
M

IN

IL

A

E

R

R

Y

P

Preliminary Specification

Generic Cryptographic Service API
(GCS-API) Base



[This page intentionally left blank]



X/Open Preliminary Specification

Generic Cryptographic Service API (GCS-API)

Base

X/Open Company Ltd.



 June 1996, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open Preliminary Specification

Generic Cryptographic Service API (GCS-API) Base

ISBN: 1-85912-195-0
X/Open Document Number: P442

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

ii X/Open Preliminary Specification (1996)



Contents

Chapter 1 Basic GCS-API - Introduction........................................................ 1
  1.1    Structure of document ............................................................................... 1
  1.2    Scope of Basic GCS-API............................................................................. 1
  1.2.1       Functional Objectives of Basic GCS-API............................................. 2
  1.2.2       Non-Functional Objectives .................................................................... 2
  1.3    Overview of Cryptographic Services ..................................................... 2
  1.3.1       Encipher and Decipher Functions ........................................................ 3
  1.3.2       Symmetric-Key and Asymmetric-Key Encipherment ..................... 3
  1.3.3       Hash (Unprotected Checksum) Functions ......................................... 4
  1.3.4       Digital Signature (Protected Checksum) Functions ......................... 4
  1.3.5       Key Management Functions.................................................................. 6
  1.4    The GCS-API Programming Model ........................................................ 8
  1.5    Cryptographic Context (CC) .................................................................... 9
  1.5.1       Naming of Template CCs....................................................................... 9

Chapter 2 Basic GCS-API Services..................................................................... 11
  2.1    Session Management.................................................................................. 12
  2.2    Cryptographic Context Retrieval Functions ......................................... 12
  2.3    Key Creation ................................................................................................ 16
  2.4    Hash and Signature Functions ................................................................. 16
  2.5    Data Encipherment Functions.................................................................. 18
  2.6    Cryptographic Context Storage Functions............................................ 19
  2.7    Key Exchange Functions ........................................................................... 21
  2.8    GCS-API Utility Functions........................................................................ 23

Chapter 3 Basic Parameter Passing Conventions ...................................... 25
  3.1    Structured Data Types ............................................................................... 25
  3.2    Integer Types................................................................................................ 25
  3.3    String Data and Similar Data.................................................................... 25
  3.3.1       Byte Strings ............................................................................................... 25
  3.3.2       Character Strings...................................................................................... 26
  3.3.3       Bit Strings................................................................................................... 26
  3.3.4       Opaque Data Types ................................................................................. 26
  3.4    Contexts ........................................................................................................ 27
  3.5    Session Context Parameters ..................................................................... 27
  3.6    Status Values................................................................................................ 28
  3.6.1       GCS Status Codes .................................................................................... 28
  3.6.2       Minor Status Codes ................................................................................. 31
  3.7    Optional Arguments .................................................................................. 32
  3.7.1       gcs_buffer_t Types ................................................................................... 32
  3.7.2       Integer Types............................................................................................. 32
  3.7.3       Pointer Types ............................................................................................ 32

Generic Cryptographic Service API (GCS-API) Base iii



Contents

  3.8    Constants ...................................................................................................... 33
  3.8.1       Algorithm Independent CC Names..................................................... 33
  3.8.2       Chain Flag.................................................................................................. 33
  3.8.3       Storage Unit Classes................................................................................ 34
  3.8.4       CSF Parameters ........................................................................................ 34
  3.8.5       CSF Implementation Type ..................................................................... 34

Chapter 4 Basic CSF Application Program Interface (API) ................. 35
    gcs_decipher_data ( )......................................................................................... 36
    gcs_decipher_verify ( ) ...................................................................................... 38
    gcs_delete_cc( ) ................................................................................................. 41
    gcs_derive_key( ) .............................................................................................. 42
    gcs_encipher_data ( )......................................................................................... 44
    gcs_export_key ( ).............................................................................................. 46
    gcs_generate_check_value ( )............................................................................ 48
    gcs_generate_hash( ) ........................................................................................ 50
    gcs_generate_key( ) .......................................................................................... 52
    gcs_generate_random_number( ) .................................................................... 54
    gcs_get_csf_params ( ) ...................................................................................... 55
    gcs_import_key ( ) ............................................................................................. 57
    gcs_initialise_session ( ).................................................................................... 59
    gcs_key_agreement( ) ....................................................................................... 60
    gcs_list_cc ( ) ..................................................................................................... 62
    gcs_protect_data ( ) ........................................................................................... 64
    gcs_release_bit_string( ) .................................................................................. 67
    gcs_release_buffer( ) ......................................................................................... 68
    gcs_remove_cc( )............................................................................................... 69
    gcs_retrieve_cc( ) .............................................................................................. 71
    gcs_store_cc( )................................................................................................... 73
    gcs_terminate_session( ) .................................................................................. 75
    gcs_verify_check_value ( ) ................................................................................ 76

Chapter 5 Advanced GCS-API Introduction ................................................ 79
  5.1    Callers of Cryptographic Services........................................................... 79
  5.1.1       Cryptographic Unaware Caller ............................................................ 80
  5.1.2       Cryptographic Aware Caller................................................................. 80
  5.2    Scope.............................................................................................................. 81
  5.2.1       Functional Objectives.............................................................................. 81
  5.2.2       Non-Functional Objectives .................................................................... 82
  5.2.3       Legal Constraints ..................................................................................... 82
  5.2.4       Functionality that is Out of Scope ........................................................ 82
  5.3    Layering of Cryptographic Service ......................................................... 83
  5.4    Cryptographic Support Facility ............................................................... 84
  5.4.1       Authorisation Policy ............................................................................... 85
  5.4.2       Security Considerations ......................................................................... 86

iv X/Open Preliminary Specification (1996)



Contents

Chapter 6 Key Life Cycle .......................................................................................... 87
  6.1    Key State ...................................................................................................... 87
  6.1.1       Key States .................................................................................................. 88
  6.1.2       Key State Operations............................................................................... 89
  6.1.3       Key Validity Period.................................................................................. 89
  6.2    Key State Transitions.................................................................................. 90
  6.3    Key Formats ................................................................................................. 92
  6.4    Key Format Operations ............................................................................. 93

Chapter 7 GCS-API Data Structures.................................................................. 95
  7.1    Cryptographic Context.............................................................................. 96
  7.2    Cryptographic Context Header ............................................................... 97
  7.3    Algorithm_Context .................................................................................... 99
  7.4    Key_Context ................................................................................................ 102
  7.5    Cryptographic Context Reference........................................................... 105
  7.6    Cryptographic Context Name ................................................................. 106

Chapter 8 Advanced GCS-API Services .......................................................... 107
  8.1    Creation of CC............................................................................................. 108
  8.2    Cryptographic Context Modification ..................................................... 109
  8.3    Additional Key Management Functions................................................ 109
  8.4    Key State Management.............................................................................. 110
  8.5    Supplementary CC Management Functions......................................... 110
  8.6    System Programming Interface (SPI) ..................................................... 111

Chapter 9 Advanced GCS-API Parameter Passing Conventions ..... 113
  9.1    Contexts ........................................................................................................ 113
  9.2    Cryptographic Reference .......................................................................... 113
  9.3    Constants ...................................................................................................... 114
  9.3.1       Register of GCS-API Constants ............................................................ 114
  9.3.2       Optional Parameter Constants.............................................................. 114
  9.3.3       Context Types........................................................................................... 115
  9.3.4       Algorithm Identifier ................................................................................ 115
  9.3.5       Mode of Operation .................................................................................. 115
  9.3.6       Algorithm Specific Parameters ............................................................. 116
  9.3.7       Short Block Policies ................................................................................. 116
  9.3.8       Key Usage.................................................................................................. 116
  9.3.9       Permitted Export Mechanisms.............................................................. 117
  9.3.10       Key State Value......................................................................................... 118
  9.3.11       Key Flag ..................................................................................................... 118
  9.3.12       Split_Key_Protocol_Type....................................................................... 118
  9.3.13       Key Validity Parameters ......................................................................... 118
  9.3.14       Key Specific Parameters ......................................................................... 119
  9.3.15       Key Value................................................................................................... 119
  9.3.16       CC Components....................................................................................... 119
  9.3.17       Context Header Parameter Names ...................................................... 119
  9.3.18       Algorithm Context Parameter Names................................................. 119
  9.3.19       Key Context Parameter Names............................................................. 120

Generic Cryptographic Service API (GCS-API) Base v



Contents

Chapter 10 Advanced CSF Application Program Interface (API)....... 121
    gcs_advance_key_state ( ) ................................................................................. 122
    gcs_archive_cc ( )............................................................................................... 124
    gcs_combine_key( )........................................................................................... 126
    gcs_create_ac( ) ................................................................................................. 128
    gcs_create_cc( ) ................................................................................................. 129
    gcs_create_kc( ) ................................................................................................. 131
    gcs_delete_ac( ) ................................................................................................. 132
    gcs_delete_kc( ) ................................................................................................. 133
    gcs_generate_key_pattern( ) ............................................................................ 134
    gcs_get_cc( )...................................................................................................... 136
    gcs_get_key_validity ( ) .................................................................................... 138
    gcs_load_public_key ( ) ..................................................................................... 140
    gcs_reduce_key_usage( ) .................................................................................. 142
    gcs_restore_cc( ) ............................................................................................... 144
    gcs_revoke_key ( ).............................................................................................. 146
    gcs_set_ac( ) ...................................................................................................... 148
    gcs_set_cc( ) ...................................................................................................... 150
    gcs_set_kc( ) ...................................................................................................... 152
    gcs_set_key_validity ( )..................................................................................... 154
    gcs_verify_key_pattern ( ) ................................................................................ 156

Chapter 11 Advanced CSF System Programming Interfaces (SPIs) . 159
    gcs_decipher_key( )........................................................................................... 160
    gcs_derive_clear_key ( ) .................................................................................... 162
    gcs_encipher_key( ) .......................................................................................... 164
    gcs_generate_clear_key ( ) ................................................................................ 166
    gcs_load_key ( ) ................................................................................................. 168
    gcs_split_clear_key ( ) ....................................................................................... 170

Chapter 12 Conformance Statement..................................................................... 173
  12.1    GCS-API (Base) Conformance ................................................................. 173
  12.1.1       GCS-API (Base) Minimal Implementation ........................................ 174
  12.1.2       GCS-API (Base) Restricted User Data Encipherment Option ....... 174
  12.1.3       GCS-API (Base) Unrestricted User Data Encipherment Option... 174
  12.1.4       GCS-API (Base) Advanced Service Option ....................................... 174
  12.1.5       GCS-API (Base) Key Test Pattern Option .......................................... 175
  12.1.6       GCS-API (Base) Clear key Management Option.............................. 175

Appendix A CSF Implementation Considerations ........................................ 177
  A.1    Legislative Constraints .............................................................................. 177
  A.2    Technical Constraints................................................................................. 179
  A.3    Threat Model................................................................................................ 181
  A.3.1       Types of threats ........................................................................................ 181

vi X/Open Preliminary Specification (1996)



Contents

Appendix B Example Template CCs....................................................................... 183
  B.1    Example Sets of Template CCs ................................................................ 183
  B.1.1       FULL RSA.................................................................................................. 183
  B.1.2       SIGNATURE RSA .................................................................................... 183
  B.1.3       FORTEZZA............................................................................................... 184
  B.1.4       DSS.............................................................................................................. 184
  B.1.5       MS-MAIL................................................................................................... 184
  B.1.6       Default SSL................................................................................................ 184
  B.2    Example Template CCs ............................................................................. 185
  B.2.1       DES-CBC.................................................................................................... 185
  B.2.2       RSA-RC2-CBC.......................................................................................... 186
  B.2.3       RSA-RC4.................................................................................................... 187
  B.2.4       SKIPJACK.................................................................................................. 188
  B.2.5       CAST........................................................................................................... 189
  B.2.6       RSA-SIGN-SHA-1.................................................................................... 190
  B.2.7       RSA-VERIFY-SHA-1 ............................................................................... 191
  B.2.8       RSA-SIGN-MD5....................................................................................... 192
  B.2.9       RSA-VERIFY-MD5................................................................................... 193
  B.2.10       RSA-EXPORT ........................................................................................... 194
  B.2.11       RSA-IMPORT ........................................................................................... 195
  B.2.12       DSS-SIGN .................................................................................................. 196
  B.2.13       DSS-VERIFY.............................................................................................. 197
  B.2.14       KEA-EXPORT........................................................................................... 198
  B.2.15       KEA-IMPORT........................................................................................... 199
  B.2.16       DES-X9.17.................................................................................................. 200
  B.2.17       DES-MAC.................................................................................................. 201
  B.2.18       DIFFIE-HELLMAN-EXPORT................................................................ 202
  B.2.19       DIFFIE-HELLMAN-IMPORT................................................................ 203

Appendix C Example Walkthroughs ...................................................................... 204
  C.1    ANSI X9.17 Key Distribution Protocol ................................................... 204
  C.2    Fortezza Public Key Exchange ................................................................. 212

Appendix D Appendix D: Future Directions ..................................................... 220

Appendix E Generate Test Pattern and Verify Test Pattern Examples .......221
  E.1    Generate Test Pattern ................................................................................. 221
  E.2    Verify Test Pattern....................................................................................... 221

Appendix F Discussion on Key Parity.................................................................. 223

    Glossary ....................................................................................................... 225

    Index............................................................................................................... 233

List of Figures

1-1 Encipher and Decipher Functions .............................................................. 3

Generic Cryptographic Service API (GCS-API) Base vii



Contents

1-2 Generate Hash value..................................................................................... 4
1-3 Generate Digital Signature........................................................................... 5
1-4 Verify Digital Signature ................................................................................ 6
1-5 Key Encrypting Key ...................................................................................... 7
1-6 Basic CSF Model............................................................................................. 8
2-1 CSF Services .................................................................................................... 11
2-2 Retrieval and Use of a Populated CC ........................................................ 13
2-3 Retrieval and use of a Template CC........................................................... 15
2-4 CC Storage Management Functions .......................................................... 19
2-5 Key Export....................................................................................................... 22
5-1 Types of Caller of Cryptographic Services ............................................... 79
5-2 Layering of Cryptographic Services .......................................................... 83
5-3 Cryptographic Support Facility Callers and Services ............................ 84
6-1 Normal Key State Transitions ..................................................................... 88
6-2 Key Life Cycle................................................................................................. 90
7-1 Structure of the Cryptographic Context ................................................... 96
7-2 Cryptographic Context Header .................................................................. 97
7-3 Algorithm_Context ....................................................................................... 99
7-4 Key_Context ................................................................................................... 102
8-1 CSF Services .................................................................................................... 107
A-1 Legislative Controls within Cryptographic Support Facility............... 177
A-2 Cryptographic Support Facility .................................................................. 179

List of Tables

1-1 Default CC Names......................................................................................... 10
2-1 CSF Session Management Functions ......................................................... 12
2-2 Cryptographic Context Retrieval Functions ............................................ 12
2-3 Key Creation Functions ................................................................................ 16
2-4 Hash and Signature Functions .................................................................... 16
2-5 Data Encipherment Functions..................................................................... 18
2-6 Cryptographic Context Storage Functions............................................... 19
2-7 Key Exchange Functions .............................................................................. 21
2-8 GCS-API Utility Functions........................................................................... 23
3-1 Calling Errors.................................................................................................. 28
3-2 Routine Errors................................................................................................. 29
3-3 Optional Parameter Constants.................................................................... 33
3-4 Algorithm Independent CC Names........................................................... 33
3-5 Chain Flag Values .......................................................................................... 33
3-6 Storage Unit Class.......................................................................................... 34
3-7 CSF Parameters .............................................................................................. 34
3-8 CSF Implementation Types ......................................................................... 34
8-1 Creation of a CC............................................................................................. 108
8-2 Cryptographic Context Inquiry.................................................................. 109
8-3 Additional Key Management Functions................................................... 109
8-4 Key State Management................................................................................. 110
8-5 Supplementary CC Management Functions............................................ 110
8-6 System Programming Interface ................................................................. 111

viii X/Open Preliminary Specification (1996)



Contents

9-1 Optional Parameter Constants.................................................................... 114
9-2 Context Types................................................................................................. 115
9-3 Algorithm IDs................................................................................................. 115
9-4 Modes of Operation....................................................................................... 115
9-5 Short Block Policy Values............................................................................. 116
9-6 Key Usage Values........................................................................................... 116
9-7 Permitted Export Mechanism IDs .............................................................. 117
9-8 Key State Values............................................................................................. 118
9-9 Key Flag Values .............................................................................................. 118
9-10 Split Key Protocol Types .............................................................................. 118
9-11 Key Validity Values ....................................................................................... 118
9-12 CC Components............................................................................................. 119
9-13 Context Header Parameter Names ............................................................ 119
9-14 Algorithm Context Parameter Names....................................................... 119
9-15 Key Context Parameter Names................................................................... 120

Generic Cryptographic Service API (GCS-API) Base ix



Contents

x X/Open Preliminary Specification (1996)



Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Generic Cryptographic Service API (GCS-API) Base xi



Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

xii X/Open Preliminary Specification (1996)



Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done in any one of the following ways:

• anonymous ftp to ftp.xopen.org

• ftpmail (see below)

• reference to the Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information using ftpmail, send a message to ftpmail@xopen.org with the
following four lines in the body of the message:

open
cd pub/Corrigenda
get index
quit

This will return the index of publications for which Corrigenda exist. Use the same email
address to request a copy of the full corrigendum information following the email instructions.

This Document

This document is a Preliminary Specification (see above) and is structured into the following
sections:

• Basic GCS-API
The Basic GCS-API comprises a set of functionality that is expected to meet the
cryprographic service requirements of most general application developers. The Basic GCS-
API section presents a simple overview of the types of cryptographic functions, a simplified
model of the GCS-API architecture, and the minimum set of generic cryptographic functions
that can support the requirements of general applications.

• Advanced GCS-API
The Advanced GCS-API comprises an additional set of functionality that would only be used
by applications that are developed to manage cryptographic policy and provide long term
management of keys and the cryptographic service itself. The Advanced GCS-API section
presents a more detailed description of the concepts and Architecture of the GCS-API and
the additional functions.

• Informative Appendices
A number of informative appendices are included providing discussion on implementation
considerations, example walkthroughs of the use of the GCS-API in key exchange protocols,
and other sundry matters.

Generic Cryptographic Service API (GCS-API) Base xiii



Preface

Basic GCS-API

• Chapter 1 is an introduction to the Basic GCS-API including an overview of cryptographic
services, the GCS-API Programming Model and the concept of a Cryptographic Context.

• Chapter 2 presents an overview of the Basic GCS-API functions, explaining their use and
providing some code examples.

• Chapter 3 defines the GCS-API data types, parameter passing conventions and defined
constants necessary for the use of the Basic GCS-API.

• Chapter 4 presents the C-language functions that form the Basic GCS-API.

Advanced GCS-API

• Chapter 5 is an introduction to the Advanced GCS-API providing a more detailed
description of the scope and applicability of the GCS-API including discussion of the legal
and security considerations that arise in the deployment of cryptographic services.

• Chapter 6 describes the key life cycle.

• Chapter 7 defines the logical data structures that underly the GCS-API.

• Chapter 8 presents an overview of the Advanced GCS-API functions.

• Chapter 9 defines the additional GCS-API data types, parameter passing conventions and
defined constants necessary for the use of the Advanced GCS-API.

• Chapter 10 presents the C-language functions for general cryptographic services and
protected key management services that form part of the Advanced GCS-API.

• Chapter 11 presents the C-language functions for clear key management services.

• Chapter 12 describes the conformance requirements.

Informative Appendices

• Appendix A presents factors to be considered by implementations of this specification.

• Appendix B presents a set of example template CCs that could be used as the basis for
supporting a majority of common cryptographic uses.

• Appendix C presents walkthroughs of some typical uses of cryptographic services to
demonstrate the applicability of this specification.

• Appendix D lists additional functional areas that have been rules out of scope of this current
specification but which may considered for inclusion in a future specification.

• Appendix E presents an example of key test pattern generation and verification.

• Appendix F presents a discussion of key parity.

• A glossary and index are provided.

xiv X/Open Preliminary Specification (1996)



Preface

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for filenames, and C-language keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— C-language variable names, for example, substitutable argument prototypes

— C-language functions; these are shown as follows: name( ).

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• The notation [EABCD] is used to identify a C-language return code EABCD.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font.

• Variables within syntax statements are shown in italic fixed width font .

• Language-independent functions and arguments use bold italic font, for example, function( )
and argument.

Generic Cryptographic Service API (GCS-API) Base xv



Trade Marks

KerberosTM is a trade mark of the Massachusetts Institute of Technology.

OSFTM is a trade mark of The Open Software Foundation, Inc.

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

xvi X/Open Preliminary Specification (1996)



Acknowledgements

X/Open gratefully acknowledges the work of the X/Open Cryptographic Working Group in the
development of this specification.

Document Development

This specification is the result of the input and discussion of many ideas and concepts and the
comparison of these with existing implementations. Specific input and development effort has
been provided by:

BULL, S.A.
Hewlett Packard
International Business Machines Corporation (IBM)
International Computers Limited (ICL)
USA National Institute of Standards and Technology (NIST)
USA National Security Agency (NSA)
Olivetti Systems and Networks s.r.l
OpenVision
Siemens Nixdorf
Trusted Information Systems, Inc

Other Contributions

The following organisations have contributed to this specification by reviewing drafts.

Fischer International
RSA Data Security, Inc

Generic Cryptographic Service API (GCS-API) Base xvii



Referenced Documents

The following documents are referenced in this specification:

RFC 1510
Internet Proposed Standard, The Kerberos Network Authentication System, John Kohl,
B.Clifford Neuman, issue 5.2, 21 April 1993.

CESG Memo
CESG Memorandum No.1 Issue 1.2 Oct 1992, Glossary of Security Terminology.

Federal Criteria
Federal Criteria Version 1.0 Dec 1992, Federal Criteria for Information Technology Security.

ISO/IEC 7498-2
ISO/IEC 7498-2: 1989, Information Processing Systems — Open Systems Interconnection —
Basic Reference Model — Part 2: Security Architecture.

ISO/IEC 10181
ISO/IEC 10181, Information Technology — Open Systems Interconnection — Security
Frameworks in Open Systems —

10181-1: Part 1: Security Frameworks Overview
10181-2: Part 2: Authentication Framework
10181-3: Part 3: Access Control
10181-4: Part 4: Non-repudiation Framework
10181-5: Part 5: Integrity Framework
10181-6: Part 6: Confidentiality Framework
10181-7: Part 7: Security Audit Framework

ITSEC
Information Technology Security Evaluation Criteria, Provisional Harmonised Criteria, June
1991, Version 1.2, published by the Commission of the European Communities.

OIW OSI Security
Stable Implementation Agreements for Open Systems Interconnection Protocols: Part 12 —
OS Security, December 1994.

POSIX.0
IEEE Std 1003.0/D15, June 1992, Draft Standard for Information Technology — Portable
Operating System Interface (POSIX) — Part 0.

PKCS #1
RSA Data Security, Inc. Public-Key Cryptography Standards (PKCS) PKCS #1: RSA
Encryption Standard, November 1993.

PKCS #3
RSA Data Security, Inc. Public-Key Cryptography Standards (PKCS) PKCS #3: Diffie-
Hellman Key-Agreement Standard.

PKCS #8
RSA Data Security, Inc. Public-Key Cryptography Standards (PKCS) PKCS #8: Private-Key
Information Syntax Standard, November 1993.

X.509
ISO/IEC 9594-8: 1990, Information Technology — Open Systems Interconnection — The
Directory — Part 8: Authentication Framework, together with:

xviii X/Open Preliminary Specification (1996)



Referenced Documents

Technical Corrigendum 1: 1991 to ISO/IEC 9594-8: 1990.

The following X/Open documents are referenced in this specification:

Base GSS-API
X/Open CAE Specification, December 1995, Generic Security Service API (GSS-API) Base
(ISBN: 1-85912-131-4, C441).

XDSF
X/Open Guide, December 1994, Distributed Security Framework (ISBN: 1-85912-071-7,
G410).

The following publications provide a more detailed description of cryptography and its uses:

SCHNEIER
Bruce Schneier, Applied Cryptography, John Wiley & Sons, 1996.

Generic Cryptographic Service API (GCS-API) Base xix



Referenced Documents

xx X/Open Preliminary Specification (1996)



Chapter 1

Basic GCS-API - Introduction

The increasing use of network services such as the Internet has enhanced awareness of the need
for security in distributed computer systems, particularly in the light of the publicity
surrounding successful breaches of security, for example, the sniffing of user identities and
passwords passed in the clear over the Internet.

Security services providing for authentication of identities, data-origin authentication, non-
repudiation, data separation, confidentiality and integrity protection rely on underlying
cryptographic services. However, the wide-spread and common use of cryptography within
applications is hindered by two things:

• the lack of agreed application programming interfaces

• legislative constraints that may apply to the supply, use, export or import of the technology

It has long been recognised that a standard application programming interface specification is
needed for cryptographic services and this document addresses that need.

1.1 Structure of document
As described in the Preface, this document is structured into two major sections, a Basic section
and an Advanced section.

The first part of the specification, the Basic section, presents a simple overview of the types of
cryptographic functions, a simplified model of the GCS-API architecture, and the minimum set
of generic cryptographic functionality that can support the requirements of general applications
wishing to use cryptographic service. It is expected that the majority of the cryptographic
service needs of most application developers can be met by the Basic GCS-API functionality.

The second part of the specification, the Advanced section, presents a more detailed description
of the concepts, detailed data structures and additional sets of functions that would only be used
by applications that are developed to manage cryptographic policy and provide long term
management of keys and the cryptographic service itself.

1.2 Scope of Basic GCS-API
The scope of the basic section of this specification is to provide cryptographic services in support
of both algorithm unaware and algorithm aware applications. As such, the interface
specification is provided for use by programmers who develop applications that rely on
cryptographic services and key management services.

The objectives to be met by the interfaces defined in this specification may be categorised as
functional and non-functional. In addition, legal constraints on the use of some cryptographic
services need to be accommodated, see Chapter 5.

Generic Cryptographic Service API (GCS-API) Base 1



Scope of Basic GCS-API Basic GCS-API - Introduction

1.2.1 Functional Objectives of Basic GCS-API

A common set of functions are required to support all types of callers. These are termed General
Application Cryptographic Services and comprise the following:

1. data encipherment and decipherment

2. integrity checkvalue generation and verification

3. production of irreversible hash of data

4. generation of random numbers

Key management applications require the following additional functions:

1. generation, derivation and deletion of keys

2. export and import of keys

1.2.2 Non-Functional Objectives

The non-functional requirements to be supported by this specification are the requirements that
make this specification Generic and include:

1. the API shall be cryptographic algorithm independent

2. the API shall be application independent

3. the API shall be cryptographic subsystem independent. (That is, appropriate to both
hardware and software implementations)

4. the API shall not impose a particular placement of access control to cryptographic services
within an operating system kernel

5. the API shall not constrain future extensibility.

1.3 Overview of Cryptographic Services
This subsection provides a brief introductory description of cryptographic services for those
readers who are unfamiliar with the subject. For a more detailed treatise on the subject readers
are referred to Schneier (see Referenced Documents).

Cryptographic services provide a set of functions for encoding and decoding information so that
the information may be stored or exchanged securely. Cryptographic functions provide a basis
for implementing the following security services:

• Confidentiality of information, preventing unauthorised disclosure

• Integrity of information, detecting unauthorised modification

• Origin authentication, providing verification of the origin of information.

Examples of the basic models of the application of cryptographic services are functions for the
encipherment and decipherment of data, and the generation of Hash Values or Digital Signatures on
sets of data. In addition functions to support key management and distribution are important.

2 X/Open Preliminary Specification (1996)



Basic GCS-API - Introduction Overview of Cryptographic Services

1.3.1 Encipher and Decipher Functions

The basic concept underlying cryptography is the enciphering of data. Encipher functions
encode a set of data, termed cleartext or plaintext, into a protected format termed ciphertext using
a reversible mechanism. The ciphertext may be stored or exchanged with a reduced risk of
unauthorised disclosure of the data. A corresponding decipher function can be used to decode
ciphertext back into its corresponding cleartext form. Thus:

Encipher
Key

DecipherEncipher

Decipher
Key

cleartext cleartext

Figure 1-1  Encipher and Decipher Functions

The encoding is controlled by the algorithm used and a secret value termed a key. The
protection afforded to the ciphertext depends upon the strength (but not the secrecy) of the
algorithm and the protection of the key used to control the algorithm. Encipherment functions
preserve all the original data represented by the cleartext. This type of function is the basis of
the provision of information confidentiality services.

1.3.2 Symmetric-Key and Asymmetric-Key Encipherment

There are two classes of encipherment algorithm:

Symmetric-Key Algorithms - (Secret-Key Algorithms)
are algorithms in which the encipher key and the decipher key are identical. For the
exchange of enciphered data a single key value must be shared between the originator and
the recipient and protected by both parties. For this reason these types of algorithm are also
termed Secret-Key algorithms.

Asymmetric-Key Algorithms - (Public-Key Algorithms)
are algorithms in which the encipher key and decipher key are different. The encipher and
decipher keys are generated as a pair by a single operation. Data enciphered by using one
key of the pair may be deciphered using the other key of the pair. For the exchange of
enciphered data each party to the exchange makes one of their own pair of keys public, the
public-key, and keeps the other key private, the private-key. The originator of an exchange
enciphers the data using the public-key of the recipient. The recipient is then able to decipher
the received data using his own private-key.

Generic Cryptographic Service API (GCS-API) Base 3



Overview of Cryptographic Services Basic GCS-API - Introduction

1.3.3 Hash (Unprotected Checksum) Functions

Hash functions encode a set of data that may be of variable length using a one-way function to
create a unique fixed length hash value or message digest of the set of data. The hash value is
unprotected in the sense that it does not depend upon any secret value component and any
individual with the same input data and same algorithm can generate the hash value.

Fixed
Length

Variable
Length

Hash

cleartext

Figure 1-2  Generate Hash value

A hash function does not preserve the original data represented by the cleartext and therefore
the original cleartext cannot be recovered from a hash value. The value of these types of
function are that the hash value is unique to a particular input cleartext and can therefore be
used to check that the corresponding cleartext has not been modified.

A hash function is the basis of the provision of information integrity services. The hash value
generated by the originator of the information is stored or exchanged with the cleartext. The
recipient is able to regenerate the hash value from the received cleartext and verify that cleartext
is unmodified by comparing the newly generated hash value with that received with the
information.

1.3.4 Digital Signature (Protected Checksum) Functions

An asymmetric encipher function and a hash function may be used in combination to provide a
digital signature service. The Digital Signature is protected in the sense that its value depends
upon the originator’s private key and it can therefore only be generated by an individual
possessing that key.

First a hash value is produced by the hash function. This is then enciphered using the
asymmetric encipher function using the originator’s private key.

4 X/Open Preliminary Specification (1996)



Basic GCS-API - Introduction Overview of Cryptographic Services

Originator’s
Private Key

Hash Encipher

cleartext

cleartext

Figure 1-3  Generate Digital Signature

The recipient may verify the digital signature by comparing the values obtained by recomputing
the hash value of the received cleartext and comparing this with the value obtained by
deciphering the digital signature using the originator’s public key.

Generic Cryptographic Service API (GCS-API) Base 5



Overview of Cryptographic Services Basic GCS-API - Introduction

Originator’s
Public Key

Decipher

Compare Result

Hash

cleartext

Figure 1-4  Verify Digital Signature

1.3.5 Key Management Functions

In order to exchange cryptographically protected information then the parties exchanging the
information require to have access to the appropriate keys. This means that cryptographic keys,
or information permitting their derivation, also have to be exchanged.

6 X/Open Preliminary Specification (1996)



Basic GCS-API - Introduction Overview of Cryptographic Services

Key Encipher
Key

Symmetric
Key

Symmetric
Key

Key Decipher
Key

Encipher Decipher
Symmetric

Key
Symmetric

Key

Encipher Decipher

cleartext cleartext

Figure 1-5  Key Encrypting Key

The strength of the protection of data using cryptographic services depends critically upon the
protection of the key values used to control the algorithms. Functions to securely create and
support the secure distribution of cryptographic keys are therefore an essential part of any
cryptographic service.

Keys may be generated or derived. A key generation function will generate a key based on
random information. A key derivation function will derive a key based upon some caller
defined input string, such as a pass phrase.

To distribute keys securely they are normally protected by enciphering under a Key Exchange
Key, or Key Encrypting Key. Note that the individual parties exchanging keys need to have
previously distributed by some other method the Key Exchange key.

Generic Cryptographic Service API (GCS-API) Base 7



The GCS-API Programming Model Basic GCS-API - Introduction

1.4 The GCS-API Programming Model
The Generic Cryptographic Service Application Program Interface (GCS-API) is a set of
interfaces to a Cryptographic Support Facility (CSF) that may support a number of different
cryptographic algorithms dependent upon the implementation. It also provides support for key
management on behalf of individual applications and shared key management between
applications. This is illustrated in Figure 1-6.

DES RSA SHA-1 Algorithm-n

Cryptographic Support Facility
(CSF)

Template CC and
Populated CC

Database

GCS-API

Application 1 Application 2 Application 3

Algorithm Specific
Interfaces

Algorithm Independent
Interface

Cryptographic Algorithms

Figure 1-6  Basic CSF Model

The interface presented by the GCS-API supports the development of portable applications by
being:

Algorithm Independent
The GCS-API may hide the details and complexities and specific algorithms from callers.
For example, a caller may invoke an encipher function without needing to be aware of
which algorithm is being used nor of the specific parameters required by that algorithm.
However, the GCS-API also supports algorithm specific callers that require to use a specific
set of algorithms.

Implementation Independent
The GCS-API hides the details of the implementation from callers. For example, whether
the implementation is in software, hardware, or a combination of both. An application can
therefore be unaware of the necessity to open a physical device to access a hardware
implementation.

8 X/Open Preliminary Specification (1996)



Basic GCS-API - Introduction Cryptographic Context (CC)

1.5 Cryptographic Context (CC)
In invoking a cryptographic operation it is insufficient for a caller to simply supply the input
data and a key. Other information has to be assembled such as which algorithm is to be used,
how it is to be used and algorithm and key specific parameters.

GCS-API algorithm independence is achieved by using the concept of a Cryptographic Context
(CC). A CC is an protected object that is opaque to callers of the GCS-API and which
encapsulates all the information pertaining to the context of the cryptographic operation to be
performed. A CC includes the algorithm identity, algorithm specific parameters, key specific
parameters, and optionally a key. The contents of a CC are detailed in Chapter 7 in the
Advanced GCS-API section. Callers of the Basic GCS-API do not need to be aware of the
contents of a CC.

A CSF maintains a database of CCs that may be referenced by name by callers. There are two
types of CC, those that are populated with a key and those that are not.

Template CCs
Template CCs are those CCs that do not contain a key and cannot be used directly in
cryptographic operations. The purpose of these types of CCs is to provide templates
applicable to the algorithms supported by the particular CSF implementation and which
configure the use of the cryptographic services in accordance with the local site security
policy.

Populated CCs
Populated CCs are those CCs that do contain a key and may be used directly in
cryptographic operations. An implementation for use in a multi-user environment will
enforce an access control policy on the use of populated CCs.

The general method of use of a CC is for a key management application to:

• retrieve a template CC appropriate to the functions it wishes to perform,

• to populate that CC by calling on the CSF to generate a key, and then

• either use that CC itself in subsequent calls to cryptographic operations on the CSF, or

• store the CC with an appropriate name for subsequent use by other callers.

A general application will retrieve a previously stored populated CC from the CSF for use in its
operations.

The advance section of the GCS-API includes functions for creating template CCs. See Chapter
8.

1.5.1 Naming of Template CCs

The ability to name CCs may be used to support both algorithm aware and algorithm
independent applications. A CC name may be used to identify the specific contents and purpose
of the CC, for example RSA_SIGN_SHA-1, for use by algorithm aware callers. Additionally a
CC name may be used to identity local default algorithms, for example LOCAL_SIGN, for use
by algorithm unaware applications.

A possible set of defaults is:

Generic Cryptographic Service API (GCS-API) Base 9



Cryptographic Context (CC) Basic GCS-API - Introduction

CC Name Meaning
LOCAL_SYM_ENCIPHER_DECIPHER Default symmetric encipher/decipher CC
LOCAL_ASYM_ENCIPHER Default asymmetric encipher CC
LOCAL_ASYM_DECIPHER Default asymmetric decipher CC
LOCAL_SIGN Default signature generate CC
LOCAL_VERIFY Default signature verify CC
LOCAL_HASH Default hash CC
LOCAL_EXPORT Default export key CC
LOCAL_IMPORT Default import key CC

Table 1-1  Default CC Names

Appendix B presents a set of example Template CC definitions for common algorithms.

10 X/Open Preliminary Specification (1996)



Chapter 2

Basic GCS-API Services

Protected Key
Management

Services

Clear Key
Management

Services

Initialisation
and Configuration

Services

General Application
Cryptographic

Services

Cryptographic Policy Selecting
Application Service Caller

Cryptographic
Policy Enforcing

Application
Service Caller

Cryptographic Policy Unaware Caller
Cryptographic

Administrative
Application

Application Programming
Interface (API)

System Programming
Interface (SPI)

Cryptographic Services

Restricted Non
Restircted

Policy Enforcing

Cryptographic Service

Figure 2-1  CSF Services

The CSF services comprise both operational and management services and are illustrated in
Figure 2-1.

They include the following categories:

• General Cryptographic Services (Part of the API)

• Protected Key Management Services (Part of the API)

• Clear Key Management Services (Part of the SPI)

• Cryptographic Service Initialisation and Configuration Services (Not within the current
scope of this specification.)

This chapter describes the basic services supported by the GCS-API the advanced services
supported by the GCS-API are described in Chapter 5. The basic services comprise the General
Cryptographic Services together with a subset of the Protected key Management Services. Each
subsection lists the functions supported and the GCS Authorities, if any, required by a caller in
order to successfully invoke the function. The detailed manual page for each of these functions is
included in Chapter 4.

GCS_Authorities relate to the type of authority a caller of the CSF has for the enforcement of
cryptographic security policy. The GCS_Authorities have been defined to support the principles
of the separation of duties and of least privilege.

The GCS_Authorities of a caller of the GCS-API are established in an implementation defined
manner when a caller initialises a session with a CSF. A caller is not required to manipulate
GCS_Authorities during the use of the GCS_API but should be aware that a call may fail because

Generic Cryptographic Service API (GCS-API) Base 11



Basic GCS-API Services

of inadequate authorisation.

2.1 Session Management

Function GCS Authorities
gcs_initialise_session -
gcs_terminate_session -

Table 2-1  CSF Session Management Functions

CSF Session Management functions are used to establish and release connections with the CSF.
These functions provide for the authentication of the caller and the establishment of a security
context for the session created between a caller and the CSF.

The security context is represented by an protected opaque object to which a handle is returned
to a caller initiating a session. This session_context is included as a parameter to every call to the
GCS-API to provide a method of continuous authentication and to support stateless
implementations of the CSF. The security context includes any necessary identity authentication
and authorisation attributes, including GCS-API Authorities.

The function gcs_initialise_session is used to initiate a session, gcs_terminate_session is used to
terminate a session and release the security context.

2.2 Cryptographic Context Retrieval Functions

Function GCS Authorities
gcs_delete_cc -
gcs_list_cc -
gcs_retrieve_cc -

Table 2-2  Cryptographic Context Retrieval Functions

A cryptographic key has to be protected from disclosure and has to be used in the context of the
algorithm and associated parameters that govern its use. To simplify the manipulation of this
information by general applications the GCS-API groups a key and other related data into a
protected structure termed a Cryptographic Context (CC).

Cryptographic Contexts may be stored under the control of the CSF as one of two types:

• Template CCs that include all the necessary context information necessary to perform a
particular type of operation with the exception of a key. These types of CC are created by
administrators of the CSF to act as templates for use by other callers of the CSF. The creation
of these templates permits the set of cryptographic policies for the use of the CSF to be
predefined.

• Populated CCs which include all the necessary context information to perform a particular
type of operation including a key. These types of CCs are created by key management
applications.

12 X/Open Preliminary Specification (1996)



Basic GCS-API Services Cryptographic Context Retrieval Functions

CC Key

Key

Key

encipher

cc_handle

Caller’s private
copy of cc

delete_cc(cc_handle)

Caller’s private
copy of cc deleted

and memory released

encipher_data(
cc_handle,
input_buffer,
output_buffer)

cleartext

retrieve_cc(
name_of_populated_cc)

Application GCS-API CSF Working
Storage

CC Database

CC

CC

x
Figure 2-2  Retrieval and Use of a Populated CC

gcs_retrieve_cc enables a caller to retrieve a handle to a CC so that it may be used. gcs_delete_cc is
used to delete the handle to a CC and release any resources associated with its use by that caller.
gcs_list_cc provides for a caller to query the CSF for the names of stored CCs that it may attempt
to retrieve.

