is not associated with the last base row in
the associated QRYDTA, then the ENDQRYRM should be stacked by the application
requester until the application has fetched the last row in the QRYDTA or terminates
the query.55

55. For example the requester would need to stack the ENDQRYRM in the following cases.

1. Suppose the requester specified RTNEXTALL for the RTNEXTDTA option of CNTQRY. Suppose a QRYDTA contains the
last five rows in a query where each row has one LOB column defined. Suppose only rows 1 and 2 have non-null, non-
zero-length LOBs. Then the objects returned for the CNTQRY would be QRYDTA (containing five rows), followed by the
EXTDTA for row 1, followed by the EXTDTA for row 2, followed by the ENDQRYRM and SQLCARD. The requester will
get the base data for row 1 and the EXTDTA for row 1. The requester next gets the base data for row 2 and EXTDTA for row
2. In this case, the requester must stack the ENDQRYRM until all the base data in the QRYDTA (rows 3, 4, and 5) have been
processed.

2. Suppose the requester specified RTNEXTROW for the RTNEXTDTA option of CNTQRY. Suppose a QRYDTA contains the
last five rows in a query where each row has one LOB column defined. Suppose only rows 1 and 2 have non-null, non-
zero-length LOBs. Then the objects returned for the CNTQRY would be QRYDTA (containing five rows). The requester will
get the base data for row 1 and send a CNTQRY to get the EXTDTA for row 1. The requester next gets the base data for row
2 and sends a CNTQRY to get the EXTDTA for row 2. In this case, the server may optionally return the ENDQRYRM and
SQLCARD for the query since the last EXTDTA for the query has been returned. The requester must stack the ENDQRYRM
until all the base data in the QRYDTA (rows 3, 4, and 5) have been processed.

Part 1: Database Access Protocol 439

Query Processing DRDA Rules

If the command is an EXCSQLSTT for a stored procedure with query result sets, the
EXTDTAs returned associated with the SQLDTARD containing the parameters must be
the last objects in the reply chain. They follow the results set information objects and
the query reply objects for the result set. No extra query blocks may be returned with
any query result sets in this case.

7.21.2 Query Instances

Each time a cursor is opened, a query instance is created. DRDA allows a cursor to be open
concurrently from different invocations because each invocation results in a unique query
instance of the cursor. This concept is explained in detail in Section 4.4.6 (on page 121).

7.21.2.1 Query Instances (QI Rules)

QI1 If a query is opened successfully, the server must uniquely identify its instance with the
qryinsid parameter on the OPNQRYRM reply message. If the server fails to do so, the
application requester must report SQLSTATE ’58009’.

QI2 If the server is unable to generate a unique value for the qryinsid parameter when
opening a query, the server must return the QRYPOPRM reply message in response to
an OPNQRY command.

If instead the failure occurs when opening a query in response to an EXCSQLSTT
command for a stored procedure call, the server must not return this query result set to
the requester.

QI3 No two query instances can have an identical qryinsid value if they also have identical
pkgnamcsn values and identical cmdsrcid values. However, two queries on a single
database connection (that is, their pkgnamcsn values and/or cmdsrcid values must not be
identical) can possibly have query instances with an identical qryinsid value. For further
information on the cmdsrcid parameter, see rules SN3, SN8, SN10, and SN11 in Section
7.14 (on page 421).

The server may reuse a qryinsid value for a new query instance once the current query
instance which is associated with the qryinsid is closed for that application source.

QI4 The application requester must identify the query instance on CTNQRY and CLSQRY
commands with the qryinsid parameter. Failure to do so must result in the server
returning SYNTAXRM with synerrcd set to X’0E’.

A DSCSQLSTT command operating on an SQL statement that has an open cursor
associated with it must include the qryinsid parameter to indicate the instance of the
query in use. Failure to do so may result in the server attempting to perform the
describe operation on another SQL statement in some other context, which may or may
not result in an error.

An EXCSQLSTT or EXCSQLIMM command for a positioned DELETE/UPDATE SQL
statement must include the qryinsid parameter to indicate the instance of the query in
use, unless only a single query instance exists for the section, in which case the qryinsid
parameter is optional. Failure to do so may result in the server attempting to perform
the execute operation on another SQL statement in some other context, which may or
may not result in an error.

QI5 If an intermediate server is connected to a target server that is operating at SQLAM
level 6 or below, the former is responsible for mapping requests from the application
requester and replies from the target server so that both flows conform to the DRDA
level at which the receiver is operating. There can only be at most one open cursor per

440 DRDA, Version 3, Volume 1

DRDA Rules Query Processing

pkgnamcsn at the target server in this case. Therefore, once such a cursor has been
opened, the intermediate server must generate a dummy qryinsid to return to the
application requester for the only allowable query instance for this pkgnamcsn. The
intermediate server must subsequently ensure for such an open cursor, that the qryinsid
specified on a CNTQRY or CLSQRY by the application requester matches the one that
is generated at open time without exposing it to the target server. And if the application
requester attempts to open another cursor with a pkgnamcsn for which there is already
an open cursor, the intermediate server must return a QRYPOPRM reply message to
indicate that it is not possible to have another instance of the query. Also see rule SN11
in Section 7.14 (on page 421).

7.21.3 Query Data Transfer Protocols (QP Rules)

QP1 Fixed Row Protocol

In the non-error case, the response to OPNQRY consists of the OPNQRY reply message
(OPNQRYRM) and the FD:OCA description of the data (QRYDSC). If the cursor is
scrollable and the cursor is not defined for rowset processing, the qryrowset parameter
on the OPNQRY command controls whether data rows are to be returned after the
QRYDSC. If the cursor is using rowset positioning, the qryrowset parameter is ignored
on the OPNQRY command. If a non-zero qryrowset value is specified, then QRYDTA
objects are returned according to rule QP4. If no qryrowset value is specified, no data
rows are returned. If a zero qryrowset value is specified, no data rows are returned. If
the cursor is a rowset cursor supporting multi-row fetch, no data rows are returned in
response to the OPNQRY.

Answer set data may not be returned with the OPNQRY response if the answer set
contains any LOB columns, since the output format of those columns as either LOB
data values or LOB locator values is not known until the first application FETCH
request.

The application requester must use CNTQRY to retrieve (more) answer set data. In the
case of non-scrollable cursors, the first CNTQRY command constitutes the initial
retrieval of data from the answer set. In the case of rowset cursors, each CNTQRY
command retrieves an SQL rowset and all the requested rows in the SQL rowset are
returned with the command. For scrollable cursors, answer set data may have been
returned with the OPNQRY command. If a CNTQRY command does not specify a
qryrowset parameter, then the CNTQRY command causes at most one FETCH request
to be performed at the application server and a successful FETCH retrieves exactly the
number of rows of answer set data requested by the application. For rowset cursors, a
CNTQRY command must specify a qryrowset parameter with a non-zero value.56 If a
CNTQRY command does specify a non-zero qryrowset parameter, then QRYDTA
objects are returned according to rule QP4. The answer set is transmitted in one or
more OBJDSSs, each of which is a QRYDTA or an EXTDTA, that are chained together;
the number of OBJDSSs depends on the number of rows returned, the size of the rows,
and the number of EXTDTA objects to be sent.

EXTDTA objects associated with retrieved rows are sent in accordance with Chaining
rules CH3 and CH4 in Section 7.21.1.3 (on page 436).

56. Multi-row fetch is not supported in DRDA Level 1.

Part 1: Database Access Protocol 441

Query Processing DRDA Rules

For non-scrolling cursors, the query is complete when a CNTQRY results in RPYDSS
indicating end of query (ENDQRYRM) chained to an OBJDSS containing an SQLCARD
data object. This can be the result of the server’s decision to close a query implicitly
when it has run out of rows (SQLSTATE 02000) based on some other cursor properties,
and also on the value of the qryclsimp parameter that has previously been sent on the
OPNQRY command.

Otherwise, if the server chooses not to close the query implicitly, the query is complete
when the application requester closes the query explicitly by sending a CLSQRY
command to the server, or when the transaction is rolled back.

For cursors that scroll, the query is complete when the application closes the cursor.
This results in the application requester flowing a CLSQRY command to the
application server.

The DDM term FIXROWPRC more completely defines this protocol. See also rules
QT1, QT2, QT3, and QT4 in Section 7.21.4 (on page 446).

For rowset cursors, a statement-level SQLCARD must be sent after each QRYDTA or
after the ENDQRYRM if chained to the QRYDTA indicating the end of query. Row-
level SQLCARDs in the QRYDTA must be null for rowset cursors.

QP2 Limited Block Protocol

In the non-error case, the response to OPNQRY consists of the OPNQRY reply message
(OPNQRYRM) and the FD:OCA description of the data (QRYDSC). Answer set data
may also be returned by the application server if it is not explicitly prohibited from
doing so by this or another rule.

Answer set data cannot be returned with the OPNQRY response if the answer set
contains any LOB columns, since the output format of those columns as either LOB
data values or LOB locator values is not known until the first application FETCH
request.

If the application server exercises the option to return answer set data with the
OPNQRY response, one or more query blocks contain the data, each query block being
a QRYDTA OBJDSS that is chained to the previous reply object. The number of query
blocks returned depends on the number of rows returned, the size of the rows, and the
extra query block limits negotiated between the application requester and application
server.

• For scrollable cursors, whether rows are returned and how many rows are returned
depend on the qryrowset parameter specified on the OPNQRY command. If a non-
zero qryrowset value is specified, then QRYDTA objects are returned according to
QP4. If no qryrowset value is specified, then an implicit qryrowset value is set
according to rule QP4 and QRYDTA objects are returned according to QP4.

• For non-scrollable cursors, the qryrowset parameter can also control whether rows
are returned and how many rows are returned with the OPNQRY command, but if
it is not specified, there is no implicit rowset for the cursor. If no qryrowset value is
specified, then one or more QRYDTA objects is returned according to the limits
specified by the maxblkext parameter.

The application requester must use CNTQRY to retrieve more answer set data. If
answer set data is returned, then the following applies:

• If none of the answer set columns will flow as externalized FD:OCA data in
EXTDTAs, the CNTQRY response consists of at least one QRYDTA containing row

442 DRDA, Version 3, Volume 1

DRDA Rules Query Processing

data for one or more rows according to the Block Formats rules in Section 7.21.1.1
(on page 433). If the application requester is capable of accepting extra query
blocks, then the application server may chain additional query blocks.

• If any of the answer set columns will flow as externalized FD:OCA data in
EXTDTAs, the application requester specifies whether EXTDTA objects are to be
sent a row at a time or whether all EXTDTA objects associated with returned query
blocks are to be sent with the query blocks. The CNTQRY command has one of the
following responses:

— For the first CNTQRY, or a subsequent CNTQRY retrieving additional base row
data, the application server returns at least one query block and the base row
data that completes at least one row. The QRYDTA may contain additional rows
according to the Block Formats rules in Section 7.21.1.1 (on page 433).

If the application requester specified that all EXTDTAs are to be returned with
the base data, then the EXTDTA objects for all complete rows in the query block
are returned following the query block. The next CNTQRY command retrieves
additional base row data along with any associated EXTDTAs.

If the application requester specified that EXTDTA objects are to be returned a
row at a time, no EXTDTAs are returned with the base data in the QRYDTA. The
response is complete. The next CNTQRY command retrieves the EXTDTAs for
the first base row for which there are associated EXTDTAs. The application
requester does not send a CNTQRY to retrieve EXTDTAs if a base row has only
null placeholders or placeholders with zero lengths. After all base rows
previously sent have been completed with any associated externalized data, the
next CNTQRY command retrieves additional base row data.

— For a subsequent CNTQRY retrieving externalized row data associated with a
complete base row previously sent, the application server returns EXTDTA
objects corresponding to the FD:OCA placeholders in the base row. This rule
only applies if EXTDTA objects are to be returned a row at a time.

For non-scrollable cursors or non-scrollable result sets, the query or result set is
complete when a CNTQRY, OPNQRY, or an EXCSQLSTT results in a returned block
containing an RPYDSS indicating end of query (ENDQRYRM) chained to an OBJDSS
containing an SQLCARD data object. The RPYDSS may or may not be chained from an
OBJDSS containing the last row of answer set data. If answer set data contained in the
query block has any associated EXTDTAs that are to be returned with a subsequent
CNTQRY, then Chaining rule CH5 applies to the RPYDSS. For cursors or result sets
that scroll, the query completes when the application closes the cursor. This results in a
CLSQRY command flowing to the application server.

The DDM term LMTBLKPRC more completely defines this protocol. See rules QT1,
QT2, QT3, and QT4 in Section 7.21.4 (on page 446).

An attempt to UPDATE WHERE CURRENT OF CURSOR or DELETE WHERE
CURRENT OF CURSOR on a cursor that is fetching rows using the limited block
protocol results in an SQLSTATE of 42828.

QP3 The OPNQRY reply message (OPNQRYRM) indicates whether the application server is
using Fixed Row Protocols or Limited Block Protocols for the query or result set.

QP4 This rule applies to scrollable or non-scrollable non-rowset cursors when an explicit
positive qryrowset parameter is specified on an OPNQRY, CNTQRY, or EXCSQLSTT
command that returns stored procedure result sets. It also applies to scrollable non-

Part 1: Database Access Protocol 443

Query Processing DRDA Rules

rowset cursors when an implicit positive qryrowset value is required. If an implicit
qryrowset value is required, the value used is 64. This is an arbitrarily-chosen
architectural constant that allows both the application requester and application server
to know the size of an implicit rowset when no explicit qryrowset value is specified.57

See rule QP2 for the case when this is needed.

In both cases, the application server is required to send a DRDA rowset to the
application requester. The DRDA rowset has a size, defined to be either the explicit
value specified on the command or the implicit value determined above. When an
implicit value is used, the DRDA rowset is said to be an implicit DRDA rowset.

When a DRDA rowset of size S is to be returned in response to an OPNQRY command,
the application server performs at most S single-row fetches to populate the rowset.
The first row in the DRDA rowset returned by the application server consists of the first
row in the result table, followed by the next S−1 rows in sequence (FETCH NEXT) in
the result table. The rows in the DRDA rowset are returned as indicated in rule QP2,
specifying how answer set data is to be returned in response to an OPNQRY. If the
DRDA rowset is implicit, then any maxblkext value on the OPNQRY command is
ignored and a maxblkext value of zero is used, indicating that no extra query blocks are
to be returned.

When a DRDA rowset of size S is to be returned in response to a CNTQRY command,
the application server performs at most S single-row fetches to populate the DRDA
rowset. The first row in the DRDA rowset consists of the row identified by the
navigational parameters on the CNTQRY command, followed by the next S−1 rows in
sequence (FETCH NEXT) in the result table. The rows in the DRDA rowset are returned
as indicated in rule QP2, specifying how answer set data is to be returned in response
to a CNTQRY.

The DRDA rowset is said to be complete when the requested number of rows (S) are
fetched or when a FETCH request at the application server results in a negative
SQLSTATE or an SQLSTATE of 02000, or when the CNTQRY command identifies a
positioning FETCH. The intent of a positioning FETCH is to change the position of the
cursor, but explicitly does not request the return of query data. Examples are a FETCH
AFTER request or a FETCH request that does not have a fetch target list. On a
CNTQRY command that specifies a positioning FETCH, the DRDA rowset is
considered complete upon the completion (successful or not) of the positioning FETCH
request.

If the application server can only return R < S complete rows while populating the
DRDA rowset before it encounters the extra query block limit, the DRDA rowset is said
to be incomplete. The application server returns the R complete rows it has fetched as
for other DRDA rowset data.

It is the application requester’s responsibility to dispose of the incomplete DRDA
rowset by either completing the rowset or resetting the DRDA rowset with the next
CNTQRY command.

57. This value is an arbitrarily-chosen architectural constant that limits the number of rows returned on the OPNQRY request for a
scrollable non-rowset cursor. It allows the application server to create an implicit DRDA rowset of a known size in case the
application requester decides to use the cursor in a scrollable fashion with subsequent CNTQRY requests. It can be overridden by
the application requester by means of the qryrowset parameter on the OPNQRY request for scrollable non-rowset cursors. It has
no effect on subsequent CNTQRY requests if the application requester does not access the cursor in a scrollable manner (that is,
does not specify a qryrowset).

444 DRDA, Version 3, Volume 1

DRDA Rules Query Processing

In the case of a non-scrollable non-rowset cursor, the application requester can only
receive query data sequentially. It must thus pass all the rows returned in the
incomplete DRDA rowset to the application before requesting more data from the
server. To request more data, the application requester must first complete the pending
DRDA rowset and pass all returned rows to the application. Only after receiving all the
rows in the requested DRDA rowset and returning them to the application can the
application requester ask for more query data from the application server. An
application requester that resets a pending DRDA rowset for a non-scrollable cursor
may lose query data and thus generally will not do so.

In the case of a scrollable non-rowset cursor, the application requester can retrieve data
using navigational parameters, so may either complete or reset a pending DRDA
rowset to continue receiving query data without loss of query data. In either case, the
application requester must first consume all data returned in the incomplete DRDA
rowset, either by reading and passing all complete rows to the application or by
caching or discarding any unreceived data (including EXTDTA DSSs for LOBs and
unreceived extra query blocks). For example, suppose the application fetches a row and
then wants to fetch a row with qryscrorn of qryscrrel and qryrownbr of +N. Suppose both
rows are contained in the returned DRDA rowset. The first and second requested rows
are consumed by being passed to the application. The rows between the two may be
consumed by being discarded, including any EXTDTA DSSs for LOB data in those
rows.

To complete the DRDA rowset the application requester first passes to the application
all data returned (except for possibly a partial row in the last query block), then sends a
CNTQRY command with a qryrowset parameter value of S−R and qryscrorn and
qryrownbr parameter values equivalent to FETCH NEXT. To reset the DRDA rowset, the
application requester first either passes to the application all data returned (except for
possibly a partial row in the last query block), or caches or discards all data returned by
the application server but not fetched by the application (including unreceived extra
query blocks and unreceived EXTDTA objects sent with the reply by the application
server), then sends a CNTQRY command with a qryblkrst value of TRUE (and possibly
new qryscrorn and qryrownbr values to identify the desired row in the case of a
scrollable cursor).

The application server is responsible for knowing that the last CNTQRY command
resulted in an incomplete DRDA rowset and for knowing how many rows are needed
to complete the DRDA rowset (S−R). The DRDA rowset is said to be pending at the
application server. The application server validates that the next CNTQRY either
completes the DRDA rowset or resets it. If the next CNTQRY command requests that
the DRDA rowset be completed, then the application server returns the next rows in
sequence to the application requester, up to the extra query block limit set by maxblkext.
It is possible that the CNTQRY command may also result in an incomplete DRDA
rowset, and the DRDA rowset remains pending at the server for the remaining rows. If
the next CNTQRY command resets the DRDA rowset, then the application server
discards any partial fetched but unsent row and any pending extra query blocks before
discarding its record of the pending DRDA rowset. It prepares to return a new DRDA
rowset according to the navigational and sensitivity requirements of the CNTQRY
command.

QP5 In the non-error case, the response to an EXCSQLSTT that returns result sets consists of
the optional transaction component, followed by the summary component, followed by
one or more query result set components.

Part 1: Database Access Protocol 445

Query Processing DRDA Rules

The transaction component consists of one or more reply messages indicating the
transaction state. These are ENDUOWRM, CMMRQSRM, or RDBUPDRM. If
RDBUPDRM is returned (as per the UP rules in Section 7.18 (on page 428)), it may be
followed by ENDUOWRM or CMMRQSRM.

The summary component consists of a Result Set reply message (RSLSETRM), followed
by an SQLCARD or SQLDTARD, followed by an SQL Result Set reply data object
(SQLRSLRD). Following the SQLRSLRD reply data object, the summary component
may optionally contain one or more SQLSTT reply data objects as per the setting of the
rtnsetstt parameter on the EXCSQLSTT command. If the SQLDTARD in the summary
component has any associated EXTDTAs, then the EXTDTAs are also part of the
summary component but flow according to rule CH5.

Each result set component consists of the OPNQRY reply message (OPNQRYRM
RPYDSS) and optional SQLCARD, followed by the optional SQL Column Information
reply data object for the result set (SQLCINRD OBJDSS), followed by the FD:OCA
description of the data (QRYDSC OBJDSS).

Answer set data for the result set may also be returned by the application server
according to the same criteria that apply to the answer set data returned in response to
the OPNQRY command, according to rule QP1 for result sets using the Fixed Row
Protocol or QP2 for result sets using the Limited Block Protocol.

The application must use CNTQRY to retrieve more answer set data according to rule
QP1 for result sets using the Fixed Row Protocol or QP2 for result sets using the
Limited Block Protocol. The server may optionally return an RDBUPDRM reply
message at the end of the reply chain (as per the UP rules in Section 7.18 (on page 428)).

7.21.4 Query Data or Result Set Transfer (QT Rules)

QT1 The application server terminates an open query or result set when it receives and
processes a CLSQRY command or when it detects other conditions that implicitly close
the cursor. Any time an implicit close occurs during processing of a cursor-related
command, one of the following reply messages must be sent:

ENDQRYRM Normal end of answer set data.

ABNUOWRM RDB-initiated rollback.

An OBJDSS containing an SQLCARD data object follows each of these messages.

An SQLSTATE of 02000 may not always result in an implicit close. For example, a
scrollable cursor does not get closed implicitly as a result of this SQLSTATE. For all
other types of cursors, whether or not this SQLSTATE results in an implicit close
depends on some other cursor properties, and the value of the qryclsimp parameter as
specified previously on the OPNQRY command.

A terminated query is the same as a query that has not yet been opened.

QT2 Each query terminating reply message (RPYDSS) must be chained to, and can only be
chained to, an OBJDSS carrying an SQLCARD data object. The SQLCARD may contain
additional information describing the reason for query termination.

For example, the reply message ABNUOWRM may be chained to an SQLCARD data
object that carries the name of a resource involved in a deadlock that generated a
relational database rollback operation.

QT3 The OBJDSS carrying the SQLCARD data object returned with a query terminating
reply message must be chained from the terminating reply message RPYDSS, and must

446 DRDA, Version 3, Volume 1

DRDA Rules Query Processing

be the last response object for the command for that query or result set.

QT4 The RPYDSS representing the query terminating reply message must be the first DSS in
the response chain in the following cases:

• When the query data transfer protocol is Fixed Row with a single row fetch.

• When the query data transfer protocol is Limited Block and the reply message is
ABNUOWRM—RDB-initiated Rollback.

See Section 7.9 (on page 414) for a description.

In all other cases, the query terminating reply message RPYDSS must be chained from
the OBJDSS containing the last row of answer set data, taking into account Chaining
rule CH5 if it applies.

QT5 If the normal end of the answer set is encountered and the query is one that can be
closed implicitly (for example, it is non-scrollable), the ENDQRYRM reply message
may be chained to an EXTDTA object returned for the query if all EXTDTAs that are to
be sent to the application requester for the query have been sent and the server can
change the cursor state after doing so. The ENDQRYRM and SQLCARD (optionally
followed by an RDBUPDRM reply message as per the UP rules in Section 7.18 (on page
428)) are chained according to Chaining rule CH5 (see Section 7.21.1.3 (on page 436)).

If the ENDQRYRM reply message is not returned, the query is to remain open until the
next CNTQRY command is received or a CLSQRY command is received. If a CNTQRY
command is received, the ENDQRYRM and SQLCARD are returned as the only replies
to the command.

7.21.5 Additional Query and Result Set Termination Rules

The following section provides additional rules for terminating queries and result sets within
DRDA flows. The objective of these rules is to avoid the CLSQRY request/response message
exchange between application requester and application server when possible and to keep
cursor states consistent between application requester and application server. The rules are in
figures that show a set of conditions and actions to be taken for the conditions. Each row of the
figure represents a condition or an action. Each column of the figure represents a specific case.
Each case is described in narrative form following the figure that contains the case. For
readability, the conditions and actions are separated and each column has a unique identifier.

For example, in Table 7-3 (on page 448), column H has the conditions that the cursor is open, a
CNTQRY command for base row data has been received, an SQL FETCH request has returned
an end-of-data SQLCA (SQLSTATE 02000). The server has determined to close the query
implicitly based on the properties of the cursor and the setting of the qryclsimp parameter as
previously sent on an OPNQRY command. The actions are to perform an SQL CLOSE cursor,
mark the cursor as not open, create and place the ENDQRYRM/SQLCARD in the reply chain,
and send the reply chain to the application requester.

Note: These tables provide additional information to clarify the behavior of the application requester
or the application server. They do not exhaustively cover all cases. For example, when an
SQLSTATE of ’00000’ is shown as being returned, this is to exemplify a successful operation.
The tables do not explicitly show the possibility of a warning SQLSTATE that may also be
issued in the case of successful operation, but it is a simple matter to extrapolate from the
specific case given to other cases.

Part 1: Database Access Protocol 447

Query Processing DRDA Rules

7.21.5.1 Rules for OPNQRY, CNTQRY, CLSQRY, and EXCSQLSTT

Table 7-3 Application Server Rules for OPNQRY, CNTQRY, CLSQRY, EXCSQLSTT

Cases
Conditions A B C D E F G H I J K L M N O P Q R___

CURSOR STATE:
NOT OPEN A D N P Q
OPEN B E F G H I J K L M O___

DRDA COMMAND:
CNTQRY for base row data A B G H I J K L
CLSQRY D E F M
OPNQRY N O P Q
EXCSQLSTT R___

OPEN CURSOR FAILED Q___
SQL FETCH RETURNED SQLCA

AND DATA ROW OR MULTI-ROWS G___
SQL FETCH RETURNED SQLCA

WITHOUT A DATA ROW
QUERY TERMINATING

OTHER H I
ROLLBACK J K

NO OTHER REPLY OBJECTS K L
NON-QUERY TERMINATING L___

MUST STACK RPYDSS/SQLCARD H
NO I
YES

See rules QP2, CH5, QT4, QT5___
RPYDSS/SQLCARD STACKED B E F

ENDQRYRM F
OTHER E___�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

448 DRDA, Version 3, Volume 1

DRDA Rules Query Processing

__
Cases

Actions A B C D E F G H I J K L M N O P Q R__
RETURN SQLCARD:

SQLSTATE=’00000’ F
FROM RDB H M Q__

CURSOR STATE:
NOT OPEN A B D E F H K M Q
OPEN G I J L N O P R__

ISSUE SQL CLOSE CURSOR H I M__
CHAIN RPYDSS/SQLCARD H__
STACK RPYDSS/SQLCARD I__
SEND ABNUOWRM/SQLCARD K__
STACK ABNUOWRM/SQLCARD J__
SEND STACKED RESPONSE B E__
PURGE STACK B E F__
SEND REPLY CHAIN F H I J L M__
PROCESS CNTQRY G__
SEND QRYNOPRM RPYDSS A D__
PROCESS OPNQRY N P__
PROCESS EXCSQLSTT R__
SEND QRYPOPRM RPYDSS O__
SEND OPNQFLRM RPYDSS/CA Q__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Cases for Rules

CASE A The application server cursor state indicates that the cursor is not open. The
request from the application requester is a CNTQRY. The application server
returns a QRYNOPRM reply message indicating the cursor is not open. The cursor
state remains not open.

CASE B The application server cursor state indicates that the cursor is open. The request
from the application requester is a CNTQRY. The application server determines
that an RPYDSS and SQLCARD are stacked pending receipt of an application
requester request. There are two stacks to consider:

• The first stack contains the reply message ENDQRYRM. See rules QP2, CH5,
QT4, and QT5.

When an ENDQRYRM/SQLCARD is stacked on a cursor, and when the next
request is a CNTQRY for additional base row data, the stacked message is sent
in response to the received request. The stack is then purged. The cursor state
is set to not open.

Note: If the next request is a CNTQRY for the LOBs associated with a previously
sent base row, then the LOBs are returned as EXTDTAs and the
ENDQRYRM/SQLCARD may either remain stacked or may be sent,
depending on whether the server is able to change the cursor state after
sending the EXTDTA for the LOBs. If the server can change the cursor state
and send the ENDQRYRM/SQLCARD, then the server sets the cursor state
to not open; otherwise, it does not change.

Part 1: Database Access Protocol 449

Query Processing DRDA Rules

• The other stack contains the reply message ABNUOWRM. This stack applies to
all operations and is always the first to be processed (for all application
requester requests, regardless of whether the request is for a query operation or
otherwise). See rules QT1, QT2, QT3, and QT4 in Section 7.21.4 (on page 446)
and rule IR1.

When an ABNUOWRM/SQLCARD is stacked on a cursor, the stacked
message is sent in response to the received request. The stack is purged. All
cursor states are set to not open, and all cursor stacks are purged (these cursor
actions could have taken place when the ABNUOWRM was created and placed
on the stack).

CASE D The application server cursor state indicates that the cursor is not open. The
request from the application requester is a CLSQRY. No pending responses are
stacked. The application server returns a QRYNOPRM reply message indicating
the cursor is not open. The cursor state remains not open.

CASE E The application server cursor state indicates that the cursor is open. The request
from the application requester is CLSQRY. The application server determines that
an ABNUOWRM and SQLCARD are stacked, pending receipt of an application
requester request. The stacked response is sent for the received request. The stack
is purged, and the cursor state is set to not open.

CASE F The application server cursor state indicates that the cursor is open. The request
from the application requester is CLSQRY. The application server determines that
an ENDQRYRM and SQLCARD are stacked, pending receipt of the next
application requester request for this cursor. This is a normal condition. The
application wants to close the cursor before reaching end of data.

In this situation, the application server has already reached end of data. Rather
than sending the stacked ENDQRYRM, the application server sends an SQLCARD
with an SQLSTATE of 00000. The cursor stack is purged, and the cursor state is set
to not open.

CASE G The application server cursor state indicates that the cursor is open. The request
from the application requester is a CNTQRY. The process CNTQRY action is
taken, which is tailored to the query data transfer protocol in effect for the cursor.
See rules QP1 and QP2 in Section 7.21.3 (on page 441).

The SQL FETCH condition is a result of the CNTQRY process action. The
CNTQRY process also includes the process of sending EXTDTAs associated with
the base data in the QRYDTA objects. This is not shown in the diagram.

CASE H The application server cursor state indicates that the cursor is open. The request
from the application requester is a CNTQRY for base data. In performing the
CNTQRY process action, the application server receives a relational database
query terminating response to a FETCH request, or an SQLSTATE of 02000 with a
qryclsimp parameter previously sent on the OPNQRY command indicating that the
cursor should be closed implicitly for this type of cursor. In DRDA, an implicit
close is mapped to ENDQRYRM except for the rollback case which is mapped to
ABNUOWRM.

CASE H represents the ENDQRYRM condition where there is no rule requiring the
ENDQRYRM and SQLCARD to be stacked. The SQLCARD will contain the
SQLSTATE from the relational database. The RPYDSS/SQLCARD are chained to
any replies already generated for the CNTQRY command. The application server
closes the cursor by requesting the relational database close the cursor. The

450 DRDA, Version 3, Volume 1

DRDA Rules Query Processing

application server then sets the cursor state to not open and sends the reply chain.

CASE H also applies to the ABNUOWRM query terminating condition for Fixed
Row Protocol for the single-row fetch case (see also CASE K).

CASE I This is the same as CASE H except that the RPYDSS/SQLCARD cannot be sent
with the reply chain for the command. The chained replies are sent without the
RPYDSS/SQLCARD. The RPYDSS/SQLCARD is stacked on the cursor waiting for
the next request for base data. The cursor state remains open. Refer to rules QT4
and QT5.

CASE J This is the same as CASE I except the query terminating condition is a rollback
which generates ABNUOWRM. Because of rule QT4 (see Section 7.21.4 (on page
446)), the ABNUOWRM must be the first DSS in the reply chain for the command.
Therefore, if there are any replies already chained for the command, the
ABNUOWRM/SQLCARD must be stacked waiting for the next request from the
application requester. The current reply chain, with the accumulated answer set
data, is sent, and the cursor state remains open.

CASE K This is the same as CASE J except that there are no DSSs chained as reply objects
for the command. Therefore, the application server does not stack the
ABNUOWRM/SQLCARD but instead sends this response to the application
requester. All cursors are set to the not open state.

CASE L The application server cursor state indicates that the cursor is open. The request
from the application requester is a CNTQRY for base data. In performing the
CNTQRY process action, the application server receives an SQLCA without a data
row in response to a FETCH request, where the error indicated is not a query-
terminating condition. This means the relational database can accept a subsequent
FETCH. DRDA does not define these conditions. The SQL semantic for FETCH as
communicated by SQLSTATEs determines these conditions, if they exist or if they
will ever exist.

The DRDA-defined action for these conditions is for the application server to
return the SQLCA that the relational database has provided along with a null data
row and then to interrupt the process of filling the query block. The application
server returns the data accumulated so far, even if there is more room in the query
block for more rows, and waits for the next request. If any base rows in the
interrupted query block included FD:OCA placeholders for externalized data, the
associated EXTDTAs are returned according to rules QP1 and QP2 in Section 7.21.3
(on page 441). The application may decide to issue another FETCH, resulting in
CNTQRY, to close the cursor, resulting in CLSQRY, or to rollback or terminate.
The application requester is not dependent upon nor sensitive to these conditions.

CASE M The application server cursor state indicates that the cursor is open. The request
from the application requester is CLSQRY. The application server requests the
relational database to close the cursor. The application server sets the cursor state
to not open and returns an SQLCARD to the application requester. The SQLCARD
is derived from the SQLCA that the relational database has returned for the SQL
close cursor operation.

CASE N The application server cursor state indicates that the cursor is not open. The
request from the application requester is OPNQRY. The application server
performs the OPNQRY process, which is not described. The cursor state is set to
open.

Part 1: Database Access Protocol 451

Query Processing DRDA Rules

CASE O The application server cursor state indicates that the cursor is open. The request
from the application requester is OPNQRY. The cursor state remains open. The
application server returns the QRYPOPRM reply message indicating the cursor is
already open if it is unable to generate a unique qryinsid for an instance of this
query which is uniquely identified by the cmdsrcid as specified on the OPNQRY
command. Refer to rule SN11 in Section 7.14 (on page 421) and rule QI5 in Section
7.21.2.1 (on page 440) for the behavior at an intermediate server.

CASE P The application server cursor state indicates that the cursor is not open. The
request from the application requester is OPNQRY. The application server
performs the OPNQRY process and is able to generate a unique qryinsid for an
instance of this query which is uniquely identified by the cmdsrcid as specified on
the OPNQRY command. The cursor state is set to open.

CASE Q The application server cursor state indicates that the cursor is not open. The
request from the application requester is OPNQRY. The OPEN CURSOR fails. The
application server returns the reply message OPNQFLRM chained to the
SQLCARD. The cursor state remains not open.

CASE R The request from the application requester is an EXCSQLSTT that invokes a stored
procedure that returns one or more result sets. The application server executes the
stored procedure, which is not described. The cursor state for each result set is set
to open.

452 DRDA, Version 3, Volume 1

DRDA Rules Query Processing

7.21.5.2 Rules for FETCH

Table 7-4 Application Requester Rules for FETCH

Cases
Conditions A B C D E F G H I J K L M N O___

CURSOR STATE:
NOT OPEN A
ONLY CLOSE ALLOWED B
OPEN C D E F G H I___

CURRENT DSS IS QRYDTA,
POSITIONED AT:

SQLCA/ROW C I
SQLCA/NULL ROW OR

ROW/SQLSTATE>02999 D
END OF BLOCK WITH

CHAINED DSS G
END OF BLOCK WITH

NO CHAINED DSS H___
CURRENT DSS IS RPYDSS,

WITH REQUIRED
SQLCARD CHAINED E___

CURRENT DSS IS RPYDSS,
WITH NO REQUIRED
SQLCARD F___

MULTI_ROW FETCH:
YES I
NO C D
DOESN’T MATTER: A B E F G H___��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

__
Cases

Actions A B C D E F G H I J K L M N O__
RETURN SQLCA:

EOQ - SQLSTATE=’02000’ B
NOT OPEN A
FROM AS QRYDTA C D
FROM SQLCARD E I
BUILT BY AR__

CURSOR STATE:
NOT OPEN A
ONLY CLOSED ALLOWED B E
OPEN C D G H I__

RETURN ROW OR
MULTI-ROWS C I__

ISSUE CNTQRY - RECEIVE
ALL REPLY OBJECTS H__

GET NEXT CHAINED DSS G__
PROTOCOL ERROR F__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 453

Query Processing DRDA Rules

Cases for Rules58

CASE A The application requester cursor state indicates that the cursor is not open. The
application requester, therefore, returns a cursor not open SQLCA to the
application and leaves the cursor state as not open.

CASE B The application requester cursor state indicates that the only valid operation
against the cursor is to close it. This is because the application server has processed
to end of data and has chosen to close the cursor implicitly based on the properties
of the cursor, and the qryclsimp parameter as previously sent on the OPNQRY
command by returning the ENDQRYRM and SQLCARD. The application has
probably issued another FETCH after having received the end of data SQLCA. The
application requester, therefore, returns another end of data SQLCA (SQLSTATE
02000) and leaves the cursor state as close only.

CASE C The application requester cursor state indicates that the cursor is open, not
performing a multi-row fetch, and the application requester is positioned in a
QRYDTA object on an answer set row with the associated SQLCA (may be null). It
is irrelevant whether the QRYDTA is chained to a subsequent DSS.

The application requester returns the row and associated SQLCA to the
application and positions itself to the next position in the QRYDTA after the row.
The cursor state remains OPEN.

If the row is a base row having FD:OCA placeholders, the action includes the
process of retrieving the externalized data associated with each FD:OCA
placeholder from an EXTDTA object. If the EXTDTA objects for the query are being
returned a row at a time, the application requester must issue a CNTQRY to
receive the associated EXTDTA objects. Retrieving the externalized data for the
base row does not change the application requester’s position in the query block
being processed. These processes are not shown in the diagram.

CASE D The application requester cursor state indicates that the cursor is open, not
performing a multi-row fetch, and the application requester is positioned in a
QRYDTA object on a null answer set row and a non-null SQLCA, or on a non-null
answer set row where the associated SQLCA has a SQLSTATE greater than 02999.
It is irrelevant whether the QRYDTA is chained to a subsequent DSS.

The application requester returns the associated SQLCA to the application and
positions itself to the next position in the QRYDTA after the row. The cursor state
remains open.

CASE E The application requester cursor state indicates that the cursor is open and the
application requester is positioned at an RPYDSS which is chained to an
SQLCARD.

The application requester returns an SQLCA to the application using the
information in the SQLCARD. The cursor is set to the "Only CLOSE Allowed"
state, meaning that the only valid operation against the cursor is to close the
cursor.

58. When comparing with the architecture in SQLAM level 6 and below, many cases have been eliminated. To assist in comparing
between different levels of the architecture, cases D, E, F, G, H, I, and J in this section correspond to cases F, I, K, L, M, N, and Q in
the corresponding section of the Reference for SQLAM level 6 and below.

454 DRDA, Version 3, Volume 1

DRDA Rules Query Processing

CASE F The application requester cursor state indicates that the cursor is open and that the
application requester is positioned at an RPYDSS which is not chained to a
required SQLCARD. This is a protocol violation. Refer to rule QR2.

CASE G The application requester cursor state indicates that the cursor is open and that the
application requester is positioned at the end of a QRYDTA that is chained to a
subsequent DSS.

The application requester receives the next DSS and leaves the cursor state open.
Then the application requester reevaluates conditions based on the data found in
the next DSS.

CASE H The application requester cursor state indicates that the cursor is open and that the
application requester is positioned at the end of a QRYDTA that is not chained to a
subsequent DSS.

The application requester issues a CNTQRY command and then receives the reply
DSSs for that command. Then the application requester reevaluates conditions
based on the data found in the first DSS in the reply chain.

CASE I The application requester cursor state indicates that the cursor is open, performing
a multi-row fetch, and positioned on the first row of the SQL rowset. It is irrelevant
whether the QRYDTA is chained to a subsequent DSS.

The application requester, therefore, returns a statement-level SQLCA to the
application, which is derived from the SQLCARD.

Note: If the RPYDSS is an ABNUOWRM, all cursor states are placed in the NOT
OPEN state. The rollback has reset all cursors. All buffers associated with the
cursors are reset to an empty state.

If the cursor is implicitly closed after the rowset fetch, then an ENDQRYRM is
returned after the EXTDTA objects (if externalized data is being returned).

Part 1: Database Access Protocol 455

Query Processing DRDA Rules

7.21.5.3 Rules for CLOSE

Table 7-5 Application Requester Rules for CLOSE

Cases
Conditions A B C D E F G H I J K L M N O___

CURSOR STATE:
NOT OPEN A
ONLY CLOSE ALLOWED B
OPEN C D E___

RPYDSS WAS INCLUDED:
YES C D
NO E___

RPYDSS CHAINED TO
SQLCARD:

YES C
NO D___��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Cases

Actions A B C D E F G H I J K L M N O___
RETURN SQLCA:

SQLSTATE=’00000’ B C
NOT OPEN A
FROM AS E___

CURSOR STATE:
NOT OPEN A B C E___

ISSUE CLSQRY E___
PROTOCOL ERROR D___�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

Cases for Rules59

CASE A The application requester cursor state indicates the cursor is not open. The
application requester, therefore, returns an SQLCA with a not open SQLSTATE of
24501. The cursor state remains not open.

CASE B The application requester cursor state indicates that the only valid operation
against the cursor is to close it. This is because the application server has processed
to end of data and has chosen to close the cursor implicitly based on the properties
of the cursor, and the qryclsimp parameter as previously sent on the OPNQRY
command by returning the ENDQRYRM and SQLCARD. The application
requester, therefore, returns an SQLCA with an SQLSTATE of 00000 to the
application.

CASE C The application requester cursor state indicates that the cursor is open. A query
terminating RPYDSS is included in the reply chain for the previous query

59. When comparing with the architecture in SQLAM level 6 and below, some cases have been eliminated. To assist in comparing
between different levels of the architecture, case E in this section corresponds to case F in the corresponding section of the
Reference for SQLAM level 6 and below.

456 DRDA, Version 3, Volume 1

DRDA Rules Query Processing

command. The RPYDSS is chained to the required SQLCARD object.

The application requester returns an SQLCA to the application with an SQLSTATE
of ’00000’, indicating that the CLOSE was successful, and sets the cursor state to
not open.

CASE D The application requester cursor state indicates that the cursor is open. A query
terminating RPYDSS is included in the reply chain for the previous query
command. The RPYDSS is not chained to a subsequent DSS, and thus is not
chained to the required SQLCARD object. This is a protocol violation according to
rule QT2.

CASE E The application requester cursor state indicates that the cursor is open. A query
terminating RPYDSS is not included in the reply chain for the previous query
command. This is a normal situation. The application wants to close the cursor
prior to viewing all the answer set data and the application server has not reached
end of data. Or end of data has been reached (SQLSTATE 02000), but the server has
chosen not to close the cursor implicitly based on the properties of the cursor, and
the qryclsimp parameter as previously sent on the OPNQRY command.

The application requester issues a CLSQRY command to the application server.
The optional qryclsrls parameter can be specified to dictate whether read locks are
to be freed when the query is closed. When the application requester receives a
successful reply, it places the cursor in the not open state and returns the SQLCA,
which is derived from the SQLCARD returned to the application requester by
CLSQRY.

Part 1: Database Access Protocol 457

DRDA Rules

458 DRDA, Version 3, Volume 1

Chapter 8

SQLSTATE Usage

This chapter identifies the SQLSTATEs that DRDA specifically references. See
ISO/IEC 9075: 1992, Database Language SQL for definitions of SQLSTATEs referenced in DRDA as
well as other SQLSTATEs appropriate for error conditions not defined or not within the scope of
DRDA.

This chapter also identifies the SQLSTATEs that an application program receives following the
receipt of a DDM reply message at an application requester in response to a DRDA remote
request that the application requester made on behalf of the application program.

This chapter also provides a general description for each SQLSTATE that any other chapter of
this volume references.

8.1 DRDA Reply Messages and SQLSTATE Mappings
Table 8-1 lists the valid DDM reply messages and svrcods for DRDA. The table is also a mapping
between the reply messages and SQLSTATEs. If an application requester receives a valid reply
message with a valid svrcod, the application requester must return the SQLSTATE listed in the
table. If an application requester receives a reply message that is not valid in DRDA or a valid
reply message with an svrcod that is not valid in DRDA, the application requester returns the
SQLSTATE 58018.

Reply messages CMDVLTRM, CMMRQSRM, and RDBUPDRM are not supported in DRDA
Level 1.

