
LA

 G

CI

U

N

ID

H

E

C

S

E
T

Guide

Architecture Neutral Distribution Format
(XANDF)

[This page intentionally left blank]

X/Open Guide

Architecture Neutral Distribution Format (XANDF)

X/Open Company Ltd.

 January 1996, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open Guide

Architecture Neutral Distribution Format (XANDF)

ISBN: 1-85912-141-1
X/Open Document Number: G508

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

ii X/Open Guide

Contents

Chapter 1 Introduction... 1
 1.1 Scope and Purpose.. 1
 1.2 This Guide .. 1
 1.3 Terminology... 2

Chapter 2 SORTs and TOKENs.. 3
 2.1 Overview .. 3
 2.2 Token Applications and First-class SORTs.. 4
 2.3 Token Definitions and Declarations.. 5
 2.4 A Simple Use of a TOKEN.. 7
 2.5 Second Class SORTs... 7

Chapter 3 CAPSULEs and UNITs.. 10
 3.1 CAPSULE ... 10
 3.2 make_capsule and name-spaces.. 10
 3.2.1 External Linkages... 11
 3.2.2 UNITs ... 12
 3.2.3 make_unit.. 13
 3.2.4 LINK... 13
 3.3 Definitions and Declarations .. 14
 3.3.1 Scopes and Linking.. 15
 3.3.2 Declaration and Definition Signatures .. 16
 3.3.3 STRING.. 16

Chapter 4 SHAPEs, ALIGNMENTs and OFFSETs 19
 4.1 Shapes.. 19
 4.1.1 TOP, BOTTOM, LUB... 20
 4.1.2 INTEGER... 20
 4.1.3 FLOATING and Complex .. 20
 4.1.4 BITFIELD... 21
 4.1.5 PROC.. 21
 4.1.6 Non-primitive SHAPEs.. 21
 4.2 Alignments... 21
 4.2.1 ALIGNMENT Constructors .. 22
 4.2.2 Special Alignments.. 22
 4.2.3 AL_TAG, make_al_tagdef.. 23
 4.3 Pointer and offset SHAPEs ... 24
 4.3.1 OFFSET .. 24
 4.4 Compound SHAPEs... 25
 4.4.1 Offset Arithmetic with Compound Shapes.. 25
 4.4.2 offset_mult... 26
 4.4.3 OFFSET Ordering and Representation.. 26

Architecture Neutral Distribution Format (XANDF) iii

Contents

 4.5 BITFIELD Alignments.. 28

Chapter 5 Procedures and Locals ... 29
 5.1 Traditional Procedures... 29
 5.1.1 make_proc and apply_proc ... 29
 5.1.2 vartag, varparam.. 31
 5.2 General Procedures .. 31
 5.2.1 make_general_proc, apply_general_proc... 31
 5.2.2 tail_call ... 32
 5.2.3 PROCPROPS... 33
 5.3 Defining and Using Locals.. 33
 5.3.1 identify, variable .. 33
 5.3.2 ACCESS ... 34
 5.3.3 current_env, env_offset .. 35
 5.3.4 local_alloc, local_free_all, last_local .. 36
 5.4 Heap Storage.. 37

Chapter 6 Control Flow within Procedures... 39
 6.1 Unconditional Flow.. 39
 6.1.1 Sequence.. 39
 6.2 Conditional Flow .. 39
 6.2.1 labelled, make_label .. 39
 6.2.2 goto, make_local_lv, goto_local_lv, long_jump, return_to_label.. 40
 6.2.3 integer_test, NTEST... 40
 6.2.4 case.. 40
 6.2.5 conditional, repeat ... 41
 6.3 Exceptional Flow... 42

Chapter 7 Values, Variables and Assignments.. 43
 7.1 Contents.. 43
 7.2 Assign.. 43
 7.2.1 TRANSFER_MODE Operations ... 44
 7.3 Assigning and Extracting Bitfields.. 45

Chapter 8 Operations.. 47
 8.1 VARIETY and Overflow.. 47
 8.1.1 ERROR_TREATMENT ... 48
 8.2 Division and Remainder.. 48
 8.3 change_variety .. 49
 8.4 and, or, not, xor ... 49
 8.5 Floating-point Operations, ROUNDING_MODE 49
 8.6 change_bitfield_to_int, change_int_to_bitfield 50
 8.7 make_compound, make_nof, n_copies.. 50

Chapter 9 Constants... 51
 9.1 _cond Constructors .. 51
 9.2 Primitive Constant Constructors... 52

iv X/Open Guide

Contents

Chapter 10 Tokens and APIs... 55
 10.1 Application Programming Interfaces ... 55
 10.2 Linking to APIs.. 56
 10.2.1 Target Independent Headers, unique_extern 56
 10.3 Language Programming Interfaces... 57

Chapter 11 XANDF Transformations.. 59
 11.1 Transformations as Definitions.. 60
 11.1.1 Examples of Transformations ... 63
 11.1.2 Programs with Undefined Values .. 64

Chapter 12 XANDF Expansions of Offsets .. 65
 12.1 Bitfield Offsets ... 66

Chapter 13 Models of the XANDF Algebra... 69
 13.1 Model for a 32-bit Standard Architecture.. 69
 13.1.1 Alignment Model... 69
 13.1.2 Offset and Pointer Model ... 70
 13.1.3 Size Model ... 70
 13.2 Model for Machines Like the iAPX-432 ... 71
 13.2.1 Alignment Model... 72
 13.2.2 Offset and Pointer Model ... 72
 13.2.3 Size Model ... 73
 13.2.4 Offset Arithmetic ... 73

 Glossary ... 75

 Index... 77

List of Figures

3-1 An Example of a Capsule... 10
3-2 An Example of a tagdef Unit ... 13
10-1 XANDF Production, Linking and Translating... 56

List of Tables

2-1 First Class SORTs... 4
2-2 Sorts Without SORTNAMEs ... 8
4-1 SHAPE Basic Constructors .. 19

Architecture Neutral Distribution Format (XANDF) v

Contents

vi X/Open Guide

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Architecture Neutral Distribution Format (XANDF) vii

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

viii X/Open Guide

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done in any one of the following ways:

• anonymous ftp to ftp.xopen.org

• ftpmail (see below)

• reference to the Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information using ftpmail, send a message to ftpmail@xopen.org with the
following four lines in the body of the message:

open
cd pub/Corrigenda
get index
quit

This will return the index of publications for which Corrigenda exist. Use the same email
address to request a copy of the full corrigendum information following the email instructions.

This Document

This Guide is commentary on the XANDF specification (see reference XANDF_PS). The
Architecture Neutral Distribution Format (ANDF) is a software porting technology making it
possible to develop shrink-wrapped software for open systems, independent of any particular
processor architecture. ANDF intends to reduce the effort needed for porting of applications
while at the same time making it possible to fully utilise the particular features of a platform.

The XANDF specification defines an integration interface between the two major components of
a multi-platform cross-compilation system. The compilation of the source code is turned into a
two stage process. In the first stage, the application is transcribed into a format which utilises
generalised declarations of the API calls used, together with generalised definitions of data
types, constants, and so on. This is the Architecture Neutral Distribution Format and the piece
of software producing it is called ANDF producer. XANDF is in fact an abstract algebra.

This format has a value in itself, even if the second phase of the compilation is never entered. It
can be examined to determine how portable the code really is, through comparing it against lists
of standardised API calls, and issuing warnings when such a search fails. X/Open is currently
examining the possibilities offered by these features to its testing programme.

In the second phase of the compilation, the entities generated in the first phase are first linked
together and then mapped onto a concrete machine through the use of processor-specific
libraries implementing the API calls and data formats. The software performing this task is
called ANDF Installer.

The aim of this Guide is elucidate the various constructions of XANDF, giving examples of
usages both from the point of view of a producer of XANDF, and how it is used to construct
programs on particular platforms using various installers or translators. In addition, some

Architecture Neutral Distribution Format (XANDF) ix

Preface

attempt is made to give the reasons why the particular constructions have been chosen.

Intended Audience

Application writers who wish to examine the portability of their code will be interested in
ANDF Producer. Suppliers and Users who want the convenience of running shrink-wrapped
applications will be interested in ANDF Installer.

Structure

• Chapter 1 explains the positioning and purpose of XANDF, and the objectives of this Guide.

• Chapter 2 explains the use of SORTs and TOKENs.

• Chapter 3 explains the use of CAPSULEs and UNITs.

• Chapter 4 explains the use of SHAPEs, ALIGNMENTs and OFFSETs.

• Chapter 5 describes the definition and usage of Procedures and Locals in XANDF.

• Chapter 6 describes control flow within Procedures.

• Chapter 7 describes Values, Variables and Assignments in XANDF.

• Chapter 8 describes arithmetic operations in XANDF.

• Chapter 9 describes Constants in XANDF.

• Chapter 10 describes TOKENs and their use as abstractions for things in libraries and APIs.

• Chapter 11 describes transformation processes in XANDF.

• Chapter 12 describes XANDF expansions of Offsets.

• Chapter 13 describes models of the XANDF algebra.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for commands, keywords, type names, and data structures.

• Italic font is used for emphasis or to identify the first instance of a word requiring definition.
Italics in text also denote:

— command operands, command option-arguments or variable names

— environment variables.

• constant width font is used for lines quoting code fragments. Where a line of a code
fragment is split onto a further line due to text width limitations in this specification, this is
denoted by a backslash (\) at the end of each line which is split.

x X/Open Guide

Trade Marks

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

Architecture Neutral Distribution Format (XANDF) xi

Acknowledgements

The source for this XANDF guide and its companion specification was contributed by the United
Kingdom Defence Evaluation and Research Agency (DERA).

xii X/Open Guide

Referenced Documents

The following documents are referenced in this Guide:

XANDF_PS
X/Open Preliminary Specification, January 1996, Architecture Neutral Distribution Format
(XANDF) (ISBN: 1-85912-146-2, P527).

Architecture Neutral Distribution Format (XANDF) xiii

Referenced Documents

xiv X/Open Guide

Chapter 1

Introduction

1.1 Scope and Purpose
The Architecture Neutral Distribution Format (ANDF) is a software porting technology making
it possible to develop shrink-wrapped software for open systems, independent of any particular
processor architecture. ANDF intends to reduce the effort needed for porting of applications
while at the same time making it possible to fully utilise the particular features of a platform.

The XANDF specification defines an integration interface between the two major components of
a multi-platform cross-compilation system. The compilation of the source code is turned into a
two stage process. In the first stage, the application is transcribed into a format which utilises
generalised declarations of the API calls used, together with generalised definitions of data
types, constants, and so on. This is the Architecture Neutral Distribution Format and the piece
of software producing it is called ANDF producer. XANDF is in fact an abstract algebra.

This format has a value in itself, even if the second phase of the compilation is never entered. It
can be examined to determine how portable the code really is, through comparing it against lists
of standardised API calls, and issuing warnings when such a search fails. X/Open is currently
examining the possibilities offered by these features to its testing programme.

In the second phase of the compilation, the entities generated in the first phase are first linked
together and then mapped onto a concrete machine through the use of processor-specific
libraries implementing the API calls and data formats. The software performing this task is
called ANDF Installer.

While ANDF producers are used by application writers, installers are provided on systems
intending to offer the customers the convenience of running shrink-wrapped applications.

1.2 This Guide
This Guide is commentary on the XANDF specification (see reference XANDF_PS). If it
presents anything which conflicts with the XANDF specification, then the XANDF specification
is the authoritative document.

The aim of this Guide is elucidate the various constructions of XANDF, giving examples of
usages both from the point of view of a producer of XANDF, and how it is used to construct
programs on particular platforms using various installers or translators. In addition, some
attempt is made to give the reasons why the particular constructions have been chosen. Most of
the commentary is a distillation of questions and answers raised when using the XANDF
specification.

Architecture Neutral Distribution Format (XANDF) 1

Terminology Introduction

1.3 Terminology
The following terms are used with a precise meaning which is particular to this document:

compiling
The production of ANDF from some source language.

producing
Same meaning as ‘‘compiling’’.

translating
Making a program for some specific platform from ANDF.

2 X/Open Guide

Chapter 2

SORTs and TOKENs

2.1 Overview
In the syntax of language like C or Pascal, we find various syntactic units like <Expression>,
<Identifier>, and so on. A SORT bears the same relation to XANDF as these syntactic units bear
to the language; roughly speaking, the syntactic unit <Expression> corresponds to the SORT
EXP and <Identifier> to TAG. However, instead of using BNF to compose syntactic units from
others, XANDF uses explicit constructors to compose its SORTs; each constructor uses other
pieces of XANDF of specified SORTs to make a piece of its result SORT. For example, the
constructor plus uses an ERROR_TREATMENT and two EXPs to make another EXP.

At the moment, there are 58 different SORTS, from ACCESS to VARIETY, given in Table 2-1 on
page 4 and Table 2-2 on page 9. Some of these have familiar analogues in standard language
construction as with EXP and TAG above. Others will be less familiar since XANDF must
concern itself with issues not normally addressed in language definitions. For example, the
process of linking together XANDF programs is at the root of the architecture neutrality of
XANDF and so must form an integral part of its definition. On the other hand, XANDF is not
meant to be a language readily accessible to the human reader or writer; computers handle it
much more easily. Thus a great many choices have been made in the definition which would be
intolerable in a standard language definition for the human programmer but which make it
much simpler for a computer to produce and analyse XANDF.

The SORTs and constructors in effect form a multi-sorted algebra. There are two principal
reasons for choosing this algebraic form of definition:

• It is easy to extend — a new operation on existing constructs simply requires a new
constructor.

• The algebraic form is highly amenable to the automatic construction of programs.

Large parts of both XANDF producers and XANDF translators have been created by automatic
transformation of the text of the specification document itself, by extracting the algebraic
signature and constructing C program which can read or produce XANDF. To this extent, one
can regard the specification document as a formal description of the free algebra of XANDF
SORTs and constructors. Of course, most of the interesting parts of the definition of XANDF lies
in the equivalences of parts of XANDF, so this formality only covers the easy part.

Another distinction between the XANDF definition and language syntactic description is that
XANDF is to some extent conscious of its own SORTs so that it can specify a new construction of
a given SORT. The analogy in normal languages would be that one could define a new
construction with new syntax and say this is an example of an <Expression>. For example, from
the past, Algol-N made a valiant attempt at this. Of course, the algebraic method of description
makes it much easier to specify, rather than having to give syntax to provide the syntax for the
new construction in a language.

Architecture Neutral Distribution Format (XANDF) 3

Token Applications and First-class SORTs SORTs and TOKENs

2.2 Token Applications and First-class SORTs
A new construction is introduced by the SORT TOKEN; the constructors involving TOKENs
allow giving an expansion for the TOKEN in terms of other pieces of XANDF, possibly including
parameters. We can encapsulate a (possibly parameterised) fragment of XANDF of a suitable
SORT by giving it a TOKEN as identification. Not all of the SORTs are available for this kind of
encapsulation — only those which have a SORTNAME constructor (from access to variety).
These are the first-class SORTs given in Table 2-1. Each of these have an appropriate
_apply_token constructor (for example, exp_apply_token) give the expansion.

SORT USAGE SORT USAGE
Properties of TAGs Name for alignmentACCESS AL_TAG

Abstraction of data
alignment

Gives no of bits in
bit-field with sign

ALIGNMENT BITFIELD_VARIETY

How to handle
errors in operations

BOOL true or false ERROR_TREATMENT

Piece of TDF
program,
manipulating values

Kind of floating
point number

EXP FLOATING_VARIETY

Mark on EXP to
jump to

Non-negative static
number of
unbounded size

LABEL NAT

Test in comparisons Properties of calls
and definitions of
procedures

NTEST PROC PROPS

How to round
floating point
operations

Abstraction of size
and representation
of values

ROUNDING_MODE SHAPE

Static number of
unbounded size.

Static string of n-bit
integers

SIGNED_NAT STRING

Name for value in
run-time program

Controls special
contents &
assignment
operations

TAG TRANSFER-MODE

Installation-time
function

Kind of integer used
in run-time program

TOKEN VARIETY

Table 2-1 First Class SORTs

Most of these also have _cond constructors, which allows translate time conditional expansion
of the SORT.

Every TOKEN has a result SORT (that is, the SORT of its resulting expansion) and before it can
be expanded, one must have its parameter SORTs. Thus, a TOKEN can be regarded as having a
type defined by its result and parameter SORTs, and the _apply_token as the operator which
expands the encapsulation and substitutes the parameters.

4 X/Open Guide

SORTs and TOKENs Token Applications and First-class SORTs

However, if we look at the signature of exp_apply_token:

token_value: TOKEN
token_args: BITSTREAM param_sorts(token_value)

→ EXPx

we are confronted by the mysterious BITSTREAM where one might expect to find the actual
parameters of the TOKEN.

To explain BITSTREAMs requires a diversion into the bit-encoding of XANDF. Constructors for
a particular SORT are represented in a number of bits depending on the number of constructors
for that SORT; the context will determine the SORT required, so no more bits are required. Thus
since there is only one constructor for UNITs, and no bits are required to represent make_unit;
there are about 120 different constructors for EXPs so 7 bits are required to cover all the EXPs.
The parameters of each constructor have known SORTs and so their representations are just
concatenated after the representation of the constructor1. While this is a very compact
representation, it suffers from the defect that one must decode it even just to skip over it. This is
very irksome in some applications, notably the XANDF linker which is not interested detailed
expansions. Similarly, in translators there are places where one wishes to skip over a token
application without knowledge of the SORTs of its parameters. Thus a BITSTREAM is just an
encoding of some XANDF, preceded by the number of bits it occupies. Applications can then
skip over BITSTREAMs trivially. Similar considerations apply to BYTESTREAMs used
elsewhere; here the encoding is preceded by the number of bytes in the encoding and is aligned
to a byte boundary to allow fast copying.

2.3 Token Definitions and Declarations
Thus the token_args parameter of exp_apply_token is just the BITSTREAM formed from the
actual parameters in the sequence described by the definition of the token_value parameter. This
will be given in a TOKEN_DEFN somewhere with constructor token_definition:

result_sort: SORTNAME
tok_params: LIST(TOKFORMALS)

body: result_sort
→ TOKEN_DEFN

The result_sort is the SORT of the construction of body ; for example, if result_sort is formed from
exp then body would be constructed using the EXP constructors and one would use
exp_apply_token to give the expansion.

1. There are facilities to allow extensions to the number of constructors, so it is not quite as simple as this.

Architecture Neutral Distribution Format (XANDF) 5

Token Definitions and Declarations SORTs and TOKENs

The list tok_params gives the formal parameters of the definition in terms of TOKFORMALS
constructed using make_tok_formals:

sn: SORTNAME
tk: TDFINT

→ TOKFORMALS

The TDFINT tk will be the integer representation of the formal parameter expressed as a TOKEN
whose result sort is sn (see more about name representation in Section 3.2 on page 10). To use
the parameter in the body of the TOKEN_DEFN, one simply uses the _apply_token appropriate
to sn. Note that sn may be a TOKEN but the result_sort may not.

