

Business Services Architecture:
The Integration of Software Components and Common Services Infrastructure

A NAC Position Paper

April 7, 1998

About NAC

The Network Applications Consortium (NAC) is a strategic end-user organization dedicated to improving the
interoperability of mission-critical applications in a heterogeneous inter-enterprise computing environment. The
Consortium’s goal is to influence the strategic direction of vendors developing enterprise application and
infrastructure technologies. NAC focuses on providing vendors with input and feedback regarding product
development and marketing strategies by:

• publishing papers that state NAC’s strategic vision of the industry’s direction;

• educating vendors on end-user enterprise-wide computing requirements;

• promoting, facilitating, and documenting collaboration among NAC members and vendors;

• advising distributed computing vendors on marketing and product development strategies.

NAC members include:

American Bureau of Shipping Exxon
American Medical Security MCI Telecommunications
Bank of America NIKE, Inc
Bechtel Pacific Bell
Barclays Bank, U.K. Pacific Gas & Electric
Bell Atlantic SmithKline Beecham
Boeing Company Stanford University
Carolina Power & Light Co. University of Michigan
Chevron University of Wisconsin
Compaq Computer Corporation World Bank
Continental Grain Company

This paper is the result of NAC’s Strategic Interest Group (SIG) process, a collaborative effort of a subset of NAC
members whose mission is to provide a cohesive NAC viewpoint on a particular industry sector or technical topic.
The following NAC members were instrumental in writing this paper:

Carolina Power & Light Harold Albrecht, Jerry Norman
NIKE, Inc. Jordan Ausman, Wallace Box, Bill Morrison,
 Jon Otto, Curtis White, Paul Woeltje
Bell Atlantic Doug Savary
NetResults Doug Obeid
Pacific Gas & Electric Rob Batey, Dylan Kaufman
University of Wisconsin Keith Hazelton
AUTHORS: Harold Albrecht, Keith Hazelton
EDITOR: Kelli Wiseth

We welcome your feedback about this paper. For more information contact:

Doug Obeid, Executive Director
Network Applications Consortium
c/o NetResults
5214-F Diamond Heights Blvd., Suite 705
San Francisco, CA 94131

Copyright © 1997, 1998 by NAC

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE i

Contents

EXECUTIVE SUMMARY.. III

INTRODUCTION...1

FUNCTIONAL OVERVIEW: ENTERPRISE-WIDE COMPONENT-BASED APPLICATIONS5
MULTI-TIER ARCHITECTURAL CHARACTERISTICS THAT ENABLE DISTRIBUTED COMPUTING5

Service Oriented Architecture ..8
COMMON SERVICES INFRASTRUCTURE...10
COMPONENTS AND COMPONENT MODELS ..14

NAC’S COMPONENT-BASED BUSINESS SERVICES ARCHITECTURE18

ENABLING COMPONENT-BASED APPLICATION DEVELOPMENT...22
CULTURAL ISSUES: BUSINESS LOGIC AS A CORPORATE ASSET...22
PROCESS ISSUES ...23

Re-engineering the Application Development Organization and Its Processes.................................23
Application Assembly..25
Component Development...26

The Technical Services Organization...26
TECHNICAL ISSUES ...27

Interoperability Among Tools and Repositories...27
Repository ..28

Integration with Common Services Infrastructure ...30
Directory Services..31
Security Services (Authentication, Authorization)...32

Interoperability Challenges of Heterogeneous IT Environments ...33
Manageability and Distributed Transaction Processing Monitors ..34

CONCLUSION AND RECOMMENDATIONS ..36
RECOMMENDATIONS ..36

Recommendations to Vendors ..37
Recommendations to NAC Member Organizations..39

APPENDIX A. TECHNOLOGY NOTES...43
COM/DCOM MODEL, ACTIVEX COMPONENTS...43
CORBA/IIOP MODEL, JAVABEANS+ COMPONENTS ..45

APPENDIX B. GLOSSARY...47

REFERENCES ..51
Books ..51
Research Papers, Technical Notes, Articles...52
Specifications, Technical Documents ...54
Email Lists and Newsgroups ..55
Vendor Web Sites..57

PAGE ii APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE iii

Executive Summary

Today’s global, always-online economy requires business applications that are highly
flexible, easy to deploy, maintain, and extend, and the IT organization is scrambling
faster than ever to deliver them. Ideally, knowledge workers, who best know the
business problem that needs to be solved, should be able to assemble applications
independently, from a storehouse of easy-to-use, easy-to-modify “software Legos™”
called components. Component-based application development promises to enable
organizations to leverage investments in applications by allowing them to easily
reuse proven software components, whether purchased or developed in-house. The
ability to create applications from proven, prefabricated software components or to
modify a business rule in an existing component-based application — even by non-
technical staff — offers the potential to contain (and even reduce) application life-
cycle development, deployment, and maintenance costs over the long term.

But there’s much to be done before that promise and potential can become reality.
For starters, while components on the desktop have simplified life for thousands of
“visual” programmers (who also created a burgeoning market of components for end-
user application development), components on the server side of the enterprise are an
emerging technology, with just a few products coming to market1 only recently.
Mission-critical, enterprise-class applications that must support thousands of users
will still be developed primarily using transaction processing (TP) monitors, and we
believe this will likely be the case for some time.

In addition, there are three significant long-term issues that must be addressed before
component-based applications can bring the “plug-and-play” quality suggested above
to enterprise-class applications.

First, existing directory and security infrastructure is not yet integrated with
component models (see Integration with Common Services Infrastructure on page
30). Many organizations (such as those comprising the NAC), have worked over the
past several years toward achieving an integrated yet flexible foundation of common
network services that provide directory and security (and many other) services across
all applications. This infrastructure is essentially the “plumbing” that holds the
distributed computing environment together. The NAC has been a key proponent of
standards and protocols that can be implemented by all vendors in products that
comprise this infrastructure or need to interact with it — basically, all network
applications — with the goal of enabling a “plug and play” metaphor at the network
services layer. For the NAC, the lack of seamless integration of component-based
applications with existing directory and security services in particular, and with other

1 IONA OrbixOTM (with Orbix for MVS), Microsoft Transaction Server 2.0 (with Cedar and Microsoft
Message Queue (MSMQ, nee “Falcon”) for Windows NT Server, and IBM Component Broker (with
DB2 adapter) for Windows NT Server.

PAGE iv APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

common network services in general, will be a significant impediment to the
successful implementation of component-based applications. Migration to
component-based applications can only be beneficial if it leverages existing and
evolving common network services. Directory and security services are the
cornerstones of a global network that can support all the business requirements of
today and tomorrow, and component-based application implementations must be able
to integrate with these existing services transparently.

Second, the two key distributed component models discussed in this paper,
specifically, COM/DCOM/ActiveX and CORBA/IIOP/JavaBeans, are not
interoperable. Although they are conceptually similar in many respects, server-based
components built for one model cannot simply be moved into the other model, nor
can components in one model use components in the other without bridges or other
mediating technologies.2 (See Interoperability Challenges of Heterogeneous IT
Environments on page 33 for discussion).

Third, the market doesn’t yet offer management tools required for successful
deployment and scalability for enterprise-class component-based applications. The
distributed, decentralized approach intrinsic to component models is unworkable
without a choreographer-like function that dynamically coordinates and scales run-
time operations. The recent proliferation of distributed transaction processing
monitors is a welcome sign of serious vendor attention to this issue (for details, see
Manageability and Distributed Transaction Processing Monitors on page 34).

Although these issues are far from being solved (see Technical Issues on page 27 for
discussion), the NAC does believe that organizations can take steps now to ensure
that they’ll be ready to take advantage of the pre-fabricated components and
component frameworks3 as they emerge in the marketplace. Organizations should
plan to move to a multi-tier, service-oriented architecture, in which strategic
applications are partitioned between user services, business services, data services,
and legacy services. We’ve put the key concepts together in the NAC’s Business
Services Architecture (BSA), discussed on page 18. Successful migration to a
service-oriented architecture requires a fundamental cultural shift toward recognizing
infrastructure and business services as long-term capital assets.

Further, it isn’t too soon to begin limited development of multi-tier component-based
applications based on the Business Services Architecture, as long as the requirements

2The many bridging mechanisms currently available are focused on the client side, not on the server
side. However, IONA’s recent licensing of COM technology from Microsoft and subsequent product
announcements will soon change that, with an OMG compliant, bi-directional COM to CORBA server.
3 Component frameworks are pre-built, partially assembled component sets that can be customized to fit
your organization.

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE v

for application robustness and scalability are not too taxing. The NAC also
recommends that members:

• Evangelize the concept that business services and data services must be
developed and preserved as assets.

• Architect for the future by migrating to a multi-tier business services
architecture in which each service partition is isolated and preserved as a
long-term capital asset.

• Begin selecting your own interface standards at the corporate or major
function level to ensure that services will work in current and future
application development environments.

• Start (or continue) application development migration to a network services
model, which leverages both new and existing common infrastructure
services to achieve a seamless distributed environment with the scalability
and robustness required of enterprise applications.

• Collaborate with other NAC member organizations to divide and conquer the
information challenge we all face in integrating component services with
existing infrastructure and in interoperating across disparate pieces of a
heterogeneous IT environment. This would mean identifying areas of
expertise within our companies and putting in place effective ways of
leveraging that expertise by somehow sharing “latest, best available
information on problem X.”

The NAC members may need to make many shifts in the culture or organization,
including re-engineering the application development process (see Enabling
Component-based Application Development on page 22). For example, to enable the
long-term vision of component-based application development in which business
users can implement or modify applications, a technical services organization must
be in place to provide the appropriate support.

Some of these steps are going to require supporting products. Organizations will look
to vendors to provide interoperable modeling tools, repositories, and other tools that
will enable non-technical staff to implement the applications they need.
Organizations need robust, scaleable tools for modeling business problems
effectively, and we also need enterprise-wide repositories that can store all
components that will be available to others, including business users.

The interoperability among tools and repositories is at one end of the development-
deployment cycle; at the other end is the requirement for interoperability among the
applications and products. The NAC recommends that vendors help define
interoperability paths among distributed component-based server products, the
object-request brokers, the Web servers and browsers, the components that get
downloaded at runtime, and so on. As the NAC has stated since 1991, we have no
choice but to work in heterogeneous environments. And we don’t always know what
that “heterogeneity” is going to comprise.

PAGE vi APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

Thus, in general, the NAC encourages vendors to honor each other’s best
contributions, whether competitor or business-partner, by matching features and
defining interoperability paths among products. Vendors that don’t provide bridging
or other needed interoperability technology for their products should cooperate fully
with companies that do by providing all necessary information for product
development efforts. Microsoft’s recent licensing of COM to IONA for use in the
Orbix product line is an example: while Microsoft may not do CORBA, that doesn’t
mean that CORBA vendors can’t do COM.

Further, the NAC urges vendors to work together as appropriate to solve mutual
technological problems, and share information about solutions to benefit the industry
at large. A good example of this type of effort is JavaSoft’s adoption of Lotus’
InfoBus technology into the JavaBeans component architecture.

Other specific recommendations to vendors that will help NAC member companies
move towards a component-based Business Services Architecture are:

• Provide component frameworks that support seamless interfaces to
whichever implementation of standards-based common network services
match the customer’s environment. End-to-end support of role based
authorization credentials obtained under a single sign-on, in conjunction with
mapping of external users to a particular role, based on certification by some
acknowledged certificate authority, and end-to-end component/service
location transparency based on common directory services, are just a few
examples of key requirements.

• Provide component-based, framework-based enterprise application suites that
will interoperate with each other, and with the component-based services and
applications we have developed for ourselves. The IBM San Francisco
project embodies many of the concepts that NAC would like to see
implemented, particularly with the evolution of the foundation layer to a
common CORBA/Java based distributed component model. However, at the
moment, it appears to fall short in the area of providing seamless interfaces to
standards-based common network services of the customer’s choice.

• Accept the concept of a “universal thin client,” a conservative assumption
about the desktop environments of all those to whom we would like to extend
our business services. The NAC’s concept of the “universal thin client” today
includes a web browser, a Java Virtual Machine, and support for distributed
component computing. There should be no other requirements, such as
platform or operating system dependencies. The universal thin client must be
supported by the business services component frameworks, whether inside or
outside the enterprise.

• Provide user services component frameworks that make it easy to support a
universal thin client, with zero configuration and deployment, because this is
becoming a pervasive requirement for access by business partners,
customers, and suppliers. Allow the user to choose to perform more

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE vii

processing on the server (the “thin” client model) or on the client (for
ostensibly faster performance).

• Provide server-side support for distributed transaction processing (DTP)
through TP monitors that can work with a wide range of underlying
technologies. Note that this recommendation is driven more by the need for
scalability and manageability for high volume transactions than by the
narrower issue of maintaining transactional integrity. As one recent study put
it, “In reality, only between five and ten percent of the code in TP monitors is
about synchronizing transactions.”4

Full discussion of the recommendations begins on page 36.

4 Jeri Edwards with Deborah Devoe, 3-Tier Client/Server At Work. John Wiley and Sons, 1997, p. 20

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 1

Introduction

Successful organizations implement information technology for one reason, and one
reason only: to meet their business goals and enhance their position in the
marketplace. Whether the goal is to sell the most shoes, provide the highest-quality
education, or deliver the most cost-effective energy that consumers can buy,
organizations use information technology (IT), directly and indirectly, to meet or
exceed their business goals.

There’s nothing new about this premise. However, given today’s frenetic pace of
change, IT is required to provide new solutions faster than ever as organizations
scramble to meet increased customer demands, develop new profit opportunities, and
succeed in a highly competitive global marketplace that has been shaped by decades
of world-wide political change, including removal of many of the barriers to
international and local trade. Within the United States, for example, deregulation
over the past decade has changed and continues to change the competitive landscape
for the banking, energy, telecommunications, and transportation industries.

In addition, advances in communications and computer technology, as well as
widespread use of the Internet, have changed market dynamics dramatically. For
example, by enabling organizations of any size to compete on a more-or-less level
playing field called cyberspace, the Internet keeps today’s consumers just a hot-link
away from numerous competitors — regardless of location, time zone, or long-term
viability of the company behind the Web site.