Here is an example printing all the cc names allowed for this application.

main()
{

gcs_buffer_desc my_cc_name;
OM_unit32 index;
OM_unit32 returnCode=GCS_S_CONTINUE_NEEDED;

.........
for (index=0; returnCode == GCS_S_CONTINUE_NEEDED; index++)

Generic Cryptographic Service API (GCS-API) Base 13



Cryptographic Context Retrieval Functions Basic GCS-API Services

{
returnCode = gcs_list_cc(&minor_status,

&session_context,
index,
GCS_NULL, /* no need for domain */
&my_cc_name,
GCS_NULL);

if (my_cc_name.value != GCS_NULL)
printf(" the cc name is = %s \n",my_cc_name.value);

}

gcs_release_buffer(&minor_status,&session_context,&my_cc_name);
........

}

A general application may retrieve a previously populated CC that has been stored under the
control of the CSF for shared use by a number of applications, for example a user’s private key.
This is illustrated in Figure 2-2

14 X/Open Preliminary Specification (1996)



Basic GCS-API Services Cryptographic Context Retrieval Functions

CC Key

Key

encipher

cc_handle

Caller’s private
copy of cc

delete_cc(cc_handle)

Caller’s private
copy of cc deleted

and memory released

encipher_data(
cc_handle,
input_buffer,
output_buffer)

cleartext

generate(cc_handle)

retrieve_cc(
name_of_template_cc)

Application GCS-API CSF Working
Storage

CC Database

CC

CC

CC

x
Figure 2-3  Retrieval and use of a Template CC

A key management application may retrieve a handle to a template CC for subsequent
population with a key. This is illustrated in Figure 2-3.

Generic Cryptographic Service API (GCS-API) Base 15



Key Creation Basic GCS-API Services

2.3 Key Creation

Function GCS Authorities
gcs_derive_key GCS_C_SELECTION
gcs_generate_key GCS_C_SELECTION

Table 2-3  Key Creation Functions

Before a template CC may be used for cryptographic operations it requires populating with a
key. This is achieved using gcs_derive_cc to derive a key from an input parameter, for example a
user supplied string, or gcs_generate_key to internally generate a key value or key value pair.
This is illustrated in Figure 2-3.

2.4 Hash and Signature Functions

Function GCS Authorities
gcs_generate_checkvalue -
gcs_verify_checkvalue -
gcs_generate_hash -
gcs_generate_random_number -

Table 2-4  Hash and Signature Functions

The cryptographic hash and signature functions listed above provide the basis for integrity and
digital signature operations and will be supported by all CSF implementations.
gcs_generate_checkvalue and gcs_verify_checkvalue generate cryptographically protected hash
values (e.g., digital signatures). gcs_generate_hash generates a hash of the supplied input data.
gcs_generate_random_number is used to generate a cryptographically strong random number.

A code example for the retrieval of a populated CC and its use to generate check value is given
below. This example does include all the necessary code to create a compilable program but only
emphasises the GCS-API calls necessary.

BOB retrieves his key and use it to sign some data.

#include <libgcs.h>

main()
{

OM_uint32 minor_status ;
OM_uint32 ret ;
gcs_session_context_t session_context ;
gcs_cc_t bob_s_crypto_context ;

#define BUFFER_SIZE 256

gcs_buffer_desc cc_name ;
gcs_buffer_desc init_param ;
gcs_buffer_desc buffer ;

16 X/Open Preliminary Specification (1996)



Basic GCS-API Services Hash and Signature Functions

gcs_buffer_desc check_value ;

char user_s_CC_name[MAX_CC_NAME_LENGTH] = "BOB_S_CC " ;
char buffer_data[BUFFER_SIZE];

int i ;

/*** Initialisation of a session between bob and the Cryptographic
* Security Module.
* This is omitted for clarity.

/***
* Retrieve the cryptographic context from the database.
*/

cc_name.length = MAX_CC_NAME_LENGTH ;
(char *) cc_name.value = user_s_CC_name ;

if ( (ret = gcs_retrieve_cc(&minor_status, &session_context, NULL,
&cc_name, NULL, FALSE, &bob_s_crypto_context))

!= GCS_S_COMPLETE) {
fprintf(stderr, "Error %d in gcs_retrieve_cc0, ret) ;
exit (-1) ;

}

/***
* Fill buffer with data to be signed.
*/

/***
* Compute checkvalue of the buffer
*/

if ( (ret = generate_check_value(&minor_status,&session_context,&buffer,
NULL,GCS_C_ONLY,&bob_s_crypto_context,
NULL,&check_value))

!= GCS_S_COMPLETE) {
fprintf(stderr, "Error %d in generate_check_value0, ret) ;
exit (-1) ;

}

/***
* Store or transmit the computed check value.
*/

/***
* Release buffers and delete cryptographic context
*/

Generic Cryptographic Service API (GCS-API) Base 17



Hash and Signature Functions Basic GCS-API Services

if ( (ret = gcs_delete_cc(&minor_status,&session_context,
&bob_s_crypto_context))

!= GCS_S_COMPLETE) {
fprintf(stderr, "Error %d in gcs_delete_cc0, ret) ;
exit (-1) ;

}

if ( (ret = gcs_release_buffer(&minor_status,&check_value))
!= GCS_S_COMPLETE) {

fprintf(stderr, "Error %d in gcs_release_buffer0, ret) ;
exit (-1) ;

}

return (0) ;

}

2.5 Data Encipherment Functions

Function GCS Authorities
gcs_encipher_data GCS_C_ENCIPHER_DECIPHER
gcs_decipher_data GCS_C_ENCIPHER_DECIPHER
gcs_protect_data GCS_C_ENCIPHER_DECIPHER
gcs_decipher_verify GCS_C_ENCIPHER_DECIPHER

Table 2-5  Data Encipherment Functions

The data encipherment operations listed above provide the basis for confidentiality operations.
Legislative constraints on the use or supply of cryptographic services for data encipherment
means that these functions may not be supported by all CSF implementations or may have
operational constraints imposed on them and callers may require specific authorisation to use
them, as represented by the GCS_C_ENCIPHER_DECIPHER GCS Authorisation.

gcs_encipher_data and gcs_decipher_data provide for the simple enciphering and deciphering of a
set of data.

gcs_protect_data provides for the simultaneous enciphering and generation of a hash value or
digital signature over the same data for the purposes of providing both confidentiality and
integrity, and possibly data origin authentication. gcs_decipher_and_verify provides for the
simultaneous deciphering and verification of a hash value or digital signature associated with
the received ciphertext.

18 X/Open Preliminary Specification (1996)



Basic GCS-API Services Cryptographic Context Storage Functions

2.6 Cryptographic Context Storage Functions

Function GCS Authorities
gcs_store_cc GCS_C_SELECTION or GCS_C_KEY_USAGE
gcs_remove_cc GCS_C_SELECTION or GCS_C_KEY_USAGE

Table 2-6  Cryptographic Context Storage Functions

These functions provide for the storage of CCs under the control of the CSF and their
subsequent removal. See Figure 2-4.

Key

Key

cc_handle

Caller’s private
copy of cc

delete_cc(cc_handle)

Caller’s private
copy of cc deleted

and memory released

CC Database
copy of CC
removed

store_cc(
cc_handle,
name_of_populated_cc)

generate_key(cc_handle)

remove_cc(
name_of_cc)

retrieve_cc(
name_of_template_cc)

Application GCS-API CSF Working
Storage

CC Database

CC

CC

CC

CC

CC Keyx
CC Keyx

Figure 2-4  CC Storage Management Functions

gcs_store_cc provides for the storage of a CC and the assignment of a caller defined name to the
stored CC. The act of storage provides for the global referencing of that CC by any caller of the
CSF subject to any authorisation policy enforced by the CSF. gcs_remove_cc removes a CC from

Generic Cryptographic Service API (GCS-API) Base 19



Cryptographic Context Storage Functions Basic GCS-API Services

CSF controlled storage and therefore it is then no longer available for use.

The code example below is of the retrieval of a Template CC, its population with a key, and
storage as a populated cc for subsequent use.

/***
* Retrieve a MD5+RSA cryptographic context from the database,
* populate it with a key and store it as bob’s crypto context
*/

#include <libgcs.h>

main()
{

OM_uint32 minor_status ;
OM_uint32 ret ;
gcs_session_context_t session_context ;
gcs_cc_t template_cc ;

gcs_buffer_desc cc_name ;
gcs_buffer_desc init_param ;
char admin_name[MAX_USER_NAME_LENGTH] = "ADMIN " ;
char admin_pswd[MAX_PSWD_LENGTH] = "MGT_PSWD " ;
char template_cc_name[MAX_CC_NAME_LENGTH] = "RSA-SIGN-MD5 " ;
char bob_s_CC_name[MAX_CC_NAME_LENGTH] = "BOB_S_CC " ;

/*** Initialisation of a session between administrator and the Cryptographic
* Security Module.
* This has been omitted for clarity.
*/

/***
* Retrieve a template cryptographic context from the database,
* containing RSA and MD5 algorithms.
*/

cc_name.length = MAX_CC_NAME_LENGTH ;
(char *) cc_name.value = template_cc_name ;

if ( (ret = gcs_retrieve_cc(&minor_status, &session_context, NULL,
&cc_name, NULL, FALSE, &template_cc))

!= GCS_S_COMPLETE) {
fprintf(stderr, "Error %d in gcs_retrieve_cc0, ret) ;
exit (-1) ;

}

/***

20 X/Open Preliminary Specification (1996)



Basic GCS-API Services Cryptographic Context Storage Functions

* Generate a key and populate the cryptographic context with it,
* and then store the new cryptographic context in the database under
* the name ’BOB_S_CC’.
*/

if ( (ret = gcs_generate_key(&minor_status, &session_context, &template_cc))
!= GCS_S_COMPLETE) {

fprintf(stderr, "Error %d in gcs_generate_key0, ret) ;
exit (-1) ;

}

(char *) cc_name.value = bob_s_CC_name ;
if ( (ret = gcs_store_cc(&minor_status, &session_context, NULL,

&bob_s_CC_name, &template_cc, NULL, NULL, NULL))
!= GCS_S_COMPLETE) {

fprintf(stderr, "Error %d in gcs_store_cc0, ret) ;
exit (-1) ;

}

/***
* Release buffers and delete cryptographic context
*/

if ( (ret = gcs_delete_cc(&minor_status,&session_context,
&template_cc))

!= GCS_S_COMPLETE) {
fprintf(stderr, "Error %d in gcs_delete_cc0, ret) ;
exit (-1) ;

}

return (0) ;
}

2.7 Key Exchange Functions

Function GCS Authorities
gcs_export_key GCS_C_KEY_USAGE
gcs_import_key GCS_C_KEY_USAGE
gcs_key_agreement GCS_C_KEY_USAGE

Table 2-7  Key Exchange Functions

The key exchange functions provide for the encapsulation of a key into an object protected by a
key exchange key (KEK) for the purposes of exchanging the key with another CSF or of binding
the key with an object that has been protected by the key for the purposes of messaging or data
storage.

gcs_export_key provides for the export of a key from a supplied CC. gcs_import_key provides for
the import of a key protected under a KEK and its insertion into a supplied CC. This is

Generic Cryptographic Service API (GCS-API) Base 21



Key Exchange Functions Basic GCS-API Services

illustrated in Figure 2-5.

Key

KEK

KEK

cc_handle

retrieve_cc(
name_of_kek_cc)

export_key(
cc_handle,
kek_cc_handle)

generate(cc_handle)

retrieve_cc(
name_of_template_cc)

Application GCS-API CSF Working
Storage

CC Database

CC

KEK
CC

KEK
CC

kek_cc_handle

export_key

encapsulated
key

CC

CC

Figure 2-5  Key Export

gcs_key_agreement provides support for more complex key exchange protocols as implemented
by the CSF.

The GCS_C_KEY_USAGE authorisation is required by a caller of these functions as it is
normally necessary to set key usage and key lifetime parameters within the CC.

22 X/Open Preliminary Specification (1996)



Basic GCS-API Services GCS-API Utility Functions

2.8 GCS-API Utility Functions

Function GCS Authorities
gcs_get_csf_params -
gcs_release_buffer -
gcs_release_bit_string -

Table 2-8  GCS-API Utility Functions

gcs_get_csf_parameters provides for the querying of implementation specific parameters such as
maximum buffer size and the type of implementation (hardware, software, etc.).

gcs_release_buffer provides for the release of any buffers assigned by the GCS-API on a callers
behalf.

gcs_release_bit_string provides for the release of any storage space allocated by gcs_get_cc,
gcs_generate_random, gcs_export_key and gcs_get_csf_params.

Generic Cryptographic Service API (GCS-API) Base 23



Basic GCS-API Services

24 X/Open Preliminary Specification (1996)



Chapter 3

Basic Parameter Passing Conventions

This chapter describes the data types used by the C-language versions of the basic GCS-API
functions. It also explains calling conventions for these functions.

3.1 Structured Data Types
Wherever these GCS-API C-bindings describe structured data, only fields that must be provided
by all GCS-API implementations are documented. Individual implementations may provide
additional fields, either for internal use within GCS-API routines, or for use by non-portable
applications.

3.2 Integer Types
GCS-API defines the following integer data type:

OM_uint32 32-bit unsigned integer

Where guaranteed minimum bit-count is important, this portable data type is used by the GCS-
API routine definitions. Individual GCS-API implementations include appropriate typedef
definitions to map this type onto a built-in data type.

3.3 String Data and Similar Data

3.3.1 Byte Strings

Many of the GCS-API routines take arguments and return values that describe contiguous
multi-byte data. All such data are passed between the GCS-API and the caller using the
gcs_buffer_t data type. This data type is a pointer to a buffer descriptor consisting of a length
field, which contains the total number of bytes in the data, and a value field, which contains a
pointer to the actual data:

typedef struct gcs_buffer_desc_struct{
size_t length;
void *value;

} gcs_buffer_desc, *gcs_buffer_t;

Storage for data passed to the application by a GCS-API routine using the gcs_buffer_t
conventions is allocated by the GCS-API routine. The application may free this storage by
invoking the gcs_release_buffer( ) routine. Allocation of the gcs_buffer_desc object is always the
responsibility of the application; unused gcs_buffer_desc objects may be initialised to the value
GCS_C_EMPTY_BUFFER.

Generic Cryptographic Service API (GCS-API) Base 25



String Data and Similar Data Basic Parameter Passing Conventions

3.3.2 Character Strings

Certain multi-octet data items may be regarded as simple Latin-1 character strings as defined in
the ISO/IEC 8859-1 standard. An example of this is the input-string argument to
gcs_verify_key_pattern ( ). Character strings are passed between the application and the GCS-API
using the gcs_buffer_t data type, defined earlier.

3.3.3 Bit Strings

Certain multi-octet data items may be regarded as simple bit strings. An example of this is the
export_data argument to gcs_export_key.( ) Some GCS-API routines also return bit strings. The
gcs_bit_string_t data type is a pointer to a buffer descriptor consisting of a length field, which
contains the total number of bits, and a bits field which contains a pointer to the actual data,
with the most significant bit first (in the lowest address bit).

typedef struct gcs_bit_string_desc_struct{
OM_uint32 length;
char *bits;

} gcs_bit_string_desc, *gcs_bit_string_t;

Bit strings are passed between the application and the GCS-API using the gcs_bit_string_t data
type.

Certain GCS-API functions return an array of bit strings. This is defined as follows:

typedef struct gcs_bit_string_set_desc_struct {
OM_uint32 count;
gcs_bit_string_t bit-strings;

} gcs_bit_string_set_desc, *gcs_bit_string_set_t

3.3.4 Opaque Data Types

Certain multi-octet data items are considered opaque data types at the GCS-API, because their
internal structure only has significance to the CSF. Examples of such opaque data types are the

• session_context argument to all GCS-API functions.
This is opaque to the GCS-API and is passed between the GCS-API and the application using
the gcs_session_context_t datatype

• CC argument to several GCS-API functions.
This is opaque to the caller and is passed between the GCS-API and the application using the
gcs_cc_t datatype. The design of the interface does not preclude a hardware implementation.
The implementation defines whether the CC is held entirely within the CSF or outside the
CSF. The contents must be protected against modification, any key values contained therein
will generally also be confidentiality protected.

26 X/Open Preliminary Specification (1996)



Basic Parameter Passing Conventions Contexts

3.4 Contexts
The gcs_cc_t data type contains a caller-opaque cryptographic context defined by the
implementation. The cryptographic context holds the algorithm context and key context
information.

3.5 Session Context Parameters
The gcs_session_context_t data type contains a caller-opaque set of session context parameters
which may be required by the implementation. These are set by a call to gcs_initialise_session.
One example of their use is to include identification and authorisation information relating to
the caller of the CSF.

Generic Cryptographic Service API (GCS-API) Base 27



Status Values Basic Parameter Passing Conventions

3.6 Status Values
One or more status codes are returned by each GCS-API routine. Two distinct sorts of status
code are returned. These are termed GCS status codes and minor status codes. An
implementation of GCS functions shall return GCS_S_COMPLETE and other status values
appropriate for the implementation of the function. The characteristics of a particular
implementation may make some status returns inappropriate for that implementation. For
example, status codes reflecting a hardware failure are inappropriate for a purely software
implementation.

3.6.1 GCS Status Codes

GCS-API routines return GCS status codes as their OM_uint32 function value. These codes
indicate major status errors that are independent of the underlying mechanism used to provide
the security service.

A GCS status code can indicate a single fatal generic API error from the routine and a single
calling error. In addition, supplementary status information may be indicated by setting bits in a
Supplementary Info field in a GCS status code.

These errors are encoded into the 32-bit GCS status code as follows:

MSB LSB
|------------------------------------------------------------|
| Calling Error | Routine Error | Supplementary Info |
|------------------------------------------------------------|

Bit 31 24 23 16 15 0

Hence if a GCS-API routine returns a GCS status code whose upper 16 bits contain a non-zero
value, the call failed. If the Calling Error field is non-zero, the invoking application’s call of the
routine was erroneous. Calling errors are defined in Table 3-1. If the Routine Error field is non-
zero, the routine failed for one of the routine-specific reasons listed in Table 3-2 on page 29.
Whether or not the upper 16 bits indicate a failure or a success, the routine may indicate
additional information by setting bits in the Supplementary Info field of the status code. This
specification does not currently define any supplementary information but it is included to
accommodate a possible future expansion in scope that might require such information.

Name Value in Meaning
Field

A required input argument cannot be
read.

[GCS_S_CALL_INACCESSIBLE_READ] 1

A required output argument cannot
be written.

[GCS_S_CALL_INACCESSIBLE_WRITE] 2

[GCS_S_CALL_BAD_STRUCTURE] 3 An argument is malformed.

Table 3-1  Calling Errors

28 X/Open Preliminary Specification (1996)



Basic Parameter Passing Conventions Status Values

Table 3-2  Routine Errors

Name Value in Meaning
Field

[GCS_S_COMPLETE] 0 Successful completion.
[GCS_S_COMPLETE_QCF] 1 Successful completion; supplied CC has

quasi-compromised flag set.
The routine must be called again to complete
its function. See individual function
descriptions in Chapter 4 and Chapter 10 for a
detailed description.

[GCS_S_CONTINUE_NEEDED] 2

Miscellaneous failure (see text in function
descriptions).

[GCS_S_FAILURE] 3

[GCS_S_AUTHORISATION_FAILURE] 4 Authorisation failure.
[GCS_S_BAD_FLAG] 5 The flag supplied is not valid.
[GCS_S_BAD_SIZE] 6 The input buffer size exceeds the maximum

that can be handled by implementation
[GCS_S_BUFFER_OVERFLOW] 8 The output buffer could have

overflowed.
[GCS_S_BAD_CC] 9 The crypto context supplied is invalid
[GCS_S_BAD_SUBJECT_CC] 10 Subject CC supplied is invalid.
[GCS_S_BAD_AC] 11 Invalid algorithm context supplied.
[GCS_S_BAD_KC] 12 Invalid key context supplied.
[GCS_S_BAD_KGK_CC] 13 Key generating key CC supplied is invalid.
[GCS_S_BAD_KEK_CC] 14 Key encrypting key CC supplied is invalid.
[GCS_S_BAD_ARCHIVE_CC] 15 The KEK supplied in the CC is invalid.
[GCS_S_BAD_DEVICE] 16 The specified device is unknown.
[GCS_S_BAD_PART] 17 Invalid key part specified.
[GCS_S_BAD_KEY_USAGE] 18 The key usage specified is not valid.
[GCS_S_INCORRECT_KEY_STATE] 19 Operation not permitted for

key state supplied.
[GCS_S_BAD_TPG] 20 Invalid test pattern generator specified.
[GCS_S_BAD_EXPORT_DATA] 21 Export data unit specified is not valid.
[GCS_S_BAD_PROTOCOL] 22 Invalid protocol supplied.
[GCS_S_BAD_PARAMETER] 23 Invalid parameter name.
[GCS_S_BAD_PARAM_VALUE] 24 Invalid parameter value.
[GCS_S_BAD_REASON] 25 Reason for revocation not valid.

Specified export mechanism is not valid or is
not specified as permitted export mechanism
in supplied CC.

[GCS_S_BAD_EXPORT_MECH] 26

The random number generator has not been
initialised.

[GCS_S_RNG_NOT_INITIALISED] 27

The subject container supplied is not valid[GCS_S_BAD_SUBJECT_CONTAINER] 28
The CC reference supplied does not refer to a
valid crypto context.

[GCS_S_INVALID_REFERENCE] 29

Generic Cryptographic Service API (GCS-API) Base 29



Status Values Basic Parameter Passing Conventions

Name Value in Meaning
Field

The bit string supplied could not be used to
restore a CC.

[GCS_S_BAD_ARCHIVE_STRING] 30

[GCS_S_BAD_IV] 31 Invalid initialisation vector supplied
session context supplied is not valid[GCS_S_BAD_SESSION_CONTEXT] 32
The confidentiality flag is not set to YES[GCS_S_CONFIDENTIALITY_FLAG] 33

[GCS_S_BAD_DOMAIN_ID] 34 the CC domain id supplied is not valid
[GCS_S_BAD_CC_NAME] 35 the CC name supplied is not valid
[GCS_S_DEVICE_BUSY] 36 The specified device is busy.
[GCS_S_NO_CHECK] 37 The checkvalue is not verified.
[GCS_S_NO_VERIFY] 38 The key cannot be verified.

List of cryptographic contexts supplied is not
valid.

[GCS_S_BAD_CC_LIST] 39

[GCS_S_CC_LOCKED] 40 The cryptographic context requested is locked.
Key state transition requested is not permitted[GCS_S_INVALID_STATE_TRANSITION] 41
An initialisation vector is required but has not
been supplied

[GCS_S_IV_REQUIRED] 42

The function specifications also use the name [GCS_S_COMPLETE], which is a zero value, to
indicate an absence of any API errors or supplementary information bits.

Table 3-2 on page 29 includes the error codes applicable to both the Basic GCS-API and the
Advanced GCS-API.

All [GCS_S_*] symbols equate to complete OM_uint32 status codes, rather than to bit-field
values. For example, the actual value of the symbol [GCS_S_BAD_SIZE] (value 3 in the Routine
Error field) is 3 << 16.

The macros:

GCS_CALLING_ERROR( )
GCS_ROUTINE_ERROR( )
GCS_SUPPLEMENTARY_INFO( )

are provided, each of which takes a GCS status code and removes all but the relevant field. For
example, the value obtained by applying GCS_ROUTINE_ERROR( ) to a status code removes
the Calling Errors and Supplementary Info fields, leaving only the Routine Errors field. The
values delivered by these macros may be directly compared with a [GCS_S_*] symbol of the
appropriate type. The macro GCS_ERROR( ) is also provided, which when applied to a GCS
status code returns a non-zero value if the status code indicates a calling or routine error, and a
zero value otherwise.

A GCS-API implementation may choose to signal calling errors in a platform-specific manner
instead of, or in addition to the routine value; routine errors and supplementary information
should be returned by means of routine status values only.

30 X/Open Preliminary Specification (1996)



Basic Parameter Passing Conventions Status Values

3.6.2 Minor Status Codes

GCS-API C-language functions return a minor_status argument, which is used to indicate
specialised errors from the underlying security mechanism. This argument may contain a single
mechanism-specific error, indicated by an OM_uint32 value.

The minor_status argument is always set by a GCS-API function, even if it returns a calling error
or one of the generic API errors indicated above as fatal, although other output arguments may
remain unset in such cases. However, output arguments that are expected to return pointers to
storage allocated by a function must always be set by the function, even in the event of an error,
although in such cases the GCS-API function may elect to set the returned argument value to
NULL to indicate that no storage was actually allocated. Any length field associated with such
pointers (as in a gcs_buffer_desc structure) should also be set to zero in such cases.

The GCS status code [GCS_S_FAILURE] is used to indicate that the underlying mechanism
detected an error for which no specific GCS status code is defined. The minor status code
provides more details about the error.

Generic Cryptographic Service API (GCS-API) Base 31



Optional Arguments Basic Parameter Passing Conventions

3.7 Optional Arguments
Various arguments are described as optional. This means that they follow a convention whereby
a default value may be requested. The following conventions are used for omitted arguments.
These conventions apply only to those arguments that are explicitly documented as optional.

3.7.1 gcs_buffer_t Types

Specify GCS_C_NO_BUFFER as a value. For an input argument this signifies that default
behaviour is requested, while for an input,output argument it indicates that the information that
would be returned by the argument is not required by the application.

3.7.2 Integer Types

Individual argument documentation lists values to be used to indicate default actions. These are
passed by value.

3.7.3 Pointer Types

Specify NULL as the value.

32 X/Open Preliminary Specification (1996)



Basic Parameter Passing Conventions Constants

3.8 Constants
The tables below set out the constants defined by the specification, and the value to which they
are set.

Name Value Meaning
[GCS_C_TRUE] 1 True
[GCS_C_FALSE] 0 False
[GCS_C_NULL] NULL Null
[GCS_C_EMPTY_BUFFER] NULL Empty buffer
[GCS_C_NO_BUFFER] NULL No buffer is supplied or returned
[GCS_C_NO_BIT_STRING] NULL The bit string supplied or returned is null

Table 3-3 Optional Parameter Constants

3.8.1 Algorithm Independent CC Names

The default set of algorithm independent CC names is:

CC Name Meaning
LOCAL_SYM_ENCIPHER_DECIPHER Default symmetric encipher/decipher CC
LOCAL_ASYM_ENCIPHER Default asymmetric encipher CC
LOCAL_ASYM_DECIPHER Default asymmetric decipher CC
LOCAL_SIGN Default signature generate CC
LOCAL_VERIFY Default signature verify CC
LOCAL_HASH Default hash CC
LOCAL_EXPORT Default export key CC
LOCAL_IMPORT Default import key CC

Table 3-4  Algorithm Independent CC Names

3.8.2 Chain Flag

The chain flag can take on one of several values as illustrated below.

Chain Flag Value Meaning
if set, indicates the first
of several input buffers

GCS_FIRST 1

if set, indicates the
second, or subsequent
input buffer, but not the
last

GCS_MIDDLE 2

If set, indicates the last
of several input buffers

GCS_LAST 3

If set, indicates only one
buffer is input

GCS_ONLY 4

Table 3-5 Chain Flag Values

Generic Cryptographic Service API (GCS-API) Base 33



Constants Basic Parameter Passing Conventions

3.8.3 Storage Unit Classes

The following constants are defined for use as the storage unit class component in a CC_reference
in a call to gcs_store_cc( )

Storage Unit Class Value Meaning
GCS_C_DISK 1 Disk storage unit class
GCS_C_MEMORY 2 Memory storage unit class
GCS_C_CDROM 3 CD-ROM storage unit class
GCS_C_SMARTCARD 4 Smart Card storage unit class

Table 3-6 Storage Unit Class

3.8.4 CSF Parameters

The following constants define the names of the parameters that may be retrieved using
gcs_get_csf_params ( ).

Parameter Name Value Meaning
GCS_C_MAX_BUFFER_SIZE 0 Maximum buffer size supported
GCS_C_IMPLEMENTATION_TYPE 1 Type of implementation

Table 3-7 CSF Parameters

3.8.5 CSF Implementation Type

The following constants are defined for the implementation types that may be returned by
gcs_get_csf_params ( ).

Implementation Type Value Meaning
GCS_C_UNKNOWN 0 The implementation cannot return type
GCS_C_HARDWARE 1 Hardware implementation
GCS_C_SOFTWARE 2 Software implementation
GCS_C_BOTH 3 Mixed hardware and software implementation

Table 3-8 CSF Implementation Types

34 X/Open Preliminary Specification (1996)



Chapter 4

Basic CSF Application Program Interface (API)

This chapter presents the functions that comprise the basic GCS-API.

In the majority of these definitions a cryptographic context is included as an input parameter
providing information on the algorithm(s) and key(s) to be used in the function. A cryptographic
context is also included as an output parameter because the CC may be modified by the call, eg.,
usage counts and key states may be modified any time the CC is used to provide a key used
within a function. The check value of the CC and the validity period of a key within the CC are
checked on each use of the CC.

Generic Cryptographic Service API (GCS-API) Base 35



gcs_decipher_data( ) Basic CSF Application Program Interface (API)

NAME
gcs_decipher_data — returns the input cipher text data as clear text

SYNOPSIS
OM_uint32 gcs_decipher_data(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_buffer_t input_data ,
gcs_buffer_t IV ,
OM_uint32 chain_flag ,
gcs_cc_t * cc ,
gcs_buffer_t intermediate_result ,
gcs_buffer_t output_data

);

DESCRIPTION
This function transforms the input data from ciphertext, to cleartext using the given reversible
cryptographic algorithm, key and related parameters specified in cc.

Data greater in length than the maximum buffer size supported by an implementation may be
transformed by successive calls to gcs_decipher_data, passing intermediate_result from one call as
input to the next call. The maximum buffer size may be determined by calling
gcs_get_csf_params.

The lengths of the clear text and cipher text may or may not be the same.

The caller must possess the GCS_C_ENCIPHER_DECIPHER authority. If successful, the
function returns [GCS_S_COMPLETE] or [GCS_S_COMPLETE_QCF].

The arguments for gcs_decipher_data ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

input_data (in)
The input cipher text data to be deciphered.

IV (optional, in)
The optional initialisation vector dependent upon the algorithm specified by cc.

chain_flag (in)
This argument can be set to GCS_FIRST, GCS_MIDDLE, GCS_LAST or GCS_ONLY.

cc (opaque,in/out)
The cryptographic context from which the algorithm, key and related parameters are taken
to decipher the input data. It is returned with the key state updated as appropriate.

intermediate_result (in/out)
The intermediate results from the decipher calculation are returned with successive calls to
gcs_decipher_data.

output_data (out)
The clear text corresponding to the cipher text input data is returned in the output buffer. If

36 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_decipher_data( )

the pointer and length within the gcs_buffer_t structure are GCS_NULL then the
implementation allocates a buffer for the output of the ciphertext. If the pointer and length
within the gcs_buffer_t structure are not GCS_NULL then the implementation will attempt
to use the specified buffer when writing the ciphertext.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_CONTINUE_NEEDED]
gcs_decipher_data requires to be called again supplying the value returned in
intermediate_result as an input parameter.

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but cc has quasi compromised flag set in key context.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BUFFER_OVERFLOW]
The input buffer length exceeds the maximum buffer size supported by the implementation
or the output buffer has overflowed.

[GCS_S_BAD_SUBJECT_CC]
The cryptographic context supplied is not valid.

[GCS_S_INCORRECT_KEY_STATE]
The key state in the CC supplied does not permit the requested action, ie., key state must be
active or quiescent.

[GCS_S_IV_REQUIRED]
An initialisation vector is required but has not been supplied.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required authority or some other authorisation failure has
occurred.

[GCS_S_BAD_FLAG]
The chaining flag specified is not valid.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 37



gcs_decipher_verify( ) Basic CSF Application Program Interface (API)

NAME
gcs_decipher_verify — decipher input data and verify check value

SYNOPSIS
OM_uint32 gcs_decipher_verify(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_buffer_t input_data ,
gcs_buffer_t IV ,
gcs_buffer_t check_value ,
OM_uint32 chain_flag ,
gcs_cc_t * confidentiality_cc ,
gcs_cc_t * integrity_cc ,
gcs_buffer_t intermediate_result ,
gcs_buffer_t output_data

);

DESCRIPTION
This function transforms the cipher text into cleartext, using the reversible cryptographic
algorithm, key and related parameters as specified in confidentiality_cc and the optional IV. It
simultaneously verifies the check value against that derived from the cleartext derived from
input_data and may authenticate the origin of a set of data, ie., prove the knowledge of the key
used to generate the check value.

Data greater in length than the maximum buffer size supported by an implementation may be
transformed by successive calls to gcs_decipher_verify, passing intermediate_result from one call as
input to the next call. The maximum buffer size may be determined by calling gcs_csf_params.

The lengths of the clear text and cipher text may or may not be the same.

The caller must possess the GCS_C_ENCIPHER_DECIPHER authority. If successful, the
function returns [GCS_S_COMPLETE] or [GCS_S_COMPLETE_QCF].

The arguments for gcs_decipher_verify ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

input_data (in)
The input cipher text data to be deciphered.

IV (optional,in)
The optional initialisation vector dependent upon the algorithm specified in cc. The IV
block of random data is there to make each message unique. It can also be used as a
confounder.

check_value (in)
The check value to be verified.

chain_flag (in)
This argument can be set to GCS_FIRST, GCS_MIDDLE, GCS_LAST or GCS_ONLY.

38 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_decipher_verify( )

cc (opaque,in/out)
The cryptographic context supplied, from which the algorithm, key and related parameters
are taken to decipher the data input. The cryptographic context is returned, with key state
updated as appropriate.

intermediate_result (in/out)
The intermediate results from the decipher calculation are returned with successive calls to
gcs_decipher_verify.

output_data (out)
The deciphered data output from the function. If the pointer and length within the
gcs_buffer_t structure are GCS_NULL then the implementation allocates a buffer for the
output of the ciphertext. If the pointer and length within the gcs_buffer_t structure are not
GCS_NULL then the implementation will attempt to use the specified buffer when writing
the clear text.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_CONTINUE_NEEDED]
gcs_decipher_verify requires to be called again supplying the value returned in
intermediate_result as an input parameter.

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but CC has quasi compromised flag set in key context.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BUFFER_OVERFLOW]
The input buffer length exceeds the maximum buffer size supported by the implementation.

[GCS_S_INCORRECT_KEY_STATE]
The key state in the CC supplied does not permit the requested action. ie., the key state
must be active.

[GCS_S_BAD_SUBJECT_CC]
The subject cryptographic context supplied is not valid.

[GCS_S_IV_REQUIRED]
An initialisation vector is required and has not been supplied.

[GCS_S_NO_CHECK]
The check value input does not compare with that computed using the input data and the
specified CC.

[GCS_S_BAD_SIZE]
The input data exceeds MAXSIZE in length.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required authority or some other authorisation failure has
occurred.

Generic Cryptographic Service API (GCS-API) Base 39



gcs_decipher_verify( ) Basic CSF Application Program Interface (API)

ERRORS
No other errors are defined.

40 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_delete_cc( )

NAME
gcs_delete_cc — delete a cryptographic context

SYNOPSIS
OM_uint32 gcs_delete_cc(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_cc_t * subject_cc

);

DESCRIPTION
This function deletes the caller’s copy of the cryptographic context referred to by subject_cc frees
the memory allocated to it and sets the subject_cc pointer to NULL.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_delete_cc( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this context are required to support uses
such as continuous I&A and authorisation.

subject_cc (opaque,in, out)
The cryptographic context to be deleted.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The cryptographic context supplied is not a valid context.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 41



gcs_derive_key( ) Basic CSF Application Program Interface (API)

NAME
gcs_derive_key — derive a protected secret key or a public and private key pair

SYNOPSIS
OM_uint32 gcs_derive_key(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_bit_string_t input_string ,
gcs_cc_t * kgk_cc ,
gcs_cc_t * subject_cc

);

DESCRIPTION
This function derives a secret key or a public and private key pair from input_string.

The algorithm, key size, key usage and other parameters associated with the cryptographic
context are specified in subject_cc.

The derived key will be protected and the cryptographic context header flag is set appropriately
(i.e., context_confidentiality is set to YES.)

The key is output within the key context part of subject_cc. The caller must possess the
GCS_C_SELECTION GCS authority or the call will fail.

If successful, the function returns [GCS_S_COMPLETE] or [GCS_S_COMPLETE_QCF].

The arguments for gcs_derive_key( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

input_string (in)
The input string used as the basis for deriving a secret key or a public and private key pair
and interpreted per spawn method indicated in kgk_cc.

kgk_cc (optional, in/out)
When supplied this references the cryptographic context used to derive a key using the
derivation mechanism specified in the algorithm context of kgk_cc.

subject_cc (opaque,in/out)
The subject_cc cryptographic context supplied is populated to include the secret key or
public and private key pair derived by gcs_derive_key and returned.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but CC has quasi-compromised flag set in key context.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

42 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_derive_key( )

[GCS_S_BAD_KGK_CC]
The key generating key cryptographic context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The subject cryptographic context supplied is not valid.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority or some other authorisation failure
has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 43



gcs_encipher_data( ) Basic CSF Application Program Interface (API)

NAME
gcs_encipher_data — transform the input data to ciphertext

SYNOPSIS
OM_uint32 gcs_encipher_data(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_buffer_t input_data ,
gcs_buffer_t IV ,
OM_uint32 chain_flag ,
gcs_cc_t * cc ,
gcs_buffer_t intermediate_result ,
gcs_buffer_t output_data

);

DESCRIPTION
This function transforms the clear text input data into cipher text, using the reversible
cryptographic algorithm, key and related parameters as specified in cc.

Data greater in length than the maximum buffer size supported by an implementation may be
transformed by successive calls to gcs_encipher_data, passing intermediate_result from one call as
input to the next call. The maximum buffer size may be determined by calling
gcs_get_csf_params.

The lengths of the clear text and cipher text may or may not be the same.

The caller must possess the GCS_C_ENCIPHER_DECIPHER authority. If successful, the
function returns [GCS_S_COMPLETE] or [GCS_S_COMPLETE_QCF].

The arguments for gcs_encipher_data ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

input_data (in)
The input clear text data to be enciphered.

IV (optional,in)
The optional initialisation vector dependent upon the algorithm specified in cc. The IV
block of random data is there to make each message unique. It can also be used as a
confounder.

chain_flag (in)
This argument can be set to GCS_FIRST, GCS_MIDDLE, GCS_LAST or GCS_ONLY.

cc (opaque,in/out)
The cryptographic context supplied, from which the algorithm, key and related parameters
are taken to encipher the data input. The cryptographic context is returned, with key state
updated as appropriate.

intermediate_result (in/out)
The intermediate results from the encipher calculation are returned with successive calls to
gcs_encipher_data.

44 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_encipher_data( )

output_data (out)
The enciphered data output from the function. If the pointer and length within the
gcs_buffer_t structure are GCS_NULL then the implementation allocates a buffer for the
output of the ciphertext. If the pointer and length within the gcs_buffer_t structure are not
GCS_NULL then the implementation will attempt to use the specified buffer when writing
the ciphertext.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_CONTINUE_NEEDED]
gcs_encipher_data requires to be called again supplying the value returned in
intermediate_result as an input parameter.

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but CC has quasi compromised flag set in key context.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BUFFER_OVERFLOW]
The input buffer length exceeds the maximum buffer size supported by the implementation.

[GCS_S_INCORRECT_KEY_STATE]
The key state in the CC supplied does not permit the requested action. ie., the key state
must be active.

[GCS_S_BAD_SUBJECT_CC]
The subject cryptographic context supplied is not valid.

[GCS_S_IV_REQUIRED]
An initialisation vector is required and has not been supplied.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required authority or some other authorisation failure has
occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 45



gcs_export_key( ) Basic CSF Application Program Interface (API)

NAME
gcs_export_key — transform a key into a protected form for export

SYNOPSIS
OM_uint32 gcs_export_key(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_cc_t * subject_cc ,
gcs_cc_t * kek_cc ,
gcs_bit_string_t export_data

);

DESCRIPTION
The gcs_export_key function transforms a key and associated information, contained within or
referenced by subject_cc, into an exchangeable protected form using a key enciphering key,
contained within or referenced by kek_cc. This service returns a mechanism specific token
(export_data) including the transformed key.

If subject_cc contains a private and public key pair, the gcs_export_key function only returns the
public key.

This service is provided to support key distribution services. The caller must possess the
GCS_C_KEY_USAGE GCS authority or the function will fail.

If successful, the function returns [GCS_S_COMPLETE] or [GCS_S_COMPLETE_QCF].

The arguments for gcs_export_key ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

subject_cc (opaque,in/out)
The cryptographic context containing the key to be exported. The key context of subject_cc
may be updated by the call to this function.

kek_cc (opaque,in/out)
The key enciphering key used to encipher the key and associated information contained in
subject_cc.

export_data (in/out)
The partial protocol data unit, a mechanism-specific structure which reflects the
protocol_type containing protocol specific information. On return, it includes the enciphered
and protected key for export.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but subject_cc or kek_cc has quasi compromised flag set in key
context.

