
C
U

O

M

D

E

T

N

C

TA

U

T

D

IO

O
R

N

P

TETware Product Documentation

 TETware
 Programmers Guide

[This page intentionally left blank]

Programmers Guide
Revision 1.7
TET3-PG-1.7

Released: June 2003

The information contained within this document is subject to change without notice.

Copyright 1999, 2003 The Open Group
Copyright 1992, 1993, 1996, 1997 X/Open Company Limited
Copyright 1992 Open Software Foundation
Copyright 1992 Unix International
Copyright 1993 Information-Technology Promotion Agency, Japan
Copyright 1994, 1995 UniSoft Ltd.

All rights reserved. No part of this source code or documentation may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as stated in the end-user licence agreement, without the prior permission of the copyright
owners. The text of the end-user licence agreement appears in Appendix A of this document. In addition,
a copy of the end-user licence agreement is contained in the file Licence which accompanies the
TETware distribution.

Motif, OSF/1, UNIX and the ‘X’ device are registered trademarks and IT DialTone and The Open Group
are trademarks of The Open Group in the US and other countries.

X/Open is a trademark of X/Open Company Limited in the UK and other countries.

Win32TM, Windows NTTM and Windows 95TM are registered trademarks of Microsoft Corporation.

This document is produced by The Open Group at:

Apex Plaza
Forbury Road
READING
Berkshire
RG1 1AX
United Kingdom

CONTENTS

1. Introduction . 1
1.1 Preface . 1
1.2 Product definition 1
1.3 Audience . 1
1.4 Conventions used in this guide 2
1.5 Related documents 2
1.6 Problem reporting 2

2. Testing structure . 3
2.1 Introduction . 3
2.2 Test suite processing 3
2.3 Directory structure 3
2.4 Test case structure 4

2.4.1 Introduction 4
2.4.2 Test Case Manager 4
2.4.3 API-conforming test cases 4
2.4.4 Non API-conforming test cases 5

2.5 Test suite structure 6
2.5.1 Introduction 6
2.5.2 Required files and utilities 6
2.5.3 Optional files and utilities 8

3. The Test Case Controller 11
3.1 Introduction . 11
3.2 Modes of operation 11
3.3 Initial processing 11
3.4 Build mode processing 13
3.5 Execute mode processing 16
3.6 Clean mode processing 19
3.7 Rerun and resume processing 20

3.7.1 Introduction 20
3.7.2 Resume processing 21

3.7.2.1 Description 21
3.7.2.2 Processing a parallel directive in resume

mode 22
3.7.2.3 Processing a random directive in resume mode 22
3.7.2.4 Processing a timed_loop directive in resume

mode 22
3.7.3 Rerun processing 22

3.7.3.1 Description 22
3.7.3.2 Processing a random directive in rerun mode 23
3.7.3.3 Processing a timed_loop directive in rerun

mode 23
3.8 Communication variables 23
3.9 Journal entries 24
3.10 Locking . 24
3.11 Transferring source files to remote systems 25
3.12 Using tcc to process a test suite on a read-only file system 25

- i -

4. The scenario file . 27
4.1 Introduction . 27
4.2 The scenario language 27

4.2.1 Introduction 27
4.2.2 Scenario lines 27
4.2.3 The scenario name 28
4.2.4 Simple scenario elements 28

4.2.4.1 Introduction 28
4.2.4.2 Scenario information line 28
4.2.4.3 Test case name 28
4.2.4.4 Referenced scenario name 29
4.2.4.5 File name 30

4.2.5 Scenario directives 30
4.2.5.1 Introduction 30
4.2.5.2 repeat − process scenario elements a specified number of

times 31
4.2.5.3 timed_loop − process scenario elements until a specified

period of time expires 32
4.2.5.4 random − process a test case selected at random . . . 33
4.2.5.5 parallel − process scenario elements in

parallel 34
4.2.5.6 group − process scenario elements in parallel 37
4.2.5.7 remote − process test cases on remote systems 37
4.2.5.8 distributed − process distributed test cases 38
4.2.5.9 include − process scenario elements listed in an include

file 39
4.2.6 Directive groups 39
4.2.7 Directive nesting rules 40

4.3 Scenario file inclusion 41
4.4 Example scenarios 41

5. Configuration files . 53
5.1 Introduction . 53
5.2 Use of configuration variables 53
5.3 Configuration file format 53
5.4 Configuration variable processing in TETware-Lite 54
5.5 Configuration variable processing in Distributed TETware 54
5.6 Configuration variables which modify TETware’s operation 57
5.7 Distributed configuration variables used by Distributed TETware 61
5.8 Configuration variable expansion 64

5.8.1 Introduction 64
5.8.2 Variable expansion syntax 64
5.8.3 Variables on whose values expansion may be performed 64
5.8.4 Variables whose values may be interpolated in another variable’s

value . 65
5.8.5 Special variables defined in TETware-Lite 65
5.8.6 Configuration variable expansion in Distributed TETware 66
5.8.7 Special variables defined in Distributed TETware 67
5.8.8 Using special variables in Distributed TETware 69

6. Other test suite files . 71

- ii -

6.1 Introduction . 71
6.2 Result codes . 71

6.2.1 Description 71
6.2.2 Result code definitions 71
6.2.3 File format 72
6.2.4 Example results code file 73

6.3 System definitions 73
6.3.1 Description 73
6.3.2 File format 73
6.3.3 Example systems files 74

6.4 Source file transfer instructions 75
6.4.1 Description 75
6.4.2 File format 75
6.4.3 Copy type 76
6.4.4 Example source file transfer instructions 77

6.5 File type specifications 78
6.5.1 Description 78
6.5.2 File format 80
6.5.3 Example file type specifications file 80

7. The Test Case Manager 81
7.1 Introduction . 81
7.2 TCM flow of control 81
7.3 TCM options . 83
7.4 TCMs that support distributed testing 84
7.5 Portability . 85

8. The C API . 87
8.1 Introduction . 87
8.2 C language binding 87
8.3 TCC dependencies 88
8.4 Test case structure and management 89

8.4.1 Introduction 89
8.4.2 Static test case interface − the tet_testlist[] array 89
8.4.3 Dynamic test case interface − tet_getmaxic(),

tet_getminic(), tet_isdefic(), tet_gettpcount(),
tet_gettestnum() and tet_invoketp() 90

8.4.4 tet_startup and tet_cleanup 93
8.4.5 tet_thistest, tet_nosigreset and

tet_pname 93
8.5 Insulating from the test environment 95
8.6 Error handling and reporting 96

8.6.1 Introduction 96
8.6.2 tet_errno 96
8.6.3 tet_errlist[] and tet_nerr 97

8.7 Making journal entries 98
8.7.1 Introduction 98
8.7.2 tet_setcontext() and tet_setblock() 98
8.7.3 tet_infoline(), tet_minfoline(), tet_printf() and

tet_vprintf() 99
8.7.4 tet_result() 100

- iii -

8.8 Cancelling test purposes 101
8.8.1 Introduction 101
8.8.2 tet_delete() 101
8.8.3 tet_reason() 102

8.9 Accessing configuration variables 103
8.9.1 Introduction 103
8.9.2 tet_getvar() 103

8.10 Generating and executing processes 104
8.10.1 Introduction 104
8.10.2 tet_fork(), tet_exec() and tet_child 104
8.10.3 tet_spawn() 106
8.10.4 tet_wait() 107
8.10.5 tet_kill() 107

8.11 Executed process functions 108
8.11.1 Introduction 108
8.11.2 tet_main() 108
8.11.3 tet_exit() and tet_logoff() 109

8.12 Test case synchronisation 110
8.12.1 Introduction 110
8.12.2 tet_remsync() 110
8.12.3 tet_sync() and tet_msync() 113
8.12.4 Control over sync error reporting 114

8.13 Remote system information 115
8.13.1 Introduction 115
8.13.2 tet_remgetlist() 115
8.13.3 tet_remgetsys() 115
8.13.4 tet_getsysbyid() 116
8.13.5 tet_remtime() 116

8.14 Remote process control 118
8.14.1 Introduction 118
8.14.2 tet_remexec() 118
8.14.3 tet_remwait() 119
8.14.4 tet_remkill() 121

9. The C++ API . 123
9.1 Introduction . 123
9.2 C++ language binding 123
9.3 Using the C++ language binding 124

10. The Thread-safe C and C++ APIs 125
10.1 Introduction . 125
10.2 C language binding 125
10.3 C++ language binding 126
10.4 Functions that are specific to the Thread-safe APIs 126

10.4.1 Introduction 126
10.4.2 tet_thr_create() and

tet_pthread_create() 126
10.4.3 tet_beginthreadex() 127
10.4.4 tet_thr_join() and tet_pthread_join() 128
10.4.5 tet_pthread_detach() 129
10.4.6 tet_fork() and tet_fork1() 129

- iv -

10.5 Unavailable interfaces 130
10.6 Use of API functions in child processes 130
10.7 API differences 131

10.7.1 Introduction 131
10.7.2 Thread-specific data 131
10.7.3 Block and sequence numbers 131
10.7.4 tet_exec() 131
10.7.5 tet_spawn() 131
10.7.6 tet_fork() 132

10.8 TCM differences 132
10.8.1 Introduction 132
10.8.2 Clean-up of left-over threads on UNIX systems 132
10.8.3 Dealing with left-over threads on Win32 systems 133
10.8.4 Signal handling 133

10.9 Synchronisation requests in multi-threaded test cases 133

11. The Shell and Korn Shell APIs 135
11.1 Introduction . 135
11.2 Shell language binding 135
11.3 Korn Shell language binding 135
11.4 TCC dependencies 136
11.5 Test case structure and management 137

11.5.1 Introduction 137
11.5.2 iclist, icn, tet_startup and tet_cleanup 137
11.5.3 tet_thistest 138

11.6 Insulating from the test environment 139
11.7 Making journal entries 140

11.7.1 Introduction 140
11.7.2 tet_setcontext and tet_setblock 140
11.7.3 tet_infoline 141
11.7.4 tet_result 141

11.8 Canceling test purposes 142
11.8.1 Introduction 142
11.8.2 tet_delete 142
11.8.3 tet_reason 142

11.9 Accessing configuration variables 143
11.10 Generation and execution of processes 143
11.11 Executed process support 143

12. The Perl API . 145
12.1 Introduction . 145
12.2 Description . 145

13. The Java API . 147
13.1 Introduction . 147
13.2 Java language binding 147
13.3 TCC dependencies 148
13.4 Processing Java test cases 148

13.4.1 Introduction 148
13.4.2 The scenario file 148
13.4.3 Building a Java test case 149

- v -

13.4.4 Executing a Java test case 149
13.4.5 Cleaning a Java test case 150

13.5 Test case structure and management 152
13.5.1 Introduction 152
13.5.2 Defining a test case class 152
13.5.3 Defining Invocable Components and Test Purposes 152
13.5.4 startup() and cleanup() 153
13.5.5 tet_thistest() and tet_pname() 154

13.6 Insulating from the environment 155
13.7 Error handling and reporting 156

13.7.1 Introduction 156
13.7.2 tet_errno 156
13.7.3 tet_errlist() 157

13.8 Making journal entries 159
13.8.1 Introduction 159
13.8.2 tet_setcontext() and tet_setblock() 159
13.8.3 tet_infoline() and tet_minfoline() 159
13.8.4 tet_result() 160

13.9 Cancelling test purposes 161
13.9.1 Introduction 161
13.9.2 tet_delete() 161
13.9.3 tet_reason() 162

13.10 Accessing configuration variables 163
13.10.1 Introduction 163
13.10.2 tet_getvar() 163

13.11 Generating and executing processes 164
13.11.1 Introduction 164
13.11.2 tet_spawn() and tet_jspawn() 164
13.11.3 tet_wait() 165
13.11.4 tet_kill() 165

13.12 Executed process methods 166
13.12.1 Introduction 166
13.12.2 tet_main() 166
13.12.3 tet_exit() and tet_logoff() 167

13.13 Test case synchronization 168
13.13.1 Introduction 168
13.13.2 tet_remsync() 168

13.14 Remote system information 172
13.14.1 Introduction 172
13.14.2 tet_remgetlist() 172
13.14.3 tet_remgetsys() 172
13.14.4 tet_getsysbyid() 173
13.14.5 tet_remtime() 173

13.15 Remote process control 175
13.16 Using threads . 175

13.16.1 Thread creation 175
13.16.2 Dealing with left-over threads 175
13.16.3 Synchronisation requests in multiple threads 175

14. Test reporting and journaling 177

- vi -

14.1 Making journal entries 177
14.1.1 Entries from the API 177
14.1.2 Entries from test purposes 178

14.2 Journal files . 178
14.2.1 Description 178
14.2.2 Journal line parameters 178
14.2.3 Journal line descriptions 180

14.3 Result file processing 180
14.3.1 Execution results from an API-conforming test case 180
14.3.2 Processing results from a non API-conforming test case 180
14.3.3 Processing results from a non-distributed API-conforming test

case . 181
14.3.4 Processing results from a distributed API-conforming test

case . 181
14.4 Support for user-supplied report writers 182

15. Writing a C language API-conforming test suite 183
15.1 Introduction . 183
15.2 Defining a test suite 183
15.3 Defining common test case functions and variables 186
15.4 Initialising test cases 186
15.5 Controlling and recording test case execution results 187
15.6 Results that must be verified by the user 189
15.7 Child processes and subprograms 190
15.8 Cleaning up test cases 193

16. Writing a Shell language API-conforming test suite 195
16.1 Introduction . 195
16.2 Defining a test suite 195
16.3 Defining common test case functions and variables 197
16.4 Initialising test cases 200
16.5 Controlling and recording test case execution results 200
16.6 Results that must be verified by the user 203
16.7 Cleaning up test cases 203

17. The distributed demonstration test suite 205
17.1 Introduction . 205
17.2 Test suite files 205

17.2.1 The systems file 206
17.2.2 The tet_code file 207
17.2.3 The tet_scen file 207
17.2.4 The tetbuild.cfg file 208
17.2.5 The tetclean.cfg file 209
17.2.6 The tetexec.cfg file 209
17.2.7 The tetdist.cfg file 210
17.2.8 The makefile file 211
17.2.9 The tc1.c file 212
17.2.10 The tc2.c file 212
17.2.11 The tc3.c file 212

18. Writing a Java API-conforming test suite 215
18.1 Introduction . 215

- vii -

18.2 Defining a test suite 215
18.3 Defining a test case 216
18.4 Controlling and recording test case execution results 217
18.5 Subprograms . 219
18.6 Packages and test case classes 221

19. Using shared API libraries 223
19.1 Introduction . 223
19.2 Supported systems 223
19.3 Advantages and disadvantages of linking test cases with shared API

libraries . 223
19.4 Shared API library components 224
19.5 API component names when shared libraries are used 225

19.5.1 Introduction 225
19.5.2 UNIX systems 226

19.5.2.1 Systems that use the SVR4 dynamic linking
scheme 226

19.5.2.2 HP-UX 227
19.5.2.3 AIX 228

19.5.3 Win32 systems 229
19.6 Building test cases to use shared API libraries 230

19.6.1 Introduction 230
19.6.2 UNIX systems 230
19.6.3 Win32 systems 232

19.7 Locating a shared API library at runtime 233
19.7.1 Introduction 233
19.7.2 UNIX systems 233
19.7.3 Win32 systems 235
19.7.4 Considerations for remote executed processes 235

A. The TETware end-user licence 239

B. Example C language API test suite source files 241
B.1 Introduction . 241
B.2 tet_code . 241
B.3 install . 241
B.4 cleantool . 241
B.5 tet_scen . 241
B.6 tetbuild.cfg 242
B.7 tetexec.cfg 242
B.8 tetclean.cfg 242
B.9 Makefile for chmod-tc.c 242
B.10 chmod-tc.c 243
B.11 Makefile for fileno-tc.c 246
B.12 fileno-tc.c 246
B.13 fileno-t4.c 251
B.14 Makefile for stat-tc.c 252
B.15 stat-tc.c . 252
B.16 Makefile for uname-tc.c 259
B.17 uname-tc.c 259

C. Example Shell API test suite source files 261

- viii -

C.1 Introduction . 261
C.2 tet_code . 261
C.3 install . 262
C.4 buildtool . 262
C.5 cleantool . 262
C.6 tet_scen . 262
C.7 tetbuild.cfg 263
C.8 tetexec.cfg 263
C.9 tetclean.cfg 263
C.10 shfuncs — common functions used in the Shell API test suite 263
C.11 Makefile for chmod-tc.sh 265
C.12 chmod-tc.sh 265
C.13 Makefile for uname-tc.sh 267
C.14 uname-tc.sh 267

D. Example distributed test case source files 269
D.1 Introduction . 269
D.2 Files supplied on the master system 269

D.2.1 tet_code 269
D.2.2 tet_scen 269
D.2.3 tetbuild.cfg 270
D.2.4 tetclean.cfg 270
D.2.5 tetdist.cfg 271
D.2.6 tetexec.cfg 271
D.2.7 ts/makefile 271
D.2.8 ts/tc1.c 272
D.2.9 ts/tc2.c 272
D.2.10 ts/tc3.c 273

D.3 Files supplied on the slave system 274
D.3.1 tetbuild.cfg 274
D.3.2 tetclean.cfg 275
D.3.3 tetexec.cfg 275
D.3.4 ts/makefile 275
D.3.5 ts/tc1.c 276
D.3.6 ts/tc2.c 276
D.3.7 ts/tc3.c 277

D.4 Files supplied on both systems 278
D.4.1 systems 278
D.4.2 ts/ntbuild.ksh 278
D.4.3 ts/ntclean.ksh 279

E. Example Java API test suite source files 281
E.1 Introduction . 281
E.2 tet_scen . 281
E.3 tetbuild.cfg 281
E.4 tetexec.cfg 281
E.5 tetclean.cfg 282
E.6 IntegerTC.java 282
E.7 StackTC.java 284
E.8 SystemTC.java 289

- ix -

F. Scenario language syntax summary 293

G. Conceptual models used by TETware 297
G.1 Introduction . 297
G.2 TETware-Lite conceptual model 298
G.3 Distributed TETware conceptual model − local system with test

cases . 299
G.4 Distributed TETware conceptual model − local system without test

cases . 300
G.5 Distributed TETware conceptual model − remote system as master 301
G.6 Distributed TETware conceptual model − remote system as slave 302

H. Background and goals 303
H.1 Introduction . 303
H.2 Previous TET implementations 303

H.2.1 The Test Environment Toolkit 303
H.2.2 The Distributed Test Environment Toolkit 303
H.2.3 The Extended Test Environment Toolkit 304
H.2.4 The Distributed Test Environment Toolkit Version 2 304

H.3 TETware . 304
H.4 Relationship between TETware and its predecessors 305

I. Terminology . 307
I.1 Test case types 307
I.2 Glossary . 307

- x -

LIST OF FIGURES

Figure 1. Relationship between TCM, test purpose function and API 5

Figure 2. Test case processing in build mode 15

Figure 3. Test case processing in execute mode 18

Figure 4. Test case processing in clean mode 20

Figure 5. Processing test cases in sequence 43

Figure 6. Processing test cases in parallel 44

Figure 7. Processing multiple instances of a single test case in parallel 45

Figure 8. Processing referenced scenario elements in parallel when in dTET2
mode . 46

Figure 9. Processing referenced scenario elements in parallel when in ETET
mode . 47

Figure 10. Processing a repeat directive in execute mode 48

Figure 11. Processing repeat directives in parallel 49

Figure 12. Processing randomly selected test cases in parallel for a specified period of
time . 51

Figure 13. Processing remote and distributed test cases 52

Figure 14. Configuration variable processing in TETware-Lite 54

Figure 15. Configuration variable processing in Distributed TETware 56

Figure 16. Precedence of result code definitions 72

Figure 17. Precedence of file type specifications 79

Figure 18. Directory structure for the example C language test suite 184

Figure 19. Directory structure for the example Shell language test suite 196

Figure 20. Directory structure for the distributed demonstration test suite 206

Figure 21. Directory structure for the Java demonstration test suite 215

Figure 22. Relationship between the API components and the user-supplied code when a
shared API library is used 225

Figure 23. TETware-Lite conceptual model 298

Figure 24. Distributed TETware conceptual model − local system with test
cases . 299

Figure 25. Distributed TETware conceptual model − local system without test
cases . 300

Figure 26. Distributed TETware conceptual model − remote system as master 301

- xi -

Figure 27. Distributed TETware conceptual model − remote system as slave 302

Figure 28. Relationship between TETware and its predecessors 305

- xii -

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

1. Introduction

1.1 Preface
This document is the TETware Programmers Guide.

TETware is implemented on UNIX operating systems and also on the Windows NT and
Windows 9x operating systems. It includes all of the functionality of the Test Environment
Toolkit Release 1.10 (TET), the Distributed Test Environment Toolkit Version 2 Release 2.3
(dTET2) and the Extended Test Environment Toolkit Release 1.10.3 (ETET), together with a
number of new features.

Throughout this document, the Windows NT and Windows 9x operating systems are referred to
collectively as Win32 systems. The individual system names are only used when it is necessary
to distinguish between them.

1.2 Product definition
TETware is a set of tools for the development and execution of system and unit tests. The goal
behind creating TETware and its predecessors is to produce a test driver that accommodates
present and future testing needs of the test development community. To achieve this goal, input
from a wide sample of the test development community has been used for the specification and
development of TETware’s functionality and interfaces. A short account of the history of
TETware and its predecessors is presented in the appendix entitled ‘‘Background and goals’’ at
the end of this guide.

TETware is available in one of two versions. One version is called TETware-Lite and is able to
process non-distributed test cases on a single computer system. The other version is called
Distributed TETware and is able to process both distributed and non-distributed test cases on
the local system and on one or more remote systems.

An overview of TETware, some simple architecture diagrams, and a description of what
constitutes a distributed or a non-distributed test case, are presented in the chapter entitled
‘‘TETware overview’’ in the TETware User Guide. Diagrams illustrating the conceptual models
used by TETware are presented in the appendix entitled ‘‘Conceptual models used by TETware’’
at the end of this guide.

TETware-Lite is supported on UNIX systems and on the Windows NT and Windows 9x
operating systems. Distributed TETware is supported on UNIX systems and on the Windows NT
operating system.

1.3 Audience
This document is intended to be read by test suite authors who will write or adapt test programs
to run under the control of TETware.

Software testing engineers and system administrators should refer to the TETware User Guide for
information about how to run TETware and to the TETware Installation Guide for information
about how to install TETware on their computer systems.

March 2003 Page 1
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

1.4 Conventions used in this guide
The following typographic conventions are used throughout this guide:

� Courier font is used for function and program names, literals and file names.
Examples and computer-generated output are also presented in this font.

� The names of variables are presented in italic font . You should substitute the variable’s
value when typing a command that contains a word in this font.

� Bold font is used for headings and for emphasis.

Long lines in some examples and computer-generated output have been folded at a \ character
for formatting purposes. If you type such an example, you should type it in all on one line and
omit the \ character.

1.5 Related documents
Refer to the following documents for additional information about TETware:

� Test Environment Toolkit: TETware Installation Guide
There is one version of this document for each operating system family on which TETware
is implemented.

� Test Environment Toolkit: TETware User Guide

� Test Environment Toolkit: TETware Knowledge Base

In addition, the TETware Release Notes contain important information about how to install and
use TETware. You should read the release notes thoroughly before attempting to install and use
each new release of TETware.

1.6 Problem reporting
If you have subscribed to TETware support and you encounter a problem while installing and
using TETware, you can send a support request by electronic mail to the address given in the
TETware Release Notes. Please follow the instructions contained in the release notes about how
to submit such a request; in particular, please be sure to include all the information asked for by
these instructions when submitting the request.

Page 2 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

2. Testing structure

2.1 Introduction
This chapter introduces the structure of a test suite that is to be processed by TETware. Examples
of practical test suites which use this structure are presented in the chapters entitled ‘‘Writing a
C language API-conforming test suite’’, ‘‘Writing a Shell language API-conforming test suite’’
and ‘‘The distributed demonstration test suite’’ later in this guide.

2.2 Test suite processing
A test suite is made up of one or more test cases. Each test case is an executable program.

The test cases in a test suite are processed by the TETware Test Case Controller (tcc), according
to one or more chosen modes of operation. The available modes of operation are: build mode,
execute mode and clean mode. For each test case that is to be processed, tcc builds the test case
(if build mode has been specified), then executes the test case (if execute mode has been
specified), then cleans up the test case (if clean mode has been specified).

The list of test cases that are to be processed by tcc is specified in the test scenario. The
scenario may also contain directives which influence the way in which test cases are to be
processed. The way in which the scenario is specified is described in the chapter entitled ‘‘The
scenario file’’ later in this guide.

The way in which tcc processes a test suite may be influenced by the values of certain
configuration variables. There is a set of configuration variables for each of tcc’s selected
modes of operation. These variables are described in the chapter entitled ‘‘Configuration files’’
later in this guide.

As tcc processes a test suite it records information about the processing in a journal.
Information generated by each test case is also recorded in the journal. Further information about
the journal is presented in the chapter entitled ‘‘Test reporting and journaling’’ later in this guide.

The operation of tcc is described in the chapter entitled ‘‘The Test Case Controller’’ later in this
guide.

2.3 Directory structure
TETware expects to operate within a defined directory structure. This structure includes the tet
root directory, the test suite root directory, one or more test case directories and (optionally)
the alternate execution directory hierarchy. Details of the function and purpose of each of these
directories is presented in the section entitled ‘‘TETware directory layout’’ and in the appendix
entitled ‘‘TETware directory structure’’, both in the TETware User Guide.

All the files in the test suite reside below the test suite root directory. The name of this directory
is the same as the name of the test suite. The test suite root directory is usually located
immediately below the tet root directory, although it is possible to locate it elsewhere if so
required.

March 2003 Page 3
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

2.4 Test case structure

2.4.1 Introduction
tcc is able to execute test cases and tools that either use, or do not use, one of the TETware APIs
(but not both types in a particular mode of operation).

A test case which uses one of the TETware APIs is known as an API-conforming test case, and a
test case which does not use a TETware API is known as a non API-conforming test case.
Likewise, a build tool or a clean tool can either be an API-conforming tool or a non API-
conforming tool, whereas a prebuild tool or a build fail tool is always a non API-conforming
tool.1

A build tool or a clean tool may be either API-conforming or non API-conforming, depending on
the requirements of the test suite. However, execution of non API-conforming test cases is
supported for compatibility only; new test cases should always use one of the TETware APIs.

2.4.2 Test Case Manager
When a test case uses one of the TETware APIs, its execution is supervised by a Test Case
Manager (TCM).

The TCM is not a separate program, but instead is linked with user-supplied test code and the
API library to produce an executable test case. There is a separate TCM module for each API
that is supported by TETware. Each API is described in a separate chapter in this guide.
Instructions for linking a test cases with an API and its TCM are presented in the chapter which
describes the API.

The common functionality provided by each TCM is described in the chapter entitled ‘‘The Test
Case Manager’’ later in this guide.

2.4.3 API-conforming test cases
An API-conforming test case is constructed by grouping together test functions (called test
purposes) that test specific system features. These test purposes take advantage of support
functions provided by the TETware APIs and are invoked by the TETware TCMs.

When you write a test case which uses a TETware API, you only need to supply the test purpose
code that actually performs the required test operation. When a test case is executed, the
TETware TCM calls each test purpose function that you write and ensures that each test purpose
registers exactly one test result. A test purpose function may call one or more API functions
during its execution and, when execution is finished, it returns control to the TCM.

����������������
1. The purposes of the various types of tool are described in a later section of this chapter.

Page 4 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

This relationship is illustrated through the following picture:

TCM

�
�
�
�
�
��������������

�
�
�
�
���������������

calls���������������������������

API

�
�
�
�
�
��������������

�
�
�
�
���������������

calls���������������������������

supplied by TETware

Test
purpose

�
�
�
�
�
�
�
�
�
�
��������������

�
�
�
�
�
�
�
�
�
���������������

supplied by the
test suite author

Figure 1. Relationship between TCM, test purpose function and API

The picture shows that the TCM calls test purpose functions, and that these functions in turn may
call API functions. The API performs functions such as fetching configuration variable settings
and writing messages into the journal.

Test purposes within a test case can be grouped together into invocable components. This
grouping ensures that a set of test purposes is always executed together and in the correct
sequence. In most cases there is no practical limit to the number of test purposes that can be
grouped in an invocable component and there is no practical limit to the number of invocable
components that can be grouped within a single test case. However, there are (substantial) limits
for these numbers when an API which supports distributed testing is used. These limits are a
byproduct of the synchronisation between parts of a distributed test case which must be
performed by the API; details of this synchronisation are presented in the chapter entitled ‘‘Test
case synchronisation’’ in the TETware User Guide.

Descriptions of the functionality provided by each API can be found in later chapters of this
guide.

2.4.4 Non API-conforming test cases
This section describes how tcc processes a non API-conforming test case or tool. The
processing described here applies equally to build, exec and clean tools as well as to test cases.

When executing a non API-conforming test case, tcc assumes that the test case writes journal
output to stdout and stderr and regards the whole execution as if it were a single invocable
component containing a single test purpose. When tcc executes the test case, it redirects test
case stdout and stderr to a file that it creates. When processing a test case in execute mode,
tcc generates the TCM start line that would be emitted by an API-conforming test case, and a
result code based on the exit status of the test case. A zero exit status produces a result of PASS
and any other value produces a result of FAIL. When processing of the test case is finished, tcc
copies the captured output to the journal file.

tcc uses the values of certain configuration variables to determine whether it should execute test
cases as API-conforming or non API-conforming test cases. The same variables are used by tcc
to determine how it should execute the build tool and the clean tool. Different values for these

March 2003 Page 5
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

variables can be specified in each of tcc’s selected modes of operation if required.

The value of the TET_API_COMPLIANT configuration variable specifies whether or not a test
case or tool uses the API. The value of the TET_OUTPUT_CAPTURE configuration variable
specifies whether or not tcc should capture test case output and record this output in the journal
file.

For convenience, when TET_API_COMPLIANT is not defined, it defaults to the inverse of
TET_OUTPUT_CAPTURE. So, to indicate that you are executing non API-conforming test
cases, or are using a non API-conforming build tool or clean tool, you should set
TET_OUTPUT_CAPTURE to True and leave TET_API_COMPLIANT undefined. For more
information on the use of this these configuration variables, see the section entitled
‘‘Configuration variables which modify TETware’s operation’’ later in this guide.

2.5 Test suite structure

2.5.1 Introduction
TETware imposes minimum structural requirements on test suites. However, some specific files
and utilities must be present. The formats of the data files described in the following sections are
described in later chapters in this guide.

2.5.2 Required files and utilities
The following files and utilities must be included with each test suite:

Build tool

This tool is required when a test suite is to be processed in build mode.

The build tool is invoked when tcc processes a test case in build mode. In Distributed
TETware it is invoked on every system on which the test case is to be processed. The build
tool may either be an API-conforming or a non-API conforming tool.

This tool is used to perform the functions that are required to build the test case and, if the
test suite makes use of an alternate execution directory, install the test case in its location
below that directory. It is common to use make for this purpose. Since make is a non-
API conforming build tool, it is necessary to set the TET_OUTPUT_CAPTURE variable to
True in the build mode configuration.

If a build tool is required to access configuration variables for any reason, it must be an
API-conforming tool since non-API conforming tools cannot access configuration
variables.

Clean tool

This tool is required when a test suite is to be processed in clean mode.

The clean tool is invoked when tcc processes a test case in clean mode. In Distributed
TETware it is invoked on every system on which the test case is to be processed. The clean
tool may either be an API-conforming or a non-API conforming tool.

This tool is used to perform the functions that are required to clean up after a test case has
been built and/or executed. In the trivial case where it is only required to remove the
executable file that is created during the build stage, it is common to use rm as the clean
tool. When this is done, it is necessary to set TET_CLEAN_FILE to −f and

Page 6 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

TET_OUTPUT_CAPTURE to True in the clean mode configuration.

If a clean tool is required to access configuration variables for any reason, it must be an
API-conforming tool since non-API conforming tools cannot access configuration
variables.

Configuration variable settings

There is one configuration file for each of tcc’s modes of operation. When Distributed
TETware is used, there is one of these files on the local system2 and on each remote system
on which test cases are to be processed. Each configuration file contains zero or more
configuration variable assignments. Some of these variables affect the way in which tcc
processes test cases, whereas other variables are meaningful to the test cases being
processed. The API provides a mechanism by which variables defined in the configuration
file for the current mode of operation may be accessed by test cases and tools.

By default the names of these files are tetbuild.cfg, tetexec.cfg and
tetclean.cfg, corresponding to build, execute and clean modes, respectively. These
files are located in the test suite root directory on each system. If an alternate execution
directory is specified, the execute mode configuration file may (optionally) be located in
that directory instead.

The format of configuration files and the meanings of the significant configuration variables
are described in the chapter entitled ‘‘Configuration files’’ later in this guide.

Distributed configuration variable settings

When Distributed TETware is used, there is a file on the local system containing variables
which specify the locations of test suite files and directories on remote systems. In
addition, this file may be used to specify variables that are required by the network
transport that is used for interprocess communication. Variables in the distributed
configuration file cannot be accessed by test cases and tools.

The name of this file is tetdist.cfg and the file is located in the test suite root
directory on the local system.

The format of the distributed configuration file is described in the chapter entitled
‘‘Configuration files’’ later in this guide.

This file is not required when TETware-Lite is used.

Test scenario definitions

Each test suite must provide at least one test scenario file. This file contains the definitions
of one or more test scenarios. Many scenario files provide a scenario called all which
typically causes all test cases and invocable components in a test suite to be processed. By
default, the name of this file is tet_scen and the file is located in the test suite root
directory on the local system.

The format of the scenario file is described in the chapter entitled ‘‘The scenario file’’ later
in this guide.

����������������
2. That is: the system on which tcc is invoked.

March 2003 Page 7
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Systems definitions file

In Distributed TETware, this file is used to define the mappings of logical system
identifiers to physical machines. The name of the file is systems and the file is located in
the tet-root on each system.

The format of the systems definitions file is described in the section entitled ‘‘System
definitions’’ later in this guide.

This file is not required when TETware-Lite is used.

Results directory

Each test suite has a directory called results which is located in the test suite root
directory. This directory is created by tcc if it does not exist. tcc creates a unique
subdirectory in this directory on each run, into which it places the journal file and a
hierarchy of files requested to be saved by the user.

2.5.3 Optional files and utilities
Test suite authors may provide optional files and utilities for use with test suites as follows:

Prebuild tool

When this tool is specified, it is invoked before tcc processes a test case in build mode. In
Distributed TETware it is invoked only on the master system3 when a test case is to be
processed on more than one system. The prebuild tool should always be a non-API
conforming tool.

When files for a remote or distributed test case are maintained only on one system, this tool
might be used to propagate these files to the other participating systems before the test case
is built.

Build fail tool

When this tool is specified, it is invoked after a prebuild or build tool fails4 when tcc
processes a test case in build mode. In Distributed TETware it is invoked on every system
on which the test case is to be processed. The build fail tool should always be a non-API
conforming tool.

One possible use for this tool might be to provide a skeleton test case that indicates that the
real test case was not built successfully by returning a result of UNINITIATED for each
test purpose that is to be executed.

Exec tool

When this tool is specified, it is is invoked when tcc processes a test case in execute
mode. In Distributed TETware it is invoked on every system on which the test case is to be
processed.

����������������
3. A test case that is to be processed on more than one system is specified in the scenario file within the scope of a

remote or distributed directive. The first system which appears in the system list which is associated with
this directive is known as the master system.

4. That is: the tool cannot be executed, the tool is timed out or returns non-zero exit status, or an API-conforming
build tool does not report PASS.

Page 8 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

Possible uses for this tool include:

— setting up environment variables before a test case is invoked

— running a compiled test case under the control of a debugger

— specifying which command interpreter5 to use

— in Distributed TETware, attaching the test case to a controlling terminal.

Result codes file

TETware utilities which perform result code processing use code definitions which are
contained in an internal table. Initially this table contains entries for the result codes which
are defined in IEEE Standard 1003.3-1991. Test suite authors may provide files containing
additional result codes which are to be added to the table. By default the name of these
files is tet_code and the files may be located in the tet-root and test suite root
directories.

The format of the result codes file is described in the section entitled ‘‘Result codes’’ later
in this guide.

Source file transfer instructions

When Distributed TETware is used, it is possible to arrange for test case files to be copied
from the local system to remote systems at the start of build mode processing. When a
source file transfer instruction file is specified, it contains entries which enable TETware to
perform this task.

This file may be specified either at the test suite level or at the test case level. The format
of this file is described in the section entitled ‘‘Source file transfer instructions’’ later in
this guide.

File type specifications

When Distributed TETware is used, a file type specification file may be used to specify the
file types that are associated with particular file name suffixes. Distributed TETware uses
entries in this file to determine the type of copy operation to be performed (that is: ASCII
or binary) when transferring source files from the local system to remote systems during
build mode processing, and when transferring files from remote systems to the local system
during the Save Files stage of execute mode processing.

This file can be useful when Distributed TETware is used on two or more heterogeneous
systems where the distinction between ASCII and binary files is significant when a copy
operation is performed. The format of this file is described in the section entitled ‘‘File
type specifications’’ later in this guide.

Treatment filters and report writers

TETware produces a journal file in a well defined format that has been designed so as to
enable easy processing by treatment filters and report writers. Test suite authors may wish
to provide treatment filters that produce reports in formats which are appropriate for the

����������������
5. Such as perl or one of the shells; useful when the Shell, Korn Shell or Perl APIs are used on Win32 systems and

other systems where the #! script interpreter convention is not implemented.

March 2003 Page 9
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

type of testing that is to be undertaken. The format of the journal file is described in the
chapter entitled ‘‘Test reporting and journaling’’ later in this guide.

Page 10 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

3. The Test Case Controller

3.1 Introduction
This chapter describes the operation of the TETware Test Case Controller tcc. A manual page
for the tcc command is presented in the TETware User Guide.

tcc accepts user-specific and test suite-specific configuration options and enables the user
control of test sessions. This control includes the building, execution, and clean up of test cases.
In addition to the control of test sessions, tcc includes functionality to support internal
mechanisms essential to the operation of TETware. These include managing interaction with the
TCM, processing of results and the removal of temporary files.

The TETware-Lite version of tcc performs all of these operations itself on a single system. The
Distributed version of tcc does not perform these operations itself; instead it sends requests to
server (or daemon) processes which perform the required operations on each system on which
test cases are to be processed. Unless stated to the contrary, the information presented in this
chapter applies equally to both tcc versions.

3.2 Modes of operation
tcc processes test cases in one or more of the following modes of operation:

Build mode translates source test cases into executables.

Execute mode loads and executes test cases.

Clean mode removes unwanted files.

These modes of operation are selected by using options on the tcc command line.

The way in which tcc processes test cases in each mode of operation is affected by the settings
of certain variables in the configuration for that mode. Readers should be aware that there is
some interaction between the settings of certain variables in each mode. For example, if
TET_PASS_TC_NAME is not defined, it takes its default value from the value of
TET_OUTPUT_CAPTURE. Refer to the chapter entitled ‘‘Configuration variables’’ elsewhere in
this guide for full details of the meanings of each configuration variable, their default values and
the interactions between them.

3.3 Initial processing
Regardless of the mode selected, tcc performs the following actions before processing any test
cases:

1. tcc records the value of the TET_ROOT environment variable, and also those of the
TET_SUITE_ROOT, TET_EXECUTE, TET_TMP_DIR and TET_RUN environment
variables if present.

2. tcc processes options specified on the command line.

3. tcc determines the name and location of the test suite to be processed. The top of the
directory subtree in which the test suite resides becomes the test suite root directory for
the current tcc invocation.

March 2003 Page 11
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

4. tcc determines the location of the alternate execution directory if one has been
specified, either by means of the −a command-line option or by setting the
TET_EXECUTE environment variable.

5. tcc reads in the configuration variables that are specified for each of the selected modes of
operation. In Distributed TETware, this stage reads variables from the configuration files
on the local system and establishes the master configurations for each of the selected modes
of operation.

6. tcc reads in the scenario file (if one has been specified), checks the syntax of all the
scenario specifications and identifies the chosen scenario.

7. In Distributed TETware, tcc identifies all the system IDs mentioned in the chosen
scenario.

8. If a runtime directory has been specified using the TET_RUN environment variable, tcc
copies the test suite root directory hierarchy to a position below the runtime directory. The
directory subtree thus created becomes the new test suite root directory. In Distributed
TETware this processing in only performed on the local system.

9. In Distributed TETware, when remote systems are mentioned in the chosen scenario or the
network transport makes use of distributed configuration variables, tcc reads in variables
from the distributed configuration file on the local system.

10. tcc creates the directory that is to contain the journal file and any saved files. In
Distributed TETware this directory is only created on the local system.

11. tcc installs signal traps to ensure that an orderly shutdown is performed in the event that
an unexpected signal is received.

12. In Distributed TETware, tcc starts up the synchronisation daemon and execution results
daemon on the local system, and establishes a connection with the TCC daemon on each
system mentioned in the chosen scenario.

13. In Distributed TETware, tcc reads entries in the file type specifications file. The file type
list thus generated is sent to each of the systems mentioned in the chosen scenario.

14. In Distributed TETware, if a runtime directory has been specified using a
TET_REMnnn_TET_RUN distributed configuration variable for a particular system, tcc
copies the test suite root directory hierarchy on that system to a position below the runtime
directory. The directory subtree thus created becomes the new test suite root directory for
that system.

15. In Distributed TETware, tcc creates a saved files directory on each remote system that is
mentioned in the chosen scenario.

16. tcc reads in any user-supplied result codes files, adds the user-defined results codes to the
internal table containing standard results codes and makes the table available to other
TETware components that need it. In Distributed TETware, user-supplied result codes files
are only provided on the local system; tcc propagates the complete results code table to
each remote system that is mentioned in the chosen scenario after any user-defined result
codes have been added to the table.

17. If rerun or resume mode have been selected, tcc processes the old journal file that was
produced by the previous tcc invocation and modifies the chosen scenario accordingly.

Page 12 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

18. If the −y and/or −n command-line options have been specified, tcc prunes the chosen
scenario to remove test cases not selected by these options.

19. tcc checks that each timed loop specified in the chosen scenario contains at least one test
case to process.

20. If execute mode has been selected and TET_EXEC_IN_PLACE is false, tcc creates the
temporary directory below which test case execution will take place. In Distributed
TETware the temporary directory is created on each remote system that is mentioned in the
chosen scenario.

21. If a journal file has been specified on the command-line, tcc verifies that it does not exist.

22. tcc tells the user the name of the journal file being used and writes a start-up message to
the journal.

23. In Distributed TETware, tcc performs a configuration variable exchange for each of the
selected modes of operation with each remote system mentioned in the chosen scenario.
This stage establishes the per-system configurations for each of the selected modes of
operation.

24. tcc reports the configuration variables for each of the selected modes of operation to the
journal file. In Distributed TETware, tcc reports the per-system configurations for each of
the systems mentioned in the chosen scenario, together with the distributed configuration
variables.

25. In Distributed TETware, tcc sends certain communication variables to each system
mentioned in the chosen scenario. These variables are put in the environment that is
inherited by test cases and tools on that system.

If any of these operations should fail, tcc prints a diagnostic message and exits with non-zero
status. When tcc encounters a non-fatal error while it is processing scenario lines or
configuration variable assignments it does not exit immediately the first such error is identified.
Instead, tcc attempts to perform a reasonable amount of additional processing in order to enable
any further non-fatal scenario or configuration errors to be reported as well.

Diagnostic messages which are generated before the journal file has been opened are printed on
the standard error stream. A few diagnostic messages which are generated after the journal file
has been opened may be printed to the journal file; however, most messages are printed on the
standard error stream.

If all of these operations are successful, tcc processes the chosen scenario according to the
selected modes of operation. The following sections describe this processing in further detail.

3.4 Build mode processing
When a test suite is provided in source form, tcc is able to build executable files from the source
code of each test case. There is no requirement that test suites be provided in source form.
Therefore, use of build functionality is optional.

In build mode, tcc builds each test case in the specified scenario. In Distributed TETware it is
possible to specify that processing takes place on more than one system at once.

March 2003 Page 13
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

The processing is as follows:

1. tcc delivers a Build Start message to the journal.

2. tcc obtains exclusive locks in the source and execution directories of the test case. In
Distributed TETware these locks are obtained on each participating system.

3. In Distributed TETware, if TET_TRANSFER_SOURCE_FILES is true, tcc copies files
to remote systems according to the entries specified in an instruction file.

4. If a TET_PREBUILD_TOOL is specified in the build mode configuration, tcc executes
the prebuild tool in the test case source directory with arguments of
TET_PREBUILD_FILE and the name of the test case, with output capture mode enabled.
If the prebuild tool cannot be executed or returns a non-zero exit status, subsequent actions
are not performed and processing resumes with the execution of the build fail tool as
described below. In Distributed TETware, when more than one system is specified, the
prebuild tool is only executed on the master system (that is: the first system mentioned in
the system list).

5. tcc executes the build tool in the source directory of the test case with arguments of
TET_BUILD_FILE and, if TET_PASS_TC_NAME is true, the name of the test case. If
TET_OUTPUT_CAPTURE is true, the build tool is executed with output capture mode
enabled. If the build tool cannot be executed, subsequent actions are not performed and
processing resumes with the execution of the build fail tool as described below. In
Distributed TETware the build tool is executed on each participating system.

6. If output capture mode is enabled, tcc transfers captured output to the journal file. If
TET_API_COMPLIANT is true, tcc re-orders and copies the contents of the results file to
the journal in the same way as it does when executing an API-conforming test case. In
Distributed TETware captured output and the results file contents are gathered from each
participating system and entered in the journal on the local system.

7. If the exit status of the build tool is non-zero or TET_API_COMPLIANT is true and the
build tool did not report a PASS result, the build is considered to have failed and, if
execute mode has been selected, arrangements are made not to process the test case in
execute mode. If the build failed and a TET_BUILD_FAIL_TOOL is specified in the
build mode configuration, tcc executes the build fail tool in the test case source directory
with arguments of TET_BUILD_FAIL_FILE and the name of the test case, with output
capture mode enabled. In Distributed TETware the build fail tool is executed on each
system if the build operation failed on any of the participating systems.

8. tcc removes the locks obtained in the lock stage. In Distributed TETware locks are
removed on each participating system.

9. tcc writes a Build End message to the journal.

Page 14 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

The following diagram illustrates how tcc processes a test case in build mode:

Start
������������

������������

Lock
������������

������������

TET_TRANSFER_SOURCE_FILES?

TSF
OK?

TET_PREBUILD_TOOL?

Prebuild
������������

������������

Build
Yes���������������� Prebuild

OK?

Build
exec OK?

Journal
������������

������������

Build
OK?

TET_BUILD_FAIL_TOOL?

Build Fail
������������

������������

Unlock
������������

������������

End
������������

������������

������������

������������

False

��
�
�
�
�
�
�
�
�

True

Yes

Not defined

��
�
�
�
�

Yes

Yes
�
�
�
�
�
�

Defined

No

�
�
�
�
�
�
�
�
�
�
�

No����������������������

No����������������������

Defined

Not defined������������

Transfer source files
��������������������

��������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���������

No

Figure 2. Test case processing in build mode

March 2003 Page 15
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

If the user has specified an alternate execution directory, tcc provides that information to the
build tool via a communication variable. The test suite author should ensure that the build tool
copies all the files that are required for test case execution to the alternate execution directory.

3.5 Execute mode processing
In execute mode, tcc executes each test case in the specified scenario.

In Distributed TETware it is possible to execute instances of a non-distributed test case on more
than one system at once, or co-operating parts of a distributed test cases on more than one system
at once.

The processing is as follows:

1. tcc writes a Test Case Start message to the journal.

2. tcc obtains a lock in the test case execution directory. If TET_EXEC_IN_PLACE is
false, the lock is shared; otherwise, the lock is exclusive. In Distributed TETware locks are
obtained on each participating system.

3. If TET_EXEC_IN_PLACE is false, tcc creates a temporary directory in which execution
can safely be performed, and copies the test case execution directory subtree to the location
below the temporary directory. In Distributed TETware temporary directories are created
and test case files are copied on each participating system.

4. If TET_EXEC_IN_PLACE is false, tcc removes the lock obtained in the lock stage. In
Distributed TETware locks are removed on each participating system.

5. If TET_API_COMPLIANT is false, tcc writes the TCM Start, IC Start and TP Start
messages to the journal that would have been written by an API-conforming test case or
tool.

6. If TET_EXEC_TOOL is defined, tcc executes the exec tool with TET_EXEC_FILE, the
test case name and the numbers of the invocable components to be executed as arguments;
otherwise, tcc executes the test case directly with the numbers of the invocable
components to execute as arguments. If TET_EXEC_IN_PLACE is true, this execution
takes place in the test case execution directory; otherwise, execution takes place in the
temporary directory. If TET_OUTPUT_CAPTURE is true, execution takes place with
output capture mode enabled. In Distributed TETware execution takes place on each
participating system.

7. If output capture mode is enabled, tcc transfers captured output to the journal file. If
TET_API_COMPLIANT is true, tcc re-orders and copies the contents of the results file to
the journal. If any test purpose has not generated a result, tcc supplies a result of
NORESULT. If TET_API_COMPLIANT is false, tcc generates a TP Result line based on
the exit status of the test case or exec tool, together with the IC End line that would have
been generated by an API-conforming test case or tool.

In Distributed TETware, captured output and the results file contents are gathered from
each participating system and entered in the journal on the local system. When Distributed
TETware executes a non-distributed test case on more than one system, results file contents
from each system are re-ordered separately and entered in the journal file in turn. When
Distributed TETware executes an API-conforming distributed test case, results file contents
are not re-ordered; instead, results file contents other than results lines are entered in the
journal file in chronological order. A single consolidated result line is generated for each

Page 16 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

test purpose by arbitrating between the partial result lines gathered from each system and is
entered in the journal.

8. tcc copies each of the files specified by TET_SAVE_FILES to the saved files directory
hierarchy. In Distributed TETware, if TET_TRANSFER_SAVE_FILES is false, files are
copied to the saved files directory hierarchy on each participating system. However, if
TET_TRANSFER_SAVE_FILES is true, files are copied from each system to a per-
system saved files directory hierarchy on the local system. Different values of
TET_TRANSFER_SAVE_FILES may be specified for each remote system if required.

9. If TET_EXEC_IN_PLACE is true, tcc removes the lock obtained in the lock stage. In
Distributed TETware locks are removed on each participating system.

10. If TET_EXEC_IN_PLACE is false, tcc removes the temporary execution directory.

11. tcc writes a Test Case End message to the journal.

March 2003 Page 17
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

The following diagram illustrates how tcc processes a test case in execute mode:

Start
������������

������������

Lock
������������

������������

TET_EXEC_IN_PLACE?

Copy
������������

������������

Unlock
������������

������������

Exec
������������

������������

Exec
OK?

Journal
������������

������������

Save files
������������

������������

TET_EXEC_IN_PLACE?

Unlock
������������

������������

End
������������

������������

True

�
�
�
�
�
�
�
�
�

False

Yes

False

�
�
�
�
�

No

�
�
�
�
�
�
�
�
�
�
�
�
�
�

True��������������

Figure 3. Test case processing in execute mode

Page 18 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

3.6 Clean mode processing
Users can request tcc to remove unwanted files following test processing sessions. Clean mode
processing does not affect the results of previous test runs.

In clean mode, tcc cleans up each test case in the chosen scenario. In Distributed TETware it is
possible to specify that processing takes place on more than one system at once.

The processing is as follows:

1. tcc writes a Clean Start message to the journal.

2. tcc obtains exclusive locks in the source and execution directories of the test case. In
Distributed TETware these locks are obtained on each participating system.

3. tcc executes the clean tool in the source directory of the test case with arguments of
TET_CLEAN_FILE and, if TET_PASS_TC_NAME is true, the name of the test case. If
TET_OUTPUT_CAPTURE is true, the clean tool is executed with output capture mode
enabled. In Distributed TETware the clean tool is executed on each participating system.

4. If output capture mode is enabled, tcc transfers captured output to the journal file. If
TET_API_COMPLIANT is true, tcc re-orders and copies the contents of the results file to
the journal in the same way as it does when executing an API-conforming test case. In
Distributed TETware captured output and the results file contents are gathered from each
participating system and entered in the journal on the local system.

5. tcc removes the locks obtained in the lock stage. In Distributed TETware locks are
removed on each participating system.

6. tcc writes a Clean End message to the journal.

March 2003 Page 19
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

The following diagram illustrates how tcc processes a test case in clean mode:

Start
������������

������������

Lock
������������

������������

Clean
������������

������������

Clean
exec OK?

Journal
������������

������������

Unlock
������������

������������

End
������������

������������

Yes No

�
�
�
�
�

Figure 4. Test case processing in clean mode

3.7 Rerun and resume processing

3.7.1 Introduction
In addition to the normal processing described previously, tcc can rerun or resume processing of
a previous test run. When you invoke tcc with the rerun or resume options, you specify the
name of the scenario and journal file from the previous run, and a list of operation modes and/or
test purpose result codes which are used to select test cases for re-processing.

When either of these options are specified, tcc uses the list of operation modes specified with
the option to select test cases for re-processing. However, the selected test cases are always
reprocessed according to the modes of operation selected for the current test run.

When tcc is invoked in rerun or resume mode, it extracts the command-line options used for the
previous test run that were recorded in the old journal file. If the −y or −n options were used to
select or reject particular test cases during the previous run, test cases that were not selected are
removed from the scenario before the processing described below is performed. Then, after this
processing is performed, test cases that are not selected as a result of any −y or −n options
specified for the current test run are removed from the scenario before it is processed.

Page 20 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

3.7.2 Resume processing

3.7.2.1 Description

When tcc is invoked with the resume option it analyses the old journal file, searching for result
codes and/or completion statuses that match one of a user supplied set. The first such result code
or completion status that is found identifies the resume point in the scenario.

When tcc finds the resume point as a result of searching the old journal file, it stores certain
parameters which are used to identify the resume point when tcc processes the scenario, as
follows:

1. The resume point is identified by a particular test case that is to be processed in a particular
mode in the chosen scenario.

2. If the scenario is to be resumed at a particular test case in execute mode, the resume point
is further identified by a particular IC number within that test case.

3. If the scenario is to be resumed at a particular IC in execute mode and the test case which
contains this IC is within the scope of one or more looping directives,6 the resume point is
further identified by the iteration counts of each of the enclosing looping directives.

When tcc is invoked in resume mode, it steps through the scenario without processing any test
cases until the resume point is found. Once the resume point is found, tcc processes the rest of
the scenario according to the selected modes of operation in the usual way.

When you invoke tcc with the resume option, you specify the search criteria as a (comma-
separated) list of result code names and operation mode key letters which select test cases as
follows:
��

List element Journal lines matched��
result-code-name Test Purpose Result lines giving execution results (not build or clean

results) with the equivalent result code number.��
b Build End lines which contain a non-zero completion status; and, Test

Purpose Result lines giving build results with any non-zero result code
number.��

e Test Case End lines which contain a non-zero completion status; and,
Test Purpose Result lines giving execution results with any non-zero
result code number.��

c Clean End lines which contain a non-zero completion status; and, Test
Purpose Result lines giving clean results with any non-zero result code
number.��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

The names of test cases which occur before the resume point (and are therefore no longer
required) are removed from the scenario once the resume point has been identified.

����������������
6. These directives are: the repeat and timed_loop directives.

March 2003 Page 21
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

When you invoke tcc with the resume option, you must select the same modes of operation that
were selected for the previous test run. It is not possible to resume processing of a scenario using
an old journal file that was itself produced by a previous invocation of tcc with the resume
option.

3.7.2.2 Processing a parallel directive in resume mode

If the resume point is found within the scope of a parallel directive, the resume point is
moved back to the start of the parallel directive. When ETET compatibility mode is in effect
it is possible for a resume point to be within the scope of several parallel directives; in this
case the resume point is moved to the start of the outermost enclosing parallel directive. It
follows, therefore, that if an entire scenario consists of sequences of test cases that are executed in
parallel, there is no benefit to be gained by processing the scenario in resume mode since any
resume point that is identified is moved back to the start of the scenario.

3.7.2.3 Processing a random directive in resume mode

If the resume point is found within the scope of a random directive, the resume point is moved
back to the start of that random directive. However, it should be understood that the test case
selection which takes place when tcc processes a random directive in execute mode is, by
definition, random. Thus it is unlikely that tcc will make the same selections after the resume
point has been found as the selections that were made during the previous test run.

3.7.2.4 Processing a timed_loop directive in resume mode

When tcc analyses the old journal file in resume mode, it records the number of times that a
timed loop starts in execute mode before the resume point is found.

When tcc processes a timed_loop directive in execute mode, it performs a test before the
start of each loop iteration to determine whether or not the loop should be restarted. Ordinarily
this test only compares the loop processing time against the time specified with the directive.

However, if this is the only test that is performed before the resume point is found, the possibility
exists that a timed loop might iterate a very large number of times before the specified time
expires, causing the system to thrash and creating a huge volume of unnecessary journal output.
In order to prevent this, the test that is performed before the start of each loop iteration when the
resume option is selected and the resume point has not yet been found also checks to ensure that
the loop iteration count is less than the count which is derived from the old journal file.

3.7.3 Rerun processing

3.7.3.1 Description

The operation of tcc when the rerun option is specified is similar to that of the resume option
with the exception that only invocable components with result codes matching one of the user
supplied set will be processed according to the selected mode of operation.

The names of test cases which are not selected by the rerun option are removed from the scenario
once all the test cases which are to be rerun have been identified.

When you invoke tcc with the rerun option, you need not select the same modes of operation
that were selected for the previous test run. It is possible to rerun a scenario using an old journal
file that was itself produced by a previous invocation of tcc with the resume or rerun option.

Page 22 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

3.7.3.2 Processing a random directive in rerun mode

As indicated previously, after tcc has identified the test cases that must be reprocessed in rerun
mode, it removes all the other test case names from the chosen scenario. This means that only
test cases that match the rerun selection criteria remain within the scope of a random directive.

Thus, when tcc chooses a test case for processing in execute mode from the test cases within the
scope of a random directive, the choice is made from the set of test cases that match the
selection criteria. However, because the choice is made at random, it should be understood that it
is unlikely that tcc will choose the same test case when processing a particular instance of the
random directive as was chosen in the previous test run.

3.7.3.3 Processing a timed_loop directive in rerun mode

When tcc analyses the old journal file in rerun mode, it records the number of times that a timed
loop starts in execute mode.

The way that tcc processes a timed_loop directive in rerun mode is similar to that described
above for resume mode. However, the difference is that the test performed before the start of
each loop iteration in execute mode always takes account of both the loop execution time and the
loop iteration count.

3.8 Communication variables
tcc must be able to communicate with the other tools it executes (build tool, clean tool, exec
tool, and the test cases). tcc does this by using communication variables. Communication
variables are environment variables, so environment variables starting with TET_ are reserved
for use by TETware. The communication variables defined include:

TET_ACTIVITY

The number of activities performed thus far by the TCC. Activities include
executions of build tool, clean tool, exec tool, and test cases.

TET_CODE The path name of the current result code definition file.

TET_CONFIG

The path name of the current configuration variable file.

TET_EXECUTE

The path name of the top of the alternate execution directory hierarchy if one has
been specified.