Hence the BITSTREAM param_sorts (token_value) n the actual parameter of exp_apply_token
above is simply formed by the catenation of constructions of the SORTs given by the
SORTNAMEs in the tok_params of the TOKEN being expanded.

Usually one gives a name to a TOKEN_DEFN using to form a TOKDEF using make_tokdef:

tok: TDFINT
signature: OPTION(STRING)

def: BITSTREAM TOKEN_DEFN
→ TOKDEF

Here, tok gives the name that will be used to identify the TOKEN whose expansion is given by
def . Any use of this TOKEN (for example, in exp_apply_token) will be given by make_token (
tok). Once again, a BITSTREAM is used to encapsulate the TOKEN_DEFN.

The significance of the signature parameter is discussed in Section 3.3.2 on page 16.

Often, one wishes a token without giving its definition — the definition could, for example, be
platform-dependent. A TOKDEC introduces such a token using make_tokdec:

tok: TDFINT
signature: OPTION(STRING)

s: SORTNAME
→ TOKDEC

Here the SORTNAME, s is given by

token:
result: SORTNAME

params: LIST(SORTNAME)
→ SORTNAME

which gives the result and parameter SORTs of tok .

6 X/Open Guide

SORTs and TOKENs Token Definitions and Declarations

One can also use a TOKEN_DEFN in an anonymous fashion by giving it as an actual parameter
of a TOKEN which itself demands a TOKEN parameter. To do this one simply uses use_tokdef:

tdef: BITSTREAM TOKEN_DEFN
→ TOKEN

2.4 A Simple Use of a TOKEN
The crucial use of TOKENs in XANDF is to provide abstractions of APIs (see Chapter 10 on page
55) but they are also used as shorthand for commonly occurring constructions. For example,
given the XANDF constructor plus, mentioned above, we could define a plus with only two EXP
parameters more suitable to C by using the wrap constructor as the ERROR_TREATMENT:

make_tokdef (C_plus, empty,
token_definition(

exp(),
(make_tokformals(exp(), l), make_tokformals(exp(), r)),
plus(wrap(), exp_apply_token(l, ()), exp_apply_token (r,())

)
)

2.5 Second Class SORTs
Second class SORTs (given in Table 2-2 on page 9) cannot be TOKENised. These are the syntactic
units of XANDF which the user cannot extend; the user can only produce them using the
constructors defined in core-XANDF.

Some of these constructors are implicit. For example, there are no explicit constructors for LIST
or SLIST which are both used to form lists of SORTs; their construction is simply part of the
encoding of XANDF. However, it is for seen that LIST constructors would be highly desirable
and there will probably extensions to XANDF to promote LIST from a second-class SORT to a
first-class one. This will not apply to SLIST or to the other SORTs which have implicit
constructions. These include BITSTREAM, BYTESTREAM, TDFINT, TDFIDENT and
TDFSTRING.

SORT USAGE SORT USAGE
AL_TAG
DEF_PROPS

Body of UNIT
containing
AL_TAGDEFs

AL_TAGDEF Alignment name definition

Encapsulation of a bit
encoding

Encapsulation of a
byte encoding

BITSTREAM BYTE STREAM

Independent piece of
XANDF program

CALLEES Actual callee parameters CAPSULE

No and kind of linkable
entities in CAPSULE

Bounds in case
constructor

CAPSULE_LINK CASELIM

Architecture Neutral Distribution Format (XANDF) 7

Second Class SORTs SORTs and TOKENs

SORT USAGE SORT USAGE

External name used
to connect CASULE
name.

ERROR_CODE Encoding for exceptions EXTERNAL

List of LINKEXTERNs in
CAPSULE

List of UNITs with
same identification.

EXTERN_LINK GROUP

Connects names in
CAPSULE

Used to connect
CAPSULE names to
outside world

LINK LINK EXTERN

List of AUX SORTs;
may have
SORTNAME later.

LINKS List of LINKs LIST(AUX)

Describes a formal
parameter

Program info in a
UNIT

OTAGEXP PROPS

List of AUX SORTs; will
not have SORTNAME
later

SORT which can be
parame ter of
TOKEN

SLIST(AUX) SORTNAME

Used in constructing proc
formals

Declaration of TAG
at UNIT level

TAGACC TAGDEC

Body of UNIT containing
TAGDECs

Definition of TAG at
UNIT level

TAGDEC_PROPS TAGDEF

Body of UNIT containing
TAGDEFs

A formal parameterTAGDEF_PROPS TAGSHACC

XANDF encoding for a
boolean

XANDF encoding of
a byte string

TDFBOOL TDFIDENT

XANDF encoding of an
integer

XANDF encoding of
n-bit byte string

TDFINT TDFSTRING

Declaration of a TOKEN Body of UNIT
containing
TOKDECs

TOKDEC TOKDEC_PROPS

Definition of a TOKEN Body of UNIT
containing
TOKDEFs

TOKDEF TOKDEF_PROPS

Defines TOKEN expansion Sort and name for
parameters in
TOKEN_DEFN

TOKEN_DEFN TOKFORMALS

Component of
CAPSULE with
LINKs to other
UNITs

UNIQUE World-wide name UNIT

Body of UNIT
containing version
information

VERSION Version no of XANDF VERSION_PROPS

Table 2-2 Sorts Without SORTNAMEs

8 X/Open Guide

SORTs and TOKENs Second Class SORTs

Architecture Neutral Distribution Format (XANDF) 9

Chapter 3

CAPSULEs and UNITs

3.1 CAPSULE
A CAPSULE is typically the result of a single compilation — one could regard it as being the
XANDF analogue of a UNIX .o file. Just as with .o files, a set of CAPSULEs can be linked
together to form another. Similarly, a CAPSULE may be translated to make program for some
platform, provided certain conditions are met. One of these conditions is obviously that a
translator exists for the platform, but there are others. They basically state that any names that
are undefined in the CAPSULE can be supplied by the system in which it is to be run. For
example, the translator could produce assembly code with external identifiers which will be
supplied by some system library.

3.2 make_capsule and name-spaces
The only constructor for a CAPSULE is make_capsule. Its basic function is to compose together
UNITs which contain the declarations and definitions of the program. The signature of
make_capsule is represented graphically in Figure 3-1.

‘‘tagdecs’’
‘‘tagdefs’’ {Kinds of UNITs in groups}

(‘‘tag’’, 5)
(‘‘token’’, 6)
(‘‘al_tag’’, 7)

{No of each kind of name
in CAPSULE namespace}

tag LINKEXTERNs
token LINKEXTERNs
al_tag LINKEXTERNs

{Links of each kind of name
in CAPSULE namespace

to externals}

tagdecs UNITs
tagdefs UNITs

{UNITs of same kind grouped together
in order given by prop_names}

CAPSULE

prop_names

capsule_linking

external_linkage

groups

Figure 3-1 An Example of a Capsule

Figure 3-1 gives an example of a CAPSULE using the same components as in the following
description.

10 X/Open Guide

CAPSULEs and UNITs make_capsule and name-spaces

Each CAPSULE has its own name-space, distinct from all other CAPSULEs’ name-spaces and
also from the name-spaces of its component UNITs (see Section 3.2.2 on page 12). There are
several different kinds of names in XANDF and each name-space is further subdivided into one
for each kind of name. The number of different kinds of names is potentially unlimited but only
three are used in core-XANDF, namely tag, token and al_tag. Those names in a tag name-space
generally correspond to identifiers in normal programs and so this Guide uses these as the
paradigm for the properties of them all.

The actual representations of a tag name in a given name-space is an integer, described as SORT
TDFINT. These integers are drawn from a contiguous set starting from 0 up to some limit given
by the constructor which introduces the name-space. For CAPSULE name-spaces, this is given
by the capsule_linking parameter of make_capsule:

capsule_linking: SLIST(CAPSULE_LINK)

In the most general case in core-XANDF, there would be three entries in the list introducing
limits using make_capsule_link for each of the tag, token and al_tag name-spaces for the
CAPSULE. Thus if:

capsule_linking = (make_capsule_link("tag", 5),
make_capsule_link("token", 6),
make_capsule_link("al_tag", 7))

there are 5 CAPSULE tag names used within the CAPSULE, namely 0, 1, 2, 3 and 4; similarly
there are 6 token names and 7 al_tag names.

3.2.1 External Linkages

The context of usage will always determine when and how an integer is to be interpreted as a
name in a particular name-space. For example, a TAG in a UNIT is constructed by make_tag
applied to an TDFINT which will be interpreted as a name from that UNIT’s tag name-space. An
integer representing a name in the CAPSULE name-space would be found in a LINKEXTERN of
the external_linkage parameter of make_capsule.

external_linkage: SLIST(EXTERN_LINK)

Each EXTERN_LINK is itself formed from an SLIST of LINKEXTERNs given by
make_extern_link. The order of the EXTERN_LINKs determines which name-space one is
dealing with; they are in the same order as given by the capsule_linkage parameter. Thus, with the
capsule_linkage given above, the first EXTERN_LINK would deal with the tag name-space; Each
of its component LINKEXTERNs constructed by make_linkextern would be identifying a tag
number with some name external to the CAPSULE. For example, one might be:

make_linkextern (4, string_extern("printf"))

This would mean identify the CAPSULE’s tag 4 with a name called ‘‘printf’’, external to the
module. The name ‘‘printf’’ would be used to linkage external to the CAPSULE; any name
required outside the CAPSULE would have to be linked like this.

Architecture Neutral Distribution Format (XANDF) 11

make_capsule and name-spaces CAPSULEs and UNITs

3.2.2 UNITs

This name ‘‘printf’’, of course, does not necessarily mean the C procedure in the system library.
This depends both on the system context in which the CAPSULE is translated and also the
meaning of the CAPSULE tag name 4 given by the component UNITs of the CAPSULE in the
groups parameter of make_capsule:

groups: SLIST(GROUP)

Each GROUP in the groups SLIST will be formed by sets of UNITs of the same kind. Once again,
there are a potentially unlimited number of kinds of UNITs but core-XANDF only uses those
named ‘‘tld’’, ‘‘al_tagdefs’’, ‘‘tagdecs’’, ‘‘tagdefs’’, ‘‘tokdecs’’ and ‘‘tokdefs’’. These names2 will
appear (in the same order as in groups) in the prop_names parameter of make_capsule, one for
each kind of UNIT appearing in the CAPSULE:

prop_names: SLIST(TDFIDENT)

Thus if:

prop_names = (‘‘tagdecs’’ , ‘‘tagdefs’’)

then the first element of groups would contain only tagdecs UNITs and and the second would
contain only tagdefs UNITs. A tagdecs UNIT contains things rather like a set of global identifier
declarations in C, while a tagdefs UNIT is like a set of global definitions of identifiers.

2. The ‘‘tld’’ UNITs gives usage information for names to aid the linker, tld, to discover which names have definitions and some
usage information. The C producer also optionally constructs diagnostics UNITs (to give run-time diagnostic information).

12 X/Open Guide

CAPSULEs and UNITs make_capsule and name-spaces

3.2.3 make_unit

Consider the construction of UNITs using make_unit, as in Figure 3-2.

No of local tags
No of local tokens
No of local al_tags

In order given by CAPSULE capsule_linkage

tag LINKs
token LINKs
al_tag LINKs

Gives links
between UNIT namespace
and CAPSULE namespace

UNIT

TAGDEF_PROPS

BYTESTREAM
No of labels used by tds

TAGDEFs of UNIT

lks

local_vars

properties

no_labels

tds

Figure 3-2 An Example of a tagdef Unit

First we give the limits of the various name-spaces local to the UNIT in the local_vars parameter:

local_vars: SLIST(TDFINT)

Just in the same way as with external_linkage , the numbers in local_vars correspond (in the same
order) to the spaces indicated in capsule_linking in Section 3.2 on page 10. With our example,the
first element of local_vars gives the number of tag names local to the UNIT, the second gives the
number of token names local to the UNIT, and so on.. These will include all the names used in
the body of the UNIT. Each declaration of a TAG, for example, will use a new number from the
tag name-space; there is no hiding or reuse of names within a UNIT.

3.2.4 LINK

Connections between the CAPSULE name-spaces and the UNIT name-spaces are made by
LINKs in the lks parameter of make_unit:

lks: SLIST(LINKS)

Once again, lks is effectively indexed by the kind of name-space a. Each LINKs is an SLIST of
LINKs each of which which establish an identity between names in the CAPSULE name-space
and names in the UNIT name-space. Thus if the first element of lks contains:

make_link(42, 4)

then the UNIT tag 42 is identical to the CAPSULE tag 4.

Architecture Neutral Distribution Format (XANDF) 13

make_capsule and name-spaces CAPSULEs and UNITs

Note that names from the CAPSULE name-space only arise in two places, LINKs and
LINK_EXTERNs. Every other use of names are derived from some UNIT name-space.

3.3 Definitions and Declarations
The encoding in the properties:BYTSTREAM parameter of a UNIT is a PROPS, for which there are
five constructors corresponding to the kinds of UNITs in core-XANDF, make_al_tagdefs,
make_tagdecs, make_tagdefs, make_tokdefs and make_tokdecs. Each of these will declare or
define names in the appropriate UNIT name-space which can be used by make_link in the
UNIT’s lks parameter as well as elsewhere in the properties parameter. The distinction between
‘‘declarations"" and ‘‘definitions’’ is rather similar to C usage; a declaration provides the ‘‘type’’
of a name, while a definition gives its meaning. For tags, the ‘‘type’’ is the SORT SHAPE (see
below). For tokens, the ‘‘type’’ is a SORTNAME constructed from the SORTNAMEs of the
parameters and result of the TOKEN using token:

params: LIST(SORTNAME)
result: SORTNAME

→ SORTNAME

Taking make_tagdefs as a paradigm for PROPS, we have:

no_labels: TDFINT
tds: SLIST(TAGDEF)

→ TAGDEF_PROPS

The no_labels parameter introduces the size of yet another name-space local to the PROPS, this
time for the LABELs used in the TAGDEFs. Each TAGDEF in tds will define a tag name in the
UNIT’s name-space. The order of these TAGDEFs is immaterial since the initialisations of the
tags are values which can be solved at translate time, load time or as unordered dynamic
initialisations.

There are three constructors for TAGDEFs, each with slightly different properties. The simplest
is make_id_tagdef:

t: TDFINT
signature: OPTION(STRING)

e: EXP x
→ TAGDEF

Here, t is the tag name and the evaluation of e will be the value of SHAPE x of an obtain_tag(t)
in an EXP. Note that t is not a variable; the value of obtain_tag(t) will be invariant. The signature
parameter gives a STRING which may be used as an name for the tag, external to XANDF and
also as a check introduced by the producer that a tagdef and its corresponding tagdec have the
same notion of the language-specific type of the tag.

14 X/Open Guide

CAPSULEs and UNITs Definitions and Declarations

The two other constructors for TAGDEF, make_var_tagdef and common_tagdef, both define
variable tags and have the same signature:

t: TDFINT
opt_access: OPTION(ACCESS)
signature: OPTION(STRING)

e: EXP x
→ TAGDEF

Once again t is tag name but now e is initialisation of the variable t. A use of obtain_tag (t) will
give a pointer to the variable (of SHAPE POINTER x), rather than its contents3. There can only
be one make_var_tagdef of a given tag in a program, but there may be more than one
common_tagdef, possibly with different initialisations; however these initialisations must
overlap consistently just as in common blocks in FORTRAN.

The ACCESS parameter gives various properties required for the tag being defined.

The initialisation EXPs of TAGDEFs will be evaluated before the ‘‘main’’ program is started. An
initialisation EXP must either be a constant (in the sense of Chapter 9), or reduce to (either
directly or by token or _cond expansions) to an initial_value:

init: EXP s
→ EXP s

The translator will arrange that init will be evaluated once only before any procedure
application, other than those themselves involved in initial_values , but after any constant
initialisations. The order of evaluation of different initial_values is arbitrary.

3.3.1 Scopes and Linking

Only names introduced by AL_TAGDEFS, TAGDEFS, TAGDECs, TOKDECs and TOKDEFs can
be used in other UNITs (and then, only via the lks parameters of the UNITs involved). They can
be regarded as being similar to C global declarations. Token definitions include their
declarations implicitly; however this is not true of tags. This means that any CAPSULE which
uses or defines a tag across UNITs must include a TAGDEC for that tag in its tagdecs UNITs. A
TAGDEC is constructed using either make_id_tagdec, make_var_tagdec or common_tagdec, all
with the same form:

t_intro: TDFINT
acc: OPTION(ACCESS)

signature: OPTION(STRING)
x: SHAPE

→ TAGDEC

Here the tagname is given by t_intro ; the SHAPE x will define the space and alignment required
for the tag (this is analogous to the type in a C declaration). The acc field will define certain
properties of the tag not implicit in its SHAPE; the kinds of properties envisaged in discussing
local declarations are explained later.

3. There is a similar distinction between tags introduced to be locals of a procedure using identify and variable.

Architecture Neutral Distribution Format (XANDF) 15

Definitions and Declarations CAPSULEs and UNITs

Most program will appear in the ‘‘tagdefs’’ UNITs — they will include the definitions of the
procedures of the program which in turn will include local definitions of tags for the locals of the
procedures.

The standard XANDF linker allows one to link CAPSULEs together using the name
identifications given in the LINKEXTERNs, perhaps hiding some of them in the final CAPSULE.
It does this just by generating a new CAPSULE name-space, grouping together component
UNITs of the same kind and replacing their lks parameters with values derived from the new
CAPSULE name-space without changing the UNITs’ name-spaces or their props parameters. The
operation of grouping together UNITs is effectively assumed to be associative, commutative and
idempotent. For example, if the same tag is declared in two capsules it is assumed to be the same
thing . It also means that there is no implied order of evaluation of UNITs or of their component
TAGDEFs.

Different languages have different conventions for deciding how programs are actually run. For
example, C requires the presence of a suitably defined main procedure; this is usually enforced
by requiring the system ld utility to bind the name ‘‘main’’ along with the definitions of any
library values required. Otherwise, the C conventions are met by standard XANDF linking.
Other languages have more stringent requirements. For example, C++ requires dynamic
initialisation of globals, using initial_value. As the only runnable code in XANDF is in
procedures, C++ would probably require an additional linking phase to construct a ‘‘main’’
procedure which calls the initialisation procedures of each CAPSULE involved if the system
linker did not provide suitable C++ linking.

3.3.2 Declaration and Definition Signatures

The signature arguments of TAGDEFs and TAGDECs are designed to allow a measure of
cross-UNIT checking when linking independently compiled CAPSULEs. Suppose that we have a
tag, t, used in one CAPSULE and defined in another; the first CAPSULE would have to have a
TAGDEC for t whose TAGDEF is in the second. The signature STRING of both could be
arranged to represent the language-specific type of t as understood at compilation-time. Clearly,
when the CAPSULEs are linked the types must be identical and hence their STRING
representation must be the same — a translator will reject any attempt to link definitions and
declarations of the same object with different signatures.

