
CU

O

M

D

E

T

N

C

TA

U

T

D

IO

O
R

N

P

TETware Product Documentation

 TETware
 Training Guide

[This page intentionally left blank]

i

The Open Group

TETware Training Guide

February 2005

 ii

© Copyright 2005, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission
of the copyright owner.

Boundaryless Information Flow™ is a trademark and UNIX® and The Open Group® are registered
trademarks of The Open Group in the United States and other countries.

The Open Group

Document Number: F051

Comments relating to the material contained in this document may be submitted to:

The Open Group
Thames Tower
37-45 Station Road
Reading
Berkshire, RG1 1LX
United Kingdom.

Email: tetware_manager@opengroup.org

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

1

Feb-05 TETware training course 0-1

Introductory Module

Management overview

Feb-05 TETware training course 0-2

Introductory Module - Management overview

l 0.1 - What is TETware ?
l 0.2 - What has TETware been used for ?
l 0.3 - What are the benefits of using TETware ?
l 0.4 - Features and facilities
l 0.5 - TETware versions
l 0.6 - Supported systems
l 0.7 - TETware APIs
l 0.8 - Documentation
l 0.9 - List of support customers

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

2

Feb-05 TETware training course 0-3

0.1 - What is TETware ?

l TETware is The Open Group’s supported version of
the Test Environment Toolkit

l A system for the flexible construction and execution
of tests in both single and multiple heterogeneous
systems

l Originally developed in 1990 for UNIX only systems

l Distributed capability added with DTET and dTET2

l Extended functionality added with ETET

Feb-05 TETware training course 0-4

0.2 - What has TETware been used for ?

l Operating system tests

l Networking API tests

l GUI tests

l Network protocol tests

l Object oriented testing

l Data management tests

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

3

Feb-05 TETware training course 0-5

Some products that use TETware and its predecessors

l All The Open Group test suites; for example:
• VSX,VSC (System interfaces and headers, Commands)
• XNFS (Network File System)
• XTEST (X-Windows)
• VSORB (CORBA)
• VST (XTI networking)
• LSB-OS, LSB-FHS (LSB OS interfaces)

l ABI test suites for various processors:
• INTEL
• MIPS
• Power PC
• SPARC
• LSB

Feb-05 TETware training course 0-6

0.3 - What are the benefits of using TETware ?

l TETware provides a uniform framework, into which
both non-distributed and distributed tests can be
incorporated

l Test suites can share a common interface allowing for
things such as ease of portability

l Test suite authors don’t need to be concerned about
the “administrative” aspects of testing, and so are able
to concentrate on the actual testing task

l Test suite users only need to learn how to use a
single, standard, test harness

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

4

Feb-05 TETware training course 0-7

0.4 - Features and facilities

l Support for POSIX-style assertion-based testing
l Builds, executes and cleans up test suites
l Test scenarios can be defined using a powerful

scenario language
l Test parameters can be specified using a flexible

configuration variable mechanism
l Configuration information and test results are recorded

in a journal
l Support for the standard POSIX result codes is built

right in - user-defined results are also supported

Feb-05 TETware training course 0-8

Features and facilities (cont’d)

l TETware processes several types of test case:
• Non-distributed test cases on the local system
• Non-distributed test cases on a single remote system
• Concurrent processing of non-distributed test cases on

several remote systems
• Distributed test cases

l Test cases can be processed:
• in sequence - one after the other
• in parallel - several at the same time
• at random - selected from a list
• repeatedly

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

5

Feb-05 TETware training course 0-9

A typical verification test run

Start

/tset/test1/tc1

End

/tset/test2/tc2

/tset/test3/tc3

/tset/test4/tc4

/tset/test5/tc5

/tset/test6/tc6

Feb-05 TETware training course 0-10

An example stress test run

Start

Repeat for
300 mins

Repeat
10 times

/tset/test1/tc1

/tset/test2/tc2

/tset/test3/tc3

Repeat
30 times

Select one at random:
/tset/test4/tc4
/tset/test5/tc5
/tset/test6/tc6
/tset/test7/tc7

End

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

6

Feb-05 TETware training course 0-11

0.5 - TETware versions

l TETware-Lite
• processes non-distributed test cases on a single

computer system (the local system)

l Distributed TETware
• processes non-distributed test cases on

— the local system
— one or more remote systems

• processes distributed test cases
— a single test case which contains more than one part
— each part runs on a different computer system

Feb-05 TETware training course 0-12

0.6 - Supported systems

l TETware-Lite
• UNIX systems (POSIX.1)
• Linux
• Windows NT, 2000, XP
• Windows 9x

l Distributed TETware
• UNIX systems (POSIX.1)

— plus sockets or XTI for network support
• Linux
• Windows NT, 2000, XP

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

7

Feb-05 TETware training course 0-13

Supported systems (cont’d)

l TETware has been built and exercised on:
• AIX releases 4.x, 5L

• HP-UX release 10.01, 10.10, 11.0, 11.22

• Red Hat Linux

• SuSE Linux

• Solaris releases 2.4, 2.5, 2.6, 2.7,8,9,10

• UnixWare 2.x, 7.x

• Windows NT,2000, XP and Windows 9x

Feb-05 TETware training course 0-14

0.7 - TETware APIs

l Supplied with TETware:
• C

• C++

• XPG3 Shell (the Bourne Shell)

• Korn Shell

• POSIX Shell

• Perl

• Java

l Also available:
• TCL, Python

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

8

Feb-05 TETware training course 0-15

0.8 - Documentation

l TETware Programmers Guide

l TETware User Guide

l TETware Installation Guides for
• UNIX operating systems

• WIN32 operating systems

l TETware Release Notes

l TETware Knowledge Base

Feb-05 TETware training course 0-16

0.9 - List of Users

l The Open Group is grateful to
the following companies who
have contributed to supporting
TETware development:

• Aztek Engineering, Inc.

• BrookTrout Technology

• Compaq Computer Corporation

• Fidelity Investments.
• Fujitsu Ltd.
• Hewlett-Packard
• Hitachi Ltd.
• Inprise Corporation
• Intel Corporation

• MKS, Inc.

• Motorola, Inc.

• Netscape Communications
Corporation

• Patni Computer Systems

• Rational Software

• Silicon Valley Networks Inc.

• Sun Microsystems Inc.

• Tenth Mountain Systems Inc.

• Travellers Insurance Inc.

• Verifone Inc.

• Wind River Systems Inc.

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

1

Feb-05 TETware training course 1-1

Module 1

TETware basics

Feb-05 TETware training course 1-2

Module 1 Module 1 -- TETware basicsTETware basics

l 1.1 Product structure and concepts

l 1.2 Directory structure

l 1.3 Configurable files

l 1.4 Journal files

l 1.5 Test suite structure

l 1.6 Test case structure

l 1.7 Relationship between TCC and test case

l 1.8 Comparison between TETware-Lite and
Distributed TETware

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

2

Feb-05 TETware training course 1-3

1.1 Product structure and concepts1.1 Product structure and concepts

l Test case types

l TETware versions

l The Test Case Controller (TCC)

l The Test Case Manager (TCM)

l The Application Program Interface (API)

Feb-05 TETware training course 1-4

Test case typesTest case types

l Non-distributed test case
— runs on a single computer system

— does not usually interact with other computer
systems

l Distributed test case
— has two or more parts

— each part runs on a different computer system

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

3

Feb-05 TETware training course 1-5

NonNon--distributed test casedistributed test case

l Local test case
• processed on the local computer system

l Remote test case
• processed on a remote computer system

Feb-05 TETware training course 1-6

Distributed test caseDistributed test case

l Consists of several parts which interact with
each other

l Typically used to test some kind of interaction
between computer systems

l Each part is processed on a different system

l Each part contributes to a common result

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

4

Feb-05 TETware training course 1-7

TETware versionsTETware versions

l TETware-Lite
• can process local test cases

• easy to set up - just install and use

l Distributed TETware
• can process local, remote and distributed test cases

• uses a client-server architecture

• more difficult to set up - a small amount of system
administration is required

Feb-05 TETware training course 1-8

The Test Case Controller (TCC)The Test Case Controller (TCC)

l Processes test cases according to the selected
modes of operation

l When build mode is selected, test cases are
built

l When execute mode is selected, test cases are
executed

l When clean mode is selected, test cases are
cleaned up

l The TCC is a program called tcc

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

5

Feb-05 TETware training course 1-9

The Test Case Manager (TCM)The Test Case Manager (TCM)

l A wrapper that provides an execution environment for
user-written test code

l Insulates the test code from the test environment

l Manages entries to the journal

l In Distributed TETware, ensures that parts of a
distributed test case keep in step with each other

l The TCM is not a separate program but is linked with
the user-written test code

l There is one TCM for each supported programming
language

Feb-05 TETware training course 1-10

The Application Program Interface (API)The Application Program Interface (API)

l A library of functions which may be called from
user-written test code

l For example, there are functions to:
• make journal entries and register test results

• access user-defined configuration variables

• generate and execute processes

• synchronise parts of a distributed test case

l API libraries are provided for use with each
supported language

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

6

Feb-05 TETware training course 1-11

1.2 TETware directory structure1.2 TETware directory structure

l TETware expects to operate in a defined
directory structure

l Many of these directories and the files in them
have default names

l Most of these names can be changed using
environment variables, configuration variables or
tcc command-line options

Feb-05 TETware training course 1-12

TETware directoriesTETware directories

l The top of the TETware directory hierarchy is
called the tet root directory

l The directory that contains test suite files is
called the test suite root directory

l TETware puts journal files and saved files below
a directory called results

l TETware puts temporary files below a directory
called tet_tmp_dir

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

7

Feb-05 TETware training course 1-13

TETware directories (cont’d)TETware directories (cont’d)

l It is possible to tell TETware to execute test
cases below an alternate execution directory

l It is possible to tell TETware to copy the entire
test suite to a runtime directory and process it
there instead

Feb-05 TETware training course 1-14

Directory structure diagramDirectory structure diagram

TETware directory structure - top level

bin inc lib src

journal saved files
hierarchy

NNNN[bec]

results tet_tmp_dir

test-suite-root

tet-root

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

8

Feb-05 TETware training course 1-15

1.3 Configurable files1.3 Configurable files

l The scenario file

l Configuration files

l Result codes definitions

l System definitions

Feb-05 TETware training course 1-16

The scenario fileThe scenario file

l A test scenario lists all the test cases and
describes how they are to be processed

l The default name of the scenario file is
tet_scen, located in the test suite root
directory

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

9

Feb-05 TETware training course 1-17

Configuration filesConfiguration files

l There is a set of configuration variables for each
mode of operation

l The default names of the per-mode
configuration files are:
• tetbuild.cfg

• tetexec.cfg

• tetclean.cfg

Feb-05 TETware training course 1-18

Configuration files (cont’d)Configuration files (cont’d)

l The build and clean mode configuration files are
located in the test suite root directory

l The execute mode configuration file is located
either in the alternate execution directory or in
the test suite root directory

l In Distributed TETware these files must be
provided on each system

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

10

Feb-05 TETware training course 1-19

Distributed configuration fileDistributed configuration file

l In Distributed TETware this file is used to
specify information about remote systems

l The name of this file is tetdist.cfg

l It is located in the test suite root directory on the
local system

Feb-05 TETware training course 1-20

Result codes definitionsResult codes definitions

l TETware uses a default set of result codes

l Additional user-supplied result codes may be
defined at the test suite level or at the
installation level

l The default name of the result codes definition
files is tet_code

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

11

Feb-05 TETware training course 1-21

Result codes definitions (cont’d)Result codes definitions (cont’d)

l Each result code definition contains:
• result code

— a value between 0 and 127

— values between 0 and 31 are reserved

• result code name

— a string describing the result, enclosed in double
quotes

• action indicator

— tells the TCM what to do when this result occurs
— possible values are Continue and Abort

Feb-05 TETware training course 1-22

Standard result codesStandard result codes

example result codes file

0 "PASS" Continue

1 "FAIL" Continue

2 "UNRESOLVED" Continue

3 "NOTINUSE" Continue

4 "UNSUPPORTED" Continue

5 "UNTESTED" Continue

6 "UNINITIATED" Continue

7 "NORESULT" Continue

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

12

Feb-05 TETware training course 1-23

System definitionsSystem definitions

l Distributed TETware identifies each computer system
using a three-digit system ID

l System 000 always refers to the local system and
other values refer to remote systems

l Each entry in the system definitions file maps a logical
system ID to a value (such as a host name) that can be
used to identify the system

l The name of this file is systems and it is located in the
tet root directory on each system

l It is possible to map more than one logical system ID
on to a physical machine

Feb-05 TETware training course 1-24

Example Example systemssystems filesfiles

l When the socket interface is used, fields are system ID
and host name; for example:
000 argon

001 neon

002 xenon

l When the XTI interface is used, fields are system ID,
host name and address string; for example:
000 argon 000204010a01020000000000000000

001 neon 000204010a01030000000000000000

002 xenon 000204010a01040000000000000000

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

13

Feb-05 TETware training course 1-25

1.4 Journal files1.4 Journal files

l tcc generates a journal file for each test run

l The file includes output from test cases and
tools

l The format of this file is designed to be read by
user-supplied report writers
• and is human-readable as well (with a little practice)

Feb-05 TETware training course 1-26

Journal file name and locationJournal file name and location

l The default name of the journal file is journal

l It is created in a subdirectory below the results
directory

l The name of the subdirectory is NNNN[bec]
• where NNNN is an ascending sequence number

• and b, e and c indicate the selected modes of
operation

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

14

Feb-05 TETware training course 1-27

Journal file formatJournal file format

l Each line in the file contains three fields:
• Line type

• Up to five parameters

• Information area

l Each field is separated from the next by a
vertical bar

l The parameters in the second field are
separated from each other by spaces

Feb-05 TETware training course 1-28

Journal line typesJournal line types

l Each type of journal line is identified by a
number

l For convenience of report writer authors, these
numbers are defined in the file
tet-root/inc/tet3/tet_jrnl.h

l Appendix C in the TETware User Guide
contains a description of each type of journal
line

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

15

Feb-05 TETware training course 1-29

Example journal fileExample journal file

0|3.2 19:23:02 19970710|User: andrew (105) TCC Start, Command line: tcc -ep
5|UNIX_SV deimos 4.2 1 386|Local System Information
20|/home/andrew/tet3/tests/tetexec.cfg 1|Config Start
30||TET_EXEC_IN_PLACE=false
30||TET_API_COMPLIANT=True
30||TET_PASS_TC_NAME=False
30||TET_VERSION=3.2
40||Config End
10|0 /ts/args/args 19:23:02|TC Start, scenario ref 1-0
15|0 3.2 1|TCM Start
400|0 1 1 19:23:04|IC Start
200|0 1 19:23:04|TP Start
520|0 1 00009857 1 1|this is tc16 parent
520|0 1 00009858 2 1|this is tc16 child
520|0 1 00009858 2 2|argument is "an-argument-string"
520|0 1 00009857 3 1|child exit status = 0
220|0 1 0 19:23:05|PASS
410|0 1 1 19:23:05|IC End
80|0 0 19:23:06|TC End, scenario ref 1-0

$$...
900|19:24:30|TCC End

Feb-05 TETware training course 1-30

1.5 Test suite structure1.5 Test suite structure

l Test case files
• may be source files or executable programs

• TETware will build test cases from source files if
required

l Required utilities and data files

l Optional utilities and data files

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

16

Feb-05 TETware training course 1-31

Directory organisationDirectory organisation

l All the files which make up a test suite reside
below the test suite root directory

l It is a good idea to locate the test case files
below a subdirectory

l In all but the most trivial of test suites, it is a
good idea for each test case to have its own
source directory
• this organisation style is required if test cases are to

be processed in parallel

Feb-05 TETware training course 1-32

Required files and utilitiesRequired files and utilities

l In both TETware Lite and Distributed TETware:
• Configuration files for each mode of operation

• Scenario file

l When building and/or cleaning test cases:
• Build tool and/or Clean tool

l When processing remote or distributed test
cases using Distributed TETware:
• Per-mode configuration files on each system