Thus, a key focus for organizations today is determining how to attract, retain, and
support customers in innovative ways, and IT must develop applications accordingly.
Broadly stated, today’s application requirements include enabling the organization to
conduct more business, with more people, in more places, with more frequency,
through every conceivable type of media. For example, an organization may want to
provide a single-point-of-contact for customer service that can be accessed at any
time of day or night, whether it be through a $299 Network Computer, semi-
intelligent occasionally connected Personal Digital Assistant, or via voice through a
telephone. Projects like these are at the top of IT’s list of deliverables.

Furthermore, the IT organization must provide the applications to support the
business strategy faster than the competition — at “Web speed:” IT can no longer
take 18, 12, or even 6 months to develop, test, and deploy applications to meet

PAGE 2 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

business goals. Developers are being asked to deliver new business services at a
point-and-click pace because time itself is a strategic weapon.5

The net result is that applications must be flexible and provide leverage. They must
be easy to deploy, maintain, and modify when needed to enable the organization to
effectively profit from emerging market opportunities. IT must be able to re-use key
aspects of business applications rather than creating anew each time the business
requirements change. Component-based applications, built using established design
principles and combined with multi-tiered architectural models, hold the promise of
providing the needed flexibility, development speed, and implementation ease.

In simple terms, components are functional software units that can interact with other
functional units, typically in the context of a supporting application, such as a Web
browser, word processor, or spreadsheet, or on their own. For example, one
component from Adobe Systems, an ActiveX Control, extends the functionality of
Microsoft Word so that end-users can save documents as Acrobat pdf (portable
document format) files for easier information sharing with others. Word
automatically “knows about” this ActiveX Control because its functions (services) —
saving the content of a Word document in the Acrobat file type — are “published”
system-wide through a mechanism known as Automation6, so automatically the
Acrobat file format is added to Microsoft Word’s save routines. ActiveX Controls in
this context are just one example of the hundreds of components available for the
desktop today.

The example highlights just a couple of the key benefits of components and
component-based applications. Specifically, incremental functionality — in this case,
an additional file format — is added with relative ease because the component
approach is modular. Rather than installing an entirely new version of Microsoft
Word that would include the added functionality, the user has only to install the
ActiveX Control — a single 75K file — to gain the additional save routines. In
addition, the component has a means of interacting with other software from another
vendor without the second vendor knowing the internals of the component — yet the
component does what it’s supposed to do. In software developers’ slang, the
component is said to be a “black box”7, an externally identifiable entity that provides
a known service, yet hides its internal mechanisms. This modular encapsulation can
simplify the developers’ job by providing a means to use existing software without
having to learn about its internal design or code in order to understand how to use it.

5 “Time — The Next Source of Competitive Advantage.” G. Stalk, Jr. The State of Strategy. A Harvard
Business Review Paperback. 1991.
6 Formerly known as “OLE Automation.”
7 A more formal definition of black box: “A process with known inputs, known outputs, and a known
function but with an unknown (or irrelevant) internal mechanism.” The Practical Guide to Structured
Systems Design. Meilir Page-Jones. Yourdon Press Computing Series. 1988.

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 3

Another frequently cited potential benefit of component-based applications is lower
total-cost-of-ownership (TCO). Over the long-term, component-based applications
promise to lower the TCO over the full life-cycle of the application, from
development, through deployment and maintenance. Components are expected to do
this by finally providing the level of re-use that development organizations have been
trying to achieve for several generations. However, many changes to application
development processes must occur within an organization before component-based
applications can be effectively implemented. For example, the application
development process itself may need to be re-engineered8. Thus, despite all the hype
about lower TCO, the Network Applications Consortium (NAC) believes that the
component-based application model will increase rather than decrease costs in the
short run.

However, it is the ability to extend and leverage applications over the long-term —
not decrease short-term costs — that is a primary potential benefit of component-
based applications. Flexibility and extensibility are the two chief characteristics that
the NAC requires for distributed enterprise-class business applications. Specifically,
NAC organizations must be able to apply component technology to the back-end
services that comprise their enterprise applications portfolio, not just on the desktop.

For example, say an organization has an existing database system that provides the
basis for many of its financial applications, including the company’s general ledger.
The controller wants the general ledger system modified such that he will be notified
automatically, by an email message generated directly from the database, when the
accounts receivable total for any single customer is greater than $5,000 and is aged
beyond 90 days. Applying the concepts presented in the Adobe ActiveX Control
scenario to such a change, the functionality of the general ledger system should be
extendible with the addition of the appropriate component to the system, one that
generates an email message based on this specific business rule.

Note that this example assumes a great deal of transparent interoperability behind
the scenes: the email system and the database service work together, just as the
Adobe ActiveX Control and Word could work together, to provide the necessary
functionality. This foundation upon which all enterprise-wide cross-application
interactions depend is referred to by the NAC as the network services infrastructure,
and it is a basic requirement that applications, component-based or otherwise, make
use of this infrastructure in a transparent manner. Unfortunately for organizations
today, this is not usually the case.

The need for component-based applications to integrate transparently with the
network services infrastructure layer is one key message in this paper, in particular

8 See Enabling Component-based Application Development beginning on page 21 for a discussion of
application development process issues.

PAGE 4 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

the as-yet unmet need to integrate with existing and evolving directory and security
services. Directory and security services are the cornerstones of a global network that
can support all the business requirements of today and tomorrow, and component-
based application implementations must be able to integrate with these services
transparently.

In this paper, the NAC presents a generic Business Services Architecture (BSA) as
the recommended way to design, build, and deploy distributed, enterprise-class
component-based applications (see NAC’s Component-based Business Services
Architecture on page 18). The NAC BSA synthesizes key concepts from multi-tier
distributed application architecture, service-oriented architecture, component-based
application development, and the common network services model, and these are
introduced first, in the Functional Overview: Enterprise-wide Component-based
Applications beginning on page 5.

In addition, NAC presents an overview of the application development process and
organizational changes that will be required to support this highly flexible application
development paradigm (see Enabling Component-based Application Development on
page 22). Beyond the organizational and process issues are significant technology
challenges that must be addressed, as discussed starting on page 27. Given the
technical issues, NAC concludes with recommendations to vendors, member
companies, and other organizations about what they can do today to begin realizing
the NAC’s long-term vision of application assembly by business experts rather than
programmers.

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 5

Functional Overview: Enterprise-wide Component-based
Applications

The NAC’s Business Services Architecture (BSA) is a conceptual framework used to
highlight key issues relative to component-based applications. Synthesizing key
features from multi-tier, service-oriented architectures; component-based application
development models; and the Burton Group’s Network Services Model, the BSA also
provides a flexible foundation for designing, deploying, maintaining, and extending
distributed, component-based enterprise-class applications. The key characteristics
and benefits of the underlying architectures and models are discussed briefly in this
section before presenting the BSA.

Common Services Model

Business Services
Architecture

Multi-Tier Architectural Characteristics that Enable Distributed Computing
From the highest-level viewpoint an application can be monolithic or multi-tier. (A
tier is a logical, not a physical, construct.) Monolithic applications are those in which
client presentation logic, business logic, business-to-database schema mapping, and
connectivity logic — in essence, the entire application from one end to the other — is
designed as a complete unit. Core business logic is buried deep within the
application. When business requirements or rules change, it’s difficult and time
consuming to “get at” and change the business logic. Many so-called legacy
applications were built in this manner, modular design techniques notwithstanding:
the elements that comprise the application were compiled and deployed as a unit, not
available to be used by other applications.

Unlike monolithic applications, a multi-tier application architecture partitions the
programming logic into individual functional units. Early client/server development
activities in the late-1980s and early-1990s defined a two-tier model, typically
implemented as a client application and a database server. As with monolithic
applications, two-tier client/server applications suffer from inflexibility and high
maintenance costs, mostly because the business rules are held hostage in either the
client, the database, or a mix of both.

For example, in the two-tier client/server implementation below (A), much of the
programming logic that defines the business rules is contained as code on the client,
as VB for Applications (Visual Basic for Applications) scripts, for example. On the

PAGE 6 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

other hand, in implementation (B), much of the programming logic that defines the
business rules is contained in the database itself, as stored procedures9.

Figure 1. Two-tier Client/Server Architecture Can Be Implemented in Many Different Ways

Windows
NT Server

Unix
server

TCP/IP

Oracle

Desktop
computer

Customer service
client application

A

Desktop
computer

Microsoft Excel
spreadsheet

B

Customer
information

system (stored
procedures)SQL

Server

Regardless of whether the two-tier approach is client-centric (A) or database-centric
(B), the two-tier design doesn’t scale well. In the client-centric approach, updating an
application involves distributing software to every client workstation. In the
database-centric approach, additional client applications cannot seamlessly take
advantage of the business rules without taking the application apart. For example,
witness the difficulties in integrating two different two-tier applications:

At the forefront of the client/server movement, Acme Gizmo Enterprises
(AGE) first implemented an Oracle database application in 1992 in its
customer service department. To ensure fast response time to hundreds of
customer service representatives taking orders over the phone, the
developers used numerous stored procedures in a two-tier client/server
implementation. The application has served AGE well, but now that Global
Unified Luxury Products (GULP) has acquired AGE, AGE’s customer-
related functions must be incorporated into GULP’s customer information
system.

Like AGE, GULP also had taken a two-tier client/server approach to its
customer information systems, but its business rules are buried in the client
application as well as the server. As an example of the business rules:
Whereas AGE allowed customer orders of up to $500 to be processed
without a credit check, GULP requires orders over $200 to be approved by a
credit manager. Rules such as these are buried within the code of both

9 Batch SQL routines stored in the database.

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 7

systems, in one case, in the client applications, in the other case, in the
database itself as stored procedures.

The bottom line is that unification of the two systems will likely require extensive
research, detailed analysis, and re-coding from end-to-end (both client applications
and server applications) because of the two-tier architecture.

The three-tier client/server architecture is an improvement over the two-tier model
because it goes further to partition the functions comprising the application into truly
modular units. Modularity is one of the chief characteristics of multi-tier architectures
that enhances application flexibility: groups of related functions and data are
packaged into units. Presentation logic, business logic, and data mapping and access
logic are contained in separate modules.

Figure 2. Three-tier Client/Server Architecture Enables Re-use of Business Rules by Other Clients

Application
Server

TCP/IP

Oracle

Desktop
computer

Customer service
client application

1 - 2

Desktop
computer

Microsoft Excel
spreadsheet

SQL
Server

Customer
information

system
2 - 32 - 3

1 - 2

So-called "middle-tier"
containing business logic:
This tier, represented by the
"Application Server," may
span multiple platforms.

For example, in the three-tier client/server model shown in the figure above, much of
the programming logic that defines the business rules is contained in the middle tier
of the application. This logical tier containing the business rules is separate from the
presentation logic that calls it and the databases that it in turn needs to access (2-3).
This results in the ability to modify the business rules as needed, without having to
modify all other participating tiers, and also leads to the possibility of leveraging
these business rules in other applications.

PAGE 8 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

Service Oriented Architecture
A service-oriented architecture takes the concept of modularity and separation of
data and business rules further still. Gartner Group defines a service-oriented
architecture as “a particular style of multi-tier computing that helps enterprises share
logic and data. It assumes multiple software tiers … and leverages the principle that
many aspects of processing logic are common to many users of some particular data
set rather than being uniquely associated with one particular application… A service
is a black box that hides code and data from the developer of the client application…
A service-oriented architecture maximizes code reuse and minimizes the redundancy
of logic and data by organizing functions into shareable, encapsulated modules that
can be accessed from multiple requestors.”10

Figure 3. Service-oriented Architectures Encapsulate Business Rules in Business Service Module

User
Services

Application
Server

Desktop
computer

Desktop
computer

User
Services

Business
Service

Business
Service

Business
Service

Business
Service

RDBMS
3

RDBMS
2

RDBMS
1

The “black box” concept originated from structured design techniques in which a
module encapsulates a specific function: the inputs, outputs, and the function itself
are known externally, but how the service performs its functions is not. Expanding on
the scenario introduced on page 6 to include service-oriented architecture concepts:

After struggling to integrate two-tier client/server customer service systems
from two disparate organizations into a newly merged, company-wide
system, the IT planners realized it would be best to step back and take a

10 “Architecture and Planning for Modern Application Styles.” GartnerGroup Systems Software
Architectures (SSA) Strategic Analysis Report. R. Schulte. 4/28/97.

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 9

longer term view. They decided they should provide a high-level overall
architectural plan for the newly merged organization, and that taking a
service-oriented approach to this architecture would be strategic to the
company’s success in the future. First, they put together an architecture team
to identify the major functions and data constituents of all systems across
both companies.

The architecture team extended the principles of the service-oriented
architecture to include existing databases and legacy systems as well, and
they created the high-level, simplified model shown below as a viable
architecture that would enable the two organizations to leverage what they
each currently had, without starting from ground zero.

For example, by abstracting the data access mechanisms as a logical tier
(data services), separate from the business service, they would be able to
provide a business service containing the business rules of the merged
company, yet keep the databases of each of the old systems as they were. The
business service could call the data services layer (B-1), which in turn could
call the specific database. Or the data services layer can call the legacy
service (B-2), which in turn can function as an abstraction layer to legacy
applications. For example, the system might include data updates through
CICS to DB2 data on the mainframe.

Figure 3a. Business Services Can Be Re-used as the Basis for New Applications

Business
Services

Data
Services

Legacy
Services

User
Services

Application
Server

Desktop
computer

Desktop
computer

User
Services

ODBMS FlatfileRDBMS

B-1

A-1

B-2

Legacy
Applications

IMSISAM DB2

PAGE 10 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

With the business rules isolated in a single tier, they would be easier to
change in the future – in the case of another merger or acquisition, or even
less dramatic changes, such as when prices change or state sales tax rate
changes. Better still, any other new applications created can access this
business service.

Thus, rather than coding and replicating the same business logic throughout the
organization’s systems — once for the mainframe, once for the internal, client/server
network, once for Internet access, once for special business partners to access, and so
on — the business service is provided on an enterprise-wide basis.11

The benefits of a service-oriented architecture are significant: The organization can
begin to realize one key benefit, re-use of business logic at the application level. But
a crucial piece is still missing: large enterprises depend on many behind-the-scenes
network services to tie the pieces together, as discussed in the next section.