Table 8-1 DRDA Reply Messages (RMs) and Corresponding SQLSTATEs
__

REPLY MESSAGE SVRCOD SQLSTATE�� �� �� ��__
ABNUOWRM 8 SQLSTATE in SQLCARD__
ACCRDBRM 0 00000__
ACCRDBRM 4 01539__
AGNPRMRM 16,32,64 58009__
BGNBNDRM 8 SQLSTATE in SQLCARD__
CMDATHRM 8 58008 or 58009__
CMDCHKRM 0 Not returned__
CMDCHKRM 8 58008 or 58009__
CMDCHKRM 16,32,64,128 58009__
CMDNSPRM 8 58014__
CMDVLTRM 8 58008__
CMMRQSRM 8 Not returned or 2D528 or 2D529__
DSCINVRM 8 58008 or 58009__
DTAMCHRM 8 58008 or 58009__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 1: Database Access Protocol 459

DRDA Reply Messages and SQLSTATE Mappings SQLSTATE Usage

__
REPLY MESSAGE SVRCOD SQLSTATE�� �� �� ��__
ENDQRYRM 4,8 SQLSTATE in SQLCARD__
ENDUOWRM 4 SQLSTATE in SQLCARD__
MGRDEPRM 8 58009__
MGRLVLRM 8 58010__
OBJNSPRM 8 58015__
OPNQFLRM 8 SQLSTATE in SQLCARD__
OPNQRYRM 0 SQLSTATE in SQLCARD__
PKGBNARM 8 58012__
PKGBPARM 8 58011__
PRCCNVRM 8 58008 or 58009__
PRCCNVRM 16,128 58009__
PRMNSPRM 8 58016__
QRYNOPRM 4 24501__
QRYNOPRM 8 58008 or 58009__
QRYPOPRM 8 58008 or 58009__
RDBACCRM 8 58008 or 58009__
RDBATHRM 8 08004__
RDBNACRM 8 58008 or 58009__
RDBAFLRM 8 SQLSTATE in SQLCARD__
RDBNFNRM 8 08004__
RDBUPDRM 0 Not returned__
RSCLMTRM 8,16 57012__
RSCLMTRM 32,64,128 57013__
RSLSETRM 0 SQLSTATE in SQLCARD__
SECCHKRM 0 Not returned__
SECCHKRM 8,16 42505__
SQLERRRM 8 SQLSTATE in SQLCARD__
SYNTAXRM 8 58008 or 58009__
TRGNSPRM 8 58008 or 58009__
VALNSPRM 8 58017__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

460 DRDA, Version 3, Volume 1

SQLSTATE Usage SQLSTATE Codes Referenced by DRDA

8.2 SQLSTATE Codes Referenced by DRDA
01515 This SQLSTATE reports a warning on a FETCH or SELECT into a host variable list

or structure that occurred because the host variable was not large enough to hold
the retrieved value. The FETCH or SELECT does not return the data for the
indicated SELECT item, the indicator variable is set to −2 to indicate the return of a
NULL value, and processing continues.

01519 This SQLSTATE reports an arithmetic exception warning that occurred during the
processing of an SQL arithmetic function or arithmetic expression that was in the
SELECT list of an SQL select statement, in the search condition of a SELECT or
UPDATE or DELETE statement, or in the SET clause of an UPDATE statement. For
each expression in error, the indicator variable is set to −2 to indicate the return of
a NULL value. The associated data variable remains unchanged, and processing
continues.

01520 A string value cannot be assigned to a host variable because the value is not
compatible with the host variable.

This SQLSTATE reports a translation warning (no representation of the character
in the application requester CCSID) that may occur when translating a string value
the application server returned to the application requester. The string value
cannot be assigned to a host variable that has an indicator variable within a
SELECT statement of an application program. The value is incompatible with the
host variable due to a mismatch in data representation. The FETCH or SELECT
does not return the data for the indicated SELECT item, the indicator variable is set
to −2 to indicate the return of a NULL value, and processing continues.

01539 This SQLSTATE reports a character set restriction exception warning. The connection
is established, but only the single byte character set (SBCS) is supported. Any
attempted usage of the restricted CCSIDs results in an error.

01587 This SQLSTATE reports a pending response or a mixed outcome from at least one
participant during the two-phase process.

01615 Bind option ignored.

The bind operation continues. The first ignored option is reported in SQLERRMC.

02000 This SQLSTATE reports a No Data exception warning due to an SQL operation on
an empty table, zero rows identified in an SQL UPDATE or SQL DELETE
statement, or the cursor in an SQL FETCH statement was after the last row of the
result table. Additionally, for scrollable cursors, this warning is issued when the
cursor in an SQL FETCH statement was before the first row of the result table.

02502 The SQLSTATE reports a No Data exception warning due to an SQL FETCH
operation that returns either an update hole or a delete hole for a scrollable
sensitive static cursor.

08001 The Application Requester is unable to establish the connection.

This SQLSTATE reports the failure of an attempt to make a DRDA connection. If
the associated SQLCODE is −30082, the failure was related to DRDA security
protocols. In that case, reason code 2 in the related message tokens specifies the
detailed cause of the failure.

08004 Server not found or server authorization failure

Part 1: Database Access Protocol 461

SQLSTATE Codes Referenced by DRDA SQLSTATE Usage

This SQLSTATE reports that a user attempted to access a relational database that
cannot be found or that a user is not authorized to access the relational database.

0A501 This SQLSTATE reports a failure to establish a connection to an application server.
This SQLSTATE should be used if the security mechanism specified by the
application server is not supported by the application requester.

22001 This SQLSTATE reports an error on a FETCH or SELECT into a host variable list or
structure that occurred because the host variable was not large enough to hold the
retrieved value. The FETCH or SELECT statement is not executed. No data is
returned.

22003, 22012, 22502, or 22504
This SQLSTATE reports an arithmetic exception error that occurred during the
processing of an SQL arithmetic function or arithmetic expression that was in the
SELECT list of an SQL select statement, in the search condition of a SELECT or
UPDATE or DELETE statement, or in the SET clause of an UPDATE statement. The
statement cannot be executed. In the case of an INSERT or UPDATE statement, no
data is updated or deleted.

22021 The value of a string host variable cannot be used as specified or a string value
cannot be assigned to a host variable because the value is not compatible with the
host variable.

This SQLSTATE reports a conversion error (no representation for a character in the
application server CCSID) that may occur when converting an application input
string variable to the application server’s representation. The value of the string
host variable is incompatible with its use due to a mismatch in data representation.
The value cannot be used as specified.

This SQLSTATE reports a conversion error (no representation of the character in
the application requester CCSID) that may occur when converting a string value
the application server returned to the application requester. The string value
cannot be assigned to a host variable that does not have an indicator variable
within a SELECT statement of an application program. The value is incompatible
with the host variable due to a mismatch in data representation. The FETCH or
SELECT statement is not executed. No data is returned. If the statement was a
FETCH, then the cursor remains open.

22527 Error has occurred when processing a row for a multi-row input operation.

24501 Execution failed due to an invalid cursor state. The identified cursor is not open.

25000 Operation invalid for application execution environment.

This SQLSTATE reports the attempt to use SQL update operations to change data
within a relational database in a read-only application execution environment.

2D521 SQL COMMIT or ROLLBACK statements are invalid in the current environment.

This SQLSTATE reports the attempt to execute an SQL commit or rollback process
in an environment that does not allow SQL COMMIT or ROLLBACK statements.

2D522 Atomic chain attempts a commit or rollback operation, either implicitly or
explicitly through a commit or rollback request.

2D528 Operation invalid for application execution environment.

This SQLSTATE reports the attempt to use EXCSQLIMM or EXCSQLSTT to
execute a COMMIT in a dynamic COMMIT restricted environment.

462 DRDA, Version 3, Volume 1

SQLSTATE Usage SQLSTATE Codes Referenced by DRDA

2D529 Operation invalid for application execution environment.

This SQLSTATE reports the attempt to use EXCSQLIMM or EXCSQLSTT to
execute a ROLLBACK in a dynamic ROLLBACK restricted environment.

40504 Unit of Work Rolled Back.

This SQLSTATE reports that the unit of work rolled back due to a system error.
This SQLSTATE is not used during commit processing.

42505 This SQLSTATE reports a failure to authenticate the end user during connection
processing to an application server.

42828 This SQLSTATE reports an attempt to DELETE WHERE CURRENT OF CURSOR
or UPDATE WHERE CURRENT OF CURSOR on a cursor that is fetching rows
using a blocking protocol.

42932 Program preparation assumptions are incorrect.

This SQLSTATE reports that the program preparation assumptions in effect for a
BNDSQLSTT command are incorrect.

51021 Application must execute rollback.

SQL statements cannot be executed until the application process executes a
rollback operation.

56051 The application requester is unable to convert the row number value specified by
the application on a FETCH request for a scrollable cursor because the row number
value is larger than the largest integer that can fit into the QRYROWNBR instance
variable. The FETCH request is failed.

56084 An unsupported SQLTYPE was encountered in a select-list or input-list.

This SQLSTATE reports that an SQL statement cannot be processed because of an
unsupported SQLTYPE. This error can occur when a sender detects an SQLTYPE
that cannot be sent to the receiver because the receiver is at an SQLAM level lower
than the minimum level at which the SQLTYPE is supported. The sender rejects
the statement with this SQLSTATE and the data is not sent. This error can also
occur when a receiver at a given SQLAM level detects an SQLTYPE that is
supported at that SQLAM level, but for which it does not provide support and for
which there is no compatible mapping according to Data Conversion rules (DC3 to
DC5). The receiver rejects this statement.

56095 Invalid bind option.

This SQLSTATE reports that one or more bind options were not valid at the server.
The bind operation terminates. The first bind option in error is reported in
SQLERRMC.

56096 Conflicting bind options.

The bind operation terminates. The bind options in conflict are reported in
SQLERRMC.

560B1 The application server has failed a stored procedure call because one of the
scrollable result sets returned by the stored procedure is not positioned before the
first row of the result table for the cursor. This cursor position requirement
ensures that the application requester can manage cursor position differences if it
requests a rowset. The EXCSQLSTT command for the stored procedure call is
failed and all result sets for the stored procedure call are closed.

Part 1: Database Access Protocol 463

SQLSTATE Codes Referenced by DRDA SQLSTATE Usage

560B2 The application server is unable to return an OPNQRYRM for a scrollable cursor
because the application requester is not at SQLAM Level 7 or higher and thus does
not support scrollable cursors. The OPNQRY command is failed and the cursor
which had been successfully opened by the relational database is closed.

560B3 The application server is unable to return an OPNQRYRM for a scrollable result
set returned by a stored procedure call because the application requester is not at
SQLAM Level 7 or higher and thus does not support scrollable cursors. The
EXCSQLSTT command for the stored procedure call is failed and all result sets for
the stored procedure call are closed.

560B6 Atomic chain contains a CALL statement for a stored procedure.

57012 Execution failed due to unavailable resources that will not affect the successful
execution of subsequent commands or SQL statements.

This SQLSTATE reports insufficient target resources that are non-relational
database resources.

57013 Execution failed due to unavailable resources that will affect the successful
execution of subsequent commands or SQL statements.

This SQLSTATE reports insufficient target resources that are non-relational
database resources.

57014 This SQLSTATE reports the successful interrupt of a DRDA request.

57017 This SQLSTATE reports a lack of support for data conversion. Execution failed
because the CCSIDs required for data conversion are unsupported.

58008 Execution failed due to a distribution protocol error that will not affect the
successful execution of subsequent commands or SQL statements.

This SQLSTATE reports a DRDA protocol error that causes termination of
processing for a specific DRDA command or SQL statement.

Each of these errors is a programming error.

The current SQL statement failed because the server specified does not support the
requested function. The error was such that it will not preclude the successful
execution of further SQL statements.

58009 Execution failed due to a distribution protocol error that caused deallocation of the
conversation.

This SQLSTATE reports a DRDA protocol error that causes termination of
processing for a specific command or SQL statement. When an application
requester returns this SQLSTATE, the application requester must also deallocate
the conversation on which the application server reported the protocol error.

Each of these errors is a programming error.

The current connection failed because the server does not support the requested
function. A new connection is required to allow the successful execution of further
SQL statements.

58010 Execution failed due to a distribution protocol error that will affect the successful
execution of subsequent commands or SQL statements.

This SQLSTATE reports a DRDA protocol error that causes termination of
processing for a specific command or SQL statement and for any subsequent

464 DRDA, Version 3, Volume 1

SQLSTATE Usage SQLSTATE Codes Referenced by DRDA

DRDA commands and SQL statements that the application program issued.

A manager level not supported error may not be a programming error.

58011 Command invalid while bind process in progress.

This SQLSTATE reports an attempt to execute a specific DRDA DDM command
that is not valid while a Bind process is in progress. BNDSQLSTT, ENDBND,
RDBCMM, and RDBRLLBCK are the only legal commands while a Bind process is
in progress.

58012 Bind process with specified package name and consistency token not active.

This SQLSTATE reports an attempt to execute a BNDSQLSTT or ENDBND for a
bind process that was not active.

58014 Command not supported error.

This SQLSTATE reports that the target does not support a particular command.
The error causes termination of processing of the command, but does not affect the
processing of subsequent DRDA commands and SQL statements that the
application program issued.

58015 Object not supported error.

This SQLSTATE reports that the target does not support a particular object. The
error causes termination of processing of the command, but does not affect the
processing of subsequent DRDA commands and SQL statements that the
application program issued.

58016 Parameter not supported error.

This SQLSTATE reports that the target does not support a particular parameter.
The error causes termination of processing of the command, but does not affect the
processing of subsequent DRDA commands and SQL statements that the
application program issued.

58017 Value not supported for parameter.

This SQLSTATE reports that the target does not support a particular parameter
value. The error causes termination of processing of the command, but does not
affect the processing of subsequent DRDA commands and SQL statements that the
application program issued.

58018 Reply message with not supported error.

This SQLSTATE reports the receipt of a reply message with a reply message
codepoint that DRDA does not recognize or with an svrcod value that DRDA does
not recognize. The error does not affect the processing of subsequent DRDA
commands and SQL statements that the application program issued.

The cause of this error may be a mismatch in source and target manager levels or
may be a programming error.

58028 Unit of Work Rolled Back.

This SQLSTATE reports that the unit of work rolled back when it was requested to
commit. The rollback occurred as a result of a resource not capable of committing.
This SQLSTATE does not guarantee that all resources rolled back.

Part 1: Database Access Protocol 465

SQLSTATE Usage

466 DRDA, Version 3, Volume 1

Technical Standard

Part 2:

Environmental Support

The Open Group

Part 2: Environmental Support 467

468 DRDA, Version 3, Volume 1

Chapter 9

Environmental Support

Part 1, Database Access Protocol discusses the core of the architecture that makes it what it is, a
distributed relational database architecture. But this alone does not describe all that is needed to
provide a robust distributed relational database environment. This section describes the
characteristics of various components in a distributed environment that are necessary to provide
a robust environment that supports access to distributed relational databases. These
components are:

• Communications

• Security

• Accounting

• Transaction Processing

• Problem Determination

Part 3, Network Protocols discusses these components when implemented for specific network
protocols.

9.1 DDM Communications Model and Network Protocol Support
The key component of the DDM communications model is the DDM communications manager.
The DDM communications manager provides the following functions:

• Interfaces with local network facilities to receive and send DDM requests, replies, and data

• Routes received DDM requests and replies to the appropriate agent

• Accepts requests, replies, and data from an agent and packages them into the proper data
stream format for transmission

• Detects normal and abnormal termination of network connections and responds in an
appropriate fashion

For further detail, refer to the DDM term CMNMGR in the DDM Reference.

The purpose of the DDM communications model is to provide a conceptual framework for
viewing DRDA communications. DRDA, however, does not require that the communications
components of DRDA implementing products replicate the structure of the DDM
communications model. DRDA does require that the communications components of DRDA
implementing products implement DRDA request and response protocols.

DRDA does not require any particular network protocol, such as LU 6.2, TCP/IP, NetBIOS, for
flowing the DRDA protocol. DRDA does specify the network protocol must provide certain
characteristics that are required to provide robust support for a distributed relational database
environment. These characteristics are:

• Timely communication outage notification

• Guaranteed in order and complete delivery of network messages

• Propagation of information that allows both sides of the connection to identify the partner

Part 2: Environmental Support 469

DDM Communications Model and Network Protocol Support Environmental Support

The communication protocol might also provide additional functionality that could be used to
support the environment. Examples of this additional functionality are:

• Propagation of security and accounting information

• Propagation of synchronization point processing information

9.2 Accounting
DRDA requires the ability to acquire information useful for accounting. This information is
categorized as who, what, when, and where information. The who information is the end-user
name and it is provided through the network protocols or through DRDA mechanisms as
defined in identification and authentication processing. The what information is provided in
some of the network protocols or can be found in the DRDA-defined correlation token that is
passed on ACCRDB. The when information is provided by locally available clocks. The where
information is provided by mechanisms that extract the unique network identifier for the
participants in the network connection.

9.3 Transaction Processing
Transaction processing in DRDA is the process to commit or rollback a unit of work across one
or multiple application servers involved in the unit of work. DRDA works in cooperation with
the network protocols and synchronization point managers to provide this support. If a network
protocol does not support the two-phase commit process, then application servers that are
connected on those protocols have operational restrictions as defined by DRDA (see Section
4.4.15.2 (on page 194)).

470 DRDA, Version 3, Volume 1

Chapter 10

Security

DRDA requires the ability to identify and authenticate the end user associated with the DRDA
requests. Some network protocols such as LU 6.2, provide the ability to pass the information
necessary to identify and authenticate the end user. See Part 3, Network Protocols for a
description of this capability for the specific network protocols.

Not all network protocols provide this capability. For environments where this is the case,
DRDA defines DDM flows for passing security information (see Section 4.4.2 (on page 91)).
DRDA provides the ability for the application requester and application server to negotiate the
security mechanisms to use to provide the identification and authentication support. These
mechanisms are described in this chapter.

10.1 DCE Security Mechanisms with GSS-API
DRDA provides support for utilizing The Open Group’s DCE security mechanisms. This section
briefly describes the flows that perform identification and authentication through GSS-API with
DCE security. The description of GSS-API uses the Generic Security Services Application
Programming Interface (GSS-API). An implementation may choose another interface as long as
it is compatible with GSS-API.

Figure 10-1 provides a greatly simplified overview of the flows involved with calling GSS-API to
utilize DCE security mechanisms. The actual DCE processing to perform the identification and
authentication processing is described in the DCE documentation listed in Referenced
Documents (on page xxv). Following the figure is a description of the flows.

[1] [2]

[3]

[4] [5]

[6]

[7] [8]

Security Services
- Context Information
- Context Verification

Security Services
- Context Information
- Context Verification

Application
Requester

GSS-API

Application

Application
Server

Relational
Database

GSS-API

Figure 10-1 Using GSS-API to Call DCE-Based Security Flows in DRDA

1. The application makes a request that requires access to the application server. Acting on
behalf of the end user of the application, the application requester calls the security
services (gss_init_sec_context()) in order to obtain security context information for
accessing the application server. In this example, the application requester requests mutual
authentication by setting the gss_c_mutual_flag to true on the gss_init_sec_context() call.

Part 2: Environmental Support 471

DCE Security Mechanisms with GSS-API Security

2. The security services return to the application requester, a major_status code of
GSS_S_CONTINUE_NEEDED and security context information to be passed to the
application server. The major_status code value indicates the security services processing
is not complete and the application requester will receive security context information
from the application server which will need to be passed to the security services to
continue processing.

3. The application requester passes the security context information to the application server
using a SECCHK command and a SECTKN object.

4. The application server calls the security services (gss_accept_security_context()) to process
the security context information.

5. The security services return to the application server, a major_status code of
GSS_S_COMPLETE and security context information to be returned to the application
requester. The major_status code value indicates the security services processing is
complete and authentication of the application requester is successful.

6. The application server passes the security context information to the application requester
using a SECCHKRM and a SECTKN object.

7. The application requester calls the security services (2gss_init_security_context()) to process
the security context information.

8. The security services returns a major_status code value of GSS_S_COMPLETE indicating
the security services processing is complete and authentication of the application server is
successful.

472 DRDA, Version 3, Volume 1

Security User ID-Related Security Mechanisms

10.2 User ID-Related Security Mechanisms
DRDA provides the following user ID-related security mechanisms:

• User ID only

• User ID and password

• Encrypted user ID and password

• User ID and encrypted password

• User ID and password substitute

• User ID and strong password substitute

• User ID, password, and new password

• Encrypted user ID, password, and new password

The following sections provide overviews of these mechanisms.

10.2.1 User ID and Password

[1]

[2] [3]

[4]

Security Services
- Context Information
- Context Verification

Application
Requester

Application

Application
Server

Relational
Database

Figure 10-2 User ID and Password Authentication

The following description of the flows does not define the interface between the application
server and the security services. It is assumed that local services are available at the application
server to accept the user ID and password and authenticate the user ID based on this
information.

1. The application makes a request that requires access to the application server. The
application requester acquires a password for the end user that is associated with the
application. The process to acquire the password is platform-specific. The application
requester passes the user ID and password to the application server in the usrid and
password parameters on SECCHK.

2. The application server calls the security services to process the user ID and password.

3. The security services returns an indication the end user is authenticated.

4. The application server returns a SECCHKRM to the application requester indicating the
authentication is successful.

Part 2: Environmental Support 473

User ID-Related Security Mechanisms Security

10.2.2 User ID, Password, and New Password

[1]

[2] [3]

[4]

Security Services
- Context Information
- Context Verification

Application
Requester

Application

Application
Server

Relational
Database

Figure 10-3 User ID, Password, and New Password Authentication

The following description of the flows does not define the interface between the application
server and the security services. It is assumed that local services are available at the application
server to accept the user ID, password, and new password and to authenticate the user ID and
the changing of the password based on this information.

1. The application makes a request that requires access to the application server. The
application requester acquires a password and new password for the end user that is
associated with the application. The process to acquire the passwords is platform-specific.
The application requester passes the user ID, password, and new password to the
application server in the usrid, password, and newpassword parameters of SECCHK.

2. The application server calls the security services to process the user ID and passwords.

3. The security services returns an indication that the end user is authenticated and that the
password has been replaced.

4. The application server returns a SECCHKRM to the application requester indicating that
the authentication and the changing of the password is successful.

474 DRDA, Version 3, Volume 1

Security User ID-Related Security Mechanisms

10.2.3 User ID-Only

[1]

[2] [3]

[4]

Security Services
- Context Information
- Context Verification

Application
Requester

Application

Application
Server

Relational
Database

Figure 10-4 User ID and Password Authentication

The following description of the flows does not define the interface between the application
server and the security services. It is assumed that local services are available at the application
server to accept the user ID and password and authenticate the user ID based on this
information.

1. The application makes a request that requires access to the application server. A password
is not required between the application requester and application server, so the application
requester passes the user ID to the application server in the usrid parameter on SECCHK.

2. The application server calls the security services to process the user ID.

3. The security services return an indication the end user is authenticated.

4. The application server returns a SECCHKRM to the application requester indicating the
authentication is successful.

Part 2: Environmental Support 475

User ID-Related Security Mechanisms Security

10.2.4 User ID and Original or Strong Password Substitute

[1]

[5]

[6]

[2]

[3]

[4]

Application
Requester

Security Services Security Services

Application

Application
Server

Relational
Database

Figure 10-5 User ID and Password Substitute Authentication

The following description of the flows applies to both the original (USRSBSPWD) and strong
(USRSSBPWD) password substitute security mechanism. It does not define the interface
between the application server and the security services. It is assumed that local services are
available at the application requester and at the application server to perform the required
functions described below:

1. The application makes a request that requires access to the application server. The
application requester sends an ACCSEC command with SECMEC value of USRSBSPWD
or USRSSBPWD and a SECTKN containing eight bytes of random data (application
requester’s seed). See the DHENC term in the DDM Reference for further information.

2. The application server saves the client’s seed and replies with ACCSECRD containing the
server’s seed in SECTKN which also consists of eight bytes of random data.

3. The application requester acquires a password for the end user that is associated with the
application. The process to acquire the password is platform-specific. The application
requester then creates a password substitute. For the original USRSBSPWD secmec, it uses
the two seeds, the clear text password, and the Data Encryption Standard (DES) algorithm,
following the procedure described in the PWDSBS term in the DDM Reference. For the
strong USRSSBPWD secmec, it uses the Strong Hash Algorithm (SHA-1) following the
procedure described in the PWDSSB term in the DDM Reference.

4. The application requester passes the user ID and the password substitute to the
application server in the USRID and PASSWORD parameters on SECCHK.

5. The application server creates a password substitute of its own from its knowledge of the
seeds and the password to be validated. It compares the values it computes to that which it
received from the application requester. If they match, the user is validated.

6. The application server returns a SECCHKRM to the application indicating success or
failure based on the outcome of the authentication process.

476 DRDA, Version 3, Volume 1

Security User ID-Related Security Mechanisms

10.2.5 User ID and Encrypted Password

[1]

[5]

[6]

[2]

[3]

[4]

Application
Requester

Security Services Security Services

Application

Application
Server

Relational
Database

Figure 10-6 User ID and Encrypted Password Authentication

The following description of the flows does not define the interface between the application
server and the security services. It is assumed that local services are available at the application
requester and at the application server to perform the required functions described below.

1. The application makes a request that requires access to the application server. The
application requester sends an ACCSEC command with SECMEC value of USRENCPWD
and SECTKN containing the application requester’s connection key, which is generated
using the standard Diffie-Hellman key distribution algorithm to generate a shared private
key. See the PWDENC term in the DDM Reference.

2. The application server saves the client’s key and replies with ACCSECRD containing the
server’s connection key in SECTKN which also is generated using the Diffie-Hellman
algorithm.

3. The application requester acquires a password for the end user that is associated with the
application. The process to acquire the password is platform-specific. The application
requester then encrypts the password using the DES password, user ID, and generated
Diffie-Hellman shared private key described in the DDM Reference.

4. The application requester passes the user ID and the encrypted password to the
application server in the USRID and PASSWORD parameters on SECCHK.

5. The application server decrypts the encrypted password using the DES password, user ID,
and generated Diffie-Hellman shared private key. It then asks the local security subsystem
to validate the user ID/password combination.

6. The application server returns a SECCHKRM to the application indicating success or
failure based on the outcome of the authentication process.

Part 2: Environmental Support 477

User ID-Related Security Mechanisms Security

10.2.6 Encrypted User ID and Password

[1]

[5]

[6]

[2]

[3]

[4]

Application
Requester

Security Services Security Services

Application

Application
Server

Relational
Database

Figure 10-7 Encrypted User ID and Password Authentication

The following description of the flows does not define the interface between the application
server and the security services. It is assumed that the local services are available at the
application requester and at the application server to perform the required functions described
below.

1. The application makes a request that requires access to the application server. The
application requester sends an ACCSEC command with SECMEC values of EUSRIDPWD
and SECTKN containing the application requester’s connection key, which is generated
using the standard Diffie-Hellman key distribution algorithm to generate a shared private
key. See the DHENC term in the DDM Reference.

2. The application server saves the client’s key and replies with ACCSECRD containing the
server’s connection key in SECTKN, which is also generated using the Diffie-Hellman
algorithm.

3. The application requester acquires a password for the end user that is associated with the
application. The process to acquire the password is platform-specific. The application
requester then encrypts the user ID using the user ID, middle 8 bytes of the server’s
connection key (as described in the DDM Reference), and the Diffie-Hellman shared
private key. The application requester then encrypts the password using the password, the
middle 8 bytes of the server’s connection key, and the Diffie-Hellman shared private key.
Notice that the second input parameter to the DES function is the middle 8 bytes of the
server’s connection key.

4. The application requester passes the encrypted user ID and encrypted password to the
application server in two SECTKNS included with a SECCHK.

5. The application server decrypts the encrypted user ID using the DES user ID included in
the first SECTKN, the middle 8 bytes of the server’s connection key, and the Diffie-Hellman
shared private key. The application server then decrypts the encrypted password using the
DES password included in the second SECTKN, the middle 8 bytes of the server’s
connection key, and the Diffie-Hellman shared private key. It then asks the local security
subsystem to validate the user ID/password combination. Notice that the second input
parameter to the DES function is the middle 8 bytes of the server’s connection key.

6. The application server returns a SECCHKRM to the application indicating success or
failure based on the outcome of the authentication process.

478 DRDA, Version 3, Volume 1

Security User ID-Related Security Mechanisms

10.2.7 Encrypted User ID, Password, and New Password

[1]

[5]

[6]

[2]

[3]

[4]

Application
Requester

Security Services Security Services

Application

Application
Server

Relational
Database

Figure 10-8 Encrypted User ID, Password, New Password Authentication

The following description of the flows does not define the interface between the application
server and the security services. It is assumed that the local services are available at the
application requester and at the application server to perform the required functions described
below.

1. The application makes a request that requires access to the application server. The
application requester sends an ACCSEC command with SECMEC values of
EUSRIDNWPWD and SECTKN contain the application requester’s connection key, which
is generated using the standard Diffie-Hellman key distribution algorithm to generate a
shared private key. See the DHENC term in the DDM Reference.

2. The application server saves the client’s key and replies with ACCSECRD containing the
server’s connection key in SECTKN, which is also generated using the Diffie-Hellman
algorithm.

3. The application requester acquires a password for the end user that is associated with the
application. The process to acquire the password is platform-specific. The application
requester then encrypts the user ID using the user ID, the middle 8 bytes of the server’s
connection key (as described in the DDM Reference), and the Diffie-Hellman shared
private key. The application requester then encrypts the password using the password,
first middle 8 bytes of the server’s connection key, and the Diffie-Hellman shared private
key. The application requester then encrypts the new password using the password, the
middle 8 bytes of the server’s connection key, and the Diffie-Hellman shared private key.
Notice that the second input parameter to the DES function is the middle 8 bytes of the
server’s connection key.

4. The application requester passes the encrypted user ID, encrypted password, and
encrypted new password to the application server in three SECTKNS included with a
SECCHK.

5. The application server decrypts the encrypted user ID using the DES user ID included in
the first SECTKN, the middle 8 bytes of the server’s connection key, and the Diffie-Hellman
shared private key. The application server then decrypts the encrypted password using the
DES password included in the second SECTKN, the middle 8 bytes of the server’s
connection key, and the Diffie-Hellman shared private key. The application server then
decrypts the encrypted new password using the DES password included in the third
SECTKN, the middle 8 bytes of the server’s connection key, and the Diffie-Hellman shared
private key. It then asks the local security subsystem to validate the user
ID/password/new password combination. Notice that the second input parameter to the

Part 2: Environmental Support 479

User ID-Related Security Mechanisms Security

DES function is the middle 8 bytes of the server’s connection key.

6. The application server returns a SECCHKRM to the application indicating success or
failure based on the outcome of the authentication process.

480 DRDA, Version 3, Volume 1

Security Kerberos

10.3 Kerberos
Kerberos is a security technology developed by MIT to provide users and application with
secure access to data, resources, and services located anywhere on a heterogeneous network. Its
purpose is to allow user authentication over a physically untrusted network. Instead of flowing
user IDs and passwords ‘‘in the clear’’ over a network, encrypted ‘‘tickets’’ are used. Tickets are
issued by a Kerberos authentication server. Both users and services are required to have keys
registered with the authentication server. In the case of the user, this key is derived from a user-
supplied password.

The environment supported by Kerberos is assumed to include an unsecure network with clients
and server that are themselves not necessarily secure. Kerberos provides a means of
authenticating the identity of users and authorizing access to resources independently of the
security provided by the network or by the client and server systems.

10.3.1 Kerberos Protocol

From a DRDA perspective, it is not necessary to understand Kerberos design and protocol. The
Kerberos protocol is transparent to DRDA so it will not be described in great detail. DRDA
simply provides the mechanics of flowing the Kerberos ticket. However, if users want to try and
get a better understanding of Kerberos, and the underlying DES (Data Encryption Standard)
encryption algorithm that is used, they can reference Applied Cryptography—Protocols, Algorithms,
and Source Code in C by Bruce Schneier. Also, users can reference the MIT web site at
http://www.mit.edu or http://web.mit.edu/kerberos/www for more information. The Kerberos protocol
includes the following.

A client program logs on to Kerberos on behalf of a user (for example, UNIX users may be
familiar with ‘‘kinit’’). Under the covers, Kerberos acquires a Ticket-granting Ticket (TGT) from
the Authentication Server. The TGT is delivered as a data packet encrypted in a secret key
derived from the user’s password. Thus, only the valid user is able to enter a password and thus
be able to decrypt the packet in order to obtain the use of this TGT. Whenever the client program
requests services from the specific server, it must first send its TGT to the (Ticket Granting)
Authentication Service to request a Ticket to access that server. The TGT enables a client
program to make such requests of the authentication service and allows the authentication
service to verify the validity of such a request. The ticket contains the user’s identity and
information that allows the ticket to be aged, and expired tickets to be invalidated. The
authentication service encrypts the ticket using a key known only to the desired server and the
Kerberos Security Service. This key is known as the server key. The encrypted ticket is
transmitted to the server who in turn presents it to the Kerberos authentication service to
authenticate the identity of the client program and the validity of the ticket.

10.3.2 Kerberos Security Mechanism with SSPI and GSS-API

This section briefly describes the flows that perform Kerberos identification and authentication
through the use of the Microsoft Security Support Provider Interface (SSPI) and Generic Security
Services Application Programming Interface (GSS-API). An implementation may choose another
interface.

Part 2: Environmental Support 481

Kerberos Security

[5]

[6]

[3]

[1] [2] [4]

DDM Source Server
(Application Requester)

DDM Target Server
(Application Server)

Security Services
- Context Information
- Context Verification

Security Services
- Context Information
- Context Verification

Application Relational Database

SSPI GSS-API

Figure 10-9 Example Kerberos-Based Flow using SSPI and GSS_API in DRDA

The following provides a simplified overview of the flows involved with utilizing the Kerberos
security mechanism. The actual Kerberos processing to perform the identification and
authentication processing is described in Kerberos documentation listed in Referenced
Documents (on page xxv). This example shows a source server that utilizes the SSPI-API and a
target server that uses the GSS-API.

1. The application makes a request that requires access to the DDM target server. Acting on
behalf of the end user of the application, the DDM source server calls the security server to
obtain the security context information for accessing the DDM target server. The figure
indicates a single flow, but in actuality there may be several flows. Although it is now
shown in the figure, the Kerberos principal for the target DDM server, which is required
for generating the security context information, may have been obtained from the target
DDM server earlier by the source DDM server. Acting on behalf of the end user of the
application, the source DDM server calls the security services using
AcquireCredentialsHandle() and InitializeSecurityContext() to obtain the security context
information for accessing the target DDM server.

2. The security server returns the security context information. The returned context
information must be a Kerberos Version 5 ticket.

3. The source server passes the security context information to the target server.

4. The security service verifies the security context information. Verification is accomplished
by calling the target security services using gss_accept_sec_context() with the security
context information received from the source DDM server.

5. The security service returns to the target server with an indication of the success or failure
of authentication.

6. The target server returns the result, success or failure, to the source server.

482 DRDA, Version 3, Volume 1

Security User ID and Data-Related Security Mechanisms

10.4 User ID and Data-Related Security Mechanisms
DRDA provides the following user ID and data-related security mechanisms:

• Encrypted user ID and security-sensitive data

• Encrypted user ID, password, and security-sensitive data

• Encrypted user ID, password, new password, and security-sensitive data

The following section provides an overview of this mechanism.

10.4.1 Encrypted User ID and Security-Sensitive Data

[1][2]
[3] [9]

[4]

[5]

[6]

[7][8]

Security
Services

Security
Services

Application
Requester

Application Relational
Database

Application
Server

Figure 10-10 Encrypted User ID and Security-Sensitive Data

The following description of the flows does not define the interface between the application
server and the security services. It is assumed that the local services are available at the
application requester and at the application server to perform the required functions described
below.

1. The application makes a request that requires access to the application server. The
application requester sends an ACCSEC command with a SECMEC value of EUSRIDDTA
and SECTKN containing the application requester’s connection key, which is generated
using the standard Diffie-Hellman key distribution algorithm. In this flow, the application
requester uses default values for the ENCALG and ENCKEYLEN parameters and thus does
not include them in the ACCSEC command. See the DHENC term in the DDM Reference.

2. The application server saves the requester’s connection key and generates the server’s
connection key and shared private key using the Diffie-Hellman algorithm. It then derives
the encryption seed from the shared private key and the encryption token from the server’s
connection key. The application server replies with ACCSECRD containing the server’s
connection key in SECTKN.

3. The application requester saves the server’s connection key and generates the shared
private key using the Diffie-Hellman algorithm. It then derives the encryption seed from the
shared private key and the encryption token from the server’s connection key. The
application requester encrypts the user ID using the User ID, the encryption token, and the
encryption seed.

4. The application requester sends the encrypted user ID to the application server in a
SECTKN included with a SECCHK.

5. The application server decrypts the encrypted user ID using the user ID included in the
SECTKN, the encryption token, and the encryption seed. It then asks the local security
subsystem to validate the user ID.

Part 2: Environmental Support 483

User ID and Data-Related Security Mechanisms Security

6. The application server returns a SECCHKRM to the application indicating success or failure
based on the outcome of the authentication process.

7. On successful authentication, for security-sensitive data that accompanies any DRDA
command, the application requester encrypts the DSS carrier containing the security-
sensitive data, using the given data, the encryption token, and the encryption seed. The
application requester sets dsstype in the DSS header to indicate that the object encapsulated
in the DSS is encrypted. The application requester sends the encrypted data to the server.

8. The application server decrypts the encrypted data using the data, the encryption token,
and the encryption seed. Similarly, for any security-sensitive data, the application server
encrypts the DSS carrier containing the security-sensitive data, using the given data, the
encryption token, and the encryption seed. The application server sets the dsstype in the DSS
header to indicate that the object encapsulated in the DSS is encrypted and sends the
encrypted data to the requester.

9. The application requester decrypts the encrypted data using the encrypted data, the
encryption token, and the encryption seed.

Intermediate Server Processing

This section briefly describes the intermediate server processing for the Encrypted User ID and
Security-sensitive Data Security Mechanism. This section describes the intermediate server
processing for security-sensitive objects using SECTKNOVR. Alternatively, the intermediate
server can always decrypt and re-encrypt the security-sensitive data.

[1]
[1] [1]

[2]

[3] [3]

[9] [4] [5][6]

[7]
[7]

[8]

Security
Services

Security
Services

Security
Services

Security
Services

Application
Server

Application Intermediate
Server

Intermediate
Server

Relational
Database

Database
Server

Database
Server

Database
Server

Figure 10-11 Intermediate Server Encrypted User ID and Security-Sensitive Data

The following description of the flows does not define the interface between the intermediate
server and the security services. It is assumed that the local services are available at the
application requester, at the intermediate server and at the application server to perform the
required functions described below.

1. During ACCSEC/ACCSECRD processing, the intermediate server negotiates the
EUSRIDDTA security mechanism with the downstream site.

2. On successful connection, if the request data stream contains encrypted security-sensitive
objects, then the intermediate server passes the encryption seed and the encryption token
used to encrypt the security-sensitive data in SECTKNOVR, encryption seed SECTKN first
and encryption token SECTKN second. The SECTKNOVR DSS is encrypted using the
encryption token and the encryption seed exchanged with the downstream site.

3. The intermediate server sends the encrypted SECTKNOVR, with the encrypted security-
sensitive objects to the downstream site.

484 DRDA, Version 3, Volume 1

Security User ID and Data-Related Security Mechanisms

4. If the intermediate server receives an encrypted SECTKNOVR along with encrypted
security-sensitive objects, the intermediate server decrypts the SECTKNOVR using the
encryption token and the encryption seed exchanged with the upstream site. The
intermediate server then re-encrypts the SECTKNOVR using the encryption token and the
encryption seed exchanged with the downstream site.

5. The database server first decrypts the encrypted SECTKNOVR using the encryption seed
and the encryption token. The database server then decrypts the encrypted security-
sensitive objects using the decrypted encryption seed in the first SECTKN and the
decrypted encryption token in the second SECTKN of SECTKNOVR.

6. If the reply data stream contains encrypted security-sensitive objects, then the intermediate
server passes the encryption seed and the encryption token used to encrypt the security-
sensitive objects in SECTKNOVR, encryption seed SECTKN first and encryption token
SECTKN second. The SECTKNOVR DSS is encrypted using the encryption token and the
encryption seed exchanged with the upstream site.

7. The intermediate server sends the encrypted SECTKNOVR, with the encrypted security-
sensitive objects to the upstream site.

8. If the intermediate server receives an encrypted SECTKNOVR along with encrypted
security-sensitive objects, the intermediate server decrypts the SECTKNOVR using the
encryption token and the encryption seed exchanged with the downstream site. The
intermediate server then re-encrypts the SECTKNOVR using the encryption token and the
encryption seed exchanged with the upstream site.

9. The application server first decrypts the SECTKNOVR using the encryption token and the
encryption seed. The application server then decrypts the encrypted security-sensitive
objects using the decrypted encryption seed in the first SECTKN and the decrypted
encryption token in the second SECTKN of SECTKNOVR.

10.4.2 Encrypted User ID, Password, and Security-Sensitive Data

[1][2]
[3] [9]

[4]

[5]

[6]

[7][8]

Security
Services

Security
Services

Application
Requester

Application Relational
Database

Application
Server

Figure 10-12 Encrypted User ID, Password, and Security-Sensitive Data

The following description of the flows does not define the interface between the application
server and the security services. It is assumed that the local services are available at the
application requester and at the application server to perform the required functions described
below.

1. The application makes a request that requires access to the application server. The
application requester sends an ACCSEC command with a SECMEC value of
EUSRPWDDTA and SECTKN containing the application requester’s connection key, which
is generated using the standard Diffie-Hellman key distribution algorithm. In this flow, the
application requester uses default values for ENCALG and ENCKEYLEN parameters and

Part 2: Environmental Support 485

User ID and Data-Related Security Mechanisms Security

thus does not include them in the ACCSEC command. See the DHENC term in the DDM
Reference.

2. The application server saves the requester’s connection key and generates the server’s
connection key and shared private key using the Diffie-Hellman algorithm. It then derives
the encryption seed from the shared private key and the encryption token from the server’s
connection key. The application server replies with ACCSECRD containing the server’s
connection key in SECTKN.

3. The application requester saves the server’s connection key and generates the shared
private key using the Diffie-Hellman algorithm. It then derives the encryption seed from the
shared private key and the encryption token from the server’s connection key. The
application requester acquires a password for the end user that is associated with the
application. The process to acquire the password is platform-specific. The application
requester encrypts the user ID using the user ID, the encryption token, and the encryption
seed. The application requester then encrypts the password using the password, the
encryption token, and the encryption seed.

4. The application requester sends the encrypted user ID and encrypted password to the
application server in two SECTKNs included with a SECCHK.

5. The application server decrypts the encrypted user ID using the user ID included in the first
SECTKN, the encryption token, and the encryption seed. The application server then
decrypts the encrypted password using the password included in the second SECTKN, the
encryption token, and the encryption seed. It then asks the local security subsystem to
validate the user ID/password combination.

6. The application server returns a SECCHKRM to the application indicating success or failure
based on the outcome of the authentication process.

7. On successful authentication, for any security-sensitive data that accompanies any DRDA
command, the application requester encrypts the DSS carrier containing the security-
sensitive data, using the given data, the encryption token, and the encryption seed. The
application requester sets the dsstype in the DSS header to indicate that the object
encapsulated in the DSS is encrypted. The application requester sends the encrypted data to
the server.

8. The application server decrypts the encrypted data using the data, the encryption token,
and the encryption seed. Similarly, for any security-sensitive data, the application server
encrypts the DSS carrier containing the security-sensitive data, using the given data, the
encryption token, and the encryption seed. The application server sets the dsstype in the DSS
header to indicate that the object encapsulated in the DSS is encrypted and sends the
encrypted data to the requester.

9. The application requester decrypts the encrypted data using the encrypted data, the
encryption token, and the encryption seed.

Intermediate Server Processing

The intermediate server processing flows for Encrypted User ID, Password, and Security-
sensitive data are identical to those of Encrypted User ID and Security-sensitive data
intermediate server processing flows, except that during ACCSEC/ACCSECRD processing the
intermediate server negotiates the EUSRPWDDTA security mechanism with the downstream
site.

486 DRDA, Version 3, Volume 1

Security User ID and Data-Related Security Mechanisms

10.4.3 Encrypted User ID, Password, New Password, and Security-Sensitive Data

[1][2]
[3] [9]

[4]

[5]

[6]

[7][8]

Security
Services

Security
Services

Application
Requester

Application Relational
Database

Application
Server

Figure 10-13 Encrypted User ID, Password, New Password, and Security-Sensitive Data

The following description of the flows does not define the interface between the application
server and the security services. It is assumed that the local services are available at the
application requester and at the application server to perform the required functions described
below.

1. The application makes a request that requires access to the application server. The
application requester sends an ACCSEC command with a SECMEC value of
EUSRNPWDDTA and SECTKN containing the application requester’s connection key,
which is generated using the standard Diffie-Hellman key distribution algorithm. In this
flow, the application requester uses default values for ENCALG and ENCKEYLEN
parameters and thus does not include them in the ACCSEC command. See the DHENC
term in the DDM Reference.

2. The application server saves the requester’s connection key and generates the server’s
connection key and shared private key using the Diffie-Hellman algorithm. It then derives
the encryption seed from the shared private key and the encryption token from the server’s
connection key. The application server replies with ACCSECRD containing the server’s
connection key in SECTKN.

3. The application requester saves the server’s connection key and generates the shared
private key using the Diffie-Hellman algorithm. It then derives the encryption seed from the
shared private key and the encryption token from the server’s connection key. The
application requester acquires a password for the end user that is associated with the
application. The process to acquire the password is platform-specific. The application
requester encrypts the user ID using the user ID, the encryption token, and the encryption
seed. The application requester encrypts the password using the password, the encryption
token, and the encryption seed. The application requester then encrypts the new password
using the new password, the encryption token, and the encryption seed.

4. The application requester sends the encrypted user ID, encrypted password, and encrypted
new password to the application server in three SECTKNs included with a SECCHK.

5. The application server decrypts the encrypted user ID using the user ID included in the first
SECTKN, the encryption token, and the encryption seed. The application server decrypts
the encrypted password using the password included in the second SECTKN, the
encryption token, and the encryption seed. The application server then decrypts the
encrypted new password using the new password included in the third SECTKN, the
encryption token, and the encryption seed. It then asks the local security subsystem to
validate the user ID/password/new password combination.

Part 2: Environmental Support 487

User ID and Data-Related Security Mechanisms Security

6. The application server returns a SECCHKRM to the application indicating success or failure
based on the outcome of the authentication process.