46 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_export_key( )

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid, ie., is revoked or has been deactivated.

[GCS_S_BAD_SUBJECT_CC]
The subject_cc supplied is not valid.

[GCS_S_BAD_KEK_CC]
The kek_cc supplied is not valid.

[GCS_S_BAD_EXPORT_MECH]
The export_mechanism specified in subject_cc is inconsistent with the contents of kek_cc.

[GCS_S_BAD_EXPORT_DATA]
The export data supplied is not valid.

[GCS_S_INCORRECT_KEY_STATE]
The key state of the kek_cc does not permit the requested action.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority or some other authorisation failure
has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 47



gcs_generate_check_value( ) Basic CSF Application Program Interface (API)

NAME
gcs_generate_check_value — return the check value of the input data

SYNOPSIS
OM_uint32 gcs_generate_check_value(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_buffer_t input_data ,
gcs_buffer_t IV ,
OM_uint32 chain_flag ,
gcs_cc_t * cc ,
gcs_buffer_t intermediate_result ,
gcs_buffer_t check_value

);

DESCRIPTION
This function returns the check value of the input data contained in input_buffer computed using
the cryptographic algorithms, key and related parameters as specified by cc and the optional
initialisation vector, IV. The function is used to compute a checkvalue from a data item for the
purposes of integrity, or data origin authentication.

The maximum size of data that an implementation of the GCS-API can handle may be
determined by a call to gcs_get_csf_params. Check values for data greater than the maximum size
that can be handled by an implementation may be generated by successive invocations of
gcs_generate_check_value. The contents of intermediate_result contain an intermediate result, if the
chaining flag is set to GCS_FIRST or GCS_MIDDLE. In this case, the intermediate result is re-
input as a parameter to the next call to gcs_generate_check_value. The chain_flag indicates if an
invocation is the first, a middle, the last, or only invocation. The function works even if the
input data is zero.

If successful, the function returns [GCS_S_COMPLETE] or [GCS_S_COMPLETE_QCF].

The arguments for gcs_generate_check_value ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

input_data (in)
The data for which the check value is to be generated. The input data may need to be split
into sections that do not exceed the maximum input data size that can be handled by an
implementation and successive calls made to gcs_generate_check_value.

IV (optional, in)
The optional initialisation vector used to generate the checkvalue.

chain_flag (in)
This argument can be set to one of four values, indicating how the input data have been
split for hashing. Note that data can only be chained if the cryptographic algorithm in the
CC supplied permits it. The chain_flag can be set to GCS_FIRST, GCS_MIDDLE, GCS_LAST
or GCS_ONLY.

48 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_generate_check_value( )

cc (opaque,in/out)
The cryptographic context used to generate the check value on the input data. The
cryptographic context is returned with key states updated as appropriate.

intermediate_result (in/out)
If chain_flag is set to GCS_FIRST, or GCS_MIDDLE, the intermediate results from the
checkvalue calculation are returned in this parameter. This needs to be input to the next call
to gcs_generate_check_value ( ).

check_value (out)
If chaining_flag is set to either GCS_LAST or GCS_ONLY, then a call to
gcs_generate_check_value ( ) returns the check value in check_value.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but the quasi compromised flag is set in the key context of cc.

[GCS_S_CONTINUE_NEEDED]
Another call to the function is required.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The subject CC supplied is not valid.

[GCS_S_BAD_SIZE]
The input buffer size exceeds maximum size that can be handled by the implementation.

[GCS_S_BAD_FLAG]
The chaining flag specified is not valid.

[GCS_S_INCORRECT_KEY_STATE]
The key state in the CC supplied does not permit the requested action.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 49



gcs_generate_hash( ) Basic CSF Application Program Interface (API)

NAME
gcs_generate_hash — irreversibly hash input data

SYNOPSIS
OM_uint32 gcs_generate_hash(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_buffer_t input_data ,
gcs_cc_t * cc ,
gcs_buffer_t intermediate_result ,
OM_uint32 chain_flag ,
gcs_buffer_t output_data

);

DESCRIPTION
This function takes the input_buffer and hashes it according to the non-keyed cryptographic
context defined by cc. The maximum size of data that an implementation of the GCS-API can
handle may be determined by a call to gcs_get_csf_params. Hash values for data greater than the
maximum size that can be handled by an implementation may be generated by successive
invocations of gcs_generate_hash. The contents of intermediate_result contain an intermediate
result, if the chaining flag is set to GCS_FIRST or GCS_MIDDLE. In this case, the intermediate
result is re-input as a parameter to the next call to gcs_generate_hash. The chaining_flag indicates if
an invocation is the first, a middle, the last, or only invocation. The function should still succeed
even if the input data length is zero.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_generate_hash( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

input_data (in)
The input data containing the data to be hashed. This must not exceed the maximum size
that can be handled by the implementation.

cc (opaque, in/out)
The cryptographic context which includes the non-keyed algorithm context for the hash.

intermediate_result (in/out)
When the chain_flag is set to GCS_MIDDLE or GCS_LAST, the caller returns the last
intermediate_result returned from the function as the intermediate_result for the next call to
the function.

chain_flag (in)
This argument can be set to one of four values, GCS_FIRST, GCS_MIDDLE, GCS_LAST, and
GCS_ONLY, indicating how the input data have been split for hashing.

output_buffer (out)
The results of the hashing are returned in the output buffer when the chaining_flag is set to
GCS_LAST or GCS_ONLY.

50 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_generate_hash( )

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_CONTINUE_NEEDED]
Another call to the function is required.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The cryptographic context supplied is not valid, ie., does not contain a suitable hash
algorithm.

[GCS_S_BAD_FLAG]
The value supplied in the chaining flag is not valid.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred. No cryptographic mechanisms
are specified.

[GCS_S_BAD_SIZE]
The size of the input buffer exceeds the size that can be handled by the implementation.

[GCS_S_BUFFER_OVERFLOW]
The output buffer has overflowed.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 51



gcs_generate_key( ) Basic CSF Application Program Interface (API)

NAME
gcs_generate_key — generate a secret key, or a public and private key pair

SYNOPSIS
OM_uint32 gcs_generate_key(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_cc_t * cc

);

DESCRIPTION
This function generates a secret key or public and private key pair and populates the cc. The
algorithm, key size, key usage and other parameters associated with the cryptographic context
are specified in the cc supplied.

The generated key is protected. The function will fail if the context_confidentiality flag is not set
to YES. The caller must possess the GCS_C_SELECTION GCS authority.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_generate_key( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

cc (opaque,in/out)
The cryptographic context supplied should include the algorithm_context and the key_data
without the key bits. The populated cryptographic context is returned, including the secret
key or the public and private key pair generated by gcs_generate_key.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The cryptographic context supplied is not valid.

[GCS_S_RNG_NOT_INITIALISED]
The CSF pseudo-random number generator has not been initialised.

[GCS_S_CONFIDENTIALITY_FLAG]
The confidentiality flag is not set to YES, ie., the CC is intended for clear key.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority or some other authorisation failure
has occurred.

52 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_generate_key( )

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 53



gcs_generate_random_number( ) Basic CSF Application Program Interface (API)

NAME
gcs_generate_random_number — return a cryptographically strong random number

SYNOPSIS
OM_uint32 gcs_generate_random_number(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
OM_uint32 size ,
gcs_bit_string_t random_number

);

DESCRIPTION
This function generates a cryptographically strong random number size bits in length and
returns it in random_number. If successful, the function returns [GCS_S_COMPLETE].

A cryptographically strong number is one that does not have a period, is random, and might
repeat. The arguments for gcs_generate_random_number( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

size (in)
The length in bits of the random number generated.

random_number (out)
The generated random number bit string

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_RNG_NOT_INITIALISED]
The CSF pseudo-random number generator has not been initialised.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

ERRORS
No other errors are defined.

54 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_get_csf_params( )

NAME
gcs_get_csf_params — get csf parameters

SYNOPSIS
OM_uint32 gcs_get_csf_params(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_cc_t * subject_cc ,
OM_uint32 * parameter_name ,
OM_uint32 * parameter_integer_value ,
gcs_bit_string_t parameter_bit_string

);

DESCRIPTION
This function returns the CSF parameters for the algorithm specified in subject_cc. Two
parameters are defined by the specification, the MAX_BUFFER_SIZE and the
IMPLEMENTATION_TYPE. Other parameters may be defined by the implementation.
MAX_BUFFER_SIZE allows a caller to partition large files into blocks of manageable size for
subsequent cryptographic functions.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_get_csf_params ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this context are required to support uses
such as continuous I&A and authorisation.

subject_cc (opaque,in/out)
The cryptographic context containing the algorithm queried.

parameter_name (in)
The name of the parameter. The GCS-API currently defines
GCS_C_GET_MAX_BUFFER_SIZE and GCS_C_IMPLEMENTATION_TYPE .

parameter_integer_value (out) CSF parameter integer values.

parameter_bit_string (out)
CSF bit string parameters.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The subject_cc supplied is not valid.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

Generic Cryptographic Service API (GCS-API) Base 55



gcs_get_csf_params( ) Basic CSF Application Program Interface (API)

ERRORS
No other errors are defined.

56 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_import_key( )

NAME
gcs_import_key — transform a key into an operational form for import

SYNOPSIS
OM_uint32 gcs_import_key(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_cc_t * kek_cc ,
gcs_bit_string_t export_data ,
gcs_cc_t * subject_cc

);

DESCRIPTION
The gcs_import_key function transforms a key and associated information contained within the
export_data into an operational format key contained within or referenced by subject_cc.

The export_data is of an exchangeable protected format as produced by the gcs_export_key
service. kek_cc references the key encrypting key under which the imported key is protected and
kek_cc specifies the key distribution protocol being used.

This service is provided to support key distribution services. The caller must possess the
GCS_C_KEY_USAGE GCS authority.

If successful, the function returns [GCS_S_COMPLETE] or [GCS_S_COMPLETE_QCF].

The arguments for gcs_import_key ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

kek_cc (opaque,in)
The cc containing the key enciphering key under which the imported key is protected.

export_data (in)
The input protocol data unit in protected exchangeable format as created by gcs_export_key.

subject_CC (opaque,in/out)
The cryptographic context supplied, if required for the specified export_mech, which is to be
populated with the imported key and any associated information. The key in its operational
format is returned in subject_cc. The subject_cc provides the defaults for key control
parameters such as key usage, initial key state, key validity periods, etc.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but subject_cc or kek_cc has quasi compromised flag set in key
context.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

Generic Cryptographic Service API (GCS-API) Base 57



gcs_import_key( ) Basic CSF Application Program Interface (API)

[GCS_S_BAD_SUBJECT_CC]
The cryptographic context supplied is not valid.

[GCS_S_BAD_KEK_CC]
The kek_cc supplied is not valid.

[GCS_S_BAD_EXPORT_MECH]
The export_mechanism specified in subject_cc is inconsistent with the contents of kek_cc.

[GCS_S_BAD_PDU]
The partial protocol data unit supplied is not valid.

[GCS_S_INCORRECT_KEY_STATE]
The key state of kek_cc does not permit the requested action.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority or some other authorisation failure
has occurred.

ERRORS
No other errors are defined.

58 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_initialise_session( )

NAME
gcs_initialise_session — initialise a session with the CSF

SYNOPSIS
OM_uint32 gcs_initialise_session(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_buffer_t initialise_parameters

);

DESCRIPTION
This function initialises a session between the caller and the CSF. It may be used to authenticate
a caller and establish the context for the session between the caller and the CSF, including
authorisations for the use of CSF functions and defaults that are individual to the caller, or the
principal the caller represents.

To complete initialisation then a sequence of calls to gcs_initialise_session may be required. In
this case the function returns [GCS_S_CONTINUE].

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_initialise_session ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque, in/out)
An implementation specific parameter that defines the context of the current session
between the caller and the CSF. It is used as an input parameter to all other CSF functions to
support continuous I&A and authorisation services. If gcs_initialise_session ( ) returns
GCS_S_CONTINUE then the partially completed session_context is reinput to the next call to
gcs_initialise_session ( ).

initialise_parameters (opaque,in)
The set of implementation defined parameters required to initialise a session with the CSF.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_CONTINUE]
A further call to gcs_initialise_session ( ) is required.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
An authorisation failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 59



gcs_key_agreement( ) Basic CSF Application Program Interface (API)

NAME
gcs_key_agreement — initialise a key agreement exchange

SYNOPSIS
OM_uint32 gcs_key_agreement(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_cc_t * caller_cc ,
gcs_cc_t * other_cc ,
gcs_bit_string_t pdu_in ,
gcs_bit_string_t pdu_out ,
gcs_cc_t * kak_cc

);

DESCRIPTION
This function initiates the transformation of a key agreement and associated information
between the application and a remote peer. The key agreement is completed by exchanging the
pdu_out and pdu_in with the remote peer and making to one or more subsequent calls to
gcs_key_agreement( ).

The key agreement information is contained within or referenced by kak_cc. To complete the
exchange of the key agreement, the pdu_out output from this function is sent as an opaque data
item to the remote peer and the pdu_in is imported from the remote peer.

It returns a kak_cc in which the key agreement is built up with subsequent calls to
gcs_key_agreement.

This service is provided to support key distribution services. The caller must possess the
GCS_C_KEY_USAGE GCS authority or the call will fail.

If successful, the function returns [GCS_S_COMPLETE] or [GCS_S_COMPLETE_QCF].

The arguments for gcs_key_agreement( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

caller_cc (optional,opaque,in)
The caller_cc provides the private key of the caller. If not specified, the private key defaults
to that established by the call to gcs_initialise_session ( ) that established the current CSF
session.

other_cc (opaque,in)
The other_cc provides the public key of the other party in the exchange.

pdu_in (in)
The partial protocol data unit sent from the remote peer. On the first call, pdu_in is a NULL
pointer.

pdu_out (out)
The partial protocol data unit to be sent to the remote peer. This is an export mechanism-
specific structure.

60 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_key_agreement( )

kak_cc (opaque,out)
The kak_cc maintains the intermediate state between subsequent calls to gcs_key_agreement
and returns the enciphered and protected key agreement.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but subject_cc has the quasi compromised flag set in its key context.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_CONTINUE_NEEDED]
Subsequent call to gcs_import_key_agreement is needed.

[GCS_S_BAD_SUBJECT_CC]
One or more of kak_cc, caller-cc, or another_cc is not valid.

[GCS_S_BAD_EXPORT_MECH]
The export mechanism specified in kak_cc is not valid.

[GCS_S_BAD_PROTOCOL]
The partial_pdu_to_send supplied is not valid.

[GCS_S_INCORRECT_KEY_STATE]
The key state of one or more of kak_cc, or caller_cc, or other_cc does not permit the requested
action.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority or some other authorisation failure
has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 61



gcs_list_cc( ) Basic CSF Application Program Interface (API)

NAME
gcs_list_cc — list crypto contexts stored in CSF

SYNOPSIS
OM_uint32 gcs_list_cc(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
OM_unit32 index_in_cc_list ,
gcs_buffer_t domain_id ,
gcs_buffer_t cc_name ,
gcs_cc_ref_t * cc_reference

);

DESCRIPTION
This function returns a cc_reference, a cc_name or a domain_id from the list of CCs indexed by
index_in_cc_list. The caller is then able to retrieve the CCs by calling gcs_retrieve_cc( ) for each
cc_reference, cc_name or domain_id in turn. The list of CCs indexed contains only those CCs
accessible to the caller.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_list_cc ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
An implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

index_in_cc_list (in)
The index in the list of cryptographic contexts that the caller wishes to access.

domain_id (out)
The domain identity of the cryptographic context corresponding to the index_in_cc_list
supplied. The domain_id may be NULL.

cc_name (out)
The name of the CC corresponding to the index_in_cc_list. The cc_name may be NULL.

cc_reference (opaque,out)
The cryptographic context reference corresponding to the index_in_cc_list supplied. The
cc_reference may be NULL.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion. There is no other element in the list if the function returns with
GCS_S_COMPLETE.

[GCS_S_CONTINUE_NEEDED]
Another call to the function is required. There are other elements in the list if the function
returns with GCS_S_CONTINUE_NEEDED.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

62 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_list_cc( )

[GCS_S_FAIL]
There are no elements in the cc list.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 63



gcs_protect_data( ) Basic CSF Application Program Interface (API)

NAME
gcs_protect_data — encipher data and generate a check value

SYNOPSIS
OM_uint32 gcs_protect_data(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_buffer_t input_data ,
gcs_buffer_t IV ,
OM_uint32 chain_flag ,
gcs_cc_t * confidentiality_cc ,
gcs_cc_t * integrity_cc ,
gcs_buffer_t intermediate_result ,
gcs_buffer_t * output_data ,
gcs_buffer_t check_value

);

DESCRIPTION
This function transforms the cleartext submitted as input_data into cipher text, using the
reversible cryptographic algorithm, key and related parameters as specified in Confidentiality_cc
and the optional initialisation vector IV. It returns the checkvalue of the cleartext submitted as
input_data computed using the cryptographic algorithms, key and related parameters as
specified by integrity_cc. The checkvalue is computed for the purposes of integrity or data origin
authentication.

Data greater in length than the maximum buffer size supported by an implementation may be
transformed by successive calls to gcs_protect_data, passing intermediate_result from one call as
input to the next call. The maximum buffer size may be determined by calling gcs_csf_params.

The lengths of the clear text and cipher text may or may not be the same.

The caller must possess the GCS_C_ENCIPHER_DECIPHER authority. If successful, the
function returns [GCS_S_COMPLETE] or [GCS_S_COMPLETE_QCF].

The arguments for gcs_protect_data ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

input_data (in)
The input clear text data to be enciphered and for which the check value is required.

IV (optional,in)
The optional initialisation vector dependent upon the algorithm specified in cc. The IV
block of random data is there to make each message unique. It can also be used as a
confounder.

chain_flag (in)
This argument can be set to GCS_FIRST, GCS_MIDDLE, GCS_LAST or GCS_ONLY.

cc (opaque,in/out)
The cryptographic context supplied, from which the algorithm, key and related parameters

64 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_protect_data( )

are taken to encipher the data input. The cryptographic context is returned, with key state
updated as appropriate.

intermediate_result (in/out)
The intermediate results from the encipher calculation are returned with successive calls to
gcs_encipher_data.

output_data (out)
The enciphered data output from the function. If the pointer and length within the
gcs_buffer_t structure are GCS_NULL then the implementation allocates a buffer for the
output of the ciphertext. If the pointer and length within the gcs_buffer_t structure are not
GCS_NULL then the implementation will attempt to use the specified buffer when writing
the ciphertext.

check_value (out)
If chain_flag is set to either GCS_LAST or GCS_ONLY, then a call to gcs_protect_data ( )
returns the checkvalue in check_value.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_CONTINUE_NEEDED]
gcs_protect_data requires to be called again supplying the value returned in
intermediate_result as an input parameter.

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but CC has quasi compromised flag set in key context.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BUFFER_OVERFLOW]
The check value or intermediate_result buffer length exceeds the maximum buffer size
supported by the implementation.

[GCS_S_INCORRECT_KEY_STATE]
The key state in the CC supplied does not permit the requested action. ie., the key state
must be active.

[GCS_S_BAD_SUBJECT_CC]
The subject cryptographic context supplied is not valid.

[GCS_S_IV_REQUIRED]
An initialisation vector is required and has not been supplied.

[GCS_S_BAD_FLAG]
The chaining flag specified is not valid.

[GCS_S_INCORRECT_KEY_STATE]
The key state in the CC supplied does not permit the requested action.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required authority or some other authorisation failure has
occurred.

Generic Cryptographic Service API (GCS-API) Base 65



gcs_protect_data( ) Basic CSF Application Program Interface (API)

ERRORS
No other errors are defined.

66 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_release_bit_string( )

NAME
gcs_release_bit_string — free storage allocated by the CSF

SYNOPSIS
OM_uint32 gcs_release_bit_string(

OM_uint32 * minor_status ,
gcs_bit_string_t * buffer

);

DESCRIPTION
The following APIs have a gcs_bit_string_t as output parameter: gcs_get_cc,
gcs_generate_random, gcs_export_key and gcs_get_csf_params. Storage of the output data is
allocated by the CSF. This function frees this storage area. In addition to freeing the associated
storage, the function zeros the length field in the buffer argument. If successful, the function
returns [GCS_S_COMPLETE].

The arguments for gcs_release_bit_string( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

buffer (in,out)
The storage associated with the buffer is deleted. The gcs_bit_string_t object is not freed, but
its length field is zeroed.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 67



gcs_release_bu ffer( ) Basic CSF Application Program Interface (API)

NAME
gcs_release_buffer — free storage associated with a buffer

SYNOPSIS
OM_uint32 gcs_release_buffer(

OM_uint32 * minor_status ,
gcs_buffer_t buffer

);

DESCRIPTION
This function frees storage associated with a buffer. The storage must have been allocated by a
GCS-API function. In addition to freeing the associated storage, the function zeros the length
field in the buffer argument. If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_release_buffer( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

buffer (in,out)
The storage associated with the buffer is deleted. The gcs_buffer_t object is not freed, but its
length field is zeroed.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

ERRORS
No other errors are defined.

68 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_remove_cc( )

NAME
gcs_remove_cc — removes the specified cryptographic context from the CSF

SYNOPSIS
OM_uint32 gcs_remove_cc(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_buffer_t domain_id
gcs_buffer_t * cc_name
gcs_cc_ref_t * cc_reference ,

);

DESCRIPTION
This function removes from the CSF a cryptographic context, previously made globally
referenceable within the CSF by a call to the gcs_store_cc function. The cryptographic context
reference input, cc_reference, specifies where the cryptographic context is stored. The caller must
possess the GCS_C_SELECTION or the GCS_C_KEY_USAGE GCS authority

To remove a populated CC, or the GCS_C_KEY_USAGE GCS authority to remove a template
CC.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_remove_cc( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

cc_reference (optional,opaque,in)
The optional reference to the stored cryptographic context that is to be removed. This
function removes the global referenceability of the CC. If NULL, cc_name must be specified.

domain_id (optional,in)
Th optional domain identifier. This is required if cc_reference is not defined.

cc_name (optional,in)
The optional name of the cryptographic context to be removed. This is required if
cc_reference is not defined.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_INVALID_REFERENCE]
The cryptographic context reference supplied does not refer to a valid cryptographic
context.

Generic Cryptographic Service API (GCS-API) Base 69



gcs_remove_cc( ) Basic CSF Application Program Interface (API)

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_INVALID_CC_NAME]
The combination of Domain_ID and CC_Name supplied do not refer to a valid
cryptographic context.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority or some other authorisation failure
has occurred.

ERRORS
No other errors are defined.

70 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_retrieve_cc( )

NAME
gcs_retrieve_cc — retrieve a copy of the cryptographic context from CSF storage

SYNOPSIS
OM_uint32 gcs_retrieve_cc(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_buffer_t domain_id ,
gcs_buffer_t cc_name ,
gcs_cc_ref_t * cc_reference ,
boolean exclusive_update ,
gcs_cc_t * retrieved_cc

);

DESCRIPTION
This function returns a cryptographic context, retrieved_cc, to the caller using the cryptographic
context reference, cc_reference, provided. As an alternative to a cc_reference, a domain_ID and
CC_name may be specified to identify the CC. The cryptographic context reference was
previously created by a call to gcs_store_cc. The function is responsible for allocating memory for
the retrieved cc. gcs_delete_cc is used to delete the caller’s copy of the cc and release the memory
allocation.

The value returned in the retrieved_cc argument is not defined unless the function returns
[GCS_S_COMPLETE].

The arguments for gcs_retrieve_cc( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

domain_id (optional,in)
The optional domain identifier. This is required if cc_reference is not defined.

cc_name (optional,in)
The optional name of the cryptographic context. This is required if cc_reference is not
defined.

cc_reference (optional,opaque,in)
Reference to the cryptographic context required. This is required if the cc_name and
domain_id have not been specified.

exclusive_update (in)
If the caller intends to update the CC retrieved by this call and then replace the stored copy
then exclusive_update must be set to TRUE. This sets an exclusive access lock on the stored
CC and any further calls on the CSF using this CC, except by this caller for the purposes of
modifying the CC, shall fail until the exclusive access lock is released by a call to
gcs_store_cc( ).

retrieved_cc (opaque,out)
Cryptographic context corresponding to cc_reference.

Generic Cryptographic Service API (GCS-API) Base 71



gcs_retrieve_cc( ) Basic CSF Application Program Interface (API)

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_INVALID_REFERENCE]
The cryptographic context reference supplied does not refer to a valid cryptographic
context.

[GCS_S_BAD_CC_NAME]
The combination of Domain_ID and CC_Name supplied do not refer to a valid
cryptographic context.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_CC_BUSY]
The specified device is busy.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority or some other authorisation failure
has occurred.

ERRORS
No other errors are defined.

72 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_store_cc( )

NAME
gcs_store_cc — store the cryptographic context in the CSF

SYNOPSIS
OM_uint32 gcs_store_cc(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_buffer_t domain_id ,
gcs_buffer_t cc_name ,
gcs_cc_t * subject_cc ,
OM_uint32 * storage_unit_class ,
OM_uint32 * storage_unit_instance ,
gcs_cc_ref_t * cc_reference

);

DESCRIPTION
This function stores the cryptographic context, subject_cc, within the CSF on the optional storage
unit device specified by storage_unit_class and returns to the caller a handle, cc_reference, by
which it may be referenced. cc_reference may be exchanged between clients of the CSF and used
to retrieve a copy of the cryptographic context for use in subsequent function calls on this same
CSF.

The caller must possess the GCS_C_SELECTION GCS authority in order to store a populated
CC, and the GCS_C_KEY_USAGE GCS authority in order to store a template CC.

A template or populated CC which has been retrieved with an exclusive lock and modified is
stored as the original CC. The exclusive access lock is released after a successful call to
gcs_store_cc( ).

A populated CC retrieved without a lock and modified is stored as a new populated CC. A
template CC retrieved without a lock and modified is stored as a new template CC. When
storing a CC previously retrieved without a lock and if the same domain_id and cc_name
combination as an existing stored CC is provided then a call to
gcs_store_ccreturns ( )[GCS_S_BAD_CC_NAME].

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_store_cc( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

domain_id (optional,in)
The optional domain identity for the cryptographic context supplied.

cc_name (optional,in)
The optional name of the cryptographic context supplied.

subject_cc (opaque,in)
The cryptographic context to be stored.

storage_unit_class (optional,in/out)
The optional type of device on which the cryptographic context is to be stored. This may be

Generic Cryptographic Service API (GCS-API) Base 73



gcs_store_cc( ) Basic CSF Application Program Interface (API)

defined as GCS_C_DISK, GCS_C_MEMORY, GCS_C_CDROM, or GCS_C_SMARTCARD.
If GCS_NULL is specified, the default device is used.

storage_unit_instance (optional,in/out)
The optional name of the device on which the cryptographic context is to be stored.

cc_reference (opaque,in,out)
The reference generated by the CSF to the cryptographic context stored by gcs_store_cc( ).
The cryptographic context reference includes the storage unit class as part of the reference.

If the call is restoring a stored CC previously retrieved with an exclusive lock then the
CC_reference may be used as an input to the stored CC.

If the call is restoring a stored CC previously restored without an exclusive lock the a new
CC is created and a new CC_reference is generated.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The cryptographic context supplied is not valid.

[GCS_S_BAD_DEVICE]
The device specified bystorage_unit_class is not supported.

[GCS_S_DEVICE_BUSY]
The specified device is busy.

[GCS_S_BAD_DOMAIN_ID]
The supplied CC domain_id is not valid.

[GCS_S_BAD_CC_NAME]
The supplied cc_name is not valid, ie., if the CC was retrieved without an exclusive lock, and
the cc_name supplied equals the original cc_name.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority or some other authorisation failure
has occurred.

ERRORS
No other errors are defined.

74 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_terminate_session( )

NAME
gcs_terminate_session — terminate a session with the CSF

SYNOPSIS
OM_uint32 gcs_terminate_session(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context

);

DESCRIPTION
This function terminates a session between the caller and the CSF. If successful, the function
returns [GCS_S_COMPLETE].

The arguments for gcs_terminate_session( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque, in/out)
An implementation specific parameter that defines the context of the current session
between the caller and the CSF.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
An authorisation failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 75



gcs_verify_check_value( ) Basic CSF Application Program Interface (API)

NAME
gcs_verify_check_value — verify the checkvalue given against the checkvalue derived from the
input data

SYNOPSIS
OM_uint32 gcs_verify_check_value(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_buffer_t input_data ,
gcs_buffer_t IV ,
gcs_buffer_t check_value ,
OM_uint32 chain_flag ,
gcs_cc_t * cc ,
gcs_buffer_t intermediate_result

);

DESCRIPTION
This function verifies the check value against that derived from the input data contained in
input_data and may authenticate the origin of a set of data, ie., prove the knowledge of the key
used to generate the check value.

A caller may determine the maximum size of input data that may be handled by an
implementation in a single call to this function by calling gcs_get_csf_params. Check values for
data greater than this maximum size may be verified by successive invocations of
gcs_verify_check_value.

The contents of intermediate_result generated by the previous invocation are re-input as
intermediate_result. The chain_flag indicates if an invocation is the first, a middle, the last, or only
invocation.

The intermediate_result needs to be protected by an implementation against disclosure in order to
prevent a verified check value being used in an unauthorised way to generate a check value
using a symmetric key.

If the check value is verified, the function returns [GCS_S_COMPLETE] or
[GCS_S_COMPLETE_QCF].

The arguments for gcs_verify_check_value ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

input_data (in)
The data for which the checkvalue is to be verified.

IV (optional,in)
The optional initialisation vector dependent upon the type of algorithm used to verify the
checkvalue.

check_value (in)
The check value which is to be verified.

76 X/Open Preliminary Specification (1996)



Basic CSF Application Program Interface (API) gcs_verify_check_value( )

chain_flag (in)
This argument can be set to one of four values, indicating how the input data have been
split. The values are GCS_FIRST, GCS_MIDDLE, GCS_LAST or GCS_ONLY.

cc (opaque,in/out)
The cryptographic context to be used to generate a check value on the input data. If the
chaining_flag is set to either GCS_LAST or GCS_ONLY, then the cryptographic context with
keys updated as required is returned.

intermediate_result (in/out)
The intermediate results from the check value calculation are returned with all successive
calls to gcs_verify_check_value.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but subject_cc has quasi compromised flag set in key context.

[GCS_S_CONTINUE_NEEDED]
Another call to the function is required.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The cryptographic context supplied is not valid.

[GCS_S_INCORRECT_KEY_STATE]
The key state in the CC supplied does not permit the requested action.

[GCS_S_FAILURE]
An implementation specific hardware or function failure has occurred.

[GCS_S_NO_CHECK]
The checkvalue input does not compare with that computed using the input data and the
specified CC.

[GCS_S_BAD_SIZE]
The input buffer size exceeds maximum size that can be handled by the implementation.

[GCS_S_BAD_FLAG]
The chain flag specified is not valid.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 77



Basic CSF Application Program Interface (API)

78 X/Open Preliminary Specification (1996)



Chapter 5

Advanced GCS-API Introduction

The increasing use of network services such as the Internet has enhanced awareness of the need
for security in distributed computer systems, particularly in the light of the publicity
surrounding successful breaches of security, for example, the sniffing of user identities and
passwords passed in the clear over the Internet.

Security services such as authentication of identities, data-origin authentication, non-
repudiation, data separation and confidentiality and integrity protection rely on underlying
cryptographic services to provide protection. However, the wide-spread and common use of
cryptography within applications is hindered by two things:

• the lack of agreed application programming interfaces

• legislative constraints on use and export of the technology

It has long been recognised that a standard application programming interface specification is
needed for cryptographic services and this document addresses that need.

5.1 Callers of Cryptographic Services
The callers of cryptographic services may be classified according to the cryptographic awareness
of the caller and the relative responsibility of the caller for cryptographic security policy. This is
illustrated in Figure 5-1.

Cryptographic Service Callers

Cryptographic Unaware Cryptographic Aware

Cryptographic
Policy Unaware

Cryptographic
Policy Unaware

Cryptographic
Policy Aware

Cryptographic
Policy Enforcing

Cryptographic
Policy Selecting

Scope of GCS-API

Key Usage
Policy Enforcing

Key Protection
Policy Enforcing

Figure 5-1  Types of Caller of Cryptographic Services

Generic Cryptographic Service API (GCS-API) Base 79



Callers of Cryptographic Services Advanced GCS-API Introduction

5.1.1 Cryptographic Unaware Caller

Cryptographic services may be invoked on behalf of a caller that is unaware of any details of the
cryptographic service. A cryptographic unaware caller invokes confidentiality or integrity
protection services for an entity such as a file or message from an application infrastructure
provider. The caller is unaware of how such protection is implemented, ie., the type of transform
used, such as encipherment or checkvalue generation, nor the cryptographic context of the
transform , see Chapter 7 on page 95, comprising the specific details of the cryptographic
algorithms used such as whether symmetric or asymmetric and details of the cryptographic key.

5.1.2 Cryptographic Aware Caller

A cryptographic aware caller is aware of underlying aspects of the cryptographic service. It may
therefore be aware of whether data are being enciphered or a checkvalue generated. A
cryptographic aware caller may or may not be aware of details of the algorithm and keys used.
A cryptographic aware caller may be further classed as either cryptographic policy unaware or
cryptographic policy aware.

Cryptographic Policy Unaware

A cryptographic policy unaware caller invokes cryptographic services within a previously
defined cryptographic context. That is, it is responsible for invoking appropriate cryptographic
transforms, but is not responsible for the creation of the cryptographic context, such as the
algorithm used, within which the transforms are made. Examples are application infrastructure
supporting a secure RPC service and a secure messaging application.

Cryptographic Policy Aware

A cryptographic policy aware caller is responsible for the establishment of the cryptographic
context of a set of operations through the selection of appropriate algorithm, generation of key
and definition of key usage.

For the purposes of this specification a cryptographic policy aware caller is further categorised
as being cryptographic policy selecting or cryptographic policy enforcing.

Cryptographic Policy Selecting Caller

A cryptographic policy selecting caller is a caller that is capable of selecting which of a set of
predefined cryptographic contexts is to be used for a particular set of services. This type of
caller is only permitted to modify such cryptographic contexts in a manner that reduces the
scope of the permitted cryptographic operations and hence increases security.

Cryptographic Policy Enforcing Caller

A cryptographic policy enforcing caller is responsible for cryptographic policy. This
specification distinguishes between two types of cryptographic policy enforcing callers:

• Key Usage Policy Enforcing Callers
A key usage policy enforcing caller is responsible for key usage policy through the selection
of appropriate algorithms and key usage parameters when creating a cryptographic context
for a set of operations. However, it is not responsible for the integrity of the cryptographic
service and the protection of key values. A key usage policy enforcing caller only handles
keys in a protected, not a clear, format. Examples are a key distribution application and an
authentication module.

80 X/Open Preliminary Specification (1996)



Advanced GCS-API Introduction Callers of Cryptographic Services

• Key Protection Policy Enforcing Callers
A key protection policy enforcing caller is responsible for the protection of the cryptographic
service and the key values it generates and uses. A key protection policy enforcing caller
may therefore handle keys in the clear, and may be responsible for the administration of the
cryptographic services. Examples are a Master Key installation application and an
authentication module that handles a user password or other such unprotected
authentication credentials.

5.2 Scope
The scope of the current specification considers only services to support Cryptographic Aware
callers. As such, the interface specification is provided for use by programmers who are
cryptographic aware and who develop applications that rely on cryptographic services and key
management services. Support for Cryptographic Unaware callers, that is a high level protect
interface that supports the invocation of confidentiality protection, or integrity protection, or
both to an entity without knowledge on the part of the caller of how such protection is provided
is deferred to a later specification.

The objectives to be met by the interfaces defined in this specification may be categorised as
functional and non-functional. In addition, legal constraints on the use of some cryptographic
services need to be accommodated.

5.2.1 Functional Objectives

A common set of functions are required to support all types of Cryptographic Aware callers.
These are termed General Application Cryptographic Services and comprise the following:

1. integrity checkvalue generation and verification

2. data encipherment and decipherment

3. production of irreversible hash of data

4. generation of random numbers

5. inquiry of available keys and key related data.

Cryptographic Policy Aware callers, such as key management applications require the following
additional functions:

1. generation, derivation and deletion of keys, including public parameters

2. export and import of keys

3. storage and retrieval of keys and associated information.

4. archive and retrieval of keys and key related data.

The maintenance of an authenticated session previously established with the cryptographic
service is an additional objective of this specification.

Generic Cryptographic Service API (GCS-API) Base 81



Scope Advanced GCS-API Introduction

5.2.2 Non-Functional Objectives

The non-functional requirements to be supported by this specification are the requirements that
make this specification Generic and include:

1. the API shall be cryptographic algorithm independent

2. the API shall be application independent

3. the API shall be cryptographic subsystem independent. (That is, appropriate to both
hardware and software implementations)

4. the API shall not impose a particular placement of access control to cryptographic services
within an operating system kernel

5. the API shall not constrain future extensibility.

5.2.3 Legal Constraints

Many governments currently place constraints on the export of products that include or invoke
cryptographic services. Some additionally place constraints on the domestic supply and use of
such products. These constraints include the types of algorithm, the length of keys used, and the
type of use.

The existence of such constraints may result in:

1. potentially restricted encipherment and decipherment functions. Such restrictions may be
implemented and enforced by providing:

• functions that are available at run-time only to suitably privileged callers, implying
authorisation functionality, or

• functions that are available only at build time for incorporation in specific applications.

2. control on the usage of keys

3. control on the unauthorised replacement of algorithms

4. authentication of the cryptographic subsystem.

5.2.4 Functionality that is Out of Scope

The following areas are identified as out of scope of the current version of this specification:

1. The initial authentication of cryptographic service callers and user management are
considered out of scope as these services are the application of a more general
authentication service which should be developed separately to this specification.
However, support for the continuity of such authentication once established is included.

2. Mechanisms for the setting of defaults (for example default CCs) is implementation
defined and if individual per caller then defaults are set by gcs_initialise_session ( ).

3. Enforcement of authorisation for the use of cryptographic services and hence provision of
access control managers is required of an implementation but is implementation specific
and therefore no specific measures are directly included in this specification. The only
provision is recognition within the interface specifications of the possible failure of a call
because of an authorisation failure.

4. The requirement by some governments to use a specific algorithm for password
encryption and generation may be implemented as an authentication application and is
considered out of scope of this specification.

82 X/Open Preliminary Specification (1996)



Advanced GCS-API Introduction Scope

5. Pre-sign functionality in support of the NIST Digital Signature Standard (DSS) is not
exposed at the API and can be implemented as an optimisation below the API by an
implementation. Invocation of pre-sign functionality implies specific cryptographic
awareness on the part of a caller. This specification assumes no necessity for specific
algorithm awareness and dependence.

6. High-level application interfaces supporting key distribution and information protection
service interfaces for use by cryptographic unaware applications may be implemented by
combinations of calls on the services within the scope of the specification. They are
therefore considered out of scope of the current specification but could be included in
future versions.

7. Certification authority services are an application of the cryptographic services supported
by this specification and are therefore more appropriately specified separately to this
specification.

8. Installation, initial configuration and subsequent reconfiguration of the cryptographic
service itself, which has to be provided by an implementation.

9. Derivation of integrity or confidentiality seeds associated with exported or imported keys.

5.3 Layering of Cryptographic Service

Cryptographic Support Facility

Key ArchiveMechanism 1 Mechanism n

GCS-API

Application

Application Infrastructure

Key Distribution Mechanism
Independent Infrastructure

Management
Application

SMIB
KD KD

Management
Services

GSSAPI

KD Mech
Specific

Interface

Interface

Infrastructure
Services

. . . .

Key Distribution

e.g. Kerberos e.g. X.509

Messaging Infrastructure
Services Services

Algorithm 1
DES

Algorithm 2
RSA

Algorithm n

Figure 5-2  Layering of Cryptographic Services

Figure 5-2 illustrates in some implementation detail the concepts of the layering of services.

At the highest level are applications that need to invoke data protection services via
intermediate infrastructure services. These applications are generally cryptographic-unaware.

Next are application infrastructure services, for example RPC services and messaging services,
that are responsible for handling the context of the operation, perhaps as a specified Quality of

Generic Cryptographic Service API (GCS-API) Base 83



Layering of Cryptographic Service Advanced GCS-API Introduction

Protection, but independent of any mechanism specific aspects. Such functionality is serviced by
interfaces at the level of the GSS-API (Generic Security Service Application Program Interface).

The lower layers assume increasing responsibility for details of cryptographic security policy
and hence establishment of cryptographic context. This progresses from mechanism
independent key distribution services, as part of secure association creation, down through the
selection of specific key distribution protocols and algorithms.

The services covered by this specification are shown as implemented within a Cryptographic
Support Facility (CSF), see Section 5.4.