Common Services Infrastructure
A multi-tier, service-oriented architecture depends on an infrastructure of core
network services. This infrastructure has been defined by The Burton Group
(http://www.tbg.com) as the “Network Services Model.12” The Burton Group
developed this model in 1991 and has been evangelizing the model as a basis for
global, interoperable networking. The NAC endorsed the basic premise of the
Network Services Model in its first position paper13 on interoperability in 1994 and
has adapted various aspects of that model for use in subsequent papers, which it
refers to as the “common network services model,” or simply, the “common services
model.”

Briefly, the key concept from The Burton Group’s Network Services Model that
NAC’s common services model includes is this: each one of a core set of critical
functions must be performed for all network entities in a distributed computing
environment by a single, unified service. The NAC’s mission over the past several
years has been to evangelize the proposition that these common services, which
become an organization’s information infrastructure, must be leveraged – not re-
invented with each new application that is deployed. The set of common services
provides:

11 According to the Gartner Group, its service-oriented architecture is “not sufficient for integrating
applications that are designed by different development teams.11“ But the NAC believes that by
providing a network-services-model-based foundation and using interoperable component technology to
develop business and other services, that is precisely what can be achieved. These ideas will be brought
together in the Business Services Architecture discussion.
12 “Intranets, the Network Services Model, and the Future of the NOS.” Jamie Lewis, The Burton
Group. Network Strategy Overview, July, 1996. Section 3.4 The Role of Component Software in Two-
and Three-Tier Architectures.
13 See “Interoperability: A NAC Position Paper” August 1994. Available at http://www.netapps.org

http://www.tbg.com/

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 11

• A way for network entities of all types — human users; resources, such as
printers, workstations, and servers; as well as software entities such as
applications, common services, and components — to determine what other
entities are available on the network, what they are called, and how to find
each other. These functions are provided by directory services.14

• A means of maintaining integrity, accuracy, and privacy of all information
and resources on the network. These functions are provided by security
services, which verify the identities of people, processes, code modules, and
all network entities that require authentication. Once authenticated, security
service mechanisms ensure that all network entities — again, both people and
processes — have access only to services and information for which they
have been authorized.

• A means of ensuring that related activities can be performed in such a way
that, despite any system or other failures, information and resources maintain
their integrity. This function is provided by transaction services.

For example, an ATM (automated teller machine) withdrawal might deduct
an amount from one database table and add an amount to another table in
another database. If a process or the power fails during the course of this
activity, transaction services ensure that all database tables maintain their
integrity (based upon the state of the transaction at the time of failure).

• A means of communicating among all network entities, including human
users, even when all participants are not actively connected to the network.
This functionality is provided by messaging services. For example, a store-
and-forward email system messaging service provides a place for email
messages to be stored for later delivery, when the recipient accesses his
email.

A message queuing service provides this same functionality for transaction
processing activities that cannot occur in “real time” for whatever reason. For
example, many OLTP (online transaction processing) systems rely on
message queuing facilities to store in-process transactions when a database is
off-line for reloading or backup. This communication model is also essential
for wireless or occasionally connected mobile users with laptop or palmtop
computers or digital appliances.

14 Although naming and directory services are often discussed separately, particularly in detailed
technical and product architectures, we use the term directory services to include both.

PAGE 12 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

Figure 4. Enterprise Computing Requires an Infrastructure of Common Network Services

3

Server

TCP/IP

Desktop
computer

Desktop
computer

1

4

Transaction
Services

Directory
Services

Security
Services

Messaging
Services

Other
Network
Services

Time
Services

2

So for example, in a typical (ideal) scenario, a customer service representative might
log on to the customer information system using a user ID and password.15 The
directory service (1) would locate the security service (2), and would validate the
user by comparing credentials held in the directory. The customer information system
also uses the messaging system (3) to process approval for orders over a certain
dollar amount; an email message is created and sent to the credit manager. The
database tables remain in synch regardless of any failures across the system that
might occur prior to approval and completion of this process because the entire
process is protected by the transaction service (4).

Several other common network services are part of the core set as well. For example,
management services provide a wide range of functions including software
distribution, desktop management, network and systems monitoring, problem
reporting and help desk facilities, and more recently, distributed application
monitoring and management. Time services are crucial in a distributed network
environment, essentially functioning as a network clock that provides consistent
time-stamping for all events throughout the network.

15 Ideally, the user’s token from his initial network logon would be used to access the customer
information service, but that’s a topic unto itself. For details, see NAC’s paper on single sign-on entitled
Enterprise Directory Services Integration, Enterprise-wide Security: Authentication and Single Sign-on.
July 1996. (http://www.netapps.org)

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 13

However, full discussion of these and other common services16 is beyond the scope of
this paper. The relevant points for this discussion are these:

• the common network services must interoperate with each other

• component-based distributed applications must seamlessly integrate with the
existing common network services infrastructure

The concept of being able to leverage existing common services that can be used by
all applications has always been central to the NAC’s definition of interoperability.17

Figure 4a. The NAC Business Services Architecture Requires Common Network Services

Directory
Services

Security
Services

Other
Network
Services

Messaging
Services

Time
Services

Tran-
saction

Services

Business
Services

Data
Services

Legacy
Services

User
Services

Desktop
computer

Desktop
computer

User
Services

ODBMS FlatfileRDBMS

Mobile user

User
Services

IMSISAM

These common services are needed to support distributed computing in all its forms,
whether limited to the confines of a single organization or spanning a world-wide
global distributed computing network, and whether based on a private or public
communications network. Network entities must be able to determine what other
entities are available, find each other, ensure that they are who or what they claim to
be and that they have the right to do what they want to do, and ensure that all
processes and information maintain their integrity.

16 The Burton Group’s Network Services Model today includes Web Services and Object Services, in
addition to the original model’s File, Print, Directory, Security, Messaging, and Management services.
For more information about The Network Services Model, contact The Burton Group
(http://www.tbg.com). For further discussion of interoperability and the common services model,
contact the Network Applications Consortium (http://www.netapps.org).
17 “NAC’s definition of interoperability has two dimensions. Interoperability provides IT managers with
(1) the ability to mix-and-match the building-block components and applications that comprise the IT
infrastructure; and (2) the use of a common set of service functions shared by all applications.” From
Interoperability: A NAC Position Paper. August 1994.

PAGE 14 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

The recognition that applications must be supported by the common network services
infrastructure is what the NAC believes is missing from other discussions of
enterprise application issues. The NAC’s business services application architecture,
discussed on page 18, includes this important element.

Components and Component Models
So far the discussion of architecture at the enterprise-wide application level has been
purely conceptual, highlighting the benefits of various approaches. But implementing
an application involves choosing specific application development models and
specific tools, which in turn support specific interfaces and techniques for creating
business applications. (A specific organization’s architecture likely includes lists of
such things in the way of standards.)

The NAC defines a component as an executable whose behavior can be customized
by an end-user without modifying source code. Components are capable of
providing the very needed benefit of re-use and flexibility, while retaining their ease-
of-use. Components can be easier to use to create applications because you don’t
need to understand how they do what they do in order to use them, and even for
highly technical people this is an advantage over having to learn yet-another
programming language or programming model. This is what’s meant by “ability to be
customized by an end-user without modifying source code.”

The NAC’s definition is consistent with other industry analysts, including the Gartner
Group, which defines a component as “a dynamically bindable package of one or
more programs managed as a unit and accessed through documented interfaces that
can be discovered at runtime. In other words, a component is a black box that is
particularly friendly to the developer because it is implemented with a formal
mechanism for defining and managing the parameters in the program-to-program
messages.”18 The net result is that components, as we’ve defined them, can turn some
of the chief features of object-orientation, specifically, encapsulation and abstraction,
into the real business advantage of re-usable executable code that can be used to
easily and quickly assemble business applications.

In practical terms, NAC defines components specifically in terms of the two key
alternatives widely available today, Microsoft’s ActiveX Controls and JavaSoft’s
JavaBeans. An ActiveX component is language independent but operating system
specific (although not inherently limited to one OS, because it is based on a binary
standard); the JavaBeans component is language specific but operating system
neutral, as long as a Java Virtual Machine (JVM) is present.

18 “Architecture and Planning for Modern Application Styles.” GartnerGroup Systems Software
Architectures (SSA) Strategic Analysis Report. R. Schulte. 4/28/97.

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 15

To be usable, components must provide mechanisms that enable a development
environment to discover the properties that can be modified and the events that it
generates. Components must allow for graphical editing of their properties, and they
must be directly customizable from a programming language. Finally, there must be a
way to put components together — semantically link them.

To support this model in a distributed computing environment requires
communications infrastructure. Microsoft’s communications infrastructure that
supports a distributed component model is called COM/DCOM (Component Object
Model/Distributed COM). The NAC believes that the OMG’s (Object Management
Group) CORBA/IIOP (Common Object Request Broker/Internet-InterORB Protocol)
in conjunction with JavaBeans is conceptually equivalent to the
COM/DCOM/ActiveX distributed component model.19 The figure below generalizes
the key concepts from both models in the context of the service-oriented architecture.

Figure 5. Component-based Distributed Application Model

Inter-component communication protocol (DCOM or IIOP)

ORB/COM

Legacy
Services

Data
Services

User
Services

Business
Services

ORB/COM ORB/COM ORB/COM

This is another view of the service-oriented architecture presented earlier, a view that
brings in more specific concepts of the broker and the communication protocol (or
“wire protocol”). A CORBA-compliant ORB (object request broker) handles requests
and returns results among objects. With IIOP, different ORB products from different
vendors can work together to handle such requests. The Microsoft component object
model and DCOM provide similar functionality. In the figure above, user services,
business services, data services, and legacy services20 are implemented as components
using one of these models. To some extent, you can use both models in certain
circumstances. For example, you can embed ActiveX components in JavaBeans, and

19Although the OMG’s CORBA/IIOP (CORBA 2.0) has no corollary to ActiveX Controls (nee OLE
Controls) at this time, JavaSoft’s JavaBeans is used by many ORB (object request broker) vendors and
distributed application developers to fill this gap. And it’s expected that CORBA 3.0, due by Q4 ‘98,
will include a JavaBeans component model (currently referred to as CORBAbeans) as part of the
standard, thus the NAC has anticipated this model.
20 Actually, a component interface is wrapped around the legacy application.

PAGE 16 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

embed JavaBeans in ActiveX, to the extent that the various compilers have hooks or
supporting mechanisms.

The important parts of a component include its interface, methods, properties, and
events. The interface is often described as the “contract” between software
components because it establishes expected behavior and responsibilities. Another
way of thinking of an interface is as a collection of methods (or functions): what are
all the things this component can do? What can be changed? How does another
component use it? These are the types of questions that methods, properties, and
events answer, and the interface is the contract that makes these aspects evident.
Components export one or more interfaces, each of which supports one or more
methods. So for example, in the figure above, a business service component called
Customer might have an interface that supports methods for requesting an account, or
changing address information, or requesting a higher credit limit.

At a low level, an interface definition language (IDL) is used to define the interface
programmatically. The OMG’s IDL is what enables CORBA to achieve its
heterogeneity because developers can define methods in any programming language
that provides CORBA bindings (Java, COBOL, C, C++, Ada, Smalltalk).

The Microsoft IDL (MIDL) has its origins in DCE/RPC. Beginning with Windows
NT 3.5, the MIDL compiler was extended to support COM interfaces. So although
both models are based on the concept that “interface is separate from
implementation,” the interface definition languages and IDL compilers that they use
are different.

Scripting languages are commonly used to define the interactions between
components in a component-based application. Server-side scripting languages (such
as JavaScript, VBScript, and JScript) can be used to create server-side applications.
JavaScript is Netscape’s cross-platform, object-based scripting language for client
and server applications. Navigator JavaScript is used for client side applications, and
LiveWire JavaScript is used server-side. Microsoft also has several scripting
languages, including the Visual Basic scripting language and JScript. JScript is the
Microsoft implementation of the ECMA 262 language specification. It is a full
implementation, plus some enhancements that take advantage of capabilities of
Microsoft’s Internet Explorer.

To expand upon the service-oriented architecture scenario above to include the
distributed component-based application model:

The architecture team articulated its vision of the service-oriented
architecture to the application development (AD) organization, which had
always been keenly aware of the benefits of re-use and was implementing
prototypes of key business services using component-based application

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 17

development tools. The AD organization wanted to leverage not only code,
but skills as well: with a vast number of VB (Visual Basic) programmers in
the group, they could make the transition to component-based applications
fairly easily.

The ProductOrdering business service was put together from several COM
components. These included the CreditCheckComponent, which contained
the rules for when to send a message to the accounts receivable clerk to
approve purchases over a specified dollar limit. The Shipping component
contained the shipping rates, destinations, and delivery timetables. The
SalesTax component contained all the state sales tax rates. The Order
component itself was built from several other components, including the
Inventory component, which reduces inventory for each order accordingly;
the CustomerAccount component, which records the purchase to accounts
receivable (another component) and also posts the item to the customer
history file.

The CustomerAccount component was used in many other applications
throughout the company. For example, the Sales organization implemented
this component in its Field application using a Web browser.

These components were integrated using scripts and hosted on Microsoft
Transaction Server. The client application was Web browser based, and the
only expectation was that the client could support HTML, and that the client
included a JVM (Java Virtual Machine). This meant that it didn’t matter if
the end-user had a Mac, a PC, or even a Unix workstation. When users click
on the internal Web site, the HTML page is downloaded to their workstation.
The Jscript pops up some dialogs that gather input information, such as
Customer name, address, phone, and so forth.

This application could also have been built using CORBA/IIOP/JavaBeans
components, with essentially the same result. The point of this paper is not to debate
the relative merits of either approach. Both COM/DCOM/ActiveX and
CORBA/IIOP/JavaBeans enable component re-use. The important question for the
NAC is how to integrate both models — since NAC member organizations must
support both — with the existing and evolving common network services
infrastructure. That’s why the NAC’s Business Services Architecture, described in
the next section, provides for both models.

