
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

Systems Management:
Software License Use Management

(XSLM)

[This page intentionally left blank]

Technical Standard:

Systems Management:

Software License Use Management (XSLM)

The Open Group

 March 1999, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Technical Standard:

Systems Management: Software License Use Management (XSLM)

ISBN: 1-85912-270-1
Document Number: C806

Published in the U.K. by The Open Group, March 1999.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

This document is published by The Open Group under the terms and conditions of its
agreement with GUIDE International, Inc., and the XSLM working group participants:

BC Government/ISM-BC
Boole & Babbage
Compuware Corporation
IBM Corporation
Isogon Corporation

Under this agreement, such permission is hereby granted to GUIDE International, Inc. and the
XSLM working group participants.

This specification has not been verified for avoidance of possible third party proprietary rights.
In implementing this specification, usual procedures to ensure the respect of possible third party
intellectual property rights should be followed.

ii Technical Standard:

Contents

Chapter 1 Introduction... 1
 1.1 Business Requirements.. 1
 1.2 Implementation... 2
 1.3 Scope.. 2
 1.4 XSLM Specification Overview ... 3
 1.5 Main Specification Components.. 4
 1.5.1 A Common License Certificate Format... 4
 1.5.2 The Application API.. 5
 1.5.3 The Management API ... 5
 1.5.4 The Recording and Logging Services .. 6
 1.6 A Logical View of the Specification .. 7
 1.7 Coexistence and Integration with Technical License Managers....... 8
 1.7.1 Providing XSLM Compliance.. 8
 1.7.2 Special Notes for LSAPI-Enabled Licensing Systems 8
 1.7.3 Providing Non-XSLM Defined Functionality 8

Chapter 2 Licensing Workflow and License Types................................... 11
 2.1 The Licensing Process .. 12
 2.1.1 Application Software Publisher’s View .. 12
 2.1.2 Customer’s View.. 14
 2.1.3 Licensing System Publisher’s View.. 16
 2.2 License Types... 16

Chapter 3 Processing Flow and Linkages... 19
 3.1 Application Broker ... 19
 3.1.1 Application Agent ... 20
 3.1.2 Application-to-Licensing System Communications 21
 3.2 Management Agent.. 22
 3.2.1 Communication Protocol ... 22
 3.2.2 Management Client-to-Licensing System Communication 23

Chapter 4 Authentication and Data Integrity .. 25
 4.1 Scope.. 25
 4.2 Security Mechanisms Deployed .. 25
 4.3 License Certificate Integrity.. 26
 4.4 License Certificate Authenticity .. 27
 4.5 Licensing System Authentication.. 27
 4.6 Process Description .. 28

Systems Management: Software License Use Management (XSLM) iii

Contents

Chapter 5 Data Types and Data Elements.. 31
 5.1 Data Types.. 31
 5.1.1 Bit and Byte Numbering and Order... 31
 5.1.2 Fixed-Point Binary Numbers... 31
 5.1.3 Floating-Point Numbers... 32
 5.1.4 Character Strings.. 32
 5.1.5 Byte Strings ... 32
 5.1.6 Date/Time and Time-Interval Values ... 32
 5.1.7 Universally Unique Identifiers (UUIDs) ... 33
 5.2 Data Elements.. 34
 5.2.1 Simple Data Elements... 34
 5.2.2 Compound Data Elements... 35
 5.2.3 API Data Types... 36

Chapter 6 License Certificate Format .. 37
 6.1 Overall Certificate Structure... 37
 6.1.1 Required and Optional License Certificate Sections 38
 6.2 License Certificate State Data... 39
 6.3 Base and Optional Data Element Sets .. 39

Chapter 7 Application Program API.. 41
 7.1 Application API - Common Functions... 42
 7.2 Application API - The Basic Set ... 42
 7.3 Application API - The Advanced Set.. 42
 xslm_adv_begin_session() .. 43
 xslm_adv_confirm() .. 45
 xslm_adv_end_session() ... 47
 xslm_adv_log() .. 49
 xslm_adv_query().. 52
 xslm_adv_record()... 55
 xslm_adv_release_license() ... 57
 xslm_adv_request_license() .. 59
 xslm_basic_confirm() .. 63
 xslm_basic_release_license()... 65
 xslm_basic_request_license().. 67
 xslm_query_api_level() ... 70

Chapter 8 Management API.. 73
 8.1 Server-Related Functions .. 74
 8.2 Certificate-Related Functions ... 74
 8.3 License Instance-Related Functions.. 74
 8.4 Log-Related Functions ... 74
 xslm_get_certificate() .. 75
 xslm_get_license_instances() ... 78
 xslm_get_log_data().. 81
 xslm_install_certificate() .. 85
 xslm_query_cert_ids()... 88
 xslm_query_next_level_cert_names().. 91

iv Technical Standard:

Contents

 xslm_query_server_info() ... 94
 xslm_query_servers() .. 97
 xslm_release_license_instance() ... 99
 xslm_remove_certificate() ... 102
 xslm_set_admin_policy().. 105

Chapter 9 Recording and Logging .. 109
 9.1 Certificate Related Data... 110
 9.1.1 Licensing System Generated Data ... 110
 9.1.2 Administrator-Defined Data ... 111
 9.2 Historic Data.. 113
 9.2.1 Logged Events of Class ADMINISTRATION.................................... 114
 9.2.2 Logged Events of Class APPLICATION... 117
 9.2.3 Logged Events of Class LICENSING_SYSTEM 119

Chapter 10 Data Elements .. 121
 10.1 Certificate Data Elements.. 122
 10.2 State Information .. 125
 10.3 Logged Data Elements... 128
 10.4 Detailed Data Element Descriptions... 130
 10.5 Defined Symbols and their Assigned Values .. 172

Appendix A License Types ... 175
 A.1 License Types and Terms and Conditions ... 175
 A.2 Terms and Conditions by License Type ... 181

Appendix B Implementation Guidelines.. 185
 B.1 Named License.. 185
 B.2 Concurrent License... 185
 B.3 Consumptive License... 186
 B.4 Demo License... 186
 B.5 Summary .. 187

Appendix C Function Sets and Functional Towers 189
 C.1 Currently Defined Functional Towers.. 189
 C.2 Base Function Set .. 190
 C.3 Advanced Function Towers.. 190
 C.4 Function-Related Management API Functions 190
 C.5 Legacy Functional Level (Level 0)... 191

Appendix D Futures .. 193
 D.1 Network Computing and Component Licensing................................ 193
 D.2 Mobile Computing ... 194
 D.3 Server-to-Server Interaction ... 194

Systems Management: Software License Use Management (XSLM) v

Contents

Appendix E Java Bindings for Application Program API......................... 195

 Glossary ... 265

 Index... 269

List of Figures

1-1 Logical View of a License Use Management System 7
2-1 Licensing Workflow from the Publishers Perspective 13
2-2 Licensing Workflow from the Customers Perspective 15
3-1 Application API Architecture ... 20
3-2 Management API Architecture ... 23
4-1 Licensing System Authentication Process.. 28
C-1 Base Function Set and Functional Towers .. 189

List of Tables

6-1 License Certificate Structure.. 37

vi Technical Standard:

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers and
suppliers of technology. Its mission is to cause the development of a viable global information
infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the telephone. The
essential functionality embedded in this infrastructure is what we term the IT DialTone. The
Open Group creates an environment where all elements involved in technology development
can cooperate to deliver less costly and more flexible IT solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the Open
Software Foundation (founded in 1988), The Open Group is supported by most of the world’s
largest user organizations, information systems vendors, and software suppliers. By combining
the strengths of open systems specifications and a proven branding scheme with collaborative
technology development and advanced research, The Open Group is well positioned to meet its
new mission, as well as to assist user organizations, vendors, and suppliers in the development
and implementation of products supporting the adoption and proliferation of systems which
conform to standard specifications.

With more than 200 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• Consolidating, prioritizing, and communicating customer requirements to vendors

• Conducting research and development with industry, academia, and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• Managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• Adopting, integrating, and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• Licensing and promoting the Open Brand, represented by the ‘‘X’’ Device, that designates
vendor products which conform to Open Group Product Standards

• Promoting the benefits of the IT DialTone to customers, vendors, and the public

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development, and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trademark on behalf of the industry.

Systems Management: Software License Use Management (XSLM) vii

Preface

Development of Product Standards

This process includes the identification of requirements for open systems and, now, the IT
DialTone, development of Technical Standards (formerly CAE and Preliminary Specifications)
through an industry consensus review and adoption procedure (in parallel with formal
standards work), and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product.

The ‘‘X’’ Device is used by vendors to demonstrate that their products conform to the relevant
Product Standard. By use of the Open Brand they guarantee, through the Open Brand Trade
Mark License Agreement (TMLA), to maintain their products in conformance with the Product
Standard so that the product works, will continue to work, and that any problems will be fixed
by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical Standards and product documentation, but which also
includes Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry
surveys, and business titles.

There are several types of specification:

• Technical Standards (formerly CAE Specifications)

The Open Group Technical Standards form the basis for our Product Standards. These
Standards are intended to be used widely within the industry for product development and
procurement purposes.

Anyone developing products that implement a Technical Standard can enjoy the benefits of a
single, widely supported industry standard. Where appropriate, they can demonstrate
product compliance through the Open Brand. Technical Standards are published as soon as
they are developed, so enabling vendors to proceed with development of conformant
products without delay.

• CAE Specifications

CAE Specifications and Developers’ Specifications published prior to January 1998 have the
same status as Technical Standards (see above).

• Preliminary Specifications

Preliminary Specifications have usually addressed an emerging area of technology and
consequently are not yet supported by multiple sources of stable conformant
implementations. They are published for the purpose of validation through implementation
of products. A Preliminary Specification is as stable as can be achieved, through applying
The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organizations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a Technical Standard.
While the intent is to progress Preliminary Specifications to corresponding Technical
Standards, the ability to do so depends on consensus among Open Group members.

viii Technical Standard:

Preface

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif, and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as Technical Standards, in which case the relevant Technology
Specification is superseded by a Technical Standard.

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation—programmer’s guides, user manuals, and so on—
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development, or
management of open systems, particularly those that relate to the Technical Standards or
Preliminary Specifications. The Open Group Guides are advisory, not normative, and should
not be referenced for purposes of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Program. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

Versions and Issues of Specifications

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/corrigenda.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/pubs.

Systems Management: Software License Use Management (XSLM) ix

Preface

This Document

The key factors driving the need for comprehensive license use management are escalating
software costs, the high administrative burden of license compliance control, the lack of effective
customer control over the use of their software, and asset protection. Customers and suppliers
alike share these concerns, although customers are primarily interested in the first two, while
suppliers tend to be more interested in the latter two. Being able easily and accurately to monitor
the use of licensed software products in a business, and to relate the value of a licensed software
product to its usage is a valuable measurement in enabling control and effective deployment of
such products.

XSLM provides an interoperable solution for managing software licensing, accommodating
diverse license management schemes and license certificate formats, in different operating
environments. It does this through use of a logically centralized software license use
management system. This enables a supplier to ship a single product that will operate under any
license use management scheme that a customer may elect to install.

Document Structure

• Chapter 1 explains the context and business reqirements for management of the use of
software licenses.

• Chapter 2 describes the licensing process, its workflow, and license types.

• Chapter 3 describes the roles of the Application Broker and the Management Agent in the
process.

• Chapter 4 addresses security issues and features that are provided in XSLM for
authentication and data integrity.

• Chapter 5 defines the data types and data elements used in XSLM.

• Chapter 6 explains the license certificate format.

• Chapter 7 defines the API function calls, both in the "basic" set and in the "advanced" set.

• Chapter 8 defines the Management API function calls.

• Chapter 9 describes XSLM’s recording and logging facilities.

• Chapter 10 describes all the data elements defined in XSLM.

• Appendixes A-D give information on license types, implementation guidelines, functional
sets and towers, and future directions.

• Appendix E gives the standard Java bindings for both the basic and the advanced XSLM API.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— Command operands, command option-arguments, or variable names; for example,
substitutable argument prototypes

— Environment variables, which are also shown in capitals

x Technical Standard:

Preface

— Utility names

— External variables, such as errno

— Functions; these are shown as follows: name(); names without parentheses are C external
variables, C function family names, utility names, command operands, or command
option-arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items.

Systems Management: Software License Use Management (XSLM) xi

Trademarks

Motif, OSF/1, UNIX, and the ‘‘X Device’’ are registered trademarks and IT DialToneTM

and The Open GroupTM are trademarks of The Open Group in the U.S. and other countries.

xii Technical Standard:

Acknowledgements

The Open Group gratefully acknowledges the work of the Distributed Systems Management
Program Group in the development of this specification.

Many members of the Open Group’s Management Working Group, and of GUIDE
Inyternational, have contributed to this specification, either by providing input material or by
reviewing drafts. In particular, thanks are due to:

Jim Lackey BC Government/ISM-BC
Ron Higgin Boole & Babbage
Wynn Pope Burlington Industries
Andy Gordon Compuware Corporation
Arnie Adelman Gradient Technologies
Tom Cierech IBM Corporation
Ron Falciani IBM Corporation
Carlo Romano IBM Corporation
Nancy Saipe IBM Corporation
Paolo Squartini IBM Corporation
Vittore Casarosa Isogon Corporation
Per Hellberg Isogon Corporation
Adam Bringhurst Novell, Inc.
Jim Olsen Novell, Inc.
Jim Keithley National Computer Services

The X/Open Technical Specification Working Group would also like to acknowledge the
valuable input provided by:

Teri Bahr AT&T
Rolf Suter Bell South
Denis Leghorn CIGNA
David Chase Digital Equipment Corporation
Dennis Deutsh First Bank
Chris Germann Gartner Group
Mary Welch Gartner Group
Chris Davis Texas Instruments

Systems Management: Software License Use Management (XSLM) xiii

Referenced Documents

The following documents are referenced in this Technical Standard:

GUIDE LUM Requirements
A Requirement for Software License Use Management; created by the License Use
Management Project of GUIDE International Corporation; August 29, 1996.

IEEE Std 754
ANSI/IEEE Std 754-1985: Standard for Binary Floating-Point Arithmetic.

LCF
NetWare License Certificate Format; Novell, Inc.; December 18, 1995.

LM Standardization
License Management Standardization; The Open Group Systems Management Task Group;
July 31, 1992.

LSAPI
License Service Application Programming Interface (LSAPI) Specification V1.1, published
by Microsoft and others (available on MSDN CD under Platform SDK|Setup and Systems
Management Services|License Service Application Programming Interface, January 28, 1993.

LUM Requirements
Requirements for the Software License Management Work Group; Systems Management
Workgroup; UNIX International System Management Workgroup; Revision 3; July 23, 1992.

xiv Technical Standard:

Chapter 1

Introduction

The Software License Use Management (XSLM) specification provides a mechanism for
addressing interoperability problems among different license management systems, license
certificate formats, and operating environments. XSLM also provides a mechanism for the
creation of user-oriented tools to aid in the management of software licenses and application use
monitoring.

This chapter provides an introduction to the concepts of software license use management and
introduces the XSLM specification components.

1.1 Business Requirements
The key factors driving the need for comprehensive license use management are escalating
software costs, the high administrative burden of license compliance control, the lack of effective
customer control of software usage, and the lack of adequate protection for software publishers.

Customers must deal with multiple products, from multiple software publishers, on multiple
platforms, with multiple licensing models. Given this exponential growth in complexity, there is
a clear requirement for an overall framework for license use management that is:

• Extensible, flexible and comprehensive

• Independent of software publisher

• Independent of platform

• Independent of standalone or connected operations

• Independent of implementation

• Adaptable to future technologies

• Meeting the needs of both customers and software publishers

• Cost effective for both customers and software publishers.

The primary goals of this specification are to:

• Provide a consistent and standard means for the management of software licensing

• Facilitate the availability of more flexible licensing terms

• Enable cost-effective license management and control

• Gather and provide access to licensing data in a heterogeneous and configuration
independent environment.

License use management tools, processes, products, and systems must:

• Provide facilities to encode license terms and conditions

• Record and report use level data

• Determine, report on, and verify compliance to license terms

Systems Management: Software License Use Management (XSLM) 1

Business Requirements Introduction

• Allow customers to control and optimize the use of licenses within the terms and conditions
of the license policy

• Allow software publishers to ensure their assets are protected.

1.2 Implementation
There are currently thousands of software products in use that rely upon technical license
managers (TLM) to ensure compliance with license terms and conditions.

The existence and widespread use of TLMs must be acknowledged, and in order to become
generally accepted, any license use management system such as described in this document
must allow for coexistence and an active integration with TLMs.

Today, a technical license manager, in general, does not provide extensive support for license
use management as described in this document, especially on an enterprise-wide level. For
example, a TLM often does not provide:

• The ability to run products from multiple software publishers using a single TLM
implementation

• The ability for the customer to manage all licenses (using applications from different
software publishers, each of which may be using different TLMs), in a consistent manner

• The ability for the customer to accept licensing terms from all software publishers in a
common format that can readily be understood and verified

• The ability to provide usage feedback to the customer and the software publisher in a
consistent manner for all installed products

• The ability to choose a license use management system that best fits a customer’s particular
needs, independent of the TLM the software publisher may have chosen

• The ability for the software publisher to deliver a solution that runs in a predictable manner,
no matter which license use management system a particular customer has chosen.

An XSLM-compliant licensing system may, of course, provide more function than is specified in
this document; this ability will serve as a way for licensing system publishers to differentiate
themselves, thereby providing customer choice.

Appendix B on page 185 provides additional detail about implementation-specific areas.

1.3 Scope
This specification defines the functional components of a complete license use management
system, and the rules by which those components interact with one another and with programs
lying outside the framework domain (that is, programs that request XSLM services). The
framework does not specify how the XSLM components are internally designed or implemented.

In general, the XSLM specification provides a vehicle for the implementation of the policy, not
the enforcement of it. That is, the system provides an application with sufficient information
about the policy to let it make an informed decision about whether or not to allow itself to be
used. However, it is up to the application (and, thus, the software publisher) to enforce the
license policy; the XSLM-compliant system should be viewed as a trusted vehicle by software
publishers and customers, providing a repository for usage data supplied by the applications.

2 Technical Standard:

Introduction Scope

The XSLM-compliant system will manage licenses and license use policy information across
multiple platforms in a consistent manner. The customer will be able to view policy information
and administer software licenses from a single vantagepoint, even in cases of an application
running on various platforms or multiple servers.

The key issue addressed by the license use management specification is consistency from the
points of view of the application and manager clients, rather than that of the end-user.
Achieving such consistency demands that licensing system publishers adhere to a strict set of
interface rules. The specific solution implementation is irrelevant, providing that it adheres to a
common, software publisher-independent set of interface protocols that preserves the clients
black box view of the system. Adherence to this consistency will enable software publishers and
customers to achieve the goals described in the Business Requirements section of this document.

During the development of this specification there have been many functions discussed and
evaluated, some of which, while important, are not critical to the first release of the specification.
Some of these functions, such as component licensing, network computing and server-to-server
communications are to be included in the next release. Appendix D on page 193 discusses these
functions in more detail.

1.4 XSLM Specification Overview
This specification establishes the points at which a program may request services of and receive
responses from a licensing system component, and the external protocols for doing so. A
licensing system component implementation that conforms to, and enforces, these external
protocols complies with the licensing system specification, and is therefore said to be XSLM-
compliant (or just compliant).

This specification facilitates coexistence among multiple TLMs from the same or different
software publishers on the same or different platforms, and allows for emerging technologies.
Compliance with this specification will ensure software publishers that their intellectual
properties are protected against misuse.

The XSLM-compliant system provides for a separation of data between different software
publishers. Therefore, the specification requires that each publisher of an application has a
unique identification. Each software publisher must assign its own product-codes or product-
numbers within the publisher-code. Once the terms and conditions of a license have been agreed
upon between a software publisher and a customer, those terms and conditions are provided to
the XSLM-compliant system so that they can be used to issue licenses.

The XSLM specification is extensible so that it can be implemented on virtually any kind of
hardware or software and can encode virtually any kind of terms and conditions. This document
includes a list (see Appendix A on page 175) of several license types, such as maximum number
of concurrent users, that XSLM-compliant licensing systems must support. The XSLM-compliant
system does not restrict a software publisher and a customer from negotiating any unusual
license, such as the application can only be used on the first and third Monday of each month, by
providing an escape mechanism, under which the policy data can be made available directly to
the application, complementing any rule-based decision-making normally done by the XSLM-
compliant system. The extensibility features of the specification will provide protection for
software publishers in the evolving world of property-right legislation and enforcement.

Systems Management: Software License Use Management (XSLM) 3

XSLM Specification Overview Introduction

Briefly, the XSLM software license management process is:

1. The customer and the application software publisher agree to license terms and conditions.

2. The application software publisher translates these terms and conditions into machine
readable policies embedded in a license certificate, which is delivered to the customer
along with the application program, into which are embedded calls to the XSLM licensing
system.

3. The licensing system supplies the logic to interpret the license certificate, the logic to
determine whether an application request to execute should be accepted, and a secure
secret-sharing mechanism to ensure confidence in the validity of both the request and the
response.

This combination of the license certificate, the enabled application and the licensing system
provides the customer with:

• Transparency to the end-user of the product

• The ability to monitor product usage patterns

• The capability to maintain adherence to the terms and conditions.

1.5 Main Specification Components
The specification addresses four areas, all of vital concern in a software license use management
system:

• A common license certificate format that makes it possible to define the licensing terms and
conditions in an environment-independent way

• An application API that is used by applications which require the licensing capabilities
provided by an XSLM-compliant system

• A management API that is used by XSLM applications which implement such functions as
installing, updating, and deleting license certificates, and extracting usage data for reporting

• A recording and logging definition that specifies the minimum data that must be recorded by
an XSLM-compliant system.

This specification defines the API syntax and semantics. It does not specify the method used to
implement the API functions. This is left to the discretion of the licensing system publisher.

This specification does not specify the communications protocol to be used between an API
implementation and its corresponding licensing server implementation.

1.5.1 A Common License Certificate Format

A central part of the XSLM specification is the concept of a license certificate specified in a
common license certificate format. A license certificate is the encoding, into a standard format, of
the terms and conditions that are contained within a license agreement governing the use of a
particular product. This holds true, no matter how the product is licensed, whether via a direct
negotiation between software publisher and customer (in which case there often exists a license
agreement specific to a particular transaction), or as a shrink-wrap license.

The common license certificate format is such that an external license certificate can be created
on a platform different from that where the license certificate will be installed (that is, the
location of the license server), and different from the platform where the licensed application
actually will be running. There is no requirement that the tools used to create a license certificate

4 Technical Standard:

Introduction Main Specification Components

and to install it into a license server are provided by the same licensing system software
publisher. The only requirement is that the tools used by both licensing system software
publishers and customers can create and accept the same external representation, that is the
common license certificate format.

A license certificate will contain sufficient security and integrity data (such as digital signatures)
to ensure that tampering is detectable by the XSLM system, or directly by the application when
it requests a license.

Chapter 6 specifies the format of a license certificate and explains how application publishers
can define their own, private data elements. Chapter 10 contains a list of all predefined data
elements, both required and optional.

1.5.2 The Application API

The Application API (XAAPI) defines the interface that any licensing system-enabled application
would use to interact with an XSLM-compliant license server, to include license verification and
to handle all the activities associated with it. The intent is to standardize the way in which
common functionality provided by existing licensing systems can be accessed. These API
functions allow software publishers to enable applications in a way that is independent of the
underlying (XSLM-compliant) licensing system.

Although there may be many physical servers, the application product communicates with just a
single, logical license server that is embodied in the API library. Application products direct
requests to a library that provides the XAAPI interface, not directly to a physical server.

The main goals for the XAAPI are to:

• Define a standard API, to be adopted by a variety of software publishers, that any application
product may use on different operating systems and network environments

• Be easy to use

• Provide support for all commonly used licensing policies

• Provide support for different levels of application complexity and accommodate different
levels of protection against licensing system tampering.

The XAAPI functions fall into two sets: a basic API and an advanced API. The basic set includes
the minimum function required to provide support for a basic, yet complete, licensing activity.
The advanced set includes and extends the functionality of the basic set. It provides the
application developer with more flexibility and options in support of a more complex licensing
scheme.

1.5.3 The Management API

The Management API (XMAPI) is the component that enables license use management systems
provided by multiple software publishers to be managed as a single logical licensing system.

The XMAPI provides license management applications with an implementation independent
means of:

• Installing and removing software license certificates

• Retrieving information about installed software license certificates, software license usage,
and selected licensing system properties

• Updating the properties of installed software licenses.

Systems Management: Software License Use Management (XSLM) 5

Main Specification Components Introduction

This specification does not prescribe the physical structure of the data, or the means by which an
implementation chooses to store the data it collects and maintains. It does, however, define the
logical structure of the data passed to, and received from a license server, via the XMAPI. This
logical (self-defining) data structure is defined in Chapter 6. This specification also defines the
persistency requirements for data transmitted to the licensing system across selected
management API functions.

This self-defining data architecture provides for additional implementation specific data to be
transmitted across the XMAPI. To permit this flexibility while maintaining compatibility with
other compliant licensing systems, XSLM mandates that each implementation ignores any data
received across the API that does not carry that implementations unique publisher identification.

1.5.4 The Recording and Logging Services

A crucial function of an XSLM licensing system is to collect and record data about the usage of
the licensed products and about relevant events related to license management. A compliant
XSLM system will maintain three types of information: certificate data, status data, and historic
(or logged) data.

The certificate data is the combination of information provided by the application software
publisher (embodied in the license certificate), which cannot be modified by the licensing system
or by the administrator; information provided by the customer’s license administrator (to
complement or override, when allowed, the licensing policy specified in the license certificate);
and information created and maintained by the licensing system itself.

The status data is maintained by the licensing system while it is running, and at each point in
time it provides information about the licenses presently in use, and the value of the meters
maintained by the licensing system. Some applications can be licensed based on the count of
some units whose meaning in general is known only to the application, and the licensing system
keeps track of the units to be counted, acting as a "record keeper". The updating of the meter will
be explicitly requested by the application with an API call. A change in the status information is
triggered by external (to the licensing system) events, such as the request for a new license, or a
change in policy setting (e.g. the administrator switching from soft stop to hard stop) or the
expiration of a timer.

The historic data is the persistent log of events relevant to license management. All events
related to license administration actions will always be logged, as they can constitute an audit
trail (e.g. the addition or deletion of a certificate to/from the license database). The logging of
events related to license usage (e.g. an application requesting or releasing a license, or a meter
being updated) will usually be under administrator’s control.

6 Technical Standard:

Introduction A Logical View of the Specification

1.6 A Logical View of the Specification
Conceptually, this specification describes a single, logical, licensing system running on a single
computing system. This logical view is independent of how a particular system is implemented.
An actual implementation may provide capabilities for defining multiple, logical, and
customer-defined domains that can be controlled independently of each other.

Figure 1-1 Logical View of a License Use Management System

Systems Management: Software License Use Management (XSLM) 7

Coexistence and Integration with Technical License Managers Introduction

1.7 Coexistence and Integration with Technical License Managers
There are several existing software technical license managers (TLMs) in common use today,
each of which is based on a proprietary set of protocols defined solely by the TLM publisher. It is
an XSLM goal to make it practical for these existing proprietary license managers to be adapted
to form compliant implementations of this specification.

XSLM compliant licensing systems can always coexist with other XSLM and non-XSLM
compliant licensing systems running on the same computer system, although there are no
practical license management related benefits realized by doing so.

1.7.1 Providing XSLM Compliance

XSLM provides for several levels of compliance.

Legacy Functional Level compliance requires support for the Basic XMAPI API and the Basic
XCLA data architecture — the Base Function Set1. A Legacy Functional Level compliant license
manager is visible to XSLM-compliant license use management tools. This enables users to view
license use information in an enterprise-wide systems management context; that is, as part of a
single logical licensing system comprised of (potentially) multiple physical license servers from
(potentially) multiple license system publishers.

Additional compliance levels require support for one or more of the documented optional
functional towers, as defined in Appendix C on page 189.

1.7.2 Special Notes for LSAPI-Enabled Licensing Systems

Some licensing systems in common use today provide support for the licensing system protocols
and APIs described by the LSAPI 1.1 specification (see referenced document LSAPI). This
specification addresses the basic application requirement to acquire, validate, and release a
software license through one of an unknown (to the application) set of licensing system servers.

The basic XSLM API is defined so as to make it possible for any TLM that has implemented the
LSAPI specification to be easily transformed, at the application API level, into one providing
equivalent functionality that is XSLM-compliant. However, to be labeled XSLM-compliant an
existing licensing system must implement, in addition to the basic application API set, the
appropriate XSLM management API set.

1.7.3 Providing Non-XSLM Defined Functionality

Licensing systems electing to operate at the Advanced compliance level can reasonably expect to
represent most, if not all, existing TLM functionality in terms of XSLM defined APIs and related
logical data structures. However, it is acknowledged that application publishers may require
specific functionality offered by an existing proprietary TLM, but where it is not appropriate to
define that functionality as part of a general license use management specification.

The XSLM specification addresses the potential requirement for implementation specific
function and related data by providing for licensing system specific extensions. An application
that depends on such extensions will be restricted to using only compliant licensing systems that
implement those extensions. Even in the case where one or more applications require such
extensions there are customer benefits to XSLM compliance; the principal benefit being the

1. See Appendix C on page 189 for additional information.

8 Technical Standard:

Introduction Coexistence and Integration with Technical License Managers

ability to generate, distribute, install, and manage standard XSLM-defined license certificates
and related licensing system resources.

An XSLM-defined license certificate may contain licensing system specific information. This
information is encoded in the form of an architected licensing system publisher specific section
of the certificate, identifying that specific publisher. The licensing system publisher data itself
appears within the licensing system section and is defined information encapsulated in XSLM-
format license certificate data elements. The presence of a licensing system publisher specific
section restricts the license certificate to being installed only in a license system server whose
published id matches that identified in the license certificate. When multiple licensing system
publisher sections appear in a certificate, the certificate may be installed in a license server
whose id matches any one of those contained in that certificate.

An application publisher can thus distribute a standard XSLM-defined license certificate that
conveys licensing system specific information to one or more specific licensing system server
implementations. This in turn provides an existing TLM with the ability to offer extended (not
defined by XSLM) services to those applications that require them, yet remain XSLM compliant.
Similarly the XSLM defined data architecture provides existing TLMs with the means to expose
implementation specific software license management data through the standard XSLM-defined
management APIs.

Systems Management: Software License Use Management (XSLM) 9

Introduction

10 Technical Standard:

Chapter 2

Licensing Workflow and License Types

There are always at least two, and often more, independent entities—software publisher and
customer—involved in the process of licensing software, and it is important that these processes
are clearly understood in order to fully comprehend the issues involved with software license
use management.

This chapter provides an overview of the software licensing process and underlying license
types as seen by the software publisher, the customer, and the licensing system publisher. A
workflow model is used as the means of introducing the activities required to both enable and
use a compliant software license use management system. This model is used to validate that
this specification addresses the requirements of all the parties involved.

Systems Management: Software License Use Management (XSLM) 11

The Licensing Process Licensing Workflow and License Types

2.1 The Licensing Process

2.1.1 Application Software Publisher’s View

In this context, an application software publisher is defined as an individual or company that
both develops and licenses one or more commercially available software products, owns the
software and generally sets the terms and conditions of the licensing on that software. The
application software publisher may also manufacture, market and distribute the software.