The boundaries represented by the different layers of interface may be of particular significance.
As discussed later in Section 5.4.2, the CSF interface represents a boundary that is non-
bypassable and above which cryptographic keys are not stored or manipulated in the clear by
unauthorised (non-cryptographic-enforcing) callers. Above the CSF interface, keys are
referenced by a handle or are handled as opaque , cryptographically protected data.

5.4 Cryptographic Support Facility
A general Cryptographic Support Facility (CSF) provides a general set of cryptographic and key
management service interfaces that sit on top of different algorithms and different
implementations of those algorithms. The CSF service interface is capable of hiding any specific
algorithm, in particular any key format related to the implementation of a chosen algorithm.

Protected Key
Management

Services

Clear Key
Management

Services

Initialisation
and Configuration

Services

General
Cryptographic

Services

Cryptographic Policy Selecting
Application Service Caller

Key Protection
Policy Enforcing

Application
Service Caller

Cryptographic Policy Unaware Caller
Cryptographic

Administrative
Application

Application Programming
Interface (API)

System Programming
Interface (SPI)

Cryptographic Services

Restricted Non
Restircted

Policy Enforcing

Cryptographic Service

Scope of GCS-API

Key Usage
Policy Enforcing

Application
Service Caller

Figure 5-3  Cryptographic Support Facility Callers and Services

84 X/Open Preliminary Specification (1996)



Advanced GCS-API Introduction Cryptographic Support Facility

The CSF provides support for applications and application infrastructure that:

• need to invoke a given cryptographic transformation or key management operation

• are not concerned about the details of the operation’s implementation, nor whether the
underlying technology is provided by software or hardware

• may, but need not, specify for a given operation the Quality of Protection needed

• may, but need not, specify for a given operation which particular cryptographic algorithm is
used.

As illustrated in Figure 5-3 the CSF provides two programming interfaces, an Application
Program Interface (API) and a System Program Interface (SPI), between the various cryptographic
aware callers and the following types of services:

Application Program Interface (API)
The Application Program Interface comprises interfaces to general cryptographic services
and protected key management services:

• General Cryptographic Services
these provide data encipherment, decipherment, production of checkvalues (seals or
signatures), checkvalue verification, and are invoked both by callers of the CSF and
internal CSF functions for Key Management Support.

• Protected Key Management Support Services
these support cryptographic policy selecting callers and key usage policy enforcing
callers by the provision of key generation, storage and distribution services.

System Program Interface (SPI)
The System program Interface comprises clear key management services:

• Clear Key Management Support Services
these support key protection policy enforcing callers by the provision of clear key
generation, storage and distribution services.

As key distribution protocols become standardised then the Protected Key Management Support
Services will increasingly support mechanism dependent functionality. Currently there are no
such standards and key distribution protocols are implemented externally to the CSF and
require the provision of clear key management support services.

CSF services are identified in Chapter 4 and Chapter 10.

5.4.1 Authorisation Policy

The authorisation policy inherent in the GCS-API is defined in terms of authorisation to exercise
GCS-API functions and authorisation to access and use specific keys.

Callers of the GCS-API are authorised to access any key created by the principal on whose behalf
the caller is operating, or any key to which the creating principal has granted authorisation. The
mechanisms by which this authorisation policy is enforced and managed are implementation
specific and outside the scope of this specification. Support is included in this specification for
the initialisation of a session between a caller and the CSF whereby the identity of the caller may
be authenticated and any appropriate access control information established.

The functions a caller may perform on a key are determined by an authorisation policy based on
a disjoint set of capabilities assigned to the callers of the GCS-API. These capabilities are
associated with the caller itself rather than the principal on whose behalf the caller is acting. The
caller may additionally enforce a policy of controlling which of the functions it is authorised to
exercise are to be permitted to any individual principal invoking its services.

Generic Cryptographic Service API (GCS-API) Base 85



Cryptographic Support Facility Advanced GCS-API Introduction

The capabilities defined for this specification are:

GCS_C_ENCIPHER_DECIPHER
The GCS_C_ENCIPHER_DECIPHER authority authorises a caller to utilise the
gcs_encipher_data ( ) and gcs_decipher_data ( ) functions. The use of such functions may be
restricted by an implementation to support legislative restraints on the supply and
deployment of cryptographic services.

GCS_C_SELECTION
The GCS_C_SELECTION authority authorises a caller to use the Protected Key
Management functions, excepting those that set or modify key usage policy.

GCS_C_KEY_USAGE
The GCS_C_KEY_USAGE authority authorises a caller to use the Protected Key
Management functions that set or modify key usage policy.

GCS_C_KEY_PROTECTION
The GCS_C_KEY_PROTECTION authority authorises a caller to use the Clear Key
Management functions.

All callers are authorised to exercise the general cryptographic service functions.

5.4.2 Security Considerations

Special controls must be applied to the use of cryptographic software due to its fundamental
role in distributed system security, and also because of legislative constraints imposed by many
countries on the export of software that invokes or contains and exposes cryptographic
functions. For example, the USA Government International Traffic in Arms Regulations (ITAR)
impose export constraints on products containing cryptographic services — in particular data
confidentiality services. Furthermore some countries impose domestic supply and usage
controls.

A CSF implementation must take into account a number of strict security requirements, which
are summarised as follows:

• The CSF must prevent unauthorised access to cryptographic services.

• The CSF must prevent unauthorised access to underlying data such as private or secret keys.

• The CSF must verify any control information associated with keys (such as expiration
information or usage constraints) before use.

• Depending on the policy enforced, the CSF might require its callers to have been
authenticated before they can access its services. A cryptographic product can therefore
include authentication and authorisation services, as well as the management and
operational cryptographic services.

• Once deposited beneath the GCS-API, keys should never be referenced in the clear by
unauthorised callers. Above the CSF interface operational keys are protected, for example by
enciphering with the CSF Master-Key. Authorised callers are key distribution services that
need to combine an operational key in the clear with other related information to create a
mechanism-specific token. Also note that subversion of CSF access controls has more
security significance for key management service interfaces than those related to general
application cryptographic service interfaces.

86 X/Open Preliminary Specification (1996)



Chapter 6

Key Life Cycle

A key is used by cryptographic algorithms to control the transformations they perform. The
longer a key is in use, the more susceptible it is to compromise; once a key is compromised, the
protection provided by the key is lost. Thus, there is a need to protect keys, by changing them
frequently enough to minimise the risk of compromise.

A key is thought of as having a key life cycle. It is created, used and then retired from use before
it can effectively be compromised. A number of valid states in the key life cycle are defined for a
key. Normal state transitions in the key life cycle, as illustrated in Figure 6-1 on page 88, are
dependent on the period of validity associated with the key. The state determines the operations
for which the key may be used.

A key may be held in various formats. For example, a different format may be used for a key
that is in operational use to the format used for a key that is being exchanged. It is possible for
copies of a key to exist in more than one format and storage media at any given time.

6.1 Key State
The basis of cryptographic protection is the use of a key as an input parameter to a
cryptographic algorithm to control the transformation performed by the algorithm. The
protection provided by the cryptographic transform depends upon the protection of the key. A
key should not be used indefinitely for the following reasons:

• The longer a key is used the more likely it is to be compromised through discovery.

• The longer a key is used, the more data it protects, and thus the greater the potential loss if it
is compromised.

• The more data protected by a key the greater the potential reward to the person discovering
the key and hence the greater the temptation to expend the effort necessary.

• The risk that a key may be compromised increases the longer the key is used, and the more
data it protects, as cryptanalysis is generally facilitated by the availability of more ciphertext
encrypted with the same key.

Therefore a key is generally subject to a security policy governing its permitted uses and its
permitted lifetime. As a consequence of such a policy a key may be considered to possess a state
indicating its availability for operational use. The state of a key may be considered from the
viewpoints of its operational state and validity period together with its storage format. These three
aspects interact in a manner illustrated in Figure 6-2 on page 90.

Generic Cryptographic Service API (GCS-API) Base 87



Key State Key Life Cycle

6.1.1 Key States

Pre-Active

Active

Quiescent

De-Activated

Revoked

Figure 6-1  Normal Key State Transitions

A key may possess a number of operational states during its lifetime. Some of these states may
be assigned a quasi-compromised flag (QCF) which indicates that the key is in a suspicious state,
but not yet confirmed as compromised. For example, the QCF might be set on a key if an
unauthorised revocation request were received. The QCF indicates that further validation action
may be required of the calling application before the key is used.

The following key states are defined:

Pre-Active State
A key that is in a pre-active state is not yet available for operational use

Active State
A key that is in an active state is available for operational use.

Quiescent State
A key that is in a quiescent state is available for a restricted usage. For example, a key in a
quiescent state may typically be used to decipher data or verify a checkvalue but not to
cipher data or generate a checkvalue.

De-Activated State
A key that is in a de-activated state is not available for use within cryptographic transforms.

Revoked State
A key that is in a revoked state has been withdrawn from operational use because it is
known, or believed, to have been compromised. A revoked key is not available for
operational use. Note the QCF does not apply to a revoked key.

88 X/Open Preliminary Specification (1996)



Key Life Cycle Key State 

6.1.2 Key State Operations

There are three basic functions that modify the key state. These are:

Advance Key State
This function can be used to step the key state forward.

Revoke Key
This function sets the state of a key to revoked thus inhibiting its further operational use. It
is intended for use by an application when a key is found to have been compromised.

Set Key Validity
This is a function that is restricted to use by security policy aware callers. It supports
operations that may change a key state against its normal lifecycle. For example, reseting a
key from a de-activated or revoked state to a quiescent state for the purposes of verifying a
historic checkvalue.

6.1.3 Key Validity Period

A cryptographic key has an associated validity period. The validity period defines the period of
time during which the key may be used in cryptographic transforms and comprises:

Activate Point
The point in time at which the key is permitted to be fully operational.

Quiescent Point
The point at which a key is automatically transitioned from fully operational to partially
operational. The quiescent point may be defined by a date and time or a number of
cryptographic operations or a number of bytes of data processed. A key is typically placed
in a quiescent state some time before it fully expires to facilitate a change of keys. In a
quiescent state the range of operations for which the key may be used is restricted. For
example, the key may be used to verify a cryptographic checksum but not to generate a
cryptographic checksum.

De-Activate Point
The point at which a key is no longer permitted to be operational. The de-activate point may
be defined by a date and time or a number of cryptographic operations or a number of bytes
of data processed. (A de-activated key may be made operational again by an authorised
application if permitted by the security policy.)

Generic Cryptographic Service API (GCS-API) Base 89



Key State Transitions Key Life Cycle

6.2 Key State Transitions

Non
Existent

Archive

Restore

Operational Format
Copy

Exchange
 Format

Copy

Archive Format
Copy

Pre-
Active

Active

Quiescent

De-
Activated

Revoked

Create

Delete

Create

Delete

Delete

Delete

Delete

Internal Event
Triggered

Export

Import

Archive

Archive

Archive

Archive

Restore

Restore

Restore

Restore

Internal Event
Triggered

Internal Event
Triggered

Q
C
F

Q
C
F

Q
C
F

Q
C
F

K
e
y

S
t
a
t
e

Storage Format

revoke keyset key validity

QCF - Quasi Compromised Flag

Export

Import

Export

Import

Export

Import

Export

Import
Advance
Key State

Advance
Key State

Figure 6-2  Key Life Cycle

The normal operational key life cycle is to step between the following key states either
automatically, by internal events, or by specifically invoked state change operations.

Pre-Active -> Active
A key changes from a pre-active to an active state by either:

• an internal event, for example based on the start of its validity date and time, or

• a specific caller invoked operation specifying the active state as the target state.

Active -> Quiescent
A key changes from an active to a quiescent state by either:

• an internal event, for example based on the quiescent date and time defined as part of its
validity period, or

90 X/Open Preliminary Specification (1996)



Key Life Cycle Key State Transitions

• a specific caller invoked operation specifying the quiescent state as the target state.

Quiescent -> De-Activated
A key changes from a quiescent state to a de-activated state by either:

• an internal event, for example based on the expiry date and time defined as part of its
validity period, or

• a specific caller invoked operation specifying the de-activated state as the target state.

Active -> De-Activated
A key changes from an active state to a de-activated state by either:

• an internal event, for example based on the expiry date and time defined as part of its
validity period, when no quiescent period is defined, or

• a specific caller invoked operation specifying the de-activated state as the target state.

Exceptional transitions are:

De-Activated -> Quiescent or Active, and Revoked -> Quiescent or Active
These key state transitions may be required for the purposes of performing a limited set of
operations on some historic data. For example, verifying checkvalues used as the basis of a
non-repudiation service.

Generic Cryptographic Service API (GCS-API) Base 91



Key Formats Key Life Cycle

6.3 Key Formats
A key may be stored in three formats with respect to the CSF: operational, exchange, and
archive. Copies of a key may be present in all three representations concurrently.

Operational Format
A key in an operational format is held in a format that permits its use within cryptographic
transforms. A key in this state may be held within the cryptographic support facility itself
or may be held externally to the CSF. When held externally to the CSF it will be protected,
for example enciphered under the CSF master key. The operational format is
implementation defined.

Exchange Format
The purpose of the exchange format is to permit the exchange of a key between different
CSFs for the purposes of key distribution. A key in an exchange format is typically
protected under a Key-Encryption-Key (KEK). The exchange format will be dependent
upon the key distribution protocol used to support the key exchange, for example X9.17.
The definition of such protocols is outside the scope of this specification. A copy of a key in
an exchange format will typically not retain control information associated with the key in
an operational format unless the key exchange protocol specifically also provides for the
exchange of such information. For example, a public key to be used only for validation of
data protected under a private key should be set to the quiescent state when an operational
format copy of the key is made from the exchange format copy.

Archive Format
Archive format is used by a CSF implementation for the long term storage of keys used by
that CSF. A key in an archived storage format is typically protected under an archive Key-
Encryption-Key (KEK) specific to the key archive system. The archive format is
implementation defined.

92 X/Open Preliminary Specification (1996)



Key Life Cycle Key Format Operations

6.4 Key Format Operations
The following operations create copies of a key in the different formats:

Create
Create a key in an operational format. The key state of a newly generated key may be pre-
active or active.

Export
Export creates a copy of an operational key in an exchange format. A key in such a format
may be exchanged between cryptographic support facilities by key distribution
applications.

Import
Import creates a copy of a key in an operational format from a copy of the key in an
exchange format.

Archive
Archive creates a copy of an operational key in an archive format for long term storage.

Restore
Restore creates a copy of a key in an operational format from a copy of the key in an archive
format.

Generic Cryptographic Service API (GCS-API) Base 93



Key Life Cycle

94 X/Open Preliminary Specification (1996)



Chapter 7

GCS-API Data Structures

In invoking a cryptographic operation it is insufficient for a caller to simply supply the input
data and a key. Other information has to be assembled such as which algorithm is to be used
and how it is to be used. For example:

• When a key is created then the security policy may require that the operations for which the
key is to be used or the way in which is handled are to be restricted. This information needs
to be bound to the key and the policy enforced by the CSF for each use of the key.

• As described in Chapter 6, a security policy is applied to control the period for which a key is
available for use and that a key state is maintained and bound to the key.

• An algorithm may require a set of algorithm specific information to be supplied as well as a
key.

To facilitate the specification and maintenance of this contextual and state information and its
binding to a key, this specification represents this information and a key as a single logical data
structure termed a Cryptographic Context, also referred to as a CC.

The physical internal structure of a CC is implementation defined. A CC is handled as an
opaque object by callers of the CSF. The contents of a CC are potentially updated by the CSF
each time it is used to reflect state changes. A Cryptographic context is therefore generally both
an input and an output parameter to GCS-API functions. The CSF is responsible for maintaining
the integrity of a CC as a whole, protecting it against unauthorised modification, and also for
protecting the confidentiality of the key value it contains against unauthorised disclosure.

When created, a CC is a transient structure only accessible to the creating caller. A CC may be
made persistent and globally accessible, subject to authorisation policy, by a call on the CSF. To
support the handling and management of globally accessible CCs by applications facilities to
associate both an internal name, a CC_reference, and caller defined name, CC_name, with a CC are
supported.

Generic Cryptographic Service API (GCS-API) Base 95



Cryptographic Context GCS-API Data Structures

7.1 Cryptographic Context

Cryptographic Non-Keyed Keyed
Key ContextAlgorithm ContextAlgorithm ContextContext header

Cryptographic Context

CC_Reference

Domain_ID / CC_Name

Figure 7-1  Structure of the Cryptographic Context

Figure 7-1 illustrates the logical structure of the cryptographic context used to support all
functions provided by this specification together with its relationship to a CC_reference. A CC
comprises:

Cryptographic Context Header
This contains information pertaining to the context as a whole.

Algorithm_Context(s)
Contain information related to the cryptographic algorithm(s) used. This is information
that is applicable to many key instances. Two such structures may be included: one for
keyed algorithms and one for non-keyed algorithms, both of which may be used within a
single context.

Key_Context
A Key Context also contains information related to a particular algorithm or mechanism.
However, in this case the information is applicable to a specific instance of a cryptographic
key.

CC_Reference
A CC_Reference is an internal CSF name assigned to a CC by which it may be referenced by
callers other than the creator. The reference can be passed between processes sharing a
single CSF.

CC_Name
As well as a CC_Reference a CC may also be assigned a caller defined name. The caller
defined name may be used for ease of reference and an indication of its purpose when
assigned to a CC that has been populated with a key. The caller defined name may be used
to identify a preconfigured cryptographic policy or quality of protection when assigned to a
CC that is unpopulated.

The following data structure definitions are logical definitions and do not imply a physical
implementation. The contents of the CC defined in this specification are those necessary to
comply with the specification. The inclusion of additional information in a CC by an
implementation is not precluded.

96 X/Open Preliminary Specification (1996)



GCS-API Data Structures Cryptographic Context Header

7.2 Cryptographic Context Header

Cryptographic Non-Keyed Keyed
Key ContextAlgorithm ContextAlgorithm ContextContext header

Cryptographic Context

Context Version Number

Context ID
Context Confidentiality Flag
Context Type

Context Check Value

Figure 7-2  Cryptographic Context Header

As illustrated in Figure 7-2, the CC_header comprises:

Context_Version_Number
Version number of the cryptographic context which may be of relevance for
implementations of future versions of this specification. The Context Version Number
defined by this specification is 0. The Context_version_Number is set by the CSF when a
CC is created.

Context_Type
Specifies the type of algorithm context(s) included in the cryptographic context. That is,
Keyed, Non-keyed or both. The value of this field is set by the CSF when the CC is created.

Context_Confidentiality_Flag
This field indicates whether or not the private or secret values held in the key context are to
be protected for confidentiality. If they are not protected for confidentiality then the CC is
only usable by callers possessing a GCS_C_KEY_PROTECTION authority.

• YES means that the private or secret values of the key_context shall be protected for
confidentiality when populated with a key.

• NO means that the private or secret values of the key_context do not need to be
protected for confidentiality, although they may be.

The value of this field is specified by a caller of gcs_create_cc( ) or gcs_set_cc( ).

Context_ID and Context_Checkvalue
The context identity and the context checkvalue are used internally by the CSF. The
Context_ID is a unique identity assigned to a CC by the CSF when it is created. This

Generic Cryptographic Service API (GCS-API) Base 97



Cryptographic Context Header GCS-API Data Structures

identity may be used by the CSF for the purposes of:

• maintaining consolidated usage statistics of a stored CC when retrieved and used by
multiple callers concurrently,

• enforcing exclusive update access for modifying a CC,

• supporting access control. For example, it may be used to associate an ACL with the
CC.

The Context_Checkvalue holds an internally generated and maintained checkvalue of
the protected CC. The checkvalue is computed over all CC fields except the
Context_Checkvalue. The method used to generate the checkvalue is implementation
defined.

98 X/Open Preliminary Specification (1996)



GCS-API Data Structures Algorithm_Context

7.3 Algorithm_Context
An Algorithm_Context contains information related to a cryptographic algorithm to be used with
a CC. This is algorithm specific information that is applicable to many key instances. Two such
structures may be included in a CC: one for keyed algorithms and one for non-keyed algorithms,
both of which may be used within a single context.

Cryptographic Non-Keyed Keyed
Key ContextAlgorithm ContextAlgorithm ContextContext header

Cryptographic Context

Algorithm Identifier
Mode of Operation
Short Block policy
Algorithm Specific Parameters

Figure 7-3  Algorithm_Context

As illustrated in Figure 7-3, the algorithm_context comprises:

Algorithm Identifier:
This is defined constant that identifies the specific algorithm to be used. The algorithm ID
may also identify the mode of operation, alternatively this may defined separately. Example
algorithms are:

Encipher/decipher algorithms

• DES

• DES-MAC

• SKIPJACK

• CDMF

• IDEA

• RC(2,4,5)

check_value algorithms

• RSA

Generic Cryptographic Service API (GCS-API) Base 99



Algorithm_Context GCS-API Data Structures

• DSA

hash algorithms

• SHA-1

• MD5

An initial set of Algorithm IDs are given in Section 9.3.4 on page 115.

Mode of Operation
The Mode Of Operation identifies the mode in which the selected algorithm is to be
operated. The mode usually defines a feedback method and some other simple operations.
The mode of operation may be indicated by the algorithm ID in which case the mode of
operation can be set to NONE.

Examples of modes of operation are:

• Electronic Feedback Mode (ECB)

• Cipher Block Chaining Mode (CBC)

• Cipher feedback Mode (CFB)

• Output Feedback Mode (OFB)

Short_Block_Policy:
The Short_Block_Policy identifies the policy to apply if the caller submits a short block to a
function call. Examples of Short Block Policies are:

• None
Short blocks are not permitted. Input must be a multiple of block size.

• X9.23
X9.23 uses byte padding. A short block is padded from 1 up to to 8 bytes. The last byte
is the count of the number of bytes of padding.

• IBM Information Protection System (IPS)
IBM IPS reciphers the last complete ciphertext block and re-enciphers and then XOR
with plaintext for the required number of bytes. This acts like a psuedo one-time pad.

• Cipher Text Stealing
Cipher Text Stealing encrypts normally up to the last few bytes. It then prepends
ciphertext bytes to the remaining cleartext bytes to make up a complete block and then
enciphers the complete block. This can also be used on the basis of bit-length as well as
byte-length.

• PKCS#1
Encryption block formatting as defined in PKCS#1.

Algorithm_Specific_Parameters
These are parameters required by the specific algorithm referenced by the algorithm context
that are not specific to a single key to be used with the algorithm. The Algorithm Specific
Parameters are defined by the standard that defines the Algorithm Object ID.

Examples of Algorithm Specific Parameters for some common algorithms are:

DES

• Key length - 64 bits

100 X/Open Preliminary Specification (1996)



GCS-API Data Structures Algorithm_Context

• Feedback length (for some block cipher modes)

• IV parameters (e.g.,length)

RSA

• Modulus length (this controls the size of the prime numbers, strength of the key)

• Optional User Group Parameters
The following two parameters both have to be supplied if the values are shared
between a group of users:

— Group public exponent length

— Group public exponent value

DSA

• Length of Prime P in bits (512 to 1024 bits, this controls the strength of the key)

• Optional User Group Parameters
The following three parameters are all required to be supplied if the values are
shared between a group of users:

Prime p

— Prime q

— Generator g

Diffie Hellman

• Length of prime P in bits (512 to 1024 bits, this controls the strength of the key)

• Prime P

• Generator G, (1 < G < P )

• Number of Parties

• Derive (Spawn) Method
Indicates how to interpret the input bit string to gcs_derive_key.

• Elliptic Curves-Diffie Hellman
Elliptic curve parameters: curve parameters, curve order and generator point.

Generic Cryptographic Service API (GCS-API) Base 101



Key_Context GCS-API Data Structures

7.4 Key_Context

Cryptographic Non-Keyed Keyed
Key ContextAlgorithm ContextAlgorithm ContextContext header

Cryptographic Context

Key Usage

Key State
Time of revocation
Reason for Revocation
Key Flag

Key Validity

Key Specific Parameters
Key Value

Permitted Export Mechanisms

Initialisation Vector

Split Key Protocol Type

Number of Key Parts
Key Part Number

Figure 7-4  Key_Context

As illustrated in Figure 7-4, the Key_Context comprises:

Key_Usage
This field defines for which functions the key that populates the CC may be used as the key
for that cryptographic transform. A complete list of all functions subject to key usage
constraints can be found in Section 3.8 on page 33. Once populated with a key the
key_usage may only be reduced in scope.

Permitted_Export_Mechanisms
The Permitted_Export_Mechanism, identified by an Mechanism ID, defines which, if any,
mechanisms may be used to transport the key contained in the CC between CSFs using
gcs_export_key ( ) and gcs_import_key ( ) or gcs_export_key_agreement( ) and
gcs_import_key_agreement( ). Examples that may be defined include:

• No export, the key is not permitted to be exported.

• X9.17

• Kerberos

• RSA - ANSII

• RSA - PKCS

• FORTEZZA Key-Wrap

• Control Vectors

102 X/Open Preliminary Specification (1996)



GCS-API Data Structures Key_Context

• Diffie Hellman - X9.42 (dynamic case)

• Diffie Hellman - [Photuris]

• KEA
Many export mechanisms are the subject of draft standards and are under development.
Specific examples with currently defined object Ids are listed in Section 9.3.9 on page 117.

Key_State
Identifies the current state of the key (pre_active, active, quiescent, de-activated or revoked)
See Chapter 6.

Time_of_Revocation
Specifies the date and time at which the key was revoked. This is set by the CSF.

Reason_For_Revocation
This is a text string used to record the reason for which a key has been revoked. This is
supplied by the caller revoking a key.

Key_Flag
Refines the state of the key and provides control of the functions to which the key may be a
target.

• IV_Needed If set then a caller is required to supply an IV to the functions that provide
for an IV input parameter, e.g., gcs_encipher_date( ) and gcs_decipher_data ( ).

• Split
Specifies whether or not the key is split.

• Quasi Compromised (QCF)
Specifies whether the key is suspected of having been compromised but that this has not
yet been authoratively confirmed.

• Force_First_Key_Usage
Specifies by the first call whether the key is used for encryption/decryption, or for
generating and/or verifying a check value. This provides support for X9.17 with
ambiguous usage.

Split_Protocol_Type
If the CC contains a split key, this field defines the protocol used to split the key. This field
is checked by gcs_split_clear_key ( ). Examples of split protocol types are XOR and SHAMIR.

Key_Part_Number
If the CC contains a split key, this field defines the part number contained within the CC.

Number_of_Key_Parts
If the CC contains a split key, this field defines the total number of key parts into which the
key has been split.

Key_Validity
The key validity data comprises:

• activation time

This is the date/time after which the key is permitted to be used for cryptographic
operations.

• quiescent time

This defines the point in time after which the key is set to the quiescent state, that is it
may be only used for a restricted set of operations. This point in time may be defined as

Generic Cryptographic Service API (GCS-API) Base 103



Key_Context GCS-API Data Structures

a number of seconds after activation or a number of cryptographic operations or a
number of bytes enciphered. This point in time may be defined using all three methods
within a single CC.

• deactivation time

This defines the point in time after which the key is set to the deactivated state, that is it
may no longer be used for any cryptographic operations. This point in time may be
defined as a number of seconds after activation or a number of cryptographic operations
or a number of bytes enciphered. This point in time may be defined using all three
methods within a single CC.

Initialisation Vector
This is a static IV value to be used by the CSF for all functions requiring an IV for which this
CC is used unless overridden by a caller supplied IV parameter. A caller may be forced to
supply an IV value to functions by setting the IV_NEEDED flag described above.

Key_Specific_Parameters
These are additional mechanism specific parameters that are associated with this key.
Examples are: KEK_ID, Key_ID for ANSI X9.17, usage count, send counter, receive
window, parity checked, parity set, etc.)i

Key_Value
The key value is implementation dependent and has a variable structure dependent upon
the algorithm. (The key length is defined as an Algorithm Specific Parameter within the
Algorithm Context.) Keys may have internal structure which is not visible to the API.

If the Context_Confidentiality_Flag is set then the private or secret values held within the
Key_Value field have to be confidentiality protected by the CSF. This is typically done by
enciphering under a CSF Master Key.

104 X/Open Preliminary Specification (1996)



GCS-API Data Structures Cryptographic Context Reference

7.5 Cryptographic Context Reference
When created a CC is a transient structure only accessible to the creating caller. A CC may be
made persistent and globally accessible, subject to authorisation policy, by a call on the CSF.
This call stores a copy of the CC under the control of the CSF. To support the handling and
management of such globally accessible CCs by applications a system defined name, a
CC_reference, is associated with a stored CC. A CSF may be able to use different types of storage
media in which to store CCs. The definition of a CC_reference supports the definition of the
storage media and device by a caller. To improve usability a stored CC may also be aliased by a
caller defined name.

The system defined name, the CC_reference, is defined as follows:

label
storage_unit_class [optional]
storage_unit_instance [optional]

Where:

Label:
Is the system defined name assigned to the cryptographic context stored in the operational
storage unit maintained by the CSF. This is an internal machine-generated name and not a
human-readable name.

Storage_Unit_Class:
Is an optional parameter which distinguishes the device on which the cryptographic context
is stored. This parameter, which could have a default value, could be handled by the CSF
implementation, or could be tuned by the caller. For example, non-volatile memory, disk,
CD-ROM, smart_card.

Storage_Unit_Instance:
Is an optional parameter used to distinguish between different instances of the same storage
unit class.

Note: the CC_reference is implementation-specific. It must be unique within an individual
CSF domain.

Generic Cryptographic Service API (GCS-API) Base 105



Cryptographic Context Name GCS-API Data Structures

7.6 Cryptographic Context Name
In addition to the use of the CC_reference to reference a CC this specification supports the
assignment of a caller defined name to identify a stored CC. The caller defined name comprises
two components:

Domain_ID
This identifies the security domain to which the CC_name relates. This may be defaulted.

CC_name
A name that must be unique within the domain Domain_ID.

This structure enables implementations to support:

• Definition of Quality of Protection (QOP) Profiles
A set of unkeyed CCs may be created and stored to define the QOP policy within the
identified domain. The domain may represent an interconnection security domain between
two peers or may represent a storage domain, for example a backup service. The QOP
represented by each CC may be represented by its CC_name.

• Sharing of Keys between Callers of Different CSFs
A key that is distributed between different CSFs (via export and import operations) may be
readily named and identified by co-operating callers of each CSF.

106 X/Open Preliminary Specification (1996)



Chapter 8

Advanced GCS-API Services

Protected Key
Management

Services

Clear Key
Management

Services

Initialisation
and Configuration

Services

General Application
Cryptographic

Services

Cryptographic Policy Selecting
Application Service Caller

Cryptographic
Policy Enforcing

Application
Service Caller

Cryptographic Policy Unaware Caller
Cryptographic

Administrative
Application

Application Programming
Interface (API)

System Programming
Interface (SPI)

Cryptographic Services

Restricted Non
Restircted

Policy Enforcing

Cryptographic Service

Figure 8-1  CSF Services

The CSF services comprise both operational and management services and are illustrated in
Figure 8-1.

They include the following categories:

• General Cryptographic Services (Part of the API)

• Protected Key Management Services (Part of the API)

• Clear Key Management Services (Part of the SPI)

• Cryptographic Service Initialisation and Configuration Services (Not within the current
scope of this specification.)

As described in Section 5.4.1 on page 85 callers of the CSF are authorised to utilise CSF functions
on the basis of a disjoint set of capabilities assigned to them.

This chapter describes the additional advanced services supported by the GCS-API. These fall
within the protected key Management and Clear key Management Services illustrated in Figure
8-1. The basic services supported by the GCS-API are described in Chapters 1-4. Each
subsection lists the functions supported and the GCS Authorities, if any, required by a caller in
order to successfully invoke the function. GCS Authorities are described in detail in Chapter 2.
In general these are assigned by administrative action and established on the initialisation of a
session with the CSF. A detailed manual page for each of these functions is included.

Generic Cryptographic Service API (GCS-API) Base 107



Creation of CC Advanced GCS-API Services

8.1 Creation of CC

Function GCS Authorities
gcs_create_ac -
gcs_delete_ac -
gcs_set_ac -
gcs_create_kc -
gcs_delete_kc -
gcs_set_kc -
gcs_create_cc GCS_C_KEY_USAGE

Table 8-1  Creation of a CC

A cryptographic context can only be created by authorised callers, ie., those that enforce
cryptographic key usage policy. This is indicated by a caller being assigned a
GCS_C_KEY_USAGE authority.

The specification only requires GCS_C_KEY_USAGE authority for gcs_create_cc( ) as this is the
only interface that actually creates a CC. The other interfaces are supporting functions and are
ineffective without the other one.

The cryptographic context is built up from one or two algorithm contexts and a key context in
the following manner:

• Empty algorithm contexts and key contexts are created with calls to gcs_create_ac( ), and
gcs_create_kc( ), respectively. Each of these functions allocates memory for the context as
required.

• The created algorithm contexts and key contexts are filled by successive calls to gcs_set_ac( )
and gcs_set_kc( ), to set individual fields in each of the data structures. The key_value field of
the key_context is not filled at this time.

• A cryptographic context is created by using the function gcs_create_cc( ), supplying it with
appropriate algorithm and key contexts already created to define the policy represented by
the CC. The cc_header fields are filled at this time. A caller of gcs_create_cc( ) is required to
possess a GCS_C_KEY_USAGE authority.

• Once the CC has been created, the independent algorithm context and key context structures
created to form the CC may be deleted and the memory occupied by them released by calls
to gcs_delete_ac( ) and gcs_delete_kc( ).

This set of operations creates an template cryptographic context, which can either be populated
for immediate use or stored in a library and made globally referencable.

108 X/Open Preliminary Specification (1996)



Advanced GCS-API Services Cryptographic Context Modification

8.2 Cryptographic Context Modification

Function GCS Authorities
gcs_get_cc -
gcs_retrieve_cc
gcs_set_cc GCS_C_KEY_USAGE
gcs_store_cc GCS_C_SELECTION or GCS_C_KEY_USAGE

Table 8-2  Cryptographic Context Inquiry

gcs_get_cc provides for the querying by a caller of the contents of a CC. Any CC content may be
queried with the exception of the key value.

The CC contents may be modified using gcs_set_cc( ) to overwrite an individual field in the
algorithm context(s) and key context in the cryptographic context. Multiple calls to get_set_cc( )
need to be made in order to modify several fields. A caller of gcs_set_cc( ) is required to possess a
GCS_C_KEY_USAGE authority.

To modify a CC that has been stored then gcs_retrieve_cc( ) must be invoked with an exclusive
lock set. This prevents any subsequent retrieval of the CC and also results in the failure of any
cryptographic operations using a copy of the CC that has been previously retrieved.

A subsequent call by the caller that executed the exclusive lock to gcs_store_cc( ) using the CC on
which the lock was obtained results in the stored copy of the CC being updated and the lock
released. Any subsequent calls using a previously retrieved version of the CC result in that
caller’s private copy being updated as a consequence of the call it makes. The update of CC may
result in a caller being unable to continue using the CC for operations it was previously capable
of executing.

8.3 Additional Key Management Functions

Function GCS Authorities
gcs_combine_key GCS_C_SELECTION
gcs_load_public_key GCS_C_SELECTION

Table 8-3  Additional Key Management Functions

These functions provide additional facilities for the management of keys. gcs_combine_key
provides for the combination of key parts into a single key. The individual key parts have to be
imported to separate CCs and this function is then invoked to combine the individual key parts.

gcs_store_cc provides for the creation of a new CC that is identical to the original CC with the
exception of its Context ID if the original CC was not retrieved with an exclusive lock set.

gcs_load_public_key provides for the loading of a public key supplied in clear text form, which by
its nature does not require protection for confidentiality.

Generic Cryptographic Service API (GCS-API) Base 109



Key State Management Advanced GCS-API Services

8.4 Key State Management

Function GCS Authorities
gcs_advance_key_state GCS_C_SELECTION or GCS_C_KEY_USAGE
gcs_get_key_validity -
gcs_reduce_key_usage GCS_C_SELECTION or GCS_C_KEY_USAGE
gcs_revoke_key GCS_C_SELECTION or GCS_C_KEY_USAGE
gcs_set_key_validity GCS_C_KEY_USAGE

Table 8-4  Key State Management

The key state management functions provide for a caller to query and modify the key state and
the parameters that control the key state.

gcs_advance_key_state provides for a caller to step the key state of a CC forward through its
natural lifecycle in a manner that reduces the key’s availability. For example, a CC with a key in
an active state may be stepped forward to a quiescent or de-active state, but a CC with a key in a
pre-active state cannot be made active.

gcs_get_key_validity provides for a caller to query the key validity parameters of the CC that
control the points at which the CSF will trigger a key state change. gcs_set_key_validity provides
for a caller to set the key validity parameters of a CC and therefore control when the CSF will
trigger a key state change. This may be necessary in order to reactivate a key that has been
previously de- activated or revoked for the purposes of deciphering or verifying historic data.

gcs_reduce_key_usage is used by a caller to reduce the cryptographic functions that a key may be
used for. An example may be creation of a copy of a key (via gcs_store_cc with an exclusive lock)
which is to be restricted to only decrypting data prior to making it available to other callers.

gcs_revoke_key provides for a caller to set a key into a revoked state when it has been found to be
compromised.

8.5 Supplementary CC Management Functions

Function GCS Authorities
gcs_archive_cc GCS_C_SELECTION or GCS_KEY_USAGE
gcs_restore_cc GCS_C_SELECTION or GCS_KEY_USAGE
gcs_generate_key_pattern GCS_C_SELECTION
gcs_verify_key_pattern GCS_C_SELECTION

Table 8-5  Supplementary CC Management Functions

These functions provide supplementary services in support of the management of CCs.
gcs_archive_cc and gcs_restore_cc provide for the long term storage of CCs. That is of both keys
and the context in which they are used including key usage constraints. These services are not
likely to be used for normal day to day operations but are required to support the recovery of
historic keys and associated data.

gcs_generate_key_pattern and gcs_verify_key_pattern are provided in support of key derivation
functions to enable CSF implementations that independently derive the same key from caller
supplied data to check that the independently derived keys are identical and will reliably
interwork.

110 X/Open Preliminary Specification (1996)



Advanced GCS-API Services System Programming Interface (SPI)

8.6 System Programming Interface (SPI)

Function GCS Authorities
gcs_decipher_key GCS_C_KEY_PROTECTION
gcs_encipher_key GCS_C_KEY_PROTECTION
gcs_derive_clear_key GCS_C_KEY_PROTECTION
gcs_generate_clear_key GCS_C_KEY_PROTECTION
gcs_load_clear_key GCS_C_KEY_PROTECTION
gcs_split_clear_key GCS_C_KEY_PROTECTION

Table 8-6  System Programming Interface

The system programming interface supported by the GCS-API provides functions for the
manipulation of clear keys by a caller. These types of functions are required to support the
management of the CSF itself, for example the installation of initial keys and for support of key
exchange protocols that require the manipulation of clear keys when such protocols have not
been directly implemented by a CSF implementation.

Generic Cryptographic Service API (GCS-API) Base 111



Advanced GCS-API Services

112 X/Open Preliminary Specification (1996)



Chapter 9

Advanced GCS-API Parameter Passing Conventions

This chapter describes the additional data types, over and above those defined in Chapter 3 on
page 25, used by the C-language versions of the advanced GCS-API functions. It also explains
calling conventions for these functions.

9.1 Contexts
The gcs_cc_t data type contains a caller-opaque cryptographic context defined by the
implementation. The cryptographic context holds the algorithm context and key context
information.

gcs_ac_t data type contains an algorithm context defined by the implementation.

gcs_kc_t data type contains a key context defined by the implementation.

9.2 Cryptographic Reference
The gcs_cc_ref_t data type contains a handle to a caller-opaque cryptographic context defined
by the implementation.

Generic Cryptographic Service API (GCS-API) Base 113



Constants Advanced GCS-API Parameter Passing Conventions

9.3 Constants
The tables below set out the constants defined by the specification, and the value to which they
are set.

9.3.1 Register of GCS-API Constants

At the time of publication it is not possible for this specification to include the values of all
constants that will be relevant to the GCS- API in the future. This is because cryptography is a
developing technology and new algorithms, export mechanisms, etc., will continue to be
developed and values to identify them within the GCS-API will need to be defined.

To provide for this extension of GCS-API constants a register of GCS-API constants is
maintained by X/Open. The latest version of this may be accessed at the X/Open WWW Server
at www.xopen.org by reference to the index at URL:

http://www.xopen.org/public/

or by anonymous ftp to:

ftp.xopen.co.uk

cd pub/GCS-API_Registry
get GCS-API_Constants.ps

To register a new a constant or range of constants an implementor should send a message via
email to GCS-API-Registry@xopen.co.uk.

Registration of an algorithm ID requires the specification of the name of the algorithm together
with a list of the Algorithm Specific Parameters and the format in which they have to be input.
The modes of operation and applicable Short Block Policies shall also be defined. This
information may be provided by reference to a standard or publicly accessible specification that
defines the necessary information.