7. On successful authentication, for any security-sensitive data that accompanies any DRDA
command, the application requester encrypts the DSS carrier containing the security-
sensitive data, using the given data, the encryption token, and the encryption seed. The
application requester sets the dsstype in the DSS header to indicate that the object
encapsulated in the DSS is encrypted. The application requester sends the encrypted data to
the server.

8. The application server decrypts the encrypted data using the data, the encryption token,
and the encryption seed. Similarly, for any security-sensitive data, the application server
encrypts the DSS carrier containing the security-sensitive data, using the given data, the
encryption token, and the encryption seed. The application server sets the dsstype in the DSS
header to indicate that the object encapsulated in the DSS is encrypted and sends the
encrypted data to the requester.

9. The application requester decrypts the encrypted data using the encrypted data, the
encryption token, and the encryption seed.

Intermediate Server Processing

The intermediate server processing flows for Encrypted User ID, Password, New Password, and
Security-sensitive data are identical to those of Encrypted User ID and Security-sensitive data
intermediate server processing flows, except during ACCSEC/ACCSECRD processing the
intermediate server negotiates the EUSRNPWDDTA security mechanism with the downstream
site.

488 DRDA, Version 3, Volume 1

Security Plug-In Security Mechanism

10.5 Plug-In Security Mechanism
A security plug-in is a module that may be inserted into the security service used by a server for
the purpose of providing the context information and performing the context verification. This
has the advantage of being able to use multiple underlying security mechanisms through a
common interface such as GSS-API. As a result, the number of security mechanisms available for
use can readily and easily be extended from the presently defined DRDA security mechanisms.

DRDA has no requirement to understand the operation of the security plug-in; only that it must
facilitate the negotiation of the plug-in to be used and that the plug-in will provide the context
information in mechanism-specific tokens. These tokens are opaque data from the DRDA
perspective. Obviously, the plug-ins at the target and source must be compatible to understand
and process the tokens. Compatible plug-ins will be assumed to have identical plug-in names.

Figure 10-14 provides a simplified overview of the flows involved in using the Plug-in security
mechanism. Following the figure is a description of the flows.

1 2

3

4 5

6

7 8

Plgin

- Context Information

- Context Verification

Plgin

- Context Information

- Context Verification

Security Service Security Service

DDM Source Server

(Application Requester)

Application Relational Database

DDM Target Server

(Application Server)

Figure 10-14 Example of Plug-In-Based Flows

The following is a brief description of the example plug-in flows shown in Figure 10-14.

1. The DDM source server calls the security service to obtain the security context information
for accessing the DDM target server. The figure indicates a single flow, but in actuality there
may be several flows.

2. The security service returns the security context information. It will also indicate whether it
expects additional information from the target server. Note that security context
information may be returned even though the security service indicates an error

3. The source server passes the security context information to the target server.

4. The security service verifies the security context information via the plug-in module.

5. The security service returns to the target server with an indication of the success or failure
of authentication. In addition, security context information destined for the source server
may be returned to the DDM target server; often this is mutual authentication information.
Note that this information may be returned even though the security service indicates an
error.

6. The target server returns the result, success or failure, to the source server. The security
context information, if present, will also be sent.

Part 2: Environmental Support 489

Plug-In Security Mechanism Security

7. The source server calls the security service to verify the security context information
received from the target server, if present.

8. The security service returns the results to the source server.

490 DRDA, Version 3, Volume 1

Chapter 11

Problem Determination

The DRDA environment involves remote access to relational database management systems.
Because the access is remote, enhancements to the local problem determination process were
needed. These enhancements use network management tools and techniques. DRDA-provided
enhancements are messages to focal points and a standard display for the correlation token
value. In DRDA, the correlator between focal point messages and locally generated diagnostic
information is the ACCRDB crrtkn parameter value.

In a remote unit of work environment, an application accesses only one database management
system at a time, so the requester can easily track the failing component when things go wrong.
The existing tools, which work for local applications, should be adequate for debugging most of
the problems. The DRDA tools and techniques discussed in this chapter enhance the process for
problem determination.

In distributed unit of work environment, an application accesses multiple database management
systems at the same time. An SQL statement can only operate on one database management
system at a time, and the application uses SQL connection management to indicate which
database management system is currently active. As in DRDA Level 1, a requester can
determine how to proceed when errors occur, so the current tools should be adequate.

For background information on this topic, see the references listed in Referenced Documents
(on page xxv).

11.1 Network Management Tools and Techniques
In addition to local tools, the DRDA environment should use the following tools or techniques
for problem determination and isolation. The use of these tools are recommended; however, use
of them is not mandatory.

11.1.1 Standard Focal Point Messages

A standard focal point message (that is, SNA alert) provides a generic format for reporting
problem-related information. This structure is flexible enough to report errors from all different
operating environments and is able to communicate with the network management program in
the environment where the error occurred.

11.1.2 Focal Point

A focal point is a consistent destination for all problem-related information. To operate in a
DRDA environment, a focal point can be beneficial because it provides a single point to view
problems. This point provides support personnel with all the information to solve a problem or
decide on the proper steps to get more information. A logical focal point would be a network
management program like Netview or Netview/PC. The focal point would need the ability to
talk with all other network management programs participating in the distributed environment.

Part 2: Environmental Support 491

Network Management Tools and Techniques Problem Determination

11.1.3 Correlation

Since a single problem might be related to work at multiple sites, a correlator value is needed to
tie the problem together as a single related problem. DRDA defines a correlation value for this.

The correlation value needs to be unique to avoid value collisions with other non-related units of
work. DRDA takes advantage of the inherent uniqueness of a network address and adds a time
stamp value to this string to provide uniqueness within that address.

The generic format of the correlation value exchanged when an application requester is
accessing an RDB is as follows:

Generic CRRTKN format:
x.yz where x is 1 to 8 bytes (variable), character

y is 1 to 8 bytes (variable), character
z is 6 bytes (fixed), binary

with a period (".") to delimit x from y, the total byte
count is a variable between 9 and 23.

The x.y positions represent the network address and the z position is used to create uniqueness,
of which a clock value might be used. In some cases, a unit of work identifier might fall into this
format, and is therefore a valid correlation value.

The specific values of each field are dependent on where the work started which might include a
non-DRDA environment. See Section 12.8.1 (on page 556) and Section 13.6.1 (on page 575) for the
specifics when the values are generated at an application requester in a particular network
environment.

It is also possible that a DRDA component will inherit a correlation value from some other
source. If that value conforms to the format defined by DRDA, then it is used as the correlation
value. Otherwise, the DRDA component must create a correlation value and provide a means to
map to the inherited value.

492 DRDA, Version 3, Volume 1

Problem Determination Monitoring

11.2 Monitoring

11.2.1 Verification of Network Connectivity Flag

To test connectivity to an application server or database server, a requester can send a trivial
EXCSAT command (one containing no parameters) and listen for its associated reply containing
an EXCSATRD reply data object. Network response time can also be measured, especially when
this flow is repeated multiple times. The requester can use this flow to implement a tool similar
to the TCP/IP ping utility.

11.2.2 Request and Response Packet Object

The SNDPKT command could also be used to test the connectivity between requester and
server. It can be used to check whether the connection is healthy or not. By using the varying
size of packet objects and timing the SNDPKT command to be executed, SNDPKT will provide
the status of the connection and network. Following is a command flow on the SNDPKT
command:

DRDA
(Requester)

DRDA
(Server)

SNDPKT
respktsz

PKTOBJ

(Send Packet)
(response packet size)
(Packet Object)

PKTOBJ (Packet Object)

[1]

[2]

[3]

Following is a brief description of some of the parameters for the DDM commands. The DDM
Reference provides a detailed description of the parameters.

1. The command can flow over a DRDA connection at any time after the DDM EXCSAT
command.

Send a packet from Requester to Server.

The requester specifies the response packet size to be returned from the server.

The packet object will also be sent to the server; the content of it will be ignored.

2. The server receives the SNDPKT command and builds a reply packet object by using the
respktsz value. The server sends the PKTOBJ reply packet object to the requester.

3. The requester receives the reply packet object.

11.2.3 Elapsed Time

A requester can request a server to monitor an event or an activity. This allows the
administrator at the client the ability to obtain realtime server performance and statistical
information. This information is returned to the client and can be used by the administrator to
perform problem determination. Monitoring is specified on a per-request basis. Each request
sent to the target server can request monitoring data to be returned as reply data in the reply.
Monitoring data is not returned as a new reply message but as additional data to the reply. If
monitoring fails or a specific type of monitoring is not supported, the request should not fail.
The infrastructure is defined to allow an application requester to request the application server

Part 2: Environmental Support 493

Monitoring Problem Determination

to monitor any number of events or activities while processing the request and optionally return
monitoring data to the client for analysis. Currently, DRDA has defined only one activity that
can be monitored. The requester can request the server provide the elapsed time required to
parse the request data stream, process the request, and generate the reply data stream. Network
time for sending or receiving is not included in the elapsed time. Yet as requirements are
identified, new monitoring items can be added to the existing monitoring model.

The monitor instance variable can be specified on a command. The instance variable contains a
list of activities or events to be monitored by the server. If monitoring is requested, an optional
MONITORRD reply data is returned in the reply chain containing the requested data. For
example:

AR Command: EXCSQLIMM (MONITOR(ETIME))
AS Reply:...SQLCARD,.MONITORRD
AR Command:.OPNQRY (MONITOR(ETIME))
AS Reply:...OPNQRYRM,.QRYDSC, QRYDTA,.MONITORRD

This support allows monitoring information to be processed independently of normal command
processing. The cost of verifying the monitoring instance variables and generating the monitor
reply data occurs only if monitoring is requested.

11.2.4 Ping

To monitor the connectivity to an application server or database server, a DRDA ping command
can be defined using the exchange server attributes (EXCSAT) command. The EXCSAT
command verifies a connection to a remote RDB, by sending an EXCSAT request to the DRDA
server and listening for the EXCSATRD reply. The ping command waits for up to 1 second for
each EXCSAT sent and prints the number of EXCSATs transmitted and EXCSATRD received.
Each received EXCSATRD is validated against the transmitted EXCSAT request. Since DRDA
allows the EXCSAT to be sent multiple times, no explicit changes to the architecture are needed
to support a DRDA ping command.

494 DRDA, Version 3, Volume 1

Problem Determination DRDA Required Problem Determination and Isolation Enhancements

11.3 DRDA Required Problem Determination and Isolation Enhancements
This section describes the DRDA requirements regarding correlation displays and collecting
diagnostic information.

11.3.1 Correlation Displays

Because the correlation value is used to correlate information across multiple sites, it is
important that a standard display of the correlation value is defined. The following are the rules
for displaying a correlation value:

1. The generic display of the correlation value is as follows:

Displaying a CRRTKN value:
x.y.z where x is 1 to 8 bytes (variable), character

y is 1 to 8 bytes (variable), character
z is 12 bytes (fixed), character

with periods (".") to delimit between x, y, and z
total byte count is variable between 16 and 30.

SNA example: NET.LU.123456789ABC
TCP/IP example: 09155467.9704.01234567689AB

11.3.2 DRDA Diagnostic Information Collection and Correlation

There is the need to:

• Collect supporting data for an error condition

• Correlate between focal point messages and supporting data

11.3.2.1 Data Collection

When an error condition occurs at an application requester or application server, data should be
gathered at that location. The data collection process should use the current tools available for
the local environment. An application requester and application server should collect diagnostic
information when it receives a reply message (RM) or generates a reply message listed in Table
11-1 (on page 498). The application requester should gather diagnostic information when the
network connection is unexpectedly dropped such as an LU 6.2 DEALLOCATE with a type of
ABEND in an SNA environment.

11.3.2.2 Correlation Between Focal Point Messages and Supporting Data

Correlation between focal point messages and supporting data at each location, as well as cross
location, is done through correlation tokens. In DRDA, the correlation token is the ACCRDB
crrtkn parameter value. The crrtkn value can be inherited at the application requester from the
operating environment. If the inherited value matches the format of the DRDA-defined
correlation token, then it is sent at ACCRDB in the crrtkn parameter. If the application requester
does not inherit a correlation value, or the value does not match the format of a DRDA-defined
correlation token, then the application requester must generate a DRDA-defined correlation
token. The correlation value is required in focal point messages and supporting diagnostic
information.

Part 2: Environmental Support 495

Generic Focal Point Messages and Message Models Problem Determination

11.4 Generic Focal Point Messages and Message Models
This section discusses focal point messages in support of the environments in which DRDA
might be installed. There are several architectures that support focal point messages. Two of
these architectures are SNA Management Services Generic Alerts and Simple Network
Management Protocol (SNMP). Although these architectures are pervasive in the network
environment they were developed for (Alerts for SNA, SNMP for TCP/IP), they are not
restricted to those network environments. For example, SNA alerts might be used in a TCP/IP
network, hence alert models defined in DRDA are usable in multiple network environments.

The following message models assume the use of SNA alerts in the environment.

11.4.1 When to Generate Alerts

It is recommended that alerts be generated when the following conditions exist. Some of these
conditions have alert models defined for them. See Section 11.4.3 (on page 497) for an example of
condition to alert model mappings.

• DRDA alerts must be generated whenever something happens that changes the availability
of database management system resources, or threatens to.

• Alerts must be generated for serious errors where intervention by an operator (rather than a
correction by a user) is required to correct the situation.

• Programming and protocols errors should be alerted.

• Alerts generated when supporting data about an error condition is collected. The alert will
point to this data.

• Security subversion attempts such as the identified reuse of the security context information
received in a SECTKN object.

11.4.2 Alerts and Alert Structure

The following sections describe the required alerts for conditions encountered at the application
server and application requester. The alerts for DRDA use the Generic Alert Architecture as a
model for the alert structure. The following figures define the subvectors, subfields, and
codepoints required.

The references listed in Referenced Documents (on page xxv) should be used to gain a more
complete understanding of the architecture of generic alerts.

11.4.2.1 Alert Implementation Basics

The SNA Management Services: Alert Implementation Guide (SC31-6809, IBM) is a good starting
point for understanding the architecture of generic alerts. By categorizing the subvectors and
subfields using who, what, where, when, and why, an architect or implementer can be sure to
cover the needed information. Alerts should be recorded in a place available for support or
operations personnel to see and take action on. Figure 11-1 (on page 497) categorizes the
subvectors, subfields, and codepoints used for DRDA.

496 DRDA, Version 3, Volume 1

Problem Determination Generic Focal Point Messages and Message Models

WHO___

Subvector Subfield Description___
X’10’ Product Set Identifier
X’11’ Product Identifier

X’08’ Product Number
X’04’ Version, Release, Modification
X’06’ Product Common Name___�

�
�
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

WHAT___

Subvector Subfield Description___
X’92’ Generic Alert Data___��

�
�
�

�
�
�

�
�
�

��
�
�
�

WHERE___

Subvector Subfield Description___
X’05’ Hierarchy/Resource List

X’10’ Hierarchy Name List
X’11’ Associated Resource List___��

�
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�
�

WHEN___

Subvector Subfield Description___
X’01’ Date/Time

X’10’ Local Date/Time___��
�
�
�
�

��
�
�
�

��
�
�
�

��
�
�
�
�

WHY___

Subvector Subfield Description___
X’93’ Probable Causes___
X’96’ Failure Causes

X’01’ Failure Causes
X’81’ Recommended Actions
X’85’ Detailed Data___

X’48’ Supporting Data Correlation
X’85’ Detailed Data (Supporting data ptr)___�

�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Figure 11-1 Summary of Required Subvectors and Subfields

11.4.3 Error Condition to Alert Model Mapping

The following sections define the specific error condition to alert model mapping. The tables do
not define all possible error conditions. When an error condition requires an alert, but an alert
model is not defined, an appropriate alert should be generated from the alert models defined
here.

11.4.3.1 Specific Alert to DDM Reply Message Mapping

Table 11-1 (on page 498) defines the alert constructs to DDM reply messages. The numbers
following the reply message in column one are the severity codes (svrcods) of the reply messages.
The column labeled where is the location in which the alert is to be generated. For each DDM
reply message created at the application server, the specified alert must be generated at the
application server. For each DDM reply message received at the application requester, the
specified alert is generated at the application requester.

Part 2: Environmental Support 497

Generic Focal Point Messages and Message Models Problem Determination

See the DDM Reference for a list of DDM reply messages and their accompanying severity
codes.

Table 11-1 Alerts Required for DDM Reply Messages
__

DDM RM Where Alert Model Additional Information�� �� �� �� ��__
AGNPRMRM AGNPRM (see Table

11-3 (on page 500))
See alert model and the DDM Reference
for information on DDM reply message
AGNPRMRM.

AR/AS

__
CMDCHKRM
8,16,32,64,128

CMDCHK (see Table
11-6 (on page 506))

See alert model and the DDM Reference
for information on DDM reply message
CMDCHKRM.

AR/AS

__
CMDVLT (see Table 11-
7 (on page 507))

See alert model and the DDM Reference
for information on DDM reply message
CMDVLTRM.

CMDVLTRM 8 AR/AS

__
DSCERR (see Table 11-8
(on page 508))

See alert model and the DDM Reference
for information on DDM reply message
DSCINVRM.

DSCINVRM 8 AR/AS

__
DSCERR (see Table 11-8
(on page 508))

See alert model and the DDM Reference
for information on DDM reply message
DTAMCHRM.

DTAMCHRM 8 AR/AS

__
PRCCNVRM
8,16,128

PRCCNV (see Table 11-
10 (on page 510))

See alert model and the DDM Reference
for information on DDM reply message
PRCCNVRM.

AR/AS

__
QRYERR (see Table 11-
11 (on page 511))

See alert model and the DDM Reference
for information on DDM reply message
QRYNOPRM.

QRYNOPRM 8 AR/AS

__
QRYERR (see Table 11-
11 (on page 511))

See alert model and the DDM Reference
for information on DDM reply message
QRYPOPRM.

QRYPOPRM 8 AR/AS

__
RDBERR (see Table 11-
12 (on page 512))

See alert model and the DDM Reference
for information on DDM reply message
RDBNACRM.

RDBNACRM 8 AR/AS

__
RDBERR (see Table 11-
12 (on page 512))

See alert model and the DDM Reference
for information on DDM reply message
RDBACCRM.

RDBACCRM 8 AR/AS

__
RSCLMTRM
16,32,64,128

RSCLMT (see Table 11-
13 (on page 513))

See alert model and the DDM Reference
for information on DDM reply message
RSCLMTRM.

AS

__
RSCLMT (see Table 11-
13 (on page 513))

Alert Type in subvector X’92’ defined as
X’12’ for unknown. See alert model and
the DDM Reference for information on
DDM reply message RSCLMTRM.

RSCLMTRM 8 AS

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

498 DRDA, Version 3, Volume 1

Problem Determination Generic Focal Point Messages and Message Models

__
DDM RM Where Alert Model Additional Information�� �� �� �� ��__

SECVIOL (see Table 11-
14 (on page 515))

See alert model and the DDM Reference
for information on DDM reply message
SECCHKRM.

SECCHKRM 16 AR/AS

__
SYNTAX (see Table 11-
15 (on page 516))

See alert model and the DDM Reference
for information on DDM reply message
SYNTAXRM.

SYNTAXRM 8 AR/AS

__��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

11.4.3.2 Additional Alerts at the Application Requester

Any blocking or chaining violations on data received at the application requester from the
application server should be alerted. Any Data Stream Structure (DSS) errors on data received at
the application requester from the application server should be alerted. A DEALLOCATE with a
type ABEND (abnormal end) without an accompanied reply message, should be alerted.
Resource limits reached at the application requester should also be alerted. Table 11-2 defines
the alert models to be used for these conditions.

Table 11-2 Additional Alerts Required at Application Requester

Condition Alert Model Additional Information�� �� �� ��___
RSCLMT (see Table 11-
13 (on page 513))

Alert Type in subvector X’92’
defined as X’12’ for unknown.
See alert model and the DDM
Reference for information on
DDM reply message
RSCLMTRM.

Resource Limits Reached

BLKERR (see Table 11-4
(on page 504))

See blocking rules, Section
7.21.1.1 (on page 433).

Blocking Protocol Error

CHNVIO (see Table 11-
5 (on page 505))

See chaining rules, Section
7.21.1.3 (on page 436).

Chaining Violation

DEALLOCATE type
ABEND received from the
application server
without an accompanying
DDM reply message from
the application server

GENERR (see Table 11-
9 (on page 509))

See SNA Transaction
Programmer’s Reference Manual
for LU Type 6.2 (GC30-3084,
IBM) for more information on
DEALLOCATE ABEND.

DSS error: Error in the
Data Stream Structure
received from the
application server

SYNTAX (see Table 11-
15 (on page 516))

See the DDM Reference for
more information on Data
Stream Structures.

___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

11.4.3.3 DRDA-Defined Alert Models

The next series of tables are models of alert categories DRDA uses. Table 11-1 (on page 498) and
Table 11-2 refer to these tables. The tables map alertable conditions to the model, and indicate
further enhancements to the model, if necessary. Following Table 11-3 (on page 500) is a
description of the subvectors, subfields, and codepoints. Because the majority of the subvectors,
subfields, and codepoints are common, the subsequent tables reference Table 11-3 (on page 500)
and add additional information if needed.

Part 2: Environmental Support 499

Generic Focal Point Messages and Message Models Problem Determination

Alert Model AGNPRM

This alert model is for permanent agent error conditions.

Table 11-3 Alert Model AGNPRM

Alert ID Number X’2E0AA333’___
Alert Type X’01’ Permanent___
Alert Description X’2102’ Distributed Process Failed___
Probable Causes X’1050’ Agent Program___
User Causes (none)___
Install Causes (none)___
Failure Causes X’1050’ X’F0A3’ Agent Error Failure Occurred On (sf85)___

Report The Following Logical Unit Of Work Identifier
(sf85)(sf85)(sf85)

Actions X’32D1’

Perform Problem Determination Procedure For (sf85)X’00B0’___
Perform (sf83) Problem Determination ProceduresX’00E1’___

X’0500’ Run Appropriate Trace___
X’2203’ Review Supporting Data At Alert Sender___
X’30E1’ Contact Service Representative For (sf83)___
X’32D0’ Report The Following (sf85)(sf85)(sf85)___
X’32A0’ Report The Following (sf85)___

... ...___
Additional SVs X’10’ SV Product Set Identifier___

X’11’ SV Product Identifier___
X’08’ SF Product Number___
X’04’ SF Version, Release, Modification___
X’06’ SF Product Common Name___
X’05’ SV Hierarchy/Resource List___
X’10’ SF Hierarchy Name List___
X’11’ SF Associated Resource List___
X’01’ SV Date/Time___
X’10’ SF Local Date/Time___
X’48’ SV Supporting Data Correlation___
X’85’ SF Detailed Data (Supporting data ptr)___
X’47’ SV MSU Correlation___
X’20’ SF CRRTKN (LUWID or UOWID format)___

... ...___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

500 DRDA, Version 3, Volume 1

Problem Determination Generic Focal Point Messages and Message Models

The following descriptions of the fields in the above alert are only a summary. For a more
complete description, see the Referenced Documents (on page xxv).

Alert ID Number

The Alert Identification Number is a field in subvector X’92’.

Alert Type

The Alert Type is a field in subvector X’92’. X’01’ in this model defines a permanent loss of
availability of the resource.

Alert Description

The Alert Description is a field in subvector X’92’. It is a code point to define what has failed.

Probable Causes

The Probable Causes subvector is X’93’. This subvector isolates the problem to a particular
component or process.

User Causes and Install Causes

DRDA does not require the User Causes and Install Causes subvectors.

Failure Causes

The Failure Causes subfield is X’01’. This subfield is used with the Failure Causes subvector
X’96’. This subvector and subfield relate the occurrences that might have happened to the
process or component listed in the Probable Causes subvector. The subfield X’85’ in the Failure
Causes codepoint X’F0A3’ should contain the following data beginning at byte 7. The subfield
X’85’ uses the data ID codepoint X’0087’ for relational database. The detailed data field contains
the actual RDB_NAME of the target relational database.

sf85

7

rdbname

Figure 11-2 Subfield X’85’ for Failure Causes Codepoint X’F0A3’

Actions

The Recommended Actions subfield is X’81’. This subfield is used in conjunction with subvector
X’96’. This subfield defines the recommended actions for this error condition. A list of
codepoints define the recommended actions. The implementing products should choose the
codepoints that best fit their environment. Those codepoints should be listed in the order of
priorities with the most important coming first followed by the next most important.

Action codepoint X’32D0’ should be used to report symptom string information if it is available.

DRDA requires codepoint X’32D1’. This codepoint displays the SNA LUWID or DDM UOWID.
For DRDA Level 1 connections, the LUWID value is used for correlating the supporting data.
The format for the LUWID or UOWID should follow the format defined for the long form of the
display as defined in Section 12.8.1.2 (on page 556). The three subfield X’85’s in this codepoint
should be sent in the following order with the following data. The data ID code point X’0000’

Part 2: Environmental Support 501

Generic Focal Point Messages and Message Models Problem Determination

should be used for all three subfield X’85’s. In Figure 11-3 the first subfield X’85’ contains the
NETID.LUNAME or IPADDR.PORT portion of the LUWID or UOWID followed by a period.
The second subfield X’85’ contains the instance number, followed by a period and sequence
number. The third subfield X’85’ is blank and needs to be coded as a blank.

sf85

7

netid.luname.

sf85

7

sf85

7

|instance.sequence

Figure 11-3 Subfield X’85’s for Actions Codepoint X’32D1’

DRDA Level 2 requires codepoint X’32A0’ if the crrtkn is available. This codepoint displays the
crrtkn value, which is the format of an unprotected LUWID, and is used for correlating
supporting data. The subfield X’85’ contains the correlation value with the data ID codepoint of
X’0101’ for correlation ID. Figure 11-4 displays the subfield X’85’ that is associated with this
codepoint.

sf85

7

netid.luname.instance

Figure 11-4 Subfield X’85’ for Actions Codepoint X’32A0’

Additional SV

The following subvectors and subfields are additional subvectors and subfields required in the
alert. They provide miscellaneous information to enhance the alert.

• Subvectors X’10’ and X’11’

These subvectors and the accompanying subfields define the resource that is in error. There
might be two subvector X’10’s in an alert. The first one is for the alert sender. The second one
is for the resource that is experiencing the problem. If the resource experiencing the problem
is the same as the resource sending the alert, then only one subvector X’10’ is present.

• Subvector X’05’

This subvector and accompanying subfields are used to provide a map of the unit of work.
There should be two resource names defined in subfield X’10’. These resource names are:

502 DRDA, Version 3, Volume 1

Problem Determination Generic Focal Point Messages and Message Models

1. AR to represent the application requester. The codepoint for resource type identifier
should be X’42’ for requester.

2. AS to represent application server. The codepoint for resource type identifier should be
X’43’ for server.

Following subfield X’10’ is subfield X’11’. This subfield is a list of associated resources for the
application requester and application server. These resources should be defined by preceding
the actual resource with an application requester or application server. For example, the
relational database related to an application server would be defined as AS rdbname, the user
ID related to the application requester on VM would be AR vmid.

Do not use subvector X’04’ (SNA Address List) in the alerts. The use of subvector X’05’
(Hierarchy Resource List) in conjunction with subfield X’11’ (Associated Resource List)
allows the display of the logical components for the failing unit of work.

• Subvector X’01’

This subvector and its accompanying subfield provide a date and time for the alert. The
optional extension of time field should be used for two bytes, which allows a 1/65535
fraction of a second.

• Subvector X’48’

This subvector and its accompanying subfield is used as a pointer to supporting data for this
error. An example would be a trace data set or dump data set.

• Subvector X’47’

This subvector and its accompanying subfield are used as an internal focal point token for
automatically correlating all alerts with the same token value. When requested, Netview
internally searches the Netview database to display all alerts with the same token value.

The value of subfield X’20’ is in binary, and it should contain the crrtkn parameter followed
by two bytes of binary zeros. The subfield contains netid.luname.abcdef00 where abcdef is a 6-
byte binary number and 00 are two bytes of binary zeros.

This subvector and subfield are required in DRDA Level 2 if the crrtkn is available.

Part 2: Environmental Support 503

Generic Focal Point Messages and Message Models Problem Determination

Alert Model BLKERR

This alert model is for blocking protocol error conditions discovered at the application requester.
See the description for Table 11-3 (on page 500) for a description of the subvectors, subfields, and
codepoints.

Table 11-4 Alert Model BLKERR

Alert ID Number X’9A22708B’___
Alert Type X’01’ Permanent___
Alert Description X’2102’ Distributed Process Failed___
Probable Causes X’1054’ Invalid Data Structure___
User Causes (none)___
Install Causes (none)___

X’1054’
X’1057’
X’F0A3’

Invalid Data Structure Error Blocking Protocol Error Failure
Occurred On (sf85)

Failure Causes

Report The Following Logical Unit Of Work Identifier
(sf85)(sf85)(sf85)

Actions X’32D1’

Perform Problem Determination Procedure For (sf85)X’00B0’__
Perform (sf83) Problem Determination ProceduresX’00E1’__

X’0500’ Run Appropriate Trace__
X’2203’ Review Supporting Data At Alert Sender__
X’30E1’ Contact Service Representative For (sf83)__
X’32D0’ Report The Following (sf85)(sf85)(sf85)__
X’32A0’ Report The Following (sf85)__

... ...___
Additional SVs X’10’ SV Product Set Identifier___

X’11’ SV Product Identifier__
X’08’ SF Product Number__
X’04’ SF Version, Release, Modification__
X’06’ SF Product Common Name__
X’05’ SV Hierarchy/Resource List__
X’10’ SF Hierarchy Name List__
X’11’ SF Associated Resource List__
X’01’ SV Date/Time__
X’10’ SF Local Date/Time__
X’48’ SV Supporting Data Correlation__
X’85’ SF Detailed Data (Supporting data ptr)__
X’47’ SV MSU Correlation__
X’20’ SF CRRTKN (LUWID or UOWID format)__

... ...___�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

504 DRDA, Version 3, Volume 1

Problem Determination Generic Focal Point Messages and Message Models

Alert Model CHNVIO

This alert model is for Chaining Violation Error conditions discovered at the application
requester. See the description for Table 11-3 (on page 500) for a description of the subvectors,
subfields, and codepoints.

Table 11-5 Alert Model CHNVIO
__

Alert ID Number X’91EC5326’__
Alert Type X’01’ Permanent__
Alert Description X’2102’ Distributed Process Failed__
Probable Causes X’1054’ Invalid Data Structure__
User Causes (none)__
Install Causes (none)__

X’1054’
X’1058’
X’F0A3’

Invalid Data Structure Error Chaining Protocol Error
Failure Occurred On (sf85)

Failure Causes

__
Report The Following Logical Unit Of Work Identifier
(sf85)(sf85)(sf85)

Actions X’32D1’

__
Perform Problem Determination Procedure For (sf85)X’00B0’__
Perform (sf83) Problem Determination ProceduresX’00E1’__

X’0500’ Run Appropriate Trace__
X’2203’ Review Supporting Data At Alert Sender__
X’30E1’ Contact Service Representative For (sf83)__
X’32D0’ Report The Following (sf85)(sf85)(sf85)__
X’32A0’ Report The Following (sf85)__

... ...__
Additional SVs X’10’ SV Product Set Identifier__

X’11’ SV Product Identifier__
X’08’ SF Product Number__
X’04’ SF Version, Release, Modification__
X’06’ SF Product Common Name__
X’05’ SV Hierarchy/Resource List__
X’10’ SF Hierarchy Name List__
X’11’ SF Associated Resource List__
X’01’ SV Date/Time__
X’10’ SF Local Date/Time__
X’48’ SV Supporting Data Correlation__
X’85’ SF Detailed Data (Supporting data ptr)__
X’47’ SV MSU Correlation__
X’20’ SF CRRTKN (LUWID or UOWID format)__

... ...__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 2: Environmental Support 505

Generic Focal Point Messages and Message Models Problem Determination

Alert Model CMDCHK

This alert model is for Command Check conditions. See the description for Table 11-3 (on page
500) for a description of the subvectors, subfields, and codepoints.

Table 11-6 Alert Model CMDCHK

Alert ID Number X’D67E885A’___
Alert Type X’01’ Permanent___
Alert Description X’2102’ Distributed Process Failed___
Probable Causes X’1051’ Command Not Recognized___
User Causes (none)___
Install Causes (none)___

X’1051’
X’F0A3’

Command Not Recognized Failure Occurred On (sf85)Failure Causes

Report The Following Logical Unit Of Work Identifier
(sf85)(sf85)(sf85)

Actions X’32D1’

Perform Problem Determination Procedure For (sf85)X’00B0’___
Perform (sf83) Problem Determination ProceduresX’00E1’___

X’0500’ Run Appropriate Trace___
X’2203’ Review Supporting Data At Alert Sender___
X’30E1’ Contact Service Representative For (sf83)___
X’32D0’ Report The Following (sf85)(sf85)(sf85)___
X’32A0’ Report The Following (sf85)___

... ...___
Additional SVs X’10’ SV Product Set Identifier___

X’11’ SV Product Identifier___
X’08’ SF Product Number___
X’04’ SF Version, Release, Modification___
X’06’ SF Product Common Name___
X’05’ SV Hierarchy/Resource List___
X’10’ SF Hierarchy Name List___
X’11’ SF Associated Resource List___
X’01’ SV Date/Time___
X’10’ SF Local Date/Time___
X’48’ SV Supporting Data Correlation___
X’85’ SF Detailed Data (Supporting data ptr)___
X’47’ SV MSU Correlation___
X’20’ SF CRRTKN (LUWID or UOWID format)___

... ...___�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

506 DRDA, Version 3, Volume 1

Problem Determination Generic Focal Point Messages and Message Models

Alert Model CMDVLT

This alert model is for Command Violation conditions. This alert does not require support in
DRDA Level 1. See the description for Table 11-3 (on page 500) for a description of the
subvectors, subfields, and codepoints.

Table 11-7 Alert Model CMDVLT

Alert ID Number X’4821F0B5’___
Alert Type X’01’ Permanent___
Alert Description X’2102’ Distributed Process Failed___
Probable Causes X’1052’ Conversation Protocol___
User Causes (none)___
Install Causes (none)___

X’109F’ X’F0A3’ Command Violation Failure Occurred On (sf85)Failure Causes___
Report The Following Logical Unit Of Work Identifier
(sf85)(sf85)(sf85)

Actions X’32D1’

Perform Problem Determination Procedure For (sf85)X’00B0’___
Perform (sf83) Problem Determination ProceduresX’00E1’___

X’0500’ Run Appropriate Trace___
X’2203’ Review Supporting Data At Alert Sender___
X’30E1’ Contact Service Representative For (sf83)___
X’32D0’ Report The Following (sf85)(sf85)(sf85)___
X’32A0’ Report The Following (sf85)___

... ...___
Additional SVs X’10’ SV Product Set Identifier___

X’11’ SV Product Identifier___
X’08’ SF Product Number___
X’04’ SF Version, Release, Modification___
X’06’ SF Product Common Name___
X’05’ SV Hierarchy/Resource List___
X’10’ SF Hierarchy Name List___
X’11’ SF Associated Resource List___
X’01’ SV Date/Time___
X’10’ SF Local Date/Time___
X’48’ SV Supporting Data Correlation___
X’85’ SF Detailed Data (Supporting data ptr)___
X’47’ SV MSU Correlation___
X’20’ SF CRRTKN (LUWID or UOWID format)___

... ...___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 2: Environmental Support 507

Generic Focal Point Messages and Message Models Problem Determination

Alert Model DSCERR

This alert model is for the data descriptor error conditions. See the description for Table 11-3 (on
page 500) for a description of the subvectors, subfields, and codepoints.

Table 11-8 Alert Model DSCERR

Alert ID Number X’2257C33F’___
Alert Type X’01’ Permanent___
Alert Description X’2102’ Distributed Process Failed___
Probable Causes X’1053’ Data Descriptor___
User Causes (none)___
Install Causes (none)___

X’1053’ X’F0A3’ Data Descriptor Error Failure Occurred On (sf85)Failure Causes___
Report The Following Logical Unit Of Work Identifier
(sf85)(sf85)(sf85)

Actions X’32D1’

Perform Problem Determination Procedure For (sf85)X’00B0’___
Perform (sf83) Problem Determination ProceduresX’00E1’___

X’0500’ Run Appropriate Trace___
X’2203’ Review Supporting Data At Alert Sender___
X’30E1’ Contact Service Representative For (sf83)___
X’32D0’ Report The Following (sf85)(sf85)(sf85)___
X’32A0’ Report The Following (sf85)___

... ...___
Additional SVs X’10’ SV Product Set Identifier___

X’11’ SV Product Identifier___
X’08’ SF Product Number___
X’04’ SF Version, Release, Modification___
X’06’ SF Product Common Name___
X’05’ SV Hierarchy/Resource List___
X’10’ SF Hierarchy Name List___
X’11’ SF Associated Resource List___
X’01’ SV Date/Time___
X’10’ SF Local Date/Time___
X’48’ SV Supporting Data Correlation___
X’85’ SF Detailed Data (Supporting data ptr)___
X’47’ SV MSU Correlation___
X’20’ SF CRRTKN (LUWID or UOWID format)___

... ...___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

508 DRDA, Version 3, Volume 1

Problem Determination Generic Focal Point Messages and Message Models

Alert Model GENERR

This alert model is for error conditions that need an alert, but do not have a more specific alert
model to choose from. See the description for Table 11-3 (on page 500) for a description of the
subvectors, subfields, and codepoints.

Table 11-9 Alert Model GENERR

Alert ID Number X’46E34E31’___
Alert Type X’12’ Unknown___
Alert Description X’2102’ Distributed Process Failed___
Probable Causes X’1000’ Software Program:___
User Causes (none)___
Install Causes (none)___

X’10E1’ X’F0A3’ Software Program (sf83) Failure Occurred On (sf85)Failure Causes___
Report The Following Logical Unit Of Work Identifier
(sf85)(sf85)(sf85)

Actions X’32D1’

Perform Problem Determination Procedure For (sf85)X’00B0’___
Perform (sf83) Problem Determination ProceduresX’00E1’___

X’0500’ Run Appropriate Trace___
X’2203’ Review Supporting Data At Alert Sender___
X’30E1’ Contact Service Representative For (sf83)___
X’32D0’ Report The Following (sf85)(sf85)(sf85)___
X’32A0’ Report The Following (sf85)___

... ...___
Additional SVs X’10’ SV Product Set Identifier___

X’11’ SV Product Identifier___
X’08’ SF Product Number___
X’04’ SF Version, Release, Modification___
X’06’ SF Product Common Name___
X’05’ SV Hierarchy/Resource List___
X’10’ SF Hierarchy Name List___
X’11’ SF Associated Resource List___
X’01’ SV Date/Time___
X’10’ SF Local Date/Time___
X’48’ SV Supporting Data Correlation___
X’85’ SF Detailed Data (Supporting data ptr)___
X’47’ SV MSU Correlation___
X’20’ SF CRRTKN (LUWID or UOWID format)___

... ...___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 2: Environmental Support 509

Generic Focal Point Messages and Message Models Problem Determination

Alert Model PRCCNV

This alert model is for the Conversation Protocol Error condition. See the description for Table
11-3 (on page 500) for a description of the subvectors, subfields, and codepoints.

Table 11-10 Alert Model PRCCNV
__

Alert ID Number X’DA23E856’__
Alert Type X’01’ Permanent__
Alert Description X’2102’ Distributed Process Failed__
Probable Causes X’1052’ Conversation Protocol__
User Causes (none)__
Install Causes (none)__

X’1052’ X’F0A3’ Conversation Protocol Error Failure Occurred On (sf85)Failure Causes__
Report The Following Logical Unit Of Work Identifier
(sf85)(sf85)(sf85)

Actions X’32D1’

__
Perform Problem Determination Procedure For (sf85)X’00B0’___
Perform (sf83) Problem Determination ProceduresX’00E1’___

X’0500’ Run Appropriate Trace___
X’2203’ Review Supporting Data At Alert Sender___
X’30E1’ Contact Service Representative For (sf83)___
X’32D0’ Report The Following (sf85)(sf85)(sf85)___
X’32A0’ Report The Following (sf85)___

... ...__
Additional SVs X’10’ SV Product Set Identifier__

X’11’ SV Product Identifier___
X’08’ SF Product Number___
X’04’ SF Version, Release, Modification___
X’06’ SF Product Common Name___
X’05’ SV Hierarchy/Resource List___
X’10’ SF Hierarchy Name List___
X’11’ SF Associated Resource List___
X’01’ SV Date/Time___
X’10’ SF Local Date/Time___
X’48’ SV Supporting Data Correlation___
X’85’ SF Detailed Data (Supporting data ptr)___
X’47’ SV MSU Correlation___
X’20’ SF CRRTKN (LUWID or UOWID format)___

... ...__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

510 DRDA, Version 3, Volume 1

Problem Determination Generic Focal Point Messages and Message Models

Alert Model QRYERR

This alert model is for Cursor Error conditions. See the description for Table 11-3 (on page 500)
for a description of the subvectors, subfields, and codepoints.

Table 11-11 Alert Model QRYERR

Alert ID Number X’3AED0327’___
Alert Type X’01’ Permanent___
Alert Description X’2102’ Distributed Process Failed___
Probable Causes X’1055’ Invalid Cursor State___
User Causes (none)___
Install Causes (none)___

X’1055’ X’F0A3’ Invalid Cursor State Failure Occurred On (sf85)Failure Causes___
Report The Following Logical Unit Of Work Identifier
(sf85)(sf85)(sf85)

Actions X’32D1’

Perform Problem Determination Procedure For (sf85)X’00B0’___
Perform (sf83) Problem Determination ProceduresX’00E1’___

X’0500’ Run Appropriate Trace___
X’2203’ Review Supporting Data At Alert Sender___
X’30E1’ Contact Service Representative For (sf83)___
X’32D0’ Report The Following (sf85)(sf85)(sf85)___
X’32A0’ Report The Following (sf85)___

... ...___
Additional SVs X’10’ SV Product Set Identifier___

X’11’ SV Product Identifier___
X’08’ SF Product Number___
X’04’ SF Version, Release, Modification___
X’06’ SF Product Common Name___
X’05’ SV Hierarchy/Resource List___
X’10’ SF Hierarchy Name List___
X’11’ SF Associated Resource List___
X’01’ SV Date/Time___
X’10’ SF Local Date/Time___
X’48’ SV Supporting Data Correlation___
X’85’ SF Detailed Data (Supporting data ptr)___
X’47’ SV MSU Correlation___
X’20’ SF CRRTKN (LUWID or UOWID format)___

... ...___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 2: Environmental Support 511

Generic Focal Point Messages and Message Models Problem Determination

Alert Model RDBERR

This alert model is for Relational Database access errors. See the description for Table 11-3 (on
page 500) for a description of the subvectors, subfields, and codepoints.

Table 11-12 Alert Model RDBERR

Alert ID Number X’36B0632B’___
Alert Type X’01’ Permanent___
Alert Description X’2102’ Distributed Process Failed___
Probable Causes X’1056’ Relational Database Access___
User Causes (none)___
Install Causes (none)___

X’1056’ X’F0A3’ Relational Database Access Error Failure Occurred On (sf85)Failure Causes___
Report The Following Logical Unit Of Work Identifier
(sf85)(sf85)(sf85)

Actions X’32D1’

Perform Problem Determination Procedure For (sf85)X’00B0’___
Perform (sf83) Problem Determination ProceduresX’00E1’___

X’0500’ Run Appropriate Trace___
X’2203’ Review Supporting Data At Alert Sender___
X’30E1’ Contact Service Representative For (sf83)___
X’32D0’ Report The Following (sf85)(sf85)(sf85)___
X’32A0’ Report The Following (sf85)___

... ...___
Additional SVs X’10’ SV Product Set Identifier___

X’11’ SV Product Identifier___
X’08’ SF Product Number___
X’04’ SF Version, Release, Modification___
X’06’ SF Product Common Name___
X’05’ SV Hierarchy/Resource List___
X’10’ SF Hierarchy Name List___
X’11’ SF Associated Resource List___
X’01’ SV Date/Time___
X’10’ SF Local Date/Time___
X’48’ SV Supporting Data Correlation___
X’85’ SF Detailed Data (Supporting data ptr)___
X’47’ SV MSU Correlation___
X’20’ SF CRRTKN (LUWID or UOWID format)___

... ...___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

512 DRDA, Version 3, Volume 1

Problem Determination Generic Focal Point Messages and Message Models

Alert Model RSCLMT

This alert model is for the Resource Limit Reached condition. See the description for Table 11-3
(on page 500) for a description of the subvectors, subfields, and codepoints.