TET_ROOT The path name of the TETware root directory.

TET_RUN The path name of the runtime directory if one has been specified.

TET_SUITE_ROOT

The path name of the alternate location in which test suite root directories reside,
if one has been specified.

March 2003 Page 23
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

3.9 Journal entries
tcc manages updates to the journal file. Upon completion of a test case build, execution or
clean, the results are transferred from a temporary file into the journal file. During this transfer,
tcc ensures that each executed test purpose generated one (and only one) result.

When tcc processes sequences of test cases in parallel or on remote systems, it needs to
maintain one (temporary) journal file for each test case sequence. tcc only updates the main
journal file when it has finished processing all such test case sequences. In the extreme case,
where a whole scenario appears within the scope of a :parallel: or a :remote: directive,
tcc only updates the main journal when it has finished processing the scenario.

The way in which tcc processes an execution results file is described in the section entitled
‘‘Result file processing’’ elsewhere in this guide.

3.10 Locking
tcc employs a locking system which prevents concurrently executing TCCs from interfering
with each other’s processing of test cases. In the following description, ‘‘execution directory’’
means the execution directory under the alternate execution directory hierarchy if one is in use,
otherwise the source directory. The discussion applies equally to master and slave systems.

In build and clean modes, tcc obtains an exclusive lock in both the source and alternate
execution directories as follows:

� A file tet_lock is created in the source directory, using an atomic operation which will
fail if a file or directory of that name already exists. If the file cannot be created the locking
operation fails.

� If an alternate execution directory hierarchy is in use, a file tet_lock is created in the
execution directory in the same manner. If the file cannot be created, the lock is removed
from the source directory and the locking operation fails.

When the build or clean has completed the lock files are removed; first from the alternate
execution directory if there is one, then from the source directory.

In execute mode with TET_EXEC_IN_PLACE true, tcc obtains an exclusive lock in the
execution directory using the same method as for build mode.

In execute mode with TET_EXEC_IN_PLACE false, tcc obtains a shared lock in the execution
directory as follows:

� A directory tet_lock is created in the execution directory, with read and write
permission for all users, using an atomic operation which will fail if a file or directory of
that name already exists. If the directory cannot be created because a plain file exists, the
locking operation fails. If the directory cannot be created because a directory already
exists, the failure is ignored.

� A unique file is created in the directory tet_lock. If the file cannot be created because
tet_lock either does not exist or is a plain file, then the locking attempt is re-started.

When the execute has completed the lock is removed as follows:

� The file created when the lock was obtained is removed from the tet_lock directory.

� The tet_lock directory is removed, using an operation which will fail if the directory is
not empty. Failure of this operation is ignored.

Page 24 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

3.11 Transferring source files to remote systems
When the Distributed tcc processes a test case in build mode and the
TET_TRANSFER_SOURCE_FILES build mode configuration variable is true, tcc copies files
from the local system to one or more remote systems. When tcc does this, it looks for an
instruction file named tet_transfer_source_files, first in the test case source directory
and then in the test suite root directory.

Each entry in the instruction file contains:

� The name of a file or directory to be copied from the test case source directory on the local
system to one or more remote systems.

� The name of a directory on the remote system, relative to the test case source directory on
that system, to which the file or directory should be copied.

� The remote system(s) to which the file or directory should be copied.

� A set of options describing how the copy should be done.

Normally, tcc only copies a file from the local system to a remote system if the file does not
exist on the remote system or if the file on the local system is newer than the file on the remote
system. However, an option can be specified in the instruction file that causes tcc to perform
the copy unconditionally.

The format of the file transfer instruction file is described in the section entitled ‘‘Source file
transfer instructions’’ elsewhere in this guide.

3.12 Using tcc to process a test suite on a read-only file
system

When tcc processes a test suite which resides on a read-only file system, it is unable to obtain
the locks described in the previous section. However, if an attempt to obtain a lock fails because
the file system is read-only, tcc ignores the failure. Thus, it is possible to use tcc to process a
test suite which is provided on a read-only file system. It is possible that such a file system might
be mounted read-only from a central file server or might reside on a read-only medium such as a
CD ROM.

If the read-only file system contains only source files, tcc must first copy the test suite source
files to a runtime directory and build the test suite there before it can be executed. The TET_RUN
environment variable may be used to instruct tcc to perform this operation. In Distributed
TETware the TET_REMnnn_TET_RUN distributed configuration variables may be used to
specify runtime directories on remote systems.

If the read-only file system contains executable test suite files, the TET_RUN environment
variable may be used in the same way as for a test suite provided in source form. Alternatively,
when there are no remote systems the TET_TMP_DIR environment variable may be used to
specify a temporary directory location on a writable file store and the test suite can be processed
in execute mode with the TET_EXEC_IN_PLACE configuration variable set to False. When
this is done it is necessary to invoke tcc with the -i option to specify an alternate location for
the results directory.

March 2003 Page 25
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Page 26 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

4. The scenario file

4.1 Introduction
When tcc processes test cases, it does so by reading instructions contained in a test scenario.
Each test suite should include a scenario file which contains one or more test scenarios. This
chapter describes the format of the scenario file and the language that is used to specify a test
scenario.

When you invoke tcc, one of the parameters that you can supply is the name of the scenario to
process. If you do not specify this parameter, tcc processes a scenario called all.
Alternatively you can specify a simple test scenario independent of any scenario file by means of
one or more −l command-line options.

4.2 The scenario language

4.2.1 Introduction
A scenario consists of a sequence of elements. In most cases each element is separated from the
next by white space. However, in certain cases, it is possible for two elements to appear together
without being separated by white space. When this is done, the second element is said to be
attached to the first one; the significance of this type of construct is described in a later section.

The first element in the scenario is the scenario name. Subsequent elements in the scenario are
directives and simple elements.

A summary of the scenario language is presented in the appendix entitled ‘‘Scenario language
syntax summary’’ at the end of this guide.

4.2.2 Scenario lines
Conceptually, a scenario consists of a sequence of elements on a single line. However, in
practice it is usually necessary to divide up the elements over several lines in order to limit each
line to a manageable length. tcc silently imposes a maximum length of 1024 characters
(including the newline) on a single physical line read from the scenario file. However, the
number of elements that can appear in a scenario and the number of scenarios that may be
specified in a scenario file are limited only by the amount of memory that is available to tcc.

The start of a scenario is indicated when an element appears at the start of a line. Continuation
lines are indicated by placing white space at the start of each line. A comment is introduced by a
character and continues until the end of the line. Blank lines and comments are ignored.

For example, the following scenario:

scenario-name element1 element2 . . .

is identical in meaning to:

scenario-name
element1

element2

. . .

When continuation lines are used in a scenario, it should be understood that the newline character
which ends each line is regarded as part of the white space which separates one scenario element

March 2003 Page 27
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

from the next. Therefore it is not possible to split an individual element over more than one line
by using continuation lines.

4.2.3 The scenario name
The first element in the scenario is the scenario name. A scenario name may contain between 1
and 31 characters. Characters in the scenario name are taken from the POSIX portable character
set. The first character in the name may be an alphabetic character or a _ character (an
underscore). Each of the other characters in the name may be an alphanumeric character or one
of the _-./ characters (an underscore, a hyphen, a period and a forward slash).

4.2.4 Simple scenario elements

4.2.4.1 Introduction

Each simple scenario element is complete in itself and has no effect on other elements in the
scenario.

When reading the descriptions that follow, it should be understood that a scenario directive is
anything between a pair of : characters.

For example:

:directive:

In addition, each reference to a directive in these descriptions applies equally to a directive
group. The meanings of the directives themselves and the concept of a directive group are
described in later sections in this chapter.

All the simple elements are supported in both TETware-Lite and Distributed TETware. The
simple scenario elements are described in the following sections.

4.2.4.2 Scenario information line

A scenario information line is a text string enclosed by a pair of " characters (double quotes).

For example:

"this is a scenario information line"

When tcc processes a scenario information line, it simply prints the string (including the double
quotes) to the journal.

A scenario information line is treated as a single scenario element; therefore it cannot be split
over more than one line by using continuation lines. A scenario information line is the only
simple scenario element which may contain embedded spaces.

4.2.4.3 Test case name

A test case name may appear by itself or may be attached to a directive. When a test case name
appears by itself, it starts with a / character.

For example:

/test-case-name

Page 28 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

When a test case name is attached to a directive, it starts with a @/ sequence.7 There must be no
space between the directive’s terminating : character and the @ character.

For example:

:directive:@/test-case-name

A test case name may have an optional list of invocable components (or IC list) associated with
it. When an IC list is specified, it is enclosed between { and } characters and attached to the end
of the test case name. There must be no space between the test case name and the IC list.

For example:

/test-case-name{ic-list}

or:

:directive:@/test-case-name{ic-list}

An IC list consists of one or more numbers or number ranges. Each number or number range is
separated from the next by a , character (a comma). A number range consists of two numbers
separated by a − character (a hyphen). A number in the IC list refers to a single invocable
component in the test case. A number range refers to a range of invocable components in the test
case. An IC list must not contain embedded spaces.

When a test case name appears in a scenario, tcc processes the test case according to the
selected modes of operation. When tcc processes a test case name with an IC list in execute
mode, it passes the IC list as an argument to the test case or exec tool. When the TCM receives
the IC list argument, it only calls the invocable components that are specified in the list. When
no IC list argument is specified, the TCM calls all the invocable components in the list.

For example, if a test case is specified in the scenario as:

/test-case-name{2,4,7−10}

tcc passes an argument of 2,4,7−10 when it executes the test case. This argument instructs
the TCM to call only the user-supplied test purpose functions specified by invocable component
numbers 2, 4, 7, 8, 9 and 10. The TCM prints a diagnostic if an invocable component specified
explicitly in the IC list is not defined in the test case.

A test case name is always interpreted relative to the test suite root directory.

4.2.4.4 Referenced scenario name

The name of another scenario (also known as a referenced scenario name). A referenced
scenario name may appear by itself or may be attached to a directive. In each case the scenario
name starts with a ˆ character.

����������������
7. Note that the @ character is used to distinguish between the attached /test-case-name described here and the

attached /file-name that is described in a later section.

March 2003 Page 29
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

For example:

ˆscenario-name

or:

:directive:ˆscenario-name

When a referenced scenario name appears by itself, tcc processes each of the elements
contained in the named scenario as if they had appeared where scenario-name appears.

When a referenced scenario name is attached to a directive, tcc processes each of the elements
contained in the named scenario within the scope of the directive to which the scenario-name is
attached.

4.2.4.5 File name

The name of a file which contains a list of test case names (also known as an include file name).

A file name is always attached to a directive and starts with a / character.

For example:

:directive:/file-name

Note that there is no space between the directive’s terminating : character and the / character.

The named file should contain a list of test case names and/or scenario information lines, one per
line. Lines in the file should not contain directives or referenced scenario names. Leading white
space on a line is permitted but ignored. Comments in the file are introduced with a # character
and end at the end of the line. Blank lines in the file and comments are ignored.

An include file is used to associate a list of test case names and/or scenario information lines with
a particular directive. When a file name appears in a scenario, tcc processes each test case and
scenario information line listed in the file within the scope of the directive to which the file name
is attached, according to the selected modes of operation. A file name is always interpreted
relative to the test suite root directory.

4.2.5 Scenario directives

4.2.5.1 Introduction

A directive is a scenario element which has scope. It affects the way in which tcc processes
other elements within its scope.

Each directive is enclosed between a pair of : characters, thus:

:directive:

A directive may have one or more parameters associated with it. Parameters also appear within
the pair of : characters and are separated from the directive keyword and each other by a ,
character (a comma), thus:

:directive,parameter. . .:

A directive may have a simple scenario element attached to it. An attached element appears
immediately after the : character which ends the directive, thus:

:directive:attached-element

Page 30 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

There must be no space between the directive’s terminating : character and the attached
element.

When a directive has a simple element attached to it, the attached element is processed within the
scope of the directive. Subsequent elements in the scenario are not processed within the scope of
the directive.

When a directive does not have an element attached to it, there must be a matching end directive
at some point before the end of the scenario. All the scenario elements between the directive and
its matching end directive are processed within the scope of the directive. The end directive
keyword is formed by prefixing the directive keyword with end, thus:

:enddirective:

An end directive does not take parameters or have an element attached to it.

Directives may be nested; that is: one directive may appear within the scope of another directive.
There are rules which determine whether or not a particular directive may appear within another
directive’s scope. These rules are presented in the section entitled ‘‘Directive nesting rules’’ later
in this chapter.

Some directives are supported in both TETware-Lite and Distributed TETware, whereas others
are supported only in Distributed TETware. The scenario directives are described in the
following sections.

4.2.5.2 repeat − process scenario elements a specified number of times

Synopsis
:repeat[,count]:

element
. . .

:endrepeat:

or:

:repeat[,count]:@/test-case-name

or:

:repeat[,count]:/file-name

or:

:repeat[,count]:ˆscenario-name

Description
The repeat directive is processed by tcc as follows:

� If build mode has been selected, tcc processes the sequence of elements within the scope
of the repeat directive once in build mode.

� Then, if execute mode has been selected, tcc processes the sequence of elements within
the scope of the repeat directive count times in execute mode.

� Finally, if clean mode has been selected, tcc processes the sequence of elements within
the scope of the repeat directive once in clean mode.

If count is specified, it should be a positive number. If count is not specified, it defaults to 1.

March 2003 Page 31
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

4.2.5.3 timed_loop − process scenario elements until a specified period of time
expires

Synopsis
:timed_loop,seconds:

element
. . .

:endtimed_loop:

or:

:timed_loop,seconds:@/test-case-name

or:

:timed_loop,seconds:/file-name

or:

:timed_loop,seconds:ˆscenario-name

Description
The timed_loop directive is processed by tcc as follows:

� If build mode has been selected, tcc processes the sequence of elements within the scope
of the timed_loop directive once in build mode.

� Then, if execute mode has been selected, tcc performs a test before processing the
sequence of elements within the scope of the timed_loop directive in execute mode.
The sequence of elements is processed repeatedly until the test fails.

Normally the test performed fails if the time specified by the seconds parameter has
expired. However, when tcc is invoked with the rerun option, or before the resume point
is found when tcc is invoked with the resume option, the test fails if the time specified by
the seconds parameter has expired or the sequence of elements has already been processed
as many times as the same sequence was processed in the course of the test session
recorded in the old journal file.

� Finally, if clean mode has been selected, tcc processes the sequence of elements within
the scope of the timed_loop directive once in clean mode.

The seconds parameter must be a positive number.

Warning
When tcc processes a timed_loop directive in execute mode, it ensures that the directive’s
scope contains at least one test case to execute. However, it is possible for the duration of each
loop iteration to be shorter than expected; for example, if some problem prevents one or more test
cases from executing for as long as anticipated (or at all). When this happens it is possible for
tcc to generate huge volumes of journal output while waiting for the specified period of time to
expire.

Therefore it is recommended that the timed_loop directive should only be introduced into a
scenario once it is known that test cases in the scenario are working correctly.

Page 32 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

4.2.5.4 random − process a test case selected at random

Synopsis
:random:

element
. . .

:endrandom:

or:

:random:@/test-case-name

or:

:random:/file-name

or:

:random:ˆscenario-name

Description
The way in which tcc processes the random directive depends on which modes of operation
have been selected and whether or not this directive appears within the scope of a looping
directive,8 as follows:

� When execute mode has not been selected and the random directive is not within the
scope of a looping directive:

— tcc processes each of the elements within the scope of the random directive in
build and/or clean mode according to the selected mode(s) of operation.

� When execute mode has not been selected and the random directive is within the scope of
a looping directive:

— If build mode has been selected, tcc processes each of the elements within the
scope of the random directive in build mode.

— Then, if clean mode has been selected, tcc processes each of the elements within
the scope of the random directive in clean mode.

� When execute mode has been selected and the random directive is not within the scope of
a looping directive:

— tcc selects a test case at random from within the scope of the random directive and
builds and/or executes and/or cleans the test case according to the selected mode(s)
of operation.

� When execute mode has been selected and the random directive is within the scope of at
least one looping directive:

— If build mode has been selected, tcc processes each of the elements within the
scope of the random directive in build mode.

����������������
8. The looping directives are: the repeat and timed_loop directives.

March 2003 Page 33
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

— Then, if execute mode has been selected:

� For each iteration of each enclosing looping directive, tcc selects a test case
at random from within the scope of the random directive and executes it.

— Finally, if clean mode has been selected, tcc processes each of the elements within
the scope of the random directive in clean mode.

It can be seen from this description that when tcc processes all the elements within the scope of
a random directive, both test cases and scenario information lines are processed. However,
when tcc processes a randomly selected element within the scope of a random directive, the
selection is made only from test case elements. Therefore, scenario information lines are not
processed when elements are selected at random.

When considering the operation of the random directive when tcc is invoked with the rerun or
resume options, it should be understood that the selection of a single test case from within the
scope of a random directive is, by definition, random. Therefore, when tcc is invoked with
either of these options, it is likely that a different test case to the one selected in the previous run
will be selected in the current tcc invocation.

When tcc is invoked with the rerun option and must select a test case at random, it selects the
test case from the set of test cases within the scope of the random directive that are identified by
the rerun options and not from the set that appears in the scenario file. Therefore, the chance of
any particular test case being selected in the current invocation is at least as great as it was in the
previous tcc run.

Likewise, when tcc is invoked with the resume option and identifies the resume point within the
scope of a random directive, it moves the resume point to the start of the random directive
before processing the scenario in the current invocation. Therefore, although the same test case
may not be selected from within the scope of the random directive after the resume point has
been found as was selected in the previous tcc run, the chance of a particular test case being
selected in the current invocation is the same as it was in the previous tcc run.

4.2.5.5 parallel − process scenario elements in parallel

Synopsis
:parallel[,count]:

element
. . .

:endparallel:

or:

:parallel[,count]:@/test-case-name

or:

:parallel[,count]:/file-name

or:

:parallel[,count]:ˆscenario-name

Page 34 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

Compatibility with previous TET implementations
Previous TET implementations have processed the parallel directive in different ways.

In dTET2, a parallel directive may not enclose a remote or another parallel directive
within its scope, and the timed_loop and random directives and referenced scenario names
are not supported. All the elements within the scope of a parallel directive are processed in
parallel; that is, processing of each element starts at the same time.9

In ETET, a parallel directive may enclose other directives and referenced scenario names
within its scope. Elements of these types that appear immediately below a parallel directive
are not truly processed in parallel; instead, for each element below a parallel directive the
ETET tcc forks a child to process the element. Thus, if an element other than a simple scenario
element appears below a parallel directive, the child processes these subordinate elements in
sequence. However, all the child processes thus created themselves execute in parallel.

When a directive or referenced scenario name appears within the scope of a parallel directive
in a context which might be processed differently in previous TET implementations, TETware
uses the TET_COMPAT configuration variable to resolve the ambiguity in order to provide
backwards compatibility with both of these implementations. There is no default value for
TET_COMPAT. Therefore, if tcc needs to refer to this variable when the variable is not defined,
it prints a diagnostic and exits.

When tcc operates in ETET compatibility mode and needs to process a sequence of scenario
elements within the scope of a parallel directive, it does so by inserting an implied
sequential directive at the head of the sequence. When tcc processes the scenario, it processes
the sequences thus defined in parallel; that is: processing of each sequence starts at the same time.
However, within each element sequence, processing of elements is sequential; that is: processing
of each successive element in the sequence starts as soon as processing of the previous element
has finished. This strategy enables TETware to provide ETET compatibility even on operating
systems where the fork() system call — necessary for ETET’s support of the parallel
directive — is not implemented.

The way in which tcc processes elements within the scope of the parallel directive is
affected by the compatibility mode that is specified by the test suite author using the
TET_COMPAT configuration variable, as follows:

— When in ETET mode:

� An implied sequential directive is inserted between a parallel directive and a
subordinate repeat, timed_loop or random directive. Therefore these
directives are permitted to appear within the scope of a parallel directive.

� If a referenced scenario name appears immediately below a parallel directive,
the top level of the referenced scenario is searched for repeat, timed_loop and
random directives and other referenced scenario names. If one of these elements is
found, the referenced scenario name immediately below the parallel directive is
replaced by a copy of the referenced scenario. Then an implied sequential directive
is inserted between the parallel directive and each of the subordinate repeat,

����������������
9. In dTET2, when more than one mode of operation is selected, test cases may be built in parallel, then executed in

parallel, then cleaned in parallel, according to the selected modes of operation.

March 2003 Page 35
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

timed_loop and random directives and other referenced scenario names in the
copy of the referenced scenario.

— When in dTET2 mode:

� A repeat, timed_loop or random directive may not appear within the scope of
a parallel directive.

� Any number of referenced scenario names may appear within the scope of a
parallel directive, nested to any level, provided that the directive nesting rules
are not violated when the contents of each referenced scenario is interpolated.

Description
The parallel directive is processed by tcc as follows:

� If build mode has been selected, tcc processes in build mode a single copy of all the
elements (when in dTET2 mode) or sequences of elements (when in ETET mode) within
the scope of the parallel directive in parallel.

� Then, if execute mode has been selected, tcc processes in execute mode count copies of
all the elements (when in dTET2 mode) or sequences of elements (when in ETET mode)
within the scope of the parallel directive in parallel.

� Finally, if clean mode has been selected, tcc processes in clean mode a single copy of all
the elements (when in dTET2 mode) or sequences of elements (when in ETET mode)
within the scope of the parallel directive in parallel.

If count is specified, it should be a positive number. If count is not specified, it defaults to 1.

When tcc processes a test case, it may obtain locks in the test case source and execution
directories in order to prevent unwelcome interference between concurrent test case processing.
When tcc processes a parallel directive, it attempts to obtain all the locks that it needs at the
same time. Therefore, it is necessary for the test suite author to organise the test suite in such a
way that a locking conflict does not occur when test cases are processed in parallel. Usually this
organisation is best achieved by locating each test case in its own directory within the test suite
hierarchy.

When tcc is invoked with the resume option and identifies the resume point within the scope of
a parallel directive, the resume point is moved back to the start of the directive. In ETET
mode the use of implied sequential directives makes it possible for for a resume point to be found
within the scope of more than one parallel directives; in this case the resume point is moved
back to the start of the outermost enclosing parallel directive. A consequence of this is that if
an entire scenario is contained within the scope of a parallel directive, tcc cannot
effectively be invoked with the resume option to process such a scenario.

Page 36 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

4.2.5.6 group − process scenario elements in parallel

Synopsis
:group[,count]:

element
. . .

:endgroup:

or:

:group[,count]:@/test-case-name

or:

:group[,count]:/file-name

or:

:group[,count]:ˆscenario-name

Description
The group directive operates in the same way as does the parallel directive. This directive
is supported only for compatibility with previous TET implementations and should not be used in
new test cases.

4.2.5.7 remote − process test cases on remote systems

Synopsis
:remote,system-specifier . . .:

element
. . .

:endremote:

or:

:remote,system-specifier . . .:@/test-case-name

or:

:remote,system-specifier . . .:/file-name

or:

:remote,system-specifier . . .:ˆscenario-name

Description
The remote directive is not supported by TETware-Lite.

In Distributed TETware, tcc processes test cases within the scope of the remote directive on
the systems specified by the system-specifier parameters. Each system-specifier should consist of
a system ID or a range of system IDs. A range of system IDs consists of two numbers separated
by a − character (a hyphen).

For example:

:remote,1,2,6-10:

is equivalent to:

:remote,1,2,6,7,8,9,10:

March 2003 Page 37
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

At least one system must be specified. A system ID of zero refers to the local system10 and other
positive system ID values refer to remote systems. The way that TETware maps system IDs to
machine names is described in the section entitled ‘‘System definitions’’ later in this guide.

When the local system is not specified, tcc processes test cases within the scope of a remote
directive as non-distributed test cases. When the local system is specified, tcc processes test
cases within the scope of a remote directive as distributed test cases. tcc supports the
processing of distributed test cases when the local system is specified only for backward
compatibility with dTET2. Authors of new test suites should use the distributed directive
to specify distributed test cases.

Distributed test cases must use an API which supports distributed testing; at present these are the
C, C++ and Java APIs in Distributed TETware. Non-distributed test cases may use any TETware
API or be non API-conforming test cases.

4.2.5.8 distributed − process distributed test cases

Synopsis
:distributed,system-specifier . . .:

element
. . .

:enddistributed:

or:

:distributed,system-specifier . . .:@/test-case-name

or:

:distributed,system-specifier . . .:/file-name

or:

:distributed,system-specifier . . .:ˆscenario-name

Description
The distributed directive is not supported by TETware-Lite.

In Distributed TETware, tcc processes test cases within the scope of the distributed
directive on the systems specified by the system-specifier parameters. Each system-specifier
should consist of a (numeric) system ID or a range of system IDs. A range of system IDs consists
of two numbers separated by a − character (a hyphen). For example:

:distributed,1,2,6-10:

is equivalent to:

:distributed,1,2,6,7,8,9,10:

At least one system must be specified. A system ID of zero refers to the local system and other
positive system ID values refer to remote systems. The way that TETware maps system IDs to
machine names is described in the section entitled ‘‘System definitions’’ later in this guide.

����������������
10. That is: the system on which tcc is invoked.

Page 38 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

tcc always processes test cases within the scope of a distributed directive as distributed
test cases. Thus it is possible to use this directive to specify a distributed test case which is
processed entirely on remote systems.

Distributed test cases must use an API which supports distributed testing; at present these are the
C, C++ and Java APIs in Distributed TETware. Test cases which use other TETware APIs and
non API-conforming test cases cannot be processed by TETware as distributed test cases.

4.2.5.9 include − process scenario elements listed in an include file

Synopsis
:include:/file-name

Description
The include directive is not a true directive in that it does not have scope; that is: it does not
affect the way in which tcc processes scenario elements in the named file. Instead it is provided
simply to enable test suite authors to specify a file containing certain types of simple scenario
element to be processed by tcc outside the scope of any directives.

Note that the rules that govern the format and contents of the file associated with the include
directive are the same as those which apply to include files associated with other directives.
These rules are presented in the section entitled ‘‘File name’’ earlier in this chapter.

This directive should not be confused with the %include keyword described later in this
chapter.

4.2.6 Directive groups
A directive group is constructed from two or more directives that are permitted by the scenario
language syntax to appear adjacent to each other in a test scenario.

A directive group is enclosed between a pair of : characters, and each directive is separated from
the next by a ; character, thus:

:directive1;directive2 . . .:

As with individual directives, a directive within a group may have parameters associated with it.

So, the complete formal syntax specification for a directive group which contains one or more
directives is as follows:

:directive[,parameter[,. . .]][;. . .]:

As with individual directives, a directive group may have a simple element attached to it, thus:

:directive1;directive2:attached-element

When this is done, the attached element is processed within the scope of all the directives in the
group.

When a directive group does not have an element attached to it, there must be matching end
directives in the correct order at some point before the end of the scenario. Often, each directive
in a group without an attached element will be matched by an end directive in another group.

March 2003 Page 39
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

For example:

:directive1;directive2:
element
. . .
:enddirective2;enddirective1:

Note that this example could also be written as follows:

:directive1:
:directive2:
element
. . .
:enddirective2:
:enddirective1:

or even on a single line, as follows:

:directive1;directive2: element . . . :enddirective2;enddirective1:

This format is particularly useful when specifying a simple scenario on the command-line by
means of the −l option to tcc.

4.2.7 Directive nesting rules
It is possible for a directive to appear within the scope of another directive. When this is done,
the directives are said to be nested. However, there are rules which limit the way in which
directives may be nested. These rules are defined in terms of whether or not a particular directive
may appear within the scope of another directive of the same or a different type.

These rules are complicated by the way in which the parallel directive is processed. This
processing is described in the section entitled ‘‘parallel − process scenario elements in
parallel’’ earlier in this chapter. In particular, this section describes how tcc may insert an
implied sequential directive in a scenario when processing the scenario in ETET compatibility
mode. The placement of these implied sequential directives is significant when the directive
nesting rules are interpreted by tcc.

The directive nesting rules are described in the following table:
���

Permitted directive combinations���
Outer directive���

remote and implied
timed_loop repeat random parallel

distributed sequential

Inner
directive

��
timed_loop OK OK Error Error OK OK���
repeat OK OK Error Error OK OK���
random OK OK Error Error OK OK���
parallel OK OK Error Error OK OK���
remote and
distributed

OK OK OK OK Error OK
���
implied
sequential

OK OK OK OK OK OK
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

When interpreting these rules it should be understood that the effect of an implied sequential
directive is to hide a parallel directive when directives are nested. That is: for the purposes
of these rules the scope of a parallel directive is considered to end when an implied

Page 40 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

sequential directive is encountered.

For example, it can be seen from the table above that the the rules do not permit a repeat
directive to appear within the scope of a parallel directive. When dTET2 compatibility mode
is in effect, tcc does not insert implied sequential directives into the scenario. Therefore, the
directive nesting rules are violated if a repeat directive appears within the scope of a
parallel directive.

However, when ETET compatibility mode is in effect and a repeat directive appears
immediately below a parallel directive, tcc inserts an implied sequential directive between
them. The effect of this is to exclude the repeat directive from the scope of the parallel
directive, and so the directive nesting rules are not violated.

4.3 Scenario file inclusion
If a line in the scenario file consists of

%include filename

the line will be replaced by the contents of filename when tcc reads the scenario file. The
%include keyword can appear anywhere in a scenario file but it must appear at the start of the
line. If filename is not an absolute path name, tcc interprets filename relative to the test suite
root directory.

Lines in filename may contain any valid scenario language syntax. The resulting scenario must
be syntactically correct after the contents of filename has been interpolated in the main scenario
file. %include keywords may be nested; that is: a scenario file included using %include may
itself contain one or more %include keywords.

The %include keyword is not valid in a scenario line specified using the −l command-line
option to tcc, neither is it valid in an include file that is specified using the :directive:/file-
name syntax. This keyword should not be confused with the :include: directive described
earlier in this chapter.

4.4 Example scenarios
This section contains some examples of the different ways in which simple elements and
directives can be used to define test scenarios. Alternative ways of defining the same scenario are
illustrated in some of the more simple examples.

A diagram is used to illustrate each example. Each diagram is presented as a simple flow chart in
which time advances from top to bottom.

March 2003 Page 41
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Example 1
In this scenario the named test cases are simply processed in sequence. One of the test cases has
a list of invocable components associated with it.

This scenario can be written in several ways as follows:

simple scenario example
all

"this is a simple scenario"
/ts/tc1{1-3,6}
/ts/tc2
/ts/tc3

or:

simple example using a referenced scenario name
all

ˆscen1

scen1
"this is a simple scenario"
/ts/tc1{1-3,6}
/ts/tc2
/ts/tc3

or:

simple example using an include file
all

:include:/ts/tclist

In this case the file test-suite-root/ts/tclist contains the following lines:

"this is a simple scenario"
/ts/tc1{1-3,6}
/ts/tc2
/ts/tc3

Page 42 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

The way in which tcc processes this scenario may be represented by the following diagram:

Start

/ts/tc1
��������������

��������������

/ts/tc2
��������������

��������������

/ts/tc3
��������������

��������������

End

Figure 5. Processing test cases in sequence

Example 2
In this scenario the named test cases are processed in parallel.

This scenario can be written in several ways as follows:

example of parallel processing
all

"these test cases are processed in parallel"
:parallel:
/ts/tc1/tc1
/ts/tc2/tc2
/ts/tc3/tc3
:endparallel:

or:

example of parallel processing using an attached element
all

"the test cases in scenario ’scen1’ are processed in parallel"
:parallel:ˆscen1

scen1
/ts/tc1/tc1
/ts/tc2/tc2
/ts/tc3/tc3

March 2003 Page 43
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

or:

another example of parallel processing using a referenced scenario name
all

"the test cases in scenario ’scen1’ are processed in parallel"
:parallel:
ˆscen1
:endparallel:

scen1
/ts/tc1/tc1
/ts/tc2/tc2
/ts/tc3/tc3

or:

example of parallel processing using an include file
all

"the test cases listed in the include file are processed in parallel"
:parallel:/ts/tclist

or:

another example of parallel processing using an include file
all

"the test cases listed in the include file are processed in parallel"
:parallel:
:include:/ts/tclist
:endparallel:

Note that the test suite is organised so that each test case resides in its own directory when a
parallel directive is used.

The way in which tcc processes this scenario may be represented by the following diagram:

Start

/ts/tc1/tc1
��������������

��������������
/ts/tc2/tc2
��������������

��������������
/ts/tc3/tc3
��������������

��������������

End

��
�
�
�

��
�
�
�

Figure 6. Processing test cases in parallel

Page 44 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

Example 3
In this example four instances of a single test case are executed at the same time. This scenario
must be processed with TET_EXEC_IN_PLACE set to False so as to ensure that each test case
instance executes in its own directory.

The scenario is defined as follows:

all
:parallel,4:@/ts/tc1

When tcc processes this scenario in build or clean mode, the test case is processed once.
However, when tcc processes this scenario in execute mode, four instances of the test case are
executed at the same time.

The way in which tcc processes this scenario in execute mode may be represented by the
following diagram:

Start

/ts/tc1
��������������

��������������
/ts/tc1

��������������

��������������
/ts/tc1

��������������

��������������
/ts/tc1

��������������

��������������

End

Figure 7. Processing multiple instances of a single test case in parallel

March 2003 Page 45
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Example 4
This example illustrates how tcc processes nested referenced scenario names within the scope of
a parallel directive differently in dTET2 and ETET compatibility modes.

The scenario is defined as follows:

all
:parallel:ˆscen1

scen1
/ts/tc1/tc1
ˆscen2

scen2
/ts/tc2/tc2
/ts/tc3/tc3

In dTET2 mode all the test cases are processed in parallel. In ETET mode the objects defined at
the top level of scen1 are processed in parallel. However, if an object expands to more than one
element (as is the case for the scenario reference ˆscen2), these elements are processed in
sequence.

The way in which tcc processes this scenario in dTET2 mode may be represented by the
following diagram:

Start

/ts/tc1/tc1
��������������

��������������
/ts/tc2/tc2
��������������

��������������
/ts/tc3/tc3
��������������

��������������

End

��
�
�
�

��
�
�
�

Figure 8. Processing referenced scenario elements in parallel when in dTET2 mode

Page 46 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

The way in which tcc processes this scenario in ETET mode may be represented by the
following diagram:

Start

/ts/tc1/tc1
��������������

��������������
/ts/tc2/tc2
��������������

��������������

/ts/tc3/tc3
��������������

��������������

End

�
�
�
�
�
�
�

Figure 9. Processing referenced scenario elements in parallel when in ETET mode

Example 5
In this example the named test cases are processed within the scope of a repeat directive.

The scenario is defined as follows:

all
:repeat,10:
/ts/tc1
/ts/tc2
/ts/tc3
:endrepeat:

When tcc processes this scenario in build or clean mode, the sequence of test cases is processed
once. However, when tcc processes this scenario in execute mode, the sequence of test cases is
executed 10 times.

March 2003 Page 47
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

The way in which tcc processes this scenario in execute mode may be represented by the
following diagram:

Start

Restart
loop?

Yes

/ts/tc1
��������������

��������������

/ts/tc2
��������������

��������������

/ts/tc3
��������������

��������������
���������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

No
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

End

��������������

Figure 10. Processing a repeat directive in execute mode

Example 6
In this example two instances of the list of test cases within the scope of a repeat directive are
processed in parallel.

The scenario is defined as follows:

all
:parallel,2;repeat,10:ˆscen1

scen1
/ts/tc1
/ts/tc2
/ts/tc3

Since this scenario contains a looping directive within the scope of a parallel directive, the
compatibility mode must be specified in order to enable tcc to interpret the scenario correctly.
When tcc reads this scenario in ETET mode, it inserts an implied sequential directive between
the parallel and repeat directives. However, no directives are added when tcc reads this
scenario in dTET2 mode. It can be seen that without the implied sequential directive the
directive nesting rules have been violated so tcc cannot process this scenario in dTET2 mode.

Note that since it is possible for more than one instance of a test case to execute at once,
TET_EXEC_IN_PLACE must be set to False when this scenario is executed, so as to ensure
that each test case instance executes in its own directory.

When tcc processes this scenario in build or clean mode, each test case in the list is processed
once in sequence. However, when tcc processes this scenario in execute mode, two sequences

Page 48 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

of test cases are initiated at the same time and each sequence is executed 10 times.

The way in which tcc processes this scenario in execute mode may be represented by the
following diagram:

Start

Restart
loop?

Yes

/ts/tc1
��������������

��������������

/ts/tc2
��������������

��������������

/ts/tc3
��������������

��������������
���������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

No
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

End

Restart
loop?

Yes

/ts/tc1
��������������

��������������

/ts/tc2
��������������

��������������

/ts/tc3
��������������

��������������
���������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

No
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 11. Processing repeat directives in parallel

Example 7
In this example two instances of a timed loop execute in parallel. In each loop a single test case
is chosen at random from the list of test cases. Each loop is repeated until its execution time has
exceeded 300 seconds.

The scenario may be defined as follows:

all
:parallel,2;timed_loop,300;random:ˆscen1

scen1
/ts/tc1
/ts/tc2
/ts/tc3

March 2003 Page 49
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

or as follows:

all
:parallel,2;timed_loop,300;random:
/ts/tc1
/ts/tc2
/ts/tc3
:endrandom;endtimed_loop;endparallel:

or as follows:

all
:parallel,2:
:timed_loop,300:
:random:
/ts/tc1
/ts/tc2
/ts/tc3
:endrandom:
:endtimed_loop:
:endparallel:

The versions of this scenario shown here illustrate how the same scenario may be written with or
without the use of directive groups.

Like the scenario in the previous example, this scenario must be processed in ETET mode and
with TET_EXEC_IN_PLACE set to False so as to ensure that each test case instance executes
in its own directory.

When tcc processes this scenario in build or clean mode, each test case in the list is processed
once in sequence. However, when tcc processes this scenario in execute mode, two instances of
the timed loop are initiated at the same time. Each timed loop instance iterates until 300 seconds
have expired. During each iteration of each loop instance, a single test case is selected at random
from the list and executed.

Page 50 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

The way in which tcc processes this scenario in execute mode may be represented by the
following diagram:

Start

Restart
loop?

Yes

Select one of:
/ts/tc1
/ts/tc2
/ts/tc3
at random�

�
�
�
�
�
�
��������������

�
�
�
�
�
�
���������������

����������������
�
�
�
�
�
�
�
�
�
�
�

No
��
�
�
�
�
�
�
�
�
�
�
�
�

End

Restart
loop?

Yes

Select one of:
/ts/tc1
/ts/tc2
/ts/tc3
at random�

�
�
�
�
�
�
��������������

�
�
�
�
�
�
���������������

����������������
�
�
�
�
�
�
�
�
�
�
�

No
��
�
�
�
�
�
�
�
�
�
�
�
�

Figure 12. Processing randomly selected test cases in parallel for a specified period of time

Example 8
In this example the named test cases are processed as non-distributed test cases on several remote
systems.

The scenario is defined as follows:

all
:remote,1,2:
/ts/tc1
/ts/tc2
/ts/tc3
:endremote:

This scenario cannot be processed by TETware-Lite.

When tcc processes each test case in this scenario, it starts the processing of instances of the test
case on each system specified by the remote directive at the same time. Then, tcc waits for
the test case instance on each system to finish processing before it starts processing the next test
case.

March 2003 Page 51
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

The way in which tcc processes this scenario may be represented by the following diagram:

Start

/ts/tc1
��������������

��������������
/ts/tc1

��������������

��������������

wait

/ts/tc2
��������������

��������������
/ts/tc2

��������������

��������������

wait

/ts/tc3
��������������

��������������
/ts/tc3

��������������

��������������

End

System 1 System 2

Figure 13. Processing remote and distributed test cases

Example 9
In this example the named test cases are processed as distributed test cases on several remote
systems.

The scenario is defined as follows:

all
:distributed,1,2:
/ts/tc1
/ts/tc2
/ts/tc3
:enddistributed:

This scenario cannot be processed by TETware-Lite.

The way in which tcc processes this scenario may be represented by the same diagram as was
used to represent the previous example.

Page 52 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

5. Configuration files

5.1 Introduction
Each test suite has one or more configuration files associated with it. These files contain
configuration variable assignments which are specified by the test suite author. When tcc
processes test cases in a particular mode of operation, it reads variables from the configuration
file for that mode. So, each test suite should include a build configuration file, an execute mode
configuration file and a clean mode configuration file.

By default, configuration files for each test suite are located in the test suite root directory.
However, if an alternate execution directory is specified, the execute mode configuration file may
be located there instead if so desired. The name of the build mode configuration file is
tetbuild.cfg, that of the execute mode configuration file is tetexec.cfg and that of the
clean mode configuration file is tetclean.cfg. The names of these files may be overridden
by tcc command-line options if so desired.

In Distributed TETware, configuration files for each mode must be provided on the local system
and on each remote system on which tests are to be processed. The names and locations of these
files on each remote system are the same as the ones described above for the local system. In
addition, a file containing distributed configuration variables must be provided only on the local
system when test cases are to be processed on remote systems or when the TETware network
code uses such variables. The name of distributed configuration file is tetdist.cfg and it is
located in the test suite root directory.

5.2 Use of configuration variables
Test suite authors may define variables in the per-mode configuration files which are to be used
by API-conforming tools and test cases. (Note that in Distributed TETware, variables defined in
the distributed configuration file cannot be accessed by test cases.)

TETware does not provide default values for user-defined variables. Therefore, test suite authors
should allow for the possibility that test suite variables may not be defined and ensure that test
cases behave sensibly in the event that a required variable is undefined.

In addition to user-defined configuration variables, test suite authors may define certain variables
that are used by TETware to determine how test cases are to be processed. These variables are
described in the sections that follow.

5.3 Configuration file format
Each (non-blank, non-comment) line in a configuration file specifies a configuration variable
assignment in the following format:

variable=value

Lines beginning with # and blank lines are ignored.

The first character in a variable’s name should be an alphabetic character. Subsequent characters
in the name should be an alphanumeric character or a _ character (an underscore). Names
beginning with the prefix TET_ are reserved for use by TETware.

March 2003 Page 53
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

5.4 Configuration variable processing in TETware-Lite
In addition to variables specified in configuration files, configuration variables may be specified
on the tcc command-line by means of one or more −v options. When a configuration variable is
specified in this way, it is added to the configuration for each selected mode of operation.

Variables specified using the −v command-line option have higher precedence than variables
specified in configuration files.

The way in which TETware-Lite processes configuration variables in each mode of operation is
illustrated in the following diagram:

configuration
file

command-line
variables

merge

Configuration
variable set

��
�
�
�
��������������

��
�
�
���������������

��
�
�
�

Figure 14. Configuration variable processing in TETware-Lite

5.5 Configuration variable processing in Distributed TETware
As indicated previously, when Distributed TETware is used, configuration variables for each
mode of operation may be specified on remote systems as well as on the local system. In
addition, it is possible to prefix a variable’s name with TET_REMnnn_ in order to associate a
variable with a particular system.

The Distributed tcc processes the configuration for each mode of operation by performing the
following actions:

1. tcc determines the location of the configuration file on the local system and reads in the
variables defined in the file.

2. tcc adds in any variables defined on the command-line, giving them precedence over
variables defined in the configuration file. The set of variables derived in this way is
known as the master configuration for the particular mode of operation.

3. If the local system is mentioned in the chosen scenario, tcc uses the master configuration
to generate a configuration for the local system using the following precedence (highest
first):

— variables with a TET_REM000_ prefix defined on the tcc command line

Page 54 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

— other variables defined on the tcc command line

— variables with a TET_REM000_ prefix defined in the local configuration file

— other variables defined in the local configuration file

Then tcc removes any TET_REM000_ from each variable in the local system’s
configuration. The set of variables derived in this way is known as the per-system
configuration for the local system.

4. For each remote system that is mentioned in the chosen scenario, tcc performs a
configuration variable exchange with tccd on that system, using the master
configuration. When performing this operation, tcc indicates which variables in the
master configuration originated from the command-line.

5. tccd reads in the variables defined in the configuration file on that system.

6. Then tccd merges these variables with the master configuration received from the local
system using the following precedence (highest first). In the text that follows, ‘‘local’’ and
‘‘remote’’ describe systems from tcc’s point of view and ‘‘a matching TET_REMnnn_
prefix’’ is a prefix in which nnn matches the system ID of the remote system.

— variables with a matching TET_REMnnn_ prefix defined on the tcc command line

— other variables defined on the tcc command line

— variables with a matching TET_REMnnn_ prefix defined in the configuration file on
the remote system

— variables with a matching TET_REMnnn_ prefix defined in the master configuration
received from tcc

— other variables defined in the configuration file on the remote system

— other variables defined in the master configuration received from tcc

7. Finally, tccd removes any matching TET_REMnnn_ prefix from each variable and returns
the merged configuration back to tcc. The set of variables derived in this way is known
as the per-system configuration for that system.

From this description it will be seen that it is possible to define a variable on the local system that
is to appear in the master configuration and in the per-system configurations for both the local and
remote systems. Such variables may be defined in a configuration file on the local system or on
the tcc command line. In addition, it is possible to define a variable in a configuration file on a
remote system that is to appear in the per-system configuration for that system.

However, it is not possible to define a variable in a configuration file on a remote system that is to
appear in the master configuration or in the per-system configuration for another system.

March 2003 Page 55
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

The way in which Distributed TETware processes configuration variables in each mode of
operation is illustrated in the following diagram:

Local system Remote system

configuration
file

command-line
variables

configuration
file

merge

Master
configuration

��
�
�
�
��������������

��
�
�
���������������

merge
& trim

trim

Per-system
configuration

for the
local system

�
�
�
�
�
�
�
��������������

�
�
�
�
�
�
���������������

Per-system
configurations

for each
remote system

�
�
�
�
�
�
�
��������������

�
�
�
�
�
�
���������������

��
�
�
�

��

��
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���

���������������
�
�
�
�
�
�

���������������
�
�
�
�
�
�

Figure 15. Configuration variable processing in Distributed TETware

The result of all this is that when Distributed TETware is used you can specify variables that are
read from each of the per-system configurations in several ways.

Configuration variables may be specified both on the local system and on any remote systems that
are to participate in remote or distributed testing. In this context, the local system is the system
on which tcc is run (whether or not any test cases run on this system), and remote systems are
other systems on which test cases or test case parts are run. When reading the discussion that
follows, you should bear in mind that the local system always has a system ID of zero; other
system IDs always refer to remote systems.

Configuration variable assignments made on the local system are propagated to each of the
remote systems; however, configuration variable assignments made on a remote system normally
have precedence over those that are propagated from the local system.

Page 56 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

For example, if the following assignment is made on the local system:

TET_BUILD_TOOL=make

then, the value of TET_BUILD_TOOL will be set to make on the local system and on all the
remote systems.

If the following assignment is made on one of the remote systems:

TET_BUILD_TOOL=augmake

then the value of TET_BUILD_TOOL is changed to augmake only on that remote system, and
remains unchanged on all of the other systems.

It is possible to direct a variable assignment made on the local system to a particular system by
prefixing its name with TET_REMnnn_ where nnn is the ID of the system that is to receive the
variable.

So, if the following assignments are made on the local system:

TET_BUILD_TOOL=make
TET_REM002_TET_BUILD_TOOL=augmake

then the value of TET_BUILD_TOOL on remote system 002 is set to augmake and the value of
TET_BUILD_TOOL on the local system and all the other remote systems is set to make.

Furthermore, the value of a TET_REMnnn_ variable assignment made on the local system
overrides any assignment to the corresponding variable that may be made on system nnn . So, in
this case, the value of TET_BUILD_TOOL on remote system 002 is set to augmake irrespective
of any assignment that might be made on that remote system.

Finally, if the following assignments are made on the local system:

TET_BUILD_TOOL=augmake
TET_REM000_TET_BUILD_TOOL=make

then the value of TET_BUILD_TOOL on the local system will be set to make and the value of
TET_BUILD_TOOL on all the remote systems will be set to augmake (provided that no
assignment for TET_BUILD_TOOL is made on any of the remote systems).

5.6 Configuration variables which modify TETware’s
operation

This section describes configuration variables which affect the way in which TETware processes
a test suite. The variables described here should be set in the per-mode configurations.

In Distributed TETware, the values of some variables are read from the master configuration and
affect the way in which TETware processes test cases on all systems. By contrast, the values of
other variables are read from each per-system configuration and affect the way in which TETware
processes test cases on each individual system.

Some variables used by TETware are boolean variables, whereas others are string variables.
TETware provides default values for all the boolean variables and some of the string variables.

The following table lists all the variables used by TETware, the type of each value and the default
value supplied (if any). The last column indicates whether Distributed TETware obtains the
variable’s value from the master configuration or from the per-system configuration. It will be
seen from the description of configuration variable processing presented in the previous section

March 2003 Page 57
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

that it is not meaningful to use a TET_REMnnn_ prefix in conjunction with a variable obtained
from the master configuration.
��

Configuration variables used by TETware��
Source in

Variable name Type Default value
Distributed TETware��

TET_API_COMPLIANT boolean inverse of master
TET_OUTPUT_CAPTURE

TET_BUILD_FAIL_FILE string undefined per-system
TET_BUILD_FAIL_TOOL string undefined per-system
TET_BUILD_FILE string undefined per-system
TET_BUILD_TOOL string undefined per-system
TET_CLEAN_FILE string undefined per-system
TET_CLEAN_TOOL string undefined per-system
TET_COMPAT string undefined master
TET_EXEC_FILE string undefined per-system
TET_EXEC_IN_PLACE boolean False master
TET_EXEC_TOOL string undefined per-system
TET_EXPAND_CONF_VARS boolean False per-system
TET_OUTPUT_CAPTURE boolean False master
TET_PASS_TC_NAME boolean same as master

TET_OUTPUT_CAPTURE
TET_PREBUILD_FILE string undefined per-system
TET_PREBUILD_TOOL string undefined per-system
TET_RESCODES_FILE string tet_code master
TET_SAVE_FILES string undefined per-system
TET_TRANSFER_FILE_TYPES string tet_transfer_file_types master
TET_TRANSFER_SAVE_FILES boolean False per-system
TET_TRANSFER_SOURCE_FILES boolean False master���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

The meaning of each variable is as follows:

TET_API_COMPLIANT Specifies whether or not test cases and tools use a TETware
API. If true, test cases and tools are expected to use the API
to print diagnostics and register results. If false, tcc treats
the test case or tool as if it consists of a single invocable
component containing a single test purpose. When tcc
processes the test case in execute mode, it prints the
messages to the journal file that would be printed by an API-
conforming test case and generates a test purpose result based
on the test case’s exit status (zero = PASS, non-zero =
FAIL).

TET_BUILD_FAIL_FILE Names the file of instructions for the build fail tool. The use
of this variable is optional.

TET_BUILD_FAIL_TOOL Names the utility to be executed if a prebuild or build
operation fails. The use of this variable is optional.

TET_BUILD_FILE Names the file of instructions for the build tool. The use of
this variable is optional.

Page 58 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

TET_BUILD_TOOL Names the utility to be executed when processing a test case
in build mode. This variable must be specified if build mode
is selected.

TET_CLEAN_FILE Names the file of instructions for the clean tool. The use of
this variable is optional.

TET_CLEAN_TOOL Names the utility to be executed when processing a test case
in clean mode. This variable must be specified if clean mode
is selected.

TET_COMPAT Specifies the compatibility mode to be used when
interpreting a scenario. Possible values are: dtet2 to select
dTET2 compatibility mode or etet to select ETET
compatibility mode. This variable must be specified if the
scenario contains ambiguous syntax. If tcc is invoked in
more than one mode of operation, this variable must have the
same value in each of the configurations for the selected
modes of operation. Further details of the effect this variable
has on the way that tcc interprets a scenario are presented in
the section which describes the :parallel: scenario
directive in the chapter entitled ‘‘The scenario file’’
elsewhere in this guide.

TET_EXEC_FILE Names the file of instructions for the exec tool. The use of
this variable is optional.

TET_EXEC_IN_PLACE Specifies whether or not tcc should execute test cases ‘‘in
place’’. If false, tcc copies test case files to a temporary
directory before executing them. The setting of this variable
is only meaningful in execute mode.

TET_EXEC_TOOL Names the utility to be executed when processing a test case
in execute mode. Normally this variable is not specified, in
which case the test case is executed directly.

TET_EXPAND_CONF_VARS The value of this variable determines whether or not tcc
performs configuration variable expansion on variables
defined in the per-mode configurations. If true, tcc replaces
the string ${variable-name} in a configuration variable
assignment with the value of the variable variable-name . If
false, tcc does not treat the string ${variable-name} in a
configuration variable assignment specially. Further
information about this feature is presented in the section
entitled ‘‘Configuration variable expansion’’ later in this
chapter.

TET_OUTPUT_CAPTURE Specifies whether or not tcc should capture standard output
and standard error output from test cases and record it in the
journal. For historical reasons the value of this variable also
provides default values for the TET_API_COMPLIANT and
TET_PASS_TC_NAME configuration variables.

March 2003 Page 59
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

TET_PASS_TC_NAME If true, tcc passes the name of the test case to be processed
on the command-line when executing a build or clean tool. If
false, tcc does not pass a test case name to a build or clean
tool. Note that tcc always passes a test case name to a
prebuild, buildfail or exec tool.

TET_PREBUILD_FILE Names the file of instructions for the prebuild tool. The use
of this variable is optional.

TET_PREBUILD_TOOL Names the utility to be executed before processing a test case
in build mode. In Distributed TETware, if the test case to be
processed in within the scope of a remote or
distributed directive which specifies more than one
system, the prebuild tool is only executed on the first system
in the list. The use of this variable is optional.

TET_RESCODES_FILE This variable specifies the name of the result code file. When
more than one mode of operation is selected and this variable
is defined in more than one per-mode configuration, only the
first definition is significant. Thus the use of this variable to
specify a results code file is per tcc invocation and not per
mode of operation.

The value of this variable should be a plain file name; not a
path name. The way in which the value is interpreted is
described in the section entitled ‘‘Result codes’’ elsewhere in
this guide. The use of this variable is optional.

TET_SAVE_FILES This variable specifies a (comma separated) list of file names.
If, after tcc executes a test case, a file matching one of these
names is found below the execution directory hierarchy, that
file is transferred to the saved file directory tree on the same
system. If a directory is found that matches one of the
names, then its contents are transferred recursively. Shell file
name matching syntax may be used in the list of file names.
The use of this variable is optional.

TET_TRANSFER_FILE_TYPES This variable specifies the name of a file that contains file
type specifications. When more than one mode of operation
is selected and this variable is defined in more than one per-
mode configuration, only the first definition is significant.
Thus the use of this variable to specify a results code file is
per tcc invocation and not per mode of operation. Each
entry in the file type specification file associates a file name
suffix with a file type; namely: ASCII or binary. When
Distributed TETware copies a file between systems and the
type of the file is not otherwise specified, tcc or tccd refers
to the file types file in order to determine what type of copy
to perform.

The value of this variable should be a plain file name; not a
path name. The way in which the value is interpreted is
presented in the section entitled ‘‘File type specifications’’

Page 60 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

elsewhere in this guide. The use of this variable is optional.

TET_TRANSFER_SAVE_FILES If true, files processed by Distributed TETware on a remote
system in accordance with the description of
TET_SAVE_FILES above are transferred to the saved file
directory on the local system instead of being saved on that
remote system. If the name of a file thus transferred has a
suffix and an entry for that suffix appears in the file type
specifications file, the type of the transfer performed is taken
from the entry (that is: ASCII or binary); otherwise an ASCII
type of transfer is performed. The use of this variable is
optional. This variable is not used in TETware-Lite.

TET_TRANSFER_SOURCE_FILES

When this variable is true and the Distributed tcc processes
a test case in build mode, tcc looks for an instruction file,
first in the test case source directory and then in the test suite
root directory. Then, as directed by entries in the instruction
file, tcc copies files from the test case source directory on
the local system to the test case source directory on one or
more remote systems.

The format of the instruction file is presented in the section
entitled ‘‘Source file transfer instructions’’ elsewhere in this
guide. The use of this variable is optional. This variable is
not used in TETware-Lite.

5.7 Distributed configuration variables used by Distributed
TETware

This section describes distributed configuration variables. When Distributed TETware processes
test cases on remote systems, these variables inform tcc of the locations of test case files and
directories on each remote system. In addition, when Distributed TETware is built to use the XTI
network interface, certain distributed configuration variables are used by tcc’s network code.
The variables described here should be set in the distributed configuration file on the local
system.

The following table lists all of the distributed configuration variables used by Distributed
TETware. Separate values of each variable with a TET_REMnnn_ prefix must be supplied for
each remote system mentioned in the chosen scenario.

March 2003 Page 61
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

���
Distributed configuration variables used by Distributed TETware���

Variable name Type Default value���
TET_REMnnn_TET_EXECUTE string undefined
TET_REMnnn_TET_ROOT string undefined
TET_REMnnn_TET_RUN string undefined
TET_REMnnn_TET_SUITE_ROOT string same as the value of

TET_REMnnn_TET_ROOT
TET_REMnnn_TET_TMP_DIR string tet_tmp_dir
TET_REMnnn_TET_TSROOT string undefined
TET_LOCALHOST string undefined
TET_XTI_MODE string tcp
TET_XTI_TPI string /dev/tcp��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

The meaning of each variable is as follows:

TET_REMnnn_TET_EXECUTE The values of these variables specify the locations of
alternate execution directories on remote systems. The use of
these variables is optional but, if they appear, they perform
the equivalent functions on remote systems to that performed
by the value of the TET_EXECUTE environment variable on
the local system. The values of these variables are passed to
test cases and tools in the environment as communication
variables on each system.

TET_REMnnn_TET_ROOT The values of these variables specify the locations of tet root
directories on remote systems. One of these variable
assignments must be made for each remote system that may
participate in remote or distributed testing. The values of
these variables are passed to test cases and tools in the
environment as communication variables on each system.

TET_REMnnn_TET_RUN The values of these variables specify the locations of runtime
directories on remote systems. The use of these variables is
optional but, if they appear, they perform the equivalent
functions on remote systems to that performed by the value
of the TET_RUN environment variable on the local system
(refer to the section entitled ‘‘Environment variables’’ earlier
in this chapter). The values of these variables are passed to
test cases and tools in the environment as communication
variables on each system.

TET_REMnnn_TET_SUITE_ROOT

These variables are not used by TETware but, when
specified, are passed to test cases and tools in the
environment as communication variables on each system.
This is done in order to enable existing ETET test cases
which rely on the presence of a TET_SUITE_ROOT
environment variable to be processed on a remote system by
Distributed TETware.

Page 62 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

TET_REMnnn_TET_TMP_DIR The values of these variables specify the locations of
temporary directories on remote systems which are used
instead of the default location when TET_EXEC_IN_PLACE
is false. The use of these variables is optional but, if they
appear, they perform the equivalent functions on remote
systems to that performed by the value of the
TET_TMP_DIR environment variable on the local system.

TET_REMnnn_TET_TSROOT The values of these variables specify the locations of test
suite root directories on remote systems. One of these
variable assignments must be made for each remote system
that may participate in remote or distributed testing.

TET_LOCALHOST This variable is optional when the socket interface is used.
You should not specify this variable unless you need to make
use of the facilities described here.