9.3.2 Optional Parameter Constants

Name Value Meaning
[GCS_C_TRUE] 1 True
[GCS_C_FALSE] 0 False
[GCS_C_NULL] NULL Null
[GCS_C_EMPTY_BUFFER] NULL Empty buffer
[GCS_C_NO_BUFFER] NULL No buffer is supplied or returned
[GCS_C_NO_BIT_STRING] NULL The bit string supplied or returned is null

Table 9-1 Optional Parameter Constants

114 X/Open Preliminary Specification (1996)



Advanced GCS-API Parameter Passing Conventions Constants

9.3.3 Context Types

Context Type Value Meaning
Keyed 0 Keyed Algorithm Context
Non-Keyed 1 Non-Keyed Algorithm Context
Both 2 Keyed & Non-Keyed Algorithm Context

Table 9-2 Context Types

9.3.4 Algorithm Identifier

The following algorithm identifiers represent an initial list. Their inclusion in this document
does not imply any conformance criteria for the supply of these particular algorithms.

An algorithm ID may also indicate a specific mode of operation, alternatively the mode of
operation may be specified separately in a CC that uses the algorithm.

Algorithm Algorithm ID Algorithm Parameters
GCS_C_DES_CBC 1 IV 64 bits
GCS_C_DES_MAC_32 2 None
GCS_C_SKIPJACK_CBC_64 3 IV 64 bits
GCS_C_RC2_CBC 4 IV or sequence RC2 version, IV
GCS_C_RC4 5 None
GCS_C_RSA 6 Modulus length
GCS_C_DSA 7
GCS_C_SHA_1 8
GCS_C_MD5 9
GCS_C_KEA 10
GCS_C_DIFFIE 11

Table 9-3 Algorithm IDs

9.3.5 Mode of Operation

The mode of operation qualifies how a particular algorithm is to be used and usually defines a
feedback method and some simple operations.

Generic Cryptographic Service API (GCS-API) Base 115



Constants Advanced GCS-API Parameter Passing Conventions

Name Value Mode of Operation
GCS_M_NONE 0 No mode appropriate or algorithm ID specifies
GCS_M_ECB 1 Electronic Code Book Mode
GCS_M_CBC 2 Cipher Block Chaining Mode
GCS_M_CFB 3 Cipher Feedback Mode
GCS_M_OFB 4 Output Feedback Mode
GCS_M_COUNTER 5 Counter Mode
GCS_M_BC 6 Block Chaining Mode
GCS_M_PCBC 7 Propagating Cipher Block Mode
GCS_M_CBCC 8 Cipher Block Chaining with Checksum
GCS_M_OFBNLF 9 Output Feedback with Non-Linear Function
GCS_M_CBCOFBM 10 CBC with OFB Masking

Table 9-4 Modes of Operation

9.3.6 Algorithm Specific Parameters

Algorithm specific parameters are defined by the standard that defines the algorithm ID.
Algorithm specific parameters are to be represented in the algorithm context by a BER encoding
of the format defined in the applicable standard. Examples of Algorithm Specific Parameters are
included in Table 9-3 on page 115.

9.3.7 Short Block Policies

Short Block Policy Value
GCS_SBP_NONE 0 Short Blocks Not Permitted
GCS_SBP_X9_23 1 X9.23 byte padding
GCS_SBP_IPS 2 IBM Information Protection System
GCS_SBP_CTS 3 Cipher Text Stealing
GCS_SBP_PKCS_1 4 Encryption block formatting as defined in PKCS#1
GCS_SBP_DES_MAC 5 DES MAC Short Block Policy
GCS_SBP_PEM 6 PEM Short Block policy

Table 9-5 Short Block Policy Values

9.3.8 Key Usage

The key usage parameter defines for which GCS-API functions the CC may be used to provide
the key to a cryptographic operation.

Note: The Key_Flag parameter controls the functions for which the CC may be the target of a
GCS-API function.

116 X/Open Preliminary Specification (1996)



Advanced GCS-API Parameter Passing Conventions Constants

Key Value Bit Mask CSF Function
Values

GCS_C_GENERATE_CV "0x00000001" gcs_generate_check_value
GCS_C_VERIFY_CV "0x00000002" gcs_verify_check_value
GCS_C_DERIVE_KEY "0x00000004" gcs_derive_key
GCS_C_ENCIPHER_DATA "0x00000008" gcs_encipher_data
GCS_C_DECIPHER_DATA "0x00000010" gcs_decipher_data
GCS_C_ARCHIVE_CC "0x00000020" gcs_archive_cc
GCS_C_RESTORE_CC "0X00000040" gcs_restore_cc
GCS_C_GENERATE_KEY_PATTERN "0x00000080" gcs_generate_key_pattern
GCS_C_VERIFY_KEY_PATTERN "0x00000100" gcs_verify_key_pattern
GCS_C_DECIPHER_KEY "0x00000200" gcs_decipher_key
GCS_C_ENCIPHER_KEY "0x00000400" gcs_encipher_key
GCS_C_EXPORT_KEY "0x00000800" gcs_export_key
GCS_C_EXPORT_KEY_AGREEMENT "0x00001000" gcs_export_key_agreement
GCS_C_IMPORT_KEY "0x00002000" gcs_import_key
GCS_C_IMPORT_KEY_AGREEMENT "0x00004000" gcs_import_key_agreement

Table 9-6 Key Usage Values

9.3.9 Permitted Export Mechanisms

These define which mechanisms, if any, can be used to transport the key contained in a CC
between CSFs.

The Mechanism IDs specified as part of the GCS-API are separately maintained by X/Open and
are accessible at the X/Open WWW site or ftp site. The following mechanism identifiers
represent an initial list. Their inclusion in this document does not imply any conformance
criteria for the supply of these particular algorithms.

If a proprietary or non-standardised mechanism is supported then an implementation may
apply to X/Open for an mechanism ID for that mechanism.

Export Mechanism Bit Mask Meaning
Values

GCS_NO_EXPORT "0x00000000" the key cannot be exported
GCS_DH_PKCS3 "0x00000001" Diffie Hellman
GCS_DHKA_PKCS3_1 "0x00000002" Diffie Hellman Key Agreement
GCS_FORTEZZA_KEA "0x00000004" KEA
GCS_X917_1985 "0x00000008" X9.17 1985
GCS_X917_1994 "0x00000010" X9.17 1994
GCS_KERBEROS "0x00000020" Kerberos RFC 1510
GCS_PCK51 "0x00000040" X9.44
GCS_RSA_PKCS "0x00000080" RSA-PKCS X9.42
GCS_FORTEZZA_KEY_WRAP "0x00000100" Fortezza Key Wrap
GCS_IBM_CV "0x00000200" Control Vectors IBM SC40-1675

Table 9-7 Permitted Export Mechanism IDs

Generic Cryptographic Service API (GCS-API) Base 117



Constants Advanced GCS-API Parameter Passing Conventions

9.3.10 Key State Value

The key state value identifies the current state of the key.

Key State Value Meaning
GCS_PRE_ACTIVE 1 pre-active key state
GCS_ACTIVE 2 key state active
GCS_QUIESCENT 3 key state quiescent
GCS_DEACTIVATED 4 key state de-activated
GCS_REVOKED 5 key revoked

Table 9-8 Key State Values

9.3.11 Key Flag

The key flag refines the state of the key.

Key Flag Bit Mask Meaning
Value

GCS_C_IV_NEEDED "0x01" caller must supply IV
GCS_C_SPLIT "0x02" if set, the key is split

if set, the key is
suspected of having
been compromised

GCS_C_QCF "0x04"

first usage specifies
how key is used

GCS_C_FORCE_FIRST_USAGE "0X08"

Table 9-9 Key Flag Values

9.3.12 Split_Key_Protocol_Type

The following split key protocol types are defined:

Key State Value Meaning
GCS_SKP_NONE 0 Key not Split (Default)
GCS_SKP_XOR 1 XOR split protocol
GCS_SKP_SHAMIR 2 Shamir split protocol

Table 9-10 Split Key Protocol Types

9.3.13 Key Validity Parameters

The following constants are defined for use as key validity parameters:

Key State Value Meaning
GCS_C_TIME 0 Input is the number of seconds
GCS_C_COUNT 1 Input is the number of operations
GCS_C_BYTES 2 Input is the number of bytes
GCS_C_NOW 0 Zero offset from current time
GCS_C_INFINITE "0xFFFFFFFF" An infinite time

Table 9-11 Key Validity Values

118 X/Open Preliminary Specification (1996)



Advanced GCS-API Parameter Passing Conventions Constants

9.3.14 Key Specific Parameters

These are additional mechanism specific parameters associated with the key. They are to be
represented as BER encoded data.

9.3.15 Key Value

The formatting of key values is generally an internal implementation concern. An exception is
the format of clear keys to be used with the functions gcs_load_key ( ) and gcs_load_public_key ( ).

For these functions:

• Clear Public Key values or Public/Private Key pair values shall be represented by DER
encoding. (See PKCS #1)

• Clear keys for DES-CBC shall be formatted as a 64 bit string with the MSB in the lowest
address bit.

9.3.16 CC Components

Name Value
GCS_C_CC_HEADER 0
GCS_C_KEYED_AC 1
GCS_C_NON_KEYED_AC 2
GCS_C_KC 3

Table 9-12 CC Components

9.3.17 Context Header Parameter Names

Name Value
GCS_C_CONTEXT_VERSION 0
GCS_C_CONTEXT_TYPE 1
GCS_C_CONFIDENTIALITY_FLAG 2
Table 9-13 Context Header Parameter Names

9.3.18 Algorithm Context Parameter Names

Name Value
GCS_C_ALGORITHM_ID 0
GCS_C_MODE_OF_OPERATION 1
GCS_C_SHORT_BLOCK_POLICY 2
GCS_C_ALGORITHM_SPECIFIC_PARAMETERS 3

Table 9-14 Algorithm Context Parameter Names

Generic Cryptographic Service API (GCS-API) Base 119



Constants Advanced GCS-API Parameter Passing Conventions

9.3.19 Key Context Parameter Names

Name Value
GCS_C_KEY_USAGE 0
GCS_C_PERMITTED_EXPORT_MECHANISM 1
GCS_C_KEY_STATE 2
GCS_C_KEY_FLAG 3
GCS_C_TIME_OF_REVOCATION 4
GCS_C_REASON_FOR_REVOCATION 5
GCS_C_SPLIT_PROTOCOL_TYPE 6
GCS_C_KEY_PART_NUMBER 7
GCS_C_NUMBER_OF_KEY_PARTS 8
GCS_C_KEY_VALIDITY_ACTIVATION_TIME 9
GCS_C_KEY_VALIDITY_QUIESCENT_TIME 10
GCS_C_KEY_VALIDITY_QUIESCENT_COUNT 11
GCS_C_KEY_VALIDITY_QUIESCENT_BYTES 12
GCS_C_KEY_VALIDITY_DEACTIVATE_TIME 13
GCS_C_KEY_VALIDITY_DEACTIVATE_COUNT 14
GCS_C_KEY_VALIDITY_DEACTIVATE_BYTES 15
GCS_C_IV 16
GCS_C_KEY_SPECIFIC_PARAMETERS 17

Table 9-15 Key Context Parameter Names

120 X/Open Preliminary Specification (1996)



Chapter 10

Advanced CSF Application Program Interface (API)

This chapter presents the functions comprising the advanced GCS-API. These are used by
Cryptographic Policy Selecting Callers and Key Usage Policy Enforcing Callers.

In the majority of these definitions a cryptographic context is included as an input parameter
providing information on the algorithm(s) and key(s) to be used in the function. A cryptographic
context is also included as an output parameter because the CC may be modified by the call, eg.,
usage counts and key states may be modified any time the CC is used to provide a key used
within a function. The check value of the CC and the validity period of a key within the CC are
checked on each use of the CC.

Generic Cryptographic Service API (GCS-API) Base 121



gcs_advance_key_state( ) Advanced CSF Application Program Interface (API)

NAME
gcs_advance_key_state — advances the key state of a cc

SYNOPSIS
OM_uint32 gcs_advance_key_state(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
OM_uint32 key_state ,
gcs_cc_t * subject_cc

);

DESCRIPTION
This function advances the key state of the cryptographic context, subject_cc thus permitting a
caller to quiesce or deactivate a key before the transition is forced by the CSF based on time or
number of cryptographic functions called. The function enables the caller to reduce key
availability. The caller must possess the GCS_C_SELECTION authority, or the call will fail.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_advance_key_state ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

key_state (in)
The required key state. Permitted values are GCS_QUIESCENT or GCS_DEACTIVATED.

subject_cc (opaque,in/out)
The cryptographic context of which the key state is to be advanced.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but subject_cc has quasi compromised flag set in key context.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The subject_cc supplied is not valid.

[GCS_S_INCORRECT_KEY_STATE]
The key_state parameter value supplied is not one of the permitted values.

[GCS_S_INVALID_STATE_TRANSITION]
The key state transition requested is not permitted.

122 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_advance_key_state( )

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not recognised

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority or some other authorisation failure
has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 123



gcs_archive_cc( ) Advanced CSF Application Program Interface (API)

NAME
gcs_archive_cc — transform a cryptographic context into an archive format

SYNOPSIS
OM_uint32 gcs_archive_cc(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_cc_t * subject_cc ,
gcs_cc_t * archive_kek_cc ,
gcs_bit_string_t archive_string

);

DESCRIPTION
The gcs_archive_cc function transforms the cryptographic context, subject_cc, into an archive
format as a bit string. The caller is responsible for storing the key, transformed by this function,
in the archive. The caller must possess the GCS_C_KEY_USAGE GCS authority, or the call will
fail.

If successful, the function returns [GCS_S_COMPLETE] or [GCS_S_COMPLETE_QCF].

The arguments for gcs_archive_cc ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

subject_cc (opaque,in)
The subject to be archived.

archive_kek_cc (optional,opaque,in/out)
The CC containing the key encryption key to be used in the archive process. If not defined,
the CSF uses the default archive_kek.

archive_string (out)
The subject_cc is returned as an encrypted bit string for archive. The format of the bit string
is defined by the implementation. The GCSAPI specification does not support the
interoperability of archive formats between different implementations of the CSF.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but archive_kek_cc has quasi compromised flag set in key context.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_ARCHIVE_CC]
The archive_kek_cc supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The subject_cc supplied is not valid.

124 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_archive_cc( )

[GCS_S_INCORRECT_KEY_STATE]
The key_state in the archive_kek_cc supplied does not permit the requested action.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority or some other authorisation failure
has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 125



gcs_combine_key( ) Advanced CSF Application Program Interface (API)

NAME
gcs_combine_key — combine key parts

SYNOPSIS
OM_uint32 gcs_combine_key(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
OM_uint32 key_part_flag ,
gcs_bit_string_t key_part ,
gcs_cc_t * kek_cc ,
gcs_cc_t * combine_cc

);

DESCRIPTION
This function is called recursively to build up a key in combine_cc The key part is in importable
form protected by the kek_cc. combine_cc includes a split_protocol_type to indicate how the input
bit string is encoded. The function returns the cc with the combined key values in the combine_cc
supplied. The caller must possess the GCS_C_SELECTION GCS authority or the call will fail.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_combine_key( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

key_part_flag (in)
The key_part_flag specifies whether this is the first, subsequent last, or only call to the
function. It may take on the values GCS_FIRST, GCS_MIDDLE, GCS_LAST or GCS_ONLY.

key_part (in)
The part of the key to be combined with the key part contained in combine_cc.

kek_cc (opaque,in/out)
The key encrypting key under which key_part is protected.

combine_cc (opaque,in/out)
A cryptographic context supplied and into which the combined key parts are placed. The
split protocol type is specified by combine_cc.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_CONTINUE_NEEDED]
Another call to the function is required.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_SUBJECT_CC]
The combine_CC supplied is not valid.

126 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_combine_key( )

[GCS_S_KEK_CC]
The kek_cc supplied is not valid.

[GCS_S_KEY_PART]
The key part supplied is not valid.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority or some other authorisation failure
has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 127



gcs_create_ac( ) Advanced CSF Application Program Interface (API)

NAME
gcs_create_ac — creates an empty algorithm context

SYNOPSIS
OM_uint32 gcs_create_ac(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_ac_t * ac

);

DESCRIPTION
This function creates an empty algorithm context which is returned in ac allocating memory as
necessary.

Once created, its fields can be set, using gcs_set_ac and then supplied as a parameter to
gcs_create_cc to create a cryptographic context.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_create_ac( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this context are required to support uses
such as continuous I&A and authorisation.

ac (out)
The algorithm context created.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

ERRORS
No other errors are defined.

128 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_create_cc( )

NAME
gcs_create_cc — create a cryptographic context

SYNOPSIS
OM_uint32 gcs_create_cc(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_boolean_t cc_confidentiality ,
gcs_ac_t * non_keyed_ac ,
gcs_ac_t * keyed_ac ,
gcs_kc_t * kc ,
gcs_cc_t * output_CC

);

DESCRIPTION
This function creates a cryptographic context from the input parameters supplied. The caller
specifies the specific algorithm contexts, and key context required.

The cryptographic context created is returned in output_CC

The cryptographic context created is used in subsequent calls to the CSF. The caller must
possess the GCS_C_KEY_USAGE GCS authority or the call will fail.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_create_cc( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

cc_confidentiality (optional,in)
The flag specifying if the key used to eventually populate the cc is to be protected for
confidentiality.

non_keyed_ac (in)
A non-keyed algorithm context previously created by gcs_create_ac and set by gcs_set_ac.
NULL may be specified.

keyed_ac (in)
A keyed algorithm context previously created by gcs_create_ac and set by gcs_set_ac. NULL
may be specified

kc (in)
An unkeyed key context previously created by gcs_create_kc and set with key context
parameters by gcs_set_kc. NULL may be specified.

output_CC (opaque,out)
The resulting unkeyed cryptographic context.

Generic Cryptographic Service API (GCS-API) Base 129



gcs_create_cc( ) Advanced CSF Application Program Interface (API)

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_AC]
An algorithm context supplied is not valid.

[GCS_S_BAD_CONFIDENTIALITY_FLAG]
The confidentiality flag may be invalid.

[GCS_S_BAD_KC]
The key context supplied is not valid.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority or some other authorisation failure
has occurred.

ERRORS
No other errors are defined.

130 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_create_kc( )

NAME
gcs_create_kc — create an empty key context

SYNOPSIS
OM_uint32 gcs_create_kc(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_kc_t * kc

);

DESCRIPTION
This function creates an empty key context which is returned in kc, allocating memory as
necessary.

The key context may be set by gcs_set_kc and supplied as a parameter to gcs_create_cc to create a
cryptographic context.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_create_kc( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this context are required for to support uses
such as continuous I&A and authorisation.

kc (opaque,out)
The key context created.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 131



gcs_delete_ac( ) Advanced CSF Application Program Interface (API)

NAME
gcs_delete_ac — deletes an algorithm context
OM_uint32 gcs_delete_ac(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_ac_t * ac

);

DESCRIPTION
This function deletes the caller’s copy of the algorithm context referred to as ac, frees the
memory allocated to it and sets the ac pointer to GCS_NULL.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_delete_ac( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this context are required to support uses
such as continuous I&A and authorisation.

ac (in/out)
The algorithm context to be deleted.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_AC]
The algorithm context supplied is not a valid algorithm context.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

ERRORS
No other errors are defined.

132 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_delete_kc( )

NAME
gcs_delete_kc — deletes a key context

SYNOPSIS
OM_uint32 gcs_delete_kc(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_kc_t * kc

);

DESCRIPTION
This function deletes the caller’s copy of the key context input as kc, frees its memory allocation
and sets the kc pointer to GCS_NULL.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_delete_kc( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this context are required to support uses
such as continuous I&A and authorisation.

kc (in/out)
The key context to be deleted.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_KC]
The key context supplied is not a valid key context.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 133



gcs_generate_key_pattern( ) Advanced CSF Application Program Interface (API)

NAME
gcs_generate_key_pattern — generate a test pattern for the supplied key

SYNOPSIS
OM_uint32 gcs_generate_key_pattern(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
OM_uint32 TPG_id ,
gcs_cc_t * subject_cc ,
gcs_buffer_t test_string

);

DESCRIPTION
The gcs_generate_key_pattern function generates a key test pattern for the key contained within or
referenced by subject_cc. The test pattern is used to verify the compatibility of keys derived by
different implementations using the same input parameters. See Appendix E on page 221. The
test pattern is output in test_string. The caller must possess the GCS_C_SELECTION GCS
authority.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_generate_key_pattern( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

TPG_id (in)
The test pattern generator identifier.

subject_cc (opaque,in/out)
The cryptographic context containing the key for which a key pattern is to be generated.

test_string (out)
A character string containing the key pattern generated by the function.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The cryptographic context subject_cc supplied is not valid.

[GCS_S_BAD_TPG]
The test pattern generator identifier supplied is not valid.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

134 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_generate_key_pattern( )

[GCS_S_AUTHORISATION_FAILURE]
An authorisation failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 135



gcs_get_cc( ) Advanced CSF Application Program Interface (API)

NAME
gcs_get_cc — get fields from the cryptographic context

SYNOPSIS
OM_uint32 gcs_get_cc(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
OM_uint32 subject_container ,
OM_uint32 parameter_name ,
gcs_cc_t * subject_cc ,
OM_uint32 * parameter_integer_value ,
gcs_bit_string_t parameter_bit_string_value

);

DESCRIPTION
This function uses the subject_container field to determine from which of the cc_header,
non_keyed_ac, keyed_ac or key_context sets of data a value is to be retrieved. It gets the value of
the cryptographic context field specified by the parameter_name and places the value in
parameter_integer_value or parameter_bit_string_value as appropriate.

Calls to gcs_get_cc only get a single field of the crypto context subject_cc per call. Any algorithm
specific parameters returned are defined by BER encoding as specified in the standard that
defines the object ID. This function does not return the key value. If successful, the function
returns [GCS_S_COMPLETE] or [GCS_S_COMPLETE_QCF].

The arguments for gcs_get_cc( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this context are required to support uses
such as continuous I&A and authorisation.

subject_container (in)
A field specifying the data structure to be queried. It may be either the crypto context header,
the non-keyed algorithm context, the keyed algorithm context, or the key context.

parameter_name (in)
The name of the field in the context specified by input_container to get.

subject_cc (opaque,in/out)
The cryptographic context to be queried.

parameter_integer_value (out)
The integer value of parameter_name retrieved by the call. This parameter is set to NULL if a
bit_string value is returned.

parameter_bit_string_value (out)
The bit_string value of parameter_name retrieved by the call. This parameter is set to NULL if
an integer value is returned.

136 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_get_cc( )

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but quasi-compromise flag is set in key context of subject_cc.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The subject cc supplied is not valid.

[GCS_S_BAD_SUBJECT_CONTAINER]
The subject container supplied is not valid.

[GCS_S_BAD_PARAMETER]
The parameter name supplied is not valid.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority, or some other authorisation failure
has occurred. For example, the caller has requested a modification to a field that the caller is
not authorised to set.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 137



gcs_get_key_validity( ) Advanced CSF Application Program Interface (API)

NAME
gcs_get_key_validity — get key validity information.

SYNOPSIS
OM_uint32 gcs_get_key_validity

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_cc_t * subject_cc ,
OM_uint32 validity_format ,
OM_uint32 * activation_value ,
OM_uint32 * quiescent_value ,
OM_uint32 * deactivation_value

);

DESCRIPTION
This function returns the key validity values held within the key context of the subject_cc.

If successful, the function returns [GCS_S_COMPLETE] or [GCS_S_COMPLETE_QCF].

The arguments for gcs_get_key_validity ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this context are required to support uses
such as continuous I&A and authorisation.

subject_cc (opaque,in/out)
The cryptographic context supplied for which the key validity is required.

validity_format (in)
Specified whether the quiescent_value and the deactivation_value are set in terms of:

• GCS_C_TIME number of seconds from current time (an absolute time value may be
converted to a relative time by subtracting current time from it), or

• GCS_C_COUNT of cryptographic functions called (overwrite existing values.)

• GCS_C_BYTES, number of bytes of data processed by cryptographic function calls.

For a populated CC RELATIVE_TIME is relative to the current CSF time. For a template CC
RELATIVE_TIME is relative to the time of population with a key.

activation_value (out)
For a populated CC the number of seconds relative to current CSF time after which the key
state is to be set to GCS_ACTIVE. For a template CC the number of seconds relative to the
subsequent time of population of the CC after which the key state is to be set to
GCS_ACTIVE. GCS_C_NOW and GCS_C_INFINITE may be specified. This parameter
may only be input as a number of seconds.

quiescent_value (out)
The number of seconds, or the number of calls to cryptographic functions using subject_cc,
or the number of bytes processed by calls using subject_cc after which the key state is to be
set to GCS_QUIESCENT. GCS_C_NOW and GCS_C_INFINITE may be specified.

deactivation_value (out)
The number of seconds, or the number of calls to cryptographic functions using subject_cc,

138 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_get_key_validity( )

or the number of bytes processed by calls using subject_cc after which the key state is to be
set to GCS_DEACTIVATED. GCS_C_NOW and GCS_C_INFINITE may be specified.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but subject_cc has quasi compromised flag set in key context.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The cryptographic context supplied is not valid.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
An authorisation failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 139



gcs_load_public_key( ) Advanced CSF Application Program Interface (API)

NAME
gcs_load_public_key — load a clear public key or key part

SYNOPSIS
OM_uint32 gcs_load_public_key(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_cc_t * subject_cc ,
gcs_bit_string_t input_key_part ,
OM_uint32 key_part_type

);

DESCRIPTION

The gcs_load_public_key function loads a clear public key, or key part, into subject_cc.

A separate call to gcs_store_cc needs to be made if the key is to be retained within the CSF. The
caller must possess the GCS_C_KEY_USAGE GCS authority.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_load_public_key ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

subject_cc (opaque,in, out)
The template CC, or partially populated cryptographic context into which the key, or key
part, is to be loaded. The subject_CC includes the split protocol type indicating which
mechanism is to be used to combine key parts, if the key is loaded in parts. The function
returns the cryptographic context with key value updated as appropriate.

input_key_part (in)
The key part.

key_part_type (in)
This may be defined as GCS_FIRST, GCS_MIDDLE, GCS_LAST or GCS_ONLY.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The cryptographic context subject_cc supplied is not valid.

[GCS_S_BAD_PART]
The key part specified is not valid.

[GCS_S_INCORRECT_KEY_STATE]
The key state in the cc supplied does not permit the requested action.

140 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_load_public_key( )

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority or some other
authorisation failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 141



gcs_reduce_key_usage( ) Advanced CSF Application Program Interface (API)

NAME
gcs_reduce_key_usage — reduce usage of the cryptographic context

SYNOPSIS
OM_uint32 gcs_reduce_key_usage(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
OMuint32 key_usage ,
gcs_cc_t * subject_cc

);

DESCRIPTION
This function reduces the usage of the cryptographic context subject_cc supplied. The original
key_usage bit mask can be retrieved from subject_cc by a call to gcs_get_cc( ) and then modified
prior to being reinput to this function. The caller must possess the GCS_C_SELECTION GCS
authority.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_reduce_key_usage( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

key_usage (in)
The usage to which the key is put. It is used to modify the cryptographic context.

subject_cc (opaque,in/out)
The cryptographic context supplied. It is returned with a modified key usage.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CC]
The session_context supplied is not valid.

[GCS_S_BAD_SUBJECT_CONTEXT]
The cryptographic context supplied is not valid.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_BAD_KEY_USAGE]
The key usage supplied is not valid.

[GCS_S_AUTHORISATION_FAILURE]
An authorisation failure has occurred.

ERRORS
No other errors are defined.

142 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_reduce_key_usage( )

Generic Cryptographic Service API (GCS-API) Base 143



gcs_restore_cc( ) Advanced CSF Application Program Interface (API)

NAME
gcs_restore_cc — transform an archive bit string to a cryptographic context

SYNOPSIS
OM_uint32 gcs_restore_cc(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_cc_t * archive_kek ,
gcs_bit_string_t archive_string ,
gcs_cc_t * restored_cc

);

DESCRIPTION
The gcs_restore_cc function transforms the input archive string, archive_string, decrypted from an
archive format bit string to an operational format cryptographic context, restored_cc. The caller
must possess the GCS_C_SELECTION or GCS_C_KEY_USAGE GCS authority, or the call will
fail.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_restore_cc( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

archive_kek (optional, opaque, in/out)
The CC that contains the key encryption key to be used to process the input bit string. If not
defined, the CSF uses the default archive-kek.

archive_string (in)
The bit string in archive format to be restored using archive_kek.

restored_cc (opaque,out)
The cryptographic context represented by the input archive string is output in an
operational format.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but archive_kek has quasi compromised flag set in key context.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_ARCHIVE_CC]
The archive key encryption key supplied is not valid.

[GCS_S_BAD_ARCHIVE_STRING]
The archive string supplied could not be used to restore a CC.

144 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_restore_cc( )

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority or some other authorisation failure
has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 145



gcs_revoke_key( ) Advanced CSF Application Program Interface (API)

NAME
gcs_revoke_key — change the key state to revoked

SYNOPSIS
OM_uint32 gcs_revoke_key(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_cc_t * subject_cc ,
gcs_buffer_t reason

);

DESCRIPTION
This function changes the key state in the cryptographic context supplied to REVOKED for the
reason for revocation supplied. It is used when a key is found to be compromised. The
cryptographic context for which the key is revoked is disabled. After this call the time of
revocation in the key context is set to the time of invocation of this function and the reason for
revocation is set to the string given in reason. Note that the reason is restricted to a maximum
length of 80 characters.

The caller must possess either or both of GCS_C_SELECTION or GCS_KEY_USAGE authorities.
If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_revoke_key ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

subject_cc (opaque,in, out)
The cryptographic context for which the key is to be revoked.

reason (in)
The reason why the key is to be revoked which is constrained to be less than 80 characters in
length.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The cryptographic context reference subject_cc supplied does not refer to a valid
cryptographic context.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_BAD_REASON]
The reason given for revocation is not valid.

146 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_revoke_key( )

[GCS_S_INCORRECT_KEY_STATE]
The key state is already revoked.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority or some other
authorisation failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 147



gcs_set_ac( ) Advanced CSF Application Program Interface (API)

NAME
gcs_set_ac — set fields in the algorithm context

SYNOPSIS
OM_uint32 gcs_set_ac(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
OM_uint32 parameter_name ,
OM_uint32 parameter_integer_value ,
gcs_bit_string_t parameter_bit_string_value ,
gcs_ac_t * ac

);

DESCRIPTION
This function sets or overwrites the algorithm context field specified by the parameter_name to
the value specified in parameter_integer_value or parameter_bit_string_value.

Algorithm specific parameters need to be defined by BER encoding as specified in the standard
that defines the object ID.

Several calls to gcs_set_ac are required to set each field of the algorithm context. If successful, the
function returns [GCS_S_COMPLETE].

The arguments for gcs_set_ac( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
An implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

parameter_name (in)
The name of the field in the algorithm context to set. All algorithm specific parameters
must be supplied in a single call to gcs_set_ac( ). These are interpreted in the context of the
algorithm identity which must have been set by a previous call to gcs_set_ac( ).

parameter_integer_value (in)
The integer value to which the parameter_name is to be set. This parameter is set to NULL if a
bit string value is to be set.

parameter_bit_string_value (in)
The bit-string to which the parameter_name is to be set. This parameter is set to NULL if an
integer value is to be set.

ac (opaque,in/out)
The algorithm context to be populated.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

148 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_set_ac( )

[GCS_S_BAD_AC]
The algorithm context supplied is not valid.

[GCS_S_BAD_PARAMETER]
The parameter name supplied is not valid.

[GCS_S_BAD_PARAM_VALUE]
The parameter value supplied is not consistent with the parameter value supplied or with
the existing contents of the algorithm context.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 149



gcs_set_cc( ) Advanced CSF Application Program Interface (API)

NAME
gcs_set_cc — set fields in the cryptographic context

SYNOPSIS
OM_uint32 gcs_set_cc(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
OM_uint32 subject_container ,
OM_uint32 parameter_name ,
OM_uint32 parameter_integer_value ,
gcs_bit_string_t parameter_bit_string_value ,
gcs_cc_t * subject_cc

);

DESCRIPTION
This function uses the subject_container field to determine which of the cc_header, non_keyed_ac,
keyed_ac or key_context sets of data is to be modified. It sets the cryptographic context field
specified by the parameter_name to the value specified in parameter_integer_value or
parameter_bit_string_value.

Calls to gcs_set_cc only set a single field of the crypto context subject_cc. Algorithm specific
parameters and key specific parameters need to be defined by BER encoding as specified in the
standard that defines the object ID.

The caller must possess the GCS_C_KEY_USAGE GCS authority. If successful, the function
returns [GCS_S_COMPLETE] or [GCS_S_COMPLETE_QCF].

The arguments for gcs_set_cc( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this context are required to support uses
such as continuous I&A and authorisation.

subject_container (in)
A field specifying the data structure to populate. It may be either the crypto context header,
the non-keyed algorithm context, the keyed algorithm context, or the key context.

parameter_name (in)
The name of the field in the context specified by input_container to set.

parameter_integer_value (in)
The integer value to which the parameter_name is to be set. This parameter is set to NULL if
a bit string value is to be set.

parameter_bit_string_value (in)
The bit_string to which the parameter_name is to be set. This parameter is set to NULL if an
integer value is to be set.

subject_cc (opaque,in/out)
The cryptographic context to be modified.

150 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_set_cc( )

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but quasi-compromise flag is set in key context of subject_cc.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The subject cc supplied is not valid.

[GCS_S_BAD_SUBJECT_CONTAINER]
The subject container supplied is not valid.

[GCS_S_BAD_PARAMETER]
The parameter name supplied is not valid.

[GCS_S_BAD_PARAM_VALUE]
The parameter value supplied is not consistent with the parameter name supplied.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority or some other authorisation failure
has occurred. For example, the caller has requested a modification to a field that the caller is
not authorised to set.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 151



gcs_set_kc( ) Advanced CSF Application Program Interface (API)

NAME
gcs_set_kc — set fields in the key context

SYNOPSIS
OM_uint32 gcs_set_kc(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
OM_uint32 parameter_name ,
OM_uint32 parameter_integer_value ,
gcs_bit_string_t parameter_bit_string_value ,
gcs_kc_t * kc

);

DESCRIPTION
This function sets the key context field specified by the parameter_name to the value specified in
parameter_integer_value or parameter_bit_string_value.

Calls to gcs_set_kc only set a single field of the key context per call. Key specific parameters need
to be defined by BER encoding as specified in the standard that defines the algorithm.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_set_kc( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this context are required to support uses
such as continuous I&A and authorisation.

parameter_name (in)
The name of the field in the key context to set. All key specific parameters must be supplied
in a single call to gcs_set_kc( ) in a BER encoded format.

parameter_integer_value (in)
The integer value to which the parameter_name is to be set. If the parameter value required is
a bit_string then this parameter is to be set to NULL.

parameter_bit_string_value (in)
The bit_string value to which the parameter_name is to be set. If the parameter value required
is an integer_value then this parameter is to be set to NULL.

kc (in/out)
The key context to be populated.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_KC]
The key context supplied is not valid.

152 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_set_kc( )

[GCS_S_BAD_PARAMETER]
The parameter name supplied is not valid.

[GCS_S_BAD_PARAM_VALUE]
The parameter value supplied is not consistent with the parameter value supplied.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 153



gcs_set_key_validity( ) Advanced CSF Application Program Interface (API)

NAME
gcs_set_key_validity — set the key validity information.

SYNOPSIS
OM_uint32 gcs_set_key_validity

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
OM_uint32 validity_format ,
OM_uint32 activation_value ,
OM_uint32 quiescent_value ,
OM_uint32 deactivation_value ,
gcs_cc_t * subject_cc

);

DESCRIPTION
The gcs_set_key_validity ( ) function changes the key validity values held within the key context of
the subject_cc. The caller requires the GCS_C_KEY_USAGE GCS authority.

This call may be used to modify the key validity policy of a locally referenced CC including
reactivating a deactivated key, for example when restored from an archive for the purposes of
verifying a signature on some historic information.

The key validity values of a stored CC are not modified unless the caller possesses an exclusive
access lock to the CC and makes a subsequent call to gcs_store_cc( ) to update the stored CC and
release the exclusive access lock.

If successful, the function returns [GCS_S_COMPLETE] or [GCS_S_COMPLETE_QCF].

The arguments for gcs_set_key_validity ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this context are required to support uses
such as continuous I&A and authorisation.

validity_format (in)
Specifies whether the quiescent_value and the deactivation_value supplied are in terms of:

• GCS_C_TIME number of seconds from current time (an absolute time value may be
converted to a relative time by subtracting current time from it), or

• GCS_C_COUNT of cryptographic functions called (overwrite existing values.)

• GCS_C_BYTES, number of bytes of data processed by cryptographic function calls.

For a populated CC RELATIVE_TIME is relative to the current CSF time. For a template CC
RELATIVE_TIME is relative to the time of population with a key.

activation_value (in)
For a populated CC the number of seconds relative to current CSF time after which the key
state is to be set to GCS_ACTIVE. For a template CC the number of seconds relative to the
subsequent time of population of the CC after which the key state is to be set to
GCS_ACTIVE. GCS_C_NOW and GCS_C_INFINITE may be specified. This parameter
may only be input as a number of seconds.

154 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_set_key_validity( )

quiescent_value (in)
The number of seconds, or the number of calls to cryptographic functions using subject_cc,
or the number of bytes processed by calls using subject_cc after which the key state is to be
set to GCS_QUIESCENT. GCS_C_NOW and GCS_C_INFINITE may be specified.

deactivation_value (in)
The number of seconds, or the number of calls to cryptographic functions using subject_cc,
or the number of bytes processed by calls using subject_cc after which the key state is to be
set to GCS_DEACTIVATED. GCS_C_NOW and GCS_C_INFINITE may be specified.

subject_cc (opaque,in/out)
The cryptographic context supplied is returned with the key validity values changed as
specified in key_state. If appropriate the key state will also have been changed if the new
key validity values are inconsistent with the initial key state when the call is made.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but subject_cc has quasi compromised flag set in key context.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_PARAMETER]
The time offset or one or more validity periods is invalid, or both.

[GCS_S_BAD_SUBJECT_CC]
The cryptographic context supplied is not valid.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required authority or some other authorisation failure has
occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 155



gcs_verify_key_pattern( ) Advanced CSF Application Program Interface (API)

NAME
gcs_verify_key_pattern — verify the supplied key against a key test pattern string

SYNOPSIS
OM_uint32 gcs_verify_key_pattern(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_buffer_t test_string ,
OM_uint32 * TPG_id ,
gcs_cc_t * subject_cc

);

DESCRIPTION

The gcs_verify_key_pattern function verifies a key contained within or referenced by subject_CC
against the specified key test pattern, test_string. The caller must possess the
GCS_C_SELECTION GCS authority.

If the key pattern is verified, the function returns [GCS_S_COMPLETE] or
[GCS_S_COMPLETE_QCF].

The arguments for gcs_verify_key_pattern ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

test_string (in)
A character string containing the key pattern generated by a previous call to
gcs_generate_key_pattern.

TPG_id (in)
The test pattern generator identifier to be used.

subject_cc (opaque,in/out)
The cryptographic context containing the key for which a key pattern is to be verified.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but subject_cc has quasi compromised flag set in key context.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The cryptographic context supplied is not valid.

[GCS_S_BAD_TPG]
The test pattern generator identifier supplied is not valid.

156 X/Open Preliminary Specification (1996)



Advanced CSF Application Program Interface (API) gcs_verify_key_pattern( )

[GCS_S_NO_VERIFY]
The key pattern verification has failed.

[GCS_S_INCORRECT_KEY_STATE]
The key state in the CC supplied does not permit the requested action.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required GCS authority or some other authorisation failure
has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 157



Advanced CSF Application Program Interface (API)

158 X/Open Preliminary Specification (1996)



Chapter 11

Advanced CSF System Programming Interfaces (SPIs)

This chapter presents those functions that are restricted to use by Cryptographic Policy
Enforcing callers.

Generic Cryptographic Service API (GCS-API) Base 159



gcs_decipher_key( ) Advanced CSF System Programming Interfaces (SPIs)

NAME
gcs_decipher_key — decipher a key

SYNOPSIS
OM_uint32 gcs_decipher_key(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_cc_t * kek_cc ,
gcs_buffer_t enciphered_key ,
gcs_buffer_t IV ,
gcs_buffer_t clear_key

);

DESCRIPTION

The gcs_decipher_key function is used to transform an enciphered key and key related data input
as enciphered_key and output as clear_key using the algorithm and key specified by kek_cc. It is
distinguished from gcs_decipher_data by constraints on the size of data that may be deciphered,
or the speed at which it may be deciphered.

The gcs_decipher_key function is provided to support existing key distribution implementations.
It is only needed if the caller cannot achieve key transport or key agreement using gcs_export_key
and gcs_import_key or gcs_export_key_agreement and gcs_import_key_agreement.

Applications may need to prefix keys with confounders according to the appropriate protocol.