Application software publishers have a need to protect their software assets. At the same time,
they need the ability to be as flexible as possible when negotiating licensing terms and
conditions with their customers. Figure 2-1 illustrates the license use management workflow and
tasks from the application software publishers perspective.

A responsibility of the application software publisher is to decide which sales models are to be
used and to translate these models, in conjunction with the negotiated terms and conditions of
the business contracts, into machine-readable policies called license certificates.

By itself, the license certificate does not protect the publisher’s software assets. Nor does it
provide a useful management tool for the customer. The application software publisher enables
these capabilities allowing the application to function according to an agreed upon contract by
embedding calls to the XSLM-compliant licensing system as part of the product program logic.

The XSLM specification is comprehensive enough to satisfy the needs of most application
software publishers, but does not include all the functions provided by all existing licensing
systems. Consequently, an XSLM-compliant license use management system product may
include non-XSLM functions. These additional capabilities are referred to as publisher-specific
functions.

Use of publisher-specific functions by application software publishers will limit compatibility
with XSLM-compliant licensing systems.

Once an application software publisher has enabled a product to work with an XSLM-compliant
licensing system, a reliable product distribution and installation process must be developed that
delivers the product code, a customer-specific (or generic) XSLM license certificate and,
sometimes, an XSLM licensing system.

Finally, the application software publisher bears primary responsibility for providing customer
support. If, for any reason, the XSLM-compliant licensing system rejects a publisher-provided
license certificate, or incorrectly denies a customer access to the application software publishers
product, the application software publisher must be able to quickly identify the source of the
problem, regardless of which XSLM-compliant licensing system is in use at the customer’s site
and, in resolving the problem, potentially work directly with the XSLM-compliant licensing
system publisher.

12 Technical Standard:

Licensing Workflow and License Types The Licensing Process

Figure 2-1 Licensing Workflow from the Publishers Perspective

Systems Management: Software License Use Management (XSLM) 13

The Licensing Process Licensing Workflow and License Types

2.1.2 Customer’s View

The customer is the named licensee: a person or entity that acquires software. In this context, a
customer is the person or persons responsible for installing and maintaining the XSLM-
compliant licensing system and the application software publisher-provided products as well as
monitoring use of those products to ensure adherence to pre-negotiated terms and conditions.
Generally, the administrator within the customer’s organization would handle these functions.

Customers will have a standard, easy to use method of allowing the use of products while
maintaining strict adherence to the terms and conditions. Customers also will have tools that
provide them with information that allows them to diagnose license use problems, and to
monitor and determine patterns of license and product use. A properly implemented license use
management system will be transparent to the end-user of the products whose licenses it
manages, with the possible exception of allowing the application to tell the user when no license
is available.

Figure 2-2 on page 15 illustrates the license use management workflow and tasks from the
customer’s perspective.

In order to use a product, a customer must first be able to install it. Installation consists of
loading the product on the customer’s system, and in installing the associated license certificate
(perhaps as simple as loading a file into a directory) into an already installed XSLM licensing
system. Therefore, an XSLM licensing system accepts a valid license certificate from a software
publisher provided product installation tool, loading the license certificate into the licensing
system as part of the normal product installation process.

When explicitly permitted by the license certificate, a customer will have the ability to assign
licenses subject to the terms and conditions embodied in that license certificate. In other words,
customers will have the ability to make the license policy for a given product more restrictive
than the terms and conditions of the license agreement.

In addition to proactive license use data analysis, customers will be able to integrate license use
management into their existing automation processes. This means, for many customers,
choosing a licensing system that provides alert information which can be directed, via standard
instrumentation interfaces, to one or more installed automation systems. Alerts in this context
refer to informational reports such as license not available, license about to expire, licensing
system terminated, and the like. In an ideal situation, the customer will be able to configure the
automation system to automatically respond to most common alerts. For example, a license
about to expire might result in an automatically generated electronic mail directed to the
department responsible for negotiating/renewing license agreements.

Finally, in a "run time" context, a customer will be able to operate in a disaster recovery scenario.
Many customers have off site computing facilities to be used in the event of a disaster where
their primary computing resources are unusable. A license use management system should not
prevent the customer from conducting business in a disaster recovery (real or test) situation,
allowing grace periods or alternate-server capabilities, for instance.

A compliant licensing system will maintain a machine-readable log of significant licensing
events, for example, license shortages. The customer will be required to manage one or more log
files (for example, to archive a log file). During the normal course of use, customers need to be
able to detect license shortages, to dynamically adjust license use policy (when permitted), and
to diagnose problems where the license-use management system denies a user product access
for reasons which are not evident. The customer will also need, on occasion, to communicate
with the licensing system to perform unusual recovery procedures such as reclaiming a license
known by the customer to be reclaimable.

14 Technical Standard:

Licensing Workflow and License Types The Licensing Process

Figure 2-2 Licensing Workflow from the Customers Perspective

Customers will have the ability to view product license information, extract that information to
external media (for safe keeping and/or off-line analysis), and to generate real-time or batch
reports on historical and current license use. This information will be used by the customer to

Systems Management: Software License Use Management (XSLM) 15

The Licensing Process Licensing Workflow and License Types

analyze usage patterns for purposes such as determining the need to acquire additional licenses,
detecting products which are no longer being used, and providing statistical data to be used
when negotiating new license agreements.

2.1.3 Licensing System Publisher’s View

The third partner in this scenario is the XSLM licensing system publisher: the provider of the
product or function which accumulates the information from the calls embedded in the
application product, compares it to the terms and conditions evident in the license certificate,
and responds with direction to the application product.

the XSLM licensing system must consider and resolve platform dependencies. For instance, not
all operating systems provide access control, and signal alarms are not common across all
platforms.

Therefore, the specification clearly defines what functions the XSLM licensing system must
accommodate.

An XSLM-compliant licensing system may provide more function than is defined as the basic
set; for instance, an enhanced reporting capability or alternative common logging facilities may
be provided. The specific implementation of most required management functions is not
defined only the requirement that these functions must be available.

2.2 License Types
As mentioned earlier in the Licensing Process section, sales models along with terms and
conditions are translated into license certificates. A subset of the license certificate contains the
license type, which is defined as the scope of the use of a specific product. It specifies the
restrictions that are defined in the agreement between the customer and the software publisher.
This section defines the minimum number of license types which have to be supported in order
to allow the implementation of the wide variety of licensing terms and conditions (many of
which are commonly known). The license types are listed in Appendix A on page 175.

In the technical implementation of these specifications, a license system publisher may view
these unique license types, which define the behavior of the licensing system, as either reusable
or non-reusable, and modifiable by time, capacity, count and/or naming conventions. Reusable
or non-reusable can also be modifiers. It is more useful in this document to define these license
types in terms more commonly used in the customer community as follows:

• BASIC (Unrestricted)

• CAPACITY

• CONCURRENT

• CONSUMPTIVE

• CUMULATIVE

• NAMED

Each license type is modifiable by time. For instance, a DEMO implementation option might be a
BASIC license that is useful only for 30 days from the date of installation or until a defined
expiration date. These time attributes might be "start date/time," "end date/time," or "duration,"
for example.

16 Technical Standard:

Licensing Workflow and License Types License Types

A reusable license is one that, when its no longer required, is returned to the licensing system
and becomes available for re-issuance against another license request; in contrast a non- reusable
license type is one that once used, or counted, is not retrievable or reusable.

BASIC

This license type is the base line. It represents a license for which there are no restrictions. In
contrast, all the other license types define restrictions within which the application is licensed
and the customer is to abide.

CAPACITY

This license type compares the capacity of the operating environment against a predefined table,
for instance, to assure the application is running in a machine whose computing capacity is not
larger than that for which the product is licensed.

CONCURRENT

This is a license type for which the charges are based on counting the number of simultaneous
demands or uses of a product, independent of who or what user is using the application quite
the opposite from the Named concept. Further, these license uses are reusable: when the license
use is no longer required it is returned to the licensing system and becomes available for re-
issuance against another license request. The number and defined unit of measure may include a
minimum or maximum number permitted per request. For instance, a Concurrent license may
require that whenever a license request is made, five units of the defined measure (users, for
instance), must be requested as a minimum.

CONSUMPTIVE

This is a license type for which the charges are based on counting the defined units executed,
perhaps over a specified period of time, against those licensed. Of principal importance with this
license type is that a license count once used is not retrievable or reusable. As with Concurrent
licensing, the number and defined unit of measure may include a minimum or maximum
number permitted per request. For instance, a Consumptive license may require that whenever a
license request is made, five units of the defined measure (blocks of time or gigabytes of storage,
for instance), must be requested as a minimum. This license type might be useful in a peak use
situation.

CUMULATIVE

This is a license type for which the charges are based on counting a defined unit of measure
against the number of units of that measure which were licensed. While Cumulative licensing
merely accumulates the defined units of measure, as with Consumptive licensing, once used
these units are not retrievable, or reusable. This license type might be useful in a post-pay term
and condition.

NAMED

This is a license type which compares name or serial number or ID or node address (for
example) against those licensed. The Named license type implies pre-definition of the name.
However, to build the registered or named "authorization list," the Named license type can also
allow for a "first come-first served" concept where license requesting users (for instance) are
registered (accepted/defined) until the number of users licensed is reached.

Systems Management: Software License Use Management (XSLM) 17

Licensing Workflow and License Types

18 Technical Standard:

Chapter 3

Processing Flow and Linkages

This chapter describes the processing flow and linkages between an application and a licensing
system, and between a management application and the licensing servers that together
constitute the licensing system.

3.1 Application Broker
The Application Broker is, in effect, a routing function. It serves only to render the presence of
multiple licensing system implementations (from one or more licensing system vendors)
transparent to application clients; that is, to create a single logical license management system in
those situations where the actual licensing system is comprised of two or more XSLM-compliant
licensing system implementations.

Note that where an implementation provides for the concurrent existence of multiple physical
license servers, the responsibility for providing server transparency (that is, server topology) lies
with that specific implementation2. In other words, the Broker provides implementation rather
than server transparency with respect to those application clients served by the Broker.

As illustrated in Figure 3-1 on page 20, the Application Broker is positioned between the
application client and one or more XSLM-compliant license use management system
implementations. The numbered steps in the figure indicate processing order. The primary
functions of the Application Broker are to:

• Locate the Application Agents (DLMs) for each XSLM-compliant licensing system
implementation defined to the Broker3.

• Route application client service requests to one or more implementation Agents.

• Logically propagate implementation-Agent provided responses to "routed" service requests
to the application client from which those requests were received. Note that for certain
XAAPI functions (for example, xslm_query_api_level ()), the Broker is required to consolidate
responses received from multiple implementation Agents to yield a single response, which is
then delivered to the application client.

A licensing system implementation is exposed to the Broker in the form of an implementation
dependent Application Agent. This is discussed further in Section 3.1.1 on page 20.

The Application Broker DLM must be named "XSLM_Broker" and must export the names of all
XSLM application API (XAAPI) functions. This provides application clients with a means of
accessing all supported services without requiring knowledge of the number or identity of the
specific licensing system implementation(s) that are providing those services.

It is expected that licensing system publishers will assume responsibility for developing and
delivering at least one Application Broker. However, this does not preclude other software
publishers from delivering alternative Broker implementations providing additional features.

2. This Technical Standard does not detail the requirements for the server-to-server interactions required to provide transparency
between servers from different licensing system publishers. See Appendix D for more information.

3. It is possible in some environments that a broker must be "refreshed" in order to recognize a newly-added Application Agent.

Systems Management: Software License Use Management (XSLM) 19

Application Broker Processing Flow and Linkages

Figure 3-1 Application API Architecture

3.1.1 Application Agent

The Application Agent itself provides the Application Broker and (when dynamic client-to-
Agent binding is employed) application clients with a means of accessing all supported XSLM-
defined application services without requiring knowledge of the methods used to implement
those services; that is, without knowing which implementation is being used, how function is
distributed between the agent and its corresponding server(s), or which protocol is being used to
effect physical communication between the agent and its server(s).

As illustrated in Figure 3-1, each Application Agent implementation must physically consist of
at least one dynamically loadable module (DLM).

The Application Agent must export the names of all XSLM application (XAAPI) functions. This
provides the means by which the Application Broker can bind to the implementation Agent.

An Application Client can:

• Dynamically or statically bind to the Application Broker.

• Directly (but dynamically) bind to the implementation Agent as an alternative to using an
Application Broker. This capability is useful in operating environments where only a single
compliant licensing system implementation is present and/or required, and thus where
binding the Agent to an Application Broker would necessarily result in a performance
penalty without offering any functional benefit.

• Be statically bound to a specific implementation Agent. This capability could be used, for
example, to provide a software publisher with additional, but implementation specific,
authentication features, albeit at the expense of a loss of interoperability with respect to
alternative compliant licensing system implementations.

20 Technical Standard:

Processing Flow and Linkages Application Broker

3.1.2 Application-to-Licensing System Communications

XSLM does not define the protocol over which an application client communicates with an
XSLM-compliant licensing system.

The physical (wire level) communication protocol between XSLM-enabled application clients
and license servers is implementation specific, yet transparent to the clients. This is
accomplished by requiring clients to dynamically bind to, and direct all XSLM-defined
application service requests (API calls) to, an implementation independent Application Broker
(DLM) or, when appropriate, to an implementation dependent Application Agent.

Referring to the numbers in Figure 3-1 on page 20, the process flow between the application
client and the licensing system server is as follows:

1. The Application Client calls a desired XSLM-defined function entry point within the
Broker DLM. This is always possible since each licensing system implementation is
required to provide a Broker DLM named "XSLM_Broker.DLM" that exports entry points
for all XSLM- defined functions. The Application Client may be either statically bound
(link edited with) or dynamically bound (at run time) to the Broker.

2. The Broker, via an implementation dependent method, locates profile (initialization)
information that provides the Broker with the UUIDs of the licensing system publishers
with which the Broker is to establish a dynamic binding. These UUIDs are used by the
Broker to locate each licensing system’s Application Agent (implementation) DLM. This is
possible because each implementation is required to supply an Agent DLM named
"uuid_XAAPI.DLM," where "uuid" is the implementation publisher’s UUID.

3. The Broker, having located all required Application Agent DLMs, either invokes each
implementation Agent (in an implementation determined order) until the first time an
"OK" response is received, or the entire list of Agents as defined in the Broker profile
information.

4. The implementation Agent (DLM) is invoked at the corresponding entry point to that at
which the Broker was originally entered. The Agent prepares an implementation
dependent representation of the function request and forwards it to a compatible license
server belonging to the same publisher as the one that provided the Agent. XSLM does not
specify the form of the function request representation, or the means by which that
representation is communicated to, nor how the response to the represented request is
received from, the licensing system server.

5. The license server receives the implementation specific representation of the XSLM
function request over a licensing system (implementation) defined communications
medium. The server processes the request, prepares an appropriate response, and sends
the response back to the requesting Application Agent.

6. The Implementation Agent converts, as necessary, the server response information to a
form compliant with that mandated by the requested XSLM function. The XSLM-
compliant response data is then returned to the Broker function.

7. The Broker receives control back from the implementation Agent and either:

a. Checks for an "OK" return, indicating that the requested function completed without
error, and when received effects an immediate return to the requesting Application
Client. In the event a "Not OK" return is received the Broker continues by invoking
the same function in the Agent DLM for the next implementation (UUID) defined to
the Broker.

Systems Management: Software License Use Management (XSLM) 21

Application Broker Processing Flow and Linkages

or (for some functions):

b. Saves the information returned from the implementation, invokes the same function
in the Agent DLM for the next implementation (UUID) defined to the Broker, saves
the information returned by that Agent, and so on, until the requested function has
been invoked for each defined implementation. At the conclusion of this process the
Broker analyzes the responses, producing one consolidated response which is
provided upon return to the requesting Application Client.

At this point the Application Client will have received control back from the Broker, along with
an appropriate XSLM-defined return code and all output data defined for the requested XSLM
function.

3.2 Management Agent
The Management Agent provides management clients with a means of accessing all supported
XSLM-defined management services without requiring knowledge of the methods used to
implement those services; that is, without knowing which implementation is being used, how
function is distributed between the Agent and its corresponding server(s), or which protocol is
being used to effect physical communication between the agent and its server(s).

As illustrated in Figure 3-2 on page 23, each conforming implementation must provide a
Management Agent physically consisting of at least one dynamically loadable module). This
DLM must be named "uuidXMAPI.DLM" where "uuid" is the publisher identification (UUID) for
the licensing system that provides the DLM.

Each Management Agent must export the names of all XSLM management (XMAPI) functions.
This provides the means by which a management client can dynamically bind to one or more
Management Agents.

3.2.1 Communication Protocol

XSLM does not define the protocol over which a Management Client and a license server
communicate. The physical (wire level) communication protocol between a given licensing
system’s Management Agent and corresponding license server(s) is implementation specific, and
transparent to clients.

As illustrated in Figure 3-1 on page 20, each implementation’s Management Agent must
physically consist of at least one dynamically loadable module (DLM) that exports the names of
all XSLM-defined management functions. This provides Management Clients with access to all
XSLM-defined management functions without requiring client knowledge of the methods used
to implement those functions; that is, without knowing how functionality is distributed between
the Agent and its corresponding server(s), or what protocol is being used to effect physical
communication between the Management Agent and the server(s).

There is no specified limit as to the number of Management Agents a Management Client may
concurrently load. A client must, at a minimum, load an agent at least once for each licensing
system implementation with which it intends to communicate.

Server-level addressability (XMAPI requests directed to a specific licensing system server)
facilitates the creation of management tools that can provide a single point of control for a given
logical licensing system comprised of multiple physical servers while maintaining an accurate
topological view of the physical components of that licensing system.

The XMAPI provides for directed communication with any compliant license server through a
unique communications handle provided by the Management Agent (DLM) associated with the

22 Technical Standard:

Processing Flow and Linkages Management Agent

server implementation. The "XSLM_Query_Servers" function, directed to the implementation
Management Agent, is used to obtain the communication handle for each active server for that
implementation. A management application may subsequently direct XMAPI requests to a
specific server running on the behalf of an implementation by invoking the desired XMAPI
function (contained in the corresponding implementation Management Agent) and providing as
an input parameter the communication handle for the desired target server.

Figure 3-2 Management API Architecture

3.2.2 Management Client-to-Licensing System Communication

This specification does not define the protocol over which a Management Client communicates
with an XSLM-compliant licensing system, or with the license servers that comprise it.

The physical (wire level) communication protocol between XSLM-enabled management clients
and license servers is implementation specific, yet transparent to those clients. This is
accomplished by requiring clients to dynamically bind to a unique implementation specific
Management Agent for each licensing system implementation. This direct binding to multiple
Agents is, unlike for Application Clients, required for Management Clients because management
clients require complete knowledge of the physical topology of the logical licensing system.

Referring to the numbered steps in Figure 3-1, the process through which Management
Client-to-licensing system server is effected is as follows:

1. The Management Client, via an implementation dependent method, locates its
initialization information. This information includes a list of publisher UUIDs for the
licensing system implementations with which the Client may establish a dynamic binding.
These UUIDs are used by the Management Client to locate each licensing system’s
Management Agent (implementation) DLM. This is possible because each compliant
implementation is required to supply an Agent DLM named "uuid_XMAPI.DLM", where
"uuid" is the implementation publisher’s UUID.

The Client, having located all required Management Agent DLMs, invokes the
"XSLM_Query_Servers" function for each Management Agent to obtain a list of the
identities and attributes of the active license servers for each implementation. The output

Systems Management: Software License Use Management (XSLM) 23

Management Agent Processing Flow and Linkages

of this function provides the Management Client with the information required to direct
XSLM requests to each active server for a specific implementation. By consolidating the
information obtained from the Management Agents for all specified implementations the
Management Client is able to determine the identities and logical communication
identifiers of all servers comprising the XSLM-compliant licensing system.

2. The Management Client receives an implementation specific management request from
either a terminal user or management application program (tool).

3. The Management Client, based on the input received from the terminal user or program,
calls the required XSLM-defined management function entry points contained within one
or more Client selected Management Agent DLMs.

4. The Management Agent, upon receiving control at the Management Client-selected XSLM-
defined function entry point, prepares a licensing system implementation-dependent
representation of the function request and forwards it to a compatible license server
belonging to the same publisher as the one that provided the Agent. XSLM does not
specify the form of the function request representation, or the means by which that
representation is communicated to, nor how the response to the represented request is
received from, the licensing system server.

5. The license server receives the implementation specific representation of the XSLM
management function request over a licensing system (implementation) defined
communications medium. The server processes the request, prepares an appropriate
response, and sends the response back to the requesting Management Agent.

6. The Management Agent converts, as necessary, the server response information to a form
compliant with that mandated by the requested XSLM function. The XSLM-compliant
response data is then returned to the Management Client.

7. The Management Client receives control back from, and processes the output data
returned by the Management Agent. Depending on the terminal user or program request,
the Management Client may choose to make subsequent calls to the same or to other
Management Agent functions.

At this point the Management Client completes the terminal user or program request by
preparing an appropriate (implementation dependent) response that is either delivered to
(displayed upon) the user’s terminal, or returned to the requesting (management) program
(tool).

24 Technical Standard:

Chapter 4

Authentication and Data Integrity

This chapter defines the aspects of security that must be supported by a XSLM-compliant
licensing system. The use of these security mechanisms is optional on the part of the application
software publisher.

4.1 Scope
An XSLM-compliant licensing system provides the following security features:

• License certificate integrity
to verify that a certificate submitted to the licensing system was not changed after its
creation.

• License certificate authenticity
to verify that a certificate submitted to the licensing system was created by the intended
software application publisher.

• Licensing system authentication.
to verify that the licensing system which an agent is communicating with is the intended
licensing system.

4.2 Security Mechanisms Deployed
This XSLM Technical Standard relies on public-key technology to provide the integrity and
authenticity features identified above.

There are a number of different public-key schemes that can be used. These algorithms share the
common characteristic that keys exist in pairs, ‘‘k’’ and ‘‘K’’ . Key k is kept secret by its owner
and is called the private key , while key K is published and available to all interested parties and is
called the public key . The operation called signing requires the possession of the private key and
of the data being signed. The operation called verification requires the possession of the public
key and of the signed data. If successful, the verification operation proves that the signature was
created by an entity in possession of the private key at the time of signing, and that the data in
question has not been altered. These signing and verification operations might involve the use of
a cryptographically sound hash function, and the use of cryptographically sound encryption and
decryption functions. The description and definition of these functions and operations is outside
the scope of this Technical Standard. In XSLM, all other kinds of authentication, integrity, and
security are the responsibility of the licensing system, and of the supporting environment in
which the application executes.

The trust which can be placed in the verification operation resides in the trust which can be
placed in the association between the public key and the owner of the private key who signed
the data. This trust can be established by an external framework (referred to as Public Key
Infrastructure, or PKI) in which one or more Certification Authorities (CA) can issue
authentication certificates (or digital certificates), in which the association between a public key
and the entity owning the corresponding private key is made. The authentication certificates are
signed by the CA and then made available through public lists, so that anyone trusting the CA
and in possession (in a trusted way) of the public key of the CA can verify the authenticity of the
certificate and obtain, in a trusted way, the public key of the party of interest.

Systems Management: Software License Use Management (XSLM) 25

Security Mechanisms Deployed Authentication and Data Integrity

All of the above clearly relies on the basic assumption of security, that is, "the secret is secret", or
in other words the private key is never compromised.

Additional aspects of the functionality needed for security are assumed to be provided by the
licensing system in an implementation-dependent way, or by the environment in which the
licensing system and/or the application execute. These are outside the scope of this Technical
Standard.

4.3 License Certificate Integrity
The license certificate integrity (and authenticity) is assured by the application software
publisher by signing the certificate at the time it is created. The certificate integrity (and
authenticity) is verified by the licensing system at the time the certificate is installed in the
license data base, by using the public key of the application software publisher which created
the certificate.

It is assumed that the licensing system is a legitimate one and has not been compromised, that is,
the binary code has not been patched in order to have a different behavior.

An optional data element on the license certificate, called authentication section , contains all the
information needed by the licensing system for the verification operation. If the data element is
not present, the licensing system is not required to perform any validation.

Three cases arise:

• The authentication section may contain an authorization certificate, issued by a CA trusted
by the licensing system.

In this case, the verification of the license certificate is done in two steps:

1. The licensing system verifies the authorization certificate. How the licensing system
acquires the public key of the CA is outside the scope of this specification.

2. The licensing system verifies the license certificate with the public key of the
application software publisher, which it has just found in the verified authorization
certificate.

• The authentication section may contain the request that the licensing system should only
validate the license certificate by using an authorization certificate issued by some trusted
CA. How the authorization certificate and the CA public key are made available to the
licensing system is outside the scope of this Technical Standard. There is however the
requirement that the application software publisher information contained in the
authentication certificate must be exactly the same information which is provided in the
license certificate.

• The authentication section may contain only the public key of the application software
publisher (that is, it does not contain any authorization certificate) which will be directly
used by the licensing system to verify the certificate.

This simple verification scheme can detect "naive" tampering with the certificate, but cannot
detect the replacement of the entire certificate with a forged one created and signed by a
malicious party, and therefore can not ensure that the license certificate is a valid one, issued
by the intended software application publisher.

It is recommended that this scheme is only used in conjunction with the verification of
authenticity, described below.

26 Technical Standard:

Authentication and Data Integrity License Certificate Authenticity

4.4 License Certificate Authenticity
At run time, whenever a license is requested (by means of an xslm_basic_request_license() or
xslm_adv_request_license() API call), an application can dictate the behavior of the licensing
system by setting the appropriate value of an input parameter:

• In the simple case, the licensing system is not required to perform any authenticity check of
the license certificate.

• In the second case, the licensing system is directed to grant licenses only if they come from
certificates whose authenticity was verified by the licensing system through the use of an
authentication certificate.

• In the final case, the licensing system is directed to verify that a key received from the
application (through another parameter of the same request call) is equal to the public key
contained in the license certificate. Since the value of the key provided by the application is
defined by the application software publisher, this check can ensure that the certificate
installed in the license data base was also created by the same application software publisher.

In order for this validation to be trusted, in addition to the integrity of the licensing system, two
further assumptions have to be made:

• The application must be integer, that is, the binary code of the application has not been
patched in order to change the value of these parameters.

• The communication network between the application agent and the licensing system is
secure, so that no "man in the middle" can intercept the call and change the values which are
actually provided to the licensing system.

Otherwise the licensing system could be directed not to perform any check, or could be provided
with a false key, equal to the one provided in a completely forged license certificate.

4.5 Licensing System Authentication
The goal of this authentication scheme is to allow an application (or a management tool) to
check both the integrity and the authenticity of each message (that is, input and output
parameters) passed between the application and the licensing system which the agent is
communicating with. If an application software publisher chooses to implement this scheme
into an application, they will restrict the application to work only with those licensing system
which have provided to the application the needed information prior to a license request (see
below).

The authentication is based on a signature generated by the licensing system, where the data
being signed is all the parameters received from the application and all the data returned to it,
and returned to the application together with the licensing system’s unique identifier. This
identifier is used by the application to select the appropriate public key to be used for the
verification of the signature.

The trust in this scheme is based on the association between the licensing system unique
identifier and the public key available to the application for the verification, and therefore is
reliable also in the presence of a non-secure communication network between the application
and the licensing system. How this trusted association is achieved is outside the scope of this
Technical Standard.

Note: This scheme is only available to applications using the advanced application API.
Applications using the basic application API can use, if available, an application
broker statically linked with the application (see Section 3.1 on page 19), that

Systems Management: Software License Use Management (XSLM) 27

Licensing System Authentication Authentication and Data Integrity

implements this scheme on behalf of the application. This Technical Standard does
not require that an implementation must provide such a broker.

4.6 Process Description
All licensing system publishers that want to be authenticated by an application using this
scheme must provide to the application software publisher (in a trusted way, outside the scope
if this Technical Standard) the information needed to successfully authenticate the data returned
by the licensing system, namely:

• The algorithms used for signing

• The corresponding public key to be used for verification

• A unique identifier of this specific licensing system.

Note: It is recommended that licensing system publishers provide a library containing the
appropriate authentication functions, to make the use of this scheme easier for an
application publisher. To improve security, it is recommended that this library
should be statically linked with the application. The public key could be embedded
in this library or, better, could be provided on external removable media accessed by
the application at run time.

The application software publisher embeds in the application the knowledge of the licensing
system unique identifiers that the application will support, and for each API call will follow the
steps described below.

Figure 4-1 Licensing System Authentication Process

Referring to the numbers in Figure 4-1:

1. The application generates an arbitrary token , known only to the application, which can be
any arbitrary number (for example, a timestamp, or a randomly generated number) which
is different in each API call. The data signed by the licensing system will include this
variable element, to provide protection against a possible "replay" of old messages by an
imposter licensing system.

2. The token is passed to the licensing system as one of the input parameters of the API call.
All the management API functions and most of the advanced application API functions
contain this parameter.

28 Technical Standard:

Authentication and Data Integrity Process Description

3. The licensing system processes the request.

4. If the value of the token was not set to 0 (meaning that no authentication was needed), the
licensing system signs all the data transmitted in the API call (that is, all the input
parameters as received by the application and all the output parameters just computed)
using the private key of the licensing system publisher.

5. The licensing system returns to the application the signature and the licensing system
identifier, along with all the other output parameters.

6. The application uses the value of the returned licensing system identifier to determine the
verification technique and the public key to be used for verification.

7. The application verifies the signature returned by the licensing system.

If the verification operation is successful then the application is assured that the licensing system
is the intended one and that the data returned by the licensing system was received with
integrity.

Systems Management: Software License Use Management (XSLM) 29

Authentication and Data Integrity

30 Technical Standard:

Chapter 5

Data Types and Data Elements

This chapter defines the primary data types and the different types of data elements used within
an XSLM license certificate, as well as for the external representation of data elements
maintained internally by a licensing system, such as certificate-instance data, status data, and
logging data.

All "normal" API parameters (those not described as being represented as XSLM-specific data
elements), both for the Application API and the Management API, use the data representation
commonly used within the particular environment in which the application is executing — it is
up to the licensing agents to transform the data as needed.

The API definitions use several type definitions, loosely defined later in this chapter. The formal
definitions are provided in Chapter 10 on page 121.

5.1 Data Types
This section describes the detailed representation of all primary data types used within an XSLM
licensing system.

5.1.1 Bit and Byte Numbering and Order

Within XSLM, the eight bits within a byte are numbered from left to right, starting with 0 and
ending with 7. Bit 0 is the most-significant position.

Multi-byte values are stored as a sequence of bytes, in such an order that the left-most byte is the
most significant byte. Within such a multi-byte value, the bytes are numbered from the left,
starting with 0. Individual bits within such a multi-byte value can be referred to either by its bit
position within a particular byte, or as its bit position within the multi-byte value, again starting
the numbering from the left-most bit as bit 04.

5.1.2 Fixed-Point Binary Numbers

All fixed-point binary numbers are (except where noted) stored as non-negative numbers, 4
bytes wide, with a maximum value of 2**31-15.

This data type is referred to as DTP_FIXED.

4. This detailed description is needed to ensure that data can be created and manipulated within different computing platforms,
even if they normally use different methods of representing such data (for example, little-endian versus big-endian)

5. Thus, in most programming languages and computing environments, they may be represented as either unsigned or signed
binary numbers.