• Distributed configuration files

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

17

Feb-05 TETware training course 1-33

Optional files and utilitiesOptional files and utilities

l Prebuild tool

l Build fail tool

l Exec tool

l Result codes file

l Report writer

Feb-05 TETware training course 1-34

Scenario fileScenario file

l Contains the scenarios that are to be used with
the test suite

l Should at least contain a scenario named all
which causes all the test cases to be processed

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

18

Feb-05 TETware training course 1-35

Report writerReport writer

l Is not used by TETware but is nevertheless an
important part of any practical test suite

l There are probably almost as many report
writers as there are test suites

l For example, the VSX report writer prints the
assertion being tested when a test reports a
non-PASS result

Feb-05 TETware training course 1-36

APIAPI--conforming and non APIconforming and non API--conforming test casesconforming test cases

l TETware is able to execute test cases that:
• use a TETware API

• do not use a TETware API

l Execution of non API-conforming test cases is
only supported in order to enable existing test
suites to be run by TETware

l New test cases should be written to use one of
the TETware APIs

l tcc needs to know whether or not test cases in
the test suite use an API

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

19

Feb-05 TETware training course 1-37

ToolsTools

l TETware uses user-defined tools to process test
cases in each mode of operation

l Usually, tools are not API-conforming but some
may use the API

l The tools are:
• Pre-build tool

• Build tool

• Build fail tool

• Exec tool

• Clean tool

Feb-05 TETware training course 1-38

APIAPI--conforming test cases and toolsconforming test cases and tools

l May call TETware API functions

l Uses API functions to write to the journal and
register results

l An API-conforming test case may contain
several invocable components and test
purposes

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

20

Feb-05 TETware training course 1-39

Non APINon API--conforming test cases and toolsconforming test cases and tools

l Does not use the API - may not call API functions
l tcc captures the standard output and standard

error and writes it to the journal
l tcc treats the test case as if it contained a single

invocable component and test purpose
l tcc generates the IC and TP start and end lines

that would be generated by the API
l tcc generates a single result based on the exit

status (zero = PASS, non-zero = FAIL)

Feb-05 TETware training course 1-40

PrePre--build toolbuild tool

l Is optional

l Is executed before the build tool is invoked

l In Distributed TETware, only runs on the master
system

l May be used to perform operations before the
build tool is invoked, such as copying source
files to slave systems

l Is always non API-conforming

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

21

Feb-05 TETware training course 1-41

Build toolBuild tool

l Is required if tcc is to be invoked in build mode

l Should build the test case and install it if an
alternate execution directory is to be used

l May be API-conforming or non API-conforming
l It is common to use make as the build tool

Feb-05 TETware training course 1-42

Build fail toolBuild fail tool

l Is optional

l Is invoked if the build tool returns non-zero exit
status

l Might be used to install a dummy test case if the
real one could not be built

l Is always non API-conforming

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

22

Feb-05 TETware training course 1-43

Exec toolExec tool

l Is optional

l Is not normally required, but could be used to:
• set up the test environment in some way

• execute the test case under the control of a
debugger

l Is always non API-conforming

Feb-05 TETware training course 1-44

Clean toolClean tool

l Is required if tcc is to be invoked in clean mode

l Should clean up the test case, removing files
generated during the build phase

l May be API-conforming or non API-conforming
l If the test cases are simple, rm -f is probably

sufficient

l More complex test cases might use
make clean or make clobber

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

23

Feb-05 TETware training course 1-45

1.6 Test case structure1.6 Test case structure

l A test suite contains one or more test cases
l Each test case contains one or more invocable

components
l Each invocable component contains one or more

test purposes

Feb-05 TETware training course 1-46

Test caseTest case

l A test case is an executable program
l It is the smallest unit that can be processed by tcc

l It is linked with a TCM and its API
l When tcc processes a test case in execute mode,

it can select which invocable components are to be
called by the TCM

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

24

Feb-05 TETware training course 1-47

InvocableInvocable componentcomponent

l An invocable component is the smallest unit that
the TCM will call

l In most cases an invocable component contains a
single test purpose

l Normally when a test case is executed, the TCM
calls all the invocable components in turn

l It is possible to specify individual invocable
components in the test scenario

Feb-05 TETware training course 1-48

Test purposeTest purpose

l A test purposes tests a single item of functionality
and reports a result to the journal

l In an assertion-based test suite, a test purpose
corresponds to an assertion to be tested

l A distributed test purpose:
• consists of several parts running on different systems

• each part contributes to the overall result

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

25

Feb-05 TETware training course 1-49

1.7 Relationship between TCC and test case1.7 Relationship between TCC and test case

l This relationship defines how tcc executes test
cases and tools

l It is affected by:
• the selected mode(s) of operation

• values of configuration variables

• whether TETware-Lite or Distributed TETware is
being used

Feb-05 TETware training course 1-50

The test case execution environmentThe test case execution environment

l Execution directory

l Command-line usage

l Configuration variables

l Communication variables

l Output capture mode

l Execution results file

l Distributed TETware servers

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

26

Feb-05 TETware training course 1-51

Execution directoryExecution directory

l When in build or clean mode:
• the test case source directory

l When in execute mode:
• if TET_EXEC_IN_PLACE is true:

— the alternate execution directory (if specified),
otherwise the test case source directory

• if TET_EXEC_IN_PLACE is false

— a temporary execution directory

Feb-05 TETware training course 1-52

CommandCommand--line usageline usage

l Build mode
• prebuild tool

• build tool

• build fail tool

l Execute mode
• exec tool specified

• exec tool not specified

l Clean mode
• clean tool

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

27

Feb-05 TETware training course 1-53

Build modeBuild mode

l A TET_PREBUILD_TOOL is executed with
TET_PREBUILD_FILE and the test case name as
arguments

l The TET_BUILD_TOOL is executed with
TET_BUILD_FILE as argument
• The value of TET_PASS_TC_NAME determines whether or not

the test case name is appended to the build tool command
line

l A TET_BUILD_FAIL_TOOL is executed with
TET_BUILD_FAIL_FILE and the test case name as
arguments

Feb-05 TETware training course 1-54

Execute modeExecute mode

l If a TET_EXEC_TOOL has been specified, it is
executed with TET_EXEC_FILE and the test
case name as arguments

l If no exec tool has been specified, the test case
is executed directly

l If an IC list has been specified in the scenario, it
is appended to the command line

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

28

Feb-05 TETware training course 1-55

Clean modeClean mode

l The TET_CLEAN_TOOL is executed with
TET_CLEAN_FILE as argument
• The value of TET_PASS_TC_NAME determines

whether or not the test case name is appended to
the clean tool command line

Feb-05 TETware training course 1-56

Communication variablesCommunication variables

l tcc uses communication variables to pass
information to the TCM

l Communication variables are environment
variables, so they may also be accessed by test
cases and tools

l tcc puts communication variables in the
environment when it executes a test case or tool

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

29

Feb-05 TETware training course 1-57

List of communication variablesList of communication variables

l TET_ACTIVITY

• value of the tcc activity counter, used when making
journal entries

l TET_CODE

• name of a file containing the current set of result
code definitions

l TET_CONFIG

• name of a file containing the set of configuration
variables for the current mode of operation

Feb-05 TETware training course 1-58

List of communication variables (cont’d)List of communication variables (cont’d)

l TET_EXECUTE

• path name of the alternate execution directory
(if specified)

l TET_ROOT

• path name of the tet root directory

l TET_RUN

• path name of the runtime directory (if specified)

l TET_SUITE_ROOT

• path name of the alternate test suite location
(if specified)

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

30

Feb-05 TETware training course 1-59

Output capture modeOutput capture mode

l If output capture mode is enabled, tcc invokes
a test case or tool with standard output and
standard error redirected to a file

l When execution ends, tcc copies the captured
output to the journal

l Typically, output capture mode is enabled when
executing non API-conforming test cases and
tools

Feb-05 TETware training course 1-60

Execution results fileExecution results file

l In TETware-Lite, an API-conforming test case or
tool writes execution results to a file called
tet_xres in the test case execution directory

l tcc copies the contents of this file to the journal

l If the test case or tool does not use an API, tcc
deduces the result from the process exit status

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

31

Feb-05 TETware training course 1-61

Distributed TETware serversDistributed TETware servers

l In Distributed TETware, tcc starts servers to
provide additional facilities for use by APIs that
support distributed testing

l These servers are:
• tetsyncd - the synchronisation daemon

• tetxresd - the execution results daemon

Feb-05 TETware training course 1-62

tetsyncdtetsyncd -- the synchronisation daemonthe synchronisation daemon

l The API uses this server when synchronising
between different parts of a distributed test case

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

32

Feb-05 TETware training course 1-63

tetxresdtetxresd -- the execution results daemonthe execution results daemon

l APIs that support distributed testing do not write
execution results to a tet_xres file but instead
send them to this server

l In Distributed TETware, tcc first checks this
server for execution results and only looks for a
tet_xres file if the server has not been used

l Thus the Distributed tcc is able to process test
cases that use both types of API

Feb-05 TETware training course 1-64

Executing test cases without usingExecuting test cases without using tcctcc

l A test case which uses an API which does not
support distributed testing can be run stand-
alone
• It may be necessary to put some of the

communication variables in the environment; for
example TET_CODE and TET_CONFIG

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

33

Feb-05 TETware training course 1-65

Executing test cases without usingExecuting test cases without using tcctcc (cont'd)(cont'd)

l A test case which uses an API which supports
distributed testing expects Distributed TETware
servers to be available

l Because of this, test cases that use these APIs
cannot be run stand-alone but must be run
under control of tcc

l This holds for both distributed and non-
distributed test cases which use this type of API

Feb-05 TETware training course 1-66

1.8 Comparison between TETware1.8 Comparison between TETware--Lite andLite and
Distributed TETwareDistributed TETware

l Local and remote systems
l Operation of tcc

l Test case types

l Operation of TCM and API

l Test case synchronisation

l Simple architecture diagrams

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

34

Feb-05 TETware training course 1-67

Local and remote systemsLocal and remote systems

l TETware-Lite can process test cases on the
local system
• that is: the system on which tcc runs

l Distributed TETware can process test cases on
both local and remote systems

Feb-05 TETware training course 1-68

Operation ofOperation of tcctcc

l In TETware-Lite, tcc performs all processing
actions itself

l Distributed TETware uses a client-server
architecture
• tcc does not perform processing actions itself but

instead sends requests to a server called tccd

• this server runs on all the systems on which tests
are to be processed

• thus a single tcc invocation can control processing
on a number of systems at once

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

35

Feb-05 TETware training course 1-69

Test case typesTest case types

l TETware-Lite can process non-distributed test
cases on a single computer (the local system)

l Distributed TETware can process:
• non-distributed test cases on:

— the local system (local test cases)

— one or more remote systems (remote test cases)

• distributed test cases

Feb-05 TETware training course 1-70

Operation of TCM and APIOperation of TCM and API

l In TETware-Lite none of the APIs support
distributed testing

l In Distributed TETware:
• the C, C++ and Java APIs

— support distributed testing

— can be used when writing both distributed and
non-distributed test cases

• the other APIs do not support distributed testing
— but the Distributed tcc can process test cases which use these APIs as

non-distributed test cases on remote systems

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

36

Feb-05 TETware training course 1-71

Operation of TCM and API (cont’d)Operation of TCM and API (cont’d)

l In Distributed TETware: the C, C++ and Java
APIs use the execution results daemon

l The other APIs - and all the APIs in TETware
Lite - write to the tet_xres file

Feb-05 TETware training course 1-72

Test case synchronisationTest case synchronisation

l When a distributed test case is being executed,
the TCMs synchronise with each other at the
following points:
• when the test case starts executing

• before the user-supplied startup function is called

• at the start of each invocable component

• at the start of each test purpose

• at the end of each test purpose

• before the user-supplied cleanup function is called

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

37

Feb-05 TETware training course 1-73

Simple architecture diagram for TETwareSimple architecture diagram for TETware--LiteLite

Scenario file

tcc

Test case

Results file

Feb-05 TETware training course 1-74

Simple architecture diagram for Distributed TETwareSimple architecture diagram for Distributed TETware

Scenario file

tcc

Results file

tccd tccd

tetsyncd

tetxresd

Local test
case part

Remote test
case part

Local system Remote system

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

38

Feb-05 TETware training course 1-75

Exercise 1Exercise 1

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

1

Feb-05 TETware training course 2-1

Module 2

Building and installing TETware

Feb-05 TETware training course 2-2

Module 2 Module 2 -- Building and installing TETwareBuilding and installing TETware

l 2.1 System requirements

l 2.2 Directory layout

l 2.3 Building the source distribution

l 2.4 Installing a binary distribution

l 2.5 Configuring your system to run
Distributed TETware

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

2

Feb-05 TETware training course 2-3

2.1 System requirements2.1 System requirements

l UNIX systems

l Win32 systems:
• Windows NT, 2000, XP

• Windows 9x

l TETware-Lite

l Distributed TETware

Feb-05 TETware training course 2-4

TETwareTETware--LiteLite on UNIX systemson UNIX systems

l Base requirements on UNIX systems:
• POSIX.1
• XPG3 Volume 1 (for the shell and other commands)

l For the Korn Shell API:
• the Korn Shell (ksh)

l For the POSIX Shell API:
• A POSIX conforming shell (sh)

l For the Perl API:
• perl version 5.0 or later

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

3

Feb-05 TETware training course 2-5

TETwareTETware--LiteLite on UNIX systems (cont'd)on UNIX systems (cont'd)

l For the C++ API
• a C++ compiler

l For the thread-safe APIs - one of:
• Unix International threads

• POSIX threads

l For the Java API
• JDK v1.1 or later

Feb-05 TETware training course 2-6

Support for shared API librariesSupport for shared API libraries

l It is possible to build shared versions of the
libraries that are used by the C and C++ APIs

l On UNIX systems, support is provided for the
following shared library schemes:
• True dynamic linking (as found on Linux, Solaris,

SVR4, Solaris and UnixWare)

• HP-UX

• AIX

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

4

Feb-05 TETware training course 2-7

Distributed TETware on UNIX systemsDistributed TETware on UNIX systems

l Requirements as for TETware-Lite

l Network interface – one of:
• Sockets

• XTI

Feb-05 TETware training course 2-8

TETware on Win32 systemsTETware on Win32 systems

l Uses a defined build environment:
• Microsoft Visual C++

• The MKS Toolkit for Windows NT (version 6 or later)

l For the Shell and Korn Shell APIs:
• The MKS Toolkit for Windows NT

l For the Perl API
• perl for Windows NT

l For the Java API
• JDK v1.1

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

5

Feb-05 TETware training course 2-9

Support for Win32 systemsSupport for Win32 systems

l TETware-Lite
• Windows NT, 2000, XP

• Windows 9x

l Distributed TETware
• Windows NT, 2000, XP

Feb-05 TETware training course 2-10

2.2 Directory layout2.2 Directory layout

l tet-root/
• bin - executable programs

• contrib - user-contributed software

• demo - test suite root for the distributed demo

• doc - TETware documentation

• inc - API header files

• jdemo - test suite root for the Java demo

• lib - API library files

• src - TETware source files

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

6

Feb-05 TETware training course 2-11

The TETware source treeThe TETware source tree

l tet-root/src/
• defines - makefile definition files

• helpers - configuration scripts

• java - source for the Java API

• ksh - source for the Korn Shell API

• perl - source for the Perl API

• scripts - source for shellscript tools

• tet3 - source for TETware programs,
the distributed demo, the C and C++
APIs and parts of the Java API

• xpg3sh - the Shell API

Feb-05 TETware training course 2-12

2.3 Building the source distribution2.3 Building the source distribution

l The method used to build the source is as near
as possible the same on:
• UNIX systems

• Win32 systems

— Windows NT, 2000, XP

— Windows 9x

l Step-by-step instructions are presented in each
of the TETware Installation Guides

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

7

Feb-05 TETware training course 2-13

Building the source distribution on UNIX systemsBuilding the source distribution on UNIX systems

l Load the distribution on to your machine

l Decide which version you want to build

l Select Distributed TETware options
l Configure the source tree (configure)

l Do you need to edit the defines.mk file?

l Build the source

l Install the compatibility links (optional)

l What to do next?