PAGE 18 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

NAC’s Component-based Business Services Architecture

An enterprise view of IT can only result from keeping the focus on the business
needs that IT must serve. One key long-term goal of an enterprise IT architecture and
its associated application development processes is to enable business experts — not
just technologists — to assemble the applications that they need. Building on the
concepts and chief benefits of the architectures and models presented so far, the
NAC’s business services architecture (BSA) can provide an organization with the
flexibility and ease-of-use needed to rapidly assemble, customize, and deploy new
business applications with this focus. The NAC’s BSA is a conceptual construct that
provides:

• Common network services infrastructure that enables a seamless distributed
environment with the scalability and robustness required of enterprise
applications. For the foreseeable future, these services will need to support
both component-based and non-component versions of other services.

• Multi-tier, service-oriented architecture, in which each service provides a
single function that is available exclusively through this service, and the
component-based interface to each service is well-documented and widely
published21. Service-oriented architectures are based on established design
principles, including:

• Black box (information hiding) design metaphor, including the two
related design principles, modularity and encapsulation, applied to inter-
system, application system, application program, service, and component
levels as appropriate.

• Partitioned application structure, in which the design of each partition or
logical tier may be de-coupled from the design of the other tiers

The design of business services is completely de-coupled from the design of the other
services. The business services architecture abstracts functions that comprise an
application and isolates them from each other so that each can each be used
effectively over the long term. Business services must be accessible to new client
interfaces and must be able to shield users from behind-the-scenes implementation
details such as disparate databases, legacy systems, directory and security services
and the like.

21 Although service implementations may be procedural, object-based, or component-based, it is
assumed for this discussion that they are component-based, and that the interfaces are documented and
published in the Component Repository for use by developers, and eventually business users, who
assemble and customize applications. The interfaces also must be published via the Directory for run-
time use, including the description of the particular service being “documented” as attributes, so that
they can be dynamically discovered based on their capabilities and proximity, for example, rather than
based on a particular name of a service instance.

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 19

Figure 6. The NAC’s Business Services Architecture

Inter-component communication protocol (IIOP or DCOM)

TCP/IP

C
om

po
ne

nt
s

(A
ct

iv
eX

, J
av

aB
ea

n,
 e

tc
)

User
Services

ORB or
COM

Business
Services

ORB or
COM

Data
Services

ORB or
COM

Legacy
Services

ORB or
COM

Directory
Services

ORB or
COM

Security
Services

ORB or
COM

Other
Common
Services

ORB or
COM

Common Services

NAC’s business services architecture partitions applications into five constituent
elements.22 The goal of this partitioning is to ensure that any business service will be
re-usable by the other constituents, including other business services as required,
both internal and external to the organization.

• User services enable a user to interact with the business services, based on a
particular view of the business service. For example, administrators, internal
business users, external trading partners, and customers will all have different
views of the same business service, with different presentation rules and
different functionality available to them.

User services are often thin, forms-based views tailored to the particular type
of user. User services may be implemented as HTML or Java components to
run in a universal browser, or they may be implemented as platform specific
ActiveX components using Visual Basic, or platform specific variations of
HTML and Java, depending on the requirements of the particular application
and user community. Consistent with the NAC’s definition of tier as a logical
construct, it’s important to note that user services may reside on the client
machine or the business server, with only a presentation component on the
client. For example, an ActiveX, HTML, or Java-based order entry form
could be downloaded to the client for display in a Web browser.

22 The full model may not be applicable to every organization. For example, some organizations may not
have legacy access and integration issues, or may choose not to address them in this way. Other
organizations may choose, for whatever reason, not to partition data services as a separate logical tier.
The specifics are for example purposes only, and regardless of the nomenclature used in this version —
data services vs. persistence services, for example — the concepts of partitioning, encapsulation, and
modularity are the important elements of this discussion.

PAGE 20 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

• Business services implement the business rules and processes that define the
particular business model. Business services may be distributed across
multiple business servers (which in the three-tier client/server model were
referred to as the “middle tier”), as dictated by accessibility, availability,
scalability, and other specific technical requirements.

Each business service represents a single business function that is available
exclusively through this service, although it may be implemented as multiple
components. For example, a service such as “Product Ordering” may resolve
into a series of operations involving several different components, such as
customer validation, order validation, inventory update, shipping, and billing.

• Data services are an abstraction layer that maps business objects to the
particular database schema that supports them in their stored (persistent)
form. Advanced data services may support the mapping of a common
business data object to multiple data stores; for example, a customer object,
part of which is stored in DB2, part in Oracle, and part stored commonly in
both.

• Databases are the particular database management system (DBMS)
instances, such as flat-file databases, relational databases, object-
relational databases, object-oriented databases, or other types of data
stores that are considered strategic.

• Legacy services provide component-based interfaces to legacy applications
and data that must be accessed as-is. Legacy services can be implemented as
a component-based interface “wrapper”23 on the legacy system itself, or on a
separate tier that accesses the legacy system via a gateway. The legacy
services provide abstract business object interfaces to the legacy business
services and data. They may be accessed from either the Business Services
tier or the Data Services tier24, or both, depending on the particular design.

• Databases in this context are the particular legacy database instances,
such as flat-file databases, hierarchical databases, and relational
databases, that are accessed from the legacy services layer through a
legacy application, such as one that is CICS or IMS based, or through
legacy I/O subroutines.

• Common services, including directory, security, and other services made
available to any of the service partitions that require them. For example, any
of the other tiers (user services, business services, data services, and legacy
services) must be able to:

23 “A wrapper is a layer of software that provides a new interface to the program around which it is
wrapped. The purpose of a wrapper is to make the underlying program accessible to an otherwise
incompatible external requesting program.” R. Shulte. Gartner Group SSA Research Note. “Clarifying
Wrappers and Message Brokers. 10/17/97.
24 One member company is currently prototyping data services and legacy access alternatives with the
intention of making legacy customer data available as encapsulated COM or CORBA data objects via
the data services tier. However, this is still a prototype, not a proven design.

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 21

• Identify themselves to the security service and gain an authentication
token that validates their identity25

• Obtain from the security service the authorization credentials for the
particular user or role/group name upon whose behalf access is
requested, so that access rights can be verified (using another security
service)

• Use the directory service to locate the service component needed for the
task at hand (anything ranging from the core common services such as
authentication and authorization, or a higher-level business service
component (check the customer’s credit history, for example)

Although it may appear obvious in the above examples, the NAC wants to emphasize
that seamless and manageable implementation of this will require authentication
tokens, authorization credentials, component naming, and name-to-location binding
that can work from end-to-end, across the range of operating systems, network
operating systems, and platforms. In other words, all authentication tokens,
authorization credentials, component naming, and name-to-location binding
mechanisms must be interoperable.

The goal of this service partitioning is to ensure that business services can evolve and
be reused over their lifetimes, and can be made accessible to any user services as
required, both internal and external to the organization.26 Equally important, long
term, is to design data services as an independent entity that can evolve on its own
technology curve, be reused over its lifetime, and be made accessible to any business
services as required. In addition, common network services functions are isolated as
separate logical partitions, which makes it easier to “plug in” new implementations of
these common services as necessary, without requiring redesign or rewriting of the
services that use them. Thus, services designed and implemented in this model can be
evolved, reused, deployed, and made accessible where and how required over their
lifetime.

25 Used in mutual authentication procedures between servers to assure each that the other is authentic
and not an imposter.

26 Note that this may require some additional inter-object communication and firewall infrastructure,
not discussed here, to provide for the secure routing of business services requests/responses to and from
clients outside the firewall.

PAGE 22 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

Enabling Component-based Application Development

The full benefit of component-based applications won’t be achievable in the short
term due to many factors, particularly the lack of interoperable component models
and lack of integration with existing and evolving common network services.
Nonetheless, organizations can lay the groundwork today in several key areas to
ensure that they will be in a position to effectively implement and integrate
component-based frameworks, tools, and technologies when they become available.
The critical success factors, discussed in this section, include:

• Cultural and organizational issues: The organization must be inculcated
with the fundamental concept that business applications, especially the core
business logic and business data services, are key corporate assets whose
useful life must be leveraged and extended by re-use.

• Process issues: Application development processes must be re-engineered to
support a Business Services Architecture (a component-based, multi-tier,
service-oriented distributed application architecture built on a common
services foundation). Application assembly and customization processes
must be distinguished from component development processes, with roles
and responsibilities clearly delineated. In addition, a technical services
organization must be integrated into the organization.

• Technical issues: There are many technical issues that must be resolved by
vendors and implementers before successful migration to component-based
application development can occur. The existing and evolving common
services infrastructure must support both component- and non-component-
based applications. In addition, organizations will need interoperable
modeling tools and repositories.

Cultural Issues: Business Logic as a Corporate Asset
The NAC’s development of the Business Services Architecture was predicated on the
fundamental concept that business logic and business data should all be treated as
assets, just like the other assets of the organization that are accounted for on the
balance sheet. When an organization views business logic as an asset to be leveraged
over the long term, it will be more inclined to move toward a service-oriented
architecture, in which business logic is de-coupled from client applications, from
databases, and from data access mechanisms.

Recent changes to federal accounting procedures (which will also be adopted in the
public sector as mandated by the SEC for publicly held corporations) will reflect this
philosophical shift, in black-and-white on the organization’s balance sheet.
Specifically, beginning in 1999, the cost of internally-developed software will appear
on the balance sheet as an asset along with the other property, plant, and equipment

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 23

(PP&E) on the corporate balance sheet, to be amortized over a period of years of
expected useful life27.

Accounting principles aside, the NAC believes that a psychological, cultural shift in
consciousness must also occur within the development organization, from the top
ranks down to entry-level programmers. An organization that doesn’t treat its
information systems, development activities, and business applications as assets
won’t be psychologically prepared to migrate to the business services architecture,
nor will it be in a position to effectively implement component-based application
development practices.

Process Issues
Application development processes must be re-engineered to support a Business
Services Architecture (a component-based, multi-tier, service-oriented, distributed
application architecture built on a common services foundation). Application
assembly and customization processes must be distinguished from component
development processes, with roles and responsibilities clearly delineated. In addition,
a technical services organization must be integrated into the organization. These
issues are discussed briefly.

Re-engineering the Application Development Organization and Its
Processes

In the days of centralized mainframe computing, the application development process
was rigid, process-centric, and based on limited standards. With the advent of the
desktop PC, heterogeneous networking, and client/server computing, much of that
rigidity has given way to autonomy and individualism. One result of this has been
that the typical development team has too broad a set of responsibilities —
configuration management, testing, training, and documentation, for example, in
addition to its core development activities. A related outcome is that — despite
component-based and object-oriented design processes, development techniques, and
software tools — organizations are still not gaining a great deal of re-use or leverage
from re-usable code (if that weren’t the case, we’d have one less reason to write this
paper).

27 Discussed in FASAB (Federal Accounting Standards Advisory Board) Statement of Recommended
Accounting Standards Exposure Draft “Accounting for Internal Use Software.” This standard will
amend standards for software accounting contained in SFFAS #6. Previously, under the original SFFAS
#6, “Accounting for Property, Plant, and Equipment,” the cost of internally developed internal-use
software was prohibited from being capitalized unless management intended to recover the costs
through charge-backs. In addition, a technical feasibility study was required prior to capitalizing any
costs. Once capitalized, the costs could only be amortized over a period longer than five years.
Maintenance-style costs could not be included.

PAGE 24 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

The NAC believes that organizations that attempt to develop component-based
business services applications without providing the appropriate development
processes and infrastructure will only create more non-reusable code. Thus, the IT
organization will likely need to be re-engineered to provide a smarter division of
labor. Development teams need to be able to focus strictly on development tasks
(described in more detail below). The goal of the re-engineering effort is to put in
place “just enough” process to provide the rigor required for the particular type of
application development project, without stifling the creativity and productivity of
the core development teams.

An important corollary goal of re-engineering the application development
organization is to prepare to implement enterprise business applications based on
interoperable frameworks, as they become available. Component frameworks are pre-
built, partially assembled component sets that provide building blocks for application
specific services, and transparent interfaces to whichever implementation of
standards-based infrastructure services match the customer’s environment. Such
business services frameworks may potentially offer the organization the ability to
prepare ready-to-deploy enterprise application suites from a combination of
customized, pre-built frameworks and components, and application-unique
components. (The business frameworks emerging as the result of IBM’s “San
Francisco” project28 are one example.)

Both of these goals will require a new type of organization within IT, the technical
services organization. The technical services group should provide the support-level
tasks that would obscure the developers’ focus and dilute their efforts. This group is
an absolute requirement if users outside of the application development organization
— the line manager, controller, administrator, and other business users — are to be
enabled in their efforts to assemble applications from pre-fabricated components.
Without such a technical services support group, end-users will again turn to IT for
basic application development needs. (More about the technical services organization
below.) The re-engineered application development organization might look
something like that shown in the figure below.

28 The San Francisco Project (http://www.ibm.com/Java/Sanfranciso) is an IBM initiative with over 200
application development companies producing server-side core business process components — rather
than client-side components — that can be reused as a base for creating applications for specific
industry domains.

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 25

Figure 7. The IT Organization Must Be Re-engineered to Effectively Enable Application Assembly

IT Organization

Acquisition and
development processes

Technical Services Infrastructure

Assemble enterprise application

Customize and extend
business frameworks

Acquire
business frameworks

Acquire,
develop, reuse

component
frameworks

Assemble
end-user

application

Assemble
workgroup
applicaiton

Develop business frameworks

Develop component frameworks

Acquire,
develop, reuse

components

Acquire and deploy business
applications (Oracle

Applications, PeopleSoft, SAP,
Baan etc)

= future

With effective division of labor in mind, the application development activities
themselves can be partitioned into two key functional areas, the first of which
requires less technical expertise than the last:

• Application Assembly and Development Process

• Component Development Process

Application Assembly

Application assembly is the process in which applications are assembled from pre-
fabricated components. This process will also include developing any application-
unique components or services. When the repository and other tools are available
(see the Technical Issues section), the application assembly process will expand
beyond the realm of the IT organization to encompass business experts. Accountants,
marketing and sales staff, customer service reps, line managers, and other business
users who will assemble their own applications to provide business function. For
example, presuming that a Controller has the appropriate role-based access rights to
the component repository, he could find the Credit_Limit component in the corporate
repository and change the “check credit history” parameter from $5,000 to $2,500,
and re-apply the component to the Business Service, all on his own.