Systems Management: Software License Use Management (XSLM) 31

Data Types Data Types and Data Elements

5.1.3 Floating-Point Numbers

All floating-point numbers are (except where noted) stored in IEE754 Double Float format, that
is, as a 64-bit multi-byte value containing (starting from the left) 1 bit for the sign, 11 bits for the
exponent, and 52 bits for the base-2 fraction.

This data type is referred to as DTP_FLOAT.

5.1.4 Character Strings

Character (text) strings are stored in Unicode, using a slightly modified version of the UCS
Transformation Format 8 bit (UTF-8) format6.

All compliant licensing systems must be able to correctly process and display the Unicode Basic
Latin character range. Other UCS characters must be correctly processed, but need not be
displayable. However, any non-displayable character must still be included as part of the text
string, whenever that string is being passed to an API caller.

Character strings are not 0-terminated. Instead, each character string is preceded by two length
values: a 4-byte non-negative fixed-point binary number equal to the character count (indicating,
in most cases, the display length) and a 4-byte non-negative fixed-point binary number equal to
the byte count (indicating the number of bytes used to store the string) These counts do not
include their own lengths, and may both be 0 to represent an empty string.

This data type is referred to as DTP_TEXT.

5.1.5 Byte Strings

Byte (binary) strings are stored as a sequence of bytes, numbered from the left, starting with the
first byte being assigned the position 0.

Byte strings are not 0-terminated. Instead, each byte sequence is preceded by a length value: a 4-
byte non-negative fixed-point binary number equal to the byte count (indicating the number of
bytes used to store the string). This count does not include its own length, and may be 0 to
indicate an empty string.

This data type is referred to as DTP_BSTR.

5.1.6 Date/Time and Time-Interval Values

Unless otherwise specified, all date and time values, as well as interval values, are stored in
character format,7. as described below.

6. In this modified format, each character in the Basic Latin character range except the code U+0000 (that is, U+0001-U+007F) is
represented as a single byte with a numeric code value equal to its UCS code value. All other UCS characters are represented by
two or more bytes. This encoding ensures that all of the 0x01 through 0x7f ASCII codes can be represented in a single-byte
format with no conversion required between the ASCII and Unicode formats.

7. Using the modified UTF-8 format described above, but without any length fields (the date/time format uses a fixed-length
format).

32 Technical Standard:

Data Types and Data Elements Data Types

Representation of a Point in Time

A particular point in time is defined as follows:

YYYYMMDDhhmmss.mmmmmm[±]UUU

where YYYY represents the century and year; MM represents the month ordinal (01...12); DD
represents the day of month ordinal (00...31); hhmmss represents the hour, minute, and second;
mmmmmm represents the fractional time in micro-seconds; ± indicates that the time value is
offset from UTC time by a positive (+) or negative (−) value (UUU), given in minutes (000...720).

If less precision is desired, then the characters to the left of ± can be replaced (from right to left)
with one or more asterisks ("*")). Any omitted part is assumed to take on its lowest value.

In addition, if ±UUU is given as +***, then no time offset is used, representing local time at the
licensing system server, and if ±UUU is given as ****, then the time given represents local time at
the licensing system agent.

This data type is referred to as DTP_TIME.

Representation of a Time Interval

A time interval is defined as follows:

DDDDDDDDhhmmss.mmmmmm:000

where DDDDDDDD represents the number of 24-hour days; hhmmss represents the number of
hours, minutes, and seconds; mmmmmm represents fractional elapsed time in micro-seconds;
:000 (which must be specified exactly as given) indicates that the time value represents a time
interval.

This data type is referred to as DTP_INTVL.

5.1.7 Universally Unique Identifiers (UUIDs)

Some license certificate elements, such as PUBLISHER-ID and LICENSING-SYSTEM-
PUBLISHER-ID must contain values that are guaranteed to be unique in the global name space.
Such values are defined as 16-byte long byte strings containing Universal Unique Identifiers
(UUIDs)8.

A UUID is created by combining the current (local or UTC) date and time, a unique value such
as a network card ID, and a serial number (unique within the organization creating the UUID).

The creation of a UUID is left at the discretion of the organization that needs to define one. There
is no global directory of UUIDs in use and their corresponding "owners"instead, each occurrence
of a UUID within a license certificate is accompanied by a character string representation of the
creating organization. (There is no requirement that all such representations for a given UUID be
identical, although in general this is the preferred method.)

This data type is referred to as DTP_UUID.

8. Also known as Globally Unique Identifier (GUID).

Systems Management: Software License Use Management (XSLM) 33

Data Elements Data Types and Data Elements

5.2 Data Elements
Each data element is of one of two types: simple or compound . Simple data elements, such as
integers and strings, are used to represent individual values; compound data elements, such as
structures and lists, are used to represent a collection of related data elements (which can
themselves be either simple or compound).

5.2.1 Simple Data Elements

A simple data element consists of three control fields, and the actual data value (whose format
depends upon the data type).

Data Type Data Element ID Data Element Data Element Value
Sequence Number

4 bytes 4 bytes 4 bytes Variable

Data Type
provides syntactic information sufficient to parse the data element, even if the particular
data element definition is not understood.

Data Element ID
provides semantic information needed to properly process the element data. Without prior
knowledge of the meaning of this identifier, the data element cannot be understood by a
licensing system; however, the Data Type syntactic information may enable a management
tool to provide some limited form of management capability even for such data elements.

Data Element Sequence Number
is a certificate-unique, arbitrary, number that can be used by the management API functions
to update a particular data element, once its sequence number is known (by first retrieving
the complete certificate). Once a data element sequence number has been assigned to a data
element (including certificate-related state information), it can never change.

Data Element Value
provides the actual value of the particular data element.

In addition to the primitive data types described above, many simple data elements may also be
of type DTP_NULL, or empty9. This data type may be used in place of any data type normally
associated with a particular data element ID to indicate that the element has a "null" (or
unspecified) value. An empty data element contains only the data type, data element ID, and
data element sequence number fields; the data element value is omitted.

9. The detailed data element descriptions in Chapter 10 indicate whether a particular data element may take on the "null" value.

34 Technical Standard:

Data Types and Data Elements Data Elements

5.2.2 Compound Data Elements

There are two kinds of compound data elements: structures and lists . These are syntactically
identical, but are used to represent two very different types of data elements.

A structure data element consists of a data element header, followed by zero or more data
elements (simple or compound), that can be of the same or different types. A list data element,
on the other hand, consists of a data element header, followed by zero or more occurrences of
one data element (simple or compound). The data elements included within a structure data
element can be either required or optional; required ones must be present, while optional ones
may be omitted .

A compound data element consists of three control fields, a component count field, and the total
length in bytes of the nested data elements that follow.

Data Type Data Element ID Data Element Component Length of Nested
Sequence Number Count Data Elements

4 bytes 4 bytes 4 bytes 4 bytes 4 bytes

Data Type
provides syntactic information sufficient to parse the data element, even if the particular
data element definition isn’t understood.

Data Element ID
provides semantic information needed to properly process the element data. Without prior
knowledge of the meaning of this identifier, the data element can’t be understood by a
licensing system; however, the Data Type syntactic information may enable a management
tool to provide some limited form of management capability even for such data elements.

Data Element Sequence Number
is a certificate-unique, arbitrary, number that can be used by the management API functions
to update a particular data element, once its sequence number is known (by first retrieving
the complete certificate). Once a data element sequence number has been assigned to a data
element (including certificate-related state information), it can never change.

Component Count
indicates the number of data elements that are included within this compound data
element. Note that these data elements may themselves be compound data elements. If the
value of component count is 0, then the compound data element is effectively a "null"
element.

Length of Nested Data Elements
is the total length in bytes of all the data elements that are part of the current compound
data element.

Systems Management: Software License Use Management (XSLM) 35

Data Elements Data Types and Data Elements

5.2.3 API Data Types

The following data types are used within the API definitions, with meanings as described.
Actual definitions will be provided by licensing system vendors.

Name Description
A 32-bit unsigned binary integer. The value-range
is such that the high-order bit is always 0.

xslm_uint32

A data structure containing a licensing-system-
created handle corresponding to an instance of a
license, or to an active session between an
application and a licensing system. The internal
data format of this structure may vary from
implementation to implementation — an
application should not have any reason to inspect
the structure details. However, in all
implementations, this data structure must be
represented by exactly 64 bits.

xslm_handle

Binary string of unspecified length (length
specified as a separate parameter, unless the
length is fixed by the architecture).

xslm_bin_string

Text string of unspecified length (length specified
as a separate parameter, unless the length is fixed
by the architecture).

xslm_string

xslm_uuid A 128-bit string containing a UUID data structure.
A 25-character string containing date and time
values as specified in Section 5.1.6 on page 32.

xslm_tod

A double-precision 64-bit floating-point type,
representing format IEEE 754 values, as specified
in IEEE Standard 754-1985, that is, 64-bit multi-
byte values containing (starting from the left) 1
bit for the sign, 11 bits for the exponent, and 52
bits for the base-2 fraction.

xslm_float

36 Technical Standard:

Chapter 6

License Certificate Format

The primary purpose of a license certificate is to encode the terms and conditions contained
within a license agreement in a machine-readable representation. In addition, a license certificate
may also contain certain management-related information that is not directly included within
the license agreement, such as designations of specific users that may use a product; whether
exceeding the available number of concurrent uses should result in rejection of further license
requests; and so on.

The license certificate format is such that an external license certificate can be created in an
environment different from that where the license certificate will be installed, and different from
the environment where the licensed application will be running. There is not even any
requirement that the tools used to create a license certificate and to install it into a license server
are provided by the same publisher. The only requirement is that the tools used by publishers
and customers both can create and accept the same external representation.

A license certificate issuer may deliver a license certificate to a customer in many different ways,
for example as a binary file on a diskette; as a binary-file attachment via electronic mail; or as a
textual representation (for example, by displaying each binary byte of data as two hexadecimal
characters) via fax. Some publishers may choose to include a limited-function license certificate
on the shipping media for a product; others may require the customer to contact the publisher to
receive a license certificate. Any such delivery mechanism is acceptable. However, all compliant
license servers must be able to process a license certificate as a pure binary file, as described in
this chapter.

A license certificate may contain security and integrity data (such as a digital signature) to
ensure that any tampering is detectable by the licensing system, or directly by the application
when it requests a license.

This chapter specifies the format of a license certificate and defines how application and
licensing system publishers can define their own, private, data elements. Chapter 10 contains a
list of all predefined data elements, both required and optional ones.

6.1 Overall Certificate Structure
In its simplest form, a license certificate consists of a compound data element (as described in
Section 5.2 on page 34) containing one or more sections, each in turn made up of one or more
simple and/or compound data elements. Some of these predefined data elements are required,
while others are optional. In addition, both application publishers and licensing system
publishers can define their own custom data elements within special sections. However, it’s also
possible to combine several independent certificates in one certificate group, for example when
licensing several products together in a bundle or suite. Table 6-1 shows the overall structure of
a certificate (the detailed definition is given in Chapter 10).

Systems Management: Software License Use Management (XSLM) 37

Overall Certificate Structure License Certificate Format

GROUP_CERTIFICATE
GROUP_TYPE
CERTIFICATE_LIST

CERTIFICATE
BASE_SECTION
PUBLISHER_SECTION
LICENSING_SYSTEM_SECTION_LIST

LICENSING_SYSTEM_SECTION
AUTHENTICATION_SECTION

GROUP_AUTHENTICATION_SECTION

A certificate group consists of one or more
related certificates (if there’s only one
certificate, the group element may be
omitted). Each certificate contains a required
base section, may have an application-
publisher-defined section and/or one or
more licensing system-dependent sections,
and/or an authentication section. Finally,
the certificate group (if present) must have
its own authentication section.

BASE_SECTION
FUNCTIONAL_LEVEL
CERTIFICATE_CREATED
CERTIFICATE_ID
CERTIFICATE_DESCRIPTION
PUBLISHER_USE
REPLACE_CERTIFICATE
LIFE
DURATION
LICENSED_UNITS
PUBLISHER_CAPACITY_LIMITS_LIST
PUBLISHER_ASSIGNMENTS_LIST
CERTIFICATE_TARGET_NODES
CUSTOMER_ASSIGNABLE_LIMITS
COUNTERS_CONSUMPTIVE
COUNTERS_CUMULATIVE
CONFIRM_INTERVAL
NON_MASKABLE_EVENTS
RESETTING_FREQUENCY
LOCALLY_AVAILABLE
DEFAULT_UNITS_TO_GRANT
FORCE_RELEASE_OK
ADVANCE_EXPIRATION_NOTIFICATION
DISASTER_RECOVERY
MULTI_USE_ALLOWED

The base section contains all the data
elements normally used for granting license
requests. Of particular importance are
CERTYIFICATE_ID whose components
uniquely identify a particular certificate;
REPLACE_CERTIFICATE which allows an
already installed certificate to be replaced
with an updated one; LIFE and DURATION
which define the date/time interval during
which the certificate is valid; and UNITS
which specifies the number of license units
(for example, number of concurrent users of
an application, or how many times an
application may be executed).

The remaining components further qualify
and quantify how license request can be
granted from this certificate, and also define
such items as the counters used for
application-initiated metering; control of
which events must be logged; and some
management-related elements such as
whether the customer may make use of this
certificate in a disaster recovery situation.

Table 6-1 License Certificate Structure

6.1.1 Required and Optional License Certificate Sections

The base section contains all data elements that are required within a certificate, as well as the
data elements that are optional but for which the certificate issuer wants to specify values. This
section is required.

The publisher section contains data elements that the certificate issuer has defined for use
directly by the application. These data elements are not understood by the licensing system; the
only processing it will perform on this section is to store it and make it available to an
application upon request. This section is optional.

The licensing system sections contain settings for data elements defined by a particular licensing
system publisher. These data elements are only understood by the licensing system that defines
them. A certificate that contains licensing system sections may only be installed on a licensing
system that understands one of the licensing system sections. This section is optional, and there

38 Technical Standard:

License Certificate Format Overall Certificate Structure

may be more than one such section (but at most one for each unique licensing system).

One possible use of a licensing system section is to encapsulate the complete license password
and data pertaining to a license managed by a technical license manager, thus providing a way
to provide some management capabilities also for such licenses without requiring major changes
to their format.

Finally, an authentication section may optionally be part of each certificate as well as of the group
of certificates, to ensure that the data created by the certificate issuer is unaltered when it reaches
the licensing system and, eventually, the licensed application.

6.2 License Certificate State Data
In addition to the data contained within a license certificate, each licensing system must
maintain some license certificate-related data that, while not physically part of a license
certificate, logically can be seen as belonging to it. This includes the following types of data:

• Local copies of certain data elements maintained by the licensing system to permit
modifications by an administrator or application program (for example, choice of hard stop-
policy instead of soft-stop policy; default license re-confirm time).

• License certificate-related specifications made by an administrator (for example, user- and
node-assignments).

• Certain types of data elements that can never occur within a license certificate, but from the
outside appear as if they are part of it (for example, application-recorded usage data; number
of concurrent license requests granted at this point in time).

These types of data can be considered collected into a state section. The status section is not part
of the certificate as created by a certificate issuer — it exists only within the data maintained by a
licensing system and its contents is made available externally via the management API.

6.3 Base and Optional Data Element Sets
The certificate data elements defined in this specification are arranged in sets. The basic set
contains all data elements that must be supported by all compliant licensing systems. Other sets
contain data elements that need not be supported by all licensing systems. However, any
licensing system that supports one data element within a particular set must also support all
other data elements within that set. (The current specification defines the basic set and one
optional set.)

A certificate that contains data elements defined in one or more optional sets can only be
installed in a licensing system that supports all those sets.

Systems Management: Software License Use Management (XSLM) 39

License Certificate Format

40 Technical Standard:

Chapter 7

Application Program API

This chapter contains a detailed description of the callable functions included in the basic and
advanced sets of the Application Program API (XAAPI).

An application can concurrently use both the basic application API set and the advanced
application API set for different licenses. However, a license obtained via
xslm_basic_request_license() can only be manipulated via the basic application API set, and a
license obtained via xslm_adv_request_license() can only be manipulated via the advanced
application API set.

Systems Management: Software License Use Management (XSLM) 41

Application API - Common Functions Application Program API

7.1 Application API - Common Functions
In order to provide exploitation of licensing system functions available in a licensing system
implementation, an application must have the ability to determine the XSLM functional level of
the licensing system. The xslm_query_api_level () function is defined to satisfy this requirement.

A customer’s licensing system may be comprised of servers from multiple implementations
and/or (in the future) servers conforming to different levels of the XSLM specification. In
responding to a query of the licensing system functional level, an Application Broker must
return the highest implementation level supported by all license servers, as well as by the Broker
itself.

XAAPI Function Usage
Returns the maximum API level
supported by the licensing system.

xslm_query_api_level()

7.2 Application API - The Basic Set

XAAPI Function Usage
xslm_basic_confirm() Confirms that a license is still in use.
xslm_basic_release_license() Releases a previously acquired license.
xslm_basic_request_license() Requests a license to run.

7.3 Application API - The Advanced Set

XAAPI Function Usage
xslm_adv_begin_session() Starts a license use session.
xslm_adv_confirm() Confirms that a license is still in use.
xslm_adv_end_session() Ends a license use session.
xslm_adv_log() Logs an application-specified message.
xslm_adv_query() Requests certificate-related information.
xslm_adv_record() Records application-collected usage data.
xslm_adv_release_license() Releases a previously acquired license.
xslm_adv_request_license() Requests a license to run.

42 Technical Standard:

Application Program API xslm_adv_begin_session()

NAME
xslm_adv_begin_session

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_adv_begin_session(
xslm_handle * session_handle,
xslm_uint32 * status

);

DESCRIPTION
xslm_adv_begin_session() establishes a reference which is used to keep track of composite
licensing activities (that is, multiple license requests identified by different handles) as a whole.
A session may include license requests for products from one or more publishers.

OUTPUT PARAMETERS

session_handle
An identifier representing the newly created session.

status
Completion status. Detailed error code directly processable by the caller. This value is set to
XSLM_STATUS_OK if no error occurred. For other values, see ERRORS.

RETURN VALUE

XSLM_OK
Session created

XSLM_COMM_ERR
Communications problem

XSLM_RESRC_UNAVL
Local resources unavailable

XSLM_PARM_ERR
Parameter error

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred

The licensing system does not
respond

XSLM_COMM_ERR XSLM_LIC_SYS_NOT_RESP

XSLM_RESRC_UNAVL XSLM_NO_RES Platform dependent
One or more parameters were not
correct

XSLM_PARM_ERR XSLM_BAD_PARM

Systems Management: Software License Use Management (XSLM) 43

xslm_adv_begin_session() Application Program API

SEE ALSO
xslm_adv_end_session().

44 Technical Standard:

Application Program API xslm_adv_confirm()

NAME
xslm_adv_confirm

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_adv_confirm(
xslm_handle session_handle,
xslm_handle lic_handle,
xslm_uint32 * confirm_time,
xslm_uint32 * status,
xslm_uint32 auth_token,
xslm_bin_string * auth_signature,
xslm_uuid * auth_lic_sys_id,

);

DESCRIPTION
xslm_adv_confirm() confirms that a license is currently in use. Should the license server not
receive confirmation from the product within the default time period specified in the certificate,
the license server will assume the license is no longer in use and will terminate the license and, if
it is of the CONCURRENT type, return the respective number of units. This call allows the
specification of the confirm_time value.

INPUT PARAMETERS

session_handle
A reference returned by xslm_adv_begin_session()

lic_handle
A reference returned by xslm_adv_request_license()

auth_token
A 32-bit arbitrary value created by the application and used as part of the licensing system
authentication process. See Section 4.6 on page 28 for more information.

INPUT/OUTPUT PARAMETERS

confirm_time
Elapsed time (in seconds) within which the license server will expect the next
xslm_adv_confirm() call. Failure to confirm continued license use will cause the license
server to assume that the product is no longer active and, if the license is reusable, return it
to the pool of available licenses. If confirm_time is specified as 0, the license server will return
the current value.

A confirm_time value specified by an application overrides any value contained within the
license certificate, or any value set by the administrator.

OUTPUT PARAMETERS

status
Completion status. Detailed error code directly processable by the caller. This value is set to
XSLM_STATUS_OK if no error occurred. For other messages, see ERRORS.

auth_signature
An area large enough to contain a 16-byte digital signature created by the licensing system
from the input parameters and auth_token. Used as part of the licensing system
authentication process.

Systems Management: Software License Use Management (XSLM) 45

xslm_adv_confirm() Application Program API

auth_lic_sys_id
A unique identifier for the particular type of licensing system handling the current license
instance. Used as part of the licensing system authentication process.

RETURN VALUE

XSLM_OK
License still valid

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR
Problem with license and/or certificate

XSLM_RESRC_UNAVL
Local resources unavailable

XSLM_PARM_ERR
Parameter error

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred

The licensing system does
not respond

XSLM_COMM_ERR XSLM_LIC_SYS_NOT_RESP

A capacity limit attached to
the license has been
exceeded

XSLM_CERT_ERR XSLM_CAPACITY_LIMIT

XSLM_RESRC_UNAVL XSLM_NO_RES Platform dependent
The handle is invalid,
perhaps because the
xslm_adv_confirm() call was
issued too late

XSLM_PARM_ERR XSLM_BAD_LICENSE_HANDLE

One or more parameters
were not correct

XSLM_BAD_PARM

The specified session handle
is invalid

XSLM_BAD_SESSION_HANDLE

Attempt to combine basic
and advanced API for same
handle

XSLM_INVALID_API_USE

SEE ALSO
xslm_adv_begin_session(), xslm_adv_request_license().

46 Technical Standard:

Application Program API xslm_adv_end_session()

NAME
xslm_adv_end_session

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_adv_end_session(
xslm_handle session_handle,
xslm_uint32 * status

);

DESCRIPTION
xslm_adv_end_session() terminates the session established by a call to xslm_adv_begin_session().
All active licenses requested under the session to be terminated will be released.

INPUT PARAMETERS

session_handle
A reference returned by xslm_adv_begin_session().

OUTPUT PARAMETERS

status
Completion status. Detailed error code directly processable by the caller. This value is set to
XSLM_STATUS_OK if no error occurred. For other messages, see ERRORS.

RETURN VALUE

XSLM_OK
Session terminated

XSLM_COMM_ERR
Communications problem

XSLM_RESRC_UNAVL
Local resources unavailable

XSLM_PARM_ERR
Parameter error

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Systems Management: Software License Use Management (XSLM) 47

xslm_adv_end_session() Application Program API

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred

The licensing system does
not respond

XSLM_COMM_ERR XSLM_LIC_SYS_NOT_RESP

XSLM_RESRC_UNAVL XSLM_NO_RES Platform dependent
One or more parameters
were not correct

XSLM_PARM_ERR XSLM_BAD_PARM

The specified session handle
is invalid

XSLM_BAD_SESSION_HANDLE

SEE ALSO
xslm_adv_begin_session().

48 Technical Standard:

Application Program API xslm_adv_log()

NAME
xslm_adv_log

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_adv_log(
xslm_handle session_handle,
xslm_handle lic_handle,
xslm_uint32 * msg_length,
xslm_string msg,
xslm_uint32 * status,
xslm_uint32 auth_token,
xslm_bin_string * auth_signature,
xslm_uuid * auth_lic_sys_id

);

DESCRIPTION
xslm_adv_log () logs an application-specified text message into the license server’s log.
Publisher-specific message logging can usually be disabled by an administrator. When
application message logging is disabled, XSLM_MASK_APPLIED status value is returned and
no message is logged.

A return code of XSLM_OK merely indicates that the message to be logged has been accepted by
the license server; it may not have been committed to a physical log file.

INPUT PARAMETERS

session_handle
A reference returned by xslm_adv_begin_session().

lic_handle
A reference returned by xslm_adv_request_license().

msg
Text of the message. This can be of any length; however, a licensing system is not required
to accept more than 4,096 bytes.

auth_token
A 32-bit arbitrary value created by the application and used as part of the licensing system
authentication process. See Section 4.6 on page 28 for more information.

INPUT/OUTPUT PARAMETERS

msg_length
Length in bytes of the msg parameter. If specified as 0, or a value higher than the licensing
system can handle, this value is updated to indicate the maximum number of bytes that can
be accepted (in these cases, no data is written).

OUTPUT PARAMETERS

status
Completion status. Detailed error code directly processable by the caller. This value is set to
XSLM_STATUS_OK if no error occurred. For other messages, see ERRORS.

auth_signature
An area large enough to contain a 16-byte digital signature created by the licensing system
from the input parameters and auth_token . Used as part of the licensing system
authentication process.

Systems Management: Software License Use Management (XSLM) 49

xslm_adv_log() Application Program API

auth_lic_sys_id
A unique identifier for the particular type of licensing system handling the current license
instance. Used as part of the licensing system authentication process.

RETURN VALUE

XSLM_OK
Message accepted

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR
Problem with license and/or certificate

XSLM_RESRC_UNAVL
Local resources unavailable

XSLM_PARM_ERR
Parameter error

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Return Value Status Value Explanation
No errors occurred (including
the case when the input
length is 0)

XSLM_OK XSLM_STATUS_OK

Log record not written due to
log masking as set by an
administrator

XSLM_MASK_APPLIED

The licensing system does not
respond

XSLM_COMM_ERR XSLM_LIC_SYS_NOT_RESP

XSLM_CERT_ERR XSLM_LOG_ERROR Error accessing log
XSLM_RESRC_UNAVL XSLM_NO_RES Platform dependent

The specified license handle is
invalid

XSLM_PARM_ERR XSLM_BAD_LICENSE_HANDLE

One or more parameters were
not correct

XSLM_BAD_PARM

The specified session handle
is invalid

XSLM_BAD_SESSION_HANDLE

Attempt to combine basic and
advanced API for same
handle

XSLM_INVALID_API_USE

The specified message length
exceeds the maximum length
that the licensing system can
handle. No data is written.

XSLM_MSG_TOO_LONG

50 Technical Standard:

Application Program API xslm_adv_log()

Return Value Status Value Explanation
The maximum length
supported is returned in the
msg_length parameter.

SEE ALSO
xslm_adv_begin_session(), xslm_adv_request_license().

Systems Management: Software License Use Management (XSLM) 51

xslm_adv_query() Application Program API

NAME
xslm_adv_query

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_adv_query(
xslm_handle session_handle,
xslm_handle lic_handle,
xslm_uint32 query_type,
xslm_uint32 * query_buffer_length,
xslm_bin_string * query_buffer,
xslm_uint32 * status,
xslm_uint32 auth_token,
xslm_bin_string * auth_signature,
xslm_uuid * auth_lic_sys_id

);

DESCRIPTION
xslm_adv_query() returns various types of license certificate information associated with the
specified license handle.

INPUT PARAMETERS

session_handle
A reference returned by xslm_adv_begin_session().

lic_handle
A reference returned by xslm_adv_request_license().

query_type
Value which identifies the information to be returned:

Query Type Explanation
Return the publisher-unique section of the
license certificate publisher defined data
element structure. A returned
query_buffer_length value of null indicates
that the certificate contains no publisher-
unique section.

XSLM_QUERY_PUBLISHER_INFO

Return application-related information
specified by the customer. A returned
query_buffer_length value of null indicates
that the certificate does not contain the
CUSTOMER_ASSIGNED_APPL_INFO data
element.

XSLM_QUERY_CUST_DEF_INFO

Return the certificate as it has been created
by the application publisher.

XSLM_QUERY_CERTIFICATE

Return the certificate related information
maintained by the Licensing System.

XSLM_QUERY_CERT_RELATED_INFO

auth_token
A 32-bit arbitrary value created by the application and used as part of the licensing system
authentication process. See Section 4.6 on page 28 for more information.

52 Technical Standard:

Application Program API xslm_adv_query()

INPUT/OUTPUT PARAMETERS

query_buffer_length
As an input parameter, the length of the buffer to receive the results of the query. A value of
zero indicates a request for the size of the buffer required to contain the entire results of the
query. No data is returned in the key buffer when a value of zero is passed.

As an output parameter, the length of data returned, or the size of the buffer required to
contain the entire query result if the input value was zero.

Note that the buffer must be large enough to contain the entire result of the query. If it is
not, no data is placed in the buffer and the output value of query_buffer_length contains the
buffer length needed to contain the entire result. A value of zero on output indicates that the
requested information was not available on the certificate.

Note that because the certificate related information may change at any time, the actual size
needed may be different from the returned value in cases other than
XSLM_QUERY_PUBLISHER_INFO and XSLM_QUERY_CERTIFICATE query types.

OUTPUT PARAMETERS

query_buffer
Buffer in which the query results are returned. The results are returned as a set of one or
more data elements.

status
Completion status. Detailed error code directly addressable by the caller. This value is set to
XSLM_STATUS_OK if no error occurred. For other messages, see ERRORS.

auth_signature
An area large enough to contain a 16-byte digital signature created by the licensing system
from the input parameters and auth_token. Used as part of the licensing system
authentication process.

auth_lic_sys_id
A unique identifier for the particular type of licensing system handling the current license
instance. Used as part of the licensing system authentication process.

RETURN VALUE

XSLM_OK
Query completed successfully

XSLM_COMM_ERR
Communications problem

XSLM_RESRC_UNAVL
Resources unavailable

XSLM_PARM_ERR
Bad parameters passed

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Systems Management: Software License Use Management (XSLM) 53

xslm_adv_query() Application Program API

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred
XSLM_COMM_ERR XSLM_COMM_UNAVAIL Communications problem

Local platform specific
environmental problems

XSLM_RESRC_UNAVL XSLM_NO_RES

Unrecoverable
environmental error was
encountered by the
license server

XSLM_SERVER_ERROR

The non-zero value for
the buffer length was too
small for the certificate
being retrieved.

XSLM_PARM_ERR XSLM_BAD_BUFFER_LENGTH

Invalid license handle
passed.

XSLM_BAD_LICENSE_HANDLE

One or more parameters
were not correct

XSLM_BAD_PARM

The specified session
handle is invalid

XSLM_BAD_SESSION_HANDLE

Attempt to combine
standard and advanced
API for the same handle

XSLM_INVALID_API_USE

OUTPUT DATA

• For XSLM_QUERY_PUBLISHER_INFO, the data element PUBLISHER_SECTION, if present,
followed by the data element PUBLISHER_USE, if present.

• For XSLM_QUERY_CUST_DEF_INFO, the data element
CUSTOMER_ASSIGNED_APPL_INFO, if present.

• For XSLM_QUERY_CERTIFICATE, the data element CERTIFICATE.

• For XSLM_QUERY_CERT_RELATED_INFO, the data element
CERTIFICATE_RELATED_INFORMATION.

See Chapter 10 on page 121 for details on the data elements.

Note that if the query_buffer_length parameter does not specify a large enough buffer to contain
the entire query result, no data is returned

SEE ALSO
xslm_adv_begin_session(), xslm_adv_request_license().

54 Technical Standard:

Application Program API xslm_adv_record()

NAME
xslm_adv_record

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_adv_record(
xslm_handle session_handle,
xslm_handle lic_handle,
xslm_uint32 counter_id,
xslm_float counter_incr,
xslm_float * counter_value,
xslm_uint32 * status,
xslm_uint32 auth_token,
xslm_byte_string * auth_signature,
xslm_uuid * auth_lic_sys_id

);

DESCRIPTION
xslm_adv_record () is used to record resource usage in one of the set of certificate-related counters
defined by the application publisher.