Table 11-13 Alert Model RSCLMT
__

Alert ID Number X’A70F6F9E’__
Alert Type X’01’ Permanent__
Alert Description X’2102’ Distributed Process Failed__
Probable Causes X’1057’ Resource Limit Reached__
User Causes (none)__
Install Causes (none)__

X’F0C0’ X’F0A3’ Resource Limit Reached (sf85)(sf85)
Failure Occurred On (sf85)

Failure Causes

__
Report The Following Logical Unit Of
Work Identifier (sf85)(sf85)(sf85)

Actions X’32D1’

__
Perform Problem Determination
Procedure For (sf85)

X’00B0’

Perform (sf83) Problem Determination
Procedures

X’00E1’

X’0500’ Run Appropriate Trace___
X’2203’ Review Supporting Data At Alert Sender___
X’30E1’ Contact Service Representative For (sf83)___
X’32D0’ Report The Following (sf85)(sf85)(sf85)___
X’32A0’ Report The Following (sf85)___

... ...__
Additional SVs X’10’ SV Product Set Identifier__

X’11’ SV Product Identifier___
X’08’ SF Product Number___
X’04’ SF Version, Release, Modification___
X’06’ SF Product Common Name___
X’05’ SV Hierarchy/Resource List___
X’10’ SF Hierarchy Name List___
X’11’ SF Associated Resource List___
X’01’ SV Date/Time___
X’10’ SF Local Date/Time___
X’48’ SV Supporting Data Correlation___
X’85’ SF Detailed Data (Supporting data ptr)___
X’47’ SV MSU Correlation___
X’20’ SF CRRTKN (LUWID or UOWID format)___

... ...__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

The two subfield X’85’s for the Failure Cause codepoint X’F0C0’ should contain the following
data beginning at byte 5 (see Figure 11-5 (on page 514)). The subfield X’85’s are shown below in
the order they should appear in the Failure Causes Subfield. The first subfield X’85’ uses the data
ID codepoint X’00A7’ for resource. The detailed data field contains the name of the resource that
has reached a limit, if available. If the resource name is not available, then the DDM codepoint

Part 2: Environmental Support 513

Generic Focal Point Messages and Message Models Problem Determination

for the resource type should be used. The second subfield X’85’ uses the data ID codepoint
X’000E’ for reason code. The detailed data field contains the product-dependent reason code for
this error. If the reason code is not available, then this subfield uses the data ID codepoint of
X’0000’ and does not contain any data.

sf85

7

resource name resource type

sf85

7

sf85

7

sf85

7

reason code

or

or

and

Figure 11-5 Subfield X’85’s for Failure Causes Codepoint X’F0C0’

514 DRDA, Version 3, Volume 1

Problem Determination Generic Focal Point Messages and Message Models

Alert Model SECVIOL

This alert model is for security violation error conditions discovered at the application requester
or application server. See the description for Table 11-3 (on page 500) for a description of the
subvectors, subfields, and codepoints.

Table 11-14 Alert Model SECVIOL
__

Alert ID Number X’50C0C0BC’__
Alert Type X’01’ Permanent__
Alert Description X’2102’ Distributed Process Failed__
Probable Causes X’6700’ Security Problem__
User Causes (none)__
Install Causes (none)__

X’107F’ X’F0A3’ Distribution Session Not Created Failure
Occurred On (sf85)

Failure Causes

__
Report The Following Logical Unit Of
Work Identifier (sf85)(sf85)(sf85)

Actions X’32D1’

__
Perform Problem Determination
Procedure For (sf85)

X’00B0’

__
Perform (sf83) Problem Determination
Procedures

X’00E1’

__
X’0500’ Run Appropriate Trace__
X’2203’ Review Supporting Data At Alert Sender__
X’30E1’ Contact Service Representative For (sf83)__
X’32D0’ Report The Following (sf85)(sf85)(sf85)__
X’32A0’ Report The Following (sf85)__

... ...__
Additional SVs X’10’ SV Product Set Identifier__

X’11’ SV Product Identifier__
X’08’ SF Product Number__
X’04’ SF Version, Release, Modification__
X’06’ SF Product Common Name__
X’05’ SV Hierarchy/Resource List__
X’10’ SF Hierarchy Name List__
X’11’ SF Associated Resource List__
X’01’ SV Date/Time__
X’10’ SF Local Date/Time__
X’48’ SV Supporting Data Correlation__
X’85’ SF Detailed Data (Supporting data ptr)__
X’47’ SV MSU Correlation__
X’20’ SF CRRTKN (LUWID or UOWID format)__

... ...__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 2: Environmental Support 515

Generic Focal Point Messages and Message Models Problem Determination

Alert Model SYNTAX

This alert model is for the Data Stream Syntax Error condition. See the description for Table 11-3
(on page 500) for a description of the subvectors, subfields, and codepoints.

Table 11-15 Alert Model SYNTAX
__

Alert ID Number X’C299284E’__
Alert Type X’01’ Permanent__
Alert Description X’2102’ Distributed Process Failed__
Probable Causes X’1054’ Invalid Data Structure__
User Causes (none)__
Install Causes (none)__

X’1054’ X’F0A3’ Invalid Data Structure Error Failure
Occurred On (sf85)

Failure Causes

__
Report The Following Logical Unit Of
Work Identifier (sf85)(sf85)(sf85)

Actions X’32D1’

__
Perform Problem Determination
Procedure For (sf85)

X’00B0’

__
Perform (sf83) Problem Determination
Procedures

X’00E1’

__
X’0500’ Run Appropriate Trace__
X’2203’ Review Supporting Data At Alert Sender__
X’30E1’ Contact Service Representative For (sf83)__
X’32D0’ Report The Following (sf85)(sf85)(sf85)__
X’32A0’ Report The Following (sf85)__

... ...__
Additional SVs X’10’ SV Product Set Identifier__

X’11’ SV Product Identifier__
X’08’ SF Product Number__
X’04’ SF Version, Release, Modification__
X’06’ SF Product Common Name__
X’05’ SV Hierarchy/Resource List__
X’10’ SF Hierarchy Name List__
X’11’ SF Associated Resource List__
X’01’ SV Date/Time__
X’10’ SF Local Date/Time__
X’48’ SV Supporting Data Correlation__
X’85’ SF Detailed Data (Supporting data ptr)__
X’47’ SV MSU Correlation__
X’20’ SF CRRTKN (LUWID or UOWID format)__

... ...__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

516 DRDA, Version 3, Volume 1

Problem Determination Generic Focal Point Messages and Message Models

11.4.4 Alert Example

This section provides an alert example.

11.4.4.1 Major Vector/Subvector/Subfield Construction

Figure 11-6 is a graphical representation of the major vector for an alert. It is comprised of a
length field, a key field, and multiple subvectors. The subvectors are comprised of other
subvectors and subfields. The subfields are comprised of data.

len key data

len key subfieldsubfield

. . .subvector subvector subvectorkeylen

Figure 11-6 Major Vector/Subvector/Subfield Construction

Figure 11-7 (on page 518) is an example of an alert for an AGNPRMRM with severity code of 64.
This figure shows the Alert Major Vector that would be passed to a focal point. The related
subfields for each subvector are grouped together and labeled for ease of reading. The
hexadecimal identifiers for the fields serve two purposes. They are the actual hexadecimal
offsets into the major vector, and they are identifiers for the descriptions of these fields. The
descriptions of the fields follow the figure.

If two Product Set ID (X’10’) subvectors are present, the first one is interpreted as the Alert
sender and the second one is interpreted as the resource experiencing the problem. If the
resource experiencing the problem is the resource sending the alert, then only one Product Set ID
subvector should be present.

Part 2: Environmental Support 517

Generic Focal Point Messages and Message Models Problem Determination

Alert Major Vector

[0] [2]

Hierarchy/Resource List Subvector and Accompanying Hierarchy Name

List Subfield and Associated Resource List Subfield

00EA 0000

[4] [5]

0538

[6] [7] [8] [9] [A] [D][C]

10 00 03 AR 40 420D

[E] [F] [11] [12]

03 AS 00 43

29 11 00 09 AR APPL1 00 40

[13] [14] [15] [16] [17] [1F] [20]

[21] [22] [2D] [2E]

0C AR sscpname 00 F4

[2F] [30] [3A] [3B]

0B AS rdbname 00 41

Generic Alert Data Subvector

[3C] [3D] [3E] [40] [41] [43]

0B 92 0000 01 2102 2E0AA333

Figure 11-7 Alert Example for AGNPRMRM with Severity Code of 64 (Part 1)

518 DRDA, Version 3, Volume 1

Problem Determination Generic Focal Point Messages and Message Models

Probable Causes Subvector

Failure Causes Subvector and Accompanying Failure Causes Subfield,

Detailed Data Subfields and Recommended Actions Subfield

[4B] [4C]

965C

[A1] [A2]

8502

[55] [56] [57] [58] [59] [5C][5B]

85 90 xx 0087 11 CCEEEErestofname17

[70] [71] [72] [73] [74] [77][76]

85 90 xx 0000 11 netidddd.lunameee.19

[89] [8A] [8B] [8C] [8D] [90][8F]

85 90 xx 0000 11 BA9876543210.000110

[47] [48] [49]

04 93 1050

[4D] [4E] [4F]

04 01 1050

[A3] [A4] [A5]

04 81 2203

[51] [52] [53]

19 01 F0A3

[6C] [6D] [6E]

36 81 32D1

Figure 11-8 Alert Example for AGNPRMRM with Severity Code of 64 (Part 2)

Part 2: Environmental Support 519

Generic Focal Point Messages and Message Models Problem Determination

Product Set ID Subvector and Accompanying Product ID Subvector,

[A7] [A8] [A9]

10 r23

[CA] [CB] [CC]

01 100D

[D7] [D8]

4812

[AA] [AB] [AC]

11 0420

[C2] [C3] [C4] [C6] [C8]

04 02 03 0008

[AD] [AE] [AF]

09 08 5665DB2

[B6] [B7] [B8]

0C 06 DATABASE 2*

[CD] [CE] [CF] [D0] [D1] [D2] [D3] [D4] [D5]

0A 10 58 02 0F 0E 050C 0FA3

[D9] [DA] [DB] [DC] [DD] [DF] [E0]

12 85 90 11xx 00DA SYS1.LOGREC

Software Program Number Subfield, Software Product Common Name

Subfield, and Software Product Common Level Subfield

Date/Time Subvector and Accompanying Local Date/Time Subfield

Supporting Data Subvector and Accompanying Detailed Data Subfield

Figure 11-9 Alert Example for AGNPRMRM with Severity Code of 64 (Part 3)

These are the descriptions of the fields in the alert example:

0 Length of MS Major Vector (2 bytes).

2 Key for MS Major Vector (2 bytes).

4 Length of Hierarchy Resource List Subvector in binary (1 byte).

520 DRDA, Version 3, Volume 1

Problem Determination Generic Focal Point Messages and Message Models

5 Key for Hierarchy Resource List Subvector (1 byte).

6 Length of Hierarchy Name List Subfield in binary (1 byte).

7 Key for Hierarchy Name List Subfield (1 byte).

8 Bit 0=0 so alert receiver does not modify the list. Bits 1 through 7 are reserved (1 byte).

9 Length of resource name + 1 in binary (1 byte).

A Resource name in uppercase alphanumeric EBCDIC characters. The name must not
exceed 8 characters. The name in the example is application requester for application
requester (2 bytes).

C Bit 0 is reserved. Bit 1 is equal to 0 or 1 dependent on whether this resource should be
displayed if the alert receiver can only display one resource. In the example, application
requester would not be displayed. Bits 2 through 7 are reserved (1 byte).

D Resource type identifier (1 byte).

E Length of resource name + 1 in binary (1 byte).

F Resource name. The name in the example is application server for the application
server. See field 9 for more information (2 bytes).

11 Bit 0 is reserved. Bit 1 is equal to 0 or 1 dependent on whether this resource should be
displayed if the alert receiver can only display one resource. In the example, application
server would be displayed. Bits 2 through 7 are reserved (1 byte).

12 Resource type identifier (1 byte).

13 Length of Associated Resources Subfield in binary (1 byte).

14 Key for Associated Resources Subfield (1 byte).

15 Reserved (1 byte).

16 Length of resource name + 1 in binary (1 byte).

17 The name of the resource in uppercase alphanumeric EBCDIC characters. The resource
with which it is associated precedes the name. This field is not to exceed 56 characters
(8 bytes). In the example the name of the resource is APPL1 and is associated with the
resource application requester (8 bytes).

1F Flags (1 byte).

20 Resource type identifier (1 byte).

21-3B Two more associated resource entries and they follow the same format as fields 16-20
(27 bytes).

3C Length of Generic Alert Data Subvector in binary (1 byte).

3D Key for Generic Alert Data Subvector (1 byte).

3E Bits 0, 1, and 2 equal 0 to represent alert is not directly initiated by operator, alert was
sent when the problem was detected, and alert sender is not reporting a previously
detected alert condition. Bits 3 through 15 are reserved (2 bytes).

40 Alert type, Permanent Error (1 byte).

41 Alert description code (2 bytes).

43 Alert ID number (4 byte hexadecimal value).

Part 2: Environmental Support 521

Generic Focal Point Messages and Message Models Problem Determination

47 Length of Probable Causes Subvector in binary (1 byte).

48 Key for Probable Causes Subvector (1 byte).

49 Probable causes codepoints (2 bytes).

4B Length of Failure Causes Subvector in binary (1 byte).

4C Key for Failure Causes Subvector (1 byte).

4D Length of Failure Causes Subfield in binary (1 byte).

4E Key for Failure Causes Subfield (1 byte).

4F Failure Causes codepoint (2 bytes).

51 Length of Failure Causes Subfield in binary (1 byte).

52 Key for Failure Causes Subfield (1 byte).

53 Failure Causes codepoint (2 bytes).

55 Length of Detailed Data Subfield in binary (1 byte).

56 Key for Detailed Data Subfield (1 byte).

57 Product ID code. Bits 0 through 3 equal 9 to indicate the product ID subvector being
indexed and the particular data to be extracted from this subvector. In this example, it
is a software product common name. Bit 4=0 for the alert sender Product Set ID. Bits 5
through 7 equal 0 to indicate the first Product Set ID subvector of the type defined
above, should be used (1 byte).

58 Reserved (1 byte).

59 Data ID equals 0087 (2 bytes).

5B Data encoding equals 11 for character set 00640-0500 (1 byte).

5C Detailed data. The example shows the RDB_NAME spelled out (16 bytes).

6C Length of Recommended Actions Subfield in binary (1 byte).

6D Key for Recommended Actions Subfield (1 byte).

6E Recommended action codepoint indicating Report The Following Logical Unit Of Work
Identifier (2 bytes).

70-77 The first subfield X’85’. It has the netid.luname portion of the LUWID or UOWID (25
bytes).

89-90 The second subfield X’85’. It has the instance and sequence number portions of the
LUWID or UOWID. The data displayed is the character representation of the 6-byte
binary instance number, followed by a period and the character representation of the
2-byte binary sequence number (24 bytes).

A1-A2 The last subfield X’85’. It is blank (2 bytes).

A3 Length of Recommended Actions Subfield in binary (1 byte).

A4 Key for Recommended Actions Subfield (1 byte).

A5 Recommended action codepoint indicating Review Supporting Data at Alert Sender (2
bytes).

A7 Length of Product Set ID Subvector in binary (1 byte).

522 DRDA, Version 3, Volume 1

Problem Determination Generic Focal Point Messages and Message Models

A8 Key for Product Set ID Subvector (1 byte).

A9 Retired (1 byte).

AA Length of Product Identifier Subvector in binary (1 byte).

AB Key for Product Identifier Subvector (1 byte).

AC Bits 0-3 are reserved. Bits 4-7 equal 4 to indicate the software level (1 byte).

AD Length of Product Identifier Subfield in binary (1 byte).

AE Key for Product Identifier Subfield (1 byte).

AF Software product program number. Seven uppercase alphanumeric EBCDIC characters
(7 bytes).

B6-C8 These fields are two more Product Identifier subfields. The first one is Software Product
Common Name and the second is Software Product Common Level with version,
release, and modification level (20 bytes).

CA Length of Date/Time Subvector in binary (1 byte).

CB Key for Date/Time Subvector (1 byte).

CC Indicates the Date/Time is the local Date/Time (1 byte).

CD Length of Local Date/Time Subfield in binary (1 byte).

CE Key for Local Date/Time Subfield (1 byte).

CF-D1 The year, month, and day in binary (3 bytes).

D2-D4 The hours, minutes, and seconds in binary (3 bytes).

D5 The extension of time in binary and provides fractions of seconds (2 bytes).

D7 Length of Supporting Data Correlation Subvector in binary (1 byte).

D8 Key for Supporting Data Correlation Subvector (1 byte).

D9 Length of Detailed Data Subfield in binary (1 byte).

DA Key for Detailed Data Subfield (1 byte).

DB Product ID code (1 byte).

DC Reserved (1 byte).

DD Data ID equals X’00DA’ for Log ID (2 bytes).

DF Data encoding equals 11 for character set 00640-0500 (1 byte).

E0 Detailed data. The example shows Sys1.Logrec as the log ID (11 bytes).

Part 2: Environmental Support 523

Problem Determination

524 DRDA, Version 3, Volume 1

Technical Standard

Part 3:

Network Protocols

The Open Group

Part 3: Network Protocols 525

526 DRDA, Version 3, Volume 1

Chapter 12

SNA

This chapter summarizes the characteristics of DRDA communications flow using the SNA
network environment.

12.1 SNA and the DDM Communications Model
SNA implementations of DRDA use the DDM Communications Managers. The DDM LU 6.2
Conversational Communications Manager (CMNAPPC) supports the base and option set
functions of LU 6.2 required by DRDA Level 1 implementations and DRDA Level 2 or DRDA
Level 3 implementations without resource recovery support. The DDM LU 6.2 Sync Point
Conversational Communications Manager (CMNSYNCPT) supports the base and option set
functions, including synchronization point support, that distributed unit of work
implementations require for coordinated resource recovery support. For further detail, see the
DDM terms CMNAPPC and CMNSYNCPT in the DDM Reference.

Part 3: Network Protocols 527

What You Need to Know About SNA and LU 6.2 SNA

12.2 What You Need to Know About SNA and LU 6.2
This chapter assumes some familiarity with Systems Network Architecture (SNA) concepts and
with LU 6.2. With a general exposure to these topics, it should be possible to understand how
DRDA’s use of LU 6.2 function compares with the many other types of usage that the general-
purpose LU 6.2 architecture permits. With more detailed knowledge, it should be possible to
understand how to use LU 6.2 function in DRDA environments. For a list of relevant LU 6.2
publications, see Referenced Documents (on page xxv).

The reader should also have some familiarity with DDM terms and the DDM model. A reader
with a general exposure to DDM should be able to understand how DRDA’s use of LU 6.2 relates
to the DDM communications managers of the DDM model.

Refer to Referenced Documents (on page xxv) for the list of DDM publications.

528 DRDA, Version 3, Volume 1

SNA LU 6.2

12.3 LU 6.2
Logical Unit type 6.2 (LU 6.2) is the architecture for advanced program-to-program
communication (APPC). Products that implement LU 6.2 provide program-to-program
communications that are robust enough for distributed database management processing. The
robust features necessary for distributed database include:

• Timely failure notification

LU 6.2 is the program-to-program architecture that guarantees timely notification of network
connection and end node failures. Knowing when one user is done is of the utmost
importance in a database management environment where potentially thousands of users
can be sharing information.

• Propagation of security, authentication, authorization, and accounting information

LU 6.2 provides and permits the propagation of who, what, when, and where information
among the resource managers participating in a user transaction. Security, authentication,
and authorization information is essential for the proper control of access to managed data.
Accounting information is essential for the tracking of resource use and consumption.

• Synchronization point support

LU 6.2 provides support for coordinating updates across multiple systems. This is done
through resource recovery processing, which includes two-phase commit protocols on LU
6.2 conversations. This feature is not supported in DRDA Level 1.

DRDA relies on a subset of the LU 6.2 defined function. That subset includes function provided
by verbs from both the LU 6.2 base and option sets. This chapter identifies the LU 6.2 function
contained within the DRDA subset, relates the DRDA subset to DDM terms and the DDM
model, and discusses the characteristics of DRDA communications flows that are unique to
DRDA.

Part 3: Network Protocols 529

LU 6.2 Verb Categories SNA

12.4 LU 6.2 Verb Categories
The LU 6.2 protocol boundary consists of two categories of verbs: conversation verbs and
control-operator verbs.

1. Conversation verbs define the means for program-to-program communication. The three
types of conversation verbs are mapped, basic, and type-independent.

• Mapped conversation verbs provide functions for application programs written in
high-level application program languages. Application transaction programs use
mapped conversation verbs.

• Basic conversation verbs provide functions for end-user services or protocol
boundaries for end-user application transaction programs. LU services programs use
basic conversation verbs.

• Type-independent verbs provide functions that span both mapped and basic
conversation types (such as synchronization point services). Both application
transaction programs and LU services programs use type-independent verbs.

2. Control-operator verbs define the means for program or operator control of the LU’s
resources. Control-operator transaction programs use control-operator verbs to assist the
control operator in performing functions related to the control of an LU. LU 6.2
implementations that employ parallel sessions use control-operator verbs to define the
parallel session support that is available between them.

530 DRDA, Version 3, Volume 1

SNA LU 6.2 Product-Support Subsetting

12.5 LU 6.2 Product-Support Subsetting
LU 6.2 product-support subsetting of the verbs is defined by means of function groups or sets. A
set consists of all the functions that together represent an indivisible group for products to
implement; that is, a product implementing a particular set implements all of the functions
within the set.

The base set is the set of LU 6.2 verbs, parameters, return codes, and what-received indications
that all programmable LU 6.2 products support.

The option sets are the sets of LU 6.2 verbs, parameters, return codes, and what-received
indications that a product can support depending on the product. A product can support any
number of options sets or none. If a product supports an option set, then the product must
support all verbs, parameters, return codes, and what-received indications defined in the option
set.

Part 3: Network Protocols 531

LU 6.2 Base and Option Sets SNA

12.6 LU 6.2 Base and Option Sets
Implementations of DRDA must use LU 6.2 for communications and in support of security,
accounting, and transaction processing. Due to the complexity of distributed database
management system processing, DRDA requires both base and option set functions of LU 6.2.

Application requesters (ARs) and application servers (ASs) use basic conversation verbs. Unless
otherwise noted, all application requesters and application servers use each LU 6.2 function and
must accomplish their goals using the verbs listed below or equivalent local interfaces.

Any verbs outside the set listed in DRDA are not required by DRDA, and DRDA does not
provide any architecture for use of those verbs.

12.6.1 Base Set Functions

DRDA requires base set functions from the basic conversation and type-independent verb
categories.

12.6.1.1 Basic Conversation Verb Category

DRDA uses base set function provided by the following basic conversation verbs:

• ALLOCATE

• DEALLOCATE

• GET_ATTRIBUTES

• RECEIVE_AND_WAIT

• SEND_DATA

• SEND_ERROR

12.6.1.2 Type-Independent Verb Category

DRDA uses base set function provided by the following type-independent conversation verb:

• GET_TP_PROPERTIES

12.6.2 Option Set Functions

DRDA requires option set functions from the basic conversation verb category and type-
independent verb category. The numbers in the parentheses are option set numbers. If a verb
does not have an option set number, the verb is in the base set, but the function or variable
included to perform the function is an option set function. See the SNA Transaction Programmer’s
Reference Manual for LU Type 6.2 (GC30-3084, IBM) for details about option set numbers.

12.6.2.1 Basic Conversation Verb Category

DRDA uses option set function provided by the following basic conversation verbs:

• User ID Verification (Conversation-Level Security) (212)60

60. LU 6.2 Conversation-Level Security is optional if DCE user authentication mechanisms are in use.

532 DRDA, Version 3, Volume 1

SNA LU 6.2 Base and Option Sets

ALLOCATE

• Program-Supplied User ID and Password (Conversation-Level Security) (213)61

ALLOCATE

• Specify a synchronization level of SYNCPT (108)62

ALLOCATE

• Get the conversation state (108)63

GET_ATTRIBUTES

• PREPARE_TO_RECEIVE (105)

Only application requesters or application servers that require asynchronous receive
capabilities need use PREPARE_TO_RECEIVE.

• POST_ON_RECEIPT with TEST for Posting (103)

Only application requesters or application servers that require asynchronous receive
capabilities need use POST_ON_RECEIPT with TEST for Posting.

• POST_ON_RECEIPT

• TEST

12.6.2.2 Type-Independent Verb Category

DRDA uses base set function provided by the following type-independent conversation verb:

• LUW_Identifier (243)

GET_TP_PROPERTIES

• Protected_LUW_Identifier (108)64

GET_TP_PROPERTIES

• SYNCPT (108)65

• BACKOUT (108)66

• SET_SYNCPT_OPTIONS (108)67

61. LU 6.2 Conversation-Level Security is optional if DCE user authentication mechanisms are in use.
62. Not supported in DRDA Level 1.
63. Not supported in DRDA Level 1.
64. Not supported in DRDA Level 1.
65. Not supported in DRDA Level 1.

Syncpt and Backout are the LU 6.2 verbs and terms for committing and rolling back the work, respectively. Because Commit and
Rollback are the accepted terms in relational databases to perform the function of committing and rolling back the work, this
reference will use the terms commit and rollback wherever the context is not directly related to LU 6.2.

66. Not supported in DRDA Level 1.

Syncpt and Backout are the LU 6.2 verbs and terms for committing and rolling back the work, respectively. Because Commit and
Rollback are the accepted terms in relational databases to perform the function of committing and rolling back the work, this
reference will use the terms commit and rollback wherever the context is not directly related to LU 6.2.

67. Not supported in DRDA Level 1.

SET_SYNCPT_OPTIONS is a verb in support of LU 6.2 verbs that provides synchronization point optimizations. DRDA
encourages the implementation of the synchronization point optimizations, but does not rely on or require the implementation of
these optimizations. If an implementation chooses to implement the optimization that allows a resource to vote read-only during
resource recovery processing, the resource cannot vote read-only if there are held cursors at that resource.

Part 3: Network Protocols 533

LU 6.2 and DRDA SNA

12.7 LU 6.2 and DRDA
Application requesters and application servers that provide DRDA capabilities use DRDA flows.
DRDA flows permit implementations of DRDA to initialize conversations, terminate
conversations, and process DRDA requests.

12.7.1 Initializing a Conversation

Initialization processing allocates a conversation and prepares a DRDA execution environment.
Only an application requester can start a conversation. Authentication occurs during
initialization processing through the required use of Conversation-Level Security (end-user
verification) as specified in the LU 6.2 architecture. The use of conversation-level security
verifies the end-user name associated with the conversation. Database management systems
verify that authenticated IDs have the authorization to perform DRDA database manager
requests.

Refer to Section 6.1 (on page 384) and Section 6.1.1 (on page 384) for a detailed description of
architected end-user names.

Authentication between an application requester and application server occurs once per
conversation during ALLOCATE processing.

Initialization processing propagates the resource recovery level that is required for a particular
conversation. This is carried in the SYNC_LEVEL parameter of the LU 6.2 ALLOCATE verb.

Initialization processing also propagates basic accounting information. An LU 6.2 ALLOCATE
verb within the initialization flow specifies an end-user name, a logical unit of work ID
(LUWID), remote LUNAME, and transaction program name to provide the who, what, when,
and where information useful for accounting in DRDA environments.

The DDM Reference provides a general overview of the component communications flows that
comprise a DRDA initialization flow. See the DDM terms APPCMNI and SYNCMNI, which
discuss initiation of LU 6.2 communications.

12.7.1.1 LU 6.2 Verbs that the Application Requester Uses

The LU 6.2 verbs that the application requester uses for DRDA initialization flows are described
here. Unless otherwise specified, refer to the SNA Transaction Programmer’s Reference Manual for
LU Type 6.2 (GC30-3084, IBM) and to the SNA LU 6.2 Reference: Peer Protocols (SC31-6808, IBM) for
further detail.

ALLOCATE
ALLOCATE initiates a requester initialization verb sequence. The execution of the verb first
ensures that a session exists between the LU of an application requester and a remote LU,
and then allocates a basic conversation on that session between the application requester
and the specified remote transaction program (TP).

The LU_NAME value is a fully qualified LUNAME, as specified in the LU 6.2 architecture.
The LU 6.2 architecture requires the LU_NAME parameter and continues to permit use of
unqualified LU_NAME values only for migration purposes. Products that do not support
fully qualified LU_NAME values can have difficulties working in SNA network
interconnect environments.

The transaction program name value can be a registered DRDA transaction program name,
registered DDM transaction program name, or any non-registered transaction program
name. Refer to Section 6.8 (on page 393) for further detail.

534 DRDA, Version 3, Volume 1

SNA LU 6.2 and DRDA

Applications using the SQL language are not required to understand LU_NAME values
(qualified or unqualified) nor transaction program name values. The external name that an
application can use is RDB_NAME. DRDA does not define the mechanism by which the
application requester derives the NETID.LU_NAME and transaction program name pair
from the RDB_NAME. DRDA permits the association of multiple RDB_NAMEs with a
single transaction program name and NETID_LUNAME.

The TYPE parameter value must be BASIC_CONVERSATION. DRDA has no usage
requirement for mapped conversations.

The SYNC_LEVEL parameter value must be NONE for DRDA Level 1 and can be SYNCPT
for DRDA Level 2.

The remote LU must be able to obtain the verified end-user name associated with the
conversation. Unless the verified end-user name is provided by DCE security mechanisms,
DRDA requires the specification of SECURITY (PGM (USER_ID (variable) PASSWORD
(variable))) or SECURITY(SAME) on ALLOCATE. The remote LU and the application server
both use the authenticated USER_ID value for accounting purposes. The application server
uses the authenticated USER_ID value to validate requester access to the remote database
management system resources. Refer to Section 6.1 (on page 384) and Section 6.1.1 (on page
384) for further detail about architected end-user names.

SEND_DATA"
Under normal circumstances, one or more SEND_DATA verbs follow ALLOCATE in a
requester initialization verb sequence. The SEND_DATA verb transmits DDM commands
and associated command data to the transaction program at the application server. The
DDM commands that can flow identify the application requester and application server,
establish requester and server capabilities, make relational database management system
capabilities available to the requester, and request database management resources for
processing a specific DRDA request.

Refer to Section 4.4.1 (on page 84) for further detail on the DDM command sequences that
DRDA uses.

The DATA parameter specifies the variable that contains the data to be sent.

RECEIVE Operations
Under normal circumstances after the last SEND_DATA, one or more
RECEIVE_AND_WAIT or PREPARE_TO_RECEIVE, POST_ON_RECEIPT, TEST, and
RECEIVE_AND_WAIT verb sequences must be performed.

An application requester initialization flow uses RECEIVE_AND_WAIT for a synchronous
receive operation. The application requester uses a RECEIVE_AND_WAIT to receive DDM
command reply objects including the execution results of application requester SQL
statements.

An application requester initialization flow uses a sequence of PREPARE_TO_RECEIVE,
POST_ON_RECEIPT, TEST, and RECEIVE_AND_WAIT verbs for an asynchronous receive
operation. The use of POST_ON_RECEIPT and TEST allows the application requester to
perform other types of processing before testing the conversation to determine whether
reply object information is available for receipt. Checking for end-user keyboard interrupts
is an example of one type of processing that the application requester can wish to perform.
The application requester uses a RECEIVE_AND_WAIT to receive DDM command reply
objects including the execution results of application requester SQL statements.

Part 3: Network Protocols 535

LU 6.2 and DRDA SNA

12.7.1.2 LU 6.2 Verbs that the Application Server Uses

The LU 6.2 verbs the application server uses for DRDA initialization flows are described here.
Unless otherwise specified, refer to the SNA Transaction Programmer’s Reference Manual for LU
Type 6.2 (GC30-3084, IBM) for further detail.

ATTACH Processing
LU 6.2 ATTACH processing in the communications product at the application server creates
the resource ID. The manner in which a particular LU 6.2 communications product makes
the resource ID available is specific to the environment.

GET_ATTRIBUTES
GET_ATTRIBUTES returns information about a conversation that the application server
uses for request processing. This information includes the mode name, conversation state
information,68 and partner LU name that can be used for accounting purposes.

The RESOURCE parameter variable value for GET_ATTRIBUTES must specify the local
resource ID of the conversation about which the application server desires information. The
communications product at the application server creates the resource ID.

GET_TP_PROPERTIES
GET_TP_PROPERTIES returns information about the characteristics of the transaction
program that the application server requires for request processing and that mechanisms
specific to the environment can also use for accounting.

DRDA requires the SECURITY_USER_ID parameter. The SECURITY_USER_ID parameter
specifies the variable for returning the architected end-user name carried on the allocation
request that initiated the application requester initialization verb sequence. The application
server requires the architected end-user name value for checking the requester’s
authorization to access database management system objects and for accounting purposes.

DRDA requires the LUW_IDENTIFIER or PROTECTED_LUW_IDENTIFIER69 parameter.
This parameter specifies the variable for returning the logical unit of work identifier
associated with the transaction program. The application server can use the logical unit of
work identifier for accounting mechanisms specific to the environment.

RECEIVE Operations
An application server initialization flow uses RECEIVE_AND_WAIT for each synchronous
receive operation.

An application server initialization flow uses a sequence of POST_ON_RECEIPT, TEST, and
RECEIVE_AND_WAIT verbs for each asynchronous receive operation. The use of
POST_ON_RECEIPT and TEST allows the application server to perform other types of
processing before testing the conversation to determine whether a DDM command or other
information is available for receipt.

An application server uses a RECEIVE_AND_WAIT to receive a DDM command or the
SEND indication. The application server can send data to the application requester only
after it receives the SEND indication.

68. Conversation state information is useful for a transaction program to find out the state of the conversations prior to calling
SYNCPT. This can help avoid state checks or help resolve a SYNCPT call that generated a state check.

69. For protected conversations in DRDA Level 2

536 DRDA, Version 3, Volume 1

SNA LU 6.2 and DRDA

SEND_DATA
Under normal circumstances, one or more SEND_DATA verbs follow a
RECEIVE_AND_WAIT. The SEND_DATA verb transmits DDM command reply objects
including the execution results of application requester SQL statements. The DATA
parameter specifies the variable that contains the data to be sent.

12.7.1.3 Initialization Flows

The physical flow of information consists of a sequence of LU 6.2 verbs containing DDM
commands.

Figure 12-1 (on page 538) and Figure 12-3 (on page 540) depicts DDM command processing
using the LU 6.2 synchronous wait protocol verbs. DRDA also permits asynchronous wait
protocols. Figure 12-1 (on page 538) depicts the initialization flows while using LU 6.2 security.
Figure 12-3 (on page 540) depicts the initialization flows while using DCE security mechanisms.
The primary difference between the two is the additional flows required to negotiate support for
the security mechanism and then pass the DCE security context information which contains the
end-user name and other security information.

An LU 6.2 ALLOCATE at the application requester causes the creation of a conversation
between the application requester and application server. This conversation is allocated with
SYNC_LEVEL(NONE) for DRDA Level 1 and can use SYNC_LEVEL(SYNCPT) for DRDA Level
2. Individual LU 6.2 SEND_DATA verbs at the application requester transmit each of the DDM
request data stream structures for EXCSAT, ACCRDB, and EXCSQLSTT, along with any
command data that the command can have. Individual LU 6.2 RECEIVE_AND_WAIT verbs at
the application requester then receive the DDM reply data stream structure or object data stream
structure response for each of the DDM commands. Other LU 6.2 RECEIVE_AND_WAIT verbs
at the application requester receive the SEND indications.

An LU 6.2 GET_ATTRIBUTES and an LU 6.2 GET_TP_PROPERTIES at the application server
obtain information about the conversation that is available to the application server following
allocation. The obtained information includes the LUWID, mode, end-user name,70 and partner
LU name that the application server requires for request processing and accounting. Individual
LU 6.2 RECEIVE_AND_WAIT verbs at the application server receive the DDM request data
stream structures or command data. Other LU 6.2 RECEIVE_AND_WAIT verbs at the
application server receive the SEND indications. Individual LU 6.2 SEND_DATA verbs at the
server then transmit the DDM object data stream and reply data stream response structures for
each of EXCSAT, ACCRDB, and EXCSQLSTT. LU 6.2 RECEIVE_AND_WAIT verbs at the
application server cause the SEND indication to flow along with the contents of the SEND
buffers.

Refer to Chapter 4 (on page 63) for further detail about DRDA DDM command sequences.

The DRDA initialization flow while using LU 6.2 security consists of the following:

70. If DCE security mechanisms are in use, the end-user name provided in the DCE security context information take precedence
over the end-user name provided in the LU 6.2 ALLOCATE flow.

Part 3: Network Protocols 537

LU 6.2 and DRDA SNA

TP (Application Requester) LU NETWORK LU TP (Application Server)

ALLOCATE

RC=OK

SEND_DATA

DATA(Rqsdss(Excsat(Extnam, Mgrlvlls,
Srvclsnm, Srvnam, Srvrlslv)))

RC=OK

RECEIVE_AND_WAIT
(ALLOC, DATA, SEND)

LU 6.2 Attach Processing

GET_ATTRIBUTES

/* MODE NAME and PARTNER_LU_NAME */

GET_TP_PROPERTIES

/* SECURITY_USER_ID and LUW_IDENTIFIER */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=DATA /* EXCSAT */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Objdss(Excsatrd(Extnam,Mgrlvlls,
Srvclsnm, Srvnam, Srvrlslv)))

RC=OK

RECEIVE_AND_WAIT
(DATA, SEND)

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* EXCSATRD */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Rqsdss(Accrdb(Rdbnam, Rdbacccl,
Typdefnam, Typdefovr,
optional parms)))

RC=OK

Figure 12-1 DRDA Initialization Flows with LU 6.2 Security (Part 1)

538 DRDA, Version 3, Volume 1

SNA LU 6.2 and DRDA

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT
(DATA, SEND)

RC=OK

WHAT_RECEIVED=DATA /* ACCRDB */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Rpydss(Accrdbrm(Svrcod, Typdefnam,
Typdefovr,
optional parms)))RC=OK

RECEIVE_AND_WAIT
(DATA, SEND)

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* ACCRDBRM */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

Figure 12-2 DRDA Initialization Flows with LU 6.2 Security (Part 2)

The DRDA initialization flow while using DCE security mechanisms is shown in Figure 12-3 (on
page 540).

Part 3: Network Protocols 539

LU 6.2 and DRDA SNA

TP (Application Requester) LU NETWORK LU TP (Application Server)

ALLOCATE

RC=OK

SEND_DATA

DATA(Rqsdss(Excsat(Extnam, Mgrlvlls,
Srvclsnm, Srvnam, Srvrlslv)))

RC=OK

RECEIVE_AND_WAIT
(ALLOC, DATA, SEND)

LU 6.2 Attach Processing

GET_ATTRIBUTES

/* MODE NAME and PARTNER_LU_NAME */

GET_TP_PROPERTIES

/* LUW_IDENTIFIER */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=DATA /* EXCSAT */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Objdss(Excsatrd(Extnam,Mgrlvlls,
Srvclsnm, Srvnam, Srvrlslv)))

RC=OK

RECEIVE_AND_WAIT
(DATA, SEND)

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* EXCSATRD */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Rqsdss(Accsec(Secmec)))

RC=OK

Figure 12-3 DRDA Initialization Flows with DCE Security (Part 1)

540 DRDA, Version 3, Volume 1

SNA LU 6.2 and DRDA

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT
(DATA, SEND)

RECEIVE_AND_WAIT
(DATA, SEND)

RC=OK

WHAT_RECEIVED=DATA /* ACCSEC */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Rpydss(Accsecrd(Secmec)))

RC=OK

RECEIVE_AND_WAIT
(DATA, SEND)

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* ACCSECRD */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Rqsdss(Secchk) Objdss(Sectkn))

RC=OK

RECEIVE_AND_WAITRC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* SECCHKRM */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=DATA /*SECTKN */

RC=OK

(DATA, SEND)

RC=OK

WHAT_RECEIVED=DATA /* SECCHK */

WHAT_RECEIVED=DATA /* SECTKN */

RECEIVE_AND_WAIT

RECEIVE_AND_WAIT

RC=OK

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Rpydss(Secchkrm(Svrcod, Secchkcd,
Svcerrno, Svrdgn))

Objdss(Sectkn))

Figure 12-4 DRDA Initialization Flows with DCE Security (Part 2)

Part 3: Network Protocols 541

LU 6.2 and DRDA SNA

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT
(DATA, SEND)

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Rqsdss(Accrdb(Rdbnam, Rdbacccl,
Typdefnam, Typdefovr,
optional parms)))

RC=OK

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=DATA /* ACCRDB */

WHAT_RECEIVED=SEND

RECEIVE_AND_WAIT

SEND_DATA

RC=OK

RC=OK

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* ACCRDBRM */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

(DATA, SEND)

DATA(Rpydss(Accrdbrm(Svrcod, Typdefnam,
Typdefovr,
optional parms)))

Figure 12-5 DRDA Initialization Flows with DCE Security (Part 3)

12.7.2 Processing a DRDA Request

DRDA requests exist for the processing of remote SQL statements and for the preparation of
application programs. DRDA request flows transmit a remote DRDA request and its associated
reply objects between an application requester and application server. Only an application
requester can initiate a DRDA request flow.

Because authentication occurs during initialization processing, DRDA requires no additional
authentication during DRDA request flows.

DRDA remote SQL statement requests often operate on multiple rows of multiple tables and can
cause the transmission of multiple rows from the application server to the application requester.
DRDA provides two data transfer protocols in support of these operations:

• Fixed Row Protocol

• Limited Block-Protocol

Application requesters and application servers use the fixed row protocol for the processing of a
query that can be the target of a WHERE_CURRENT_OF clause on an SQL UPDATE or DELETE
request, or for the processing of a multi-row fetch. The fixed row protocol guarantees the return
of no more than the number of rows requested by the application whenever the application

542 DRDA, Version 3, Volume 1

SNA LU 6.2 and DRDA

requester receives row data.

Application requesters and application servers use the limited block-protocol for the processing
of a query that uses a cursor for read-only access to data. The limited block-protocol optimizes
data transfer by guaranteeing the transfer of a minimum amount of data (which can be part of a
row, multiple rows, or multiple rows and part of a row) in response to each DRDA request.

Refer to Section 4.4.6 (on page 121) for further detail on DRDA data transfer protocols.

The DDM Reference provides a general overview of the component communications flows that
comprise a DRDA request flow. The DDM terms APPSRCCR and APPSRCCD discuss
synchronous requester and server communications flows that occur during the processing of a
DRDA remote request.

12.7.2.1 LU 6.2 Verbs that the Application Requester Uses

The following discussion summarizes the LU 6.2 verbs the application requester uses for DRDA
request flows.

Unless otherwise specified, see the SNA Transaction Programmer’s Reference Manual for LU Type 6.2
(GC30-3084, IBM) for further detail.

SEND_DATA
One or more SEND_DATA verbs initiate a requester DRDA request verb sequence. The
SEND_DATA verb transmits DDM commands and command objects that request remote
database management resources for processing a specific remote DRDA request.

The DATA parameter specifies the variable that contains the data to be sent. Refer to Section
4.4.3 (on page 111) through Section 4.4.11 (on page 179) for further detail on the DDM
command sequences that DRDA uses.

RECEIVE Operations
Under normal circumstances, either RECEIVE_AND_WAIT or a sequence of
PREPARE_TO_RECEIVE, POST_ON_RECEIPT, TEST, and RECEIVE_AND_WAIT verbs
must follow the SEND_DATA verb in an application requester DRDA request verb
sequence.

12.7.2.2 LU 6.2 Verbs that the Application Server Uses

The following discussion summarizes the LU 6.2 verbs the application server uses for DRDA
request flows.

Unless otherwise specified, see the SNA Transaction Programmer’s Reference Manual for LU Type 6.2
(GC30-3084, IBM) for further detail.

RECEIVE Operations
Under normal circumstances, either one or more RECEIVE_AND_WAIT verbs or one or
more sequences of POST_ON_RECEIPT, TEST, and RECEIVE_AND_WAIT verbs initiate an
application server DRDA request verb sequence.

SEND_DATA
Under normal circumstances, one or more SEND_DATA verbs follow the initial
RECEIVE_AND_WAIT. The SEND_DATA verb transmits DDM command reply objects
including the execution results of application requester SQL statements. The DATA
parameter specifies the variable that contains the data to be sent.

Part 3: Network Protocols 543

LU 6.2 and DRDA SNA

12.7.2.3 Bind Flows

The physical flow of information consists of a sequence of LU 6.2 verbs containing DDM
commands, FD:OCA data, SQL communication areas, and SQL statements.

Figure 12-6 (on page 545) depicts DDM command processing using the LU 6.2 synchronous wait
protocol verbs. DRDA also permits asynchronous wait protocols. Figure 12-6 (on page 545)
assumes that DDM command chaining is not being used.

Individual LU 6.2 SEND_DATA verbs at the application requester transmit each of the DDM
request data stream structures for BGNBND, BNDSQLSTT, and ENDBND along with any
command data that the command can have. Individual LU 6.2 RECEIVE_AND_WAIT verbs at
the application requester then receive the DDM object data stream structure response for each of
the DDM commands. Other LU 6.2 RECEIVE_AND_WAIT verbs at the application requester
receive the SEND indications.

Individual LU 6.2 RECEIVE_AND_WAIT verbs at the application server receive each DDM
request data stream structure or command data stream structure. Other LU 6.2
RECEIVE_AND_WAIT verbs at the application server receive the SEND indications. Individual
LU 6.2 SEND_DATA verbs at the server then transmit the DDM object data stream and reply
data stream response structures for each of BGNBND, BNDSQLSTT, and ENDBND. LU 6.2
RECEIVE_AND_WAIT verbs at the application server cause the SEND indication to flow along
with the contents of the SEND buffers.

Refer to Chapter 4 (on page 63) for further detail about DRDA DDM command sequences.

A bind flow is shown in Figure 12-6 (on page 545).