Feb-05 TETware training course 2-14

Load the distribution on to your machineLoad the distribution on to your machine

l Create a directory and load the distribution into it

l This directory will become the tet root directory

l In the instructions that follow, this directory is
referred to as tet-root

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

8

Feb-05 TETware training course 2-15

Decide which version you want to buildDecide which version you want to build

l Which TETware version?
• TETware-Lite

• Distributed TETware

l Which Threads implementation should be used by the
thread-safe APIs?
• none

• UNIX International threads

• POSIX threads

l Is C++ supported?

l Is Java supported?

Feb-05 TETware training course 2-16

Distributed TETware options on UNIX systemsDistributed TETware options on UNIX systems

l Which network interface?
• sockets

• XTI

l How do you want to start the TCC daemon?
• from /etc/rc (the rc version)

• from /etc/inittab (the inittab version)

• from /etc/inetd.conf (the inetd version)

l These days most UNIX systems have sockets and
inetd, so most people will build the inetd version
using sockets

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

9

Feb-05 TETware training course 2-17

Configure the source tree (Configure the source tree (configureconfigure))

l Run the configuration script, thus:
cd tet-root

sh configure -t transport

where transport is one of:
• inet to build Distributed TETware using sockets

• xti to build Distributed TETware using XTI

• lite to build TETware-Lite

l If configure can’t work out which UNIX version you
are running, you will have to run tetconfig and
install a defines.mk file by hand

Feb-05 TETware training course 2-18

Do you need to edit the Do you need to edit the defines.defines.mkmk file?file?

l The file tet-root/src/defines.mk contains
system-dependent definitions that will be used
by make when you build the source

• This file is installed for you when you run the
configure script

l The defines.mk files that are supplied with the
distribution assume that you are building
Distributed TETware to use sockets

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

10

Feb-05 TETware training course 2-19

Editing the Editing the defines.defines.mkmk filefile

l If you want to build TETware-Lite or use a different
network interface, you may need to edit the file after
it is installed

l For example, when building TETware-Lite on a
Solaris or UnixWare system you don’t need to link
with the network libraries:
• edit defines.mk and search for the SYSLIBS

assignment

• remove -lsocket -lnsl

Feb-05 TETware training course 2-20

Support for JavaSupport for Java

l If you want to build the Java API, you may need
to tell make where the JDK header files are
located on your system
• For example, on a Linux machine where the JDK is

installed in /usr/local/java, the header files are
located in /usr/local/java/include and
/usr/local/java/include/genunix

l Search for the JAVA_CDEFS assignment in the
defines.mk file, then follow the instructions in
the comment

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

11

Feb-05 TETware training course 2-21

Part of Part of tettet--rootroot//srcsrc/defines//defines/linuxlinux..mkmk

support for Java
#
JAVA_CDEFS is used in addition to TET_CDEFS/DTET_CDEFS when compiling
the Java API.
It is normally set to -Ipath-to-jdk-include-directory
and includes a list of signals that the TCM should leave alone.
Set JAVA_CDEFS to JAVA_NOT_SUPPORTED if Java is not supported on your
system or if you don't want to build the Java API.
#
Although the Java API is supported on Linux, the location of the JDK
on your machine must be specified here before you can build the Java
API support library.
For example, if the JDK is installed in /usr/local/java on your machine,
you would say:
JAVA_CDEFS = -I/usr/local/java/include -I/usr/local/java/include/genunix \
-DTET_SIG_LEAVE='SIGALRM,SIGSEGV,SIGIO,SIGCHLD,SIGINT,SIGQUIT,SIGBUS,\
SIGILL,SIGABRT,SIGFPE,SIGTRAP,SIGXCPU,SIGXFSZ,SIGPIPE'
but because I don't know where the JDK is installed on your machine,
for now I must say:
JAVA_CDEFS = JAVA_NOT_SUPPORTED
See "Support for Java" in the TETware Installation Guide for UNIX systems
for more details.

Feb-05 TETware training course 2-22

Creating your own Creating your own defines.defines.mkmk filefile

l If none of the example defines.mk files are
suitable, you must create your own

l Take a copy of the template file, thus:
cd tet-root/src

cp defines/template.mk defines.mk

l Customise the defines.mk file for your system

• information to help you do this are contained in:

— the comments in this file

— section 3.4 of the TETware Installation Guide for
UNIX Operating Systems

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

12

Feb-05 TETware training course 2-23

Build the sourceBuild the source

l Now you can build the source, thus:
cd tet-root/src

make install

l Check that the build was successful

Feb-05 TETware training course 2-24

Install the compatibility links (optional)Install the compatibility links (optional)

l On UNIX systems it is possible to provide
backwards compatibility with previous TET
implementations

l To install the compatibility links, type:
cd tet-root/src

make compat

l If you need these links you must repeat this
operation each time you rebuild TETware

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

13

Feb-05 TETware training course 2-25

What to do next?What to do next?

l If you have built TETware-Lite, it is now ready to
use

l If you have built Distributed TETware, you must
now configure your system

Feb-05 TETware training course 2-26

Building the source distribution on Win32 systemsBuilding the source distribution on Win32 systems

l Load the distribution on to your machine

l Decide which version you want to build
l Configure the source tree (configure)

l Do you need to edit the defines.mk file?

l Build the source

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

14

Feb-05 TETware training course 2-27

Load the distribution on to your machineLoad the distribution on to your machine

l Create a directory and load the distribution into it

l This directory will become the tet root directory

l In the instructions that follow, this directory is
referred to as tet-root

Feb-05 TETware training course 2-28

Decide which version you want to buildDecide which version you want to build

l Which TETware version?
• TETware-Lite

— Windows NT, 2000, XP and Windows 9x

• Distributed TETware

— Windows NT, 2000, XP only

l There is no decision to make about Threads
• the thread-safe APIs use the multi-threaded DLL version of

the C runtime support library

l The C++ API is always built

l Is Java supported?

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

15

Feb-05 TETware training course 2-29

Distributed TETware options on Windows NTDistributed TETware options on Windows NT

l There are no choices to make when you build
Distributed TETware on Windows NT

l The network transport is provided by the
Windows Socket library (Winsock)

l The TCC daemon is started by a program called
tccdstart - this behaves much like inetd on
a UNIX system

Feb-05 TETware training course 2-30

Set up the defined build environmentSet up the defined build environment

l Set up the defined build environment now if you
have not already done so

l Install Microsoft Visual C++ and the MKS Toolkit
• the following instructions assume that:

— you install MSVC++ in c:/msdev

— you install the MKS toolkit in c:/

l Configure MKS make for MSVC++

l Arrange to use the MKS Shell as your command
interpreter

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

16

Feb-05 TETware training course 2-31

Set up the defined build environment (cont'd)Set up the defined build environment (cont'd)

l Modify your profile.ksh:
• set and export the following environment variables:

TET_ROOT=tet-root

CCG=$TET_ROOT/src/tet3/compiler.ccg

INCLUDE="c:/msdev/vc/inc;c:/msdev/vc/mfc/inc"

LIB="c:/msdev/vc/lib;c:/msdev/vc/mfc/lib"

• include c:/mksnt in PATH

l Ensure that the directory c:/tmp exists and is
accessible to all users

Feb-05 TETware training course 2-32

Configure the source tree (Configure the source tree (configureconfigure))

l Run the configuration script, thus:
cd tet-root

sh configure -t transport

where transport is one of:

• inet to build Distributed TETware using sockets

• lite to build TETware-Lite

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

17

Feb-05 TETware training course 2-33

Do you need to edit the Do you need to edit the defines.defines.mkmk file?file?

l The file tet-root/src/defines.mk contains
system-dependent definitions that will be used
by make when you build the source

• This file is installed for you when you run the
configure script

l The defines.mk files that are supplied with the
distribution assume that you are building
Distributed TETware

Feb-05 TETware training course 2-34

Editing the Editing the defines.defines.mkmk filefile

l If you want to build TETware-Lite, you need to edit
the file after it is installed

l For example, when building TETware-Lite you don’t
need to link with the Winsock library:
• edit defines.mk and search for the SYSLIBS

assignment

• remove wsock32.lib

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

18

Feb-05 TETware training course 2-35

Support for JavaSupport for Java

l If you want to build the Java API, you need to
tell make where the JDK header files are located
on your system
• For example, if the JDK is installed in
c:/jdk1.1.8, the header files are located in
c:/jdk1.1.8/include and
c:/jdk1.1.8/include/win32

l Search for the JAVA_CDEFS assignment in the
defines.mk file, then follow the instructions in
the comment

Feb-05 TETware training course 2-36

Part of Part of tettet--rootroot//srcsrc/defines//defines/mscmsc++mksmks..mkmk

support for Java

#

JAVA_CDEFS is used in addition to TET_CDEFS/DTET_CDEFS when compiling

the Java API.

On Win32 systems it is set to -Ipath-to-jdk-include-directory.

Set JAVA_CDEFS to JAVA_NOT_SUPPORTED if Java is not supported on your

system or if you don't want to build the Java API.

#

Although the Java API is supported on Win32 systems, the location of

the JDK on your machine must be specified here before you can build

the Java API support library.

For example, if the JDK is installed in c:/jdk1.1.8 on your machine,

you would say:

JAVA_CDEFS = -Ic:/jdk1.1.8/include -Ic:/jdk1.1.8/include/win32

but because I don't know where the JDK is installed on your machine,

for now I must say:

JAVA_CDEFS = JAVA_NOT_SUPPORTED

See "Support for Java" in the TETware Installation Guide for Win32 systems

for more details.

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

19

Feb-05 TETware training course 2-37

Build the sourceBuild the source

l Now you can build the source, thus:
cd tet-root/src

make install

l Check that the build was successful

Feb-05 TETware training course 2-38

What to do next?What to do next?

l If you have built TETware-Lite, it is now ready to
use

l If you have built Distributed TETware, you must
now configure your system

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

20

Feb-05 TETware training course 2-39

2.4 Installing a binary distribution2.4 Installing a binary distribution

l Load the distribution on to your machine
• Create a directory and load the distribution into it

• This directory will become the tet root directory

l If you have installed TETware-Lite, it is now
ready to use

l If you have installed Distributed TETware, you
must now configure your system

Feb-05 TETware training course 2-40

2.5 Configuring your system to run2.5 Configuring your system to run
Distributed TETwareDistributed TETware

l UNIX systems

l Windows NT, 2000, XP

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

21

Feb-05 TETware training course 2-41

UNIX systemsUNIX systems

l Create a new user called tet

l When the socket interface is used:
• Add a tcc entry in the services database

• Install a systems equivalence file in the tet home
directory

l Arrange to start tccd

• rc version

• inittab version

• inetd version

Feb-05 TETware training course 2-42

Create a new user called Create a new user called tettet

l Add an entry to the password database

l Create a home directory

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

22

Feb-05 TETware training course 2-43

Add a Add a tcctcc entry in the services databaseentry in the services database

l This entry defines the well-known port number
that will be used by tccd

l It must be the same on all systems

l For example:
tcc 1234/tcp

l Usually the services database is in
/etc/services

l Consult your system administrator if your
system uses NIS

Feb-05 TETware training course 2-44

Install a systems equivalence file inInstall a systems equivalence file in
the the tettet home directoryhome directory

l Create a file called systems.equiv in the
home directory of the user tet that you have
just created

l Edit the file to contain the host names of
systems that are permitted to connect to tccd,
one per line

l If your system uses DNS, each host name
should be fully qualified

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

23

Feb-05 TETware training course 2-45

Arrange to start Arrange to start tccdtccd

l How you start tccd depends on which version
you built:
• rc version

• inittab version

• inetd version

l Follow the instructions in section 4.4 of the
TETware Installation Guide for UNIX Operating
Systems

Feb-05 TETware training course 2-46

Windows NTWindows NT

l Add a tcc entry in the services database

l Install a systems equivalence file in your home
directory

l Arrange to start tccd

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

24

Feb-05 TETware training course 2-47

Add a Add a tcctcc entry in the services databaseentry in the services database

l This entry defines the well-known port number
that will be used by tccd

l It must be the same on all systems

l For example:
tcc 1234/tcp

l Usually the services database is in
c:/winnt/system32/drivers/etc/services

Feb-05 TETware training course 2-48

Install a systems equivalence file in yourInstall a systems equivalence file in your
home directoryhome directory

l Create a file called systems.equiv in your
home directory

l Edit the file to contain the host names of
systems that are permitted to connect to tccd,
one per line

l If your system uses DNS, each host name may
need to be fully qualified

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

25

Feb-05 TETware training course 2-49

Arrange to start Arrange to start tccdtccd

l Open a new Korn Shell window
l Invoke the tccd bootstrap program, thus:

tccdstart

Feb-05 TETware training course 2-50

Exercise 2Exercise 2

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

1

Feb-05 TETware training course 3-1

Module 3

The Test Case Controller

Feb-05 TETware training course 3-2

Module 3 Module 3 -- The Test Case ControllerThe Test Case Controller

l 3.1 Modes of operation

l 3.2 Directory structure

l 3.3 Environment variables

l 3.4 Configuration variables

l 3.5 Test case processing

l 3.6 Saved files processing

l 3.7 Execution results processing

l 3.8 Rerun and Resume processing

l 3.9 Invocation

l 3.10 Test session interruption

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

2

Feb-05 TETware training course 3-3

3.1 Modes of operation3.1 Modes of operation

l tcc processes the scenario in one or more
modes of operation as follows:
• build mode

• execute mode

• clean mode

l Any combination of these modes can be
specified when tcc is invoked

Feb-05 TETware training course 3-4

Build modeBuild mode

l tcc builds each test case using the build tool

l The build tool is specified by TET_BUILD_TOOL
in the build mode configuration

l The build tool should build the test case

l If an alternate execution directory is to be used,
the build tool should also install the test case
below there

l Often, make is used as the build tool

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

3

Feb-05 TETware training course 3-5

Execute modeExecute mode

l tcc executes each test case

l Usually, TET_EXEC_TOOL is not specified, so
the test case is executed directly

Feb-05 TETware training course 3-6

Clean modeClean mode

l tcc cleans up each test case using the clean
tool

l The clean tool is specified by
TET_CLEAN_TOOL in the clean mode
configuration

l The clean tool should restore the file system to
the state it was in before the test case was built

l Often, this is done by invoking rm -f
or make clobber

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

4

Feb-05 TETware training course 3-7

3.2 Directory structure3.2 Directory structure

l We have already learned about the directory
structure in Module 1:
• the tet root directory

• the test suite root directory

• the temporary directory

• the results directory

• the optional alternate execution directory

• the optional runtime directory

Feb-05 TETware training course 3-8

The The tettet root directoryroot directory

l This is the top of the TETware directory tree
l It must be specified by the TET_ROOT

environment variable

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

5

Feb-05 TETware training course 3-9

The test suite root directoryThe test suite root directory

l All the test suite files are located below this
directory

l Usually it is located immediately below the tet
root directory

l This is the place from which you invoke tcc

Feb-05 TETware training course 3-10

The temporary directoryThe temporary directory

l tcc executes test cases below this directory
when TET_EXEC_IN_PLACE is false

l tcc creates this directory when necessary

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

6

Feb-05 TETware training course 3-11

The results directoryThe results directory

l This directory contains the journal files for each
test run

l Each time tcc is invoked, it creates a new
directory below here called NNNN[bec]
• NNNN is an ascending sequence number

• followed by one or more of b, e and c, depending on
which modes of operation were selected

Feb-05 TETware training course 3-12

The optional alternate execution directoryThe optional alternate execution directory

l This directory can be specified if required

l When it is specified, test cases are executed in
their location below this directory instead of
below the test suite root directory

l Most of The Open Group's test suites use an
alternate execution directory

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

7

Feb-05 TETware training course 3-13

The optional runtime directoryThe optional runtime directory

l When this directory is specified, tcc copies the
entire test suite directory hierarchy to the
runtime directory and processes it there

l This feature can be used when the test suite is
contained on a read-only file system

Feb-05 TETware training course 3-14

3.3 Environment variables3.3 Environment variables

l When tcc starts up, it reads in certain
environment variables:
• Required:

— TET_ROOT

• Optional:

— TET_EXECUTE

— TET_SUITE_ROOT

— TET_TMP_DIR

— TET_RUN

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

8

Feb-05 TETware training course 3-15

TET_ROOTTET_ROOT

l This environment variable defines the location of
the tet root directory

l This variable must be in the environment when
tcc is invoked

Feb-05 TETware training course 3-16

TET_EXECUTETET_EXECUTE

l If this environment variable is defined, it
specifies the location of the alternate execution
directory

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

9

Feb-05 TETware training course 3-17

TET_SUITE_ROOTTET_SUITE_ROOT

l This environment variable may be used to
specify the name of the directory containing the
test suite root directory

l It can be used when the test suite root directory
is not below the tet root directory

Feb-05 TETware training course 3-18

TET_TMP_DIRTET_TMP_DIR

l This environment variable can be used to
specify an alternative location for the temporary
directory

l If this variable is not defined, the temporary
directory defaults to tet-root/tet_tmp_dir

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

10

Feb-05 TETware training course 3-19

TET_RUNTET_RUN

l If this environment variable is defined, it
specifies the location of the runtime directory
• tcc copies the test suite root directory hierarchy to

the runtime directory and processes the test suite
there instead

l This feature enables tcc to process a test suite
which resides on a read-only file system

Feb-05 TETware training course 3-20

3.4 Configuration variables3.4 Configuration variables

l tcc uses certain configuration variables to determine
how to process test cases

l A variable can be:
• a Boolean variable

— is either true or false
— always has a default value (false)

• a string variable

— may have any value, or may be undefined

— does not usually have a default value

l Configuration variables are specified in files - they are
not environment variables

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

11

Feb-05 TETware training course 3-21

Categories of configuration variablesCategories of configuration variables

l There are variables to specify:
• Tools and instruction files

• Compatibility mode

• Execution directory

• API-conforming or non API-conforming

• Saved files processing

• Result code file name

• Whether or not configuration variable expansion
should be performed

Feb-05 TETware training course 3-22

Tools and instruction filesTools and instruction files

l TET_PREBUILD_TOOL

l TET_PREBUILD_FILE

l TET_BUILD_TOOL

l TET_BUILD_FILE

l TET_BUILD_FAIL_TOOL

l TET_BUILD_FAIL_FILE

l TET_EXEC_TOOL

l TET_EXEC_FILE

l TET_CLEAN_TOOL

l TET_CLEAN_FILE

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

12

Feb-05 TETware training course 3-23

Tools and instruction files (cont'd)Tools and instruction files (cont'd)

l TET_*_TOOL specifies a tool to use when
processing a test case

l TET_*_FILE specifies an optional argument to
pass to the tool

l Default: undefined
l Each tool only needs to be defined in the configuration

for the mode that uses it
• for example: TET_BUILD_TOOL should be defined in the

build mode configuration

Feb-05 TETware training course 3-24

Compatibility mode Compatibility mode -- TET_COMPATTET_COMPAT

l Specifies the compatibility mode to use when
interpreting scenarios

l Possible values: dtet2 or etet

l Default: undefined

l If defined, must have the same value in all the
per-mode configurations

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

13

Feb-05 TETware training course 3-25

Execution directory Execution directory -- TET_EXEC_IN_PLACETET_EXEC_IN_PLACE

l Specifies whether test cases should be
executed “in place” or in a temporary execution
directory

l Default: false

l Only relevant in the execute mode configuration

Feb-05 TETware training course 3-26

APIAPI--conforming or non APIconforming or non API--conformingconforming

l TET_OUTPUT_CAPTURE
• Specifies whether or not a test case or tool should be

executed with output capture mode enabled

l TET_API_COMPLIANT
• Specifies whether or not test cases or tools use the API

l TET_PASS_TC_NAME
• Specifies whether or not the test case name should be

passed to a build or clean tool
l Normally you only need to specify TET_OUTPUT_CAPTURE -

appropriate defaults for the other two variables are taken from
this one

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

14

Feb-05 TETware training course 3-27

TET_OUTPUT_CAPTURETET_OUTPUT_CAPTURE

l Specifies whether or not a test case or tool should
be executed with output capture mode enabled

l Default: false

l For convenience, provides default values for
TET_API_COMPLIANT and TET_PASS_TC_NAME:

• For an API-conforming test case or tool, set
TET_OUTPUT_CAPTURE to false

• For a non API-conforming test case or tool, set
TET_OUTPUT_CAPTURE to true

Feb-05 TETware training course 3-28

TET_API_COMPLIANTTET_API_COMPLIANT

l Specifies whether or not test cases or tools use
the API

l Default: inverse of TET_OUTPUT_CAPTURE

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

15

Feb-05 TETware training course 3-29

TET_PASS_TC_NAMETET_PASS_TC_NAME

l Specifies whether or not the test case name
should be passed to a build or clean tool

l Default: same as TET_OUTPUT_CAPTURE

l Only relevant in the build and clean mode
configurations

Feb-05 TETware training course 3-30

Saved files processingSaved files processing

l TET_SAVE_FILES

• Specifies which files to save after each test case is
executed

l TET_TRANSFER_SAVE_FILES

• In Distributed TETware, specifies whether or not
saved files should be transferred to the local system
and saved there instead

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

16

Feb-05 TETware training course 3-31

TET_SAVE_FILESTET_SAVE_FILES

l A comma-separated list of files and/or
directories to be copied to the saved files
directory after test cases are executed

l Shell pattern-matching characters may be used

l Default: undefined

l Only relevant in the execute mode configuration

Feb-05 TETware training course 3-32

TET_TRANSFER_SAVE_FILESTET_TRANSFER_SAVE_FILES

l Only in Distributed TETware
l If false, files specified by TET_SAVE_FILES on

a remote system are saved on that system
l If true, files specified by TET_SAVE_FILES on a

remote system are saved on the local system
l Default: false

l Only relevant in the execute mode configuration

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

17

Feb-05 TETware training course 3-33

Result code file name Result code file name -- TET_RESCODES_FILETET_RESCODES_FILE

l Specifies the name of a file containing result
code definitions

l Default: tet_code

l If defined, must have the same value in all the
per-mode configurations

l The file is searched for below the tet root and
test suite root directories, so should be just a file
name - not a path name

Feb-05 TETware training course 3-34

TET_EXPAND_CONF_VARSTET_EXPAND_CONF_VARS

l Specifies whether or not configuration variable
expansion should be enabled in the per-mode
configurations

l Default: false

l Configuration variable expansion may be
performed on the assignments for:
• All the TET_*_TOOL and TET_*_FILE variables

• User-defined variables

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

18

Feb-05 TETware training course 3-35

Configuration variable expansionConfiguration variable expansion

l When TET_EXPAND_CONF_VARS is true, the
value of one configuration variable may be
interpolated in the assignment for another
variable

l For example:
TET_EXPAND_CONF_VARS=true
PRESENTER=Andrew
MESSAGE=This course is being presented by ${PRESENTER}

Feb-05 TETware training course 3-36

Special variables defined by TETwareSpecial variables defined by TETware

l It is also possible to interpolate the values of some
special variables which are defined internally

l The special variables include:
${TET_ROOT} (the location of the tet root directory)

${TET_TSROOT} (the location of the test suite root directory)

l For example:
TET_EXPAND_CONF_VARS=true
TET_BUILD_TOOL=${TET_TSROOT}/bin/mybuildtool

l When you do this, you avoid the need to specify hard-
wired path names in a configuration file

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

19

Feb-05 TETware training course 3-37

tcctcc variables in Distributed TETwarevariables in Distributed TETware

l In Distributed TETware, tcc reads some variables
from the master configuration and some from the
per-system configurations

l Variables read from the master configuration:
• are specified on the local system
• do not have a TET_REMnnn_ prefix

l Variables read from a per-system configuration:
• may be specified on the local system, or on the

related remote system
• may have a TET_REMnnn_ prefix

Feb-05 TETware training course 3-38

Variables read from the master configurationVariables read from the master configuration

l TET_OUTPUT_CAPTURE

• TET_API_COMPLIANT

• TET_PASS_TC_NAME

l TET_COMPAT

l TET_EXEC_IN_PLACE

l TET_RESCODES_FILE

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

20

Feb-05 TETware training course 3-39

Variables read from the perVariables read from the per--system configurationssystem configurations

l All the TET_*_TOOL and TET_*_FILE
variables

l TET_EXPAND_CONF_VARS

l TET_SAVE_FILES

l TET_TRANSFER_SAVE_FILES

Feb-05 TETware training course 3-40

3.5 Test case processing3.5 Test case processing

l This section describes how tcc processes test
cases in:
• build mode

• execute mode

• clean mode

l This processing is affected by the settings of
several configuration variables
• mainly TET_EXEC_IN_PLACE and
TET_OUTPUT_CAPTURE

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

21

Feb-05 TETware training course 3-41

Common processing for test cases and toolsCommon processing for test cases and tools

l This processing is performed in all the modes of
operation

l If TET_OUTPUT_CAPTURE is true:

• the test case or tool is executed with standard output
and standard error redirected to a file

• when the process exits, the captured output is
copied to the journal

Feb-05 TETware training course 3-42

Common processing for test cases and tools (cont'd)Common processing for test cases and tools (cont'd)

l If TET_API_COMPLIANT is false:
• tcc generates the execution results lines that would

be output by an API-conforming test case

l If TET_API_COMPLIANT is true:
• tcc copies the execution results file generated by

the API to the journal

• For a non-distributed test case, test case information
lines are reordered so that lines with the same
context and block numbers are kept together in the
journal

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

22

Feb-05 TETware training course 3-43

Build mode processingBuild mode processing

l This processing is performed in the test case
source directory

l Obtain exclusive locks

l Execute the optional prebuild tool
• If it fails, skip the build stage and execute the

optional build fail tool

l Execute the build tool
• If it fails, execute the optional build fail tool

l Remove locks

Feb-05 TETware training course 3-44

Execute mode processing (1)Execute mode processing (1)

l Obtain locks in:
• the source directory (always)

• the execution directory (if specified)
— shared locks if TET_EXEC_IN_PLACE is false

— exclusive locks if TET_EXEC_IN_PLACE is true

l If TET_EXEC_IN_PLACE is false:

• copy the directory containing the test case
(execution or source) to the temporary directory

• remove the locks

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

23

Feb-05 TETware training course 3-45

Execute mode processing (2)Execute mode processing (2)

l Execute the test case (or exec tool if one has
been specified)
• If TET_EXEC_IN_PLACE is false:

— below the temporary directory
• If TET_EXEC_IN_PLACE is true:

— below the alternate execution directory if one is
specified

— otherwise in the test case source directory

Feb-05 TETware training course 3-46

Execute mode processing (3)Execute mode processing (3)

l Perform saved files processing
l If TET_EXEC_IN_PLACE is false:

• remove the temporary directory subtree created
earlier

l If TET_EXEC_IN_PLACE is true:

• remove locks

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

24

Feb-05 TETware training course 3-47

Clean mode processingClean mode processing

l This processing is performed in the test case
source directory

l Obtain exclusive locks

l Execute the clean tool

l Remove locks

Feb-05 TETware training course 3-48

3.6 Saved files processing3.6 Saved files processing

l This processing is performed after tcc executes
a test case

l If TET_EXEC_IN_PLACE is false, files
generated by a test case are lost when tcc
removes the temporary directory subtree

l If it is required to keep any of these files, tcc
can be instructed to save the files before the
temporary directory is removed

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

25

Feb-05 TETware training course 3-49

TET_SAVE_FILESTET_SAVE_FILES

l The TET_SAVE_FILES variable in the execute
mode configuration tells tcc which files to save

l It should be set to a comma-separated list of file
and directory names

l Shell file name syntax can be used

l If a directory is specified, it is saved recursively

l For example:
TET_SAVE_FILES=core,tmp[0-9]*

Feb-05 TETware training course 3-50

The saved files directoryThe saved files directory

l Files are saved in a directory subtree below the
results directory:

test-suite-root/results/NNNN[bec]/...

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

26

Feb-05 TETware training course 3-51

Saved files processing in Distributed TETware Saved files processing in Distributed TETware

l Files specified by TET_SAVE_FILES on a
remote system can be:
• saved below
test-suite-root/results/NNNN[bec]
on the remote system

• transferred to the local system and saved below
test-suite-root/results/NNNN[bec]/REMOTEnnn

l The value of TET_TRANSFER_SAVE_FILES
determines which option is performed

Feb-05 TETware training course 3-52

3.7 Execution results processing3.7 Execution results processing

l API-conforming test cases and tools

l Non API-conforming test cases and tools

l TETware-Lite

l Distributed TETware

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

27

Feb-05 TETware training course 3-53

Execution results from an APIExecution results from an API--conforming test caseconforming test case

l The API writes execution results to a file called
tet_xres in the test case execution directory

l tcc copies the contents of this file to the journal

l When copying test case information lines, tcc
reorders them so that lines with the same
context and block number are kept together
• this is done so that output from a child process is

kept separate from output from the parent

Feb-05 TETware training course 3-54

Execution results from a non APIExecution results from a non API--conforming test caseconforming test case

l A non API-conforming test case or tool should
be executed with output capture enabled

l tcc copies the captured output to the journal

l When processing a non API-conforming test
case in execute mode, tcc generates the result
code from the process exit code:
• zero = PASS

• non-zero = FAIL

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

28

Feb-05 TETware training course 3-55

Execution results processing in Distributed TETwareExecution results processing in Distributed TETware

l The Distributed C, C++ and Java APIs send
execution results to tetxresd

l tcc checks to see if tetxresd has been used:
• if it has, tcc copies lines from tetxresd to the

journal
• otherwise, tcc copies lines from the tet_xres file

to the journal

l tcc does not reorder information lines from a
distributed test case

Feb-05 TETware training course 3-56

3.8 Rerun and Resume processing3.8 Rerun and Resume processing

l You can ask tcc to rerun selected test cases
from a previous test run

l You can ask tcc to resume processing of a
previous test run from a certain point

l When tcc does this it uses:

• the journal file from the previous run

• a (comma-separated) list of test case selectors that
you specify

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

29

Feb-05 TETware training course 3-57

Test case selectorsTest case selectors

l The test case selector is one or more of:
• result code names - PASS, FAIL, UNRESOLVED etc.