Normally, when a process on a remote system connects to the
Synchronisation Daemon and Execution Results Daemon on
the local system, it does so using the host name or Internet
address that is specified for system 0 in the systems file.
This variable can be used to specify a different host name or
Internet address that should be used by processes on remote
systems when connecting to servers on the local system.
This variable can be used to direct incoming connections to a
particular network interface when running tcc on a machine
which is connected to remote machine(s) by more than one
network. The value specified by this variable must resolve to
an Internet address that can be used to access the local system
from remote systems (that is: it should not be the address of
the loopback interface). Needless to say, chaos will break out
if the value specified by this variable does not refer to a valid
address for the local system.

In addition, the following distributed configuration variables are accessed by tcc’s network
transport code when the XTI network interface is used:

TET_LOCALHOST This variable must be specified when the XTI network
interface is used and the underlying transport provider is
TCP/IP. The value of this variable should be the Internet
address of the local system. This address is presented in dot
notation and must be an address that can be used to access the
local system from remote systems (that is: it should not be
the address of the loopback interface). All four fields in the
address must be specified. A host name may not be specified
when the XTI network interface is used. Needless to say,
chaos will break out if the value specified by this variable
does not refer to a valid address for the local system.

TET_XTI_MODE Possible values: tcp (to indicate TCP/IP) or osico (to
indicate the OSI connection-oriented transport).
The value of this variable indicates the underlying transport

March 2003 Page 63
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

provider to be used.

TET_XTI_TPI The name of the XTI transport provider identifier on the local
system.

5.8 Configuration variable expansion

5.8.1 Introduction
It is possible to instruct tcc to substitute the value of a configuration variable in the value
assigned to another configuration variable. The mechanism which tcc uses to do this is known
as configuration variable expansion and is described in this section.

When tcc processes a per-mode configuration, it uses the value of the
TET_EXPAND_CONF_VARS configuration variable to determine whether or not to perform
variable expansion on the configurations. The value of this variable defaults to False so
variable expansion is not performed on variables defined in a per-mode configuration unless
TET_EXPAND_CONF_VARS is set to True in that configuration.

The Distributed version of tcc always performs configuration variable expansion on variables
defined in the distributed configuration. It is not meaningful to define a value for
TET_EXPAND_CONF_VARS in the distributed configuration.

5.8.2 Variable expansion syntax
You can specify the name of a variable whose value is to be interpolated in the value of another
variable by using ${variable-name} in the value of the other variable. For example, suppose a
configuration contains the following assignments:

PRODUCT=Supertest
VERSION=3.4
MESSAGE=this is ${PRODUCT} version ${VERSION}

When tcc makes the configuration available to a test case or tool, the value of MESSAGE is
‘‘this is Supertest version 3.4’’.

When you want to include a literal $ character in the value of a configuration variable, you can
use the $ character to escape itself. tcc condenses $$ in a variable’s value to a single $ when
configuration variable expansion is enabled. For example, suppose a configuration contains the
following assignment:

PRICE=$$2.50

When tcc makes the configuration available to a test case or tool, the value of PRICE is
‘‘$2.50’’.

5.8.3 Variables on whose values expansion may be performed
When TET_EXPAND_CONF_VARS is true in a per-mode configuration, tcc performs variable
expansion in the values of the following variables in that configuration:

1. All user-defined variables.

2. All the variables that are used to specify tools and files; that is:

Page 64 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

TET_BUILD_FAIL_FILE
TET_BUILD_FAIL_TOOL
TET_BUILD_FILE
TET_BUILD_TOOL
TET_CLEAN_FILE
TET_CLEAN_TOOL
TET_EXEC_FILE
TET_EXEC_TOOL
TET_PREBUILD_FILE
TET_PREBUILD_TOOL

That is: if the value of any of these variables contains a ${variable-name}, tcc replaces the
${variable-name} string with the value of variable-name which must be defined in the same
configuration.

The Distributed tcc always performs expansion on the values of all the TET_REMnnn_
variables that may be defined in the distributed configuration.

5.8.4 Variables whose values may be interpolated in another variable’s
value

When you include a ${variable-name} string in another variable’s value, variable-name may be
the name of any of the other variables that are specified in the same configuration.

In addition variable-name may be one of the special variables defined by tcc. The ability to
have one of these special variables expanded in another variable’s value makes the path names
used internally by tcc available to the user. Thus the need to have path names of tools hard-
coded in configuration files is removed.

These variables are described in the sections that follow.

tcc reports a configuration error if variable-name is not defined in the configuration in which it
is used and is not one of the special variables defined by tcc.

5.8.5 Special variables defined in TETware-Lite
The following special variables are defined by tcc and may be substituted as described
previously. Some of the variables are always defined, whereas others are only defined if the
corresponding parameter has been specified by the user.

${TET_ROOT} The location of the tet root directory, as defined by the
TET_ROOT environment variable. This variable is always
defined.

${TET_TSROOT} The location of the test suite root directory as determined by
tcc. This variable is always defined.

${TET_TMP_DIR} The location of the temporary directory as determined by
tcc. This variable is always defined.

${TET_EXECUTE} The location of the alternate execution directory if one has
been specified either by the TET_EXECUTE environment
variable or by tcc −a; otherwise this variable is not
defined.

March 2003 Page 65
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

${TET_SUITE_ROOT} The alternate location below which the test suite root
directory is located if one has been specified by the
TET_SUITE_ROOT environment variable; otherwise the
value of this variable is the same as the value of
${TET_ROOT}. This variable is always defined.

${TET_RUN} The location of the runtime directory if one has been
specified by the TET_RUN environment variable; otherwise
this variable is not defined.

5.8.6 Configuration variable expansion in Distributed TETware
The way in which configuration variables are expanded in Distributed TETware is rather more
complicated than in TETware-Lite. This is because variables may be defined either on the local
system or on remote systems.

Recall that in Distributed TETware there are a master configuration and one or more per-
system configurations for each mode of operation. These are described in the section entitled
‘‘Configuration variable processing in Distributed TETware’’ earlier in this chapter.

Configuration variable expansion is performed on the per-system configurations and not on the
master configurations. Thus, variable expansion is performed separately on the configuration
variables for each system after the values on all the systems have been determined.

A result of this is that when the value of a variable is to be substituted, this operation is
performed within the context of the variable whose value is being expanded. There are several
cases to consider; each case is illustrated in the examples that follow. In these examples, suppose
that there is a local system (system 0) and two remote systems (systems 1 and 2).

Example 1
Consider the following entries in one of the per-mode configuration files on the local system:

PRODUCT=Supertest
VERSION=3.4
MESSAGE=this is ${PRODUCT} version ${VERSION}

These variables are copied into the per-system configurations for each system. Then the variables
are expanded.

After expansion, MESSAGE has the value ‘‘this is Supertest version 3.4’’ on all systems.

Example 2
Consider the following entries in one of the per-mode configuration files on the local system:

PRODUCT=Supertest
VERSION=3.4
MESSAGE=this is ${PRODUCT} version ${VERSION}

and the following entry in the corresponding configuration file on remote system 1:

PRODUCT=Megatest

The assignment for PRODUCT made on the local system is copied to the per-system
configurations for the local system and for system 2, and the assignment for PRODUCT made on
system 1 is copied to the per-system configuration for system 1. The other assignments made on
the local system are copied into the per-system configurations for each system. Then the

Page 66 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

variables are expanded.

After expansion, MESSAGE has the value ‘‘this is Supertest version 3.4’’ on the local system and
on system 2, and the value ‘‘this is Megatest version 3.4’’ on system 1.

Example 3
Consider the following entries in one of the per-mode configuration files on the local system:

PRODUCT=Supertest
TET_REM001_PRODUCT=Megatest
VERSION=3.4
MESSAGE=this is ${PRODUCT} version ${VERSION}

The assignment for PRODUCT is copied to the per-system configurations for the local system and
for system 2. The assignment for TET_REM001_PRODUCT has its TET_REM001_ prefix
removed, then it is copied to the per-system configuration for system 1. The other assignments
are copied into the per-system configurations for each system. Then the variables are expanded.

After expansion the results are the same as those described in the previous example.

Example 4
Consider the following entries in one of the per-mode configuration files on the local system:

PRODUCT=Supertest
TET_REM001_PRODUCT=Megatest
VERSION=3.4
MESSAGE=this is ${TET_REM001_PRODUCT} version ${VERSION}

The variable assignments are copied as described in the previous example. Then the variables are
expanded.

After expansion, MESSAGE has the value ‘‘this is Megatest version 3.4’’ on all systems.

Example 5
Consider the following entries in one of the per-mode configuration files on the local system:

VERSION=3.4
MESSAGE=this is ${PRODUCT} version ${VERSION}

and the following entry in the corresponding configuration file on remote system 1:

PRODUCT=Megatest

The assignment for PRODUCT made on system 1 is copied to the per-system configuration for
system 1. The assignments made on the local system are copied into the per-system
configurations for each system. Then the variables are expanded.

After expansion, MESSAGE has the value ‘‘this is Megatest version 3.4’’ on system 1. The value
of MESSAGE cannot be expanded in the per-system configurations for the local system and for
system 2, since there is no value for PRODUCT defined in the configurations for those systems.

5.8.7 Special variables defined in Distributed TETware
The Distributed version of tcc defines the same special variables on the local system as does the
Lite version of tcc. In addition, the Distributed version of tcc defines similar variables in
respect of remote systems. The values of these variables may be substituted in the values of
variables defined in the per-mode configurations or in the distributed configuration, using the
rules described in the previous section.

March 2003 Page 67
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

The following special variables are defined by tcc and may be substituted as described
previously. Some of the variables are always defined, whereas others are only defined if the
corresponding parameter has been specified by the user. In these descriptions, nnn stands for the
number of any remote system11 which is mentioned in the scenario being processed.

${TET_REM000_ROOT} The location of the tet root directory on the local system, as
defined by the TET_ROOT environment variable. This
variable is always defined.

${TET_REMnnn_TET_ROOT} The location of the tet root directory on remote system nnn ,
as specified in the distributed configuration. These variables
are only defined if system nnn is mentioned in the scenario
being processed.

${TET_REM000_TET_TSROOT}

The location of the test suite root directory on the local
system as determined by tcc. This variable is always
defined.

${TET_REMnnn_TET_TSROOT}

The location of the test suite root directory on remote system
nnn , as specified in the distributed configuration. These
variables are only defined if system nnn is mentioned in the
scenario being processed.

${TET_REM000_TET_TMP_DIR}

The location of the temporary directory on the local system
as determined by tcc. This variable is always defined.

${TET_REMnnn_TET_TMP_DIR}

The location of the temporary directory on system nnn as
determined by tcc. These variables are only defined if
system nnn is mentioned in the scenario being processed.

${TET_REM000_TET_EXECUTE}

The location of the alternate execution directory on the local
system if one has been specified either by the
TET_EXECUTE environment variable or by tcc’s −a
command-line option; otherwise this variable is not defined.

${TET_REMnnn_TET_EXECUTE}

The location of the alternate execution directory on system
nnn if one has been specified in the distributed configuration
and system nnn is mentioned in the scenario being processed;
otherwise these variables are not defined.

����������������
11. That is: a number greater than zero.

Page 68 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

${TET_REM000_TET_SUITE_ROOT}

The alternate location below which the test suite root
directory on the local system is located if one has been
specified by the TET_SUITE_ROOT environment variable;
otherwise the value of this variable is the same as the value of
${TET_REM000_TET_ROOT}. This variable is always
defined.

${TET_REMnnn_TET_SUITE_ROOT}

The value of TET_REMnnn_TET_SUITE_ROOT if that
variable is defined in the distributed configuration and system
nnn is mentioned in the scenario being processed; otherwise
these variables are not defined.

${TET_REM000_TET_RUN} The location of the runtime directory on the local system if
one has been specified by the TET_RUN environment
variable; otherwise this variable is not defined.

${TET_REMnnn_TET_RUN} The location of the runtime directory on system nnn if one
has been specified in the distributed configuration and system
nnn is mentioned in the scenario being processed; otherwise
these variables are not defined.

5.8.8 Using special variables in Distributed TETware
As described in a previous section, when the value of a variable is to be substituted in the value of
another variable, this operation is performed within the context of the variable whose value is
being expanded. This behaviour is particularly useful if the name of a special variable is used
without its TET_REMnnn_ prefix.

For example, in Distributed TETware it is necessary to specify the tet root and test suite root
directories for each remote system in the distributed configuration. In most cases the name of the
test suite root directory relative to the tet root directory is the same on all systems. Consider the
following setup:

a. The test suite is called mytestsuite.

b. The test suite runs on the local system and on remote systems 1 and 2.

c. The location of the tet root directory on system 1 is /user1/TET and that on system 2 is
/home/TET.

d. An alternate execution directory called ts_exec is used on each system.
When configuration variable expansion syntax is not used, the distributed configuration would
look like this:

TET_REM001_TET_ROOT=/user1/TET
TET_REM001_TET_TSROOT=/user1/TET/mytestsuite
TET_REM001_TET_EXECUTE=/user1/TET/mytestsuite/ts_exec
TET_REM002_TET_ROOT=/home/TET
TET_REM002_TET_TSROOT=/home/TET/mytestsuite
TET_REM002_TET_EXECUTE=/home/TET/mytestsuite/ts_exec

However, when configuration variable expansion syntax is used, the distributed configuration

March 2003 Page 69
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

looks like this:

TET_REM001_TET_ROOT=/user1/TET
TET_REM002_TET_ROOT=/home/TET
TET_TSROOT=${TET_ROOT}/mytestsuite
TET_EXECUTE=${TET_TSROOT}/ts_exec

This makes for a more easily maintained distributed configuration, particularly when large
numbers of remote systems are involved.

Page 70 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

6. Other test suite files

6.1 Introduction
This chapter describes the formats of other files that may be provided with each test suite.

6.2 Result codes

6.2.1 Description
A mapping mechanism is provided to enable TETware processes to interpret results from test
suites. This mapping is contained in a result codes file. When a test purpose returns a particular
result, the TCM determines the action required for each result code and writes an entry in the
journal. The API library ensures that the test purposes only generate standard or test suite
specified results.

TETware provides the default set of result codes that are defined in IEEE Std 1003.3-1991.
Additional result codes may be defined on a per installation or per test suite basis.

6.2.2 Result code definitions
TETware provides the standard result code definitions. The user can supply additional result
code definitions. The standard codes are defined in an internal table provided by TETware. It is
an error for the user to assign different meanings to the standard codes.

The provision of user-supplied result code files is optional. User-supplied codes for use by all
test suites may be defined in a file which is located in the tet root directory. User-supplied codes
for use by a particular test suite may be defined in a file which is located in that test suite’s test
suite root directory. When Distributed TETware is used these file reside on the local system.12

By default, the names of each user-supplied file is tet_code. However, a different name may
be defined by use of the TET_RESCODES_FILE configuration variable. tcc determines the
name of each user-supplied result code file using the following algorithm:

� If build mode has been selected and TET_RESCODES_FILE is defined in the build
configuration file, then that value is used.

� If no file name has yet been determined and execute mode has been selected and
TET_RESCODES_FILE is defined in the execute configuration file, then that value is
used.

� If no file name has yet been determined and clean mode has been selected and
TET_RESCODES_FILE is defined in the clean configuration file, then that value is used.

� If no file name has yet been determined then tet_code is used.

����������������
12. That is: the system on which tcc is invoked.

March 2003 Page 71
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

When result code files are supplied, the precedence of result definitions is as follows (highest
precedence first):

� Codes defined in the file at the test suite root level.

� Codes defined in the file at the tet root level.

� Codes defined in the internal table provided by TETware.

This precedence is illustrated in the following diagram:

Standard
result codes

�
�
�
�
��������������������

�
�
�
���������������������

User-supplied
per-installation

result codes
merge

User-supplied
per-test suite
result codes

merge

Result codes
used by

TETware components�
�
�
�
��������������������

�
�
�
���������������������

�
�
�
�
�

�
�
�
�
�
�

��������������

�
�
�
�
�

��������������

Figure 16. Precedence of result code definitions

6.2.3 File format
Blank lines and lines starting with a # are ignored. Other lines in this file contain up to three
blank separated fields, defined as follows:

1. The result code. This is a non-negative decimal integer between 0 and 127, inclusive.
Result codes from 0 to 31 (inclusive) are reserved for use by TETware. The remainder are
available for use by the test suite author.

2. The name of this result. This is a field delimited by double quotes which contains a text
string describing the result. This field may contain embedded spaces.

3. The action to take when this result is encountered. This is an indication of what the TCM
should do when the result is returned by a test purpose. Possible values are Continue

Page 72 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

and Abort. The default value for this field is Continue.

6.2.4 Example results code file
The following is an example result codes definition file. It contains some user-defined result
codes as well as the standard result codes provided by TETware.

first, the standard result codes
0 "PASS" Continue
1 "FAIL" Continue
2 "UNRESOLVED" Continue
3 "NOTINUSE" Continue
4 "UNSUPPORTED" Continue
5 "UNTESTED" Continue
6 "UNINITIATED" Continue
7 "NORESULT" Continue
then, some codes for use with this test suite
32 "INSPECT" Continue
33 "STOP RUN" Abort

6.3 System definitions

6.3.1 Description
Distributed TETware uses a systems definition file to define the mapping of a TETware
system ID to a host name or other parameter which may be used by the network code to establish
a connection with that system. The systems definition file is not used by TETware-Lite.

The name of this file is systems and it is located in the tet-root directory on each system.

When remote or distributed testing is to be performed, TETware components on each
participating system each refer to the systems file on that system when mapping a TETware
system ID to a network address. You must ensure that the same mappings are defined on all
participating systems, otherwise unpredictable behaviour will occur.

In addition, test cases can access entries in the system definition file by calling the
tet_getsysbyid() API function.

6.3.2 File format
Blank lines and lines starting with a # are ignored. Other lines in this file contain up to three
blank separated fields. The first field contains the TETware system identifier. System zero must
always refer to the system on which tcc is to be invoked (the master or local system). Other
(remote or slave) systems are specified by system identifiers with positive values. The value of
the system identifier for a remote system must be in the range 1 through 999.

When Distributed TETware is built to use the socket network interface, each entry in the
systems file takes the following form:

sysid host [tccd-port]

The system is identified by the value in the host field. The host name lookup functions on each
system must be able to perform address resolution on each host name listed in the systems file.
Note that it is an error to specify a host name as localhost since that name cannot be used to
connect to another system.

March 2003 Page 73
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

When the optional tccd-port field appears, it specifies the well-known port number to be used
when a process connects to tccd on a particular system. If the tccd-port field is not specified,
processes use the well-known port number taken from the tcc service specification when
connecting to tccd on a particular system.

When Distributed TETware is built to use the X/Open Transport Interface (XTI), each entry in
the systems file takes the following form:

sysid host address-string

The host field is not used when Distributed TETware is built to use XTI.13

The address-string field contains a hexadecimal string representation of a data item which is used
to identify the address of a network endpoint. The network endpoint thus identified must refer to
the entity which is used by the Test Case Controller daemon (tccd) on the named system to
accept connections from client processes. Each byte in the data item is represented by a pair of
hexadecimal digits in the address string; for example, a byte in the data item with decimal value
13 is specified in the address string as 0d. The precise format of the data item depends on which
transport provider is being used.

6.3.3 Example systems files
Here are some example systems files. Note that, in each example, one of the machines is
referenced by more than one logical system ID.

The following example is for a machine on which TETware has been built to use the socket
network interface:

Example system file for INET implementation on host ’ozone’

000 ozone
001 neon
002 argon
003 ozone

Entries for all the host names mentioned in this file should appear in the hosts database on each
system.

The following example is for a machine on which TETware has been built to use the XTI
network interface:

Example system file for XTI implementation on host ’ozone’

000 ozone 000204010a010200000000000000000000
001 neon 000204010a010300000000000000000000
002 argon 000204010a010400000000000000000000
003 ozone 000204010a010200000000000000000000

The contents of the XTI address string depends on the transport being used, the network
implementation and the architecture of the machine on which the file resides. Therefore,
although the XTI address strings specified for a particular system in the systems files on each
machine must describe the same transport address, the contents of this field for a particular entry

����������������
13. However, test cases may still access the value in this field by calling the tet_getsysbyid()API function.

Page 74 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

may be different on different types of machine.

6.4 Source file transfer instructions

6.4.1 Description
It is possible to instruct the Distributed tcc to copy test case files to one or more remote systems
when it processes a test case in build mode. This operation takes place when the
TET_TRANSFER_SOURCE_FILES variable in the build mode configuration is true.

When a source file transfer operation is specified, it takes place at the start of the build phase.
Thus it is possible to organise a test suite such that all the source code for a test case is held on
the local system, and is copied as required to remote systems before the build tool is invoked.

When tcc performs this operation, it reads file copying instructions from a file called
tet_transfer_source_files. tcc looks for this file first in the current test case source
directory, then in the test suite root directory. Thus it is possible to specify source file transfer
instructions either at the test case level or at the test suite level.

When TET_TRANSFER_SOURCE_FILES is true, you must supply an instruction file at one or
other of these levels, and you may supply an instruction file at both levels. Which of these you
do depends on what instructions you want to specify, as follows:

1. When you want to specify source file transfer instructions for every test case in the test
suite. The following possibilities exist:

a. When you want to specify the same instructions for every test case. You should
provide a single instruction file in the test suite root directory that contains these
instructions.

b. When you want to specify per-testcase instructions for every test case. You should
provide a separate instruction file in each test case source directory. Each file should
contain the instructions for the corresponding test case.

c. When you want to specify the same instructions for the majority of test cases, but
different instructions for certain test cases. You should provide a single instruction
file in the test suite root directory that contains the majority instructions. In addition,
you should provide a separate instruction file in the source directory of each test case
that needs its own set of instructions.

2. When you want to specify source file transfer instructions for some (but not all) test cases
in the test suite. You should provide an empty instruction file in the test suite root
directory. In addition, you should provide a separate instruction file in the source directory
of each test case for which source file transfer is to be performed.

6.4.2 File format
Blank lines and lines starting with a # are ignored. Other lines in this file contain three or four
blank-separated fields, as follows:

1. The name of a file or directory on the local system that is to be copied to one or more
remote systems. This name is interpreted relative to the test case source directory on the
local system. The name must not be an absolute path name and must not include a ..
component. The name may include shell pattern-matching characters, which are
interpreted in the usual way. When a directory is specified, a recursive copy is performed.

March 2003 Page 75
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

2. The name of a directory on the remote system(s) to which the file(s) are to be copied. This
name is interpreted relative to the test case source directory on the remote system(s). The
name must not be an absolute path name and must not include a .. component.

3. A comma-separated list of system IDs or system ID ranges, or the word all which means
‘‘all remote systems specified for the current test case’’.

A system ID range consists of two numbers separated by a − character (a hyphen). When a
list of system IDs or system ID ranges is specified, all of the system IDs thus specified must
refer to remote systems that are specified for the current test case. The local system
(system ID 0) may not be specified.

4. A set of zero or more option characters that control how the copy is to be performed, as
follows:

a Perform an ASCII file copy.

b Perform a binary file copy.

m After copying a file to the remote system, set the modification time of the file on the
remote system to the modification time of the corresponding file on the local system.

u Copy unconditionally. Normally a file is only copied to a remote system if it does
not exist on the remote system or if the file’s modification time on the remote system
is older than the corresponding file’s modification time on the local system.
However, when this option is set the file is always copied, irrespective of the
modification time of an existing file on the remote system.

The a and b options in this field are mutually exclusive. These two options are only
significant when one of the systems is a Win32 system, since UNIX systems do not
distinguish between ASCII and binary file types.

In summary: files on the local system specified in the first field are copied to the directory
specified in the second field on each of the systems specified in the third field.

6.4.3 Copy type
When a file is to be copied to a remote system, tcc determines the type of copy to be performed
as follows:

� If the type of the file is specified by an a or a b in the options field of the instruction file,
then an ASCII or binary copy is performed, respectively.

� Otherwise, if the file name has a suffix and an entry for that suffix appears in the file type
specification file (described in the next section), then the type of copy thus specified is
performed.

� Otherwise an ASCII file copy is performed.

Page 76 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

6.4.4 Example source file transfer instructions

Example 1

. . all am

In this example, all the files in the test case source directory on the local system are copied to the
test case source directory on each of the remote systems that is specified for the current test case.
An ASCII file copy is performed and file modification times are restored after the copy takes
place. Each file is only copied if it doesn’t exist on the remote system, or if the file on the local
system is newer than that on the remote system.

This is a simple example which should be used with care. For example: specifying . as the
source directory causes all the files in that directory to be copied, including files created by
TETware in the course of processing (for example: tet_lock and tet_captured), which is
probably not what you want. Even when a simple test case structure is used, it is better to specify
the files that you actually want copied more explicitly, as in the next example.

Example 2

*.[ch] . all am
makefile . all am

In this example, all the C source files, together with the makefile, are copied from the test case
source directory on the local system to the test case source directory on each of the remote
systems that is specified for the current test case. An ASCII file copy is performed and file
modification times are restored after the copy takes place. Each file is only copied if it doesn’t
exist on the remote system, or if the file on the local system is newer than that on the remote
system.

Example 3
This example might be used in a classic distributed test suite for some client-server application
which has test case parts running on the local system and on two remote systems. All the source
code is held on the local system. Source for the local test case parts is located in each test case
source directory, while source for the remote test case parts is located in subdirectories named
system1 and system2, respectively. Typically this file would be located in the test suite root
directory and would thus apply to every test case in the test suite.

system1 . 1 am
system2 . 2 am

All the files in the system1 subdirectory on the local system are copied to the test case source
directory on system 1, and all the files in the system2 subdirectory on the local system are
copied to the test case source directory on system 2.

March 2003 Page 77
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Example 4
This example extends the previous example by adding some test case binary data for each system.
The act of executing the test case may modify the data files, so it is necessary to restore the data
files unconditionally during each subsequent build phase.

system1/*.[ch] . 1 am
system1/makefile . 1 am
system1/data/* data 1 bmu
system2/*.[ch] . 2 am
system2/makefile . 2 am
system2/data/* data 2 bmu

The test case source files for each system are copied to the test case source directory on the
corresponding remote system. The test case data files for each system are copied unconditionally
to the data subdirectory on each corresponding remote system.

6.5 File type specifications

6.5.1 Description
Distributed TETware may copy files between systems on these occasions:

� When TET_TRANSFER_SOURCE_FILES is true in the build mode configuration and
files are to be copied to remote systems during the Transfer Source Files phase of build
mode processing.

� When TET_TRANSFER_SAVE_FILES is true in the execute mode configuration and files
are to be copied to the local system during the Save Files phase of execute mode
processing.

When files are to be copied between a UNIX system and a Win32 system, or between two Win32
systems, it is desirable for the correct type of copy (that is: ASCII or binary) to be performed if
file corruption is to be avoided. When the name of the file to be copied has a suffix, Distributed
TETware is able to determine the type of copy to perform by looking up the suffix in a File Type
Specifications file. In the Transfer Source File phase this is only done when no file type
specification is included in the corresponding source file transfer instruction. In the Save Files
phase this is always done.

The provision of a file type specification files is optional and is, as just noted, only significant if
one of the participating systems is a Win32 system. File type specifications for use by all test
suites may be defined in a file which is located in the tet root directory. File type specifications
for use by a particular test suite may be defined in a file which is located in that test suite’s test
suite root directory. These file reside on the local system.14

By default, the name of the File Type Specifications file is tet_transfer_file_types.
However, a different name may be specified by use of the TET_TRANSFER_FILE_TYPES

����������������
14. That is: the system on which tcc is invoked.

Page 78 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

configuration variable. tcc determines the name of each file type specification file using the
following algorithm:

� If build mode has been selected and TET_TRANSFER_FILE_TYPES is defined in the
build configuration file, then that value is used.

� If no file name has yet been determined, execute mode has been selected and
TET_TRANSFER_FILE_TYPES is defined in the execute configuration file, then that
value is used.

� If no file name has yet been determined, clean mode has been selected and
TET_TRANSFER_FILE_TYPES is defined in the clean configuration file, then that value
is used.

� If no file name has yet been determined then tet_transfer_file_types is used.

When file type specification files are supplied, the precedence of file type specifications is as
follows (highest precedence first):

� File type specifications defined in the file at the test suite root level.

� File type specifications defined in the file at the tet root level.

This precedence is illustrated in the following diagram:

User-supplied
per-installation
file type specs

User-supplied
per-test suite

file type specs
merge

File type specifications
used by

TETware components�
�
�
�
��������������������

�
�
�
���������������������

�
�
�
�
�

��������������

�
�
�
�
�

Figure 17. Precedence of file type specifications

March 2003 Page 79
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

6.5.2 File format
Blank lines and lines starting with a # are ignored. Other lines in this file contain two blank
separated fields, defined as follows:

1. The file name suffix; that is: the portion of the file name after a final . (period).

2. The file type indicator:

a ASCII file type.

b Binary file type

6.5.3 Example file type specifications file
The following is an example of a trivial file types specification file:

example file type specification file
format is: suffix file-type-indicator

text files
txt a

C source files
c a
h a

object, library and executable files
obj b
lib b
dll b
exe b

shell and perl scripts
ksh a
pl a

Page 80 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

7. The Test Case Manager

7.1 Introduction
TETware supplies functionality to support the development of test cases. This chapter describes
that functionality for a Test Case Manager (TCM) or ‘‘wrapper’’ that provides a suitable
environment for the execution of invocable components as requested by the Test Case Controller
(tcc).

The TCM is not a separate program but instead is part of each TETware API. Whichever
language binding is used, the appropriate version of the TCM and API are linked with the user-
supplied test code to produce each test case.

TETware-Lite and Distributed TETware provide different versions of the C, C++ and Java
TCMs. However, the same versions of the Shell, Korn Shell and Perl TCMs are supplied with
both Distributed TETware and TETware-Lite. This is because in Distributed TETware the C,
C++ and Java TCMs support distributed test cases whereas the others do not.

Through the TCM, developers gain support in doing the following:

� Initialising and cleaning-up test cases.

� Selecting invocable components and test purposes.

� Insulating from the test environment.

� Making journal entries.

7.2 TCM flow of control
This section describes the flow of control in a TETware TCM. When Distributed TETware is
used to execute parts of a distributed test case, this processing takes place on each participating
system except where noted otherwise. When TETware-Lite or TCMs that do not support
distributed testing are used, processing that is described as being associated with distributed test
cases is not performed.

The general flow of control for test cases written to one of the TETware APIs is as follows:

1. The TCM arranges for access to its respective configuration information.

2. The TCM outputs a Test Case Manager start message to the execution results file. When
processing a distributed test case this operation is only performed by the master TCM.

3. The TCM builds a list of test purposes to be executed from the list of requested invocable
components. If no invocable components were requested, or if the special invocable
component all is requested, the TCM builds this list from all of the invocable
components in the test case.

4. The TCM arranges for the processing of asynchronous events.15

����������������
15. But see the section entitled ‘‘Portability’’ later in this chapter.

March 2003 Page 81
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

5. When processing a distributed test case, all the TCMs synchronise with each other before
executing their respective start-up procedures (if any).

6. When processing a distributed test case, all the TCMs synchronise at the commencement of
each invocable component.

7. The TCM prints an Invocable Component Start message to the execution results file before
it executes each invocable component. When processing a distributed test case this
message is printed by the master TCM.

8. When processing a distributed test case, all the TCMs synchronise at the commencement of
each test purpose. During this synchronisation process the TCMs ensure that they are
executing a common test purpose.

9. The TCM prints a Test Purpose Start message to the execution results file before it
executes each test purpose. When processing a distributed test case this message is printed
by the master TCM.

10. The TCM executes each test purpose in the invocable component.

11. During the test purpose any test case information lines generated by the user-supplied test
code are entered into the execution results file.

12. If an event occurs which interrupts the processing of a test purpose, the interrupted process
immediately proceeds to the end of the test purpose and outputs a test result of
UNRESOLVED. If the event is a termination message from the TCC, the TCM reports
receipt of the message to the execution results file, executes the specified clean-up
procedure (if any) and exits;16 otherwise it continues by processing the next test purpose.

13. If a TCM is about to execute a test purpose that has been marked as cancelled, it instead
reports the test purpose as UNINITIATED and continues to process the next test purpose
(if any). If a test purpose has been marked as cancelled in one part of a distributed test
case, the TCM informs all the others of the cancellation during the automatic
synchronisation at the start of the test purpose.

14. When processing a non-distributed test case, the TCM prints a test purpose result to the
execution results file at the end of each test purpose. When processing a distributed test
case, all the TCMs synchronise at the end of the test purpose. The execution results
daemon gathers the partial results recorded by each test purpose part, arbitrates between
them and prints the consolidated result to the execution results file.

15. Once all of the test purposes in an invocable component have been executed, the TCM
outputs an Invocable Component End message to the execution results file and moves on to
the next invocable component. When processing a distributed test case this message is
only printed by the master TCM.

16. After all test purposes for all requested invocable components have been executed, the
TCM executes the specified clean-up procedure (if any) and exits normally.

����������������
16. When the TCC terminates the TCM on a Win32 system, the TCM exits immediately without reporting the event or

executing the clean-up procedure. See the section entitled ‘‘Portability’’ later in this chapter.

Page 82 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

17. If for any reason, a particular TCM fails to execute the requested set of invocable
components or the specified start-up or clean-up procedure, the relevant API will exit
abnormally. When a distributed test case is being processed and one test case part
terminates abnormally, this event is communicated to the other parts at the next automatic
synchronisation point; whereupon they also terminate without executing any more test
purposes.

7.3 TCM options
In addition to the ordinary TCMs, each version of TETware provides versions of the C and C++
TCMs which are suitable for use in multi-threaded environments. When either version of
TETware is built on a UNIX system, the user may choose to configure the thread-safe versions of
the C and C++ TCMs to support either UI or POSIX threads (but not both at the same time).

It can be seen that there are a number of TCM options from which to choose. The test suite
author should ensure that the correct API is used with each TCM. The following TCM/API
options are available:

� TETware-Lite, C TCM/API, single-threaded version.

� TETware-Lite, C++ TCM, single-threaded version, use with the single-threaded C API
library.

� TETware-Lite, C TCM/API, multi-threaded version.

� TETware-Lite, C++ TCM, multi-threaded version, use with the multi-threaded C API
library.

� Distributed TETware, C TCM/API, single-threaded version.

� Distributed TETware, C++ TCM, single-threaded version, use with the single-threaded
C API library.

� Distributed TETware, C TCM/API, multi-threaded version.

� Distributed TETware, C++ TCM, multi-threaded version, use with the multi-threaded
C API library.

� TETware-Lite or Distributed TETware, Shell TCM/API.

� TETware-Lite or Distributed TETware, Korn Shell TCM/API.

� TETware-Lite or Distributed TETware, Perl TCM/API.

� TETware-Lite, Java TCM/API.

� Distributed TETware, Java TCM/API.

Note that test cases using the Distributed versions of the C, C++ and Java TCMs must always be
run under control of the Distributed TETware TCC. They cannot be run stand-alone or under the
control of the TETware-Lite TCC. Test cases which use the other TCMs may be run stand-alone
or under control of either TCC.

March 2003 Page 83
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

7.4 TCMs that support distributed testing
The information presented in this section applies only when the C, C++ and Java TCMs are used
with Distributed TETware. It does not apply when other TCMs or TETware-Lite is used.

When the Distributed version of a TCM is used to manage parts of the same distributed test case
running on different systems, one TCM assumes the role of master and the others assume the role
of slaves. However, unlike previous DTET implementations, the master system is not
constrained to be the system on which tcc is invoked. Indeed, it is possible for the Distributed
TCC to control both distributed and non-distributed test cases which are processed entirely on
remote systems.

The identity of master and slave TCM is determined as follows: when the Distributed TCC
processes a test case, it does so with reference to a list of systems on which the test case is to be
processed. Initially this list contains only one entry for the local system (system ID 0). However,
this list is updated when tcc processes test cases specified within the scope of a remote or
distributed directive in the test scenario. When tcc executes either a distributed or a non-
distributed test case on a particular system, it communicates the system’s ID to the TCM. When
tcc determines that a test case is a distributed test case, it communicates the list of all the
participating systems to the TCM that is managing each test case part. However, when tcc
determines that a test case is a non-distributed test case, it communicates a system list to the
TCM which contains only that TCM’s system ID.

So a TCM always knows the ID of the system on which it is running and can determine whether
or not it is processing a distributed test case by counting the number of system IDs in the list that
it receives from tcc. A Distributed TCM acts as a master TCM if its system ID is the first (or
only) ID in the list. Conversely, a Distributed TCM acts as a slave TCM if its system ID is the
second or subsequent ID in the list.

Since all the parts of a distributed test case share the same execution results file, it is appropriate
for only one of the test case parts to print TCM Start, IC Start, IC End and TP Start messages to
the execution results file. This function is only performed by the master TCM in a distributed test
case.

In addition, Distributed TCMs that are managing parts of a particular distributed test case on
different systems all synchronise with each other at certain points during test case execution.
These synchronisation points occur at the following times:

� At TCM startup time.

� Before the user-supplied startup function is called by the TCM.

� Before the first test purpose function in an invocable component is called by the TCM.

� Before each test purpose function is called by the TCM.

� When each test purpose function returns control to the TCM.

� Before the user-supplied cleanup function is called by the TCM.

Thus it can be seen that TCMs which support distributed testing ensure that each part of a
distributed test case keeps in step with all of its peers throughout the execution process. Refer to
the chapter entitled ‘‘Test case synchronisation’’ in the TETware User Guide for details of
synchronisation between TCMs that are managing the different parts of a distributed test case.

Page 84 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

7.5 Portability
On Win32 operating systems the C runtime support library does not really support the
asynchronous event handling that is provided by the signal mechanism on a UNIX system.
Therefore the Win32 versions of the C TCM do not attempt to handle asynchronous events of
this type.

This and other issues related to the processing of test cases on Win32 systems are discussed in the
appendix entitled ‘‘Implementation notes for TETware on Win32 systems’’ in the TETware User
Guide.

March 2003 Page 85
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Page 86 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

8. The C API

8.1 Introduction
This chapter describes the TETware C API. Different versions of the C API are supplied with
TETware-Lite and Distributed TETware. The Distributed version of the C API may be used
when writing both distributed and non-distributed test cases, whereas the Lite version of the
C API may only be used when writing non-distributed test cases. The types of test case
supported by each API version corresponds to the types of test case which may be processed by
the TCC included with each TETware version.

The synopses here are described in accordance with the International C Standard ISO 9899. An
ISO 9899 or Common Usage C (as defined in ISO 9945−1) conforming compiler is required to
develop test cases using these interfaces. See the chapter entitled ‘‘Writing a C language API-
conforming test suite’’ for an example of how to write a C language based test suite.

8.2 C language binding
On UNIX systems, test cases written to this language binding attach themselves to it through the
following files:

� tet-root/lib/tet3/libapi.a contains the support routines for test purposes.

� tet-root/lib/tet3/tcm.o contains the TCM. This file contains the routine main()
and associated support routines for the sequencing and control of invocable components
and test purposes.

� tet-root/lib/tet3/tcmchild.o contains the child process controller. This file
contains a main() routine which can be used by test suites when building processes
which test purposes will launch using the tet_exec() and tet_spawn() interfaces.

� tet-root/lib/tet3/tcmrem.o contains the remote executed process controller. This
file contains a main() routine which can be used by test suites when building processes
which test purposes will launch using the tet_remexec() interface. Note that in
Distributed TETware the use of tet_remexec() (and therefore the use of this file) is
deprecated. It is possible that this file may be removed from a future TETware release.
This file is not supplied in TETware-Lite.

� tet-root/inc/tet3/tet_api.h contains prototypes for the functions, declarations of
all the global variables, and definitions of all the structures and manifest constants that
constitute the C API.

The names of these files are similar on Win32 systems; the differences are that object files (.o
files) instead have a .obj suffix and library files (.a files) instead have a .lib suffix.

The object and library files described here are suitable for static linking. On some systems shared
(or dynamic) API library files may also be available. The names of shared API library files and
the way in which the files must be used are system-dependent. Further details are presented in
the chapter entitled ‘‘Using shared API libraries’’ elsewhere in this guide.

A test suite should access each of these files by means of its build tool, in a way which is
appropriate for the available Software Generation System. Test suite authors are advised to allow
easy specification of alternate path names for these files (possibly through TETware configuration
variables), thus improving the flexibility of their suites.

March 2003 Page 87
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

A thread-safe version of the C API is supplied in addition to the standard (that is: single-threaded)
version described here. Distinct versions of the thread-safe C API are supplied with Distributed
TETware and TETware-Lite. Differences between the standard and thread-safe APIs are
described in the chapter entitled ‘‘The Thread-safe C and C++ APIs’’ elsewhere in this guide.

The interfaces described in this chapter can also be used by test cases written to the C++ language
binding, although the names of the files containing these interfaces are different. As with the
C API, the C++ language binding is provided in both standard and thread-safe versions, and
distinct versions of each are supplied with Distributed TETware and TETware-Lite. The C++
API is described in more detail in the chapter entitled ‘‘The C++ API’’ elsewhere in this guide.

8.3 TCC dependencies
Test cases built to the Lite version of this API may be either be executed stand-alone or under the
control of either TCC version. Test cases built to the Distributed version of this API require the
Distributed TCC to execute; they cannot be executed stand-alone. This is because the amount of
effort required to establish an environment in which test cases could execute without the TCC is
substantial. This applies especially to the requirement for test purpose synchronisation and result
arbitration.

The TCC uses communication variables to pass information to the API. If the communication
variables normally set by the TCC are not set when a test case is executed, TET_ACTIVITY
defaults to 0 and TET_CONFIG to undefined. If TET_CODE is undefined or the file specified by
TET_CODE does not exist in the current directory, the default set of result codes is used.

If the test case requires configuration variables or additional result codes, those communication
variables should be set accordingly when a test case is executed stand-alone.

Page 88 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

8.4 Test case structure and management

8.4.1 Introduction
These functions and variables are used when test cases are initialised and cleaned up, and in
selecting invocable components and test purposes to execute. Some of these elements are
provided by the API, whereas others must be defined in each test case.

There are two methods that may be used to specify the list of invocable components and test
purposes in a test case, as follows:

� When the static method is used, the list of invocable components and test purpose functions
in the test case must be specified by the test suite author at compile time in a static array
which is part of the user-supplied test code. The TCM determines which invocable
components and test purposes to execute by inspecting the contents of this array.

� When the dynamic method is used, the list of invocable components and test purpose
functions in the test case may be specified at run time by the test case itself. The TCM
calls certain test case interface functions to determine which invocable components and test
purpose functions exist within the test case, and to invoke each test purpose function which
is to be executed. When the dynamic method is used, all of the test case interface functions
must be provided in the user-supplied test code.

The method used by the TCM to determine which invocable components and test purpose
functions have been specified in the test case depends on whether or not the test case contains
these interface functions. If the test case contains the set of interface functions that are called by
the TCM, then those functions are used. Otherwise, the TCM uses a default set of interface
functions that are part of the API library; this set implements the interface to the static
tet_testlist[] array.

The two methods that may be used to specify invocable components and test purpose functions
are described in more detail in the two subsections that follow.

8.4.2 Static test case interface − the tet_testlist[] array

Synopsis

struct tet_testlist {
void (*testfunc)(void);
int icref;

};

struct tet_testlist tet_testlist[];

Description
When the static method is used to specify the invocable components and test purpose functions in
a test case, the tet_testlist[] array consists of an array of tet_testlist structures that
must be defined in the user-supplied test code. Each element in this array specifies a user-
supplied test purpose function that may be called by the TCM.

March 2003 Page 89
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Members of the tet_testlist structure have meanings as follows:

testfunc A pointer to the test purpose function.

icref The number of the invocable component to which this function belongs.

The tet_testlist[] array is terminated by a structure with the testfunc element set to
NULL. No other element of the array will use the value NULL for this element.

For each requested invocable component, the TCM scans the tet_testlist[] array and
executes, in order, each test purpose that is associated with that invocable component. When
all invocable components are requested, the TCM executes all ICs for which entries are defined
in the tet_testlist[] array, in order of ascending IC number. In both cases the TCM will
calculate the number of test purposes that are to be executed for each requested invocable
component.

The TCM does not perform any error checking on the contents of the tet_testlist[] array.
It is the test author’s responsibility to ensure that the contents of the array is correctly specified.
In particular, it should be noted that in a distributed test case the tet_testlist[] structure
must be exactly replicated on each system that is to participate in the test and, therefore, contain
the same number of members. This may require the inclusion of test purposes on some systems
that do nothing except register a result of PASS.

Application notes
When a test case contains a tet_testlist[] array, it should not contain any of the interface
functions described in the next subsection.

8.4.3 Dynamic test case interface − tet_getmaxic(),
tet_getminic(), tet_isdefic(), tet_gettpcount(),
tet_gettestnum() and tet_invoketp()

Synopsis

int tet_getmaxic(void);
int tet_getminic(void);

int tet_isdefic(int icnum);

int tet_gettpcount(int icnum);

int tet_gettestnum(int icnum, int tpnum);

int tet_invoketp(int icnum, int tpnum);

Description
The TCM calls these functions to determine which invocable components and test purpose
functions have been specified in the test case. If any of these functions are provided in the user-
supplied code, they must all be provided. If the user-supplied code does not contain this set of
functions, the TCM uses a default set that is provided in the API library.

The tet_getmaxic() and tet_getminic() functions should return the highest and
lowest invocable component number that are defined in the test case. Invocable component
numbers should be non-negative values. It is permissible for gaps to exist in the range of
invocable component numbers that are defined in the test case, but the TCM operates less
efficiently when this is the case.

Page 90 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

The TCM calls tet_getmaxic() and tet_getminic() when building the list of
invocable components to be executed. This operation is performed soon after the start of
processing, before the test case startup function17 is called.

The tet_isdefic() function should return 1 if the invocable component specified by icnum
is defined in the test case, or 0 if the invocable component is not defined.

The TCM calls tet_isdefic() when building the list of invocable components to be
executed, and before executing each invocable component in the list. It is likely that the TCM
will call this function more than once for each invocable component number between the values
returned by calls to tet_getmaxic() and tet_getminic(). It is the responsibility of the
test suite author to ensure that a call to tet_isdefic() for a particular icnum always returns
the same value.

The tet_gettpcount() function should return the number of test purposes that have been
defined in the invocable component specified by icnum, or 0 if the invocable component
specified by icnum has not been defined in the test case.

The TCM calls tet_gettpcount() once for each invocable component that is to be
executed, before invoking each test purpose function defined for that invocable component.

The tet_gettestnum() function should return the absolute test number for the test purpose
specified by tpnum within the scope of the invocable component specified by icnum. If this
test purpose has not been defined in the test case, tet_gettestnum() should return 0.

The test purpose number specified by tpnum and the absolute test number returned by this
function both start at 1. For example, consider a test case which contains three invocable
components. The first and third invocable components each contain two test purposes, and the
second invocable component contains four test purposes. The following table shows the absolute
test number that should be returned by a call to tet_gettestnum(icnum, tpnum) for each
of the defined test purposes in this example test case:

���
Relationship between invocable component number, test purpose

number and absolute test number in the example test case��
Invocable component Test purpose Value to be returned by

tet_gettestnum()number (icnum) number (tpnum)��
1 1 1
1 2 2��������������������������������������
2 1 3
2 2 4
2 3 5
2 4 6��������������������������������������
3 1 7
3 2 8���������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�

0any other (icnum, tpnum) combination��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

The TCM calls tet_gettestnum() immediately before invoking the specified test purpose

����������������
17. That is: the function specified by (*tet_startup)().

March 2003 Page 91
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

function. The value returned is used to initialise the global variable tet_thistest which is
described in a later subsection.

The tet_invoketp() function should invoke the test purpose function specified by tpnum
within the scope of the invocable component specified by icnum. In this context the first test
purpose in a particular invocable component icnum has a tpnum of 1, and the last test purpose in
the same invocable component has a tpnum of tet_gettpcount(icnum).

The TCM calls tet_invoketp() in order to invoke the specified test purpose function. The
return value of this function is reserved for future use; for now, tet_invoketp() should
always return 0.

Application notes
When any of the interface functions described in this section are provided in a test case, they
must all be provided.

When a test case contains the set of interface functions that are described in this section, it should
not contain the tet_testlist[] array that is described in the previous section. (If you
provide the interface functions described in this section, any tet_testlist[] array will be
ignored by the TCM.)

It is possible to use the API functions which write information lines to the journal and access the
values of configuration variables from these functions.

It is the responsibility of the provider of these functions to ensure that they behave in a consistent
manner. For example, the results are undefined if a call to tet_isdefic() for a particular
icnum returns 1 and a subsequent call for the same icnum returns 0. Likewise, the results are
undefined if a call to tet_getmaxic() or tet_getminic() indicates that a particular
invocable component is defined and a subsequent call to tet_isdefic() or
tet_gettpcount() indicates that the invocable component is not defined.

When these functions are used in parts of a distributed test case, total chaos will break out if
when called with particular arguments they behave differently in the different test case parts.

By convention the absolute test number should increase uniformly for each test purpose defined
within the test case, just as it does when the static test case interface is used. Although the TCM
does not itself rely on this behaviour, test suite authors are reminded that failure to observe this
convention might confuse a report writer.

The flexibility provided by the dynamic test case interface makes it possible for a test case to alter
its execution path on-the-fly, possibly depending on factors which can change between test runs.
When this capability is used it is possible that the journal produced might yield unexpected
results when used as input to a subsequent tcc run when the Rerun or Resume options are
specified.

The TCM will not call any of the functions tet_gettpcount(), tet_gettestnum() and
tet_invoketp() with an icnum value which has not been returned by a previous call to
tet_getmaxic() or tet_getminic(), or indicated as valid by a previous call to
tet_isdefic(icnum). Likewise, the TCM will not call any of the functions
tet_gettestnum() and tet_invoketp() with a known good icnum value and a
tpnum value which is outside of the range 1 through tet_gettpcount(icnum).

In TETware-Lite there is no practical limit to the number of invocable components and test
purpose functions that may be defined in a test case. In Distributed TETware the maximum value
of an icnum is limited to 32766 and the maximum value of a tpnum is limited to 32767.

Page 92 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

8.4.4 tet_startup and tet_cleanup

Synopsis

void (*tet_startup)(void);

void (*tet_cleanup)(void);

Description
The function pointers tet_startup and tet_cleanup must be defined in the user-supplied
test code. These pointers may be initialised with the addresses of the functions to be used to
perform test case specific start up and clean up procedures, respectively. The start up procedure
is executed before the first requested invocable component and the clean up procedure is executed
on completion of the last requested invocable component. These routines are executed
irrespective of which invocable components are requested. If a test case does not need to perform
actions on start up and/or clean up, the corresponding pointer should be initialised to
TET_NULLFP (a NULL function pointer, defined in tet_api.h).

8.4.5 tet_thistest, tet_nosigreset and tet_pname

Synopsis

int tet_thistest;

int tet_nosigreset;

char *tet_pname;

Description
These variables are provided by the API.

When the static test case interface is used, the tet_thistest variable contains the sequence
number (starting at 1) of the element in the tet_testlist[] array that is associated with the
currently executing test purpose.

When the dynamic test case interface is used, the tet_thistest variable contains the absolute
test number that is returned by the tet_gettestnum() function as described in a previous
subsection.

During execution of the start up and clean up functions, tet_thistest is set to zero.

The value of tet_nosigreset determines whether or not the TCM reinstates signal handlers
for unexpected signals before each test purpose function is called. Initially this variable contains
a value of zero but this may be changed by the user-supplied test code. The default value of zero
means that signal handlers will be reinstated before each test purpose, in order to ensure that
unexpected signals do not go unnoticed if an earlier test purpose installed a local handler but does
not restore the original handler before returning control to the TCM.

If tet_nosigreset is set to a non-zero value in the start up function called via
(*tet_startup)(), then signal handlers will be left in place between test purposes. In test
cases where stray signals constitute a test failure, it is recommended that tet_nosigreset is
left with its default value of zero. This is because, even if test purposes contain code to restore
the signal handling, this code will not be executed if an unexpected signal arrives and the TCM
skips to the start of the next test purpose.

The tet_pname variable points to the process name as given on the test case command line.
This variable is also provided in sub-programs that are linked with one of the TETware child

March 2003 Page 93
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

process controllers.

Portability
Setting the value of tet_nosigreset has no effect on a Win32 system.

Page 94 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

8.5 Insulating from the test environment
Description
The following configuration variables are used by the C language TCM to help determine which
events should be handled for the test case, and which should be passed through. They are used by
the TCM to support functionality to insulate test cases from the test environment.

TET_SIG_IGN defines (by comma separated number) the set of signals that are to be
ignored during test purpose execution. Any signal that is not set to be
ignored or to be left (see TET_SIG_LEAVE below) with its current
disposition, will be caught when raised and the result of the test purpose will
be set to UNRESOLVED because of the receipt of an unexpected signal. A
test purpose may undertake its own signal handling as required for the
execution of that test purpose. The disposition of signals will be reset after
the test purpose has completed, unless the global variable
tet_nosigreset is non-zero. The TCM needs to know how many
signals the implementation supports in order to set up catching functions for
these signals.

TET_SIG_LEAVE defines (by number) the set of signals that are to be left unchanged during
test execution. In most cases this will mean that the signal takes its default
action. However, the user can change the disposition of the signal (to
ignore) before executing the TCC if this signal is to remain ignored during
the execution of the test purposes.

TET_RTSIG_IGN When this configuration variable is true on systems that support realtime
signals,18 the TCM behaves as if the whole range of realtime signals is
included in the value of the TET_SIG_IGN configuration variable.

TET_RTSIG_LEAVE

When this configuration variable is true on systems that support realtime
signals, the TCM behaves as if the whole range of realtime signals is
included in the value of the TET_SIG_LEAVE configuration variable.

The ability to specify that the whole range of realtime signals should be ignored or left alone is
useful on systems where the range of realtime signal values is non-constant and must thus be
determined at runtime.

The implementation on UNIX systems does not allow the signals defined by POSIX.1 (ISO
9945−1) to be set to be ignored or left unchanged, as this may pervert test results.

Portability
The facilities described here are not provided on Win32 systems.

����������������
18. That is: on systems on which SIGRTMIN and SIGRTMAX are defined in <signal.h>.

March 2003 Page 95
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

8.6 Error handling and reporting

8.6.1 Introduction
Many of the API functions return error indications. The API provides the following variables for
use when determining and reporting the cause of these errors.

8.6.2 tet_errno

Synopsis

int tet_errno;

Description
When an API function returns a value which indicates that an error has occurred, the API stores a
value in the global tet_errno variable which indicates the cause of the error. The API does
not alter the value of this variable when a call to an API function is successful.

Distributed TETware uses a client/server architecture and calls to several of the API functions
cause the API to send requests to server processes. A server sends a reply code in response to
each request that it receives. When the reply code indicates that a request has failed, the value
stored in tet_errno is derived from the server reply code. A list of the server reply codes and
their meanings is presented in the appendix entitled ‘‘Server reply codes’’ in the TETware User
Guide.

The following error codes may be used by the API. These codes are defined in tet_api.h.
Note that not all of them may be visible outside of the API.

TET_ER_2BIG Argument list too long.
TET_ER_ABORT Abort TCM on TP end.
TET_ER_CONTEXT Request out of context.
TET_ER_DONE Event finished or already happened.
TET_ER_DUPS Request contained duplicate IDs.
TET_ER_ERR General error code.
TET_ER_FID Bad identifier in file i/o request.
TET_ER_FORK Can’t fork.
TET_ER_INPROGRESS Event in progress.
TET_ER_INTERN Server internal error.
TET_ER_INVAL Invalid parameter.
TET_ER_LOGON Not logged on to server.
TET_ER_MAGIC Bad magic number in server request.
TET_ER_NOENT No such file or directory.
TET_ER_PERM Privilege request/kill error.
TET_ER_PID No such process.
TET_ER_RCVERR Receive message error.
TET_ER_REQ Unknown request code.
TET_ER_SIGNUM Bad signal number.
TET_ER_SNID Bad sync identifier in SYNCD request.
TET_ER_SYNCERR Sync completed unsuccessfully.
TET_ER_SYSID System identifier not in system name list.
TET_ER_TIMEDOUT Request or system call timed out.
TET_ER_TRACE Tracing not configured.

Page 96 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

TET_ER_WAIT Process not yet terminated.
TET_ER_XRID Bad execution results file identifier in XRESD request.

Whenever an unsuccessful API call sets tet_errno to TET_ER_ERR (the general error code),
a diagnostic message is generated somewhere which contains more precise details of the cause of
the error. If an error of this type occurs in the API library, the diagnostic is printed to the
execution results file as a TCM/API message if possible; if this is not possible, the diagnostic is
printed on the test case’s standard error stream.

However, in Distributed TETware, an error of this type can also occur in a server process. In this
case the more detailed error message is printed on the server’s standard error stream. The result
of this is that when an API call is unsuccessful in Distributed TETware and tet_errno is set to
TET_ER_ERR, the more detailed error message often appears in a TCCD log file on the local
system or on one of the remote systems that is participating in the test run.

8.6.3 tet_errlist[] and tet_nerr

Synopsis

char *tet_errlist[];

int tet_nerr;

Description
The tet_errlist[] array contains short text strings, similar to those listed in the previous
section, which describe each of the values defined for tet_errno.

When a call to an API function is unsuccessful, the string obtained when the value of
tet_errno is used to index the tet_errlist[] array may be used when an information
line is printed to the execution results file by the test case.

The global variable tet_nerr is initialised to the number of strings provided in the
tet_errlist[] array. The value of tet_errno should be checked against tet_nerr
before using it to index the array in order to guard against the possibility that a new error code is
added to the API before the corresponding message is added to the array.

March 2003 Page 97
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

8.7 Making journal entries

8.7.1 Introduction
These functions are provided for use by test cases when making entries in the execution result
file.

8.7.2 tet_setcontext() and tet_setblock()

Synopsis

void tet_setcontext(void);

void tet_setblock(void);

Description
The tet_setcontext() function sets the current context to the value of the current process
ID, and resets the block and sequence numbers to 1. A call to tet_setcontext() should be
made by any application which executes a fork() to create a new process and which wishes to
write entries from both processes. The call to tet_setcontext() must be made from the
child process, not from the parent.

The tet_setblock() function increments the current block ID. The value of the current
block ID is reset to one at the start of every test purpose or after a call to tet_setcontext()
which altered the current context. The sequence ID of the next entry, a number which is
automatically incremented as each entry is output to the execution results file, is set to one at the
start of each new block.

Return value
These functions do not return a value.

Portability
The thread-safe version of tet_setcontext() does not reset the block and sequence
numbers.

Page 98 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

8.7.3 tet_infoline(), tet_minfoline(), tet_printf() and
tet_vprintf()

Synopsis

void tet_infoline(char *line);

int tet_minfoline(char **lines, int nlines);

int tet_printf(char *format, /* [arg,] */ ...);

int tet_vprintf(char *format, va_list ap);

Description
A call to tet_infoline() prints the information line specified by line to the execution
results file. The sequence number is incremented by one after the line is output. If the current
context and the current block ID have not been set, the call to tet_infoline() causes the
current context to be set to the value of the calling process ID and the current block ID to be set
to one.

A call to tet_minfoline() prints groups of information lines to the execution results file. In
Distributed TETware these lines are printed using a single operation which guarantees that lines
from other test case parts do not appear in between lines printed by a particular call to this
function. lines points to the first in a list of pointers to strings which are to be written to the
execution results file in a single operation. A NULL pointer in the list is ignored. nlines
specifies the number of pointers in the list.