544 DRDA, Version 3, Volume 1

SNA LU 6.2 and DRDA

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT
(DATA, SEND)

SEND_DATA

DATA(Rqsdss(Bgnbnd(Pkgnamct, Pkgisolvl,
optional parms)))

RC=OK

RECEIVE_AND_WAIT

RC=OK

RC=OK
(DATA, SEND)

(DATA, SEND)

WHAT_RECEIVED=DATA /* SQLCARD */

RECEIVE_AND_WAIT

RECEIVE_AND_WAIT

RC=OK

RC=OK

WHAT_RECEIVED=SEND

(DATA, SEND)

RC=OK

WHAT_RECEIVED=DATA /* BGNBND */

WHAT_RECEIVED=SEND

RECEIVE_AND_WAIT

SEND_DATA

RC=OK

DATA(Objdss(Sqlcard))

RC=OK

WHAT_RECEIVED=DATA /* BNDSQLSTT */

WHAT_RECEIVED=DATA /* SQL STATEMENT */

WHAT_RECEIVED=DATA /* DECLARATIONS */

RECEIVE_AND_WAIT

RECEIVE_AND_WAIT

RC=OK

RC=OK

RECEIVE_AND_WAIT

SEND_DATA

DATA(Rqsdss(Bndsqlstt(Pkgnamcsn, optional parms))
Objdss(Sqlstt(SQL statement))
Objdss(Sqlsttvrb(declarations)))

Figure 12-6 DRDA Bind Flows (Part 1)

Part 3: Network Protocols 545

LU 6.2 and DRDA SNA

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

SEND_DATA

RC=OK

DATA(Objdss(Sqlcard))

RC=OK

WHAT_RECEIVED=DATA /* BNDSQLSTT */

WHAT_RECEIVED=DATA /* SQL STATEMENT */

WHAT_RECEIVED=DATA /* DECLARATIONS */

RECEIVE_AND_WAIT

RECEIVE_AND_WAIT

RECEIVE_AND_WAIT

RC=OK

RC=OK

RC=OK

RECEIVE_AND_WAIT

RC=OK
(DATA, SEND)

(DATA, SEND)

WHAT_RECEIVED=DATA /* SQLCARD */

RECEIVE_AND_WAIT

RECEIVE_AND_WAIT

RC=OK

RC=OK

WHAT_RECEIVED=SEND

(DATA, SEND)

SEND_DATA

DATA(Rqsdss(Bndsqlstt(Pkgnamcsn, optional parms))
Objdss(Sqlstt(SQL statement))
Objdss(Sqlsttvrb(declarations)))

WHAT_RECEIVED=SEND

Figure 12-7 DRDA Bind Flows (Part 2)

546 DRDA, Version 3, Volume 1

SNA LU 6.2 and DRDA

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT

RECEIVE_AND_WAIT

RC=OK

SEND_DATA

DATA(Objdss(Sqlcard))

RC=OK

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* SQLCARD */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

(DATA, SEND)

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* SQLCARD */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=SEND

(DATA, SEND)

SEND_DATA

DATA(Rqsdss(Endbnd(Pkgnamct, optional parms)))

RC=OK

WHAT_RECEIVED=DATA /* ENDBND */

WHAT_RECEIVED=SEND

RECEIVE_AND_WAIT

SEND_DATA

RC=OK

RC=OK

(DATA, SEND)
RECEIVE_AND_WAIT

DATA(Objdss(Sqlcard))

Figure 12-8 DRDA Bind Flows (Part 3)

12.7.2.4 SQL Statement Execution Flows

Figure 12-9 (on page 548) depicts DDM command processing using the LU 6.2 synchronous wait
protocol verbs. DRDA also permits asynchronous wait protocols.

The physical flow of information consists of a sequence of LU 6.2 verbs containing DDM
commands, FD:OCA data descriptors, FD:OCA data, and DDM reply messages.

Individual LU 6.2 SEND_DATA verbs at the application requester transmit each of the DDM
request data stream structures for OPNQRY and CNTQRY. Individual LU 6.2
RECEIVE_AND_WAIT verbs at the application requester then receive the DDM object data
stream structure and reply message responses for the DDM commands. Other LU 6.2
RECEIVE_AND_WAIT verbs at the application requester receive the SEND indications.

Part 3: Network Protocols 547

LU 6.2 and DRDA SNA

Individual LU 6.2 RECEIVE_AND_WAIT verbs at the application server receive each DDM
request data stream structure. Other LU 6.2 RECEIVE_AND_WAIT verbs at the application
server receive the SEND indications. Individual LU 6.2 SEND_DATA verbs at the application
server then transmit the DDM object data stream and reply message response structures for each
of OPNQRY and CNTQRY. LU 6.2 RECEIVE_AND_WAIT verbs at the application server cause
the SEND indication to flow along with the contents of the SEND buffers.

Refer to Chapter 4 (on page 63) for further detail about DRDA DDM command sequences.

Figure 12-9 shows the SQL statement execution flow.

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT
(DATA, SEND)

SEND_DATA

DATA(Rqsdss(Opnqry(Pkgnamcsn, Qryblksz,
optional parms)))

RC=OK

RECEIVE_AND_WAIT

RC=OK

RC=OK

WHAT_RECEIVED=DATA /* OPNQRY */

WHAT_RECEIVED=SEND

RECEIVE_AND_WAIT

SEND_DATA

RC=OK

DATA(Rpydss(Opnqryrm(Svrcod, Qryprctyp,
optional parms))

Objdss(Qrydsc(data description)
(Qrydta(sqlca, row data)))

RECEIVE_AND_WAIT

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* OPNQRYRM */

RECEIVE_AND_WAIT

RC=OK

RC=OK

RC=OK

WHAT_RECEIVED=DATA /* DATA DESCRIPTION,
SQLCA, and ROW DATA */

(DATA, SEND)

RECEIVE_AND_WAIT

WHAT_RECEIVED=SEND

SEND_DATA

DATA(Rqsdss(Cntqry(Pkgnamcsn, Qryblksz,
optional parms)))

Figure 12-9 DRDA SQL Statement Execution Flows (Part 1)

548 DRDA, Version 3, Volume 1

SNA LU 6.2 and DRDA

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT
(DATA, SEND)

RECEIVE_AND_WAIT

RC=OK

RC=OK

WHAT_RECEIVED=DATA /* CNTQRY */

WHAT_RECEIVED=SEND

RECEIVE_AND_WAIT

SEND_DATA

RC=OK

DATA(Objdss(Qrydta(sqlca, row data))
Rpydss(Endqryrm(Svrcod, optional parms))
Objdss(Sqlcard))

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* SQLCA and ROW DATA */

RECEIVE_AND_WAIT

RC=OK

WHAT_RECEIVED=DATA /* ENDQRYRM */

(DATA, SEND)

RC=OK

RECEIVE_AND_WAIT

RC=OK

RECEIVE_AND_WAIT

WHAT_RECEIVED=DATA /* SQLCARD */

WHAT_RECEIVED=SEND

Figure 12-10 DRDA SQL Statement Execution Flows (Part 2)

12.7.3 Terminating a Conversation

Terminate conversation processing deallocates a conversation thereby making the conversation
resources, including the underlying session, available for reuse at both the application requester
and application server. Under normal circumstances, only an application requester terminates a
conversation. In error situations, an application server can also terminate a conversation.

The deallocation of the conversation between an application requester and an instance of an
application server terminates the communications between the application requester and that
instance of the application server.

The application requester must ensure that all conversations associated with the execution of the
application are terminated when the application normally or abnormally terminates.

On a SYNC_LEVEL(NONE) conversation, a DEALLOCATE flows to the application server. The
DEALLOCATE includes an implied rollback at the application server. It is the responsibility of
the application server to ensure a rollback during local deallocation processing at the application
server.

On a SYNC_LEVEL(SYNCPT) conversation, the deallocation of the conversation is tied to
resource recovery processing. The DEALLOCATE flows with the LU 6.2 two-phase commit
protocols. If the logical unit of work rolls back, the conversation remains allocated. There is no
implied rollback for application servers on SYNC_LEVEL(SYNCPT) conversations. An

Part 3: Network Protocols 549

LU 6.2 and DRDA SNA

unconditional DEALLOCATE with a rollback must have a DEALLOCATION TYPE of
ABEND_*.

An application requester might not be able to issue a DEALLOCATE with TYPE of
SYNC_LEVEL prior to the beginning of resource recovery processing as a result of application
termination. The application requester must terminate the conversations after the initial resource
recovery process completes.

The DDM Reference provides a general overview of the communications flows that comprise a
DRDA terminate conversation flow. The DDM terms APPCMNT and SYNCMNT describe
termination of LU 6.2 communications associated with a conversation.

12.7.3.1 LU 6.2 Verbs that the Application Requester Uses

The LU 6.2 verbs the application requester uses for DRDA terminate conversation flows are
described here. Unless otherwise specified, refer to the SNA Transaction Programmer’s Reference
Manual for LU Type 6.2 (GC30-3084, IBM) for more detail.

DEALLOCATE
DEALLOCATE deallocates a conversation from the application requester, and eventually
causes the deallocation of the conversation from the application server.

The TYPE parameter value must be FLUSH or SYNC_LEVEL for normal deallocation of a
conversation. Either FLUSH or SYNC_LEVEL specifies the execution of the function of the
FLUSH verb and the deallocation of the conversation normally.

The LOG_DATA parameter value can be YES or NO. DRDA has no requirement to place
product-unique error information in the system error logs of the LUs supporting this
conversation.

SYNCPT
For conversations allocated SYNC_LEVEL(SYNCPT), the DEALLOCATE does not flow
until a SYNCPT verb is issued. Only one SYNCPT verb is needed to cause the
DEALLOCATE to flow on all conversations that were issued the
DEALLOCATE(SYNC_LEVEL). SYNCPT begins the two-phase commit process, and if the
logical unit of work successfully commits, the conversation is deallocated. If the logical unit
of work rolls back, the conversation remains allocated.

12.7.3.2 LU 6.2 Verbs that the Application Server Uses

The LU 6.2 verbs the application server uses for DRDA terminate conversation flows are
described here. Unless otherwise specified, refer to the SNA Transaction Programmer’s Reference
Manual for LU Type 6.2 (GC30-3084, IBM) for further detail.

DEALLOCATE
A DEALLOCATE deallocates the conversation locally from the application server. The
TYPE parameter must be LOCAL. A RECEIVE_AND_WAIT notifies the application server
that an incoming deallocate request has arrived.

The LOG_DATA parameter value can be YES or NO. DRDA has no requirement to place
product-unique error information in the system error logs of the LUs supporting this
conversation.

SYNCPT
For conversations allocated SYNC_LEVEL(SYNCPT), the SYNCPT verb is issued in
response to WHAT_RECEIVED=TAKE_SYNCPT_DEALLOCATE from a
RECEIVE_AND_WAIT call. If the logical unit of work commits successfully, the application
server issues a DEALLOCATE(LOCAL). If the logical unit of work backs out, the

550 DRDA, Version 3, Volume 1

SNA LU 6.2 and DRDA

conversation remains allocated.

12.7.3.3 Termination Flow—SYNC_LEVEL(NONE) Conversation

The physical flow of information consists of one LU 6.2 verb. An LU 6.2 DEALLOCATE at the
application requester causes the deallocation of a conversation between the application
requester and application server.

A RECEIVE_AND_WAIT at the application server receives the deallocate request, which causes
local deallocation of the conversation. Figure 12-11 shows the termination flow on a
SYNC_LEVEL(NONE) conversation.

TP (Application Requester) LU NETWORK LU TP (Application Server)

DEALLOCATE
(DEALLOCATE) RECEIVE_AND_WAIT

RC=OK

RC=OK
RC=DEALLOCATE_NORMAL

DEALLOCATE

TYPE(LOCAL)

Figure 12-11 Actual Flow: Termination Flows on SYNC_LEVEL(NONE) Conversation

12.7.3.4 Termination Flow—SYNC_LEVEL(SYNCPT) Conversation

Figure 12-12 (on page 552) displays the flows involved with deallocating a
SYNC_LEVEL(SYNCPT) conversation. The flows are a simplified view of the two-phase commit
synchronization point process. The LU and sync point manager (SPM) function are combined to
avoid indicating the function split between the LU and the SPM. In practice, the LU and sync
point manager share the responsibility to complete the two-phase commit protocol flows. For an
in-depth description of the flows and the participating components, see the LU 6.2
documentation listed in Referenced Documents (on page xxv).

Part 3: Network Protocols 551

LU 6.2 and DRDA SNA

TP (Application Requester) LU/SPM NETWORK LU/SPM TP (Application Server)

DEALLOCATE

RECEIVE_AND_WAIT
SYNCPT

WHAT_RECEIVED

Prepare (Request Deallocate)

TAKE_SYNCPT_DEALLOCATE

SYNCPT
Request Commit

Committed

RC=OK

RC=OK

Forget

DEALLOCATE

TYPE(LOCAL)

RC=OK

TYPE(SYNC_LEVEL)

Figure 12-12 Actual Flow: Termination Flows on SYNC_LEVEL(SYNCPT) Conversation

12.7.4 Commit Flows on SYNC_LEVEL(NONE) Conversations

The physical flow of information for commit processing on SYNC_LEVEL(NONE)
conversations consists of a sequence of LU 6.2 verbs containing DDM commands, and DDM
reply messages.

An LU 6.2 SEND_DATA verb at the application requester transmits the DDM request data
stream structure for RDBCMM. An LU 6.2 RECEIVE_AND_WAIT verb at the application
requester then receives the DDM object data stream structure and reply message response for
the DDM command. An LU 6.2 RECEIVE_AND_WAIT verb at the application requester receives
the SEND indication.

An LU 6.2 RECEIVE_AND_WAIT verb at the application server receives the DDM request data
stream structure. An LU 6.2 RECEIVE_AND_WAIT verb at the application server receives the
SEND indication. An LU 6.2 SEND_DATA verb at the application server then transmits the DDM
object data stream and reply message response structure for the RDBCMM. An LU 6.2
RECEIVE_AND_WAIT verb at the application server causes the SEND indication to flow with
the contents of the SEND buffers.

Refer to Chapter 4 (on page 63) for further detail about DRDA DDM command sequences.

Figure 12-13 (on page 553) shows the commit execution flow.

552 DRDA, Version 3, Volume 1

SNA LU 6.2 and DRDA

TP (Application Requester) LU NETWORK LU TP (Application Server)

RECEIVE_AND_WAIT
(DATA, SEND)

SEND_DATA

DATA(Rqsdss(Rdbcmm(Rdbnam)))

RC=OK

RECEIVE_AND_WAIT

RC=OK

RC=OK

WHAT_RECEIVED=DATA /* RDBCMM */

WHAT_RECEIVED=SEND

RECEIVE_AND_WAIT

SEND_DATA

RC=OK

DATA(Rpydss(Enduowrm(Svrcod, Uowdsp,
Rdbnam,
optional parms))

Objdss(Sqlcard))

RECEIVE_AND_WAIT

RC=OK
(DATA, SEND)

WHAT_RECEIVED=DATA /* ENDUOWRM */

RECEIVE_AND_WAIT

RC=OK

RC=OK

WHAT_RECEIVED=DATA /* SQLCARD */

(DATA, SEND)

RECEIVE_AND_WAIT

WHAT_RECEIVED=SEND

Figure 12-13 Commit Flow for a SYNC_LEVEL(NONE) Conversation

12.7.5 Rollback Flows on SYNC_LEVEL(NONE) Conversations

The physical flow of information for rollback processing on SYNC_LEVEL(NONE)
conversations is the same as the commit flows on SYNC_LEVEL(NONE) conversations. See
Section 12.7.4 (on page 552) and replace RDBCMM with RDBRLLBCK.

12.7.6 Commit Flows on SYNC_LEVEL(SYNCPT) Conversations

Figure 12-14 (on page 554) displays the flows involved with committing the logical unit of work
on a SYNC_LEVEL(SYNCPT) conversation. The flows are a simplified view of the two-phase
commit synchronization point process. The LU and sync point manager (SPM) functions are
combined to avoid indicating the function split between the LU and the SPM. In practice, the LU
and the sync point manager share the responsibility to complete the two-phase commit protocol
flows. For an in-depth description of the flows and the participating components, see the LU 6.2
and documentation listed in Referenced Documents (on page xxv).

Part 3: Network Protocols 553

LU 6.2 and DRDA SNA

TP (Application Requester) LU/SPM NETWORK LU/SPM TP (Application Server)

RECEIVE_AND_WAIT
SYNCPT

WHAT_RECEIVED

Prepare

TAKE_SYNPT

SYNCPT
Request Commit

Committed

RC=OK
Forget

RC=OK

Figure 12-14 Actual Flow: Commit Flow on a SYNC_LEVEL(SYNCPT) Conversation

12.7.7 Rollback Flows on SYNC_LEVEL(SYNCPT) Conversations

Figure 12-15 displays the flows involved with rolling back the logical unit of work on a
SYNC_LEVEL(SYNCPT) conversation. The flows are a simplified view of the synchronization
point process. The LU and sync point manager (SPM) functions are combined to avoid
indicating the function split between the LU and the SPM. In practice, the LU and the sync point
manager share the responsibility to complete the synchronization point processing flows. For an
in-depth description of the flows and the participating components see the LU 6.2
documentation listed in Referenced Documents (on page xxv).

If a relational database initiates a rollback, the flows described here would begin with a
BACKOUT from the TP on the application server side.

TP (Application Requester) LU/SPM NETWORK LU/SPM TP (Application Server)

RECEIVE_AND_WAIT
BACKOUT

RC=BACKED_OUT

Backout FMH7

BACKOUT

RC=OK

RC=OK

+RSP

Figure 12-15 Actual Flow: Backout Flow on a SYNC_LEVEL(SYNCPT) Conversation

554 DRDA, Version 3, Volume 1

SNA LU 6.2 and DRDA

12.7.8 Handling Conversation Failures

LU 6.2 notifies both the application requester and the instance of the application server if the
conversation linking the application requester to the instance of the application server fails. The
application server must then implicitly roll back the effects of the application and deallocate all
database management resources supporting the application. In the case of a failure on a
SYNC_LEVEL(SYNCPT) conversation, the application requester and application server are
placed in a backout required state by the local LU. The application requester and application
server must issue a BACKOUT on the LU 6.2 interface. The application requester is also
responsible for rolling back the application servers that are not on SYNC_LEVEL(SYNCPT)
conversations.

In the case of a failure on a SYNC_LEVEL(NONE) conversation, the application requester is
responsible for rolling back all other resources involved in the logical unit of work. If there are
SYNC_LEVEL(SYNCPT) conversations, the application requester is responsible for issuing a
BACKOUT on the LU 6.2 interface.

After all resources are rolled back, the application requester must report the failure to the
application in the SQLCA. The application requester can then take one of two actions:

1. Reject any subsequent SQL request from the application.

2. Treat the next SQL request from the application as the beginning of a new unit of work. In
this case, it would begin the DRDA initialization sequence again.

If there is a conversation failure in the middle of two-phase commit processing, the application
server and application requester are waiting to regain control from the SYNCPT commands, so
conversation failure at this time does not require special DRDA processing. The sync point
manager initiates resync processing to complete the resource recovery process.

12.7.9 Managing Conversations Using Distributed Unit of Work

In a distributed unit of work environment, there can be several conversations involved in a
logical unit of work. Proper management of the conversations provides performance benefits
and optimizes the use of potentially limited conversation resources. The guideline for when a
conversation can be deallocated is defined by the SQL semantics for SQL connections.

Due to coexistence and possible system restrictions, a SYNC_LEVEL(SYNCPT) conversation can
be allocated to an application server that cannot operate at SYNC_LEVEL(SYNCPT). This can be
prevented if the application server can identify to its local LU the SYNC_LEVEL the application
server supports. If a SYNC_LEVEL(SYNCPT) conversation is successfully completed to an
application server that does not support SYNC_LEVEL(SYNCPT), the application server will
return a MGRDEPRM with deperrcd (01) at ACCRDB time. The application requester can allocate
a new conversation with SYNC_LEVEL(NONE), and issue a DEALLOCATE(SYNC_LEVEL) on
the SYNC_LEVEL(SYNCPT) conversation. The SYNC_LEVEL(SYNCPT) conversation will be
deallocated at the next successful commit.

Part 3: Network Protocols 555

SNA Environment Usage in DRDA SNA

12.8 SNA Environment Usage in DRDA
This section describes considerations for problem determination in SNA environments, and
rules usage and target program names usage in SNA environments.

12.8.1 Problem Determination in SNA Environments

The DRDA environment involves remote access to relational database management systems.
Because the access is remote, enhancements to the local problem determination process were
needed. These enhancements use Network Management tools and techniques. DRDA-required
enhancements are alert generation with implied focal point support and a standard display for
the logical unit of work identifier (LUWID). In DRDA Level 1, the LUWID is also used as a
correlator between alerts and locally generated diagnostic information. In DRDA Level 2, the
correlator between alerts and locally generated diagnostic information is the ACCRDB crrtkn
parameter value.

12.8.1.1 LUWID

The logical unit of work identifier (LUWID) is defined to be unique, and is used as the correlator
of information for DRDA Level 1. In DRDA Level 2, there can be two LUWIDs (protected and
unprotected) involved, so the ACCRDB crrtkn parameter value is used as the correlator of
information. If the application requester generates this value, it will use the value of the
unprotected LUWID. See Section 11.3.2.2 (on page 495) for more information on crrtkn and
correlation.

12.8.1.2 DRDA LUWID and Correlation of Diagnostic Information

Because an LUWID plays an important role in correlation and work identification, DRDA
specifies guidelines for LUWID display.

The LUWID is a network-wide unique identifier for a logical unit of work. The standardization
of the display of the LUWID provides a consistent cross-product display. The LUWID display is
in 2 forms. The short form is for informational displays that do not require recovery procedures.
The long form includes a sequence number that helps in recovery procedures.

When displaying the short form of an LUWID, a product should include the fully qualified
LUNAME and LUW instance number in the display.

The specific rules for the short form of an LUWID display are as follows:

1. Display the NETID.LUNAME portion of the LUWID as character data in NETID.LUNAME
format (17 bytes maximum). The NETID and LUNAME are delimited by a period.

2. Display the LUW instance number as a string of hexadecimal characters (12 bytes total).
The LUNAME and instance number are delimited by a period.

When displaying the long form of an LUWID, a product should include the fully qualified
LUNAME, LUW instance number, and sequence number in the display.

The specific rules for the long form of an LUWID display are as follows:

1. Display the NETID.LUNAME portion of the LUWID as character data in NETID.LUNAME
format (17 bytes maximum).

2. Display the LUW instance number as a string of hexadecimal characters (12 bytes total).

3. Display the sequence number as a string of hexadecimal characters (4 bytes total).

LUWIDs are Netid.Luname followed by instance number followed by the sequence number (if
long form).

556 DRDA, Version 3, Volume 1

SNA SNA Environment Usage in DRDA

See ALLOCATE (Section 12.7.1.1 (on page 534)) for more information about LUWIDs.

12.8.1.3 Data Collection

When an error condition occurs at an application requester or application server, data should be
gathered at that location. The data collection process should use the current tools available for
the local environment. An application requester and application server must collect diagnostic
information when they receive a reply message (RM) or generate a reply message that falls into
the category of the alerts defined in Table 11-1 (on page 498). The application requester must
gather diagnostic information when it receives an LU 6.2 DEALLOCATE with a type of ABEND
on the conversation with the application server.

12.8.1.4 Alerts and Supporting Data in SNA Environments

Correlation between alerts and supporting data at each location, as well as cross-location, is
done through correlation tokens. Using remote unit of work, the correlation token is the
unprotected SNA LUWID. Using distributed unit of work, the correlation token is the ACCRDB
crrtkn parameter value. The crrtkn value can be inherited at the application requester from the
operating environment. If the inherited value matches the format of an SNA LUWID, then it is
sent at ACCRDB in the crrtkn parameter. If the application requester does not inherit a
correlation value, or the value does not match the format of an SNA LUWID, then the
application requester must use the value of the unprotected LUWID, without the sequence
number, as the crrtkn value. The correlation value is required in alerts and supporting diagnostic
information.

The alert points to supporting data with subvector X’48’ in the alert major vector. The data field
in subfield X’85’ for subvector X’48’ must contain an identifier to the supporting data. This data
field is an identifier of the supporting data. This identifier is location-dependent and must be
good enough to uniquely identify the supporting data. Multiple subvector X’48’s may be used in
the alert. See the model in Table 11-3 (on page 500) for more information on the subvector X’48’.
See the SNA Format and Protocol Reference Manual: Architecture Logic For LU Type 6.2 (SC30-3269,
IBM) for a description of the alert subvectors.

12.8.2 Rules Usage for SNA Environments

This section consists of the SNA usage of the rules defined in Chapter 7 (on page 395).

12.8.2.1 LU 6.2 Usage of Connection Allocation Rules

CA2 Usage Conversations between an application requester and an application
server must be basic conversations, TYPE(BASIC_CONVERSATION).

CA3 Usage A conversation between an application requester and an application
server using remote unit of work protocols must have
SYNC_LEVEL(NONE).

A conversation between an application requester and an application
server using distributed unit of work can have SYNC_LEVEL(NONE) or
SYNC_LEVEL(SYNCPT). If either the application requester or application
server does not support SYNC_LEVEL(SYNCPT), the conversation must
have SYNC_LEVEL(NONE).

CA5 Usage ACCRDB or INTRDBRQS must be rejected with MGRDEPRM when
DRDA-required LU 6.2 ALLOCATION parameters are not specified or are
specified incorrectly.

Part 3: Network Protocols 557

SNA Environment Usage in DRDA SNA

The required LU 6.2 ALLOCATION parameters for ACCRDB in DRDA
Level 1 are:

• TYPE(BASIC_CONVERSATION)

• SYNC_LEVEL(NONE)

• SECURITY(SAME) or
SECURITY(PGM(USER_ID(variable))(PASSWORD(variable)))

SECURITY(NONE) may be specified if user identification and
authentication security is provided outside of the network.

The required LU 6.2 ALLOCATION parameters for ACCRDB using
distributed unit of work protocols are:

• TYPE(BASIC_CONVERSATION)

• SYNC_LEVEL(NONE) or SYNC_LEVEL(SYNCPT)

• SECURITY(SAME) or
SECURITY(PGM(USER_ID(variable)) (PASSWORD(variable)))

SECURITY(NONE) may be specified if user identification and
authentication security is provided using SECMGR Level 5. See rule
SE2 usage in Section 7.13 (on page 420).

12.8.2.2 LU 6.2 Usage of Commit/Rollback Processing Rules

CR2 Usage Remote unit of work application servers and distributed unit of work
application servers with SYNC_LEVEL(NONE) must inform the
application requester when the current logical unit of work at the
application server ends as a result of a commit or rollback request by an
application or application requester request (dynamic commit and
dynamic rollback are not allowed in distributed unit of work). This
information is returned in the RPYDSS, containing the ENDUOWRM
reply message. This RPYDSS is followed by an OBJDSS containing an
SQLCARD with information that is input to the SQLCA to be returned to
the application. If multiple commit or rollbacks occur prior to exiting a
stored procedure, only one ENDUOWRM is returned. See rule CR13 in
Section 7.5 (on page 400) for setting the uowdsp parameter when multiple
commit and/or rollbacks occur in a stored procedure. See CR6 for the
SQLSTATEs to return.

CR8 Usage An application server using distributed unit of work begins commit
processing only if it is requested to commit. If an application requester
receives an LU 6.2 TAKE_SYNCPT on the conversation with an
application server, the application requester must ensure a rollback
occurs for the logical unit of work.

DRDA Level 1 application requesters do not support the semantics of
receiving TAKE_SYNCPT on the conversation.

558 DRDA, Version 3, Volume 1

SNA SNA Environment Usage in DRDA

12.8.2.3 LU 6.2 Usage of Security (SE Rules)

SE2 The application server must be able to obtain the verified end user name
associated with the conversation. DRDA, therefore, requires one of the
following mechanisms:

• The specification of one of the following LU 6.2-defined types of
Conversation-Level Security on ALLOCATE:

— SECURITY (PGM (USER_ID (variable) PASSWORD (variable)
PROFILE (variable)))

The USER_ID value and the PASSWORD value must adhere to LU
6.2 access security information subfield constraints. The
application server uses the PASSWORD value to verify the
identity of the end user making the allocation request.

— SECURITY (SAME)

• The use of DCE-based security mechanisms for end-user identification
and authentication.

• DRDA-defined security mechanisms for end-user identification and
authentication.

ACCRDB must be rejected with MGRDEPRM if the application server
does not obtain the verified end-user name.

SE3 If user identification and authentication security is not provided outside
of the network, an application requester must have send support for each
of the types of Conversation Level Security listed in rule SE2. An
application server must have receive support for each of the types of
Conversation-Level Security listed in rule SE2.

SE4 If user identification and authentication security is provided outside of
the network, the security checks and values returned take precedence
over the LU 6.2 security checks and values returned. For example, if an
end-user name is provided on ALLOCATE, the end-user name supplied
in the DCE security context information takes precedence over the end-
user name received on ALLOCATE.

12.8.2.4 LU 6.2 Usage of Serviceability Rules

SV1 Usage The application requester must generate diagnostic information and
optionally generate an alert when it receives an LU 6.2 DEALLOCATE
with a type ABEND from the application server.

SV8 Usage The SNA LUWID or crrtkn or the ACCRDB must be present in the alert, in
the supporting data information, and in diagnostic information.

SV9 Usage Using distributed unit of work protocols, an application requester must
send a correlation token to the application server at ACCRDB using the
crrtkn parameter. If a correlation token exists for this logical unit of work,
and it has the format of an SNA LUWID, then this token is used. If the
existing token does not have the format of an SNA LUWID, or the token
does not exist, then the application requester must send the SNA
unprotected LUWID. The crrtkn value does not include the sequence
number field of the LUWID.

Part 3: Network Protocols 559

SNA Environment Usage in DRDA SNA

12.8.2.5 LU 6.2 Usage of Names

This section describes usage of names for relational database names and for target program
names.

LU 6.2 Usage of Relational Database Names Rules

RN2 Usage DRDA associates an RDB_NAME with a specific transaction program
name at a unique NETID.LUNAME. DRDA, however, does not define the
mechanism that derives the NETID.LUNAME and transaction program
name pair from the RDB_NAME. The particular derivation mechanisms
are specific to the environment.

It is the responsibility of the application requester to determine the
RDB_NAME name of the relational database and to map this name to an
SNA logical unit name and transaction program name.

RN3 Usage More than one RDB_NAME may exist for a single NETID.LUNAME. An
RDB_NAME must map to a single NETID.LUNAME and Transaction
Program Name.

RN4 Usage DRDA permits the association of more than one RDB_NAME with a
single transaction program name at a NETID.LUNAME.

LU 6.2 Usage of Transaction Program Names Rules

TPN1 Usage The transaction program names identifying implemented DRDA
application servers and database servers can be a registered DRDA
transaction program name, a registered DDM transaction program name,
or any non-registered transaction program name.

TPN2 Usage DRDA allows DDM file servers and DRDA SQL servers to use either the
same transaction program name or different transaction program names.

TPN3 Usage Registered DRDA transaction program names begin with X’07F6’. See the
SNA Transaction Programmer’s Reference Manual for LU Type 6.2 (GC30-
3084, IBM) for details about registered transaction program names.
DRDA transaction program names have a length of 4 bytes. The
remaining characters of the transaction program name are Character Set
1134 A through Z and 0 through 9).

TPN4 Usage Multiple DRDA transaction program names may exist for a single
NETID.LUNAME

TPN5 Usage A DRDA transaction program name is unique within an LU.

TPN6 Usage Transaction programs (TPs) that are registered DRDA transaction
program names must provide all the capabilities that DRDA requires.

TPN7 Usage TPs that provide DRDA capabilities may perform additional non-DRDA
TP work. These TPs are not required to perform additional non-DRDA TP
work.

TPN8 Usage The default DRDA transaction program name is X’07F6C4C2’, and it is a
registered transaction program name. The DRDA transaction program
name X’07F6C4C2’ must be definable at each LU that supports at least
one application server providing DRDA capabilities.

560 DRDA, Version 3, Volume 1

SNA SNA Environment Usage in DRDA

12.8.3 Transaction Program Names

SNA LU 6.2 requires that an application requester (AR) specify the transaction program name of
the application server (AS) when allocating a conversation. The application requester determines
the transaction program name of the application server during the process of resolving the
RDB_NAME of the application server to a NETID.LUNAME. DRDA allows the use of any valid
transaction program name that meets the standards of the SNA transaction program name
architecture and that the application server supports. Refer to the SNA Format and Protocol
Reference Manual: Architecture Logic For LU Type 6.2 (SC30-3269, IBM) and SNA Transaction
Programmer’s Reference Manual for LU Type 6.2 (GC30-3084, IBM) for more details on transaction
program name structure and use.

To avoid potential name conflicts, the application server transaction program name should be,
but need not be, a registered SNA transaction program name. DRDA has defined one registered
transaction program name that can be used. This transaction program name is X’07F6C4C2’.
The first two bytes of this name (X’07F6’) have been registered with SNA to represent the DRDA
functional class for transaction programs. DRDA transaction programs are classified as SNA
Service Transaction Programs because they provide SQL as the application interface rather than
LU 6.2 verbs.

DDM also provides a registered transaction program name that can be used. This transaction
program name is X’07F0F0F1’. The DDM transaction program name would be used if the DDM
implementation at the application server provided file server functions in addition to DRDA
functions.

The default DRDA transaction program name is X’07F6C4C2’. The DRDA transaction program
name X’07F6C4C2’ must be definable at each LU that has an application server providing DRDA
capabilities. An application requester can then assume the existence of transaction program
name X’07F6C4C2’ at any LU providing DRDA capabilities, and default to transaction program
name X’07F6C4C2’ when a request requiring an ALLOCATE does not specify a transaction
program name. Because transaction programs can have aliases, the transaction program with
transaction program name X’07F6C4C2’ can also have the DDM transaction program name
X’07F0F0F1’ or some other registered DRDA transaction program name. DRDA, however, does
not require that a DRDA TP have multiple transaction program names.

Part 3: Network Protocols 561

SNA

562 DRDA, Version 3, Volume 1

Chapter 13

TCP/IP

This chapter summarizes the characteristics of DRDA communications flows using the TCP/IP
network environment.

13.1 TCP/IP and the DDM Communications Model
Implementations of DRDA use the DDM Communications Managers. The TCP/IP
Communications Manager (CMNTCPIP) supports the protocols defined by Transport Control
Protocol/Internet Protocol (TCP/IP). For further detail, see the DDM terms CMNTCPIP in the
DDM Reference.

13.2 What You Need to Know About TCP/IP
This chapter assumes some familiarity with TCP/IP and the sockets interface. The sockets
interface is used only as a convenience to model the functionality level and calls to drive the
TCP/IP protocols. With a general exposure to these topics, it should be possible to understand
DRDA’s use of TCP/IP. With more detailed knowledge, it should be possible to understand how
to use TCP/IP in DRDA environments. For a list of relevant TCP/IP publications, see
Referenced Documents (on page xxv).

The reader should also have some familiarity with DDM terms and the DDM model. A reader
with a general exposure to DDM should be able to understand how DRDA’s use of TCP/IP
relates to the DDM communications managers of the DDM model.

Refer to Referenced Documents (on page xxv) for the list of DDM publications.

Part 3: Network Protocols 563

TCP/IP TCP/IP

13.3 TCP/IP
TCP/IP is made up of several parts that interact to provide network services to users. The parts
are Applications Services, TCP, UDP, IP, and Network. These parts and their relationship to each
other are graphically displayed in Figure 13-1. A brief description of the parts, follows the
figure.

TCP
(reliable)

UDP
(unreliable)

Application Services

IP

Network

Figure 13-1 TCP/IP Components

13.3.1 Transport Control Protocol (TCP)

The transport control protocol is the level of service that DRDA needs to provide the integrity
required by DRDA. TCP services on top of IP provide the required functions.

The interface between the application program and TCP can be characterized as:

• Stream-oriented

The data is transferred between application programs in streams of bytes. The receiver
receives the bytes in the same sequence as sent.

• Virtual Circuit Connection

This is equivalent to a conversation in LU 6.2 terms. The applications are connected for the
duration of the work and both sides of the TCP/IP connection are aware of the network
address of the partner.

• Buffered Transfer

The data can be buffered into packets independent of the pieces the application program
transfers. The order of bytes is preserved and delivered in the same order sent.

• Unstructured Stream

The structure of the data is known only by the applications involved in the TCP/IP
connection. The applications must understand the stream content.

• Full Duplex Connection

TCP/IP connections allow concurrent transfer in both directions. The SQL interface is
synchronous, but DRDA can still take advantage of the full duplex feature. For example, an
application server might begin returning answer set data before the application requester has
completed sending a chain of commands, or an application requester may begin sending new
commands before the application server has completed sending the answer set back from the
previous command.

The reliability of TCP is provided by acknowledgments to the sender of a packet that the packet
was received at the destination. The sent packet and acknowledgment contain a sequence
number to test for duplication.

564 DRDA, Version 3, Volume 1

TCP/IP TCP/IP

13.3.2 Application Services

The application services part is made up of high-level and specific services for applications. The
application requester and application server are application services.

13.4 Sockets Interface
The sockets interface calls are defined in DRDA as a modeling tool to help describe the series of
flows to drive DRDA protocol on a TCP/IP connection. Another interface might be chosen, but
care should be taken to not introduce functions that are not supported at both ends of the
TCP/IP connection.

Part 3: Network Protocols 565

TCP/IP and DRDA TCP/IP

13.5 TCP/IP and DRDA
Application requesters and application servers that provide DRDA capabilities use DRDA flows.
DRDA flows permit implementations of DRDA to initialize TCP/IP connections, terminate
TCP/IP connections, and process DRDA requests.

The socket calls that are of interest to DRDA are:

Socket Creates an end point (socket) for communication.

Close Closes a socket.

Bind Establishes a local address for a socket.

Connect Initiates a TCP/IP connection on a socket.

Listen Listens for TCP/IP connection requests on a socket.

Accept Accepts a TCP/IP connection on a socket.

Write Sends data on a TCP/IP connection.

Read Receives data on a TCP/IP connection.

Getpeername Gets the address of the peer to which the socket connects.

13.5.1 Initializing a Connection

Initialization processing allocates a TCP/IP connection and prepares a DRDA execution
environment. Only an application requester can start a TCP/IP connection. Authentication
occurs during initialization processing through the use of DRDA flows. Database management
systems verify that authenticated IDs have the authorization to perform DRDA database
manager requests.

Refer to Section 6.1 (on page 384) and Section 6.1.1 (on page 384) for a detailed description of
architected end-user names.

Authentication between an application requester and application server occurs once per TCP/IP
connection during DDM security manager Level 5 access security (ACCSEC) and security check
(SECCHK) processing.

Initialization processing also propagates basic accounting information. The socket allows for the
identification of the peer socket on the TCP/IP connection. The end-user name is derived from
the SECCHK command. The correlation token is required to be passed when accessing the RDB
as the crrtkn on the ACCRDB.

The DDM Reference provides a general overview of the component communications flows that
comprise a DRDA initialization flow. See the TCPCMNI term in the DDM Reference, which
discusses initiation of TCP/IP connections.

13.5.1.1 Initialization Flows

The physical flow of information consists of a sequence of socket calls containing DDM
commands. Figure 13-2 (on page 567) depicts the initialization flows while using DRDA-defined
user ID and password security or DCE security mechanisms.

A socket call followed by a connect call at the application requester causes the creation of a
TCP/IP connection between the application requester and application server. Individual write
calls at the application requester transmit each of the DDM request data stream structures for
EXCSAT, ACCRDB, and EXCSQLSTT, along with any command data that the command can
have. Individual read calls at the application requester then receive the DDM reply data stream

566 DRDA, Version 3, Volume 1

TCP/IP TCP/IP and DRDA

structure or object data stream structure response for each of the DDM commands.

Socket implementation-specific calls at the application server obtain information about the
TCP/IP connection that is available to the application server. The obtained information includes
the peer socket address. Individual read calls at the application server receive the DDM request
data stream structures or command data. Individual write calls at the server then transmit the
DDM object data stream and reply data stream response structures for each of EXCSAT,
ACCRDB, and EXCSQLSTT.

Refer to Chapter 4 (on page 63) for further detail about DRDA DDM command sequences.

The DRDA TCP/IP initialization flow with negotiation for security mechanisms consists of the
following:

Socket (AR) TCP IP NETWORK IP TCP Socket (AS)

SOCKET

SOCKET

BIND

LISTEN

WRITE
(Rqsdss(Accsec(parms)))

READ
(next RQSDSS)

READ
(reply)

WRITE
(Objdss(Accsecrd(parms)))

WRITE
(Rqsdss(Secchk(parms)
Objdss(Sectkn))

READ
(next RQSDSS)

READ
(reply)

WRITE
(Objdss(Sectkn))

WRITE
(Rqsdss(Accrdb(parms)))

READ
(next RQSDSS)

READ
(reply)

WRITE
(Rpydss(Accrdbrm(parms)))

.

.

.

.

.

.

CONNECT ACCEPT

WRITE
(Rqsdss(Excsat(parms)))

READ
(next RQSDSS)

READ WRITE
(Objdss(Excsatrd(parms)))

Figure 13-2 DRDA Initialization Flows on TCP/IP with DCE Security

Part 3: Network Protocols 567

TCP/IP and DRDA TCP/IP

13.5.2 Processing a DRDA Request

DRDA requests exist for the processing of remote SQL statements and for the preparation of
application programs. DRDA request flows transmit a remote DRDA request and its associated
reply objects between an application requester and application server. Only an application
requester can initiate a DRDA request flow.

Because authentication occurs during initialization processing, DRDA requires no additional
authentication during DRDA request flows.

DRDA remote SQL statement requests often operate on multiple rows of multiple tables and can
cause the transmission of multiple rows from the application server to the application requester.
DRDA provides two data transfer protocols in support of these operations:

• Fixed Row Protocol

• Limited Block-Protocol

Application requesters and application servers use the fixed row protocol for the processing of a
query that can be the target of a WHERE_CURRENT_OF clause on an SQL UPDATE or DELETE
request, or for the processing of a multi-row fetch or fetch using a scrollable cursor. The fixed
row protocol guarantees the return of no more than the number of rows requested by the
application whenever the application requester receives row data.

Application requesters and application servers use the limited block-protocol for the processing
of a query that uses a cursor for read-only access to data. The limited block-protocol optimizes
data transfer by guaranteeing the transfer of a minimum amount of data (which can be part of a
row, multiple rows, or multiple rows and part of a row) in response to each DRDA request.

Refer to Section 4.4.6 (on page 121) for further detail on DRDA data transfer protocols.

The DDM Reference provides a general overview of the component communications flows that
comprise a DRDA request flow. The DDM terms TCPSRCCR and TCPSRCCD discuss requester
and server communications flows that occur during the processing of a DRDA remote request.

13.5.2.1 Bind Flows

The physical flow of information consists of a sequence of packets containing DDM commands,
FD:OCA data, SQL communication areas, and SQL statements.

Figure 13-3 (on page 569) depicts DDM command processing using socket interface calls. Figure
13-3 (on page 569) assumes that DDM command chaining is not being used.

Individual WRITE calls at the application requester transmit each of the DDM request data
stream structures for BGNBND, BNDSQLSTT, and ENDBND along with any command data that
the command can have. Individual READ calls at the application requester then receive the
DDM object data stream structure response for each of the DDM commands.

Individual READ calls at the application server receive each DDM request data stream structure
or command data stream structure. Individual WRITE calls at the server then transmit the DDM
object data stream and reply data stream response structures for each of BGNBND,
BNDSQLSTT, and ENDBND.

Refer to Chapter 4 (on page 63) for further detail about DRDA DDM command sequences.

A bind flow is shown in Figure 13-3 (on page 569).

568 DRDA, Version 3, Volume 1

TCP/IP TCP/IP and DRDA

Socket (AR) TCP IP NETWORK IP TCP Socket (AS)

WRITE
(Rqsdss(Bndsqlstt(parms))
Objdss(Sqlstt(SQL statement))
Objdss(Sqlsttvrb(declarations))

READ
(next RQSDSS)

READ
(reply)

WRITE
(Objdss(Sqlcard))

WRITE
(Rqsdss(Endbnd(parms)))

READ
(next RQSDSS)

WRITE
(Objdss(Sqlcard))

READ
(reply)

.

.

.

.

.

.

.

.

.

.

.

.

WRITE
(Rqsdss(Bgnbnd(parms)))

READ
(next RQSDSS)

READ
(reply)

WRITE
(Objdss(Sqlcard))

Figure 13-3 DRDA Bind Flows on TCP/IP

13.5.2.2 SQL Statement Execution Flows

Figure 13-4 (on page 570) depicts DDM command processing using socket interface calls.

The physical flow of information consists of a sequence of packets containing DDM commands,
FD:OCA data descriptors, FD:OCA data, and DDM reply messages.

Individual WRITE calls at the application requester transmit each of the DDM request data
stream structures for OPNQRY and CNTQRY. Individual READ calls at the application
requester then receive the DDM object data stream structure and reply message responses for
the DDM commands.

Individual READ calls at the application server receive each DDM request data stream structure.
Individual WRITE calls at the application server then transmit the DDM object data stream and
reply message response structures for each of OPNQRY and CNTQRY.

Refer to Chapter 4 (on page 63) for further detail about DRDA DDM command sequences.

Figure 13-4 (on page 570) shows the SQL statement execution flow.

Part 3: Network Protocols 569

TCP/IP and DRDA TCP/IP

Socket (AR) TCP IP NETWORK IP TCP Socket (AS)

WRITE
(Rqsdss(Cntqry(parms)))

READ
(next RQSDSS)

READ
(reply)

WRITE
(Objdss(Qrydta(sqlca, row data))
Rpydss(Endqryrm(parms))
Objdss(Sqlcard))).

.

.

.

.

.

.

.

.

.

.

.

WRITE
(Rqsdss(Opnqry(parms)))

READ
(next RQSDSS)

READ
(reply)

WRITE
(Rpydss(Opnqryrm(parms))
Objdss(Qrydsc(data description))

(Qrydta(sqlca, row data)))

Figure 13-4 DRDA SQL Statement Execution Flows on TCP/IP

13.5.3 Terminating a Connection

Terminate connection processing closes a socket associated with the TCP/IP connection. Under
normal circumstances, only an application requester initiates termination of the socket. In error
situations, an application server can also initiate the termination of the socket.