PAGE 26 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

This concept is shown in the figure above, as the ellipse labeled “Assemble End-User
Application,” which you’ll notice extends outside the realm of the IT Organization.
In the future, the activity known as “Application Assembly and Development” will
likely evolve into Application Assembly and Customization, with more of the
activity being performed outside the realm of IT.

Component Development

The component development process requires different skills and greater rigor in
some areas than the application assembly process. Component developers will create
sharable and reusable components from object-oriented programming languages and
other technologies in which they are highly skilled. In addition, some developers may
be called upon to acquire (internal or external), evaluate, modify as needed, and make
available to the organization-at-large both component frameworks and components.

In addition, this group will evaluate, modify, and implement business frameworks,
such as the frameworks emerging from the San Francisco project. Vendors are now in
the process of developing applications based on the first San Francisco framework,
for general ledger applications. When such frameworks become available,
organizations will need developers who are technically proficient at modifying the
frameworks appropriately to provide application-unique and organization-unique
functions.

The component development process becomes the source of the reusable frameworks
and components for the application assembly process, above — for example,
developing a Credit-Limit component that will be placed in a central repository, for
use by others throughout the organization.

The Technical Services Organization
Just as applications must be appropriately partitioned, application development roles29
and responsibilities must also be appropriately divided. Re-engineering the
application development process should include an analysis to determine which roles
and responsibilities are best fulfilled by the core project teams and which are best
fulfilled from outside the team. Again, keep in mind that the core project teams must
be able to focus on the skills and tasks required to assemble and customize
component-based applications, and roles that would dilute these skills should be
provided from a technical services support organization30.

29 Roles do not necessarily equate to individuals, since one person may play several roles.

30Examples of roles that might be provided by a support organization include application architect,
configuration manager, database administrator, LAN administrator, OO methodologist, process

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 27

The technical services organization should have the skills necessary to implement
and manage component frameworks and repositories, as well as the other support
roles alluded to above. In addition, the technical services organization should serve
as the agent of change for technology, process, and culture within the larger
organization by:

• Creating common tools, architectures, frameworks, components, guidelines, and
processes for use across the organization

• Enabling development groups to successfully adopt these through a mentoring
process

• Modeling the desired culture in its own actions and structure.

Some of the key tools upon which the technical services infrastructure will depend
are still emerging. Most important of these are modeling tools, based on the Unified
Modeling Language (UML), and component repositories, as discussed briefly in the
next section.

Technical Issues
There are many technical issues that must be resolved by vendors and implementers
before successful migration to component-based application development can occur.
The existing and evolving common services infrastructure must support both
component-based and non-component-based applications. In addition, organizations
will need interoperable modeling tools, repositories, and application assembly and
customization tools for business users.

Interoperability Among Tools and Repositories
Before developing an application, the business problem must be effectively modeled
to fully understand its dimensions and scope. Visual modeling tools provide software
engineers and business experts with a graphical means of modeling business
problems to enable a more complete understanding of requirements. NAC applauds
the growing number of vendors, including Microsoft, Rational, and JavaSoft, that are
adopting the Unified Modeling Language (UML) as the foundation for their
modeling tool implementations. We believe the UML and supporting tools and

methodologist, quality assurance analyst, release engineer, repository administrator, reuse architect,
security analyst, technical writer, and test engineer. This is a partial list from one member organization
based on their use of the LBMS tool and the Evolutionary Delivery process.

PAGE 28 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

techniques31 represent the current best hope for improved analysis and design
interoperability across service partitions, and integration with CASE tools.

“The Unified Modeling Language, or UML, is a third-generation object-oriented
modeling language. It adapts and extends the published works of Grady Booch, Jim
Rumbaugh, and Ivar Jacobson, and contains improvements and suggestions made by
dozens of others. The UML is being presented to the Object Management Group in
the hope that it will become a standard modeling language for object-oriented
development. Because the UML is meant to be applicable to the modeling of all types
of systems, it applies equally well to real-time systems, client/server, and other kinds
of “standard” software applications. It provides a rich set of notations and promises
to be supported by all major CASE tool vendors.”32

Repository

Components can ease the application development process, but only if every
programmer in an organization can find out about them and use them according to
the needs of the specific development project. In many organizations, the current
“process” for discovering existing components and learning about how to use them
depends on inter-personal “networking” skills rather than technical acumen.
Organizations need central or distributed, synchronized repositories that are available
to varying degrees, depending upon the role of the user. For example, the controller
should have access to the accounting related components in the repository and be
able to modify the business rules – tax rate tables, shipping charges, or prices, for
example – for these components.

31 Use case analysis and other tools and techniques for analyzing the business problem, producing a
logical design of a service-oriented business object model, and mapping it to a decoupled physical
design that matches the service partitioning requirements of the particular application.
32 From the Introduction to “Unified Modeling Language for Real-Time Systems Design,” available at
http://www.rational.com

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 29

Figure 8. The Repository

Component
repository

Model
business
problem

Assemble
components
into business

services

Acquire (or
develop)

components

Ideally, a corporate repository should allow a component to be checked out, modified
or updated, and then checked back into the repository, with all applications that use
the component updated automatically. Information about all application components
– the components that implement the services defined by the BSA – should be
available and able to be browsed by authorized users. In the long term, “authorized
users” should include the business experts who can best define the application
required to solve a particular business problem.

However, the tools that would enable business users to browse a component
repository and assemble or modify an application don’t exist yet, and the
requirements for such tools have yet to be defined. That’s why in the near term, these
activities will continue to require the expertise of software engineers and a team of
developers that includes skills in each of the affected service partitions.

Finally, modeling tools and repositories must be interoperable across the partitions of
the business services architecture. That is, a user service developed in one component
model using a particular language and AD tool set should be able to interoperate with
the other services —business services, data services, or legacy services —which have
been developed in a different model using different languages and tools, without
losing end-to-end interoperability.

PAGE 30 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

Figure 9. Application Assembly Requires Interoperable Components and Supporting Infrastructure

Network services infrastructure

Component
Model C

Component
Model X

Component
Model A

Assembled application

Business logic

User
interface

component

User
interface

component

Security
adapter

component
Directory
adapter

component

Data services
component
(persistence

layer) Database
component

Legacy
services

component

Security
services

Directory
services

Regardless of the component model used to create a particular component, that
component should be able to be used with components from other models to create a
functioning application or complete “business service.”

One promising effort to address this need is the Object Management Group’s
specification for a CORBA-based Meta Object Facility (MOF). This is intended to
define a general, vendor-neutral facility for sharing information about meta-models,
components and data at a semantic level.33 The notational language of UML is used
throughout the specification.

Integration with Common Services Infrastructure
One significant technical issue for component-based application development is
inadequate integration with the common services infrastructure. One example of
successful integration would be that an enterprise’s investment in a particular
infrastructure service, say, a corporate directory, would not have to be replaced by a
new product to take advantage of the component packages and services that vendors
offer. Those packages should be able to exchange information and participate in
business processes with existing infrastructure at the back-end. Examples of poor

33 See the following page of the OMG website for the MOF specification:
http://www.omg.org/library/schedule/Technology_Adoptions.htm#MOF_Specification

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 31

integration abound. To take one, many universities have a significant investment in
Kerberos-based security, yet the credentials from that security service will not
transparently translate into permissions in an NT 5.0 environment.

Directory Services

Over the past three years, vendors have begun to converge in their approaches to
directory services. In fact, thanks to ground-breaking discussions at a NAC /Burton
Group Conference just two years ago, LDAP (lightweight directory access protocol)
has been adopted as a client interface to directory services by virtually all vendors.
Some interoperability issues still exist, as the NAC will discuss in an updated
directory services paper in the future, but this coalescing on this one point is good
news.

The NAC defines a full-scale directory service as one which supports a naming
model, can store attributes about each entity, and can support lookup by entity as well
as by name. Aspects of the OSI X.500 standard have been the reference point for
many products currently on the market. Such features are embodied in the directory
services of NetWare’s NDS, Microsoft’s Active Directory, and Banyan’s StreetTalk.
(Microsoft’s Windows NT Server 4.0 does not support this model.) Although the
CORBA Services specification includes these capabilities in its Naming and Trader
services specifications, no CORBA-compliant product yet provides a generic, full-
featured directory service of this kind.

One possible path forward would be to build on the Java Naming and Directory
Interface (JNDI), but out of the box, JNDI is essentially a standard API approach, not
a component-based service with interface definition language (IDL) interfaces in the
CORBA style. Certainly JNDI could be given an IDL-based wrapper without a great
deal of effort. However, there is more to getting directory services properly modeled
as true distributed components than such mechanical API-wrapping. This is another
example of inadequate integration between existing technology and component-based
approaches.

Microsoft’s ADSI (Active Directory Service Interface) provides a set of COM
interfaces a layer up from underlying directories. It is “built on” LDAP and Microsoft
pledges smooth two-way interoperability with other LDAP-compliant servers via
ADSI interfaces.

Directory services require security services for appropriate role-based control over
access rights to information. ADSI security will be integrated with the NT 5.0
security model. Active Directory and Microsoft’s LDAP client use Microsoft’s SSPI
(Security Support Provider Interface) as a way to provide security technology
independence.

PAGE 32 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

Microsoft Windows NT 5.0 will include SSPI providers to multiple security
approaches based on SSL 3.0, Kerberos v5, and Windows NT LanManager (NTLM).

It thus appears that directory service interoperability will hinge on LDAP-based
communication at least until more complete CORBA directory services appear. The
Microsoft approach still seems to imply tight, OS-level ties between security and
directory services. This at face value seems to move away from the notion of treating
such services as just another set of components and will likely be the source of more
or less subtle, complex interoperability hurdles for those trying to integrate COM and
CORBA.

Security Services (Authentication, Authorization)

Many vendors have implemented the same protocols or APIs for their security
implementations (our discussion is limited to Identification, Authentication, and
Authorization).

GSS-API (Generic Security Services-Application Programming Interface) which can
be implemented independently of the underlying authentication protocol, is used in
many products. The Kerberos34 authentication protocol has likewise been widely
adopted. Supporting mechanisms include cryptographic algorithms for encrypting
network messages (to secure them from eavesdropping or packet sniffing), such as
SSL (Secure Sockets Layer).

The OMG’s Security services are defined in “CORBAservices: Common Object
Services Specification.” However, the only product on the market today that has in
fact implemented true CORBA security service is ICL’s DAIS: in major commercial
CORBA implementations (for example, IONA’s Orbix and Visigenic’s Visibroker),
security services to date have been implemented with a mix of GSSAPI-wrapped
Kerberos and SSL approaches.

Microsoft’s approach as of Windows NT 5.0, will also be based on a PKI-enhanced
Kerberos 5 model.

Unfortunately, these high-level similarities do not provide transparent
interoperability between CORBA and COM security services. For example, a user
who has been granted authenticated credentials in one environment cannot use those
same credentials to gain access to resources in the other environment. However,
from NAC’s perspective, this is precisely what needs to happen.

34 Kerberos, a cryptographic authentication protocol that was devised as part of MIT’s project Athena (an
experimental distributed computing environment begun in the early 1980s at MIT in conjunction with
Digital Equipment and IBM), is a widely used authentication service. The protocol has been implemented by
several vendors, including CyberSafe, and has also been adopted by the OSF for its DCE, although the DCE version
of Kerberos is at this point not compatible with MIT Kerberos; implementations include both versions 4 and 5.

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 33

Interoperability Challenges of Heterogeneous IT Environments
Most NAC member organizations will need to support both CORBA/IIOP/JavaBeans
and COM/DCOM/ActiveX for the foreseeable future. Why? First, these
organizations cannot fully control the IT environments inside a given organization
today. For example, different business units may rely on different platforms for valid
business reasons, and mergers and acquisitions often lead to strange, hybrid IT
environments. Second, NAC member organizations increasingly want to provide
access to internal IT services externally, to their customers, clients and partners. NAC
members are not in control of the client platforms from which such connections will
come. Support for both distributed component models is the only viable approach.

Furthermore, although implementation of component technology across the
application portfolio may be a long-term goal, enterprises will not be able to (or even
want to) migrate all services and applications to a component model in the short to
medium term. Nor can vendors deliver component-based versions of the full suite of
common network services that an enterprise might need in this time frame. Thus,
organizations are faced with the additional challenge of developing interoperable
applications in an architectural environment that supports both component-based and
non-component- based applications.

The NAC member organizations must be able to mix and match ActiveX and
JavaBeans components, and they must be able to provide access paths to both
component and non-component-based common services. This can get messy.

As the hypothetical example in the figure below shows, an enterprise may query an
existing corporate directory via an LDAP API call over TCP/IP when executing a
server-side component-based business service using COM/DCOM/ActiveX and a
client-side component-based user service in the CORBA/IIOP/JavaBeans model.
That enterprise may also provide component-based access to the same directory via
an IDL interface of a JavaBean that uses JNDI at the back end for directory
communication.

PAGE 34 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

Figure 10. Interoperability Paths in a Hypothetical Multi-Component-Model Environment

User
Service

(JavaBean)

Business
Service

(ActiveX)

LDAP
Server

IIOP

TCP/IP

DCOM

Existing Enterprise Directory

Directory
JavaBean

ORB COM ORB

JNDI

IIOP

There are interoperability “gotchas” waiting at almost every connection point in this
example. JavaBeans and ActiveX components require the presence of a bridge to
interoperate (a variety of such bridges are available from IONA, Expersoft, Sun and
others). Java virtual machines (JVM) differ from one client platform to another,
wreaking havoc with a BSA component that expects a JDK 1.1-compliant JVM, and
finds itself running under Microsoft Internet Explorer. Sun’s Activator is a recently
announced technology that can negotiate this interoperability barrier by allowing an
applet to request the needed JDK support regardless of the JVM. These examples
only hint at the interoperability problems that can arise. Few companies can afford
the full breadth of expertise on relevant problems and solutions. This limitation is
behind the recommendation to members on page 39 that they leverage their expertise
and share their information on such matters.

On one hand, NAC members will benefit from moving to a common services model
— de-coupling directory services from the multitude of particular applications that
use them, for example—even in the absence of component-based versions of those
common services. On the other hand, component-based services are crucial to the
arrival of true “drag and drop” application assembly from components. Without
component-based services, application development will continue to require highly
skilled, scarce (read: expensive) IT talent to handcraft key linkages between
applications and the common services infrastructure. The presence of such
handcrafted code means that the application will tend to be brittle — unable to
survive external IT changes without redesign and re-coding.