INPUT PARAMETERS

session_handle
A reference returned by xslm_adv_begin_session().

lic_handle
A reference returned by xslm_adv_request_license().

counter_id
A number which identifies one of the counters defined within the license certificate.

counter_incr
The value that the licensing system should add to or subtract from (depending upon the
counter type) the current counter value. This value must be greater than or equal to 0. If it is
set to 0, then the current counter value is returned in the counter_value parameter and the
event is not logged.

auth_token
A 32-bit arbitrary value created by the application and used as part of the licensing system
authentication process. See Section 4.6 on page 28 for more information.

OUTPUT PARAMETERS

counter_value
The value of the counter following processing of the current request. Note that if
counter_incr is set to 0, then the only processing done is the return of the current counter
value.

status
Completion status. Detailed error code directly processable by the caller. This value is set to
XSLM_STATUS_OK if no error occurred. For other messages, see ERRORS.

auth_signature
An area large enough to contain a 16-byte digital signature created by the licensing system
from the input parameters and auth_token. Used as part of the licensing system
authentication process.

Systems Management: Software License Use Management (XSLM) 55

xslm_adv_record() Application Program API

auth_lic_sys_id
A unique identifier for the particular type of licensing system handling the current license
instance. Used as part of the licensing system authentication process.

RETURN VALUE

XSLM_OK
Data recorded

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR
Problem with license and/or certificate

XSLM_RESRC_UNAVL
Local resources unavailable

XSLM_PARM_ERR
Parameter error

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred

The licensing system does not
respond

XSLM_COMM_ERR XSLM_LIC_SYS_NOT_RESP

Counter not defined within
license certificate

XSLM_CERT_ERR XSLM_INV_COUNTER_ID

Counter has reached the value
0

XSLM_ZERO_REACHED

XSLM_COUNT_OVERFLOW Counter has wrapped around
XSLM_COUNT_UNDERFLOW Counter has wrapped around

XSLM_RESRC_UNAVL XSLM_NO_RES Platform dependent
The license handle is invalidXSLM_PARM_ERR XSLM_BAD_LICENSE_HANDLE
One or more parameters were
not correct

XSLM_BAD_PARM

The specified session handle is
invalid

XSLM_BAD_SESSION_HANDLE

Attempt to combine basic and
advanced API for same handle

XSLM_INVALID_API_USE

SEE ALSO
xslm_adv_begin_session(), xslm_adv_request_license().

56 Technical Standard:

Application Program API xslm_adv_release_license()

NAME
xslm_adv_release_license

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_adv_release_license(
xslm_handle session_handle,
xslm_handle lic_handle,
xslm_uint32 * status,
xslm_uint32 auth_token,
xslm_bin_string * auth_signature,
xslm_uuid * auth_lic_sys_id

);

DESCRIPTION
xslm_adv_release_license () releases all license units related to and acquired via a prior call to
xslm_adv_request_license().

INPUT PARAMETERS

session_handle
A reference returned by xslm_adv_begin_session().

lic_handle
A reference returned by xslm_adv_request_license(). It is used to store information about a
request/release transaction for a particular product.

auth_token
A 32-bit arbitrary value created by the application and used as part of the licensing system
authentication process. See Section 4.6 on page 28 for more information.

OUTPUT PARAMETERS

status br Completion status. Detailed error code directly processable by the caller. This value is
set to XSLM_STATUS_OK if no error occurred. For other messages, see ERRORS.

auth_signature
An area large enough to contain a 16-byte digital signature created by the licensing system
from the input parameters and auth_token. Used as part of the licensing system
authentication process.

auth_lic_sys_id
A unique identifier for the particular type of licensing system handling the current license
instance. Used as part of the licensing system authentication process.

RETURN VALUE

XSLM_OK
License returned

XSLM_COMM_ERR
Communications problem

XSLM_RESRC_UNAVL
Local resources unavailable

XSLM_PARM_ERR
Parameter error

Systems Management: Software License Use Management (XSLM) 57

xslm_adv_release_license() Application Program API

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred

The licensing system does
not respond

XSLM_COMM_ERR XSLM_LIC_SYS_NOT_RESP

XSLM_RESRC_UNAVL XSLM_NO_RES Platform dependent
The specified license handle
is invalid

XSLM_PARM_ERR XSLM_BAD_LICENSE_HANDLE

One or more parameters
were not correct

XSLM_BAD_PARM

The specified session handle
is invalid

XSLM_BAD_SESSION_HANDLE

Attempt to combine basic
and advanced API for the
same handle

XSLM_INVALID_API_USE

SEE ALSO
xslm_adv_begin_session(), xslm_adv_request_license().

58 Technical Standard:

Application Program API xslm_adv_request_license()

NAME
xslm_adv_request_license

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_adv_request_license(
xslm_handle session_handle,
xslm_uuid publisher_id,
xslm_uint32 product_id,
xslm_uint32 version_id,
xslm_uint32 feature_id,
xslm_uint32 named_user_length,
xslm_string * named_user,
xslm_uint32 num_units_req,
xslm_uint32 * num_units_granted,
xslm_uint32 force_num_units,
xslm_uint32 confirm_time,
xslm_uint32 cert_auth_type
xslm_uint32 publisher_key_length,
xslm_bin_string * publisher_key,
xslm_handle * lic_handle,
xslm_uint32 * status,
xslm_uint32 auth_token,
xslm_bin_string * auth_signature,
xslm_uuid * auth_lic_sys_id

);

DESCRIPTION
xslm_adv_request_license() asks the license server for num_units_req license units, for the product
identified by publisher_id, product_id, version_id, and feature_id. This call can also provide confirm
time information, via confirm_time, to the server to specify the time interval within which an
xslm_confirm() call must be issued in order for the license to remain valid.

INPUT PARAMETERS

session_handle
A reference returned by xslm_adv_begin_session().

publisher_id
The software publisher identification.

product_id
The identification of the product whose license is requested.

version_id
The identification of the version of the product whose license is requested.

feature_id
The product and versions associated feature number; if not used, must be set to 0.

named_user_length
Length of named_user in bytes. If this value is 0, no name is specified, and the licensing
system should use the current system-dependent name, if required.

named_user
A text string containing the id of the named user for which a license is requested. An empty

Systems Management: Software License Use Management (XSLM) 59

xslm_adv_request_license() Application Program API

string (that is, named_user_length equal to 0) indicates that the licensing system should use
the current system-dependent name, if required.

num_units_req
The number of license units requested. A value of XSLM_DEFAULT_UNITS indicates that
the default number of units, as defined by the certificate data element
DEFAULT_UNITS_TO_GRANT, will be requested.

force_num_units
A value of XSLM_GRANT_PARTIAL indicates that the license request may be satisfied by
less than the number of units requested via the num_units_req parameter. A value of
XSLM_GRANT_FULL indicates that the request may only be satisfied by at least as many
units as indicated by the num_units_req parameter. No other values may be specified.

cert_auth_type
Certificate authorization request type. If this value is XSLM_CERT_AUTH_NONE, the
licensing system is not required to perform any specific action to authenticate the license
certificate issuer before granting a license. If this value is XSLM_CERT_AUTH_PUB_KEY,
the licensing system must use the value provided via the publisher_key parameter to
authenticate the license certificate issuer. If this value is XSLM_CERT_AUTH_CA, then the
licensing system must perform the authentication using an authentication certificate
associated with the license certificate, as described in Section 4.4 on page 27.

publisher_key_len
Length of publisher_key in bytes. If this value is 0, no certificate authentication will take
place, and the certificate is assumed to have been created by the application publisher.

publisher_key
Publisher-specified public key. Used to confirm the authenticity of a license certificate. The
value passed must match the value of the publisher’s public key contained in the license
certificate.

auth_token
A 32-bit arbitrary value created by the application and used as part of the licensing system
authentication process. See Section 4.6 on page 28 for more information.

INPUT/OUTPUT PARAMETERS

confirm_time
Elapsed time (in seconds) within which the license server will expect the next
xslm_adv_confirm() call. This value is an integer greater than or equal to one. Failure to
confirm continued license use will cause the license server to assume that the product is no
longer active and, if the license is reusable, return it to the pool of available licenses.

The confirm_time value overrides any other confirmation value. If set to 0, the current value
will be returned by the license.

OUTPUT PARAMETERS

num_units_granted
Number of license units granted.

lic_handle
A reference returned by this call. It is used to maintain information about the currently
granted license.

status
Completion status. Detailed error code directly processable by the caller. This value is set to
XSLM_STATUS_OK if no error occurred. For other messages, see ERRORS.

60 Technical Standard:

Application Program API xslm_adv_request_license()

auth_signature
An area large enough to contain a 16-byte digital signature created by the licensing system
from the input parameters and auth_token . Used as part of the licensing system
authentication process.

auth_lic_sys_id
A unique identifier for the particular type of licensing system handling the current license
instance. Used as part of the licensing system authentication process.

RETURN VALUE

XSLM_OK
License granted

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR
Problem with license and/or certificate

XSLM_RESRC_UNAVL
Local resources unavailable

XSLM_PARM_ERR
Parameter error

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred

License granted due to
soft-stop policy

XSLM_IN_SOFT_STOP

License granted due to
disaster-recovery mode

XSLM_IN_RECOVERY_MODE

The licensing system does
not respond

XSLM_COMM_ERR XSLM_LIC_SYS_NOT_RESP

No license servers
responding

XSLM_NO_SVRS_FOUND

No certificate found for
the specified publisher_id,
product_id, version_id and
feature_id

XSLM_CERT_ERR XSLM_NO_CERTIFICATES

Certificate validity period
not yet begun.

XSLM_CERT_NOT_STARTED

Capacity requested
exceeds that available.

XSLM_NOT_ENOUGH_CAPACITY

Systems Management: Software License Use Management (XSLM) 61

xslm_adv_request_license() Application Program API

Return Value Status Value Explanation
Number of requested
licenses is more than the
number available.

XSLM_NOT_ENOUGH_LICS

The number of available
license units is currently
less than the number
needed to satisfy the
request.

XSLM_NO_LICS

No certificate found for
current node.

XSLM_NO_MATCHING_NODE

No certificate found for
current userID.

XSLM_NO_MATCHING_USERID

Public keys do not matchXSLM_INVALID_PUBLIC_KEY
XSLM_RESRC_UNAVL XSLM_NO_RES Platform dependent

One or more parameters
were not correct

XSLM_PARM_ERR XSLM_BAD_PARM

The specified session
handle is invalid

XSLM_BAD_SESSION_HANDLE

SEE ALSO
xslm_adv_begin_session().

62 Technical Standard:

Application Program API xslm_basic_con firm()

NAME
xslm_basic_confirm

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_basic_confirm(
xslm_handle lic_handle,
xslm_uint32 * status

);

DESCRIPTION
xslm_basic_confirm() confirms that a license is currently in use. Should the license server not
receive any confirmation from the application within the default time period specified in the
certificate, the license server will assume the license is no longer in use and will release the
license, and, if it is of the CONCURRENT type, return the respective number of units.

INPUT PARAMETERS

lic_handle
A reference returned by xslm_basic_request_license().

OUTPUT PARAMETERS

status
Completion status. Detailed error code directly processable by the caller. This value is set to
XSLM_STATUS_OK if no error occurred. For other messages, see ERRORS.

RETURN VALUE

XSLM_OK
License obtained

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR
Problem with license and/or certificate

XSLM_RESRC_UNAVL
Local resources unavailable

XSLM_PARM_ERR
Parameter error

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Systems Management: Software License Use Management (XSLM) 63

xslm_basic_con firm() Application Program API

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred

The licensing system does
not respond

XSLM_COMM_ERR XSLM_LIC_SYS_NOT_RESP

XSLM_RESRC_UNAVL XSLM_NO_RES Platform dependent
The handle is invalid,
perhaps because the
xslm_confirm() call was
issued too late

XSLM_PARM_ERR XSLM_BAD_LICENSE_HANDLE

One or more parameters
were not correct

XSLM_BAD_PARM

Attempt to combine basic
and advanced API for same
handle

XSLM_INVALID_API_USE

SEE ALSO
xslm_basic_request_license().

64 Technical Standard:

Application Program API xslm_basic_release_license()

NAME
xslm_basic_release_license

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_basic_release_license(
xslm_handle lic_handle,
xslm_uint32 * status

);

DESCRIPTION
xslm_basic_release_license() releases all license units related to and acquired via a prior call to
xslm_basic_request_license()

INPUT PARAMETERS

lic_handle
A reference returned by xslm_basic_request_license(). It is used to store information about a
request/release transaction for a particular product.

OUTPUT PARAMETERS

status
Completion status. Detailed error code directly processable by
the caller. This value is set to XSLM_STATUS_OK if no error occurred. For other error
codes, see ERRORS.

RETURN VALUE

XSLM_OK
License obtained

XSLM_COMM_ERR
Communications problem

XSLM_RESRC_UNAVL
Local resources unavailable

XSLM_PARM_ERR
Parameter error

ERRORS
The function return value gives an overall indication of the success
or failure of the call. In addition, the status parameter will be set to one of the following values,
to further help point to the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Systems Management: Software License Use Management (XSLM) 65

xslm_basic_release_license() Application Program API

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred

The licensing system does
not respond

XSLM_COMM_ERR XSLM_LIC_SYS_NOT_RESP

XSLM_RESRC_UNAVL XSLM_NO_RES Platform dependent
The specified handle is
invalid

XSLM_PARM_ERR XSLM_BAD_LICENSE_HANDLE

One or more parameters
were not correct

XSLM_BAD_PARM

Attempt to combine basic
and advanced API for same
handle

XSLM_INVALID_API_USE

SEE ALSO
xslm_basic_request_license().

66 Technical Standard:

Application Program API xslm_basic_request_license()

NAME
xslm_basic_request_license

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_basic_request_license(
xslm_uuid publisher_id,
xslm_uint32 product_id,
xslm_uint32 version_id,
xslm_uint32 feature_id,
xslm_uint32 cert_auth_type
xslm_uint32 publisher_key_length,
xslm_bin_string * publisher_key,
xslm_handle * lic_handle,
xslm_uint32 * status

);

DESCRIPTION
xslm_basic_request_license() requests a license, using the default number of license units (as
specified within a license certificate), for a publisher_id product identified by product_id ,
version_id , and additionally by the feature_id parameter.

INPUT PARAMETERS

publisher_id
The software publisher identification.

product_id
The identification of the product whose license is requested.

version_id
The identification of the version of the product whose license is requested.

feature_id
The product and version’s associated feature number; if not used, must be set to 0.

cert_auth_type
Certificate authorization request type. If this value is XSLM_CERT_AUTH_NONE, the
licensing system is not required to perform any specific action to authenticate the license
certificate issuer before granting a license. If this value is XSLM_CERT_AUTH_PUB_KEY,
the licensing system must use the value provided via the publisher_key parameter to
authenticate the license certificate issuer. If this value is XSLM_CERT_AUTH_CA, then the
licensing system must perform the authentication using an authentication certificate
associated with the license certificate, as described in Section 4.4 on page 27.

publisher_key_len
Length of publisher_key in bytes. If this value is 0, no certificate authentication will take
place, and the certificate is assumed to have been created by the application publisher.

publisher_key
Publisher-specified public key. Used to confirm the authenticity of a license certificate. The
value passed must match the value of the publisher’s public key contained in the license
certificate.

Systems Management: Software License Use Management (XSLM) 67

xslm_basic_request_license() Application Program API

OUTPUT PARAMETERS

lic_handle
A reference returned by this call. It is used to maintain information about the currently
granted license.

status
Completion status. Detailed error code directly processable by the caller. This value is set to
XSLM_STATUS_OK if no error occurred. For other messages, see ERRORS.

RETURN VALUE

XSLM_OK
License granted

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR
Problem with license and/or certificate

XSLM_RESRC_UNAVL
Local resources unavailable

XSLM_PARM_ERR
Parameter error

ERRORS
The function’s return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred

License granted due to
soft-stop policy

XSLM_IN_SOFT_STOP

License granted due to
disaster-recovery mode

XSLM_IN_RECOVERY_MODE

The licensing system
does not respond

XSLM_COMM_ERR XSLM_LIC_SYS_NOT_RESP

No license servers
responding

XSLM_NO_SVRS_FOUND

No certificate found for
the specified
publisher_id, product_id,
version_id, and feature_id

XSLM_CERT_ERR XSLM_NO_CERTIFICATES

Certificate validity
period not yet begun

XSLM_CERT_NOT_STARTED

Capacity requested
exceeds that available

XSLM_NOT_ENOUGH_CAPACITY

68 Technical Standard:

Application Program API xslm_basic_request_license()

Return Value Status Value Explanation
The number of available
license units is currently
less than the number
needed to satisfy the
request

XSLM_NO_LICS

No certificate found for
current node

XSLM_NO_MATCHING_NODE

No certificate found for
current userID

XSLM_NO_MATCHING_USERID

Public keys do not
match

XSLM_INVALID_PUBLIC_KEY

XSLM_RESRC_UNAVL XSLM_NO_RES Platform dependent.
One or more parameters
were not correct

XSLM_PARM_ERR XSLM_BAD_PARM

SEE ALSO
xslm_basic_confirm(), xslm_basic_release_license().

Systems Management: Software License Use Management (XSLM) 69

xslm_query_api_level() Application Program API

NAME
xslm_query_api_level

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_query_api_level(
xslm_uint32 * func_level,
xslm_uint32 * func_tower_count,
xslm_uint32 [] func_towers,
xslm_uint32 * status

);

DESCRIPTION
xslm_query_api_level () returns the highest API levels supported by all license servers in the
licensing system. (Individual license servers may support a higher API level.)

INPUT/OUTPUT PARAMETERS

func_tower_count
On input, contains the number of elements in the func_towers array, available for use by the
licensing system to return information. On output, contains the number of elements actually
used within the func_towers array. If the return value is XSLM_PARM_ERR and the status
value is XSLM_TOO_SMALL, this word contains the number of elements required.

OUTPUT PARAMETERS

func_level
The highest functional level supported by all license servers within the licensing system.
Individual license servers may support a higher functional level.

func_towers
An array of optional functional towers that are supported by all license servers within the
licensing system.

status
Completion status. Detailed error code directly addressable by the caller. This value is set to
XSLM_STATUS_OK if no error occurred. For other messages, see ERRORS.

RETURN VALUE

XSLM_OK
Query completed successfully

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR
Problems with the license and/or certificate

XSLM_RESRC_UNAVL
Resources unavailable

XSLM_PARM_ERR
Bad parameters passed

70 Technical Standard:

Application Program API xslm_query_api_level()

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred
XSLM_COMM_ERR XSLM_COMM_UNAVAIL Communications problem

Local platform-specific
environmental problems

XSLM_RESRC_UNAVL XSLM_NO_RES

Unrecoverable environmental error
was encountered by the license
server

XSLM_SERVER_ERROR

The number of available space in
the func_towers array is insufficient

XSLM_PARM_ERR XSLM_TOO_SMALL

SEE ALSO
none.

Systems Management: Software License Use Management (XSLM) 71

Application Program API

72 Technical Standard:

Chapter 8

Management API

This chapter describes all license use management-related API functions. First, there is a listing
of all functions, ordered by category. Following this, there is an alphabetical listing of all
management API functions.

Note that there is a notion of functional level of the Management API. Refer to Appendix C on
page 189 for more information on levels of the Management API.

Systems Management: Software License Use Management (XSLM) 73

Server-Related Functions Management API

8.1 Server-Related Functions

XMAPI Function Usage
Provides a list of all addressable servers.xslm_query_servers()

Provides a list of all data elements
supported by a specific server.

xslm_query_server_info()

8.2 Certificate-Related Functions

XMAPI Function Usage
Retrieves a specific license certificate.xslm_get_certificate()

Installs a license certificate, making it
available for use.

xslm_install_certificate()

xslm_query_cert_ids() Requests certificate key-information.
Requests certificate key-information in
external format.

xslm_query_next_level_cert_names()

Removes specific license certificate.xslm_remove_certificate()

Sets administrator-specified certificate-
related values.

xslm_set_admin_policy()

8.3 License Instance-Related Functions

XMAPI Function Usage
Requests all instance-related data for
specified certificate key data elements.

xslm_get_license_instances()

xslm_release_license_instance() Releases a license-use instance.

8.4 Log-Related Functions

XMAPI Function Usage
xslm_get_log_data() Retrieve one or more log records.

74 Technical Standard:

Management API xslm_get_certificate()

NAME
xslm_get_certificate

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_get_certificate(
xslm_uuid server_id,
xslm_uuid publisher_id,
xslm_uint32 product_id,
xslm_uint32 version_id,
xslm_uint32 feature_id,
xslm_uint32 cert_serial_number,
xslm_uint32 cert_update_seq,
xslm_uint32 * cert_buffer_length,
xslm_bin_string * cert_buffer,
xslm_uint32 * status,
xslm_uint32 auth_token,
xslm_bin_string * auth_signature,
xslm_uuid * auth_lic_sys_id

);

DESCRIPTION
xslm_get_certificate() asks the license server to return the license certificate that matches the
input parameters, including licensing system-maintained status information and settings
provided by the administrator.

INPUT PARAMETERS

server_id
Identification of server to which this request is being directed.

publisher_id
The Software Publisher UUID of the certificate being requested. It unequivocally identifies
the Publisher. A non-zero value must be provided.

product_id
ID number of the products certificate being requested. A non-zero value must be provided.

version_id
The version of the products certificate being requested. A non-zero value must be provided.

feature_id
The feature number of the products certificate being requested.

cert_serial_number
The instance id of the products certificate being requested. A non-zero value must be
provided.

auth_token
A 32-bit arbitrary value created by the application and used as part of the licensing system
authentication process. See Section 4.6 on page 28 for more information.

INPUT/OUTPUT PARAMETERS

cert_buffer_length
As an input parameter, the length of the buffer to receive the results of the call. A value of
zero on input indicates a request for the size of the buffer required to contain the entire

Systems Management: Software License Use Management (XSLM) 75

xslm_get_certificate() Management API

results of the call. No data is returned in the buffer when a value of zero is passed.

As an output parameter, the length of data returned, or the size of the buffer required to
contain the entire result if the input value was zero.

Note that the buffer must be large enough to contain the entire certificate data area if it is
not, no data is placed in the buffer and the output value of cert_buffer_length contains the
buffer length required to contain the entire result (note that because the certificate state data
may change at any time, the actual size needed may be different from the returned value).

OUTPUT PARAMETERS

cert_update_seq
The certificate’s update counter. This counter is incremented every time the license
certificate values are changed via xslm_set_admin_policy (). To avoid concurrent updates
from taking place, the license server will only permit an update via xslm_set_admin_policy ()
if the cert_update_seq value passed on that call matches the current value of the license
certificates counter.

cert_buffer
Buffer in which the results will be returned.

status
Completion status. Detailed error code directly addressable by the caller. This value is set to
XSLM_STATUS_OK if no error occurred. For other messages, see ERRORS.

auth_signature
An area large enough to contain a 16-byte digital signature created by the licensing system
from the input parameters and auth_token . Used as part of the licensing system
authentication process.

auth_lic_sys_id
A unique identifier for the particular type of licensing system handling the current license
instance. Used as part of the licensing system authentication process.

RETURN VALUE

XSLM_OK
Query completed successfully

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR
Problems with the license and/or certificate

XSLM_RESRC_UNAVL
Resources unavailable

XSLM_PARM_ERR
Bad parameters passed

XLSM_AUTH_ERROR
Requester is not authorized

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

76 Technical Standard:

Management API xslm_get_certificate()

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred
XSLM_COMM_ERR XSLM_COMM_UNAVAIL Communications problem

No certificate matched the
get request.

XSLM_CERT_ERR XSLM_NO_CERTIFICATES

Local platform specific
environmental problems

XSLM_RESRC_UNAVL XSLM_NO_RES

Unrecoverable
environmental error was
encountered by the
license server

XSLM_SERVER_ERROR

One or more parameters
were not correct

XSLM_PARM_ERR XSLM_BAD_PARM

The non-zero value for
the buffer length was too
small for the certificate
being retrieved

XSLM_BAD_BUFFER_LENGTH

The server_id specified
does not correspond to a
known server

XSLM_BAD_SERVER_ID

The requester is not
authorized to perform the
requested action

XSLM_AUTH_ERROR XSLM_NOT_AUTHORIZED

PROGRAMMING NOTE
A license certificate key (publisher_id, product_id, version_id, feature_id, and cert_serial_number)
needed to get a certificate can, for example, be obtained by combining a call to
xslm_query_next_level_cert_names() with a call to xslm_query_cert_ids().

OUTPUT DATA
A data element structure, CERTIFICATE, followed by a data element structure,
CERTIFICATE_RELATED_INFORMATION (see Chapter 10 on page 121 for details), unless the
buffer is not large enough in which case no data is returned.

SEE ALSO
xslm_query_cert_ids().

Systems Management: Software License Use Management (XSLM) 77

xslm_get_license_instances() Management API

NAME
xslm_get_license_instances

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_get_license_instances(
xslm_uuid server_id,
xslm_uuid publisher_id,
xslm_uint32 product_id,
xslm_uint32 version_id,
xslm_uint32 feature_id,
xslm_uint32 * instance_buffer_length,
xslm_bin_string * instance_buffer,
xslm_uint32 * status,
xslm_uint32 auth_token,
xslm_bin_string * auth_signature,
xslm_uuid * auth_lic_sys_id

);

DESCRIPTION
xslm_get_license_instances() asks the license server to return the complete set of license instance
records which match the specified key fields. When all of the input key parameters have values
of zero, the server returns all valid license instance records.

INPUT PARAMETERS

server_id
Identification of server to which this request is being directed.

publisher_id
The software publisher identification for all license instance records to be returned. It
uniquely identifies the publisher. A value of zero indicates that instance records for all
publishers within the specified server_id are to be returned. Whenever a value of zero is used
for this parameter, the product_id , version_id , and feature_id parameters must all also have
values of zero.

product_id
ID number of the product for which all license instance records are to be returned. A value
of zero indicates that all the instance records, which match the server_id and publisher_id are
to be returned. Note that whenever a value of zero is used for this parameter, the version_id
and feature_id parameters must all also have values of zero.

version_id
The version of the product for which all license instance records are to be returned. A value
of zero indicates that all the instance records, which match the server_id, publisher_id , and
product_id , are to be returned. Note that whenever a value of zero is used for this parameter,
the feature_id parameter must also have a value of zero.

feature_id
The associated feature number of the product for which all license instance records are to be
returned. A value of zero indicates that all the instance records, which match the server_id,
publisher_id , product_id , and version_id , are to be returned.

auth_token
A 32-bit arbitrary value created by the application and used as part of the licensing system
authentication process. See Section 4.6 on page 28 for more information.

78 Technical Standard:

Management API xslm_get_license_instances()

INPUT/OUTPUT PARAMETERS

instance_buffer_length
As an input parameter, the length of the buffer to receive the results of the query. A value of
zero on input indicates a request for the size of the buffer required to contain the all the
results of the query. No data is returned in the key buffer when a value of zero is passed. As
an output parameter the length of usable data returned in the key buffer or the size of the
buffer required to contain the entire query result if the input value was zero.

Note that the buffer must be large enough to contain the entire license instances data area. If
it is not, no data is placed in the buffer and the output value of this parameter contains the
size of the buffer length needed to contain the entire result. Note also that because the
license instances data may change at any time, the actual size needed may be different from
the returned value.

OUTPUT PARAMETERS

instance_buffer
Pointer to the buffer into which the query results are returned.

status
Completion status. Detailed error code directly addressable by the caller. This value is set of
XSLM_OK if no error occurred. For other messages, see ERRORS.

auth_signature
An area large enough to contain a 16-byte digital signature created by the licensing system
from the input parameters and auth_token . Used as part of the licensing system
authentication process.

auth_lic_sys_id
A unique identifier for the particular type of licensing system handling the current license
instance. Used as part of the licensing system authentication process.

RETURN VALUE

XSLM_OK
Query completed successfully

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR
Problems with the license and/or certificate

XSLM_RESRC_UNAVL
Resources unavailable

XSLM_PARM_ERR
Bad parameters passed

XLSM_AUTH_ERROR
Requester is not authorized

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Systems Management: Software License Use Management (XSLM) 79

xslm_get_license_instances() Management API

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred

Invalid license instance
record(s) encountered. Only
valid instance records
returned.

XSLM_PARTIAL_DATA

XSLM_COMM_ERR XSLM_COMM_UNAVAIL Communications problem
No certificates matched the
query.

XSLM_CERT_ERR XSLM_NO_CERTIFICATES

Local platform specific
environmental problems

XSLM_RESRC_UNAVL XSLM_NO_RES

Unrecoverable environmental
error was encountered by the
license server

XSLM_SERVER_ERROR

The non-zero value for the
buffer length was too small for
the data being retrieved

XSLM_PARM_ERR XSLM_BAD_BUFFER_LENGTH

One or more parameters were
not correct

XSLM_BAD_PARM

The server_id specified does not
correspond to a known server

XSLM_BAD_SERVER_ID

The requester is not authorized
to perform the requested
action

XSLM_AUTH_ERROR XSLM_NOT_AUTHORIZED

OUTPUT DATA
A sequence of 1 or more LICENSE_INSTANCES_INFORMATION data elements (see Chapter 10
on page 121 for details), unless the output buffer is not large enough to contain all data elements
matching the query in which case no data is returned.

SEE ALSO
xslm_release_license_instance().

80 Technical Standard:

Management API xslm_get_log_data()

NAME
xslm_get_log_data

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_get_log_data(
xslm_uuid server_id,
xslm_uint32 tod_type,
xslm_tod log_start,
xslm_tod log_end,
xslm_uint32 log_class,
xslm_uint32 log_record_type,
xslm_uint32 log_record_subtype,
xslm_handle * query_handle,
xslm_uint32 log_buffer_length,
xslm_bin_string * log_buffer,
xslm_uint32 * status,
xslm_uint32 auth_token,
xslm_bin_string * auth_signature,
xslm_uuid * auth_lic_sys_id

);

DESCRIPTION
xslm_get_log_data () requests the license server to return all the log records which match the
input parameters.

INPUT PARAMETERS

server_id
Identification of server to which this request is being directed.

tod_type
Indicates whether the time/date values on log_start and log_end refer to server or
application-client local time. A value of XSLM_LOGTOD_SERVER indicates server time; a
value of XSLM_LOGTOD_APPL indicates application client time.

log_start
The earliest date for which log records are to be retrieved.

log_end
The last date for which log records are to be retrieved.

log_class
The class ID (XSLM_LOGCLASS_ADMIN, XSLM_LOGCLASS_APPL, or
XSLM_LOGCLASS_SYSTEM) of the log records to be retrieved. Use
XSLM_LOGCLASS_ANY to retrieve log records of any class.

log_record_type
The value of the type data element of the log records to be retrieved. Use
XSLM_LOGTYPE_ANY to retrieve log records for any event type. If
XSLM_LOGCLASS_ANY is specified for the log record class ID, then
XSLM_LOGTYPE_ANY must be specified for this parameter.

log_record_subtype
The value of the subtype data element of the log records to be retrieved. Use
XSLM_LOGSUBTYPE_ANY to retrieve log records for any event subtype. If

Systems Management: Software License Use Management (XSLM) 81

xslm_get_log_data() Management API

XSLM_LOGTYPE_ANY is specified for the log record type, then
XSLM_LOGSUBTYPE_ANY must be specified for this parameter.

auth_token
A 32-bit arbitrary value created by the application and used as part of the licensing system
authentication process. See Section 4.6 on page 28 for more information.