The termination of the socket between an application requester and an instance of an application
server terminates the communications between the application requester and that instance of the
application server. The application server is also responsible to terminate the socket.

The application requester must ensure that all network connections associated with the
execution of the application are terminated when the application normally or abnormally
terminates.

On a TCP/IP connection, the application server receives an indication the socket is terminated.
The termination includes an implied rollback at the application server. It is the responsibility of
the application server to ensure a rollback during local termination processing at the application
server.

The DDM Reference provides a general overview of the communications flows that make up a
DRDA TCP/IP connection termination. The DDM term TCPCMNT describes the termination of
a TCP/IP connection. Figure 13-5 (on page 571) shows the termination of a TCP/IP connection.

570 DRDA, Version 3, Volume 1

TCP/IP TCP/IP and DRDA

Socket (AR) TCP IP NETWORK IP TCP Socket (AS)

CLOSE READ

CLOSE

.

.

.

.

.

.

Figure 13-5 DRDA Termination Flows on TCP/IP

Figure 13-6 shows the abnormal termination of a TCP/IP connection. If the application server
fails, the application server must attempt to return a permanent agent error reply message to
provide diagnostics of the error to the application requester.

Socket (AR) TCP IP NETWORK IP TCP Socket (AS)

WRITE
(RQSDSS)

READ
(next RQSDSS)

READ
(reply)

CLOSE

WRITE
(OBJDSS(Agnprmrm))

CLOSE

Server Fails

.

.

.

.

.

.

Figure 13-6 DRDA Server Abnormal Termination Flows on TCP/IP

13.5.4 Commit Flows

The physical flow of information for commit processing on TCP/IP connections consists of a
sequence of packets containing DDM commands, and DDM reply messages.

13.5.4.1 Remote Unit of Work

Commit Flows: A WRITE call at the application requester transmits the DDM RDBCMM to
commit the current unit of work. A READ call is issued to receive a response to the commit
request.

A READ call at the application server receives the DDM request data stream structure. The RDB
commits the unit of work. A WRITE call transmits the DDM ENDUOWRM, end unit of work,
and an SQLCA identifying the resolution of the commit.

Refer to Chapter 4 (on page 63) for further detail about DRDA DDM command sequences.

Figure 13-7 (on page 572) shows the commit execution flow.

Part 3: Network Protocols 571

TCP/IP and DRDA TCP/IP

Socket (AR) TCP IP NETWORK IP TCP Socket (AS)

WRITE
(Rqsdss(Rdbcmm(parms)))

READ

READ WRITE
(Rpydss(Enduowrm(parms))
Objdss(Sqlcard)).

.

.

.

.

.

Figure 13-7 DRDA Commit Flows on TCP/IP

Rollback Flows: The physical flow of information for rollback processing on TCP/IP connections
is the same as the commit flows on TCP/IP connections. See Figure 13-7 and replace RDBCMM
with RDBRLLBCK.

13.5.4.2 Distributed Unit of Work Using DDM Sync Point Manager

Commit Flows: The application requester invokes the DDM Sync Point Manager to coordinate
the commit.

Refer to the SYNCPTOV term in the DDM Reference for a definition of the DRDA Level 3
2-phase command sequences and logging requirements. Figure 13-8 (on page 573) shows the
four message two-phase commit with each application server that participated in the current
unit of work. Prior to starting any units of work the application requester exchanges log
information with the application server. The log information is used if the commit operation
fails and resynchronization is required to complete the commit operation. When initiating a unit
of work with an application server, the sync point manager at application requester issues a
WRITE call to transmit the new unit of work identifier sync point control request to the sync
point manager at the application server. No reply is expected from the application server.

To initiate the commit, the application requester sync point manager issues a WRITE call to
transmit the prepare to commit sync point control request to the application server. A READ call
is then issued to receive the reply from the application server’s sync point manager.

A READ call at the application server receives the prepare to commit sync control request. After
the RDB has prepared to commit, the sync point manager sends a request that the unit of work is
ready to be committed by issuing a WRITE call with a request to commit sync control reply data
back to the application requester. Another READ is issued to receive the outcome of the
commit.

At the application requester, the READ completes with the request to commit sync control reply
data. The sync point manager commits the unit of work and issues a WRITE call with the
committed sync control request to the application server specifying implicit or explicit forget
processing. Implicit forget processing is a performance option to save a network message and
improve overall commit performance. Another READ is issued to receive the outcome of the
commit at the application server.

The READ completes at the application server with the committed sync control request. The
sync point manager commits and forgets the unit of work. An optional WRITE call transmits the
forget sync control reply data to the application requester. Otherwise the next successful reply
infers the forget.

A READ call at the application requester receives the explicit forget or an implied forget. The
unit of work is forgotten and control is returned to the application requester and then to the
application.

572 DRDA, Version 3, Volume 1

TCP/IP TCP/IP and DRDA

Figure 13-8 shows the two-phase commit execution flow.

Socket (AR) TCP IP NETWORK IP TCP Socket (AS)

WRITE
(RQSDSS(Syncctl(Request_Log)))
OBJDSS(SyncLog))

WRITE
(RQSDSS(Syncctl(New UOWID)))

READ

READ

READ WRITE
(OBJDSS(SfncLog))

.

.

.

.

.

.

.

.

.

.

.

.

Exchange Sync Point Log Information

Start Unit of Work

Perform SQL Requests

Commit Unit of Work

WRITE
(RQSDSS(Syncctl(Prepare)))

READ

READ WRITE
(RPYDSS(Synccr

(Request_Commit))

WRITE
(RQSDSS(Syncctl(Committed)))

READ

READ WRITE
(RPYDSS(Synccrd(Forget))

Unit of Work is Committed

Figure 13-8 TCP/IP Distributed Unit of Work Commit Flow

Rollback Flows: The application requester invokes the DDM Sync Point Manager to coordinate
the rollback. Figure 13-9 (on page 574) shows the one message rollback execution flow. The sync
point manager rollbacks the unit of work and issues a WRITE call with the rollback sync control
data stream structure to the application server.

A READ call at the application server receives the rollback sync control data stream structure.
The sync point manager rollbacks and forgets the unit of work.

Part 3: Network Protocols 573

TCP/IP and DRDA TCP/IP

Socket (AR) TCP IP NETWORK IP TCP Socket (AS)

WRITE
(RQSDSS(Syncctl(Request_Log)))
OBJDSS(SyncLog))

WRITE
(RQSDSS(Syncctl(New UOWID)))

WRITE
(RQSDSS(Syncctl(Rollback)))

READ

READ

READ

READ WRITE
(OBJDSS(SfncLog))

.

.

.

.

.

.

.

.

.

.

.

.

Exchange Sync Point Log Information

Start Unit of Work

Perform SQL Requests

Rollback Unit of Work

Figure 13-9 TCP/IP Distributed Unit of Work Rollback Flow

13.5.5 Handling Connection Failures

There are facilities available in TCP/IP to allow the application requester and the instance of the
application server to be informed if the TCP/IP connection linking the application requester to
the instance of the application server fails. The application server must then implicitly roll back
the effects of the application and deallocate all database management resources supporting the
application.

Distributed unit of work connections, in the case of a failure on a TCP/IP connection, the
application requester is responsible for rolling back all other resources involved in the unit of
work, which might include initiating backout processing to a sync point manager to backout the
application servers on protected network connections.

After all resources are rolled back, the application requester must report the failure to the
application in the SQLCA. The application requester can then take one of two actions:

1. Reject any subsequent SQL request from the application.

2. Treat the next SQL request from the application as the beginning of a new unit of work. In
this case, it would begin the DRDA initialization sequence again.

574 DRDA, Version 3, Volume 1

TCP/IP TCP/IP Environment Usage in DRDA

13.6 TCP/IP Environment Usage in DRDA
This section describes considerations for problem determination in TCP/IP environments, and
rules usage and target program names usage in TCP/IP environments.

13.6.1 Problem Determination in TCP/IP Environments

The DRDA environment involves remote access to relational database management systems.
Because the access is remote, enhancements to the local problem determination process were
needed. These enhancements use Network Management tools and techniques. These tools and
techniques are:

• Standard Focal Point Messages

• Focal Point support

• Correlation and Correlation display

• Data Collection

13.6.1.1 Standard Focal Point Messages

The commonly accepted focal point messages in the TCP/IP environment are Simple Network
Management Protocols (SNMP) traps. At this time, DRDA does not define SNMP traps.

13.6.1.2 Focal Point Support

DRDA assumes a focal point is available in a TCP/IP environment and assumes the use of SNA
alerts.

13.6.1.3 Correlation and Correlation Display

Correlation values that are generated in a TCP/IP environment have the following format:

x.yz
where:
x 8-byte character representation of the 4-byte IP address

of the application requester
. delimiter
y 4-byte character representation of the 2-byte socket address

of the application requester
z 6-byte binary value (possibly a clock value) that makes

the correlation value unique

The specific rules for the display of a correlation value generated are:

1. Display the correlation token in the format x.y.z.

2. Display the x.y portion of the correlation token as character data in x.y format (13 bytes).

3. Display the z part of the correlation value as a string of hexadecimal characters (12 bytes).
A period is used to delimit the x.y from z .

Part 3: Network Protocols 575

TCP/IP Environment Usage in DRDA TCP/IP

Correlation Between Focal Point Messages and Supporting Data

Correlation between focal point messages and supporting data at each location, as well as cross-
location, is done through correlation tokens. The correlation token is the ACCRDB crrtkn
parameter value. The crrtkn value can be inherited at the application requester from the
operating environment. If the inherited value matches the format of a DRDA-defined correlation
token (x.yz), then it is sent at ACCRDB in the crrtkn parameter. If the application requester does
not inherit a correlation value, or the value does not match the format of a DRDA-defined
correlation token, then the application requester must generate a correlation token. The
correlation value is required in focal point messages and supporting diagnostic information.

13.6.2 Rules Usage for TCP/IP Environments

This section consists of the TCP/IP usage of the rules defined in Chapter 7 (on page 395).

13.6.2.1 TCP/IP Usage of Connection Allocation Rules

CA2 Usage Connections between an application requester and an application server
must have the following socket options:

• SO_KEEPALIVE: keep connection alive to provide timely detection of
a broken connection.

• SO_LINGER: linger on close if data present to allow detection of a
broken connection.

CA3 Usage A connection between an application requester and an application server
using remote unit of work protocols must use the SYNCPTMGR at Level
0.

A connection between an application requester and an application server
using distributed unit of work protocols can have SYNCPTMGR at Level
0 or SYNCPTMGR at Level 5. If either the application requester or
application server does not support SYNCPTMGR at Level 5, the
connection must use SYNCPTMGR at Level 0.

CA12 Usage An application requester operating using distributed unit of work
protocols can initiate a TCP/IP connection with one or more application
servers in a unit of work.

13.6.2.2 TCP/IP Usage of Commit/Rollback Processing Rules

CR2 Usage Remote unit of work application servers or distributed unit of work
application servers on connections using SYNCPTMGR at Level 0 must
inform the application requester when the current unit of work at the
application server ends as a result of a commit or rollback request by an
application or application requester request (dynamic commit and
dynamic rollback are not allowed in a distributed unit of work
connection). This information is returned in the RPYDSS, containing the
ENDUOWRM reply message. This RPYDSS is followed by an OBJDSS
containing an SQLCARD with information that is input to the SQLCA to
be returned to the application. If multiple commit or rollbacks occur
prior to exiting a stored procedure, only one ENDUOWRM is returned.
See rule CR13 in Section 7.5 (on page 400) for setting the uowdsp
parameter when multiple commit and/or rollbacks occur in a stored
procedure. See CR6 for the SQLSTATEs to return.

576 DRDA, Version 3, Volume 1

TCP/IP TCP/IP Environment Usage in DRDA

13.6.2.3 TCP/IP Usage of Security (SE Rules)

SE2 Usage The application server must support SECMGR Level 5 and above to be
able to obtain the verified end-user name associated with the TCP/IP
connection. DRDA Level 3 and above, therefore, requires one of the
DRDA-defined security mechanisms for end-user identification and
authentication.

ACCRDB must be rejected with MGRDEPRM if the application server
does not obtain the verified end-user name.

13.6.2.4 TCP/IP Usage of Serviceability Rules

SV1 Usage The application requester must generate diagnostic information and may
generate a focal point message when the TCP/IP connection to the
application server ends unexpectedly.

SV8 Usage The DDM UOWID or the crrtkn on the ACCRDB must be present in the
alert, in the supporting data information, or in diagnostic information.

13.6.2.5 TCP/IP Usage of Relational Database Names Rules

RN2 Usage DRDA associates an RDB_NAME with a specific port at a unique IP
address. DRDA, however, does not define the mechanism that derives the
IP address and port pair from the RDB_NAME. The particular derivation
mechanisms are specific to the environment.

It is the responsibility of the application requester to determine the
RDB_NAME name of the relational database and to map this name to an
IP address and port.

RN3 Usage More than one RDB_NAME may exist for a single IP address. An
RDB_NAME must map to an IP address and port.

RN4 Usage DRDA permits the association of more than one RDB_NAME with a
single port at an IP address.

13.6.2.6 TCP/IP Usage of PORT for DRDA Service Rules

TPN1 Usage The PORT identifying DRDA application servers and database servers
must support the registered TCP/IP well known port for a DRDA
application server or any non-registered TCP/IP port.

TPN2 DRDA allows DDM file servers and DRDA SQL servers to use either the
same well known port or different well known port.

TPN3 Usage Registered TCP/IP well known port for a DRDA application server is 446.

TPN4 Usage Multiple ports for a DRDA application server might exist for a single IP
address.

TPN5 Usage A well known port for an application server is unique for an IP address.

TPN6 Usage A well known port for a DRDA application server must provide all the
capabilities that DRDA requires.

TPN7 Usage The well known port that provide DRDA capabilities may perform
additional non-DRDA work. These ports are not required to perform
additional non-DRDA.

Part 3: Network Protocols 577

TCP/IP Environment Usage in DRDA TCP/IP

TPN8 Usage The DRDA well known port must be supported at each IP address with at
least one application server providing DRDA capabilities.

13.6.3 Service Names

TCP/IP requires that an application requester specify the port of the application server when
initiating a connection. The application requester determines the port of the application server
during the process of resolving the RDB_NAME of the application server to an IP address.
DRDA allows the use of any valid port that meets the standards of the TCP/IP architecture and
that the application server supports.

To avoid potential name conflicts, the application server port should be, but need not be, a
registered TCP/IP well known port for a DRDA application server. This well known port is 446.

The default DRDA well known port for an application server is 446. The default well known port
must be supported at each IP address that has an application server providing DRDA
capabilities. An application requester can then assume the existence of a well known port 446 at
any IP address providing DRDA capabilities, and default to port 446 when a request requiring a
TCP/IP connection does not specify a port.

578 DRDA, Version 3, Volume 1

Appendix A

DDM Managers, Commands, and Reply Messages

This appendix is provided to help an implementer sort out what level of DDM managers are
required to support a specified level of DRDA, and also contains a summary of the required and
optional DDM commands and replies as they relate to each level of DRDA.

Section A.1 shows the relationship of types of distribution (Remote Unit of Work and
Distributed Unit of Work) to the DDM managers. Section A.2 (on page 580) defines the DDM
commands, replies, and parameters in relationship to the DDM manager and in relationship to
the DRDA level.

A.1 DDM Manager Relationship to DRDA Functions
The following table associates the DDM managers with the specified DRDA types of
distribution. In some cases, the DDM level in the table is not specific; for example, "0 or 3". In
those cases, the DRDA level does not require a specific DDM manager level, but is dependent on
the level of function required and the level of manager required to support that function. For
example, if the product wants to implement all the recent DRDA Level functions on a DRDA
Remote Unit of Work base while using a TCP/IP network protocol, the product would build an
SQLAM Level 3 and CMNTCPIP Level 5 and would not build CMNAPPC, CMNSYNCPT, and
SYNCPTMGR support.

Table A-1 DDM Manager Relationship to DRDA Level
__

DRDA Remote DRDA Distributed DRDA DRDA Transactional
Manager Unit of Work Unit of Work Level 3 Processing Interface__

AGENT 3 3 or 4 3, 4, or 5 3 or 4__
CCSID 0 or ccsid# 0 or ccsid# 0 or ccsid# 0 or ccsid#__
CMNAPPC 0 or 3 3 0 or 3 0__
CMNSYNCPT 0 or 4 4 0 or 4 0__
CMNTCPIP 0 or 5 0 or 5 0 or 5 5__
RDB 3 3 3 3__
SQLAM 3 4 3, 4, or 5 4__
SYNCPTMGR 0, 4, 5, or 7 4, 5, or 7 0, 4, or 5 0__
SECMGR 1 1 5 1__
XAMGR 0 0 0 7__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 579

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

A.2 DDM Commands and Reply Messages
This section contains tables that associate DDM commands and replies in relationship to a
specific DDM manager level. The tables also associates the parameters for the commands and
replies in relationship to the DRDA levels.

The terms required or optional follow the definitions outlined in the DDM architecture for
REQUIRED and OPTIONAL. In some cases, we further qualify the item as conditional,
ignorable, mutually-inclusive, mutually-exclusive, or dependent. If it is Conditional, then there
are extra conditions placed on the term through DRDA or DDM. If it is Ignorable, Mutually-
inclusive, or Mutually-exclusive, the extra conditions are described in DDM. If it is Dependent,
then this parameter might be required dependent on the level of another manager that is
optional for this level of DRDA.

In some cases, DRDA overrides the optionality of the term. For example, the extnam instance
variable is optional in DDM but is required in DRDA. The requirement or optionality of a term is
shown in the following tables and includes the DRDA overrides.

The semantics of the support in the application requester and application server for required and
optional commands, replies, and data objects are described in the SUBSETS term in DDM.
Further overriding conditions are described in Section 7.10 (on page 415).

If an item is listed as not defined, it is because the item is not defined for the designated level of
DRDA.

580 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The ABNUOWRM Reply Message

Table A-2 ABNUOWRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Rdbnam (relational database name) Required Required Required Required Required__
Srvdgn (server diagnostic information) Optional Optional Optional Optional Optional__
Svrcod (severity code) Required Required Required Required Required__�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Part 3: Network Protocols 581

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The ACCRDB Command

Table A-3 ACCRDB Command Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Armcorr (ARM correlator) Undefined Undefined Undefined Undefined Optional___
Crrtkn (correlation token) Optional Required Required Required Required___
Diaglvl (diagnostic level) Undefined Undefined Undefined Undefined Optional___

Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Prddta (product-specific data)

Prdid (product-specific identifier) Required Required Required Required Required___
Rdbacccl (access manager class) Required Required Required Required Required___
Rdbalwupd (rdb to allow updates) Optional Optional Optional Optional Optional___
Rdbnam (name of remote database) Required Required Required Required Required___
Sttdecdel (decimal delimiter) Optional Optional Optional Optional Optional___
Sttstrdel (string delimiter) Optional Optional Optional Optional Optional___
Typdefnam (data type definition
name)

Required Required Required Required Required

Typdefovr (data type definition
override)

Required Required Required Required Required

___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table A-4 Reply Objects for the ACCRDB Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5 Level 6 Level 7__

Sqlcard (SQLCA reply data) Optional Optional Optional Optional Optional__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

582 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The ACCRDBRM Reply Message

Table A-5 ACCRDBRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Required/
Conditional

Required/
Conditional

Required/
Conditional

Required/
Conditional

Required/
Conditional

Crrtkn (correlation token)

__
Pkgdftcst (package default
character subtype)

Optional/
Conditional

Optional/
Conditional

Optional/
Conditional

Optional/
Conditional

Optional/
Conditional__

Prdid (product identifier) Required Required Required Required Required__
Rdbintipaddr (RDB interrupt IP
address)

Optional/
Ignorable

Undefined Undefined Undefined Undefined

__
Rdbintsnaaddr (RDB interrupt
SNA address)

Optional/
Ignorable

Undefined Undefined Undefined Undefined

__
Optional/
Ignorable

Rdbinttkn (RDB interrupt token) Undefined Undefined Undefined Undefined

__
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

__
Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Srvlst (target server list) Undefined Undefined

__
Svrcod (severity code) Required Required Required Required Required__
Typdefnam (data type definition
name)

Required Required Required Required Required

__
Typdefovr (data type definition
override)

Required Required Required Required Required

__
Userid (user ID at the target
system)

Optional/
Conditional

Optional/
Conditional

Optional/
Conditional

Optional/
Conditional

Optional/
Conditional__��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 583

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The ACCSEC Command

Table A-6 ACCSEC Command Instance Variables

SECMGR SECMGR SECMGR
Instance Variable Level 5 Level 6 Level 7___

Encalg (encryption algorithm) Undefined Undefined Optional___
Enckeylen (encryption key length) Undefined Undefined Optional___
Plginid (security plug-in-specific
identifier)

Optional/
Conditional

Undefined Undefined

Optional/
Conditional

Plginnm (security plug-in name) Undefined Undefined

Secmec (security mechanism) Required Required Required___

Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Secmgrnm (security manager name)

Optional/
Conditional

Optional/
Conditional

Sectkn (security token) Undefined

___�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table A-7 Reply Objects for the ACCSEC Command

SECMGR SECMGR SECMGR
Reply Object Level 5 Level 6 Level 7___

Accsecrd (ACCSEC reply data) Required Required Required___
Kersecppl (Kerberos security principal) Undefined Undefined Optional___
Plginlst (security plug-in list) Undefined Undefined Optional___�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

584 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The ACCSECRD Reply Object

Table A-8 ACCSECRD Reply Object Instance Variables

SECMGR SECMGR SECMGR
Instance Variable Level 5 Level 6 Level 7___

Encalg (encryption algorithm) Undefined Undefined Optional___
Enckeylen (encryption key length) Undefined Undefined Optional___
Secchkcd (security check code) Undefined Optional Optional___
Secmec (security mechanism) Required Required Required___

Optional/
Conditional

Optional/
Conditional

Sectkn (security token) Undefined

___�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 585

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The AGNPRMRM Reply Message

Table A-9 AGNPRMRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Rdbnam (relational database name) Optional Optional Optional Optional Optional__
Srvdgn (server diagnostic information) Optional Optional Optional Optional Optional__
Svrcod (severity code) Required Required Required Required Required__�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

586 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The BGNATMCHN Command

Table A-10 BGNATMCHN Command Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Rtnsetstt (return SET statement) Undefined Undefined Undefined Undefined Optional__�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Part 3: Network Protocols 587

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The BGNBND Command

Table A-11 BGNBND Command Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7��

�
��
�

��
�

��
�

��
�

��
�

��
�

__
Bndchkexs (bind existence checking) Optional Optional Optional Optional Optional__
Bndcrtctl (bind creation control) Optional Optional Optional Optional Optional__
Bndexpopt (bind explain option) Optional Optional Optional Optional Optional__
Decprc (decimal precision) Optional Optional Optional Optional Optional__
Dftrdbcol (default RDB collection
identifier)

Optional Optional Optional Optional Optional

__
Dgrioprl (degree of I/O parallelism) Optional/

Ignorable
Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Undefined

__
Pkgathopt (package authorization
option)

Optional Optional Optional Optional Optional

__
Pkgathrul (package authorization
rules)

Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Undefined Undefined

__
Pkgdftcc (package default CCSID) Optional Optional Optional Optional Optional__
Pkgdftcst (default character subtype) Optional Optional Optional Optional Optional__
Pkgrplopt (package replacement
option)

Optional Optional Optional Optional Optional

__
Pkgisolvl (package isolation level) Required Required Required Required Required__
Pkgnamct (package name and
consistency token)

Required Required Required Required Required

__
Pkgownid (package owner
identifier)

Optional Optional Optional Optional Optional

__
Pkgrplvrs (replaced package version
name)

Optional Optional Optional Optional Optional

__
Prpsttkp (prepared statement keep) Undefined Undefined Undefined Undefined Optional__
Qryblkctl (query block protocol
control)

Optional Optional Optional Optional Optional

__
Rdbnam (name of remote database
as in ACCRDB)

Optional Optional Optional Optional Optional

__
Rdbrlsopt (RDB release option) Optional Optional Optional Optional Optional__
Sttdatfmt (date format of statement) Optional Optional Optional Optional Optional__
Sttdecdel (statement decimal
delimiter)

Optional Optional Optional Optional Optional

__
Stttimfmt (time format of statement) Optional Optional Optional Optional Optional__
Sttstrdel (statement string delimiter) Optional Optional Optional Optional Optional__

Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Title (brief description of package)

__
Vrsnam (package version name) Optional Optional Optional Optional Optional__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

588 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

Table A-12 Command Objects for the BGNBND Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5 Level 6 Level 7__

Bndopt (bind option) Undefined Undefined Optional Optional Optional__�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Table A-13 Reply Objects for the BGNBND Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5 Level 6 Level 7__

Mgrlvlovr (manager level
overrides)

Undefined Undefined Undefined Undefined Optional

__
Sqlcard (SQLCA reply data) Required Required Required Required Required__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 589

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The BGNBNDRM Reply Message

Table A-14 BGNBNDRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Pkgnamct (package name and
consistency token)

Required Required Required Required Required

__
Rdbnam (relational database name) Required Required Required Required Required__
Srvdgn (server diagnostic information) Optional Optional Optional Optional Optional__
Svrcod (severity code) Required Required Required Required Required__
Vrsnam (version name) Required Required Required Required Required__�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

590 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The BNDSQLSTT Command

Table A-15 BNDSQLSTT Command Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Bndsttasm (bind statement
assumptions)

Optional Optional Optional Optional Optional

__
Pkgnamcsn (package name,
consistency token, and section
number)

Required Required Required Required Optional

__
Pkgsn (package section number) Undefined Undefined Undefined Undefined Optional__
Rdbnam (name of remote
database as in ACCRDB)

Optional Optional Optional Optional Optional

__
Sqlsttnbr (source application
statement number)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table A-16 Command Objects for the BNDSQLSTT Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5 Level 6 Level 7__

Sectknovr (security token
override)

Undefined Undefined Undefined Undefined Optional

__
Sqlstt (SQL statement to be
bound in the application server
package)

Required Required Required Required Required

__
Sqlsttvrb (description of each
variable)

Optional Optional Optional Optional Optional

__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table A-17 Reply Objects for the BNDSQLSTT Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5 Level 6 Level 7__

Mgrlvlovr (manager level
overrides)

Undefined Undefined Undefined Undefined Optional

__
Sqlcard (SQLCA reply data) Required Required Required Required Required__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 591

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The CLSQRY Command

Table A-18 CLSQRY Command Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 level 6 level 7__

Cmdsrcid (command source
identifier)

Undefined Undefined Undefined Undefined Optional

__
Monitor (request monitoring) Optional Optional Optional Optional Optional__
Pkgnamcsn (package name,
consistency token, and section
number)

Required Required Required Required Optional

__
Pkgsn (package section number) Undefined Undefined Undefined Undefined Optional__
Qryclsrls (query close lock
release)

Undefined Undefined Undefined Undefined Optional

__
Qryinsid (query instance
identifier)

Undefined Undefined Undefined Undefined Required

__
Rdbnam (name of remote
database as in ACCRDB)

Optional Optional Optional Optional Optional

__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table A-19 Reply Objects for the CLSQRY Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5 level 6 level 7__

Mgrlvlovr (manager level
overrides)

Undefined Undefined Undefined Undefined Optional

__
Monitor (monitor reply data) Optional Optional Optional Optional Optional__
Sqlcard (SQLCA reply data) Required Required Required Required Required__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

592 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The CMDATHRM Reply Message

Table A-20 CMDATHRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (relational database name) Optional Optional Optional Optional Optional___
Svrcod (severity code) Required Required Required Required Required___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

___��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Part 3: Network Protocols 593

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The CMDCHKRM Reply Message

Table A-21 CMDCHKRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (relational database name) Optional Optional Optional Optional Optional___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

594 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The CMDNSPRM Reply Message

Table A-22 CMDNSPRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Codpnt (codepoint attribute) Required Required Required Required Required___
Rdbnam (relational database name) Optional Optional Optional Optional Optional___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

Part 3: Network Protocols 595

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The CMDVTLRM Reply Message

Table A-23 CMDVLTRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (relational database name) Undefined Required Required Required Required___
Srvdgn (server diagnostic
information)

Undefined Optional Optional Optional Optional

Svrcod (severity code) Undefined Required Required Required Required___��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

596 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The CMMRQSRM Reply Message

Table A-24 CMMRQSRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Cmmtyp (commitment request type) Undefined Required Required Required Required__
Rdbnam (relational database name) Undefined Required Required Required Required__
Srvdgn (server diagnostic
information)

Undefined Optional Optional Optional Optional

__
Svrcod (severity code) Undefined Required Required Required Required__��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

Part 3: Network Protocols 597

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The CNTQRY Command

Table A-25 CNTQRY Command Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 level 6 level 7__

Cmdsrcid (command source
identifier)

Undefined Undefined Undefined Undefined Optional

__
Maxblkext (maximum number
of extra blocks)

Undefined Undefined Optional Optional Optional

__
Monitor (request monitoring) Optional Optional Optional Optional Optional__
Nbrrow (number of fetch rows) Undefined Optional Optional Optional Removed__
Pkgnamcsn (package name,
consistency token and section
number)

Required Required Required Required Optional

__
Pkgsn (RDB package section
number)

Undefined Undefined Undefined Undefined Optional

__
Qryblkrst (query block reset) Undefined Undefined Undefined Undefined Optional__
Qryblksz (query block size) Required Required Required__
Qryinsid (query instance
identifier)

Undefined Undefined Undefined Undefined Required

__
Qryrelscr (query relative
scrolling action)

Undefined Optional Optional Optional Removed

__
Qryrfrtbl (query refresh answer
set table)

Undefined Optional Optional Optional Removed

__
Qryrownbr (query row number) Undefined Optional Optional Optional Optional__
Qryrowset (query rowset size) Undefined Undefined Undefined Undefined Optional__
Qryrowsns (query row
sensitivity)

Undefined Undefined Undefined Undefined Optional

__
Qryrtndta (query returns data) Undefined Undefined Undefined Undefined Optional__
Qryscrorn (query scroll
orientation)

Undefined Undefined Undefined Undefined Optional

__
Rdbnam (name of remote
database as in ACCRDB)

Optional Optional Optional Optional Optional

__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

598 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

Table A-26 Reply Objects for the CNTQRY Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5 level 6 level 7__

Mgrlvlovr (manager level
overrides)

Undefined Undefined Undefined Undefined Optional

__
Monitor (monitor reply data) Optional Optional Optional Optional Optional__
Qrydta (query answer set data) Optional Optional Optional Optional Optional__
Sectknovr (security token
override)

Undefined Undefined Undefined Undefined Optional

__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__
Required/
Conditional

Required/
Conditional

Required/
Conditional

Required/
Conditional

Required/
Conditional

Sqlcard (SQLCA reply data)

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 599

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The DRPPKG Command

Table A-27 DRPPKG Command Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Pkgnam (package grouping
name and identifier)

Required Required Required Required Required

__
Rdbnam (name of remote
database as in ACCRDB)

Optional Optional Optional Optional Optional

__
Vrsnam (version name) Optional Optional Optional Optional Optional__��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

Table A-28 Reply Objects for the DRPPKG Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5 Level 6 Level 7__

Mgrlvlovr (manager level
overrides)

Undefined Undefined Undefined Undefined Optional

__
Sqlcard (SQLCA reply data) Required Required Required Required Required__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

600 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The DSCINVRM Reply Message

Table A-29 DSCINVRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Dscerrcd (description error code) Required Required Required Required Required___
Fdodsc (FD:OCA data descriptor) Required Required Required Required Required___
Fdodscoff (FD:OCA descriptor
offset)

Required Required Required Required Required

Fdoprmoff (FD:OCA triplet
parameter offset)

Required Required Required Required Required

Fdotrpoff (FD:OCA triplet offset) Required Required Required Required Required___
Rdbnam (relational database name) Required Required Required Required Required___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 601

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The DSCRDBTBL Command

Table A-30 DSCRDBTBL Command Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 level 6 level 7__

Monitor (request monitoring) Optional Optional Optional Optional Optional__
Rdbnam (name of remote
database as in ACCRDB)

Optional Optional Optional Optional Optional

__�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Table A-31 Command Objects for the DSCRDBTBL Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5 Level 6 Level 7__

Sqlobjnam (SQL object name) Required Required Required Required Required__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

Table A-32 Reply Objects for the DSCRDBTBL Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5 level 6 level 7__

Mgrlvlovr (manager level
overrides)

Undefined Undefined Undefined Undefined Optional

__
Monitor (monitor reply data) Optional Optional Optional Optional Optional__
Sectknovr (security token
override)

Undefined Undefined Undefined Undefined Optional

__
Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Sqlcard (SQLCA reply data)

__
Required/
Mutually-
exclusive

Required/
Mutually-
exclusive

Required/
Mutually-
exclusive

Required/
Mutually-
exclusive

Required/
Mutually-
exclusive

Sqldard (SQLDA reply data)

__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

602 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The DSCSQLSTT Command

Table A-33 DSCSQLSTT Command Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 level 6 level 7__

Cmdsrcid (command source
identifier)

Undefined Undefined Undefined Undefined Optional

__
Monitor (request monitoring) Optional Optional Optional Optional Optional__
Pkgnamcsn (package name,
consistency token and section
number)

Required Required Required Required Optional

__
Pkgsn (RDB package section
number)

Undefined Undefined Undefined Undefined Optional

__
Qryinsid (query instance
identifier)

Undefined Undefined Undefined Undefined Optional

__
Rdbnam (name of remote
database as in ACCRDB)

Optional Optional Optional Optional Optional

__
Typsqlda (input|output) Undefined Undefined Undefined Optional Optional__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table A-34 Reply Objects for the DSCSQLSTT Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5 level 6 level 7__

Mgrlvlovr (manager level
overrides)

Undefined Undefined Undefined Undefined Optional

__
Monitor (monitor reply data) Optional Optional Optional Optional Optional__
Sectknovr (security token
override)

Undefined Undefined Undefined Undefined Optional

__
Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Sqlcard (SQLCA reply data)

__
Required/
Mutually-
exclusive

Required/
Mutually-
exclusive

Required/
Mutually-
exclusive

Required/
Mutually-
exclusive

Required/
Mutually-
exclusive

Sqldard (SQLDA reply data)

__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 603

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The DTAMCHRM Reply Message

Table A-35 DTAMCHRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (relational database name) Required Required Required Required Required___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

604 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The ENDATMCHN Command

Table A-36 ENDATMCHN Command Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Endchntyp (end chain type) Undefined Undefined Undefined Undefined Optional__�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Part 3: Network Protocols 605

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The ENDBND Command

Table A-37 ENDBND Command Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Maxsctnbr (maximum section
number)

Optional Optional Optional Optional Optional

__
Pkgnamct (package name and
consistency token)

Required Required Required Required Required

__
Rdbnam (name of remote
database as in ACCRDB)

Optional Optional Optional Optional Optional

__�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Table A-38 Reply Objects for the ENDBND Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5 Level 6 Level 7__

Mgrlvlovr (manager level
overrides)

Undefined Undefined Undefined Undefined Optional

__
Sqlcard (SQLCA reply data) Required Required Required Required Required__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

606 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The ENDQRYRM Reply Message

Table A-39 ENDQRYRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (relational database name) Optional Optional Optional Optional Optional___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Part 3: Network Protocols 607

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The ENDUOWRM Reply Message

Table A-40 ENDUOWRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (relational database name) Optional Optional Optional Optional Optional___
Release (terminate or reuse
connection)

Undefined Undefined Optional Optional Optional

Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___
Uowdsp (unit of work disposition) Required Required Required Required Required___��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

608 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The EXCSAT Command

Table A-41 EXCSAT Command Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Extnam (external name) Required Required Required Required Required__
Mgrlvlls (manager level list) Required Required Required Required Required__
Spvnam (supervisor name) Optional Optional Optional Optional Optional__
Srvclsnm (server class name) Required Required Required Required Required__
Srvnam (server name) Required Required Required Required Required__

Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Srvrlslv (server release level)

__��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 609

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The EXCSATRD Reply Object

Table A-42 EXCSATRD Reply Object Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Extnam (external name) Required Required Required Required Required__
Mgrlvlls (manager level list) Required Required Required Required Required__
Srvclsnm (server class name) Required Required Required Required Required__
Srvnam (server name) Required Required Required Required Required__
Srvrlslv (server release level) Optional Optional Optional Optional Optional__�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

610 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The EXCSQLIMM Command

Table A-43 EXCSQLIMM Command Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 level 6 level 7___

Cmdsrcid (command source
identifier)

Undefined Undefined Undefined Undefined Optional

Monitor (request monitoring) Optional Optional Optional Optional Optional___
Pkgnamcsn (package name,
consistency token and section
number)

Required Required Required Required Optional

Pkgsn (RDB package section
number)

Undefined Undefined Undefined Undefined Optional

Qryinsid (query instance
identifier)

Undefined Undefined Undefined Undefined Optional

Rdbcmtok (RDB commit allowed) Undefined Optional Optional Optional Optional___
Rdbnam (name of remote
database as in ACCRDB)

Optional Optional Optional Optional Optional

Rtnsetstt (return SET statement) Undefined Undefined Undefined Undefined Optional___�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table A-44 Command Objects for the EXCSQLIMM Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5 Level 6 Level 7__

Sectknovr (security token
override)

Undefined Undefined Undefined Undefined Optional

__
Sqlstt (SQL statement) Required Required Required Required Required__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

Table A-45 Reply Objects for the EXCSQLIMM Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5 level 6 level 7__

Mgrlvlovr (manager level
overrides)

Undefined Undefined Undefined Undefined Optional

__
Monitor (monitor reply data) Optional Optional Optional Optional Optional__
Sqlcard (SQLCA reply data) Required Required Required Required Required__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 611

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The EXCSQLSET Command

Table A-46 EXCSQLSET Command Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 level 6 level 7__

Rtnsetstt (return SET statement) Undefined Undefined Undefined Undefined Optional__
Rdbnam (name of remote
database as in ACCRDB)

Optional Optional Optional Optional Optional

__
Pkgnamct (package name and
consistency token)

Required Required Required Required Optional

__
Pkgsn (RDB package section
number)

Undefined Undefined Undefined Undefined Optional

__��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

Table A-47 Command Objects for the EXCSQLSET Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5 level 6 level 7__

Sectknovr (security token
override)

Undefined Undefined Undefined Undefined Optional

__
Sqlstt (SQL statement) Required Required Required Required Required__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

Table A-48 Reply Objects for the EXCSQLSET Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5 level 6 level 7__

Mgrlvlovr (manager level
overrides)

Undefined Undefined Undefined Undefined Optional

__
Sqlcard (SQLCA reply data) Required Required Required Required Required__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

612 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The EXCSQLSTT Command

Table A-49 EXCSQLSTT Command Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 level 6 level 7___

Atmind (atomicity indicator) Undefined Undefined Undefined Undefined Optional___
Cmdsrcid (command source
identifier)

Undefined Undefined Undefined Undefined Optional

Maxblkext (maximum number of
extra blocks)

Undefined Undefined Optional Optional Optional

Maxrslcnt (maximum result set
count)

Undefined Undefined Optional Optional Optional

Monitor (request monitoring) Optional Optional Optional Optional Optional___
Nbrrow (number of input rows) Undefined Optional Optional Optional Optional___
Outexp (output expected) Optional Optional Optional Optional Optional___
Pkgnamcsn (package name,
consistency token and section
number)

Required Required Required Required Optional

Pkgsn (RDB package section
number)

Undefined Undefined Undefined Undefined Optional

Prcnam (procedure name) Undefined Optional Optional Optional Optional___
Qryblksz (query block size) Undefined Undefined Optional Optional Optional___
Qryclsimp (query close implicit) Undefined Undefined Undefined Undefined Optional___
Qryclsrls (query close lock
release)

Undefined Undefined Undefined Undefined Optional

Qryinsid (query instance
identifier)

Undefined Undefined Undefined Undefined Optional

Qryrowset (query rowset size) Undefined Undefined Undefined Undefined Optional___
Rdbcmtok (RDB commit allowed) Undefined Optional Optional Optional Optional___
Rdbnam (name of remote
database as in ACCRDB)

Optional Optional Optional Optional Optional

Rslsetflg (result set flags) Undefined Undefined Optional Optional Optional___
Rtnsetstt (return SET statement) Undefined Undefined Undefined Undefined Optional___
Rtnsqlda (return SQLDA) Undefined Undefined Undefined Undefined Optional___
Typsqlda (type SQLDA) Undefined Undefined Undefined Undefined Optional___�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 613

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

Table A-50 Command Objects for the EXCSQLSTT Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5 Level 6 Level 7__

Sectknovr (security token
override)

Undefined Undefined Undefined Undefined Optional

__
Sqldta (SQL program variable
data)

Optional Optional Optional Optional Optional

__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table A-51 Reply Objects for the EXCSQLSTT Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5 level 6 level 7__

Mgrlvlovr (manager level
overrides)

Undefined Undefined Undefined Undefined Optional

__
Monitor (monitor reply data) Optional Optional Optional Optional Optional__
Qrydta (query answer set data) Undefined Undefined Optional Optional Optional__
Qrydsc (query answer set
description)

Undefined Undefined Optional Optional Optional

__
Sectknovr (security token
override)

Undefined Undefined Undefined Undefined Optional

__
Required/
Mutually-
exclusive

Required/
Mutually-
exclusive

Required/
Mutually-
exclusive

Required/
Mutually-
exclusive

Required/
Mutually-
exclusive

Sqlcard (SQLCA reply data)

__
Sqlcinrd (SQL result set column
information reply data)

Undefined Undefined Optional Optional Optional

__
Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Sqldtard (SQL data reply data)

__
Sqlrslrd (SQL result set reply
data)

Undefined Undefined Optional Optional Optional

__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

614 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The INTRDBRQS Reply Message

Table A-52 INTRDBRQS Command Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbinttkn (RDB interrupt token) Undefined Undefined Undefined Undefined Required___
Rdbnam (relational database name) Optional Optional Required Required Required___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

Part 3: Network Protocols 615

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The INTTKNRM Reply Message

Table A-53 INTTKNRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (name of remote database) Undefined Undefined Undefined Undefined Required___
Rdbinttkn (RDB interrupt token) Undefined Undefined Undefined Undefined Required___
Srvdgn (server diagnostic
information)

Undefined Undefined Undefined Undefined Optional

Svrcod (severity code) Undefined Undefined Undefined Undefined Required___��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

616 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The MGRDEPRM Reply Message

Table A-54 MGRDEPRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Deperrcd (manager dependency
error code)

Required Required Required Required Required

Rdbnam (relational database name) Optional Optional Optional Optional Optional___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 617

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The MGRLVLRM Reply Message

Table A-55 MGRLVLRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Mgrlvla (manager level list) Required Required Required Required Required__
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

__
Svrcod (severity code) Required Required Required Required Required__��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

618 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The OBJNSPRM Reply Message

Table A-56 OBJNSPRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Codpnt (codepoint attribute) Required Required Required Required Required___
Rdbnam (relational database name) Optional Optional Optional Optional Optional___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

Part 3: Network Protocols 619

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The OPNQFLRM Reply Message

Table A-57 OPNQFLRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (relational database name) Required Required Required Required Required___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

620 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The OPNQRY Command

Table A-58 OPNQRY Command Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 level 7__

Cmdsrcid (command source
identifier)

Undefined Undefined Undefined Undefined Optional

__
Dupqryok (duplicate query
allowed)

Undefined Undefined Undefined Undefined Optional

__
Maxblkext (maximum number
of extra blocks)

Undefined Undefined Optional Optional Optional

__
Monitor (request monitoring) Optional Optional Optional Optional Optional__
Pkgnamcsn (package name,
consistency token and section
number)

Required Required Required Required Optional

__
Pkgsn (RDB package section
number)

Undefined Undefined Undefined Undefined Optional

__
Qryblkctl (query block protocol
control)

Optional Optional Optional Optional Optional

__
Qryblksz (query block size) Required Required Required Required Required__
Qryclsimp (query close implicit) Undefined Undefined Undefined Undefined Optional__
Qryclsrls (query close lock
release)

Undefined Undefined Undefined Undefined Optional

__
Qryrowset (query rowset size) Undefined Undefined Undefined Undefined Optional__
Rdbnam (name of remote
database as in ACCRDB)

Optional Optional Optional Optional Optional

__
Rtnsqlda (return SQLDA) Undefined Undefined Undefined Undefined Optional__
Typsqlda (type SQLDA) Undefined Undefined Undefined Undefined Optional__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table A-59 Command Objects for the OPNQRY Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5 Level 6 Level 7__

Sectknovr (security token
override)

Undefined Undefined Undefined Undefined Optional

__
Sqldta (input variable data) Optional Optional Optional Optional Optional__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 621

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

Table A-60 Reply Objects for the OPNQRY Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5 level 6 level 7__

Mgrlvlovr (manager level
overrides)

Undefined Undefined Undefined Undefined Optional

__
Monitor (monitor reply data) Optional Optional Optional Optional Optional__
Qrydsc (query answer set
description)

Required Required Required Required Required

__
Optional/
Conditional

Optional/
Conditional

Optional/
Conditional

Optional/
Conditional

Optional/
Conditional

Qrydta (query answer set data)

__
Sectknovr (security token
override)

Undefined Undefined Undefined Undefined Optional

__
Sqlcard (SQLCA reply data) Optional Optional Optional Optional Optional__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

622 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The OPNQRYRM Reply Message

Table A-61 OPNQRYRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Qryattscr (query attribute for
scrollability)