Manageability and Distributed Transaction Processing Monitors
The component-based Business Services Architecture will fail to deliver on its
promises unless it is paired with run-time tools that can dynamically manage and

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 35

scale business applications on the fly. The latest class of distributed transaction
processing (DTP) monitors offers the first serious candidates for filling that role.35
The fact that these kinds of component-based services are just beginning to get the
attention they deserve is one of the primary reasons the NAC recommends deferring
the use of component-based development for high-volume, mission-critical
applications.

35 See the recent reviews of several DTP monitors in Network Computing Online,
http://techweb.cmp.com/nc/901/901ws1.html and http://techweb.cmp.com/nc/820/820r1.html

PAGE 36 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

Conclusion and Recommendations

Today’s IT organization is scrambling fast to deliver flexible, full-featured
applications that help the organization meet and exceed its business goals in an
evolving, global marketplace in which constant change is the only constant.
Component-based application development has gained market share on the desktop,
and is fast gaining mind share as the means that will provide this flexibility in the
realm of server-based business applications. The long-term goal is that business users
rather than software engineers will be able to assemble the applications they need
from easy-to-use “software Legos.™”

The ability to create applications from prefabricated software components has the
potential to contain (and even reduce) development, deployment, and maintenance
costs throughout an application’s life-cycle, but only if migration to component-
based applications leverages existing (and evolving) common network services.
NAC’s Business Services Architecture starts from this premise, incorporating key
features of multi-tier, service-oriented architectures, component-based application
development models, distributed computing models, and the Burton Group’s
Network Services Model.

The NAC’s BSA is designed to provide a flexible foundation while enabling
organizations to leverage business rules, business processes, and business data. This
paper has outlined the key concepts that have gone into this conceptual structure,
with special focus on the underlying common network services model. In addition,
we’ve presented many steps that organizations can take to ensure that they’ll be
ready to take advantage of the pre-fabricated component suites as they emerge in the
marketplace. There is still much to be done, however, before this will become reality.
We conclude with some recommendations to vendors and the NAC member
organizations.

Recommendations
Although the two models, COM/DCOM/ActiveX and CORBA/IIOP/JavaBeans, are
conceptually similar in many respects, components built for one model cannot simply
be moved into the other model. Using gateways and bridges, client components from
one model can interoperate with components from the other model. Bi-directional
server side bridges between COM and CORBA are also emerging. However, as
we’ve just stated above, an unresolved issue for NAC members is how well the
component models interoperate at the back end, at the network services level, where
the directory and security services exist. The NAC’s recommendations to vendors are
driven by these key requirements.

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 37

Recommendations to Vendors
In general, NAC encourages vendors to honor the best contributions of their competitors
by matching features and by defining interoperability paths between products.

One oft-mentioned downside of supporting heterogeneous IT environments is that the
developer is restricted to the “lowest common denominator” of features in the range of
products being supported. NAC members have no choice but to work in heterogeneous
environments. Thus we urge vendors to be aware of the marketplace in which their
products play, and to raise the lowest common denominator by including support for key
features of competitive products. It may look like good marketing strategy to do
otherwise, but it burdens NAC companies with significant costs — with no additional
value.

The NAC also urges vendors to work together as appropriate to solve mutual
technological problems, and share information about solutions to benefit the industry at
large. A good example of this type of effort is adoption of Lotus’ InfoBus technology
into the JavaBeans component architecture. If your company does not provide a
particular bridging or other needed interoperability technology, cooperate fully with
companies that do by providing all necessary information for their product development
efforts. Microsoft’s recent licensing of COM to IONA for use in the Orbix product line is
an example: while Microsoft may not do CORBA, that doesn’t mean that CORBA
vendors can’t do COM.

Other specific recommendations that will help NAC member companies move towards a
component-based Business Services Architecture are:

• Provide user services component frameworks that make it easy to support the
universal thin client36, with zero configuration and deployment, because this
is becoming a pervasive requirement for access by business partners,
customers, and suppliers. Allow the user to choose to perform more
processing on the server (the “thin” client model) or on the client (for
ostensibly faster performance).

• Provide business services component frameworks that will seamlessly
support the universal thin client, regardless of which language or component
model was used for the user services, and regardless of whether the clients
are accessing the business service from inside or outside the organization’s
firewall.

• Provide data services component frameworks that seamlessly support both
COM- and CORBA-based interfaces to persistent business objects, including
caching and object-to-database schema mapping for one or more databases.

36 The NAC’s definition of the “universal thin client” today includes these core elements: web browser,
a Java Virtual Machine, and support for distributed component computing. There should be no other
conditions, such as platform or operating system dependencies. The universal thin client is shorthand for
a conservative assumption about what is on the desktops of all those to whom we would like to extend
our business services.

PAGE 38 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

• Ensure that performance, robustness, and manageability of both COM- and
CORBA-based distributed components, and interoperability bridges between
them, are addressed up front and in the details of optimized implementations,
because this will be critical to their success in the enterprise.

• Provide component frameworks that support seamless interfaces to
whichever implementation of standards-based common network services
match the customer’s environment. End-to-end support of role based
authorization credentials obtained under a single sign-on, in conjunction with
mapping of external users to a particular role based on certification by some
acknowledged certificate authority, and end-to-end component/service
location transparency based on common directory services, are just three
examples of key requirements.

• Provide enterprise-class tools to partition and model business problems
effectively, and enterprise-class repositories, both with an eye to deploying
applications in a distributed, component-based, service-oriented architecture.
“Enterprise-class” means robust, scaleable, common-services enabled, and
usable across service partitions and organizations. As one example of
common-services enabled, all tools should support common, role-based
authorization credentials for controlling access to business object models,
component repositories, and other sensitive information.

• Provide component-based, business-framework-based, enterprise application
suites that will interoperate with each other, and with the component-based
services and applications we have developed for ourselves. The IBM San
Francisco project embodies many of the framework concepts that NAC
would like to see implemented, particularly with the evolution of the
foundation layer to a common CORBA/Java based distributed component
model. However, at the moment, it appears to fall short in the area of
providing seamless interfaces to standards-based common network services
of the customer’s choice.

• Provide server-side support for distributed transaction processing (DTP)
through TP monitors that can work with a wide range of underlying
technologies. Note that this recommendation is driven more by the need for
scalability and manageability of high volume transactional applications than
by the narrower issue of maintaining transactional integrity. As one recent
study put it, “In reality, only between five and ten percent of the code in TP
monitors is about synchronizing transactions.”37 This is an area of rapid
evolution and market churn at this point, as TP Monitors evolve to
incorporate the distributed component (ORB/COM) technologies and
messaging oriented middleware (MOM) technologies, on their way to
becoming what Gartner Group calls Object Transaction Monitors (OTMs).

37 Jeri Edwards with Deborah Devoe, 3-Tier Client/Server At Work. John Wiley and Sons, 1997, p. 20

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 39

Recommendations to NAC Member Organizations
The end goal — application assembly by business experts using interoperable, easy-
to-leverage components and component frameworks that integrate with existing and
evolving network services infrastructure — will not be achievable in the short term.
However, although still immature, component-based development of multi-tier,
server based applications is beginning to enter the mainstream38. It’s not too early to
begin limited development of multi-tier applications based on the business services
architecture, as long as the requirements for application robustness and scalability are
not too taxing39. While doing so, keep in mind the key characteristics of the
architecture.

• Intelligently partitioned strategic applications, based on the multi-tier
architecture model

• User Services support universal client and flexible role-based user views.
For example, internal user, internal systems administrator, external
business partner, external supplier, and so on.

• Business Services implemented as shared services that can be reused by
any application. A given business rule or process is defined once, and
can easily be changed as required to match the evolving business model.

• Data Services, supporting abstract business object interfaces to persistent
business data, also implemented as shared services that can be reused by
any application, without regard to where or how the data is stored

• Legacy Services, supporting abstract business object interfaces to legacy
business services and data, also implemented as shared services that can
be reused by any application, without coding to legacy interfaces or
being impacted by future migration to strategic interfaces

• Component model transparency, such that service partitions developed using
one model (either COM or CORBA) can seamlessly interoperate with service
partitions developed using the other model40

• Common network infrastructure services, specifically, directory, security,
and all the other common network services required to support full-scale,
distributed computing.

38 For example, during the period that this paper has been under development, IONA’s OrbixOTM (with
Orbix for MVS), and Microsoft’s Transaction Server 2.0 (with Cedar and Microsoft Message Queue
(MSMQ, nee “Falcon”) have become generally available on Windows NT. In addition, IBM’s
Component Broker (with DB2 adapter) has achieved limited availability on Windows NT.
39 Mission-critical, multi-tier applications that must support hundreds or thousands of users are still
developed primarily using transaction processing (TP) monitors. This is likely to be the case for some
time to come. For examples, see 3-Tier Client/Server At Work, by Jeri Edwards, which profiles eight
real-world three-tier implementations, seven of which are based on BEA Systems’ TUXEDO TP
monitor.
40 For example, COM based business services and CORBA based business services may both need to
work seamlessly with the same data services tier (which may itself be either COM or CORBA based)

PAGE 40 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

• Minimal platform dependence

The following recommendations are intended to support these key directions:

• Align the IT strategy with the business goals to the extent possible while
anticipating changes that will affect the requirements on applications and
infrastructure. Key factors that affect business requirements are:

• Changing customer expectations
• New business ventures
• Deregulation/re-regulation
• Mergers and acquisitions

• Encourage development organizations to endorse and actively promote the
concept that the application services they provide are assets whose useful life
can be extended by re-use. Evangelize the concept that business services and
data services must be developed and preserved as assets. For example, as a
move in this direction, establish software design and engineering guidelines
that avoid the hard-coding of business rule and process specifications, data
access interfaces, legacy access interfaces, or other connectivity interfaces
with the presentation logic that must of necessity reside on the desktop.

• Architect for the future by migrating to a multi-tier business services
architecture in which each service partition is isolated and preserved as a
long-term capital asset. Start (or continue) application development
migration to a network services model, which leverages common
infrastructure services to achieve a seamless distributed environment with the
scalability and robustness required of enterprise applications.

• Evaluate your current architecture, processes, and infrastructure from the
highest level architectural perspective — “architectural” as in “urban
planning,” not “blueprint for a single house.”41

• Re-engineer application development processes as needed to effectively
support the multi-tier model and component-based application development.
Remember that failure to provide the appropriate development processes will
result in more non-reusable code.

• Adopt organizational standards appropriate for development environments,
application infrastructure, network infrastructure, and corporate cultures in
order to facilitate consistency and quality. At a minimum, organizations
should develop and promote appropriate guidelines on development.

• Adopt a flexible methodology that will work in the context of your
organization, developers’ skillsets, and other organizational factors. There
should be enough process to facilitate development, but not so much process
that it stifles creativity and impedes development.

41 See “Architecture and Planning for Modern Application Styles.” GartnerGroup Systems Software
Architectures (SSA) Strategic Analysis Report. R. Schulte. 4/28/97.

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 41

• Collaborate with other NAC member organizations to divide and conquer the
information challenge we all face in integrating component services with
existing infrastructure and in interoperating across disparate pieces of our
heterogeneous IT environments. This could take the form of identifying
areas of expertise within our companies and putting in place effective ways
of leveraging that expertise by somehow sharing the “latest, best available
information on solutions to problem X.”

• Begin developing the framework archetypes needed to support the business
services architecture. From the highest level, there are four basic service
framework archetypes — user services, business services, data services, and
legacy services — that provide the core functionality needed to position
today’s enterprise for the future. However, within these four, there are many
possible variations, based on the environment and requirements of specific
application types, examples of which are shown below:

• User Services
 Internal proprietary client vs. external “universal” client
 COM or CORBA based component model vs. non-component based
 Interaction type specific (inquiry vs. decision support vs.

transactional)
 Business domain specific, for example, a user view of a framework

for building financial models

• Business Services
 COM vs. CORBA based component model
 Interaction type specific (inquiry vs. decision support vs.

transactional)
 Business-domain specific, such as “Business Services View of A

Framework for Building Financial Models”

• Data Services
 COM vs. CORBA based component model
 Interface architecture based on common business objects42 vs.

interface architecture based on relational access semantics
 Relational SQL interface (ODBC, JDBC43) vs. relational data objects

interface (ADO, RDO44) vs. native RDBMS interface (OCI45)

42 This type of interface is what is assumed in the Business Services Architecture description of Data
Services, as it raises the level of abstraction to be consistent with the business object model that
business users can relate to. However, one of the principle challenges associated with this is providing a
performance-efficient object-to-relational schema mapping. Persistence Software, Inc., and Object
Design, Inc., are two of the vendors addressing this in different ways.
43 Open Database Connectivity. Java Database Connectivity.
44 Active Data Objects. Remote Data Objects.
45 Oracle Call Interface.

PAGE 42 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

 Types of supported data stores to be mapped to, such as flat file
database, relational database, object-relational database, object
database46

• Legacy Services
 COM vs. CORBA based component model interface wrappers
 Interface wrappers implemented on the legacy system and accessed

via COM or CORBA based backbone vs. those implemented on the
middle tier and mapped to a gateway interface to the legacy system

 Screen scraping transaction interface vs. programmatic transaction
interface vs. legacy data interface

Heterogeneous organizations should consider the notion of a parallel prototype
path in which key service framework prototypes are developed using both COM
and CORBA based component models.

46 The principal advantage of an object database (from a development perspective) is that it eliminates
the need to map business objects to the relational (or some other) database schema. It accomplishes this
by storing the object relationships directly in the database rather than mapping them to relational tables.

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 43

Appendix A. Technology Notes

The NAC defines a component as an executable whose behavior can be customized
by an end-user without modifying source code: “...a ready-to-run package of code
that gets dynamically loaded and linked into your program to extend its functionality.
ActiveX controls and Java applets are components in this sense. …components share
many of the characteristics of objects, particularly the need to hide their internal
workings behind a well-defined interface, that is, a set of access
methods…Components need to be sufficiently independent that they can be
developed, sold, and installed independently, and yet they need to be interoperable so
that they can leverage each other’s functionality.”47

A component model is the set of rules for creating components that can work
together. A distributed component model extends the rules to enable components to
interact across a network.