It is up to the caller to protect clear keys. The caller must possess the
GCS_C_KEY_PROTECTION and the GCS_C_ENCIPHER_DECIPHER authorities.

If successful, the function returns [GCS_S_COMPLETE] or [GCS_S_COMPLETE_QCF].

The arguments for gcs_decipher_key( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contenst of this session context are required to support
uses such as continuous I&A and authorisation.

kek_cc (opaque,in, out)
The cryptographic context containing the key encryption key algorithms and other key
information needed to decipher the key.

enciphered_key (in)
The enciphered key to be deciphered.

IV (in)
The optional initialisation vector.

clear_key (out)
The key is deciphered and returned in clear form in clear_key.

160 X/Open Preliminary Specification (1996)



Advanced CSF System Programming Interfaces (SPIs) gcs_decipher_key( )

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but kek_cc has the quasi compromised flag set in its key context.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_KEK_CC]
The kek_cc cryptographic context supplied is not valid.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required authority or some other
authorisation failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 161



gcs_derive_clear_key( ) Advanced CSF System Programming Interfaces (SPIs)

NAME
gcs_derive_clear_key — derive a secret key from the key string supplied

SYNOPSIS
OM_uint32 gcs_derive_clear_key(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_bit_string_t key_string ,
gcs_cc_t * kgk_cc ,
gcs_cc_t * subject_cc

);

DESCRIPTION

The gcs_derive_clear_key function derives a secret key from key_string.

The algorithm, key size, key usage and other parameters associated with the cryptographic
context are specified in subject_cc.

The derived key will be unprotected. If the context confidentiality flag is not set to "NO", the call
will fail. The key is output within the key context part of subject_cc.

Note that the caller is responsible for the protection of clear keys.

The caller must possess the GCS_C_KEY_PROTECTION authority. If successful, the function
returns [GCS_S_COMPLETE].

The arguments for gcs_derive_clear_key ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

key_string (in)
The key string used as the basis for deriving a secret key.

kgk_cc (optional, in, out)
When supplied this references the cryptographic context used to derive a key using the
derivation mechanism specified in the algorithm context of kgk_cc.

subject_cc (opaque,in/out)
The subject_cc cryptographic context supplied is populated to include the secret key
derived by gcs_derive_clear_key and returned.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_KGK_CC]
The key generating key cryptographic context supplied is not valid.

162 X/Open Preliminary Specification (1996)



Advanced CSF System Programming Interfaces (SPIs) gcs_derive_clear_key( )

[GCS_S_BAD_SUBJECT_CC]
The cryptographic context subject_cc supplied is not valid.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required authority or some other
authorisation failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 163



gcs_encipher_key( ) Advanced CSF System Programming Interfaces (SPIs)

NAME
gcs_encipher_key — encipher a key

SYNOPSIS
OM_uint32 gcs_encipher_key(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_cc_t * kek_cc ,
gcs_buffer_t key_bit_string ,
gcs_buffer_t IV ,
gcs_buffer_t enciphered_key

);

DESCRIPTION

The gcs_encipher_key function is used to transform a clear key and key related data input in
key_bit_string to an enciphered_key using the algorithm and key specified by kek_cc. It is
distinguished from gcs_encipher_data by constraints on the size of data that may be enciphered,
or the speed at which it may be enciphered.

The gcs_encipher_key function is provided to support existing key distribution implementations.
It is only needed if the caller cannot invoke suitable key transport or key agreement services
using gcs_export_key and gcs_import_key or gcs_export_key_agreement and
gcs_import_key_agreement. That is to say, they are not supported export mechanisms of the CSF.

Applications may need to prefix keys with confounders according to the appropriate protocol.
The caller must possess the GCS_C_KEY_PROTECTION and the
GCS_C_ENCIPHER_DECIPHER authority.

If successful, the function returns [GCS_S_COMPLETE] or [GCS_S_COMPLETE_QCF].

The arguments for gcs_encipher_key( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contenst of this session context are required to support
uses such as continuous I&A and authorisation.

kek_cc (opaque,in, out)
The cryptographic context containing the key encryption key algorithms and other key
information needed to encipher the key.

key_bit_string (in)
The clear key bit string to be enciphered.

IV (in)
The optional initialisation vector.

enciphered_key (out)
The enciphered key is returned.

164 X/Open Preliminary Specification (1996)



Advanced CSF System Programming Interfaces (SPIs) gcs_encipher_key( )

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but kek_cc has quasi compromised flag set in its key context.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_KEK_CC]
The kek_cc cryptographic context supplied is not valid.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required authority or some other
authorisation failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 165



gcs_generate_clear_key( ) Advanced CSF System Programming Interfaces (SPIs)

NAME
gcs_generate_clear_key — generate a secret key or a public and private key pair in the clear

SYNOPSIS
OM_uint32 gcs_generate_clear_key(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_cc_t * subject_cc

);

DESCRIPTION
The gcs_generate_clear_key function generates a secret key or public and private key pair in the
clear and outputs them in subject_cc. The algorithm, key size, key usage, and other associated
parameters are specified by the input subject_cc.

Note that the caller is responsible for the protection of clear keys.

The call will fail if the context confidentiality flag in the subject_cc is not set to "NO". The caller
must possess the GCS_C_KEY_PROTECTION authority.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_generate_clear_key ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

subject_cc (opaque,in/out)
The cryptographic context defining algorithm, key size, and key usage. The cryptographic
context is returned populated with the clear key.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The subject_cc cryptographic context supplied is not valid.

[GCS_S_RNG_NOT_INITIALISED]
The CSF random number generator has not been initialised.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required authority or some other
authorisation failure has occurred.

166 X/Open Preliminary Specification (1996)



Advanced CSF System Programming Interfaces (SPIs) gcs_generate_clear_key( )

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 167



gcs_load_key( ) Advanced CSF System Programming Interfaces (SPIs)

NAME
gcs_load_key — load a clear key or key part

SYNOPSIS
OM_uint32 gcs_load_key(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_cc_t * subject_cc ,
gcs_bit_string_t input_key_part ,
OM_uint32 key_part_type

);

DESCRIPTION

The gcs_load_key function loads a clear key, or key part, into subject_cc.

A separate call to gcs_store_cc needs to be made if the key is to be retained within the CSF. The
caller must possess the GCS_C_KEY_PROTECTION authority.

If successful, the function returns [GCS_S_COMPLETE].

The arguments for gcs_load_public_key ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

subject_cc (opaque,in, out)
The unpopulated, or partially populated cryptographic context into which the key, or key
part, is to be loaded. The function returns the cryptographic context with key value
updated as appropriate.

input_key_part (in)
The key part.

key_part_type (in)
This may be defined as GCS_FIRST, GCS_MIDDLE, GCS_LAST or GCS_ONLY.

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The cryptographic context subject_cc supplied is not valid.

[GCS_S_BAD_PART]
The key part specified is not valid.

[GCS_S_INCORRECT_KEY_STATE]
The key state in the cc supplied does not permit the requested action.

168 X/Open Preliminary Specification (1996)



Advanced CSF System Programming Interfaces (SPIs) gcs_load_key( )

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required authority or some other
authorisation failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 169



gcs_split_clear_key( ) Advanced CSF System Programming Interfaces (SPIs)

NAME
gcs_split_clear_key — split a clear key into several parts

SYNOPSIS
OM_uint32 gcs_split_key(

OM_uint32 * minor_status ,
gcs_session_context_t * session_context ,
gcs_cc_t * subject_cc ,
OM_uint32 n,
OM_uint32 k,
OM_uint32 split_protocol_type ,
gcs_bit_string_set_t output_key

);

DESCRIPTION

The gcs_split_clear_key function splits the input key contained in subject_cc into a number of parts
specified in n and returns the split key in output_key. The maximum number of parts needed to
reconstitute the key, k, and the maximum number of parts, n, are defined by the implementation.
n >= k.

Note that the caller is responsible for the protection of the key parts. The caller must possess the
GCS_C_KEY_PROTECTION authority

If successful, the function returns [GCS_S_COMPLETE] or [GCS_S_COMPLETE_QCF].

The arguments for gcs_split_clear_key ( ) are:

minor_status (out)
An implementation specific return status that provides additional information when
[GCS_S_FAILURE] is returned by the function.

session_context (opaque,in)
The implementation specific parameter that defines the context of the current session
between the caller and the CSF. The contents of this session context are required to support
uses such as continuous I&A and authorisation.

subject_cc (opaque,in)
The cryptographic context containing the key to be split.

n (in)
The number of parts into which the key is to be split. The implementation defines the
maximum size of n.

k (in)
The number of parts needed to reconstitute the key. This is defined by the implementation,
where n >=k.

split_protocol_type (in)
The split protocol type. For example GCS_C_XOR and GCS_C_SHAMIR.

output_key (out)
The key output as a set of n strings.

170 X/Open Preliminary Specification (1996)



Advanced CSF System Programming Interfaces (SPIs) gcs_split_clear_key( )

RETURN VALUE
The following GCS status codes shall be returned:

[GCS_S_COMPLETE]
Successful completion.

[GCS_S_COMPLETE_QCF]
Successful completion but subject_cc has the quasi compromised flag set in the key context.

[GCS_S_BAD_SESSION_CONTEXT]
The session context supplied is not valid.

[GCS_S_BAD_SUBJECT_CC]
The cryptographic context subject_cc supplied is not valid.

[GCS_S_BAD_SIZE]
The number of parts specified exceeds the implementation defined maximum.

[GCS_S_BAD_PROTOCOL]
The split protocol specified is not valid.

[GCS_S_INCORRECT_KEY_STATE]
The key state in the cc supplied does not permit the requested action.

[GCS_S_FAILURE]
An implementation specific error or failure has occurred.

[GCS_S_AUTHORISATION_FAILURE]
The caller does not possess the required authority or some other
authorisation failure has occurred.

ERRORS
No other errors are defined.

Generic Cryptographic Service API (GCS-API) Base 171



Advanced CSF System Programming Interfaces (SPIs)

172 X/Open Preliminary Specification (1996)



Chapter 12

Conformance Statement

12.1 GCS-API (Base) Conformance
This section defines conformance criteria for implementations of the GCS-API, and also
mechanism-independent use of the GCS-API by applications.

The following GCS-API implementation conformance levels are defined:

• Basic GCS-API Minimal Implementation Conformance

All Basic GCS-API functions but excluding user data encipherment functions.

A minimally conforming implementation that supports multiple principals or separation of
CCs shall provide support for an administrator to configure default behaviour to limit access
to populated CCs to the principal or group of principals on whose behalf the CC has been
populated.

• Basic GCS-API Restricted User Data Encipherment Option.

User data encipherment is supported but using restricted strength algorithms.

• Basic GCS-API Unrestricted User Data Encipherment Option.

User data encipherment is supported using full strength algorithms.

• Advanced GCS-API Option

This includes the Advanced GCS-API functions excluding key test pattern and clear key
management functions.

• Advanced GCS-API Key Test Pattern Option

Support for key test pattern generation and verification is optional.

• Advanced GCS-API Clear Key Management Option

This provides additional support for CSF management applications.

An implementation is required to specify identities of supported algorithms and export
mechanisms. This should include the identity of standards (if any) in which they are defined. If
these are proprietary and not otherwise defined in a referencable document, then the algorithm
specific parameters and export mechanism protocols must be defined.

Generic Cryptographic Service API (GCS-API) Base 173



GCS-API (Base) Conformance Conformance Statement

12.1.1 GCS-API (Base) Minimal Implementation

All conforming GCS-API (Base) implementations shall support the following interfaces:

gcs_delete_key gcs_derive_key
gcs_export_key gcs_generate_check_value
gcs_generate_hash gcs_generate_key
gcs-generate_random_number gcs_get_csf_params
gcs_import_key gcs_initialise_session
gcs_key_agreement gcs_list_cc
gcs_release_buffer gcs_remove_cc
gcs_retrieve_cc gcs_store_cc
gcs_terminate_session gcs_verify_checkvalue
gcs_release_bit_string

12.1.2 GCS-API (Base) Restricted User Data Encipherment Option

All conforming implementations that support the Restricted User Data Encipherement Option
shall additionally support:

gcs_decipher_data gcs_decipher_verify
gcs_encipher_data gcs_protect_data

The conformance statement for an implementation shall state the restrictions to which these
functions are subject within an implementation.

12.1.3 GCS-API (Base) Unrestricted User Data Encipherment Option

All conforming implementations that support the Unrestricted User Data Encipherement Option
shall support:

gcs_decipher_data gcs_decipher_verify
gcs_encipher_data gcs_protect_data

These interfaces shall be unencumbered by any restrictions.

12.1.4 GCS-API (Base) Advanced Service Option

All conforming implementations that support the Advanced Service Option shall support the
following interfaces:

gcs_advance_key_state gcs_archive_cc
gcs_clone_cc gcs_combine_key
gcs_create_ac gcs_create_cc
gcs_create_kc gcs_delete_ac
gcs_delete_kc gcs_get_cc
gcs_get_key_validity gcs_load_public_key
gcs_reduce_key_usage gcs_restore_cc
gcs_revoke_key gcs_set_ac
gcs_set_cc gcs_set_kc
gcs_set_key_validity

174 X/Open Preliminary Specification (1996)



Conformance Statement GCS-API (Base) Conformance

12.1.5 GCS-API (Base) Key Test Pattern Option

All conforming implementations that support the Test Pattern Option shall support:

gcs_generate_key_pattern gcs_verify_key_pattern

12.1.6 GCS-API (Base) Clear key Management Option

All conforming implementations that support the Clear Key Management Option shall support:

gcs_decipher_key gcs_derive_clear_key
gcs_encipher_key gcs_generate_clear_key
gcs_load_key gcs_split_clear_key

Generic Cryptographic Service API (GCS-API) Base 175



Conformance Statement

176 X/Open Preliminary Specification (1996)



Appendix A

CSF Implementation Considerations

A.1 Legislative Constraints
Chapter 5 has introduced the concept of legislative constraints on the export or use of products
containing cryptographic functions. This appendix describes some of the implementation
implications of complying with such legislation.

Figure A-1 illustrates alternative placements for the legislative enforcing functions.

Cryptographic Support Facility

CSF Interface

Callers of Cryptographic Support Facility

Filter Enforced ITAR Controls

Algorithm Enforced ITAR Controls

Filtered CSF Interface

Alternative
Placements

Figure A-1  Legislative Controls within Cryptographic Support Facility

Legislative enforcing functions may be incorporated in the CSF or within callers of the CSF. If
implemented within the CSF, the CSF need not provide the restricted services to callers at all, or
it may impose limits on their use. If implemented within the caller of the CSF services, the CSF
provides all cryptographic services to its callers, which are then trusted only to utilise the
restricted services in an authorised manner. A combination of these alternatives may be
deployed, dependent upon one of the following:

• a run-time determination of the caller’s authorisation to use the restricted services

• a build-time constraint by restricting the availability of the libraries providing the interfaces
to the restricted CSF services to developers of trusted applications.

Some consequences of these requirements are that:

• Conformance to a CSF specification must be compatible with achieving conformance to
known domestic and export controls, although different CSF interface profiles may apply for
different regulatory environments. For example, a confidentiality service could be an
optional service that would not be supported by some conforming implementations.

Generic Cryptographic Service API (GCS-API) Base 177



Legislative Constraints CSF Implementation Considerations

• The operational CSF services identified in the document are split into:

— general cryptographic services

— protected key management services

— clear key management services

• CSF management services are not within the scope of the document.

• For those CSF services identified to be legislative sensitive it should be possible to achieve
compliance with export or usage rules through internal CSF controls (for example, by
binding usage controls into algorithms), or through controls at the CSF interface layer (for
example, a legislative filter as shown in Figure A-1 on page 177).

• Depending on the policy enforced, the CSF might require its callers to have been
authenticated before they can access its services. A cryptographic product can therefore
include authentication and authorisation services, as well as the management and
operational cryptographic services.

• Once deposited beneath the CSF API, keys should never be referenced in the clear by
unauthorised callers. Above the CSF interface operational keys are protected by enciphering
with the CSF Master-Key. Authorised callers are trusted key distribution services that
require to combine an operational key in the clear with other related information to create a
mechanism-specific token. Also note that subversion of CSF access controls is more
important for services related to key management than those related to applications.

178 X/Open Preliminary Specification (1996)



CSF Implementation Considerations Technical Constraints

A.2 Technical Constraints

Algorithms

(For example, DES, RSA)

Key Management Support Services

Clear Key Cache

Services

Algorithm

Independent

Algorithm

Callers of Cryptographic Support Facility:

CSF

SMIB

CSF Managment

Applications

CSF Interfaces

Algorithm Specific Interfaces

Dependent
CSF

Management

Services

Protected Key Management Clear Key Management

Mechanism 1 Mechanism n.. Mechanism 1 Mechanism n..

Cryptographic

General

Figure A-2  Cryptographic Support Facility

A logical structuring of a CSF is illustrated in Figure A-2. The CSF is implemented over
interfaces to different algorithms and different implementations of those algorithms.

As cryptographic interfaces are often implemented in hardware, the CSF interfaces and
constructs should not require implementations to maintain internal state information across API
invocations.

The CSF services could be achieved by means of stateless transactions in which state
information is provided as parameters (either by value or by reference) of the current API
invocation, and not based on information retained from previous API invocations.

The CSF SMIB may be implemented within the unit that implements the CSF or may be
implemented externally to the unit provided it is suitably protected.

In the case when a CSF supports the concurrent retrieval of a populated CC, stored by the CSF,
for concurrent use by multiple callers then the usage statistics must be accumulated over all uses
of the key within the stored CC. This may result in the triggering of a key state change arising
from one callers use of the CC that results in a subsequent failure of a call by another caller using

Generic Cryptographic Service API (GCS-API) Base 179



Technical Constraints CSF Implementation Considerations

a copy of the same stored CC.

180 X/Open Preliminary Specification (1996)



CSF Implementation Considerations Threat Model

A.3 Threat Model

A.3.1 Types of threats

1. Outsider/Insider
Is the adversary an outsider or is the adversary a valid user of the system in some way.
Thwarting insider threats is more difficult than thwarting outsider threats. Some outsider
threats are passive, such as a wiretap monitoring the data, while others are active, such as
use of a LAN sniffer to attempt to interject or modify data. In general insiders are assumed
to have all the capabilities of outsiders and in addition insiders may attempt to manipulate
an interface, such as a user interface, an application programming interface (API), a system
programming interface (SPI), or a microcode or hardware interface.

2. Compute Power/Storage Capability
The capability of the adversary to do large amounts of computation and/or store large
amounts of data is usually translated into monetary terms, with a trend of decreasing cost
of computation and storage. For example, total key exhaustion of a 56-bit DES key
requires 2 or 3 blocks of known plaintext/ciphertext pairs and the ability to test 2**56 keys
(over 72 quadrillion trials).

3. Read/Write/Modify/Delay/Replay/Insert/Delete Data

• Must the data remain a secret?
If yes, the data must be scrambled when potentially exposed. The sender enciphers the
data and the receiver deciphers it.

• Must the information remain authentic, that is, as the sender sent it?
If yes, data must have an integrity checksum when potentially exposed. The sender
calculates the checksum and the receiver verifies it.

• Must the receiver be able to detect stale (non-current) data?
If yes, a time variant parameter containing one or more of the following must be used:

1. Timestamp appended by sender and verified by receiver. This implies
synchronised clocks exist on the sender and receiver.

2. Unpredictable nonce generated by receiver and sent to sender, then appended to
message by sender and verified by receiver.

• Must the receiver be able to detect when data has be duplicated, inserted, or deleted?
If yes, a time variant parameter containing one or more of the following must be used:

1. Monotonically increasing sequence number appended by sender and verified by
receiver.

2. 2) Unpredictable nonce generated by receiver and sent to sender, then appended
to message by sender and verified by receiver.

• Recover key from Ciphertext Only/Known Plaintext/Chosen Plaintext
The assumptions regarding what an adversary knows regarding enciphered messages.
If the adversary only knows the ciphertext on the link, this is called a ciphertext only
attack and is the hardest to perform. If the adversary knows some plaintext and
matching ciphertext, this is called a known plaintext attack and this knowledge can
often be used to develop an improved attack.

Historical experience shows that systems should be designed to resist known plaintext
attacks to recover the key. If the adversary can determine the ciphertext for arbitrary

Generic Cryptographic Service API (GCS-API) Base 181



Threat Model CSF Implementation Considerations

plaintext, this is known as a chosen plaintext attack. This is one of the most powerful
assumptions to make regarding the capabilities of an adversary and is often not a
realistic threat. However, it is very desirable design a system to resist a chosen
plaintext attack to recover the key, if possible.

• Recover plaintext using a dictionary
If known plaintext exists, a dictionary matching the plaintext to the ciphertext may be
built, which may allow recovery of all or part of an enciphered message, without
necessarily recovering the key. This includes the possibility of an outsider building a
dictionary for a personal key or an insider for a system key.

• Requirements on cryptographic keys
It is important to remember that the requirements for cryptographic keys are varied. A
secret symmetric key or a private asymmetric key must have its secret values remain
secret, its key values maintained with integrity, and the system must allow usage of the
key only to an authorised entity. To support the non-repudiation of digitally signed
messages, it must be possible for an authorised caller to use a private asymmetric key
but it must not be possible for the caller to determine the value of the key, otherwise
the caller could disclose the value to another party and then claim that the other party
digitally signed the message.

A public asymmetric key has no values that must remain secret but it key values must
be maintained with integrity and information regarding the owner of the associated
private asymmetric key must be coupled to the key, for example, by a certificate.

• Random number generator/key generator
A pseudorandom number generator (PRNG) is often used to generate symmetric keys
and used for input to the generation of asymmetric keys. The quality of the PRNG
must be such that an adversary cannot succeed in breaking the PRNG with less cost
than to break a key.

• Physical security
One goal is to deny access to an adversary any area where data is in its "raw"
unprocessed form. This can be as simple as locking a door or as extreme as rendering a
device unusable on detection of tampering, as is specified in FIPS 140-1.

One way to measure appropriate physical security is to consider the value of what is
being protected, as measures appropriate for small value data will likely be
inappropriate for large value data.

• Standard security methods Access controls on cryptographic services and keys and
well as audit of usage of same with alerts for suspicious activity are appropriate.

182 X/Open Preliminary Specification (1996)



Appendix B

Example Template CCs

This appendix presents a set of example Template CCs for a number of common algorithms and
uses and example sets of Template CCs that may be assembled as a means of packaging
cryptographic algorithms.

B.1 Example Sets of Template CCs

B.1.1 FULL RSA

Functionality Template CC

Encryption RSA-RC2-CBC
RSA-RC4

Signature RSA-SIGN-SHA-1
RSA-VERIFY-SHA-1
RSA-SIGN-MD5
RSA-VERIFY-MD5

Hash MD5-HASH
SHA-1-HASH

Key Exchange RSA-EXPORT
RSA-IMPORT

B.1.2 SIGNATURE RSA

Functionality Template CC

Signature RSA-SIGN-SHA-1
RSA-VERIFY-SHA-1
RSA-SIGN-MD5
RSA-VERIFY-MD5

Hash MD5-HASH
SHA-1-HASH

Key Exchange RSA-EXPORT
RSA-IMPORT

Generic Cryptographic Service API (GCS-API) Base 183



Example Sets of Template CCs Example Template CCs

B.1.3 FORTEZZA

Functionality Template CC

Encryption SKIPJACK

Signature DSS-SIGN
DSS-VERIFY

Hash SHA-1-HASH

Key Exchange KEA-EXPORT
KSA-IMPORT

B.1.4 DSS

Functionality Template CC

Signature DSS-SIGN
DSD-VERIFY

Hash SHA-1-HASH

B.1.5 MS-MAIL

Functionality Template CC

Encryption CAST

Signature RSA-SIGN-MD5
RSA-VERIFY-MD5

Hash MD5-HASH

Key Exchange RSA-EXPORT
RSA-IMPORT

B.1.6 Default SSL

184 X/Open Preliminary Specification (1996)



Example Template CCs Example Sets of Template CCs

Functionality Template CC

Encryption DES-CBC

Signature RSA-SIGN-SHA-1
RSA-VERIFY-SHA-1

Hash SHA-1-HASH

Key Exchange RSA-EXPORT
RSA-IMPORT

B.2 Example Template CCs

B.2.1 DES-CBC

Field : Value

CC_Header
Context_Type : Keyed
Context_Confidentiality_Flag : Yes

Keyed_Algorithm_Context
Algorithm_ID : GCS_A_DES
Mode_of_operation : GCS_M_CBC
Short_Block_Policy : X9.23
Algorithm_Specific_Parameters : Key length

: Feedback Length
: IV Parameter Length

Key_Context
Key_Usage : GCS_C_ENCIPHER_DATA

: GCS_C_DECIPHER_DATA
Permitted_Export_Mechanisms : Site and purpose specific values
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : -
Split_Protocol_Type : -
Key_Part_Number : -
Number_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

Generic Cryptographic Service API (GCS-API) Base 185



Example Template CCs Example Template CCs

B.2.2 RSA-RC2-CBC

Field : Value

CC_Header
Context_Type : KEYED
Context_Confidentiality_Flag : YES

Keyed_Algorithm_Context
Algorithm_ID : RSA-RC2
Mode_of_operation :
Short_Block_Policy : GCS_SBP_PKCS#1
Algorithm_Specific_Parameters : Feedback length

: Block length

Key_Context
Key_Usage : GCS_C_ENCIPHER_DATA

: GCS_C_DECIPHER_DATA
Permitted_Export_Mechanisms : Site and purpose specific values
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : -
Split_Protocol_Type : -
Key_Part_Number : -
Number_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

186 X/Open Preliminary Specification (1996)



Example Template CCs Example Template CCs

B.2.3 RSA-RC4

Field : Value

CC_Header
Context_Type : KEYED
Context_Confidentiality_Flag : YES

Keyed_Algorithm_Context
Algorithm_ID : RSA-RC4
Mode_of_operation : GCS_M_NONE
Short_Block_Policy : PKCS#1
Algorithm_Specific_Parameters : Feedback length

: Block length

Key_Context
Key_Usage : GCS_C_ENCIPHER_DATA

: GCS_C_DECIPHER_DATA
Permitted_Export_Mechanisms : Site and purpose specific values
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : -
Split_Protocol_Type : -
Key_Part_Number : -
Number_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

Generic Cryptographic Service API (GCS-API) Base 187



Example Template CCs Example Template CCs

B.2.4 SKIPJACK

Field : Value

CC_Header
Context_Type : KEYED
Context_Confidentiality_Flag : YES

Keyed_Algorithm_Context
Algorithm_ID : SKIPJACK
Mode_of_operation : GCS_M_CBC
Short_Block_Policy : SKIPJACK
Algorithm_Specific_Parameters : Key Length

: Feedback Length
: IV Length

Key_Context
Key_Usage : GCS_C_ENCIPHER_DATA

: GCS_C_DECIPHER_DATA
Permitted_Export_Mechanisms : GCS_FORTEZZA_KEA
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : -
Split_Protocol_Type : -
Key_Part_Number : -
Number_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

188 X/Open Preliminary Specification (1996)



Example Template CCs Example Template CCs

B.2.5 CAST

Field : Value

CC_Header
Context_Type : KEYED
Context_Confidentiality_Flag : YES

Keyed_Algorithm_Context
Algorithm_ID : CAST
Mode_of_operation : GCS_M_CBC
Short_Block_Policy :
Algorithm_Specific_Parameters : Key Length

: Feedback Length
: IV Length

Key_Context
Key_Usage : GCS_C_ENCIPHER_DATA

: GCS_C_DECIPHER_DATA
Permitted_Export_Mechanisms : Site and purpose specific values
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : -
Split_Protocol_Type : -
Key_Part_Number : -
Number_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

Generic Cryptographic Service API (GCS-API) Base 189



Example Template CCs Example Template CCs

B.2.6 RSA-SIGN-SHA-1

Field : Value

CC_Header
Context_Type : BOTH
Context_Confidentiality_Flag : YES

Keyed_Algorithm_Context
Algorithm_ID : RSA
Mode_of_operation : -
Short_Block_Policy : PKCS#1-Format1
Algorithm_Specific_Parameters : Modulus Size

: Exponent Value

Non_Keyed_Algorithm_Context
Algorithm_ID : SHA-1
Mode_of_Operation : -
Short_Block_Policy : -
Algorithm_Specific_Parameters : -

Key_Context
Key_Usage : GCS_C_GENERATE_CV
Permitted_Export_Mechanisms : GCS_NO_EXPORT
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : -
Split_Protocol_Type : -
Key_Part_Number : -
Number_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

190 X/Open Preliminary Specification (1996)



Example Template CCs Example Template CCs

B.2.7 RSA-VERIFY-SHA-1

Field : Value

CC_Header
Context_Type : BOTH
Context_Confidentiality_Flag : YES

Keyed_Algorithm_Context
Algorithm_ID : RSA
Mode_of_operation : -
Short_Block_Policy : PKCS#1-Format1
Algorithm_Specific_Parameters : Modulus size

: Exponent value

Non_Keyed_Algorithm_Context
Algorithm_ID : SHA-1
Mode_of_Operation : -
Short_Block_Policy : -
Algorithm_Specific_Parameters : -

Key_Context
Key_Usage : GCS_C_VERIFY_CV
Permitted_Export_Mechanisms : GCS_NO_EXPORT
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : -
Split_Protocol_Type : -
Key_Part_Number : -
Number_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

Generic Cryptographic Service API (GCS-API) Base 191



Example Template CCs Example Template CCs

B.2.8 RSA-SIGN-MD5

Field : Value

CC_Header
Context_Type : BOTH
Context_Confidentiality_Flag : YES

Keyed_Algorithm_Context
Algorithm_ID : RSA
Mode_of_operation : -
Short_Block_Policy : PKCS#1-Format1
Algorithm_Specific_Parameters : Modulus size

: Exponent value

Non_Keyed_Algorithm_Context
Algorithm_ID : MD5
Mode_of_Operation : -
Short_Block_Policy : -
Algorithm_Specific_Parameters : -

Key_Context
Key_Usage : GCS_C_GENERATE_CV
Permitted_Export_Mechanisms : GCS_NO_EXPORT
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : -
Split_Protocol_Type : -
Key_Part_Number : -
Number_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

192 X/Open Preliminary Specification (1996)



Example Template CCs Example Template CCs

B.2.9 RSA-VERIFY-MD5

Field : Value

CC_Header
Context_Type : BOTH
Context_Confidentiality_Flag : YES

Keyed_Algorithm_Context
Algorithm_ID : RSA
Mode_of_operation : -
Short_Block_Policy : PKCS#1-Format1
Algorithm_Specific_Parameters : Modulus size

: Exponent value

Non_Keyed_Algorithm_Context
Algorithm_ID : MD5
Mode_of_Operation : -
Short_Block_Policy : -
Algorithm_Specific_Parameters : -

Key_Context
Key_Usage : GCS_C_VERIFY_CV
Permitted_Export_Mechanisms : GCS_NO_EXPORT
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : -
Split_Protocol_Type : -
Key_Part_Number : -
Number_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

Generic Cryptographic Service API (GCS-API) Base 193



Example Template CCs Example Template CCs

B.2.10 RSA-EXPORT

Field : Value

CC_Header
Context_Type : KEYED
Context_Confidentiality_Flag : YES

Keyed_Algorithm_Context
Algorithm_ID : RSA
Mode_of_operation : -
Short_Block_Policy : PKCS#1-Format1
Algorithm_Specific_Parameters : Modulus size

: Exponent value

Key_Context
Key_Usage : GCS_C_EXPORT_KEY
Permitted_Export_Mechanisms : GCS_NO_EXPORT
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : -
Split_Protocol_Type : -
Key_Part_Number : -
Number_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

194 X/Open Preliminary Specification (1996)



Example Template CCs Example Template CCs

B.2.11 RSA-IMPORT

Field : Value

CC_Header
Context_Type : KEYED
Context_Confidentiality_Flag : YES

Keyed_Algorithm_Context
Algorithm_ID : RSA
Mode_of_operation : -
Short_Block_Policy : PKCS#1-Format1
Algorithm_Specific_Parameters : Modulus size

: Exponent length

Key_Context
Key_Usage : GCS_C_IMPORT_KEY
Permitted_Export_Mechanisms : GCS_NO_EXPORT
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : -
Split_Protocol_Type : -
Key_Part_Number : -
Number_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

Generic Cryptographic Service API (GCS-API) Base 195



Example Template CCs Example Template CCs

B.2.12 DSS-SIGN

Field : Value

CC_Header
Context_Type : Both
Context_Confidentiality_Flag : YES

Keyed_Algorithm_Context
Algorithm_ID : DSS
Mode_of_operation : -
Short_Block_Policy : -
Algorithm_Specific_Parameters : Size of p

: Values of p, q and g

Non_Keyed_Algorithm_Context
Algorithm_ID : SHA-1
Mode_of_Operation : -
Short_Block_Policy : -
Algorithm_Specific_Parameters : -

Key_Context
Key_Usage : GCS_C_GENERATE_CV
Permitted_Export_Mechanisms : GCS_NO_EXPORT
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : NULL
Split_Protocol_Type : -
Key_Part_Number : -
Number_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

196 X/Open Preliminary Specification (1996)



Example Template CCs Example Template CCs

B.2.13 DSS-VERIFY

Field : Value

CC_Header
Context_Type : Both
Context_Confidentiality_Flag : Yes

Keyed_Algorithm_Context
Algorithm_ID : DSS
Mode_of_operation : -
Short_Block_Policy : -
Algorithm_Specific_Parameters : Size of p

: Values of p, q and g

Non_Keyed_Algorithm_Context
Algorithm_ID : SHA-1
Mode_of_Operation : -
Short_Block_Policy : -
Algorithm_Specific_Parameters : -

Key_Context
Key_Usage : GCS_GC_VERIFY_CV
Permitted_Export_Mechanisms : GCS_NO_EXPORT
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : -
Split_Protocol_Type : -
Key_Part_Number : -
Number_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

Generic Cryptographic Service API (GCS-API) Base 197



Example Template CCs Example Template CCs

B.2.14 KEA-EXPORT

Field : Value

CC_Header
Context_Type : KEYED
Context_Confidentiality_Flag : YES

Keyed_Algorithm_Context
Algorithm_ID : KEA
Mode_of_operation : -
Short_Block_Policy : -
Algorithm_Specific_Parameters : Size of p

: Values of p. q and g

Key_Context
Key_Usage : GCS_C_EXPORT
Permitted_Export_Mechanisms : GCS_NO_EXPORT
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : -
Split_Protocol_Type : -
Key_Part_Number : -
Number_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

198 X/Open Preliminary Specification (1996)



Example Template CCs Example Template CCs

B.2.15 KEA-IMPORT

Field : Value

CC_Header
Context_Type : KEYED
Context_Confidentiality_Flag : YES

Keyed_Algorithm_Context
Algorithm_ID : KEA
Mode_of_operation : -
Short_Block_Policy : -
Algorithm_Specific_Parameters : Size of p

: Values of p, q and g

Key_Context
Key_Usage : GCS_C_IMPORT
Permitted_Export_Mechanisms : GCS_NO_EXPORT
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : -
Split_Protocol_Type : -
Key_Part_Number : -
Number_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

Generic Cryptographic Service API (GCS-API) Base 199



Example Template CCs Example Template CCs

B.2.16 DES-X9.17

Field : Value

CC_Header
Context_Type : KEYED
Context_Confidentiality_Flag : YES

Keyed_Algorithm_Context
Algorithm_ID : DES
Mode_of_operation : GCS_M_ECB
Short_Block_Policy : GCS_SBP_NONE
Algorithm_Specific_Parameters : -

Key_Context
Key_Usage : GCS_C_EXPORT_KEY

: GCS_C_IMPORT_KEY
: GCS_C_COMBINE_KEY

Permitted_Export_Mechanisms : Site and purpose specific values
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : GCS_SPLIT
Split_Protocol_Type : -
Key_Part_Number : -
Number_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : Receive_Count =1

: Send_count = 1
: My_Node = site specific
: Your_node = site specific

Key_Value : -

200 X/Open Preliminary Specification (1996)



Example Template CCs Example Template CCs

B.2.17 DES-MAC

Field : Value

CC_Header
Context_Type : KEYED
Context_Confidentiality_Flag : YES

Keyed_Algorithm_Context
Algorithm_ID : DES
Mode_of_operation : GCS_M_DES_MAC
Short_Block_Policy : GCS_SBP_DES_MAC
Algorithm_Specific_Parameters : -

Key_Context
Key_Usage : GCS_C_GENERATE_CV

: GCS_C_VERIFY_CV
: GCS_C_COMBINE_CC

Permitted_Export_Mechanisms : Site and purpose specific values
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : -
Split_Protocol_Type : -
Key_Part_Number : -
Number_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

Generic Cryptographic Service API (GCS-API) Base 201



Example Template CCs Example Template CCs

B.2.18 DIFFIE-HELLMAN-EXPORT

Field : Value

CC_Header
Context_Type : KEYED
Context_Confidentiality_Flag : YES

Keyed_Algorithm_Context
Algorithm_ID : DH
Mode_of_operation : -
Short_Block_Policy : -
Algorithm_Specific_Parameters : Size of p

: Values of p, q and g

Key_Context
Key_Usage : GCS_C_EXPORT_KEY
Permitted_Export_Mechanisms : GCS_NO_EXPORT
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : -
Split_Protocol_Type : -
Key_Part_Number : -
Number_of_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

202 X/Open Preliminary Specification (1996)



Example Template CCs Example Template CCs

B.2.19 DIFFIE-HELLMAN-IMPORT

Field : Value

CC_Header
Context_Type : KEYED
Context_Confidentiality_Flag : YES

Keyed_Algorithm_Context
Algorithm_ID : DH
Mode_of_operation : -
Short_Block_Policy : -
Algorithm_Specific_Parameters : Size of p

: Values of p, q and g

Key_Context
Key_Usage : GCS_C_IMPORT
Permitted_Export_Mechanisms : GCS_NO_EXPORT
Key_State : -
Time_of_Revocation : -
Reason_for_Revocation : -
Key_Flag : -
Split_Protocol_Type : -
Key_Part_Number : -
Number_of_Key_Parts : -
Key_Validity : Site Specific Values
Initialisation_Vector (IV) : -
Key_Specific_Parameters : -
Key_Value : -

Generic Cryptographic Service API (GCS-API) Base 203



Appendix C

Example Walkthroughs

C.1 ANSI X9.17 Key Distribution Protocol
Scenario: Party A wishes to send a MAC KD and an

encryption key KD to Party B. The keys will be notarized.
The minimum conformant implementation for a point
to point environment requires the exchange of two
Cryptographic Service Messages (CSMs): a Key Service
Message (KSM) to transfer the encrypted KDs, and a
Response Service Message (RSM) to acknowledge receipt of
the KD. Message authentication is provided by the
MAC field of each CSM.

Notes:
A. Error handling is not addressed.
B. The applications construct the formatted CSMs.
C. Notation:

1. KDm denotes a data MAC, KDe denotes a data
encrypting key, KK denotes a key-encrypting-key.
KK1 and KK2 represent the first and second parts of a split KK.

2. Assuming a and b are pointer arguments, the
notation a => b indicates that b is set to the
same address as a. a <= b indicates the reverse operation.

Process Summary

A. Each party initializes their system by loading a manually
installed KK that is shared with the other party.

1. Each party creates two CCs to contain the split components
of the manually installed KK.

2. Each party populates the two CCs with the respective
split components of KK, and combines them to form a
third CC containing the final KK value.

3. X9.17 requires each party to maintain two counters
associated with the KK: an origination count and a
reception count. These counters are set to 1 when
the manually distributed KK is loaded. There is also
the (optional) setting of the size of the reception
window, as some distribution methods do not guarantee the
order of delivery is the same as the order of initiation
of transmission. For simplicity, the window is set to 1.

B. Party A generates a data MAC key KDm and a data encrypting key KDe
and sends them to Party B in an X9.17 Key Service Message (KSM):

204 X/Open Preliminary Specification (1996)



Example Walkthroughs ANSI X9.17 Key Distribution Protocol

1. Create/Retrieve a CC and populate it with the KDm.
2. Create/Retrieve a CC and populate it with the KDe.
3. Create/Retrieve a CC and combine KDm and KDe to form

the CSM MAC key.
4. Export KDm, sealed by the shared KK.
5. Export KDe, sealed by the shared KK.
6. Increment the origination count associated with KK.
7. Construct a partial KSM ASCII string containing KDn and KDe.

E.g.: (MCL/KSM RCV/PartyB ORG/PartyA KD/[Key Value]
EDK/[Key Activation Date] CTP/1

8. Generate a MAC on the partial KSM using the CSM MAC key.
9. Complete the KSM ASCII string by appending the MAC field.

10. Transmit the completed KSM to Party B.

C. Party B receives and verifies the KSM:

1. Verify the counter field in the KSM with the reception count
in the KK. As the window size is 1, they must be equal.

2. Create/Retrieve a CC for the KDm.
3. Create/Retrieve a CC for the KDe.
4. Create/Retrieve a CC for the CSM MAC key.
5. Import KDm using the shared KK.
6. Import KDe using the shared KK.
7. Combine KDm and KDe to form the CSM MAC key.
8. Verify the MAC on the KSM using the CSM MAC key.
9. Increment the reception counter associated with KK.