• modes of operation - b, e and c

l In Rerun mode only test cases identified by the
test case selector is processed

l In Resume mode processing of the scenario is
resumed from the first test case identified by the
test case selector

Feb-05 TETware training course 3-58

Test case selectors (cont'd)Test case selectors (cont'd)

l When a result code name is specified, it
matches a Test Purpose Result containing the
corresponding result code number
• a result code name does not match a result

generated by an API-conforming build or clean tool

l When a mode of operation is specified, it
matches a Result line containing a non-zero
result code or an End line containing a non-zero
completion status

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

30

Feb-05 TETware training course 3-59

Rerun exampleRerun example

l To rebuild all test cases that previously failed to
build:
tcc -b -r b ... old-journal-file ...

rerun
mode

select
test cases
that failed

in this mode

Feb-05 TETware training course 3-60

Resume exampleResume example

l To resume executing a scenario at the point
where the first test purpose failed or was
unresolved:
tcc -e -m FAIL,UNRESOLVED ... old-journal-file ...

resume
mode

select first
test case
with these

result codes

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

31

Feb-05 TETware training course 3-61

3.9 Invocation3.9 Invocation

l There are lots of options that can be specified
on the tcc command line
• see the tcc manual page at the back of the

TETware User Guide for details

l You must use at least one of -b, -e and -c to
specify which mode(s) of operation you want

l You can also specify a test suite name and a
scenario name; for example:
tcc -b vsx4 miniscen

Feb-05 TETware training course 3-62

Test suite nameTest suite name

l The test suite name is the name of the test suite
root directory

l If you don't specify a test suite name, tcc takes
the current directory and identifies the first
component below $TET_ROOT

l If the current directory is not below $TET_ROOT,
tcc can't determine the test suite name

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

32

Feb-05 TETware training course 3-63

Scenario nameScenario name

l If you specify a test suite name, you can also
specify a scenario name

l If you don't specify a scenario name, it defaults
to all

Feb-05 TETware training course 3-64

Some useful commandSome useful command--line optionsline options

l -p reports progress - useful to see what is
happening during a long test run

l You can specify configuration variables with -v

l You can select or reject particular test cases
from the scenario with -y and -n

l You can specify a simple scenario with -l

l You can specify a journal file with -j

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

33

Feb-05 TETware training course 3-65

3.10 Test session interruption3.10 Test session interruption

l tcc interprets signals as follows:
• SIGINT

— interrupts the currently executing test case or
tool

• SIGQUIT (on UNIX systems)

• SIGBREAK (on Win32 systems)

— interrupts the whole test run

l These signals can be generated from the
keyboard

Feb-05 TETware training course 3-66

Keyboard interruptsKeyboard interrupts

l SIGINT

• usually Control-C on UNIX systems

• always Control-C on Win32 systems

l SIGQUIT

• usually Control-\ on UNIX systems

l SIGBREAK

• always Control-BREAK on Win32 systems

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

34

Feb-05 TETware training course 3-67

Warning for Win32 systemsWarning for Win32 systems

l On a Win32 system use of keyboard interrupts
may result in unpredictable system behaviour
• depending on what the test case is doing, you may

need to reboot the machine!

l So only use this facility as a last resort on Win32
systems

Feb-05 TETware training course 3-68

Exercise 3Exercise 3

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

1

Feb-05 TETware training course 4-1

Module 4

Customising TETware

Feb-05 TETware training course 4-2

Module 4 Module 4 -- Customising TETwareCustomising TETware

l 4.1 Processing single test cases during the
test development cycle

l 4.2 ETET and dTET2 compatibility

l 4.3 Interpreting TETware diagnostics

l 4.4 Using debugging tools

l 4.5 TETware trace debugging

l 4.6 Handling unexpected events

l 4.7 Interacting with test cases in Distributed TETware

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

2

Feb-05 TETware training course 4-3

4.1 Processing single test cases during the4.1 Processing single test cases during the
test development cycletest development cycle

l When test cases are being developed, it is
useful to be able to process a single test case

l There are several ways to instruct tcc to
execute just one test case; for example:
• specify a mini-scenario using -l

• select or reject scenario lines using -y and -n

Feb-05 TETware training course 4-4

Specify a miniSpecify a mini--scenario using scenario using --ll

l For example:
tcc -e -l /ts/tc1 ...

scenario
line

l When this is done, the default scenario file is not
used

l You can specify more than one -l option if
necessary

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

3

Feb-05 TETware training course 4-5

Select or reject scenario lines using Select or reject scenario lines using --yy and and --nn

select a
string

l For example, to process only the test case
whose name contains a particular string:

tcc -e -y print ...

l Only scenario lines containing the specified
string are processed

Feb-05 TETware training course 4-6

Example shell script to execute a single test caseExample shell script to execute a single test case

execute a test case called /ts/foo/T.foo in the vsx4 test suite
invoke in the test case source directory

TESTNAME=`echo $PWD | sed -e "s^${TET_ROOT:?}/vsx4^^"`/T.`basename $PWD`
ICLIST=
DBUG_ARG=

while test $# -gt 0
do

case "$1" in
-d)

DBUG_OUT=${PWD}/dbug.out
DBUG_OUT_L=${PWD}/dbug.out_l
DBUG_ARG="-v VSX_DBUG_FLAGS=d:f:l,2:P:p:t:F:L \

-v VSX_DBUG_FILE=$DBUG_OUT \
-v TET_REM002_VSX_DBUG_FILE=$DBUG_OUT_L"

rm -f $DBUG_OUT $DBUG_OUT_L
;;

-*)
echo $0: unknown option: $1 1>&2
exit 2
;;

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

4

Feb-05 TETware training course 4-7

Example shell script (cont'd)Example shell script (cont'd)

[0-9]*)
if test -z "$ICLIST"
then

ICLIST=$1
elif test "$ICLIST" != all
then

ICLIST="$ICLIST,$1"
fi
;;

all)
ICLIST=$1
;;

*)
echo $0: ignored \"$1\" 1>&2
;;

esac
shift

done

Feb-05 TETware training course 4-8

Example shell script (cont'd 2)Example shell script (cont'd 2)

if test -z "$ICLIST"
then

ICLIST=all
fi

echo $TESTNAME

rm -f j

tcc -ep -j j -l :remote,000,001,002:@$TESTNAME{$ICLIST} $DBUG_ARG

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

5

Feb-05 TETware training course 4-9

4.2 ETET and dTET2 compatibility4.2 ETET and dTET2 compatibility

l Previous TET implementations have interpreted
the parallel directive in different ways

l When the TETware tcc needs to know how it
should interpret this directive, it uses the value
of the TET_COMPAT configuration variable

Feb-05 TETware training course 4-10

TET_COMPATTET_COMPAT

l Possible values are:
• etet to select ETET behaviour

• dtet2 to select dTET2 behaviour

l There is no default value
l When defined, TET_COMPAT must have the

same value in the configurations for each of the
chosen modes of operation

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

6

Feb-05 TETware training course 4-11

4.3 Interpreting TETware diagnostics4.3 Interpreting TETware diagnostics

l Diagnostic messages may be generated by:
• tcc

• The TCM/API

• Distributed TETware servers:
— tccd

— tetsyncd

— tetxresd

Feb-05 TETware training course 4-12

What does a diagnostic message look like ?What does a diagnostic message look like ?

l A free-format text message from tcc
• user-level errors which report things like scenario syntax

errors and configuration errors

l A structured message
• system-level errors which report things like missing files

and unexpected events

• a structured message includes:
— source file name and line number

— message text
— system error message (from errno) or server reply code

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

7

Feb-05 TETware training course 4-13

A freeA free--format text message from format text message from tcctcc

l For example:
tcc: unknown/unsupported directive
remote,001 at line 20 in file
c:/tet3lite/tests/bad_scen

tcc: giving up after finding 1 scenario
error

Feb-05 TETware training course 4-14

Diagnostic with system error messageDiagnostic with system error message

(tcfexec.c, 466): spawn failed,

path = c:/tet3lite/tests/ts/tc21:

No such file or directory

source file
name and

line number

system
error

message

message
text

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

8

Feb-05 TETware training course 4-15

Diagnostic with server reply codeDiagnostic with server reply code

(exec.c, 129): can't exec

c:/tet3lite/tests/ts/tc21,

reply code = ER_NOENT

source file
name and

line number

server
reply
code

message
text

Feb-05 TETware training course 4-16

Where do diagnostic messages appear?Where do diagnostic messages appear?

l Diagnostics generated by tcc:

• on the standard error stream

• in the journal

— as Test Case Controller messages (code 50)

l Diagnostics generated by the TCM/API:
• in the journal

— as Test Case Manager messages (code 510)

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

9

Feb-05 TETware training course 4-17

Where do diagnostic messages appear? (cont'd)Where do diagnostic messages appear? (cont'd)

l Diagnostics generated by Distributed TETware servers:
• tetsyncd and tetxresd

— on the standard error stream
— (inherited from tcc)

• tccd

— in the TCCD log file; defaults are:
- /tmp/tccdlog (on UNIX systems)

- c:/tmp/tccdlog (on Win32 systems)

— on the console if the log file cannot be opened

Feb-05 TETware training course 4-18

Identifying the source of a diagnosticIdentifying the source of a diagnostic

l In the journal
• the journal line type identifies the source of the

diagnostic
— tcc generates line type 50

— the TCM/API generates line type 510

l On the standard error stream
• the diagnostic is preceded by the name of the

program that generates it

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

10

Feb-05 TETware training course 4-19

Server reply codesServer reply codes

l Distributed TETware uses a client-server
architecture

l If a server request fails, the reason for the failure
is returned in the server reply code

l A list of these codes is presented in Appendix E
of the TETware User Guide

l Although TETware-Lite does not use a client-
server architecture, many of these codes are
also used in TETware-Lite diagnostics

Feb-05 TETware training course 4-20

ER_ERRER_ERR -- the general error codethe general error code

l If a server reply code is ER_ERR, a more
detailed message is printed by one of the lower
software layers

l In Distributed TETware, the more detailed
message is usually printed in the TCCD log file

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

11

Feb-05 TETware training course 4-21

4.5 Using debugging tools4.5 Using debugging tools

l Using a debugger

l Preserving core files

Feb-05 TETware training course 4-22

Using a debuggerUsing a debugger

l In TETware, support for executing test cases
under the control of a debugger is provided
through the exec tool

l Normally a test suite does not specify an exec
tool
• in this case, tcc executes each test case directly

l When an exec tool is specified, tcc executes
the exec tool each time a test case is to be
processed in execute mode

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

12

Feb-05 TETware training course 4-23

The exec tool and exec fileThe exec tool and exec file

l You can specify an exec tool using the
TET_EXEC_TOOL variable in the execute mode
configuration

l You can also specify the optional TET_EXEC_FILE
variable in the execute mode configuration

l When an exec tool is specified, tcc executes the
TET_EXEC_TOOL with TET_EXEC_FILE, the test
case name and optional IC list as arguments

l How you use this feature depends on which
debugger you want to use

Feb-05 TETware training course 4-24

Preserving core filesPreserving core files

l If a test case dumps core and
TET_EXEC_IN_PLACE is false, the core file will
be lost when the temporary directory is removed

l You can overcome this problem by including the
name of the core file in TET_SAVE_FILES

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

13

Feb-05 TETware training course 4-25

4.5 TETware trace debugging4.5 TETware trace debugging

l The TETware C source code includes extensive
facilities for tracing the operation of TETware
itself

l These facilities are provided mainly for use
during TETware development

l They may also be of help when an experienced
user needs to trace TETware operation

l Further details in Appendix G of the TETware
User Guide

Feb-05 TETware training course 4-26

Subsystems and trace flagsSubsystems and trace flags

l Internally, TETware programs consist of one or
more subsystems

l Each subsystem has a trace flag associated
with it

l Each trace flag can be set to a value
• more trace detail is reported for higher flag values

l Each trace flag may be propagated to other
TETware processes

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

14

Feb-05 TETware training course 4-27

Subsystems, flag names and indicatorsSubsystems, flag names and indicators

Subsystem Flag name Flag indicator
Memory allocation tet_Tbuf b

tcc execution engine tet_Texec g

tcc scenario parser tet_Tscen p

Generic tcc operation tet_Ttcc m

TCM functions tet_Ttcm c
Trace subsystem tet_Ttrace t
DTET message i/o tet_Tio i

DTET client & server loops tet_Tloop l
DTET generic server tet_Tserv s

tetsyncd operation tet_Tsyncd y

tccd operation tet_Ttccd s

tetxresd operation tet_Txresd x

Feb-05 TETware training course 4-28

Process indicatorsProcess indicators

l You can use a process indicator to restrict
tracing to certain processes
• this facility is most useful when tracing Distributed

TETware
Process indicator Process description

M tcc
S tccd
C master TCM/API
D slave TCM/API
X tetxresd
Y tetsyncd
T stand-alone programs

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

15

Feb-05 TETware training course 4-29

Setting trace flagsSetting trace flags

l Trace flags are specified using the -T
command-line option

l They are usually set on the tcc command line

l They can also be set on the tccd command line
if required

l If no process indicators are specified, the flag is
set to the value in all processes

l If the flag indicator is all, all flags are set to the
value

Feb-05 TETware training course 4-30

ExamplesExamples

l To trace processing of sync requests in
tetsyncd:

tcc -TY,y8 ...

l To trace the operation of the scenario parser:
tcc -Tp6 ...

l To set all flags in all processes to the maximum
value (definitely not recommended!):

tcc -Tall10 ...

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

16

Feb-05 TETware training course 4-31

Some tipsSome tips

l Be prepared to handle huge volumes of output

l Whenever possible, trace an example scenario
rather than a fully-featured test suite

l Only turn on the smallest set of trace options
• look at the source code to see what you get with

each flag and value

l The trace output should be interpreted in
conjunction with the TETware source code

Feb-05 TETware training course 4-32

4.6 Handling unexpected events4.6 Handling unexpected events

l On Unix systems, each TCM installs standard handlers
for all the signals that can be caught before each test
purpose is executed

l If a signal is caught during test purpose execution,
control is returned to the TCM and an UNRESOLVED
result is reported to the journal

l You can modify this behaviour by setting the
TET_SIG_IGN and TET_SIG_LEAVE variables in the
execute mode configuration

l The TCM does not permit this behaviour to be changed
for POSIX signals

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

17

Feb-05 TETware training course 4-33

TET_SIG_IGNTET_SIG_IGN -- list of signals to ignorelist of signals to ignore

l You can set this variable to a (comma-
separated) list of signals to be ignored

l The TCM will set these signals to be ignored
instead of installing the standard handler

l For example, you would make the following
assignment in order to ignore SIGXCPU on an
SVR4 system:

TET_SIG_IGN=30

Feb-05 TETware training course 4-34

TET_SIG_LEAVETET_SIG_LEAVE -- list of signals to leave alonelist of signals to leave alone

l You can set this variable to a (comma-
separated) list of signals to be left alone

l The TCM will not install handlers for these
signals, so the default behaviour of these
signals is left unchanged

l For example, you would make the following
assignment in order to leave SIGTSTP and
SIGCONT alone on an SVR4 system:

TET_SIG_LEAVE=24,25

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

18

Feb-05 TETware training course 4-35

4.7 Interacting with test cases in Distributed TETware4.7 Interacting with test cases in Distributed TETware

l In Distributed TETware, a test case is not a child
of tcc; it does not have a controlling terminal
and you can't interact with it

l If you need to interact with a test case you can
use tet_start to run a test case in its own
terminal window
• On a UNIX system tet_start creates a new xterm window

• On a Win32 system tet_start uses the MKS start
command to create the new window

Feb-05 TETware training course 4-36

Using Using tettet_start_start

l tet_start is an exec tool

l For example:
TET_EXPAND_CONF_VARS=true
TET_EXEC_TOOL=${TET_ROOT}/bin/tet_start

l You can use configuration variables to
customise the behaviour of tet_start

l Instructions on how to use tet_start are
presented in Chapter 8 of the TETware User
Guide

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

19

Feb-05 TETware training course 4-37

Exercise 4Exercise 4

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

1

Feb-05 TETware training course 5-1

Module 5

The C API

Feb-05 TETware training course 5-2

Module 5 Module 5 -- The C APIThe C API

l 5.1 - Test case structure revisited
l 5.2 - The tet_api.h file
l 5.3 - Interface to user-written test code
l 5.4 - API overview
l 5.5 - Description of API functions
l 5.6 - Child processes and subprograms
l 5.7 - Error reporting
l 5.8 - The Thread-safe API
l 5.9 - Linking a test case with the C API
l 5.10 - Example C test case

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

2

Feb-05 TETware training course 5-3

5.1 5.1 -- Test case structure revisitedTest case structure revisited

l We have already learned that:
• each test case is an executable program

• each test case contains one or more invocable
components

• each invocable component contains one or more
test purposes

• each test purpose tests a single item of functionality
and generates a result

— the result indicates whether or not the item conforms to
the specification being tested

Feb-05 TETware training course 5-4

Test case structure (cont’d)Test case structure (cont’d)

l We have already learned that when a test case
is built, it is linked with:
• the Test Case Manager (TCM)

• the Application Program Interface (API) library

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

3

Feb-05 TETware training course 5-5

Relationship between TCM, userRelationship between TCM, user--written codewritten code
and the APIand the API

TCM

User-written
test code

API functions

calls

calls

Feb-05 TETware training course 5-6

What is provided by TETwareWhat is provided by TETware

l The Test Case Manager (TCM)

l The API library

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

4

Feb-05 TETware training course 5-7

What the test case author must provideWhat the test case author must provide

l Required:
• one or more test purpose functions

l Optional:
• test case startup function

• test case cleanup function

Feb-05 TETware training course 5-8

Test purpose functionsTest purpose functions

l Each test purpose function:
• tests an item of functionality

• should generate a result

l The TCM calls each function in turn

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

5

Feb-05 TETware training course 5-9

Startup and cleanup functionsStartup and cleanup functions

l These functions:
• are optional

• should not perform any testing operations

• should not generate results

l If you define a startup function, the TCM calls the
function before it calls the first test purpose function

l If you define a cleanup function, the TCM calls the
function after it calls the last test purpose function