Undefined Undefined Undefined Undefined Optional

__
Qryattset (query rowset
attribute)

Undefined Undefined Undefined Undefined Optional

__
Qryattsns (query attribute for
sensitivity)

Undefined Undefined Undefined Undefined Optional

__
Qryattupd (query attribute for
updatability)

Undefined Undefined Undefined Undefined Optional

__
Qryblkfct (query blocking
factor)

Undefined Undefined Undefined Undefined Optional

__
Qryblktyp (query block type) Undefined Undefined Undefined Undefined Optional__
Qryinsid (query instance
identifier)

Undefined Undefined Undefined Undefined Required

__
Qryprctyp (query protocol type) Required Required Required Required Required__
Sqlcsrhld (hold cursor position) Optional Optional Optional Optional Optional__
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

__
Svrcod (severity code) Required Required Required Required Required__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 623

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The PKGBNARM Reply Message

Table A-62 PKGBNARM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (relational database name) Required Required Required Required Required___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

624 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The PKGBPARM Reply Message

Table A-63 PKGBPARM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (relational database name) Required Required Required Required Required___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Part 3: Network Protocols 625

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The PRCCNVRM Reply Message

Table A-64 PRCCNVRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Prccnvcd (conversational protocol
error code)

Required Required Required Required Required

Rdbnam (relational database name) Optional Optional Optional Optional Optional___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

626 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The PRMNSPRM Reply Message

Table A-65 PRMNSPRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Codpnt (codepoint attribute) Required Required Required Required Required___
Rdbnam (relational database name) Optional Optional Optional Optional Optional___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

Part 3: Network Protocols 627

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The PRPSQLSTT Command

Table A-66 PRPSQLSTT Command Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 level 6 level 7__

Bufinsind (buffered insert
indicator)

Undefined Undefined Undefined Undefined Optional

__
Cmdsrcid (command source
identifier)

Undefined Undefined Undefined Undefined Optional

__
Monitor (request monitoring) Optional Optional Optional Optional Optional__
Pkgnamcsn (package name,
consistency token and section
number)

Required Required Required Required Optional

__
Pkgsn (RDB package section
number)

Undefined Undefined Undefined Undefined Optional

__
Rdbnam (name of remote
database as in ACCRDB)

Optional Optional Optional Optional Optional

__
Rtnsqlda (return SQLDA) Optional Optional Optional Optional Optional__
Typsqlda (type SQLDA) Undefined Undefined Undefined Undefined Optional__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table A-67 Command Objects for the PRPSQLSTT Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5 Level 6 Level 7__

Sectknovr (security token
override)

Undefined Undefined Undefined Undefined Optional

__
Sqlattr (SQL attributes) Undefined Undefined Undefined Undefined Optional__
Sqlstt (SQL statement) Required Required Required Required Required__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

628 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

Table A-68 Reply Objects for the PRPSQLSTT Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5 level 6 level 7__

Mgrlvlovr (manager level
overrides)

Undefined Undefined Undefined Undefined Optional

__
Monitor (monitor reply data) Optional Optional Optional Optional Optional__
Sectknovr (security token
override)

Undefined Undefined Undefined Undefined Optional

__
Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Sqlcard (SQLCA reply data)

__
Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Required/
Mutually-
exclusive/
Conditional

Sqldard (SQLDA reply data)

__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 629

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The QRYNOPRM Reply Message

Table A-69 QRYNOPRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Pkgnamcsn (package name,
consistency token, and section
number)

Required Required Required Required Required

Rdbnam (relational database name) Required Required Required Required Required___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

630 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The QRYPOPRM Reply Message

Table A-70 QRYPOPRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Pkgnamcsn (package name,
consistency token, and section
number)

Required Required Required Required Required

Rdbnam (relational database name) Required Required Required Required Required___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 631

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The RDBACCRM Reply Message

Table A-71 RDBACCRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (relational database name) Required Required Required Required Required___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

632 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The RDBAFLRM Reply Message

Table A-72 RDBAFLRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (relational database name) Required Required Required Required Required___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Part 3: Network Protocols 633

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The RDBATHRM Reply Message

Table A-73 RDBATHRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (relational database name) Required Required Required Required Required___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

634 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The RDBCMM Command

Table A-74 RDBCMM Command Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Rdbnam (name of remote
database as in ACCRDB)

Optional Optional Optional Optional Optional

__
Release (terminate or reuse
connection)

Undefined Undefined Undefined Undefined Optional

__��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Table A-75 Reply Objects for the RDBCMM Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5 Level 6 Level 7__

Mgrlvlovr (manager level
overrides)

Undefined Undefined Undefined Undefined Optional

__
Sqlcard (SQLCA reply data) Required Required Required Required Required__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 635

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The RDBNACRM Reply Message

Table A-76 RDBNACRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (relational database name) Required Required Required Required Required___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

636 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The RDBNFNRM Reply Message

Table A-77 RDBNFNRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (relational database name) Required Required Required Required Required___
Srvdgn (server diagnostic
information)

Optional Optional Optional Optional Optional

Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Part 3: Network Protocols 637

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The RDBRLLBCK Command

Table A-78 RDBRLLBCK Command Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Rdbnam (name of remote
database as in ACCRDB)

Optional Optional Optional Optional Optional

__
Release (terminate or reuse
connection)

Undefined Undefined Undefined Undefined Optional

__��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Table A-79 Reply Objects for the RDBRLLBCK Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5 Level 6 Level 7__

Mgrlvlovr (manager level
overrides)

Undefined Undefined Undefined Undefined Optional

__
Sqlcard (SQLCA reply data) Required Required Required Required Required__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

638 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The RDBUPDRM Reply Message

Table A-80 RDBUPDRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (relational database name) Undefined Required Required Required Required___
Srvdgn (server diagnostic area) Undefined Optional Optional Optional Optional___
Svrcod (severity code) Undefined Required Required Required Required___�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Part 3: Network Protocols 639

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The REBIND Command

Table A-81 REBIND Command Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Bndchkexs (bind existence checking) Optional Optional Optional Optional Optional__
Bndexpopt (bind explain option) Optional Optional Optional Optional Optional__
Dftrdbcol (default RDB collection
identifier)

Optional Optional Optional Optional Optional

__
Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Dgrioprl (degree of I/O Parallelism) Undefined

__
Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Pkgathrul (package authorization rules) Undefined Undefined

__
Pkgisolvl (package isolation level) Optional Optional Optional Optional Optional__
Pkgnam (package name) Required Required Required Required Required__
Pkgownid (package owner
identification)

Optional Optional Optional Optional Optional

__
Rdbnam (name of remote database as
in ACCRDB)

Optional Optional Optional Optional Optional

__
Rdbrlsopt (RDB release option) Optional Optional Optional Optional Optional__
Vrsnam (package version name) Optional Optional Optional Optional Optional__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table A-82 Command Objects for the REBIND Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Command Object Level 3 Level 4 Level 5 Level 6 Level 7__

Bndopt (bind option) Undefined Undefined Optional Optional Optional__
Mgrlvlovr (manager level
overrides)

Undefined Undefined Undefined Undefined Optional

__�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Table A-83 Reply Objects for the REBIND Command
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Reply Object Level 3 Level 4 Level 5 Level 6 Level 7__

Sqlcard (SQLCA reply data) Required Required Required Required Required__
Typdefnam (data type definition
name)

Optional Optional Optional Optional Optional

__
Typdefovr (data type definition
override)

Optional Optional Optional Optional Optional

__��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

640 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The RSCLMTRM Reply Message

Table A-84 RSCLMTRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Prdid (product-specific identifier) Optional Optional Optional Optional Optional___
Required/
Conditional

Required/
Conditional

Required/
Conditional

Required/
Conditional

Required/
Conditional

Rdbnam (relational database name)

Rscnam (resource name
information)

Optional Optional Optional Optional Optional

Rsctyp (resource type information) Optional Optional Optional Optional Optional___
Rsncod (reason code information) Optional Optional Optional Optional Optional___
Srvdgn (server diagnostic area) Optional Optional Optional Optional Optional___
Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 641

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The RSLSETRM Reply Message

Table A-85 RSLSETRM Reply Message Instance Variables
__

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Pkgsnlst (RDB package name,
consistency token, and section
number list)

Undefined Undefined Optional Optional Optional

__
Srvdgn (server diagnostics) Undefined Undefined Optional Optional Optional__
Svrcod (severity code) Undefined Undefined Optional Optional Optional__��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

642 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The SECCHK Command

Table A-86 SECCHK Command Instance Variables
__

SECMGR SECMGR SECMGR
Instance Variable Level 5 Level 6 Level 7__

Optional/
Conditional

Optional/
Conditional

Optional/
Conditional

Newpassword (new password)

__
Optional/
Conditional

Optional/
Conditional

Optional/
Conditional

Password (password)

__
Plginid (security plug-in-specific
identifier)

Optional/
Conditional

Undefined Undefined

__
Optional/
Conditional

Plginnm (security plug-in name) Undefined Undefined

__
Secmec (security mechanism) Required Required Required__

Optional/
Ignorable

Optional/
Ignorable

Optional/
Ignorable

Secmgrnm (security manager name)

__
Optional/
Conditional

Optional/
Conditional

Optional/
Conditional

Usrid (user ID)

__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table A-87 Command Objects for the SECCHK Command

SECMGR SECMGR SECMGR
Command Object Level 5 Level 6 Level 7___

Optional/
Conditional

Optional/
Conditional

Optional/
Conditional

Sectkn (security token)

___��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

Table A-88 Reply Objects for the SECCHK Command

SECMGR SECMGR SECMGR
Reply Object Level 5 Level 6 Level 7___

Optional/
Conditional

Optional/
Conditional

Optional/
Conditional

Sectkn (security token)

___��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

Part 3: Network Protocols 643

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The SECCHKRM Reply Message

Table A-89 SECCHKRM Reply Message Instance Variables

SECMGR SECMGR SECMGR
Instance Variable Level 5 Level 6 Level 7___

Secchkcd (security check code) Required Required Required___
Srvdgn (server diagnostics) Optional Optional Optional___

Optional/
Ignorable/
Conditional

Optional/
Ignorable/
Conditional

Optional/
Ignorable/
Conditional

Svcerrno (error number)

Svrcod (severity code) Required Required Required___�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

644 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The SNDPKT Command

Table A-90 SNDPKT Command Instance Variables
__

AGENT AGENT AGENT AGENT AGENT
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7__

Respktsz (response packet size) Undefined Undefined Undefined Undefined Optional__�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Table A-91 Command Objects for the SNDPKT Command
__

AGENT AGENT AGENT AGENT AGENT
Command Object Level 3 Level 4 Level 5 Level 6 Level 7__

Pkgobj (packet object) Undefined Undefined Undefined Undefined Optional__�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Table A-92 Reply Objects for the SNDPKT Command
__

AGENT AGENT AGENT AGENT AGENT
Reply Object Level 3 Level 4 Level 5 Level 6 Level 7__

Pktobj (packet object) Undefined Undefined Undefined Undefined Required__�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Part 3: Network Protocols 645

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The SQLERRRM Reply Message

Table A-93 SQLERRRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (relational database name) Optional Optional Optional Optional Optional___
Srvdgn (server diagnostic area) Optional Optional Optional Optional Optional___
Svrcod (severity code) Required Required Required Required Required___�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

646 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The SYNCCTL Command

Table A-94 SYNCCTL Command Instance Variables

SYNCPTMGR SYNCPTMGR XAMGR
Instance Variable Level 5 Level 7 Level 7___

Forget (forget optimization) Optional Optional Invalid___
Rlsconv (release conversation) Optional Optional Optional___
Synctype (sync point operation type) Required Required Required___
Timeout (time out) Undefined Invalid Optional___
Uowid (unit of work identifier) Optional Optional Invalid___
Xaflags (XA flags) Undefined Invalid Required___
Xid (global transfer identifier) Undefined Optional Required___
Xidshr (degree of resource sharing) Undefined Optional Invalid___�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table A-95 Command Objects for SYNCCTL
__

Command Object SYNCPTMGR Level 5 or 7__
Synclog (sync point log) Optional__�
�
�

�
�
�

�
�
�

Part 3: Network Protocols 647

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The SYNCCRD Reply Object

Table A-96 SYNCCRD Reply Object Instance Variables

SYNCPTMGR SYNCPTMGR XAMGR
Instance Variable Level 5 Level 7 Level 7___

Prphrclst (prepared list of XIDs) Undefined Invalid Optional___
Rlsconv (release conversation) Undefined Optional Optional___
Synctype (sync point operation type) Required Required Invalid___
Xaretval (XA return value) Undefined Invalid Required___��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

648 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The SYNCLOG Reply Object

Table A-97 SYNCLOG Reply Object Instance Variables

Instance Variable SYNCPTMGR Level 5 or 7___
Cnntkn (connection token) Required___

Optional — mutually-exclusive with Snaaddr)Ipaddr (TCP/IP resync address)___
Logname (log name) Required___
Logtstmp (log timestamp) Required___
Rdbnam (relational database name) Required___

Optional — mutually-exclusive with Ipaddr)Snaaddr (SNA resync address)___
Tcphost (TCP/IP domain qualified
host name)

Optional — mutually-exclusive with Snaaddr)

___�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

Part 3: Network Protocols 649

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The SYNCRSY Command

Table A-98 SYNCRSY Command Instance Variables

SECMGR SECMGR SECMGR
Instance Variable Level 5 Level 6 Level 7___

Rsynctyp (resync type) Required Required Required___
Uowid (unit of work identifier) Optional Optional Optional___
Uowstate (unit of work state) Optional Optional Optional___�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Table A-99 Command Objects for SYNCRSY

SECMGR SECMGR SECMGR
Command Object Level 5 Level 6 Level 7___

Synclog (sync point log) Optional Optional Optional___�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

650 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The SYNCRRD Reply Object

Table A-100 SYNCRRD Reply Object Instance Variables

SECMGR SECMGR SECMGR
Instance Variable Level 5 Level 6 Level 7___

Rsynctyp (resync type) Required Required Required___
Uowid (unit of work identifier) Optional Optional Optional___
Uowstate (unit of work state) Optional Optional Optional___�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Table A-101 Reply Objects for SYNCRRD

SECMGR SECMGR SECMGR
Reply Object Level 5 Level 6 Level 7___

Synclog (sync point log) Optional Optional Optional___�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Part 3: Network Protocols 651

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The SYNTAXRM Reply Message

Table A-102 SYNTAXRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Codpnt (codepoint attribute) Optional Optional Optional Optional Optional___
Rdbnam (relational database name) Optional Optional Optional Optional Optional___
Srvdgn (server diagnostic area) Optional Optional Optional Optional Optional___
Svrcod (severity code) Required Required Required Required Required___
Synerrcd (syntax error code) Required Required Required Required Required___�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

652 DRDA, Version 3, Volume 1

DDM Managers, Commands, and Reply Messages DDM Commands and Reply Messages

The TRGNSPRM Reply Message

Table A-103 TRGNSPRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Rdbnam (relational database name) Optional Optional Optional Optional Optional___
Srvdgn (server diagnostic area) Optional Optional Optional Optional Optional___
Svrcod (severity code) Required Required Required Required Required___�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Part 3: Network Protocols 653

DDM Commands and Reply Messages DDM Managers, Commands, and Reply Messages

The VALNSPRM Reply Message

Table A-104 VALNSPRM Reply Message Instance Variables

SQLAM SQLAM SQLAM SQLAM SQLAM
Instance Variable Level 3 Level 4 Level 5 Level 6 Level 7___

Codpnt (codepoint attribute) Required Required Required Required Required___
Rdbnam (relational database name) Optional Optional Optional Optional Optional___
Srvdgn (server diagnostic area) Optional Optional Optional Optional Optional___
Svrcod (severity code) Required Required Required Required Required___��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

654 DRDA, Version 3, Volume 1

Appendix B

Scrollable Cursor Overview

This appendix provides an overview of scrollable cursors as supported in DRDA. It explains the
basic concepts, and the key elements and their behavior, required to understand how scrollable
cursors operate in DRDA. It concludes with two examples.

B.1 Key Definitions
result table

The set of rows specified for the SELECT statement of a cursor is called the result table for
the cursor, or simply, the result table.

scrollable cursor
A scrollable cursor is one that permits arbitrary navigation through the rows of the result
table for a cursor. In contrast, a non-scrollable cursor is one that is forward-moving only and
permits the rows of the result table to be fetched once and once only, in a predetermined
order.

DRDA support for scrollable cursors is based on the ANSI SQL99 standard, though it includes
some extensions specific to DRDA.

B.2 Attributes

B.2.1 Scrollability Attribute

Whether the cursor is scrollable or not is specified by the application at the time the cursor is
defined. The application server returns the cursor’s scrollability attribute with the OPNQRYRM
when the cursor is opened at the application server.

For a result set defined as scrollable by a stored procedure, the defined scrollability attribute will
be overridden by the application server if the application requester is at an SQLAM level less
than 7. The application server does not return any scrolling attributes for the result set. Thus, to
the application requester and to the calling application, the result set is non-scrollable. This
behavior allows an application on a downlevel application requester to use stored procedures
whose result set definitions they do not necessarily know or control.

For more information, see Section B.9 (on page 662). See also the QRYATTSCR term in the DDM
Reference.

B.2.2 Sensitivity Attribute

SQLAM Level 7 and above supports three kinds sensitivity for scrollable cursors:

• Insensitive

This specifies that the cursor does not have sensitivity to inserts, updates, or deletes made to
the rows underlying the result table once the result table for the cursor is materialized.
Consequently, the size of the result table, the order of the rows, and the values for each row
do not change after the cursor is opened. Additionally, the cursor is read-only.

Part 3: Network Protocols 655

Attributes Scrollable Cursor Overview

• Sensitive Static

This specifies that the cursor has sensitivity to changes made to the database after the result
table for the cursor is materialized, and that the result table has a static size and ordering.

— The cursor is always immediately sensitive to changes made using the cursor (that is,
positioned updates and deletes using the same cursor). Whether changes made outside
the cursor are visible to the cursor depends on the type of FETCH that is used (see Section
B.3 (on page 657)).

— The size of the result table does not grow after the cursor is opened and the rows are
materialized. The order of the rows is established as the result table is materialized.

To present a static size and static ordering for the result table, the relational database may
return a hole to the application that fetches an updated or deleted row in the result table.
A hole in the result table occurs when there is a difference between the result table and
the underlying base table. No data can be fetched from a hole, and the hole is manifested
in the QRYDTA as a row consisting of a non-null SQLCARD and a null data group.

When the current value of a row no longer satisfies the select-statement or statement-name,
that row is visible in the cursor as an ‘‘update hole’’, where the SQLCARD has a warning
SQLSTATE of 02502.

When a row of the result table is deleted from the underlying base table, the row is visible
in the cursor as a ‘‘delete hole’’, where the SQLCARD has a warning SQLSTATE of 02502.

• Sensitive Dynamic

This specifies that the cursor has sensitivity to changes made to the database after the result
table for the cursor is materialized and that the result table has a dynamic size and ordering.

— The cursor is always immediately sensitive to changes made using the cursor (that is,
positioned updates and deletes using the same cursor) and is always sensitive to changes
made outside the cursor.

— The size of the result table may change after the cursor is opened as rows are inserted into
the underlying table, and the order of the rows may change. Holes do not occur for a
sensitive dynamic cursor.

The sensitivity of a scrollable cursor is specified by the application when the cursor is defined.
This is known as the defined sensitivity of the scrollable cursor. The relational database engine
determines the effective sensitivity of the scrollable cursor when opening the cursor. The
effective sensitivity may or may not be the same as the defined sensitivity. For example, a cursor
defined as sensitive dynamic may actually have an effective sensitivity of insensitive because of
the way in which the cursor is materialized.

The application server returns the cursor’s effective sensitivity attribute with the OPNQRYRM
when the cursor is opened at the application server.

See also the QRYATTSNS term in the DDM Reference.

656 DRDA, Version 3, Volume 1

Scrollable Cursor Overview Attributes

B.2.3 Updatability Attribute

A scrollable cursor may or may not be updatable. If it is updatable, then fetched rows in the
result table can be modified and can cause the base table of the cursor to be modified as well.
Whether a scrollable cursor is updatable is not solely dependent on how the cursor is defined,
but can be influenced by both the SELECT statement and by the cursor sensitivity option
specified when the cursor is defined. Thus, the defined and effective updatability may be
different.

The application server returns the cursor’s effective updatability attribute with the OPNQRYRM
when the cursor is opened at the application server. The value returned indicates whether the
cursor is updatable and, if updatable, whether the type of updatability (for example, if updatable
via DELETE statements only or via both DELETE and UPDATE statements).

See also the QRYATTUPD term in the DDM Reference.

B.3 Operations
Because a scrollable cursor allows for both forward and backward movement through the result
table, a FETCH operation may include information on how to navigate through the result table.
SQLAM Level 7 and above provides for the following navigational control on the CNTQRY
command.

• Scroll Orientation

This specifies the desired placement of the cursor as part of a FETCH statement. Scroll
orientation may be used in conjunction with a row number or may be used independently.
For example, a scroll orientation of AFTER places the cursor after the last row in the result
table.

• Row Number

This specifies the desired row in the result table, when used in conjunction with either a
RELATIVE or ABSOLUTE scroll orientation, and places the cursor at a specific row number,
either relative to the current cursor position or with respect to the beginning or end of the
result table.

• Return Data Option

This specifies whether the FETCH returns data. If no data is returned, the FETCH is called a
positioning FETCH and results only in changing the cursor position according to the scroll
orientation and row number, if specified.

For a sensitive dynamic scrollable cursor, all FETCH requests are sensitive to changes made by
this cursor, to changes made by other cursors in the same application process, and to committed
changes made by other application processes.

For a sensitive static scrollable cursor, a given FETCH request is always immediately sensitive to
changes made through the cursor. To control whether the FETCH request must also reflect the
committed updates and deletes made by all other processes, the application may also include
the desired sensitivity to others’ changes on the FETCH request. SQLAM Level 7 and above
provide for the following row sensitivity control on the CNTQRY command.

• Sensitive

This indicates that the FETCH is to be sensitive to all updates and deletes made by this
cursor and by committed updates and deletes by all other application processes.

Part 3: Network Protocols 657

Operations Scrollable Cursor Overview

• Insensitive

This indicates that the FETCH is not to be sensitive to updates and deletes made outside this
cursor. However, it is sensitive to all explicit updates and deletes made by this cursor.

DRDA does not validate the row sensitivity specified on a CNTQRY command. The relational
database determines whether a row sensitivity is valid for a given FETCH request, given the
effective sensitivity attribute of the cursor.

See also the QRYSCRORN, QRYROWNBR, and QRYROWSNS terms in the DDM Reference.

B.4 Choice of Query Protocol
SQLAM Level 7 and above supports scrollable cursors via both the Fixed Row Query Protocol
and the Limited Block Query Protocol. An application server at SQLAM Level 7 or higher selects
the Fixed Row Query Protocol for a scrollable cursor if the cursor is updatable, if the scrollable
cursor is required to be sensitive to changes with each FETCH request, or if the application
requester forced the choice of the Fixed Row Query Protocol. Otherwise, the application server
may select the Limited Block Query Protocol if the cursor does not perform updates, if the
scrollable cursor is not required to be sensitive to changes with each FETCH request, and if the
application requester did not force the choice of the Fixed Row Query Protocol. In particular, the
application server must select the Fixed Row Query Protocol for sensitive dynamic scrollable
cursors.

See the QRYBLKCTL term in the DDM Reference for more information.

For a scrollable cursor using the Fixed Row Query Protocol, the cursor is accessed by the
application requester in a non-scrollable fashion if no scrolling parameters are specified on the
OPNQRY and CNTQRY commands. Such an OPNQRY command retrieves no rows and each
CNTQRY results in a FETCH NEXT operation at the application server that returns just one row
(as for standard Fixed Row Query Protocol). On the other hand, the scrollable cursor is accessed
in a scrollable fashion when the application requester specifies one or more of the scrolling
operations that control the navigation and sensitivity of the FETCH request. Each such
CNTQRY command returns only the one row that satisfies the navigational and sensitivity
requirements of the FETCH request.

For a scrollable cursor using the Limited Block Query Protocol, the cursor is accessed by the
application requester in a non-scrollable fashion if no scrolling parameters are specified on the
OPNQRY and CNTQRY commands. Such an OPNQRY command retrieves an architecturally-
fixed number of rows (64, as defined by DRDA Query Data Transfer Protocol rule QP471) while
each such CNTQRY fetches rows according to the standard Limited Block Query Protocol. On
the other hand, the scrollable cursor may be accessed in a scrollable fashion only when the
QRYROWSET parameter is specified on the CNTQRY command. An application requester may
not mix scrollable and non-scrollable behavior for such a cursor.

71. This value is an arbitrarily-chosen architectural constant that limits the number of rows returned on the OPNQRY request for a
scrollable cursor. It allows the application server to create an implicit rowset of a known size in case the application requester
decides to use the cursor in a scrollable fashion with subsequent CNTQRY requests. It can be overridden by the application
requester by means of the QRYROWSET parameter on the OPNQRY request for scrollable cursors. It has no effect on subsequent
CNTQRY requests if the application requester does not access the cursor in a scrollable manner.

658 DRDA, Version 3, Volume 1

Scrollable Cursor Overview DRDA Rowsets

B.5 DRDA Rowsets
DRDA can block the rows returned by a specified number of single row fetches into a single
DRDA rowset to be returned to the application. Because the rows are retrieved by a single
command, the operation is more network-efficient. The number of rows for the DRDA rowset is
specified by the qryrowset parameter on OPNQRY, CNTQRY, or EXCSQLSTT for a non-rowset
cursor.

The requester specifies the qryrowset parameter (say, it has a value of S) on the OPNQRY,
CNTQRY, or EXCSQLSTT command when it wishes to retrieve a DRDA rowset, consisting of no
more than S rows of the result table for the cursor or for the result sets returned by a stored
procedure call. A requester retrieves a DRDA rowset of rows either when accessing a cursor in a
scrollable manner in order to get the performance benefits of query blocking while taking into
account the requirements of the scrolling behavior, or when accessing a read-only non-scrollable
cursor in order to limit the number of rows to be returned with the command when block
fetching is in effect.

The qryrowset parameter may be specified for non-dynamic scrollable cursors and may be
specified for either the Fixed Row Query Protocol or the Limited Block Query Protocol.

The qryrowset parameter may also be specified for non-scrollable and non-rowset cursors using
the Limited Block Query Protocol.

The query blocks containing the DRDA rowset adhere to the rules for Limited Block Query
Protocol, even though the query protocol in effect for the cursor is Fixed Row Protocol. While a
Fixed Row Protocol cursor may access the cursor in a scrollable manner with or without the
qryrowset parameter, the qryrowset parameter is required for Limited Block cursors to indicate
that the cursor will be used in a scrollable manner or for Fixed Row rowset cursors.

When a qryrowset parameter is specified on the OPNQRY command, the first row in the DRDA
rowset returned by the application server consists of the first row in the result table, followed by
the next S−1 rows in sequence (FETCH NEXT) in the result table. When a qryrowset parameter is
specified on a CNTQRY command, the first row in the DRDA rowset consists of the row
identified by the navigational parameters on the CNTQRY command, followed by the next S−1
rows in sequence (FETCH NEXT) in the result table.

The DRDA rowset is said to be ‘‘completed’’ when the requested number of rows (S) are fetched
or when a FETCH request at the application server results in a negative SQLSTATE or an
SQLSTATE of 02000, or when the CNTQRY command identifies a positioning FETCH. The intent
of a positioning FETCH is to change the position of the cursor but explicitly does not request the
return of return data (for example, FETCH AFTER or a FETCH request that does not have a fetch
target list). Otherwise, the DRDA rowset is said to be ‘‘incomplete’’ and it is the application
requester’s responsibility to dispose of the incomplete DRDA rowset by either completing the
DRDA rowset or resetting the DRDA rowset. Refer to Rule QP4 in Section 7.21.3 (on page 441)
for the responsibilities of the application requester and application server with respect to
incomplete DRDA rowsets.

The effect of a command that returns a DRDA rowset is equivalent to performing the specified
number of single-row fetches across the network, but since they are retrieved by a single
command, the operation is more network-efficient. By fetching a DRDA rowset, the application
requester gets the benefit of blockfetching for both updatable and read-only scrollable cursors.
On the other hand, for non-scrollable cursors, the application requester improves network
performance by allowing greater control of the number of rows that can be returned with each
command of a block-fetched cursor. DRDA does not define the manner in which the application
requester determines the DRDA rowset value to be specified.

Part 3: Network Protocols 659

DRDA Rowsets Scrollable Cursor Overview

See also the OPNQRY, CNTQRY, and QRYROWSET terms in the DDM Reference for more
information.

B.6 Cursor Position Management
When an OPNQRY or CNTQRY command with a QRYROWSET parameter is executed for a
scrollable cursor, the application server fetches rows in advance of the application’s fetching
those rows. Thus, the cursor position known to the application may be different from the cursor
position known to the application server. It is the responsibility of the application requester to
ensure that the application requests that depend on cursor position are performed correctly in
one of two ways:

1. Forcing equivalence of the cursor position.

The application requester ensures that the application’s cursor position is the same as the
application server’s cursor position. This occurs naturally when each application FETCH
request causes only one FETCH operation at the application server. If the application
requester asks for more than one row by means of the QRYROWSET parameter, then the
application requester must ensure that the application fetches all rows returned by the
application server before it allows the application to perform any other operations on the
cursor.

The application requester may safely choose this method both for updatable cursors where
the application requires correct knowledge of the server’s cursor position to make updates
through the cursor and for read-only cursors.

If the application requester chooses this approach and also specifies a QRYROWSET
parameter, then it would probably want to complete any incomplete rowsets it receives
from the application server since it will be returning all retrieved rows to the application.

2. Mapping differences in the cursor position.

If the application requester does not force the equivalence of the cursor position, then it
must map the differences in the application’s and the target server’s cursor positions so
that the proper row is fetched or updated. For example, suppose an application issues a
fetch request that causes the application requester to send a CNTQRY command to the
application server that requests a rowset. Say, a complete rowset is returned to the
application requester consisting of row N to row N+S. Then, the current cursor position
on the application server is N+S, but after the application requester returns row N to the
application, the current cursor position at the application is N. An UPDATE request
through the cursor at this point would reference the wrong row.

Similarly, a FETCH RELATIVE R request, where R>S, that is sent as a CNTQRY with a
RELATIVE R specification would fetch row N+S+R . To accurately reflect the application’s
desires, the application requester could instead send a CNTQRY request specifying
ABSOLUTE N+R . Note, in this example, that the application requester discards the
unread rows in the previous rowset to fetch a row not in the received QRYDTAs.

The application requester may not choose this method for updatable cursors since this
method does not ensure updates through the cursor are positioned correctly relative to the
server’s cursor position. The application requester may safely choose this method only for
read-only cursors.

If the application requester chooses this approach and also specifies a QRYROWSET
parameter, then it cannot ensure that all retrieved rows will be returned to the application.
Thus, some retrieved rows may be discarded without ever being passed to the application.

660 DRDA, Version 3, Volume 1

Scrollable Cursor Overview Cursor Position Management

If a row is to be discarded, then the application requester is responsible for discarding all
the data associated with the row, including any unreceived EXTDTA DSSs containing LOB
data. Note that since the RTNEXTDTA option is required to be RTNEXTALL in this case,
there is no pending LOB data at the server. Generally speaking, the application requester
would probably want to reset any incomplete rowsets in order to pass the navigational
information required to FETCH the row desired by the application.

Since sensitive dynamic scrollable cursors have dynamically changing membership and
ordering within the result table, it is not possible to accurately derive absolute row
numbers as updates are made to the cursor. Thus, it is not possible to manage cursor
positions as described above when a rowset is fetched. If a QRYROWSET value is specified
on an OPNQRY for a sensitive dynamic scrollable cursor, the application server ignores it;
if it is specified on a CNTQRY command, the application server rejects the command with
a PRCCNVRM.

When an application requester accesses a cursor without specifying any QRYROWSET
values on the OPNQRY and CNTQRY commands, it does not need to manage the cursor
position since it either intends to access the cursor in a non-scrollable manner or the
application requester will never generate any cursor position differences between the
application and the relational database at the application server.

B.7 Cursor Position Rules
When the QRYROWSET parameter is specified, cursor position management is required. In the
case of the rows returned with the OPNQRY command for a scrollable cursor using the Limited
Block Query Protocol, where no rowset is specified, the rows returned are considered to be an
implicit rowset if the cursor will be used in a scrollable manner (that is, each subsequent
CNTQRY command includes a QRYROWSET value). Cursor position management is required
for the implicit rowset in this case as well. To accommodate the requirements of cursor position
management, the application requester must always be able to determine the cursor position of
each row returned in a rowset.

Thus, the following cursor position rules apply:

• After a scrollable cursor is opened, the cursor position is before the first row of the result
table. Thus, for example, the first row in an implicit or explicit rowset returned with an
OPNQRY command has cursor position 1.

• When a fetch request navigating forward needs to fetch beyond the end of the result table,
the application server returns an SQLSTATE of 02000 and the cursor position is set after the
last row of the result table.

• When a fetch request navigating backwards needs to fetch beyond the start of the result
table, the application server returns an SQLSTATE of 02000 and the cursor position is set
before the first row of the result table.

• When the current cursor position is not on a row of the result table (the row may be a hole), a
fetch request for the current row causes the application server to return an SQLSTATE of
02000 and the cursor position is not changed.

• When a query scroll orientation of QRYSCRBEF or QRYSCRAFT is executed, the application
server returns an SQLSTATE of 00000.

Part 3: Network Protocols 661

Cursor Disposition Scrollable Cursor Overview

B.8 Cursor Disposition
A scrollable cursor is not terminated by an SQLSTATE of 02000. A CLSQRY command is
required to close the cursor, unless a terminating error occurs while the cursor is being accessed.
If a terminating error occurs, the ENDQRYRM is returned according to the rules for the query
protocol in effect.

B.9 Scrolling for Stored Procedure Result Sets
A stored procedure may define a result set to be scrollable. The OPNQRYRM for the result set
contains the cursor’s scrollability, sensitivity, and updatability attributes. Both the stored
procedure and the calling application may scroll all the rows in the result table.

If the stored procedure accesses the cursor for the result set, the cursor position is unchanged
when the stored procedure completes. Because of the requirements of the application requester
for managing the cursor position, DRDA imposes a restriction: if the result set is not positioned
before the first row of the result table when the stored procedure completes, then the stored
procedure call statement will fail with an SQLSTATE of 560B1. This ensures that the first row in
the implicit rowset returned is row 1.

As described in Section B.2.1 (on page 655), the application server reverts the scrollable result set
to non-scrollable if the application is calling the stored procedure from a downlevel application
requester. In such a case, the stored procedure may access the cursor in a scrollable manner but
the application is restricted to non-scrolling access to the result set. Such a result set is not
restricted to being positioned before the first row of the result table when the stored procedure
completes.

B.10 Downlevel Requesters
If a cursor is scrollable, then the application server first checks that the application requester
supports scrollable cursors before returning an OPNQRYRM. If the application requester is not
at SQLAM Level 7 or higher, then the server fails the OPNQRY command with a SQLSTATE of
560B2. The cursor, which has been successfully opened by the relational database is closed.

If any result sets returned by a stored procedure are scrollable result sets, then the application
server also checks that the application requester supports scrollable cursors before responding to
the EXCSQLSTT. If the application requester is not at SQLAM Level 7 or higher, then the server
acts according to whether it is the target server or an intermediate server. The target application
server reverts all scrollable result sets to non-scrolling result sets while an intermediate server
fails the stored procedure call with an SQLSTATE of 560B3. If the stored procedure call is failed,
all result sets are closed.

662 DRDA, Version 3, Volume 1

Scrollable Cursor Overview Intermediate Data Server Processing

B.11 Intermediate Data Server Processing
If a QRYROWSET value is specified by an application requester, each intermediate data server is
responsible for returning the requisite number of rows (pushing the rows) up to the number
determined by the extra query block limits. Only the application requester site is responsible for
managing the differences in cursor position. Each intermediate data server allows the upstream
site to pull the correct number of rows, but manages the QRYROWSET value as follows to
ensure the correct number of rows is pushed.

B.11.1 Example: qryrstblk Not Specified

Suppose a CNTQRY QRYROWSET value of S is received at an intermediate data server.
Suppose that the downstream site pushes S1<S number of rows because of extra query block
limits. Finally, suppose this data server site only pushes S2<S1 number of rows to the upstream
site because of its extra query block limits. If a subsequent CNTQRY request is received with a
QRYROWSET value of T (and the qryrstblk parameter is not specified), then the data server must
pull the S1−S2 number of pending rows before forwarding the new rowset value of T−(S1−S2)
to the downstream site.

In Figure B-1 (on page 664), S=70. In the typical scenario, it is expected that all 70 rows will be
returned in one query block through all the intermediate servers, so that only one CNTQRY is
required for a complete rowset. This is an example to show the dynamics of the flow in an
extreme case.

1. The CNTQRY request is passed through the intermediate sites to the target server, DS−2.

2. In this case, the target server can return all 70 requested rows to the upstream intermediate
server, DS−1. The query block size and extra query block limits allow DS−1 to return only
30 of the rows to the application server. This means that 40 rows are pending at DS−1. The
application server, in turn, is restricted its extra query block limit to returning only 20 rows
to the application requester. This means that 10 rows are pending at the application server.

3. The application requester returns all 20 rows to the application and now requests another
CNTQRY for the remaining rows (50). The application server consumes the 10 rows
pending and sends a CNTQRY for the 40 rows required to complete the rowset of size 50.
DS−1 uses the pending 40 rows to satisfy this request.

4. Again, DS−1 can only return 30 rows to the application server. This leaves 10 rows
pending at DS−1. The application server, in turn can only return 20 rows of the 40 rows
obtained from DS−1. This leave 20 rows pending at the application server.

5. The application requester returns the 20 rows to the application, for a total of 40 rows. The
application requester requests the remaining 30 rows from the application server. The
application server consumes the 20 pending rows and requests 10 more rows from DS−1.

6. Those 10 rows are already pending and are returned by DS−1. The application server can
only return 20 rows to the application requester, which leaves 10 rows pending at the
application server.

7. Again, the 20 rows are returned to the application, for a total of 60 rows. The application
requester requests the remaining 10 rows from the application server.

8. Those 10 rows are already pending and are returned by the application server. The
application requester returns the 10 rows to the application and that completes the rowset.

Part 3: Network Protocols 663

Intermediate Data Server Processing Scrollable Cursor Overview

AR AS DS-1 DS-2

70

20

10

1.

2.

3.

4.

5.

6.

7.

8.
10

10

10

10

30

20

50

20

20

70

10

40

40

70

30

10

30

70

Figure B-1 Scrollable Cursors: Example with qryrstblk Not Specified

B.11.2 Example: qryrstblk Set to TRUE

Suppose a CNTQRY QRYROWSET value of S is received at an intermediate data server.
Suppose that the downstream site pushes S1<S number of rows because of extra query block
limits. Finally, suppose this data server site only pushes S2<S1 number of rows to the upstream
site because of its extra query block limits. If a subsequent CNTQRY request is received with a
QRYROWSET value of T and a qryrstblk parameter of TRUE, then the data server discards the
pending rows before forwarding the CNTQRY with the QRYROWSET value of T and qryrstblk of
TRUE.

In Figure B-2 (on page 665), S=64. In the typical scenario, it is expected that all 64 rows will be
returned in one query block through all the intermediate servers, so that only one CNTQRY is
required for a complete rowset. This is an example to show the dynamics of the flow in an
extreme case.

1. The CNTQRY request is passed through the intermediate sites to the target server, DS−2.

2. In this case, the target server can return all 64 requested rows to the upstream intermediate
server, DS−1. The query block size and extra query block limits allow DS−1 to return only
24 of the rows to the application server. This means that 40 rows are pending at DS−1. The
application server, in turn, is restricted by its extra query block limit to returning only 14
rows to the application requester. This means that 10 rows are pending at the application
server.

3. The application requester returns some or all of the 14 rows to the application and now
determines that it needs to start another rowset, using the navigational information from
the application (rownbr). The application requester ensures that any pending rows are
discarded, any unreceived extra query blocks, and any unreceived LOB EXTDTA objects.
The application requester now sends another CNTQRY to the application requester
specifying a rowset size of 64, setting qryblkrst to TRUE, and passing the row number. The

664 DRDA, Version 3, Volume 1

Scrollable Cursor Overview Intermediate Data Server Processing

application server discards its pending rows, including pending extra query blocks and
pending EXTDTA objects. The application server forwards the request to DS−1 which also
discards unreceived and pending data from the previous rowset. DS−1 then forwards the
request to DS−2 which also discards unreceived and pending data from the previous
rowset. DS−2 then processes the CNTQRY request, issuing the first fetch according to the
navigational parameters on the command. The processing repeats as above.

AR AS DS-1 DS-2

64

14
1.

2.

3.

10

10 rows
discarded

40 rows
discarded

64, reset, rownbr 64, reset, rownbr 64, reset, rownbr

64

40

64

24 64

Figure B-2 Scrollable Cursors: Example with qryrstblk Not Specified

Part 3: Network Protocols 665

Scrollable Cursor Overview

666 DRDA, Version 3, Volume 1

Appendix C

Rowset Processing

C.1 Rowset Cursors72

A rowset cursor is a cursor defined such that more than one row can be returned for a single
fetch statement called multi-row fetch. Rowset cursors support multi-row fetch; rows are
fetched as an atomic operation allowing rowset positioning. With a rowset cursor, the cursor is
positioned on more than one row. Specifically, the cursor is positioned on the set of rows
fetched. Each row of the cursor position for a rowset cursor can be referenced in subsequent
positioned delete and update statements. A fetch statement for a rowset cursor specifies a
rowset-positioned fetch orientation clause, and can indicate the desired number of rows for the
SQL rowset (the set of rows returned by a fetch against a rowset cursor).

Rowset cursors ignore the qryrowset parameter on the OPNQRY and EXCSQLSTT command.
The qryrowset parameter does not have to be specified on the CNTQRY for a rowset cursor. If a
qryrowset value is not specified on the CNTQRY when fetching from a rowset cursor, then a
single-row fetch is being performed. Rowset cursors must use the Fixed Row Query Protocol.
When processing a rowset cursor, flexible blocking is used. See Section 7.21.1.1 (on page 433) for
detail on flexible blocking.

C.2 SQL Rowsets
An SQL rowset contains the answer set (consisting of one or more rows) of a multi-row fetch
against a rowset cursor as defined above. Only one SQL rowset can be returned as the result of a
multi-row fetch. For multi-row fetch, the requester must provide a statement-level SQLCA to the
application. For rowset cursors, the server returns the statement-level SQLCA for the SQL
rowset for each QRYDTA that contains the row or rows in the SQL rowset. The row-level
SQLCAs in the QRYDTA are set to null because the fetch for a rowset cursor is an atomic
operation and only one SQLCA is returned to the application.

In contrast, a non-rowset cursor is a cursor defined such that the cursor is positioned on a single
row, and all cursor operations occur on a single row only. Although only single row fetches can
be performed on non-rowset cursors, a DRDA rowset can be returned for a non-rowset cursor.
See Appendix B (on page 655) for more details on non-rowset cursors and DRDA rowsets.

SQL rowset processing offers performance advantages similar to DRDA rowset processing in
terms of network performance (as described in Appendix B), but also has the added benefit of
allowing subsequent operations to operate on the SQL rowset and take advantage of rowset
positioning.

72. The support in DRDA Level 5 supersedes the multi-row fetch defined in DRDA Level 2.

Part 3: Network Protocols 667

Rowset Processing

668 DRDA, Version 3, Volume 1

Appendix D

SQL Function Codes

Below are the SQL statement codes as defined in Section 18.1, <get diagnostics statement> of
ISO/IEC 9075-5: 1999:

ALLOCATE CURSOR 1 (one)
ALLOCATE DESCRIPTOR 2
ALTER DOMAIN 3
ALTER ROUTINE 17
ALTER TYPE 60
ALTER TABLE 4
CALL 7
CLOSE CURSOR 9
COMMIT WORK 11
CONNECT 13
CREATE ASSERTION 6
CREATE CHARACTER SET 8
CREATE COLLATION 10
CREATE DOMAIN 23
DEALLOCATE DESCRIPTOR 15
DEALLOCATE PREPARE 16
DECLARE CURSOR 101
DELETE CURSOR 18
DELETE WHERE 19
DESCRIBE 20
DISCONNECT 22
DROP ASSERTION 24
DROP CHARACTER SET 25
DROP COLLATION 26
DROP TYPE 35
DROP DOMAIN 27
DROP ROLE 29
DROP ROUTINE 30
DROP SCHEMA 31
DROP TABLE 32
DROP TRANSFORM 116
DROP TRANSLATION 33
DROP TRIGGER 34
DROP ORDERING 115
DROP VIEW 36
DYNAMIC CLOSE 37
DYNAMIC DELETE CURSOR 54
DYNAMIC DELETE CURSOR 38
DYNAMIC FETCH 39
DYNAMIC OPEN 40
DYNAMIC UPDATE CURSOR 42
DYNAMIC UPDATE CURSOR 55
EXECUTE IMMEDIATE 43
EXECUTE 44
FETCH 45

Part 3: Network Protocols 669

SQL Function Codes

FREE LOCATOR 98
GET DESCRIPTOR 47
HOLD LOCATOR 99
GRANT 48
GRANT ROLE 49
INSERT 50
OPEN 53
PREPARE 56
RELEASE SAVEPOINT 57
RETURN 58
REVOKE 59
SELECT 21
SELECT 41
SELECT CURSOR 85
SET CATALOG 66
SET DESCRIPTOR 70
SET CURRENT_PATH 69
SET NAMES 72
SET SCHEMA 74
SET TRANSFORM GROUP 118

For server-specific function codes, refer to the server’s documentation if not defined in the above
list.