D. Party B generates an X9.17 Response Service Message (RSM) and
sends it to Party A:

1. Construct a partial RSM. E.g., (MCL/RSM RCV/PartyA ORG/PartyB...
2. Generate a MAC on the partial RSM using the CSM MAC key.
3. Delete the CC for the CSM MAC key.
4. Form the complete RSM by appending the MAC to the partial RSM.
6. Send the complete RSM to Party A.

E. Party A receives and verifies the RSM:

1. Extract the MAC field from the received RSM.
2. Verify the MAC on the partial RSM using the CSM MAC key.
3. Delete the CC for the CSM MAC key.

F. Party A and Party B now share KDm and KDe.

========================================================================

Pseudocode example:
Note that not all parameters are listed.

A. Each party initializes their system by loading a manually
installed KK that is shared with the other party.

Generic Cryptographic Service API (GCS-API) Base 205



ANSI X9.17 Key Distribution Protocol Example Walkthroughs

1. Each party creates two CCs to contain the split components
of the manually installed KK.

gcs_create_ac ( ac => AC_KK1 );

gcs_set_ac ( ac <= AC_KK1 );
/* One call is made to gcs_set_ac for each of the parameter
name/value pairs in the following table: */
parameter_name parameter_value
-------------- ---------------
ALGORITHM_ID DES
ALGORITHM_CLASS_ID SYMMETRIC
MODE_OF_OPERATION DES_CBC
SHORT_BLOCK_POLICY X9.23

gcs_create_kc ( kc => KC_KK1 );
gcs_set_kc ( kc <= KC_KK1 );
/* One call is made to this function for each of the parameter
name/value pairs in the following table: */
parameter_name parameter_value
-------------- ---------------
KEY_USAGE GCS_C_EXPORT_KEY
KEY_USAGE GCS_C_IMPORT_KEY
KEY_USAGE GCS_C_COMBINE_CC
KEY_FLAG GCS_SPLIT
KEY_LIFETIME GCS_INFINITE
The BER encoding value of RECEIVE_COUNT, SEND_COUNT, MY_NODE and
YOUR_NODE.

gcs_create_cc ( keyed_ac <= AC_KK1,
kc => KC_KK1,
output_CC => CC_KK1 );

The same process is repeated substituting KK2 for KK1.

/****************************************************************
2. Each party populates the two CCs with the respective

split components of KK, and combines them to form a
third CC containing the final KK value.

3. X9.17 requires each party to maintain two counters
associated with the KK: an origination count and a
reception count. These counters are set to 1 when
the manually distributed KK is loaded. There is also
the (optional) setting of the size of the reception
window, but this is set to 1.

****************************************************************/

gcs_load_key ( subject_cc <= CC_KK1,
input_key_part = KK1,
key_part_type = GCS_FIRST );

gcs_load_key ( subject_cc <= CC_KK2,

206 X/Open Preliminary Specification (1996)



Example Walkthroughs ANSI X9.17 Key Distribution Protocol

input_key_part = KK2,
key_part_type = GCS_LAST );

gcs_combine_cc ( cc_list <= CC_KK1 CC_KK2,
skeleton_cc => CC_KK );

gcs_delete_cc ( subject_cc <= CC_KK1 );
gcs_delete_cc ( subject_cc <= CC_KK2 );

Party B also does the same processes for KK1 and KK2, except that
MY_NODE = PartyB and YOUR_NODE = PartyA.

/****************************************************************
B. Party A generates a data MAC key KDm and a data encrypting key KDe

and sends them to Party B in an X9.17 Key Service Message (KSM):

1. Create/Retrieve a CC and populate it with the KDm.
****************************************************************/

gcs_create_ac ( ac => AC_KDm );

gcs_set_ac ( ac <= AC_KDm );
/* One call is made to this function for each of the parameter
name/value pairs in the following table: */
parameter_name parameter_value
-------------- ---------------
ALGORITHM_ID DES
ALGORITHM_CLASS_ID SYMMETRIC
MODE_OF_OPERATION DES-MAC
SHORT_BLOCK_POLICY DES-MAC

gcs_create_kc ( kc => KC_KDm );

gcs_set_kc ( kc <= KC_KDm );
/* One call is made to this function for each of the parameter
name/value pairs in the following table: */
parameter_name parameter_value
-------------- ---------------
KEY_USAGE GCS_C_GENERATE_CV
KEY_USAGE GCS_C_VERIFY_CV
KEY_USAGE GCS_C_COMBINE_CC
KEY_FLAG GCS_EXPORTABLE
KEY_LIFETIME GCS_INFINITE

gcs_create_cc ( keyed_ac <= AC_KDm,
kc <= KC_KDm,
output_cc => CC_KDm );

gcs_generate_key ( subject_cc <= CC_KDm );

/* 2. Create/Retrieve a CC and populate it with the KDe. */

Generic Cryptographic Service API (GCS-API) Base 207



ANSI X9.17 Key Distribution Protocol Example Walkthroughs

gcs_create_ac ( ac => AC_KDe );

gcs_set_ac ( ac <= AC_KDe );
/* One call is made to this function for each of the parameter
name/value pairs in the following table: */
parameter_name parameter_value
-------------- ---------------
ALGORITHM_ID DES
ALGORITHM_CLASS_ID SYMMETRIC
MODE_OF_OPERATION DES_CBC
SHORT_BLOCK_POLICY X9.23
ALG_SPEC_PARMS IV_REQUIRED

gcs_create_kc ( kc => KC_KDe );

gcs_set_kc ( kc <= KC_KDe );
/* One call is made to this function for each of the parameter
name/value pairs in the following table: */
parameter_name parameter_value
-------------- ---------------
KEY_USAGE GCS_C_ENCIPHER
KEY_USAGE GCS_C_DECIPHER
KEY_USAGE GCS_C_COMBINE_CC
KEY_FLAG GCS_EXPORTABLE
KEY_LIFETIME GCS_INFINITE

gcs_create_cc ( keyed_ac <= AC_KDe,
kc <= KC_KDe,
output_cc => CC_KDe );

gcs_generate_key ( subject_cc <= CC_KDe );

/* Create a CC and combine KDm and KDe to form the CSM MAC key. */
gcs_create_ac ( ac => AC_KDcm );

gcs_set_ac ( ac <= AC_KDcm );
/* One call is made to this function for each of the parameter
name/value pairs in the following table: */
parameter_name parameter_value
-------------- ---------------
ALGORITHM_ID DES
ALGORITHM_CLASS_ID SYMMETRIC
MODE_OF_OPERATION DES-MAC
SHORT_BLOCK_POLICY DES-MAC

gcs_create_kc ( kc => KC_KDcm );

gcs_set_kc ( kc <= KC_KDcm );
/* One call is made to this function for each of the parameter
name/value pairs in the following table: */
parameter_name parameter_value
-------------- ---------------

208 X/Open Preliminary Specification (1996)



Example Walkthroughs ANSI X9.17 Key Distribution Protocol

KEY_USAGE GCS_C_GENERATE_CV
KEY_USAGE GCS_C_VERIFY_CV
KEY_LIFETIME GCS_INFINITE

gcs_create_cc ( keyed_ac <= AC_KDcm,
kc <= KC_KDcm,
output_cc => CC_KDcm );

gcs_combine_cc ( subject_cc <= CC_KDm,
subject_cc <= CC_KDe,
target_cc => CC_KDcm );

/* 4. Export KDm, sealed by the shared KK. */

gcs_export_key ( subject_cc <= CC_KDm,
kek_cc <= CC_KK,
export_mech = KDm components of KSM );

/* 5. Export KDe, sealed by the shared KK. */

gcs_export_key ( subject_cc <= CC_KDe,
kek_cc <= CC_KK,
export_mech = GCS_X9.17_NOTARIZE,
partial_PDU = KDe components of KSM );

/* 6. Increment the origination count associated with KK. */

gcs_get_cc ( subject_cc <= CC_KK,
subject_container <= kc,
parameter_name = ORG_COUNT,
parameter_integer_value = ocount );

gcs_set_kc ( kc <= KC_KK,
parameter_name = ORG_COUNT,
parameter_integer_value = [ocount + 1] );

/* 7. Construct a partial KSM ASCII string containing KDn and KDe. */
/* E.g.: (MCL/KSM RCV/PartyB ORG/PartyA KD/[Key Value] */
/* EDK/[Key Activation Date] CTP/1 */
/* 8. Generate a MAC on the partial KSM using the CSM MAC key. */

gcs_generate_check_value ( cc <= CC_KD,
input_buffer = partial KSM,
chaining_flag = GCS_ONLY,
check_value => MAC );

/* 9. Complete the KSM ASCII string by appending the MAC field. */
/* 10. Transmit the completed KSM to Party B. */

/* C. Party B receives and verifies the KSM: */
/* 1. Verify the counter field in the KSM with the reception count */
/* in the KK. As the window size is 1, they must be equal. */

Generic Cryptographic Service API (GCS-API) Base 209



ANSI X9.17 Key Distribution Protocol Example Walkthroughs

gcs_get_cc ( subject_cc <= CC_KK,
subject_container <= kc,
parameter_name = RCV_COUNT,
parameter_integer_value = ocount );

/* 2. Create a CC for the KDm. */
/* 3. Create a CC for the KDe. */
/* 4. Create a CC for the KDcm. */

See above.

/* 5. Import KDm using the shared KK. */

gcs_import_key ( subject_cc <= CC_KDm,
kek_cc <= CC_KK,
export_mech = GCS_X9.17_NOTARIZE,
partial_PDU = KDm component from KSM );

/* 6. Import KDe using the shared KK. */

gcs_import_key ( subject_cc <= CC_KDe,
kek_cc <= CC_KK,
export_mech = GCS_X9.17_NOTARIZE,
partial_PDU = KDe component from KSM );

/* 7. Combine KDm and KDe to form the CSM MAC key KDcm. */

gcs_combine_cc ( subject_cc <= CC_KDm,
subject_cc <= CC_KDe,
target_cc => CC_KDcm );

/* 8. Verify the MAC on the KSM using the CSM MAC key. */

gcs_verify_check_value ( cc <= CC_KDcm,
input_buffer = partial KSM,
check_value = MAC from KSM,
chaining_flag = GCS_ONLY );

/* 9. Increment the reception counter associated with KK. */

gcs_get_cc ( subject_cc <= CC_KK,
subject_container = kc,
parameter_name = RCV_COUNT,
parameter_integer_value = rcount );

gcs_set_key ( kc <= KC_KD,
parameter_name = REC_COUNT,
parameter_integer_value = [rcount + 1] );

/* D. Party B generates an X9.17 Response Service Message (RSM) and */
/* sends it to Party A: */
/* */
/* 1. Construct a partial RSM: (MCL/RSM RCV/PartyA ORG/PartyB */

210 X/Open Preliminary Specification (1996)



Example Walkthroughs ANSI X9.17 Key Distribution Protocol

/* 2. Generate a MAC on the partial RSM using KDcm. */

gcs_generate_check_value ( cc <= CC_KDcm,
input_buffer = PARTIAL_RSM,
chaining_flag = GCS_ONLY,
check_value => RSM_MAC );

/* 3. Delete the CC for the CSM MAC key. */

gcs_delete_cc ( subject_cc <= CC_KDcm );

/* 4. Form the complete RSM by appending the MAC to partial RSM. */
/* 5. Send the complete RSM to Party A. */

/* E. Party A receives and verifies the RSM: */
/* 1. Extract the MAC field from the received RSM. */
/* 2. Verify the MAC on the partial RSM using the CSM MAC key. */

gcs_verify_check_value ( cc <= CC_KD,
input_buffer = PARTIAL_RSM,
check_value = RSM_MAC,
chaining_flag = GCS_ONLY );

/* 3. Delete the CC for the CSM MAC key. */

gcs_delete_cc ( subject_cc <= CC_KDcm );

/* F. Party A and Party B now share KDm and KDe. */

Generic Cryptographic Service API (GCS-API) Base 211



ANSI X9.17 Key Distribution Protocol Example Walkthroughs

C.2 Fortezza Public Key Exchange

This section provides a mapping of of the GCS-API public key exchange calls onto their Fortezza
counterparts

************************************************************************
P.S. function prototypes
************************************************************************

gcs_key_agreement(
OM_uint32 *minor_status,
gcs_session_context_t *session_context,
gcs_cc_t *caller_cc,
gcs_cc_t *other_cc,
gcs_bit_string_t *pdu_in,
gcs_bit_string_t *pdu_out,
gcs_cc_t *kak_cc);

************************************************************************
DESCRIPTION

************************************************************************

The following shows the GCS-API calls necessary to implement a key
exchange between an initiator and a recipient, using the Key Exchange
Algorithm as exists on the Fortezza card. Therefore, Fortezza is the
hardware cryptomodule that underlies this GCS example. Initiator
pseudocode is shown first, followed by recipient pseudocode. In each
case, the listing of GCS and Fortezza calls is shown before the
pseudocode, so one can eyeball the whole process in about a paragraph,
before expanding these calls with all their parameters.

The goal is to have initiator and recipient establish a session key,
(or MEK, a Message Encryption Key), to protect a direct-connected
session. This is done by each agreeing on a Token Encryption Key (TEK)
via the key exchange. Then the initiator encrypts the MEK with the TEK
and sends it to the recipient. The TEK is used only to protect the MEK
enroute to the recipient. The MEK is used to protect the rest of the
session. In KEA, random quantities must be exchanged between initiator
and recipient. Since this is a session application, it is assumed that
this exchange takes place as a first step in processing by the key
exchange function calls (gcs_export_key_agreement and
gcs_import_key_agreement).

Generally, the initiator is the "exporter" of the TEK, and the
recipient is the "importer". So the initiator performs the key
exchange using gcs_key_agreement, and prepares the MEK
for transmission to the recipient using gcs_export_key. The
recipient uses gcs_key_agreement and gcs_import_key in
doing the corresponding actions. The main difference between initiator
side processing and recipient side processing is that the recipient
does not need to compute the random session key.

212 X/Open Preliminary Specification (1996)



Example Walkthroughs Fortezza Public Key Exchange

For purposes of this example, it is assumed that templates of all
necessary cryptographic context (CC) data structures reside in the CC
library. Therefore, necessary CCs are "checked out" of the CC library,
and when appropriate, copies are made and populated for the application’s
use.

This pseudocode is meant to be an excerpt of GCS code. Therefore, only
calls directly affecting the key exchange are shown. This is true
for both the GCS calls and the Fortezza calls. The Fortezza calls that
the GCS-API calls use for implementation are shown after the GCS-API calls,
and are indented. To help keep straight whether parameters are inputs,
outputs, or both, the following key is used: "->" means input, "<-"
means output, and "<->" means input and output.

************************************************************************
INITIATOR SIDE

************************************************************************

************************************************************************
Initiator Side Call Mapping and Overview
************************************************************************

------------------------------------------------------------------------
Fortezza calls GCS-API calls
------------------------------------------------------------------------

CI_CheckPIN gcs_initialise_session
CI_SetPersonality

gcs_retrieve_cc (initiator’s private key CC)
gcs_retrieve_cc (recipient’s public key CC)
gcs_load_public_key (load recipient’s public key)
gcs_retrieve_cc (TEK CC)

CI_GenerateRa gcs_generate_random_number (initiator’s
random quantity)

<send initiator’s random to recipient>
<receive recipient’s random number>

CI_GenerateTEK gcs_export_key_agreement (form TEK)
gcs_retrieve_cc (MEK CC)

CI_GenerateMEK gcs_generate_key (generate random MEK)
CI_WrapKey gcs_export_key (wrap MEK by TEK)

<transmit TEK-wrapped MEK to recipient>
<use MEK to protect session>

************************************************************************
Initiator-side pseudocode
(Underlying Fortezza calls are interleaved, and are indented)
************************************************************************

/* Establish a session context */

Generic Cryptographic Service API (GCS-API) Base 213



Fortezza Public Key Exchange Example Walkthroughs

gcs_initialise_session
<- (minor_status,
<-> session_context,

-> initialise_parameters)

/* To log onto Fortezza card, must pass a PIN check. */
CI_CheckPIN

-> (PINType <- CI_USER_PIN, /* subject is USER, not SSO */
-> pPIN, /* pointer to PIN */

<- return value)

/* Do other Fortezza processing to determine the card slot that */
/* has the correct set of keys for this application. Put that */
/* value in variable "PersonalityIndex". This call affects which */
/* cryptographic contexts will be retrieved below for each side */
/* in the key agreement call. */
CI_SetPersonality

-> (CertificateIndex <- PersonalityIndex,
<- return value)

/* Retrieve the initiator’s private key CC. This is a case where the*/
/* CC is retrieved and directly used, rather than being copied and */
/* populated. This is because the initiator’s private key is long-term, */
/* and not used by anyone else. */
gcs_retrieve_cc

<- (minor_status,
-> session_context,
-> domain_id,
-> cc_name <- GCS_CC_NAME_FORTEZZA_KEA_PRIVATE,
-> cc_reference <- GCS_NULL,

<- retrieved_cc <- initiator_cc);

/* Retrieve a copy of a recipient’s public key CC, and copy it. */
gcs_retrieve_cc

<- (minor_status,
-> session_context,
-> domain_id,
-> cc_name <- GCS_CC_NAME_FORTEZZA_KEA_RECIP_PUBLIC,
-> cc_reference <- GCS_NULL,

<- retrieved_cc <- recipient_cc);

/* Assuming a bit string holding the recipient’s public key has been*/
/* obtained and placed into variable "recipient_public_key", load that*/
/* key into the recipient’s public key CC. */
gcs_load_public_key

<- (minor_status,
-> session_context,
-> subject_cc <- recipient_cc,
-> input_key_part <- recipient_public_key,
-> key_part_type <- GCS_ONLY);

/*

214 X/Open Preliminary Specification (1996)



Example Walkthroughs Fortezza Public Key Exchange

/* Retrieve a copy of a TEK CC */
gcs_retrieve_cc

<- (minor_status,
-> session_context,
-> domain_id,
-> cc_name <- GCS_CC_NAME_FORTEZZA_TEK,
-> cc_reference <- GCS_NULL,

<- retrieved_cc <- temp_cc);
gcs_generate_random_number

<- (minor_status,
-> session_context,
-> GCS_C_FORTEZZA_KEA_RANDOM_SIZE,
<- initRand);

/* Fortezza: Generate initiator’s random quantity. */
CI_GenerateRa

-> (none,
<- pRa <- initRand, return value)

/* Perform the key exchange. On this, the initiator’s side, the main*/
/* inputs are the initiator’s private key, and the recipient’s public*/
/* key. The result is the TEK, held in a CC. */
gcs_key_agreement /* form TEK */

<- (minor_status,
-> session_context,
-> caller_cc <- initiator_cc,
-> other_cc <- recipient_cc,
-> pdu_in <- recipRand,
<- pdu_out <- initRand,

<- kak_cc <- TEK_cc);

/* Fortezza: Perform initiator-side KEA key agreement algorithm. */
CI_GenerateTEK

-> (Flags <- CI_INITIATOR_FLAG, /* initiator side */
-> RegisterIndex <- TEKIndex, /* slot to put TEK */
-> Ra <- initRand, Rb <- recipRand, /* random quantities */
-> Size <- recipPubSize, pY <- recipPub,/* other’s public */

<- return value);

/* Retrieve a copy of an MEK CC. */
gcs_retrieve_cc

<- (minor_status,
-> session_context,
-> domain_id,
-> cc_name <- GCS_CC_NAME_FORTEZZA_MEK, /* assumed name of an MEK CC */
-> cc_reference <- GCS_NULL,

<- retrieved_cc <- MEK_cc);

/* Generate a random MEK and place in MEK_cc */
gcs_generate_key

Generic Cryptographic Service API (GCS-API) Base 215



Fortezza Public Key Exchange Example Walkthroughs

<- (minor_status,
-> session_context,

<-> kak_cc <- MEK_cc);

/* Fortezza: Generate a random MEK and place in a Fortezza slot */
CI_GenerateMEK

-> (RegisterIndex <- MEKIndex, /* assumed this is free slot */
-> Reserved,

<- return value);

/* Wrap (encrypt) MEK by TEK, and place in a CC */
gcs_export_key

<- (minor_status,
-> session_context,

<-> subject_cc <- MEK_cc,
<-> kek_cc <- TEK_cc,
<-> export_data <- exportedMEK);

/* Fortezza Wrap (encrypt) MEK by TEK */
CI_WrapKey

-> (WrapIndex <- TEKIndex, /* slot where TEK is */
-> KeyIndex <- MEKIndex, /* slot where MEK is */

<- pKey <- wrappedKey, /* key ready for export */
<- return value);

/* Delete unnecessary CCs */
/* Transmit TEK-wrapped MEK to recipient */
/* Begin protecting session using the MEK */

************************************************************************
RECIPIENT SIDE

************************************************************************

************************************************************************
Recipient-side Call Mapping and Overview
************************************************************************

------------------------------------------------------------------------
Fortezza calls GCS-API calls
------------------------------------------------------------------------

<receive random number from initiator>
CI_CheckPIN gcs_initialise_session
CI_SetPersonality

gcs_retrieve_cc (recipient’s private key CC)
gcs_retrieve_cc (initiator’s public key CC)
gcs_load_public_key (load initiator’s public key)
gcs_retrieve_cc (TEK CC)

CI_GenerateRa gcs_generate_random_number (recipient’s
random quantity)

<send random number to initiator>

216 X/Open Preliminary Specification (1996)



Example Walkthroughs Fortezza Public Key Exchange

<receive TEK-wrapped MEK from initiator>
CI_GenerateTEK gcs_key_agreement (form TEK)
CI_UnwrapKey gcs_import_key (unwrap TEK-wrapped MEK)

<use MEK to protect session>

************************************************************************
Recipient-side pseudocode
(Underlying Fortezza calls are interleaved, and are indented)
************************************************************************

gcs_initialise_session
<- (minor_status,
<-> session_context,

-> initialise_parameters)

/* To log onto Fortezza card, must pass a PIN check. */
CI_CheckPIN

-> (PINType <- CI_USER_PIN, /* subject is USER, not SSO */
-> pPIN, /* pointer to PIN */

<- return value)

/* Do other Fortezza processing to determine the card slot that */
/* has the correct set of keys for this application. Put that */
/* value in variable "PersonalityIndex". This call affects which */
/* cryptographic contexts will be retrieved below for each side */
/* in the key agreement call. */
CI_SetPersonality

-> (CertificateIndex <- PersonalityIndex,
<- return value)

gcs_retrieve_cc /* recipient’s private key CC */
<- (minor_status,

-> session_context,
-> domain_id,
-> cc_name <- GCS_CC_NAME_FORTEZZA_KEA_PRIVATE,
-> cc_reference <- GCS_NULL,

<- retrieved_cc <- recipient_cc);
gcs_retrieve_cc /* initiator’s public key CC */

<- (minor_status,
-> session_context,
-> domain_id,
-> cc_name <- GCS_CC_NAME_FORTEZZA_KEA_INITIATOR_PUBLIC,
-> cc_reference <- GCS_NULL,

<- retrieved_cc <- initiator_cc);

gcs_load_public_key /* load initiator’s (previously obtained) public key */
<- (minor_status,

-> session_context,
-> subject_cc <- recipient_cc,
-> input_key_part <- initiator_public_key,
-> key_part_type <- GCS_ONLY);

gcs_retrieve_cc /* TEK CC */

Generic Cryptographic Service API (GCS-API) Base 217



Fortezza Public Key Exchange Example Walkthroughs

<- (minor_status,
-> session_context,
-> domain_id,
-> cc_name <- GCS_CC_NAME_FORTEZZA_TEK,
-> cc_reference <- GCS_NULL,

<- retrieved_cc <- TEK_cc);
gcs_key_agreement /* form TEK, using the Fortezza KEA algorithm */

<- (minor_status,
-> session_context,
-> caller_cc <- recipient_cc,
-> other_cc <- initiator_cc,
-> pdu_in <- initRand,
<- pdu_out <- recipRand,

<- kak_cc <- TEK_cc);

CI_GenerateRa
-> (none,

<- pRa <- initRand, return value)

CI_GenerateTEK /* have received recipient’s random number */
-> (Flags <- CI_RECIPIENT_FLAG,/* recipient side */
-> RegisterIndex <- TEKIndex, /* where to place result */
-> Ra <- initRand, Rb <- recipRand, /* random quantities */
-> Size <- initPubSize, pY <- initPub, /* initiator’s public */

<- return value);

gcs_retrieve_cc /* MEK CC */
<- (minor_status,

-> session_context,
-> domain_id,
-> cc_name <- GCS_CC_NAME_FORTEZZA_MEK,
-> cc_reference <- GCS_NULL,

<- retrieved_cc <- MEK_cc);

/* By now, must have received TEK-wrapped MEK from initiator. */
/* Assume it’s brought into a variable called "importedMEK" */

gcs_import_key /* unwrap TEK-wrapped MEK */
<- (minor_status,

-> session_context,
-> kek_cc <- TEK_cc,

<-> import_data <- importedMEK);
<-> subject_cc <- MEK_cc);

CI_UnwrapKey
-> (UnwrapIndex <- TEKIndex,
-> KeyIndex <- MEKIndex,

<- pKey <- wrappedKey,
<- return value);

/* Delete unnecessary CCs */
/* Begin using MEK to protect session */

218 X/Open Preliminary Specification (1996)



Example Walkthroughs Fortezza Public Key Exchange

Generic Cryptographic Service API (GCS-API) Base 219



Appendix D

Appendix D: Future Directions

Functionality that may be encompassed by the scope of a future release of this specification
includes:

• Data protection services

• CSF initialisation and management services

• CSF identification and authentication services

• CSF access control management

• Public key management services

• Key escrow support services

220 X/Open Preliminary Specification (1996)



Appendix E

Generate Test Pattern and Verify Test Pattern Examples

E.1 Generate Test Pattern
Input:
1. 128-bit ke y K - This is either (1) a 64-bit key followed on the right

with 64 bits of binary zeros or (2) a 128-bit key.

Output:
1. 128-bit test pattern TP

Notation:
Let eK(X) denote DES encryption of 64-bit data X using key K.
Let KL denote the leftmost 64 bits of the input 128-bit key.
Let KR denote the rightmost 64 bits of the input 128-bit key.
Let TPL denote the leftmost 64 bits of the calculated test pattern.
Let TPR denote the rightmost 64 bits of the calculated test pattern.
Let X1, X2, X3, K2 denote 64-bit internal variables.
Let K1 denote X’4545454545454545’.

Process:
1. Set TPL to a 64-bit newly-generated random number.
2. Compute TPR:

a. Set X1 to eK1(KL)
b. Set K2 to X1 XOR KL
c. Set X2 to KR XOR TPL
d. Set X3 to eK2(X2)
e. Set TPR to X2 XOR X3

3. Output test pattern as TPL concatenated to TPR.

E.2 Verify Test Pattern
Input:
1. 128-bit ke y K - This is either (1) a 64-bit key followed on the right

with 64 bits of binary zeros or (2) a 128-bit key.
2. 128-bit trial test pattern TTP

Output:
1. Return code indicating trial test pattern verified or did not verify.

Notation:
Let eK(X) denote DES encryption of 64-bit data X using key K.
Let KL denote the leftmost 64 bits of the input 128-bit key.
Let KR denote the rightmost 64 bits of the input 128-bit key.
Let TPL denote the leftmost 64 bits of the calculated test pattern.
Let TPR denote the rightmost 64 bits of the calculated test pattern.

Generic Cryptographic Service API (GCS-API) Base 221



Verify Test Pattern Generate Test Pattern and Verify Test Pattern Examples

Let X1, X2, X3, K2 denote 64-bit internal variables.
Let K1 denote X’4545454545454545’.
Let TTPL denote the leftmost 64 bits of the trial test pattern.
Let TTPR denote the rightmost 64 bits of the trial test pattern.

Process:
1. Set TPL to TTPL
2. Compute TPR:

a. Set X1 to eK1(KL)
b. Set K2 to X1 XOR KL
c. Set X2 to KR XOR TPL
d. Set X3 to eK2(X2)
e. Set TPR to X2 XOR X3

3. Check TPR for equality with TTPR
a. If equal: success, test pattern verified
b. If unequal: failure, test pattern did not verify

Implementation note: Steps 2 a through e of the Generate Test Pattern and Verify Test Pattern
services are the same.

222 X/Open Preliminary Specification (1996)



Appendix F

Discussion on Key Parity

The NIST DES FIPS 46 originally stated that the 8th bit in each byte shall be used for parity. The
ANSI X3.92 DEA stated that the 8th bit in each byte may be used for parity. FIPS 46-2 has been
updated to use the word "may."

The use of the word "may" has some subtle implications. A conforming system may set parity
and require parity to be set. Call such a system an SR system. A conforming system may ignore
parity altogether. Call such a system an II system. A conforming system may try to compromise
and set parity but not require it. Call such a system an SI system.

Let’s see what kind of systems can talk to each other.

Sender Receiver SR II SI
-------- ---------------------

SR | Y Y Y
II | N Y Y
SI | Y Y Y

The sender is the system that creates the key and the receiver is the system that wants to use the
key, for example for decryption of a message encrypted at the sender system.

The point is that there is an incompatibility between valid conforming systems when an II
system wants to send a key to an SR system. Another way to look at this is that an SR system is
a universal sender (but not a universal receiver), an II system is a universal receiver (but not a
universal sender) and an SI system is a universal sender and receiver. So if you want to design a
system that can talk with all other conforming systems, a first thought is to do an SI system.
However, things are not that simple.

ANSI X9.17 allows the specification of a "P" as a subparm which means that the key has parity
and if it does not, you should fail. The lack of a "P" means that the parity should be ignored.
That is, even if the parity is wrong, the operation should proceed. Now a system can decide to
implement a portion of the standard and be conforming to that portion.

Let us see how each system can handle the P or no-P parm in a message as a sender or as a
receiver.

send P send no-P receive P receive no-P
SR Y Y Y N
II N Y N Y
SI Y Y N Y

The interesting insight is that there is no solution in the above systems that handles all
situations. This means that if you want to handle all valid conforming implementations, your
system must do more than just set and ignore parity, it must process crypto service messages
with keys using specific handling options.

In the most general case, one wants to allow the user during key export or key import to be able
to specify: 1) IGNORE parity, 2) ENFORCE parity, or 3) ADJUST parity. Let’s see how such
functions could allow talking to anyone from any system, that is, let’s see how the problems are
handled.

An SR system cannot receive a No-P message. If you are on an II system exporting to an SR
system, say ADJUST and send a P message. If you are on an SR system importing from an II
system, say ADJUST.

Generic Cryptographic Service API (GCS-API) Base 223



Discussion on Key Parity

An II system cannot send a P message. If you are on an II system exporting to an SR system, say
ADJUST and send a P message. If you are on an SR system importing from an II system, say
ADJUST.

An II or SI system cannot receive a P message. If you are on an II system importing from an SR
or SI system, say ENFORCE. If you are on an SR or SI system exporting to an II system, send a
no-P message.

Of course, you say IGNORE when you really do not care, such as when you are on an II system
and are exporting to an II system.

224 X/Open Preliminary Specification (1996)



Glossary

access control
The prevention of unauthorised use of a resource including the prevention of use of a
resource in an unauthorised manner (see ISO/IEC 7498-2).

API
Application Programming Interface.

The interface between the application software and the application platform, across which
all services are provided.

The application programming interface is primarily in support of application portability,
but system and application interoperability are also supported by a communication API
(see POSIX.0).

algorithm context (ac)
The definition of the algorithm(s) used by an implementation. The algorithm context may
be keyed or non-keyed. See cryptographic algorithm.

algorithm identifier
An object ID that identifies the specific algorithm included in the algorithm context.

algorithm specific parameters
These are the parameters required by the algorithm specified in the algorithm context which
are not specific to a single key to be used with the algorithm. Examples include key length
and optional user group parameters for asymmetric algorithms.

authenticated identity
An identity of a principal that has been assured through authentication (see ISO/IEC
10081-2).

authentication
Verify claimed identity; see data origin authentication, and peer entity authentication (see
ISO/IEC 7498-2).

authorisation
The granting of rights, which includes the granting of access based on access rights (see
ISO/IEC 7498-2).

authorisation policy
A set of rules, part of an access control policy, by which access by security subjects to
security objects is granted or denied. An authorisation policy may be defined in terms of
access control lists, capabilities or attributes assigned to security subjects, security objects or
both (see ECMA TR/46).

availability
The property of being accessible and usable upon demand by an authorised entity (see
ISO/IEC 7498-2).

capability
Users of the GCS-API are assigned capabilities which determine the authority they can
exercise in use of the GCS-API functions. Four capabilities are defined,
GCS_C_SELECTION, GCS_C_KEY_USAGE, GCS_C_KEY_PROTECTION, and
GCS_C_ENCIPHER_DECIPHER.

Generic Cryptographic Service API (GCS-API) Base 225



Glossary

CC
See cryptographic context.

CC name
The name for a cryptographic context which is unique within its domain.

CC_reference
The handle to a globally accessible and persistent cryptographic context. It comprises a label, a
storage unit class and storage unit instance, a domain identifier and a name.

ciphertext
Data produced through the use of encipherment. The semantic content of the resulting data
is not available (see ISO/IEC 7498-2).

Note: Ciphertext may itself be input to encipherment, such that super-enciphered output
is produced.

clear text
Intelligible data, the semantic content of which is available (see ISO/IEC 7498-2).

compromise
A key is said to be compromised if its confidentiality is suspect. The threat of a key to
compromise increases the longer the key is in use.

confidentiality
The property that information is not made available or disclosed to unauthorised
individuals, entities, or processes (see ISO/IEC 7498-2).

confounder
Random information placed in front of cleartext before encipherment by a block cipher to
prevent common header information included in the cleartext always being enciphered to
the same ciphertext. (See also Initialisation Vector.)

context confidentiality flag
Indicates whether the private or secret values held in the key context are protected for
confidentiality.

context check value
The context check value is a CSF internally generated and maintained check value for the
protected cryptographic context.

context id
A unique identity assigned to a cryptographic context by the CSF when it is created.

contextual information
Information derived from the context in which an access is made (for example, time of day)
(see ISO/IEC 10081-3).

context type
Specifies the type of algorithm context(s) included in the cryptographic context, ie., keyed,
unkeyed, or both.

context version number
The version number of the cryptographic context. This specification defines the context version
number as 0.

credentials
Data that is transferred to establish the claimed identity of an entity (see ISO/IEC 7498-2).

226 X/Open Preliminary Specification (1996)



Glossary

cryptanalysis
The analysis of a cryptographic system and its inputs and outputs to derive confidential
variables and/or sensitive data including clear text.

cryptographic algorithm
A method of performing a cryptographic transformation (see cryptography) on a data unit.
Cryptographic algorithms may be based on:

• symmetric key methods (the same key is used for both encipher and decipher
transformations), or

• on asymmetric key methods (different keys are used for encipher and decipher
transformations), or

• one way functions, which may or may not utilise a key, for the generation of a
cryptographic hash value of input data.

cryptographic aware
Used to differentiate callers of the CSF. Cryptographic aware callers are those which are
aware of the cryptographic policies used by the implementation.

cryptographic checkvalue
Information that is derived by performing a cryptographic transformation (see
cryptography) on a data unit.

Note: The derivation of the checkvalue may be performed in one or more steps and is a
result of a mathematical function of the key and data unit. It is usually used to
check the integrity of a data unit.

cryptographic context
The cryptographic context is the set of information that defines the environment within
which a particular cryptographic transform takes place. The information represents the
cryptographic policy applicable and includes details of the permitted functions,
algorithm(s) to be used, the key to be used and its current state. Within this specification
the cryptographic context is deemed to comprise a header, a keyed and/or non-keyed
algorithm context and a key context.

cryptographic policy aware
The name given to callers of the GCS-API who are responsible for establishing the
cryptographic context of a set of operations through the selection of appropriate algorithm,
generation of key and definition of key usage. These users are further categorised into
cryptographic policy selecting or cryptographic policy enforcing users.

cryptographic policy enforcing
The name given to callers of the GCS-API who are responsible for enforcing cryptographic
policy. Users may be key usage policy enforcing or key protection policy enforcing and have the
GCS_C_KEY_USAGE or GCS_C_KEY_PROTECTION capabilities respectively. See
capability.

cryptographic policy selecting
The name given to callers of the GCS-API who are capable of selecting which of a set of
predefined cryptographic contexts is to be used for a particular set of services. These users
have the GCS_C_SELECTION capability. See capability.

cryptographic policy unaware
The name given to callers of the GCS-API who are permitted to invoke cryptographic
services within a previously defined cryptographic context.

Generic Cryptographic Service API (GCS-API) Base 227



Glossary

cryptographically strong random number
A cryptographically strong number is one that does not have a period, is random, and might
repeat.

cryptographic unaware
Used to differentiate callers of the CSF. Cryptographic unaware callers have no knowledge
or understanding of the underlying cryptographic policies supported by the
implementation of the CSF.

cryptography
The discipline that embodies principles, means, and the methods for the transformation of
data in order to hide its information content, prevent its undetected modification and/or
prevent its unauthorised use. (see ISO/IEC 7498-2).

Note: The choice of cryptography mechanism determines the methods used in
encipherment and decipherment. An attack on a cryptographic principle, means or
methods is cryptanalysis.

CSF
The Cryptographic Support Facility.

data integrity
The property that data has not been altered or destroyed in an unauthorised manner (see
ISO/IEC 7498-2).

data origin authentication
The corroboration that the entity responsible for the creation of a set of data is the one
claimed.

decipherment
The reversal of a corresponding reversible encipherment.

decryption
See decipherment.

digital signature
Data appended to, or a cryptographic transformation (see cryptography) of, a data unit that
allows a recipient of the data unit to prove the source and integrity of the data unit and
protect against forgery for example, by the recipient.

encipherment
The cryptographic transformation of data (see cryptography) to produce ciphertext.

Note: Encipherment may be irreversible, in which case the corresponding decipherment
process cannot feasibly be performed. Such encipherment may be called a one-
way-function or cryptochecksum.

encryption
See encipherment (see ISO/IEC 7498-2).

end-to-end encipherment
Encipherment of data within or at the source end system, with the corresponding
decipherment occurring only within or at the destination end system (see ISO/IEC 7498-2).

identification
The assignment of a name by which an entity can be referenced. The entity may be high
level (such as a user) or low level (such as a process or communication channel.

228 X/Open Preliminary Specification (1996)



Glossary

initiator
An entity (for example, human user or computer based entity) that attempts to access other
entities (see ISO/IEC 10081-3).

initialisation vector (IV)
The initialisation vector is an algorithm specific parameter required for some symmetric key
algorithms when used in a block cipher mode of operation. (See also confounder.) A static
IV value may be defined as part of a key context (see key context) in which case the same
value is used each time an IV is required. Alternatively, a caller may specify an IV value as
an input parameter of those functions for which an IV is appropriate in which case a
different IV value may be used for each call.

integrity
See Data Integrity (see ISO/IEC 7498-2).

ITAR
The US Government’s International Traffic in Arms Regulations. This imposes constraints
on the export of products containing cryptographic services, especially data confidentiality.

key
A sequence of symbols that controls the operations of encipherment and decipherment (see
ISO/IEC 7498-2).

KAK
Key Archive Key.

KEK
Key Encryption Key.

key context
The key context contains information related to the use of a particular key instance. It
comprises key usage, permitted export mechanisms, key state, time of revocation, reason for
revocation, key flag, key lifetime, initialisation vector, key specific parameters, split_protocol_type,
key_part_number, number_of_key_parts and key value.

key flag
The key flag refines the state of the key and provides control of the functions to which the
key may be a target.

key lifecycle
A sequence of key states defined by the specification for a cryptographic key. These
progress from pre-active, to active, active to quiescent, quiescent to de-activated, and
deactivated to revoked. Other transitions can be effected by authorised callers of the CSF.

key lifetime
Defines the lifetime of the key.

key management
The generation, storage, distribution, deletion, archiving and application of keys in
accordance with a security policy (see ISO/IEC 7498-2).

key protection policy enforcing
The name given to callers of the GCS-API who are responsible for the protection of
cryptographic service and the key values it generates and uses. They may handle keys in the
clear, and are assigned the GCS_C_KEY_PROTECTION capability. See capability.

key specific parameters
Additional mechanism specific parameters associated with the key.