INPUT/OUTPUT PARAMETERS

log_buffer_length
As an input parameter, the length of the buffer to receive the results of the query. As an
output parameter, the length of data returned.

The buffer must be large enough to contain the longest record to be returned. If a record
does not fit within the specified buffer size, then a return code of XSLM_PARM_ERR and a
status code of XSLM_BAD_BUFFER_LENGTH is returned, and log_buffer_length is set to the
size required to hold the record.

query_handle
This parameter allows the caller to use a buffer smaller than that required to hold all the
results from the query. On the first query, a value of zero must be passed to indicate that
this is the first call for this query. If a value of zero is returned on output, all the query
results were placed in the key buffer. A non-zero value indicates that the buffer was too
small and this value must be used as the input query_handle value to obtain the next part of
the query results.

In order to receive all the results of the query, the caller must continue to call
xslm_get_log_data (), passing the last returned query_handle value until a value of zero is
finally returned. Note that the results of the query may not be internally consistent, because
changes can occur between calls, whenever multiple calls are required to obtain all the
results from a single query.

OUTPUT PARAMETERS

log_buffer
Buffer into which the log records are returned. Each log record is returned as a set of data
elements, and the log record itself is identified by a data element. Log records are returned
in random order. A server may return more than one log record at the same time, if they all
fit within the buffer. See for a list of all data elements.

status
Completion status. Detailed error code directly addressable by the caller. This value is set to
XSLM_STATUS_OK if no error occurred. For other messages, see ERRORS.

auth_signature
An area large enough to contain a 16-byte digital signature created by the licensing system
from the input parameters and auth_token. Used as part of the licensing system
authentication process.

auth_lic_sys_id
A unique identifier for the particular type of licensing system handling the current license
instance. Used as part of the licensing system authentication process.

RETURN VALUE

XSLM_OK
Query completed successfully

82 Technical Standard:

Management API xslm_get_log_data()

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR
Problems with the license and/or certificate

XSLM_RESRC_UNAVL
Resources unavailable

XSLM_PARM_ERR
Bad parameters passed

XLSM_AUTH_ERROR
Requester is not authorized

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred

Invalid license instance
record(s) encountered. Only
valid instance records
returned

XSLM_PARTIAL_DATA

XSLM_COMM_ERR XSLM_COMM_UNAVAIL Communications problem
No certificates matched the
query

XSLM_CERT_ERR XSLM_NO_CERTIFICATES

Local platform specific
environmental problems

XSLM_RESRC_UNAVL XSLM_NO_RES

Unrecoverable environmental
error was encountered by the
license server

XSLM_SERVER_ERROR

One or more parameters were
not correct

XSLM_PARM_ERR XSLM_BAD_PARM

query_handle contains a value
which is not currently valid

XSLM_INVALID_TOKEN

The length of the buffer is too
small to hold at least one
complete record

XSLM_BAD_BUFFER_LENGTH

server_id specified does not
correspond to a known server

XSLM_BAD_SERVER_ID

The requester is not
authorized to perform the
requested action

XSLM_AUTH_ERROR XSLM_NOT_AUTHORIZED

Systems Management: Software License Use Management (XSLM) 83

xslm_get_log_data() Management API

OUTPUT DATA
A sequence of 1 or more LOGGED_EVENT data elements (see Chapter 10 on page 121 for
details), each containing data about one logged event.

SEE ALSO
None.

84 Technical Standard:

Management API xslm_install_certi ficate()

NAME
xslm_install_certificate

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_install_certificate(
xslm_uuid server_id,
xslm_uint32 certificate_length,
xslm_cert_t * certificate,
xslm_uint32 * annotation_length,
xslm_string * annotation,
xslm_uint32 data_element_error_offset,
xslm_uint32 value_error_offset,
xslm_uint32 * status,
xslm_uint32 auth_token,
xslm_bin_string * auth_signature,
xslm_uuid * auth_lic_sys_id

);

DESCRIPTION
xslm_install_certificate() installs a certificate into a license server. The certificate is installed only
when all of the following are true: the certificate structure is valid; all the certificate values are
valid; this specific certificate is not already installed; except for publisher-specific data elements,
all other certificate functions are supported by the server; the certificate has a valid digital
signature.

INPUT PARAMETERS

server_id
Identification of server to which this request is being directed.

certificate_length
Length of the certificate structure to be installed.

certificate
The certificate structure to be installed.

annotation
Arbitrary textual data to be maintained together with the certificate.

auth_token
A 32-bit arbitrary value created by the application and used as part of the licensing system
authentication process. See Section 4.6 on page 28 for more information.

INPUT/OUTPUT PARAMETERS

annotation_length
Length in bytes of the annotation data. Specify a value of 0 to indicate that no annotation
data should be saved. A licensing server must support a length of at least 4,096 bytes, but
may support any length longer than this. If the actual value passed in this parameter
exceeds the maximum value the licensing server will reject the certificate installation
request, and will place in this field the maximum value it can accept.

Systems Management: Software License Use Management (XSLM) 85

xslm_install_certi ficate() Management API

OUTPUT PARAMETERS

data_element_error_offset
Offset from the start of the certificate structure to the certificate data element where the
license server detected the error reported with the status value.

value_error_offset
Offset from the start of the certificate data element to the value where the license server
detected the error value reported with the status value. Note that a null value indicates that
the data element itself is in error rather than the values which follow the data element.

status
Completion status. Detailed error code directly addressable by the caller. This value is set of
XSLM_OK if no error occurred. For other messages, see ERRORS.

auth_signature
An area large enough to contain a 16-byte digital signature created by the licensing system
from the input parameters and auth_token . Used as part of the licensing system
authentication process.

auth_lic_sys_id
A unique identifier for the particular type of licensing system handling the current license
instance. Used as part of the licensing system authentication process.

RETURN VALUE

XSLM_OK
Query completed successfully

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR
Problems with the license and/or certificate

XSLM_RESRC_UNAVL
Resources unavailable

XSLM_PARM_ERR
Bad parameters passed

XLSM_AUTH_ERROR
Requester is not authorized

PROGRAMMING NOTE
The xslm_install_certificate() call requests the license server to install the license certificate being
passed on the call. For a select set of XSLM_CERT_ERR errors, the license server will return the
value of the offset from the beginning of the certificate to the first data element whose associated
value represents an invalid value, a certificate structure problem, or a function that is not
supported by this license server.

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

86 Technical Standard:

Management API xslm_install_certi ficate()

Return Value Status Value Explanation
No errors occurred.
Certificate installed

XSLM_OK XSLM_STATUS_OK

Communications
problem

XSLM_COMM_ERR XSLM_COMM_UNAVAIL

Invalid certificate
structure encountered

XSLM_CERT_ERR XSLM_INVALID_STRUCTURE

Invalid certificate value
encountered

XSLM_INVALID_VALUES

Certificate validity check
failed. Certificate
content is different to
that provided by the
license certificate issuer.

XSLM_CERT_VALIDITY_FAILURE

License certificate
already installed on
license server

XSLM_DUPLICATE_CERT

License certificate not
supported by license
server

XSLM_CERT_NOT_SUPPORTED

Local platform specific
environmental problems

XSM_RESRC_UNAVAIL XSLM_NO_RES

Unrecoverable
environmental error was
encountered by the
license server

XSLM_SERVER_ERROR

One or more parameters
were not correct

XSLM_PARM_ERR XSLM_BAD_PARM

The value specified for
annotation_length
exceeds the maximum
value the server can
support

XSLM_BAD_BUFFER_LENGTH

The server_id specified
does not correspond to a
known server

XSLM_BAD_SERVER_ID

The requester is not
authorized to perform
the requested action

XSLM_AUTH_ERROR XSLM_NOT_AUTHORIZED

SEE ALSO
xslm_get_certificate(), xslm_remove_certificate().

Systems Management: Software License Use Management (XSLM) 87

xslm_query_cert_ids() Management API

NAME
xslm_query_cert_ids

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_query_cert_ids(
xslm_uuid server_id,
xslm_uuid publisher_id,
xslm_uint32 product_id,
xslm_uint32 version_id,
xslm_uint32 feature_id,
xslm_uint32 * certid_buffer_length,
xslm_bin_string * certid_buffer,
xslm_uint32 * status,
xslm_uint32 auth_token,
xslm_bin_string * auth_signature,
xslm_uuid * auth_lic_sys_id

);

DESCRIPTION
xslm_query_cert_ids() requests a license server to return the IDs of all certificates belonging to the
fully qualified publisher_id , product_id , version_id , and feature_id . Note that, unlike for the
xslm_query_next_level_cert_names() call, the text strings for the key fields are not returned as part
of the query results.

INPUT PARAMETERS

server_id
Identification of server to which this request is being directed.

publisher_id
The software publisher UUID being queried. It uniquely identifies the publisher.

product_id
ID number of the product being queried.

version_id
The version of the product being queried.

feature_id
The associated feature number of the product being queried.

auth_token
A 32-bit arbitrary value created by the application and used as part of the licensing system
authentication process. See Section 4.6 on page 28 for more information.

INPUT/OUTPUT PARAMETERS

certid_buffer_length
As an input parameter, the length of the buffer to receive the results of the query. A value of
zero on input indicates a request for the size of the buffer required to contain all the results
of the query. No data is returned in the key buffer when a value of zero is passed.

As an output parameter, the length of data returned in the buffer or the size of the buffer
required to contain the entire query result if the input value is zero.

Note that the buffer must be large enough to contain the entire output data. If it is not, no
data is placed in the buffer and the output value of this parameter contains an estimate of

88 Technical Standard:

Management API xslm_query_cert_ids()

the buffer length needed to contain the entire result. Note also that because the certificate
data may change at any time, the actual size needed may be different from the returned
value.

OUTPUT PARAMETERS

certid_buffer
Buffer in which the query results are returned.

status
Completion status. Detailed error code directly addressable by the caller. This value is set to
XSLM_OK if no error occurred. For other messages, see ERRORS.

auth_signature
An area large enough to contain a 16-byte digital signature created by the licensing system
from the input parameters and auth_token . Used as part of the licensing system
authentication process.

auth_lic_sys_id
A unique identifier for the particular type of licensing system handling the current license
instance. Used as part of the licensing system authentication process.

RETURN VALUE

XSLM_OK
Query completed successfully

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR
Problems with the license and/or certificate

XSLM_RESRC_UNAVL
Resources unavailable

XSLM_PARM_ERR
Bad parameters passed

XLSM_AUTH_ERROR
Requester is not authorized

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred

Invalid certificate(s)
encountered. Key fields from
those certificates were not
placed in the key buffer.

XSLM_PARTIAL_DATA

Systems Management: Software License Use Management (XSLM) 89

xslm_query_cert_ids() Management API

Return Value Status Value Explanation
XSLM_COMM_ERR XSLM_COMM_UNAVAIL Communications problem

No certificates matched the
query

XSLM_CERT_ERR XSLM_NO_CERTIFICATES

Local platform specific
environmental problems

XSLM_RESRC_UNAVL XSLM_NO_RES

Unrecoverable
environmental error was
encountered by the license
server

XSLM_SERVER_ERROR

The non-zero value for the
buffer length was too small
for the data being retrieved

XSLM_PARM_ERR XSLM_BAD_BUFFER_LENGTH

One or more parameters
were not correct

XSLM_BAD_PARM

The server_id specified does
not correspond to a known
server

XSLM_BAD_SERVER_ID

The requester is not
authorized to perform the
requested action

XSLM_AUTH_ERROR XSLM_NOT_AUTHORIZED

OUTPUT DATA
A sequence of data elements, CERTIFICATE_ID (see Chapter 10 on page 121 for details),
describing all certificates matching the specified parameters, that have been installed and not
deleted or replaced. The order of the returned data elements is unspecified.

SEE ALSO
xslm_query_next_level_cert_names().

90 Technical Standard:

Management API xslm_query_next_level_cert_names()

NAME
xslm_query_next_level_cert_names

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_query_next_level_cert_names(
xslm_uuid server_id,
xslm_uuid publisher_id,
xslm_uint32 product_id,
xslm_uint32 version_id,
xslm_uint32 feature_id,
xslm_uint32 certname_buffer_length,
xslm_bin_string * certname_buffer,
xslm_uint32 * status,
xslm_uint32 auth_token,
xslm_bin_string * auth_signature,
xslm_uuid * auth_lic_sys_id

);

DESCRIPTION
xslm_query_next_level_cert_names() asks the license server to return the next level of certificate
keys under the field that is specified with a non-zero input parameter. When all of the input
parameters are zero, the publisher_id and publisher_name field pairs (the top-level key fields)
for all certificates are returned. Note that, unlike xslm_query_cert_ids(), this function returns not
only the numeric key fields, but also their textual representations.

INPUT PARAMETERS

server_id
Identification of server to which this request is being directed.

publisher_id
The Software Publisher UUID being queried. It unequivocally identifies the Publisher. A
value of zero indicates that a list of all publisher IDs, together with the corresponding
publisher text strings, which are installed on this license server, be returned. Note that
whenever a value of zero is used for this parameter, the product_id , version_id and feature_id
parameters must all also have values of zero.

product_id
ID number of the product being queried. A value of zero indicates that a list of all the
product_ids and product text strings, within the publisher_id installed on this license server,
be returned. Note that whenever a value of zero is used for this parameter, the version_id
and feature_id parameters must all have values of zero.

version_id
The version of the product being queried. A value of zero indicates that a list of all the
version_ids and version text strings, within the publisher_id and product_id installed on this
license server, be returned. Note that whenever a value of zero is used for this parameter,
the feature_id parameter must also have a value of zero.

feature_id
The associated feature number of the product being queried. A value of zero indicates that a
list of all the feature_ids and feature text strings, within the publisher_id , product_id and
version_id installed on this license server, be returned.

Systems Management: Software License Use Management (XSLM) 91

xslm_query_next_level_cert_names() Management API

auth_token
A 32-bit arbitrary value created by the application and used as part of the licensing system
authentication process. See Section 4.6 on page 28 for more information.

INPUT/OUTPUT PARAMETERS

certname_buffer_length
As an input parameter: the length of the buffer to receive the results of the query. A value of
zero on input indicates a request for the size of the buffer required to contain all the results
of the query. No data is returned in the key buffer when a value of zero is passed.

As an output parameter: the length of usable data returned in the key buffer or the size of
the buffer required to contain the entire query result if the input value were zero.

Note that the buffer must be large enough to contain the entire certificate data area. If it is
not, no data is placed in the buffer and the output value of this parameter contains an
estimate of the buffer length needed to contain the entire result. Note also that because the
certificate state data may change at any time, the actual size needed may be different from
the returned value.

OUTPUT PARAMETERS

certname_buffer
Pointer to the buffer into which the query results are returned.

status
Completion status. Detailed error code directly addressable by the caller. This value is set to
XSLM_STATUS_OK if no error occurred. For other messages, see ERRORS.

auth_signature
An area large enough to contain a 16-byte digital signature created by the licensing system
from the input parameters and auth_token . Used as part of the licensing system
authentication process.

auth_lic_sys_id
A unique identifier for the particular type of licensing system handling the current license
instance. Used as part of the licensing system authentication process.

RETURN VALUE

XSLM_OK
Query completed successfully

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR
Problems with the license and/or certificate

XSLM_RESRC_UNAVL
Resources unavailable

XSLM_PARM_ERR
Bad parameters passed

XLSM_AUTH_ERROR
Requester is not authorized

92 Technical Standard:

Management API xslm_query_next_level_cert_names()

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Return Value Status Value Explanation
No errors occurred. The key
buffer contains data.

XSLM_OK XSLM_STATUS_OK

Invalid certificate(s)
encountered. Key fields from
those certificates were not
placed in the key buffer.

XSLM_PARTIAL_DATA

XSLM_COMM_ERR XSLM_COMM_UNAVAIL Communications problem
No certificates matched the
query

XSLM_CERT_ERR XSLM_NO_CERTIFICATES

Local platform specific
environmental problems

XSLM_RESRC_UNAVL XSLM_NO_RES

Unrecoverable environmental
error was encountered by the
license server

XSLM_SERVER_ERROR

The non-zero value for the
buffer length was too small for
the data being retrieved

XSLM_PARM_ERR XSLM_BAD_BUFFER_LENGTH

One or more parameters were
not correct

XSLM_BAD_PARM

The server_id specified does not
correspond to a known server

XSLM_BAD_SERVER_ID

The requester is not authorized
to perform the requested
action

XSLM_AUTH_ERROR XSLM_NOT_AUTHORIZED

OUTPUT DATA
A sequence of data elements, PUBLISHER, PRODUCT, VERSION, or FEATURE (depending
upon the input parameters as described above; see Chapter 10 on page 121 for details of the data
elements), unless the buffer area is not large enough to contain all output data in which case no
data is returned.

SEE ALSO
xslm_query_cert_ids().

Systems Management: Software License Use Management (XSLM) 93

xslm_query_server_info() Management API

NAME
xslm_query_server_info

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_query_server_info(
xslm_uuid server_id,
xslm_uint32 * server_buffer_length,
xslm_bin_string * server_buffer,
xslm_uint32 * status,
xslm_uint32 auth_token,
xslm_bin_string * auth_signature,
xslm_uuid * auth_lic_sys_id

);

DESCRIPTION
xslm_query_server_info() returns the list of XSLM data element IDs supported by the specified
server.

INPUT PARAMETERS

server_id
Identification of server to which this request is being directed.

auth_token
A 32-bit arbitrary value created by the application and used as part of the licensing system
authentication process. See Section 4.6 on page 28 for more information.

INPUT/OUTPUT PARAMETERS

server_buffer_length
As an input parameter, the length of the buffer to receive the results of the call. A value of
zero on input indicates a request for the size of the buffer required to contain the all the
results of the call. No data is returned in the server buffer when a value of zero is passed.

As an output parameter the length of usable data returned in the server buffer or the size of
the buffer required to contain the entire result if the input value is zero.

Note that the buffer must be large enough to contain the entire result of the call. If it is not
large enough, no data is placed in the buffer and the output value of server_buffer_length
contains the buffer length needed to contain the entire result.

OUTPUT PARAMETERS

server_buffer
Pointer to the buffer which contains a list of all the data element IDs supported by the
specified server.

status
Completion status. Detailed error code directly addressable by the caller. This value is set
to XSLM_STATUS_OK if no error occurred. For other messages, see ERRORS.

auth_signature
An area large enough to contain a 16-byte digital signature created by the licensing system
from the input parameters and auth_token. Used as part of the licensing system
authentication process.

94 Technical Standard:

Management API xslm_query_server_info()

auth_lic_sys_id
A unique identifier for the particular type of licensing system handling the current license
instance. Used as part of the licensing system authentication process.

RETURN VALUE

XSLM_OK
Query completed successfully

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR Problems with the license and/or certificate

XSLM_RESRC_UNAVL
Resources unavailable

XSLM_PARM_ERR
Bad parameters passed

XLSM_AUTH_ERROR
Requester is not authorized

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred
XSLM_COMM_ERR XSLM_COMM_UNAVAIL Communications problem

Local platform specific
environmental problems

XSLM_RESRC_UNAVL XSLM_NO_RES

Unrecoverable
environmental error was
encountered by the
license server

XSLM_SERVER_ERROR

One or more parameters
were not correct

XSLM_PARM_ERR XSLM_BAD_PARM

The non-zero value for
the buffer length was too
small for the certificate
being retrieved.

XSLM_BAD_BUFFER_LENGTH

The server_id specified
does not correspond to a
known server

XSLM_BAD_SERVER_ID

The requester is not
authorized to perform the
requested action

XSLM_AUTH_ERROR XSLM_NOT_AUTHORIZED

Systems Management: Software License Use Management (XSLM) 95

xslm_query_server_info() Management API

OUTPUT DATA
A data element, LICENSE_SERVER_INFORMATION (see Chapter 10 on page 121 for details).

SEE ALSO
xslm_query_servers().

96 Technical Standard:

Management API xslm_query_servers()

NAME
xslm_query_servers

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_query_servers(
xslm_uint32 * server_buffer_length,
xslm_bin_string * server_buffer,
xslm_uint32 * status

);

DESCRIPTION
xslm_query_servers() returns server-related information for every server in the licensing system.

INPUT/OUTPUT PARAMETERS

server_buffer_length
As an input parameter, the length of the buffer to receive the results of the call. A value of
zero on input indicates a request for the size of the buffer required to contain the all the
results of the call. No data is returned in the server buffer when a value of zero is passed.

As an output parameter, the length of data returned in the server buffer or the size of the
buffer required to contain the entire result if the input value was zero.

Note that the buffer must be large enough to contain the entire result of the call otherwise,
no data is placed in the buffer and the output value of server_buffer_length contains the buffer
length needed to contain the entire result. Note also that since the server configuration may
change at any time, the returned value is approximate only.

OUTPUT PARAMETERS

server_buffer
Pointer to the buffer into which the license systems publisher id and publisher name are
returned together with information about each license server.

status
Completion status. Detailed error code directly addressable by the caller. This value is set to
XSLM_STATUS_OK if no error occurred. For other messages, see ERRORS.

RETURN VALUE

XSLM_OK
Query completed successfully

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR
Problems with the license and/or certificate

XSLM_RESRC_UNAVL
Resources unavailable

XSLM_PARM_ERR
Bad parameters passed

Systems Management: Software License Use Management (XSLM) 97

xslm_query_servers() Management API

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred
XSLM_COMM_ERR XSLM_COMM_UNAVAIL Communications problem

License server not
responding

XSLM_NO_SVRS_FOUND

Local platform specific
environmental problems

XSLM_RESRC_UNAVL XSLM_NO_RES

Unrecoverable
environmental error was
encountered by the license
server

XSLM_SERVER_ERROR

One or more parameters
were not correct

XSLM_PARM_ERR XSLM_BAD_PARM

The non-zero value for the
buffer length was too
small for the certificate
being retrieved

XSLM_BAD_BUFFER_LENGTH

OUTPUT DATA
A sequence of data elements, LICENSE_SERVER_ID (see Chapter 10 on page 121 for details),
unless the buffer is not large enough to contain the complete results of the query, in which case
no data is returned.

SEE ALSO
xslm_query_server_info().

98 Technical Standard:

Management API xslm_release_license_instance()

NAME
xslm_release_license_instance

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_release_license_instance(
xslm_uuid server_id,
xslm_uuid publisher_id,
xslm_uint32 product_id,
xslm_uint32 version_id,
xslm_uint32 feature_id,
xslm_uint32 cert_serial_number,
xslm_uint32 license_instance_id,
xslm_uint32 * status,
xslm_uint32 auth_token,
xslm_bin_string * auth_signature,
xslm_uuid * auth_lic_sys_id

);

DESCRIPTION
xslm_release_license_instance() asks the license server to release (that is, delete) the license
instance record which matches the specified key fields.

INPUT PARAMETERS

server_id
Identification of server to which this request is being directed.

publisher_id
The Software Publisher UUID for the license instance record to be released. It unequivocally
identifies the Publisher. A non-zero value must be provided.

product_id
ID number of the product for the license instance record to be released. A non-zero value
must be provided.

version_id
The version of the product for the license instance record to be released. A non-zero value
must be provided.

feature_id
The feature number of the product for the license instance record to be released.

cert_serial_number
The publisher provided license certificate instance id of the license instance record to be
released. A non-zero value must be provided.

license_instance_id
The server created instance id of the license instance record to be released. A non-zero value
must be provided.

auth_token
A 32-bit arbitrary value created by the application and used as part of the licensing system
authentication process. See Section 4.6 on page 28 for more information.

Systems Management: Software License Use Management (XSLM) 99

xslm_release_license_instance() Management API

OUTPUT PARAMETERS

status
Completion status. Detailed error code directly addressable by the caller. This value is set to
XSLM_STATUS_OK if no error occurred. For other messages, see ERRORS.

auth_signature
An area large enough to contain a 16-byte digital signature created by the licensing system
from the input parameters and auth_token . Used as part of the licensing system
authentication process.

auth_lic_sys_id
A unique identifier for the particular type of licensing system handling the current license
instance. Used as part of the licensing system authentication process.

RETURN VALUE

XSLM_OK
Query completed successfully

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR
Problems with the license and/or certificate

XSLM_RESRC_UNAVL
Resources unavailable

XSLM_PARM_ERR
Bad parameters passed

XLSM_AUTH_ERROR
Requester is not authorized

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Return Value Status Value Explanation
XSLM_OK XSLM_STATUS_OK No errors occurred
XSLM_COMM_ERR XSLM_COMM_UNAVAIL Communications problem

No license instance
matched the request

XSLM_CERT_ERR XSLM_NO_MATCHING_INSTANCE

Local platform specific
environmental problems

XSLM_RESRC_UNAVL XSLM_NO_RES

Unrecoverable
environmental error was
encountered by the
license server

XSLM_SERVER_ERROR

100 Technical Standard:

Management API xslm_release_license_instance()

Return Value Status Value Explanation
One or more parameters
were not correct

XSLM_PARM_ERR XSLM_BAD_PARM

The server_id specified
does not correspond to a
known server

XSLM_BAD_SERVER_ID

The requester is not
authorized to perform the
requested action

XSLM_AUTH_ERROR XSLM_NOT_AUTHORIZED

SEE ALSO
xslm_get_license_instances().

Systems Management: Software License Use Management (XSLM) 101

xslm_remove_certi ficate() Management API

NAME
xslm_remove_certificate

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_remove_certificate(
xslm_uuid server_id,
xslm_uuid publisher_id,
xslm_uint32 product_id,
xslm_uint32 version_id,
xslm_uint32 feature_id,
xslm_uint32 cert_serial_number,
xslm_uint32 annotation_length,
xslm_string * annotation,
xslm_uint32 * status,
xslm_uint32 auth_token,
xslm_bin_string * auth_signature,
xslm_uuid * auth_lic_sys_id

);

DESCRIPTION
Remove specified license certificate from license server.

INPUT PARAMETERS

server_id
Identification of server to which this request is being directed.

publisher_id
The Software Publisher UUID.

product_id
ID number of the product whose license is requested.

version_id
The version of the product whose license is being installed.

feature_id
The products associated feature number. If not used must be set to binary zeros.

cert_serial_number
The unique serial number assigned to the certificate by the publisher.

annotation
Arbitrary textual data to be logged together with the deletion event data.

auth_token
A 32-bit arbitrary value created by the application and used as part of the licensing system
authentication process. See Section 4.6 on page 28 for more information.

INPUT/OUTPUT PARAMETERS

annotation_length
Length in bytes of the annotation data. Specify a value of 0 to indicate that no annotation
data should be logged.

A licensing server must support a length of at least 4,096 bytes, but may support any length
longer than this. If the actual value passed in this parameter exceeds the maximum value

102 Technical Standard:

Management API xslm_remove_certi ficate()

the licensing server will reject the certificate deletion request, and will place in this field the
maximum value it can accept.

OUTPUT PARAMETERS

status
Completion status. Detailed error code directly addressable by the caller. This value is set of
XSLM_OK if no error occurred. For other messages, see ERRORS.

auth_signature
An area large enough to contain a 16-byte digital signature created by the licensing system
from the input parameters and auth_token . Used as part of the licensing system
authentication process.

auth_lic_sys_id
A unique identifier for the particular type of licensing system handling the current license
instance. Used as part of the licensing system authentication process.

RETURN VALUE

XSLM_OK
Query completed successfully

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR
Problems with the license and/or certificate

XSLM_RESRC_UNAVL
Resources unavailable

XSLM_PARM_ERR
Bad parameters passed

XLSM_AUTH_ERROR
Requester is not authorized

PROGRAMMING NOTE
xslm_remove_certificate() requests that the license server remove the license certificate identified
on the call from the license servers certificate database. Note that certificates can not be removed
while any license associated with that certificate is still in use. Also note that consumptive
license certificates can not be fully removed from the license server once they are installed, until
the certificates expiration date has occurred (that is, the licensing system is required to maintain
enough information about such certificates to prevent them from being reinstalled and thus
reused).

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Systems Management: Software License Use Management (XSLM) 103

xslm_remove_certi ficate() Management API

Return Value Status Value Explanation
No errors occurred.
Certificate removed from
license server database.

XSLM_OK XSLM_STATUS_OK

XSLM_COMM_ERR XSLM_COMM_UNAVAIL Communications problem
License certificate not
found

XSLM_CERT_ERR XSLM_CERT_NOT_FOUND

Licenses associated with
certificate still in use

XSLM_CERT_IN_USE

License certificate type
does not support removal

XSLM_CERT_NOT_REMOVABLE

Local platform specific
environmental problems

XSLM_RESRC_UNAVL XSLM_NO_RES

Unrecoverable
environmental error was
encountered by the
license server

XSLM_SERVER_ERROR

One or more parameters
were not correct

XSLM_PARM_ERR XSLM_BAD_PARM

The value specified for
annotation_length exceeds
the maximum value the
server can support

XSLM_BAD_BUFFER_LENGTH

The server_id specified
does not correspond to a
known server

XSLM_BAD_SERVER_ID

The requester is not
authorized to perform the
requested action

XSLM_AUTH_ERROR XSLM_NOT_AUTHORIZED

SEE ALSO
xslm_get_certificate(), xslm_install_certificate().

104 Technical Standard:

Management API xslm_set_admin_policy()

NAME
xslm_set_admin_policy

SYNOPSIS
#include <libxslm.h>

xslm_uint32 xslm_set_admin_policy(
xslm_uuid server_id,
xslm_uuid publisher_id,
xslm_uint32 product_id,
xslm_uint32 version_id,
xslm_uint32 feature_id,
xslm_uint32 cert_serial_number,
xslm_uint32 cert_update_seq,
xslm_uint32 update_type,
xslm_uint32 update_element_id,
xslm_uint32 update_element_seq,
xslm_uint32 admin_data_length,
xslm_bin_string * admin_data,
xslm_uint32 * status,
xslm_uint32 auth_token,
xslm_bin_string auth_signature,
xslm_uuid * auth_lic_sys_id

);

DESCRIPTION
Sets those license-related values, which the license certificate allows an administrator to set or
reset (assign nodeID, userID, set confirm time interval, set hard/soft stop policy, etc.).

INPUT PARAMETERS

server_id
Identification of server to which this request is being directed.

publisher_id
The Software Publisher UUID.

product_id
ID number of the product whose license is requested. Unique within the publisher_id
domain.

version_id
The version of the product whose license is being installed.

feature_id
The products associated feature number. If not used must be set to binary zeros.

cert_serial_number
The unique serial number assigned to the certificate by the publisher.

cert_update_seq
The certificates current update value. This value is updated every time the license certificate
values are updated. The license server will only update the certificate, if the cert_update_seq
value passed on the call matches the license certificates current value. This value is returned
as part of xslm_get_certificate().