Similar considerations apply to TOKDEFs and TOKDECs; the ‘‘type’’ of a TOKEN may not have
any familiar analogue in most HLLs, but the principle remains the same.

3.3.3 STRING

The SORT STRING is used in various constructs other than declarations and definitions. It is a
first-class SORT with string_apply_token and string_cond. A primitive STRING is constructed
from a TDFSTRING(k,n) which is an encoding of n integers, each of k bits, using make_string:

arg: TDFSTRING(k, n)
→ STRING(k, n)

16 X/Open Guide

CAPSULEs and UNITs Definitions and Declarations

STRINGs may be concatenated using concat_string:

arg1: STRING(k, n)
arg2: STRING(k,m)

→ STRING(k, n+m)

Being able to compose strings, including token applications, and so on, means that late-binding
is possible in signature checking in definitions and declarations. This late-binding means that
the representation of platform-dependent HLL types need only be fully expanded at install-time
and hence the types could be expressed in their representational form on the specific platform.

Architecture Neutral Distribution Format (XANDF) 17

CAPSULEs and UNITs

18 X/Open Guide

Chapter 4

SHAPEs, ALIGNMENTs and OFFSETs

In most languages there is some notion of the type of a value. This is often an uncomfortable mix
of a definition of a representation for the value and a means of choosing which operators are
applicable to the value. The XANDF analogue of the type of value is its SHAPE. A SHAPE is
only concerned with the representation of a value, being an abstraction of its size and alignment
properties. Clearly an architecture-independent representation of a program cannot say, for
example, that a pointer is 32 bits long; the size of pointers has to be abstracted so that
translations to particular architectures can choose the size that is apposite for the platform.

4.1 Shapes
There are ten different basic constructors for the SORT SHAPE, from bitfield to top, as shown in
Table 4-1.

SHAPEs arising from those constructors are used as qualifiers (just using an upper case version
of the constructor name) to various SORTs in the definition; for example, EXP TOP is an
expression with top SHAPE. This is just used for definitional purposes only; there is no SORT
SHAPENAME as one has SORTNAME.

SHAPE QUALIFIER SORT USAGE ALIGNMENT
BITFIELD(v) BITFIELD_VARIETY As in C bitfields; e.g., int x:5 v
BOTTOM It never gets here; e.g., goto None

Structs or unions;
OFFSET sz is size

x ⊇ Set-union of
field alignments

COMPOUND(sz) OFFSET(x, y)

Floating point numbersFLOATING(fv) FLOATING_VARIETY {fv}

Integers, including charsINTEGER(v) VARIETY {v}

Tuple of n values
of SHAPE s

NOF(n, s) (NAT, SHAPE) {alignment(s)}

(ALIGNMENT,
ALIGNMENT)

Offsets in memory;
a1 ⊇ a2.

OFFSET(a1, a2) {offset}

Pointers in memoryPOINTER(a); ALIGNMENT {pointer}

PROC Procedure values {proc}
No value;
e.g., result of assign

TOP { }

Table 4-1 SHAPE Basic Constructors

In the XANDF specification of EXPs, all EXPs in constructor signatures are qualified by the
SHAPE name; for example, a parameter might be EXP INTEGER(v). This merely means that for
the construct to be meaningful the parameter must be derived from a constructor defined to be
an EXP INTEGER(v). It should not be assumed that XANDF is strongly-typed by its SHAPEs,
but the producer must get it right. There are some checks in translators, but these are not
exhaustive and are more for the benefit of translator writers than for the user. A tool for testing
the SHAPE correctness of an XANDF program would be useful but has yet to be written.

Architecture Neutral Distribution Format (XANDF) 19

Shapes SHAPEs, ALIGNMENTs and OFFSETs

4.1.1 TOP, BOTTOM, LUB

Two of the SHAPE constructions are rather specialised; these are TOP and BOTTOM. The result
of any expression with a TOP shape will always be discarded. Examples are those produced by
assign and integer_test. A BOTTOM SHAPE is produced by an expression which will leave the
current flow of control, for example goto. The significance of these SHAPEs only really
impinges on the computation of the shapes of constructs which have alternative expressions as
results. For example, the result of conditional is the result of one of its component expressions. In
this case, the SHAPE of the result is described as the LUB of the SHAPEs of the components.
This simply means that if one of the component SHAPEs is TOP then the resulting SHAPE is
TOP; if one is BOTTOM then the resulting SHAPE is the SHAPE of the other; otherwise both
component SHAPEs must be equal and is the resulting SHAPE. Since this operation is
associative, commutative and idempotent, we can speak quite unambiguously of the LUB of
several SHAPEs.

4.1.2 INTEGER

Integer values in XANDF have shape INTEGER(v) where v is of SORT VARIETY. The
constructor for this SHAPE is integer with a VARIETY parameter. The basic constructor for
VARIETY is var_limits which has a pair of signed natural numbers as parameters giving the
limits of possible values that the integer can attain. The SHAPE required for a 32 bit signed
integer would be:

integer(var_limits(−231 , 231−1))

while an unsigned char is:

integer(var_limits(0, 255))

A translator should represent each integer variety by an object big enough (or bigger) to contain
all the possible values with limits of the VARIETY. However, most current translators do not
handle integers of more than the maximum given naturally by the target architecture; this will
be rectified in due course.

The other way of constructing a VARIETY is to specify the number of bits required for its
twos-complement representation using var_width:

signed_width: BOOL
width: NAT

→ VARIETY

4.1.3 FLOATING and Complex

Similarly, floating point and complex numbers have shape FLOATING qualified by a
FLOATING_VARIETY.

A FLOATING_VARIETY for a real number is constructed using fvar_parms:

base: NAT
mantissa_digits: NAT

minimum_exponent: NAT
maximum_exponent: NAT

20 X/Open Guide

SHAPEs, ALIGNMENTs and OFFSETs Shapes

→ FLOATING_VARIETY

A FLOATING_VARIETY specifies the base, number of mantissa digits, and maximum and
minimum exponent. Once again, it is intended that the translator will choose a representation
which will contain all possible values, but in practice only those which are included in IEEE
float, double and extended are actually implemented.

Complex numbers have a floating variety constructed by complex_parms which has the the
same signature as fvar_parms. The representation of these numbers is likely to be a pair of real
numbers each defined as if by fvar_parms with the same arguments. The real and imaginary
parts of of a complex number can be extracted using real_part and imaginary_part; these could
have been injected into the complex number using make_complex or any of the complex
operations. Many translators will simply transform complex numbers into COMPOUNDs
consisting of two floating point numbers, transforming the complex operations into floating
point operations on the fields.

4.1.4 BITFIELD

A number of contiguous bits have shape BITFIELD, qualified by a BITFIELD_VARIETY which
gives the number of bits involved and whether these bits are to be treated as signed or unsigned
integers. Current translators put a maximum of 32 or 64 on the number of bits.

4.1.5 PROC

The representational SHAPEs of procedure values is given by PROC with constructor proc.

4.1.6 Non-primitive SHAPEs

The construction of the other four SHAPEs involves either existing SHAPEs or the alignments of
existing SHAPEs. These are constructed by compound, nof, offset and pointer. Before
describing these (see Section 4.4 on page 25, it is necessary to explain what is meant by
alignments and offsets.

4.2 Alignments
In most processor architectures there are limitations on how one can address particular kinds of
objects in convenient ways. These limitations are usually defined as part of the ABI for the
processor. For example, in the MIPs processor, the fastest way to access a 32-bit integer is to
ensure that the address of the integer is aligned on a 4-byte boundary in the address space;
obviously one can extract a mis-aligned integer but not in one machine instruction. Similarly,
16-bit integers should be aligned on a 2-byte boundary. In principle, each primitive object could
have similar restrictions for efficient access and these restrictions could vary from platform to
platform. Hence, the notion of alignment has to be abstracted to form part of the architecture
independent XANDF — we cannot assume that any particular alignment regime will hold
universally.

The abstraction of alignments clearly has to cover compound objects as well as primitive ones
like integers. For example, if a field of structure in C is to be accessed efficiently, then the
alignment of the field will influence the alignment of the structure as whole; the structure itself
could be a component of a larger object whose alignment must then depend on the alignment of
the structure and so on. In general, we find that a compound alignment is given by the
maximum alignment of its components, regardless of the form of the compound object, for
example, whether it is a structure, union, array or whatever.

Architecture Neutral Distribution Format (XANDF) 21

Alignments SHAPEs, ALIGNMENTs and OFFSETs

This gives an immediate handle on the abstraction of the alignment of a compound object — it is
just the set of abstractions of the alignments of its components. Since ‘‘maximum’’ is associative,
commutative and idempotent, the component sets can be combined using normal set-union
rules. In other words, a compound alignment is abstracted as the set of alignments of the
primitive objects which make up the compound object. Thus the alignment abstraction of a C
structure with only float fields is the singleton set containing the alignment of a float while that
of a C union of an int and this structure is a pair of the alignments of an int and a float.

4.2.1 ALIGNMENT Constructors

The XANDF abstraction of an alignment has SORT ALIGNMENT. The constructor
unite_alignments gives the set-union of its ALIGNMENT parameters; this would correspond to
taking a maximum of two real alignments in the translator.

The constructor alignment gives the ALIGNMENT of a given SHAPE according to the rules
given in the definition. These rules effectively define the primitive ALIGNMENTs as in the
ALIGNMENT column of Table 4-1 on page 19. Those for PROC, all OFFSETs and all POINTERs
are constants regardless of any SHAPE qualifiers. Each of the INTEGER VARIETYs, each of the
FLOATING VARIETYs and each of the BITFIELD VARIETYs have their own ALIGNMENTs.
These ALIGNMENTs will be bound to values apposite to the particular platform at
translate-time. The ALIGNMENT of TOP is conventionally taken to be the empty set of
ALIGNMENTs (corresponding to the minimum alignment on the platform).

The alignment of a procedure parameter clearly has to include the alignment of its SHAPE;
however, most ABIs will mandate a greater alignment for some SHAPEs, for example the
alignment of a byte parameter is usually defined to be on a 32-bit rather than an 8-bit boundary.
The constructor parameter_alignment gives the ALIGNMENT of a parameter of given SHAPE.

4.2.2 Special Alignments

There are several other special ALIGNMENTs.

The alignment of a code address is { code } given by code_alignment ; this will be the alignment
of a pointer given by make_local_lv giving the value of a label.

The other special ALIGNMENTs are considered to include all of the others, but remain distinct.
They are all concerned with offsets and pointers relevant to procedure frames, procedure
parameters and local allocations and are collectively known as frame alignments. These frame
alignments differ from the normal alignments in that their mapping to a given architecture is
rather more than just saying that it describes some n-bit boundary. For example,
alloca_alignment describes the alignment of dynamic space produced by local_alloc (roughly
the C alloca). Now, an ABI could specify that the alloca space is a stack disjoint from the normal
procedure stack; thus manipulations of space at alloca_alignment may involve different code to
space generated in other ways.

Similar considerations apply to the other special alignments, callees_alignment (b),
callers_alignment (b) and locals_alignment. The first two give the alignments of the bases of
the two different parameter spaces in procedures (see Chapter 5 on page 29) and
locals_alignment gives the alignment of the base of locally declared tags within a procedure.
The exact interpretation of these depends on how the frame stack is defined in the target ABI, ,
for example, does the stack grow downwards or upwards?

The final special alignment is var_param_alignment. This describes the alignment of a special
kind of parameter to a procedure which can be of arbitrary length (see Section 5.1.2 on page 31).

22 X/Open Guide

SHAPEs, ALIGNMENTs and OFFSETs Alignments

4.2.3 AL_TAG, make_al_tagdef

Alignments can also be named as AL_TAGs using make_al_tagdef. There is no corresponding
make_al_tagdec since AL_TAGs are implicitly declared by their constructor, make_al_tag. The
main reason for having names for alignments is to allow one to resolve the ALIGNMENTs of
recursive data structures. If, for example, we have mutually recursive structures, their
ALIGNMENTs are best named and given as a set of equations formed by AL_TAGDEFs. A
translator can then solve these equations trivially by substitution; this is easy because the only
significant operation is set-union.

Architecture Neutral Distribution Format (XANDF) 23

Pointer and offset SHAPEs SHAPEs, ALIGNMENTs and OFFSETs

4.3 Pointer and offset SHAPEs
A pointer value must have a form which reflects the alignment of the object that it points to; for
example, in the MIPs processor, the bottom two bits of a pointer to an integer must be zero. The
XANDF SHAPE for a pointer is POINTER qualified by the ALIGNMENT of the object pointed
to. The constructor pointer uses this alignment to make a POINTER SHAPE.

4.3.1 OFFSET

Expressions which give sizes or offsets in XANDF have an OFFSET SHAPE. These are always
described as the difference between two pointers. Since the alignments of the objects pointed to
could be different, an OFFSET is qualified by these two ALIGNMENTs. Thus an EXP
OFFSET(X,Y) is the difference between an EXP POINTER(X) and an EXP POINTER(Y). In order
for the alignment rules to apply, the set X of alignments must include Y. The constructor offset
uses two such alignments to make an OFFSET SHAPE. However, many instances of offsets will
be produced implicitly by the offset arithmetic, for example, offset_pad:

a: ALIGNMENT
arg1: EXP OFFSET(z,t)

→ EXP OFFSET(z ∪ a, a)

This gives the next OFFSET greater or equal to arg1 at which an object of ALIGNMENT a can be
placed. It should be noted that the calculation of shapes and alignments are all translate-time
activities; only EXPs should produce runnable code. This code, of course, may depend on the
shapes and alignments involved; for example, offset_pad might round up arg1 to be a multiple
of four bytes if a was an integer ALIGNMENT and z was a character ALIGNMENT. Translators
also do extensive constant analysis, so if arg1 was a constant offset, then the round-off would be
done at translate-time to produce another constant.

24 X/Open Guide

SHAPEs, ALIGNMENTs and OFFSETs Compound SHAPEs

4.4 Compound SHAPEs
The alignments of compound SHAPEs (that is, those arising from the constructors compound
and nof) are derived from the constructions which produced the SHAPE. To take the easy one
first, the constructor nof has signature:

n: NAT
s: SHAPE

→ SHAPE

This SHAPE describes an array of n values all of SHAPE s; note that n is a natural number and
hence is a constant known to the producer. Throughout the definition this is referred to as the
SHAPE NOF(n,s). The ALIGNMENT of such a value is alignment (s), that is, the alignment of an
array is just the alignment of its elements.

The other compound SHAPEs are produced using compound:

sz: EXP OFFSET(x,y)
→ SHAPE

The sz parameter gives the minimum size which can accommodate the SHAPE.

4.4.1 Offset Arithmetic with Compound Shapes

The constructors offset_add, offset_zero and shape_offset are used together with offset_pad to
implement (among other things) selection from structures represented by COMPOUND
SHAPEs. Starting from the zero OFFSET given by offset_zero, one can construct an EXP which is
the offset of a field by padding and adding offsets until the required field is reached. The value of
the field required could then be extracted using component or add_to_ptr. Most producers
would define a TOKEN for the EXP OFFSET of each field of a structure or union used in the
program simply to reduce the size of the XANDF

The SHAPE of a C structure consisting of a char followed by an int would require x to be the set
consisting of two INTEGER VARIETYs, one for int and one for char, and sz would probably have
been constructed like:

sz = offset_add(offset_pad(int_al, shape_offset(char)), shape_offset(int))

The various rules for the ALIGNMENT qualifiers of the OFFSETs give the required SHAPE;
these rules also ensure that offset arithmetic can be implemented simply using integer arithmetic
for standard architectures (see Section 13.1 on page 69). Note that the OFFSET computed here is
the minimum size for the SHAPE. This would not in general be the same as the difference
between successive elements of an array of these structures which would have SHAPE
OFFSET(x,x) as produced by offset_pad(x, sz). For examples of the use of OFFSETs to access and
create structures, see Chapter 12.

Architecture Neutral Distribution Format (XANDF) 25

Compound SHAPEs SHAPEs, ALIGNMENTs and OFFSETs

4.4.2 offset_mult

In C, all structures have size known at translate-time. This means that OFFSETs for all field
selections of structures and unions are translate-time constants; there is never any need to
produce code to compute these sizes and offsets. Other languages (notably Ada) do have
variable size structures and so sizes and offsets within these structures may have to be
computed dynamically. Indexing in C will require the computation of dynamic OFFSETs; this
would usually be done by using offset_mult to multiply an offset expression representing the
stride by an integer expression giving the index:

arg1: EXP OFFSET(x,x)
arg2: EXP INTEGER(v)

→ EXP OFFSET(x,x)

and using add_to_ptr with a pointer expression giving the base of the array with the resulting
OFFSET.

4.4.3 OFFSET Ordering and Representation

There is an ordering defined on OFFSETs with the same alignment qualifiers, as given by
offset_test and offset_max having properties like:

shape_offset(S) ≥ offset_zero(alignment(S))
A ≥ B iff offset_max(A,B) = A
offset_add(A, B) ≥ A where B ≥ offset_zero(some compatible alignment)

In most machines, OFFSETs would be represented as single integer values with the OFFSET
ordering corresponding to simple integer ordering. The offset_add constructor just translates to
simple addition with offset_zero as 0 with similar correspondences for the other offset
constructors. The reasons why XANDF does not simply use integers for offsets, instead of
introducing the rather complex OFFSET SHAPE, are two-fold:

• Firstly, following the OFFSET arithmetic rules concerned with the ALIGNMENT qualifiers
will ensure that one never extracts a value from a pointer with the wrong alignment by, for
example, applying contents to an add_to_pointer. This frees XANDF from having to define
the effect of strange operations like forming a float by taking the contents of a pointer to a
character which may be mis-aligned with respect to floats — a heavy operation on most
processors.

• Secondly, there are machines which cannot represent OFFSETs by a single integer value.

The iAPX-432 is a fairly extreme example of such a machine; it is a capability machine which
must segregate pointer values and non-pointer values into different spaces. On this machine a
value of SHAPE POINTER({pointer , int }) (for example, a pointer to a structure containing both
integers and pointers) could have two components, one referring to the pointers and another to
the integers. In general, offsets from this pointer would also have two components, one to pick
out any pointer values and the other the integer values.

This would obviously be the case if the original POINTER referred to an array of structures
containing both pointers and integers; an offset to an element of the array would have SHAPE

OFFSET({pointer, int} , {pointer, int})

Both elements of the offset would have to be used as displacements to the corresponding
elements of the pointer to extract the structure element. The OFFSET ordering is now given by
the comparison of both displacements. Using this method, one finds that pointers in store to
non-pointer alignments are two words in different blocks and pointers to pointer-alignments are

26 X/Open Guide

SHAPEs, ALIGNMENTs and OFFSETs Compound SHAPEs

four words, two in one block and two in another. This sounds a very unwieldy machine
compared to normal machines with linear addressing. However, who knows what similar
strange machines will appear in future; the basic conflicts between security, integrity and
flexibility that the iAPX-432 sought to resolve are still with us. For more on the modelling of
pointers and offsets, see Chapter 13.