A call to tet_printf() formats the string specified by format which may contain
printf()-like conversion specifications and prints it to the execution results file as one or more
test case information lines. If after formatting the string is to contain more than one information
line, each line except the last should be delimited by a newline character. If the formatted string
contains a line that is longer than the maximum permitted for a journal information line, the API
adds extra newlines in order to break the long line into two or more shorter lines. If possible, a
newline added by the API will replace a blank character in the string so that the string is broken
on a word boundary. When formatting is complete, the lines are written to the execution results
file as if by a call to tet_minfoline().

The operation of tet_vprintf() is the same as that described for tet_printf() except
that, instead of being called with a variable number of arguments, it is called with a variable
argument list.

Return value
A call to tet_infoline() does not return a value.

A successful call to tet_minfoline() returns zero. If a call to tet_minfoline() is
unsuccessful, −1 is returned and tet_errno is set to indicate the cause of the error.

A successful call to tet_printf() or tet_vprintf() returns the number of bytes written
to the execution results file. If a call to tet_printf() or tet_vprintf() is unsuccessful,
−1 is returned and tet_errno is set to indicate the cause of the error.

March 2003 Page 99
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

8.7.4 tet_result()

Synopsis

void tet_result(int result);

Description
A call to tet_result() informs the API of the result of the test purpose from which it is
called. The API generates a TP result line which is printed to the execution results file by the
TCM upon test purpose completion. This ensures that all informational messages are written out
before the test purpose result, and that there is one (and only one) result generated per test
purpose. If the result code specified by result is one for which the action specified in the result
codes file is to abort testing, then the TCM will exit after the test purpose has completed. If an
immediate abort is desired, then the test purpose should execute a return statement
immediately after the call to tet_result().

If a test purpose does not call tet_result(), the TCM will generate a result of NORESULT.
If more than one call to tet_result() is made with different result codes, the TCM
determines the final result code by use of precedence rules. The precedence order (highest first)
is:

FAIL
UNRESOLVED, UNINITIATED
NORESULT (i.e., invalid result codes)
Test suite supplied codes
UNSUPPORTED, UNTESTED, NOTINUSE
PASS

Where two or more codes have the same precedence then all calls to tet_result() with one
of those codes are ignored except the first such call.

The tet_result() function should only be called from within the scope of a test purpose
function. It must not be called from a test case start up or clean up function.

Return value
This function does not return a value.

Page 100 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

8.8 Cancelling test purposes

8.8.1 Introduction
These functions are provided for use when cancelling test purposes.

8.8.2 tet_delete()

Synopsis

void tet_delete(int testno, char *reason);

Description
A call to tet_delete() marks the test purpose specified by the absolute test number testno
as cancelled. When the static test case interface is used, the test purpose to be cancelled is the
one defined in the element specified by tet_testlist[testno − 1]. When the dynamic test
case interface is used, the test purpose to be cancelled is the one identified by the
tet_gettestnum() function. If the test purpose specified by testno is not defined in the
test case, a call to tet_delete() has no effect.

reason should point to a text string which describes the reason why the test purpose is to be
marked as cancelled. This string should be contained in a static area.

When the TCM prepares to call a test purpose function, it first checks to see if the function has
been marked as cancelled by a call to tet_delete(). If the test purpose has been marked as
cancelled, the TCM does not call the function but instead prints the line pointed to by reason to
the execution results file and records a result of UNINITIATED.

If a call to tet_delete() names a testno that has been marked as cancelled by a previous
tet_delete() call, the reason for cancellation is changed to the reason specified in the
current call.

If tet_delete() is called with a NULL reason parameter, the test purpose specified by
testno is reactivated if it has previously been marked as cancelled.

Note that the string pointed to by a non-NULL reason parameter is not copied by the API when
tet_delete() is called. Therefore it must point to static data, as the calling function will
have terminated when the reason string is accessed by the TCM. Also, care should be taken not
to re-use a buffer that has previously been passed to tet_delete().

If tet_delete() is called in a distributed test case, the API notifies other participating TCMs
of the cancellation. This notification occurs when the TCMs synchronise with each other before
attempting to execute the cancelled test purpose. Thus, none of the TCMs execute a distributed
test purpose which has been cancelled on any of the participating systems.

Return value
This function does not return a value.

Application notes
The tet_delete() function can only usefully be called from a top-level process; that is, a
process which has been linked with the TCM module. It has no effect when called from a child
process; that is, in the (*childproc)() function after a call to tet_fork() or in a process
which has been linked with one of the child process controllers.

March 2003 Page 101
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

8.8.3 tet_reason()

Synopsis

char *tet_reason(int testno);

Description
The function tet_reason() returns a pointer to a string which contains the reason why the
test purpose with the specified absolute test number has been cancelled by a previous call to
tet_delete(). If this test purpose is not defined in the test case or is not marked as
cancelled, a value of (char *) NULL is returned.

Return value
If the specified test purpose exists and has been cancelled by a previous call to tet_delete(),
a call to tet_reason() returns the reason parameter supplied with the tet_delete()
call; otherwise, a NULL pointer is returned.

Application notes
The tet_reason() function can only usefully be called from a top-level process; that is, a
process which has been linked with the TCM module. The return value of a call to
tet_reason() is undefined in a child process; that is, in the (*childproc)() function
after a call to tet_fork() or in a process which has been linked with one of the child process
controllers.

It is not possible to use tet_reason() in a distributed test case to determine whether or not a
remote test purpose part has been cancelled.

Page 102 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

8.9 Accessing configuration variables

8.9.1 Introduction
This function provides access to configuration variables. A description of how configuration
variables are defined is presented in the chapter entitled ‘‘Configuration files’’ elsewhere in this
guide. Note that when a test case or tool is processed by the TCC, this function only provides
access to variables that are defined for the current mode of operation.

When Distributed TETware is used, this function provides access to the per-system configuration
defined for the system on which the calling process is running. This function cannot be used to
access configuration variables defined on other systems or distributed configuration variables.

8.9.2 tet_getvar()

Synopsis

char *tet_getvar(char *name);

Description
A call to tet_getvar() returns a pointer to the value of the configuration variable name.
This pointer will remain valid for the life of the process, regardless of subsequent calls to
tet_getvar().

If the variable specified by name is defined but has no setting, tet_getvar() returns a pointer
to an empty string. If the variable specified by name is undefined, tet_getvar() returns a
NULL pointer.

Return value
This function returns the values described above.

March 2003 Page 103
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

8.10 Generating and executing processes

8.10.1 Introduction
These functions enable API-conforming child processes and sub-programs to be created and
administered.

8.10.2 tet_fork(), tet_exec() and tet_child

Synopsis

int tet_fork(void (*childproc)(void), void (*parentproc)(void),
int waittime, int validresults);

int tet_exec(char *file, char *argv[], char *envp[]);

extern pid_t tet_child;

Description
The tet_fork() function creates a new process which is a copy of the calling process and,
unless a negative waittime is specified, modifies the signal disposition in the newly created
process such that any signals that were being caught in the parent process are set to their default
values in the child process. Then the function specified by (*childproc)() is called in the
child process. If this function returns, the child process terminates with an exit status of 0.
Alternatively, the (*childproc)() function may terminate the child process with a specific
exit status by means of a call to tet_exit() or overlay the child process by means of a call to
tet_exec().

If (*parentproc)() is not set to NULL, the function specified by (*parentproc)() is
called in the parent process. Then the parent process waits for the child process to terminate and
obtains the child’s exit status. Then, the bits which are set in validresults are cleared in the
child’s exit status value. If the result of this operation is zero, tet_fork() assumes that the
child process terminated with a valid (or expected) exit status. Otherwise, tet_fork()
assumes that the child process terminated with an unexpected exit status and reports this exit
status to the execution results file.

If the value of the child’s exit status is one of the expected values, tet_fork() returns the
child’s exit status; otherwise, tet_fork() returns a value of −1 if the child’s exit status is
unexpected or some other error occurs. When tet_fork() returns −1, it reports the nature of
the error using tet_infoline() and sets the test purpose result code to UNRESOLVED by
calling tet_result().

If a positive waittime is specified, the parent process will ensure that the child process does
not continue to execute for more than waittime seconds after the completion of the optional
(*parentproc)() function. If waittime is zero, the parent process will wait indefinitely
for the child process to terminate. If a negative waittime is specified, the signal dispositions in
the child process are not modified, the parent process does not wait for the child process to
terminate and the value of validresults is ignored. When a negative waittime is
specified, it is the responsibility of the (*parentproc)() function to wait for the child
process and interpret its exit status.

The API calls tet_setcontext() in the child process before calling the
(*childproc)() function, so that journal entries made by the child process may be
distinguished from journal entries made by the parent process. The API makes calls to

Page 104 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

tet_setblock() in the parent process in order to distinguish between journal entries made
before, during and after execution of the child process.

tet_exec() may be called from a (*childproc)() function of a child process that is
generated by a call to tet_fork(). tet_exec() passes the argument data specified by
argv[] and the environment data specified by envp[] to the process specified by file. The
usage of the tet_exec() is equivalent to that of the ISO 9945−1 execve() function, except
that the API adds arguments and environment data that are to be interpreted by the driver of the
executed file.

The interface between tet_exec() and the sub-program launched by it has been designed to
enable the sub-program to use the API. Therefore the sub-program that is launched by a call to
tet_exec() must be built with the child process controller tcmchild.o.

If tet_exec() is called without first calling tet_fork(), the results are undefined. This is
because the tet_fork() function makes calls to tet_setcontext() in the child and
tet_setblock() in the parent to distinguish output from the child and from the parent
before, during and after execution of the (*parentproc)() function.

The global variable tet_child is provided by the API for use in the (*parentproc)()
function called from tet_fork(). It is set to the process ID of the child.

Return value
A successful call to tet_fork() returns the exit status of the child process. If an error occurs,
the child process terminates abnormally19 or the child’s exit status is not one of the values
specified by validresults, −1 is returned and tet_errno is set to indicate the cause of the
error.

A successful call to tet_exec() does not return. If a call to tet_exec() is unsuccessful, −1
is returned and tet_errno is set to indicate the cause of the error.

Portability
tet_fork(), tet_exec() and tet_child are not provided on Win32 systems. Test suite
authors should instead use tet_spawn() and tet_wait() when writing portable test cases.

����������������
19. That is: WIFEXITED(wait-status) in the parent process is false.

March 2003 Page 105
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

8.10.3 tet_spawn()

Synopsis

pid_t tet_spawn(char *file, char *argv[], char *envp[]);

Description
A call to tet_spawn() creates a sub-program without the need to call tet_fork() first.
The meanings of the arguments to tet_spawn() are the same as the meanings of the
arguments to tet_exec(), described previously.

The interface between tet_spawn() and the sub-program launched by it has been designed to
enable the sub-program to use the API. Therefore the sub-program that is launched by a call to
tet_spawn() must be built with the child process controller tcmchild.o (on UNIX
systems) or tcmchild.obj (on Win32 systems).

Return value
A successful call to tet_spawn() returns the process identifier of the newly created process.
If a call to tet_spawn() is unsuccessful, −1 is returned and tet_errno is set to indicate the
cause of the error.

Portability
Test case authors are reminded that process identifiers are reallocated rather more frequently on a
Win32 system than they are on a typical UNIX system. Therefore, the use of the value returned
by tet_spawn() to generate a unique quantity (such as a temporary file name) is likely to be
less successful on a Win32 system than on a UNIX system.

On a Win32 system the type of the return value of this function (pid_t) is defined as an int in
tet_api.h. This corresponds to the type of the value returned by the underlying
_spawnve() function in the C runtime support library. This value is actually a HANDLE value,
so it is only meaningful within the context of the calling process. Therefore it should be
remembered that this value is not the same as the value that would be returned by a call to
_getpid() in the newly created process.

Page 106 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

8.10.4 tet_wait()

Synopsis

int tet_wait(pid_t pid, int *statp);

Description
A call to tet_wait() waits for the process identified by pid to terminate and returns that
process’s exit status indirectly through *statp. pid is the process identifier returned by a
previous successful call to tet_spawn().

Return value
A successful call to tet_wait() returns zero. If a call to tet_wait() is unsuccessful, −1 is
returned and tet_errno is set to indicate the cause of the error.

Portability
On a UNIX system, the value returned indirectly through *statp is obtained from the
waitpid() system call. On a Win32 system, the value returned indirectly through *statp is
obtained from a call to the _cwait() function in the C runtime support library. Test suite
authors are reminded that the encodings of the process exit status values returned by these two
functions are likely to be different.

8.10.5 tet_kill()

Synopsis

int tet_kill(pid_t pid, int sig);

Description
A call to tet_kill() sends the signal specified by sig to the process specified by pid, which
should be the process identifier returned by a previous successful call to tet_spawn().

Return value
A successful call to tet_kill() returns zero. If a call to tet_kill() is unsuccessful, −1 is
returned and tet_errno is set to indicate the cause of the error.

Portability
The sig parameter is ignored on a Win32 system; instead, a different method is used to
terminate the process specified by pid.

Application notes
Test case authors are discouraged from using tet_kill() to terminate a process which is
running on a Win32 system. The reasons for this are discussed in the appendix entitled
‘‘Implementation notes for TETware on Win32 systems’’ in the TETware User Guide.

March 2003 Page 107
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

8.11 Executed process functions

8.11.1 Introduction
These functions are provided for use by API-conforming processes that are launched by calls to
the tet_exec(), tet_spawn() and tet_remexec() functions.

8.11.2 tet_main()

Synopsis

int tet_main(int argc, char *argv[]);

int tet_thistest;

char *tet_pname;

Description
The function tet_main() must be supplied by the test suite developer. This function is called
by the main() function of the TETware child process controller. Prior to calling
tet_main(), the child process controller sets the value of the tet_thistest variable to the
value of tet_thistest in the process that called tet_exec(), tet_spawn() or
tet_remexec(). This value should not be changed by the executed process.

The current context is preserved from the calling process and the current block is incremented by
one before tet_main() is called.

If tet_main() returns, its return value becomes the child process’s exit status. If the child
process was started by a call to tet_exec(), the child process’s exit status will be returned to
the process which called the tet_fork() function; in this case, the value returned from
tet_main() will usually match one of the valid result values specified in the call to
tet_fork(). If the child process was started by a call to tet_spawn(), the child process’s
exit status may be accessed in the parent by a call to tet_wait(). If the child process was
started by a call to tet_remexec(), the child process’s exit status may be accessed in the
parent by a call to tet_remwait().

The tet_pname variable in the child process contains the process name as given in the
argv[0] parameter to tet_main().

Return value
If the user-supplied tet_main() function returns a value to the child process controller, this
value becomes the child process’s exit status.

Page 108 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

8.11.3 tet_exit() and tet_logoff()

Synopsis

void tet_exit(int status);

void tet_logoff(void);

Description
The function tet_exit() should be used instead of exit() by a child process that is started
by a call to tet_fork(), tet_exec(), tet_spawn() or tet_remexec(). In
Distributed TETware this function logs off all TETware servers, then calls exit() with the
specified status as argument. tet_exit() should only be called from the child process that
is started by tet_fork(), tet_exec(), tet_spawn() or tet_remexec() and not by
any of its children.

The function tet_logoff() may be called by a child process that is started by a call to
tet_fork(), tet_exec(), tet_spawn() or tet_remexec() which does not need to
make any further TETware API calls and is not able to call tet_exit() at process termination
time (for example: if one of the flavours of exec() is about to be called in the child process).
tet_logoff() should only be called once from the child process. In Distributed TETware the
results are undefined if a process or any of its descendents makes any TETware API calls after
tet_logoff() is called.

Return value
A successful call to tet_exit() does not return.

A call to tet_logoff() does not return a value.

Portability
In TETware-Lite a call to tet_exit() simply calls exit() and a call to tet_logoff()
has no effect.

March 2003 Page 109
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

8.12 Test case synchronisation

8.12.1 Introduction
These functions enable parts of a distributed test purpose or a user-supplied startup or cleanup
function that are running on different systems to synchronise to an agreed point in the executing
code. They are only available for use in distributed test cases.

Refer to the chapter entitled ‘‘Test case synchronisation’’ in the TETware User Guide for an
overview of TETware synchronisation and a description of how to interpret journal messages that
are generated by the default sync error handling function.

8.12.2 tet_remsync()

Synopsis

int tet_remsync(long syncptno, int *sysnames, int nsysname,
int waittime, int vote, struct tet_synmsg *msgp);

Description
A call to tet_remsync() causes the calling process’s system to synchronise with one or more
of the other systems that are participating in the same distributed test case. The call can only
succeed if each of the systems specified in the call also expect to synchronise with each other and
with the calling process.

sysnames points to a list of IDs of the other systems with which the calling process wishes to
synchronise. nsysname specifies the number of systems in the list. The system ID of the
calling process is ignored if it appears in the list pointed to by sysnames.

syncptno specifies the sync point number to which the calling process wishes to synchronise.
If syncptno is zero, a successful call to tet_remsync() returns as soon as all participating
systems have synchronised to the next sync point. If syncptno is greater than zero, a
successful call to tet_remsync() returns as soon as all participating systems have
synchronised using a sync point number which is not less than syncptno. When syncptno is
greater than zero, a call to tet_remsync() will fail if a sync point has already occurred during
the lifetime of the current test case whose number is greater than or equal to syncptno. The
results are undefined if a negative syncptno is specified.

waittime specifies the number of seconds that may elapse between synchronisation requests
from other participating systems before the calling process times out. If waittime is greater
than zero, a call to tet_remsync() will be successful if all the participating systems
synchronise to the specified sync point with no more than waittime seconds between each
request. If waittime is zero, a call to tet_remsync() will return immediately, whether or
not it is successful. If waittime is negative, a call to tet_remsync() will wait indefinitely
for the specified sync point to occur or until the request fails for some reason. Test suite authors
should be aware of the potential for deadlock if a negative waittime is specified.

vote specifies how the calling system wishes to vote in the synchronisation event. This
parameter should be set to one of the defined constants TET_SV_YES or TET_SV_NO, to
indicate a yes vote or a no vote, respectively. When the calling process specifies a yes vote, a call
to tet_remsync() can only be successful if all the other participating systems also specify a
yes vote. When the calling process specifies a no vote, the API does not use the votes specified
by the other participating systems when determining whether or not a call to tet_remsync()
in that process is successful.

Page 110 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

It is possible for a process which calls tet_remsync() to exchange sync message data with
other participating systems which synchronise exactly to the sync point specified by syncptno.
This is done by calling tet_remsync() with a non-NULL value of msgp. When msgp is
non-NULL, it points to a user-supplied tet_synmsg structure which contains the following
elements:

struct tet_synmsg {
char *tsm_data;
int tsm_dlen;
int tsm_sysid;
int tsm_flags;

};

When tet_remsync() is called by parts of a distributed test purpose, one system sends data
which may be received by other systems. The API associates the sync message data with the
particular sync point specified by the syncptno parameter used in the tet_remsync() call
on the sending system. In order to receive the message data, the syncptno parameter in calls to
tet_remsync() on receiving systems must reference this sync point exactly, either by
specifying the same value for syncptno as that used on the sending system, or by specifying a
zero syncptno.

The test purpose part on the sending system should indicate a desire to send sync message data by
initialising members of the tet_synmsg structure as follows before tet_remsync() is
called:

� tsm_data points to the message to be sent.

� tsm_dlen is set to the number of bytes of message data to be sent.

� tsm_flags is set to TET_SMSNDMSG.

The test purpose part(s) on the receiving system(s) should indicate their willingness to receive
sync message data by initialising members of the tet_synmsg structure as follows before
tet_remsync() is called:

� tsm_data points to a user-supplied buffer in which the message data is to be received.

� tsm_dlen is set to the length of the receiving buffer.

� tsm_flags is set to TET_SMRCVMSG.

If the call to tet_remsync() is successful, then on return the API modifies members of the
tet_synmsg structure on the receiving systems(s) as follows:

� Up to tsm_dlen bytes of sync message data are copied to the receiving buffer pointed to
by tsm_data.

� tsm_dlen is set to the number of bytes of sync message data actually copied.

� tsm_sysid is set to the system ID of the system that sent the data, or to −1 if there is no
message data associated with the sync point specified by syncptno.

� If the API must truncate the message because the receiving buffer is not big enough, the
TET_SMTRUNC bit is set in tsm_flags.

If more than one system tries to send sync message data for a particular sync point, the API
performs the following operations:

March 2003 Page 111
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

1. Decide from which system to accept data and re-designate the other sending systems as
receiving systems.

2. Process the re-designated systems as described above.

3. Clear the TET_SMSNDMSG bit and set the TET_SMRCVMSG bit in tsm_flags on the
re-designated systems.

4. Set the TET_SMDUP bit in tsm_flags on all systems.

If a process tries to send a message which is larger than the maximum permitted message size (as
defined by the value TET_SMMSGMAX), the API perform the following actions:

1. Truncate the message to the maximum size before accepting it.

2. Set the TET_SMTRUNC bit in tsm_flags on all systems.

In most cases when a call to tet_remsync() is unsuccessful, the values of members of the
tet_synmsg structure are undefined when the call returns. However, if the only reason that a
call to tet_remsync() is unsuccessful is that other systems specified a no sync vote, the
tet_synmsg structure is processed in the normal way. This enables a process both to send
message data and to specify a no vote in a single tet_remsync() call.

If a process running on a particular system calls tet_remsync() with a msgp of NULL, the
API regards it as a receiving system but does not return any message data to it.

Return value
The call to tet_remsync() returns zero as soon as all the participating systems synchronise at
least as far as the specified sync point without timing out.

The call to tet_remsync() returns −1 when one of the following conditions occur:

� More than waittime seconds elapse between synchronisation requests from participating
systems.

� A related synchronisation request times out on one of the other participating systems.

� The user-supplied function in a test case on one of the other participating systems returns
control to its TCM before synchronising.

� The sync point specified by syncptno has already occurred.

� A yes sync vote is specified in the call but another participating system specifies a no vote
for this sync point.

� sysnames is NULL or nsysname specifies an empty system ID list.

� A system ID appears more than once in the array pointed to by sysnames.

� An invalid parameter is specified in the call.

� The API encounters a problem while processing the request.

When a call to tet_remsync() is unsuccessful, the API sets tet_errno to indicate the
cause of the error before calling the sync error handling function specified by tet_syncerr.

Page 112 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

Portability
tet_remsync() is only provided in Distributed TETware. It is not provided in TETware-
Lite.

The API treats sync message data as opaque and does not perform byte-swapping or other
processing when data is exchanged between machines with different architectures. So it is best
only to send ASCII strings in messages that are to be exchanged between systems which might
run on different machines.

Application notes
The values of user-defined sync point numbers must increase throughout the lifetime of an entire
test case and not just during the lifetime of a particular test purpose function within the test case.

Since synchronisation with other systems is defined in terms of system IDs (rather than individual
process IDs), it is the responsibility of the test suite author to ensure that only one process
running on a particular (logical) system calls tet_remsync() at one time. The results are
undefined if processes running on the same system make overlapping tet_remsync() calls.

If a multi-threaded test case makes overlapping calls to tet_remsync() from more than one
thread at once, one thread will be blocked by the API until the call in the other thread completes.
Then the call in the blocked thread will fail, usually with an ER_DONE error.

8.12.3 tet_sync() and tet_msync()

Synopsis

int tet_sync(long syncptno, int *sysnames, int waittime);

int tet_msync(long syncptno, int *sysnames, int waittime,
struct tet_synmsg *msgp);

Description
tet_sync() and tet_msync() are provided for backward compatibility with previous
DTET implementations and their use is deprecated in TETware. It is possible that support for
these functions may be removed from a future TETware release. Test case authors should use
tet_remsync() when writing new test cases.

In TETware tet_sync() and tet_msync() are implemented by calling tet_remsync().
When sysnames is non-NULL, it points to a zero-terminated list of system IDs. If either
function is called with a NULL sysnames parameter, a default system list containing only
system ID zero is used; otherwise, the zero-terminated system list pointed to by the sysnames
parameter is used. A pointer to the resulting system list and the number of systems in the list
(including the terminating zero) are passed to the underlying tet_remsync() call.

When a call to tet_sync() results in a call to tet_remsync(), a vote of TET_SV_YES
and a msgp of NULL are used. Likewise, when a call to tet_msync() results in a call to
tet_remsync(), a vote of TET_SV_YES is used.

When calls to tet_sync() or tet_msync() are unsuccessful, the API places an entry in the
journal file indicating the cause of the failure. If the call is unsuccessful because one or more of
the participating systems fails to synchronise, or the related process times out or terminates
before the specified sync point occurs, a call is made to the sync error handling function specified
by tet_syncerr. This variable is initialised with the address of a function which prints
messages similar to those printed by the API in previous DTET implementations.

March 2003 Page 113
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Return value
The return value of tet_sync() and tet_msync() is the same as that of the underlying
tet_remsync() call.

Portability
tet_sync() and tet_msync() are only provided in Distributed TETware. They are not
provided in TETware-Lite.

8.12.4 Control over sync error reporting

Synopsis

void (*tet_syncerr)(long syncptno, struct tet_syncstat *statp, int nstat);

void tet_syncreport(long syncptno, struct tet_syncstat *statp, int nstat);

Description
If a call to tet_remsync() is unsuccessful, the API calls the sync error handling function
pointed to by the global variable tet_syncerr before the tet_remsync() call returns.

When (*tet_syncerr)() is called by the API, syncptno contains the number of the sync
point that has failed, statp points to the first in an array of structures, each of which describes
the sync status of each of the other systems participating in the event and nstat specifies the
number of structures in the list.

The sync status structure is defined as follows:

struct tet_syncstat {
int tsy_sysid; /* system ID */
int tsy_state; /* sync state */

};

Possible values for the tsy_state member of this structure are as follows:
���

Symbolic constant Meaning���
TET_SS_NOTSYNCED sync request not received
TET_SS_SYNCYES system voted YES
TET_SS_SYNCNO system voted NO
TET_SS_TIMEDOUT system timed out
TET_SS_DEAD process exited��

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

The global variable tet_errno is set to indicate the cause of the error before
(*tet_syncerr)() is called.

tet_syncerr is initialised to point to the API’s default sync error reporting function
tet_syncreport(), but may be changed by the test suite author to point to a user-supplied
sync error handling function.

Page 114 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

8.13 Remote system information

8.13.1 Introduction
These functions are provided in Distributed TETware to enable a test purpose to retrieve
information about remote systems.

8.13.2 tet_remgetlist()

Synopsis

int tet_remgetlist(int **sysnames);

Description
A call to tet_remgetlist() from a process which is part of a distributed test case returns
the number of other systems which are participating in the test case. In addition, a pointer to a
zero-terminated array containing the names of the other systems is returned indirectly through
*sysnames.

A call to tet_remgetlist() from a process which is not part of a distributed test case
returns zero.

Return value
This function returns the values described above.

Portability
In TETware-Lite a call to tet_remgetlist() always returns zero and a pointer to a single
zero-value system ID is returned indirectly through *sysnames.

8.13.3 tet_remgetsys()

Synopsis

int tet_remgetsys(void);

Description
A call to tet_remgetsys() returns the system ID of the system on which the calling process
is executing.

Return value
This function returns the value described above.

Portability
In TETware-Lite a call to tet_remgetsys() always returns zero.

March 2003 Page 115
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

8.13.4 tet_getsysbyid()

Synopsis

int tet_getsysbyid(int sysid, struct tet_sysent *sysp);

Description
The tet_getsysbyid() function enables a test case to access information contained in the
system definition file. If an entry for the system specified by sysid can be found in the file,
information from the entry is placed in the user-supplied tet_sysent structure pointed to by
sysp.

This function enables part of a distributed test case to determine the host (or node) names of other
systems participating in the test.

The tet_sysent structure contains the following members:

struct tet_sysent {
int ts_sysid; /* TETware system ID */
char ts_name[TET_SNAMELEN]; /* system’s host name */

};

Refer to the section entitled ‘‘System definitions’’ elsewhere in this guide for details of the
system definition file.

Return value
A successful call to tet_getsysbyid() returns zero. If a call to tet_getsysbyid() is
unsuccessful, −1 is returned and tet_errno is set to indicate the cause of the error.

Portability
This function is not provided in TETware-Lite.

8.13.5 tet_remtime()

Synopsis

int tet_remtime(int sysid, time_t *tp);

Description
A call to tet_remtime() obtains the system time on the system specified by sysid and
returns it indirectly through *tp.

When sysid specifies the system ID of the calling process, the time is obtained by using an
appropriate system call. However, when sysid specifies a different system ID, the time is
obtained from an instance of TCCD that is running on the specified system.

Return value
A successful call to tet_remtime() returns zero. If a call to tet_remtime() is
unsuccessful, −1 is returned and tet_errno is set to indicate the cause of the error.

Page 116 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

Portability
This function is not provided in TETware-Lite.

March 2003 Page 117
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

8.14 Remote process control

8.14.1 Introduction
In Distributed TETware these functions enable a part of a distributed test case running on one
system to generate a remote process on another system.

Note: The use of these functions is deprecated; they are only supported in order to provide
backward compatibility with previous DTET implementations. It is possible that support
for these functions may be removed from a future TETware release.

If it is necessary for one part of a distributed test case to start a process on a remote system, it is
recommended that the test case should instead be structured so that the process is started by the
part of the test case which is running on that system. If necessary, the two systems can make
calls to tet_remsync() in order to ensure that the process is executed and waited for at the
correct time.

If it is necessary for a non-distributed test case to start a process on a remote system, it is strongly
recommended that the test case should instead be structured as a distributed test case; when this is
done the method mentioned in the previous paragraph may be used.

8.14.2 tet_remexec()

Synopsis

int tet_remexec(int sysname, char *file, char *argv[]);

Description
A call to tet_remexec() starts a new process on the remote system specified by sysid. The
calling process waits wait until the new process has been started and has synchronised with it.

file specifies the name of the file to be executed. The location of file is relative to the
remote system’s TET_EXECUTE directory if set, otherwise, it is relative to tet-root on the remote
system. Since the request is performed by a server process, it is not necessary for a test case to
call tet_fork() before calling tet_remexec().

The tet_remexec() function passes the argument data as specified by argv[] to the process
specified by file. The usage of tet_remexec() is similar to the ISO 9945−1 execv()
function.

Note that the environment is not passed in a tet_remexec() call because it is not expected
that there will be any correlation of the environment information on the remote machine to that of
the calling process. Any data that is need by the remote process must be passed as an argument.

Return value
A successful call to tet_remexec() returns a positive value (the remoteid) which
identifies the remote process within the context of the calling process. This value has no meaning
outside the calling process. If the call to tet_remexec() fails, a value of −1 is returned and
tet_errno is set to indicate the cause of the error.

Page 118 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

In addition, an unsuccessful call to tet_remexec() may set errno to one of the following
values:

EINVAL sysname does not refer to a known remote system.

ENOEXEC file cannot be executed on the remote system.

ENOEXEC Synchronisation with the remote process was not successful.

EFAULT The file or argv parameters are invalid.

EIO The connection with the remote system is broken.

Portability
This function is not provided in TETware-Lite or in any of the thread-safe APIs.

Application notes
This function is only provided for backward compatibility with existing test cases.

The preferred method of launching a process on a remote system is to arrange for the test case
part executing on that system to perform the operation instead. If it is necessary for the operation
to be controlled from another system, this can be achieved by appropriate calls to
tet_remsync() from the test case parts that are running on each system.

8.14.3 tet_remwait()

Synopsis

int tet_remwait(int remoteid, int waittime, int *statloc);

Description
A call to tet_remwait() waits for the termination of a remote process initiated by
tet_remexec().

remoteid specifies the remote process identifier returned from a previous successful call to
tet_remexec().

waittime specifies the maximum number of seconds that the tet_remwait() call should
wait before returning. If waittime is greater than zero, a call to tet_remwait() will be
successful if the remote process exits within the specified time. If waittime is zero, a call to
tet_remwait() will return immediately whether or not it is successful. If waittime is
negative, a call to tet_remwait() will wait indefinitely for the remote process to exit or until
the request fails for some reason.

A successful call to tet_remwait() returns the exit status of the remote process in the
location pointed to by statloc. The exit status value returned indirectly through *statloc
uses a standard encoding that is independent of the type of remote system on which the process is
executed or the encoding used to return exit status values on that system.

The scheme used by TETware to encode the exit status of a remote process returned indirectly
through *statloc by tet_remwait() is the one that traditionally has been used on many
UNIX systems, as follows:

� If the remote process terminated normally, bits 0 through 7 contain zero and bits 8 through
15 contain the low order 8 bits of the argument that the remote process passed to exit()
(but see under the Portability heading below).

March 2003 Page 119
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

� If the remote process terminated due a signal, bits 0 through 6 contain the number of the
signal that caused the process to terminate and bits 8 through 15 contain zero. In addition,
bit 7 is set if receipt of the signal caused a core image to be produced on the remote system.

� If the remote process is in a stopped state, bits 0 through 7 contain the value 0177 and bits
8 through 15 contain the number of the signal which caused the process to stop.

Return value
A successful call to tet_remwait() returns zero. If the call to tet_remwait() times out
or is unsuccessful for some other reason, −1 is returned and tet_errno is set to indicate the
cause of the error.

In addition, an unsuccessful call to tet_remwait() may set errno to one of the following
values:

EINVAL remoteid does not refer to a process initiated from a call to tet_remexec().

ECHILD remoteid refers to a process which is has already been waited for by a successful
call to tet_remwait().

EAGAIN The number of seconds specified by timeout expires before the remote process
terminates.

EINTR The underlying call to wait() on the remote system is interrupted by a signal.

EIO The connection to the remote system is broken.

Portability
This function is not provided in TETware-Lite or in any of the thread-safe APIs.

As indicated above, the process exit status returned by tet_remwait() uses a standard
encoding which may not be the same as the one used by any particular operating system. For this
reason, test suite authors are reminded that it is not appropriate to use the macros defined in
<sys/wait.h> on a POSIX-conforming system to decode this value.

If a signal value is encoded in a process exit status, it is the value of the signal on the remote
system. Test suite authors are reminded that this value may not refer to the the same (or any)
signal on the system on which tet_remwait() is called.

The indication that a core image has been produced is not specified by POSIX. Therefore the
setting of bit 7 to indicate that a core image has been produced as a result of a signal is
implementation-dependent.

On a Win32 system the range of values which may usefully be passed to exit() is greater than
the useful range on UNIX systems. Therefore it is possible for a process to exit with a non-zero
status value whose low-order 8 bits are zero. In order to enable such a status to be identified as
non-zero after a call to tet_remwait(), the API returns a status value of 1 in cases where the
value of the low-order 8 bits of a non-zero exit status value from a process on a Win32 system is
itself zero. Therefore, if the exit status of a process running on a Win32 system is to be returned
unaltered by a call to tet_remwait(), its value should be in the range 0 to 127.

The C runtime support library on the Win32 system does not support the concept of a stopped
process, encode the receipt of a signal in a process’s exit status or generate a core image when a
signal is raised in a process. Therefore, these indications are not available when a call to
tet_remwait() returns an exit status from a remote process invoked on a Win32 system.

Page 120 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

When a remote process running on a Win32 system is terminated by a call to tet_remkill(),
a call to tet_remwait() returns a process exit status of 3. This is the same value as that
generated by the C runtime support library when the default action is taken after a signal is
generated by means of a call to raise().

Application notes
This function is only provided for backward compatibility with existing test cases.

The preferred method of performing remote process control operations is described in the note
which accompanies the description of the deprecated tet_remexec() function.

8.14.4 tet_remkill()

Synopsis

int tet_remkill(int remoteid);

Description
A call to tet_remkill() instructs the TCCD server which controls the remote process
designated by remoteid to terminate the process. remoteid refers to a process started by a
previous call to tet_remexec().

On UNIX systems TCCD terminates the process by sending a SIGTERM signal; therefore the
process is not terminated if this signal is being blocked or ignored.

A call to tet_remkill() returns immediately without awaiting confirmation that the remote
process has terminated. (This information can be obtained from a subsequent call to
tet_remwait() if required.)

Return value
A successful call to tet_remkill() returns zero. If the call to tet_remkill() is
unsuccessful, −1 is returned and tet_errno is set to indicate the cause of the error.

In addition, an unsuccessful call to tet_remkill() may set errno to one of the following
values:

EINVAL remoteid does not refer to a process initiated from a call to tet_remexec().

EIO The connection to the remote system is broken.

Portability
This function is not provided in TETware-Lite or in any of the thread-safe APIs.

Application notes
This function is only provided for backward compatibility with existing test cases.

The preferred method of performing remote process control operations is described in the note
which accompanies the description of the deprecated tet_remexec() function.

Test case authors are discouraged from using tet_remkill() to terminate a process which is
running on a Win32 system. The reasons for this are discussed in the appendix entitled
‘‘Implementation notes for TETware on Win32 systems’’ in the TETware User Guide.

March 2003 Page 121
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Page 122 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

9. The C++ API

9.1 Introduction
This chapter describes the TETware C++ API. Different versions of the C++ API are supplied
with TETware-Lite and Distributed TETware. The Distributed version of the C++ API may be
used when writing both distributed and non-distributed test cases, whereas the Lite version of the
C++ API may only be used when writing non-distributed test cases. The types of test case
supported by each API version corresponds to the types of test case which may be processed by
the TCC included with each TETware version.

On UNIX systems, this API has been designed to work with the USL C++ compiler release 3 or
later, and with GNU g++ release 2.4.5 or later.

On Win32 systems, this API is known to work with the Microsoft Visual C++ compiler.

9.2 C++ language binding
On UNIX systems, test cases written to this language binding attach themselves to it through the
following files:

� tet-root/lib/tet3/libapi.a contains the support routines for test purposes. This is
the same library as is provided with the C API.

� tet-root/lib/tet3/Ctcm.o contains the TCM. This file contains the routine main()
and associated support routines for the sequencing and control of invocable components
and test purposes.

� tet-root/lib/tet3/Ctcmchild.o contains the child process controller. This file
contains a main() routine which can be used by test suites when building processes
which test purposes will launch using the tet_exec() and tet_spawn() interfaces.

� tet-root/inc/tet3/tet_api.h contains prototypes for the functions, declarations of
all the global variables, and definitions of all the structures and manifest constants that
constitute the C++ API. This file is the one that is provided with the C API; however,
when this file is processed by a C++ compiler, its contents are made visible within an
extern "C" block.

The names of these files are similar on Win32 systems; the differences are that object files (.o
files) instead have a .obj suffix and library files (.a files) instead have a .lib suffix.

The object and library files described here are suitable for static linking. On some systems shared
(or dynamic) API library files may also be available. The names of shared API library files and
the way in which the files must be used are system-dependent. Further details are presented in
the chapter entitled ‘‘Using shared API libraries’’ elsewhere in this guide.

A test suite should access each of these files by means of its build tool, in a way which is
appropriate given the available Software Generation System.

A thread-safe version of the C++ API is supplied in addition to the standard (that is: single-
threaded) version. Distinct versions of the thread-safe C++ API are supplied with Distributed
TETware and TETware-Lite. Differences between the standard and thread-safe APIs are
described in the chapter entitled ‘‘The Thread-safe C and C++ APIs’’ elsewhere in this guide.

March 2003 Page 123
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

9.3 Using the C++ language binding
This API may be considered to be a ‘‘lightweight’’ binding, in that only a small part of it is built
using a C++ compiler. This language binding uses the API library that is supplied with the
C language binding. Details of all the functions and interfaces provided by this API library are
presented in the chapter entitled ‘‘The C API’’ elsewhere in this guide.

In Distributed TETware the C++ API does not provide support for remote executed processes.

In the C and C++ language bindings, the TCM references variables that you must define in your
test code. When you write a test case that uses the C++ language binding, you must enclose the
definitions of these variables in an extern "C" code block, thus:

extern "C" {
struct tet_testlist tet_testlist[] = {

. . .
};

void (*tet_startup)() = . . .

void (*tet_cleanup)() = . . .
}

in order to enable the linker to resolve references made to these variables from the TCM code.

Page 124 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

10. The Thread-safe C and C++ APIs

10.1 Introduction
TETware provides thread-safe versions of the C and C++ APIs in addition to the standard
(single-threaded) API versions. The thread-safe APIs are provided in both TETware-Lite and
Distributed TETware.

On UNIX systems each API can be built to support either POSIX threads or ‘‘UNIX International
threads’’ (UI threads), but not both at the same time. On systems which support both types of
threads, you should build TETware to support the type of threads that you wish to use in test
cases.

When you use a thread-safe API on a UNIX system, you must compile all application source
code that uses the API (including test suite libraries, for example) with either −DTET_THREADS
when using UI threads, or −DTET_POSIX_THREADS when using POSIX threads. You must
specify these options in addition to any other compiler options that may be required when
compiling and/or linking multi-threaded programs.

On Win32 systems each API is built for use with the multi-threaded DLL version of the
C runtime support library (MSVCRT.LIB). Note that the use of a thread-safe API in conjunction
with the static version of the C runtime support library (LIBCMT.LIB) is not supported on
Win32 systems.

When you use a thread-safe API on a Win32 system in conjunction with the defined build
environment,20 you must compile all application source code that uses the API with −MD and
−DTET_THREADS. You must also use the −MD compiler option when linking a test case which
uses a thread-safe API; when this option is used, the compiler instructs the linker to link with the
correct version of the C runtime support library.

All of the standard interfaces are available in the thread-safe APIs with the exception of the
deprecated tet_remexec(), tet_remwait() and tet_remkill() API functions.

10.2 C language binding
On UNIX systems, applications written to the thread-safe C language binding attach themselves
to it through the following files:

� tet-root/lib/tet3/libthrapi.a is the thread-safe version of the API library.

� tet-root/lib/tet3/thrtcm.o is the thread-safe version of the TCM.

� tet-root/lib/tet3/thrtcmchild.o is the thread-safe equivalent of tcmchild.o.

� tet-root/inc/tet3/tet_api.h is the same file as used in the standard API.

The names of these files are similar on Win32 systems; the differences are that object files (.o
files) instead have a .obj suffix and library files (.a files) instead have a .lib suffix.

����������������
20. That is: Microsoft Visual C++ and the MKS toolkit.

March 2003 Page 125
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

The object and library files described here are suitable for static linking. On some systems shared
(or dynamic) API library files may also be available. The names of shared API library files and
the way in which the files must be used are system-dependent. Further details are presented in
the chapter entitled ‘‘Using shared API libraries’’ elsewhere in this guide.

On UNIX systems, the extra threads-related contents of tet_api.h are made visible by
compiling applications with TET_THREADS or TET_POSIX_THREADS defined. On Win32
systems, the extra threads-related contents of this file are made visible by compiling applications
with TET_THREADS defined.

10.3 C++ language binding
On UNIX systems, applications written to the thread-safe C++ language binding attach
themselves to it through the following files:

� tet-root/lib/tet3/libthrapi.a is the same library as for the thread-safe C language
binding.

� tet-root/lib/tet3/Cthrtcm.o is the C++ version of the thread-safe TCM.

� tet-root/lib/tet3/Cthrtcmchild.o is the C++ equivalent of thrtcmchild.o.

� tet-root/inc/tet3/tet_api.h is the same file as used in the thread-safe C language
binding.

Again, the names of these files are similar on Win32 systems; the differences are that object files
(.o files) instead have a .obj suffix and library files (.a files) instead have a .lib suffix.

All of the declarations in tet_api.h are placed within an extern "C" block when the file is
compiled with a C++ compiler.

10.4 Functions that are specific to the Thread-safe APIs

10.4.1 Introduction
The following sections describe functions which are only provided in the thread-safe versions of
the C and C++ APIs.

10.4.2 tet_thr_create() and tet_pthread_create()
These functions create a new thread in a test purpose on a UNIX system. Applications which use
UI threads should call tet_thr_create() and applications which use POSIX threads should
call tet_pthread_create(). These functions are not implemented on Win32 systems.

When one of these functions is used to create a new thread, the API stores information about the
newly-created thread in order to enable the TCM to perform appropriate actions when the test
purpose returns control to the TCM, or when an unexpected signal occurs.

Page 126 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

The syntax of these functions is as follows:

int tet_thr_create(void *stack_base, size_t stack_size,
void *(*start_routine)(void *), void *arg,
long flags, thread_t *new_thread, int waittime);

int tet_pthread_create(pthread_t *new_thread, pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg, int waittime);

The arguments and return value are the same as those for the thr_create() and
pthread_create() functions respectively, except for the addition of the waittime
argument.

When one of these functions is used to create a thread that is not detached, the waittime
argument determines the action to be taken when the main thread returns control to the TCM. If
a positive waittime is specified, the TCM waits at least waittime seconds for the newly-
created thread to exit after the main thread returns. If the newly-created thread is still running at
the end of that time, it is terminated by the TCM. If a zero or negative waittime is specified,
the TCM does not wait for the newly-created thread to exit when the main thread returns.
Instead, if the newly-created thread is still running at that time, it is terminated immediately by
the TCM. The method used by the TCM to terminate a thread is described in the section entitled
‘‘Clean-up of left-over threads on UNIX systems’’ later in this chapter.

The purpose of this wait time is to allow other threads a grace period in which to exit in the event
of an abnormal return from the main thread. Normally, all non-main threads should be waited for
by calls to tet_thr_join() or tet_pthread_join() in the test case.

Unlike other API calls, tet_thr_create() and tet_pthread_create() do not set
tet_errno if the call fails.

If either of these functions are used to create a detached thread, the API does not store any
information about the new thread and the waittime argument is ignored. It is the
responsibility of the test suite author to ensure that the detached thread either terminates before
the main thread returns, or that it cannot interfere with the operation of later test purposes in the
test case. Since an unexpected signal can cause the main thread to skip to the next test purpose, it
is recommended that detached threads are only created in child processes (where unexpected
signals are not caught by the TCM).

Unexpected results may occur if an application creates a new thread on a UNIX system other than
by using these functions.

10.4.3 tet_beginthreadex()

This function creates a new thread in a test purpose on a Win32 system. It is not implemented on
UNIX systems.

When this function is used to create a new thread, the API stores information about the newly-
created thread in order to enable the TCM to perform appropriate actions when the test purpose
returns control to the TCM.

March 2003 Page 127
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

The syntax of this function is as follows:

unsigned long tet_beginthreadex(void *security, unsigned stack_size,
unsigned (*start_address)(void *), void *arglist,
unsigned initflag, unsigned *thrdaddr, int waittime);

The arguments and return value are the same as those for the _beginthreadex() function in
the C runtime support library, except for the addition of the waittime argument.

When this function is used to create a thread, the waittime argument determines the action to
be taken when the main thread returns control to the TCM. If a positive waittime is specified,
the TCM waits at least waittime seconds for the newly-created thread to exit after the main
thread returns. If the newly-created thread is still running at the end of that time, the TCM aborts
the test case. If a zero waittime is specified, the TCM waits indefinitely for the newly-created
thread to exit after the main thread returns. If a negative waittime is specified, the TCM does
not wait for the newly-created thread to exit when the main thread returns. Instead, if the newly-
created thread is still running at that time, the TCM aborts the test case.

The purpose of this wait time is to allow other threads a grace period in which to exit in the event
of an abnormal return from the main thread.

Normally, all non-main threads should be waited for by calls to WaitForSingleObject()
in the application.

Unlike other API calls, tet_beginthreadex() does not set tet_errno if the call fails.

Unexpected results may occur if an application creates a new thread on a Win32 system other
than by using this function.

The following points should be noted when using the tet_beginthreadex() function:

1. The start_address argument must point to a function that uses the __stdcall
calling convention. That is: the function must be defined using:

unsigned int __stdcall function-name(void *argument)
{

. . .
}

2. A test case that uses one of the TETware C APIs must be linked with one of the C runtime
support libraries. Therefore a thread that is created by a call to
tet_beginthreadex() should exit either by returning from the start function or by
calling _endthreadex(). A memory leak will occur in the C runtime support library if
a thread exits by calling ExitThread() directly.

3. On Win32 systems the value returned by tet_beginthreadex() is actually a
HANDLE, so it should be closed by a call to CloseHandle() when no longer required.

10.4.4 tet_thr_join() and tet_pthread_join()
These functions are used to join threads that were created using tet_thr_create() and
tet_pthread_create(), respectively, with the joinable attribute. These functions are not
implemented on Win32 systems.

Page 128 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

The syntax of these functions is as follows:

int tet_thr_join(thread_t thread, void **value_ptr);

int tet_pthread_join(pthread_t thread, void **value_ptr);

The arguments and return value are the same as those for the thr_join() and
pthread_join() functions respectively, except that for tet_thr_join(), the thread
argument cannot be (thread_t)0, and the second argument to thr_join() is omitted.
(This argument is not needed, as its purpose is to obtain the thread ID of the joined thread when
the thread argument is (thread_t)0.)

Earlier versions of TETware (up to 3.3) did not include these two functions and threads were
joined by calling thr_join() or pthread_join() directly. Old applications which join
threads in this way will still work the same with TETware version 3.4 and later. However, it is
recommended that the tet_thr_join() and tet_pthread_join() functions are used
when writing new code, and especially in the following cases:

� When large numbers of threads are created and joined in a single test purpose.

� On POSIX threads implementations where thread IDs are reused ‘quickly’. (Problems
have sometimes been observed on such systems when the thread cleanup code tries to join
a thread that has already been joined.)

10.4.5 tet_pthread_detach()

This function is wrapper for the POSIX threads pthread_detach() function. It is not
implemented for UI threads and on Win32 systems.

The syntax of this function is as follows:

int tet_pthread_detach(pthread_t thread);

The arguments and return value are the same as those for the pthread_detach() function.

Earlier versions of TETware (up to 3.3) did not include this function, and threads were detached
by calling pthread_detach() directly. Old applications which detach threads in this way
will still work the same with TETware version 3.4 and later. However, it is recommended that
the tet_pthread_detach() function is used when writing new code.

10.4.6 tet_fork() and tet_fork1()
When UI threads are used, a call to tet_fork() creates a child process that contains copies of
all the threads that are in the calling process, and a call to tet_fork1() creates a child process
that contains only a copy of the calling thread. When POSIX threads are used, a call to either
tet_fork() or tet_fork1() creates a child process that contains only a copy of the calling
thread.

The difference between the semantics of the POSIX and UI versions of tet_fork() reflects
the difference between the semantics of the POSIX and UI versions of the underlying fork()
system call.

tet_fork() and tet_fork1() are only implemented on UNIX systems.

March 2003 Page 129
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

The syntax of these functions is as follows:

int tet_fork(void (*childproc)(void), void (*parentproc)(void),
int waittime, int validresults);

int tet_fork1(void (*childproc)(void), void (*parentproc)(void),
int waittime, int validresults);

The arguments and return value of tet_fork1() are the same as those described for
tet_fork() in the chapter entitled ‘‘The C API’’.

Applications must safeguard calls to the POSIX version of tet_fork() and both versions of
tet_fork1() in the same way as for calls to the POSIX version of fork() and the UI
version of fork1(). For example, if the child needs to obtain resources such as mutexes, then
the calling thread must obtain all the resources before making the call, in order to ensure they are
not held by a non-existent thread in the child process. The POSIX version of tet_fork() and
both versions of tet_fork1() do this for all such resources used internally by the API.

Unexpected results may occur if an application creates a new process other than by using
tet_fork(), tet_fork1() or tet_spawn().

10.5 Unavailable interfaces
The deprecated tet_remexec(), tet_remwait() and tet_remkill() functions are
not available in the thread-safe APIs. In TETware these functions are provided for backward
compatibility with dTET2 and should not be used in new test cases. When a distributed test case
needs to execute a new process on a remote system, it is recommended that the new process
should instead be started by the test case part that is executing on that system. If necessary, user-
defined synchronisation points can be used to ensure that the new process is executed at the
proper time.

10.6 Use of API functions in child processes
The POSIX threads standard places a restriction on child processes that are created by
multithreaded processes, such that the child may only execute async-signal safe operations until it
calls one of the exec functions. This restriction only affects TETware when using POSIX
threads, not when using UI threads.

With two exceptions, all of the TETware API functions are not async-signal safe, and if they are
called from a child process of a process that had called tet_pthread_create() before the
child was created, then they will report an error to stderr and exit from the child process.
When called from a child of a single-threaded processes all of the API calls behave normally.

The two functions that are async-signal safe are tet_exec() and tet_exit(), which
operate differently, internally, when called from a child of a multithreaded process, to ensure that
they only execute async-signal safe operations.

Note that since the journal reporting functions are not async-signal safe, applications cannot use
them to report a tet_exec() failure in a child of a multithreaded process. Suggested methods
for reporting the failure are either to write a message to stderr (using write(), not
fprintf()), or to call tet_exit() or _exit() (but not exit()) with a special exit code
which will be handled appropriately in the parent on return from the tet_fork() call.

On some POSIX threads implementations the restriction placed on child processes of
multithreaded processes by the POSIX standard is unnecessary. In order to permit full use of all

Page 130 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

TETware API functions on such systems, there is a build-time configuration option to disable the
restrictions. See the document entitled ‘‘TETware Installation Guide for UNIX Operating
Systems’’ for more details.

10.7 API differences

10.7.1 Introduction
The following sections describe differences between the standard and thread-safe APIs, for the
interfaces that are common to both versions.

10.7.2 Thread-specific data
The values of tet_errno and tet_child are thread-specific in the thread-safe API. They
must be accessed by using the definitions provided in tet_api.h, and not simply by an
extern declaration.

10.7.3 Block and sequence numbers
The thread-safe API has per-thread block and sequence numbers. When a new thread is created a
new block number is assigned to both the new thread and to the calling thread. It is
recommended that a call to tet_setblock() should be made after each thread is waited for.

The thread-safe version of tet_setcontext() does not reset the block and sequence
numbers, because another thread might already have a current block number of 1. However, calls
to the POSIX threads version of tet_fork(), both versions of tet_fork1() and
tet_spawn() do reset the block and sequence numbers in the child, as when these functions
are called there is only one thread in the new process.

The new block number set by tet_setblock() is one greater than the number set by the
previous tet_setblock() call in any thread, not just the previous call in the current thread.
The same applies to the tet_setblock() calls that are made internally by the API; for
example: in the parent process in tet_fork() and in processes executed with tet_exec()
on UNIX systems.

10.7.4 tet_exec()

When POSIX threads are used and tet_exec() is called from a child of a multithreaded
process, the API has to use static data internally instead of being able to allocate buffer space.
This means there is a limit on the number of argument strings and environment strings that can be
handled by tet_exec() under these conditions. The default limits are both 256, but they can
be overridden when TETware is built.

10.7.5 tet_spawn()

When the thread-safe version of tet_spawn() creates a child process on a UNIX system, it
does so by calling fork() when POSIX threads are used and by calling fork1() when UI
threads are used. Therefore the same considerations regarding resources such as mutexes apply
when calling tet_spawn() as are described for the POSIX version of tet_fork() and both
versions of tet_fork1() above.

When POSIX threads are used, and tet_spawn() is called from a multithreaded process, then
the child process created internally by tet_spawn() has to use static data instead of being able
to allocate buffer space. Thus it has the same limits on the number of argument strings and

March 2003 Page 131
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

environment strings under these conditions as described for tet_exec() above.

10.7.6 tet_fork()

The method used to time out child processes in the thread-safe version of tet_fork() on a
UNIX system does not use a SIGALRM signal. This is done so as not to interfere with the use of
SIGALRM in other threads.

When UI threads are used, the child process that is created by a call to tet_fork() contains
copies of all the threads that are in the parent process. By contrast, when POSIX threads are
used, the child process that is created by a call to tet_fork() contains only a copy of the
calling thread that is in the parent process. If it is required to create a child process that contains
only a single thread when UI threads are used, it is necessary to call tet_fork1() instead of
tet_fork().

10.8 TCM differences

10.8.1 Introduction
The following sections describe differences between the standard and thread-safe TCMs.

10.8.2 Clean-up of left-over threads on UNIX systems
Each time the main thread returns to the TCM, any other joinable threads that remain are cleaned
up before the TCM continues. Normally this is done after the following functions return:

� The (*tet_startup)() and (*tet_cleanup)() functions.

� Each test purpose function.

� The functions called from tet_fork() or tet_fork1() in the child process.

� tet_main()

In these cases, no cleaning up is necessary if all threads created using tet_thr_create() or
tet_pthread_create() with the joinable attribute have already been joined using
tet_thr_join() or tet_pthread_join(), or have been detached using
tet_pthread_detach().

Clean-up can also be done under abnormal conditions; for example: before skipping to the next
test purpose on receipt of an unexpected signal.

The TCM terminates a thread which does not exit within the grace time specified in the
tet_thr_create() or tet_pthread_create() call when the thread was created. The
method used to terminate such threads is to arrange for the thread to execute a handler for the
SIGABRT signal which then calls thr_exit() when UI threads are used, or
pthread_exit() when POSIX threads are used. If the thread still does not terminate (for
example: because it is blocking the SIGABRT signal), then the TCM aborts the test case.21

In order to prevent a thread being ‘‘cleaned up’’ while it holds a resource such as a mutex,
applications should block the SIGABRT signal during the time these resources are held by a

����������������
21. Or the process, in the case of a child process.

Page 132 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

non-main thread. The grace time specified when a thread is created should be longer than any
period for which the SIGABRT signal is to be blocked.

The special SIGABRT handler is only installed for long enough to send the signal to the target
thread; however, this represents a small time window where the behaviour of other threads with
respect to SIGABRT may not be as expected. The handler attempts to perform the expected
action if this should occur (by calling the old handler function if there was one or by calling
abort() if the old signal action was SIG_DFL).

When the TCM cleans up a thread after receiving a signal, it terminates the thread immediately
instead of waiting for the grace time that was specified when the thread was created.

10.8.3 Dealing with left-over threads on Win32 systems
Each time the main thread returns to the TCM, it waits for any other threads that remain before
continuing. This is done after the following functions return:

� The (*tet_startup)() and (*tet_cleanup)() functions.

� Each test purpose function.

� tet_main()

There is no safe way for the TCM forcibly to terminate a thread on a Win32 system. If a thread
does not exit within the grace time specified in the tet_beginthreadex() call, the TCM
reports a fatal error after it has finished waiting for all the threads, then aborts the test case.22

10.8.4 Signal handling
On UNIX systems, unexpected signals are managed in the thread-safe TCM in much the same
way as in the standard TCM. Signal handlers are installed by the main thread before the start of
each test purpose. The TCM does not make use of sigwait(), as this could interfere with the
use of signals in the test purpose.

When an unexpected signal is caught by the main thread on a UNIX system, the signal handler
cleans up any other threads as described in the previous section before taking the normal action as
in the standard API. If an unexpected signal is caught by a non-main thread, the signal handler
will forward the signal to the main thread and then cause the calling thread to exit.

The TCM does not attempt to manage unexpected signals on Win32 systems.

10.9 Synchronisation requests in multi-threaded test cases
In Distributed TETware it is possible for parts of a distributed test case to synchronise with each
other at user-defined points during execution. Since synchronisation is defined in terms of
systems and not processes, only one process on a particular system may represent that system in a
particular synchronisation event.

When the thread-safe APIs are used, it is not possible for two threads in the same process to
participate in any sync event at the same time. This restriction is enforced in the API by the use
of mutexes (on UNIX systems) or critical section objects (on Win32 systems). If two threads in

����������������
22. Or the process, in the case of a child process.