Systems Management: Software License Use Management (XSLM) 105

xslm_set_admin_policy() Management API

update_type
The type of change to be made (XSLM_SET_POLICY_ADD, XSLM_SET_POLICY_DELETE,
or XSLM_SET_POLICY_REPLACE).

update_element_id
The data element ID of the element to be operated on.

update_element_seq
The data element sequence number of the element to be operated on, or 0 if unknown.

admin_data_length
Length of administrative policy data.

admin_data
Structure containing a single or multiple sets of self-describing administrative policy data
elements. See Chapter 10 on page 121 for the format of the administrative policy fields.

auth_token
A 32-bit arbitrary value created by the application and used as part of the licensing system
authentication process. See Section 4.6 on page 28 for more information.

OUTPUT PARAMETERS

status
Completion status. Detailed error code directly addressable by the caller. This value is set of
XSLM_OK if no error occurred. For other messages, see ERRORS.

auth_signature
An area large enough to contain a 16-byte digital signature created by the licensing system
from the input parameters and auth_token . Used as part of the licensing system
authentication process.

auth_lic_sys_id
A unique identifier for the particular type of licensing system handling the current license
instance. Used as part of the licensing system authentication process.

RETURN VALUE

XSLM_OK
Query completed successfully

XSLM_COMM_ERR
Communications problem

XSLM_CERT_ERR
Problems with the license and/or certificate

XSLM_RESRC_UNAVL
Resources unavailable

XSLM_PARM_ERR
Bad parameters passed

XLSM_AUTH_ERROR
Requester is not authorized

PROGRAMMING NOTE
xslm_set_admin_policy () requests that the license server change one or more administrative
policies associated with the specified certificate. Policies can be added, changed or removed.
Only one policy element can be changed at a time.

106 Technical Standard:

Management API xslm_set_admin_policy()

ERRORS
The function return value gives an overall indication of the success or failure of the call. In
addition, the status parameter will be set to one of the following values, to further help point to
the reason for a failed request.

Note: In the future, additional values may be defined for the status variable. An application
must not rely upon these being the only possible values.

Return Value Status Value Explanation
No errors occurred.
Certificate successfully
updated.

XSLM_OK XSLM_STATUS_OK

XSLM_COMM_ERR XSLM_COMM_UNAVAIL Communications problem
License certificate not
found

XSLM_CERT_ERR XSLM_CERT_NOT_FOUND

Data element sequence
number not found within
certificate to be updated

XSLM_UNRECOGNIZED_SEQ

Data element ID not
recognized by license
server

XSLM_UNRECOGNIZED_ID

Value not valid for
associated policy data
element

XSLM_INVALID_VALUE

Publisher does not permit
changes to this policy

XSLM_UNCHANGABLE_POLICY

Certificate field has
already been changed and
can only be changed once

XSLM_NO_LONGER_CHANGABLE

The certificate_update_id
does not match the
certificate’s current
update_id value (that is,
the certificate has been
updated since the time the
last update_id was
obtained)

XSLM_RESRC_UNAVL XSLM_UPDATE_ID_ERROR

Local platform specific
environmental problems

XSLM_NO_RES

Unrecoverable
environmental error was
encountered by the
license server

XSLM_PARM_ERR XSLM_SERVER_ERROR

One or more parameters
were not correct

XSLM_BAD_PARM

The server_id specified
does not correspond to a
known server

XSLM_BAD_SERVER_ID

Systems Management: Software License Use Management (XSLM) 107

xslm_set_admin_policy() Management API

Return Value Status Value Explanation
The requester is not
authorized to perform the
requested action

XSLM_AUTH_ERROR XSLM_NOT_AUTHORIZED

SEE ALSO
xslm_get_certificate().

108 Technical Standard:

Chapter 9

Recording and Logging

A crucial function of a XSLM licensing system is to collect and record data about the usage of the
licensed products and about relevant events related to license management. The information
maintained by a XSLM licensing system can be divided in two categories: certificate related data
(that is data based on the information present on the original certificate and on the subsequent
manipulation of some of these) and historic data. In a different perspective, the information
maintained by a XSLM licensing system can be divided into "transient data" and "persistent
data". The transient data is the one which is valid only as long as the licensing system is running,
and is lost when the licensing system stops, while the persistent data is committed to permanent
storage and is valid across license server runs. From this point of view, the certificate related
data is made of both transient and persistent data, while the historic data is always persistent.

The certificate-related data is the combination of information provided by the application
software publisher (the certificate), information created and maintained by the licensing system,
and information provided by the customers license administrator (through a license
management tool).

Changes in some of the certificate related data may be triggered by licensing system events such
as the request for a new license, or a change in the policy setting (e.g. the administrator
switching from soft stop to hard stop) or the expiration of a timer.

The historic data is the persistent log of events relevant to license management. Most of the
events related to the license administrator actions are always logged, as they may constitute an
audit trail. The logging of events related to license usage is usually under an administrators
control, unless the publisher, through information on the certificate, enforces logging.

The physical format of the log file is not specified here. It is up to each licensing system
implementation to determine the form (text, binary, or a combination of the two) of the log
records, as well as the type of file system(s) supported for storing them.

Likewise, an implementation may choose to implement any kind of proprietary integrity check
to insure the records have not been tampered with. However, ultimate responsibility for the
integrity and security of the log file, and of the file system of which it is a part, lies with the
underlying (operating system and hardware) platform.

Systems Management: Software License Use Management (XSLM) 109

Certificate Related Data Recording and Logging

9.1 Certificate Related Data
As described above, the certificate related data is comprised of:

• Original certificate data (described earlier)

• Licensing System generated data (described below)

• Administrator defined data (described below).

In a more general meaning, this data is kept alive by the licensing system during the normal
operational time and always represents the latest available information. This may or may not be
logged (becoming historic data) depending on the administrator, within the limits imposed by
the publisher.

9.1.1 Licensing System Generated Data

Each data element described below is related to a specific certificate and uniquely identifies a
specific instance of a certificate.

• Number of licensed units available. This is the total number of licensed units acquired by the
customer (consolidated from all the valid certificates for this product), minus the number of
licensed units presently in use or consumed.

• Number of licensed units in use. For the licensed units in use the licensing system will
maintain also the user ID of the application to which they had been granted.

• Publisher High Water Mark (PHWM). The PHWM is the maximum number of licensed units
which are (or were) concurrently in use since the last time that the PHWM was reset. In other
words, every time that the number of "licensed units in use" is increased, the new value is
compared with the PHWM, and if the former is higher, then it becomes the new value for the
PHWM. The PHWM is reset to zero by the licensing system with a frequency specified on the
certificate, and at the same time this event (PHWM reset to zero) is logged, together with the
value of the PHWM. This value is maintained for the possible usage of the vendor, to
support licensing policies where the customer can be billed after usage, based on the logged
values. This value should be contrasted with AHWM (described below).

• Administrator High Water Mark (AHWM). The AHWM is the maximum number of licensed
units which are (or were) concurrently in use since the last time that the AHWM was reset. In
other words, every time that the number of "licensed units in use" is increased, the new value
is compared with the AHWM, and if the former is higher, then it becomes the new value for
the AHWM. The AHWM can be explicitly reset to zero by the customers license
administrator. This value is maintained for the convenience of the administrator, to get
statistics and usage patterns. This value should be contrasted with PHWM (described above).

• Counters. A certificate may specify that some counters have to be maintained by the
Licensing System. A counter can be specified as either cumulative (the counter units will
always be added) or consumptive (the counter units will always be subtracted). The meaning
of the units is in general known only to the application, and the licensing system keeps track
of the units, only acting as a "record keeper". The updating of the counters will be explicitly
requested by the application with a xslm_adv_record () call. An XSLM compliant
implementation must support at least eight counters.

110 Technical Standard:

Recording and Logging Certificate Related Data

9.1.2 Administrator-Defined Data

Each data element described below is related to a specific certificate and uniquely identifies a
specific instance of a certificate.

• Assignments.
Some certificates may require the assignment of the licenses to some entity before they can be
used. The certificate may also further specify whether the assignment can be modified after
the first assignment has been done. The entities that an administrator may be required to
specify are the following:

— Number of licensed units.
The administrator may be required to specify the number of "units of use" up to the
maximum number specified in the certificate.

— Node(s).
The administrator may be required to specify one or more nodes (machines) where the
application will be licensed to run.

— User(s).
The administrator may be required to specify one or more users which are allowed to use
the application. If the certificate so requires, the administrator may have to further specify
to which node(s) are the users assigned.

— Capacity limits.
The administrator may be required to specify the upper limits of some capacity (resource)
for which the application is licensed to run, up the maximum capacity specified in the
certificate. The capacities presently defined are the "power" of the processor (expressed in
MIPS), the memory size, and the disk(s) size.

— Initial value for consumptive counters.
The administrator may be required to specify an initial value for consumptive counters,
up to the maximum value specified in the certificate.

• Policy setting.
Some application software vendors may allow the customer’s license administrator to set or
override the licensing policy specified in the certificate, and in some cases to reset the value
maintained by the licensing system for particular licensing system-generated data. The
actions which can be taken by the administrator are the following:

— Set confirmation interval.
The time, in seconds, by which the application must issue an xslm_basic_confirm() or
xslm_adv_confirm() call. The value of this time can be specified by the application, by the
certificate or by the administrator (if so allowed in the certificate). See Chapter 10 on page
121 for a detailed description of the order of precedence between conflicting values. In the
absence of any specification, a default value of no-limit will be used.

— Set Hard-Soft Stop policy.
In some cases the publisher may allow the customer to exceed the licensed values (either
in quantity or in time or both) by some additional quantities specified in the certificate.
The administrator can instruct the Licensing System (by setting the policy to "Hard Stop")
not to make use of these additional quantities and deny a license whenever the licensed
values are exceeded. Please note that the setting of this policy to "Hard Stop" does not
imply that the application will actually stop. The behavior of an application upon denial
of a license is defined by the application publisher.

Systems Management: Software License Use Management (XSLM) 111

Certificate Related Data Recording and Logging

— Release Licensed Units.
If so allowed in the certificate, the administrator can instruct the Licensing System to
release (that is, to make them available) the reusable units presently in use by an
application.

— Reset High Water Mark.
At any time the administrator can instruct the Licensing System to reset to zero the value
of AHWM.

— Reset Counters.
The administrator can instruct the Licensing System to reset to their initial value the
counters (either cumulative or consumptive) which have been specified as "administrator
resettable" in the certificate.

— Mask logging of events.
The administrator can instruct the Licensing System to stop the logging of those events
which are not mandatory (see below) and which have not been specified as "non-
maskable" in the certificate.

— Set Disaster Recovery mode.
The administrator can instruct the Licensing System to enter "Disaster Recovery Mode", if
so allowed in the certificate. While in this mode, all restrictions specified on the certificate
will be waived. The Licensing System will resume enforcement of the restrictions
specified on this certificate when the maximum duration of Disaster Recovery Mode
(specified on the certificate) is elapsed or when Disaster Recovery Mode is terminated by
the administrator, whichever occurs first.

112 Technical Standard:

Recording and Logging Historic Data

9.2 Historic Data
A Licensing System will log a number of events, in order for the customer’s license administrator
(and also for the application software publisher) to derive useful information about the use of
the application. The events are classified either as mandatory (that is, the licensing system will
always log the event) or optional, that is, the licensing system will always log the event unless
instructed not to do so by the administrator:

The logged events are divided into three classes:

• ADMINISTRATION.
Actions of the administrator (e.g. install certificate, delete certificate)

• APPLICATION.
Actions of the applications (e.g. request license, release license)

• LICENSING_SYSTEM.
Actions of the system (e.g. start server, stop server).

In the tables below are described the events logged for each class, and the data logged for each
event. The event type and subtype further define which event has occurred, within a class, and
can be used as filters for the retrieval of logged events.

Systems Management: Software License Use Management (XSLM) 113

Historic Data Recording and Logging

9.2.1 Logged Events of Class ADMINISTRATION

Event Type Event Subtype Logged Data
NEW
The installation of a new Certificate by an
Administrator through a management tool into
the License Data Base

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
ADMINISTRATOR
ADMINISTRATOR_NODE
CERTIFICATE_ID
INSTALL_ANNOTATION

INSTALL

REPLACE
The replacement of an existing Certificate in the
License database with a new one overriding it

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
ADMINISTRATOR
ADMINISTRATOR_NODE
CERTIFICATE_ID
REPLACE_CERTIFICATE
INSTALL_ANNOTATION

NULL
The deletion of a Certificate from the License
Data Base

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
ADMINISTRATOR
ADMINISTRATOR_NODE
CERTIFICATE_ID
REMOVE_ANNOTATION

DELETE

UNITS
The assignment, as performed by an
Administrator, of the number of available units
of use for a specific Certificate, when requested
by the publisher

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
ADMINISTRATOR
ADMINISTRATOR_NODE
CERTIFICATE_ID
ASSIGNED_LICENSED_UNITS

ASSIGN

NODES
The assignment, as performed by an
Administrator, of the Certificate to one or more
nodes (machines) to which the usage of the
usage of the application will be restricted, if
requested by the publisher

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
ADMINISTRATOR
ADMINISTRATOR_NODE
CERTIFICATE_ID
ASSIGNED_NODE_LIST

USERS
The assignment, as performed by an
Administrator, of the Certificate to one or more
users which will be allowed to use the
application, if requested by the publisher

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
ADMINISTRATOR
ADMINISTRATOR_NODE
CERTIFICATE_ID
ASSIGNED_NODE_USER_LIST

114 Technical Standard:

Recording and Logging Historic Data

Event Type Event Subtype Logged Data

CAPACITY
The assignment, as performed by an
Administrator, of the Certificate to specific
Capacity limits to which the application will be
restricted, if allowed by the publisher

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
ADMINISTRATOR
ADMINISTRATOR_NODE
CERTIFICATE_ID
ASSIGNED_CAPACITY_LIST

CONSUMPTIVE_COUNTERS
The assignment, as performed by an
Administrator, of the Certificate to a specific
initial value for Consumptive Counters, if
required by the publisher

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
ADMINISTRATOR
ADMINISTRATOR_NODE
CERTIFICATE_ID
ASSIGNED_CNSMPTV_CNTRS

HARD_SOFT_STOP
The setting performed by an Administrator of
the current policy in effect for a specific
Certificate from Soft Stop to Hard Stop and vice
versa

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
ADMINISTRATOR
ADMINISTRATOR_NODE
CERTIFICATE_ID
HARD_SOFT_STOP_POLICY

SET_POLICY

CONFIRM_INTERVAL
The setting of the Confirmation Interval,
performed by an Administrator, for a specific
Certificate within the range (if present) specified
in the Certificate

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
ADMINISTRATOR
ADMINISTRATOR_NODE
CERTIFICATE_ID
CONFIRM_INTERVAL_VALUE

RESET_ADMINISTRATOR
_HIGH_WATER_MARK

The resetting (to zero), performed by an
Administrator, of the value maintained by the
licensing system for the maximum number of
licenses concurrently in use for a specific
Certificate

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
ADMINISTRATOR
ADMINISTRATOR_NODE
CERTIFICATE_ID
HIGH_WATER_MARK_VALUE

RESET_COUNTERS
The resetting performed by an Administrator, of
the value maintained by the licensing system for
one or more counters, if allowed by the
publisher

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
ADMINISTRATOR
ADMINISTRATOR_NODE
CERTIFICATE_ID
ADMIN_RESET_COUNTER_LIST

MASK_EVENTS
The setting, performed by an Administrator, to
stop (mask) the logging of one or more events, if
allowed by the publisher

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
ADMINISTRATOR

Systems Management: Software License Use Management (XSLM) 115

Historic Data Recording and Logging

Event Type Event Subtype Logged Data
ADMINISTRATOR_NODE
CERTIFICATE_ID
MASKED_EVENTS

RELEASE_UNITS
The (forced) release of one or more license units
in use, as performed by the Administrator

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
ADMINISTRATOR
ADMINISTRATOR_NODE
CERTIFICATE_ID
FORCED_RELEASE_UNITS

DISASTER_RECOVERY
The setting or resetting, performed by an
Administrator, of "Disaster Recovery Mode, if
allowed by the publisher

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
ADMINISTRATOR
ADMINISTRATOR_NODE
DISASTER_RECOVERY_MODE

116 Technical Standard:

Recording and Logging Historic Data

9.2.2 Logged Events of Class APPLICATION

Event Type Event Subtype Logged Data
NULL
A free-form text message as issued by the
application and stored in the log file

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
REQUESTOR_ID
CERTIFICATE_ID
SESSION_HANDLE
TRANSACTION_HANDLE
LOGGED_MESSAGE
RETURN_STATUS

LOG_MESSAGE

GRANTED
The successful granting of one or more
licenses by the Licensing System to the
requesting application

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
REQUESTOR_ID
CERTIFICATE_ID
SESSION_HANDLE
TRANSACTION_HANDLE
REQUESTED_UNITS
GRANTED_UNITS
RETURN_STATUS

REQUEST_LICENSE

DENIED
The denial by the Licensing System of the
license(s) requested by the application

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
REQUESTOR_ID
CERTIFICATE_ID
SESSION_HANDLE
TRANSACTION_HANDLE
REQUESTED_UNITS
RETURN_STATUS

NULL
The successful returning to the pool of
available licenses (releasing) of one or
more licenses, as performed by the
application

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
REQUESTOR_ID
CERTIFICATE_ID
SESSION_HANDLE
TRANSACTION_HANDLE
RETURNED_UNITS
RETURN_STATUS

RELEASE_LICENSE

NULL The confirmation performed by the
application to the Licensing System, of
the in-use status for one or more licenses

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
REQUESTOR_ID
CERTIFICATE_ID
SESSION_HANDLE
TRANSACTION_HANDLE
CONFIRM_INTERVAL_VALUE
RETURN_STATUS

CONFIRM

Systems Management: Software License Use Management (XSLM) 117

Historic Data Recording and Logging

Event Type Event Subtype Logged Data

CONSUMPTIVE
The successful updating performed by the
Licensing System of a consumptive
counter, as requested by the application

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
REQUESTOR_ID
CERTIFICATE_ID
SESSION_HANDLE
TRANSACTION_HANDLE
COUNTER_UNITS
RETURN_STATUS

RECORD

CUMULATIVE
The successful updating performed by the
Licensing System of a cumulative counter,
as requested by the application

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
REQUESTOR_ID
CERTIFICATE_ID
SESSION_HANDLE
TRANSACTION_HANDLE
COUNTER_UNITS
RETURN_STATUS

NULL
The successful start of a licensing session,
as requested by the application

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
REQUESTOR_ID
SESSION_HANDLE
RETURNED_STATUS

BEGIN_SESSION

NULL
The completion of a licensing session, as
requested by the application

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
REQUESTOR_ID
SESSION_HANDLE
RETURNED_STATUS

END_SESSION

118 Technical Standard:

Recording and Logging Historic Data

9.2.3 Logged Events of Class LICENSING_SYSTEM

Event Type Event Subtype Logged Data
NULL
The successful start of the license
server activity

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
ADMINISTRATOR_ID

LICENSE_SERVER_START

NULL
The normal stop of the license server
activity

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
ADMINISTRATOR_ID

LICENSE_SERVER_STOP

PUBLISHER_HIGH_WATER_MARK
The resetting (to zero), as performed
by the licensing system, of the value
maintained for the maximum
number of licenses concurrently in
use for a specific certificate

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
CERTIFICATE_ID
PUBLISHER_HWM_VALUE

RESET

COUNTERS
The resetting (to zero), as performed
by the licensing system, of the value
maintained for one or more counters

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
SYSTEM_RESET_COUNTR_LIST

SYSTEM
Any error as detected by the
licensing system

SERVER_TIME_STAMP
CLIENT_TIME_STAMP
LICENSE_SERVER_ID
LICENSE_SYSTEM_INFO
SYSTEM_ERROR_CODE
SYSTEM_ERROR_MESSAGE

ERRORS

Systems Management: Software License Use Management (XSLM) 119

Recording and Logging

120 Technical Standard:

Chapter 10

Data Elements

This Chapter contains a detailed description of all the data elements defined in XSLM.

In the following tables, for each data element are indicated only the semantic tag and the type.
The tables contain a concise listing of the data elements, with the indentation showing how the
data elements are nested one within each other. For data elements of type STRUCT which
appear in the table more than once, the indication of the components is done only the first time
that they appear. For data elements of type LIST, the component can be repeated any number of
times. The column labeled "Required" indicates if a data element is a required or an optional
component of the data element in which it appears (the data elements where this column has
been left blank are optional). The column labeled "Basic set" indicates if a data element belongs
to the set of elements which must be supported by all the XSLM compliant Licensing System.
All the data elements not in the Basic set are in the only functional tower presently defined, and
their entry has been left blank.

For convenience, in the summary tables the data elements have been divided in three groups:

• The data elements that can appear on the physical certificate (that is, the one created by the
application publisher)

• The data elements that are internally maintained by the Licensing System (which are referred
to as state information)

• The data elements which are logged by the Licensing System and which become historic data.

Note that some data elements are repeated in the different tables. The final table provides a
detailed description of all the data elements, arranged in alphabetical order.

Systems Management: Software License Use Management (XSLM) 121

Certificate Data Elements Data Elements

10.1 Certificate Data Elements

Group certificate - Major data elements Type Required Basic Set
GROUP_CERTIFICATE STRUCT
GROUP_TYPE FIXED YES
CERTIFICATE_LIST LIST YES
CERTIFICATE STRUCT YES YES
BASE_SECTION STRUCT YES YES
PUBLISHER_SECTION STRUCT
LICENSING_SYSTEM_SECTION_LIST LIST
LICENSING_SYSTEM_SECTION STRUCT YES

AUTHENTICATION_SECTION STRUCT
GROUP_AUTHENTICATION_SECTION STRUCT
AUTHENTICATION_TYPE FIXED YES
AUTHENTICATION_KEY STRUCT YES
SIGNATURE STRUCT YES

Certificate - Data elements by section Type Required Basic Set
PUBLISHER_SECTION STRUCT
Application publisher defined YES

LICENSING_SYSTEM_SECTION STRUCT
PUBLISHER STRUCT YES
PUBLISHER_ID UUID YES
PUBLISHER_NAME TEXT YES

LICENSING_SYSTEM_SPECIFIC_INFO STRUCT YES
Licensing System publisher defined

AUTHENTICATION_SECTION STRUCT
AUTHENTICATION_TYPE FIXED YES
AUTHENTICATION_KEY STRUCT YES
SIGNATURE STRUCT YES
SIGNATURE_DIGEST_ALGORITHM FIXED YES
SIGNATURE_ENCRYPTION_ALGORITHM FIXED YES
SIGNATURE_ENCRYPTED_DIGEST BSTR YES

BASE_SECTION STRUCT YES YES
See Table below

Certificate - Data elements of BASE_SECTION Type Required Basic Set
FUNCTIONAL_LEVEL STRUCT YES YES
FUNCTIONAL_SPECIFICATION_LEVEL FIXED YES YES
FUNCTIONAL_TOWER_LIST LIST YES YES
FUNCTIONAL_TOWER FIXED YES YES

CERTIFICATE_CREATED TIME YES YES
CERTIFICATE_ID STRUCT YES YES
PUBLISHER_ID UUID YES YES
PRODUCT_ID FIXED YES YES
VERSION_ID FIXED YES YES
FEATURE_ID FIXED YES YES

122 Technical Standard:

Data Elements Certificate Data Elements

Certificate - Data elements of BASE_SECTION Type Required Basic Set
CERTIFICATE_SERIAL_NUMBER FIXED YES YES

CERTIFICATE_DESCRIPTION STRUCT YES YES
PUBLISHER_NAME TEXT YES YES
PRODUCT_NAME TEXT YES YES
VERSION_NAME TEXT YES YES
FEATURE_NAME TEXT YES YES

PUBLISHER_USE TEXT YES
REPLACE_CERTIFICATE LIST
CERTIFICATE_ID STRUCT YES YES

LIFE STRUCT YES
LIFE_START TIME YES
LIFE_END TIME YES

DURATION STRUCT YES
DURATION_PERIOD INTVL YES YES
DURATION_START_TYPE FIXED YES YES
DURATION_ADDITIONAL INTVL YES

LICENSED_UNITS STRUCT YES
LICENSED_UNIT_TYPE FIXED YES YES
LICENSED_UNIT_NUMBER FIXED YES YES
LICENSED_ADDITIONAL_UNITS FIXED YES

PUBLISHER_CAPACITY_LIMITS_LIST LIST
CAPACITY STRUCT YES
CAPACITY_TYPE FIXED YES
CAPACITY_UNITS FLOAT YES
CAPACITY_ADDITIONAL FLOAT

PUBLISHER_ASSIGNMENTS_LIST LIST
NODE_USERS_ASSOCIATION STRUCT YES
NODE STRUCT YES
NODE_TYPE FIXED YES YES
NODE_ID BSTR YES YES
SUBNODE STRUCT
SUBNODE_TYPE FIXED YES
SUBNODE_ID BSTR YES

USER_LIST LIST
USER STRUCT YES YES
USER_TYPE FIXED YES YES
USER_ID BSTR YES YES

CERTIFICATE_TARGET_NODES LIST YES
NODE STRUCT YES YES

CUSTOMER_ASSIGNABLE_LIMITS STRUCT
ASSIGNABLE_UNITS STRUCT
LICENSED_UNITS STRUCT YES YES
NOT_REASSIGNABLE FIXED

ASSIGNABLE_NODES STRUCT
NUMBER_OF_NODES FIXED YES
NOT_REASSIGNABLE FIXED

ASSIGNABLE_USERS STRUCT
NUMBER_OF_USERS FIXED YES
LINKED_TO_NODE FIXED
NOT_REASSIGNABLE FIXED

ASSIGNABLE_CAPACITY_LIST LIST
ASSIGNABLE_CAPACITY STRUCT YES
CAPACITY STRUCT YES

Systems Management: Software License Use Management (XSLM) 123

Certificate Data Elements Data Elements

Certificate - Data elements of BASE_SECTION Type Required Basic Set
NOT_REASSIGNABLE FIXED

ASSIGNABLE_CONSUMPTIVE_COUNTERS LIST
COUNTER STRUCT YES
COUNTER_ID FIXED YES
COUNTER_NAME TEXT YES
COUNTER_VALUE FLOAT YES
COUNTER_RESETABLE FIXED
COUNTER_ADDITIONAL_VALUE FLOAT
NOT_REASSIGNABLE FIXED

COUNTERS_CONSUMPTIVE LIST
COUNTER STRUCT YES

COUNTERS_CUMULATIVE LIST
COUNTER STRUCT YES

CONFIRM_INTERVAL STRUCT YES
CONFIRM_INTERVAL_VALUE INTVL YES YES
CONFIRM_INTERVAL_RANGE STRUCT YES
CONFIRM_INTERVAL_MIN INTVL YES
CONFIRM_INTERVAL_MAX INTVL YES

NON_MASKABLE_EVENTS LIST YES
EVENT STRUCT YES YES
EVENT_CLASS FIXED YES YES
EVENT_TYPE FIXED YES YES
EVENT_SUBTYPE FIXED YES YES

RESETTING_FREQUENCY STRUCT
PUBLISHER_HIGH_WATER_MARK STRUCT
RESET_MODE FIXED YES
RESET_INTERVAL INTVL

RESETABLE_COUNTERS_LIST LIST
RESETABLE_COUNTER STRUCT YES
COUNTER_ID FIXED YES
RESET_MODE FIXED YES
RESET_INTERVAL INTVL

LOCALLY_AVAILABLE FIXED
DEFAULT_UNITS_TO_GRANT FIXED
FORCE_RELEASE_OK FIXED
ADVANCE_EXPIRATION_NOTIFICATION INTVL
DISASTER_RECOVERY INTVL
MULTIUSE_ALLOWED FIXED

124 Technical Standard:

Data Elements State Information

10.2 State Information

Certificate related information data elements Type Required Basic Set
CERTIFICATE_RELATED_INFORMATION STRUCT YES YES
CERTIFICATE_UPDATE_SEQUENCE FIXED YES YES
CERTIFICATE_INSTALLED STRUCT YES YES
INSTALL_DATE TIME YES YES
INSTALL_ANNOTATION TEXT YES
ADMINISTRATOR STRUCT YES YES
ADMINISTRATOR_TYPE FIXED YES YES
ADMINISTRATOR_ID BSTR YES YES

ADMINISTRATOR_NODE STRUCT YES YES
NODE_TYPE FIXED YES YES
NODE_ID BSTR YES YES
SUBNODE STRUCT
SUBNODE_TYPE FIXED YES
SUBNODE_ID BSTR YES

CERTIFICATE_REMOVED STRUCT YES
REMOVED_DATE TIME YES YES
REMOVE_ANNOTATION TEXT YES
ADMINISTRATOR STRUCT YES YES
ADMINISTRATOR_NODE STRUCT YES YES
CERTIFICATE_REPLACEMENT STRUCT
REPLACEMENT_DATE TIME YES
CERTIFICATE_ID STRUCT YES YES
PUBLISHER_ID UUID YES YES
PRODUCT_ID FIXED YES YES
VERSION_ID FIXED YES YES
FEATURE_ID FIXED YES YES
CERTIFICATE_SERIAL_NUMBER FIXED YES YES

DURATION_IN_USE STRUCT YES YES
DURATION_START_IN_USE TIME YES YES
DURATION_END_IN_USE TIME YES YES

ADVANCE_EXPIRATION_NOTIF_IN_USE STRUCT
PUBLISHER_ASSIGNED_NOTIF_DUE TIME YES
PUBLISHER_ASSIGNED_NOTIF_ISSUED TIME
CUSTOMER_ASSIGNED_NOTIF_DUE TIME
CUSTOMER_ASSIGNED_NOTIF_ISSUED TIME

CONFIRM_CERTIFICATE_INTERVAL_IN_USE INTVL YES YES
MASKED_EVENTS LIST YES
EVENT STRUCT YES YES
EVENT_CLASS FIXED YES YES
EVENT_TYPE FIXED YES YES
EVENT_SUBTYPE FIXED YES YES

HARD_SOFT_STOP_INDICATOR FIXED YES
DISASTER_RECOVERY_INDICATOR STRUCT
DISASTER_RECOVERY_START TIME
DISASTER_RECOVERY_END TIME

ASSIGNED_CONFIRM_INTERVAL INTVL YES
ASSIGNED_ADVANCE_NOTIFICATION INTVL
ASSIGNED_LICENSED_UNITS FIXED
ASSIGNED_NODE_LIST LIST
NODE STRUCT YES YES
NODE_TYPE FIXED YES YES

Systems Management: Software License Use Management (XSLM) 125

State Information Data Elements

Certificate related information data elements Type Required Basic Set
NODE_ID BSTR YES YES
SUBNODE STRUCT
SUBNODE_TYPE FIXED YES
SUBNODE_ID BSTR YES

ASSIGNED_NODE_USERS_LIST LIST
NODE_USERS_ASSOCIATION STRUCT YES
NODE STRUCT YES YES
USER_LIST LIST YES
USER STRUCT YES YES
USER_TYPE FIXED YES YES
USER_ID BSTR YES YES

ASSIGNED_CAPACITY_LIST LIST
CAPACITY STRUCT YES
CAPACITY_TYPE FIXED YES
CAPACITY_UNITS FLOAT YES

ASSIGNED_CONSUMPTIVE_COUNTERS LIST
COUNTER_UNITS STRUCT YES
COUNTER_ID FIXED YES
COUNTER_VALUE FLOAT YES

LICENSED_UNITS_CERTIFICATE_IN_USE FIXED YES YES
ADMINISTRATOR_HWM_VALUE FIXED
PUBLISHER_HWM_VALUE FIXED
CAPACITY_IN_USE LIST
CAPACITY STRUCT YES