Feb-05 TETware training course 5-10

5.2 5.2 -- The The tet_api.htet_api.h filefile

l The functions, data items and constants that
make up the C API are declared in the file
tet-root/inc/tet3/tet_api.h

l You should include this header file in each test
case source file

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

6

Feb-05 TETware training course 5-11

5.3 5.3 -- Interface to userInterface to user--written test codewritten test code

l You can use one of two interfaces between the
TCM and your test code:
• The static interface

• The dynamic interface

l Most test cases will use the static interface, so
that is what we will describe here

Feb-05 TETware training course 5-12

The static test case interfaceThe static test case interface

l You tell the TCM the names of your test purpose
function by defining an array called
tet_testlist

l You tell the TCM the names of your startup and
cleanup functions by defining variables called
tet_startup and tet_cleanup

l These are the only symbols that are required to
exist in your code

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

7

Feb-05 TETware training course 5-13

The The tet_testlist[]tet_testlist[] arrayarray

l This is an array of tet_testlist structures

l Each element describes a test purpose function that is to be called by the
TCM

l The structure of each element is defined as follows:
struct tet_testlist {

void (*testfunc)(void); /* ptr to TP function */

int icref; /* IC number */
};

l You should set testfunc to the address of the test purpose function that the
TCM should call
• the array is terminated by a NULL value for testfunc

l You should set icref to the IC number that this test purpose belongs to

• invocable components are numbered sequentially from 1

Feb-05 TETware training course 5-14

(*tet_startup)()(*tet_startup)() and and (*tet_cleanup)()(*tet_cleanup)()

l These variables are defined as follows:
void (*tet_startup)(void);

void (*tet_cleanup)(void);

l If your test case contains a startup and/or
cleanup function, you should set these variables
accordingly

l If your test case doesn’t contain one of these
functions, the corresponding variable should be
set to NULL

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

8

Feb-05 TETware training course 5-15

Example test case structureExample test case structure

l This example test case contains three test purpose functions, a
startup function but no cleanup function:

#include <stdio.h>
#include "tet_api.h"

static void tp1(), tp2(), tp3();
static void prepare_tests();

struct tet_testlist tet_testlist[] = {
{ tp1, 1 },
{ tp2, 2 },
{ tp3, 3 },
{ NULL, 0 }

};

void (*tet_startup)() = prepare_tests;
void (*tet_cleanup)() = NULL;

Feb-05 TETware training course 5-16

5.4 5.4 -- API overviewAPI overview

l The API provides some functions and some global
variables

l All the global symbols in the TCM and API start with
the prefix tet_
• so names starting with this prefix are reserved

l All the defined constants in tet_api.h start with the
prefix TET_
• so names starting with this prefix are reserved as well

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

9

Feb-05 TETware training course 5-17

API functionsAPI functions

l There are API functions to:
• make journal entries

• cancel test purposes

• access configuration variables

• execute child processes

l In Distributed TETware the API also includes
functions to:
• synchronise parts of a distributed test case

• obtain remote system information

• execute remote processes

Feb-05 TETware training course 5-18

API global variablesAPI global variables

l char *tet_pname;
• the test case name

l int tet_thistest;
• the current test purpose number

l int tet_nosigreset;
• enables you to alter the TCM's default signal handling

l pid_t tet_child;
• child process ID after a fork

l int tet_errno;
• last API error code

l char *tet_errlist[];
• list of API error strings

l int tet_nerr;
• number of strings in tet_errlist[]

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

10

Feb-05 TETware training course 5-19

5.5 5.5 -- API functionsAPI functions

l Making journal entries

l Canceling test purposes

l Accessing configuration variables

l Generating and executing processes

Feb-05 TETware training course 5-20

Making journal entriesMaking journal entries

l Writing test case information lines

l Generating a test purpose result

l Changing the journal context and block number

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

11

Feb-05 TETware training course 5-21

Writing test case information linesWriting test case information lines

l tet_infoline(char *line)

• write a single test case information line

l tet_minfoline(char **lines, int nlines)

• write multiple test case information lines
— mainly used in distributed test cases

l tet_printf(char *format, ...)

l tet_vprintf(char *format, va_list ap)

• write a formatted test case information line

Feb-05 TETware training course 5-22

Writing test case information lines (cont'd)Writing test case information lines (cont'd)

l For example:
tet_infoline("an error has occurred");

l or:
tet_printf("can't open %s", fname);

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

12

Feb-05 TETware training course 5-23

Generating a test purpose resultGenerating a test purpose result

l tet_result(int result)

• writes a result to the journal

l The standard result codes are defined in
tet_api.h

l For example:
tet_result(TET_PASS);

Feb-05 TETware training course 5-24

Changing the journal context and block numberChanging the journal context and block number

l tet_setcontext(void)

• sets a new infoline context in the journal

l tet_setblock(void)

• starts a new block of infolines in the journal

l The API calls these functions for you as required

l You don't normally need to call these functions
yourself

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

13

Feb-05 TETware training course 5-25

Canceling test purposesCanceling test purposes

l tet_delete(int testno, char *reason)

• cancels or reactivates a test purpose
— the TCM does not call a canceled test purpose function

— to cancel a test purpose, you specify a test number and a string
- the string should describe why the test purpose is to be cancelled

— to reactivate a canceled test purpose, you specify a test number and
a NULL reason string

l char *tet_reason(int testno)

• returns the reason string which describes why the
test purpose has been canceled

— or returns NULL if the test purpose is active

Feb-05 TETware training course 5-26

Accessing configuration variablesAccessing configuration variables

l char *tet_getvar(char *name)

• returns the value of a variable in the configuration for
the current mode of operation

• returns NULL if the variable has not been defined

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

14

Feb-05 TETware training course 5-27

Generating and executing processesGenerating and executing processes

l Only on UNIX systems:
• tet_fork() and tet_exec()

l On both UNIX and Win32 systems:
• tet_spawn(), tet_wait() and tet_kill()

Feb-05 TETware training course 5-28

tet_fork()tet_fork()

l int tet_fork(
void (*childproc)(void),
void (*parentproc)(void),
int waittime, int validresults)

l The API forks and calls the childproc function in the
child process

l If parentproc is non-NULL, the API calls the
parentproc function in the parent process

l Then the API waits for the child process to exit

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

15

Feb-05 TETware training course 5-29

tet_fork()tet_fork() -- child exit status processingchild exit status processing

l If the child process exits normally, the API clears bits in
the child's exit status that are set in validresults
• that is: tmp = (child-exit-status & ~validresults);

l If the result of this operation is zero, tet_fork()
returns the child's exit status

l If the result of this operation is non-zero or the child
process is terminated by a signal:
• the API prints a message to the journal and generates a

result of UNRESOLVED

• tet_fork() returns -1

Feb-05 TETware training course 5-30

tet_fork()tet_fork() -- timing out a child processtiming out a child process

l If waittime is +ve, the API waits for up to waittime
seconds for the child process to exit after the
parentproc function returns
• if the timeout expires, the API terminates the child process

l If waittime is zero, the API waits indefinitely for the
child process to exit

l If waittime is -ve, the API ignores validresults
and does not wait for the child process at all
• in this case it is the responsibility of the parentproc function

to wait for the child process to exit and interpret the child's exit
status

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

16

Feb-05 TETware training course 5-31

tet_exec()tet_exec()

l int tet_exec(char *file,
char *argv[], char *envp[])

l This function executes a subprogram that will
use the API
• the subprogram must be linked with a child process

controller (e.g.: tcmchild.o)

l This function may be called from the
childproc function in the child process that is
generated by a call to tet_fork()

Feb-05 TETware training course 5-32

tet_spawn()tet_spawn(), , tet_wait()tet_wait() and and tet_kill()tet_kill()

l pid_t tet_spawn(char *file,
char *argv[], char *envp[])

• execute a subprogram that will use the API

l tet_wait(pid_t pid, int *statloc)

• wait for a subprogram started by tet_spawn() to
terminate

l tet_kill(pid_t pid, int sig)

• terminate a subprogram started by tet_spawn()

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

17

Feb-05 TETware training course 5-33

5.6 5.6 -- Child processes and subprogramsChild processes and subprograms

l A subprogram started by tet_exec() or
tet_spawn() must be linked with the child
process controller (e.g.: tcmchild.o)

l The child process controller calls a function called
tet_main() which you must provide

Feb-05 TETware training course 5-34

Child processes and subprograms (cont'd)Child processes and subprograms (cont'd)

l A subprogram:
• can call most of the API functions

• can generate a test purpose result

l The API sets the following global variables in a
subprogram:
• int tet_thistest;

— the current test number
• char *tet_pname;

— the name of the subprogram

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

18

Feb-05 TETware training course 5-35

tet_main()tet_main() -- the subprogram entry pointthe subprogram entry point

l int tet_main(int argc, char *argv[])

• this is a function that you must supply

• when the child process controller starts up, it calls this
function

• argc and argv refer to the arguments that you passed
to the tet_exec() or tet_spawn() call that started
this subprogram

• if your tet_main() function returns, its return value
provides the subprogram's exit status

Feb-05 TETware training course 5-36

Exiting from a child process or subprogramExiting from a child process or subprogram

l tet_exit(int status)

• you call this function to exit from a child process or
subprogram that uses the API

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

19

Feb-05 TETware training course 5-37

5.7 5.7 -- Error reportingError reporting

l If an API function returns an error value, it sets
the global variable tet_errno to indicate the
cause of the error

l The file tet_api.h contains definitions for all
the TETware error codes

Feb-05 TETware training course 5-38

5.8 5.8 -- The ThreadThe Thread--safe APIsafe API

l If your test case uses threads, it must use the
Thread-safe version of the API

l The API needs to know what threads are running in
the test case, so you must create a new thread by
using the appropriate API function

l There are some issues that you should be aware of
when writing a test case that uses threads
• see Sections 10.6 through 10.9 of the TETware

Programmers Guide for details

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

20

Feb-05 TETware training course 5-39

Creating a new threadCreating a new thread

l UNIX systems:
• Unix International threads (UI threads)

— tet_thr_create()

• POSIX threads (pthreads)
— tet_pthread_create()

l Win32 systems
— tet_beginthreadex()

Feb-05 TETware training course 5-40

Waiting for a thread to exitWaiting for a thread to exit

l UNIX systems:
• Unix International threads (UI threads)

— tet_thr_join()

• POSIX threads (pthreads)
— tet_pthread_join()

l Win32 systems
— no API function - use

WaitForSingleObject() and
CloseHandle() instead

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

21

Feb-05 TETware training course 5-41

Detaching a threadDetaching a thread

l UNIX systems:
• Unix International threads (UI threads)

— no functionality to do this

• POSIX threads (pthreads)
— tet_pthread_detach()

l Win32 systems
— no functionality to do this

Feb-05 TETware training course 5-42

Compiling a test case which uses theCompiling a test case which uses the
threadthread--safe C APIsafe C API

l UNIX systems:
• UI threads:

— cc -DTET_THREADS ...

• POSIX threads:
— cc -DTET_POSIX_THREADS ...

l Win32 systems (using the defined build
environment):

— cc -MD -DTET_THREADS ...

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

22

Feb-05 TETware training course 5-43

5.9 5.9 -- Linking a test case with the C APILinking a test case with the C API

l The “standard” C API:
• main programs

— tcm.o and libapi.a

• subprograms
— tcmchild.o and libapi.a

l The Thread-safe C API:
• main programs

— thrtcm.o and libthrapi.a

• subprograms
— thrtcmchild.o and libthrapi.a

Feb-05 TETware training course 5-44

5.10 5.10 -- Example C test caseExample C test case

#include <stdlib.h>

#include "tet_api.h"

void (*tet_startup)() = NULL, (*tet_cleanup)() = NULL;

void tp1();

struct tet_testlist tet_testlist[] = { {tp1,1}, {NULL,0} };

void tp1()

{

tet_infoline("This is the first test case (tc1)");

tet_result(TET_PASS);

}

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

23

Feb-05 TETware training course 5-45

Exercise 5Exercise 5

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

1

Feb-05 TETware training course 6-1

Module 6

Test case development techniques

Feb-05 TETware training course 6-2

Module 6 Module 6 -- Test case development techniquesTest case development techniques

l 6.1 - Introduction

l 6.2 - Test suite structure

l 6.3 - Some useful guidelines

l 6.4 - Result codes

l 6.5 - Use of configuration variables

l 6.6 - Testing of optional features

l 6.7 - Reporting results

l 6.8 - Child processes and subprograms

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

2

Feb-05 TETware training course 6-3

6.1 6.1 -- IntroductionIntroduction

l In this module we will discuss some of the things
that you will need to consider when writing a test
suite

l This module is not intended to be a
comprehensive tutorial on how to write tests

— this would be the subject of a course in itself!

Feb-05 TETware training course 6-4

6.2 6.2 -- Test suite structureTest suite structure

l We have already learned that:
• a test suite includes:

— test case files

— configuration files

— a scenario file

— build and clean tools
- if the test suite is to be supplied in source form

• all the files in a test case reside below the test suite
root directory

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

3

Feb-05 TETware training course 6-5

Directory layoutDirectory layout

l Set up a directory sub-tree which contains all the
test case files
• for example, in VSX all the test case files are below a

directory called tset

• in a large test suite, group the test cases by area

l Put the files for each test case in their own directory
• source files

• makefile

• any data files that are used by the test case

Feb-05 TETware training course 6-6

Test case layoutTest case layout

l Put all the tests for a particular functional
element in a single test case
• positive (or compliance) tests

• negative (or deviance) tests

l For example, in VSX all the tests for the
fclose() function are in a single test case

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

4

Feb-05 TETware training course 6-7

Structure of the example Structure of the example CC--APIAPI test suitetest suite

cleantool

bin/ tet_code
tet_scen

chmod_tc.c
makefile

chmod/

fileno_tc.c
makefile

fileno/

stat_tc.c
makefile

stat/

uname_tc.c
makefile

uname/

tset/ tetbuild.cfg
tetexec.cfg
tetclean.cfg

C_API/

tet-root/

Feb-05 TETware training course 6-8

6.3 6.3 -- Some useful guidelinesSome useful guidelines

l Each test case should be self-contained
• it should not rely on being executed before or after

another test case

l Each test purpose should be self-contained
• it should not rely on a setup operation having been

performed by a previous test purpose

• if you must rely on a previous test purpose having
been executed, group your test purposes together
into a single invocable component

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

5

Feb-05 TETware training course 6-9

Some useful guidelines (cont'd)Some useful guidelines (cont'd)

l Each test purpose should leave the system in
the state it was in before the test started
• for example: if you create a file, you should remove it before

the test purpose ends

l Create any required files in the test case
execution directory if possible

l Don't assume that a previous instance of a test
purpose cleaned up successfully
• for example: if you create a file, you should unlink an existing

file first

Feb-05 TETware training course 6-10

6.4 6.4 -- Result codesResult codes

l We have already learned about the standard
result codes:
• PASS
• FAIL
• UNRESOLVED
• NOTINUSE
• UNSUPPORTED
• UNTESTED
• UNINITIATED
• NORESULT

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

6

Feb-05 TETware training course 6-11

Standard result codes Standard result codes -- PASSPASS and and FAILFAIL

l PASS

• The element under test behaved in the way required
by the specification

l FAIL

• The element under test did not behave in the way
required by the specification

Feb-05 TETware training course 6-12

Standard result code Standard result code -- UNRESOLVEDUNRESOLVED

l Some problem occurred when preparing to test
the element
• for example: in a test for read(), the file must be

opened before it can be read
• if the open() fails, the result is UNRESOLVED

l This result code can also be used to indicate a
test suite configuration problem
• for example, if a test uses a configuration variable

and the variable is not defined, the result is
UNRESOLVED

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

7

Feb-05 TETware training course 6-13

Standard result code Standard result code -- NOTINUSENOTINUSE

l Used when a test is not to be performed for
some reason
• for example: when VSX is run in XPG3 mode, tests

that are only applicable to XPG4 are reported as
NOTINUSE

Feb-05 TETware training course 6-14

Standard result code Standard result code -- UNSUPPORTEDUNSUPPORTED

l Used when an optional feature is not supported by the
system under test
• when POSIX-style assertions are being tested, this

corresponds to an If clause in the assertion

• for example:
If modem control is supported:

A call to open() on a terminal device does not return until the carrier
detect line is asserted

l In this case:
• support for modem control would be indicated by a configuration variable
• if the variable is True, the test is performed

• if the variable is False, the test is not performed but reports
UNSUPPORTED instead

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

8

Feb-05 TETware training course 6-15

Standard result code Standard result code -- UNTESTEDUNTESTED

l Used to indicated that an extended assertion
could not be tested fully
• for example: if there is no practical limit to the

number of files that a process can open, the open()
test for the EMFILE error would report UNTESTED

• often, it is appropriate to use UNTESTED instead of
PASS when testing an extended assertion

Feb-05 TETware training course 6-16

Standard result codes Standard result codes -- UNINITIATEDUNINITIATED and and NORESULTNORESULT

l These codes are provided for use by TETware

l UNINITIATED

• used to indicate that a test purpose has been
canceled by a previous call to tet_delete()

l NORESULT

• used to indicate that a test purpose did not generate
a result

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

9

Feb-05 TETware training course 6-17

6.5 6.5 -- Use of configuration variablesUse of configuration variables

l You can use configuration variables to pass
parameters to a test case

l Often they are used to:
• specify a system-dependent quantity

• say whether or not the system under test supports a
particular optional feature

Feb-05 TETware training course 6-18

6.6 6.6 -- Testing of optional featuresTesting of optional features

l Sometimes a specification defines an optional feature

l The specification does not require the feature to be
implemented
• but if it is implemented it must conform to the specification

l In this case you should define a configuration variable
which says whether or not the system supports the
optional feature
• the variable is set as appropriate on each system under test
• the test reports PASS or FAIL if the feature is supported, or
UNSUPPORTED if the feature is not supported

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

10

Feb-05 TETware training course 6-19

Example of testing an optional featureExample of testing an optional feature

if ((val = tet_getvar("TS_MODEM_CONTROL_SUPPORTED")) == (char *) 0) {

tet_infoline("parameter TS_MODEM_CONTROL_SUPPORTED is not set");

tet_result(TET_UNRESOLVED);

return;

}

switch (*val) {

case 'Y':

case 'y':

break;

case 'N':

case 'n':

tet_infoline("modem control is not supported");

tet_result(TET_UNSUPPORTED);

return;

default:

tet_infoline("parameter TS_MODEM_CONTROL_SUPPORTED has an invalid value");

tet_result(TET_UNRESOLVED);

return;

}

/* rest of test ... */

Feb-05 TETware training course 6-20

6.7 6.7 -- Reporting resultsReporting results

l When a test reports FAIL or UNRESOLVED, it
should provide information describing what went
wrong

l The message should provide as much useful
information as possible

l If a test fails, you should say what you expected
and what you observed

l Take time to get this right - a test suite is only as
useful as the information it generates!

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

11

Feb-05 TETware training course 6-21

Some unhelpful messagesSome unhelpful messages

l an error has occurred

l can't create file

l setup failed

Feb-05 TETware training course 6-22

Some useful messagesSome useful messages

l When a test reports UNRESOLVED:
• can't open ./t31file for reading:
errno = ENOENT (No such file or directory)

• caught unexpected signal 11 (SIGSEGV)

l When a test reports FAIL:
• read() did not return expected values:
expected 256, observed -1 with errno
set to EINTR

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

12

Feb-05 TETware training course 6-23

Results that must be verified by the userResults that must be verified by the user

l Some results can't easily be verified by a test
purpose function
• for example: the host name and OS version number

returned by uname()

l In this case you should:
• print the information to be verified in the journal

• use a user-defined result code which means “this
information must be inspected by a person”

Feb-05 TETware training course 6-24

6.8 6.8 -- Child processes and subprogramsChild processes and subprograms

l Child process
• generated by a call to tet_fork() on UNIX systems

• there is no equivalent on Win32 systems

l Subprogram
• a separate program that uses the API

— so must be linked with the child process controller

• on UNIX systems
— started by a call to tet_exec() from a child process

• on UNIX and Win32 systems
— started by a call to tet_spawn()

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

13

Feb-05 TETware training course 6-25

Child processesChild processes

l The program environment includes things like:
• current working directory
• umask, ulimit, nice value, etc.
• process group ID
• disposition of signals
• environment string values

l If a test purpose function modifies the program
environment, it should be put in a child process
• it is easy to do this by calling tet_fork() with no
parentproc function

Feb-05 TETware training course 6-26

Simple Simple tet_fork()tet_fork() exampleexample

static void test3()

{

(void) tet_fork(ch_t3, TET_NULLFP, 30, 0)

}

static void ch_t3()

{

/* perform test here and generate a result */

}

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

14

Feb-05 TETware training course 6-27

SubprogramsSubprograms

l If a test case needs to run with a different user
ID, it must be put in a subprogram which has the
set-UID bit set
• you can launch a subprogram from a child process

using tet_exec(), or make a call to tet_spawn()
followed by a call to tet_wait()

l The subprogram must contain a tet_main()
function and be linked with the child process
controller (e.g.: tcmchild.o)

Feb-05 TETware training course 6-28

Example test case usingExample test case using
tet_fork()tet_fork() and and tet_exec()tet_exec()

#include "tet_api.h"

static void test5()

{

(void) tet_fork(ch_t5, TET_NULLFP, 30, 0);

}

static void ch_t5()

{

static char *argv[] = { "./foo-t5", (char *) 0) };

(void) tet_exec(argv[0], argv, environ);

tet_printf("tet_exec(%s) failed, tet_errno = %d", argv[0],
tet_errno);

tet_result(TET_UNRESOLVED);

}

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

15

Feb-05 TETware training course 6-29

Example test case usingExample test case using
tet_spawn()tet_spawn() and and tet_wait()tet_wait()
#include "tet_api.h"

static void test5()

{

static char *argv[] = { "./foo-t5", (char *) 0) };
pid_t pid;

int status = 0;

if ((pid = tet_spawn(argv[0], argv, environ)) == -1) {

tet_printf("tet_spawn(%s) failed, tet_errno = %d", argv[0], tet_errno);

tet_result(TET_UNRESOLVED);

return;

}

if (tet_wait(pid, &status) == -1) {

tet_printf("tet_wait() failed, tet_errno = %d", tet_errno);

tet_result(TET_UNRESOLVED);

}

else if (status != 0) {

tet_printf("%s terminated with unexpected status %d", argv[0], status);

tet_result(TET_UNRESOLVED);

}

}

Feb-05 TETware training course 6-30

Example subprogramExample subprogram

#include "tet_api.h"

int tet_main(argc, argv)
int argc;

char **argv;
{

int euid = geteuid();

if (euid != expected-euid) {
tet_printf("expected effective UID %d, observed %d", expected-

euid, euid);
tet_result(TET_UNRESOLVED);

return(0);

}

/* perform test here and generate a result */

return(0);
}

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

16

Feb-05 TETware training course 6-31

Exercise 6Exercise 6

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

1

Feb-05 TETware training course 7-1

Module 7

Other APIs

Feb-05 TETware training course 7-2

Module 7 - Other APIs

l 7.1 - The C++ API

l 7.2 - The Shell , POSIX Shell and Korn Shell
APIs

l 7.3 - The Perl API

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

2

Feb-05 TETware training course 7-3

7.1 - The C++ API

l The C++ API is a “lightweight” API because it
mostly uses the C API
• only the TCM is different

• the API library is the same

l There is also a Thread-safe version of the C++
API

Feb-05 TETware training course 7-4

Interface to the user-written test code

l This is the same as when the C API is used
l However, the interface variables must be

enclosed in an extern "C" block

l For example:
extern "C" {

struct tet_testlist tet_testlist[] = {
...

};
void (*tet_startup)() = ...
void (*tet_cleanup() = ...

}

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

3

Feb-05 TETware training course 7-5

The tet_api.h file

l As with the C API, you should include the
tet_api.h header file in each test case source
file

l When this file is compiled by a C++ compiler,
the contents are placed within an extern "C"
block

Feb-05 TETware training course 7-6

Linking a test case with the C++ API

l The “standard” C++ API:
• main programs

— Ctcm.o and libapi.a

• subprograms
— Ctcmchild.o and libapi.a

l The Thread-safe C++ API:
• main programs

— Cthrtcm.o and libthrapi.a

• subprograms
— Cthrtcmchild.o and libthrapi.a

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

4

Feb-05 TETware training course 7-7

Example C++ test case

#include <iostream.h>
#include <stdlib.h>
#include "tet_api.h"

static void startup()
{
// startup routine called before the test purposes

cout << "This is from the startup routine for tp1\n";
cout << "Its interesting to note that C++ output\n";
cout << "using cout does not get journaled.\n";
cout << "Test 2 will explain why!.\n";

}

void tp1();

extern "C" {
void (*tet_startup)() = startup, (*tet_cleanup)() = NULL;
struct tet_testlist tet_testlist[] = { {tp1,1}, {NULL,0} };

}

void tp1()
{

cout << "This output comes from test purpose tp1\n";
tet_infoline("This is the first test case (tc1)");
tet_result(TET_PASS);

}

Feb-05 TETware training course 7-8

7.2 - The Shell, POSIX Shell and Korn Shell APIs

l Structure of a shell test case

l Interface to the user-written test code

l Description of API functions

l API library files

l Child processes and subprograms

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

5

Feb-05 TETware training course 7-9

Structure of a shell test case

l A Shell test case consists of a set of shell
functions which you provide

l You should put the code for each test purpose in
a separate function

l Your test case should only contain functions -
not directly executed commands

Feb-05 TETware training course 7-10

Interface to the user-written test code

l You tell the TCM about the invocable
component names in your test case by defining
a variable called iclist

l You tell the TCM the names of your startup and
cleanup functions by defining variables called
tet_startup and tet_cleanup

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

6

Feb-05 TETware training course 7-11

iclist - list of invocable component names

l You should set iclist to a (blank-separated) list of invocable
component names

l Each of these names should have the prefix ic followed by the
invocable component number

l For example:
iclist="ic1 ic2 ic3"

l Then you should define a variable for each invocable component
and set it to the names of the IC's test purpose functions

l For example:
ic1="test1"

ic2="test2"

ic3="test3 test4"

Feb-05 TETware training course 7-12

tet_startup and tet_cleanup

l You should set these variables to the names of
your startup and cleanup functions

l If your test case doesn't use one of these
functions you should set the corresponding
variable to an empty string

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

7

Feb-05 TETware training course 7-13

Description of API functions

l These functions are equivalent to the
corresponding functions in the C API:
• making journal entries

• canceling test purposes

l You can use Shell mechanisms for:
• accessing configuration variables

• generating and executing processes

Feb-05 TETware training course 7-14

Making journal entries

l Writing test case information lines

l Generating a test purpose result

l Changing the journal context and block number

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

8

Feb-05 TETware training course 7-15

Writing test case information lines

l tet_infoline data ...

• writes a test case information line to the journal

Feb-05 TETware training course 7-16

Generating a test purpose result

l tet_result result-name

• writes a result to the journal
• result-name should be the name of a result code;

for example PASS or FAIL

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

9

Feb-05 TETware training course 7-17

Changing the journal context and block number

l tet_setcontext

• establishes a new journal context for test case
information lines

l tet_setblock

• starts a new block of test case information lines

l You need to call these functions if you start a
subshell or execute a shell script that uses the
API

Feb-05 TETware training course 7-18

Canceling test purposes

l tet_delete test-name reason

• cancels or reactivates a test purpose
— the TCM does not call a canceled test purpose function

— to cancel a test purpose, you specify the name of the test purpose
function and a string
- the string should describe why the test purpose is to be cancelled

— to reactivate a canceled test purpose, you specify the name of the
test purpose function and an empty reason string

l tet_reason test-name

• prints the reason string on the standard output
— or prints an empty string if the test purpose is active

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

10

Feb-05 TETware training course 7-19

Accessing configuration variables

l The API makes configuration variables available
to test purpose functions as readonly Shell
variables

Feb-05 TETware training course 7-20

Generating and executing processes

l The TCM executes each test purpose function in
its own subshell

l You can use normal Shell syntax if you need
another subshell below that

l If you create a subshell:
• you should call tet_setcontext in the subshell

• you should call tet_setblock in the parent shell
after the subshell code

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

11

Feb-05 TETware training course 7-21

API library files

l XPG3 Shell API:
• TCM

— $TET_ROOT/lib/xpg3sh/tcm.sh

• API library
— $TET_ROOT/lib/xpg3sh/tetapi.sh

l Korn Shell API:
• TCM

— $TET_ROOT/lib/ksh/tcm.ksh

• API library
— $TET_ROOT/lib/ksh/tetapi.ksh

Feb-05 TETware training course 7-22

API library files (cont'd)

l The Shell TCM must be sourced into the test
case script by using the . (dot) command

l This command should be the last line in the file

l For example, to use the XPG3 Shell API:
• . ${TET_ROOT:?}/lib/xpg3sh/tcm.sh

l or, to use the Korn Shell API:
• . ${TET_ROOT:?}/lib/ksh/tcm.ksh

l Sourcing the TCM automatically sources the API as well

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

12

Feb-05 TETware training course 7-23

Child processes and subprograms

l You can execute another shell script from your
test purpose function

l If this script uses the API, it must source the API
library near the top of the script using the . (dot)
command

l For example:
. ${TET_ROOT:?}/lib/xpg3sh/tetapi.sh

l or:
. ${TET_ROOT:?}/lib/ksh/tetapi.ksh

Feb-05 TETware training course 7-24

Example Shell test case

:

tet_startup=""

tet_cleanup=""

iclist="ic1"

ic1="test1"

test1()

{

tet_infoline "this is a trivial shell test case"

tet_result PASS

}

. ${TET_ROOT:?}/lib/xpg3sh/tcm.sh

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

13

Feb-05 TETware training course 7-25

7.3 - The Perl API

l The Perl API is similar to the Shell APIs

l All the functions provided by the API are in the
tet package

Feb-05 TETware training course 7-26

Interface to the user-written test code

l You tell the TCM about the invocable
component names in your test case by defining
an array called iclist

l You tell the TCM the names of your startup and
cleanup functions by defining variables called
tet'startup and tet'cleanup

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

14

Feb-05 TETware training course 7-27

iclist - list of invocable component names

l You should initialise each element in the iclist array to the
name of an invocable component

l Each of these names should have the prefix ic followed by the
invocable component number

l For example:
@iclist=(ic1,ic2,ic3);

l You should define an array for each invocable component, then
initialise each element in the array to names of that IC's test
purpose functions

l For example:
@ic1=("test1");

@ic2=("test2");

@ic3=("test3 test4");

Feb-05 TETware training course 7-28

tet'startup and tet'cleanup

l You should set these variables to the names of
your startup and cleanup functions

l If your test case doesn't use one of these
functions you should set the corresponding
variable to an empty string

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

15

Feb-05 TETware training course 7-29

Perl API functions and variables

l Making journal entries
• &tet'infoline("text");

• &tet'result("result-name");

• &tet'setcontext; and &tet'setblock;

l Canceling test purposes
• &tet'delete("test-name" [, "reason-string"]);

• deletion-reason = &tet'reason("test-name");

l Name of the current test purpose
• $tet'thistest

Feb-05 TETware training course 7-30

Accessing configuration variables

l The API makes configuration variables available
to functions as variables within the tet
namespace

l For example, if you define a configuration
variable called MY_VAR, you would access it in a
function as $tet'MY_VAR

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

16

Feb-05 TETware training course 7-31

API library files

l TCM
• $TET_ROOT/lib/perl/tcm.pl

l API library
• $TET_ROOT/lib/perl/api.pl

l The Perl TCM must be sourced into the test case script
by using the require command

l This command should be the last line in the file

l For example:
require "$ENV{\"TET_ROOT\"}/lib/perl/tcm.pl"

l Sourcing the TCM automatically sources the API as well

Feb-05 TETware training course 7-32

Example Perl test case

#!/usr/bin/perl

@iclist=(ic1);

@ic1=("tp1");

sub tp1{

&tet'infoline("This is a trivial test case");

&tet'result("PASS");

}

require "$ENV{\"TET_ROOT\"}/lib/perl/tcm.pl";

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

1

Feb-05 TETware training course 8-1

Module 8

Distributed testing

Feb-05 TETware training course 8-2

Module 8 - Distributed testing

l 8.1 - What is a distributed test case ?

l 8.2 - Logical systems and physical machines

l 8.3 - Distributed configuration variables

l 8.4 - APIs that support distributed testing

l 8.5 - The Test Case Manager (TCM)

l 8.6 - API functions for use in distributed test cases

l 8.7 - Test case synchronisation

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

2

Feb-05 TETware training course 8-3

8.1 - What is a distributed test case ?

l We have already learned that:
• a distributed test case:

— consists of several parts which interact with each
other

— is typically used to test some kind of interaction
between computer systems

• each part is processed on a different system

• each part contributes to a common result

l This is not the same as “running tests on several
machines at once”

Feb-05 TETware training course 8-4

Simple architecture diagram for Distributed TETware

Scenario file

tcc

Results file

tccd tccd

tetsyncd

tetxresd

Local test
case part

Remote test
case part

Local system Remote system(s)

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

3

Feb-05 TETware training course 8-5

Specifying a distributed test case in the scenario

l You specify a distributed test case by using the
:distributed: directive
• the directive's parameters are the numerical IDs of the

systems on which the test case parts will run

l For example:
:distributed,000,001,002:

/tset/test1/tc1

/tset/test2/tc2

...