Architecture Neutral Distribution Format (XANDF) 27

BITFIELD Alignments SHAPEs, ALIGNMENTs and OFFSETs

4.5 BITFIELD Alignments
Even in standard machines, one finds that the size of a pointer may depend on the alignment of
the data pointed at. Most machines do not allow one to construct pointers to bits with the same
facility as other alignments. This usually means that pointers in memory to BITFIELD VARIETYs
must be implemented as two words with an address and bit displacement. One might imagine
that a translator could implement BITFIELD alignments so that they are the same as the smallest
natural alignment of the machine and avoid the bit displacement, but this is not the intention of
the definition. On any machine for which it is meaningful, the alignment of a BITFIELD must be
one bit; in other words successive BITFIELDs are butted together with no padding bits4. Within
the limits of what one can extract from BITFIELDs, namely INTEGER VARIETYs, this is how one
should implement non-standard alignments, perhaps in constructing data, such as protocols, for
exchange between machines. One could implement some Ada representational statements in
this way — certainly in the case of the most commonly used ones.

XANDF does not allow one to construct a pointer of SHAPE POINTER(b) where b consists
entirely of bitfield alignments. This relieves the translators of the burden of doing general
bit-addressing. Of course, this simply shifts the burden to the producer. If the high level
language requires to construct a pointer to an arbitrary bit position, then the producer is
required to represent such a pointer as a pair consisting of pointer to some alignment including
the required bitfield and an offset from this alignment to the bitfield. For example, Ada may
require the construction of a pointer to a boolean for use as the parameter to a procedure; the
SHAPE of the representation of this Ada pointer could be a COMPOUND formed from a
POINTER({ x , b }) and an OFFSET({ x, b }, b) where b is the alignment given by a 1 bit alignment.
To access the boolean, the producer would use the elements of this pair as arguments to
bitfield_assign and bitfield_contents.

4. Note that it not generally true for C bitfields; most C ABIs have (different) rules for putting in padding bits depending on the size
of the bitfield and its relation with the natural alignments. This is a fruitful source of errors in data exchange between different C
ABIs. For more on similar limitations of bitfields in XANDF see ‘‘Assigning and Extracting Bitfields’’.

28 X/Open Guide

Chapter 5

Procedures and Locals

All procedures in XANDF are essentially global; the only values which are accessible from the
body of a procedure are those which are derived from global TAGs (introduced by TAGDEFs or
TAGDECs), local TAGs defined within the procedure and parameter TAGs of the procedure.

All executable code in XANDF will arise from an EXP PROC made by either make_proc or
make_general_proc. They differ in their treatment of how space for the actual parameters of a
call is managed; in particular, is it the caller or the callee which deallocates the parameter space?

With make_proc, this management is conceptually done by the caller at an apply_proc; that is,
the normal C situation. This suffers from the limitation that tail-calls of procedures are then only
possible in restricted circumstances (for example, the space for the parameters of the tail-call
must be capable of being included in caller’s parameters) and could only be implemented as an
optimisation within a translator. A producer could not predict these circumstances in a machine
independent manner, whether or not it knew that a tail-call was valid.

An alternative would be to make the management of parameter space the responsibility of the
called procedure. Rather than do this, make_general_proc (and apply_general_proc) splits the
parameters into two sets, one whose allocation is the responsibility of the caller and the other
whose allocation is dealt with by the callee. This allows an explicit tail_call to be made to a
procedure with new callee parameters; the caller parameters for the tail_call will be the same as
(or some initial subset of) the caller parameters of the procedure containing the tail_call.

A further refinement of make_general_proc is to allow access to the caller parameter space in a
postlude at the call of the procedure using an apply_general_proc. This allows simple
implementations of Ada out_parameters, or more generally, multiple results of procedures.

5.1 Traditional Procedures

5.1.1 make_proc and apply_proc

The make_proc constructor has signature:

result_shape: SHAPE
params_intro: LIST(TAGSHACC)

var_intro: OPTION(TAGACC)
body: EXP BOTTOM

→ EXP PROC

The params_intro and var_intro parameters introduce the formal parameters of the procedure
which may be used in body. The procedure result will have SHAPE result_shape and will be
usually given by some return construction within body. The basic model is that space will be
provided to copy actual parameters (into space supplied by some apply_proc) by value into
these formals and the body will treat this space effectively as local variables.

Architecture Neutral Distribution Format (XANDF) 29

Traditional Procedures Procedures and Locals

Each straightforward formal parameter is introduced by an auxiliary SORT TAGSHACC using
make_tagshacc:

sha: SHAPE
opt_access: OPTION(LIST(ACCESS))

tg_intro: TAG POINTER(alignment(sha))
→ TAGSHACC

Within body, the formal will be accessed using tg_intro ; it is always considered to be a pointer to
the space of SHAPE sha allocated by apply_proc, hence the pointer SHAPE.

For example, if we had a simple procedure with one integer parameter, var_intro would be
empty and params_intro might be:

params_intro = make_tagshacc (integer(v), empty, make_tag (13))

Then, TAG 13 from the enclosing UNIT’s name-space is identified with the formal parameter
with SHAPE POINTER(INTEGER(v)). Any use of obtain_tag(make_tag(13)) in body will deliver
a pointer to the integer parameter. For more insight on the meaning of opt_access and the
ramifications of the scope and extent of TAGs involved in conjunction with local declarations,
see Section 5.3 on page 33.

Procedures, whether defined by make_proc or make_general_proc, will usually terminate and
deliver its result with a return:

arg1: EXP
→ EXP BOTTOM

Here x must be identical to the result_shape of the call of the procedure There may be several
returns in body ; and the SHAPE x in each will be the same. Some languages allow different types
to be returned depending on the particular call. The producer must resolve this issue. For
example, C allows one to deliver void if the resulting value is not used. In XANDF a dummy
value must be provided at the return; for example make_value (result_shape)

Note that the body has SHAPE bottom since all possible terminations to a procedure have
SHAPE BOTTOM.

Procedures defined by make_proc are called using apply_proc:

result_shape: SHAPE
arg1: EXP PROC
arg2: LIST(EXP)

varparam: OPTION(EXP)
→ EXP result_shape

Here arg1 is the procedure to be called and arg2 gives the actual parameters. There must be at
least as many actual parameters as given (with the same SHAPE) in the params_intro of the
corresponding make_proc for arg1. The values of arg2 will be copied into space managed by
caller.

The SHAPE of the result of the call is given by result_shape which must be identical to the
result_shape of the make_proc.

30 X/Open Guide

Procedures and Locals Traditional Procedures

5.1.2 vartag, varparam

Use of the var_intro OPTION in make_proc and the corresponding varparam in apply_proc
allows one to have a parameter of any SHAPE, possibly differing from call to call where the
actual SHAPE can be deduced in some way by the body of the make_proc. One supplies an
extra actual parameter, varparam, which usually would be a structure grouping some set of
values. The body of the procedure can then access these values using the pointer given by the
TAG var_intro , using add_to_ptr with some computed offsets to pick out the individual fields.

This is a slightly different method of giving a variable number of parameters to a procedure,
rather than simply giving more actuals than formals. The principle difference is in the alignment
of the components of varparam ; these will be laid out according to the default padding defined
by the component shapes. In most ABIs, this padding is usually different to the way parameters
are laid out; for example, character parameters are generally padded out to a full word. Thus a
sequence of parameters of given shape has a different layout in store to the same sequence of
shapes in a structure. If one wished to pass an arbitrary structure to a procedure, one would use
the varparam option rather passing the fields individually as extra actual parameters.

5.2 General Procedures

5.2.1 make_general_proc, apply_general_proc

A make_general_proc has signature:

result_shape: SHAPE
prcprops: OPTION(PROCPROPS)

caller_intro: LIST(TAGSHACC)
callee_inro: LIST(TAGSHACC)

body: EXP BOTTOM
→ EXP PROC

Here the formal parameters are split into two sets, caller_intro and callee_intro, each given by a
list of TAGSHACCs just as in make_proc. The distinction between the two sets is that the
make_general_proc is responsible for deallocating any space required for the callee parameter
set; this really only becomes obvious at uses of tail_call within body .

The result_shape and body have the same general properties as in make_proc. In addition
prcprops gives other information both about body and the way that that the procedure is called.
PROCPROPS are a set drawn from check_stack, inline, no_long_jump_dest, untidy,
var_callees and var_callers. The set is composed using add_procprops. The PROCPROPS
no_long_jump_dest is a property of body only; it indicates that none of the labels within body
will be the target of a long_jump construct. The other properties should also be given
consistently at all calls of the procedure; these are discussed in Section 5.2.3.

A procedure, p, constructed by make_general_proc is called using apply_general_proc :

result_shape: SHAPE
prcprops: OPTION(PROCPROPS)

p: EXP PROC

Architecture Neutral Distribution Format (XANDF) 31

General Procedures Procedures and Locals

caller_params: LIST(OTAGEXP)
callee_params: CALLEES

postlude: EXP TOP
→ EXP result_shape

The actual caller parameters are given by caller_params as a list of OTAGEXPs constructed using
make_otagexp:

tgopt: OPTION(TAGx)
e: EXPx

→ OCTAGEXP

Here, e is the value of the parameter and tgopt, if present, is a TAG which will bound to the final
value of the parameter (after body is evaluated) in the postlude expression of the
apply_general_proc5. Clearly, this allows one to use a caller parameter as an extra result of the
procedure, for example, as in Ada out-parameters.

The actual callee_params may be constructed in three different ways. The usual method is to use
make_callee_list, giving a list of actual EXP parameters, corresponding to the caller_intro list in
the obvious way. The constructor same_callees allows one to use the callees of the current
procedure as the callees of the call; this, of course, assumes that the formals of the current
procedure are compatible with the formals required for the call. The final method allows one to
construct a dynamically sized set of CALLEES: make_dynamic_callees takes a pointer and a
size (expressed as an OFFSET) to make the CALLEES; this will be used in conjunction with a
var_callees PROCPROPS (see Section 5.2.3).

Some procedures can be expressed using either make_proc or make_general_proc. For
example:

make_proc(S, L, empty, B) = make_general_proc(S, var_callers, L, empty, B)

5.2.2 tail_call

Often the result of a procedure, f, is simply given by the call of another (or the same) procedure,
g. In appropriate circumstances, the same stack space can be used for the call of g as the call of f.
This can be particularly important where heavily recursive routines are involved. Some
languages even use tail recursion as the preferred method of looping.

One condition for such a tail call to be applicable is knowing that g does not require any pointers
to locals of f ; this is often implicit in the language involved. Equally important is that the action
on the return from f is indistinguishable from the return from g . For example, if it were the
callers responsibility to pop the the space for the parameters on return from a call, then the tail
call of g would only work if g had the same parameter space as f .

This is the justification for splitting the parameter set of a general proc. It is (at least
conceptually) the caller’s responsibility for popping the caller-parameters only — the callee
parameters are dealt with by the procedure itself. Hence we can define tail_call which uses the
same caller parameters but a different set of callee parameters:

5. If a formal parameter is to be used in this way, it should be marked as having out_par ACCESS in its corresponding TAGSHACC
in callers_intro .

32 X/Open Guide

Procedures and Locals General Procedures

prcprops: OPTION(PROCPROPS)
p: EXP PROC

callee_params: CALLEES
→ EXP BOTTOM

The procedure p will be called with the same caller parameters as the current procedure and the
new callee_params and return to the call site of the current procedure. Semantically, if S is the
return SHAPE of the current procedure, and L is its caller-parameters:

tail_call(P, p, C) = return(apply_general_proc(S, P, p, L, C, make_top()))

However an implementation is expected to conserve stack by using the same space for the call of
p as the current procedure.

5.2.3 PROCPROPS

The presence of var_callees (or var_callers) means that the procedure can be called with more
actual callee (or caller) parameters than are indicated in callee_intro (or caller_intro). These extra
parameters would be accessed within body using offset calculations with respect to the named
parameters. The offsets should be calculated using parameter_alignment to give the packing of
the parameter packs.

The presence of untidy means that body may be terminated by an untidy_return. This returns the
result of the procedure as in return, but the lifetime of the local space of the procedure is
extended (in practice this is performed by not returning the stack to its original value at the call).
A procedure containing an untidy_return is a generalisation of a local_alloc (see Section 5.3.4).
For example, the procedure could do some complicated local allocation (a triangular array, say)
and untidily return a pointer to it so that the space is still valid in the calling procedure. The
space will remain valid for the lifetime of the calling procedure unless some local_free is called
within it, just as if the space had been generated by a local_alloc in the calling procedure.

The presence of inline is just a hint to the translator that the procedure body is a good candidate
for inlining at the call.

The presence of check_stack means that the static stack requirements of the procedure will be
checked on entry to see that they do not exceed the limits imposed by set_stack_limit; if they are
exceeded an XANDF exception with ERROR_CODE stack_overflow (see Section 6.3.0 on page 42)
will be raised.

5.3 Defining and Using Locals

5.3.1 identify, variable

Local definitions within the body of a procedure are given by two EXP constructors which
permit one to give names to values over a scope given by the definition. Note that this is
somewhat different to declarations in standard languages, where the declaration is usually
embedded in a larger construct which defines the scope of the name. Here, the scope is explicit
in the definition. The reason for this will become more obvious in the discussion of XANDF
transformations. The simpler constructor is identify:

Architecture Neutral Distribution Format (XANDF) 33

Defining and Using Locals Procedures and Locals

opt_access: OPTION(ACCESS)
name_intro: TAG(x)

definition: EXPx
body: EXPy

→ EXPy

The definition is evaluated and its result is identified with the TAG given by name_intro within
its scope body. Hence the use of any obtain_tag(name_intro) within body is equivalent to using
this result. Anywhere else, obtain_tag(name_intro) is meaningless, including in other procedures.

The other kind of local definition is variable:

opt_access: OPTION(ACCESS)
name_intro: TAGx

init: EXPx
body: EXPy

→ EXPy

Here, the init EXP is evaluated and its result serves as an initialisation of space of SHAPE x local
to the procedure. The TAG name_intro is then identified with a pointer to that SPACE within
body. A use of obtain_tag(name_intro) within body is equivalent to using this pointer and is
meaningless outside body or in other procedures. Many variable declarations in programs are
uninitialised; in this case, the init argument could be provided by make_value, which will
produce some value with SHAPE given by its parameter.

5.3.2 ACCESS

The ACCESS SORT given in tag declarations is a way of describing a list of properties to be
associated with the tag. They are basically divided into two classes, one which describes global
properties of the tag with respect to the model for locals and the other which gives hints on how
the value will be used. Any of these can be combined using add_access.

Locals Model

At the moment there are just four possibilities in the first class of ACCESS constructors. They
are standard_access (the default) , visible, out_par and long_jump_access.

The basic model used for the locals and parameters of a procedure is a frame within a stack of
nested procedure calls. One could implement a procedure by allocating space according to
SHAPEs of all of the parameter and local TAGs so that the corresponding values are at fixed
offsets either from the start of the frame or some pointer within it.

Indeed, if the ACCESS opt_access parameter in a TAG definition is produced by visible, then a
translator is almost bound to do just that for that TAG. This is because it allows for the
possibility of the value to be accessed in some way other than by using obtain_tag, which is the
standard way of recovering the value bound to the TAG. The principal way that this could
happen within XANDF is by the combined use of env_offset to give the offset and current_env
to give a pointer to the current frame (see Section 5.3.3).

The out_par ACCESS is only applicable to caller parameters of procedures; it indicates that the
value of the TAG concerned will accessed by the postlude part of an apply_general_proc.
Hence, the value of the parameter must be accessible after the call. Usually this will be on the
stack in the callers frame.

34 X/Open Guide

Procedures and Locals Defining and Using Locals

The long_jump_access flag is used to indicate that the tag must be available after a long_jump.
In practice, if either visible or long_jump_access is set, most translators would allocate the
space for the declaration on the main-store stack rather than in an available register. If it is not
set, then a translator is free to use its own criteria for whether space which can fit into a register
is allocated on the stack or in a register, provided there is no observable difference (other than
time or program size) between the two possibilities.

Some of these criteria are rather obvious. For example, if a pointer to local variable is passed
outside the procedure in an opaque manner, then it is highly unlikely that one can allocate the
variable in a register. Some might be less obvious. If the only uses of a TAG t was in obtain_tag
(t)s which are operands of contents or the left-hand operands of assigns, most ABIs would allow
the tag to be placed in a register. It is not necessarily a requirement to generate a pointer value if
it can be subsumed by the operations available.

Access Hints

A variable tag with ACCESS constant is a write-once value; once it is initialised, the variable will
always contain the initialisation. In other words, the tag is a pointer to a constant value.
Translators can use this information to apply various optimisations.

A POINTER tag with ACCESS no_other_read or no_other_write is asserting that there are no
‘‘aliased’’ accesses to the contents of the pointer. For example, when applied to a parameter of a
procedure, it is saying that the original pointer of the tag is distinct from any other tags used
(reading/writing) in the lifetime of the tag. These other tags could either be further parameters
of the procedure or globals. Clearly, this is useful for describing the limitations imposed by
Fortran parameters, for example.

5.3.3 current_env, env_offset

The constructor current_env gives a pointer to the current procedure frame of SHAPE
POINTER(fa) where fa is depends on how the procedure was defined and will be some set of the
special frame ALIGNMENTs. This set will always include locals_alignment — the alignment of
any locals defined within the procedure. If the procedure has any caller parameters, the set will
also include callers_alignment(b) where b indicates whether there can be a variable number of
them. Similarly for callee parameters.

Offsets from the current_env of a procedure to a tag declared in the procedure are constructed
by env_offset:

fa: ALIGNMENT
y: ALIGNMENT
t: TAGx

→ EXP OFFSET(fa,y)

The frame ALIGNMENT fa will be the appropriate one for the TAG t; that is, if t is a local then
the fa will be locals_alignment; if t is a caller parameter, fa will be callers_alignment (b); if t is a
callee parameter, fa will be callees_alignment(b). The alignment y will be the alignment of the
initialisation of t.

The offset arithmetic operations allow one to access the values of tags non-locally using values
derived from current_env and env_offset. They are effectively defined by the following
identities:

• If TAG t is derived from a variable definition:

Architecture Neutral Distribution Format (XANDF) 35

Defining and Using Locals Procedures and Locals

add_to_ptr(current_env(), env_offset(locals_alignment, A, t))
= obtain_tag(t)

• If TAG t is derived from an identify definition:

contents(S,add_to_ptr(current_env(),env_offset(locals_alignment,A,t)))
= obtain_tag(t)

• If TAG t is derived from a caller parameter:

add_to_ptr(current_env(), env_offset(callers_alignment(b), A, t))
= obtain_tag(t)

• If TAG t is derived from a callee parameter:

add_to_ptr(current_env(), env_offset(callees_alignment(b), A, t))
= obtain_tag(t)

These identities are valid throughout the extent of t, including in inner procedure calls. In other
words, one can dynamically create a pointer to the value by composing current_env and
env_offset.