The two distributed component computing models discussed in this paper are
Microsoft’s COM/DCOM/ActiveX and the OMG’s CORBA/IIOP, in conjunction
with JavaSoft’s JavaBeans. On the client side, JavaBeans and Microsoft ActiveX
components can interoperate via bridges and migration assistants. Software
components that use JavaBeans are thus portable to containers including Internet
Explorer, Visual Basic, Microsoft Word and Lotus Notes. The same can be said for
ActiveX Controls.

This section includes some background notes about these two approaches.

* * *

COM/DCOM Model, ActiveX Components
COM/DCOM/ActiveX are the labels Microsoft now applies for all technologies
formerly known as OLE. OLE evolved from its roots as a document-centric “object
linking and embedding” technology to a more full-featured component object model.
Microsoft’s COM (Component Object Model), is essentially an inter-process
communications (IPC) mechanism that enables developers to expose services from
one object to requestors (clients) in another object through interface calls. COM finds
the object’s location in the Windows registry, so developers needn’t create hard-
coded links to components in source code.

47 “The Component Enterprise.” Byte magazine. May 1997. Dick Pountain.

PAGE 44 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

DCOM (Distributed COM) implements COM over RPC (remote procedure call),
thereby distributed functionality. Formerly known as “Network OLE,” DCOM
enables COM clients and servers to interact remotely, over the network. DCOM is an
application-level protocol consisting of extensions layered on the DCE/RPC
specification that enables object-oriented remote procedure calls. DCOM defines how
calls are made on an object, and how object references are represented,
communicated, and maintained.

In simple terms, DCOM is the “wire protocol” for COM based components. As with
COM, DCOM clients locate servers through the registry (which holds the IP address
of the server containing the requested component).

ActiveX Controls are the re-incarnation of OLE controls (OCX), or COM-based
components for the desktop. ActiveX Controls include enhancements specifically
designed to facilitate distributing components over networks and to integrate controls
into Web browsers. These enhancements include features such as incremental
rendering and code signing, which allow users to identify the authors of controls
before allowing the controls to run. Functions packaged in an ActiveX control can be
used by any container, such as Visual Basic or Web browsers.

You can write directly to the COM model using C++, but popular tools such as
Microsoft’s Visual Basic and Sybase/Powersoft’s PowerBuilder help mask much of
the complexity.

Microsoft’s ActiveX is part of Microsoft’s COM/DCOM architecture, which is
integrated in the Windows NT operating system. It will run on any platform that
implements the full Win32 API, which is beginning to include more than just
Windows 95 and Windows NT®. For example, Software AG
(http://www.softwareag.com) released its EntireX/DCOM for Sun’s Solaris in
September 1997, and is also porting DCOM to 64-bit Digital UNIX , AIX, HP-UX,
Linux, and OS/390 (MVS Open edition).

Software AG’s implementation of DCOM complies with Microsoft’s COM, DCOM
libraries, Structured Storage, Monikers, Automation, Uniform Data Transfer,
Registry, Service Control Manager, Microsoft RPC with TCP/IP support, MIDL
Compiler, ActiveX Template Library, and Windows NT LAN Manager Security.

In addition, most recently Microsoft licensed COM technology to IONA
Technologies (http://www.iona.com) which will enable IONA to include COM in its
CORBA product line.

http://www.softwareag.com/
http://www.iona.com/

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 45

CORBA/IIOP Model, JavaBeans+48 Components
The OMG (Object Management Group) is “an industry consortium whose mission is
to define a set of interfaces for interoperable software.”49 The Common Object
Request Broker Architecture (CORBA) is the primary specification to emerge from
this 750+ plus industry-member consortium. Unlike COM/DCOM, which is at the
heart of the Microsoft Windows NT operating system, the CORBA/IIOP is a
specification, so it relies on ORB (object request broker) products created by
vendors. The revised specification for CORBA 2.0, released in 1994, included some
additions that have paved the way for accelerated implementation of ORBs. Two key
additions of CORBA 2.0:

• A specification for ORB-to-ORB interoperability. The version that runs over
TCP/IP is called IIOP (Internet-InterORB Protocol). This part of the CORBA
specification is what can enable ORBs from different vendors to interoperate.
The higher-level General Inter-ORB protocol (GIOP) defines a common data
representation and a set of request/reply messages that can be mapped onto any
connection-oriented transport protocol that meets a minimal set of assumptions.
We refer throughout this paper to IIOP, but other mappings of GIOP have been
defined. These include, for example, DCE-ESIOP, the DCE Environment-
Specific Inter-ORB protocol.

• An interface repository specification. This supports a run-time distributed
database of information about all registered component interfaces. Clients can
find out how to use components, and component-based services can register
themselves and changes in their interfaces through this repository. When paired
with the implementation repository, the two repositories provide ways for
components to be defined, located, browsed and called. These services apply to
both the development phase and to the run-time environment.

As its name implies, CORBA is about distributed objects in the true technical sense
of the word. The focal point of CORBA’s technology for developers is its interface
definition language (IDL). A CORBA object is defined and known by its interface.
That interface is specified in the IDL language, a stable and complete formal
language for defining any and all such object interfaces. This reliance on IDL helps
guarantee both language independence and implementation independence for
CORBA objects:

Since users of an object see only the IDL interface, they don’t know (or have to care
about) what language the object was actually coded in or, for example, what
algorithms it uses internally. The task of mapping from IDL to actual programming
languages is facilitated by formal mappings (and implementations of IDL-to-specific

48 “JavaBeans+” is NAC’s term to describe the fact that CORBA-compliant components can be
implemented in any language with an IDL mapping, and given Java’s portability, JavaBeans are a
natural fit for the CORBA/IIOP model.
49 “The Essential CORBA.”

PAGE 46 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

language mapping routines, or compilers) that map IDL constructs and types to
corresponding elements of each of several major programming languages including
C++, C, Java, Smalltalk, Ada and COBOL.

Typical developer versions of ORB products include an IDL compiler, associated
header files necessary for language mappings, the ORB (runtime), Interface
Repository, and Implementation Repository. (These last two run as services under
Windows NT or as daemon processes under Unix versions of a specific ORB
product.) Leading ORB products include IONA Orbix (which was first to market in
1991), Visigenic’s VisiBroker, BEA/Digital PowerBroker, and ExperSoft
PowerBroker. Visigenic’s product is being incorporated into technology from Oracle
and Netscape, among others, and in January 1998, Sun Microsystems announced it
was abandoning its ORB product, called NEO, and would be migrating customers to
the Visigenics product. In addition, several emerging products combine features of
ORBs and TP monitors, products such as Sybase/Powersoft Jaguar CTS (Component
Transaction Server), IBM Component Broker, and Oracle’s NCA (Network
Computing Architecture).

It’s the JavaBean that brings the “component” aspect to the CORBA/IIOP model, in
the same manner as ActiveX Controls, which is why many ORB vendors are
integrating JavaBeans technology into their products. In fact, the CORBA 3.0
specification (Q4 1998) will include the JavaBeans model under the name
CORBAbeans as its compound document model.

Java is an open, portable programming language developed by Sun Microsystems;
Java is now managed by the JavaSoft division of Sun. Java can be used to create both
applications and applets. A Java application would be written to a specific operating
system, just as any other programming language might be used to write an
application. An applet is a Java program that requires a Java Virtual Machine (JVM)
on which to run.

JavaBeans is a platform-neutral, component architecture for Java. A JavaBean is a
compiled Java component that can run on any operating system that has a Java virtual
machine (JVM). Java can also be run within any application environment.

There are now over 10 different Java-based ORBs, including both commercial and
freeware products, and CORBA support is being integrated into Java development
toolkits. Sun, Netscape, IBM, and Oracle last fall announced plans to integrate Java
more closely with CORBA through the JavaBeans architecture. Sun also announced
that its proprietary Remote Method Invocation (RMI) would be implemented with
support for IIOP to make components using RMI interoperable with other CORBA-
compliant components. Sun has integrated CORBA support into its Java Developer’s
Kit, and Netscape has incorporated the Visigenic ORB and included Java-specific
support for CORBA into its web browsers and servers.

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 47

Appendix B. Glossary

Activation Preparing a CORBA object to execute an operation.

Adapter In a CORBA implementation, the ORB component that provides
object reference, activation, and state-related services to an
object implementation. Different adapters may provide different
kinds of implementations.

Business logic The business rules and processes that define a particular business
model. Business rules encompass entities like tax rate tables;
shipping rates; prices; thresholds for performing certain business
activities, for example, “add 8.5% sales tax to goods being
shipped to California.” Business processes encompass manaul or
automated workflow processess, such as an email message sent
to a credit manager to approve an order over a specified dollar
limit; crediting accounts receivable; debiting inventory.
Examples like these would be said to be implementing a “mail
order business model.”

Class In object-oriented programming, a class is a data structure that
serves as a template for the creation of objects. A class specifies
the fields and methods that of the objects that will be created
from it.

Class Factory A special COM class that is responsible for creating new
instances of another class within a server. This provides a
common gateway for all clients to activate multiple classes
within a server program.

Class ID A GUID that identifies a COM class. Typically abbreviated
CLSID.

Class Table A list of the Class IDs and Class Factory pointers for the
currently running COM servers on the given machine.

Client In the context of distributed client/server applications, the
process that requests the services of another process. In object-
oriented programming, the code that invokes an operation on an
object.

Component An executable software module that encapsulates specific
functionality behind published interfaces.

CORBA Common Object Request Broker Architecture

Encapsulation The practice of making a software entity, object, or code module
self-contained, with its internals hidden. Encapsulation leads to

PAGE 48 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

flexible design because internal structures can be modified
without affecting the rest of the application.

Enterprise JavaBeans Extensions to the JavaBeans component architecture (released in
JDK (Java Developers Kit) 1.1 which provide an API optimized
for building scaleable business applications as reusable server
components.

Framework In the context of component-based application development,
object-request brokers, and object-oriented development tools, a
“framework” refers to pre-packaged business components that
provide necessary base functionality for either vertical or
horizontal applications. Similar to a template of business objects
that you can use or modify for your own purposes.

GUID Globally Universal IDentifier. A 128-bit identifier created by
using the current date/time, a clock sequence, and incremented
counter, and the IEEE machine identifier, usually acquired from
a network card.

Inheritance The property of an object-oriented programming language that
enables a programmer to create a new type by adding strucutre
and behavior to a pre-existing type.

Interface A strongly typed, semantic contract between client and object. A
collection of methods. An interface is identified by a GUID
called an IID (Interface ID). In COM/DCOM, interfaces are
typically named beginning with a capital I (for example,
ICustInfo). In CORBA, interface is defined as “the listing of the
operations and attributes that an object provides… [including]
the signatures of the operations and the types of the attributes.
An interface definition ideally includes the semantics as well. An
object satisfies an interface if it can be specified as the target
object in each potential request described by the interface.”

Interface ID A GUID (globally universal identifier) that identifies a COM
interface.

Interface object In CORBA, an object that describes an interface. Interface
objects reside in an interface repository.

Interface pointer A pointer to the interface’s vtable in memory, or to an RPC
proxy. The vtable then redirects to the desired method.

Interface repository In a CORBA implementation, a storage place for interface
information. The interface repository is one of the client-side
structures of a CORBA ORB. It is a runtime distributed database
that containes machine-readable versions of the IDL-defined
interfaces. Interface repository APIs enable components to
dynamically access, store, and update metadata information.

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 49

Java IDL Java Interface definition language. A CORBA compliant
interface definition language for Java. Provides interoperability
and integration with the industry standard CORBA for
distributed, heterogeneous computing.

JDBC A database-independent connectivity API included in the Java
Developers Kit. Sometimes defined as “Java Database
Connectivity.”

JTS Java Transaction Services. A low-level Java API providing
access to transaction managers.

JNDI Java Naming and Directory Interface. A unified Java interface to
multiple naming and directory services.

JMAPI Java Management API. An open, extensible interface for
managing enterprise networks over the Internet and intranets.
Part of the Java Enterprise

JMS Java Message Services—provides a standard Java API for
enterprise messaging services such as reliable queuing, publish
and subscribe communication and various aspects of push/pull
technologies.

Marshalling The process of packaging interface data into RPC packets for
delivery across process or network boundaries.

Method A piece of code that performs a given function, accepting and
returning data and optionally manipulating an objects’ state.

Model An abstraction of a real-world entity.

Object In object-oriented design, an object is an instance of a class,
containing data and the methods that operate on it. An object
conceptually is also a model, representing an abstraction of a
real-world entity.

Object-oriented A technological approach to software engineering, design, and
programming that is vastly different from procedural oriented
techniques in that, rather than breaking programs up into linear
algorithmic solutions, problems are broken up into functional
units called objects.

ORB Object request broker.

OTS Object transaction server.

Persistent object An object that exists until it is explicitly deleted.

Proxy A small binary loaded into the client’s process space that acts as
a “front-end” to the remote server’s interface. The client calls the

PAGE 50 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

proxy just as it would the server, and the data is marshalled to
the stub which in turn calls the server object.

Registry A datafile on each machine that contains indexed information
about classes, interfaces, software settings, preferences, etc.

RMI Remote Method Invocation. In interface for Java remote
distributed object computing which enables an object in one Java
Virtual Machine to invoke methods on objects running in a
remote Virtual Machine.

Repository The definition depends on the context. An interface repository is
a datastore for interface information. A component or object
repository could be a datastore at the center of a modeling or
development tool.

Server In the context of distributed client/server applications, the
process that provices functions or services to a requesting
process.

State Conditions or properties that are subject to differences at
different points in time.

Stub A small binary loaded into the server object’s process space that
accepts marshalled RPC packets from the proxy and calls the
necessary method.

Type Library A binary object that contains information about a specified class
and the interfaces it exposes. It is used by tools such as Visual
Basic to get Class ID, Interface ID, and method information.

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 51

References

Books
Business Objects: Delivering Cooperative Objects for Client-Server. Oliver Sims.
McGraw-Hill. 1994.

Client/Server Architecture. Alex Berson. McGraw-Hill. 1996.

Client/Server Programming with Visual Basic. Kenneth Spencer; Ken Miller.
Microsoft Press. 1996.

Code Complete. Steve McConnell. Microsoft Press. 1993.