March 2003 Page 133
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

the same process call one of the synchronisation functions at the same time, one call will be
blocked until the other call has completed. Therefore, if both of the calls refer to the same sync
event by specifying the same system list and (non-zero) sync point number, one of the calls will
block until after the event occurs. As a consequence, when the blocked call finally returns, it will
probably fail with an ER_DONE error.

Page 134 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

11. The Shell and Korn Shell APIs

11.1 Introduction
This chapter describes the Shell and Korn Shell APIs which are supplied with both TETware-Lite
and Distributed TETware. These APIs may be used to write non-distributed test cases. There is
no support for distributed test cases provided by these APIs.

The Shell API is provided for use by test cases written in the language that is defined for the sh
command interpreter in the X/Open Portability Guide Issue 3 Volume 1 . In addition, the
interfaces described here are implemented in the TETware Korn Shell API. The Korn Shell API
is provided for use by test cases written in the language that is used by the ksh command
interpreter. Both of these APIs make use of commands which are available on POSIX-
conforming systems. Except where noted, the descriptions that follow apply equally to each of
these APIs.

When TETware is used on a Win32 system, these APIs are designed to be used with commands
provided in the MKS Toolkit. The MKS Shell, sh, is based on the Korn Shell and can be used in
conjunction with either of the shell APIs. However, it is recommended that for reasons of
efficiency you only use the Korn Shell API when writing shell language test cases for use on a
Win32 system. Note that the names of each Shell language and Korn Shell language test case file
must have a .ksh suffix on a Win32 system.

See the chapter entitled ‘‘Writing a Shell language API-conforming test suite’’ elsewhere in this
guide for an example of how to write a Shell language based test suite.

11.2 Shell language binding
Support for the Shell language binding is provided through Shell language source files as follows:

� tet-root/lib/xpg3sh/tcm.sh contains the support routines for the sequencing and
control of invocable components and test purposes (the Shell TCM).

� tet-root/lib/xpg3sh/tetapi.sh contains the support routines for use by test
purposes (the Shell API).

These files must be ‘‘sourced’’ into an executable shell script file by using the . (dot) shell
built-in command. Sourcing the Shell TCM also automatically sources the Shell API.

11.3 Korn Shell language binding
Support for the Korn Shell language binding is provided through Korn Shell language source files
as follows:

� tet-root/lib/ksh/tcm.ksh contains the support routines for the sequencing and
control of invocable components and test purposes (the Korn Shell TCM).

� tet-root/lib/ksh/tetapi.ksh contains the support routines for use by test purposes
(the Korn Shell API).

These files must be ‘‘sourced’’ into an executable shell script file by using the . (dot) shell
built-in command. Sourcing the Korn Shell TCM also automatically sources the Korn Shell API.

March 2003 Page 135
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

11.4 TCC dependencies
Test cases built with theses APIs may either be executed stand-alone or under the control of
either TCC version.

The TCC uses communication variables to pass information to the API. If the communication
variables normally set by the TCC are not set when a test case is executed, TET_ACTIVITY
defaults to 0 and TET_CONFIG to undefined. If TET_CODE is undefined or the file specified by
TET_CODE does not exist in the current directory, the default set of result codes is used.

If the test case requires configuration variables or additional result codes, those communication
variables should be set accordingly when a test case is executed stand-alone.

Page 136 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

11.5 Test case structure and management

11.5.1 Introduction
These variables are used when test cases are initialised and cleaned up, and in selecting invocable
components and test purposes to execute.

11.5.2 iclist, icn, tet_startup and tet_cleanup

Synopsis

iclist="blank-separated list of invocable component names"

ic1="blank-separated list of test purpose names"
ic2="blank-separated list of test purpose names"
. . .

tet_startup=startup-procedure

tet_cleanup=cleanup-procedure

Description
The start up routine, clean up routine and each of the test purposes should be implemented by the
test author as either shell functions or as separate executable shell scripts. These shell functions
or scripts will be called by the shell TCM according to the requested set of invocable
components. The iclist definition is provided by the test suite author, and contains a blank
separated list of invocable component names. These invocable component names are formed by
prefixing each invocable component number with the letters ic.

When an invocable component is requested by the TCC, the shell TCM executes each name in
the associated list of test purposes. Each of the test purposes is executed in a subshell with the
appropriate signal handling being applied to the subshell.

The TCM does not perform any explicit error checking on the contents of a list of test purposes.
It is the responsibility of the test author to ensure that the names reference shell functions or
executable shell scripts.

The shell variables tet_startup and tet_cleanup are set to refer to the shell function or
script to be used for test case specific start up and clean up procedures, respectively. The start up
procedure is executed before the first requested invocable component and the clean up procedure
is executed on completion of the last requested invocable component. These routines are
executed irrespective of which invocable components are requested. If no start up or clean up is
required, the tet_startup and tet_cleanup variables may be left unset or set to an empty
string.

The TCM and API are provided as shell scripts which must be sourced by the test suite author
immediately after the tet_startup, tet_cleanup and iclist variables, each of the icn
variables, and any shell functions used by the test case have been defined. The shell script is
sourced by use of the . (dot) shell built-in command. Note that if a test purpose is written as a
separate shell script, that script must source the shell API in order to have access to API support
routines.

March 2003 Page 137
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

11.5.3 tet_thistest

Synopsis

$tet_thistest

Description
The tet_thistest shell variable contains the name of the currently executing test purpose, as
specified in the icn variable.

Page 138 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

11.6 Insulating from the test environment
The following configuration variables are used by the shell TCM to help determine which events
should be handled for the test case, and which should be passed through.

TET_SIG_IGN defines (by comma separated number) the set of signals that are to be
ignored during test purpose execution. Any signal that is not set to be
ignored or to be left with its current disposition (see TET_SIG_LEAVE
below), will be caught when raised and the result of the test purpose will be
set to UNRESOLVED because of the receipt of an unexpected signal. A test
purpose may undertake its own signal handling as required for the execution
of that test purpose; the disposition of signals will be reset after the test
purpose has completed. The API needs to know how many signals the
implementation supports in order to set up trap statements for these signals.

TET_SIG_LEAVE defines (by number) the set of signals that are to be left unchanged during
test execution. In most cases this will mean that the signal takes its default
action. However, the user can change the disposition of the signal (to
ignore) before executing the TCC if this signal is to remain ignored during
the execution of the test purposes.

The implementation does not allow a standard set of signals to be set to be ignored or left
unchanged, as this may pervert test results.

March 2003 Page 139
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

11.7 Making journal entries

11.7.1 Introduction
These functions are provided for use by test cases when making entries in the execution results
file.

11.7.2 tet_setcontext and tet_setblock

Synopsis

tet_setcontext

tet_setblock

Description
The tet_setcontext shell function changes the context of the calling process. When the
current context is not equal to the value of $$ (the shell builtin variable which contains the
shell’s process ID), a call to tet_setcontext sets the context to the value of $$. Otherwise,
if the current context is already equal to $$, a call to tet_setcontext sets the current
context to a new value. This behaviour enables a context to be established in a subshell with a
different value to that established in a parent shell.23

The current context is stored in the environment variable TET_CONTEXT which is marked for
export. This enables the context to be passed to subsequent processes by using this environment
variable. The tet_setcontext function should be executed by any application which
executes a background subshell and which wishes to write entries to the execution results file
from both processes. The tet_setcontext function must be executed from the child process,
not from the parent. Test suite authors should ensure that tet_setcontext is only called
when it is necessary to change the context in a subshell. Gratuitous calls to this function should
not be made.

The parent should call tet_setblock as appropriate to distinguish its output before, during
and after execution of the child.

The tet_setblock shell function increments the current block ID. The value of the current
block ID is reset to one at the start of every test purpose and after a call to tet_setcontext
which altered the current context. The sequence ID of the next entry is set to one at the start of
each new block. The current block ID is stored in the shell variable TET_BLOCK which is
marked for export.

����������������
23. A subshell is a sequence of shell commands enclosed in parentheses, thus: (. . .).

Note that the value of $$ is the same in a subshell as it is in the parent shell. Thus it is not possible to use $$ to
determine the value of the process ID of a subshell.

Page 140 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

11.7.3 tet_infoline

Synopsis

tet_infoline data . . .

Description
The tet_infoline shell function outputs an information line to the execution results file.
The sequence number is incremented by one after the line is output. If the current context and the
current block ID have not been set, the call to tet_infoline causes the current context to be
set using the value of the calling process ID and the current block ID to be set to one. Note that
tet_infoline does not process backslash escapes like the shell echo built-in command. If
more than one argument is passed to tet_infoline, each argument is separated from the next
by a space character when the line is written to the execution results file.

11.7.4 tet_result

Synopsis

tet_result result

Description
The tet_result shell function sets the result code that will be output at the end of the test
purpose. The result argument specifies the name of the result that is to be output. This result
is output to the execution results file by the TCM upon test purpose completion. This ensures
that all informational messages are written out before the test purpose result, and that there is one
(and only one) result generated per test purpose.

If a test purpose does not call tet_result, the TCM generates a result of NORESULT. If more
than one call to tet_result is made with different result codes, the TCM determines the final
result code by use of precedence rules. The precedence order (highest first) is:

FAIL
UNRESOLVED, UNINITIATED
NORESULT (i.e., invalid result codes)
Test suite supplied codes
UNSUPPORTED, UNTESTED, NOTINUSE
PASS

Where two or more codes have the same precedence then all calls to tet_result with one of
those codes are ignored except the first such call.

March 2003 Page 141
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

11.8 Canceling test purposes

11.8.1 Introduction
These functions are provided for use when cancelling test purposes.

11.8.2 tet_delete

Synopsis

tet_delete testname reason

Description
The shell function tet_delete marks the test purpose specified by testname as canceled.
The TCM will output reason as the reason for cancellation on the information line that is
generated whenever it attempts to execute this test purpose. The argument testname matches
the name which is used to call this test purpose. If the requested testname does not match the
name of a test purpose, no action is taken. If the requested testname is already marked as
canceled the reason is changed to reason and the test purpose remains marked as canceled. If
reason is an empty string then the requested testname is marked as active; this enables
previously canceled test purposes to be re-activated.

11.8.3 tet_reason

Synopsis

tet_reason testname

Description
The shell function tet_reason prints the reason why the test purpose specified by testname
has been canceled and returns a value of 0. The reason is printed on the standard output. If the
test purpose specified by testname is not marked as canceled or does not match the name of a
test purpose, no reason is printed and the function returns a value of 1.

Page 142 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

11.9 Accessing configuration variables
There is no explicit shell interface to support this functionality. The API ensures that the
configuration information is available to the test purposes as shell variables marked readonly.
Each of these shell variables can be accessed using the normal shell mechanisms.

Configuration variables are not marked for export by the API. Therefore, if a configuration
variable is to be accessed by a sub-program it must be exported explicitly by the main test case.

11.10 Generation and execution of processes
There is no explicit shell interface to support this functionality. The API ensures that
tet_thistest is available in the environment so that it can be accessed in sub-programs. The
ability to use parentheses to generate a subshell environment enables configuration variables to be
accessed when a subshell is generated. The only facilities that are not provided in the shell are
the ability to timeout a subshell process and the examination of the exit code from the subshell.
The shell provides facilities to accomplish these tasks in a relatively straightforward manner and
this is considered to be an issue for the application programmer rather than for the API.

11.11 Executed process support
Shell scripts which are executed by a test case written to this API should source the shell API to
include the necessary support routines using the . (dot) shell built-in command. Note that this
will not provide TCM functions (like signal handling and test purpose sequencing). Executed
processes which need this type of support should be test cases in their own right.

March 2003 Page 143
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Page 144 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

12. The Perl API

12.1 Introduction
This chapter describes the TETware Perl API. The Perl API requires the use of the perl utility
and may be used on Win32 operating systems as well as on UNIX systems. On a Win32 system
the name of a Perl test case must include a .pl suffix if it is to be recognised as such by the
TETware TCC.

Non-distributed test cases written using this API may be run stand-alone or under the control of
both the Distributed and Lite versions of the TETware TCC. The Perl API does not support
distributed testing.

12.2 Description
In many respects the Perl language binding is similar to the Shell (xpg3sh) language binding.
Test cases written to this language binding attach themselves to it through the following files:

� tet-root/lib/perl/tcm.pl contains the Test Case Manager.

� tet-root/lib/perl/api.pl contains the support routines for use by test purposes.

The Perl API is equivalent to the posix_c API provided in TET 1.10.

The following Perl calling conventions should be observed:

&tet’setcontext;
&tet’setblock;
&tet’infoline("text");
&tet’result("result-name");
&tet’delete("test-name"[, "reason"]);
deletion-reason = &tet’reason("test-name");

The default result code list is PASS, FAIL, UNRESOLVED, NOTINUSE, UNSUPPORTED,
UNTESTED, UNINITIATED and NORESULT.

The usage of each call and variable is equivalent to the corresponding calls and variables in the
Shell API.

March 2003 Page 145
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Variable references should take the following forms:

@iclist=(ic1,ic2, . . .icn);
@ic1=("my_tp1");
@ic2=("my_tp2","my_tp3");
. . .

$tet’startup="my_startup_routine";
$tet’cleanup="my_cleanup_routine";

@tet’sig_leave_list=(. . .);
@tet’sig_ignore_list=(. . .);

$tet’thistest;

A Perl API-compliant program should adhere to the following structure:

set iclist, ICs, optional setup and cleanup routines
code for subroutines
require "$ENV{\"TET_ROOT\"}/lib/perl/tcm.pl";

Example test suites written in Perl that test the API are provided in the
tet-root/contrib/suite and tet-root/contrib/api directories in the TETware
distribution. In addition, a Perl demonstration test suite is provided in the
tet-root/contrib/perldemo directory in the TETware distribution. Instructions for running
the Perl demonstration test suite are presented in the section entitled ‘‘The Perl API
demonstration’’ in the TETware User Guide.

Page 146 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

13. The Java API

13.1 Introduction
This chapter describes the TETware Java API. Different versions of the Java API are supplied
with TETware-Lite and Distributed TETware. The Distributed version of the Java API may be
used when writing both distributed and non-distributed test cases, whereas the Lite version of the
Java API may only be used when writing non-distributed test cases. The types of test case
supported by each API version corresponds to the types of test case which may be processed by
the TCC included with each TETware version.

The Java API uses the Java Native Interface (JNI) to call functions in the TETware C API. To
the extent that is appropriate, the interfaces described in this chapter enable Java test cases to
access the same facilities as those available to test cases that use the C API. Refer to the chapter
entitled ‘‘The C API’’ elsewhere in this guide for details of the functions that underly the
interfaces described in this chapter.

This API is only supported on certain platforms. Details of the platforms on which this API is
supported may be found in the TETware Installation Guides.

13.2 Java language binding
Java test cases find the TETware classes in the file tet-root/lib/java/jet.jar. These
classes belong to the Java package TET.

The following classes form the public API:

TestCase
SimpleTestCase
ChildTestCase
TestSession
TetException
TetThread
SyncMessage
SyncState
SystemEntry

Reference documentation for these classes can be found in tet-root/doc/java in the TETware
distribution. This documentation is in HTML format and has been generated from the class
source files by the javadoc program. It may be read using a suitable web browser. The file
tet-root/doc/java/tree.html contains an index of the class hierarchy and the file
tet-root/doc/java/AllNames.html contains an alphabetical index of all the fields and
methods in the class files. Please note that only non-deprecated public methods and fields which
are described in this Chapter are part of the supported API.

In this guide, classes will often be referred to by an unqualified class name rather than by a fully
qualified name (for example: SimpleTestCase rather than TET.SimpleTestCase). In
the Synopsis sections, methods will be presented without the synchronized or native
modifiers. This is because these modifiers may change between TETware releases and should not
be relied upon.

March 2003 Page 147
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

On UNIX systems the TETware Java classes load one of the following files at runtime:

� tet-root/lib/java/libjapi.so contains the Java TCM and the API support library
for test cases.

� tet-root/lib/java/libjapichild.so contains the Java child process controller and
the API support library for subprograms that test purposes will launch using the
tet_jspawn() interface.

On Windows NT systems, these files are named tet-root/bin/japi.dll and
tet-root/bin/japichild.dll, respectively.

13.3 TCC dependencies
Test cases built to the Lite version of this API may be either be executed stand-alone or under the
control of either TCC version. Test cases built to the Distributed version of this API require the
Distributed TCC to execute; they cannot be executed stand-alone. This is because the amount of
effort required to establish an environment in which test cases could execute without the TCC is
substantial. This applies especially to the requirement for test purpose synchronisation and result
arbitration.

The TCC uses communication variables to pass information to the API. If the communication
variables normally set by the TCC are not set when a test case is executed, TET_ACTIVITY
defaults to 0 and TET_CONFIG to undefined. If TET_CODE is undefined or the file specified by
TET_CODE does not exist in the current directory, the default set of result codes is used.

If the test case requires configuration variables or additional result codes, those communication
variables should be set accordingly when a test case is executed stand-alone.

13.4 Processing Java test cases

13.4.1 Introduction
The subsections that follow describe how to use tcc to build, execute and clean Java test cases.

13.4.2 The scenario file
In the scenario file the name of a Java test case should be specified without the .class suffix.

For example, consider a test case whose source directory is ts/MyTestCase (relative to the
test suite root directory). If the name of the source file for the test case is MyTestCase.java,
the Java compiler leaves the compiled code in MyTestCase.class. This test case should be
specified in the scenario file as follows:

all
/ts/MyTestCase/MyTestCase

When a Java test case is specified in this way, tcc is able to use the tools described in the
following subsections to process it in each mode of operation.

Page 148 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

13.4.3 Building a Java test case
A build tool is included in the TETware distribution for use when building Java test cases. The
name of this tool is jet-build and it is located in tet-root/bin. (On Win32 systems this tool
is named jet-build.exe.)

jet-build is provided as a convenience to test suite developers. You can use other
mechanisms to build a Java test case if you want to. Indeed, if the test suite uses an alternate
execution directory or any test case consists of more than one source file, it is likely that a more
complex build tool will be required, such as make together with suitable makefiles. It may
sometimes be appropriate to invoke jet-build from a makefile rule in these cases.

jet-build takes the name of the test case source file as argument, without the .java suffix.
It then adds a .java suffix to the test case name and invokes the Java compiler javac.

Normally, jet-build searches for javac in the directories specified by the PATH
environment variable in the usual way. However, this can be changed by using a build mode
configuration variable called TET_JAVAC_PATH.

For example, if javac is in /usr/local/java/bin, the following assignment in the build
mode configuration file will enable jet-build to find the Java compiler even if that location is
not in the search path:

TET_JAVAC_PATH=/usr/local/java/bin/javac

This feature is particularly useful when building a Java test case on a remote system where the
value of PATH inherited from tccd does not normally include the location of the Java compiler.

The simplest way to use jet-build is when all the test cases in the test suite are Java test
cases, and each test case consists of a single source file. Simply specify jet-build as the
build tool in the build mode configuration.

For example:

TET_EXPAND_CONF_VARS=true
TET_OUTPUT_CAPTURE=true
TET_BUILD_TOOL=${TET_ROOT}/bin/jet-build

13.4.4 Executing a Java test case
A Java test case must be executed by the Java interpreter. In addition, certain environment
variables must be set up to enable the Java interpreter to locate the Java API components.

An exec tool is included in the TETware distribution which performs these functions. It provides
the interface between tcc and the Java interpreter when executing Java test cases. The name of
this tool is jet-exec and it is located in tet-root/bin. (On Win32 systems this tool is named
jet-exec.exe.)

jet-exec takes the name of the test case class file as argument, without the .class suffix. It
sets certain environment variables to enable the Java runtime to locate the TCM and the API
library, then invokes the Java interpreter java.

Normally, jet-exec searches for java in the directories specified by the PATH environment
variable in the usual way. However, this can be changed by using an execute mode configuration
variable called TET_JAVA_PATH.

March 2003 Page 149
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

For example, if java is in /usr/local/java/bin, the following assignment in the execute
mode configuration file will enable jet-exec to find the Java interpreter even if that location is
not in the search path:

TET_JAVA_PATH=/usr/local/java/bin/java

This feature is particularly useful when executing a Java test case on a remote system where the
value of PATH inherited from tccd does not normally include the location of the Java
interpreter.

jet-exec can be used in several ways as follows:

1. When all the test cases in the test suite use the Java API.

Simply specify jet-exec as the exec tool in the execute mode configuration.

For example:

TET_EXPAND_CONF_VARS=true
TET_EXEC_TOOL=${TET_ROOT}/bin/jet-exec

2. When the test suite contains test cases that use several APIs.

You will need to provide an exec tool that can distinguish between Java test cases and the
others, and only use jet-exec to execute the Java test cases. One way to do this would
be to group all the Java test cases below a common subdirectory.

For example, the following shell script exec tool might be used to do this when all the Java
test cases are below ts/JavaTests:

determine the test case name
testcase=${1:?}
shift

execute test cases below the JavaTests directory using
the Java exec tool;
execute other test cases directly
case "$testcase" in
/JavaTests/)

${TET_ROOT:?}/bin/jet-exec $testcase ${1:+"$@"}
;;

*)
./$testcase ${1:+"$@"}
;;

esac

13.4.5 Cleaning a Java test case
For completeness, a clean tool is provided in the TETware distribution for use when cleaning
Java test cases. The name of this tool is jet-clean and it is located in tet-root/bin. (On
Win32 systems this tool is named jet-clean.exe.)

Generally speaking, when it is appropriate to use jet-build as the build tool, jet-clean
may be used as the clean tool.

jet-clean takes the name of the test case class file as argument, without the .class suffix.
It then adds a .class suffix to the file name and removes the class file.

Page 150 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

The simplest way to use jet-clean is when all the test cases in the test suite are Java test
cases, and each test case consists of a single class file. Simply specify jet-clean as the clean
tool in the clean mode configuration.

For example:

TET_EXPAND_CONF_VARS=true
TET_OUTPUT_CAPTURE=true
TET_CLEAN_TOOL=${TET_ROOT}/bin/jet-clean

March 2003 Page 151
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

13.5 Test case structure and management

13.5.1 Introduction
These methods are used when test cases are initialised and cleaned up, and in selecting invocable
components and test purposes to execute.

13.5.2 Defining a test case class
The test case author defines a new test case by extending the SimpleTestCase class or one of
its subclasses. The new test case must provide a static main() method which creates an
instance of the test case class and passes control back to the Test Case Manager (TCM).

For example:

public class MyTestCase extends SimpleTestCase
{

. . .

public static void main(String[] args)
{

main("MyTestCase", args, new MyTestCase());
}

. . .
}

The first argument to main() is the name of the test case. This name is returned by a call to the
tet_pname() API method.

An alternative main() method is also provided in SimpleTestCase which omits the first
argument, and uses the class of the new test case object to determine the test case name.

For example:

// Test case name is "MyTestCase"
main(args, new MyTestCase());

The API services are provided by the TestSession class. A TestSession object is created
when the test case is initialised and this object is passed to each test purpose method in the test
case.

13.5.3 Defining Invocable Components and Test Purposes
The test suite author should define each test purpose function as a public instance method of the
form:

public void iicnumttpnum(TestSession ts)

where icnum is the invocable component (IC) number to which the test purpose belongs, and
tpnum is the test purpose (TP) number within that invocable component.

Page 152 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

For example, a method that is defined as:

public void i1t2(TestSession ts)

is interpreted by the TCM as TP 2 within IC 1.

When the TCM processes a particular IC, it first selects the TP methods whose name contains an
icnum which matches the number of the IC being processed. Then the TCM uses lexical
comparison of the tpnum fields in the selected method names to determine the order in which to
call the TP methods.

A consequence of this is that it would be possible to define methods named i1t2() and
i1t02(), and have the TCM interpret these as different TPs within IC 1. However, this should
be regarded as bad practice since it would be difficult to associate a test purpose method name in
a source file with the test purpose’s information lines and result code in the journal file. Instead,
test case authors should define test purpose method names whose icnum and tpnum fields either
contain no leading zeros or all contain the same number of digit positions. In other words, you
should either name test purpose methods using the style: i1t1(), i1t2(), i2t1() . . ., or
name them using the style: i1t01(), i1t02(), i2t01() . . ., but do not mix these styles in
the same test case.

The SimpleTestCase class determines valid test purpose methods using the Java Reflection
API. Any methods which do not have the correct name or signature will be silently ignored by
the TCM.

If a test purpose method throws an exception, the API registers a result of UNRESOLVED for the
test purpose.

13.5.4 startup() and cleanup()

Synopsis

public void startup(TestSession ts)

public void cleanup(TestSession ts)

Description
The startup() and/or cleanup() methods of SimpleTestCase may be overridden in
the user-supplied test case class. These methods are called by the TCM to perform test case
specific start up and clean up operations, respectively.

startup() is called before the first requested invocable component and cleanup() is
invoked on completion of the last requested invocable component. If a test case does not need to
perform actions of start up and/or clean up, these methods need not be defined in the new test
case class.

March 2003 Page 153
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

13.5.5 tet_thistest() and tet_pname()

Synopsis

// public class TestSession

public int tet_thistest()

public String tet_pname()

Description
These methods are defined on the TestSession object passed to the startup(),
cleanup() and test purpose methods.

The value returned by tet_thistest() is the absolute test number for the currently
executing test purpose. (For a description of the relationship between invocable component
number, test purpose number and absolute test number, see ‘‘Dynamic test case interface’’ in the
chapter entitled ‘‘The C API’’).

During execution of the startup() and cleanup() functions, tet_thistest() returns
zero.

tet_pname() returns the test case name.

Return value
These methods return the values described above.

Page 154 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

13.6 Insulating from the environment
Description
On UNIX systems it is possible to use the TET_SIG_IGN and TET_SIG_LEAVE variables in
the execute mode configuration to modify the way in which the TCM should handle unexpected
signals. These variables are described in the corresponding section in the chapter entitled ‘‘The
C API’’ elsewhere in this guide.

However, users should be aware that the Java run-time system may make use of signals for
various purposes. Therefore the use of configuration variables to alter the handling of a signal
that is used by the Java run-time system can have unpredictable results. In particular, users
should not specify a signal in TET_SIG_IGN that is used by the Java run-time system.

The set of signals that are used by the Java run-time system varies between Java implementations.
The list of signals that may be used by the Java run-time system and thus should be left alone by
the TCM is compiled in to the TCM when the Java API is built. Information on how these
signals are specified is presented in the section entitled ‘‘Support for Java’’ in the TETware
Installation Guide for UNIX Operating Systems.

Portability
The facilities described here are not provided on Win32 systems.

March 2003 Page 155
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

13.7 Error handling and reporting

13.7.1 Introduction
When an exception occurs in an API method in the TET package, the method throws a
TetException object. This object contains fields and methods that provide information about
the condition that caused the error to occur. Items that only apply to a particular method are
described in the section that describes the method. Items that apply to all methods are described
in the subsections that follow.

It is recommended that API exceptions are caught by test purposes and appropriate messages
written to the journal. If an unhandled exception occurs in a test purpose function, the API
catches the exception, prints a message to the journal and registers an UNRESOLVED result. If an
unhandled exception occurs in a test case’s startup method, the API cancels all the test purpose
functions.

Classes in the TET package indicate fatal errors by throwing instances of subclasses of
java.lang.Error. A test purpose either should not catch these objects or, if it does, the
catching function should re-throw the error so that the API can catch it and perform the correct
actions before terminating with the appropriate exit status.

In addition to the following fields and methods, the toString() method of TetException
may be used in the usual way for Throwable objects; that is: to retrieve the message that
describes the reason for the exception.

13.7.2 tet_errno

Synopsis

// public class TetException

public int tet_errno;

Description
The value of the tet_errno field in a TetException object indicates the reason why the
exception was thrown.

Distributed TETware uses a client/server architecture and calls to several of the API functions
cause the API to send requests to server processes. A server sends a reply code in response to
each request that it receives. When the reply code indicates that a request has failed, the value
stored in tet_errno is derived from the server reply code. A list of the server reply codes and
their meanings is presented in the appendix entitled ‘‘Server reply codes’’ in the TETware User
Guide.

The possible error codes values are defined in the TestSession class as public static
final fields, whose names and meanings are as follows:

TET_ER_2BIG Argument list too long.
TET_ER_ABORT Abort TCM on TP end.
TET_ER_CONTEXT Request out of context.
TET_ER_DONE Event finished or already happened.
TET_ER_DUPS Request contained duplicate IDs.
TET_ER_ERR General error code.
TET_ER_FID Bad identifier in file i/o request.

Page 156 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

TET_ER_FORK Can’t fork.
TET_ER_INPROGRESS Event in progress.
TET_ER_INTERN Server internal error.
TET_ER_INVAL Invalid parameter.
TET_ER_LOGON Not logged on to server.
TET_ER_MAGIC Bad magic number in server request.
TET_ER_NOENT No such file or directory.
TET_ER_PERM Privilege request/kill error.
TET_ER_PID No such process.
TET_ER_RCVERR Receive message error.
TET_ER_REQ Unknown request code.
TET_ER_SIGNUM Bad signal number.
TET_ER_SNID Bad sync identifier in SYNCD request.
TET_ER_SYNCERR Sync completed unsuccessfully.
TET_ER_SYSID System identifier not in system name list.
TET_ER_TIMEDOUT Request or system call timed out.
TET_ER_TRACE Tracing not configured.
TET_ER_WAIT Process not yet terminated.
TET_ER_XRID Bad execution results file identifier in XRESD request.

Whenever an unsuccessful API call throws a TetException with tet_errno set to
TET_ER_ERR (the general error code), a diagnostic message is generated somewhere which
contains more precise details of the cause of the error. If an error of this type occurs in the API
library, the diagnostic is printed to the execution results file as a TCM/API message if possible; if
this is not possible, the diagnostic is printed on the test case’s standard error stream.

However, in Distributed TETware, an error of this type can also occur in a server process. In this
case the more detailed error message is printed on the server’s standard error stream. The result
of this is that when an API call is unsuccessful in Distributed TETware and tet_errno is set to
TET_ER_ERR, the more detailed error message often appears in a TCCD log file on the local
system or on one of the remote systems that is participating in the test run.

13.7.3 tet_errlist()

Synopsis

// public class TestSession

public String[] tet_errlist()

Description
The array returned by tet_errlist() contains short strings which describe each of the values
defined for tet_errno.

The value of tet_errno in a TetException object may be used to index the array returned
by tet_errlist(). The value of tet_errno should be checked against the length of the
array to guard against the possibility that a new error code is added to the API before the
corresponding message is added to the array.

March 2003 Page 157
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Return value
This method returns an array of String objects, each of which contains a description of a
tet_errno value.

Page 158 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

13.8 Making journal entries

13.8.1 Introduction
These methods are provided in the TestSession class for use by test cases when making
entries in the execution result file.

13.8.2 tet_setcontext() and tet_setblock()

Synopsis

// public class TestSession

public void tet_setcontext()

public void tet_setblock()

Description
The tet_setcontext() method sets the current context to the value of the current process
ID. The sequence number for the calling thread is reset to 1, but sequence numbers for other
threads remain unchanged, as do all block numbers.

The tet_setblock() method increments the current block ID.

The value of the current block ID is reset to 1 at the start of every test purpose. The sequence ID
of the next entry, a number which is automatically incremented as each entry is output to the
execution results file, is set to one at the start of each new block.

Return value
These methods do not return a value.

Application notes
The API calls these methods when necessary. It is not usually necessary for user-supplied test
code to call these methods.

13.8.3 tet_infoline() and tet_minfoline()

Synopsis

// public class TestSession

public void tet_infoline(String line)

public void tet_minfoline(String[] lines) throws TetException

Description
A call to tet_infoline() prints the information line specified by line to the execution
results file. The sequence number is incremented by one after the line is output. If the current
context and the current block ID have not been set, the call to tet_infoline() causes the
current context to be set to the value of the calling process ID and the current block ID to be set
to one.

A call to tet_minfoline() prints groups of information lines to the execution results file. In
Distributed TETware these lines are printed using a single operation which guarantees that lines
from other test case parts do not appear in between lines printed by a particular call to this
method.

March 2003 Page 159
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Return value
These methods do not return a value.

Exceptions
tet_minfoline() throws a TetException object if the API encounters an error while
printing the lines.

Application notes
Equivalents to tet_printf() and tet_vprintf() in the C API are not provided in the
Java API. This is because the C and Java languages handle formatted output in different ways.

13.8.4 tet_result()

Synopsis

// public class TestSession

public void tet_result(int result)

Description
A call to tet_result() informs the API of the result of the test purpose from which it is
called. The API generates a TP result line which is printed to the execution results file by the
TCM upon test purpose completion. This ensures that all the informational messages are written
out before the test purpose result, and that there is one (and only one) result generated per test
purpose. If the result code specified by result is one for which the action specified in the result
codes file is to abort testing, then the TCM will exit after the test purpose has completed. If an
immediate abort is desired, then the test purpose should execute a return statement immediately
after the call to tet_result().

If a test purpose does not call tet_result(), the TCM will generate a result of NORESULT.
If more than one call to tet_result() is made with different result codes, the TCM
determines the final result code by use of precedence rules. The precedence order (highest first)
is:

FAIL
UNRESOLVED, UNINITIATED
NORESULT (i.e., invalid result codes)
Test suite supplied codes
UNSUPPORTED, UNTESTED, NOTINUSE
PASS

Where two or more codes have the same precedence then all calls to tet_result() with one
of those codes are ignored except the first such call.

The tet_result() method should only be called from within the scope of a test purpose
method. It must not be called from a test case start up or clean up method.

Return value
This method does not return a value.

Page 160 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

13.9 Cancelling test purposes

13.9.1 Introduction
These methods are provided for use when cancelling test purposes.

13.9.2 tet_delete()

Synopsis

// public class TestSession

public void tet_delete(int testno, String reason)

Description
A call to tet_delete() marks the test purpose specified by the absolute test number testno
as cancelled. If the test purpose specified by testno is not defined in the test case, a call to
tet_delete() has no effect.

reason should describe the reason why the test purpose is to be marked as cancelled.

When the TCM prepares to call a test purpose function, it first checks to see if the function has
been marked as cancelled by a call to tet_delete(). If the test purpose has been marked as
cancelled, the TCM does not call the function but instead prints the line pointed to by reason to
the execution results file and records a result of UNINITIATED.

If a call to tet_delete() names a testno that has been marked as cancelled by a previous
tet_delete() call, the reason for cancellation is changed to the reason specified in the
current call.

If tet_delete() is called with a reason parameter of null, the test purpose specified by
testno is reactivated if it has previously been marked as cancelled.

If tet_delete() is called in a distributed test case, the API notifies other participating TCMs
of the cancellation. This notification occurs when the TCMs synchronise with each other before
attempting to execute the cancelled test purpose. Thus, none of the TCMs execute a distributed
test purpose which has been cancelled on any of the participating systems.

Return value
This method does not return a value.

Application notes
The tet_delete() method can only usefully be called from a top-level test case (that is: a test
case derived from SimpleTestCase). It has no effect when called from a child test case (that
is: a test case derived from ChildTestCase).

March 2003 Page 161
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

13.9.3 tet_reason()

Synopsis

// public class TestSession

public String tet_reason(int testno)

Description
The method tet_reason() returns a String object which contains the reason why the test
purpose with the specified absolute test number has been cancelled by a previous call to
tet_delete(). If this test purpose is not defined in the test case or is not marked as
cancelled, null is returned.

Return value
If the specified test purpose exists and has been cancelled by a previous call to tet_delete(),
a call to tet_reason() returns the reason parameter supplied with the tet_delete()
call; otherwise, null is returned.

Application notes
The tet_reason() method can only usefully be called from a top-level test case (that is: a test
case derived from SimpleTestCase). It has no effect when called from a child test case (that
is: a test case derived from ChildTestCase).

It is not possible to use tet_reason() in a distributed test case to determine whether or not a
test purpose has been cancelled on another system.

Page 162 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

13.10 Accessing configuration variables

13.10.1 Introduction
This method provides access to configuration variables. A description of how configuration
variables are defined is presented in the chapter entitled ‘‘Configuration files’’ elsewhere in this
guide. Note that when a test case or tool is processed by the TCC, this method only provides
access to variables that are defined for the current mode of operation.

When Distributed TETware is used, this method provides access to the per-system configuration
defined for the system on which the calling process is running. This method cannot be used to
access configuration variables defined on other systems or distributed configuration variables.

13.10.2 tet_getvar()

Synopsis

// public class TestSession

public String tet_getvar(String name)

Description
A call to tet_getvar() returns the value of the configuration variable name.

If the variable specified by name is defined but has no setting, a String object of zero length is
returned. If the variable is undefined, tet_getvar() returns null.

Return value
The method returns the values described above.

March 2003 Page 163
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

13.11 Generating and executing processes

13.11.1 Introduction
These methods enable API-conforming sub-programs to be created and administered.

13.11.2 tet_spawn() and tet_jspawn()

Synopsis

// public class TestSession

public long tet_spawn(String file, String[] argv, String[] envp)
throws TetException

public long tet_jspawn(String classname, String[] args, String[] envp)
throws TetException

Description
A call to tet_spawn() creates a new sub-program that will use the C API. A call to
tet_jspawn() creates a new sub-program that will use the Java API.

The interface between these methods and the sub-program launched by them has been designed
to enable the sub-program to use a TETware API. Therefore, a sub-program launched by a call to
tet_spawn() must be built with the C API’s child process controller. Likewise, the class
specified by classname in a call to tet_jspawn() must be a subclass of ChildTestCase
and must use the Java API’s child process controller.

Return value
Both tet_spawn() and tet_jspawn() return the process identifier of the newly created
process.

Exceptions
tet_spawn() and tet_jspawn() each throw a TetException object if the API
encounters an error while creating the new sub-program.

Application notes
The implementation of tet_jspawn() uses a helper program called jet-spawn which
resides in tet-root/bin in the TETware distribution. If this program cannot be executed for any
reason, a call to tet_jspawn() will fail.

Portability
Refer to the corresponding section in the chapter entitled ‘‘The C API’’ elsewhere in this guide.

Page 164 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

13.11.3 tet_wait()

Synopsis

// public class TestSession

public int tet_wait(long pid) throws TetException

Description
A call to tet_wait() waits for the process identified by pid to terminate. pid is the process
identifier returned by a previous successful call to tet_spawn() or tet_jspawn().

Return value
A call to tet_wait() returns the exit status of the process identified by pid.

Exceptions
tet_wait() throws a TetException object if the API encounters an error while waiting for
the process to terminate.

Portability
Refer to the corresponding section in the chapter entitled ‘‘The C API’’ elsewhere in this guide.

13.11.4 tet_kill()

Synopsis

// public class TestSession

public void tet_kill(long pid, int sig) throws TetException

Description
A call to tet_kill() sends the signal specified by sig to the process specified by pid, which
should be the process identifier returned by a previous successful call to tet_spawn() or
tet_jspawn().

Return value
This method does not return a value.

Exceptions
tet_kill() throws a TetException object if the API encounters an error while sending
the signal to the process.

Portability
Refer to the corresponding section in the chapter entitled ‘‘The C API’’ elsewhere in this guide.

Application notes
Refer to the corresponding section in the chapter entitled ‘‘The C API’’ elsewhere in this guide.

March 2003 Page 165
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

13.12 Executed process methods

13.12.1 Introduction
These methods are provided for use by an API-conforming Java test case that is launched by a
call to tet_jspawn().

The test case author defines a new child test case by extending the ChildTestCase class or
one of its subclasses. The new test case must provide a static main() method which creates an
instance of the child test case class and passes control to the child process controller.

For example:

public class MyChildTestCase extends ChildTestCase
{

. . .

public static void main(String[] args)
{

main(args, new MyChildTestCase());
}

. . .
}

13.12.2 tet_main()

Synopsis

public int tet_main(TestSession ts, String[] args)

Description
The method tet_main() is declared abstract in class ChildTestCase. A child test case
class must extend ChildTestCase and implement tet_main().

The API services are provided by a subclass of TestSession. A TestSession object is
created when the child test case is initialised and this object is passed to tet_main() in the
argument ts.

The current context is preserved from the calling process and the current block number is
incremented before tet_main() is called.

Return value
If tet_main() returns, its return value becomes the child process’ exit status. This status may
be accessed in the parent by a call to tet_wait().

Page 166 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

13.12.3 tet_exit() and tet_logoff()

Synopsis

// public class TestSession

public void tet_exit(int status)

public void tet_logoff()

Description
The method tet_exit() should be used instead of System.exit() (or
Runtime.exit()) by a child test case that is started by a call to tet_jspawn(). In
Distributed TETware this method logs off all TETware servers, then exits with the specified
status.

The function tet_logoff() may be called by a child process that is started by a call to
tet_jspawn() which does not need to make any further TETware API calls and is not able to
call tet_exit() at process termination. tet_logoff() should only be called once from
the child process. In Distributed TETware the results are undefined if a process or any of its
descendents makes any TETware API calls after tet_logoff() is called.

Return value
A successful call to tet_exit() does not return.

A call to tet_logoff() does not return a value.

Portability
Refer to the corresponding section in the chapter entitled ‘‘The C API’’ elsewhere in this guide.

March 2003 Page 167
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

13.13 Test case synchronization

13.13.1 Introduction
This method enables parts of a distributed test purpose or user-supplied startup or cleanup method
that are running on different systems to synchronize to an agreed point in the executing code.

Refer to the chapter entitled ‘‘Test case synchronisation’’ in the TETware User Guide for an
overview of TETware synchronisation.

13.13.2 tet_remsync()

Synopsis

// public class TestSession

public void tet_remsync(long syncptno, int[] sysnames, int waittime,
int vote, SyncMessage msg) throws TetException

Description
A call to tet_remsync() causes the calling process’s system to synchronise with one or more
of the other systems that are participating in the same distributed test case. The call can only
succeed if each of the systems specified in the call also expect to synchronise with each other and
with the calling process.

sysnames is a list of IDs of the other systems with which the calling process wishes to
synchronise. The system ID of the calling process is ignored if it appears in the list.

syncptno specifies the sync point number to which the calling process wishes to synchronise.
If syncptno is zero, a successful call to tet_remsync() returns as soon as all participating
systems have synchronised to the next sync point. If syncptno is greater than zero, a
successful call to tet_remsync() returns as soon as all participating systems have
synchronised using a sync point number which is not less than syncptno. When syncptno is
greater than zero, a call to tet_remsync() will fail if a sync point has already occurred during
the lifetime of the current test case whose number is greater than or equal to syncptno. The
results are undefined if a negative syncptno is specified.

waittime specifies the number of seconds that may elapse between synchronisation requests
from other participating systems before the calling process times out. If waittime is greater
than zero, a call to tet_remsync() will be successful if all the participating systems
synchronise to the specified sync point with no more than waittime seconds between each
request. If waittime is zero, a call to tet_remsync() will return immediately, whether or
not it is successful. If waittime is negative, a call to tet_remsync() will wait indefinitely
for the specified sync point to occur or until the request fails for some reason. Test suite authors
should be aware of the potential for deadlock if a negative waittime is specified.

vote specifies how the calling system wishes to vote in the synchronisation event. This
parameter should be set to one of the defined constants TET_SV_YES or TET_SV_NO, to
indicate a yes vote or a no vote, respectively. These constants are defined in the TestSession
class. When the calling process specifies a yes vote, a call to tet_remsync() can only be
successful if all the other participating systems also specify a yes vote. When the calling process
specifies a no vote, the API does not use the votes specified by the other participating systems
when determining whether or not a call to tet_remsync() in that process is successful.

Page 168 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

It is possible for a process which calls tet_remsync() to exchange sync message data with
other participating systems which synchronise exactly to the sync point specified by syncptno.
This is done by calling tet_remsync() with a non-null value of msg. When msg is non-null,
it refers to a user-supplied SyncMessage object.

When tet_remsync() is called by parts of a distributed test purpose, one system sends data
which may be received by other systems. The API associates the sync message data with the
particular sync point specified by the syncptno parameter used in the tet_remsync() call
on the sending system. In order to receive the message data, the syncptno parameter in calls to
tet_remsync() on receiving systems must reference this sync point exactly, either by
specifying the same value for syncptno as that used on the sending system, or by specifying a
zero syncptno.

The test purpose part on the sending system should indicate a desire to send sync message data by
creating a SyncMessage object prepared for the transmission of a message, like this:

data = new byte[] { (byte)1, (byte)2, (byte)3 };
msg = new SyncMessage(data);

The test purpose parts on the receiving systems should indicate their willingness to receive sync
message data by creating a SyncMessage object prepared for the reception of a message, like
this:

msg = new SyncMessage(SyncMessage.TET_SMMSGMAX);

If the call to tet_remsync() is successful, then on return the SyncMessage object on each
system can be examined to determine the outcome of the data transfer. You can use the
following methods to do this:

message()
truncated()
duplicated()
sender()
getSysID()

If more than one system tries to send sync message data for a particular sync point,
tet_remsync() chooses one system from which to accept data and re-designates the other
sending systems as receiving systems. After the call to tet_remsync() returns, the
SyncMessage objects on all systems will return true on the duplicated() method and
sender() will return true on the single sending system and false on the re-designated systems.

If a process tries to send a message which is larger than the maximum permitted message size, as
defined by SyncMessage.TET_SMMSGMAX, the message is truncated to the maximum size
before sending, and SyncMessage.truncated() will return true on all systems after the
call.

If a process running on a particular systems calls tet_remsync() with a null msg, then the
API regards it as a receiving system but does not return any message data to it.

Return value
This function does not return a value.

March 2003 Page 169
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Exceptions
tet_remsync() throws a TetException object if the API encounters an error while
processing the request.

An error can occur as a result of one of the following conditions:

� More than waittime seconds elapse between synchronisation requests from participating
systems.

� A related synchronisation request times out on one of the other participating systems.

� The user-supplied method in a test case on one of the other participating systems returns
control to its TCM before synchronising.

� The sync point specified by syncptno has already occurred.

� A yes sync vote is specified in the call but another participating system specifies a no vote
for this sync point.

� sysnames is null.

� A system ID appears more than once in the sysnames array.

� An invalid parameter is specified in the call.

� The API encounters a problem while processing the request.

The TetException object thrown contains an array of SyncState objects in the public field
sync_state. The elements of this array give details of the synchronisation states for each of
the other systems participating in the event.

The SyncState class contains the following fields:

/**
* System ID.
*/
public int tsy_sysid;

/**
* State of synchronization. Consists of a bit mask of TET_SS_..
* values.
*/
public int tsy_state;

The TET_SS_.. values are defined in the SyncState class. They are:

/**
* Value for <code>tsy_state</code>, indicating that the
* synchronization request was not received.
*/
public static final int TET_SS_NOTSYNCED = 1;

/**
* Value for <code>tsy_state</code>, indicating that the system voted
* YES.
*/
public static final int TET_SS_SYNCYES = 2;

Page 170 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

/**
* Value for <code>tsy_state</code>, indicating that the system voted
* NO.
*/
public static final int TET_SS_SYNCNO = 3;

/**
* Value for <code>tsy_state</code>, indicating that the system timed
* out.
*/
public static final int TET_SS_TIMEDOUT = 4;

/**
* Value for <code>tsy_state</code>, indicating that the process
* exited.
*/
public static final int TET_SS_DEAD = 5;

The TetException object thrown also contains the following field:

/**
* The sync point at which this exception occurred.
*/
public long syncpt;

Portability
In TETware-Lite, this method always throws a TetException object.

Refer to the corresponding section in the chapter entitled ‘‘The C API’’ elsewhere in this guide.

Application notes
Refer to the corresponding section in the chapter entitled ‘‘The C API’’ elsewhere in this guide.

March 2003 Page 171
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

13.14 Remote system information

13.14.1 Introduction
These methods are provided in Distributed TETware to enable a test purpose to retrieve
information about remote systems.

13.14.2 tet_remgetlist()

Synopsis

// public class TestSession

public int[] tet_remgetlist()

Description
A call to tet_remgetlist() from a process which is part of a distributed test case returns an
array containing the system IDs of the other systems.

A call to tet_remgetlist() from a process which is not part of a distributed test case
returns null.

Portability
In TETware-Lite a call to tet_remgetlist() always returns null.

13.14.3 tet_remgetsys()

Synopsis

// public class TestSession

public int tet_remgetsys()

Description
A call to tet_remgetsys() returns the system ID of the system on which the calling process
is executing.

Return value
This method returns the value described above.

Portability
In TETware-Lite a call to tet_remgetsys() always returns zero.

Page 172 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

13.14.4 tet_getsysbyid()

Synopsis

// public class TestSession

public SystemEntry tet_getsysbyid(int sysid) throws TetException

Description
The tet_getsysbyid() method enables a test case to access information contained in the
system definition file. If an entry for the system specified by sysid can be found in the file,
tet_getsysbyid() returns a SystemEntry object for that system.

The SystemEntry class contains the following fields:

/**
* The id of the system.
*/
public int ts_sysid;

/**
* The name of the system.
*/
public String ts_name;

Refer to the section entitled ‘‘System definitions’’ elsewhere in this guide for details of the
system definition file.

Return value
A call tet_getsysbyid() returns a SystemEntry object for the system specified by
sysid.

Exceptions
tet_getsysbyid() throws a TetException object if the API encounters an error while
processing the request.

Portability
In TETware-Lite, this method always throws a TetException object.

13.14.5 tet_remtime()

Synopsis

// public class TestSession

public Date tet_remtime(int sysid) throws TetException

Description
A call to tet_remtime() returns the system time on the system specified by sysid.

When sysid specifies the system ID of the calling process, the time is obtained by using an
appropriate system call. However, when sysid specifies a different system ID, the time is
obtained from an instance of TCCD that is running on the specified system.

March 2003 Page 173
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Return value
This method returns the value described above.

Exceptions
tet_remtime() throws a TetException object if the API encounters an error while
processing the request.

Portability
In TETware-Lite, this method always throws a TetException object.

Application notes
The Java version of tet_remtime() returns a Date value (number of milliseconds since the
epoch) whereas the C version of tet_remtime() returns a time_t value (number of seconds
since the epoch).

Page 174 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

13.15 Remote process control
This functionality is deprecated and is not provided in the Java API.

13.16 Using threads

13.16.1 Thread creation
When a test purpose creates a new thread it should use the TetThread class. This can be done
either by subclassing TetThread or by creating a TetThread object using an object of a class
which implements java.lang.Runnable. The result of using some other means to create a
new thread in a Java test case is undefined.

The test case should use one of the following constructors:

public TetThread(TestSession ts, Runnable target, String name,
long waitTime)

public TetThread(TestSession ts, Runnable target, long waitTime)

public TetThread(TestSession ts, String name, long waitTime)

The target and name arguments are simply passed to the constructor of the superclass
java.lang.Thread.

The ts argument is used to determine to which thread group the new thread will belong. A new
thread group is created for each test purpose, startup and cleanup method.

The waitTime argument specifies the number of seconds for which the TCM thread cleanup
code will wait for the thread to finish after the main thread returns control to the TCM. The
purpose of this wait time is to allow other threads some grace in the event of an abnormal return
from the main thread. Normally, the test purpose itself should wait for all non-main threads to
terminate by calling Thread.join().

13.16.2 Dealing with left-over threads
Each time the main thread returns to the TCM, any other threads which were created using one of
the supported constructors are cleaned up. This is done after the following methods return:

� The startup() and cleanup() methods.

� Each test purpose method.

� tet_main().

The API interrupts a thread which does not exit within the grace time specified in the constructor
by calling Thread.interrupt(). If the thread still does not terminate, the TCM aborts the
test case. Note that the use of Thread.stop() is not a recommended way of terminating
threads and is deprecated in Java 2.

13.16.3 Synchronisation requests in multiple threads
See notes on ‘‘Synchronisation requests in multi-threaded test cases’’ in the chapter entitled
‘‘The Thread-safe C and C++ APIs’’.

March 2003 Page 175
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Page 176 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

14. Test reporting and journaling

14.1 Making journal entries
The TETware API journaling facility provides a mechanism for outputting data to the execution
results file. The API ensures that each entry in this file is written atomically and that there is
sequencing information applied to the entry (to enable tcc to reorder data that is produced from
two or more concurrently executing processes started by a single test purpose24). tcc ensures
that simultaneous execution of test cases are isolated from one another.

In order to allow for the correct sequencing of information the following attributes are defined:

� System identifier.

� The current context.

� The current block.

The current block is a subdivision of the current context and provides a means of ensuring
contiguity, after resequencing, of a block of data that needed to traverse several entries. The need
to traverse several entries may be caused by the limitations on the atomicity imposed by the
implementation, or may be purely a matter of convenience for the test suite author.

The current context is initialised during test case start-up and should be changed only after a new
process is generated. This enables the author to choose whether a number of concurrently
executing test purposes should have the same context or different ones.

The system identification is used to distinguish entries written from test case parts on the multiple
systems participating in distributed test cases.

The current block is initialised to one by the start-up routines at the commencement of each test
purpose. The test author can increment the current block at any point during the output of entries
in order to distinguish one block of data from another. Each individual entry within a block will
be sequenced starting at one. Use of the journaling support facilities enables data from
concurrently executing test purposes to be ordered correctly by tcc.

14.1.1 Entries from the API
As mentioned above, the TCM handles the sequencing of test purposes as a part of executing
invocable components. The sequencing mechanism outputs invocable component start and end
information and test purpose start information to the execution results file. The test author is
responsible for outputting test information and test results to the execution results file.

All of the data for an entry is transferred atomically to the execution results file. It is the
responsibility of the test suite author to remain within the limitations imposed by the
implementation for a single atomic write operation. TETware guarantees atomicity of writes up
to 512 bytes.

����������������
24. Note that the Distributed version of tcc does not re-order journal lines generated by parts of a distributed API-

conforming test case. This is described in a later section in this chapter.

March 2003 Page 177
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

If a test purpose executes another process that is built to the TETware API, and that executable is
expected to generate journal messages, the test purpose must use the TETware API to
communicate the current message context to the executed process.

14.1.2 Entries from test purposes
The API provides functionality for delivering informational messages and results from test
purposes to the execution results file. These messages are in addition to those specified above,
which are provided automatically by the TCM. The content of informational messages is limited
only by the limit imposed upon the total length of a journal line. It is expected that test cases will
use this mechanism to deliver special messages to the journal or for additional reporting
sequences that can be analysed by test suite specific report treatment filters. Test purposes also
deliver results to the execution results file. These results are checked by the API to ensure that
they have been defined by TETware or by the test suite. In the event of an invalid result, the
TCM delivers a message to the execution results file and sets the result to NORESULT. The result
actions are also checked by the API. If a test purpose specifies a result for which the action is
Abort, then the TCM will not process any more test purposes, call the user-supplied cleanup
function (if one has been defined) and exit.

Note that if a test purpose neglects to generate a result via the API, the TCM will supply a result
of NORESULT for that test purpose.

14.2 Journal files

14.2.1 Description
Result files are written by test cases, build tools and clean tools when run with output capture
mode disabled. These result files are then transferred into the journal file by tcc. The format of
lines in these files is identical.

The API ensures that the total length of a journal line does not exceed 512 bytes.

14.2.2 Journal line parameters
Each journal line is made up of a message type, the parameters for that message, and a message
area (the format of which is unconstrained). Each message may have zero or more parameters
associated with it. These parameters (strings or integers represented by no more than ten decimal
digits), are blank separated and contained between | characters (a vertical bar). Possible
parameters include:

� The TCC activity number (activity).

This number is incremented each time an activity performed by tcc. Each build, execute
or clean-up of a test case is considered an individual activity.

� The invocable component number (ICnumber).

� An invocable component count (ICcount).

This is the number of invocable components executed in each test case (expected or actual
as specified).

� The test purpose number (TPnumber).

This number uniquely identifies the test purpose within a test case.

Page 178 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

� The test purpose count (TPcount).

This is the number of test purposes that make up an invocable component.

� The message context (context).

This field represents the process that generated the journal line. It consists of an optional
three digit system ID, followed by a value which identifies the process that initiated the
entry.

Normally this identifier value is the process ID, but there are some circumstances when use
of the process ID for this purpose is inappropriate or not possible. In respect of Win32
systems, this issue is discussed in the appendix entitled ‘‘Implementation notes for
TETware on Win32 systems’’ in the TETware User Guide. In respect of the Shell APIs,
this issue is discussed in the description of tet_setcontext in the chapter entitled
‘‘The Shell and Korn Shell APIs’’ elsewhere in this guide.

� The message block number (block).

This number is set to one at the start of each test purpose or new context, and is
incremented each time the test purpose requests it. This number, along with the process
identifier and message number (below) is used by tcc to order the data in an execution
result file prior to transferring that file into the journal.

� The message sequence number (sequence).

This number is set to one at the start of each block, and is incremented each time a message
is written to the result file.

� The current time (time).

Times are given using the notation HH:MM:SS with a 24 hour clock.

� The current date (date).

Dates are given using the notation YYYYMMDD; for example, 19910610 for 10th June
1991.

� A test case name (testcase).

This is the test case name as given in the scenario file.

� A path name (pathname).

The full path name of a file.

� The tcc execution mode (mode); possible values for this parameter are as follows:

0 Build
1 Execute
2 Clean-up
3 Pseudo-mode value used when reporting distributed configuration variables

� A completion status (status).

A non-negative value is the value returned to tcc by the operating system after execution
of a test case or tool. Negative values are reserved for use by TETware.

March 2003 Page 179
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

The following values may be used by tcc to indicate some problem when processing a test
case:

��
Status value Meaning��
−1 The test case or tool could not be executed by tcc
−2 The test case or tool was timed out by tcc
−3 One or more locks could not be obtained by tcc
−4 tcc encountered some other error while processing the test case��

�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

14.2.3 Journal line descriptions
A description of each type of journal line that may be produced by TETware processes is
presented in the appendix entitled ‘‘TETware journal lines’’ in the TETware User Guide.

14.3 Result file processing

14.3.1 Execution results from an API-conforming test case
When a test case using an API which does not support distributed testing25 is executed (whether
stand-alone or under the control of tcc), the API writes journal lines to an execution results file
called tet_xres which resides in the test case execution directory.

When a test case using an API which supports distributed testing is executed by the Distributed
version of tcc, the API sends journal lines to the Execution Results daemon (tetxresd) which
writes them to an execution results file. tetxresd maintains a separate execution results file
for use by each non-distributed test case and a single (or combined) execution results file for use
by all parts of a distributed test case.

14.3.2 Processing results from a non API-conforming test case
When tcc executes a test case which does not use an API, it pretends that the test case consists
of a single invocable component which contains a single test purpose. Before the test case is
executed, tcc writes a TCM Start message, an IC Start message and a TP Start message to the
journal. When the test case finishes execution, tcc writes a TP Result message and an IC End
message to the journal. The result contained in the TP Result line is determined by the test case’s
exit status; zero status causes PASS to be reported and non-zero status causes FAIL to be
reported.

Note that tcc does not perform automatic result generation when it executes a non API-
conforming build or clean tool.

����������������
25. The C, C++ and Java APIs in Distributed TETware support distributed testing. The other APIs in Distributed

TETware and all the APIs in TETware-Lite do not support distributed testing.

Page 180 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

14.3.3 Processing results from a non-distributed API-conforming test
case

When a test case run under the control of tcc finishes execution, tcc reads the execution results
file (wherever the file is) and transfers its contents to the journal. When the Distributed version of
tcc executes a non-distributed test case, it has to be aware of the possibility that the API might
either write journal lines to the tet_xres file or send them to tetxresd. Therefore, when
such a test case finishes execution, tcc first inspects the execution results file maintained by
tetxresd. If the file contains at least one line, tcc uses this file. Otherwise, if the file is
empty, tcc looks for a tet_xres file in the test case execution directory and uses that instead.
When the Distributed version of tcc decides to use a tet_xres file produced by a non-
distributed test case that has been executed on a remote system, it must first transfer the file to the
local system before it can be used.