The importance of this is that env_offset (t) is a constant OFFSET and can be used anywhere
within the enclosing UNIT, in other procedures or as part of constant TAGDEF. Remember that
the TDFINT underlying t is unique within the UNIT. The result of a current_env could be passed
to another procedure (as a parameter, say) and this new procedure could then access a local of
the original by using its env_offset. This would be the method one would use to access
non-local, non-global identifiers in a language which allowed one to define procedures within
procedures such as Pascal or Algol. Of course, given the stack-based model, the value given by
current_env becomes meaningless once the procedure in which it is invoked is exited.

5.3.4 local_alloc, local_free_all, last_local

The size of stack frame produced by variable and identify definitions is a translate-time
constant since the frame is composed of values whose SHAPEs are known. XANDF also allows
one to produce dynamically sized local objects which are conceptually part of the frame. These
are produced by local_alloc:

arg1: EXP OFFSET(x,y)
→ EXP POINTER(alloca_alignment)

The operand arg1 gives the size of the new object required and the result is a pointer to the space
for this object ‘‘on top of the stack’’ as part of the frame. The quotation marks indicate that a
translator writer might prefer to maintain a dynamic stack as well as static one. There are some
disadvantages in putting everything into one stack which may well out-weigh the trouble of
maintaining another stack which is relatively infrequently used. If a frame has a known size,
then all addressing of locals can be done using a stack-front register; if it is dynamically sized,
then another frame-pointer register must be used — some ABIs make this easy but not all. The
majority of procedures contain no local_allocs, so their addressing of locals can always be done
relative to a stack-front; only the others have to use another register for a frame pointer.

The alignment of pointer result is alloca_alignment which must include all SHAPE alignments.

36 X/Open Guide

Procedures and Locals Defining and Using Locals

There are two constructors for releasing space generated by local_alloc. To release all such
space generated in the current procedure, one does local_free_all(); this reduces the size of the
current frame to its static size.

The other constructor is local_free which is effectively a ‘‘pop’’ to local_alloc ’s ‘‘push’’ :

a: EXP OFFSET(x,y)
p: EXP POINTER(alloca_alignment)

→ EXP TOP

Here p must evaluate to a pointer generated either by local_alloc or last_local. The effect is to
free all of the space locally allocated after p. The usual implementation (with a downward
growing stack) of this is that p becomes the ‘‘top of stack’’ pointer

The use of a procedure with an untidy_return is just a generalisation of the idea of local_alloc
and the space made available by its use can be freed in the same way as normal local allocations.
Of course, given that it could be the result of the procedure it can be structured in an arbitrarily
complicated way.

5.4 Heap Storage
At the moment, there are no explicit constructors for creating dynamic off-stack storage in
XANDF. Any off-stack storage requirements must be met by the API in which the system is
embedded, using the standard procedural interface. For example, the ANSI C API allows the
creation of heap space using standard library procedures like malloc.

Architecture Neutral Distribution Format (XANDF) 37

Procedures and Locals

38 X/Open Guide

Chapter 6

Control Flow within Procedures

6.1 Unconditional Flow

6.1.1 Sequence

To perform a sequential set of operations in XANDF, one uses the constructor sequence:

statements: LIST(EXP)
result: EXPx

→ EXPx

Each of the statements are evaluated in order, throwing away their results. Then, result is
evaluated and its result is the result of the sequence.

A translator is free to rearrange the order of evaluation if there is no observable difference other
than in time or space. This applies wherever the text states ‘‘something is evaluated and then...’’ .
You will see this kind of statement in definitions of local variables in Section 5.3 on page 33, and
in the controlling parts of the conditional constructions below.

6.2 Conditional Flow

6.2.1 labelled, make_label

All simple changes of flow of control within an XANDF procedure are done by jumps or
branches to LABELs, mirroring what actually happens in most computers. There are three
constructors which introduce LABELs. The most general is labelled, which allows arbitrary
jumping between its component EXPs:

placelabs_intro: LIST(LABEL)
starter: EXPx
places: LIST(EXP)

→ EXPw

Each of the EXPs in places is labelled by the corresponding LABEL in placelabs_intro . These
LABELs are constructed by make_label applied to a TDFINT uniquely drawn from the LABEL
name-space introduced by the enclosing PROPS. The evaluation starts by evaluating starter; if
this runs to completion the result of the labelled is the result of starter. If there is some jump to a
LABEL in placelabs_intro then control passes to the corresponding EXP in places , and so on. If any
of these EXPS runs to completion then its result is the result of the labelled. Hence the SHAPE
of the result, w, is the LUB of the SHAPEs of the component EXPs.

Note that control does not automatically pass from one EXP to the next; if this is required, the
appropriate EXP must end with an explicit goto.

Architecture Neutral Distribution Format (XANDF) 39

Conditional Flow Control Flow within Procedures

6.2.2 goto, make_local_lv, goto_local_lv, long_jump, return_to_label

The unconditional goto is the simplest method of jumping. In common with all the methods of
jumping using LABELs, its LABEL parameter must have been introduced in an enclosing
construction, like labelled, which scopes it.

One can also pick up a label value of SHAPE POINTER { code} (usually implemented as a
program address) using make_local_lv for later use by an indirect jump such as goto_local_lv.
Here the same prohibition holds — the construction which introduced the LABEL must still be
active.

The construction goto_local_lv only permits one to jump within the current procedure. If one
wished to do a jump out of a procedure into a calling one, one uses long_jump which requires a
pointer to the destination frame (produced by current_env in the destination procedure) as well
as the label value. If a long_jump is made to a label, only those local TAGs which have been
defined with a visible ACCESS are guaranteed to have preserved their values. The translator
could allocate the other TAGs in scope as registers whose values are not necessarily preserved.

A slightly shorter long jump is given by return_to_label. Here, the destination of the jump must
a label value in the calling procedure. Usually this value would be passed as parameter of the
call to provide an alternative exit to the procedure.

6.2.3 integer_test, NTEST

Conditional branching is provided by the various _test constructors, one for each primitive
SHAPE except BIT FIELD. integer_test is used as the paradigm for them all:

nt: NTEST
dest: LABEL
arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP TOP

The NTEST nt chooses a dyadic test (for example, =, ≥, <, and so on) that is to be applied to the
results of evaluating arg1 and arg2. If arg1 nt arg2 then the result is TOP; otherwise control
passes to the LABEL dest. In other words, integer_test acts like an assertion where if the
assertion is false, control passes to the LABEL instead of continuing in the normal fashion.

Some of the constructors for NTESTs are disallowed for some _tests (for example, proc_test)
while others are redundant for some _tests. For example, not_greater_than is the same as
less_than_or_equal for all except possibly floating_test where the use of NaNs (in the IEEE
sense) as operands may give different results.

6.2.4 case

There are only two other ways of changing flow of control using LABELs. One arises in
ERROR_TREATMENTs which will be dealt with in the arithmetic operations. The other is case:

exhaustive: BOOL
control: EXP INTEGER(v)

branches: LIST(CASELIM)
→ EXP (exhaustive? BOTTOM : TOP)

40 X/Open Guide

Control Flow within Procedures Conditional Flow

Each CASELIM is constructed using make_caselim:

branch: LABEL
lower: SIGNED_NAT
upper: SIGNED_NAT

→ CASELIM

In the case construction, the control EXP is evaluated and tested to see whether its value lies
inclusively between some lower and upper in the list of CASELIMs. If so, control passes to the
corresponding branch. The order in which these tests are performed is undefined, so it is
probably best if the tests are exclusive. The exhaustive flag being true asserts that one of the
branches will be taken and so the SHAPE of the result is BOTTOM. Otherwise, if none of the
branches are taken, its SHAPE is TOP and execution carries on normally.

6.2.5 conditional, repeat

Besides labelled, two other constructors, conditional and repeat, introduce LABELs which can
be used with the various jump instructions. Both can be expressed as labelled, but have extra
constraints which make assertions about the use of the LABELs introduced and could usually be
translated more efficiently. Hence producers are advised to use them where possible. A
conditional expression or statement would usually be done using conditional:

alt_label_intro: LABEL
first: EXPx

alt: EXPy
→ EXP(LUB(x,y))

Here first, is evaluated. If it terminates normally, its result is the result of the conditional. If a
jump to alt_label_intro occurs then alt is evaluated and its result is the result of the conditional.
Clearly, this, so far, is just the same as:

labelled((alt_label_intro), first, (alt))

However, conditional imposes the constraint that alt cannot use alt_label_intro . All jumps to
alt_label_intro are forward jumps — a useful property to know in a translator.

Obviously, this kind of conditional is rather different to those found in traditional high-level
languages which usually have three components, a boolean expression, a ‘‘then’’ part and an
‘‘else’’ part. Here, the first component includes both the boolean expression and the ‘‘then’’ part.
Usually we find that it is a sequence of the tests (branching to alt_label_intro) forming the
boolean expression, followed by the ‘‘else’’ part. This formulation means that HLL constructions
like ‘‘andif’’ and ‘‘orelse’’ do not require special constructions in XANDF.

A simple loop can be expressed using repeat:

repeat_label_intro: LABEL
start: EXP TOP
body: EXPy

→ EXPy

Architecture Neutral Distribution Format (XANDF) 41

Conditional Flow Control Flow within Procedures

The EXP start is evaluated, followed by body which is labelled by repeat_label_intro. If a jump to
repeat_label_intro occurs in body , then body is re-evaluated. If body terminates normally then its
result is the result of the repeat. This is just the same as:

labelled((repeat_label_intro), sequence((start), \
goto(repeat_label_intro)),(body))

except that no jumps to repeat_label_intro are allowed in start — a useful place to do
initialisations for the loop.

Just as with conditionals, the tests for the continuing or breaking the loop are included in body
and require no special constructions.

6.3 Exceptional Flow
A further way of changing the flow of control in an XANDF program is by means of exceptions.
XANDF exceptions currently arise from three sources:

• overflow in arithmetic operations with trap ERROR_TREATMENT (see Section 8.1.1 on page
48)

• an attempt to access a value via a nil pointer using assign_with_mode, contents_with_mode
or move_some (see Section 7.2.1 on page 44)

• a stack overflow on procedure entry with PROCPROPS check_stack (see Section 5.2.3 on
page 33), or a local_alloc_check.

Each of these exceptions have an ERROR_CODE ascribed to them, respectively overflow ,
nil_access and stack_overflow . Each ERROR_CODE can be made into a distinct NAT by means of
the constructor error_val. These NATs could be used, for example, to discriminate the different
kinds of errors using a case construction.

When one of these exceptions is raised, the translator will arrange that a TOKEN, ˜Throw, is
called with the appropriate error_val NAT as its (sole) parameter. Given that every language has
a different way of both characterising and handling exceptions, the exact expansion of ˜Throw
must be given by the producer for that language — usually it will involve doing a long_jump to
some label specifying a signal handler and translating the ERROR_CODE into its language-
specific representation.

The expansion of ˜Throw forms part of the language specific environment required for the
translation of XANDF derived from the language, just as the exact shape of FILE must be given
for the translation of C.

42 X/Open Guide

Chapter 7

Values, Variables and Assignments

TAGs in XANDF fulfil the role played by identifiers in most programming languages. One can
apply obtain_tag to find the value bound to the TAG. This value is always a constant over the
scope of a particular definition of the TAG. This may sound rather strange to those used to the
concepts of left-hand and right-hand values in C, for example, but is quite easily explained as
follows:

• If a TAG, id , is introduced by an identify , then the value bound is fixed by its definition
argument.

• If, on the other hand, v was a TAG introduced by a variable definition, then the value bound
to v is a pointer to fixed space in the procedure frame (that is, the left-hand value in C).

7.1 Contents
In order to get the contents of this space (the right-hand value in C), one must apply the contents
operator to the pointer:

contents(shape(v),obtain_tag (v))

In general, the contents constructor takes a SHAPE and an expression delivering pointer:

s: SHAPE
arg1: EXP POINTER(x)

→ EXPs

It delivers the value of SHAPE s, pointed at by the evaluation of arg1. The alignment of s need
not be identical to x ; it only needs to be included in it. This would allow one, for example, to pick
out the first field of a structure from a pointer to it.

7.2 Assign
A simple assignment in XANDF is done using assign :

arg1: EXP POINTER(x)
arg2: EXPy

→ EXP TOP

The EXPs arg1 and arg2 are evaluated (no ordering implied) and the value of SHAPE y given by
arg2 is put into the space pointed at by arg1. Once again, the alignment of y need only be
included in x, allowing the assignment to the first field of a structure using a pointer to the
structure. An assignment has no obvious result, so its SHAPE is TOP.

Some languages give results to assignments. For example, C defines the result of an assignment
to be its right-hand expression, so that if the result of (v = exp) was required, it would probably
be expressed as:

identify(empty, newtag, exp,
sequence((assign(obtain_tag(v),obtain_tag(newtag))),obtain_tag(newtag)))

Architecture Neutral Distribution Format (XANDF) 43

Assign Values, Variables and Assignments

From the definition of assign, the destination argument, arg1, must have a POINTER shape. This
means that given the TAG id above, assign(obtain_tag(id), lhs) is only legal if the definition of its
identify had a POINTER SHAPE. A trivial example would be if id was defined:

identify(empty, id, obtain_tag(v), assign(obtain_tag(id), lhs))

This identifies id with the variable v which has a POINTER SHAPE, and assigns lhs to this
pointer. Given that id does not occur in lhs , this is identical to:

assign(obtain_tag(v), lhs)

Equivalences like this are widely used for transforming XANDF in translators and other tools
(see Chapter 11).

7.2.1 TRANSFER_MODE Operations

The TRANSFER_MODE operations allow one to do assignment and contents operations with
various qualifiers to control how the access is done in a more detailed manner than the standard
contents and assign operations.

For example, the value assigned in assign has some fixed SHAPE; its size is known at translate-
time. Variable sized objects can be moved by move_some:

md: TRANSFER_MODE
arg1: EXP POINTERx
arg2: EXP POINTERy
arg3: EXP OFFSET(z,t)

→ EXP TOP

The EXP arg1 is the destination pointer, and arg2 is a source pointer. The amount moved is given
by the OFFSET arg3 .

The TRANSFER_MODE md parameter controls the way that the move will be performed. If
overlap is present, then the translator will ensure that the move is equivalent to moving the
source into new space and then copying it to the destination. It would probably do this by
choosing a good direction in which to step through the value. The alternative,
standard_transfer_mode, indicates that it does not matter.

If the TRANSFER_MODE trap_on_nil is present and arg1 is a nil pointer, an XANDF exception
with ERROR_CODE nil_access is raised.

There are variants of both the contents and assign constructors. The signature of
contents_with_mode is:

md: TRANSFER_MODE
s: SHAPE

arg1: EXP POINTER(x)
→ EXPs

Here, the only significant TRANSFER_MODE constructors md are trap_on_nil and volatile. The
latter is principally intended to implement the C volatile construction; it certainly means that the
contents_with_mode operation will never be optimised away.

Similar considerations apply to assign_with_mode — here the overlap TRANSFER_MODE is
also possible with the same meaning as in move_some.

44 X/Open Guide

Values, Variables and Assignments Assigning and Extracting Bitfields

7.3 Assigning and Extracting Bitfields
Since pointers to bits are forbidden, two special operations are provided to extract and assign
bitfields. These require the use of a pointer value and a bitfield offset from the pointer. The
signature of bitfield_contents which extracts a bitfield in this manner is:

v: BITFIELD_VARIETY
arg1: EXP POINTER(x)
arg2: EXP OFFSET(y,z)

→ EXP bitfield(v)

Here arg1 is a pointer to an alignment x which includes v, the required bitfield alignment. In
practice, x must include an INTEGER VARIETY whose representation can contain the entire
bitfield. Thus on a standard architecture, if v is a 15-bit bitfield, x must include at least a 16-bit
integer variety; a 27-bit field would require a 32-bit integer variety, and so on. Indeed the
constraint is stronger than this since there must be an integer variety, accessible from arg1 ,
which entirely contains the bitfield.

This constraint means that producers cannot expect that arbitrary bitfield lengths can be
accommodated without extra padding. Clearly, it also means that the maximum bitfield length
possible is the maximum size of integer variety that can be implemented on the translator
concerned (this is defined to be at least 32). On standard architectures, the producer can expect
that an array of bitfields of length 2n will be packed without padding; this, of course, includes
arrays of booleans. For structures of several different bitfields, the producer can be sure of no
extra padding bits if the total number of bits involved is less than or equal to 32, and similarly so
if the producer can subdivide the bitfields so that each of the subdivisions (except the last) is
exactly equal to 32 and the last is less than or equal to 32. This could be relaxed to 64 bits if the
translator deals with 64-bit integer varieties, but would require that conditional XANDF is
produced to maintain portability to 32-bit platforms — and on these platforms the assurance of
close packing would be lost.

Since a producer is ignorant of the exact representational varieties used by a translator, the onus
is on the translator writer to provide standard tokens which can be used by a producer to
achieve both optimum packing of bit fields and minimum alignments for COMPOUNDs
containing them (see Section 12.1 on page 66). These tokens would allow one to construct an
offset of the form OFFSET(a,b) (where b is some bitfield alignment and x is the ‘‘minimum’’
alignment which could contain it) in a manner analogous to the normal padding operations for
offsets. This offset could then used both in the construction of a compound shape and in the
extraction and assignment constructors.

The assignment of bitfields follows the same pattern with the same constraints using
bitfield_assign:

arg1: EXP POINTER(x)
arg2: EXP OFFSET(y,z)
arg3: EXP BITFIELD_VARIETY(v)

→ EXP TOP

Architecture Neutral Distribution Format (XANDF) 45

Values, Variables and Assignments

46 X/Open Guide

Chapter 8

Operations

Most of the arithmetic operations of XANDF have familiar analogues in standard languages and
processors. They differ principally in how error conditions (for example, numeric overflow) are
handled. There is a wide diversity in error handling in both languages and processors, so
XANDF tries to reduce it to the simplest primitive level compatible with their desired operation
in languages and their implementation on processors. Before delving into the details of error
handling, it is worthwhile revisiting the SHAPEs and ranges in arithmetic VARIETYs.

8.1 VARIETY and Overflow
An INTEGER VARIETY, for example, is defined by some range of signed natural numbers. A
translator will fit this range into some possibly larger range which is convenient for the
processor in question. For example, the integers with variety(1,10) would probably be
represented as unsigned characters with range (0..255), a convenient representation for both
storage and arithmetic.

The question then arises as to what is meant by overflow in an operation which is meant to
deliver an integer of this VARIETY — is it when the integer result is outside the range (1..10) or
outside the range (0..255)?