COUNTERS_CONSUMPTIVE_IN_USE LIST
COUNTER_UNITS STRUCT YES

COUNTERS_CUMULATIVE_IN_USE LIST
COUNTER_UNITS STRUCT YES

CUSTOMER_ASSIGNED_LIC_SYS_INFO TEXT

License instances information data elements Type Required Basic Set
LICENSE_INSTANCES_INFORMATION_LIST LIST YES YES
LICENSE_INSTANCE_INFORMATION STRUCT YES YES
LICENSE_INSTANCE_ID STRUCT YES YES
CERTIFICATE_ID STRUCT YES YES
INSTANCE_NUMBER FIXED YES YES

SESSION_HANDLE STRUCT
Licensing System defined

TRANSACTION_HANDLE STRUCT YES YES
Licensing System defined

LICENSED_UNITS_INSTANCE_IN_USE FIXED YES YES
CONFIRM_INSTANCE_INTERV. IN_USE STRUCT YES YES
CONFIRM_INTERVAL_VALUE INTVL YES YES
NEXT_CONFIRM_TIME TIME YES YES

REQUESTOR_ID STRUCT YES YES
NODE STRUCT YES YES
USER STRUCT YES YES

USER_ID_FROM_API BSTR

126 Technical Standard:

Data Elements State Information

License server information data elements Type Required Basic Set
LICENSE_SERVER_INFORMATION STRUCT YES YES
LICENSE_SERVER_ID STRUCT YES
LICENSING_SYSTEM_PUBLISHER STRUCT YES
PUBLISHER_ID UUID YES
PUBLISHER_NAME TEXT YES

LICENSE_SERVER_INSTANCE_ID UUID YES
FUNCTIONAL_LEVEL STRUCT YES YES
NODE STRUCT YES YES

LICENSE_SERVER_DATA_ELEMENTS LIST YES
DATA_ELEMENT_ID FIXED YES

SERVER_START TIME YES YES
SERVER_LAST_STOP TIME YES
DISASTER_RECOVERY_SERVER_INDICATOR STRUCT YES
DISASTER_RECOVERY_START TIME YES
ADMINISTRATOR STRUCT YES YES

Systems Management: Software License Use Management (XSLM) 127

Logged Data Elements Data Elements

10.3 Logged Data Elements

Data elements of LOGGED_EVENT Type Required Basic Set
LOGGED_EVENT STRUCT YES YES
EVENT_CLASS FIXED YES YES
EVENT_TYPE FIXED YES YES
EVENT_SUBTYPE FIXED YES YES
LICENSE_SERVER_ID STRUCT
LICENSE_SYSTEM_INFO STRUCT YES
LIC_SYS_INFO_DESCRIPTOR UUID YES YES
LIC_SYS_INFO_DATA BSTR YES YES

SERVER_TIME_STAMP TIME YES YES
CLIENT_TIME_STAMP TIME YES YES
LOGGED_DATA STRUCT YES YES
See table below

Data elements of LOGGED_DATA Type Required Basic Set
LOGGED_DATA STRUCT YES YES
ADMINISTRATOR STRUCT YES
ADMINISTRATOR_NODE STRUCT YES
CERTIFICATE_ID STRUCT YES
INSTALL_ANNOTATION TEXT YES
REMOVE_ANNOTATION TEXT YES
REPLACE_CERTIFICATE LIST
CERTIFICATE_ID STRUCT YES YES

ASSIGNED_LICENSED_UNITS FIXED
ASSIGNED_NODE_LIST LIST
NODE STRUCT YES YES

ASSIGNED_NODE_USERS_LIST LIST
NODE_USERS_ASSOCIATION STRUCT YES

ASSIGNED_CAPACITY_LIST LIST
CAPACITY STRUCT YES

ASSIGNED_CONSUMPTIVE_COUNTERS LIST
COUNTER_UNITS STRUCT YES

ASSIGNED_CONFIRM_INTERVAL INTVL
HARD_SOFT_STOP_POLICY FIXED
ASSIGNED_ADVANCE_NOTIFICATION INTVL
ADMINISTRATOR_HWM_VALUE FIXED
ADMIN_RESET_COUNTER_LIST LIST
COUNTER_UNITS STRUCT YES

MASKED_EVENTS LIST YES
EVENT STRUCT YES YES

FORCED_RELEASE_UNITS FIXED
DISASTER_RECOVERY_MODE FIXED
REQUESTOR_ID STRUCT
USER_ID_FROM_API BSTR
SESSION_HANDLE STRUCT
TRANSACTION_HANDLE STRUCT
LOGGED_MESSAGE TEXT
REQUESTED_UNITS FIXED

128 Technical Standard:

Data Elements Logged Data Elements

Data elements of LOGGED_DATA Type Required Basic Set
GRANTED_UNITS FIXED
RETURNED_UNITS FIXED
RETURN_STATUS STRUCT
RETURN_FUNCTION_CODE FIXED
RETURN_STATUS_CODE FIXED

COUNTER_UNITS STRUCT
COUNTER_ID FIXED YES
COUNTER_VALUE FLOAT YES

COUNTER_UPDATE_UNITS STRUCT
COUNTER_ID FIXED YES
COUNTER_VALUE FLOAT YES

PUBLISHER_HWM_VALUE FIXED
SYSTEM_RESET_COUNTER_LIST LIST
COUNTER_UNITS STRUCT

DURATION_END_IN_USE TIME
APPLICATION_ERROR_CODE FIXED
SYSTEM_ERROR_CODE FIXED
SYSTEM_ERROR_MESSAGE TEXT

Systems Management: Software License Use Management (XSLM) 129

Detailed Data Element Descriptions Data Elements

10.4 Detailed Data Element Descriptions
Each Data Element is described in alphabetic order below, starting with the tabular format:

Data Element Name Type Basic Set ID number

and followed by a description and a list of components.

ADMIN_RESET_COUNTER_LIST LIST no 1

This data element contains the list of counters (and their values) when the administrator resets
them to their initial value.

Components:

COUNTER_UNITS One required

ADMINISTRATOR STRUCT yes 2

This data element identifies the customer’s license administrator performing an action. This
information is provided to the License Server by the management agent client library.

Components:

ADMINISTRATOR_TYPE Required
ADMINISTRATOR_ID Required

ADMINISTRATOR_HWM_VALUE FIXED no 3

This data element contains the value of the Administrator High Water Mark (AHWM). The
AHWM is the maximum number of reusable units simultaneously in use since the last time this
value was reset to zero, and is logically the same quantity as counted by the Publisher HWM, the
only difference being when they are reset, and by whom. At any time the AHWM can be reset to
zero by the administrator with an xslm_set_admin_policy () call.

ADMINISTRATOR_ID BSTR no 4

This data element contains a byte string which uniquely identifies the customer’s license
administrator performing the action which led to the logging of this event. The exact meaning
and format of the byte string is determined by the ADMINISTRATOR_TYPE data element. If the
value of ADMINISTRATOR_TYPE data element is 1 (login name), the content of this data
element must be parsed as if it was of type TEXT. This information is provided to the License
Server by the management agent client library.

130 Technical Standard:

Data Elements Detailed Data Element Descriptions

ADMINISTRATOR_NODE STRUCT yes 5

This data element specifies the node from which the administrator made a request to the
Licensing System.

Components:

NODE_TYPE Required
NODE_ID Required
SUBNODE Optional

ADMINISTRATOR_TYPE FIXED no 6

This data element indicates the format and the meaning of the ADMINISTRATOR_ID data
element associated with it. The only instance type presently defined is:

Value = 1 Login name

ADVANCE_EXPIRATION_NOTIFICATION INTVL no 7

The presence of this data element in the certificate instructs the Licensing System to log a
warning before the expiration of the actual license period. The lead time of the warning is the
time period here specified, or a shorter period specified by the customer. If the Licensing System
is capable of generating (implementation dependent) alerts, an alert should also be generated.

ADVANCE_EXPIRATION_NOTIFICATION_IN_USE STRUCT no 8

This data element consists of data elements which provide information about the publisher
and/or customer requested advance notifications associated with the last date for which the
application has been licensed.

Components:

PUBLISHER_ASSIGNED
NOTIFICATION_DUE Required

PUBLISHER_ASSIGNED
NOTIFICATION_ISSUED Optional

CUSTOMER_ASSIGNED
NOTIFICATION_DUE Optional

CUSTOMER_ASSIGNED
NOTIFICATION_ISSUED Optional

APPLICATION_ERROR_CODE FIXED no 9

This data element specifies the type of error, caused by the application, which was detected by
the Licensing System.

Systems Management: Software License Use Management (XSLM) 131

Detailed Data Element Descriptions Data Elements

ASSIGNABLE_CAPACITY STRUCT no 10

This data element specifies a capacity which must be assigned by the customer before the
Licensing System can grant a license. The customer can assign any value up to the maximum
value indicated in this data element.

Components:

CAPACITY Required
NOT_REASSIGNABLE Optional

ASSIGNABLE_CAPACITY_LIST LIST no 11

The presence of this data element in the certificate indicates that the customer is required to
assign a value for all the capacities here specified before the Licensing System can grant a license
to the application. The assignment will be done by the customer’s license administrator by
providing to the Licensing System a list of CAPACITY data elements.

Components:

ASSIGNABLE_CAPACITY One required

ASSIGNABLE_CONSUMPTIVE_COUNTERS LIST no 12

The presence of this data element in the certificate indicates that the customer is required to
assign a value to all the consumptive counters here specified before the Licensing System can
grant a license to the application. The assignment will be done by the customer’s license
administrator by providing to the Licensing System a list of COUNTER_UNITS data elements.
For each counter, the customer can assign any value up to the maximum number indicated in
this data element.

Components:

COUNTER One required

ASSIGNABLE_NODES STRUCT no 13

The presence of this data element in the certificate indicates that the customer is required to
assign one or more nodes to this certificate before the Licensing System can grant a license to the
application. The assignment will be done by the customer’s license administrator by providing
to the Licensing System a list of NODE data elements. The customer can assign any number of
nodes up to the maximum number indicated in this data element. The publisher can specify also
if an assigned NODE can be deleted (or substituted) from the list.

Components:

NUMBER_OF_NODES Required
NOT_REASSIGNABLE Optional

132 Technical Standard:

Data Elements Detailed Data Element Descriptions

ASSIGNABLE_UNITS STRUCT no 14

The presence of this data element in the certificate indicates that the customer is required to
specify a value for the "units of use" (which then will become available to the application) before
the Licensing System can grant a license to the application. The assignment will be done by the
customer’s license administrator by providing to the Licensing System any value up to the
maximum number indicated in this data element.

Components:

LICENSED_UNITS Required
NOT_REASSIGNABLE Optional

ASSIGNABLE_USERS STRUCT no 15

The presence of this data element in the certificate indicates that the customer is required to
assign one or more users to this certificate before the Licensing System can grant a license to the
application. The assignment will be done by the customer’s license administrator by providing
to the Licensing System a list of USER data elements. The customer can assign any number of
users up to the maximum number indicated in this data element. The publisher can specify also
if an assigned USER can be deleted (or substituted) from the list. All the assignments (and
possibly deletions and substitutions) will be logged by the Licensing System.

Components:

NUMBER_OF_USERS Required
LINKED_TO_NODE Optional
NOT_REASSIGNABLE Optional

ASSIGNED_ADVANCE_NOTIFICATION INTVL no 16

This data element is a customer assigned time interval which represents the lead time by which
the Licensing System must log (issue) a license expiration warning. The value set by the
administrator must be shorter than the one specified in the
ADVANCE_EXPIRATION_NOTIFICATION data element present in the certificate.

ASSIGNED_CAPACITY_LIST LIST no 17

This data element contains the value of the capacities which have been assigned by the
customer’s license administrator as a consequence of the presence of the
ASSIGNABLE_CAPACITY_LIST data element in the certificate. The value of the
CAPACITY_UNITS contained in this data element is set by the xslm_set_admin_policy () call.

Components:

CAPACITY Required

Systems Management: Software License Use Management (XSLM) 133

Detailed Data Element Descriptions Data Elements

ASSIGNED_CONFIRM_INTERVAL INTVL no. 18

This data element specifies the confirm interval set by the license administrator for this
certificate, when the CONFIRM_INTERVAL data element is present and the license
administrator chooses a value within the CONFIRM_INTERVAL_RANGE. The value of this
data element is set by the xslm_set_admin_policy () call.

ASSIGNED_CONSUMPTIVE_COUNTERS LIST no 19

This data element contains the list of consumptive counters (and their values) assigned by the
administrator, when an assignment is required by the certificate. The value of the
COUNTER_VALUE associated with this data element is set by the xslm_set_admin_policy () call.

Components:

COUNTER_UNITS One required

ASSIGNED_LICENSED_UNITS FIXED no 20

This data element specifies the number of licensed units which have been assigned by the
customers license administrator as a consequence of the presence of the ASSIGNABLE_UNITS
data element in the certificate. The value of this data element is set by the
xslm()_set_admin_policy call.

ASSIGNED_NODE_LIST LIST no 21

This data element contains the list of the nodes assigned by the administrator, when an
assignment is required by the certificate.

Components:

NODE One required

ASSIGNED_NODE_USER_LIST LIST no 22

This data element contains the list of users assigned by the administrator, when an assignment is
required by the certificate. If the certificate further specifies that the users must be "linked to a
node", this data element contains also the nodes to which the users have been linked.

Components:

NODE_USERS_ASSOCIATION One required

AUTHENTICATION_KEY STRUCT no 23

This data element of the certificate contains the publisher’s public key to be used by the
Licensing System in order to verify the integrity of the certificate. The key can be provided just
as a byte string (value of the AUTHENTICATION_TYPE data element equal to 1) or as part of a

134 Technical Standard:

Data Elements Detailed Data Element Descriptions

X.509 certificate (value of the AUTHENTICATION_TYPE data element equal to 2). In the latter
case the Licensing System must support the X.509 certificate format provided in this data
element.

Components:

X.509 defined Required

AUTHENTICATION_SECTION STRUCT no 24

This data element of the certificate contains the information needed for the Licensing System to
verify the integrity of the certificate, and for the application to verify its authenticity. The
verification of the integrity is based on a message digest encrypted with a public private key
encryption scheme.

Components:

AUTHENTICATION_TYPE Required
AUTHNTICATION_KEY Required
SIGNATURE Required

AUTHENTICATION_TYPE FIXED no 25

This data element indicates which type of authentication scheme must be used by the Licensing
System in order to verify the integrity of this certificate, and how the publisher’s public key is
being provided by this certificate. The only type presently specified is the validation based on a
message digest encrypted with the publisher’s private key, and verified by the Licensing System
at certificate installation time by means of the publisher’s public key provided on the certificate.
If the value of this data element is equal to 1, the AUTHENTICATION_KEY data element
contains just the key represented as a byte string; if the value of this data element is equal to 2,
the AUTHENTICATION_KEY data element contains the complete X.509 certificate of the
publisher.

Value = 1 Bare key
Value = 2 X.509 certificate

BASE_SECTION STRUCT yes 26

This data element is required on every certificate, and contains information about the
application publisher, the licensed product and all other information used to grant licenses.

Components:

FUNCTIONAL_LEVEL Required
CERTIFICATE_CREATED Required
CERTIFICATE_ID Required
CERTIFICATE_DESCRIPTION Required
PUBLISHER_USE Optional
REPLACE_CERTIFICATE Optional
LIFE Optional
DURATION Optional
LICENSED_UNITS Optional

Systems Management: Software License Use Management (XSLM) 135

Detailed Data Element Descriptions Data Elements

PUBLISHER_CAPACITY_LIMITS_LIST Optional
PUBLISHER_ASSIGNMENTS_LIST Optional
CERTIFICATE_TARGET_NODES Optional
CUSTOMER_ASSIGNABLE_LIMITS Optional
COUNTERS_CONSUMPTIVE Optional
COUNTERS_CUMULATIVE Optional
CONFIRM_INTERVAL Optional
NON_MASKABLE_EVENTS Optional
RESETTING_FREQUENCY Optional
LOCALLY_AVAILABLE Optional
DEFAULT_UNITS_TO_GRANT Optional
FORCE_RELEASE_OK Optional
ADVANCE_EXPIRATION_NOTIFICATION Optional
DISASTER_RECOVERY Optional
MULTI_USE_ALLOWED Optional

CAPACITY STRUCT no 27

This data element specifies the type of capacity and the value of the capacity which should not
be exceeded in the node where the application is running.

Components:

CAPACITY_TYPE Required
CAPACITY_UNITS Required
CAPACITY_ADDITIONAL Optional

CAPACITY_ADDITIONAL FLOAT no 28

This data element specifies an additional capacity value which can be used by the Licensing
System to possibly grant a license (in "soft stop" mode) when the application is running on a
node with a capacity greater than the one specified in the CAPACITY_UNITS data element (or in
the customer assigned capacity value).

CAPACITY_IN_USE LIST no 29

This data element provides a list of data elements each of which specifies the total license
capacity in use for this certificate at the current time.

Components:

CAPACITY Required

CAPACITY_TYPE FIXED no 30

This data element indicates the format and the meaning of the CAPACITY_UNIT data element
associated with it. The capacity types presently defined are:

Value = 1 MIPS

136 Technical Standard:

Data Elements Detailed Data Element Descriptions

Value = 2 DASD
Value = 3 Memory

CAPACITY_UNITS FLOAT no 31

This data element specifies the capacity value which should not be exceed by the node where the
application is running. This information is provided to the Licensing System by the application
agent.

CERTIFICATE STRUCT yes 32

This is the major data element which encodes the terms and conditions under which the product
identified in the certificate is licensed to a customer by the software publisher.

Components:

BASE_SECTION Required
PUBLISHER_SECTION Optional
LICENSING_SYSTEM_SECTION_LIST Optional
AUTHENTICATION_SECTION Optional

CERTIFICATE_CREATED TIME yes 33

This data element of the certificate contains the date and the time when this certificate was
created by the application publisher

CERTIFICATE_DESCRIPTION STRUCT yes 34

This data element contains the textual representation of the components present in the
CERTIFICATE_ID data element, to be used by the Licensing System or a management tool to
display information about this certificate in a form more understandable for a human reader.

Components:

PUBLISHER_NAME Required
PRODUCT_NAME Required
VERSION_NAME Required
FEATURE_NAME Required

CERTIFICATE_ID STRUCT yes 35

This data element contains information which identify the publisher who created the certificate,
the product this certificate refers to, and a certificate serial number. This information uniquely
identify a certificate instance.

Components:

PUBLISHER_ID Required
PRODUCT_ID Required

Systems Management: Software License Use Management (XSLM) 137

Detailed Data Element Descriptions Data Elements

VERSION_ID Required
FEATURE_ID Required
CERTIFICATE_SERIAL_NUMBER Required

CERTIFICATE_INSTALLED STRUCT yes 36

This data element contains all the information related to the installation of this certificate.

Components:

INSTALL_DATE Required
INSTALL_ANNOTATION Required
ADMINISTRATOR Required
ADMINISTRATOR_NODE Required

CERTIFICATE_LIST LIST no 37

This data element consists of a list of certificates, related one to each other. If the list has only one
certificate, this data element (and the GROUP_CERTIFICATE data element where it is
contained) can be omitted.

Components:

CERTIFICATE One required

CERTIFICATE_RELATED_INFORMATION STRUCT yes 38

This data element consists of those certificate related data elements that are not already present
on the physical certificate. These data elements are returned by the get certificate call and provide
the following types of certificate information: installation, replacement, license life, advanced
notifications, confirm interval, status of optional log events, hard-stop status, disaster recovery
status, customer assignments, in use values for licenses granted, capacity, counters and high
water marks.

Components:

CERTIFICATE_UPDATE_SEQ Required
CERTIFICATE_INSTALLED Required
CERTIFICATE_REMOVED Optional
DURATION_IN_USE Optional
ADVANCE_EXPIRATION_NOTIF_IN_USE Optional
CONFIRM_CERTIFICATE_INTERV. Optional
MASKED_EVENTS Optional
HARD_SOFT_STOP_INDICATOR Optional
DISASTER_RECOVERY_INDICATOR Optional
ASSIGNED_CONFIRM_INTERVAL Optional
ASSIGNED_ADVANCE_NOTIFICATION Optional
ASSIGNED_LICENSED_UNITS Optional
ASSIGNED_NODE_LIST Optional
ASSIGNED_NODE_USERS_LIST Optional
ASSIGNED_CAPACITY_LIST Optional

138 Technical Standard:

Data Elements Detailed Data Element Descriptions

ASSIGNED_CONSUMPTIVE_COUNTERS Optional
LICENSED_UNITS_CERTIFICATE_IN_USE Required
ADMINISTRATOR_HWM_VALUE Optional
PUBLISHER_HWM_VALUE Optional
CAPACITY_IN_USE Optional
COUNTERS_CONSUMPTIVE_IN_USE Optional
COUNTERS_CUMULATIVE_IN_USE Optional

CERTIFICATE_REMOVED STRUCT yes 39

This data element contains the information related to the removal or replacement of this
certificate. To prevent reinstallation, a certificate can be deleted only at the end of the license
duration. A certificate can be replaced at any time, which is equivalent to the deletion of the
certificate being replaced, and the installation of the replacement certificate. The Licensing
System must maintain information about the replaced certificate, to prevent its reinstallation.

Components:

REMOVED_DATE Required
REMOVE_ANNOTATION Required
ADMINISTRATOR Required
ADMINISTRATOR_NODE Required
CERTIFICATE_REPLACEMENT Optional

CERTIFICATE_REPLACEMENT STRUCT no 40

This data element contains all the data elements related to the replacement of this certificate,
including the replacement date and the certificate id of the replacement certificate.

Components:

REPLACEMENT_DATE Required
CERTIFICATE_ID Required

CERTIFICATE_SERIAL_NUMBER FIXED yes 41

The value of this data element contains a publisher specified certificate number, which must be
unique within all the certificates for this same product, version and feature.

CERTIFICATE_TARGET_NODES LIST yes 42

The presence of this data element in the certificate indicates that this certificate can only be
installed on one of the nodes specified by this data element. It is expected that the publisher will
receive this information from the customer, before creating the certificate. If the data element is
not present, the Licensing System will assume that the certificate can be installed on any node.

Components:

NODE One required

Systems Management: Software License Use Management (XSLM) 139

Detailed Data Element Descriptions Data Elements

CERTIFICATE_UPDATE_SEQUENCE FIXED yes 43

This data element contains the certificate’s current update value. This value is an input
parameter to the xslm_set_admin_policy () call and is updated every time this license certificate’s
values are updated by a xslm_set_admin_policy () call. The Licensing System will only update the
certificate if the value passed by the xslm_set_admin_policy () call matches the value of this data
element.

CLIENT_TIME_STAMP TIME yes 44

This data element contains the date and time at which the client library sent to the Licensing
System a request which triggered the logging of an event. This information is given to the
Licensing System by the client agent library (application or management). For those events
where this information is missing or meaningless, it must be set to NULL.

CONFIRM_CERTIFICATE_INTERVAL_IN_USE INTVL yes 45

This data element specifies the value of the confirm interval that the Licensing System will use
for this certificate. This value is dependent on the values of the
ASSIGNED_CONFIRM_INTERVAL and the CONFIRM_INTERVAL data elements. The
certificate’s confirm interval is established in the following priority order: When present, the
value of the ASSIGNED_CONFIRM_INTERVAL determines the confirm interval. If only the
CONFIRM_INTERVAL data element is present, that value determines the confirm interval. If
none of these data elements are present, the interval value is considered to be infinite.

CONFIRM_INSTANCE_INTERVAL_IN_USE STRUCT yes 46

This data element specifies the value of the confirm interval that the Licensing System will use
for this license instance. The Licensing System will use the value of the
CONFIRM_CERTIFICATE_INTERVAL_IN_USE data element for the license instances confirm
interval value, whenever the request license and confirm calls do not provide a confirm interval
value.

Components:

CONFIRM_INTERVAL_VALUE Required
NEXT_CONFIRM_TIME Required

CONFIRM_INTERVAL STRUCT yes 47

The presence of this data element in the certificate specifies the maximum elapsed time within
which the license server should receive the next "confirm" call. If a "confirm" call is not received
within this time, the Licensing System may assume that the application ended abnormally and
may reclaim the reusable granted units (consumptive units are never reclaimed, as they are
"consumed" when they are granted). The value of the confirm interval can be changed by the
application (when issuing a "request license" or "confirm" call) or by the customer. This data
element also specifies the range (minimum and maximum values) within which the customer
may change the value of the confirm interval. In the absence of this data element, the Licensing

140 Technical Standard:

Data Elements Detailed Data Element Descriptions

System will assume that the confirm interval is infinite, unless a value is set by the application or
by the customer. In this last case, the customer can set the confirm interval to any value.

If an application uses the basic API set, the certificate should contain a
CONFIRM_INTERVAL_RANGE with CONFIRM_INTERVAL_MIN and
CONFIRM_INTERVAL_MAX both set to the confirmation interval assumed by the application.

Components:

CONFIRM_INTERVAL_VALUE Required
CONFIRM_INTERVAL_RANGE Optional

CONFIRM_INTERVAL_MAX INTVL yes 48

This data element specifies the maximum value of the confirm interval which can be set by the
customer. When the value of the confirm interval is set by the application, it is not subject to this
maximum. If this data element is NULL or not present, the Licensing System will assume that
the maximum value is infinite.

CONFIRM_INTERVAL_MIN INTVL yes 49

This data element specifies the minimum value of the confirm interval which can be set by the
customer. When the value of the confirm interval is set by the application, it is not subject to this
minimum. If this data element is NULL or not present, the Licensing System will assume that
the minimum value is zero.

CONFIRM_INTERVAL_RANGE STRUCT yes 50

The presence of this data element indicates that the customer is allowed to set the confirm
interval value only between a minimum and maximum value specified by this data element. In
the absence of this data element, the Licensing System will assume that the customer can set the
confirm interval at any value. An application may set any confirmation interval, no matter what
value is set by the customer.

Components:

CONFIRM_INTERVAL_MIN Optional
CONFIRM_INTERVAL_MAX Optional

CONFIRM_INTERVAL_VALUE INTVL yes 51

The value of this data element specifies the maximum elapsed time within which the license
server must receive the next "confirm" call. If a "confirm" call is not received within this time, the
Licensing System may assume that the application ended abnormally and may reclaim the
reusable granted units (consumptive units are never reclaimed, as they are "consumed" when
they are granted). The value of the confirm interval can be changed by the application, when
issuing a "request license" or "confirm" call, or by the customer.

Systems Management: Software License Use Management (XSLM) 141

Detailed Data Element Descriptions Data Elements

COUNTER STRUCT no 52

This data element identifies a counter (either cumulative or consumptive) that the Licensing
System will maintain. The value of a counter can be changed only by the application, via a
"record" call. A counter can be reset to its initial value by the Licensing System (in so instructed
in the certificate) or by the administrator (if so allowed in the certificate). A counter is identified
by its COUNTER_ID, which is a publisher assigned integer, unique within the set of counters
specified on the same certificate.

Components:

COUNTER_ID Required
COUNTER_NAME Required
COUNTER_VALUE Required
COUNTER_RESETABLE Optional
COUNTER_ADDITIONAL_VALUE Optional
NOT_REASSIGNABLE Optional

COUNTER_ADDITIONAL_VALUE FLOAT no 53

This data element specifies an additional consumptive counter value which can be used by the
Licensing System to possibly grant a license (in "soft stop" mode) when the application is
requesting a license and all the consumptive counters are negative by a value not greater than
the value here specified.

COUNTER_ID FIXED no 54

The value of this data element is a publisher assigned integer which uniquely identifies this
counter within the set of counters specified in this certificate.

COUNTER_NAME TEXT no 55

The value of this data element is a character string which can be used by Licensing System as an
external representation of a counter.

COUNTER_RESETABLE FIXED no 56

If this data element is present, the customer will be able to reset the actual value of the counter to
its initial value that is, the value specified in the certificate. In the case of consumptive counters
appearing in the ASSIGNED_CONSUMPTIVE_COUNTERS data element, the resetting of the
counter will satisfy the assignment required condition. When present, the value of this data
element must be set to zero. If this data element is not present, the Licensing System will assume
that the counter is not resettable.

142 Technical Standard:

Data Elements Detailed Data Element Descriptions

COUNTER_UNITS STRUCT no 57

This data element specifies a counter and a value associated with it. Depending on the "parent"
data element, this value may be either the actual value of the counter or the quantity by which
the counter is being incremented or decremented.

Components:

COUNTER_ID Required
COUNTER_VALUE Required

COUNTER_UPDATE_UNITS STRUCT no 58

This data element specifies a counter and an update value associated with it. Depending on the
type of counter, this value will be added (subtracted) to (from) the counter actual value.

Components:

COUNTER_ID Required
COUNTER_VALUE Required

COUNTER_VALUE FLOAT no 59

The value of this data element is a number which can represent the current value of a counter, or
its initial value, or the maximum value which can be assigned to the counter by the customer,
depending on the data element where COUNTER_VALUE appears.

COUNTERS_CONSUMPTIVE LIST no 60

The presence of this data element in the certificate indicates that the application will make use of
consumptive counters, which will be maintained by the Licensing system. All the counters must
have an initial value greater than zero. After an application has been granted a valid license, it
will issue "record" calls to instruct the Licensing System to decrement a counter by a given
amount (both the COUNTER_ID and the amount are specified in the "record" call). "Record"
calls received when the counter is negative will be honored and the counter will be updated. If
all the consumptive counters specified in this certificate are less than or equal to zero when a
"request license" call is received, the license will not be granted.

Components:

COUNTER One required

COUNTERS_CONSUMPTIVE_IN_USE LIST no 61

This data element provides a list of data elements each of which specifies current value of one of
the consumptive counters in use for this certificate.

Components:

COUNTER_UNITS Required

Systems Management: Software License Use Management (XSLM) 143

Detailed Data Element Descriptions Data Elements

COUNTERS_CUMULATIVE LIST no 62

The presence of this data element indicates that the application will make use of cumulative
counters, which will be maintained by the Licensing system. All the counters will have an initial
positive or negative value. After an application has been granted a valid license, it will issue
"record" calls to instruct the Licensing System to increment a counter by a given amount (both
the COUNTER_ID and the amount are specified in the "record" call).

Components:

COUNTER One required

COUNTERS_CUMULATIVE_IN_USE LIST no 63

This data element provides a list of data elements each of which specifies current value of one of
the cumulative counters in use for this certificate.

Components:

COUNTER_UNITS Required

CUSTOMER_ASSIGNABLE_LIMITS STRUCT no 64

The presence of this data element in the certificate indicates that the customer must assign a
value to the data elements here indicated before the Licensing System can grant a license to the
application. The customer can assign any value, up to the limit indicated in the data element.

Components:

ASSIGNABLE_UNITS Optional
ASSIGNABLE_NODES Optional
ASSIGNABLE_USERS Optional
ASSIGNABLE_CAPACITY_LIST Optional
ASSIGNABLE_CONSUMPTIVE_COUNTERS Optional

CUSTOMER_ASSIGNED_NOTIFICATION_DUE TIME no 65

This data element specifies the date and time at which the customer has requested that the
Licensing System log a warning indicating when the license will expire. If the Licensing System
is capable of generating (implementation dependent) alerts, an alert should also be generated.
The value of this data element is determined by the administrator through a
xslm_set_admin_policy () call which specifies a time interval shorter than the one specified by the
ADVANCE_EXPIRATION_NOTIFICATION data element. If the
ADVANCE_EXPIRATION_NOTIFICATION data element is not present in the certificate, the
administrator is not allowed to set any value, and no notification will be logged.