Once tcc has identified the location of an execution results file that has been generated by a
non-distributed test case (by whatever means), it transfers lines from that file to the journal.
When tcc performs this operation, it inspects the type of each line read from the execution
results file and processes it as follows:

1. While the line is not a TP Start line, it is simply copied to the journal.

2. When a TP Start line is found, it is transferred to the journal. Then subsequent lines up to a
TP Result line26 are ordered as follows:

a. tcc inspects the type of the first un-transferred line in the range. If the line is not a
Test Case Information Line, it is transferred to the journal and step (a) is repeated. If
the line is a Test Case Information Line, it is transferred to the journal and the
context and block numbers are remembered.

b. tcc then inspects all the other un-transferred lines in the range and identifies lines
with the same context and block numbers. These lines are transferred to the journal
in order of ascending sequence number.

c. When tcc reaches the end of the range, it returns to step (a). This process is
repeated until all lines in the range are transferred.

3. Then tcc copies the TP Result line to the journal. If no TP Result line appears, tcc
supplies one which contains a result of NORESULT.

These steps are repeated until the end of the execution results file is reached.

14.3.4 Processing results from a distributed API-conforming test case
When a distributed test case is run under the control of the Distributed version of tcc, parts of
the test case which run on each participating system each send execution results lines to
tetxresd for processing. The API ensures that only one part of the test case generates the
TCM Start, IC Start, IC End and TP Start lines that must appear in the execution results file.

Each part of a distributed test purpose is expected to generate a Test Purpose Result. tetxresd
arbitrates between all the partial results and generates a single consolidated result for each test

����������������
26. Or another line type which indicates the end of the scope of the current test purpose, or end-of-file.

March 2003 Page 181
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

purpose. If a test purpose part does not supply at least one result, tetxresd records a partial
result of NORESULT on behalf of that system before performing the result arbitration.

When tcc copies the execution results file generated by a distributed test case to the journal, it
does not reorder Test Purpose Information lines; instead, they are copied to the journal in the
order in which they were received by tetxresd. Therefore, test case authors should ensure
that, when two or more Test Purpose Information Lines from a particular process are required to
appear in the journal without being separated by lines from another process, the lines are
presented to the API using a function which instructs tetxresd to write all the lines to the
execution results file in a single operation.

14.4 Support for user-supplied report writers
As indicated previously, TETware generates a journal file using a well-defined format. It is
expected that test suite authors will provide a report writer which presents the information
contained in the TETware journal in a format which is appropriate for the type of testing being
undertaken.

Each line in the journal file consists of three fields; each field is separated from the next by a |
character (a vertical bar). The value in the first field of each line indicates the type of the line.
For convenience of test suite authors who wish to write a report writer using the C language,
these values are defined in a header file which is supplied with the TETware distribution. The
name of this file is tet_jrnl.h and it resides in the tet-root/inc/tet3 directory.

Page 182 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

15. Writing a C language API-conforming test suite

15.1 Introduction
This chapter describes a sample non-distributed test suite that conforms to TETware’s C language
binding of the API. The source code for the test suite can be found in the appendix entitled
‘‘Example C language API test suite source files’’ at the end of this guide. This test suite has
been designed to run on a UNIX type of operating system.

This sample test suite is designed to illustrate how a non-distributed test suite can be structured
under TETware, as well as how individual test cases and their test purposes relate to each other
and to the API. The test suite has been deliberately kept simple and realistic. For example, one
test purpose compares the returned error code against an expected error code of a failed system
call, while another test purpose in the same test case checks the successful execution of the
system call.

Small segments of code from the test suite appear in the following sections to help illustrate
specific points. Refer to the appropriate section in the appendix entitled ‘‘Example C language
API test suite source files’’ at the end of this guide to see the code in its entirety.

15.2 Defining a test suite
Test suites reside in subdirectories of tet-root. As explained in the chapter entitled ‘‘Testing
structure’’ earlier in this guide, the name of the subdirectory and the test suite are the same.

March 2003 Page 183
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

The following figure shows the component files of the sample test suite, called C-API:

$TET_ROOT

C-API

tet_code
bin

tet_scen
tetbuild.cfg

ts

tetdist.cfg
tetexec.cfg

tetclean.cfg
results

cleantool install

chmod fileno stat uname

makefile
chmod-tc.c

makefile
fileno-tc.c

fileno-t4.c
makefile

uname-tc.c
makefile

stat-tc.c

�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

�
�
�
�

Figure 18. Directory structure for the example C language test suite

The make-up of this test suite is similar to the demonstration test suite as defined for the master
system and contains the following files:

� An install script and clean tool in the bin directory.

� Configuration files for test build, execution, and cleanup.

� A control file, tet_scen.

� A result codes file, tet_code.

� Several test cases in a directory structure under the directory ts.

� A results directory.

If this test suite is run using TETware-Lite, the tetdist.cfg file is not required. If this test
suite is run on the local system using Distributed TETware, a systems file is required. In
addition, the tetdist.cfg file is required when this test suite is run on a remote system or
when Distributed TETware is built to use XTI as the network transport.

Page 184 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

The control file, tet_scen, lists the components of the test suite; and its contents determine the
scenarios that can be used in running the test suite. The control file, tet_scen, for the C-API
test suite contains the following lines:

chmod, fileno, stat, uname test suite.

all
"Starting Full Test Suite"
/ts/chmod/chmod-tc
/ts/fileno/fileno-tc
/ts/stat/stat-tc
/ts/uname/uname-tc
"Completed Full Test Suite"

chmod
"Starting chmod Test Case"
/ts/chmod/chmod-tc
"Finished chmod Test Case"

fileno
"Starting fileno Test Case"
/ts/fileno/fileno-tc
"Finished fileno Test Case"

stat
"Starting stat Test Case"
/ts/stat/stat-tc
"Finished stat Test Case"

uname
"Starting uname Test Case"
/ts/uname/uname-tc
"Finished uname Test Case"

EOF

The control file lists five scenarios for the test suite: all (required), chmod, fileno, stat
and uname. Since the test suite is composed of four test cases, one for the chmod() system
call, one for the fileno() system call, one for the stat() system call, and one for the
uname() system call, the control file has been written to allow each test case to be handled as a
separate scenario, or for the whole test suite to be run at once with the all scenario.

The lines enclosed in double quotes (") are optional information lines that get passed into the
journal file. The lines that begin with a slash or stroke character (/) name the executable test
cases associated with each scenario. Note that, even though these lines begin with a slash
character, the location of the test cases is interpreted relative to the local directory (the root
directory for the test suite). In this instance, the test cases are in a subdirectory named ts.

The clean tool is used to remove unwanted files after the build of each test case. It is invoked in
the source directory of the test case. In this case it is set to exec make clean to remove
unwanted object files as defined in each makefile.

March 2003 Page 185
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

15.3 Defining common test case functions and variables
Since most test suites lend themselves to lots of code redundancy, making an effort to group
together common functions and variables can greatly simplify the writing and debugging of a test
suite. With the C-API test suite (which is very small), no common functions and variables other
than the standard ones in tetapi.h were created.

One additional result code was invented, however, which would normally be defined in a test
suite specific header file. But because it is only used within one test case in this very small test
suite, it is instead defined within uname-tc.c as follows:

#undef TET_INSPECT /* must undefine because TET_ is reserved prefix */
#define TET_INSPECT 33 /* this would normally be in a test suite header */

15.4 Initialising test cases
Every test case requires some minimum initialisation of functions and variables. The
fileno-tc test case provides a good illustration of how this initialisation can be handled.

/* fileno-tc.c : test case for fileno() interface */

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>

#include <tet_api.h>

extern char **environ;

static void cleanup();
static void tp1(), tp2(), tp3(), tp4(), ch4();

/* Initialise TCM data structures */
void (*tet_startup)() = NULL;
void (*tet_cleanup)() = cleanup;
struct tet_testlist tet_testlist[] = {

{ tp1, 1 },
{ tp2, 2 },
{ tp3, 3 },
{ tp4, 4 },
{ NULL, 0 }

};

/* Test Case Wide Declarations */
static char msg[256]; /* buffer for info lines */

After the #include statements, several functions are declared. As described in the chapter
entitled ‘‘The C API’’ earlier in this guide, TETware provides the option of naming both a startup
and a cleanup function. The named startup function will be called before the first test purpose is
executed; and the cleanup function will be called after all test purposes have been executed. In

Page 186 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

this test case, only the cleanup function is named. The cleanup function cleanup() removes
files created during the course of the test case.

The stat-tc test case includes a more substantial cleanup function, as well as a startup
function. It requires that a file be created before the first test purpose, so this is handled by the
startup function; this same file, as well as another file and a directory created during the tests, is
then removed in the cleanup function. See the appendix entitled ‘‘Example C language API test
suite source files’’ at the end of this guide for a complete code listing of the stat-tc test case.

The fileno-tc test case includes four test purposes, contained in the functions tp1(),
tp2(), tp3() and tp4(). First the functions are declared (including an extra function which
is a child process started by tp4()), as shown above. Then they are listed in the
tet_testlist array with the invocable component to which they belong. In this case, each
test purpose can be executed individually, so they are assigned to separate invocable components.
If, say, tp2() depended on prior execution of tp1(), then they would be assigned the same IC
number. After the array is set, any test case wide declarations are made. This commonly
includes a buffer to use for constructing information lines to be output with tet_infoline().

15.5 Controlling and recording test case execution results
Identifying and executing highly specific tests is central to any test case. Each test purpose in a
test case typically targets one specific test that is loosely or strongly related to the other test
purposes contained in the test case. The central purpose of each of these test purposes is to relay
information about the execution of the test for the tester to examine later. This relaying of
information can take the form of informational messages describing the test being executed, fatal
or non-fatal errors that were encountered, and specific test execution results, such as PASS or
FAIL.

The chmod-tc test case contains test purposes as follows:

tp1 A successful chmod of a file, expecting a return code of 0.

tp2 A failed chmod of a non-existent file, expecting a return code of −1 and errno set to
ENOENT.

tp3 A failed chmod of a file that contains a non-directory path component, expecting a return
code of −1 and errno set to ENOTDIR.

Functions tp1() and tp2() are shown here and are described below.

static void
tp1() /* successful chmod of file: return 0 */
{

int ret, err;
mode_t mode;

tet_infoline("SUCCESSFUL CHMOD OF FILE");

/* change mode of file created in startup function */

errno = 0;
if ((ret=chmod(tfile, (mode_t)0)) != 0)
{

err = errno;
(void) sprintf(msg, "chmod(\"%s\", 0) returned %d, expected 0",

March 2003 Page 187
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

tfile, ret);
tet_infoline(msg);
if (err != 0)
{

(void) sprintf(msg, "errno was set to %d", err);
tet_infoline(msg);

}
tet_result(TET_FAIL);
return;

}

/* check mode was changed correctly */

if (stat(tfile, &buf) == -1)
{

(void) sprintf(msg,
"stat(\"%s\", buf) failed - errno %d", tfile, errno);

tet_infoline(msg);
tet_result(TET_UNRESOLVED);
return;

}

mode = buf.st_mode & O_ACCMODE;
if (mode != 0)
{

(void) sprintf(msg, "chmod(\"%s\", 0) set mode to 0%lo, expected 0",
tfile, (long)mode);

tet_infoline(msg);
tet_result(TET_FAIL);

}
else

tet_result(TET_PASS);
}

static void
tp2() /* chmod of non-existent file: return -1, errno ENOENT */
{

int ret, err;

tet_infoline("CHMOD OF NON-EXISTENT FILE");

/* ensure file does not exist */

if (stat("chmod.2", &buf) != -1 && unlink("chmod.2") == -1)
{

tet_infoline("could not unlink chmod.2");
tet_result(TET_UNRESOLVED);
return;

}

/* check return value and errno set by call */

errno = 0;
ret = chmod("chmod.2", (mode_t)0);

Page 188 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

if (ret != -1 || errno != ENOENT)
{

err = errno;
if (ret != -1)
{

(void) sprintf(msg,
"chmod(\"chmod.2\", 0) returned %d, expected -1", ret);

tet_infoline(msg);
}

if (err != ENOENT)
{

(void) sprintf(msg,
"chmod(\"chmod.2\", 0) set errno to %d, expected %d (ENOENT)",
err, ENOENT);

tet_infoline(msg);
}

tet_result(TET_FAIL);
}
else

tet_result(TET_PASS);
}

The comments for the code should clarify what is happening on each line. However, it is
important to note that a lot of useful diagnostics have been written right into the tests. If any of
the system calls fail, whether it is the one being specifically tested or one that the test relies on,
that failure will be reported. Also, the tests begin the same, with a message about the test’s
purpose; and they end the same, with a pass/fail result being reported.

This sort of consistency yields two important benefits:

� Test purposes will be easier to write when they follow some sort of template.

� Test purposes will be easier to debug and evaluate when diagnostic information is built in
from the very start.

15.6 Results that must be verified by the user
Some test cases may require user verification of information generated by a test case. An
example of this can be found in the uname-tc test case when system specific information is
being reported.

static void
tp1() /* successful uname: return 0 */
{

int ret, err;
struct utsname name;

tet_infoline("UNAME OUTPUT FOR MANUAL CHECK");

/* The test cannot determine automatically whether the information
returned by uname() is correct. It therefore outputs the
information with an INSPECT result code for checking manually. */

March 2003 Page 189
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

errno = 0;
if ((ret=uname(&name)) != 0)
{

err = errno;
(void) sprintf(msg, "uname() returned %d, expected 0", ret);
tet_infoline(msg);
if (err != 0)
{

(void) sprintf(msg, "errno was set to %d", err);
tet_infoline(msg);

}
tet_result(TET_FAIL);

}
else
{

(void) sprintf(msg, "System Name: \"%s\"", name.sysname);
tet_infoline(msg);
(void) sprintf(msg, "Node Name: \"%s\"", name.nodename);
tet_infoline(msg);
(void) sprintf(msg, "Release: \"%s\"", name.release);
tet_infoline(msg);
(void) sprintf(msg, "Version: \"%s\"", name.version);
tet_infoline(msg);
(void) sprintf(msg, "Machine Type: \"%s\"", name.machine);
tet_infoline(msg);

tet_result(TET_INSPECT);
}

}

Since the information from uname() will be different on every machine, the output needs to be
reported and then verified. Here the information is simply being printed out for the tester to see
and check, but no attempt has been made to interact with the tester to receive verification of the
information and then use that verification to set the pass/fail result. Instead, a result code of
INSPECT has been used.

15.7 Child processes and subprograms
Some test purposes require the creation of a child process or execution of a subprogram.
TETware provides several interfaces to facilitate this, as follows:

tet_fork() an API function called by test purposes to create a child process and perform
processing in parent and child concurrently.

tet_exec() an API function called by child processes to execute subprograms.

tet_main() a user-supplied function to be defined in subprograms executed by
tet_exec().

An example of their use can be found in test purpose tp4 of the fileno test case:

Page 190 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

static void
tp4() /* on entry to main(), stream position of stdin, stdout and

stderr is same as fileno(stream) */
{

tet_infoline("ON ENTRY TO MAIN, STREAM POSITION OF STDIN, \
STDOUT AND STDERR");

/* fork and execute subprogram, so that unique file positions can be
set up on entry to main() in subprogram */

(void) tet_fork(ch4, TET_NULLFP, 30, 0);
}

static void
ch4()
{

int fd, ret;
static char *args[] = { "./fileno-t4", NULL };

/* set up file positions to be inherited by stdin/stdout/stderr
in subprogram */

for (fd = 0; fd < 3; fd++)
{

(void) close(fd);
if ((ret=open("fileno.4", O_RDWR|O_CREAT, S_IRWXU)) != fd)
{

(void) sprintf(msg, "open() returned %d, expected %d", ret, fd);
tet_infoline(msg);
tet_result(TET_UNRESOLVED);
return;

}
if (lseek(fd, (off_t)(123 + 45*fd), SEEK_SET) == -1)
{

(void) sprintf(msg, "lseek() failed - errno %d", errno);
tet_infoline(msg);
tet_result(TET_UNRESOLVED);
return;

}
}

/* execute subprogram to carry out remainder of test */

(void) tet_exec(args[0], args, environ);

(void) sprintf(msg, "tet_exec(\"%s\", args, env) failed - errno %d",
args[0], errno);

tet_infoline(msg);
tet_result(TET_UNRESOLVED);

}

All the testing is done in the child, so the function tp4() simply calls tet_fork() and
ignores the return value. If it needed to do any processing after the call to tet_fork(), it
should check that the return value was one of the expected child exit codes before continuing.

March 2003 Page 191
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

The arguments to tet_fork() are as follows:

� A function to be executed in the child.

� A function to be executed in the parent. In this case no parent processing is required, so the
null function pointer TET_NULLFP (defined in tet_api.h) is used.

� A timeout period in seconds.

� A bitwise OR of the valid child exit codes. In this case the only valid exit code is zero.

The file fileno-t4.c contains the definition of tet_main(), as follows:

int
tet_main(argc, argv)
int argc;
char **argv;
{

long ret, pos;
int fd, err, fail = 0;
FILE *streams[3];
static char *strnames[] = { "stdin", "stdout", "stderr" };

/* initialise the streams[] array */
streams[0] = stdin;
streams[1] = stdout;
streams[2] = stderr;

/* check file positions of streams are same as set up in parent */

for (fd = 0; fd < 3; fd++)
{

pos = 123 + 45*fd; /* must match lseek() in parent */
errno = 0;
if ((ret = ftell(streams[fd])) != pos)
{

err = errno;
(void) sprintf(msg, "ftell(%s) returned %ld, expected %ld",

strnames[fd], ret, pos);
tet_infoline(msg);
if (err != 0)
{

(void) sprintf(msg, "errno was set to %d", err);
tet_infoline(msg);

}
fail = 1;

}
}

if (fail == 0)
tet_result(TET_PASS);

else
tet_result(TET_FAIL);

return 0;
}

Page 192 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

The tet_fork() API function relies for its operation on the fork() system call which is
provided by the UNIX operating system. Since fork() is not available on Win32 operating
systems, the tet_fork() and tet_exec() API functions are not provided when TETware
runs on Win32 systems.

In order to assist test suite authors in writing test cases which are portable to both UNIX and
Win32 systems, TETware provides the tet_spawn() and tet_wait() API functions which
may be used to facilitate subprogram execution. These functions are available on UNIX systems
as well as on Win32 systems.

15.8 Cleaning up test cases
Since test cases often change and/or create data, it is important to cleanup this data before exiting
the test case. As explained earlier, one way to do this is to specify a cleanup function with
TETware’s tet_cleanup utility. The cleanup function named in the stat-tc test case
provides a good example.

static void
cleanup()
{

/* remove file created by start-up */
(void) unlink(tfile);

/* remove files created by test purposes, in case they don’t run
to completion */

(void) rmdir("stat.d");
(void) unlink("stat.p");

}

The cleanup function is called when all the test purposes have finished executing. As shown, it
simply removes the files and directory that were created during the test.

March 2003 Page 193
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Page 194 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

16. Writing a Shell language API-conforming test suite

16.1 Introduction
This chapter describes a sample non-distributed test suite that conforms to TETware’s shell
language binding of the API. The source code for the test suite can be found in the appendix
entitled ‘‘Example Shell API test suite source files’’ at the end of this guide.

This test suite has been designed to run on a UNIX type of operating system. Some minor
changes may be required in order to make this test suite function correctly on Win32 operating
systems.

The test suite described in this chapter uses the Shell (xpg3sh) TCM and API. It can be adapted
to use the Korn Shell (ksh) TCM and API by changing the single line in each test case which
determines which TCM is to be used. This is possible because test cases in the test suite do not
use syntax which is specific to either type of shell.

This sample test suite, like the one in the chapter entitled ‘‘Writing a C language API-conforming
test suite’’, is designed to illustrate how a test suite can be structured under TETware, as well as
how individual test cases and their test purposes relate to each other and to the API. Like the
C-API test suite, this test suite has been deliberately kept simple and realistic. However, instead
of system calls being tested, the equivalent user-level commands are tested. Sample tests include
checking a returned error code and error message against an expected error code and expected
error message and printing out system specific information for verification by the tester.

Note that no support for distributed test cases is provided by the Shell API in Distributed
TETware. It is possible to execute test cases on a local system or on one or more remote systems,
but no synchronisation between test parts on multiple systems is possible. When Distributed
TETware is used it is necessary to supply a systems file. In addition, it is necessary to supply a
tetdist.cfg file if the test suite is to be processed on remote systems or if Distributed
TETware has been built to use the XTI network transport.

Small segments of code from the test suite appear in the following sections to help illustrate
specific points. Refer to the appropriate section in the appendix entitled ‘‘Example Shell API test
suite source files’’ at the end of this guide to see the code in its entirety.

16.2 Defining a test suite
As explained in the chapter entitled ‘‘Writing a C language API-conforming test suite’’, test
suites reside in subdirectories of tet-root. The name of the subdirectory and the test suite are the
same.

March 2003 Page 195
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

The following figure shows the component files of the sample test suite, called SHELL-API:

$TET_ROOT

SHELL-API

tet_code
bin

tet_scen
tetbuild.cfg

ts
tetclean.cfg

tetdist.cfg
ts_exec

results

buildtool
install

cleantool

chmod uname

tetexec.cfg lib

makefile chmod-tc.sh makefile uname-tc.sh shfuncs

�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

��
�
�
�
�
�

Figure 19. Directory structure for the example Shell language test suite

The make-up of this test suite is similar to the C-API test suite and contains the following files:

� An install script, build tool and clean tool in the bin directory.

� Some configuration files for test build, execution, and cleanup

� A control file, tet_scen.

� A result codes file, tet_code.

� Several test cases in a directory structure under the directory ts.

� An alternate execution directory ts_exec.

� A results directory.

The control file, tet_scen, is similar to the control file for the C-API test suite. See the
chapter entitled ‘‘Writing a C language API-conforming test suite’’ for a description of the
control file and how its structure relates to the scenarios that can be run.

The installation utility install creates the directory structure under the alternate execution
directory to match the structure under the ts directory. For the purpose of this example the
location of the alternate execution directory is fixed as $TET_ROOT/SHELL-API/ts_exec
but in general it would be obtained from the user and could be located anywhere.

Page 196 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

The build tool is used to build each test case. It is invoked in the source directory of the test case
and installs the relevant files under the alternate execution directory. It does this by calling
make, setting TET_EXECUTE to the correct value on the make command line in order to
override the default value in each makefile.

The clean tool is used to remove the installed files from under the alternate execution directory.
It works in the same way as the build tool except it executes a make clean instead of just
make.

16.3 Defining common test case functions and variables
Just as with the C-API test suite, it makes good sense to minimise code redundancy by grouping
together common functions and variables. In the process of writing the SHELL-API test suite,
several common functions were created. This code was collected into a file named shfuncs,
which is in the lib subdirectory of the ts_exec directory. The shfuncs file is sourced into
each of the two test cases using the shell built-in . (dot) command. The required TETware Shell
API file, tcm.sh (which in turn sources in the other required TETware Shell API file
tetapi.sh) is also sourced into each of the two test cases. It is important to note the point at
which these files are sourced in. Since the TETware API files read definitions and begin
execution when they are sourced in, they must be sourced in as the very last part of each test case.
Therefore, the last line of each of the test cases sources in tcm.sh.

shfuncs contains the following functions:

shfuncs : test suite common shell functions

tpstart() # write test purpose banner and initialise variables
{

tet_infoline "$*"
FAIL=N

}

tpresult() # give test purpose result
{

$1 is result code to give if FAIL=N (default PASS)
if [$FAIL = N]
then

tet_result ${1-PASS}
else

tet_result FAIL
fi

}

check_exit() # execute command (saving output) and check exit code
{

$1 is command, $2 is expected exit code (0 or "N" for non-zero)
eval "$1" > out.stdout 2> out.stderr
CODE=$?
if [$2 = 0 -a $CODE -ne 0]
then

tet_infoline "Command ($1) gave exit code $CODE, expected 0"
FAIL=Y

elif [$2 != 0 -a $CODE -eq 0]
then

March 2003 Page 197
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

tet_infoline "Command ($1) gave exit code $CODE, expected non-zero"
FAIL=Y

fi
}

check_nostdout() # check that nothing went to stdout
{

if [-s out.stdout]
then

tet_infoline "Unexpected output written to stdout, as shown below:"
infofile out.stdout stdout:
FAIL=Y

fi
}

check_nostderr() # check that nothing went to stderr
{

if [-s out.stderr]
then

tet_infoline "Unexpected output written to stderr, as shown below:"
infofile out.stderr stderr:
FAIL=Y

fi
}

check_stderr() # check that stderr matches expected error
{

$1 is file containing regexp for expected error
if no argument supplied, just check out.stderr is not empty

case $1 in
"")

if [! -s out.stderr]
then

tet_infoline "Expected output to stderr, but none written"
FAIL=Y

fi
;;

*)
expfile="$1"
OK=Y
exec 4<&0 0< "$expfile" 3< out.stderr
while read expline
do

if read line <&3
then

if expr "$line" : "$expline" > /dev/null
then

:
else

OK=N
break

fi
else

OK=N

Page 198 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

fi
done
exec 0<&4 3<&- 4<&-
if [$OK = N]
then

tet_infoline "Incorrect output written to stderr, as shown below"
infofile "$expfile" "expected stderr:"
infofile out.stderr "received stderr:"
FAIL=Y

fi
;;

esac
}

infofile() # write file to journal using tet_infoline
{

$1 is file name, $2 is prefix for tet_infoline

prefix=$2
while read line
do

tet_infoline "$prefix$line"
done < $1

}

Since these functions perform commonly required tasks, they are better defined once rather than
twice. Also, should they ever need to be changed, this means changing only one file.

Executing the test for each test purpose in some common, controlled way can make writing the
tests and checking their results much easier. The function check_exit was written to:

— execute a command in a given argument ($1);

— capture both standard error and standard output in separate files (in case one or both need to
be checked);

— record the exit code in a variable called $CODE;

— output a message to the journal if an unexpected exit code is found.

This function is coded as follows:

check_exit() # execute command (saving output) and check exit code
{

$1 is command, $2 is expected exit code (0 or "N" for non-zero)
eval "$1" > out.stdout 2> out.stderr
CODE=$?
if [$2 = 0 -a $CODE -ne 0]
then

tet_infoline "Command ($1) gave exit code $CODE, expected 0"
FAIL=Y

elif [$2 != 0 -a $CODE -eq 0]
then

tet_infoline "Command ($1) gave exit code $CODE, expected non-zero"
FAIL=Y

fi
}

March 2003 Page 199
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

16.4 Initialising test cases
Every test case requires some minimum initialisation of functions and variables. The
uname-tc test case provides a good illustration of how this initialisation can be handled.

:
uname-tc.sh : test case for uname command

tet_startup="" # no startup function
tet_cleanup="cleanup" # cleanup function
iclist="ic1 ic2" # list invocable components
ic1="tp1" # functions for ic1
ic2="tp2" # functions for ic2

As described in the chapter entitled ‘‘The Shell and Korn Shell APIs’’ elsewhere in this guide,
TETware provides the option of naming both a startup and cleanup function. The named startup
function will be called before the first test purpose is executed; and the cleanup function will be
called after all test purposes have been executed. Here, only a cleanup function is named, by
setting tet_cleanup equal to the name of the function that will be used.

A cleanup function is used by both of the test cases.

cleanup() # clean-up function
{

rm -f out.stdout out.stderr out.experr
}

It simply removes the files containing the actual standard output, actual standard error and
expected standard error for the test.

The iclist variable must contain a space-separated list of the invocable components contained
in the test case. This list must be in the form shown above, meaning: ic1, ic2, and so on. No
other names can be used. The next lines define the correspondence between invocable
components (icn) and the test purpose(s) that they contain. In this test case, each test purpose
can be executed individually, so they are assigned to separate invocable components. If, say,
tp2 depended on the prior execution of tp1, then the definitions would be:

iclist=ic1 # list invocable components
ic1="tp1 tp2" # functions for ic1

16.5 Controlling and recording test case execution results
As shown above, a lot of effort has been taken to report on the processing of each test case, and
even on the individual test purposes. The chmod-tc test case, presented below, shows how
information about the processing of a test case can be handled.

The chmod-tc test case contains test purposes as follows:

tp1 successful chmod of a file with an expected exit code of 0.

tp2 failed chmod of a non-existent file with an expected exit code of non-zero

tp3 failed chmod due to invalid syntax with an expected exit code of non-zero.

Function tp1 is shown here and is described below.

Page 200 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

tp1() # simple chmod of file - successful: exit 0
{

tpstart "SIMPLE CHMOD OF FILE: EXIT 0"

echo x > chmod.1 2> out.stderr # create file
if [! -f chmod.1]
then

tet_infoline "Could not create test file: chmod.1"
tet_infoline ‘cat out.stderr‘
tet_result UNRESOLVED
return

fi

check_exit "chmod 777 chmod.1" 0 # check exit value

MODE=‘ls -l chmod.1 |cut -d" " -f1‘ # get and check mode of file
if [X"$MODE" != X"-rwxrwxrwx"]
then

tet_infoline "chmod 777 set mode to $MODE, expected -rwxrwxrwx"
FAIL=Y

fi

check_nostdout # should be no stdout
check_nostderr # should be no stderr

tpresult # set result code
}

The comments for the code should clarify what is happening on each line. Like the C-API test
cases, this test purpose begins with reporting information about what the test has been designed to
check and ends with setting the test result. In this case, this is done by the function tpresult,
where the test status variable $FAIL is tested and reported on. If the file that is needed for the
test cannot be created, the test outputs diagnostics to the journal and returns a result of
UNRESOLVED. Note that in addition to checking the exit code, the file itself is checked to make
sure that the mode set by chmod was actually set. Also, since a successful execution of this
command means that nothing is written to standard error or standard output, functions contained
in shfuncs are used to make sure that no data was output by the command.

In the test purpose, tp2, much of the same function calls are used, even though in this test
chmod is expected to fail.

tp2() # chmod of non-existent file : exit non-zero
{

tpstart "CHMOD OF NON-EXISTENT FILE: EXIT NON-ZERO"

ensure test file does not exist
rm -f chmod.2 2> out.stderr
if [-f chmod.2]
then

tet_infoline "Could not remove test file: chmod.2"
tet_infoline ‘cat out.stderr‘
tet_result UNRESOLVED
return

fi

March 2003 Page 201
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

check_exit "chmod 777 chmod.2" N # check exit value

check_nostdout # should be no stdout
check_stderr # check error message

tpresult # set result code
}

Again, the description of the test is reported, the exit code is checked against that expected by
check_exit, tp_result is called to report the test result, and check_nostdout is used
to make sure no data was sent to standard output. In this case, however, an error message should
be produced; so the expected message is captured in a file in order that it can be later compared
with the error message received. This is done through the function check_stderr which is
defined in shfuncs and is shown here.

check_stderr() # check that stderr matches expected error
{

$1 is file containing regexp for expected error
if no argument supplied, just check out.stderr is not empty

case $1 in
"")

if [! -s out.stderr]
then

tet_infoline "Expected output to stderr, but none written"
FAIL=Y

fi
;;

*)
expfile="$1"
OK=Y
exec 4<&0 0< "$expfile" 3< out.stderr
while read expline
do

if read line <&3
then

if expr "$line" : "$expline" > /dev/null
then

:
else

OK=N
break

fi
else

OK=N
fi

done
exec 0<&4 3<&- 4<&-
if [$OK = N]
then

tet_infoline "Incorrect output written to stderr, as shown below"
infofile "$expfile" "expected stderr:"
infofile out.stderr "received stderr:"
FAIL=Y

fi

Page 202 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

;;
esac

}

The two files, one containing the expected error output in regular expression form, and the other
containing the received error output, are compared line-by-line and, if they are identical, nothing
is done. However, if they differ, it is important to know how they differ; therefore, both files are
printed for the tester to evaluate later and the status of the test purpose is set to show a failed
result.

As shown here, a lot of useful diagnostics have been written right into the tests. If any of the
commands fail, whether it is the one being specifically tested or one that the test relies on, that
failure will be reported. Also, each test case and test purpose begins with information reported in
a consistent format; and they end the same, with a pass/fail (or other) result being reported.

As with the C-API test suite, this sort of consistency yields two important benefits:

� Test purposes will be easier to write when they follow some sort of template.

� Test purposes will be easier to debug and evaluate when diagnostic information is built in
from the very start.

16.6 Results that must be verified by the user
Some test cases may require user verification of information generated by a test case. An
example of this can be found in the uname-tc test case when system specific information is
being reported.

tp1() # simple uname of file - successful: exit 0
{

tpstart "UNAME OUTPUT FOR MANUAL CHECK"

check_exit "uname -a" 0 # check exit value

infofile out.stdout # send output to journal

check_nostderr # should be no stderr

tpresult INSPECT # set result code
}

Since the output from uname will be different on every machine, this information needs to be
reported and then verified. Here the information is being printed out for the tester to see and
check; the test purpose result is INSPECT to indicate that the tester must inspect the output in the
journal.

16.7 Cleaning up test cases
Since test cases often change and/or create data, it is important to cleanup this data before exiting
the test case. As explained earlier, one way to do this is to specify a cleanup function with
TETware’s tet_cleanup utility. The cleanup function is the most practical place to specify
the removal of temporary files.

March 2003 Page 203
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Page 204 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

17. The distributed demonstration test suite

17.1 Introduction
This chapter describes the official TETware demonstration test suite. The demonstration consists
of simple distributed test cases which use the C API. Each test case is designed to execute on the
local (or master) system and a remote (or slave) system. This test suite is useful in that it helps
to delineate the basic components of a distributed test suite in its simplest form.

The distributed demonstration test suite has been designed to run on a pair of UNIX systems, a
pair of Windows NT systems, or on one UNIX and one Windows NT system. When the
demonstration is configured to run between a UNIX and a Windows NT system, you may
configure either type of system to act as either master or slave.

Since this is a distributed test suite, it must be processed using Distributed TETware. It cannot be
used with TETware-Lite.

Source files for this test suite is included below the directory tet-root/src/tet3/demo in the
TETware distribution. Instructions for building, installing and running the demonstration are
presented in the chapter entitled ‘‘Running the TETware demonstrations’’ in the TETware User
Guide. An example of the journal file produced when the test case is build, executed and cleaned
by Distributed TETware is presented in the appendix entitled ‘‘TETware demonstration journal
file’’, also in the TETware User Guide.

Examples of non-distributed test cases, are presented in the chapters entitled ‘‘Writing a
C language API-conforming test suite’’ and ‘‘Writing a Shell language API-conforming test
suite’’ elsewhere in this guide.

17.2 Test suite files
The following figure shows the file structure of the distributed demonstration test suite on the
master system. The same structure is replicated on the slave system except that the
tetdist.cfg, tet_code and tet_scen files are not present. It is not necessary for the
value of tet-root to be the same on each system because configuration variables are available to
define it separately for each system.

Each file in the test suite is described in the sections that follow. For ease of reference, listings of
all the files in this test suite are presented in the appendix entitled ‘‘Example distributed test case
source files’’ at the end of this guide. You should refer to these listings when reading the
following sections.

March 2003 Page 205
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

The following figure shows the component files of the example distributed test suite:

$TET_ROOT

demo systems

tet_code
tet_scen

tetbuild.cfg
ts

tetdist.cfg
tetexec.cfg

tetclean.cfg

makefile tc1.c tc2.c tc3.c

Figure 20. Directory structure for the distributed demonstration test suite

17.2.1 The systems file
This file contains the mappings that assign system identifiers to host names. The file must be
located in the tet-root directory on each system participating in the test.

In the distribution it contains the following lines:

Example system file for demonstration
000 master
001 slave

You must edit this file to contain values that are appropriate for your installation.

If you are using a version of TETware that uses the socket network interface, you only need to
replace the names master and slave with host names suitable for your installation. In
addition, you should ensure that these host names are in the hosts databases on both systems.

If you are using a version of TETware that uses XTI as the network transport interface you will
need to add a third field to each entry in this file. The extra field should contain the address of the
Test Case Controller daemon (tccd) on each system. The format of this address is described in
the section entitled ‘‘System definitions’’ elsewhere in this guide.

Page 206 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

17.2.2 The tet_code file
The tet_code file is located in the test suite root directory on the master system and contains
result code definitions for the test suite.

This file contains the following lines:

tet_code file for the TETware demonstration
#
TET reserved codes
0 "PASS"
1 "FAIL"
2 "UNRESOLVED"
3 "NOTINUSE"
4 "UNSUPPORTED"
5 "UNTESTED"
6 "UNINITIATED"
7 "NORESULT"

Test suite additional codes
101 "FATAL" Abort
102 "INSPECT"

The first group of lines define the standard result codes that are specified in IEEE Std 1003.3-
1991. The second group of lines define some extra result codes for use with this particular test
suite. Note that when the action indicator field (the third field) is not present, a default action of
Continue is assumed.

17.2.3 The tet_scen file
The tet_scen file is located in the test suite root directory on the master system and contains
the test suite’s scenario, or control, definitions.

This file contains the following lines:

scenario file for the TETware demonstration
#
all

"starting scenario"
:remote,000,001:
/ts/tc1
/ts/tc2
"next is the last test case"
/ts/tc3
:endremote:
"done"

This file controls the execution sequence of the test suite. The first non-comment line (all)
defines the name of the scenario. Subsequent lines contain directives, scenario information lines
and test case names. The lines in double quotation marks are scenario information lines that are
printed into the journal file. Test case lines list names of test cases to be processed. Although
each test case name looks like an absolute path name, it is interpreted relative to the test suite root
directory.

March 2003 Page 207
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

The :remote,000,001: and :endremote: directives tell TETware to process the test
cases specified between them on the systems designated 000 and 001 in the systems file on
the local system.27 The fact that system 000 is specified with the remote directive tells
TETware to process the test cases as distributed test cases. The fact that system 000 appears
first in the system list tells TETware to treat system 000 (the local system) as the master system.

17.2.4 The tetbuild.cfg file
The tetbuild.cfg file contains variable definitions which determine the way in which
TETware processes each test case in build mode. One of these files is provided on each system.

In the distribution the following variables are defined in this file on the master system:

TET_BUILD_TOOL=make
TET_BUILD_FILE=-f makefile
TET_OUTPUT_CAPTURE=True

The meanings of these variables are as follows:

TET_BUILD_TOOL specifies the command to use for building the test cases.

TET_BUILD_FILE specifies arguments to pass to the build tool before the test case
name.

TET_OUTPUT_CAPTURE is used here to specify that all build tool standard output and standard
error should be captured and recorded in the journal file, rather than
being sent to the default place.

The values specified for these variables in the build configuration file instruct TETware to invoke
the following command in the test case source directory when it builds each test case:

make -f makefile test-case

Setting the value of TET_OUTPUT_CAPTURE to True provides default values of False for
TET_API_COMPLIANT and True for TET_PASS_TC_NAME. The values of these two
variables tell TETware that the build tool does not use the API and that the test case name should
be passed as an argument to the build tool after the argument specified by TET_BUILD_FILE.

In the distribution no values are defined in this file on the slave system; therefore the values
defined on the master system are used.

The values defined in each file are correct when both of the systems are UNIX systems. The
comments in the file on each system show how these values may be changed to support other
combinations of system types. Note the way in which the default value of each variable in the
slave system is taken from the corresponding value defined on the master system. Also, note the
way in which the precedence of variable definitions is used to provide the correct values when
either system is a Windows NT system, with the minimum of reconfiguration.

When the test suite is built on a Windows NT system, the file ntbuild.ksh is used as the
build tool. This file is a shell script which ensures that MKS Make uses the correct configuration

����������������
27. That is: the system on which tcc is invoked.

Page 208 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

file, then it appends a .exe suffix to its last argument (the test case name). Finally it invokes
make with all its arguments. This method of providing portability between UNIX and
Windows NT systems enables the number of changes that must be made during the porting
operation to be kept to a minimum.

17.2.5 The tetclean.cfg file
The tetclean.cfg file contains parameters which determine the way in which TETware
processes each test case in clean mode. One of these files is provided on each system.

In the distribution the following variables are defined in this file on the master system:

TET_CLEAN_TOOL=rm
TET_CLEAN_FILE=-f
TET_OUTPUT_CAPTURE=True

The meanings of these variables are the same as those described in the previous section.

In the distribution no values are defined in this file on the slave system; therefore the values
defined on the master system are used.

When TETware processes each test case in clean mode, the following command will be executed
in the test case source directory:

rm -f test-case

Again, the default values in each file are correct when both of the systems are UNIX systems.
The comments in the file on each system show how these values may be changed to support other
combinations of system types.

When the test suite is cleaned on a Windows NT system, the file ntclean.ksh is used as the
clean tool. This file is a shell script which simply appends a .exe suffix to its last argument,
then invokes rm with all its arguments.

17.2.6 The tetexec.cfg file
The tetexec.cfg file contains variable definitions which determine the way in which
TETware processes each test case in execute mode. One of these files is provided on each
system.

In the distribution the following variables are defined in this file on the master system:

TET_OUTPUT_CAPTURE=False
TET_EXEC_IN_PLACE=True

The meanings of these variables is as follows:

TET_OUTPUT_CAPTURE Setting this variable to False tells TETware not to record test case
output in the journal file.

TET_EXEC_IN_PLACE Setting this variable to False tells TETware to copy all the files in
the test case source directory to a location below the temporary
execution directory before executing the test case. This location then
becomes the test case execution directory.

Since no value has been specified for TET_EXEC_TOOL, TETware executes each test case

March 2003 Page 209
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

directly. Test case execution takes place in the test case execution directory. Setting the value of
TET_OUTPUT_CAPTURE to False provides a default value of True for
TET_API_COMPLIANT. The value of this variable tells TETware that test cases use the API.

In the distribution no values are defined in this file on the slave system; therefore the values
defined on the master system are used. The values defined in these files in the distribution are
correct for both UNIX systems and Windows NT systems.

17.2.7 The tetdist.cfg file
This file is only provided on the master system. It contains variable assignments that specify
parameters for slave systems that are equivalent to those parameters on the master system that
tcc obtains from environment variables or deduces from the current working directory. It may
also be used to define network-related parameters when TETware is built to use the XTI network
interface.

In the distribution the following variables are defined in this file:

TET_REM001_TET_ROOT=/home/tet
TET_REM001_TET_TSROOT=${TET_ROOT}/demo

When you install the demonstration you must change the value of the first variable to a value that
is correct for your system.

TET_REM001_ is a variable name prefix used to define a variable’s value for a particular slave
system (in this case, a slave with system designation 001). The name of the variable being
defined is the part of the name after this prefix.

The variables defined in this file enable TETware to locate the test suite on the remote system, as
follows:

TET_REM001_TET_ROOT The location of the tet root directory on the slave system.

TET_REM001_TET_TSROOT The location of the test suite root directory on the slave system.
tcc replaces the string ${TET_ROOT} in this variable’s value
with the value of TET_ROOT on system 1 (that is: the value
assigned to TET_REM001_TET_ROOT in this file).

When Distributed TETware is built to use the XTI network transport, the following variables are
also defined in this file:

TET_XTI_TPI=/dev/tcp
TET_XTI_MODE=tcp
TET_LOCALHOST=01.02.03.04

When you install the demonstration you must change the values of all these variables to values
that are correct for your system. When the XTI network transport is used, these variables enable
TETware to obtain information to be used by the network transport interface, as follows:

TET_XTI_TPI The name of the transport provider interface.

TET_XTI_MODE The type of transport provider to use.

TET_LOCALHOST When the transport provider is TCP/IP, the master system’s
external IP address in dotted-decimal notation.

Page 210 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

Note that these variables are not required when TETware is built to use the socket interface. In
particular, TET_LOCALHOST should not normally be defined when the socket interface is used.

17.2.8 The makefile file
The makefile is used by the build tool (make) when building each test case.

This file is provided in the test case source directory on each system and contains the following
lines:

include file and library locations - don’t change
LIBDIR = ../../lib/tet3
INCDIR = ../../inc/tet3

SGS definitions - customise as required for your system
name of the C compiler
CC = cc
the following is appropriate when using the defined build environment
on a Windows NT system
CC = cl -nologo

flags for the C compiler
CFLAGS = -I$(INCDIR)

system libraries:
the socket version on SVR4 and Solaris usually needs -lsocket -lnsl
the XTI version usually needs -lxti
the Windows NT version needs wsock32.lib
SYSLIBS =

suffixes - customise as required for your system
object file suffix - .o on UNIX, .obj on Windows NT
O = .o
archive library suffix - .a on UNIX, .lib on windows NT
A = .a
executable file suffix - blank on UNIX, .exe on Windows NT
E =

all: tc1$E tc2$E tc3$E

tc1$E: tc1.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -o tc1$E tc1.c $(LIBDIR)/tcm$O $(LIBDIR)/libapi$A \

$(SYSLIBS)

tc2$E: tc2.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -o tc2$E tc2.c $(LIBDIR)/tcm$O $(LIBDIR)/libapi$A \

$(SYSLIBS)

tc3$E: tc3.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -o tc3$E tc3.c $(LIBDIR)/tcm$O $(LIBDIR)/libapi$A \

$(SYSLIBS)

This is a typical makefile which contains dependencies and rules for building each individual test
case. Note the use of variables to specify the different libraries and file name suffixes that are
used on different types of system.

The default values are correct when TETware is built to use the socket network interface on an
arbitrary UNIX system. You will probably need to customise each makefile for use on any
particular type of system.

March 2003 Page 211
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

17.2.9 The tc1.c file
On each system the file tc1.c is the source file for the first test case in the test suite.

This test case contains a single test purpose. The master part of the test purpose prints a single
test case information line to the journal file by calling tet_infoline() and records a PASS
result by calling tet_result(). The slave part of the test purpose does the same. Therefore
the consolidated result of the test purpose is PASS.

17.2.10 The tc2.c file
On each system the file tc2.c is the source file for the second test case in the test suite.

This test case contains a single test purpose. The master part of the test purpose prints a number
of information lines to the journal file by calling tet_minfoline() and records a PASS
result by calling tet_result(). The slave part of the test purpose prints a single test case
information line to the journal file by calling tet_infoline() and records a FAIL result by
calling tet_result(). Therefore the consolidated result of the test purpose is FAIL.

This test purpose illustrates how tet_minfoline() may be used to print several lines to the
journal as a single operation. If the lines had been printed by calling tet_infoline() a
number of times from the master test purpose part, it is likely that the line printed by the slave
test purpose part would have appeared somewhere in between the lines printed by the master part.

17.2.11 The tc3.c file
On each system the file tc3.c is the source file for the third test case in the test suite. This test
case contains two test purposes. Recall that TETware performs automatic synchronisation
between each part of a distributed test case at the start and end of each test purpose. Each test
purpose in this test case demonstrate how API functions can be used to perform synchronisation
at user-defined points during test purpose execution.

The master and slave parts of the first test purpose each print a message to the journal. Then they
synchronise with each other by calling the tet_remsync() API function using sync point 101,
a sync vote of YES and a timeout value of 10 seconds. If the synchronisation request is
successful, each test purpose part reports a PASS result. Otherwise, diagnostics are printed to the
journal and each test purpose part reports an UNRESOLVED result.

The master and slave parts of the second test purpose each print a message to the journal. Then
they synchronise with each other by calling the tet_remsync() API function using sync point
201, a sync vote of YES and a timeout value of 10 seconds. In addition, the master test purpose
part sends message data with the request and the slave test purpose part expects to receive
message data when the call returns. This is done by initialising members of a tet_synmsg
structure and passing a pointer to this structure as one of the arguments to tet_remsync(). If
the synchronisation request is successful, each test purpose part reports a PASS result.
Otherwise, diagnostics are printed to the journal and each test purpose part reports an
UNRESOLVED result. In addition, the master test purpose part prints the message data before it
calls tet_remsync() and the slave test purpose part prints the message data received after the
successful return of the tet_remsync() call.

A common function — error() — is used in both parts of the test case to print a diagnostic
when an API call is unsuccessful. The first parameter to this function is the value of the global
tet_errno variable which is set by the API whenever an API function call is unsuccessful.
The error() function uses this value to index the tet_errlist[] array, provided by the

Page 212 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

API, which contains short message strings describing each API error that can occur. The API
provides a global variable tet_nerr which contains the number of entries in the
tet_errlist[] array. Note that the error() function uses this value to check that the
value obtained from tet_errno refers to an entry which is within the bounds of the
tet_errlist[] array.

For more information on how TETware synchronisation works, see the chapter entitled ‘‘Test
case synchronisation’’ in the TETware User Guide.

March 2003 Page 213
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Page 214 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

18. Writing a Java API-conforming test suite

18.1 Introduction
This chapter describes a sample non-distributed test suite that conforms to TETware’s Java
language binding of the API. The source code for the test suite can be found in the appendix
entitled ‘‘Example Java language API test suite source files’’ at the end of this guide. This test
suite has been designed to run on all systems for which the Java API is supported.

This sample test suite is primarily intended to illustrate those features of test suite design and
structure specific to the Java API. For this reason, it has been kept deliberately simple. The
sample test cases verify a few features of some of the Java Language Core API classes. For more
examples of test suite writing, see the chapter entitled ‘‘Writing a C language API-conforming
test suite’’ elsewhere in this guide.

Segments of code from the test suite appear in the following sections to help illustrate specific
points. Refer to the appropriate section in the appendix entitled ‘‘Java language API test suite
source files’’ at the end of this guide to see the code in its entirety.

18.2 Defining a test suite
As explained in the chapter entitled ‘‘Writing a C language API-conforming test suite’’, test
suites reside in subdirectories of tet-root. The name of the subdirectory is the same as the name
of the test suite.

The following figure shows the component files of the sample test suite, called jdemo:

$TET_ROOT

jdemo

tet_scen
tetbuild.cfg

tetexec.cfg
ts

tetclean.cfg
results

IntegerTC
�
�
�
�

IntegerTC.java

StackTC

StackTC.java

�
�
�
�
�

SystemTC
�
�
�
�

SystemTC.java

�
�
�
�

�
�
�
�

Figure 21. Directory structure for the Java demonstration test suite

March 2003 Page 215
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

The make-up of this test suite is similar to the C-API test suite. It contains the following files:

� Configuration files for test build, execution and cleanup.

� A scenario file, tet_scen.

� Several test cases in a directory structure under the directory ts.

� A results directory.

The scenario file tet_scen is similar to the scenario file for the C-API test suite. See the
chapter entitled ‘‘Writing a C language API-conforming test suite’’ for a description of the
scenario file and how its structure relates to the scenarios that can be run.

The test suite uses the sample build, execute and clean tools supplied with the Java API. These
are called jet-build, jet-exec and jet-clean. See the chapter entitled ‘‘The Java
API’’ for more information about these tools.

Each test case class is built and executed in its source directory below ts, rather than below an
alternate execution directory. Because of this, the TET_EXECUTE environment variable should
not be set when this test suite is being processed.

18.3 Defining a test case
A new test case is created by defining a class which extends TET.SimpleTestCase. The
IntegerTC test case provides an example of this. Its outline structure is as follows:

public class IntegerTC extends SimpleTestCase
{

...

public static void main(String[] args)
{

main(args, new IntegerTC());
}

. . .

public void i1t1(TestSession ts)
{

. . .
}

public void i2t1(TestSession ts)
{

. . .
}

public void i3t1(TestSession ts)
{

. . .
}

}

The IntegerTC class defines a static main() method. This has the exact signature as
expected by the Java virtual machine when it is invoked for this class. The main() method
invokes the main() method of its superclass, which passes control to the test case manager
services of the Java API.

Page 216 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

Three test purpose methods are defined for this class, namely: i1t1(), i2t1() and i3t1().
These belong to the invocable components 1, 2 and 3 respectively, as indicated by the method
names.

No test case start up or clean up code is required, so this test case does not define startup() or
cleanup() methods.

18.4 Controlling and recording test case execution results
The IntegerTC test case verifies functionality of the class java.lang.Integer. It
contains test purposes as follows:

i1t1 Verifies that Integer.intValue() returns the value of this Integer as an int.

i2t1 Verifies that Integer.toString() returns a string representation of the value of this
object in base 10.

i3t1 Verifies that Integer.parseInt(String) throws a NumberFormatException
when the string argument does not contain a valid integer.

Method i1t1() is shown here and is described below.

/**
* Test purpose method for <code>Integer.intValue()</code>.
* Verifies that <code>Integer.intValue()</code> returns the value of
* this <code>Integer</code> as an <code>int</code>.
*
* @param ts the <code>TestSession</code> object for this
* test run.
*/
public void i1t1(TestSession ts)
{

Integer testInt;
int val;

// Create a new Integer object using a int value.
testInt = new Integer(T1_VALUE);

// Call intValue() on the new Integer object and verify it
// returns the same value that was used in its creation.
val = testInt.intValue();
if (val == T1_VALUE)
{

ts.tet_result(ts.TET_PASS);
}
else
{

ts.tet_infoline("intValue() returned " + val
+ ", expected " + T1_VALUE);

ts.tet_result(ts.TET_FAIL);
}

}

The comments for the code should clarify what is happening. In the test purpose method
i3t1(), similar API calls are made using the TestSession object, but in this method we are
passing an invalid argument and checking that an exception is thrown.

March 2003 Page 217
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

/**
* Test purpose method for <code>Integer.parseInt(String)</code>.
* Verifies that <code>Integer.parseInt(String)</code> throws a
* <code>java.lang.NumberFormatException</code> when the string
* argument does not contain a parsable integer.
*
* @param ts the <code>TestSession</code> object for this
* test run.
*/
public void i3t1(TestSession ts)
{

int val;

try
{

// Call Integer.parseInt(), passing a string argument
// which does not contain a parsable integer.
val = Integer.parseInt(T3_STRING);

}
catch (NumberFormatException e)
{

// We caught the exception we expected.
ts.tet_result(ts.TET_PASS);
return;

}
catch (Exception e)
{

// We caught some other, unexpected exception, so the
// test did not complete as expected, and hence has an
// UNRESOLVED result.
ts.tet_infoline("Integer.parseInt(\"" + T3_STRING

+ "\") threw an unexpected exception: " + e);
ts.tet_infoline(" expected a NumberFormatException"

+ " to be thrown");
ts.tet_result(ts.TET_UNRESOLVED);
return;

}

// If we reach here, no exception was thrown, so the test has
// failed.
ts.tet_infoline("Integer.parseInt(\"" + T3_STRING

+ "\") succeeded, expecting a NumberFormatException to"
+ " be thrown");

ts.tet_result(ts.TET_FAIL);
}

The code contains a try block which only contains the method call under test. This ensures that
the only exceptions caught by the corresponding catch statements are those thrown by the method
under test. It is not strictly necessary to catch unexpected Exceptions as the API will catch these
and mark an UNRESOLVED result code against that test purpose. However, when an exception is
caught by the test purpose it is possible to write more specific informational messages to the
journal.

Page 218 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

18.5 Subprograms
Some test purposes require the creation of a subprogram. The TestSession class provides
two methods to facilitate this, as follows:

tet_spawn() Creates a new subprogram that will use the C API.

tet_jspawn() Creates a new subprogram using a Java class that will use the Java API. The
class in the new subprogram must be a subclass of ChildTestCase.

An example use of tet_jspawn() can be seen in the i1t1() method of the SystemTC test
case:

/**
* Test purpose method for <code>System.exit(int)</code>.
* Verifies that <code>System.exit(int)</code> terminates the currently
* running Java Virtual Machine with status given by the integer
* argument.
*
* @param ts the <code>TestSession</code> object for this
* test run.
*/
public void i1t1(TestSession ts)
{

long pid;
int status;
int expStatus;

// Fire off a new child process using tet_jspawn().
try
{

pid = ts.tet_jspawn(CHILD_CLASS,
new String[] { Integer.toString(T1_VALUE) },
null);

}
catch (TetException e)
{

ts.tet_infoline("tet_jspawn() failed: " + e);
ts.tet_result(ts.TET_UNRESOLVED);
return;

}

// Use tet_wait() to wait for the process to complete.
try
{

status = ts.tet_wait(pid);
}
catch (TetException e)
{

ts.tet_infoline("tet_wait() failed: " + e);
ts.tet_result(ts.TET_UNRESOLVED);
return;

}

// Verify that the exit status is as expected.
expStatus = exitValueToStatus(T1_VALUE);

March 2003 Page 219
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

if (status == expStatus)
{

ts.tet_result(ts.TET_PASS);
}
else
{

ts.tet_infoline("Child exited with status " + status
+ ", expecting " + expStatus);

ts.tet_result(ts.TET_FAIL);
}

}

The test purpose method i1t1() uses tet_jspawn() to start a new subprogram using the
Java interpreter. The arguments to tet_jspawn() are as follows:

classname Name of the Java class to execute in a new process.

args Argument array to pass to main() method of the class in the subprogram. Note
that args[0] is the first actual argument to be passed to main(), not the name
of the interpreter or the name of the class.

envp Environment data to pass to the new process. If this is null or has length 0, the
current environment is used.

The parent process uses the method tet_wait() to wait for the child process to complete.

The class used in the child process, SysChildTC, is defined in the same .java file.

/**
* Child part of SystemTC test case. Tests
* <code>java.lang.System.exit(int)</code>.
*/
class SysChildTC extends ChildTestCase
{

/**
* Entry point for this class.
* Calls <code>ChildTestCase.main()</code>
* to pass control to TET.
*
* @param args command line arguments.
*/
public static void main(String[] args)
{

main(args, new SysChildTC());
}

/**
* Run child test case.
* Calls <code>System.exit(int)</code> with status
* passed as first argument.
* Overrides <code>ChildTestCase.tet_main()</code>.
*
* @param ts the <code>TestSession</code> object
* for this test run.
* @param args command line arguments as passed from
* the parent process.

Page 220 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

* @return 0 for success, non-zero on failure.
*/
public int tet_main(TestSession ts, String[] args)
{

int status;

// Verify the parent test case passed us one argument,
// which is the exit status we should use.
if (args.length != 1)
{

ts.tet_infoline("Child received " + args.length
+ " arguments, expected 1");

ts.tet_result(ts.TET_UNRESOLVED);
return 1;

}

status = Integer.parseInt(args[0]);

// Log off TETware.
ts.tet_logoff();

// Call System.exit().
System.exit(status);

// If we get this far, System.exit() didn’t work,
// but we can’t use more TETware functions as we’ve
// already called tet_logoff().
System.err.println("Error in SysChildTC.tet_main():"

+ " System.exit(int) didn’t terminate process");
return 1;

}
}

Note that the argument list passed to the call to tet_jspawn(), and the argument list passed
into tet_main() each follow the pattern of the argument list to Java’s static main() methods
and do not contain the name of the program or class as the first element.

18.6 Packages and test case classes
Test case classes must belong to the unnamed default package; that is: the .java file must not
contain a package statement. As well as simplifying the building and execution of test cases,
this ensures that the name of the test case is the same as the name of the class. This restriction
applies only to the test case classes themselves, and not to other classes used which may be in any
package. This should not cause namespace problems as each test case is executed in a new
process, and hence in a separate Java virtual machine.