For purely pragmatic reasons, XANDF chooses the latter — the result is overflowed when it is
outside its representational range (0..255). If the program insists that it must be within (1..10),
then it can always test for it. If the program uses the error handling mechanism and the result is
outside (1..10) but still within the representational limits, then in order for the program to be
portable, error handling actions must in some sense be continuous with the normal action. This
would not be the case if, for example, the value was used to index an array with bounds (1..10),
but will usually be the case where the value is used in further arithmetic operations which have
similar error handling. The arithmetic will continue to give the mathematically correct result
provided the representational bounds are not exceeded.

The limits in a VARIETY are there to provide a guide to its representation, and not to give hard
limits to its possible values. This choice is consistent with the general XANDF philosophy of
how exceptions are to be treated. If, for example, one wishes to do array-bound checking, then it
must be done by explicit tests on the indices and jumping to some exception action if they fail.
Similarly, explicit tests can be made on an integer value, provided its representational limits are
not exceeded. It is unlikely that a translator could produce any more efficient code, in general, if
the tests were implicit. The representational limits can be exceeded in arithmetic operations, so
facilities are provided to either to ignore it, to allow one to jump to a label, or to obey an XANDF
exception handler if it happens.

Architecture Neutral Distribution Format (XANDF) 47

VARIETY and Overflow Operations

8.1.1 ERROR_TREATMENT

Taking integer addition as an example, plus has signature:

ov_err: ERROR_TREATMENT
arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP INTEGER(v)

The result of the addition has the same integer VARIETY as its parameters. If the
representational bounds of v are exceeded, then the action taken depends on the
ERROR_TREATMENT ov_err .

The ERROR_TREATMENT impossible is an assertion by the producer that overflow will not
occur, otherwise the action is undefined.

The ERROR_TREATMENTS continue and wrap give ‘‘fixup’’ values for the result. For continue
the fixup value is undefined. For wrap, the the answer will be modulo 2 to the power of the
number of bits in the representational variety. Thus, integer arithmetic with byte
representational variety is done in modulo 256. This just corresponds to what happens in most
processors and, incidentally, also to the definition of C.

The ERROR_TREATMENT that one would use if one wished to jump to a label is error_jump:

lab: LABEL
→ ERROR_TREATMENT

A branch to lab will occur if the result overflows.

The ERROR_TREATMENT, trap(overflow) will raise an XANDF exception (see Section 6.3.0) with
ERROR_CODE overflow if overflow occurs.

8.2 Division and Remainder
The various constructors in involving integer division (for example, div1, rem1) have two
ERROR_TREATMENT parameters, one for overflow and one for divide-by-zero. For example,
div1 is:

div_by_zero_error: ERROR_TREATMENT
ov_err: ERROR_TREATMENT

arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP INTEGER(v)

There are two different kinds of division operators (with corresponding remainder operators)
defined. The operators div2 and rem2 are those generally implemented directly by processor
instructions giving the sign of the remainder the same as the sign of the quotient. The other pair,
div1 and rem1, is less commonly implemented in hardware, but has rather more consistent
mathematical properties; here the sign of remainder is the same as the sign of divisor. Thus, div1
(x, 2) is the same as shift_right (x, 1) which is only true for div2 if x is positive. The two pairs of
operations give the same results if both operands have the same sign. The constructors div0 and
rem0 allow the translator to choose whichever of the two forms of division is convenient — the
producer is saying that he does not care which is used, as long as they are pair-wise consistent.
The precise definition of the divide operations is given in the section ‘‘Division and Modulus’’ in

48 X/Open Guide

Operations Division and Remainder

the referenced XANDF_PS specification.

8.3 change_variety
Conversions between the various INTEGER varieties are provided for by change_variety:

ov_err: ERROR_TREATMENT
r: VARIETY

arg1: EXP INTEGER(v)
→ EXP INTEGER(r)

If the value arg1 is outside the limits of the representational variety of r, then the
ERROR_TREATMENT ov_err will be invoked.

8.4 and, or, not, xor
The standard logical operations, and, not, or and xor are provided for all integer varieties. Since
integer varieties are defined to be represented in twos-complement, the results of these
operations are well defined.

8.5 Floating-point Operations, ROUNDING_MODE
All of the floating-point (including complex) operations include ERROR-TREATMENTs. If the
result of a floating-point operation cannot be represented in the desired FLOATING_VARIETY,
the error treatment is invoked. If the ERROR_TREATMENT is wrap or impossible, the result is
undefined; otherwise the jump operates in the same way as for integer operations. Both
floating_plus and floating_mult are defined as n-ary operations. In general, floating addition
and multiplication are not associative, but a producer may not care about the order in which
they are to be performed. Making them appear as though they were associative allows the
translator to choose an order which is convenient to the hardware.

Conversions from integer to floating are performed by float_int, and from floating to integers by
round_with_mode. This latter constructor has a parameter of SORT ROUNDING_MODE
which effectively gives the IEEE rounding mode to be applied to the float to produce its integer
result.

One can extract the real and imaginary parts of a complex FLOATING using real_part and
imaginary_part. A complex FLOATING can be constructed using make_complex. Normal
complex arithmetic applies to all the other FLOATING constructors except for those explicitly
excluded (for example, floating_abs, floating_max, and so on).

Architecture Neutral Distribution Format (XANDF) 49

change_bitfield_to_int, change_int_to_bitfield Operations

8.6 change_bitfield_to_int, change_int_to_bitfield
There are two bit-field operations, change_bitfield_to_int and change_int_to_bitfield, to
transform between bit-fields and integers. If the varieties do not fit, the result is undefined; the
producer is assumed to prevent this situation.

8.7 make_compound, make_nof, n_copies
There is one operation to make values of COMPOUND SHAPE make_compound:

arg1: EXP OFFSET(base,y)
arg2: LIST(EXP)

→ EXP COMPOUND(sz)

The OFFSET arg1 is evaluated as a translate-time constant to give sz, the size of the compound
object. The EXPs of arg2 are alternately OFFSETs (also translate-time constants) and values
which will be placed at those offsets. This constructor is used to construct values given by
structure displays; in C, these only occur with constant val[i] in global definitions. It is also used
to provide union injectors; here, sz would be the size of the union and the list would probably
two elements with the first being an offset_zero.

Constant sized array values may be constructed using make_nof, make_nof_int and n_copies.
Again, they only occur in C as constants in global definitions.

50 X/Open Guide

Chapter 9

Constants

The representation of constants clearly has special difficulties in any architecture neutral format.
Leaving aside any problems of how numbers are to be represented, there is also the situation
where a constant can have different values on different platforms. An obvious example would be
the size of a structure which, although it is a constant of any particular run of a program, may
have different values on different machines. Further, this constant is in general the result of some
computation involving the sizes of its components which are not known until the platform is
chosen. In XANDF, sizes are always derived from some EXP OFFSET constructed using the
various OFFSET arithmetic operations on primitives like shape_offset and offset_zero. Most
such EXP OFFSETs produced are in fact constants of the platform; they include field
displacements of structure as well as their sizes. XANDF assumes that, if these EXPs can be
evaluated at translate-time (that is, when the sizes and alignments of primitive objects are
known), then they must be evaluated there. An example of why this is so arises in
make_compound: the SHAPE of its result EXP depends on its arg1 EXP OFFSET parameter and
all SHAPEs must be translate-time values.

An initialisation of a TAGDEF is a constant in this sense6; this allows one to ignore any
difficulties about their order of evaluation in the UNIT and consequently the order of evaluation
of UNITs. Once again, all the EXPs which are initialisations must be evaluated before the
program is run; this obviously includes any make_proc or make_general_proc. The limitation
on an initialisation EXP to ensure this is basically that one cannot take the contents of a variable
declared outside the EXP after all tokens and conditional evaluation is taken into account. In
other words, each XANDF translator effectively has an XANDF interpreter which can do
evaluation of expressions (including conditionals, and so on) involving only constants such as
numbers, sizes and addresses of globals. This corresponds very roughly to the kind of
initialisations of globals that are permissible in C. For a more precise definition, see the section
on ‘‘Constant Evaluation’’ in the referenced XANDF_PS specification.

9.1 _cond Constructors
Another place where translate-time evaluation of constants is mandated is in the various _cond
constructors which give a kind of ‘‘conditional compilation’’ facility. Every SORT which has a
SORTNAME, other that TAG, TOKEN and LABEL, has one of these constructors, for example,
exp_cond:

control: EXP INTEGER(v)
e1: BITSTREAM EXPx
e2: BITSTREAM EXPy

→ EXP x or EXP y

6. However, see also initial_value in Section 3.3 on page 14.

Architecture Neutral Distribution Format (XANDF) 51

_cond Constructors Constants

The constant control is evaluated at translate time. If it is not zero, the entire construction is
replaced by the EXP in e1; otherwise it is replaced by the one in e2. In either case, the other
BITSTREAM is totally ignored; it even does not need to be sensible XANDF. This kind of
construction is used extensively in C pre-processing directives, for example:

#if (sizeof(int) == sizeof(long)) ...

9.2 Primitive Constant Constructors
Integer constants are constructed using make_int:

v: VARIETY
value: SIGNED_NAT

→ EXP INTEGER(v)

The SIGNED_NAT value is an encoding of the binary value required for the integer. This value
must lie within the limits given by v.

Note: In this document, where the text might read ‘‘1 as an integer EXP’’ (for example), a
more accurate script would read ‘‘make_int(v, 1) where v is some appropriate
VARIETY.’’

Constants for both floats and strings use STRINGs. A constant string is just an particular
example of make_nof_int:

v: VARIETY
str: STRING(k,n)

→ EXP NOF(n, INTEGER(v))

Each unsigned integer in str must lie in the variety v and the result is the constant array whose
elements are the integers considered to be of VARIETY v. An ASCII-C constant string might
have v = variety (-128,127) and k = 7. However, make_nof_int can be used to make strings of
any INTEGER VARIETY. The elements of a Unicode string would be integers of size 16 bits.

A floating constant uses a STRING which contains the ASCII characters of a expansion of the
number to some base in make_floating:

f: FLOATING_VARIETY
rm: ROUNDING_MODE

sign: BOOL
mantissa: STRING(k,n)

base: NAT
exponent: SIGNED_NAT

→ EXP FLOATING(f)

For a normal floating point number, each integer in mantissa is either the ASCII ‘‘.’’ symbol or the
ASCII representation of a digit of the representation in the given base; that is, if c is the ASCII
symbol, the digit value is the ASCII value of c minus the ASCII value of ‘‘0’’ . The resulting
floating point number has SHAPE FLOATING(f) and value mantissa*baseexponent, rounded
according to rm. Usually the base will be 10 (sometimes 2) and the rounding mode to_nearest.
Any floating-point evaluation of expressions done at translate-time will be done to an accuracy
greater that implied by the FLOATING_VARIETY involved, so that floating constants will be as
accurate as the platform permits.

52 X/Open Guide

Constants Primitive Constant Constructors

The make_floating construct does not apply apply to a complex FLOATING_VARIETY f ; to
construct a complex constant use make_complex with two make_floating arguments.

Constants are also provided to give unique null values for pointers, label values and procs, that
is: make_null_ptr, make_null_local_lv and make_null_proc. Any significant use of these
values (for example, taking the contents of a null pointer) is undefined, but they can be assigned
and used in tests in the normal way.

Architecture Neutral Distribution Format (XANDF) 53

Constants

54 X/Open Guide

Chapter 10

Tokens and APIs

All of the examples of the use of TOKENs so far given have really been as abbreviations for
commonly used constructs, for example, the EXP OFFSETS for fields of structures. However,
the real justification for TOKENs is their use as abstractions for things defined in libraries or
application program interfaces (APIs).

10.1 Application Programming Interfaces
APIs usually do not give complete language definitions of the operations and values that they
contain. Generally, they are defined informally in English, giving relationships between the
entities within them. An API designer should allow implementors the opportunity of choosing
actual definitions which fit their hardware, and the possibility of changing them as better
algorithms or representations become available.

The most commonly quoted example is the representation of the type FILE and its related
operations in C. The ANSI C definition gives no common representation for FILE; its
implementation is defined to be platform-dependent. An XANDF producer can assume nothing
about FILE — not even that it is a structure. The only things that can alter or create FILEs are
also entities in the Ansi-C API, and they will always refer to FILEs via a C pointer. Thus XANDF
abstracts FILE as a SHAPE TOKEN with no parameters, for example, make_tok (T_FILE). Any
program that uses FILE would have to include a TOKDEC introducing T_FILE:

make_tokdec(T_FILE, empty, shape())

and anywhere that it wished to refer to the SHAPE of FILE it would do:

shape_apply_token(make_tok(T_FILE), ())

Before this program is translated on a given platform, the actual SHAPE of FILE must be
supplied. This would be done by linking an XANDF CAPSULE which supplies the TOKDEF for
the SHAPE of FILE which is particular to the target platform.

Many of the C operations which use FILEs are explicitly allowed to be expanded as either
procedure calls or as macros. For example, putc(c, f) may be implemented either as a procedure
call or as the expansion of macro which uses the fields of f directly. Thus, it is quite natural for
putc(c, f) to be represented in XANDF as an EXP TOKEN with two EXP parameters which
allows it to be expanded in either way. Of course, this would be quite distinct from the use of
putc as a value (as a proc parameter of a procedure for example) which would require some
other representation. One such representation that comes to mind might be to simply to make a
TAGDEC for the putc value, supplying its TAGDEF in the ANSI API CAPSULE for the platform.
This might prove to be rather short-sighted, since it denies us the possibility that the putc value
itself might be expanded from other values and hence it would be better as another
parameterless TOKEN. The actual API expansion for the putc value is rarely anything other
than a simple TAG; however the FILE* value stdin is sometimes expressed as:

#define stdin &_iob[0]

which illustrates the point. It is better to have all of the interface of an API expressed as TOKENs
to give both generality and flexibility across different platforms.

Architecture Neutral Distribution Format (XANDF) 55

Linking to APIs Tokens and APIs

10.2 Linking to APIs
In general, each API requires platform-dependent definitions to be supplied by a combination of
XANDF linking and system linking for that platform. This is illustrated in Figure 10-1, which
gives the various phases involved in producing a program executable.

PRODUCER
ANDF

LINKAGE
TRANSLATOR

FOR P
SYSTEM

LINKAGE

LANGUAGE
TEXT

TARGET
INDEPENDENT
API ‘‘headers’’

Other target-
independent
CAPSULEs

CAPSULES
specific to
platform P

CAPSULE Linked
CAPSULE

.o file

RUNNABLE
PROGRAM

Other .o and
.a files

e.g. libc.a

= TOKEN decs
with defs in ...

... often using names
defined in ...

API
Linkages

ON ANY PLATFORM
ON ANY PLATFORM WITH
P SPECIFIC API LINKAGES

ON
PLATFORM P

Figure 10-1 XANDF Production, Linking and Translating

There will be CAPSULEs for each API on each platform giving the expansions for the TOKENs
involved, usually as uses of identifiers which will be supplied by system linking from some
libraries. These CAPSULEs would be derived from the header files on the platform for the API in
question, usually using some automatic tools. For example, there will be an XANDF CAPSULE
(derived from <stdio.h>) which defines the TOKEN T_FILE as the SHAPE for FILE, together
with definitions for the TOKENs for putc, stdin, and so on, in terms of identifiers which will be
found in the library libc.a.

10.2.1 Target Independent Headers, unique_extern

Any producer which uses an API will use system-independent information to give the common
interface TOKENs for this API. In the C producer, this is provided by header files using
pragmas, which tell the producer which TOKENs to use for the particular constructs of the API .
In any target-independent CAPSULE which uses the API, these TOKENs would be introduced
as TOKDECs and made globally accessible by using make_linkextern. For a world-wide
standard API, the EXTERNAL name for a TOKEN used by make_linkextern should be provided
by an application of unique_extern on a UNIQUE drawn from a central repository of names for
entities in standard APIs. This repository would form a kind of super-standard for naming
conventions in all possible APIs. The mechanism for controlling this super-standard has yet to
be set up, so at the moment all EXTERN names are created by string_extern.

56 X/Open Guide

Tokens and APIs Linking to APIs

An interesting example in the use of TOKENs comes in abstracting field names. Often, an API
will say something like ‘‘the type Widget is a structure with fields alpha , beta ’’ without
specifying the order of the fields or whether the list of fields is complete. The field selection
operations for Widget should then be expressed using EXP OFFSET TOKENs. Each field would
have its own TOKEN, giving its offset which will be filled in when the target is known. This
gives implementors on a particular platform the opportunity to re-order fields or add to them as
they like. It also allows for extension of the standard in the same way.

The most common SORTs of TOKENs used for APIs are SHAPEs to represent types, and EXPs to
represent values, including procedures and constants. NATs and VARIETYs are also sometimes
used where the API does not specify the types of integers involved. The other SORTs are rarely
used in APIs.Indeed it is difficult to imagine any realistic use of TOKENs of SORT BOOL.
However, the criterion for choosing which SORTs are available for TOKENisation is not their
immediate utility, but that the structural integrity and simplicity of XANDF is maintained. It is
fairly obvious that having BOOL TOKENs will cause no problems, so we may as well allow
them.

10.3 Language Programming Interfaces
So far, the viewpoint has been as though a TOKENised API could only be some library interface,
built on top of some language, like XPG3, POSIX, X, and so on, on top of C. However, it is
possible to consider the constructions of the language itself as ideal candidates for
TOKENisation. For example, the C for-statement could be expressed as TOKEN with four
parameters. This TOKEN could be expanded in XANDF in several different ways, all giving the
correct semantics of a for-statement . A translator (or other tools) could choose the expansion it
wants, depending on context and the properties of the parameters. The C producer could give a
default expansion which a lazy translator writer could use, but others might use expansions
which might be more advantageous. This idea could be extended to virtually all the
constructions of the language, giving what is in effect a C-language API. Perhaps this might be
called more properly a language programming interface (LPI). Thus, we would have TOKENs
for C for-statements, C conditionals, C procedure calls, C procedure definitions, and so on.

The notion of a producer for any language working to an LPI specific to the constructs of the
language is very attractive. It could use different TOKENs to reflect the subtle differences
between uses of similar constructs in different languages which might be difficult or impossible
to detect from their expansions, but which could allow better optimisations in the object code.
For example, Fortran procedures are slightly different from C procedures in that they do not
allow aliasing between parameters and globals. While application of the standard XANDF
procedure calls would be semantically correct, knowledge of that the non-aliasing rule applies
would allow some procedures to be translated to more efficient code. A translator without
knowledge of the semantics implicit in the TOKENs involved would still produce correct code,
but one which knew about them could take advantage of that knowledge.

In addition, LPIs would be a very useful tool for crystallising ideas on how languages should be
translated, allowing one to experiment with expansions not thought of by the producer writer.
This decoupling is also an escape clause, allowing the producer writer to defer the
implementation of a construct completely to translate-time or link-time, as is done at the
moment in C for off-stack allocation. As such, it also serves as a useful test-bed for TOKEN
constructions which may in future become new constructors of core XANDF.