670 DRDA, Version 3, Volume 1

Appendix E

Failover Overview

DRDA provides two flavors of failover support, depending on whether the RDB is replicated or
not. When the RDB is not replicated, failover support may be provided through multiple servers.
When the RDB is replicated, DRDA allows the requester to reroute connections to another server
where the replica resides.

Single RDB with Multiple Servers

This is a setup where a collection of servers access a single RDB. A requester can connect to any
server within the collection and perform SQL operations on the same data concurrently. With
this setup, all servers operate in parallel to provide access to a single RDB for workload
balancing as well as for high availability. Connectivity and load information on each of the
servers are returned in the Server List (SRVLST) on the ACCRDBRM reply message at connect
time. For TCP/IP, all such servers share a common host name, even though they all have
different IP addresses. If one server becomes inaccessible, the requester can attempt to access the
RDB based on the connectivity information for another server in the collection as returned in the
SRVLST.

Resolution is required for any transaction that is indoubt after a communications failure. For
SYNCPTMGR-protected connections, the source SYNCPTMGR attempts to access the target
SYNCPTMGR using the network address contained in the SYNCLOG. Over TCP/IP, if the
target SYNCPTMGR is no longer accessible using the IP address contained in the SYNCLOG, the
source SYNCPTMGR can attempt to access the target SYNCPTMGR by resolving to a new IP
address from the host name provided in the SYNCLOG. For XAMGR-protected connections,
once a connection to the RDB has been reestablished through any server in the SRVLST
collection, the source XAMGR can retrieve a list of XIDs for prepared or heuristically completed
transactions from the target XAMGR. Such indoubt transactions are then resolved by the source
XAMGR.

Replicated RDB

In this environment, an RDB is replicated at one or more alternate server locations, each having
its own IP address and host name. DRDA does not architect how the RDB is replicated.
However, the replication must include the log, complete with information on any indoubt
transactions. At connect time, the Server List (SRVLST) on the ACCRDBRM reply message
provides connectivity information on alternate server locations for the RDB. The replicated RDB
at each alternate server location is unusable unless the RDB has failed over to that replica. How
RDB failover is effected is beyond the scope of DRDA and is therefore unarchitected.

If a database connection fails and the RDB has successfully failed over to a replica thereof at an
alternate server location, the requester will be able to reconnect to the RDB at the new location
using connectivity information which was returned previously in the SRVLST.

Since the log of the RDB must be replicated at an alternate server, any existing indoubt
transaction must also exist at the replicated RDB. However, resynchronization of an indoubt
transaction on a SYNCPTMGR-protected connection over TCP/IP may not be possible at the
alternate location because the SYNCLOG connectivity information (both IP address and host
name) may no longer be valid. Only after the RDB has failed back to the original server can
resynchronization of the indoubt transaction occur. For XAMGR-protected connections, once a
connection to the RDB has been reestablished through an alternate server, the source XAMGR
can retrieve a list of XIDs for prepared or heuristically completed transactions from the target

Part 3: Network Protocols 671

Failover Overview

XAMGR. Such indoubt transactions are then resolved by the source XAMGR.

Restoration of Execution Environment After Failover

When the requester accesses an RDB in either failover environment, whenever a special register
setting gets updated, the requester can request the server to return one or more SQLSTT reply
data objects, each containing an SQL SET statement for any special register that has had its
setting modified on the current connection. The requester can caches these statements for use
later when it needs to reestablish a connection to the RDB. Once the connection is reestablished,
the requester should flow an EXCSQLSET command to the server along with the SQL SET
statements which were returned earlier should it wish to restore the execution environment for
the application.

672 DRDA, Version 3, Volume 1

Glossary

This glossary defines terms as they are used for DRDA. If a term is not included here, see the
other references listed in Referenced Documents (on page xxv) about that topic.

alert
An error message sent to the system services control point (SSCP) at the host system.

API
Application Programming Interface.

Application Programming Interface (API)
The interface that application programs use to request services from some program such as
a DBMS.

application requester (AR)
The source of a request to a remote relational database management system (DBMS).

application server (AS)
The target of a request from an application requester. The DBMS at the application server
site provides the data.

application support protocol
The protocol that connects application requesters and application servers.

AR
Application Requester.

AS
Application Server.

bind
In DRDA, the process by which the SQL statements in an application program are made
known to a DBMS over Application Support Protocol flows. During a bind, output from a
precompiler or preprocessor is converted to a control structure called a package.

CCSID
Coded Character Set Identifier.

CDRA
Character Data Representation Architecture. The architecture that defines CCSID values to
identify the codes (code points) used to represent characters, and the (character data)
conversion of these codes, as needed, to preserve the characters and their meanings.

Coded Character Set Identifier (CCSID)
A 16-bit number identifying a specific set of encoding scheme identifiers, character set
identifiers, code page identifiers, and other relevant information that uniquely identifies the
coded graphic character representation used.

commit on return
An attribute of a stored procedure definition indicating that the transaction is to be
committed immediately upon successful (that is, no negative SQLCODE) return from the
stored procedure.

connectivity
A technology that enables different systems to communicate with each other.

Part 3: Network Protocols 673

Glossary

conversation
A logical connection between two programs over an LU type 6.2 session that allows them to
communicate with each other while processing a transaction.

data integrity

1. Within the scope of a unit of work, either all changes to the database management
systems are completed or none of them are. The set of change operations are
considered an integral set.

2. The condition that exists as long as accidental or intentional destruction, alteration, or
loss of data does not occur.

database-directed distributed unit of work
A variant of distributed unit of work in which a user or application directs SQL statements
to a targeted DBMS, which then directs the SQL statement, if needed, to another DBMS for
execution at the DBMS. As in distributed unit of work, the user or application can, within a
single unit of work, read and update data on multiple DBMSs. Each SQL statement may
access only one DBMS.

Database Management System (DBMS)
An integrated set of computer programs that collectively provide all of the capabilities
required for centralized management, organization, and control of access to a database that
is shared by many users.

database partition
A part of the database that consists of its own user data, indexes, configuration files, and
transaction logs. Sometimes called a node or database node. See partitioned database.

database server (DS)
The target of a request received from an application server.

database support protocol
The protocol used to connect application servers and database servers.

DBCS
Double-byte character set.

DBMS
Database management system.

DCE
Distributed Computing Environment

DDM
Distributed Data Management Architecture. The architecture that allows an application
program to work on data that resides in a remote system. The data may be in files or in
relational databases. DRDA is built on the DDM architecture.

Distributed Computing Environment (DCE)
The name of the distributed environment developed by the Open Software Foundation.
DCE is composed of common services required to provide an open distributed computing
environment.

distributed request
An extension of the distributed unit of work method of accessing distributed relational data
in which each SQL statement may access data located at several different systems. This
method supports join and union operations that cross system boundaries and inserts of data
selected from other sites.

674 DRDA, Version 3, Volume 1

Glossary

distributed unit of work
A method of accessing distributed relational data in which a user or application can, within
a single unit of work, read and update data on multiple DBMSs. The user or application
directs each SQL statement to a particular DBMS for execution at that DBMS. Each SQL
statement may access only one DBMS.

double-byte character set (DBCS)
A character set, such as a set of Japanese ideographs, that requires two-byte codepoints to
identify the characters.

DRDA
Distributed Relational Database Architecture. A connection protocol for distributed
relational database processing. DRDA comprises protocols for communication between an
application and a remote database, and communications between databases. DRDA
provides the connections for remote and distributed processing.

DRDA Connection
A connection between an application requester and application server for the purposes of
performing DRDA requests. A DRDA connection generically includes any other
connections that are required to allow an application requester and application server to
communicate (for example, network connection, SQL connection, and so on). DRDA is
sometimes qualified with a numeric value (that is, 1, 2, and so on) to indicate the connection
supports that level of DRDA.

DS
Database server.

dynamic SQL
SQL statements that are prepared and executed within a program while the program is
executing. In dynamic SQL, the SQL source is contained in host language variables rather
than being coded in the application program. The SQL statement might change several
times during the program’s execution.

execution
The process of carrying out an instruction or instructions of a computer program by a
computer.

execution thread
A process or task that provides for the execution of a sequence of operations. One operation
occurs at a time. Operations are single threaded. Commonly, resources (such as locks) are
associated with execution threads, and the thread becomes the anchor point for managing
such resources.

Extended Privilege Attribute Certificate (EPAC)
A DCE construct that contains Extended Registry Attributes in addition to the principal’s
identity and group memberships.

Extended Registry Attribute (ERA)
A user-defined attribute in the DCE Security Registry. Each ERA has a schema entry that is
the data dictionary entry defining the attribute type. Instances of the attribute containing
values can be attached to principal, group, organization, or policy nodes in the DCE
Security Registry database.

flow
The passing of a message from one process to another. The passing of messages of a
particular type between processes. For example, DRDA flows are those that consist only of
messages described by DRDA as part of the DRDA protocols.

Part 3: Network Protocols 675

Glossary

FD:OCA
Formatted Data Object Content Architecture. An architected collection of constructs used to
interchange formatted data.

GSS-API
Generic Security Services-Application Programming Interface. A programming interface for
accessing generic security services. GSS-API is available in DCE for utilizing DCE security
outside of RPC.

host variable
In an application program, a program variable referenced by SQL statements.

instantiate
To create an instance of something.

LID
Local identifier

like
Two or more similar or identical operating environments. For example, like distribution is
distribution between two OS/2 database managers with compatible server attribute levels.

local identifier (LID)
An identifier or short label that is mapped by the environment to a named resource.

logical unit (LU)
A port through which an end user accesses the SNA network in order to communicate with
another end user and through which the end user accesses the functions provided by
system services control points (SSCP).

logical unit of work (LUW)
The work that occurs between the start of a transaction and commit or rollback and between
commit and rollback actions after that. It defines the set of operations that must be
considered part of an integral set. See data integrity.

logical unit-of-work identifier (LUWID)
A name—consisting of a fully-qualified LU network name, an LUW instance number, and
an LUW sequence number—that uniquely identifies a logical unit of work within a network.

Logical Unit type 6.2 (LU 6.2)
The SNA logical unit type that supports general communication between programs in a
distributed processing environment.

LU
Logical unit.

LU 6.2
Logical Unit type 6.2.

LUW
Logical unit of work.

LUWID
Logical unit of work identifier.

MBCS
Mixed-byte character set.

mixed-byte character set (MBCS)
A character set containing a mixture of characters from single byte and double byte

676 DRDA, Version 3, Volume 1

Glossary

character sets.

MSA
SNA Management Services Architecture. The architecture that provides services to assist in
the management of SNA networks.

mutual authentication
The name of the authentication process where the server authenticates the client and the
client authenticates the server.

network connection
A logical connection between two endpoints in a network. A network connection allows the
two endpoints to communicate.

package
The control structure produced when the SQL statements in an application program are
bound to a relational DBMS. The DBMS uses the control structure to process SQL
statements encountered during statement execution.

partitioned database
A database with two or more database partitions. Data in user tables can be located in one
or more database partitions. When a table is on multiple partitions, some of its rows are
stored in one partition and others are stored in other partitions. See database partition.

plan
A form of package where several programs’ SQL statements are collected together during
bind to create a plan. DRDA does not support the concept of plan.

port
A term used in TCP/IP that specifies the portion of a socket that identifies the logical input
or output channel associated with a process.

principal
An entity whose identity can be authenticated. In terms of DRDA and DCE, this would be
the end user initiating a database request.

program preparation process
That process, usually involving programmers, whereby a program is written, possibly
precompiled, compiled, possibly link-edited, and bound. Thus, the program is made
available for execution. This process and the tools available to assist in this process vary
greatly among the various systems that may support DRDA.

protected conversation
A protected conversation is an LU 6.2 conversation that supports two-phase commit
protocols for resource recovery.

protected network connection
A network connection that is supported by protocols that allow for coordinated resource
recovery (for example, two-phase commit protocols).

protected resource
A resource that is updated in a synchronized manner during resource recovery processing.

protocol
The rules governing the functions of a communication system that must be followed if
communication is to be achieved.

RDB
Relational database. All the data that can be accessed via RDB_NAME. For example, a

Part 3: Network Protocols 677

Glossary

catalog and all the data described therein, or for OS/400, all collections with their associated
catalogs as well as all other database libraries on a particular system.

RDB_NAME
The DRDA globally unique name for an RDB.

relational data
Data stored in a relational database management system.

remote unit of work
The form of SQL distributed processing where the application is on a system different from
the RDB. A single application server services all remote unit of work requests within a
single unit of work.

replay
A security attack in which a perpetrator observes valid authentication information that is
passed between two partners, and then uses that information to gain access to one of the
partners by sending the exact same information.

resource recovery
The process that allows logical units of work to set new synchronization points, or to allow
a unit of work to roll back to the most recently established synchronization point. In LU 6.2
terms, this is sometimes known as synchronization point processing.

result set component
A set of reply objects returned in response to an EXCSQLSTT command for a stored
procedure call that returns one or more result sets. As a set, these objects identify a result set
returned by the stored procedure, describe the columns in the answer set returned by the
result set, and may also contain some or all of the data returned by the result set. The
objects that make up a result set component as well as the ordering of the objects in a result
set component are given in the Query Data Transfer Protocols rules (see QP5).

robust
A characteristic of a network protocol that provides functions required by DRDA. For
example, instant notification to both parties of a connection when failure occurs to either
party or the connection between them.

SBCS
Single-byte character set.

security context information
A string of bytes received from a GSS--API call (gss_init_sec_context() and
gss_accept_sec_context()) to be used to set up a security context between an application
requester and application server. Setting up a security context includes verifying the
partner. This is also known as identification and authentication.

semantics
The part of a construct’s description that describes the function of the construct.

single-byte character set (SBCS)
A character set that requires one-byte codepoints to identify the characters.

SNA
Systems Network Architecture.

socket
A term used in TCP/IP that specifies an address which specifically includes a port identifier;
that is, the concatenation of an Internet Address with a TCP port.

678 DRDA, Version 3, Volume 1

Glossary

SQL
Structured Query Language. A standardized language for defining and manipulating data
in a relational database.

SQL Connection
An SQL connection is a logical connection between an SQL application program and a
DBMS where the SQL application issues SQL calls to perform database functions.

SSCP
System services control point.

summary component
A set of reply objects returned in response to an EXCSQLSTT command for a stored
procedure call that returns one or more result sets. As a set, these objects give the
completion status of the stored procedure call, return the parameters, if any, and give
information about the result sets. The objects that make up the summary component as well
as the ordering of the objects in the summary component are given in the Query Data
Transfer Protocols rules (see QP5).

synchronization point (sync point)
The beginning or end of a unit of work. It is used as a reference point to which resources can
be restored if a failure occurs during the unit of work.

synchronization point manager
The component of an operating environment that coordinates commit and rollback
operations on protected resources.

system services control point (SSCP)
A focal point within an SNA network for managing the configuration, coordinating network
operator and problem determination requests, and providing directory services and other
session services for end users of a network.

Systems Network Architecture (SNA)
The description of the logical structure, formats, protocols, and operational sequences for
transmitting information units through and controlling the configuration and operation of
networks.

target program name (TPN)
The name by which a program participating in a network connection is known. Normally,
the initiator of a network connection will identify the name of the program it wishes to
connect to (see transaction program name).

TCP/IP
Transmission Control Protocol/Internet Protocol. An Internet standard transport protocol
that provides reliable, full duplex, stream service.

TP
Transaction program.

TPN
Target program name. See target program name, transaction program name, and well
known port.

transaction
See Logical Unit of Work

transaction component
A set of reply objects returned in response to an EXCSQLSTT command for a stored
procedure call that returns one or more result sets. As a set these objects give the transaction

Part 3: Network Protocols 679

Glossary

status of the stored procedure call. If the transaction state has not changed as a result of the
execution of the stored procedure call, then the transaction component may not be returned.
The objects that make up the transaction component are given in the Query Data Transfer
Protocols rules (QP5).

Note: A stored procedure call that does not return result sets may also return these objects, but
as a set they are not referred to as a transaction component.

transaction program (TP)
A program that processes transactions in an SNA network. There are two kinds of
transaction programs: application transaction programs and service transaction programs.

transaction program name
The name by which each program participating in an LU 6.2 conversation is known.
Normally, the initiator of a conversation will identify the name of the program it wishes to
connect to at the other LU. When used in conjunction with an LU name, it identifies a
specific transaction program in the network.

triplet
An FD:OCA triplet consists of three parts:

1. a length byte

2. a type byte

3. one or more parameter-value bytes

Triplets are referred to by their type, such as Row LayOut triplet (RLO). Triplets may refer
to other triplets using LIDs.

two-phase commit protocols
The protocols used by a sync point manager to accomplish a commit operation.

unit of work
A sequence of SQL commands that the database manager treats as a single entity. The
database manager ensures the consistency of data by verifying that either all the data
changes made during a unit of work are performed or none of them are performed.

Universal Unique Identifier (UUID)
A DCE term that identifies a unique identifier of an end user. A DCE realm has a unique
identifier in the set of realms. User IDs within a realm have unique identifiers. If the realm
UUID is included with the end-user UUID, the resultant UUID is universally unique.

unlike
Two or more different operating environments. For example, unlike distribution is
distribution between DB2 for VM and DB2 for MVS.

unprotected conversation
An unprotected conversation is an LU 6.2 conversation that does not support two-phase
commit protocols for coordinated resource recovery.

unprotected network connection
A network connection that is not supported by protocols that allow for coordinated
resource recovery (for example, two-phase commit protocols).

UUID
Universal Unique Identifier.

680 DRDA, Version 3, Volume 1

Glossary

well-known port
A port that is registered with the Internet as providing a specified type of support (for
example, DRDA application server).

Part 3: Network Protocols 681

Glossary

682 DRDA, Version 3, Volume 1

Index

ABEND ..189, 495, 550, 557
ABNUOWRM.................................176, 209, 414, 459
AC rule..395
access path ...387
access relational database.......................................71
accounting..470
accounting information..................50, 529, 534, 566
ACCRDB..71, 80, 84, 89, 232

......................................254, 314, 368, 537, 542, 567
ACCRDBRM..90-91, 128, 239

...254, 398, 410, 459, 542
ACCSEC...92, 539, 567
ACCSECRD...92, 539, 567
actions ...501
additional SV...502
agent ..67, 77-78, 86
AGNPRM alert..500
AGNPRMRM..426, 459
alert..673
alert descriptions ..501
alert example ...517
alert generation ...496
alert implementation basics496
alert model mapping ...497
alert models ...499
alert structures ..496
alert to reply message mapping497
alert types...501
alerts ..496
alerts and supporting data557
alerts at application requester..............................499
alias..392
ALLOCATE ...384, 532, 534
alphabetic extender..385
API ...673
API (Application Programming Interface)..........42
APPC...529
APPCMNI ..534
APPCMNT...550
application programming interface (API)...........42
Application Programming Interface (API)........673
application requester...................................45, 66, 84
application requester (AR).......................49, 66, 673
application server...45, 66, 84
application server (AS)....................................49, 673
application services..565

application support protocol...................45, 49, 673
APPSRCCD..543
APPSRCCR ..543
AR ..673
ARM correlator ...14
array input ...170
AS...673
assigning LIDs to O triplets..................................365
assigning override ..365
asynchronous wait ...537
atomic chaining...9
atomic chaining rule ..395
ATTACH...536
authenticated conversation50
authentication.................................473, 529, 534, 566
authorization ...529
BACKOUT ...533, 555
base and option sets...224
base set functions ...532
base set of LU 6.2 ..531
basic conversation..557
basic conversation verb...533
basic FD:OCA object ..224
Begin Bind option ...6
BF rule ...433
BGNBND71, 111, 113, 232, 544, 568
BGNBNDRM...113, 459
bind..53-54, 387, 673
bind flow111, 113, 115, 544, 568
bind flows ..544, 568
bind option values..24
bind options ..11, 26, 113
BLKERR alert...504
block chaining rule...436
block format rule ..433
block size rule..436
blocking ..433
blocking protocol error499, 504
blocking rule..433
BNDOPT..113, 120, 418
BNDSQLSTT71, 111, 113-114, 191, 232, 544, 568
BNDSTTASM...417
BQUAL ...211
BS rule ...436
buffered insert ...9
CA rule..397-398

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 683

Index

causes ..501
CCSID...31, 78, 80, 89, 91

..............................254, 313, 358, 365, 397, 404, 410

...412, 430, 462, 673
CCSID manager ..72, 77
CCSIDDBC...397
CCSIDMBC..397
CCSIDSBC..397
CD rule..399
CDRA ...41, 80, 313, 673
CF rule...399
CH rule ...436
chaining rule..436
chaining violation...499
character set restriction ...462
CHNVIO alert ...505
CLSQRY55, 71, 124, 129, 137, 232
CMDATHRM ..459
CMDCHK alert ...506
CMDCHKRM..426, 459
CMDNSPRM...415, 459
CMDVLT alert ...507
CMDVLTRM...........................206-207, 401, 426, 459
CMMRQSRM..........197, 201-203, 206-207, 401, 459
CMNAPPC ..66, 77, 527
CMNMGR..469
CMNSYNCPT...67, 77, 527
CMNTCPIP manager...563
CMNTCPIP manager) ...67
CNTQRY......................55, 71, 124, 128-129, 230-232
coded character set identifier31

...78, 80, 89, 91, 254, 313

...358, 365, 397, 404, 410
...412, 430, 462

Coded Character Set Identifier (CCSID)............673
codepoint ...77, 80, 230
CODPNT ..80
CODPNTDR ..80
coexistence ...194-195, 198
COLLECTION ..385, 387
collection ID...15, 115
command and reply flow..84
command data object...70
command execution example..............................372
command source identifier.....................................13
command source identifiers.................................389
command/descriptor relationship232
commit ..57
COMMIT189, 195-196, 199, 201-202, 205
commit ..208
commit and rollback191-192

commit and rollback processing rule.................400
commit and rollback rule400-401
commit and rollback scenario..............................198
commit flow...191-192
commit flows...571

on SYNC_LEVEL(NONE) conversation552
on SYNC_LEVEL(SYNCPT) conversation ...553

commit on return..673
commit unit of work ..189
commit unit of work DDM flow191
commit/rollback processing........................558, 576
commitment of work ...189
communication connection..................................420
communication outage notification469
communications manager66

.......................................77-79, 86, 89, 469, 527, 563
CONNECT statement..................................41, 50-51
connection allocation...557
connection allocation rule.............................397-398
connection allocation rules...................................576
connection failure...399
connection usage rule..404
connectivity...42, 64, 673
consistency token ...388
continue preceding triplet....................224, 236, 245
control-operator verb...530
conversation..534, 674
conversation allocation rule.................................397
conversation failures..555
conversation flow...397, 441
conversation level...532
conversation protocol error..................................510
conversation rule..397, 404
conversation verb ...530
conversation verb category532
conversation-level security532, 534
correlation ..492
correlation displays..495
correlation of diagnostic information556
correlation token............................491, 495, 557, 576
correlation, alerts and supporting data557
correlation, focal point messages........................495
CPT ...224, 236, 245
CR rule ..400
creating a package..111
crrtkn...90, 557
CU rule..404
cursor disposition...662
cursor error condition..511
cursor position

management..660

684 Technical Standard (2004)

Index

rules...661
data collection ...557
data definition and exchange...............................223
data descriptor...230-231
data integrity ...674
data representation transformation....................411
data representation transformation rule ...410, 412
data server processing...663
data staging area...26
data stream structure error...................................499
data stream syntax error516
data type conversion rule408
data types ...24
Database Management System (DBMS)............674
database partition...674
database server..66
database server (DS) ..674
database support protocol....................................674
database-directed access ...23
database-directed distributed unit of work674
date ..330
DBCS ...674
DBCS (GRAPHIC) ..341-343
DBMS ..674
DC rule..408
DCE50, 92, 94-95, 420, 559, 577, 674
DCE security ...471, 559
DDM ..50-51, 55, 64-66, 71

.......................................77-78, 80, 84, 113, 126, 192
...527, 544, 563, 568, 674

DDM bind flow ...568
DDM command objects in DRDA.........................36
DDM concepts ...34-35
DDM reader guide..34
DDM servers..66
deadlocks..189
DEALLOCATE...............495, 499, 532, 549, 557, 559
deallocation type....................................495, 550, 557
default triplet...251
degrees of distribution...44
DESCRIBE..173
describe information......................................121, 185
describe input ..23
describe table...177
descriptor classes..235
descriptor definitions...238
descriptor object ...224
dgrioprl...112
diagnostic data collection557
diagnostic information

collection and correlation495

diagnostic support..80
diagnostics ...20
dictionary manager..69, 77
directory manager ..68
disconnect ..426
display...556
Distributed Computing Environment (DCE)...674
Distributed Data Management527
distributed request ...44, 674
distributed transaction processing16
distributed unit of work..29
Distributed Unit of Work..42
distributed unit of work................................572, 675
double-byte character set (DBCS)675
downlevel requester ..662
downstream connection..82
DRDA ...395, 675
DRDA Connection ...675
DRDA implementation ...35
DRDA levels ..2
DRDA managers...66
DRDA rules..395
drop package ...117
DRPPKG ..71, 117, 232
DS...675
DSCERR alert ..508
DSCINVRM...366, 426, 459
DSCPVL..232
DSCRDBTBL71, 177-178, 232
DSCSQLSTT71, 175-176, 232
DT rule ..410
DTAMCHRM273, 275, 278, 282

...284, 366, 426, 459
DTP interface...16
DTP Reference Model..41
duplicate cursors ..123
dynamic commit and rollback.............................189
dynamic execution ...179
dynamic rollback....................................202, 204, 206
dynamic SQL90, 172, 174, 179-180, 675
dynamic SQL scenario...........................201-202, 205
early array descriptor ..254
early data unit descriptors....................................370
early descriptor ...230
early descriptors ...254
early environmental descriptor...311, 313-314, 368
early environmental descriptors311
early group descriptors ...273
early row descriptors ...262
eight-byte float ..319
eight-byte integer..325

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 685

Index

elapsed time...493
encrypted user ID and password........................478
encrypted user ID, password, new password..479
end user ..559
end user name ...384
end-user name...384
end-user name rule ..430
ENDBND71, 111, 115, 232, 544, 568
ENDQRYRM...................................124, 128, 132-133

...160, 376, 459, 548, 569
ENDUOWRM.................................191, 193, 198, 200

......................................207, 400, 459, 552, 558, 571
enhanced bind options ..26
enhanced security...27
enhanced sync point manager27
enterprise code..385
environmental description...........................227, 230
environmental description objects......................368
environmental descriptor236
error checking..366
error condition to alert model mapping............497
error reporting...366
EUN rule...430
exact query block..433
exchange server attribute80, 84

..................................88, 92, 230, 404, 537, 542, 567
EXCSAT ...80, 84, 88, 92, 230

...254, 404, 537, 542, 567
EXCSATRD80, 84, 88, 92, 254
EXCSQLIMM............71, 179-180, 196, 232, 373, 400
EXCSQLSTT......................................71, 148, 154, 172

.......................192-193, 230-232, 400, 537, 542, 567
EXCSQLSTT chaining..9
execute SQL statement ..148
EXECUTE_IMMEDIATE.......................................373
execution ..675
execution flow...547-548, 569
execution thread...80, 675
EXTDTA..224
extended describe ...6
Extended Privilege Attribute Certificate675
Extended Registry Attribute (ERA)....................675
extnam ..88
failover..671
failover support ..22
failure causes ...501
failure notification..529
FD:OCA41, 65, 223, 231, 359

...363-364, 366, 368, 676
FDODSC...224, 237
FDODTA...224

FDOEXT ...224
FDOOFF ...224
fixed byte..333
fixed character mixed ..344
fixed character SBCS..338
fixed decimal ...321
fixed row protocol..55, 124
fixed-character...341
FIXROWPRC............................55, 132, 442, 542, 568
flexible blocking..129, 131
flexible query block ..433
float ..318-320
flow...............49, 53-55, 57, 59, 84, 111, 179-180, 675
focal point messages491, 496, 576
four-byte float..320
four-byte integer ...315
GDA..................................227, 235, 245, 313-314, 365
GDA/CPT errors ..367
general errors...367
generating alerts ...496
generic focal point messages................................496
GENERR alert..509
GET_ATTRIBUTES.................................532, 536-537
GET_TP_PROPERTIES532, 536-537
global transactions ...210
group data array227, 235, 245, 313-314, 365
GSS-API..471, 676
gss_accept_security_context

function ..472
gss_accept_sec_context

function ..678
gss_init_security_context

function ..472
gss_init_sec_context

function ..471, 678
GTRID...211
handling conversation failures555
hopping...82
host variable ..676
I/O parallelism ...31
ID number alert...501
immediate SQL statement execution179
initialization flow.............................50, 537, 539, 542
initialization flows..566
initializing a conversation534
initializing a TCP/IP connection.........................566
input variable array..19
INSERT command..377
install causes..501
instantiate...676
integer..315-317

686 Technical Standard (2004)

Index

intermediate server processing484
interrupt request ...9
INTRDBRQS..71, 232
IR rule..414
Kerberos..20

with GSS-API ..481
with SSPI ..481

Kerberos protocol ...481
Kerberos security mechanism..............................481
large object bytes ..353
large object bytes locator326
large object character

DBCS (GRAPHIC)..355
DBCS locator ...328
locator ...327
SBCS..354

large object character mixed356
late array descriptors ...239
late data unit descriptors372
late descriptor..230-231, 239
late environmental descriptor313, 357
late group descriptors..245
late row descriptors ...242
level 1 ..29
level 2 ..28
level 3 ..26
level 4 ..23
level 5...3-4
LID ..236, 312, 365-366, 676
LID (local identifier)227, 245
LID example ..365
LID mapping..8
like ...676
limited block fetch..133
limited block protocol..55

LOB data...140
LMTBLKPRC............................55, 133, 139, 542, 568
LOB

externalization ..251
LOB processing ...11
local identifier227, 236, 312, 365-366
local identifier (LID)...676
local transactions ..210
logical flow ..542, 568
logical unit (LU)..676
logical unit of work ..556
logical unit of work (LUW)676
logical unit of work identifier556
Logical Unit type 6.2 (LU 6.2)676
logical unit-of-work identifier................................50

..534, 556-557, 559

logical unit-of-work identifier (LUWID)676
LOG_DATA..550
long identifiers...3
long variable bytes ...335
long variable character ..343
long variable character mixed346
long variable character SBCS340
LU ..676
LU 6.2..549-550, 555, 559, 676
LU 6.2 (Logical Unit 6.2)495, 527, 530, 556, 559
LU 6.2 base and option sets532
LU 6.2 flow ..542, 544, 548
LU 6.2 initialization flow.......................................537
LU 6.2 initialization processing534
LU-LU verification ...534
LUNAME ...534
LUW ..676
LUWID...............................50, 534, 556-557, 559, 676
LUW_Identifier ...533
LUW_IDENTIFIER...536
LU_NAME ...534
major subfield construction..................................517
major subvector construction517
major vector construction.....................................517
Management Services Architecture......................41
managing conversation...555
mapping reply messages497
materialization rules ..366
MAXBLKEXT ..154
MAXRSLCNT..154
MAXSCTNBR..421
MBCS...676
MDD................224, 227, 235, 311, 357, 361, 363, 366
MDD errors ..367
message models ..496
meta data definition224, 227, 235

...311, 357, 361, 363, 366
meta data summary ...359
MGRDEPRM...459, 555
MGRLVLRM..459
mixed-byte character set (MBCS)........................676
mixed-byte datalink...352
model mapping...497
monitoring ...3, 493
MSA...41, 677
multi-RDB scenario..206, 208
multi-relational database update194, 205, 210
multi-row fetch ...30, 441
multi-row input...9
multi-row insert ..30
Multilingual Latin-1...357

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 687

Index

mutual authentication...677
name syntax...385
name tables and views ..385
naming conventions..............................383, 393, 561
network connection...........18, 50, 198, 570-571, 677
network connections..194
network connectivity flag.....................................493
network management491, 556
null-terminated bytes ..336
null-terminated mixed...347
null-terminated SBCS ..337
numeric character...323
OBJDSS...77, 79, 438, 567
object data stream structure77, 79, 438, 567
object name row..443
object name rule..430
object-oriented extensions24
OBJECTID ..385
OBJNSPRM..415, 459
OC rule..415
ON rule ...430
one-byte integer ..317
operations...657
OPNQFLRM..459
OPNQRY.............55, 71, 124, 126, 230-232, 374, 441
OPNQRYRM..................124, 133, 137, 459, 548, 569
option set functions..532
option set of LU 6.2 ..531
optionality..415
optionality rules..415
original password substitute476
OUTOVR..224
override triplet ..251, 365
overriding descriptor365-366
overriding descriptors ...363
overriding everything..363
overriding output formats....................................251
overriding user data...364
package...53-54, 111, 387, 677
package collection

resolution ...389
package consistency token388
PACKAGEID...387
packet flow...61
partitioned database ..677
Pascal L string ...349
Pascal L string bytes...348
Pascal L string mixed...350
passing USER_ID..384
passing warning to application requester rule.429
PASSWORD...535

PB rule...416
ping..494
pkgathrul..113, 120
PKGBNARM..459
PKGBPARM ..113, 459
plan..677
plug-in security ...5
port ..677
post-commit processing..208
POST_ON_RECEIPT535-536, 543
PRCCNV alert ...510
PRCCNVRM ...426, 459
PREPARE_TO_RECEIVE.....................533, 535, 543
principal..677
PRMNSPRM..415, 459
probable causes...501
problem determination491, 556-557, 575-576
problem determination and isolation495
process model..66
process model flow...77-78
product-unique extensions.....................................80
program binding rule ..416
Program name...393
program preparation process677
program to program communication529
protected connection ...17
protected conversation..677
protected network connection.............................677
protected resource..677
PROTECTED_LUW_IDENTIFIER533, 536
protocol ..55, 677
PRPSQLSTT71, 173, 232, 400
PWDENC ...23
PWDSBS ...23
QP rule ..441
qryblkctl..126
qryblksz ..126-127, 131
QRYDSC ..224, 231, 441
QRYDTA..129, 224, 231
QRYERR alert..511
QRYNOPRM...137, 426, 459
QRYPOPRM..128, 426
QT rule..446
query block ..433
query block chaining rule436
query block format rule...433
query block size rule ..436
query blocks...433
query data ..224
query data transfer protocol rule441
query flow..111, 124, 126

688 Technical Standard (2004)

Index

query instance...122, 440
query instance identifier..13
query instance rule...440
query option ..10
query process...121
query processing rules...12
query protocol...658
query termination rule ..398
query termination, interruption, continuation.446
RDB ...72, 671, 677
RDB initiated rollback rule414
RDB initiated rollback scenario209
RDBACCRM ...426, 459
RDBAFLRM...459
RDBATHRM..459
RDBCMM...71, 191-192, 232
RDBERR alert ..512
RDBMS..41
RDBNACRM...426, 459
RDBNFNRM..459
RDBRLLBCK.....................................71, 232, 553, 572
RDBUPDRM ...196, 428, 459
RDB_NAME..385, 387, 678
RDB_NAME rule ..431
READ socket call ..569
REBIND..71, 119-120, 232
RECEIVE operations......................................535, 543
RECEIVE_AND_WAIT.........532, 537, 547-548, 550
referencing overrides...364
referencing rule ...364
relational data..678
relational database access error...........................512
relational database manager................72, 78, 86, 89
relational database name rule..............................431
relational database names385
relational database names rules577
relational database-initiated rollback rule414
Remote Unit of Work...44
remote unit of work.......................................571, 678
replay ..678
replicated RDB ..671
reply data object ...70, 78
reply data stream structure79

......................................375, 443, 542, 548, 567, 569
reply message ...90, 191, 548
reply messages ..399
reply objects and messages37
request correlation identifier............................77, 79
request packet object ...493
requester

downlevel ..662

required base set functions...................................532
required option set function.................................532
resource limit reached...................................499, 513
resource recovery.......................................57, 70, 198

......................................206, 208, 397, 400, 555, 678
resource recovery interface189, 205
resource sharing..17
response packet object...493
result set component..678
result set locator..324
result table..655
resynchronization manager....................................69
returning SQL diagnostics....................................181
RLO223-224, 227, 235, 237, 239, 242, 365
RLO errors..367
RN rule..431
robust ..678
ROLLBACK ...189
rollback ...191
ROLLBACK..195-196
rollback flow..572
rollback flows

on SYNC_LEVEL(NONE) conversation553
on SYNC_LEVEL(SYNCPT) conversation ...554

rollback unit of work ...191
row identifier...329
row layout223-224, 227, 235, 237, 239, 242, 365
rowset..659
rowset cursor...667
rowset cursors ...22
rowset processing...667
RPYDSS.....................79, 375, 443, 542, 548, 567, 569
RQSDSS ..77
RSCLMT alert..513
RSCLMTRM ..459
RSLSETFLG ...154
RSLSETRM ..154, 459
RSYNCMGR (resynchronization manager)........69
rule CA5..397
rule usage ...557-559
rule usage of relational database names............560
rules for CLOSE ..456
rules for CLSQRY ...448
rules for CNTQRY..448
rules for EXCSQLSTT ..448
rules for FETCH..453
rules for OPNQRY..448
rules usage for SNA ...557
rules usage for TCP/IP environments576
running DRDA request ...186
SBCS337-340, 349, 430, 461, 678

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 689

Index

SBCS datalink ..351
scrollability ..655
scrollable cursor..5, 655
scrollable cursors ..30
SDA..........223-224, 227, 230, 235, 311, 314, 357, 365
SE rule ...420
SECCHK ..92, 539, 567
SECCHKRM92, 426, 459, 539, 567
SECMGR ..68, 78
section number assignment rule421
security..................27, 50, 92, 103, 109, 384, 532, 559
security context information........................471, 678
security flow ..95
security manager67-68, 78, 86
security mechanism ...20

encrypted user ID and password....................478
encrypted user ID, password, new password....
..479
user ID and encrypted password....................477
user ID and password473
user ID and password substitute476
user ID, password, new password474
user ID-only...475

security mechanisms ...4, 23
Kerberos ...481

security rule ...420
security violation error..515
security-sensitive data103, 109
SECURITY_USER_ID ..536
SECVIOL alert ...515
semantics..678
SEND_DATA..........................532, 535, 537, 543, 547
SEND_ERROR ..532
sensitivity ...655
server list ..27
server processing ..81
serviceability rule ...426
serviceability rules ...559, 577
SET statement..425
SET_SYNCPT_OPTIONS533
severity codes..81, 497
simple data array....................................223-224, 227

......................................230, 235, 311, 314, 357, 365
single relational database update194
single-byte character set337-340, 349, 430, 461
single-byte character set (SBCS)..........................678
site processing ...31
sixteen-byte float ..318
SN rule ..421
SNA.....................................41, 50-51, 59, 67, 527, 678
SNA environment usage.......................................556

socket ..678
socket calls ...569
sockets interface..565
source requester..81
SP rule ...424
special register...425
SQL..41, 50-51, 55, 91, 114

...............................179-180, 189, 388, 430, 547-548
..569, 679

SQL application manager86
SQL Connection..679
SQL EXECUTE IMMEDIATE...............................180
SQL EXECUTE_IMMEDIATE..............................400
SQL identifier...8
SQL long identifiers..3
SQL object name rule...430
SQL object names (ON rules)...............................430
SQL statement ...7
SQL statement execution flow547, 569
SQLAM...254
SQLAM (SQL application manager)..70, 72, 76, 79
SQLCA ...81, 373, 376, 399
SQLCADTA ...244
SQLCAGRP ...280
SQLCARD.................................20, 111, 115, 118, 120

...............................148, 153-154, 179-180, 192, 232

...267, 375, 443
SQLCAXGRP...281
SQLCINRD..232, 256
SQLCNGRP ...301
SQLCNROW ...270
SQLDA..312
SQLDAGRP ...284
SQLDARD...............................173, 175, 177, 232, 258
SQLDAROW ...268
SQLDCGRP ...303
SQLDCROW..271
SQLDCTOKS...259
SQLDCXGRP...307
SQLDHGRP...288
SQLDHROW ...269
SQLDIAGCI...260
SQLDIAGCN...261
SQLDIAGGRP...283
SQLDIAGSTT..297
SQLDOPTGRP..290
SQLDTA...124, 126, 133, 135

......................................148, 150, 225, 230, 232, 243
SQLDTAGRP...243, 247
SQLDTAMRW ..232, 241
SQLDTARD148, 152, 154, 232, 240

690 Technical Standard (2004)

Index

SQLDXGRP..292
SQLERRRM...404, 459
SQLEXTGRP..296
SQLEXTROW..295
SQLNUMEXT..294
SQLNUMGRP...279
SQLNUMROW ...266
SQLOBJGRP ..278
SQLOBJNAM..177, 232, 265
SQLRSGRP...273
SQLRSLRD..154, 232, 255
SQLRSROW...262
SQLSTATE94-95, 131, 196, 397

...399, 401, 408, 410, 459
SQLSTT...........111, 114, 173, 179, 232, 264, 364, 373
SQLSTTGRP ..277
SQLSTTVRB....................................111, 232, 257, 364
SQLTOKGRP...310
SQLTOKROW ...272
SQLUDTGRP...286
SQLVRBGRP..275
SQLVRBROW..263
SRRBACK...210
SRRCMIT ...205
srvclsnm (server class name)87
srvdgn ...81
SSCP ..679
ST rule ...425
staging area..26
standard focal point messages.............................575
standardized object name.....................................392
statement attributes ...21
statement execution flow......................547-548, 569
statement execution logical flow...........................55
static commit ...207
static commit and rollback189
static rollback ..204, 207
stored procedure DDM flow193
stored procedure name ...391
stored procedure result set

scrolling ..662
stored procedures...28
stored procedures rule...424
streaming..11
strong password substitute..................................476
Structured Query Language...................................41
sttstrdel ...90
subfield ...502
subvector..502
summary component...679
supervisor ..68, 74

SV rule...426
svrcod..81
sync point communications manager67
sync point manager27, 44, 69, 86

...............189-190, 194-195, 208, 210, 550-551, 555
synchronization point57, 529
synchronization point (sync point).....................679
synchronization point manager679
synchronous wait protocol verbs........................537
SYNCMNT...550
SYNCPTMGR44, 69, 189, 194-195

..210, 550-551, 555
SYNCPTOV ...27
SYNC_LEVEL.................................534, 549, 555, 557
SYNERRCD ...404
synonym...392
SYNTAX alert ..516
SYNTAXRM..404, 426, 459
system services control point (SSCP).................679
Systems Network Architecture527
Systems Network Architecture (SNA)...............679
TAKE_BACKOUT ..210
TAKE_SYNCPT ..197
target program ..393
target program name...431
target program name (TPN).................................679
target program name rule.....................................431
target server ...81
TCP/IP..563-564, 679
TCP/IP and DRDA ..566
TCP/IP communications ..28
TCP/IP communications manager...............67, 563
TCP/IP connection ..566, 578
TCP/IP connection rule usage.............................576
TCP/IP correlation value display575-576
TCP/IP environment usage in DRDA575
TCP/IP flow ..569, 571
TCP/IP initialization flow567
TCP/IP initialization processing.........................566
TCP/IP packet flow ...568
TCPCMNI ..566
TCPCMNT ...570
TCPSRCCD..568
TCPSRCCR ..568
terminating conversations549-551
terminating network connection.................570-571
termination...59
termination flows ...59
termination, interruption, continuation446
time..331
timely failure notification529

DRDA, Version 3, Volume 1: Distributed Relational Database Architecture (DRDA) 691

Index

timestamp ..332
token..557
tool and program..556
TP...679
TPN ...50, 66-67, 431, 679
TPN rule ...431
transaction..679
transaction component..679
transaction pooling ..216
transaction processing.....................................41, 470
transaction program (TP)......................................680
transaction program name .50, 66-67, 560-561, 680
transparency ..76
transport control protocol564
transport control protocol/internet protocol ...563
TRGNSPRM...459
triplet224, 227, 235, 245, 311, 357, 363-366, 680
triplet override ..314
two-byte integer..316
two-phase commit57, 69, 190

.......................................194, 205, 208, 549-551, 555
two-phase commit protocols680
TYPDEFNAM...........................84, 111, 119, 232, 254

.......................................312, 363, 365-366, 397, 410
TYPDEFOVR ...84
typdefovr..91
TYPDEFOVR111, 148, 154, 254

...311, 365-366, 397, 411
type-independent verb..................................530, 532
unique identifier ...556
unit of work63, 189, 191, 195

...208, 398, 427, 556, 680
Universal Unique Identifier (UUID)...................680
unlike...680
unprotected conversation.....................................680
unprotected network connection........................680
UOWID (unit of work identifier)50
UP rule ..428
updatability ...657
update control rule...428
update privilege ...190, 194
upstream connection ...82
usage of names..560
user causes ...501
user ID and encrypted password........................477
user ID and password92, 95, 473
user ID and password substitute476
user ID only ...92, 95
user ID security...473
user ID verification...532
user ID, password, new password......................474

user ID-only ...475
USER_ID ..384, 535
utility flows..61
UUID ...680
VALNSPRM............................127, 398, 411, 415, 459
variable array...377
variable byte ..334
variable character mixed.......................................345
variable character SBCS ..339
variable-character...342
verb..561
verb categories ..530
verb, LU 6.2..530
version ID...389
version management ...388
well known port..67
well-known port ...681
WN rule ..429
WRITE socket call...569
XA ..16
XA manager ...72
zoned decimal ...322

692 Technical Standard (2004)