CORBA Design Patterns. Thomas Mowbray, Raphael Malveau. John Wiley & Sons,
Inc. 1997.

The Essential CORBA: Systems Integration Using Distributed Objects. Thomas
Mowbray, Ron Zahavi. John Wiley & Sons, Inc. 1995.

Instant CORBA. Robert Orfali, Dan Harkey, Jeri Edwards. John Wiley & Sons, Inc.
1997.

Principles of Transaction Processing for the Systems Professional. Philip Bernstein;
Eric Newcomer. Morgan Kaufmann Publishers. 1997.

3-Tier Client/Server At Work. Jeri Edwards with Deborah DeVoe. John Wiley &
Sons, Inc. 1997.

UML Distilled: Applying the Standard Object Modeling Language. Martin Fowler
with Kendall Scott. Addison-Wesley. 1996.

Understanding ActiveX and OLE: A Guide for Developers and Managers. David
Chappell. Microsoft Press. 1996.

What Every Software Manager Must Know To Succeed With Object Technology.
John Williams. SIGS Books. 1995.

PAGE 52 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

Research Papers, Technical Notes, Articles
AD Technology 2001: Building Infrastructures as Tools Mature. Gartner Group
Applications Development and Management Strategies (ADM) Strategic Analysis
Report. J. Sinur, M. Blechar, K. Kleinberg, M. Merriman, B. Williams, M. Light.
10/25/96

The Application Server: From Monolith to Objects? Part 2. Gartner Group Systems
Software Architectures (SSA) Research Note. Y. Natis. 11/21/96

Architecture and Planning for Modern Application Styles. Gartner Group Systems
Software Architectures (SSA) Strategic Analysis Report. R. Shulte. 4/28/97.

Beware the Universal Middleware Myth. Gartner Group Systems Software
Architectures (SSA) Research Note. R. Shulte. 4/29/97

Component Models Move to the Server. Gartner Group Systems Software
Architecture (SSA) Research Note. Y. Natis. 9/4/97

The Component Object Model: Technical Overview. Paper adapted from an article
appearing in Dr. Dobbs Journal, December 1994.
(http://www.microsoft.com/oledev/olecom/Com_modl.htm)

CORBA Compliance Does Not Guarantee Portability. Gartner Group Systems
Software Architecture (SSA) Research Note. M. Pezzini. 2/5/97

DCOM and CORBA Side by Side, Step by Step, Layer by Layer. Chung, Huang,
Yajnik; Bell Laboratories, Lucent Technologies. Liang, Shih, Wang; Institute of
Information Science, Republic of China. Wang; AT&T Labs, New Jersey.
(http://www.research.att.com/~ymyang/papers/HTML/DCOMnCORBA.S.html)

Defining Components and Distributed Objects Gartner Group Systems Software
Architectures (SSA) Research Note. R. Shulte. 10/21/96.

Flow Control: The Fourth Application Tier. Gartner Group Systems Software
Architecture (SSA) Research Note. Y. Natis. 11/30/96

Greater Java: A Continent Emerging? Gartner Group Applications Development &
Managment Strategies (ADM) Research Note. Y. Natis. 6/27/97

The Impact of Component Software on Three-Tier Designs Gartner Group Systems
Software Architectures (SSA) Research Note. R. Shulte. 1/15/97.

http://www.microsoft.com/oledev/olecom/Com_modl.htm
http://www.research.att.com/~ymyang/papers/HTML/DCOMnCORBA.S.html

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 53

Industry Trends Scenario: Rethinking the IT Investment Paradigm. Gartner Group
Industry Trends & Directions (ITD) Strategic Analysis Report. McNee, Austin,
Baylock, Blechar, Burton, Cappuccio, Fenn, Germann, Goodhue, Keller, Keyworth,
Magee, Pucciarelli, Raphaelian, Schlier, Stenmark, Terdiman, West, Windkler,
Cushman. 3/28/97

The Internet: Its Role in the Software Revolution and Its Impact on Enterprises
Gartner Group Internet Strategies (INET) Strategic Analysis Report. D. Smith, D.
Bosik. 7/16/97.

“Into ORBit. Object Request Brokers: Servers of the 21st Century.” Network
Computing magazine. 3/1/97.

Intranets, the Network Services Model, and the Future of the NOS. The Burton
Group. Jamie Lewis. Network Strategy Overview, July, 1996. The Burton Group
(http://www.tbg.com).

“Is DCOM Truly the Object of Middleware’s Desire?” (Lab Review) Network
Computing magazine. A. Frey. July 15, 1997.

Is Netscape ONE the One? The Burton Group Network Strategy Bulletin. Jamie
Lewis. September 1996. The Burton Group (http://www.tbg.com).

Microsoft Active Server. The Burton Group Network Strategy Report. Jamie Lewis.
March 1997. The Burton Group (http://www.tbg.com).

The Microsoft Repository. Philip Bernstein, Brian Harry, David Shutt, Jason Zander
(Microsoft Corporation); Paul Sanders (Texas Instruments, Inc.). Proceedings of the
23rd VLDB (Very Large Database) Endowment, Athens, Greece. 1997.
(http://www.microsoft.com/Repository)

Middleware: The Foundation for Distributed Computing. Gartner Group
Client/Server Strategic Analysis Report. Y. Natis, R. Schulte, M. Light. 10/25/96.

Netscape One: A Platform for CORBA Ubiquity. Gartner Group Applications
Development & Management Strategies (ADM) Research Note. D. Smith. 9/27/96

The Next Wave: Component Software Enters the Mainstream. David Chappell. April
1997. (http://www.rational.com/support/techpapers/nextwave)

“New Technologies Require Structured Methodologies.” Application Development
Trends. C. Trepper. July 1997.

http://www.tbg.com/
http://www.tbg.com/
http://www.tbg.com/
http://www.microsoft.com/Repository
http://www.rational.com/support/techpapers/nextwave

PAGE 54 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

Normalization of Logic Yields Flexible Application Servers. Gartner Group Systems
Software Architectures (SSA) Research Note. Y. Natis. 1/15/97

On Persistence Services and Persistent Data. Gartner Group Systems Software
Architectures (SSA) Research Note. A. Percy. 4/29/97

The Orbix Architecture. IONA Technologies. November 1996.
(http://www.iona.com/Products/Orbix

Re-engineering Application Development. A Microsoft Corporation-Texas
Instruments White Paper. June 1995.
(http://www.microsoft.com/Repository/articles.htm)

Unified Modeling Language (UML) Summary. Rational Software Corporation.
3/19/97. (http://www.rational.com)

“What 1997 Means for Repository Technology.” A. Tannenbaum. Application
Development Trends. July 1997.

“Why Partition: Options for Applications Partitioning.” Application Development
Trends. D. Kara. May 1997.

Specifications, Technical Documents
The Common Object Request Broker: Architecture and Specification. (Chapter 1,
“The Object Model,” Chapter 2, “CORBA Overview,” Chapter 12, “General Inter-
ORB Protocol,” and Chapter 13A, “Internetworking Architecture.” Revision 2.0, July
1995. The Object Management Group, Inc. Updated July 1996.
(http://www.omg.org)

DCOM Technical Overview. Microsoft Corporation. 1996.
(http://www.microsoft.com/nt)

The Component Object Model Specification. Draft Version 0.9, October 24, 1995.
Microsoft Corporation and Digital Equipment Corporation. Copyright © 1992-95
Microsoft Corporation.

Distributed Component Object Model Protocol —DCOM/1.0. Internet-Draft. Nat
Brown, Charlie Kindel. Microsoft Corporation. November 1996.
(ftp://ds1.internic.net/draft-brown-dcom-v1-spec-01.txt)[This has not been updated in
the required six months, and so apparently has fallen by the wayside…]

http://www.iona.com/Products/Orbix
http://www.microsoft.com/Repository/articles.htm
http://www.rational.com/
http://www.omg.org/
http://www.microsoft.com/nt

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 55

Distributed Java: Securing Java Client-Server Applications. David Weisman. The
Open Group Research Institute. May 7, 1997
(http://www.osf.org/RI/PubProjPgs/jade_1pg.htm)

JavaBeans™ API 1.01 Specification. JavaSoft. A Sun Microsystems, Inc. Business.
July 24, 1997. (http://java.sun.com/beans)

Using the Beans Development Kit 1.0: A Tutorial April 1997. JavaSoft. A Sun
Microsystems, Inc. Business. (http://java.sun.com/beans)

Email Lists and Newsgroups
The email lists below are a starting point for getting up to date information of varying
technical depth about a variety of topics. In most cases, you can subscribe to a
“digest” version of the email list to avoid getting flooded by email — some of these
lists are extremely active. In all cases, leave the “subject” field of your email message
blank.

CORBA — CORBA-Dev@qds.com Send e-mail with “subscribe” in the body of
your message. The OMG maintains mailing lists about Java and CORBA, but they
are available only to OMG members. Contact the OMG for details
(http://www.omg.org). For newsgroups, start with comp.object.corba

Java — Send e-mail with “subscribe” in the body of your message to
JavaLobby@iceworld.org. There are several Java newsgroups tailored to different
interests, including:
comp.lang.java.advocacy
comp.lang.java.announce
comp.lang.java.api
comp.lang.java.beans
comp.lang.java.misc
comp.lang.java.programmer
comp.lang.java.security
comp.lang.java.setup
comp.lang.java.tech

Java/CORBA — Newsgroups covering Java/CORBA include comp.object.corba
and in the comp.lang.java. Comp.lang.java.corba is an un-moderated group is for
aspects of Java technology that are related to CORBA software development,
products, and standards.

JavaCORBA@luke.org Send e-mail and write “subscribe” in the SUBJECT line. For
complete directions on subscribing and additional information on this mailing list
(including archived discussions), visit JavaCORBA online.

http://www.osf.org/RI/PubProjPgs/jade_1pg.htm
http://java.sun.com/beans
http://java.sun.com/beans
http://www.omg.org/

PAGE 56 APRIL 7, 1998 BUSINESS SERVICES ARCHITECTURE

Microsoft DCOM Mailing List — The DCOM mailing list covers discussions about
writing distributed COM-based code. You can subscribe to Microsoft’s DCOM
mailing list by sending an email message to LISTSERV@LISTSERV.MSN.COM
with the command subscribe dcom <your_firstname your_lastname> digest in the
message body.

Microsoft’s position on Java — Visit
http://www.microsoft.com/java/issues/techsupfaq.htm for a discussion of issues such
as the suitability of JFC (Java Foundation Class) and JNI, Microsoft’s support of
Remote Method Invocation, and information about upcoming class libraries. For
more Java information, visit http://www.microsoft.com/Java , or subscribe to Java-
COM@LISTSERV.MSN.COM

Object Technology Users Group Email List — The Object Technology User’s
Group (OTUG) email list is a non-profit program sponsored by Rational Software
Corporation and the Lockheed Martin Advanced Concepts Center. The OTUG email
list focuses on the Unified Modeling Language (UML), the de facto industry standard
modeling language with origins in the modeling languages of Booch,
Jacobson/OOSE, OMT, and other methods. Subscribe to this email forum for active
discussions about object-oriented analysis, object-oriented design, and related topics
by sending an email message to majordomo@rational.com with the command
subscribe otug <your_firstname your_lastname> in the message body.

Rational Rose Technical Forum For discussion of technical features of Rational
Rose modeling tool, subscribe to the Rational Rose email forum by sending an email
message to majordomo@rational.com with the command subscribe rose_forum in the
message body.

http://www.microsoft.com/java/issues/techsupfaq.htm
http://www.microsoft.com/Java

NETWORK APPLICATIONS CONSORTIUM APRIL 7, 1998 PAGE 57

Vendor Web Sites
Developing distributed object-oriented or component applications requires modeling
tools, integrated development environments, code generators, IDL generators, testing
and debugging tools. Use this product directory as a reference for your own research.

Vendor, Sample Product Name Web Address

BEA Systems, Inc.BEA Builder, Jolt http://www.beasys.com

BMC Software Patrol® Management Suite http://www.focalpoint.com

Borland Delphi, C++ Builder, JBuilder http://www.borland.com

Compuware Corporation UNIFACE http://www.compuware.com

CrossRoads Software http://www.crossroads-software.com

Dynasty DYNASTY http://www.dynasty.com

Expersoft http://www.expersoft.com

IBM VisualAge, San Francisco Project,
CBToolkit

http://www.ibm.com

Magna Software Corp MAGNA X http://www.magna.com

Mercury Interactive Corporation LoadRunner,
WinRunner, Xrunner

http://www.merc-int.com

Micro Focus Micro Focus COBOL http://www.mfltd.co.uk

Microsoft Visual Basic, Visual C++, Visual J++ http://www.microsoft.com

Neuron Data Elements Enterprise/C http://www.neurondata.com

Object Design, Inc. http://www.odi.com

Oracle Developer/2000, Designer/2000 http://www.oracle.com

ParcPlace VisualWorks http://www.parcplace.com

Persistence Software, Inc. http://www.persistence.com

Planetworks Interspace http://www.planetw.com

Prolifics (A JYACC Company) JAM,
JAM/WEB

http://www.prolifics.com

Rational Rose http://www.rational.com

Rational (formerly Pure Software, Pure Atria)
EMPOWER, Visual Quantify, PurePerformix,
Performix/Web

http://www.rational.com

Seer*HPS® http://www.seer.com

Sterling Software COOL:Gen (formerly known
as Composer), KEY:ObjectView

http://www.sterling.com

Sybase/Powersoft PowerBuilder http://www.sybase.com

Unify Vision http://www.unify.com

http://www.beasys.com/
http://www.focalpoint.com/
http://www.borland.com/
http://www.compuware.com/
http://www.crossroads-software.com/
http://www.dynasty.com/
http://www.expersoft.com/
http://www.ibm.com/
http://www.magna.com/
http://www.merc-int.com/
http://www.mfltd.co.uk/
http://www.microsoft.com/
http://www.neurondata.com/
http://www.odi.com/
http://www.oracle.com/
http://www.parcplace.com/
http://www.persistence.com/
http://www.planetw.com/
http://www.prolifics.com/
http://www.rational.com/
http://www.rational.com/
http://www.seer.com/
http://www.sterling.com/
http://www.sybase.com/
http://www.unify.com/