March 2003 Page 221
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Page 222 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

19. Using shared API libraries

19.1 Introduction
When the C and C++ APIs are built, the libraries created by the build process are static libraries
(sometimes known as archive libraries). On some systems it is also possible to build shared API
libraries (sometimes known as shared objects or dynamic libraries).

There is no standard which specifies the way in which shared libraries are to be implemented, and
so the implementation is different on different systems. This chapter describes how to use shared
API libraries on several different systems.

19.2 Supported systems
In the TETware distribution, support is provided to generate shared API libraries on the following
types of operating system:

� Systems that use the SVR4 dynamic linking scheme;
these systems include UnixWare, Solaris and Linux

� HP-UX

� AIX

� Win32 systems

It may be that shared API libraries are available on other operating systems as well, depending on
what facilities are provided by the operating system and whether the person who built TETware
was able to perform the necessary configuration before the source was compiled.

19.3 Advantages and disadvantages of linking test cases with
shared API libraries

There are advantages and disadvantages associated with linking test cases with shared API
libraries. It is recommended that you consider carefully whether you actually need to use shared
API libraries before using them.

Advantages include the following:

— the amount of disk space occupied by a test suite is reduced;

— when multiple test cases are executed simultaneously (for example: during a stress test
run), the total amount of memory required for all the test cases to execute is also reduced;28

whereas disadvantages include the following:

— since the names of shared library files are different on different systems, it makes writing
portable test suites more difficult;

����������������
28. However, this might not be as great an advantage as might at first appear since, by definition, the objective of a

stress test is to exercise a system under load and running a given number of concurrent test cases which use shared
API libraries would tend to reduce the load on the system rather than increase it.

March 2003 Page 223
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

— a different method for locating the shared API library at runtime must be implemented by
the test case author on each system;

— an additional cause of failure is introduced when test cases are executed — this is
compounded by the fact that not all operating systems print a meaningful diagnostic
message when a runtime link error occurs or when a shared library cannot be found at
runtime.

19.4 Shared API library components
The structure of a test case is described in the section entitled ‘‘Test case structure’’ earlier in this
guide. A diagram which accompanies the text shows that a test case executable consists of three
parts: the TCM and API library that is supplied by TETware and the test purpose functions that
are supplied by the test suite author. A similar situation exists in respect of child processes that
are started by calls to tet_exec(), tet_spawn() or tet_remexec().

When a C language test case is linked statically, it is linked with an object file (tcm.o) and an
archive library (libapi.a). In practice, much of the TCM actually resides in the archive
library and is linked into the test case executable as required, depending on what type of
executable is being built.

When a shared API library is built, the relationship between TETware-supplied and user-supplied
components, together with the constraints imposed by the different shared library scheme
implementations on different systems, mean that only the API functions can be put in the shared
portion of the API library. The part of the TCM that is in the static version of the API library
cannot be put in the shared version of the API library; instead it must be put in a static TCM
library. Therefore when a shared API library is used, the corresponding TCM is contained in two
files: an object file and a static library file.

As when static API libraries are used, there is one TCM object file for each type of process that
may be built (that is: test case, child process and remote executed process). In addition, there is a
single static TCM library for use with each threads model that may be used (that is: single-
threaded and thread-safe).

Page 224 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

This relationship is illustrated in the following diagram:

TCM
��
�
�
��������������

��
�
���������������

calls

child process
controller

��
�
�
��������������

��
�
���������������

calls

remote process
controller

��
�
�
��������������

��
�
���������������

calls

or or

static TCM
library

��
�
�
��������������

��
�
���������������

calls
user-supplied
test functions

��
�
�
��������������

��
�
���������������

shared API
library

��
�
�
��������������

��
�
���������������

��
�
�

�
�
�
�
�
�

calls

calls

Figure 22. Relationship between the API components and the user-supplied code when a shared
API library is used

19.5 API component names when shared libraries are used

19.5.1 Introduction
In order to distinguish between shared library components and static library components, the
basename of each shared library component has a _s suffix appended to it. Shared library files
are denoted by different file name suffixes on different systems.

There follows a subsection for each of the types of operating system on which shared API
libraries are supported in the TETware distribution. Each subsection contains a table which lists
the names of API components when static API libraries are used, together with the names of the
corresponding API components when shared API libraries are used.

Where shared API libraries have been built on systems other than those described here, you will
need to consult the appropriate SGS documentation in order to determine what file name suffix is
used to denote a shared library file.

March 2003 Page 225
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

19.5.2 UNIX systems

19.5.2.1 Systems that use the SVR4 dynamic linking scheme

On these systems a shared library is denoted by a file name with a .so suffix.

��
Component names Component names

when using a when using aExecutable type Component
static API library shared API library��

C test case TCM tcm.o tcm_s.o
and libtcm_s.a

API library libapi.a libapi_s.so��
C child process child process tcmchild.o tcmchild_s.o

controller and libtcm_s.a
API library libapi.a libapi_s.so��

C remote process30 remote process tcmrem.o tcmrem_s.o
controller and libtcm_s.a
API library libapi.a libapi_s.so��

multi-threaded TCM thrtcm.o thrtcm_s.o
C test case and libthrtcm_s.a

API library libthrapi.a libthrapi_s.so��
multi-threaded child process thrtcmchild.o thrtcmchild_s.o
C child process controller and libthrtcm_s.a

API library libthrapi.a libthrapi_s.so��
C++ test case TCM Ctcm.o Ctcm_s.o

and libtcm_s.a
API library libapi.a libapi_s.so��

C++ child process child process Ctcmchild.o Ctcmchild_s.o
controller and libtcm_s.a
API library libapi.a libapi_s.so��

multi-threaded TCM Cthrtcm.o Cthrtcm_s.o
C++ test case and libthrtcm_s.a

API library libthrapi.a libthrapi_s.so��
multi-threaded child process Cthrtcmchild.o Cthrtcmchild_s.o
C++ child process controller and libthrtcm_s.a

API library libthrapi.a libthrapi_s.so���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������������
30. But see the section entitled ‘‘Considerations for remote executed processes’’ later in this chapter.

Page 226 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

19.5.2.2 HP-UX

On HP-UX systems a shared library is denoted by a file name with a .sl suffix.

��
Component names Component names

when using a when using aExecutable type Component
static API library shared API library��

C test case TCM tcm.o tcm_s.o
and libtcm_s.a

API library libapi.a libapi_s.sl��
C child process child process tcmchild.o tcmchild_s.o

controller and libtcm_s.a
API library libapi.a libapi_s.sl��

C remote process32 remote process tcmrem.o tcmrem_s.o
controller and libtcm_s.a
API library libapi.a libapi_s.sl��

multi-threaded TCM thrtcm.o thrtcm_s.o
C test case and libthrtcm_s.a

API library libthrapi.a libthrapi_s.sl��
multi-threaded child process thrtcmchild.o thrtcmchild_s.o
C child process controller and libthrtcm_s.a

API library libthrapi.a libthrapi_s.sl��
C++ test case TCM Ctcm.o Ctcm_s.o

and libtcm_s.a
API library libapi.a libapi_s.sl��

C++ child process child process Ctcmchild.o Ctcmchild_s.o
controller and libtcm_s.a
API library libapi.a libapi_s.sl��

multi-threaded TCM Cthrtcm.o Cthrtcm_s.o
C++ test case and libthrtcm_s.a

API library libthrapi.a libthrapi_s.sl��
multi-threaded child process Cthrtcmchild.o Cthrtcmchild_s.o
C++ child process controller and libthrtcm_s.a

API library libthrapi.a libthrapi_s.sl���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������������
32. But see the section entitled ‘‘Considerations for remote executed processes’’ later in this chapter.

March 2003 Page 227
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

19.5.2.3 AIX

On AIX systems a shared library is a file that is a member of an archive library. Therefore the
name of the shared library that is used when linking has a .a suffix.

��
Component names Component names

when using a when using aExecutable type Component
static API library shared API library��

C test case TCM tcm.o tcm_s.o
and libtcm_s.a

API library libapi.a libapi_s.a��
C child process child process tcmchild.o tcmchild_s.o

controller and libtcm_s.a
API library libapi.a libapi_s.a��

C remote process34 remote process tcmrem.o tcmrem_s.o
controller and libtcm_s.a
API library libapi.a libapi_s.a��

multi-threaded TCM thrtcm.o thrtcm_s.o
C test case and libthrtcm_s.a

API library libthrapi.a libthrapi_s.a��
multi-threaded child process thrtcmchild.o thrtcmchild_s.o
C child process controller and libthrtcm_s.a

API library libthrapi.a libthrapi_s.a��
C++ test case TCM Ctcm.o Ctcm_s.o

and libtcm_s.a
API library libapi.a libapi_s.a��

C++ child process child process Ctcmchild.o Ctcmchild_s.o
controller and libtcm_s.a
API library libapi.a libapi_s.a��

multi-threaded TCM Cthrtcm.o Cthrtcm_s.o
C++ test case and libthrtcm_s.a

API library libthrapi.a libthrapi_s.a��
multi-threaded child process Cthrtcmchild.o Cthrtcmchild_s.o
C++ child process controller and libthrtcm_s.a

API library libthrapi.a libthrapi_s.a���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������������
34. But see the section entitled ‘‘Considerations for remote executed processes’’ later in this chapter.

Page 228 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

19.5.3 Win32 systems
On Win32 systems a shared library has two parts; each part is in a separate file. One file — the
import library — is used when linking a process. An import library is denoted by a file name
with a .lib suffix. The other file — the DLL — is used by the process at runtime. A DLL is
denoted by a file name with a .dll suffix. Since it is the import library that is used when
linking, the name of the API library shown in the following table is the name of the import
library.

On Win32 systems, functions in the TETware API library make calls to functions in the
Microsoft C runtime support library. The way that shared libraries (DLLs) are implemented on
Win32 systems requires all symbols to be resolved at compile time. This means that when the
DLL version of the TETware API library is built, it must be linked with a DLL version of the
C runtime support library. Since the only DLL version of the C runtime support library on
Win32 systems is a multi-threaded one, it follows that only the thread-safe version of the shared
API libraries can be built on these systems. Therefore, single-threaded versions of the shared
TCM and API components are not provided on Win32 systems.

���
Component names Component names

when using a when using aExecutable type Component
static API library shared API library��

C test case TCM tcm.obj N/A
API library libapi.lib���

C child process child process tcmchild.obj N/A
controller
API library libapi.lib���

C remote process remote process tcmrem.obj N/A
controller
API library libapi.lib���

multi-threaded TCM thrtcm.obj thrtcm_s.obj
C test case and libthrtcm_s.lib

API library libthrapi.lib libthrapi_s.lib���
multi-threaded child process thrtcmchild.obj thrtcmchild_s.obj
C child process controller and libthrtcm_s.lib

API library libthrapi.lib libthrapi_s.lib���
C++ test case TCM Ctcm.obj N/A

API library libapi.lib���
C++ child process child process Ctcmchild.obj N/A

controller
API library libapi.lib���

multi-threaded TCM Cthrtcm.obj Cthrtcm_s.obj
C++ test case and libthrtcm_s.lib

API library libthrapi.lib libthrapi_s.lib���
multi-threaded child process Cthrtcmchild.obj Cthrtcmchild_s.obj
C++ child process controller and libthrtcm_s.lib

API library libthrapi.lib libthrapi_s.lib���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

March 2003 Page 229
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

19.6 Building test cases to use shared API libraries

19.6.1 Introduction
The method used to build a test case to use a shared library is different on different operating
systems. There follows a subsection for each of the types of operating system on which shared
API libraries are supported in the TETware distribution. Each subsection contains an example
makefile for a simple test case and describes how to convert it to build the test case to use shared
API libraries. Each example includes a single test case and a child process.

On some systems the way in which API functions and data items are declared in tet_api.h
must be changed when a test case is built to use a shared API library. In order to make these
changes visible you must compile test case source code with TET_SHLIB defined.

19.6.2 UNIX systems
Here is the example makefile which builds the test case to use the static API library:

locations of the include files and libraries
INC = ../../../inc/tet3
LIB = ../../../lib/tet3

name of the C compiler
CC = cc

flags for the C compiler
CFLAGS = -I$(INC)
LDFLAGS =

name of the TCM and API library
TCM = $(LIB)/tcm.o
TCMCHILD = $(LIB)/tcmchild.o
LIBAPI = $(LIB)/libapi.a

main targets
all: tc1 tc1child

tc1: tc1.o
$(CC) $(LDFLAGS) -o $@ tc1.o $(TCM) $(LIBAPI)

tc1child: tc1child.o
$(CC) $(LDFLAGS) -o $@ tc1child.o $(TCMCHILD) $(LIBAPI)

Page 230 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

Here is the same makefile after modification to build the test case to use the shared API library.
The changes consist of adding a compiler flag and changing the names of the TCM and API
components. An additional linker option is required on HP-UX systems; the reason for this will
be described in a later section.

The lines that have been changed are marked with a ← character in the right margin.

locations of the include files and libraries
INC = ../../../inc/tet3
LIB = ../../../lib/tet3

name of the C compiler
CC = cc

flags for the C compiler
CFLAGS = -I$(INC) -DTET_SHLIB ←
LDFLAGS =
HP-UX requires the following ←
LDFLAGS = -Wl,+s ←

name of the TCM and API library
TCM = $(LIB)/tcm_s.o $(LIB)/libtcm_s.a ←
TCMCHILD = $(LIB)/tcmchild_s.o $(LIB)/libtcm_s.a ←
LIBAPI = -L $(LIB) -lapi_s ←

main targets
all: tc1 tc1child

tc1: tc1.o
$(CC) $(LDFLAGS) -o $@ tc1.o $(TCM) $(LIBAPI)

tc1child: tc1child.o
$(CC) $(LDFLAGS) -o $@ tc1child.o $(TCMCHILD) $(LIBAPI)

March 2003 Page 231
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

19.6.3 Win32 systems
Here is the example makefile which builds the test case to use the static API library using the
defined build environment:35

locations of the include files and libraries
INC = ../../../inc/tet3
LIB = ../../../lib/tet3

name of the C compiler
CC = cc

flags for the C compiler
CFLAGS = -I$(INC)
LDFLAGS =

name of the TCM and API library
TCM = $(LIB)/tcm.obj
TCMCHILD = $(LIB)/tcmchild.obj
LIBAPI = $(LIB)/libapi.lib

main targets
all: tc1.exe tc1child.exe

tc1.exe: tc1.obj
$(CC) $(LDFLAGS) -o $@ tc1.obj $(TCM) $(LIBAPI)

tc1child.exe: tc1child.obj
$(CC) $(LDFLAGS) -o $@ tc1child.obj $(TCMCHILD) $(LIBAPI)

����������������
35. That is: Microsoft Visual C++, the MKS Toolkit and the version of the compiler configuration file

compiler.ccg that is supplied with the TETware distribution.

Page 232 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

Here is the same makefile after modification to build the test case to use the shared API library.
The changes consist of adding some compiler flags and and changing the names of the TCM and
API components. Note that it has been necessary to use the thread-safe API libraries even though
the example test case does not use multiple threads.

The lines that have been changed are marked with a ← character in the right margin.

locations of the include files and libraries
INC = ../../../inc/tet3
LIB = ../../../lib/tet3

name of the C compiler
CC = cc

flags for the C compiler
CFLAGS = -I$(INC) -MD -DTET_THREADS -DTET_SHLIB ←
LDFLAGS = -MD ←

name of the TCM and API library
TCM = $(LIB)/thrtcm_s.obj $(LIB)/libthrtcm_s.lib ←
TCMCHILD = $(LIB)/thrtcmchild_s.obj $(LIB)/libthrtcm_s.lib ←
LIBAPI = $(LIB)/libthrapi_s.lib ←

main targets
all: tc1.exe tc1child.exe

tc1.exe: tc1.obj
$(CC) $(LDFLAGS) -o $@ tc1.obj $(TCM) $(LIBAPI)

tc1child.exe: tc1child.obj
$(CC) $(LDFLAGS) -o $@ tc1child.obj $(TCMCHILD) $(LIBAPI)

19.7 Locating a shared API library at runtime

19.7.1 Introduction
When a program that uses a shared library is executed, the operating system must locate any
shared libraries that are used by the program. The method used to do this varies between
systems. The way in which this is best done for TETware test cases is described in the
subsections that follow.

19.7.2 UNIX systems
Most UNIX systems can use one of several methods to locate a shared library at runtime as
follows:

� Locate the library using a path name that was built into the program at compile time. This
is usually the default when a shared library is specified by path name.

� Search for the library using a path specified by an environment variable.

� Search for the library in a list of standard places (for example, in /lib and/or
/usr/lib). This is most suitable for libraries that are supplied with the system.

Since test cases may be executed below an alternate execution directory or with

March 2003 Page 233
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

TET_EXEC_IN_PLACE set to False, the first method can’t be used. And since the TETware
API libraries are not normally installed in one of the standard places, the last method can’t be
used.

This means that it is necessary to arrange for the linker not to build a path name into a test case at
compile time, and to set up an environment variable that tells the operating system where to
locate the shared API library when a test case is executed. That is why the name of the shared
API library was specified using -l and -L options in the example makefiles presented earlier,
and not by path name.

The name of the environment variable that is used for this purpose varies between systems. The
following table lists the names used by the UNIX systems that are described in this chapter:

���
Operating system type Environment variable name���

Systems that use the SVR4 dynamic linking scheme LD_LIBRARY_PATH
HP-UX SHLIB_PATH
AIX LIBPATH���

�
�
�
�

��
�
�
�
�

��
�
�
�
�

Note that on HP-UX systems the +s option must be passed to the linker when the program is
built in order for SHLIB_PATH to be used to locate a shared library at runtime.

One way for a test suite author to ensure that the correct value of the appropriate environment
variable is always available when a test case is executed is to provide an exec tool for use with
the test suite. For example, the following simple exec tool will provide the correct values for
these environment variables on all the systems described previously:

#!/bin/sh

the location of the shared API libraries
LIB_TET3=${TET_ROOT:?}/lib/tet3

this works for systems that use the SVR4 dynamic linking scheme
LD_LIBRARY_PATH=$LIB_TET3
export LD_LIBRARY_PATH

this works on HP-UX systems where the test case has been compiled
with cc -Wl,+s
SHLIB_PATH=$LIB_TET3
export SHLIB_PATH

this works on AIX systems
LIBPATH=$LIB_TET3
export LIBPATH

finally, execute the test case
prog=${1:?}
shift
exec ./$prog ${1:+"$@"}

Page 234 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

19.7.3 Win32 systems
Win32 systems use the PATH environment variable to locate DLLs that are used by a program.
On a Win32 system the DLL parts of the shared API libraries are installed in tet-root/bin. So,
provided that the user’s PATH includes tet-root/bin (as would normally be the case when
someone invokes tcc on a local system or tccdstart on a remote system), the operating
system will always be able to locate the shared API libraries without the need to provide exec
tools or set extra environment variables.

19.7.4 Considerations for remote executed processes
When a remote process is launched by a call to tet_remexec() in Distributed TETware, it is
not practicable for the calling process to specify an environment variable that can be used to
locate a shared API library on the remote system.

Therefore it is recommended that processes that are to be launched by a call to
tet_remexec() are always linked with the static version of the API library.

If you must link a remote executed process with the shared version of the API library for some
reason, you will need to specify a runtime search path when you build the process. A remote
executed process is executed in the alternate execution directory if one has been specified,
otherwise it is executed in the tet root directory. In order to ensure portability, the path that you
specify should be relative to the place where the remote process is to be executed.

The method that you use to specify a runtime search path depends on which compiler is used to
build the remote process. You will need to consult the appropriate SGS documentation in order
to determine what method should be used on your system.

March 2003 Page 235
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Page 236 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

APPENDICES

March 2003 Page 237
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Page 238 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

A. The TETware end-user licence

+++++++++++++++++++++++++++ TET END USER LICENCE +++++++++++++++++++++++++++

BY OPENING THE PACKAGE, YOU ARE CONSENTING TO BE BOUND BY THIS AGREEMENT.
IF YOU DO NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, DO NOT INSTALL
THE PRODUCT AND RETURN IT TO THE PLACE OF PURCHASE FOR A FULL REFUND.

��
TETWARE RELEASE 3.7 END USER LICENCE

REDISTRIBUTION NOT PERMITTED��

This Agreement has two parts, applicable to the distributions as follows:

A. Free binary evaluation copies − valid for 90 days, full functionality − no warranty.

B. Free binary restricted versions − no warranty, limited functionality.

C. Licenced versions − full functionality, warranty fitness as described in documentation, includes
source, binary and annual support.

PART I (A & B above) − TERMS APPLICABLE WHEN LICENCE FEES NOT (YET) PAID (LIMITED
TO EVALUATION, EDUCATIONAL AND NON-PROFIT USE).

GRANT.

X/Open grants you a non-exclusive licence to use the Software free of charge if

a. you are a student, faculty member or staff member of an educational institution (K-12, junior college,
college or library) or an employee of an organisation which meets X/Open’s criteria for a charitable
non-profit organisation; or

b. your use of the Software is for the purpose of evaluating whether to purchase an ongoing licence to
the Software.

The evaluation period for use by or on behalf of a commercial entity is limited to 90 days; evaluation use
by others is not subject to this 90 day limit. Government agencies (other than public libraries) are not
considered educational or charitable non-profit organisations for purposes of this Agreement. If you are
using the Software free of charge, you are not entitled to hard-copy documentation, support or telephone
assistance. If you fit within the description above, you may use the Software for any purpose and without
fee.

DISCLAIMER OF WARRANTY.

Free of charge Software is provided on an ‘‘AS IS’’ basis, without warranty of any kind.

X/OPEN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
X/OPEN BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

March 2003 Page 239
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

PART II (C above) − TERMS APPLICABLE WHEN LICENCE FEES PAID.

GRANT.

Subject to payment of applicable licence fees, X/Open grants to you a non-exclusive licence to use the
Software and accompanying documentation (‘‘Documentation’’) as described below.

Copyright 1996, 1997 X/Open Company Ltd.
Copyright 1998, 1999, 2003 The Open Group

LIMITED WARRANTY.

X/Open warrants that for a period of ninety (90) days from the date of acquisition, the Software, if operated
as directed, will substantially achieve the functionality described in the Documentation. X/Open does not
warrant, however, that your use of the Software will be uninterrupted or that the operation of the Software
will be error-free or secure.

SCOPE OF GRANT.

Permission to use for any purpose is hereby granted. Modification of the source is permitted.
Redistribution of the source code is not permitted without express written permission of X/Open.
Distribution of sources containing adaptations is expressly prohibited.

Redistribution of binaries or binary products containing TETware code is permitted subject to the
following conditions:

— this copyright notice is included unchanged with any binary distribution;

— the company distributing binary versions notifies X/Open;

— the company distributing binary versions holds an annual TET support agreement in effect with
X/Open for the period the product is being sold, or a one off binary distribution fee equal to four years
annual support is paid.

Modifications sent to the authors are humbly accepted and it is their prerogative to make the modifications
official.

Portions of this work contain code and documentation derived from other versions of the Test Environment
Toolkit, which contain the following copyright notices:

Copyright 1990, 1992 Open Software Foundation
Copyright 1990, 1992 Unix International
Copyright 1990, 1992 X/Open Company Ltd.
Copyright 1991 Hewlett-Packard Co.
Copyright 1993 Information-Technology Promotion Agency, Japan
Copyright 1993 SunSoft, Inc.
Copyright 1993 UNIX System Laboratories, Inc., a subsidiary of Novell, Inc.
Copyright 1994, 1995 UniSoft Ltd.

The unmodified source code of those works is freely available from ftp.xopen.org. The modified
code contained in TETware restricts the usage of that code as per this licence.

++

Page 240 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

B. Example C language API test suite source files

B.1 Introduction
This appendix contains listings for the files that comprise the example C language test suite
presented in the chapter entitled ‘‘Writing a C language API-conforming test suite’’.

This test suite has been designed to run on a UNIX type of operating system.

B.2 tet_code
TET reserved codes
0 "PASS"
1 "FAIL"
2 "UNRESOLVED"
3 "NOTINUSE"
4 "UNSUPPORTED"
5 "UNTESTED"
6 "UNINITIATED"
7 "NORESULT"

Test suite additional codes
33 "INSPECT"

B.3 install
echo This is the C-API test suite install tool.

B.4 cleantool
exec make clean

B.5 tet_scen
chmod, fileno, stat, uname test suite.

all
"Starting Full Test Suite"
/ts/chmod/chmod-tc
/ts/fileno/fileno-tc
/ts/stat/stat-tc
/ts/uname/uname-tc
"Completed Full Test Suite"

chmod
"Starting chmod Test Case"
/ts/chmod/chmod-tc
"Finished chmod Test Case"

fileno
"Starting fileno Test Case"
/ts/fileno/fileno-tc
"Finished fileno Test Case"

stat

March 2003 Page 241
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

"Starting stat Test Case"
/ts/stat/stat-tc
"Finished stat Test Case"

uname
"Starting uname Test Case"
/ts/uname/uname-tc
"Finished uname Test Case"

EOF

B.6 tetbuild.cfg
TET_OUTPUT_CAPTURE=True
TET_BUILD_TOOL=make
TET_BUILD_FILE=-f makefile

B.7 tetexec.cfg
TET_OUTPUT_CAPTURE=False

The name of a character device file (or "unsup" if not supported)
CHARDEV=/dev/null

The name of a block device file (or "unsup" if not supported)
BLOCKDEV=unsup

B.8 tetclean.cfg
TET_OUTPUT_CAPTURE=True
TET_CLEAN_TOOL=cleantool
TET_CLEAN_FILE=

B.9 Makefile for chmod-tc.c
TET_ROOT = ../../..
LIBDIR = $(TET_ROOT)/lib/tet3
INCDIR = $(TET_ROOT)/inc/tet3
CC = cc
CFLAGS = -I$(INCDIR) -D_POSIX_SOURCE

chmod-tc: chmod-tc.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -o chmod-tc chmod-tc.c $(LIBDIR)/tcm.o \

$(LIBDIR)/libapi.a
-rm -f chmod-tc.o

clean:
rm -f chmod-tc chmod-tc.o

lint:
lint $(CFLAGS) chmod-tc.c -ltcm

Page 242 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

B.10 chmod-tc.c
/* chmod-tc.c : test case for chmod() interface */

#include <stdio.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#include <tet_api.h>

static void tp1(), tp2(), tp3();
static void startup(), cleanup();

/* Initialize TCM data structures */
void (*tet_startup)() = startup;
void (*tet_cleanup)() = cleanup;
struct tet_testlist tet_testlist[] = {

{ tp1, 1 },
{ tp2, 2 },
{ tp3, 3 },
{ NULL, 0 }

};

/* Test Case Wide Declarations */
static char *tfile = "chmod.1"; /* test file name */
static char *tndir = "chmod.1/chmod.1"; /* path with non-directory in prefix */
static struct stat buf; /* buffer for stat(ing) file */
static char msg[256]; /* buffer for info lines */

static void
startup()
{

int fd;
static char *reason = "Failed to create test file in startup";

if ((fd=creat(tfile, S_IRWXU)) < 0)
{

(void) sprintf(msg,
"creat(\"%s\", S_IRWXU) failed in startup - errno %d",
tfile, errno);

tet_infoline(msg);

/* Prevent tests which use this file from executing */
tet_delete(1, reason);
tet_delete(3, reason);

}
else

(void) close(fd);
}

static void
cleanup()
{

/* remove file created by start-up */
(void) unlink(tfile);

}

March 2003 Page 243
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

static void
tp1() /* successful chmod of file: return 0 */
{

int ret, err;
mode_t mode;

tet_infoline("SUCCESSFUL CHMOD OF FILE");

/* change mode of file created in startup function */

errno = 0;
if ((ret=chmod(tfile, (mode_t)0)) != 0)
{

err = errno;
(void) sprintf(msg, "chmod(\"%s\", 0) returned %d, expected 0",

tfile, ret);
tet_infoline(msg);
if (err != 0)
{

(void) sprintf(msg, "errno was set to %d", err);
tet_infoline(msg);

}
tet_result(TET_FAIL);
return;

}

/* check mode was changed correctly */

if (stat(tfile, &buf) == -1)
{

(void) sprintf(msg,
"stat(\"%s\", buf) failed - errno %d", tfile, errno);

tet_infoline(msg);
tet_result(TET_UNRESOLVED);
return;

}

mode = buf.st_mode & O_ACCMODE;
if (mode != 0)
{

(void) sprintf(msg, "chmod(\"%s\", 0) set mode to 0%lo, expected 0",
tfile, (long)mode);

tet_infoline(msg);
tet_result(TET_FAIL);

}
else

tet_result(TET_PASS);
}

static void
tp2() /* chmod of non-existent file: return -1, errno ENOENT */
{

int ret, err;

tet_infoline("CHMOD OF NON-EXISTENT FILE");

/* ensure file does not exist */

if (stat("chmod.2", &buf) != -1 && unlink("chmod.2") == -1)

Page 244 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

{
tet_infoline("could not unlink chmod.2");
tet_result(TET_UNRESOLVED);
return;

}

/* check return value and errno set by call */

errno = 0;
ret = chmod("chmod.2", (mode_t)0);

if (ret != -1 || errno != ENOENT)
{

err = errno;
if (ret != -1)
{

(void) sprintf(msg,
"chmod(\"chmod.2\", 0) returned %d, expected -1", ret);

tet_infoline(msg);
}

if (err != ENOENT)
{

(void) sprintf(msg,
"chmod(\"chmod.2\", 0) set errno to %d, \

expected %d (ENOENT)", err, ENOENT);
tet_infoline(msg);

}

tet_result(TET_FAIL);
}
else

tet_result(TET_PASS);
}

static void
tp3() /* non-directory path component: return -1, errno ENOTDIR */
{

int ret, err;

tet_infoline("CHMOD OF NON-DIRECTORY PATH PREFIX COMPONENT");

/* tndir is a pathname containing a plain file (created by the
startup function) in the prefix */

errno = 0;
ret = chmod(tndir, (mode_t)0);

/* check return value and errno set by call */

if (ret != -1 || errno != ENOTDIR)
{

err = errno;
if (ret != -1)
{

(void) sprintf(msg,
"chmod(\"%s\", 0) returned %d, expected -1", tndir, ret);

tet_infoline(msg);
}

March 2003 Page 245
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

if (err != ENOTDIR)
{

(void) sprintf(msg,
"chmod(\"%s\", 0) set errno to %d, expected %d (ENOTDIR)",
tndir, err, ENOTDIR);

tet_infoline(msg);
}

tet_result(TET_FAIL);
}
else

tet_result(TET_PASS);
}

B.11 Makefile for fileno-tc.c
TET_ROOT = ../../..
LIBDIR = $(TET_ROOT)/lib/tet3
INCDIR = $(TET_ROOT)/inc/tet3
CC = cc
CFLAGS = -I$(INCDIR) -D_POSIX_SOURCE

fileno-tc: fileno-t4 fileno-tc.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -o fileno-tc fileno-tc.c $(LIBDIR)/tcm.o \

$(LIBDIR)/libapi.a
-rm -f fileno-tc.o

fileno-t4: fileno-t4.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -o fileno-t4 fileno-t4.c \

$(LIBDIR)/tcmchild.o $(LIBDIR)/libapi.a
-rm -f fileno-t4.o

clean:
rm -f fileno-tc fileno-tc.o fileno-t4 fileno-t4.o

lint:
lint $(CFLAGS) fileno-tc.c -ltcm
lint $(CFLAGS) fileno-t4.c -ltcmc

B.12 fileno-tc.c
/* fileno-tc.c : test case for fileno() interface */

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>

#include <tet_api.h>

extern char **environ;

static void cleanup();
static void tp1(), tp2(), tp3(), tp4(), ch4();

/* Initialize TCM data structures */

Page 246 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

void (*tet_startup)() = NULL;
void (*tet_cleanup)() = cleanup;
struct tet_testlist tet_testlist[] = {

{ tp1, 1 },
{ tp2, 2 },
{ tp3, 3 },
{ tp4, 4 },
{ NULL, 0 }

};

/* Test Case Wide Declarations */
static char msg[256]; /* buffer for info lines */

static void
cleanup()
{

(void) unlink("fileno.1");
(void) unlink("fileno.4");

}

static void
tp1() /* successful fileno: return fd associated with stream */
{

FILE *fp;
struct stat buf1, buf2;

tet_infoline("FD RETURNED BY FILENO REFERS TO FILE OPEN ON STREAM");

/* open stream to test file */

if ((fp=fopen("fileno.1", "w")) == NULL)
{

(void) sprintf(msg, "fopen(\"fileno.1\", \"w\") failed - errno %d",
errno);

tet_infoline(msg);
tet_result(TET_UNRESOLVED);
return;

}

/* check device and inode numbers from file descriptor associated
with the stream match those from the file itself */

if (stat("fileno.1", &buf1) == -1)
{

(void) sprintf(msg, "stat(\"fileno.1\", buf1) failed - errno %d",
errno);

tet_infoline(msg);
tet_result(TET_UNRESOLVED);
return;

}

if (fstat(fileno(fp), &buf2) == -1)
{

(void) sprintf(msg, "fstat(fileno(fp), buf2) failed - errno %d",
errno);

tet_infoline(msg);
tet_result(TET_FAIL);

}
else if (buf1.st_ino != buf2.st_ino || buf1.st_dev != buf2.st_dev)

March 2003 Page 247
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

{
tet_infoline("fileno(fp) does not refer to same file as fp");
(void) sprintf(msg, "st_dev, st_ino of file: 0x%lx, %ld",

(long)buf1.st_dev, (long)buf1.st_ino);
tet_infoline(msg);
(void) sprintf(msg, "st_dev, st_ino of fileno(fp): 0x%lx, %ld",

(long)buf2.st_dev, (long)buf2.st_ino);
tet_infoline(msg);
tet_result(TET_FAIL);

}
else

tet_result(TET_PASS);

(void) fclose(fp);
}

static void
tp2() /* fileno on stdin/stdout/stderr: return 0/1/2 */
{

int fd, fail = 0;

tet_infoline("FILENO ON STDIN/STDOUT/STDERR");

/* check return value of fileno() for stdin/stdout/stderr */
/* this code relies on the fact that the TCM does not interfere

with these streams */

if ((fd = fileno(stdin)) != 0)
{

(void) sprintf(msg, "fileno(stdin) returned %d, expected 0", fd);
tet_infoline(msg);
tet_result(TET_FAIL);
fail = 1;

}

if ((fd = fileno(stdout)) != 1)
{

(void) sprintf(msg, "fileno(stdout) returned %d, expected 1", fd);
tet_infoline(msg);
tet_result(TET_FAIL);
fail = 1;

}

if ((fd = fileno(stderr)) != 2)
{

(void) sprintf(msg, "fileno(stderr) returned %d, expected 2", fd);
tet_infoline(msg);
tet_result(TET_FAIL);
fail = 1;

}

if (fail == 0)
tet_result(TET_PASS);

}

static void
tp3() /* on entry to main(), stdin is readable, stdout and stderr

are writable */
{

Page 248 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

int flags, fail = 0;

tet_infoline("ON ENTRY TO MAIN, STDIN IS READABLE, STDOUT AND STDERR \
ARE WRITABLE");

/* this code relies on the fact that the TCM does not interfere
with these streams */

/* check file descriptor associated with stdin is readable */

if ((flags = fcntl(fileno(stdin), F_GETFL)) == -1)
{

(void) sprintf(msg, "fcntl(fileno(stdin), F_GETFL) failed - errno %d",
errno);

tet_infoline(msg);
tet_result(TET_UNRESOLVED);
return;

}

flags &= O_ACCMODE;
if (flags != O_RDONLY && flags != O_RDWR)
{

tet_infoline("stdin is not readable");
fail = 1;

}

/* check file descriptor associated with stdout is writable */

if ((flags = fcntl(fileno(stdout), F_GETFL)) == -1)
{

(void) sprintf(msg, "fcntl(fileno(stdout), F_GETFL) failed - errno %d",
errno);

tet_infoline(msg);
tet_result(TET_UNRESOLVED);
return;

}

flags &= O_ACCMODE;
if (flags != O_WRONLY && flags != O_RDWR)
{

tet_infoline("stdout is not writable");
fail = 1;

}

/* check file descriptor associated with stderr is writable */

if ((flags = fcntl(fileno(stderr), F_GETFL)) == -1)
{

(void) sprintf(msg, "fcntl(fileno(stderr), F_GETFL) failed - errno %d",
errno);

tet_infoline(msg);
tet_result(TET_UNRESOLVED);
return;

}

flags &= O_ACCMODE;
if (flags != O_WRONLY && flags != O_RDWR)
{

tet_infoline("stderr is not writable");
fail = 1;

March 2003 Page 249
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

}

if (fail == 0)
tet_result(TET_PASS);

else
tet_result(TET_FAIL);

}

static void
tp4() /* on entry to main(), stream position of stdin, stdout and

stderr is same as fileno(stream) */
{

tet_infoline("ON ENTRY TO MAIN, STREAM POSITION OF STDIN, STDOUT \
AND STDERR");

/* fork and execute subprogram, so that unique file positions can be
set up on entry to main() in subprogram */

(void) tet_fork(ch4, TET_NULLFP, 30, 0);
}

static void
ch4()
{

int fd, ret;
static char *args[] = { "./fileno-t4", NULL };

/* set up file positions to be inherited by stdin/stdout/stderr
in subprogram */

for (fd = 0; fd < 3; fd++)
{

(void) close(fd);
if ((ret=open("fileno.4", O_RDWR|O_CREAT, S_IRWXU)) != fd)
{

(void) sprintf(msg, "open() returned %d, expected %d", ret, fd);
tet_infoline(msg);
tet_result(TET_UNRESOLVED);
return;

}
if (lseek(fd, (off_t)(123 + 45*fd), SEEK_SET) == -1)
{

(void) sprintf(msg, "lseek() failed - errno %d", errno);
tet_infoline(msg);
tet_result(TET_UNRESOLVED);
return;

}
}

/* execute subprogram to carry out remainder of test */

(void) tet_exec(args[0], args, environ);

(void) sprintf(msg, "tet_exec(\"%s\", args, env) failed - errno %d",
args[0], errno);

tet_infoline(msg);
tet_result(TET_UNRESOLVED);

}

Page 250 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

B.13 fileno-t4.c
/* fileno-t4.c : child program of test purpose 4 for fileno() */

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

#include <tet_api.h>

static char msg[256]; /* buffer for info lines */

/* ARGSUSED */

int
tet_main(argc, argv)
int argc;
char **argv;
{

long ret, pos;
int fd, err, fail = 0;
FILE *streams[3];
static char *strnames[] = { "stdin", "stdout", "stderr" };

/* initialise the streams[] array */
streams[0] = stdin;
streams[1] = stdout;
streams[2] = stderr;

/* check file positions of streams are same as set up in parent */

for (fd = 0; fd < 3; fd++)
{

pos = 123 + 45*fd; /* must match lseek() in parent */
errno = 0;
if ((ret = ftell(streams[fd])) != pos)
{

err = errno;
(void) sprintf(msg, "ftell(%s) returned %ld, expected %ld",

strnames[fd], ret, pos);
tet_infoline(msg);
if (err != 0)
{

(void) sprintf(msg, "errno was set to %d", err);
tet_infoline(msg);

}
fail = 1;

}
}

if (fail == 0)
tet_result(TET_PASS);

else
tet_result(TET_FAIL);

return 0;
}

March 2003 Page 251
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

B.14 Makefile for stat-tc.c
TET_ROOT = ../../..
LIBDIR = $(TET_ROOT)/lib/tet3
INCDIR = $(TET_ROOT)/inc/tet3
CC = cc
CFLAGS = -I$(INCDIR) -D_POSIX_SOURCE

stat-tc: stat-tc.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -o stat-tc stat-tc.c $(LIBDIR)/tcm.o \

$(LIBDIR)/libapi.a
-rm -f stat-tc.o

clean:
rm -f stat-tc stat-tc.o

lint:
lint $(CFLAGS) stat-tc.c -ltcm

B.15 stat-tc.c
/* stat-tc.c : test case for stat() interface */

#include <stdio.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>

#include <tet_api.h>

static void tp1(), tp2(), tp3(), tp4(), tp5(), tp6(), tp7();
static void startup(), cleanup();

/* Initialize TCM data structures */
void (*tet_startup)() = startup;
void (*tet_cleanup)() = cleanup;
struct tet_testlist tet_testlist[] = {

{ tp1, 1 },
{ tp2, 2 },
{ tp3, 3 },
{ tp4, 4 },
{ tp5, 5 },
{ tp6, 6 },
{ tp7, 7 },
{ NULL, 0 }

};

/* Test Case Wide Declarations */
static char *tfile = "stat.1"; /* test file name */
static char *tndir = "stat.1/stat.1"; /* path with non-directory in prefix */
static struct stat buf; /* buffer for stat(ing) file */
static char msg[256]; /* buffer for info lines */

static void
startup()
{

int fd;
static char *reason = "Failed to create test file in startup";

Page 252 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

if ((fd=creat(tfile, S_IRWXU)) < 0)
{

(void) sprintf(msg,
"creat(\"%s\", S_IRWXU) failed in startup - errno %d",
tfile, errno);

tet_infoline(msg);

/* Prevent tests which use this file from executing */
tet_delete(1, reason);
tet_delete(7, reason);

}
else

(void) close(fd);
}

static void
cleanup()
{

/* remove file created by start-up */
(void) unlink(tfile);

/* remove files created by test purposes, in case they don’t run
to completion */

(void) rmdir("stat.d");
(void) unlink("stat.p");

}

static void
tp1() /* successful stat of plain file: return 0 */
{

int ret, err;

tet_infoline("SUCCESSFUL STAT OF PLAIN FILE");

/* stat file created in startup function and check mode indicates
a plain file */

errno = 0;
if ((ret=stat(tfile, &buf)) != 0)
{

err = errno;
(void) sprintf(msg, "stat(\"%s\", buf) returned %d, expected 0",

tfile, ret);
tet_infoline(msg);
if (err != 0)
{

(void) sprintf(msg, "errno was set to %d", err);
tet_infoline(msg);

}
tet_result(TET_FAIL);

}
else if (!S_ISREG(buf.st_mode))
{

tet_infoline("S_ISREG(st_mode) was not true for plain file");
(void) sprintf(msg, "st_mode = 0%lo", (long)buf.st_mode);
tet_infoline(msg);
tet_result(TET_FAIL);

}

March 2003 Page 253
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

else
tet_result(TET_PASS);

}

static void
tp2() /* successful stat of directory: return 0 */
{

int ret, err;
char *tdir = "stat.d";

tet_infoline("SUCCESSFUL STAT OF DIRECTORY");

/* create a test directory */

if (mkdir(tdir, S_IRWXU) == -1)
{

(void) sprintf(msg,
"mkdir(\"%s\", S_IRWXU) failed in startup - errno %d",
tdir, errno);

tet_infoline(msg);
tet_result(TET_UNRESOLVED);
return;

}

/* stat the directory and check mode indicates a directory */

errno = 0;
if ((ret=stat(tdir, &buf)) != 0)
{

err = errno;
(void) sprintf(msg, "stat(\"%s\", buf) returned %d, expected 0",

tdir, ret);
tet_infoline(msg);
if (err != 0)
{

(void) sprintf(msg, "errno was set to %d", err);
tet_infoline(msg);

}
tet_result(TET_FAIL);

}
else if (!S_ISDIR(buf.st_mode))
{

tet_infoline("S_ISDIR(st_mode) was not true for directory");
(void) sprintf(msg, "st_mode = 0%lo", (long)buf.st_mode);
tet_infoline(msg);
tet_result(TET_FAIL);

}
else

tet_result(TET_PASS);

(void) rmdir(tdir);
}

static void
tp3() /* successful stat of FIFO file: return 0 */
{

int ret, err;
char *tfifo = "stat.p";

Page 254 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

tet_infoline("SUCCESSFUL STAT OF FIFO");

/* create a test FIFO */

if (mkfifo(tfifo, S_IRWXU) == -1)
{

(void) sprintf(msg,
"mkfifo(\"%s\", S_IRWXU) failed in startup - errno %d",
tfifo, errno);

tet_infoline(msg);
tet_result(TET_UNRESOLVED);
return;

}

/* stat the FIFO and check mode indicates a FIFO */

errno = 0;
if ((ret=stat(tfifo, &buf)) != 0)
{

err = errno;
(void) sprintf(msg, "stat(\"%s\", buf) returned %d, expected 0",

tfifo, ret);
tet_infoline(msg);
if (err != 0)
{

(void) sprintf(msg, "errno was set to %d", err);
tet_infoline(msg);

}
tet_result(TET_FAIL);

}
else if (!S_ISFIFO(buf.st_mode))
{

tet_infoline("S_ISFIFO(st_mode) was not true for FIFO file");
(void) sprintf(msg, "st_mode = 0%lo", (long)buf.st_mode);
tet_infoline(msg);
tet_result(TET_FAIL);

}
else

tet_result(TET_PASS);

(void) unlink(tfifo);
}

static void
tp4() /* successful stat of character device file: return 0 */
{

int ret, err;
char *chardev;

tet_infoline("SUCCESSFUL STAT OF CHARACTER DEVICE FILE");

/* obtain device name from execution configuration parameter */

chardev = tet_getvar("CHARDEV");
if (chardev == NULL || *chardev == ’\0’)
{

tet_infoline("parameter CHARDEV is not set");
tet_result(TET_UNRESOLVED);
return;

March 2003 Page 255
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

}

/* check if parameter indicates character devices are not supported */

if (strcmp(chardev, "unsup") == 0)
{

tet_infoline("parameter CHARDEV is set to \"unsup\"");
tet_result(TET_UNSUPPORTED);
return;

}

/* stat the device and check mode indicates a character device */

errno = 0;
if ((ret=stat(chardev, &buf)) != 0)
{

err = errno;
(void) sprintf(msg, "stat(\"%s\", buf) returned %d, expected 0",

chardev, ret);
tet_infoline(msg);
if (err != 0)
{

(void) sprintf(msg, "errno was set to %d", err);
tet_infoline(msg);

}
tet_result(TET_FAIL);

}
else if (!S_ISCHR(buf.st_mode))
{

(void) sprintf(msg, "S_ISCHR(st_mode) was not true for \"%s\"",
chardev);

tet_infoline(msg);
(void) sprintf(msg, "st_mode = 0%lo", (long)buf.st_mode);
tet_infoline(msg);
tet_result(TET_FAIL);

}
else

tet_result(TET_PASS);
}

static void
tp5() /* successful stat of block device file: return 0 */
{

int ret, err;
char *blockdev;

tet_infoline("SUCCESSFUL STAT OF BLOCK DEVICE FILE");

/* obtain device name from execution configuration parameter */

blockdev = tet_getvar("BLOCKDEV");
if (blockdev == NULL || *blockdev == ’\0’)
{

tet_infoline("parameter BLOCKDEV is not set");
tet_result(TET_UNRESOLVED);
return;

}

/* check if parameter indicates block devices are not supported */

Page 256 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

if (strcmp(blockdev, "unsup") == 0)
{

tet_infoline("parameter BLOCKDEV is set to \"unsup\"");
tet_result(TET_UNSUPPORTED);
return;

}

/* stat the device and check mode indicates a block device */

errno = 0;
if ((ret=stat(blockdev, &buf)) != 0)
{

err = errno;
(void) sprintf(msg, "stat(\"%s\", buf) returned %d, expected 0",

blockdev, ret);
tet_infoline(msg);
if (err != 0)
{

(void) sprintf(msg, "errno was set to %d", err);
tet_infoline(msg);

}
tet_result(TET_FAIL);

}
else if (!S_ISBLK(buf.st_mode))
{

(void) sprintf(msg, "S_ISBLK(st_mode) was not true for \"%s\"",
blockdev);

tet_infoline(msg);
(void) sprintf(msg, "st_mode = 0%lo", (long)buf.st_mode);
tet_infoline(msg);
tet_result(TET_FAIL);

}
else

tet_result(TET_PASS);
}

static void
tp6() /* stat of non-existent file: return -1, errno ENOENT */
{

int ret, err;

tet_infoline("STAT OF NON-EXISTENT FILE");

/* ensure file does not exist */

if (stat("stat.6", &buf) != -1 && unlink("stat.6") == -1)
{

tet_infoline("could not unlink stat.6");
tet_result(TET_UNRESOLVED);
return;

}

/* check return value and errno set by call */

errno = 0;
ret = stat("stat.6", &buf);

if (ret != -1 || errno != ENOENT)
{

March 2003 Page 257
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

err = errno;
if (ret != -1)
{

(void) sprintf(msg,
"stat(\"stat.6\", 0) returned %d, expected -1", ret);

tet_infoline(msg);
}

if (err != ENOENT)
{

(void) sprintf(msg,
"stat(\"stat.6\", 0) set errno to %d, expected %d (ENOENT)",
err, ENOENT);

tet_infoline(msg);
}

tet_result(TET_FAIL);
}
else

tet_result(TET_PASS);
}

static void
tp7() /* non-directory path component: return -1, errno ENOTDIR */
{

int ret, err;

tet_infoline("STAT OF NON-DIRECTORY PATH PREFIX COMPONENT");

/* tndir is a pathname containing a plain file (created by the
startup function) in the prefix */

errno = 0;
ret = stat(tndir, &buf);

/* check return value and errno set by call */

if (ret != -1 || errno != ENOTDIR)
{

err = errno;
if (ret != -1)
{

(void) sprintf(msg,
"stat(\"%s\", 0) returned %d, expected -1", tndir, ret);

tet_infoline(msg);
}

if (err != ENOTDIR)
{

(void) sprintf(msg,
"stat(\"%s\", 0) set errno to %d, expected %d (ENOTDIR)",
tndir, err, ENOTDIR);

tet_infoline(msg);
}

tet_result(TET_FAIL);
}
else

tet_result(TET_PASS);

Page 258 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

}

B.16 Makefile for uname-tc.c
TET_ROOT = ../../..
LIBDIR = $(TET_ROOT)/lib/tet3
INCDIR = $(TET_ROOT)/inc/tet3
CC = cc
CFLAGS = -I$(INCDIR) -D_POSIX_SOURCE

uname-tc: uname-tc.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -o uname-tc uname-tc.c $(LIBDIR)/tcm.o \

$(LIBDIR)/libapi.a
-rm -f uname-tc.o

clean:
rm -f uname-tc uname-tc.o

lint:
lint $(CFLAGS) uname-tc.c -ltcm

B.17 uname-tc.c
/* uname-tc.c : test case for uname() interface */

#include <stdio.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/utsname.h>

#include <tet_api.h>

#undef TET_INSPECT /* must undefine because TET_ is reserved prefix */
#define TET_INSPECT 33 /* this would normally be in a test suite header */

static void tp1();

/* Initialize TCM data structures */
void (*tet_startup)() = NULL; /* no start-up function */
void (*tet_cleanup)() = NULL; /* no clean-up function */
struct tet_testlist tet_testlist[] = {

{ tp1, 1 },
{ NULL, 0 }

};

/* Test Case Wide Declarations */
static char msg[256]; /* buffer for info lines */

static void
tp1() /* successful uname: return 0 */
{

int ret, err;
struct utsname name;

tet_infoline("UNAME OUTPUT FOR MANUAL CHECK");

/* The test cannot determine automatically whether the information
returned by uname() is correct. It therefore outputs the
information with an INSPECT result code for checking manually. */

March 2003 Page 259
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

errno = 0;
if ((ret=uname(&name)) != 0)
{

err = errno;
(void) sprintf(msg, "uname() returned %d, expected 0", ret);
tet_infoline(msg);
if (err != 0)
{

(void) sprintf(msg, "errno was set to %d", err);
tet_infoline(msg);

}
tet_result(TET_FAIL);

}
else
{

(void) sprintf(msg, "System Name: \"%s\"", name.sysname);
tet_infoline(msg);
(void) sprintf(msg, "Node Name: \"%s\"", name.nodename);
tet_infoline(msg);
(void) sprintf(msg, "Release: \"%s\"", name.release);
tet_infoline(msg);
(void) sprintf(msg, "Version: \"%s\"", name.version);
tet_infoline(msg);
(void) sprintf(msg, "Machine Type: \"%s\"", name.machine);
tet_infoline(msg);

tet_result(TET_INSPECT);
}

}

Page 260 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

C. Example Shell API test suite source files

C.1 Introduction
This appendix contains listings for the files that comprise the example Shell test suite presented
in the chapter entitled ‘‘Writing a Shell language API-conforming test suite’’.

This test suite has been designed to run on a UNIX type of operating system. Changes to some of
the support files may be required in order to make this test suite function correctly on Win32
operating systems using utilities provided in the MKS Toolkit.

The changes required include at least the following:

� The names of the build tool, clean tool and install scripts need a .ksh suffix in order
to make them executable. The tool definitions in tetbuild.cfg and tetclean.cfg
must be updated to reflect this change.

� The name of each test case must include a .ksh suffix. The install target in each test
case’s makefile, must be updated to reflect this change, as should each test case name listed
in the tet_scen file.

� The rule in each test case’s makefile which installs the test case must be modified so that
the name of the test case after installation has a .ksh suffix. The chmod command is not
required in the install rule and may be removed.

� It is recommended that each test case should be modified to use the Korn Shell API.

When testing command output, some of the test purposes in this test suite make assumptions
about the format of the output which are not correct for Win32 systems. Therefore some of the
test purposes which report a PASS result when run on a UNIX system can be expected to report a
FAIL result when the test suite is run on a Win32 system.

C.2 tet_code
TET reserved codes
0 "PASS"
1 "FAIL"
2 "UNRESOLVED"
3 "NOTINUSE"
4 "UNSUPPORTED"
5 "UNTESTED"
6 "UNINITIATED"
7 "NORESULT"

Test suite additional codes
33 "INSPECT"

March 2003 Page 261
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

C.3 install
echo Installing SHELL-API test suite

cd SHELL-API || exit 1

create alternate execution directory hierarchy
find ts -type d -print |
while read d
do

if test ! -d ts_exec/"$d"
then mkdir ts_exec/"$d"
fi

done

C.4 buildtool
:
Check TET_EXECUTE is set
if [-z "$TET_EXECUTE"]
then

echo >&2 "No alternate execution directory supplied to buildtool"
exit 1

fi

Set TET_EXECUTE on command line to override default value in makefile
exec make TET_EXECUTE="$TET_EXECUTE"

C.5 cleantool
:
Check TET_EXECUTE is set
if [-z "$TET_EXECUTE"]
then

echo >&2 "No alternate execution directory supplied to cleantool"
exit 1

fi

Set TET_EXECUTE on command line to override default value in makefile
exec make TET_EXECUTE="$TET_EXECUTE" clean

C.6 tet_scen
chmod, uname test suite.
all

"Starting Full Test Suite"
/ts/chmod/chmod-tc
/ts/uname/uname-tc
"Completed Full Test Suite"

chmod
"Starting chmod Test Case"
/ts/chmod/chmod-tc
"Finished chmod Test Case"

uname
"Starting uname Test Case"

Page 262 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

/ts/uname/uname-tc
"Finished uname Test Case"

EOF

C.7 tetbuild.cfg
TET_OUTPUT_CAPTURE=True
TET_BUILD_TOOL=buildtool

C.8 tetexec.cfg
TET_OUTPUT_CAPTURE=False
TET_EXEC_IN_PLACE=True

C.9 tetclean.cfg
TET_OUTPUT_CAPTURE=True
TET_CLEAN_TOOL=cleantool

C.10 shfuncs — common functions used in the Shell API
test suite

shfuncs : test suite common shell functions

tpstart() # write test purpose banner and initialize variables
{

tet_infoline "$*"
FAIL=N

}

tpresult() # give test purpose result
{

$1 is result code to give if FAIL=N (default PASS)
if [$FAIL = N]
then

tet_result ${1-PASS}
else

tet_result FAIL
fi

}

check_exit() # execute command (saving output) and check exit code
{

$1 is command, $2 is expected exit code (0 or "N" for non-zero)
eval "$1" > out.stdout 2> out.stderr
CODE=$?
if [$2 = 0 -a $CODE -ne 0]
then

tet_infoline "Command ($1) gave exit code $CODE, expected 0"
FAIL=Y

elif [$2 != 0 -a $CODE -eq 0]
then

tet_infoline "Command ($1) gave exit code $CODE, expected non-zero"
FAIL=Y

March 2003 Page 263
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

fi
}

check_nostdout() # check that nothing went to stdout
{

if [-s out.stdout]
then

tet_infoline "Unexpected output written to stdout, as shown below:"
infofile out.stdout stdout:
FAIL=Y

fi
}

check_nostderr() # check that nothing went to stderr
{

if [-s out.stderr]
then

tet_infoline "Unexpected output written to stderr, as shown below:"
infofile out.stderr stderr:
FAIL=Y

fi
}

check_stderr() # check that stderr matches expected error
{

$1 is file containing regexp for expected error
if no argument supplied, just check out.stderr is not empty

case $1 in
"")

if [! -s out.stderr]
then

tet_infoline "Expected output to stderr, but none written"
FAIL=Y

fi
;;

*)
expfile="$1"
OK=Y
exec 4<&0 0< "$expfile" 3< out.stderr
while read expline
do

if read line <&3
then

if expr "$line" : "$expline" > /dev/null
then

:
else

OK=N
break

fi
else

OK=N
fi

done
exec 0<&4 3<&- 4<&-

Page 264 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

if [$OK = N]
then

tet_infoline "Incorrect output written to stderr, as shown below"
infofile "$expfile" "expected stderr:"
infofile out.stderr "received stderr:"
FAIL=Y

fi
;;

esac
}

infofile() # write file to journal using tet_infoline
{

$1 is file name, $2 is prefix for tet_infoline

prefix=$2
while read line
do

tet_infoline "$prefix$line"
done < $1

}

C.11 Makefile for chmod-tc.sh
TET_EXECUTE = ../../ts_exec
INSTALL_DIR = $(TET_EXECUTE)/ts/chmod

$(INSTALL_DIR)/chmod-tc: chmod-tc.sh clean
cp chmod-tc.sh $@
chmod 755 $@

clean:
rm -f $(INSTALL_DIR)/chmod-tc

C.12 chmod-tc.sh
:
chmod-tc.sh : test case for chmod command

tet_startup="" # no startup function
tet_cleanup="cleanup" # cleanup function
iclist="ic1 ic2 ic3" # list invocable components
ic1="tp1" # functions for ic1
ic2="tp2" # functions for ic2
ic3="tp3" # functions for ic3

tp1() # simple chmod of file - successful: exit 0
{

tpstart "SIMPLE CHMOD OF FILE: EXIT 0"

echo x > chmod.1 2> out.stderr # create file
if [! -f chmod.1]
then

tet_infoline "Could not create test file: chmod.1"
tet_infoline ‘cat out.stderr‘
tet_result UNRESOLVED
return

March 2003 Page 265
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

fi

check_exit "chmod 777 chmod.1" 0 # check exit value

MODE=‘ls -l chmod.1 |cut -d" " -f1‘ # get and check mode of file
if [X"$MODE" != X"-rwxrwxrwx"]
then

tet_infoline "chmod 777 set mode to $MODE, expected -rwxrwxrwx"
FAIL=Y

fi

check_nostdout # should be no stdout
check_nostderr # should be no stderr

tpresult # set result code
}

tp2() # chmod of non-existent file : exit non-zero
{

tpstart "CHMOD OF NON-EXISTENT FILE: EXIT NON-ZERO"

ensure test file does not exist
rm -f chmod.2 2> out.stderr
if [-f chmod.2]
then

tet_infoline "Could not remove test file: chmod.2"
tet_infoline ‘cat out.stderr‘
tet_result UNRESOLVED
return

fi

check_exit "chmod 777 chmod.2" N # check exit value

check_nostdout # should be no stdout
check_stderr # check error message

tpresult # set result code
}

tp3() # chmod with invalid syntax: exit non-zero
{

tpstart "CHMOD WITH INVALID SYNTAX: EXIT NON-ZERO"

expected error message
echo "chmod: illegal option -- :\n.*" > out.experr

check_exit "chmod -:" N # check exit value

check_nostdout # should be no stdout
check_stderr out.experr # check error message

tpresult # set result code
}

cleanup() # clean-up function
{

rm -f out.stdout out.stderr out.experr
rm -f chmod.1

}

source common shell functions
. $TET_EXECUTE/lib/shfuncs

Page 266 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

execute shell test case manager - must be last line
. $TET_ROOT/lib/xpg3sh/tcm.sh

On a UNIX system this test case can be converted to use the Korn Shell API simply by changing
the first line in this file to:

#!/bin/ksh

and the last line in this file to:

. $TET_ROOT/lib/ksh/tcm.ksh

C.13 Makefile for uname-tc.sh
TET_EXECUTE = ../../ts_exec
INSTALL_DIR = $(TET_EXECUTE)/ts/uname

$(INSTALL_DIR)/uname-tc: uname-tc.sh clean
cp uname-tc.sh $@
chmod 755 $@

clean:
rm -f $(INSTALL_DIR)/uname-tc

C.14 uname-tc.sh
:
uname-tc.sh : test case for uname command

tet_startup="" # no startup function
tet_cleanup="cleanup" # cleanup function
iclist="ic1 ic2" # list invocable components
ic1="tp1" # functions for ic1
ic2="tp2" # functions for ic2

tp1() # simple uname of file - successful: exit 0
{

tpstart "UNAME OUTPUT FOR MANUAL CHECK"

check_exit "uname -a" 0 # check exit value

infofile out.stdout # send output to journal

check_nostderr # should be no stderr

tpresult INSPECT # set result code
}

tp2() # uname with invalid syntax: exit non-zero
{

tpstart "UNAME WITH INVALID SYNTAX: EXIT NON-ZERO"

expected error message
echo "uname: illegal option -- :\n.*" > out.experr

check_exit "uname -:" N # check exit value

check_nostdout # should be no stdout
check_stderr out.experr # check error message

tpresult # set result code

March 2003 Page 267
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

}

cleanup() # clean-up function
{

rm -f out.stdout out.stderr out.experr
}

source common shell functions
. $TET_EXECUTE/lib/shfuncs

execute shell test case manager - must be last line
. $TET_ROOT/lib/xpg3sh/tcm.sh

On a UNIX system this test case can be converted to use the Korn Shell API simply by changing
the first line in this file to:

#!/bin/ksh

and the last line in this file to:

. $TET_ROOT/lib/ksh/tcm.ksh

Page 268 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

D. Example distributed test case source files

D.1 Introduction
This appendix contains listings for the files that comprise the distributed demonstration test suite
presented in the chapter entitled ‘‘The distributed demonstration test suite’’.