Generic Cryptographic Service API (GCS-API) Base 229



Glossary

key state
A defined set of states which can be assigned to a key. (see key lifecycle).

key usage policy enforcing
The name given to callers of the GCS-API who are responsible for key usage policy through
the selection of appropriate algorithms and key usage parameters in creating CCs. They
possess the GCS_C_KEY_USAGE capability. See capability

key validity
The key validity defines the period over which a key may be used for cryptographic
transforms.

key value
The value of the key is implementation dependent.

label
The system defined name assigned to the cryptographic context stored in the operational
storage unit maintained by the CSF.

masquerade
The unauthorised pretence by an entity to be a different entity (see ISO/IEC 7498-2).

master key
A cryptographic key used to protect other cryptographic keys during operational use. The
Master Key is used to encipher the operational keys when they are handled or stored
outside of the protected CSF environemnt.

messaging application
An application based on a store and forward paradigm; it requires an appropriate security
context to be bound with the message itself.

password
Confidential authentication information, usually composed of a string of characters (see
ISO/IEC 7498-2).

physical security
The measures used to provide physical protection of resources against deliberate and
accidental threats (see ISO/IEC 7498-2).

policy
See security policy (see ISO/IEC 7498-2).

principal
An entity whose identity can be authenticated (see ISO/IEC 10081-2).

private key
A key used in an asymmetric algorithm. Possession of this key is restricted, usually to only
one entity (see ISO/IEC 10081-1).

permitted export mechanisms
Defines which, if any, mechanisms may be used to transport the key contained in the CC
between CSFs.

public key
The key, used in an asymmetric algorithm, that is publicly available (see ISO/IEC 10081-1).

quality of protection (QOP)
A label that implies methods of security protection under a security policy. This normally
includes a combination of integrity and confidentiality requirements and is typically
implemented in a communications environment by a combination of cryptographic

230 X/Open Preliminary Specification (1996)



Glossary

mechanisms.

quasi-compromised
Used to qualify a key which is suspected of being compromised.

reason for revocation
The reason given for revoking a key.

repudiation
Denial by one of the entities involved in a communication of having participated in all or
part of the communication (see ISO/IEC 7498-2).

seal
A cryptographic checkvalue that supports integrity but does not protect against forgery by
the recipient (that is, it does not support non-repudiation). When a seal is associated with a
data element, that data element is sealed (see ISO/IEC 10081-1).

secret key
In a symmetric cryptographic algorithm the key shared between two entities (see ISO/IEC
10081-1).

secure association
An instance of secure communication (using communication in the broad sense of space
and/or time) which makes use of a secure context.

security attribute
A security attribute is a piece of security information which is associated with an entity.

security aware
The caller of an API that is aware of the security functionality and parameters which may be
provided by an API.

security domain
A set of elements, a security policy, a security authority and a set of security-relevant
operations in which the set of elements are subject to the security policy, administered by
the security authority, for the specified operations (see ISO/IEC 10081-1).

security policy
The set of criteria for the provision of security services (see also identity-based and rule-
based security policy).

security service
A service which may be invoked directly or indirectly by functions within a system that
ensures adequate security of the system or of data transfers between components of the
system or with other systems.

security unaware
The caller of an API that is unaware of the security functionality and parameters which may
be provided by an API.

separation
The concept of keeping information of different security classes apart in a system (see CESG
Memo).

Note: Separation may be implemented by temporal, physical, logical or cryptographic
techniques.

session
All CSF functions occur within the context of a session established between a caller and the
CSF. A session commences with a call to gcs_initialise_session ( ) to authenticate the caller’s

Generic Cryptographic Service API (GCS-API) Base 231



Glossary

identity and authorisation information and ends with a call to gcs_terminate_session( ) which
releases the session_context. The session_context parameter returned by
gcs_initialise_session ( ) encapsulates the authenticated identity and authorisation
information and has to be submitted as an input parameter to the GCS-API functions.

short block policy
Identifies the policy to apply if the caller submits a short block to a function call, e.g., X9.23
Padding or Reject.

signature
See digital signature (see ISO/IEC 7498-2).

storage unit class
distinguishes the device on which the cryptographic context is stored. See CC reference.

storage unit instance
Differentiates between different instances of the same storage unit class. See CC reference.

strength of mechanism
An aspect of the assessment of the effectiveness of a security mechanism, namely the ability
of the security mechanism to withstand direct attack against deficiencies in its underlying
algorithms, principles and properties (see ITSEC).

SPI
The system programming interface defined by this specification consists of functions for
manipulating clear keys.

target
An entity to which access may be attempted (see ISO/IEC 10081-3).

time of revocation
The date and time at which the key was revoked. See key context.

threat
A potential violation of security (see ISO/IEC 7498-2).
An action or event that might prejudice security (see ITSEC).

trust
A relationship between two elements, a set of operations and a security policy in which
element X trusts element Y if and only if X has confidence that Y behaves in a well defined
way (with respect to the operations) that does not violate the given security policy (see
ISO/IEC 10081-1).

trusted functionality
That which is perceived to be correct with respect to some criteria, for example, as
established by a security policy (see ISO/IEC 7498-2).

trusted third party
A security authority or its agent, trusted by other entities with respect to security-related
operations (see ISO/IEC 10081-1).

vulnerability
Weakness in an information system or components (for example, system security
procedures, hardware design, internal controls) that could be exploited to produce an
information-related misfortune (see Federal Criteria).

232 X/Open Preliminary Specification (1996)



Index

access control...........................................................225
Active State ................................................................88
Additional Key Management Functions ...........109
Advanced CSF Application Program

Interface................................................................121
Advanced CSF System Programming

Interface................................................................159
Advanced GCS-API Introduction .........................79
Advanced GCS-API Parameter

Passing Conventions .........................................113
Advanced GCS-API Services ...............................107
Algorithm

Independent...........................................................33
Algorithm Context ...................................................99
algorithm context (ac)............................................225
Algorithm Identifier.........................................99, 115
algorithm identifier ................................................225
algorithm independent cc names..........................33
Algorithm Specific Parameters....................100, 116
algorithm specific parameters .............................225
API.............................................................................225
Archive........................................................................93
Archive Format .........................................................92
argument

optional...................................................................32
authenticated identity ...........................................225
authentication .........................................................225
authorisation ...........................................................225
authorisation policy ...............................................225
availability ...............................................................225
Basic CSF Application program Interface ...........35
Basic GCS-API Introduction.....................................1
Basic GCS-API Services...........................................11
Basic Parameter Passing Conventions .................25
C-language

names..............................................................33, 114
calling convention

context ............................................................27, 113
names..............................................................33, 114
session.....................................................................27
status value............................................................28

calling conventions
optional arguments..............................................32

calling errors..............................................................28
capability ..................................................................225
CC ..............................................................................226

CC name...................................................................226
CC_reference ...........................................................226
CGCS_DEACTIVATED.........................................118
ciphertext..................................................................226
clear text ...................................................................226
compromise .............................................................226
confidentiality .........................................................226
Conformance ...........................................................173
confounder...............................................................226
constants ............................................................33, 114
context ................................................................27, 113

handle ...................................................................113
context check value................................................226
Context Checkvalue.................................................97
Context Confidentiality Flag..................................97
context confidentiality flag...................................226
Context ID..................................................................97
context id..................................................................226
Context Type .............................................................97
context type .............................................................226
Context Version Number........................................97
context version number ........................................226
contextual information..........................................226
Create ..........................................................................93
Creation of a CC .....................................................108
credentials ................................................................226
cryptanalysis............................................................227
cryptographic algorithm.......................................227
cryptographic aware..............................................227
cryptographic checkvalue ....................................227
Cryptographic Context ...........................................96
cryptographic context............................................227
Cryptographic Context Header.............................97
Cryptographic Context Inquiry...........................109
Cryptographic Context Name .............................106
Cryptographic Context Reference ......................105
Cryptographic Context Retrieval..........................12
Cryptographic Context Storage Functions .........19
cryptographic policy aware .................................227
cryptographic policy enforcing ...........................227
cryptographic policy selecting.............................227
cryptographic policy unaware.............................227
cryptographic Support Facility..............................84
cryptographic unaware.........................................228
cryptographically strong random number .......228
cryptography...........................................................228

Generic Cryptographic Service API (GCS-API) Base 1



Index

CSF.............................................................................228
CSF Implementation Considerations .................177
CSF Session Management.......................................12
Data Encipherment Functions ...............................18
data integrity ...........................................................228
data origin authentication ....................................228
data type

bit strings................................................................26
character strings....................................................26
gcs_ac_t ................................................................113
gcs_bit_string_t.....................................................26
gcs_buffer_t......................................................25-26
gcs_cc_ref_t .........................................................113
gcs_cc_t .....................................................26-27, 113
gcs_kc_t ................................................................113
gcs_session_context_t ....................................26-27
integer .....................................................................25
OM_uint32.......................................................28, 31
opaque ....................................................................26
string .......................................................................25
structured...............................................................25

De-Activated State ...................................................88
decipherment...........................................................228
decryption................................................................228
default cc names .......................................................10
digital signature......................................................228
encipherment...........................................................228
encryption ................................................................228
end-to-end encipherment .....................................228
error

calling......................................................................28
Example Template CCs .........................................183
Example Walkthroughs.........................................204
Exchange Format ......................................................92
Export..........................................................................93
Future Directions....................................................220
GCS

status code .............................................................28
GCS-API Data Structures........................................95
GCS-API Utility Functions .....................................23
GCS_ACTIVE..........................................................118
gcs_ac_t.....................................................................113
gcs_advance_key_state .........................................110
gcs_advance_key_state( )......................................122
gcs_archive_cc.........................................................110
gcs_archive_cc( ) .....................................................124
gcs_bit_string_t .........................................................26
gcs_buffer_t ..........................................................25-26

types ........................................................................32
GCS_CALLING_ERROR( ).....................................30
gcs_cc_ref_t..............................................................113

gcs_cc_t .........................................................26-27, 113
gcs_combine_key....................................................109
gcs_combine_key( ) ................................................126
gcs_create_ac ...........................................................108
gcs_create_ac( ) .......................................................128
gcs_create_cc( )........................................................129
gcs_create_kc...........................................................108
gcs_create_kc( ) .......................................................131
GCS_C_ADVANCE_KEY_STATE ......................117
GCS_C_ALGORITHM_ID ...................................119
GCS_C_ALGORITHM_SPECIFIC_

PARAMETERS....................................................119
GCS_C_ARCHIVE_CC .........................................117
GCS_C_BOTH...........................................................34
GCS_C_BYTES ........................................................118
GCS_C_CDROM ......................................................34
GCS_C_CONFIDENTIALITY_FLAG ................119
GCS_C_CONTEXT_TYPE ....................................119
GCS_C_CONTEXT_VERSION ...........................119
GCS_C_COUNT .....................................................118
GCS_C_DECIPHER_DATA..................................117
GCS_C_DECIPHER_KEY.....................................117
GCS_C_DERIVE_KEY...........................................117
GCS_C_DES_AC_32 ..............................................115
GCS_C_DES_CDC .................................................115
GCS_C_DIFFIE .......................................................115
GCS_C_DISK.............................................................34
GCS_C_DSA............................................................115
GCS_C_EMPTY_BUFFER ..............................33, 114
GCS_C_ENCIPHER_DATA .................................117
GCS_C_ENCIPHER_KEY ....................................117
GCS_C_EXPORT_KEY..........................................117
GCS_C_EXPORT_KEY_AGREEMENT.............117
GCS_C_GENERATE_CV ......................................117
GCS_C_GENERATE_KEY_PATTERN ..............117
GCS_C_IMPORT_KEY..........................................117
GCS_C_IMPORT_KEY_AGREEMENT.............117
GCS_C_INFINITE ..................................................118
GCS_C_IV ................................................................120
GCS_C_IV_NEEDED.............................................118
GCS_C_KEA............................................................115
GCS_C_KEY_FLAG...............................................120
GCS_C_KEY_PART_NUMBER...........................120
GCS_C_KEY_SPECIFIC_PARAMETERS..........120
GCS_C_KEY_STATE..............................................120
GCS_C_KEY_USAGE@0.......................................120
GCS_C_KEY_VALIDITY_ACTIVATION_

TIME......................................................................120
GCS_C_KEY_VALIDITY_DEACTIVATE_

BYTES ...................................................................120

2 X/Open Preliminary Specification (1996)



Index

GCS_C_KEY_VALIDITY_DEACTIVATE_
COUNT ................................................................120

GCS_C_KEY_VALIDITY_DEACTIVATE_
TIME......................................................................120

GCS_C_KEY_VALIDITY_QUIESCENT-
COUNT ................................................................120

GCS_C_KEY_VALIDITY_QUIESCENT_
BYTES ...................................................................120

GCS_C_KEY_VALIDITY_QUIESCENT_
TIME......................................................................120

GCS_C_MAX_BUFFER_SIZE................................34
GCS_C_MD5 ...........................................................115
GCS_C_MEMORY ...................................................34
GCS_C_NOW..........................................................118
GCS_C_NO_BIT_STRING .............................33, 114
GCS_C_NO_BUFFER......................................33, 114
GCS_C_NUMBER_OF_KEY_PARTS.................120
GCS_C_PERMITTED_EXPORT_

MECHANISM.....................................................120
GCS_C_QCF ............................................................118
GCS_C_RC2_CBC ..................................................115
GCS_C_RC4.............................................................115
GCS_C_REASON_FOR_REVOCATION ..........120
GCS_C_REDUCE_CC ...........................................117
GCS_C_RESTORE_CC..........................................117
GCS_C_REVOKE_KEY .........................................117
GCS_C_RSA ............................................................115
GCS_C_SET_CC .....................................................117
GCS_C_SET_KEY_VALIDITY.............................117
GCS_C_SHA-1 ........................................................115
GCS_C_SHORT_BLOCK_POLICY ....................119
GCS_C_SKIPJACK_CBC_64 ................................115
GCS_C_SOFTWARE................................................34
GCS_C_SPLIT .........................................................118
GCS_C_SPLIT_PROTOCOL_TYPE ...................120
GCS_C_TIME ..........................................................118
GCS_C_TIME_OF_REVOCATION ....................120
GCS_C_UNKNOWN ..............................................34
GCS_C_VERIFY_CV..............................................117
GCS_C_VERIFY_KEY_PATTERN ......................117
gcs_decipher_data....................................................18
gcs_decipher_data( ) ................................................36
gcs_decipher_key ...................................................111
gcs_decipher_key( )................................................160
gcs_decipher_verify .................................................18
gcs_decipher_verify( )..............................................38
gcs_delete_ac ...........................................................108
gcs_delete_ac( ) .......................................................132
gcs_delete_cc .............................................................12
gcs_delete_cc( )..........................................................41
gcs_delete_kc...........................................................108

gcs_delete_kc( ) .......................................................133
gcs_derive_clear_key.............................................111
gcs_derive_clear_key( ) .........................................162
gcs_derive_key..........................................................16
gcs_derive_key( ) ......................................................42
GCS_DHKA_PKCS3_1..........................................117
GCS_DH_PKCS3 ....................................................117
gcs_encipher_data ....................................................18
gcs_encipher_data( ) ................................................44
gcs_encipher_key ...................................................111
gcs_encipher_key( )................................................164
gcs_export_key .........................................................21
gcs_export_key( ) ......................................................46
GCS_FIRST ................................................................33
GCS_FORTEZZA_KEA.........................................117
GCS_FORTEZZA_KEY_WRAP ..........................117
gcs_generate_checkvalue........................................16
gcs_generate_check_value( ) ..................................48
gcs_generate_clear_key.........................................111
gcs_generate_clear_key( ) .....................................166
gcs_generate_hash....................................................16
gcs_generate_hash( ) ................................................50
gcs_generate_key( ) ..................................................52
gcs_generate_key_pattern ....................................110
gcs_generate_key_pattern( ).................................134
gcs_generate_random_number .............................16
gcs_generate_random_number( )..........................54
gcs_get_cc ................................................................109
gcs_get_cc( ) .............................................................136
gcs_get_csf_parameters ..........................................23
gcs_get_csf_params( )..............................................55
gcs_get_key_validity .............................................110
gcs_get_key_validity( )..........................................138
GCS_IBM_CV..........................................................117
gcs_import_key.........................................................21
gcs_import_key( ) .....................................................57
gcs_initialise_session ...............................................12
gcs_initialise_session( )............................................59
gcs_kc_t ....................................................................113
GCS_KERBEROS....................................................117
gcs_key_agreement ..................................................21
gcs_key_agreement( ) ..............................................60
GCS_LAST .................................................................33
gcs_list_cc...................................................................12
gcs_list_cc( ) ...............................................................62
gcs_load_clear_key ................................................111
gcs_load_key( )........................................................168
gcs_load_public_key..............................................109
gcs_load_public_key( ) ..........................................140
GCS_MIDDLE...........................................................33
GCS_MODE_OF_OPERATION ..........................119

Generic Cryptographic Service API (GCS-API) Base 3



Index

GCS_M_BC ..............................................................116
GCS_M_CBC ...........................................................116
GCS_M_CBCC ........................................................116
GCS_M_CBCOFBM ...............................................116
GCS_M_CFB............................................................116
GCS_M_COUNTER...............................................116
GCS_M_ECB............................................................116
GCS_M_NONE.......................................................116
GCS_M_OFB............................................................116
GCS_M_OFBNLF ...................................................116
GCS_M_PCBC.........................................................116
GCS_NO_EXPORT ................................................117
GCS_ONLY................................................................33
GCS_PCK51 .............................................................117
GCS_PRE-ACTIVE.................................................118
gcs_protect_data( ) ...................................................64
gcs_protect_date .......................................................18
GCS_QUIESCENT .................................................118
gcs_reduce_key_usage ..........................................110
gcs_reduce_key_usage( ).......................................142
gcs_release_bit_string..............................................23
gcs_release_bit_string( ) ..........................................67
gcs_release_buffer ....................................................23
gcs_release_buffer( ).................................................68
gcs_remove_cc ..........................................................19
gcs_remove_cc( ).......................................................69
gcs_restore_cc .........................................................110
gcs_restore_cc( ) ......................................................144
gcs_retrieve_cc..................................................12, 109
gcs_retrieve_cc( ).......................................................71
GCS_REVOKED .....................................................118
gcs_revoke_key.......................................................110
gcs_revoke_key( ) ...................................................146
GCS_ROUTINE_ERROR( ).....................................30
GCS_RSA_PKCS.....................................................117
GCS_SBP_CTS.........................................................116
GCS_SBP_DES_MAC ............................................116
GCS_SBP_IPS ..........................................................116
GCS_SBP_NONE....................................................116
GCS_SBP_PEM .......................................................116
GCS_SBP_PKCS#1 .................................................116
GCS_SBP_X9.23 ......................................................116
gcs_session_context_t ........................................26-27
gcs_set_ac .................................................................108
gcs_set_ac( ) .............................................................148
gcs_set_cc .................................................................109
gcs_set_cc( ) .............................................................150
gcs_set_kc.................................................................108
gcs_set_kc( ) .............................................................152
gcs_set_key_validity..............................................110
gcs_set_key_validity( ) ..........................................154

GCS_SKP_NONE ...................................................118
GCS_SKP_SHAMIR...............................................118
GCS_SKP_XOR .......................................................118
gcs_split_clear_key ................................................111
gcs_split_clear_key( ).............................................170
gcs_store_cc .......................................................19, 109
gcs_store_cc( )............................................................73
GCS_SUPPLEMENTARY_INFO( ) .......................30
GCS_S_AUTHORISATION_FAILURE................30

in gcs_advance_key_state( ).............................123
in gcs_archive_cc( ) ............................................125
in gcs_combine_key( ) .......................................127
in gcs_create_cc( )...............................................130
in gcs_decipher_data( )........................................37
in gcs_decipher_key( ) .......................................161
in gcs_decipher_verify( ).....................................39
in gcs_derive_clear_key( ) ................................163
in gcs_derive_key( ) .............................................43
in gcs_encipher_data( )........................................45
in gcs_encipher_key( ) .......................................165
in gcs_export_key( ) .............................................47
in gcs_generate_clear_key( ) ............................166
in gcs_generate_key( ) .........................................52
in gcs_generate_key_pattern( )........................135
in gcs_get_cc( ) ....................................................137
in gcs_get_key_validity( ) .................................139
in gcs_import_key( ) ............................................58
in gcs_initialise_session( )...................................59
in gcs_key_agreement( )......................................61
in gcs_load_key( ) ...............................................169
in gcs_load_public_key( ) .................................141
in gcs_protect_data( )...........................................65
in gcs_reduce_key_usage( )..............................142
in gcs_remove_cc( ) ..............................................70
in gcs_restore_cc( ) .............................................145
in gcs_retrieve_cc( )..............................................72
in gcs_revoke_key( ) ..........................................147
in gcs_set_cc( ).....................................................151
in gcs_set_key_validity( ) .................................155
in gcs_split_clear_key( ) ....................................171
in gcs_store_cc( )...................................................74
in gcs_terminate_session( ).................................75
in gcs_verify_key_pattern( ).............................157

GCS_S_BAD_
PROTOCOL.........................................................171
SIZE.......................................................................171

GCS_S_BAD_AC ......................................................30
in gcs_create_cc( )...............................................130
in gcs_delete_ac( )...............................................132
in gcs_set_ac( ) ....................................................149

GCS_S_BAD_ARCHIVE_CC .................................30

4 X/Open Preliminary Specification (1996)



Index

in gcs_archive_cc( ) ............................................124
in gcs_restore_cc( ) .............................................144

GCS_S_BAD_ARCHIVE_STRING .......................30
in gcs_restore_cc( ) .............................................144

GCS_S_BAD_CC ......................................................30
GCS_S_BAD_CC_LIST............................................30
GCS_S_BAD_CC_NAME .......................................30

in gcs_retrieve_cc( )..............................................72
in gcs_store_cc( )...................................................74

GCS_S_BAD_CONFIDENTIALITY_FLAG
in gcs_create_cc( )...............................................130

GCS_S_BAD_DEVICE.............................................30
in gcs_store_cc( )...................................................74

GCS_S_BAD_DOMAIN_ID ...................................30
GCS_S_BAD_EXPORT_DATA ..............................30

in gcs_export_key( ) .............................................47
GCS_S_BAD_EXPORT_MECH.............................30

in gcs_export_key( ) .............................................47
in gcs_import_key( ) ............................................58
in gcs_key_agreement( )......................................61

GCS_S_BAD_FLAG .................................................30
in gcs_decipher_data( )........................................37
in gcs_generate_check_value( ) .........................49
in gcs_generate_hash( ) .......................................51
in gcs_protect_data( )...........................................65
in gcs_verify_check_value( ) ..............................77

GCS_S_BAD_IV........................................................30
GCS_S_BAD_KC ......................................................30

in gcs_create_cc( )...............................................130
in gcs_delete_kc( ) ..............................................133
in gcs_set_kc( ) ....................................................152

GCS_S_BAD_KEK_CC............................................30
in gcs_combine_key( ) .......................................127
in gcs_decipher_key( ) .......................................161
in gcs_encipher_key( ) .......................................165
in gcs_export_key( ) .............................................47
in gcs_import_key( ) ............................................58

GCS_S_BAD_KEY_USAGE....................................30
in gcs_reduce_key_usage( )..............................142

GCS_S_BAD_KGK_CC ...........................................30
in gcs_derive_clear_key( ) ................................162
in gcs_derive_key( ) .............................................43

GCS_S_BAD_PARAMETER...................................30
in gcs_set_ac( ) ....................................................149
in gcs_set_cc( ).....................................................151
in gcs_set_kc( ) ....................................................153
in gcs_set_key_validity( ) .................................155

GCS_S_BAD_PARAM_VALUE.............................30
in gcs_set_ac( ) ....................................................149
in gcs_set_cc( ).....................................................151
in gcs_set_kc( ) ....................................................153

GCS_S_BAD_PART .................................................30
in gcs_load_key( ) ...............................................168
in gcs_load_public_key( ) .................................140

GCS_S_BAD_PDU
in gcs_import_key( ) ............................................58

GCS_S_BAD_PROTOCOL .....................................30
in gcs_key_agreement( )......................................61

GCS_S_BAD_REASON...........................................30
in gcs_revoke_key( ) ..........................................146

GCS_S_BAD_SESSION_CONTEXT ............30, 123
GCS_S_BAD_SIZE....................................................30

in gcs_decipher_verify( ).....................................39
in gcs_generate_check_value( ) .........................49
in gcs_generate_hash( ) .......................................51
in gcs_verify_check_value( ) ..............................77

GCS_S_BAD_SUBJECT
in gcs_key_agreement( )......................................61
in gcs_split_clear_key( ) ....................................171

GCS_S_BAD_SUBJECT_CC...................................30
in gcs_advance_key_state( ).............................122
in gcs_archive_cc( ) ............................................124
in gcs_combine_key( ) .......................................126
in gcs_decipher_data( )........................................37
in gcs_decipher_verify( ).....................................39
in gcs_delete_cc( ).................................................41
in gcs_derive_clear_key( ) ................................163
in gcs_derive_key( ) .............................................43
in gcs_encipher_data( )........................................45
in gcs_export_key( ) .............................................47
in gcs_generate_check_value( ) .........................49
in gcs_generate_clear_key( ) ............................166
in gcs_generate_hash( ) .......................................51
in gcs_generate_key( ) .........................................52
in gcs_generate_key_pattern( )........................134
in gcs_get_cc( ) ....................................................137
in gcs_get_csf_params( ) .....................................55
in gcs_get_key_validity( ) .................................139
in gcs_import_key( ) ............................................58
in gcs_load_key( ) ...............................................168
in gcs_load_public_key( ) .................................140
in gcs_protect_data( )...........................................65
in gcs_revoke_key( ) ..........................................146
in gcs_set_cc( ).....................................................151
in gcs_set_key_validity( ) .................................155
in gcs_store_cc( )...................................................74
in gcs_verify_check_value( ) ..............................77
in gcs_verify_key_pattern( ).............................156

GCS_S_BAD_SUBJECT_CONTAINER ...............30
in gcs_get_cc( ) ....................................................137
in gcs_set_cc( ).....................................................151

Generic Cryptographic Service API (GCS-API) Base 5



Index

GCS_S_BAD_SUBJECT_CONTEXT
in gcs_reduce_key_usage( )..............................142

GCS_S_BAD_TPG ....................................................30
in gcs_generate_key_pattern( )........................134
in gcs_verify_key_pattern( ).............................156

GCS_S_BUFFER_OVERFLOW..............................30
in gcs_decipher_data( )........................................37
in gcs_decipher_verify( ).....................................39
in gcs_encipher_data( )........................................45
in gcs_generate_hash( ) .......................................51
in gcs_protect_data( )...........................................65

GCS_S_CALL_BAD_STRUCTURE ......................28
GCS_S_CALL_INACCESSIBLE_READ ..............28
GCS_S_CALL_INACCESSIBLE_WRITE.............28
GCS_S_CC_BUSY

in gcs_retrieve_cc( )..............................................72
GCS_S_CC_LOCKED..............................................30
GCS_S_COMPLETE.................................................30

in gcs_advance_key_state( ).............................122
in gcs_archive_cc( ) ............................................124
in gcs_combine_key( ) .......................................126
in gcs_create_ac( )...............................................128
in gcs_create_cc( )...............................................130
in gcs_create_kc( ) ..............................................131
in gcs_decipher_data( )........................................37
in gcs_decipher_key( ) .......................................161
in gcs_decipher_verify( ).....................................39
in gcs_delete_ac( )...............................................132
in gcs_delete_cc( ).................................................41
in gcs_delete_kc( ) ..............................................133
in gcs_derive_clear_key( ) ................................162
in gcs_derive_key( ) .............................................42
in gcs_encipher_data( )........................................45
in gcs_encipher_key( ) .......................................165
in gcs_export_key( ) .............................................46
in gcs_generate_check_value( ) .........................49
in gcs_generate_clear_key( ) ............................166
in gcs_generate_hash( ) .......................................51
in gcs_generate_key( ) .........................................52
in gcs_generate_key_pattern( )........................134
in gcs_generate_random_number( ).................54
in gcs_get_cc( ) ....................................................137
in gcs_get_csf_params( ) .....................................55
in gcs_get_key_validity( ) .................................139
in gcs_import_key( ) ............................................57
in gcs_initialise_session( )...................................59
in gcs_key_agreement( )......................................61
in gcs_list_cc( ) ......................................................62
in gcs_load_key( ) ...............................................168
in gcs_load_public_key( ) .................................140
in gcs_protect_data( )...........................................65

in gcs_reduce_key_usage( )..............................142
in gcs_release_bit_string( ) .................................67
in gcs_release_buffer( ) ........................................68
in gcs_remove_cc( ) ..............................................69
in gcs_restore_cc( ) .............................................144
in gcs_retrieve_cc( )..............................................72
in gcs_revoke_key( ) ..........................................146
in gcs_set_ac( ) ....................................................148
in gcs_set_cc( ).....................................................151
in gcs_set_kc( ) ....................................................152
in gcs_set_key_validity( ) .................................155
in gcs_split_clear_key( ) ....................................171
in gcs_store_cc( )...................................................74
in gcs_terminate_session( ).................................75
in gcs_verify_check_value( ) ..............................77
in gcs_verify_key_pattern( ).............................156

GCS_S_COMPLETE_QCF......................................30
in gcs_advance_key_state( ).............................122
in gcs_archive_cc( ) ............................................124
in gcs_decipher_data( )........................................37
in gcs_decipher_key( ) .......................................161
in gcs_decipher_verify( ).....................................39
in gcs_derive_key( ) .............................................42
in gcs_encipher_data( )........................................45
in gcs_encipher_key( ) .......................................165
in gcs_export_key( ) .............................................46
in gcs_generate_check_value( ) .........................49
in gcs_get_cc( ) ....................................................137
in gcs_get_key_validity( ) .................................139
in gcs_import_key( ) ............................................57
in gcs_key_agreement( )......................................61
in gcs_protect_data( )...........................................65
in gcs_restore_cc( ) .............................................144
in gcs_set_cc( ).....................................................151
in gcs_set_key_validity( ) .................................155
in gcs_split_clear_key( ) ....................................171
in gcs_verify_check_value( ) ..............................77
in gcs_verify_key_pattern( ).............................156

GCS_S_CONFIDENTIALITY_FLAG ...................30
in gcs_generate_key( ) .........................................52

GCS_S_CONTINUE
in gcs_initialise_session( )...................................59

GCS_S_CONTINUE_NEEDED.............................30
in gcs_combine_key( ) .......................................126
in gcs_decipher_data( )........................................37
in gcs_decipher_verify( ).....................................39
in gcs_encipher_data( )........................................45
in gcs_generate_check_value( ) .........................49
in gcs_generate_hash( ) .......................................51
in gcs_key_agreement( )......................................61
in gcs_list_cc( ) ......................................................62

6 X/Open Preliminary Specification (1996)



Index

in gcs_protect_data( )...........................................65
in gcs_verify_check_value( ) ..............................77

GCS_S_DEVICE_BUSY...........................................30
in gcs_store_cc( )...................................................74

GCS_S_DOMAIN_ID
in gcs_store_cc( )...................................................74

GCS_S_FAIL
in gcs_list_cc( ) ......................................................63

GCS_S_FAILURE......................................................30
in gcs_advance_key_state( ).............................123
in gcs_archive_cc( ) ............................................125
in gcs_combine_key( ) .......................................127
in gcs_create_ac( )...............................................128
in gcs_create_cc( )...............................................130
in gcs_create_kc( ) ..............................................131
in gcs_decipher_data( )........................................37
in gcs_decipher_key( ) .......................................161
in gcs_decipher_verify( ).....................................39
in gcs_delete_ac( )...............................................132
in gcs_delete_cc( ).................................................41
in gcs_delete_kc( ) ..............................................133
in gcs_derive_clear_key( ) ................................163
in gcs_derive_key( ) .............................................43
in gcs_encipher_data( )........................................45
in gcs_encipher_key( ) .......................................165
in gcs_export_key( ) .............................................47
in gcs_generate_clear_key( ) ............................166
in gcs_generate_hash( ) .......................................51
in gcs_generate_key( ) .........................................52
in gcs_generate_key_pattern( )........................134
in gcs_generate_random_number( ).................54
in gcs_get_cc( ) ....................................................137
in gcs_get_csf_params( ) .....................................55
in gcs_get_key_validity( ) .................................139
in gcs_import_key( ) ............................................58
in gcs_initialise_session( )...................................59
in gcs_key_agreement( )......................................61
in gcs_list_cc( ) ......................................................63
in gcs_load_key( ) ...............................................169
in gcs_load_public_key( ) .................................141
in gcs_protect_data( )...........................................65
in gcs_reduce_key_usage( )..............................142
in gcs_release_bit_string( ) .................................67
in gcs_release_buffer( ) ........................................68
in gcs_remove_cc( ) ..............................................70
in gcs_restore_cc( ) .............................................145
in gcs_retrieve_cc( )..............................................72
in gcs_revoke_key( ) ..........................................146
in gcs_set_ac( ) ....................................................149
in gcs_set_cc( ).....................................................151
in gcs_set_kc( ) ....................................................153

in gcs_set_key_validity( ) .................................155
in gcs_split_clear_key( ) ....................................171
in gcs_terminate_session( ).................................75
in gcs_verify_check_value( ) ..............................77
in gcs_verify_key_pattern( ).............................157

GCS_S_INCORRECT_KEY_STATE......................30
in gcs_advance_key_state( ).............................122
in gcs_archive_cc( ) ............................................125
in gcs_decipher_data( )........................................37
in gcs_decipher_verify( ).....................................39
in gcs_encipher_data( )........................................45
in gcs_export_key( ) .............................................47
in gcs_generate_check_value( ) .........................49
in gcs_import_key( ) ............................................58
in gcs_key_agreement( )......................................61
in gcs_load_key( ) ...............................................168
in gcs_load_public_key( ) .................................140
in gcs_protect_data( )...........................................65
in gcs_revoke_key( ) ..........................................147
in gcs_split_clear_key( ) ....................................171
in gcs_verify_check_value( ) ..............................77
in gcs_verify_key_pattern( ).............................157

GCS_S_INVALID_CC_NAME
in gcs_remove_cc( ) ..............................................70

GCS_S_INVALID_REFERENCE...........................30
in gcs_remove_cc( ) ..............................................69
in gcs_retrieve_cc( )..............................................72

GCS_S_INVALID_STATE_TRANSITION ..30, 122
GCS_S_IV_REQUIRED

in gcs_decipher_data( )........................................37
in gcs_decipher_verify( ).....................................39
in gcs_encipher_data( )........................................45
in gcs_protect_data( )...........................................65

GCS_S_KEY_NOT_MODIFIABLE .......................30
GCS_S_KEY_PART

in gcs_combine_key( ) .......................................127
GCS_S_NO_CHECK................................................30

in gcs_decipher_verify( ).....................................39
in gcs_verify_check_value( ) ..............................77

GCS_S_NO_VERIFY................................................30
in gcs_verify_key_pattern( ).............................157

GCS_S_RNG_NOT_INITIALISED .......................30
in gcs_generate_clear_key( ) ............................166
in gcs_generate_key( ) .........................................52
in gcs_generate_random_number( ).................54

GCS_S_SESSION_CC
in gcs_reduce_key_usage( )..............................142

GCS_S_SESSION_CONTEXT
in gcs_advance_key_state( ).............................122
in gcs_archive_cc( ) ............................................124
in gcs_combine_key( ) .......................................126

Generic Cryptographic Service API (GCS-API) Base 7



Index

in gcs_create_ac( )...............................................128
in gcs_create_cc( )...............................................130
in gcs_create_kc( ) ..............................................131
in gcs_decipher_data( )........................................37
in gcs_decipher_key( ) .......................................161
in gcs_decipher_verify( ).....................................39
in gcs_delete_ac( )...............................................132
in gcs_delete_cc( ).................................................41
in gcs_delete_kc( ) ..............................................133
in gcs_derive_clear_key( ) ................................162
in gcs_derive_key( ) .............................................42
in gcs_encipher_data( )........................................45
in gcs_encipher_key( ) .......................................165
in gcs_export_key( ) .............................................47
in gcs_generate_check_value( ) .........................49
in gcs_generate_clear_key( ) ............................166
in gcs_generate_hash( ) .......................................51
in gcs_generate_key( ) .........................................52
in gcs_generate_key_pattern( )........................134
in gcs_generate_random_number( ).................54
in gcs_get_cc( ) ....................................................137
in gcs_get_csf_params( ) .....................................55
in gcs_get_key_validity( ) .................................139
in gcs_import_key( ) ............................................57
in gcs_initialise_session( )...................................59
in gcs_key_agreement( )......................................61
in gcs_list_cc( ) ......................................................62
in gcs_load_key( ) ...............................................168
in gcs_load_public_key( ) .................................140
in gcs_protect_data( )...........................................65
in gcs_remove_cc( ) ..............................................69
in gcs_restore_cc( ) .............................................144
in gcs_retrieve_cc( )..............................................72
in gcs_revoke_key( ) ..........................................146
in gcs_set_ac( ) ....................................................148
in gcs_set_cc( ).....................................................151
in gcs_set_kc( ) ....................................................152
in gcs_set_key_validity( ) .................................155
in gcs_split_clear_key( ) ....................................171
in gcs_store_cc( )...................................................74
in gcs_terminate_session( ).................................75
in gcs_verify_check_value( ) ..............................77
in gcs_verify_key_pattern( ).............................156

gcs_terminate_session .............................................12
gcs_terminate_session( ) .........................................75
gcs_verify_checkvalue ............................................16
gcs_verify_check_value( ).......................................76
gcs_verify_key_pattern .........................................110
gcs_verify_key_pattern( ) .....................................156
GCS_X_917_1985 ....................................................117
GCS_X_917_1994 ....................................................117

Generate Test Pattern and Verify
Test Pattern Examples .......................................221

Hash and Signature Functions...............................16
identification............................................................228
Import .........................................................................93
initialisation vector (IV) ........................................229
initiator .....................................................................229
integrity ....................................................................229
ITAR ..........................................................................229
KAK...........................................................................229
KEK............................................................................229
key..............................................................................229
Key Context .............................................................102
key context ...............................................................229
Key Creation..............................................................16
Key Exchange Functions .........................................21
key flag......................................................................229
Key Format Operations ...........................................93
Key Formats...............................................................92
Key Life Cycle ...........................................................87
key lifecycle .............................................................229
key lifetime ..............................................................229
key management ....................................................229
Key Parity.................................................................223
key protection policy enforcing...........................229
key specific parameters .........................................229
key state ....................................................................230
Key State Management .........................................110
Key State Operations ...............................................89
Key State Transitions ...............................................90
key usage policy enforcing...................................230
key validity ..............................................................230
Key Validity Period ..................................................89
Key Value .................................................................104
key value ..................................................................230
Key _State.................................................................103
Keyed

Algorithm.............................................................115
and.........................................................................115

Key_Flag...................................................................103
Key_Usage ...............................................................102
Key_Validity ............................................................103
Label ..........................................................................105
label ...........................................................................230
Layering of Cryptographic Service.......................83
LOCAL_ASYM_DECIPHER..................................10
LOCAL_ASYM_ENCIPHER..................................10
LOCAL_ENCIPHER................................................33
LOCAL_EXPORT...............................................10, 33
LOCAL_HASH...................................................10, 33
LOCAL_IMPORT...............................................10, 33

8 X/Open Preliminary Specification (1996)



Index

LOCAL_SIGN .....................................................10, 33
LOCAL_SYM_ENCIPHER_DECIPHER .............10
LOCAL_VERIFY.................................................10, 33
masquerade..............................................................230
master key................................................................230
messaging application...........................................230
minor status code .....................................................31
Mode of Operation.........................................100, 115
Non-Keyed

Algorithm.............................................................115
OM_uint32 ...........................................................28, 31
Operational Format..................................................92
Operational Key States ............................................88
optional arguments ..................................................32
parameter

(argument) .............................................................32
password ..................................................................230
permitted export mechanisms.............................230
physical security .....................................................230
policy.........................................................................230
Pre-Active State.........................................................88
principal....................................................................230
private key ...............................................................230
public key.................................................................230
quality of protection (QOP)..................................230
quasi-compromised ...............................................231
Quiescent State..........................................................88
Reason For Revocation ..........................................103
reason for revocation .............................................231
repudiation ..............................................................231
Restore ........................................................................93
return value................................................................28
Revoked State............................................................88
seal .............................................................................231
secret key..................................................................231
secure association ...................................................231
security attribute.....................................................231
security aware .........................................................231
security considerations............................................86
security domain ......................................................231
security policy .........................................................231
security service........................................................231
security unaware ....................................................231
separation.................................................................231
session.......................................................................231

context ....................................................................27
Short Block Policy...................................................100
short block policy ...................................................232
signature...................................................................232
SPI ..............................................................................232
status code..................................................................28

minor.......................................................................31
status value ................................................................28
Storage Unit Class ..................................................105
storage unit class ....................................................232
Storage Unit Instance.............................................105
storage unit instance ..............................................232
strength of mechanism..........................................232
Supplementary CC Management Functions ....110
System Programming Interface ...........................111
target .........................................................................232
technical constraints ..............................................179
threat .........................................................................232
Time of Revocation ................................................103
time of revocation...................................................232
trust ...........................................................................232
trusted functionality ..............................................232
trusted third party..................................................232
vulnerability ............................................................232

Generic Cryptographic Service API (GCS-API) Base 9



Index

10 X/Open Preliminary Specification (1996)


	p442cov.pdf
	Page 1

	blank.pdf
	Page 1