:enddistributed:

l In this example, tcc processes three test case parts at
the same time - one on each system

Feb-05 TETware training course 8-6

Processing a distributed test case

l A distributed test case must use the API

l A build or clean tool may be API-conforming or
non API-conforming

l tcc processes each part of a distributed test
case at the same time
• they are built at the same time

• executed at the same time

• cleaned up at the same time

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

4

Feb-05 TETware training course 8-7

Structure of a distributed test case

l Each part of a distributed test case must have the
same structure
• same number of test purpose functions

• same assignment of invocable component numbers

• in other words: each part must contain an identical
tet_testlist[] array

l Each part of a distributed test purpose must generate a
result (by calling tet_result())

l If there is nothing for one of the test purpose parts to
do, it should just report PASS and return

Feb-05 TETware training course 8-8

8.2 - Logical systems and physical machines

l We have already learned that:
• TETware identifies each system by a three-digit system ID
• Entries in the file tet-root/systems map system IDs to

host names (or IP addresses)

• It is possible to map more than one logical system ID to the
same physical machine

l It is best to set up separate test suite root
directories for each system when several
systems are mapped to the same machine

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

5

Feb-05 TETware training course 8-9

The systems file

l When the socket interface is used, fields are system ID
and host name; for example:
000 argon

001 neon

002 89.0.0.24

l Each host name should be a real host name or IP
address - not localhost

l The systems file must be provided on all participating
systems and must have the same contents
• otherwise chaos will break out when the systems try to talk to

each other!

Feb-05 TETware training course 8-10

8.3 - Distributed configuration variables

l tcc gets information about the test suite on the local
system from environment variables and the current
working directory
• in particular: the location of the tet root and test suite root

directories

• but this information probably doesn't apply to remote systems

l You specify this information about the remote parts of
the test suite by using distributed configuration
variables
• these variables are defined on the local system in the file
test-suite-root/tetdist.cfg

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

6

Feb-05 TETware training course 8-11

Distributed configuration variables (cont'd)

l Each variable starts with a TET_REMnnn_ prefix

l nnn indicates to which remote system the
variable refers

l A TET_REM000_ prefix has no meaning in the
distributed configuration

Feb-05 TETware training course 8-12

Required distributed configuration variables

l These variables must be defined for each
remote system

l TET_REMnnn_TET_ROOT

• specifies the location of the tet root directory on
system nnn

l TET_REMnnn_TET_TSROOT

• specifies the location of the test suite root directory
on system nnn

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

7

Feb-05 TETware training course 8-13

8.4 - APIs that support distributed testing

l A distributed test case must be built using an
API that supports distributed testing
• these are: the versions of the C and C++ APIs that

are supplied with Distributed TETware

l The Distributed tcc can process test cases that
use other APIs as (non-distributed) remote test
cases

Feb-05 TETware training course 8-14

8.5 - The Test Case Manager (TCM)

l The TCMs synchronise between parts of a
distributed test case, so as to keep them in step

l These synchronisation points are:
• at TCM startup time

• before calling a user-supplied startup function

• at the start of each invocable component

• before calling each test purpose function

• after each test purpose function returns

• before calling a user-supplied cleanup function

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

8

Feb-05 TETware training course 8-15

TCM's automatic synchronisation points

Remote system(s)

TCM start

(*tet_startup)()

IC1

test1()

IC2

test2()

test3()

(*tet_cleanup)()

TCM end

Local system

TCM start

(*tet_startup)()

IC1

test1()

IC2

test2()

test3()

(*tet_cleanup)()

TCM end

struct tet_testlist tet_testlist[] = {

{ test1, 1 },

{ test2, 2 },

{ test3, 2 },

{ NULL, 0 }

};

Feb-05 TETware training course 8-16

8.6 - API functions for use in distributed test cases

l Remote system information

l Executed process functions

l Remote process control

l Synchronisation

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

9

Feb-05 TETware training course 8-17

Remote system information

l int tet_remgetlist(int **sysnames)

• returns the number of other systems in a distributed
test case

• a pointer to the list of system IDs is returned
indirectly through *sysnames

• the returned number of systems and system list can
be passed to tet_remsync()

l int tet_remgetsys(void)

• returns the system ID of the calling process

Feb-05 TETware training course 8-18

Use of tet_remgetlist() and tet_remgetsys()

l For example, if parts of a distributed test case are
running on systems 0, 1 and 2:
• on system 1:

int sysid, *syslist, nsys;

sysid = tet_remgetsys();

nsys = tet_remgetlist(&syslist);

• after these calls:
— sysid = 1 my system ID
— nsys = 2 number of other systems
— syslist[0] = 2 the list of other systems
— syslist[1] = 0

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

10

Feb-05 TETware training course 8-19

Remote system information (cont'd)

l tet_getsysbyid(int sysid,
struct tet_sysent *sysp)

• access information in the systems file

l tet_remtime(int sysid, time_t *tp)

• get remote system time

Feb-05 TETware training course 8-20

Executed process functions

l tet_exit(int status)

• log off servers and exit

l tet_logoff(void)

• log off servers

• the result of calling an API function is undefined after
a call to this function

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

11

Feb-05 TETware training course 8-21

Remote process control

l Use of these functions is discouraged!

l int tet_remexec(int sysid,
char *file, char *argv[])

• start a subprogram on a remote system that will use
the API

— the subprogram must be linked with the remote
process controller (tcmrem.o)

• returns a remoteid which identifies the process

Feb-05 TETware training course 8-22

Remote process control (cont'd)

l tet_remwait(int remoteid,
int waittime, int *statloc)

• waits for a subprogram started by tet_remexec()
to terminate

• the status returned indirectly through *statloc
uses a standard encoding

l tet_remkill(int remoteid)

• terminates a subprogram started by
tet_remexec()

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

12

Feb-05 TETware training course 8-23

Synchronisation

l Synchronisation functions
• tet_remsync()

• obsolete - provided for backward compatibility:
— tet_sync()

— tet_msync()

l Control over sync error reporting
• (*tet_syncerr)()

• tet_syncreport()

Feb-05 TETware training course 8-24

8.7 - Test case synchronisation

l Introduction

l What can synchronise (and what can't)

l Basic concepts

l Defining sync point numbers

l Identifying sync points in a test purpose

l Sync point leapfrogging
l Using tet_remsync()

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

13

Feb-05 TETware training course 8-25

Introduction

l The key to understanding distributed testing is
understanding synchronisation

l It is a complicated subject which is worth taking
time to get right

Feb-05 TETware training course 8-26

Introduction (cont'd)

l Synchronisation is used to make sure that things in
different parts of a distributed test case happen in the
correct order

l We have already learned that:
• the TCMs use synchronisation to keep the parts of a

distributed test case in step with each other

• these are called automatic sync points

l In this section we will learn how to use user-defined
sync points in a distributed test purpose function

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

14

Feb-05 TETware training course 8-27

What can synchronise (and what can't)

l Synchronisation can be performed between
parts of the same distributed test case that are
running on different systems

l Synchronisation can't be performed between:
• processes running on the same system

• processes that are not part of the same distributed
test case

Feb-05 TETware training course 8-28

Basic concepts

l Defining a user sync event

l Sync point number

l Sync vote

l Sync state

l Message data

l Delegating sync authority

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

15

Feb-05 TETware training course 8-29

Defining a user sync event

l A sync event is defined by:
• the list of systems that will participate

• the sync point number to be used

l Synchronisation is co-operative
• all the participating systems must be prepared to

sync with each other if the event is to succeed

• for example: if system 0 expects to sync with system
1, system 1 must also expect to sync with system 0

Feb-05 TETware training course 8-30

Sync point number

l Systems synchronise to a particular sync point
number

l The value of the sync point number must
increase throughout the life of the test case
• so it is necessary to allocate separate number

ranges for use by each test purpose function

l A zero value means “the next sync point”

l At least one system must specify a non-zero
sync point

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

16

Feb-05 TETware training course 8-31

Sync vote

l Each system votes in a sync event

l The vote says whether or not the event should
succeed

l The event is successful if everyone votes yes

l The event fails if at least one system abstains or
votes no

Feb-05 TETware training course 8-32

Sync state

l The API maintains a set of sync states for each sync
event

l There is one sync state for each system that will take
part in the event

l The states are:
• SYNC-YES the system has voted yes

• SYNC-NO the system has voted no

• NOT-SYNCED the system has not yet voted

• TIMED-OUT the system has voted but then timed out

• DEAD the system has disconnected from the server

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

17

Feb-05 TETware training course 8-33

Message data

l It is possible for systems to exchange message
data during a sync event

l One system sends the data

l All the other systems receive the data if the sync
event is successful

Feb-05 TETware training course 8-34

Delegating sync authority

l Synchronisation is defined in terms of systems,
not individual processes

l The test suite author must ensure that only one
process on a particular system will attempt to
take part in a particular sync event

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

18

Feb-05 TETware training course 8-35

Defining sync point numbers

l We have already learned that:
• sync point numbers must increase throughout the

life of a test case

• so it is necessary to allocate separate number
ranges for use by each test purpose function

l Sometimes, sync point numbers are used in
library functions
• so it can also be necessary to allocate blocks of

sync point numbers for use in library functions

Feb-05 TETware training course 8-36

Defining sync point numbers (cont'd)

l In XNFS we used a macro to generate sync point
numbers; it is defined as follows:

#define MK_SPNO(n) \

((tet_thistest << 8) | ((n) << 4))

• this macro can be used up to 16 times in any test purpose

• the value generated by this macro can be:
— passed directly to tet_remsync() in the test purpose function

— used to generate a base sync point number which can be passed
to a library function which performs synchronisation

- the library function can also use up to 16 sync point numbers,
starting from the base value

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

19

Feb-05 TETware training course 8-37

Identifying sync points in a test purpose

l Consider this strategy in an NFS test:
• Server: export a file system using specified attributes

• Client: mount the file system using NFS

• Client: create a file on the mounted file system

• Server: check that the file was created correctly and
generate a result

• Client: unmount the NFS file system

• Server: unexport the file system

Feb-05 TETware training course 8-38

Identifying sync points (cont'd)

Mount an NFS file system

Client side

Create a file

Unmount the file system

Export a file system

Server side

Verify the file

Unexport the file system

1

2

3

4

5

Sync point
number

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

20

Feb-05 TETware training course 8-39

Sync points in library functions

l Sometimes, sync points are used in library functions
• the library function has client and server parts

l You can pass a base sync point number to the function
l The base sync point number is generated by MK_SPNO()

Mount an NFS file system

Client side

Export a file system

Server sidebase + 1

Sync point
number

base + 2

Feb-05 TETware training course 8-40

Using library functions with sync points

Create a file

Export/mount (client)

Client side

Unmount/unexport (client)

Export/mount (server)

Server side

Verify the file

Unmount/unexport (server)

1

2

3

Sync point
number

Base sync point numbers

Library functions

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

21

Feb-05 TETware training course 8-41

Sync point leapfrogging

l In this example:
• the client does nothing between sync points 1 and 2, and between 3 and 4

• the server does nothing between sync points 2 and 3, and between 4 and 5

l In the code for each test purpose part there would be pairs of calls to
tet_remsync() with nothing in between them

l So in the client, sync points 1 and 3 are redundant and in the server, sync
points 2 and 4 are redundant
• the client only needs to sync to points 2, 4 and 5

• the server only needs to sync to points 1, 3 and 5

Mount an NFS file system

Client side

Create a file

Unmount the file system

Export a file system

Server side

Verify the file

Unexport the file system

1

2

3

4

5

Sync point
number

Feb-05 TETware training course 8-42

Using tet_remsync()

l tet_remsync(long syncptno, int *sysnames, int nsysname,
int waittime, int vote, struct tet_synmsg *msgp)

l syncptno is the sync point number

l sysnames points to the system list

l nsysname specifies the number of systems in the list

l waittime specifies the timeout

• +ve value - number of seconds to wait for other systems to sync

• zero value - return immediately without waiting

• -ve value - wait indefinitely

l vote specifies the sync vote
• TET_SV_YES or TET_SV_NO

l msgp points to a structure which describes message data
• or NULL if no message data is to be sent or received

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

22

Feb-05 TETware training course 8-43

tet_remsync() example

int systems[] = { 1, 2 };

int nsys = sizeof systems / sizeof systems[0];

if (tet_remsync(MK_SPNO(1), systems, nsys, 30, TET_SV_YES, NULL) < 0) {
switch (tet_errno) {

case TET_ER_SYNCERR:
/* another system didn't sync, voted NO, timed out or died */

break;
case TET_ER_TIMEDOUT:

/* this system's timeout expired */
break;

case TET_ER_DONE:
/* event already happened - we've missed it! */

break;

default:
/* unexpected error */

break;
}

}

Feb-05 TETware training course 8-44

Control over sync error reporting

l When a call to tet_remsync() is unsuccessful:
• the API sets tet_errno

• the API calls the function pointed to by tet_syncerr

l Initially this variable points to the API's default sync
error reporting function tet_syncreport()

• this function prints error messages describing the error
in the journal

l You can change this if you want to do your own
sync error handling

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

23

Feb-05 TETware training course 8-45

(*tet_syncerr)()

l (*tet_syncerr)(long syncpno,
struct tet_syncstat *statp, int nstat)

l syncpno is the number of the sync point that failed

l statp points to an array of tet_syncstat structures

• each element describes one of the other systems
l nstat is the number of elements pointed to by statp

l The sync error handler can inspect the values in the
sync status array to find out which other system(s)
caused the event to fail

Feb-05 TETware training course 8-46

tet_syncstat - per-system sync status

struct tet_syncstat {

int tsy_sysid; /* system id */

int tsy_state; /* system's sync state */

}

l Values for tsy_state:
• TET_SS_NOTSYNCED system hasn't voted yet

• TET_SS_SYNCYES system voted yes

• TET_SS_SYNCNO system voted no

• TET_SS_TIMEDOUT system timed out after voting

• TET_SS_DEAD system disconnected after voting

Feb-05

Copyright © 1997-2005 The Open Group
All rights reserved

24

Feb-05 TETware training course 8-47

Exercise 8

	Module 0 - Management Ocerview
	Module 1 - TETware Basics
	Module 2 - Building and Installing TETware
	Module 3 - The Test Case Controller
	Module 4 - Customizing TETware
	Module 5 - The C API
	Module 6 - Test Case Development Techniques
	Module 7 - Other APIs
	Module 8 - Distributed Testing