This test suite has been designed to run on a pair of UNIX systems, a pair of Windows NT
systems, or on one UNIX and one Windows NT system. When the demonstration is configured
to run between a UNIX and a Windows NT system, you may configure either type of system to
act as either master or slave.

As distributed these files contain values which are appropriate when you run the demonstration
on two UNIX systems. You must edit some of these these files if you run either part of the
demonstration on a Windows NT system. Details of the changes that you must make are
presented in comments contained in each file.

D.2 Files supplied on the master system

D.2.1 tet_code

tet_code file for the TETware demonstration
#
TET reserved codes
0 "PASS"
1 "FAIL"
2 "UNRESOLVED"
3 "NOTINUSE"
4 "UNSUPPORTED"
5 "UNTESTED"
6 "UNINITIATED"
7 "NORESULT"

Test suite additional codes
101 "FATAL" Abort
102 "INSPECT"

D.2.2 tet_scen

all
"starting scenario"
:remote,000,001:
/ts/tc1
/ts/tc2
"next is the last test case"
/ts/tc3
:endremote:
"done"

March 2003 Page 269
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

D.2.3 tetbuild.cfg

master system build mode configuration file for the TETware
demonstration
#

#
the build tool:
#
if both master and slave are UNIX-like systems,
set TET_BUILD_TOOL to "make" in this file
#
if both master and slave are Windows NT systems,
set TET_BUILD_TOOL to "./ntbuild.ksh" in this file
#
if the master is a UNIX-like system and the slave is a Windows NT system,
set TET_BUILD_TOOL to "make" in this file and
set TET_BUILD_TOOL in tetbuild.cfg on the slave system to "./ntbuild.ksh"
#
if the master is a Windows NT system and the slave is a UNIX-like system,
set TET_BUILD_TOOL to "make" in this file and
set TET_REM000_TET_BUILD_TOOL in this file to "./ntbuild.ksh"

TET_BUILD_TOOL=make

TET_BUILD_TOOL=./ntbuild.ksh
TET_REM000_BUILD_TOOL=./ntbuild.ksh

don’t change
TET_BUILD_FILE=-f makefile
TET_OUTPUT_CAPTURE=True

D.2.4 tetclean.cfg

master system clean mode configuration file for the TETware
demonstration
#

#
the clean tool:
#
if both master and slave are UNIX-like systems,
set TET_CLEAN_TOOL to "rm" in this file
#
if both master and slave are Windows NT systems,
set TET_CLEAN_TOOL to "./ntclean.ksh" in this file
#
if the master is a UNIX-like system and the slave is a Windows NT system,
set TET_CLEAN_TOOL to "rm" in this file and
set TET_CLEAN_TOOL in tetclean.cfg on the slave system to "./ntclean.ksh"
#
if the master is a Windows NT system and the slave is a UNIX-like system,
set TET_CLEAN_TOOL to "rm" in this file and
set TET_REM000_TET_CLEAN_TOOL in this file to "./ntclean.ksh"

TET_CLEAN_TOOL=rm

Page 270 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

TET_CLEAN_TOOL=./ntclean.ksh
TET_REM000_CLEAN_TOOL=./ntclean.ksh

don’t change
TET_CLEAN_FILE=-f
TET_OUTPUT_CAPTURE=True

D.2.5 tetdist.cfg

example distributed configuration file for the TETware demonstration
#
Please refer to the chapter entitled "Running the TETware
demonstration" in the TETware User Guide for
instructions on how to customise this file for your installation
#
TET_REM001_TET_ROOT=/home/tet
TET_REM001_TET_TSROOT=${TET_ROOT}/demo

The following variables are referenced only by XTI-based versions of
TETware - you should not define them if you built TETware to use the socket
network interface
#
TET_XTI_TPI=/dev/tcp
TET_XTI_MODE=tcp
TET_LOCALHOST=01.02.03.04

D.2.6 tetexec.cfg

master system exec mode configuration file for the TETware
demonstration
#
TET_OUTPUT_CAPTURE=False
TET_EXEC_IN_PLACE=False

D.2.7 ts/makefile

include file and library locations - don’t change
LIBDIR = ../../lib/tet3
INCDIR = ../../inc/tet3

SGS definitions - customise as required for your system
name of the C compiler
CC = cc
the following is appropriate when using the defined build environment
on a Windows NT system
CC = cl -nologo

flags for the C compiler
CFLAGS = -I$(INCDIR)

system libraries:
the socket version on SVR4 and Solaris usually needs -lsocket -lnsl
the XTI version usually needs -lxti
the Windows NT version needs wsock32.lib
SYSLIBS =

suffixes - customise as required for your system

March 2003 Page 271
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

object file suffix - .o on UNIX, .obj on Windows NT
O = .o
archive library suffix - .a on UNIX, .lib on windows NT
A = .a
executable file suffix - blank on UNIX, .exe on Windows NT
E =

all: tc1$E tc2$E tc3$E

tc1$E: tc1.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -o tc1$E tc1.c $(LIBDIR)/tcm$O $(LIBDIR)/libapi$A \

$(SYSLIBS)

tc2$E: tc2.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -o tc2$E tc2.c $(LIBDIR)/tcm$O $(LIBDIR)/libapi$A \

$(SYSLIBS)

tc3$E: tc3.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -o tc3$E tc3.c $(LIBDIR)/tcm$O $(LIBDIR)/libapi$A \

$(SYSLIBS)

D.2.8 ts/tc1.c

#include <stdlib.h>
#include <tet_api.h>

void (*tet_startup)() = NULL, (*tet_cleanup)() = NULL;
void tp1();

struct tet_testlist tet_testlist[] = { {tp1,1}, {NULL,0} };

void tp1()
{

tet_infoline("This is the first test case (tc1)");
tet_result(TET_PASS);

}

D.2.9 ts/tc2.c

#include <stdlib.h>
#include <tet_api.h>

void (*tet_startup)() = NULL, (*tet_cleanup)() = NULL;
void tp1();

struct tet_testlist tet_testlist[] = { {tp1,1}, {NULL,0} };

void tp1()
{

static char *lines[] = {
"This is the second test case (tc2, master).",
"",
"The master part of this test purpose reports PASS",
"but the slave part of this test purpose reports FAIL",
"so the consolidated result of the test purpose is FAIL.",
"",
"The lines in this block of text are printed by a single",
"call to tet_minfoline() in the master part of the test",
"purpose so output from the slave part of the test purpose",

Page 272 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

"won’t be mixed up with these lines."
};
static int Nlines = sizeof lines / sizeof lines[0];

tet_minfoline(lines, Nlines);
tet_result(TET_PASS);

}

D.2.10 ts/tc3.c

#include <stdlib.h>
#include <stdio.h>
#include <tet_api.h>

#define TIMEOUT 10 /* sync time out */

int sys1[] = { 1 }; /* system IDs to sync with */

static void error(err, rptstr)
int err; /* tet_errno value, or zero if N/A */
char *rptstr; /* failure to report */
{

char *errstr, *colonstr = ": ";
char errbuf[20];

if (err == 0)
errstr = colonstr = "";

else if (err > 0 && err < tet_nerr)
errstr = tet_errlist[err];

else {
(void) sprintf(errbuf, "unknown tet_errno value %d", tet_errno);
errstr = errbuf;

}

if (tet_printf("%s%s%s", rptstr, colonstr, errstr) < 0) {
(void) fprintf(stderr, "tet_printf() failed: tet_errno %d\n",

tet_errno);
exit(EXIT_FAILURE);

}
}

static void tp1()
{

tet_infoline("This is tp1 in the third test case (tc3, master)");

(void) tet_printf("sync with slave (sysid: %d)", *sys1);

if (tet_remsync(101L, sys1, 1, TIMEOUT, TET_SV_YES,
(struct tet_synmsg *)0) != 0) {

error(tet_errno, "tet_remsync() failed on master");
tet_result(TET_UNRESOLVED);

}
else

tet_result(TET_PASS);
}

static void tp2()
{

int rescode = TET_UNRESOLVED;

March 2003 Page 273
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

struct tet_synmsg msg;
static char tdata[] = "test data";

tet_infoline("This is tp2 in the third test case (tc3, master)");

(void) tet_printf("send message
tdata, *sys1);

msg.tsm_flags = TET_SMSNDMSG;
msg.tsm_dlen = sizeof(tdata);
msg.tsm_data = tdata;

if (tet_remsync(201L, sys1, 1, TIMEOUT, TET_SV_YES, &msg) != 0)
error(tet_errno, "tet_remsync() failed on master");

else if ((msg.tsm_flags & TET_SMSNDMSG) == 0)
error(0, "tet_remsync() cleared TET_SMSNDMSG flag on master");

else if (msg.tsm_flags & TET_SMTRUNC)
error(0, "tet_remsync() set TET_SMTRUNC flag on master");

else
rescode = TET_PASS;

tet_result(rescode);
}

void (*tet_startup)() = NULL, (*tet_cleanup)() = NULL;

struct tet_testlist tet_testlist[] = { {tp1,1}, {tp2,2}, {NULL,0} };

D.3 Files supplied on the slave system

D.3.1 tetbuild.cfg

slave system build mode configuration file for the TETware
demonstration
#
most of the configuration variables are inherited from the
master system
#
only variables that are specific to the slave system appear here
#

#
the build tool:
#
when the slave is a UNIX-like system or both master and slave systems
are of the same type, the value of TET_BUILD_TOOL to use is the one
inherited from the master system
#
when the master is a UNIX-like system and the slave is a Windows NT system,
set TET_BUILD_TOOL to "./ntbuild.ksh" in this file, thus:
#
TET_BUILD_TOOL=./ntbuild.ksh

Page 274 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

D.3.2 tetclean.cfg

slave system clean mode configuration file for the TETware
demonstration
#
most of the configuration variables are inherited from the
master system
#
only variables that are specific to the slave system appear here
#

#
the clean tool:
#
when the slave is a UNIX-like system or both master and slave systems
are of the same type, the value of TET_CLEAN_TOOL to use is the one
inherited from the master system
#
when the master is a UNIX-like system and the slave is a Windows NT system,
set TET_CLEAN_TOOL to "./ntclean.ksh" in this file, thus:
#
TET_CLEAN_TOOL=./ntclean.ksh

D.3.3 tetexec.cfg

slave system exec mode configuration file for the TETware
demonstration
#
most of the configuration variables are inherited from the
master system
#
only variables that are specific to the slave system appear here
#

D.3.4 ts/makefile

include file and library locations - don’t change
LIBDIR = ../../lib/tet3
INCDIR = ../../inc/tet3

SGS definitions - customise as required for your system
name of the C compiler
CC = cc
the following is appropriate when using the defined build environment
on a Windows NT system
CC = cl -nologo

flags for the C compiler
CFLAGS = -I$(INCDIR)

system libraries:
the socket version on SVR4 and Solaris usually needs -lsocket -lnsl
the XTI version usually needs -lxti
the Windows NT version needs wsock32.lib
SYSLIBS =

March 2003 Page 275
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

suffixes - customise as required for your system
object file suffix - .o on UNIX, .obj on Windows NT
O = .o
archive library suffix - .a on UNIX, .lib on windows NT
A = .a
executable file suffix - blank on UNIX, .exe on Windows NT
E =

all: tc1$E tc2$E tc3$E

tc1$E: tc1.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -o tc1$E tc1.c $(LIBDIR)/tcm$O $(LIBDIR)/libapi$A \

$(SYSLIBS)

tc2$E: tc2.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -o tc2$E tc2.c $(LIBDIR)/tcm$O $(LIBDIR)/libapi$A \

$(SYSLIBS)

tc3$E: tc3.c $(INCDIR)/tet_api.h
$(CC) $(CFLAGS) -o tc3$E tc3.c $(LIBDIR)/tcm$O $(LIBDIR)/libapi$A \

$(SYSLIBS)

D.3.5 ts/tc1.c

#include <stdlib.h>
#include <tet_api.h>

void (*tet_startup)() = NULL, (*tet_cleanup)() = NULL;
void tp1();

struct tet_testlist tet_testlist[] = { {tp1,1}, {NULL,0} };

void tp1()
{

tet_infoline("This is the first test case (tc1)");
tet_result(TET_PASS);

}

D.3.6 ts/tc2.c

#include <stdlib.h>
#include <tet_api.h>

void (*tet_startup)() = NULL, (*tet_cleanup)() = NULL;
void tp1();

struct tet_testlist tet_testlist[] = { {tp1,1}, {NULL,0} };

void tp1()
{

tet_infoline("This is the second test case (tc2, slave)");

tet_result(TET_FAIL);
}

Page 276 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

D.3.7 ts/tc3.c

#include <stdlib.h>
#include <stdio.h>
#include <tet_api.h>

#define TIMEOUT 10 /* sync time out */

int sys0[] = { 0 }; /* system IDs to sync with */

static void error(err, rptstr)
int err; /* tet_errno value, or zero if N/A */
char *rptstr; /* failure to report */
{

char *errstr, *colonstr = ": ";
char errbuf[20];

if (err == 0)
errstr = colonstr = "";

else if (err > 0 && err < tet_nerr)
errstr = tet_errlist[err];

else {
(void) sprintf(errbuf, "unknown tet_errno value %d", tet_errno);
errstr = errbuf;

}

if (tet_printf("%s%s%s", rptstr, colonstr, errstr) < 0) {
(void) fprintf(stderr, "tet_printf() failed: tet_errno %d\n",

tet_errno);
exit(EXIT_FAILURE);

}
}

static void tp1()
{

tet_infoline("This is tp1 in the third test case (tc3, slave)");

(void) tet_printf("sync with master (sysid: %d)", *sys0);

if (tet_remsync(101L, sys0, 1, TIMEOUT, TET_SV_YES,
(struct tet_synmsg *)0) != 0) {

error(tet_errno, "tet_remsync() failed on slave");
tet_result(TET_UNRESOLVED);

}
else

tet_result(TET_PASS);
}

static void tp2()
{

int rescode = TET_UNRESOLVED;
struct tet_synmsg msg;
char rcvbuf[TET_SMMSGMAX];

tet_infoline("This is tp2 in the third test case (tc3, slave)");

(void) tet_printf("sync with master (sysid: %d) and receive data",
*sys0);

March 2003 Page 277
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

msg.tsm_flags = TET_SMRCVMSG;
msg.tsm_dlen = sizeof(rcvbuf);
msg.tsm_data = rcvbuf;

if (tet_remsync(201L, sys0, 1, TIMEOUT, TET_SV_YES, &msg) != 0)
error(tet_errno, "tet_remsync() failed on slave");

else if (msg.tsm_sysid == -1)
error(0, "tet_remsync() set tsm_sysid to -1 on slave");

else if (msg.tsm_flags & TET_SMTRUNC)
error(0, "tet_remsync() set TET_SMTRUNC flag on slave");

else if (msg.tsm_dlen <= 0)
error(0, "tet_remsync() set tsm_dlen <= 0 on slave");

else
{

(void) tet_printf("received message
msg.tsm_dlen, rcvbuf);

rescode = TET_PASS;
}

tet_result(rescode);
}

void (*tet_startup)() = NULL, (*tet_cleanup)() = NULL;

struct tet_testlist tet_testlist[] = { {tp1,1}, {tp2,2}, {NULL,0} };

D.4 Files supplied on both systems

D.4.1 systems

Example system file for the TETware demonstration
#
Please refer to the chapter entitled "Running the TETware
demonstration" in the TETware User Guide for
instructions on how to customise this file for your installation
#
000 master
001 slave

D.4.2 ts/ntbuild.ksh

build tool for use when the distributed demo suite is to be built
on a Windows NT system using MKS Make

MAKESTARTUP=${ROOTDIR:-c:}/etc/msc.mk
export MAKESTARTUP

args=

while test $# -gt 1
do

args="$args $1"
shift

done

exec make $args $1.exe

Page 278 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

D.4.3 ts/ntclean.ksh

clean tool for use when the distributed demo suite is to be cleaned
on a Windows NT system

args=

while test $# -gt 1
do

args="$args $1"
shift

done

exec rm $args $1.exe

March 2003 Page 279
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Page 280 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

E. Example Java API test suite source files

E.1 Introduction
This appendix contains listings for the files that comprise the example Java test suite presented in
the chapter entitled ‘‘Writing a Java API-conforming test suite’’.

This test suite has been designed to run on any platform where the TETware Java API is
supported.

E.2 tet_scen
#
Scenario file for the TETware Java demonstration.
#

all
ˆIntegerTC
ˆStackTC
ˆSystemTC

IntegerTC
/ts/IntegerTC/IntegerTC

StackTC
/ts/StackTC/StackTC

SystemTC
/ts/SystemTC/SystemTC

E.3 tetbuild.cfg
#
Build mode configuration file for the TETware Java demonstration.
#

TET_EXPAND_CONF_VARS=true
TET_OUTPUT_CAPTURE=true
TET_BUILD_TOOL=${TET_ROOT}/bin/jet-build
TET_PASS_TC_NAME=true

E.4 tetexec.cfg
#
Execute mode configuration file for the TETware Java demonstration.
#

TET_EXPAND_CONF_VARS=true
TET_OUTPUT_CAPTURE=true
TET_API_COMPLIANT=true
TET_EXEC_IN_PLACE=true
TET_EXEC_TOOL=${TET_ROOT}/bin/jet-exec

March 2003 Page 281
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

E.5 tetclean.cfg
#
Clean mode configuration file for the TETware Java demonstration.
#

TET_EXPAND_CONF_VARS=true
TET_OUTPUT_CAPTURE=true
TET_CLEAN_TOOL=${TET_ROOT}/bin/jet-clean
TET_PASS_TC_NAME=true

E.6 IntegerTC.java
import java.lang.*;
import TET.*;

/**
* Test case class to test <code>java.lang.Integer</code>.
*/
public class IntegerTC extends SimpleTestCase
{

private static final int T1_VALUE = 103;
private static final int T2_VALUE = 99887766;
private static final String T2_STRING = "99887766";
private static final String T3_STRING = "N0t4n1nt3g3r";

/**
* Entry point for this class.
* Calls <code>SimpleTestCase.main()</code>
* to pass control to TET.
*
* @param args command line arguments.
*/
public static void main(String[] args)
{

main(args, new IntegerTC());
}

/**
* Test purpose method for <code>Integer.intValue()</code>.
* Verifies that <code>Integer.intValue()</code> returns the
* value of this <code>Integer</code> as an <code>int</code>.
*
* @param ts the <code>TestSession</code> object
* for this test run.
*/
public void i1t1(TestSession ts)
{

Integer testInt;
int val;

// Create a new Integer object using a int value.
testInt = new Integer(T1_VALUE);

// Call intValue() on the new Integer object and
// verify it returns the same value that was used
// in its creation.

Page 282 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

val = testInt.intValue();
if (val == T1_VALUE)
{

ts.tet_result(ts.TET_PASS);
}
else
{

ts.tet_infoline("intValue() returned " + val
+ ", expected " + T1_VALUE);

ts.tet_result(ts.TET_FAIL);
}

}

/**
* Test purpose method for <code>Integer.toString()</code>.
* Verifies that <code>Integer.toString()</code> returns a
* string representation of the value of this object in
* base 10.
*
* @param ts the <code>TestSession</code> object
* for this test run.
*/
public void i2t1(TestSession ts)
{

Integer testInt;
String strval;

// Create a new Integer object using a int value.
testInt = new Integer(T2_VALUE);

// Call toString() on the new Integer object and
// verify it returns a string which has the
// expected value.
strval = testInt.toString();
if (strval.equals(T2_STRING))
{

ts.tet_result(ts.TET_PASS);
}
else
{

ts.tet_infoline("toString() returned \""
+ strval + "\", expected \""
+ T2_STRING + "\"");

ts.tet_result(ts.TET_FAIL);
}

}

/**
* Test purpose method for <code>Integer.parseInt(String)</code>.
* Verifies that <code>Integer.parseInt(String)</code>
* throws a <code>java.lang.NumberFormatException</code>
* when the string argument does not contain a
* parsable integer.
*
* @param ts the <code>TestSession</code> object
* for this test run.
*/

March 2003 Page 283
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

public void i3t1(TestSession ts)
{

int val;

try
{

// Call Integer.parseInt(), passing a string
// argument which does not contain a
// parsable integer.
val = Integer.parseInt(T3_STRING);

}
catch (NumberFormatException e)
{

// We caught the exception we expected.
ts.tet_result(ts.TET_PASS);
return;

}
catch (Exception e)
{

// We caught some other, unexpected exception,
// so the test did not complete as expected,
// and hence has an UNRESOLVED result.
ts.tet_infoline("Integer.parseInt(\""

+ T3_STRING
+ "\") threw an unexpected exception: "
+ e);

ts.tet_infoline(" expected a"
+ " NumberFormatException"
+ " to be thrown");

ts.tet_result(ts.TET_UNRESOLVED);
return;

}

// If we reach here, no exception was thrown,
// so the test has failed.
ts.tet_infoline("Integer.parseInt(\"" + T3_STRING

+ "\") succeeded,"
+ " expecting a NumberFormatException to"
+ " be thrown");

ts.tet_result(ts.TET_FAIL);
}

}

E.7 StackTC.java
import java.lang.*;
import java.util.*;
import TET.*;

/**
* Test case class to test <code>java.util.Stack</code>.
*/
public class StackTC extends SimpleTestCase
{

/*
* Number of objects to use when creating a stack during

Page 284 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

* the tests.
* Fairly arbitrary number - just needs to be large enough
* to exercise its capabilities.
*/
private static final int NTESTOBJS = 7;

/*
* Internal counter for use by makeObject().
*/
private int counter;

/**
* Entry point for this class.
* Calls <code>SimpleTestCase.main()</code>
* to pass control to TET.
*
* @param args command line arguments.
*/
public static void main(String[] args)
{

main(args, new StackTC());
}

/**
* Create a new <code>StackTC</code>.
*/
public StackTC()
{

this.counter = 0;
}

/**
* Test purpose method for <code>Stack.pop()</code>.
* Verifies that <code>Stack.pop()</code> removes the object
* at the top of this stack and returns that object as the
* value of this function.
*
* @param ts the <code>TestSession</code> object
* for this test run.
*/
public void i1t1(TestSession ts)
{

Stack stack;
int i;
Object obj;
Object top;
Object got;

// Create a new stack.
stack = new Stack();

// Create a few objects and push them onto the stack,
// saving a reference to the last one pushed.
top = null;

for (i = 0; i < NTESTOBJS; i++)
{

obj = makeObject(ts);

March 2003 Page 285
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

stack.push(obj);
top = obj;

}

// Call pop() on the stack and verify that the object
// returned is the same object last pushed.
try
{

got = stack.pop();
if (got == top)
{

ts.tet_result(ts.TET_PASS);
}
else
{

ts.tet_infoline("pop() returned ["
+ getObjDesc(got)
+ "], expected ["
+ getObjDesc(top) + "]");

ts.tet_result(ts.TET_FAIL);
}

}
catch (EmptyStackException e)
{

ts.tet_infoline("pop() threw EmptyStackException");
ts.tet_result(ts.TET_FAIL);

}
catch (Exception e)
{

ts.tet_infoline("Caught unexpected exception: "
+ e);

ts.tet_result(ts.TET_UNRESOLVED);
}

}

/**
* Test purpose method for <code>Stack.push(Object)</code>.
* Verifies that <code>Stack.push(Object)</code> pushes an
* item onto the top of this stack.
*
* @param ts the <code>TestSession</code> object
* for this test run.
*/
public void i2t1(TestSession ts)
{

Stack stack;
int i;
Object obj;
Object top;

// Create a new stack.
stack = new Stack();

// Create a few objects and push them onto the stack.
for (i = 0; i < NTESTOBJS; i++)

stack.push(makeObject(ts));

Page 286 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

// Create another object and put it onto the top of
// the stack using push().
obj = makeObject(ts);
stack.push(obj);

// Call peek() and verify it returns a reference to
// the object just pushed.
try
{

top = stack.peek();
if (top == obj)
{

ts.tet_result(ts.TET_PASS);
}
else
{

ts.tet_infoline("Top of stack is ["
+ getObjDesc(top)
+ "], expected ["
+ getObjDesc(obj) + "]");

ts.tet_result(ts.TET_FAIL);
}

}
catch (EmptyStackException e)
{

ts.tet_infoline("peek() threw EmptyStackException");
ts.tet_result(ts.TET_FAIL);

}
catch (Exception e)
{

ts.tet_infoline("Caught unexpected exception: "
+ e);

ts.tet_result(ts.TET_UNRESOLVED);
}

}

/**
* Test purpose method for <code>Stack.search(Object)</code>.
* Verifies that <code>Stack.search(Object)</code> returns
* where an object is on this stack.
*
* @param ts the <code>TestSession</code> object
* for this test run.
*/
public void i3t1(TestSession ts)
{

int testfail = 0;
Stack stack;
int i;
Object[] objs;
int pos;
Object obj;

// Create a new Stack, and a new array of Objects to
// store references to those Objects pushed onto
// the stack.

March 2003 Page 287
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

stack = new Stack();
objs = new Object[NTESTOBJS];

// Create a number of new Objects, pushing them onto
// the stack and storing references to them in the array.
for (i = 0; i < objs.length; i++)
{

objs[i] = makeObject(ts);
stack.push(objs[i]);

}

// For every object in the array, call search() on
// the stack and verify it returns the correct
// distance of that object from the top of the stack.
for (i = 0; i < objs.length; i++)
{

pos = stack.search(objs[i]);
if (pos != objs.length - i)
{

ts.tet_infoline("search() returned "
+ pos + " for object ["
+ getObjDesc(objs[i])
+ "], expected "
+ (objs.length - i));

ts.tet_result(ts.TET_FAIL);
testfail++;

}
}

// Create a new Object, but don’t push onto the stack.
obj = makeObject(ts);

// Call search() and verify it returns -1.
pos = stack.search(objs);
if (pos != -1)
{

ts.tet_infoline("search() returned " + pos
+ " for object not on stack,"
+ " expected -1");

ts.tet_result(ts.TET_FAIL);
testfail++;

}

if (testfail == 0)
ts.tet_result(ts.TET_PASS);

}

/*
* Create a new object.
*
* ts the TestSession object for this test run.
*
* Returns a new object.
* The toString() method on this object will
* return a string which is unique within this test run.
*/
private Object makeObject(TestSession ts)
{

Page 288 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

return new String(ts.tet_pname() + "-"
+ ts.tet_thistest() + "-"
+ (++this.counter));

}

/*
* Get a description of an object.
* Includes the class of the object
* as well as its string description.
*
* obj the object for which the description
* is required.
*
* Returns a String giving a description of the target object.
*/
private String getObjDesc(Object obj)
{

return "class (" + obj.getClass().getName()
+ "), object (" + obj.toString() + ")";

}
}

E.8 SystemTC.java
import java.lang.*;
import TET.*;

/**
* Test case class to test <code>java.lang.System</code>.
*/
public class SystemTC extends SimpleTestCase
{

/*
* Name of child test case class.
*/
private final static String CHILD_CLASS = "SysChildTC";

/*
* Value used for exit code by test 1.
*/
private final static int T1_VALUE = 35;

/**
* Entry point for this class.
* Calls <code>SimpleTestCase.main()</code>
* to pass control to TET.
*
* @param args command line arguments.
*/
public static void main(String[] args)
{

main(args, new SystemTC());
}

/**
* Test purpose method for <code>System.exit(int)</code>.
* Verifies that <code>System.exit(int)</code> terminates

March 2003 Page 289
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

* the currently running Java Virtual Machine with status
* given by the integer argument.
*
* @param ts the <code>TestSession</code> object
* for this test run.
*/
public void i1t1(TestSession ts)
{

long pid;
int status;
int expStatus;

// Fire off a new child process using tet_jspawn().
try
{

pid = ts.tet_jspawn(CHILD_CLASS,
new String[] { Integer.toString(T1_VALUE) },
null);

}
catch (TetException e)
{

ts.tet_infoline("tet_jspawn() failed: " + e);
ts.tet_result(ts.TET_UNRESOLVED);
return;

}

// Use tet_wait() to wait for the process to complete.
try
{

status = ts.tet_wait(pid);
}
catch (TetException e)
{

ts.tet_infoline("tet_wait() failed: " + e);
ts.tet_result(ts.TET_UNRESOLVED);
return;

}

// Verify that the exit status is as expected.
expStatus = exitValueToStatus(T1_VALUE);
if (status == expStatus)
{

ts.tet_result(ts.TET_PASS);
}
else
{

ts.tet_infoline("Child exited with status "
+ status + ", expecting " + expStatus);

ts.tet_result(ts.TET_FAIL);
}

}

/*
* Compute the exit status as would be returned from tet_wait()
* for a process which exits with a given value.
* This is not a universal portable solution -

Page 290 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

* only works for Win32 and for those UNIX systems
* which encode the exit status in the traditional way.
*
* value integer code as passed to exit().
*
* Returns the exit status corresponding to the given value.
*/
private static int exitValueToStatus(int value)
{

String os;
int status;

os = System.getProperty("os.name", "");
if (os.toLowerCase().indexOf("windows") >= 0)

status = value;
else

status = ((value & 0377) << 8);

return status;
}

}

/**
* Child part of SystemTC test case. Tests
* <code>java.lang.System.exit(int)</code>.
*/
class SysChildTC extends ChildTestCase
{

/**
* Entry point for this class.
* Calls <code>ChildTestCase.main()</code>
* to pass control to TET.
*
* @param args command line arguments.
*/
public static void main(String[] args)
{

main(args, new SysChildTC());
}

/**
* Run child test case.
* Calls <code>System.exit(int)</code> with status
* passed as first argument.
* Overrides <code>ChildTestCase.tet_main()</code>.
*
* @param ts the <code>TestSession</code> object
* for this test run.
* @param args command line arguments as passed
* from the parent process.
* @return 0 for success, non-zero on failure.
*/
public int tet_main(TestSession ts, String[] args)
{

int status;

March 2003 Page 291
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

// Verify the parent test case passed us one argument,
// which is the exit status we should use.
if (args.length != 1)
{

ts.tet_infoline("Child received " + args.length
+ " arguments, expected 1");

ts.tet_result(ts.TET_UNRESOLVED);
return 1;

}

status = Integer.parseInt(args[0]);

// Log off TETware.
ts.tet_logoff();

// Call System.exit().
System.exit(status);

// If we get this far, System.exit() didn’t work,
// but we can’t use more TETware functions as we’ve
// already called tet_logoff().
System.err.println("Error in SysChildTC.tet_main():"

+ " System.exit(int) didn’t terminate process");
return 1;

}
}

Page 292 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

F. Scenario language syntax summary
This appendix contains a brief summary of the syntax of the language that is used in a scenario
file. A more complete description is presented in the chapter entitled ‘‘The scenario file’’
elsewhere in this guide.

In these descriptions, a language element enclosed in square brackets ([]) is optional and an
ellipsis (. . .) indicates that the previous element(s) may be repeated.

Scenario elements
A scenario consists of a scenario name, followed by zero or more scenario elements. A
scenario element may be a simple element, a directive or a directive group.

Elements are separated from each other by white space. A directive or directive group may have
an attached element associated with it. An attached element is a simple element that has no
white space between it and its directive or directive group.

Form of input
A scenario starts at the start of a line, and may be continued on one or more continuation lines.
A continuation line is a line which starts with white space. A comment is introduced by # and
ends at the end of the line. Blank lines and comments are ignored.

The general form of a scenario is:

scenario-name element . . .

or:

scenario-name
element
. . .

or some combination of the two.

Simple elements
The general form of a simple scenario element is:

simple-element

The simple elements are:

"scenario information line"
/test-case-name
/file-name
ˆscenario-name

A "scenario information line" always appears by itself.

A /test-case-name may appear by itself or may be attached to a directive. When a /test-case-
name is attached to a directive, it is preceded by a @ character, thus:

:directive:@/test-case-name

A /file-name is always attached to a directive.

A ˆscenario-name may appear by itself or may be attached to a directive.

March 2003 Page 293
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

A test case name may have a list of invocable components attached to it, thus:

/test-case-name{ic-list}

An ic-list consists of one or more numbers or number ranges. Each number or number range is
separated from the next by a , character. A number range consists of a pair of numbers separated
by a − character.

Directives
The general form of a directive is:

:directive[,parameter. . .]:attached-element

or:

:directive[,parameter. . .]:
element
. . .
:enddirective:

An attached-element may be one of:

@/test-case-name
/file-name
ˆscenario-name

The directives that are supported in both TETware-Lite and Distributed TETware are:

:include:
:parallel[,count]:
:repeat[,count]:
:timed_loop,seconds:
:random:

In addition, group is accepted as a synonym for parallel.

The include directive must always have a /file-name attached to it. The other directive syntax
formats may not be used with this directive.

The directives that are supported only in Distributed TETware are:

:remote,system-specifier[,. . .]:
:distributed,system-specifier[,. . .]:

A system-specifier may be a numeric system ID (nnn) or a range of system IDs (nnn1−nnn2).

The end directives that are supported in both TETware-Lite and Distributed TETware are:

:endparallel:
:endrepeat:
:endtimed_loop:
:endrandom:

In addition, endgroup is accepted as a synonym for endparallel.

Page 294 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

The end directives that are supported only in Distributed TETware are:

:endremote:
:enddistributed:

Directive groups
The general form of a directive group is:

:directive1[,parameter. . .];directive2[,parameter. . .] . . .:attached-element

or:

:directive1[,parameter. . .];directive2[,parameter. . .] . . .:
element
. . .
:. . .enddirective2;enddirective1:

Include files
A file specified by a /file-name is an include file. Each of the (non-blank, non-comment) lines in
an include file contains a single simple scenario element.

The following simple scenario elements may appear in an include file:

"scenario information line"
/test-case-name

Directives and other simple elements may not appear in an include file. Leading white space on a
line is permitted but ignored. A comment is introduced by a # character and ends at the end of
the line. Blank lines and comments are ignored.

Scenario file inclusion
Any line in the scenario file may consist of:

%include filename

This line is replaced by the contents of filename before the scenario is processed. The % character
must appear in column 1.

If filename is not an absolute path name, it is interpreted relative to the test suite root directory.

March 2003 Page 295
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Page 296 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

G. Conceptual models used by TETware

G.1 Introduction
This appendix contains diagrams which represent the conceptual models used by TETware. The
diagrams presented here are based on similar diagrams which appear in the TET and dTET2
specifications.

March 2003 Page 297
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

G.2 TETware-Lite conceptual model

Prebuild
file

Prebuild
tool

�
�
�
�
����������������

�
�
�
�����������������

Build
configuration

Execute
configuration

Clean
configuration

Build fail
tool

�
�
�
�
����������������

�
�
�
�����������������

Build fail
file

Result
codes

Scenario

Test Case
Controller

�
�
�
�
����������������

�
�
�
�����������������

Journal

Report
generator

�
�
�
�
����������������

�
�
�
�����������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Build
file

Build
tool

�
�
�
�
����������������

�
�
�
�����������������

Clean
tool

�
�
�
�
����������������

�
�
�
�����������������

Clean
file

Execution
results

Treatment
filter

�
�
�
�
����������������

�
�
�
�����������������

Test cases
�
�
�
�
����������������

�
�
�
�����������������

Formatted
report

�
�
�
�����������������

�
�
�
�����������������

���������� �����������������������������������

Removes

Produces

���������� ����������

Figure 23. TETware-Lite conceptual model

Page 298 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

G.3 Distributed TETware conceptual model − local system
with test cases

The system illustrated here has test cases running on it and may also control the processing of test
cases on remote systems.

Distributed
configuration

Prebuild
file

Prebuild
tool

�
�
�
�
����������������

�
�
�
�����������������

Build
configuration

Execute
configuration

Clean
configuration

Build fail
tool

�
�
�
�
����������������

�
�
�
�����������������

Build fail
file

Result
codes

Scenario

Test Case
Controller

�
�
�
�
����������������

�
�
�
�����������������

Journal

Report
generator

�
�
�
�
����������������

�
�
�
�����������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Build
file

Build
tool

�
�
�
�
����������������

�
�
�
�����������������

Clean
tool

�
�
�
�
����������������

�
�
�
�����������������

Clean
file

Execution
results

Treatment
filter

�
�
�
�
����������������

�
�
�
�����������������

Local
test cases

�
�
�
�
����������������

�
�
�
�����������������

Formatted
report

����������������������������

����������������������������

���������������������������

���������������������������

Remote system

�
�
�
�����������������

�
�
�
�����������������

���������� �����������������������������������

Removes

Produces

���������� ����������

Figure 24. Distributed TETware conceptual model − local system with test cases

March 2003 Page 299
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

G.4 Distributed TETware conceptual model − local system
without test cases

The system illustrated here does not have test cases running on it but controls the processing of
test cases on remote systems.

Distributed
configuration

Build
configuration

Execute
configuration

Clean
configuration

Result
codes

Scenario

Test Case
Controller

�
�
�
�
����������������

�
�
�
�����������������

Journal

Report
generator

�
�
�
�
����������������

�
�
�
�����������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Treatment
filter

�
�
�
�
����������������

�
�
�
�����������������

Formatted
report

����������������������������

����������������������������

���������������������������

���������������������������

Remote system

����������

���������� ����������

Figure 25. Distributed TETware conceptual model − local system without test cases

Page 300 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

G.5 Distributed TETware conceptual model − remote system
as master

The system illustrated here may be running remote (non-distributed) test cases or may be running
the master parts of distributed test cases.

Prebuild
file

Prebuild
tool

�
�
�
�
����������������

�
�
�
�����������������

Build
configuration

Execute
configuration

Clean
configuration

Build fail
tool

�
�
�
�
����������������

�
�
�
�����������������

Build fail
file

Remote
server

�
�
�
�
����������������

�
�
�
�����������������

Build
file

Build
tool

�
�
�
�
����������������

�
�
�
�����������������

Clean
tool

�
�
�
�
����������������

�
�
�
�����������������

Clean
file

Execution
results

Remote
test cases

�
�
�
�
����������������

�
�
�
�����������������

����������������������������

����������������������������

���������������������������

���������������������������

Local system running the
Test Case Controller

�
�
�
�����������������

�
�
�
�����������������

���������� �����������������������������������

Removes

Produces

Figure 26. Distributed TETware conceptual model − remote system as master

March 2003 Page 301
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

G.6 Distributed TETware conceptual model − remote system
as slave

The system illustrated here is running the slave parts of distributed test cases.

Build
configuration

Execute
configuration

Clean
configuration

Build fail
tool

�
�
�
�
����������������

�
�
�
�����������������

Build fail
file

Remote
server

�
�
�
�
����������������

�
�
�
�����������������

Build
file

Build
tool

�
�
�
�
����������������

�
�
�
�����������������

Clean
tool

�
�
�
�
����������������

�
�
�
�����������������

Clean
file

Execution
results

Remote
test cases

�
�
�
�
����������������

�
�
�
�����������������

����������������������������

����������������������������

���������������������������

���������������������������

Local system running the
Test Case Controller

�
�
�
�����������������

�
�
�
�����������������

���������� �����������������������������������

Removes

Produces

Figure 27. Distributed TETware conceptual model − remote system as slave

Page 302 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

H. Background and goals

H.1 Introduction
The goal behind creating TETware and its predecessors is to produce a test driver that
accommodates current and future testing needs of the test development community. To achieve
this goal, input from a wide sample of the test development community has been used for the
specification and development of TETware’s functionality and interfaces.

H.2 Previous TET implementations

H.2.1 The Test Environment Toolkit
The TET project started in September of 1989, when the Open Software Foundation, UNIX
International, and X/Open entered into an announced agreement to produce a specification for a
test environment. These organisations agreed to develop and make freely available an
implementation written to that specification; additionally, the three organisations committed to
producing test suites for execution within that environment.

In the process of developing a specification, the project invited interested members of the test
software development community to discuss their requirements for a test driver. It was the belief
of the project that, through careful study of these requirements, a reasonably comprehensive and
effective test driver could be specified. Having achieved this, the project expected that a
substantial portion of the test development community would begin using TET for the
development of conformance testing software.

H.2.2 The Distributed Test Environment Toolkit
The first set of major extensions made to the TET by X/Open was the Distributed Test
Environment Toolkit (DTET) project that started in October 1991. The objective of the project
was to extend the functionality of the TET to support the execution of distributed test cases and
be backwards compatible with the TET. The DTET defined a distributed test case as a test case
executing partly on a master system and partly on one or more slave systems. In such a test case,
synchronisation between the test case controlling software on the multiple systems is required.

Initially, the DTET was designed for use as the underlying test harness for the development of a
number of network testing requirements, including the X.400 Application Programming Interface
(API), the OSF Distributed Computing Environment (DCE) and the X/Open Network File
System (XNFS) test suites. Following this, the DTET was installed at other sites and has proved
to be portable across a wide range of different systems.

The DTET was also able to execute non-distributed test cases (on either the master system or on
a single or multiple remote systems). However, to do this the test cases had to be linked with the
TET API library (libapi.a) and not the DTET library (libdapi.a). Depending on
whether you were writing distributed or non-distributed test cases, you had to be aware of which
library to use when linking your test case. However, many users found the ability of the DTET to
execute TET test cases an advantage because they did not have to recompile or relink their test
suites.

March 2003 Page 303
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

H.2.3 The Extended Test Environment Toolkit
In parallel with X/Open’s development of the DTET, another extension to the base TET emerged.
This TET version is known as the Extended Test Environment Toolkit and provides a number of
enhancements to the base TET which have proved popular with members of the testing
community. The latest version of this toolkit variant is ETET release 1.10.3 which appeared in
1994. This ETET release is based on TET release 1.10 and the enhancements contained therein
were provided by SunSoft Inc., UNIX Systems Laboratories Inc., and others. The Korn Shell
bindings included with ETET were provided by Hewlett-Packard Co.

Features provided in ETET over and above those in the base TET include additional directives to
enable complex scenarios to be specified and additional configuration variables to enable more
precise control to be exercised over the way in which the Test Case Controller processes test
cases.

In addition to the Korn Shell binding mentioned above, the ETET distribution includes a C++
language binding, a Perl API and a quantity of user-contributed demonstration test suites and
other software.

H.2.4 The Distributed Test Environment Toolkit Version 2
X/Open then wished to enhance the DTET by incorporating all the features of the TET to produce
a common toolkit called dTET2. dTET2 was produced during 1993 and 1994. The dTET2
toolkit rationalised the differences in the TET and DTET toolkits by providing:

� A single toolkit for writing distributed and non-distributed tests, using only a single API.

� New Users’ and Programmers’ Guides.

� Support for the X/Open Transport Interface (XTI) in addition to Berkeley Sockets in the
transport-specific parts of the toolkit.

� Fixes to problems inherited from the DTET and the TET.

H.3 TETware
Lately, X/Open has produced TETware with the objective of combining all the functionality of
TET, dTET2 and ETET. In addition, X/Open wished to make TETware available on platforms
running the Windows NT and Windows 9x operating systems as well as on UNIX systems and in
other POSIX-conforming environments.

TETware is available in two major versions; namely, TETware-Lite and Distributed TETware.
Distributed TETware provides all the functionality required to process both non-distributed and
distributed test cases on numbers of systems at one time, whereas TETware-Lite is able to
process non-distributed test cases on a single system. On POSIX-conforming platforms,
TETware-Lite may be built to use only those features specified in POSIX.1.

Unlike previous TET implementations, TETware is provided to users under the terms of a
software licence. X/Open intends to make demonstration versions of TETware with restricted
functionality available for evaluation purposes.

Page 304 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

H.4 Relationship between TETware and its predecessors
TETware includes all of the functionality provided by previous TET implementations, in addition
to a number of new features. This is illustrated in the following diagram. Note that this diagram
is not to scale.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
���������������������������������

�
�
�
�
�
�
�
�
�
�����������������������������������

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���������������������������������

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
����������������������������������

TET 1.10 ETET 1.10.3

dTET2 TETware

Figure 28. Relationship between TETware and its predecessors

March 2003 Page 305
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Page 306 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

I. Terminology

I.1 Test case types
Certain terms described here are used throughout the TETware documents to describe the
different types of test case that may be executed by TETware.

A local test case is one that executes on the local system; that is, the system on which the Test
Case Controller tcc is executed.

A remote test case is one that executes on a system other than the one on which tcc is executed.
tcc collects the test case’s execution results file output from the remote system and includes it in
the journal file on the local system. Although it is possible for several remote test cases to
execute concurrently on different remote systems, the test harness does not provide for interaction
between remote test cases.

A distributed test case is one that has several parts; these parts execute concurrently on different
systems. When a distributed test case is being executed, the test harness ensures that each test
purpose part starts at the same time on each system. Thus each part of a particular distributed test
case must always contain identical number of invocable components and test purposes, even if
this means that some of the test purpose parts do nothing. It is likely that parts of a distributed
test purpose will interact with each other in some way during the course of their execution. In
particular, the test harness provides a means by which the different parts of a test purpose may
synchronise with each other. Each test purpose part submits a result which indicates the success
or failure of that part of the test purpose. The test harness arbitrates between the results submitted
by the parts of the test purpose that are executing on each system and enters a single consolidated
result in the journal file.

Distributed TETware can process all of these types of test case. TETware-Lite can only process
local test cases.

I.2 Glossary
The following terms are used throughout this document.

Alternate execution directory

A directory specified by the user below which test case execution is to occur. When such
a directory is specified, it is the responsibility of the build tool to copy test case files from
the test case source directory to their location below this directory.

API Application programming interface.

Application programming interface (API)

An application programming interface is the set of software interfaces between an
application and the system. In the case of TETware, the API libraries offer specific
facilities for use by test cases.

API-conforming test case

A test case that uses one of the TETware APIs. In particular, the test case uses the API to
report test results.

March 2003 Page 307
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Build file

A build file is a set of instructions passed to the build tool. The provision of a build file is
optional.

Build tool

The build tool controls how test cases are prepared for execution, such as creating
executables from source files. If configuration variables are needed by the build tool, the
tool must use the TETware API. A test suite must define a build tool in order to enable
TETware to process it in build mode.

Build fail file

A build fail file is a set of instructions passed to the build fail tool. The provision of a
build fail file is optional.

Build fail tool

A test suite defined utility which is executed by the test case controller when the prebuild
tool or build tool cannot be executed or returns non-zero exit status. The provision of a
build fail tool is optional.

Child process controller

The child process controller is a component of the C API. It provides the interface
between the API and a sub-program that is to be launched by the tet_exec() or
tet_spawn() API functions.

Clean file

A clean file is a set of instructions passed to the clean tool. The provision of a clean file is
optional.

Clean tool

A clean tool controls how files or conditions created for or during execution of the test
cases are removed, such as removing test case executables and any object files that were
built when the executables were created. If configuration variables are needed by the
clean tool, the tool must use the TETware API. A test suite must define a clean tool in
order to enable TETware to process it in clean mode.

Communication variable

Communication variables are environment variables that are used by the Test Case
Controller to provide information to the build tool, clean tool, and test cases during
execution. The names of communication variables all start with the prefix TET_.

Configuration variable

Configuration variables are used to change the execution behaviour of the TCC and the
tools that it executes. Configuration variables are set via configuration variable files and
via the TCC user interface. The names of variables used by TETware all begin with the
prefix TET_.

Configuration variables may also be used to pass parameters to API-conforming test cases
and tools. Test suite authors are cautioned to use obvious and consistent naming
conventions to avoid potential conflicts with other configuration variables.

Page 308 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

Distributed configuration variable

In Distributed TETware, distributed configuration variables are used to inform TCC of the
location of test suite files and directories on remote systems. In addition, when
Distributed TETware is built to use XTI as the network transport, distributed
configuration variables are used to specify certain parameters needed by the transport-
specific code.

Distributed test case

Refer to the description presented in the previous section.

Distributed testing

Within the context of TETware, this term refers to the processing of distributed test cases.
It does not refer to the processing of non-distributed test cases on remote systems.

Exec file

An exec file is a set of test suite defined instructions for use in executing test cases under
control of an exec tool.

Exec tool

A tool used for executing test cases under special control; for example: a debugger or
command interpreter. Normally no exec tool is specified, which means that test cases are
executed directly.

Execution results daemon

In Distributed TETware, the server used by the API to manage execution results files on
behalf of test cases. The name of this server is tetxresd.

Execution results file

An API-conforming test case or tool places results and other journal information into the
execution results file. A non-distributed test case each has its own execution results file.
When Distributed TETware executes a distributed test case, all parts of the test case share
a single execution results file. The TCC transfers the contents of the execution results file
to the journal when processing of each test case finished.

Invocable component

An invocable component is the smallest unit that the TCM can execute individually.
Invocable components are made up of one or more test purposes.

Journal

A journal is the file into which test results and tracking data are deposited by the TCC.
This file may be processed by a report generator and/or test suite supplied treatment filter
to create formatted reports of test results.

Local system

The system from which the building, execution and cleaning of the tests is controlled.
This system contains the test scenario for a particular TCC invocation and (when test
cases are to be processed on remote systems) transmits information to each of the remote
systems in order that they undertake the necessary tasks as specified in the scenario file.
Each Distributed TETware invocation has exactly one local system and zero or more
remote systems. A TETware-Lite invocation only has a local system and no remote
systems.

March 2003 Page 309
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Local test case

Refer to the description presented in the previous section.

Master configuration

The master configuration for a particular mode of operation is constructed by reading
configuration variables from a user-supplied file on the local system and adding variables
defined on the TCC command line. In TETware-Lite this is the only configuration for a
particular mode of operation. In Distributed TETware, the master configuration is used in
conjunction with variables defined in configuration files on each remote system to
generate each of the per-system configurations for a particular mode of operation.

Master system

In Distributed TETware, each test case is processed on one or more systems specified in a
system list. This list may be specified by certain scenario directives. If no such list is
specified, it defaults to a list containing a single entry for the local system. The master
system is the first (or only) system in the list. Note that in TETware the meaning of this
term is different from that defined in previous TET implementations.

Mode of operation

When the TCC processes test cases, it does so in one or more modes of operation. These
modes are: build mode, execute mode and clean mode. The selected mode(s) of operation
are specified for each TETware invocation by options on the tcc command line. At least
one mode of operation must be selected for each TETware invocation.

Non API-conforming test case

A test case that does not use one of the TETware APIs. TETware deduces the result of
this type of test case from the test case’s exit status.

Output capture mode

When this mode is enabled, the TCC executes each test case or tool with standard output
and standard error directed to a temporary file. TETware copies the contents of this file to
the journal when the test case or tool finishes execution.

Per-system configuration

In Distributed TETware, the per-system configuration contains variables which are
specific to that system for a particular mode of operation.

Prebuild file

A prebuild file is a set of test suite defined instructions to the prebuild tool for use in
preparing for the building of executable versions of test cases.

Prebuild tool

When a prebuild tool is defined, the TCC uses it to undertake the preparation for the build
operation. When Distributed TETware processes remote or distributed test cases on more
than one system, the prebuild phase is only performed on the master system.

Remote process controller

The remote process controller is a component of the C API. It provides the interface
between the API and a sub-program that is to be launched by the tet_remexec() API
function.

Page 310 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

Remote system

In Distributed TETware, a system on which test cases are processed other than the system
on which the TCC is invoked. A Distributed TETware invocation may control test cases
on one or more remote systems.

Remote test case

Refer to the description presented in the previous section.

Result code

A result code is the determination made by a test purpose as to the status of the test it
performed. TETware supports the result codes defined by IEEE Std 1003.3−1991, as well
as additional, user-defined result codes. The status of test cases, represented by result
codes, is recorded by the API in the journal and can be analysed by the report generator
and appropriate treatment filters.

Runtime directory

When a runtime directory is specified, the TCC copies the directory hierarchy below the
test suite root directory to a location below the runtime directory before processing the
test suite. This location then becomes the new test suite root directory for that particular
TCC invocation.

Scenario file

A scenario file is a file containing test scenario definitions.

SGS Software generation system.

Shared API library

An API library that has been built for use by the system’s dynamic linking mechanism.

Slave system

In Distributed TETware, each test case is processed on one or more systems specified in a
system list. This list may be specified by certain scenario directives. If no such list is
specified, it defaults to a list containing a single entry for the local system. When the
system list contains more than one entry, the slave systems are defined by the second and
subsequent entries in the list. Note that in TETware the meaning of this term is different
from that defined in previous TET implementations.

Software generation system

The set of tools and other files that are used to compile programs on a particular system.
This set includes (at least) the compiler and linker, archive maintainer, header and library
files.

SYNCD

The Synchronisation daemon tetsyncd.

Synchronisation

In Distributed TETware, the process of ensuring that each part of a distributed test case
has reached an agreed point in its execution. Certain synchronisation points are
negotiated automatically by the TCMs (for example: at test purpose start) while others are
defined by the test suite author and occur during test purpose execution.

March 2003 Page 311
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Synchronisation daemon

In Distributed TETware, the server used by the API to manage the synchronisation
process. The name of this server is tetsyncd.

System ID

Distributed TETware systems are identified by a three-digit system identification. The
system IDs are mapped to some information (such as a host name) in the systems file
which may be used to establish a connection with the TCCD on that system. The exact
format of this mapping is transport dependent.

The local system always has system ID 000. Other system IDs refer to remote systems.

TCC The Test Case Controller tcc.

TCCD

The Test Case Controller daemon tccd or in.tccd.

TCM The Test Case Manager.

Test case

A test case is the software which conducts tests. The scope of the term ‘‘test’’ is broad. It
may range from a single test purpose for a single function being tested, all the way to a
complete suite of conformance tests for a specification. The TCC builds test cases when
invoked in build mode, executes the invocable components within test cases when in
execute mode, and cleans up any unwanted files when in clean mode.

Test case controller (TCC)

The TCC is the tool that provides structure and control for test cases. The tool handles
such functions as sequencing of invocable component execution, unexpected event
handling, cleanup, parameter passing and transferring of test case execution results into
the journal.

Test case controller daemon (TCCD)

When the Distributed version of the TCC wants to perform some action while processing
a test case, it does not perform the action itself but instead instructs a TCCD to perform
the action on a particular system. This separation of the control logic from processing
actions enables Distributed TETware to control test case processing on an arbitrary
number of systems from a single TCC invocation.

The name of this server is tccd. On UNIX systems where this server is run under
control of inetd, the name of this server is in.tccd.

Test case execution directory

The directory in which a test case is executed. When an alternate execution directory is
specified, the test case execution directory is below the alternate execution directory;
otherwise, the test case execution directory is the same as the test case source directory.

Test case manager (TCM)

The TCM is a component of each TETware API. This component acts as a ‘‘wrapper’’
for test cases, providing interpretation of the command line, selection of invocable
components, and support for the automatic sequencing of test purposes and invocable
components, as well as insulation from spurious signals.

Page 312 March 2003
The Open Group

TET3-PG-1.7 Test Environment Toolkit
TETware Programmers Guide

Test case source directory

The directory which contains the source files for a particular test case. It is usual to have a
separate source directory for each test case in all but the smallest of test suites.

Test case processing

The action performed by the TCC on a test case which depends on TCC’s selected
mode(s) of operation. That is: the test case is built when build mode is selected, executed
when execute mode is selected and cleaned when clean mode is selected.

Test purpose

A test purpose is the software that represents the smallest level of granularity of a test
specification. A test purpose always leads to a single result. In the case of an IEEE Std
1003.3−1991 conforming test suite, for example, test purposes would correspond to
assertions.

Test scenario

A test scenario is a sequence of one or more invocable components associated with a
single user-exposed name. When the TCC is invoked with a scenario name, all invocable
components associated with it are built, executed, and/or cleaned depending on the TCC
mode selected.

Test suite

A test suite is a set of test case files and other required and optional files that are used by
TETware when processing test cases. A test suite must contain at least one test case.

Test suite installer

The test suite installer is used to execute an installation tool supplied with the test suite.
TETware does not provide this tool; instead test suite authors are responsible for
providing and documenting the installation procedures.

Test suite root directory

The top of the directory subtree which contains the test suite. Usually, this directory
resides immediately below the tet root directory.

Tet root directory

The top of the directory subtree in which TETware resides.

Thread-safe API

An API which is designed for use in a multi-threaded environment.

Win32 system

A computer system on which the WIN32 API is implemented, such as the Windows NT
and Windows 9x operating systems.

XRESD

The Execution Results daemon tetxresd.

March 2003 Page 313
The Open Group

Test Environment Toolkit TET3-PG-1.7
TETware Programmers Guide

Page 314 March 2003
The Open Group