Architecture Neutral Distribution Format (XANDF) 57

Tokens and APIs

58 X/Open Guide

Chapter 11

XANDF Transformations

XANDF to XANDF transformations form the basis of most of the tools of XANDF, including
translators. XANDF has a rich set of easily performed transformations, mainly due to its
algebraic nature, the liberality of its sequencing rules, and the ease with which one can introduce
new names over limited scopes. For example, a translator is always free to transform:

assign(e1, e2)

to:

identify(empty, new_tag, e1,assign(obtain_tag(new_tag), e2))

that is, identify the evaluation of the left-hand side of the assignment with a new TAG and use
that TAG as the left-hand operand of a new assignment in the body of the identification. Note
that the reverse transformation is only valid if the evaluation of e1 does not side-effect the
evaluation of e2. A producer would have had to use the second form if it wished to evaluate e1
before e2. The definition of assign allows its operands to be evaluated in any order, while
identify insists that the evaluation of its definition is conceptually complete before starting on its
body.

Why would a translator wish to make the more complicated form from the simpler one? This
would usually depend on the particular forms of e1 and e2, as well as the machine idioms
available for implementing the assignment. If, for example, the joint evaluation of e1 and e2 used
more evaluation registers than is available, the transformation is probably a good idea. It would
not necessarily commit one to putting the new tag value into the stack; some other more global
criteria might lead one to allocate it into a register disjoint from the evaluation registers. In
general, this kind of transformation is used to modify the operands of XANDF constructions so
that the code-production phase of the translator can just proceed knowing that the operands are
already in the correct form for the machine idioms.

Transformations like this are also used to give optimisations which are largely independent of
the target architecture. In general, provided that the sequencing rules are not violated, any EXP
construction, F(X), say, where X is some inner EXP, can be replaced by:

identify(empty, new_tag, X, F(obtain_tag(new_tag))).

This includes the extraction of expressions which are constant over a loop. If F was some repeat
construction and one can show that the EXP X is invariant over the repeat, the transformation
does the constant extraction.

Most of the transformations performed by translators are of the above form, but there are many
others. Particular machine idioms might lead to transformations like changing a test (i≥1) to (i>0)
because the test against zero is faster, or replacing multiplication by a constant integer by shifts
and adds because multiplication is slow, and so on. Target-independent transformations include
things like procedure inlining and loop unrolling. Often these target-independent
transformations can be profitably done in terms of the TOKENs of an LPI; loop unrolling is an
obvious example.

Architecture Neutral Distribution Format (XANDF) 59

Transformations as Definitions XANDF Transformations

11.1 Transformations as Definitions
As well being a vehicle for expressing optimisation, XANDF transformations can be used as the
basis for defining XANDF. In principle, if we were to define all of the allowable transformations
of the XANDF constructions, we would have a complete definition of XANDF as the initial
model of the XANDF algebra. This would be a fairly impracticable project, since the totality of
the rules including all the simple constructs would be very unwieldy, difficult to check for
inconsistencies, and would not add much illumination to the definition. However, knowledge of
allowable transformations of XANDF can often answer questions of the meaning of diverse
constructs by relating them to a single construct. What follows is an alphabet of generic
transformations which can often help to answer difficult questions. Here, E [X\Y] denotes an
EXP E with all internal occurrences of X replaced by Y.

{A} If F is any non order-specifying7 EXP constructor and E is one of the EXP operands of F,
then:

F(... , E, ...)
→ identify(empty, newtag, E, F(... ,obtain_tag(newtag), ...))

{B} If E is a non side-effecting8 EXP and none of the variables used in E are assigned to in B:

identify(v, tag, E, B) → B[obtain_tag(tag) \ E]

{C} If all uses of tg in B are of the form contents (shape(E), obtain_tag(tg)):

variable(v, tg, E, B)
→identify(v, nt, E, B[contents(shape(E),obtain_tag(tg)) \obtain_tag(nt)])

{D}

sequence((S 1 , ..., Sn),sequence((P 1 , ..., Pm), R)
↔sequence((S 1 , ..., Sn , P 1 , ..., Pm), R)

{E} If Si =sequence((P1 , ..., Pm), R) :

sequence((S 1 , ..., Sn), T)
↔sequence((S 1 , ..., Si−1 , P 1 , ..., Pm, R, Si+1 , ..., Sn), T)

{F}

E ↔ sequence((), E)

{G} If D is either identify or variable:

D(v, tag,sequence((S 1 , ..., Sn), R), B)
→ sequence((S 1 , ..., Sn), D(v, tag, R, B))

{H} If Si is an EXP BOTTOM, then:

sequence((S 1 , S 2 , ... Sn), R)
→ sequence((S 1 , ... Si−1), Si)

{I} If E is an EXP BOTTOM, and if D is either identify or variable :

D(v, tag, E, B) → E

7. The order-specifying constructors are conditional, identify, repeat, labelled, sequence and variable.
8. A sufficient condition for not side-effecting in this sense is that there are no apply_procs or local_allocs in E; that any

assignments in E are to variables defined in E; and that any branches in E are to labels defined in conditionals in E.

60 X/Open Guide

XANDF Transformations Transformations as Definitions

{J} If Si is make_top(), then:

sequence((S 1 , S 2 , ... Sn), R)
↔ sequence((S 1 , ... Si−1 , Si+1 , ... Sn), R)

{K} If Sn is an EXP TOP:

sequence((S 1 , ... Sn),make_top())
↔ sequence((S 1 , ..., Sn−1), Sn)

{L} If E is an EXP TOP and E is not side-effecting then

E → make_top()

{M} If C is some non order-specifying and non side-effecting constructor, and Si is C(P1, ..., Pm)
where P1 . . . m are the EXP operands of C:

sequence((S 1 , ..., Sn), R)
→ sequence((S 1 , ..., Si−1 , P 1 , ..., Pm, Si+1 , ..., Sn), R)

{N} If none of the Si use, the label L:

conditional(L,sequence((S 1 , ..., Sn), R), A)
→ sequence((S 1 , ..., Sn),conditional(L, R, A))

{O} If there are no uses of L in X9:

conditional(L, X, Y) → X

{P}

conditional(L, E ,goto(Z)) → E[L\Z]

{Q} If EXP X contains no use of the LABEL L:

conditional(L,conditional(M, X, Y), Z)
→ conditional(M, X,conditional(L, Y, Z))

{R}

repeat(L, I, E) → sequence((I),repeat(L,make_top(), E))

{S}

repeat(L,make_top(), E) → conditional(Z, E[L\Z],repeat(L,make_top(), E))

{T} If there are no uses of L in E:

repeat(L,make_top(),sequence((S, E),make_top())
→ conditional(Z, S[L\Z], repeat(L,make_top(),sequence((E, S),make_top())))

9. There are analogous rules for labelled and repeat with unused LABELs.

Architecture Neutral Distribution Format (XANDF) 61

Transformations as Definitions XANDF Transformations

{U} If f is a procedure defined10 as:

make_proc(rshape, formal 1. .n , vtg , B(return R 1 , ...,return Rm))

where:

formali = make_tagshacc(si , vi , tgi)

and B is an EXP with all of its internal return constructors indicated parametrically, then if
Ai has SHAPE si:

apply_proc(rshape, f, (A 1 , ..., An), V)
→variable(empty, newtag, make_value((rshape=BOTTOM)? TOP: rshape),
 labelled((L),
 variable(v 1 , tg 1 , A 1 , ..., variable(vn , tgn , An,
 variable(empty, vtg, V,
 B(sequence(assign(obtain_tag(newtag), R 1),goto(L)), ...,
 sequence(assign(obtain_tag(newtag), Rm),goto(L))
)
)
),
 contents(rshape,obtain_tag(newtag))
)
)

{V}

assign(E,make_top()) → sequence((E),make_top())

{W}

contents(TOP, E) → sequence((E),make_top())

{X}

make_value(TOP) → make_top()

{Y}

component(s,contents(COMPOUND(S), E), D)
 → contents(s,add_to_ptr(E, D))

{Z}

make_compound(S, ((E 1 , D 1), ..., (En , Dn)))
 → variable(empty, nt,make_value(COMPOUND(S)),
 sequence(
 (assign(add_to_ptr(obtain_tag(nt), D 1), E 1),
 . ..,
 assign(add_to_ptr(obtain_tag(nt), Dn), En)),
 contents(S,obtain_tag(nt))
)
)

10. This has to be modified if B contains any uses of local_free_all or last_local.

62 X/Open Guide

XANDF Transformations Transformations as Definitions

11.1.1 Examples of Transformations

Any of these transformations may be performed by the XANDF translators. The most important
is probably {A} which allows one to reduce all of the EXP operands of suitable constructors to
obtain_tags. The expansion rules for identification, {G}, {H} and {I}, gives definition to
complicated operands as well as strangely formed ones, for example, return(...return(X)...). Rule
{A} also illustrates neatly the lack of ordering constraints on the evaluation of operands. For
example, mult(et, exp1, exp2) could be expanded by applications of {A} to either:

identify(empty, t1, exp1,
identify(empty, t2, exp2,mult(et,obtain_tag(t1),obtain_tag(t2))))

or:

identify(empty, t2, exp2,
identify(empty, t1, exp1,mult(et,obtain_tag(t1),obtain_tag(t2))))

Both orderings of the evaluations of exp1 and exp2 are acceptable, regardless of any side-effects
in them. There is no requirement that both expansions should produce the same answer for the
multiplications; the only person who can say whether either result is wrong is the person who
specified the program.

Many of these transformations often only come into play when some previous transformation
reveals some otherwise hidden information. For example, after procedure inlining given by {U}
or loop unrolling given by {S}, a translator can often deduce the behaviour of a _test constructor,
replacing it by either a make_top or a goto. This may allow one to apply either {J} or {H} to
eliminate dead code in sequences and in turn {N} or {P} to eliminate entire conditions, and so on.

Application of transformations can also give expansions which are rather pathological in the
sense that a producer is very unlikely to form them. For example, a procedure which returns no
result would have result statements of the form return(make_top()). Inlining such a procedure
by {U} would have a form like:

variable(empty, nt,make_shape(TOP),
labelled((L),
...sequence((assign(obtain_tag(nt),make_top())),goto(L)) ...
contents(TOP,obtain_tag(nt))
)

)

The rules {V}, {W} and {X} allow this to be replaced by:

variable(empty, nt,make_top(),
labelled((L),
...sequence((obtain_tag(nt)),goto(L)) ...
sequence((obtain_tag(nt)),make_top())
)

)

The obtain_tags can be eliminated by rule {M} and then the sequences by {F}. Successive
applications of {C} and {B} then give:

labelled((L),
...goto(L) ...
make_top()
)

Architecture Neutral Distribution Format (XANDF) 63

Transformations as Definitions XANDF Transformations

11.1.2 Programs with Undefined Values

The definitions of most of the constructors in the XANDF specification are predicated by some
conditions. If these conditions are not met, the effect and result of the constructor is not defined
for all possible platforms.11 Any value which is dependent on the effect or result of an undefined
construction is also undefined. This is not the same as saying that a program is undefined if it
can construct an undefined value — the dynamics of the program might be such that the
offending construction is never obeyed.

11. However, the mapping of a constraint may allow extra relationships for a class of architectures which do not hold in all
generality; this may mean that some constructions are defined on this class while still being undefined in others (see Chapter 12).

64 X/Open Guide

Chapter 12

XANDF Expansions of Offsets

Consider the C structure defined by:

typedef struct{ int i; double d; char c;} mystruct;

Given that sh_int, sh_char and sh_double are the SHAPEs for int, char and double, the SHAPE
of mystruct is constructed by:

SH_mystruct = compound(S_c)

where:
S_c = offset_add(O_c,shape_offset(sh_char))
where:
O_c = offset_pad(alignment(sh_char), S_d)
where:
S_d = offset_add(O_d,shape_offset(sh_double))
where:
O_d = offset_pad(alignment(sh_double), S_i)
where:12

S_i = offset_add(O_i,shape_offset(sh_int))
and:
O_i = offset_zero(alignment(sh_int))

Each of S_c, S_d and S_i gives the minimum ‘‘size’’ of the space required up to and including the
field c, d and i respectively. Each of O_c, O_d and O_i gives the OFFSET ‘‘displacement’’ from a
pointer to a mystruct required to select the fields c, d and i respectively. The C program fragment:

mystruct s;
.... s.d = 1.0; ...

would translate to something like:

variable(empty, tag_s,make_value(compound(S_c)),
sequence(...
assign(add_to_ptr(obtain_tag(tag_s), O_d), 1.0)
...
)

)

Each of the OFFSET expressions above are ideal candidates for tokenisation. A producer would
probably define tokens for each of them and use exp_apply_token to expand them at each of
their uses.

12. shape_offset(sh_int) would be equally valid and simpler for S_i. However the formation above is more uniform with respect to
selection OFFSETs.

Architecture Neutral Distribution Format (XANDF) 65

XANDF Expansions of Offsets

From the definition, one finds that:

S_c = shape_offset(SH_mystruct)

that is, an:

OFFSET(alignment(sh_int) ∪alignment(sh_char) ∪alignment(sh_double), {})

This would not be the OFFSET required to describe sizeof(mystruct) in C, since this is defined to
be the difference between successive elements an array of mystructs. The sizeof OFFSET would
have to pad S_c to the alignment of SH_mystruct:

offset_pad(alignment(SH_mystruct), S_c)

This is the OFFSET that one would use to compute the displacement of an element of an array of
mystructs using offset_mult with the index.

The most common use of OFFSETs is in add_to_ptr to compute the address of a structure or
array element. Looking again at its signature in a slightly different form:

arg1: EXP POINTER(y ∪ A)
arg2: EXP OFFSET(y,z)

→ EXP POINTER(x)

... for any ALIGNMENT A

one sees that arg2 can measure an OFFSET from a value of a smaller alignment than the value
pointed at by arg1. If arg2 were O_d, for example, then arg1 could be a pointer to any structure
of the form struct {int i, double d,...} not just mystruct. The general principle is that an OFFSET to a
field constructed in this manner is independent of any fields after it, corresponding to normal
usage in both languages and machines. A producer for a language which conflicts with this
would have to produce less obvious XANDF, perhaps by re-ordering the fields, padding the
offsets by later alignments or taking maxima of the sizes of the fields.

12.1 Bitfield Offsets
Bitfield offsets are governed by rather stricter rules. In order to extract or assign a bitfield, one
has to find an integer variety which entirely contains the bitfield. Suppose that one wished to
extract a bitfield by:

bitfield_contents(v, p:POINTER(X), b:OFFSET(Y, B))

Y must be an alignment (I) where I is some integer SHAPE, contained in X. Further, this has to
be equivalent to:

bitfield_contents(v,add_ptr(p, d:OFFSET(Y,Y)), b’ :OFFSET(Y, B))

for some d and b’ such that:

offset_pad(v,shape_offset(I)) >= b’

and:

offset_add(offset_pad(v,offset_mult(d, sizeof(I)), b’) = b

Clearly, there is a limitation on the length of bitfields to the maximum integer variety available.
In addition, one cannot have a bitfield which overlaps two such varieties.

The difficulties inherent in this may be illustrated by attempting to construct an array of bitfields
using the nof constructor. Assuming a standard architecture, one cannot usefully define an

66 X/Open Guide

XANDF Expansions of Offsets Bitfield Offsets

object of SHAPE nof (N, bitfield(bfvar_bits(b, M))) without padding this shape out to some
integer variety which can contain M bits. In addition, they can only be usefully indexed (using
bitfield_contents) either if M is some power of 2 or M*N is less than the length of the maximum
integer variety. Thus a producer must be sure that these conditions hold if they are to generate
and index this object simply. Even here, the producer is in some difficulty, since they do not
know the representational varieties of the integers available to them; also it is difficult for them
to ensure that the alignment of the entire array is in some sense minimal. Similar difficulties
occur with bitfields in structures — they are not restricted to arrays.

The solution to this conundrum in its full generality requires knowledge of the available
representational varieties. Particular languages have restrictions which mean that sub-optimal
solutions will satisfy its specification on the use of bitfields. For example, C is satisfied with
bitfields of maximum length 32 and simple alignment constraints. However, for the general
optimal solution, there is no reasonable alternative to the installer defining some tokens to
produce bitfield offsets which are guaranteed to obey the alignment rules and also give optimal
packing of fields and alignments of the total object for the platform in question. Three tokens are
sufficient to do this. These are analogous to the constructors offset_zero, offset_pad and
offset_mult with ordinary alignments, and their signatures could be:

Bitfield_offset_zero:

n: NAT
issigned: BOOL

→ EXP OFFSET(A, bfvar_bits(issigned,n))

Here the result is a zero offset to the bitfield with ‘‘minimum’’ integer variety alignment A.

Bitfield_offset_pad:

n: NAT
issigned: BOOL

sh: SHAPE
→ EXP OFFSET(alignment(sh) ∪ A, bfvar_bits(issigned,n))

Here the result is the shape_offset of sh padded with the ‘‘minimum’’ alignment A so that it can
accommodate the bitfield. Note that this may involve padding sh with the alignment of the
maximum integer variety if there are not enough bits left at the end of sh.

Bitfield_offset_mult:

n: NAT
issigned: BOOL

ind: EXP INTEGER(v)
→ EXP OFFSET(A, bfvar_bits(issigned,n))

Here the result is an offset which gives the displacement of ind th element of an array of n-bit
bitfields with ‘‘minimum’’ alignment A. Note that this will correspond to a normal
multiplication only if n is a power of 2 or ind*n ≤ length of the maximum integer variety.

These tokens can be expressed in XANDF if the lengths of the available varieties are known, that
is, they are installer defined.13 They ought to be used in place of offset_zero, offset_pad and

Architecture Neutral Distribution Format (XANDF) 67

Bitfield Offsets XANDF Expansions of Offsets

offset_mult wherever the alignment or shape (required to construct a SHAPE or an argument to
the bitfield constructs) is a pure bitfield. The constructor nof should never be used on a pure
bitfield; instead it should be replaced by:

S = compound(Bitfield_offset_mult(M, b, N))

to give a shape, S, representing an array of N M-bit bitfields. This may not be just N*M bits. For
example, Bitfield_offset_mult may be implemented to pack an array of 3-bit bitfields as 10 fields
to a 32-bit word. In any case, one would expect that normal rules for offset arithmetic are
preserved, for example:

offset_add(Bitfield_offset_pad(M,b,S),size(bitfield(bfvar_bits(b,N))))
= Bitfield_offset_mult(M, b, N+1)

where:

size(X) = offset_pad(alignment(X),shape_offset(X))

13. For most architectures, these definitions are dependent only on a few constants such as the minimum length of bitfield, expressed
as tokens for the target. The precise specification of such target dependent tokens is of current interest outside the scope of this
document.

68 X/Open Guide

Chapter 13

Models of the XANDF Algebra

XANDF is a multi-sorted abstract algebra. Any implementation of XANDF is a model of this
algebra, formed by a mapping of the algebra into a concrete machine. An algebraic mapping
gives a concrete representation to each of the SORTs in such a way that the representation of any
construction of XANDF is independent of context: it is a homomorphism. In other words if we
define the mapping of an XANDF constructor, C, as MAP[C] and the representation of a SORT,
S, as REPR[S], then:

REPR[C(P 1 ,..., Pn)] = MAP[C](REPR(P 1) ,..., REPR(Pn))

Any mapping has to preserve the equivalences of the abstract algebra, such as those exemplified
by the transformations {A} - {Z} described in Section 11.1 on page 60. Similarly, the mappings of
any predicates on the constructions, such as those giving well-formed conditions, must be
satisfied in terms of the mapped representations.

In common with most homomorphisms, the mappings of constructions can exhibit more
equivalences than are given by the abstract algebra. The use of these extra equivalences is the
basis of most of the target-dependent optimisations in an XANDF translator. It can make use of
idioms of the target architecture to produce equivalent constructions which may work faster
than the obvious translation. In addition, we may find that may find that more predicates are
satisfied in a mapping than would be in the abstract algebra. A particular concrete mapping
might allow more constructions to be well-formed than are permitted in the abstract. A producer
can use this fact to target its output to a particular class of architectures. In this case, the
producer should produce XANDF so that any translator not targeted to this class can fail
gracefully.

Giving a complete mapping for a particular architecture here is tantamount to writing a
complete translator. However, the mappings for the small but important sub-algebra concerned
with OFFSETs and ALIGNMENTs illustrates many of the main principles. What follows is two
sets of mappings for disparate architectures. The first gives a more or less standard meaning to
ALIGNMENTs, but the second may be less familiar.

13.1 Model for a 32-bit Standard Architecture
Almost all current architectures use a ‘‘flat-store’’ model of memory. There is no enforced
segregation of one kind of data from another — in general, one can access one unit of memory as
a linear offset from any other. Here, XANDF ALIGNMENTs are a reflection of constraints for the
efficient access of different kinds of data objects. Usually, one finds that 32-bit integers are most
efficiently accessed if they start at 32 bit boundaries, and so on.

13.1.1 Alignment Model

The representation of ALIGNMENT in a typical standard architecture is a single integer where:

REPR[{ }] = 1
REPR[{bitfield}] = 1
REPR[{char_variety}] = 8
REPR[{short_variety}] = 16

Architecture Neutral Distribution Format (XANDF) 69

Model for a 32-bit Standard Architecture Models of the XANDF Algebra

Otherwise, for all other primitive ALIGNMENTS a:

REPR[{a}] = 32

The representation of a compound ALIGNMENT is given by:

REPR[A ∪ B] = Max(REPR[A], REPR[B])

that is:

MAP[unite_alignment] = Max

while the ALIGNMENT inclusion predicate is given by:

REPR[A ⊃ B] = REPR[A] ≥ REPR[B]

All the constructions which make ALIGNMENTs are represented here and they will always
reduce to an integer known at translate-time. Note that the mappings for ∪ and ⊃ must preserve
the basic algebraic properties derived from sets. For example, the mapping of ∪ must be
idempotent, commutative and associative, which is true for Max.

13.1.2 Offset and Pointer Model

Most standard architectures use byte addressing. To address bits requires more complication.
Hence, a value with SHAPE POINTER(A) where REPR[A)]≠1 is represented by a 32-bit byte
address.

It is not allowed to construct pointers where REPR[A]=1, but there are still offsets where the
second alignment is a bitfield. Thus offsets to bitfield are represented differently to offsets to
other alignments:

• A value with SHAPE OFFSET(A, B) where REPR(B)≠1 is represented by a 32-bit byte-offset.

• A value with SHAPE OFFSET(A, B) where REPR(B)=1 is represented by a 32-bit bit-offset.

13.1.3 Size Model

In principle, the representation of a SHAPE is a pair of an ALIGNMENT and a size, given by
shape_offset applied to the SHAPE. This pair is constant which can be evaluated at translate
time. The construction shape_offset(S) has SHAPE OFFSET(alignment(s), { }) and hence is
represented by a bit-offset:

REPR[shape_offset(top())] = 0
REPR[shape_offset(integer(char_variety))] = 8
REPR[shape_offset(integer(short_variety))] = 16

.... and so on, for other numeric varieties.

REPR[shape_offset(pointer(A))] = 32
REPR[shape_offset(compound(E))] = REPR[E]
REPR[shape_offset(bitfield(bfvar_bits(b, N)))] = N
REPR[shape_offset(nof(N, S))]

= N * REPR[offset_pad(alignment(S), shape_offset(S))]

where S is not a bitfield shape.

70 X/Open Guide

Models of the XANDF Algebra Model for a 32-bit Standard Architecture

Similar considerations apply to the other offset-arithmetic constructors. In general, we have:

REPR[offset_zero(A)] = 0 for all A

REPR[offset_pad(A, X:OFFSET(C,D))
= ((REPR[X] + REPR[A]-1)/(REPR[A]))*REPR[A]/8
if REPR[A] ≠ 1 Λ REPR[D] = 1

Otherwise:
REPR[offset_pad(A, X:OFFSET(C,D))

= ((REPR[X] + REPR[A]-1)/(REPR[A]))*REPR[A]

REPR[offset_add(X:OFFSET(A,B), Y:OFFSET(C,D))]
= REPR[X] *8 + REPR[Y]
if REPR[B] ≠ 1 Λ REPR[D] = 1

Otherwise:
REPR[offset_add(X,Y)] = REPR[X] + REPR[Y]

REPR[offset_max(X:OFFSET(A,B), Y:OFFSET(C,D))]
= Max(REPR[X], 8*REPR[Y]
if REPR[B] = 1 Λ REPR[D] ≠ 1

REPR[offset_max(X:OFFSET(A,B), Y:OFFSET(C,D))]
= Max(8*REPR[X], REPR[Y]
if REPR[D] = 1 Λ REPR[B] ≠ 1

Otherwise:
REPR[offset_max(X,Y)] = Max(REPR[X], REPR[Y])

REPR[offset_mult(X,E)] = REPR[X] * REPR[E]

A translator working to this model maps ALIGNMENTs into the integers, and their inclusion
constraints into numerical comparisons. As a result, it will correctly allow many OFFSETs which
are disallowed in general. For example:

OFFSET({pointer}, {char_variety})

is allowed since:

REPR[{pointer}] ≥ REPR[{char_variety}].

Rather fewer of these extra relationships are allowed in the next model considered.

13.2 Model for Machines Like the iAPX-432
The iAPX-432 does not have a linear model of store. The address of a word in store is a pair
consisting of a block-address and a displacement within that block. In order to take full
advantage of the protection facilities of the machine, block-addresses are strictly segregated
from scalar data such as integers, floats, displacements, and so on. There are at least two
different kind of blocks, one which can only contain block-addresses and the other which
contains only scalar data. Clearly, there are difficulties here in describing data structures which
contain both pointers and scalar data.

Let us assume that the machine has bit-addressing to avoid the bit complications already
covered in the first model. Also assume that instruction blocks are just scalar blocks and that
block addresses are aligned on 32-bit boundaries.

Architecture Neutral Distribution Format (XANDF) 71

Model for Machines Like the iAPX-432 Models of the XANDF Algebra

13.2.1 Alignment Model

An ALIGNMENT is represented by a pair consisting of an integer, giving the natural alignments
for scalar data, and boolean to indicate the presence of a block-address. Denote this by:

(s: alignment_of_scalars, b: has_blocks)

We then have:

REPR[alignment({ })] = (s:1, b:FALSE)
REPR[alignment({char_variety}) = (s:8, b:FALSE)

... and so on, for other numerical and bitfield varieties.

REPR[alignment({pointer})] = (s:32, b:TRUE)
REPR[alignment({proc})] = (s:32, b:TRUE)
REPR[alignment({local_label_value})] = (s:32, b:TRUE)

The representation of a compound ALIGNMENT is given by:

REPR[A∪B] = (s:Max(REPR[A].s, REPR[B].s), b:REPR[A].b V REPR[B].b)

and their inclusion relationship is given by:

REPR[A⊃B] = (REPR[A].s ≥ REPR[B].s) Λ (REPR[A].b V ¬ REPR[B].b)

13.2.2 Offset and Pointer Model

A value with SHAPE POINTER A where ‘‘¬ REPR[A].b’’, is represented by a pair consisting of a
block-address of a scalar block and an integer bit-displacement within that block. Denote this
by:

(sb: scalar_block_address, sd: bit_displacement)

A value with SHAPE POINTER A where ‘‘REPR[A].b’’, is represented by a quad-word
consisting of two block-addresses and two bit-displacements within these blocks. One of these
block addresses will contain the scalar information pointed at by one of the bit-displacements.
Similarly, the other pair will point at the block addresses in the data are held. Denote this by:

(sb: scalar_block_address, ab: address_block_address,
sd: scalar_displacement, ad: address_displacement)

A value with SHAPE OFFSET(A, B) where ‘‘¬ REPR[A].b’’, is represented by an integer
bit-displacement.

A value with SHAPE OFFSET(A, B) where ‘‘REPR[A].b’’, is represented by a pair of
bit-displacements, one relative to a scalar-block and the other to an address-block. Denote this
by:

(sd: scalar_displacement, ad: address_displacement)

72 X/Open Guide

Models of the XANDF Algebra Model for Machines Like the iAPX-432

13.2.3 Size Model

The sizes given by shape_offset are now:

REPR[shape_offset(integer(char_variety))] = 8

... and so on, for other numerical and bitfield varieties.

REPR[shape_offset(pointer(A))]
= (REPR[A].b) ? (sd: 64, ad: 64) : (sd: 32, ad: 32)

REPR[shape_offset(offset(A,B))] = (REPR[A].b) ? 64 : 32)
REPR[shape_offset(proc)] = (sd: 32, ad: 32)
REPR[shape_offset(compound(E))] = REPR[E]
REPR[shape_offset(nof(N,S))]

= N* REPR[offset_pad(alignment(S)),shape_offset(S))]
REPR[shape_offset(top)] = 0

13.2.4 Offset Arithmetic

The other OFFSET constructors are given by:

REPR[offset_zero(A)] = 0
if ¬ REPR[A].b

REPR[offset_zero(A)] = (sd: 0, ad: 0)
if REPR[A].b

REPR[offset_add(X: OFFSET(A,B), Y: OFFSET(C,D))] = REPR[X] + REPR[Y]
if ¬ REPR[A].b Λ ¬ REPR[C].b

REPR[offset_add(X: OFFSET(A,B), Y: OFFSET(C,D))]
= (sd: REPR[X].sd + REPR[Y].sd, ad: REPR[X].ad + REPR[Y].ad)
if REPR[A].b Λ REPR[C].b

REPR[offset_add(X: OFFSET(A,B), Y: OFFSET(C,D))]
= (sd: REPR[X].sd + REPR[Y], ad:REPR[X].ad)
if REPR[A].b Λ ¬ REPR[C].b

REPR[offset_pad(A, Y: OFFSET(C,D))]
= (REPR[Y] + REPR[A].s - 1)/REPR[A].s
if ¬ REPR[A].b Λ ¬ REPR[C].b

REPR[offset_pad(A, Y: OFFSET(C,D))]
= (sd: (REPR[Y] + REPR[A].s - 1)/REPR[A].s, ad: REPR[Y].ad)
if REPR[C].b

REPR[offset_pad(A, Y: OFFSET(C,D))]
= (sd: (REPR[Y]+REPR[A].s-1)/REPR[A].s, ad: 0)
if REPR[A].b Λ ¬ REPR[C].b

REPR[offset_max(X: OFFSET(A,B), Y: OFFSET(C,D))]
= Max(REPR[X], REPR[Y])
if ¬ REPR[A].b Λ ¬ REPR[C].b

REPR[offset_max(X: OFFSET(A,B), Y: OFFSET(C,D))]
= (sd: Max(REPR[X].sd, REPR[Y].sd), ad: Max(REPR[X].a, REPR[Y].ad))
if REPR[A].b Λ REPR[C].b

REPR[offset_max(X: OFFSET(A,B), Y: OFFSET(C,D))]
= (sd: Max(REPR[X].sd, REPR[Y]), ad:REPR[X].ad)
if REPR[A].b Λ ¬ REPR[C].b

REPR[offset_max(X: OFFSET(A,B), Y: OFFSET(C,D))]
= (sd: Max(REPR[Y].sd, REPR[X]), ad: REPR[Y].ad)
if REPR[C].b Λ ¬ REPR[A].b

REPR[offset_subtract(X: OFFSET(A,B), Y: OFFSET(C,D))]
= REPR[X] - REPR[Y]
if ¬ REPR[A].b Λ ¬ REPR[C].b

Architecture Neutral Distribution Format (XANDF) 73

Model for Machines Like the iAPX-432 Models of the XANDF Algebra

REPR[offset_subtract(X: OFFSET(A,B), Y: OFFSET(C,D))]
= (sd: REPR[X].sd - REPR[Y].sd, ad:REPR[X].ad - REPR[Y].ad)
if REPR[A].b Λ REPR[C].b

REPR[offset_add(X: OFFSET(A,B), Y: OFFSET(C,D))]
= REPR[X].sd - REPR[Y]
if REPR[A].b Λ ¬ REPR[C].b

.... and so on.

Unlike the previous one, this model of ALIGNMENTs would reject OFFSETs such as
OFFSET({long_variety}, {pointer}) but not OFFSET({pointer}, {long_variety}), since:

REPR[{long_variety} ⊃ {pointer}] = FALSE

but:

REPR[{pointer} ⊃ {long_variety}] = TRUE

This just reflects the fact that there is no way that one can extract a block-address necessary for a
pointer from a scalar-block, but since the representation of a pointer includes a scalar displacement,
one can always retrieve a scalar from a pointer to a pointer.

74 X/Open Guide

Glossary

∩
cap (intersection)

∪
cup (union)

⊂
subset of

⊃
superset of

⊆
improper subset of

⊇
improper superset of

ABI
Application Binary Interface

ANDF
Architecture Neutral Distribution Format

ANSI
American National Standards Institute

API
Application Programming Interface.

argument
Information which is passed to a function or operation and which specifies the details of the
processing to be performed.

atom
An atom is a unique ID corresponding to a string name. Atoms are used to identify
properties, types and selections.

compiling
production of ANDF from some source language.

DRA
The United Kingdom Defence Research Agency.

homomorphism
many-to-one mapping which retains the structure

installing
linking and mapping of ANDF onto a concrete machine using processor-specific libraries
implementing the API calls and data formats.

LPI
Language Programming Interface

POSIX
IEEE Portable Operating System Interface

Architecture Neutral Distribution Format (XANDF) 75

Glossary

producing
production of ANDF from some source language (same meaning as ‘‘compiling’’).

translating
making a program for some specific platform from ANDF

XANDF
X/Open specification for the Architecture Neutral Distribution Format

76 X/Open Guide

Index

∩. ..75
∪. ..75
⊆. ..75
⊇. ..75
⊂. ..75
⊃. ..75
_cond ...51
_test..40
ABI ...75
add_access..34
add_procprops ..31
add_to_ptr..25
alignment..22
alloca_alignment ..22, 36
AL_TAGs..23
and ...49
ANDF..75
ANSI..75
API ...75
apply_general_proc ...29, 31
apply_proc..29-30
argument ..75
atom...75
BITFIELD..28
bitfield_assign ...28, 45
bitfield_contents ...28, 45
BOTTOM ..20
callees_alignment ...22
callers_alignment..22
case ..40
change_bitfield_to_int ...50
change_int_to_bitfield...50
change_variety ..49
check_stack ..33
code_alignment...22
common_tagdec..15
compiling ...2, 75
complex_parms...21
component ...25
compound ..25
concat_string ...17
conditional ...41
constant...35
contents_with_mode ...44
continue ..48
current_env ..34-35

div1 ..48
DRA...75
env_offset..34-35
error_jump ...48
error_val ...42
exceptions...42
exp_cond ..51
floating_abs..49
floating_max ..49
floating_mult ...49
floating_plus ..49
floating_test ...40
FLOATING_VARIETY...20
float_int...49
fvar_parms...20
goto_local_lv ...40
homomorphism ..75
identify..33
imaginary_part ...21, 49
impossible ..48
initial_value ...15
inline..33
installing ...75
INTEGER..20
integer ...20
integer_test...40
labelled..39
last_local ...37
less_than_or_equal...40
locals_alignment ...22
local_alloc...36
local_free ..37
local_free_all..37
long_jump_access ...34-35
LPI..75
LUB..20
make_al_tagdef ...23
make_al_tagdefs ...14
make_callee_list ..32
make_caselim ..41
make_complex ..49
make_compound..50
make_dynamic_callees..32
make_floating..52
make_general_proc..29, 31
make_id_tagdec ..15

Architecture Neutral Distribution Format (XANDF) 77

Index

make_id_tagdef...14
make_label ...39
make_link_extern ...56
make_local_lv ...22, 40
make_nof ..50
make_nof_int...50, 52
make_null_local_lv ..53
make_null_proc ..53
make_null_ptr ...53
make_otagexp ...32
make_proc..29
make_string ...16
make_tagdecs ..14
make_tagdefs...14
make_tagshacc ..30
make_tokdecs..14
make_tokdefs ..14
make_var_tagdec..15
nil_access..42, 44
nof ..25
not ..49
not_greater_than...40
no_long_jump_dest..31
no_other_read ...35
no_other_write ..35
n_copies ..50
obtain_tag ..14, 34, 43
OFFSET...24
offset ..24
offset_add...25
offset_max ..26
offset_mult ...26
offset_pad...24
offset_test ...26
offset_zero..25, 50
or ..49
out_par..34
overflow..42
overlap ..44
parameter_alignment ..22, 33
plus ..48
pointer...24
POSIX ..75
proc_test ...40
producing...2, 76
real_part ...21, 49
rem1...48
repeat...41
return...30
return_to_label ..40
round_with_mode..49

same_callees ..32
set_stack_limit...33
shape_apply_token ..55
shape_offset ...25
signature...16
stack_overflow..33, 42
standard_access ..34
standard_transfer_mode...44
string_apply_token ..16
string_cond ..16
string_extern..56
tail_call ..32
TDFSTRING ..16
Throw..42
token..14
TOP..20
to_nearest ...52
TRANSFER_MODE ...44
translating ..2, 76
trap...48
trap_on_nil ...44
unique_extern..56
unite_alignments ..22
untidy..33
untidy_return..33, 37
variable ...34
VARIETY ..20
variety ...47
varparam ..31
var_callees ..32-33
var_callers ..33
var_limits..20
var_param_alignment ...22
var_width ...20
visible...34-35
wrap...48
XANDF ...76
xor ..49

78 X/Open Guide

	g508cov.pdf
	Page 1

	blank.pdf
	Page 1