144 Technical Standard:

Data Elements Detailed Data Element Descriptions

CUSTOMER_ASSIGNED_NOTIFICATION_ISSUED TIME no 66

This data element specifies the date and time at which the Licensing System logged a customer
requested warning indicating when the license will expire. This data element is only present
when the notification has been issued.

CUSTOMER_ASSIGNED_APPL_INFO TEXT no 67

Customer-defined application data. If defined within the certificate, this field is always
customer-assignable

CUSTOMER_ASSIGNED_LIC_SYS_INFO TEXT no 68

Customer-defined licensing-system data. If defined within the certificate, this field is always
customer-assignable

DATA_ELEMENT_ID FIXED yes 69

This data element specifies a Data Element ID value.

DEFAULT_UNITS_TO_GRANT FIXED no 70

The presence of this data element in the certificate specifies the number of units which will be
granted when the application issues a "request license" call where the number of units requested
is equal to "default units". If this data element is not present, the Licensing System will assume
that the default number of units to grant is 1.

DISASTER_RECOVERY INTVL no 71

The presence of this data element in the certificate indicates that all restrictions specified on the
certificate will be waived when the customer declares to the Licensing System (in an
implementation dependent way) that the environment is now entering Disaster Recovery Mode.
In this mode also the restrictions imposed by the CERTIFICATE_TARGET_NODES data element
are waived. The Licensing System will resume enforcement of the restrictions specified on this
certificate when the maximum duration here specified is elapsed or when Disaster Recovery
Mode has ended, whichever occurs first.

DISASTER_RECOVERY_END TIME no 72

This data element specifies the date and time on which this certificate will no longer honor
disaster recovery mode. This data element value is dependent on the values of the
DISASTER_RECOVERY_START and DISASTER_RECOVERY data elements.

Systems Management: Software License Use Management (XSLM) 145

Detailed Data Element Descriptions Data Elements

DISASTER_RECOVERY_INDICATOR STRUCT no 73

This data element contains data elements which track the start of disaster recovery mode for a
certificate and the date on which disaster recovery mode is no longer honored by this certificate.

Components:

DISASTER_RECOVERY_START Required
DISASTER_RECOVERY_END Required

DISASTER_RECOVERY_MODE FIXED no 74

This data element indicates how the administrator set the Disaster Recovery Mode.

Value = 1 Disaster recovery start
Value = 2 Disaster recovery end

DISASTER_RECOVERY_SERVER_INDICATOR STRUCT no 75

The presence of this data element indicates that this server is currently in "disaster recovery"
mode and will ignore all restrictions for those certificates which contain the
DISASTER_RECOVERY data element for the interval specified in this certificate data element.

Components:

DISASTER_RECOVERY_START Required
ADMINISTRATOR Required

DISASTER_RECOVERY_START TIME no 76

This data element specifies the date and time on which the customer’s license administrator
declared "disaster recovery mode" to the Licensing System

DURATION STRUCT yes 77

The presence of this data element in the certificate specifies the period (as a time interval) during
which the application is licensed to the customer. The beginning of this period will be either at
the time the certificate is installed or the first time that the application will run and will issue a
"request license" call. If this data element is not present, the Licensing System will assume that
the duration is the same as the certificate life, and it will start at certificate installation.

Components:

DURATION_PERIOD Required
DURATION_START_TYPE Required
DURATION_ADDITIONAL Optional

146 Technical Standard:

Data Elements Detailed Data Element Descriptions

DURATION_ADDITIONAL INTVL yes 78

This data element specifies an additional duration of the certificate which can be used by the
Licensing System to possibly grant a license (in "soft stop" mode) if the application requests a
license and the duration period has not expired by more than the time interval here specified.
This can be used by the application publisher to provide the customer with a "grace period".

DURATION_END_IN_USE TIME yes 79

This data element specifies the actual end date and time for which this certificate is valid. The
value of this element is dependent on the presence and values of the DURATION data element.

DURATION_IN_USE STRUCT yes 80

This data element consists of the data elements which provide information about the certificate’s
actual duration.

Components:

DURATION_START_IN_USE Required
DURATION_END_IN_USE Required

DURATION_PERIOD INTVL yes 81

This data element specifies the period (as a time interval) during which the application is
licensed to the customer. The beginning of this period will be either at the time the certificate is
installed or the first time that the application will run and will issue a "request license" call,
depending on the DURATION_START_TYPE data element.

DURATION_START_IN_USE TIME yes 82

This data element specifies the actual start date and time for which this certificate is valid. The
value of this data element may be either the date on which the certificate was installed or the
date on which the certificate was first used, depending on the value of
DURATION_START_TYPE data element present on the certificate.

DURATION_START_TYPE FIXED yes 83

This data element specifies if the period during which the application is licensed
(DURATION_PERIOD data element) will start at certificate installation or at certificate first use
(the first time that the application issues a "request license" call). In both cases the life of the
certificate will be extended, if needed, until the end of the duration period.

Value = 1 Start date at certificate installation
Value = 2 Start date at first certificate use

Systems Management: Software License Use Management (XSLM) 147

Detailed Data Element Descriptions Data Elements

EVENT STRUCT yes 84

This data element uniquely identifies a category of events by specifying their class, type and
subtype. The EVENT_CLASS data element is required. If one or both of the other data elements
are omitted (or specified as NULL) the Licensing System will assume that this data element
specifies all the events of the specified class, or all the events of the specified class and type.

Components:

EVENT_CLASS Required
EVENT_TYPE Optional
EVENT_SUBTYPE Optional

EVENT_CLASS FIXED yes 85

This data element specifies a class of events that can be logged by the Licensing System

Value = 1 Administration
Value = 2 Application
Value = 3 Licensing System
Value = 9 (XSLM_LOGCLASS_ANY) Any event class

EVENT_SUBTYPE FIXED yes 86

This data element specifies a subtype of events (within a given class and a given type), that can
be logged by the Licensing System.

Value = 0 NULL
Value = 10 New
Value = 11 Replace
Value = 20 Units
Value = 21 Nodes
Value = 22 Users
Value = 23 Capacity
Value = 24 Consumptive counters
Value = 30 Hard soft stop
Value = 31 Confirm interval
Value = 32 Advance notification
Value = 33 Reset administrator HWM
Value = 34 Reset counters
Value = 35 Mask events
Value = 36 Release units
Value = 37 Disaster recovery
Value = 40 Granted
Value = 41 Denied
Value = 42 Consumptive
Value = 43 Consumptive zero crossing
Value = 44 Consumptive underflow
Value = 45 Cumulative
Value = 46 Cumulative overflow
Value = 47 Cumulative zero crossing

148 Technical Standard:

Data Elements Detailed Data Element Descriptions

Value = 50 Publisher high water mark
Value = 51 Counters
Value = 53 System
Value =999 (XSLM_LOGSUBTYPE_ANY) Any event subtype

EVENT_TYPE FIXED yes 87

This data element specifies a type of events (within a given class), that can be logged by the
Licensing System.

Value = 1 Install
Value = 2 Delete
Value = 3 Assign
Value = 4 Set policy
Value = 11 Log message
Value = 12 Request license
Value = 13 Release license
Value = 14 Confirm
Value = 15 Record
Value = 16 Begin session
Value = 17 End session
Value = 21 License server start
Value = 22 License server stop
Value = 23 Reset
Value = 24 Expiration warning
Value = 25 Errors
Value =99 (XSLM_LOGTYPE_ANY) Any event type

FEATURE STRUCT yes 88

This data element describes a feature by ID and name.

Components:

FEATURE-ID Required
FEATURE_NAME Required

FEATURE_ID FIXED yes 89

The value of this data element is a publisher defined integer which uniquely identifies the
feature of the product among all the other features of this product.

FEATURE_NAME TEXT yes 90

The value of this data element is the textual representation of the version of the product for
which this certificate was created, normally used by the Licensing System or a management tool
to provide external information about the product in a human readable form.

Systems Management: Software License Use Management (XSLM) 149

Detailed Data Element Descriptions Data Elements

FORCE_RELEASE_OK FIXED no 91

The presence of this data element in the certificate indicates that the administrator can instruct
the Licensing System to release the reusable units presently in use by the application. This
capability can be useful when the customer may have knowledge that the application is no
longer running, while the Licensing System is not aware of this fact. If this data element is not
present, the units in use can only be released by the Licensing System when a "confirm" call has
failed. The value of this data element must be set to zero.

FORCED_RELEASE_UNITS FIXED no 92

This data element contains the number of reusable units which have been released by the
administrator.

FUNCTIONAL_LEVEL STRUCT yes 93

When used within a license certificate, this data element specifies the minimum level of
functionality that a license server must have in order to support this license certificate. If the
license server does not have this level of functionality, the certificate will not be installed. This
data element also specifies the functional level supported by a license server, and is part of the
information maintained by the Licensing System for each license server. This information is
returned to a management application in response to the xslm_query_api_level () and
xslm_query_servers() calls.

Components:

FUNCTIONAL_SPECIFICATION_LEVEL Required
FUNCTIONAL_TOWER_LIST Required

FUNCTIONAL_SPECIFICATION_LEVEL FIXED yes 94

This data element specifies the specification revision level supported by a license server. A
certificate can be installed only by license servers which support at least the functional level
specified in the certificate.

The current specification is defined as Value = 1.

FUNCTIONAL_TOWER FIXED yes 95

This data element identifies a functional tower supported by a license server. The functional
capabilities of the functional towers are defined in the specifications with the revision level
indicated in the SPECIFICATION_LEVEL data element. A certificate can be installed only by
license servers which support all the functional towers specified in the certificate.

Note that:

1. All license servers must support Basic (Legacy) XMAPI and Basic XLCA.
2. The Advanced XAAPI includes the Basic XAAPI.

Value = 1 Basic XAAPI

150 Technical Standard:

Data Elements Detailed Data Element Descriptions

Value = 2 Advanced XAAPI
Value = 3 Advanced XMAPI
Value = 4 Advanced XLCA

FUNCTIONAL_TOWER_LIST LIST yes 96

This data element specifies a list of functional towers supported by a license server. A certificate
can be installed only by license servers which support all the functional towers specified on the
certificate

Components:

FUNCTIONAL_TOWER One required

GRANTED_UNITS FIXED yes 97

This data element contains the number of licensed units which have been granted by the
Licensing System after receiving a "request license" call from an application. In some cases this
number may be different from the number of units requested.

GROUP_AUTHENTICATION_SECTION STRUCT no 98

This data element contains the authentication information for all the certificates contained in the
GROUP_CERTIFICATE data element. This information will allow the Licensing System to verify
the integrity of the certificate, and will allow the application to verify its authenticity. The
verification is based on a public private key encryption scheme.

Components:

AUTHENTICATION_TYPE Required
AUTHENTICATION_KEY Required
SIGNATURE Required

GROUP_CERTIFICATE STRUCT no 99

This data element consists of a number of complete certificates related one to each other, and an
optional global authentication section with the signature of the group of certificates. If only one
certificate is present, this data element may be omitted.

Components:

CERTIFICATE_LIST Required
GROUP_AUTHENTICATION_SECTION Optional

GROUP_TYPE FIXED no 100

This data element identifies the type of relationship that exists between the individual
certificates in a group certificate.

Systems Management: Software License Use Management (XSLM) 151

Detailed Data Element Descriptions Data Elements

Value = 0 Bundle
Value = 1 Suite

HARD_SOFT_STOP_INDICATOR FIXED yes 101

This data element specifies whether or not the administrator has placed this certificate in "hard
stop" mode. When in "hard stop" mode the Licensing System ignores the values in the following
data elements: LICENSED_ADDITIONAL_UNITS, CAPACITY_ADDITIONAL,
COUNTER_ADDITIONAL_VALUE and DURATION_ADDITIONAL. The value of this data
element is set by the xslm_set_admin_policy () call.

Value = 0 Soft stop mode
Value = 1 Hard stop mode

HARD_SOFT_STOP_POLICY FIXED yes 102

This data element indicates how the administrator set the hard soft stop policy (at the time this
event was logged). In administrator set "hard stop mode" the Licensing System will not make
use of any "additional" quantities in order to return a "license granted in soft stop mode". The
administrator can change this policy any number of times.

Value = 1 Soft stop mode
Value = 2 Hard stop mode

INSTALL_ANNOTATION TEXT yes 103

This data element contains any descriptive text which the administrator chooses to provide
when installing this certificate. The value of this data element is set by the
xslm_set_admin_policy () call.

INSTALL_DATE TIME yes 104

This data element specifies the date and time at which this certificate was installed by the
Licensing System.

LICENSE_ADMINISTRATOR STRUCT yes 105

This data element describes each license administrator defined to this license server. The values
for the ADMINISTRATOR_TYPE and ADMINISTRATOR_ID_STRING associated with this data
element are set by the xslm_set_admin_policy () call.

Components:

ADMINISTRATOR Required
ADMINISTRATOR_CAPABILITIES_LIST Required
ADMINISTRATOR_CREATION_DATE Required

152 Technical Standard:

Data Elements Detailed Data Element Descriptions

LICENSE_ADMINISTRATOR_LIST LIST yes 106

This data element lists the license administrators defined to this license server.

Components:

LICENSE_ADMINISTRATOR Required

LICENSE_INSTANCE_ID STRUCT yes 107

This data element consists of the data elements which uniquely identify a license instance.

Components:

CERTIFICATE_ID Required
INSTANCE_NUMBER Required

LICENSE_INSTANCE_INFORMATION STRUCT yes 108

This data element consists of the set of data elements containing information about license
instances. These data elements are returned by the "get license instances" call and provide the
following types of instance information: instance id, handles, license units in use, confirm
interval, user id and node id of license requester.

Components:

LICENSE_INSTANCE_ID Required
SESSION_HANDLE Required
TRANSACTION_HANDLE Required
LICENSED_UNITS_INSTANCE_IN_USE Required
CONFIRM_INSTANCE_INTERVAL_IN_USE Required
REQUESTOR_ID Required
USERID_FROM_API Optional

LICENSE_INSTANCE_INFORMATION_LIST LIST yes 109

This data element contains a list of license instances, and is returned as answer to a "get license
instances" call.

Components:

LICENSE_INSTANCE_INFORMATION One required

LICENSE_INSTANCE_NUMBER FIXED yes 110

This data element specifies a value provided by the Licensing System which uniquely
differentiates this license instance from all other license instances associated with a specific
certificate.

Systems Management: Software License Use Management (XSLM) 153

Detailed Data Element Descriptions Data Elements

LICENSE_SERVER_DATA_ELEMENTS LIST yes 111

This data element contains a list of all the data element IDs supported by this licensed server.
This data element is returned from the xslm_query_server_info() call.

Components:

DATA_ELEMENT_ID One required

LICENSE_SERVER_ID STRUCT no 112

This data element uniquely identifies the License Server responsible for the logging of this event.

Components:

LICENSING_SYSTEM_PUBLISHER_ID Required
LICENSE_SERVER_INSTANCE_ID Required
FUNCTIONAL_LEVEL Required
NODE Required

LICENSE_SERVER_INFORMATION STRUCT yes 113

This data element consists of the data elements that describe the license server and its level, the
license server’s disaster recovery indicator setting, and the license administrators registered to
this license server to use the management API. These data elements are returned by the ’query
servers’ call.

Components:

LICENSE_SERVER_ID Required
LICENSE_SERVER_DATA_ELEMENTS Required
SERVER_START Required
SERVER_LAST_STOP Required
DISASTER_RECOVERY_SERVER_INDICATOR Required
LICENSE_ADMINISTRATOR_LIST Required

LICENSE_SERVER_INSTANCE_ID UUID yes 114

This data element identifies the instance of a License Server running on a node. This information
is usually provided to the License Server by the Operating System.

LIC_SYS_INFO_DATA BSTR yes 115

The data described by the associated LIC_SYS_INFO_DESCRIPTOR element.

154 Technical Standard:

Data Elements Detailed Data Element Descriptions

LIC_SYS_INFO_DESCRIPTOR UUID yes 116

A unique identification, describing the format of data contained in the associated
LIC_SYS_INFO_DATA element.

LICENSE_SYSTEM_INFO STRUCT yes 117

This data element contains optional information recorded by the licensing system as part of a log
record. The contents and format of the information is entirely up to the licensing system.

Components:

LIC_SYS_INFO_DESCRIPTOR Required
LIC_SYS_INFO_DATA Required

LICENSED_ADDITIONAL_UNITS FIXED yes 118

The value of this data element is a number of additional "units of use" which can be used by the
Licensing System to grant a license (in "soft stop" mode) when the number of units requested by
the application (with a "request license" call) is greater than the number of available units.

LICENSED_UNIT_NUMBER FIXED yes 119

The value of this data element is the number of "licensed units" which are available to the
application. The Licensing System will grant a license to an application issuing a "request
license" call if the number of units requested is smaller or equal to the number of available units,
and will decrease the number of available units by the granted amount. If the units are reusable
the number of available units is increased by the granted amount when the application issues a
"release license" call. If the units are non-reusable the number of available units is not increased
when the application issues a "release license call", as the units have been "consumed" by the
application when they have been granted.

LICENSED_UNIT_TYPE FIXED yes 120

If the value of this data element is equal to 1 the "licensed units" are reusable, that is, the number
of available units is increased by the granted amount when the application issues a "release
license" call. If the value of this data element is equal to 2 the "licensed units" are non-reusable,
that is, the number of available units is not increased when the application issues a "release
license call", as the units have been "consumed" by the application when they have been granted.

Value = 1 Reusable units
Value = 2 Non-reusable units

Systems Management: Software License Use Management (XSLM) 155

Detailed Data Element Descriptions Data Elements

LICENSED_UNITS STRUCT yes 121

This data element of the certificate provides the number of "licensed units" which are available to
the licensed application. The units can be reusable, in which case the number of available units is
increased by the granted amount when the application issues a "release license" call, or can be
non-reusable, in which case the number of available units is not increased when the application
issues a "release license call". This data element may contain an additional number of "licensed
units", to be used by the Licensing System to grant a license when the number of units requested
by the application with a "request license" call is greater than the number of available units. In
this case a status will be set to indicate that the license was granted in a "soft stop" condition. If
this data element is not present, the Licensing System will assume that the number of "licensed
units" is infinite.

Components:

LICENSED_UNIT_TYPE Required
LICENSED_UNIT_NUMBER Required
LICENSED_ADDITIONAL_UNITS Optional

LICENSED_UNITS_CERTIFICATE_IN_USE FIXED yes 122

This data element specifies the total number of license units granted for this certificate. When the
LICENSED_UNIT_TYPE data element specifies "reusable" units, this data element represents the
current number of licensed units in use at this time. When the LICENSED_UNIT_TYPE data
element specifies "non-reusable" units, this data element represents the total number of licensed
units requested and consumed as this point in time.

LICENSED_UNITS_INSTANCE_IN_USE FIXED yes 123

This data element specifies the total number of license units granted for this license instance.

LICENSING_SYSTEM_PUBLISHER STRUCT no 124

This data element uniquely identifies a publisher of a Licensing System. It can appear in the
certificate (as a component of the LICENSING_SYSTEM_SECTION data element), and is also
maintained by the Licensing System as a component of the LICENSE_SERVER_ID data element.

Components:

PUBLISHER_ID Required
PUBLISHER_NAME Required

LICENSING_SYSTEM_SECTION STRUCT no 125

This data element of the certificate contains information defined for a particular Licensing
System, and in general their meaning is understood only by the Licensing System which defines
them. Required components of this data element are the ID and the name of the Licensing
System publisher, in addition to the Licensing System specific information.

156 Technical Standard:

Data Elements Detailed Data Element Descriptions

Components:

LICENSING_SYSTEM_PUBLISHER Required
LICENSING_SYSTEM_SPECIFIC_INFO Required

LICENSING_SYSTEM_SECTION_LIST LIST no 126

This data element of the certificate contains a list of sections, each one specific to a particular
Licensing System. If this data element is present, the certificate can only be installed by a
Licensing System which supports at least one of the sections.

Components:

LICENSING_SYSTEM_SECTION One required

LICENSING_SYSTEM_SPECIFIC_INFO STRUCT no 127

This data element of the certificate contains information whose exact format and meaning are
defined by the Licensing System publisher.

Components:

Licensing System publisher defined Required

LIFE STRUCT yes 128

The presence of this data element in the certificate specifies the time span during which this
certificate is valid, that is, it can be used. The certificate can be installed at any time, but no
licenses will be granted before the certificate life start date or after the certificate life end date. In
the absence of this data element the Licensing System will assume that the certificate is always
valid.

Components:

LIFE_START Optional
LIFE_END Optional

LIFE_END TIME yes 129

This data element specifies the date when the validity of this certificate will end. After this date
no licenses will be granted and the certificate can be deleted from the Licensing System. The
actual end date of the certificate life can possibly be extended by the time interval specified in
the DURATION data element, if the activation of the license was done just before the certificate
life end date. If this data element is not present or is specified as NULL, the Licensing System
will assume that the certificate will never expire.

Systems Management: Software License Use Management (XSLM) 157

Detailed Data Element Descriptions Data Elements

LIFE_START TIME yes 130

This data element specifies the date when the validity of this certificate will start. The certificate
can be installed at any time, but before this date no licenses will be granted. If this data element
is not present or is specified as NULL, licenses can be granted immediately after installation.

LINKED_TO_NODE FIXED no 131

The presence of this data element in the certificate (as an optional component of the
ASSIGNABLE_USERS data element) indicates that the customer must also specify a node to
which the named users are assigned. The value of this data element must be set to zero.

LOCALLY_AVAILABLE FIXED no 132

The presence of this data element in the certificate indicates that this certificate must be "locally"
available to the application, that is, the application should be able to request and release licenses
without the need of accessing a network. How this is accomplished is implementation
dependent. The value of this data element must be set to zero.

LOGGED_DATA STRUCT yes 133

This data element contains data specific to the event being logged. The components of this data
element depend on the Class, Type and Subtype of the event being logged. The chapter on
Recording and Logging specifies which data elements are required for each combination of
Class, Type and Subtype.

Components:

ADMINISTRATOR Optional
ADMINISTRATOR_NODE Optional
CERTIFICATE_ID Optional
INSTALL_ANNOTATION Optional
REMOVE_ANNOTATION Optional
REPLACE_CERTIFICATE Optional
ASSIGNED_LICENSE_UNITS Optional
ASSIGNED_NODE_LIST Optional
ASSIGNED_NODE_USERS_LIST Optional
ASSIGNED_CAPACITY_LIST Optional
ASSIGNED_CONSUMPTIVE_COUNTERS Optional
HARD_SOFT_STOP_POLICY Optional
ASSIGNED_ADVANCE_NOTIFICATION Optional
CONFIRM_INTERVAL_VALUE Optional
ADMINISTRATOR_HWM_VALUE Optional
ADMIN_RESET_COUNTER_LIST Optional
MASKED_EVENTS Optional
FORCED_RELEASE_UNITS Optional
DISASTER_RECOVERY_MODE Optional
REQUESTOR_ID Optional
USER_ID_FROM_API Optional

158 Technical Standard:

Data Elements Detailed Data Element Descriptions

SESSION_HANDLE Optional
TRANSACTION_HANDLE Optional
LOGGED_MESSAGE Optional
REQUESTED_UNITS Optional
GRANTED_UNITS Optional
RETURNED_UNITS Optional
RETURN_STATUS Optional
COUNTER_UNITS Optional
COUNTER_UPDATE_UNITS Optional
PUBLISHER_HWM_VALUE Optional
SYSTEM_RESET_COUNTER_LIST Optional
DURATION_END_IN_USE Optional
APPLICATION_ERROR_CODE Optional
SYSTEM_ERROR_CODE Optional

LOGGED_EVENT STRUCT yes 134

This data element contains all the information for an event which is being logged by a specific
License Server of a Licensing System. This information is comprised of a set of components
which are the same for all the events (the first six components listed below) and a component
(namely LOGGED_DATA) whose contents depends on the Class, Type and Subtype of the event
being logged.

Components:

EVENT_CLASS Required
EVENT_TYPE Required
EVENT_SUBTYPE Required
LICENSE_SERVER_ID Required
SERVER_TIME_STAMP Required
CLIENT_TIME_STAMP Required
LOGGED_DATA Required

LOGGED_MESSAGE TEXT yes 135

This data element contains the text string which has been passed to the Licensing System by the
application, in order for it to be logged.

MASKED_EVENTS LIST yes 136

This data element consists of a list of the optional events for this certificate which the
administrator requested not to log.

Components:

EVENT One required

Systems Management: Software License Use Management (XSLM) 159

Detailed Data Element Descriptions Data Elements

MULTI_USE_ALLOWED FIXED no 137

The presence of this data element in the certificate indicates that, for reusable licensed units, the
Licensing System must grant a license without increasing the number of units in use (that is,
without using any of the available units) when the requesting application satisfies the conditions
indicated by the value of this data element.

Value = 1 The request comes from the same node as
a previous request

Value = 2 The request comes from the same user as
a previous request

Value = 3 The request comes from the same user
and the same node as a previous request

NEXT_CONFIRM_TIME TIME yes 138

This data element specifies the next date and time by which the application associated with this
license instance must issue a "confirm" call, otherwise the Licensing System may assume that the
application ended abnormally and may reclaim any reusable licenses in use by this license
instance.

NODE STRUCT yes 139

This data element specifies a node, and its meaning depends on the data element where it
appears. If it appears in the certificate (as a component of CERTIFICATE_TARGET_NODES or
NODE_USERS_ASSOCIATION), it specifies a node where the application must run in order to
be granted a license. At run time, the information about the node where the application is
running is provided to the Licensing System by the application agent, in addition to the
information provide by the application through the parameters of the API calls. This information
is usually platform dependent, and the publisher may have to receive this information from the
customer before creating the certificate. Otherwise NODE, for information purposes, will
indicate the node where the application is running, or a license server is running, or a
management application is running.

Components:

NODE_TYPE Required
NODE_ID Required
SUBNODE Optional

NODE_ID BSTR yes 140

This data element contains a byte string which uniquely identifies a node where the application
is licensed to run. The exact meaning and format of the byte string is determined by the
NODE_TYPE data element. At run time, this information is provided to the Licensing System by
the application agent, or the management agent, or the Operating System.

160 Technical Standard:

Data Elements Detailed Data Element Descriptions

NODE_TYPE FIXED yes 141

This data element indicates the format and the meaning of the NODE_ID data element
associated with it. The node types presently defined are:

Value = 1 System board serial number
Value = 2 Network interface MAC address
Value = 3 External Hardware Key
Value = 4 Operating System provided
Value = 5 Licensing System provided

NODE_USERS_ASSOCIATION STRUCT no 142

This data element indicates a node where the application must (will) run in order to be granted a
license, and a list of users which are licensed to use this application. When the application issues
a "request license" call, the Licensing System will grant a license (provided that all other
conditions are met) only if the application is running the specified node, and is being used by
one of the specified users. The information about the node where the application is running is
provided to the Licensing System by the application agent (not the application itself). The
information about the user of the application can be provided by the application itself (as one of
the parameter of the "request license" call) or by the application agent. This data element can be
specified in the certificate by the application publisher, or can be defined by the administrator, if
so requested in the certificate (ASSIGNABLE_NODES and ASSIGNABLE_USERS).

Components:

NODE Required
USER_LIST Required

NON_MASKABLE_EVENTS LIST yes 143

If this data element is present in the certificate, the Licensing System will not allow a license
administrator to mask the logging of the optional events listed in this data element. If this data
element is not present, the logging of all the events defined as optional will be under the control
of the license administrator.

Components:

EVENT One required

NOT_REASSIGNABLE FIXED no 144

The presence of this data element in the certificate indicates that the assignment specified in the
parent data element, once done by the customer’s license administrator, cannot be "undone", that
is, the assignment become permanent and its value cannot be changed. If this data element is not
present, the Licensing System will assume that the administrator is allowed to perform the
assignment operation any number of times. The value of this data element must be set to one.

Systems Management: Software License Use Management (XSLM) 161

Detailed Data Element Descriptions Data Elements

NUMBER_OF_NODES FIXED no 145

This data element indicates the maximum number of nodes that the customer can assign to this
certificate. If this data element is present in the certificate, the customer is required to assign at
least one node.

NUMBER_OF_USERS FIXED no 146

This data element indicates the maximum number of named users that the customer can assign
to this certificate. If this data element is present in the certificate, the customer is required to
assign at least one named user.

PRODUCT STRUCT yes 147

This data element describes a product by ID and name.

Components:

PRODUCT_ID Required
PRODUCT_NAME Required

PRODUCT_ID FIXED yes 148

The value of this data element is a publisher defined integer which uniquely identifies this
product among all the other products of this publisher.

PRODUCT_NAME TEXT yes 149

The value of this data element is the textual representation of the name of the product for which
this certificate was created, normally used by the Licensing System or a management tool to
provide external information about the product in a human readable form.

PUBLISHER_ASSIGNED_NOTIFICATION_DUE TIME no 150

This data element specifies the date and time at which the publisher has requested that the
Licensing System log a warning indicating when the license will expire. If the Licensing System
is capable of generating (implementation dependent) alerts, an alert should also be generated.

PUBLISHER_ASSIGNED_NOTIFICATION_ISSUED TIME no 151

This data element specifies the date and time at which the Licensing System logged a publisher
requested warning indicating when this certificate will expire. This data element is only present
when the notification has been issued.

162 Technical Standard:

Data Elements Detailed Data Element Descriptions

PUBLISHER_ASSIGNMENTS_LIST LIST no 152

The presence of this data element in the certificate indicates that the use of the application has
been restricted to the set of users here specified, and can only run on the nodes here specified.
Each data element of the list associates a node with a list of users. The application can only be
used by those users identified in the user list, when the application is running on the specified
node. The node can be indicated as NULL, and the meaning is that the application can only be
used by those users identified in the user list, regardless of where the application is running. The
list of users can be indicated as NULL, and the meaning is that the application can be used by
any user when it is running on the specified node. The restrictions specified in each node-users
association are independent one from the other.

If this data element is not present, the Licensing System will assume that the application can run
on any node and can be used by any user.

Components:

NODE_USERS_ASSOCIATION One required

PUBLISHER_CAPACITY_LIMITS_LIST LIST no 153

The presence of this data element in the certificate indicates that the application is licensed to
run on nodes which do not exceed the capacity limits specified by this data element. The
capacity can be based on CPU power such as MIPS, or memory size, or megabytes of storage
and the like. The information about the capacity of the node where the application is running
will be provided to the Licensing System by the application agent, and not by the application
itself.

Components:

CAPACITY One required

PUBLISHER_HIGH_WATER_MARK STRUCT no 154

The presence of this data element in the certificate specifies when the Licensing System must
reset to zero the value of the Publisher High Water Mark (PHWM, see the description for the
PUBLISHER_HWM_VALUE data element). If this data element is not present, the value of
PHWM will always increase.

Components:

RESET_MODE Required
RESET_INTERVAL Optional

PUBLISHER_HWM_VALUE FIXED no 155

This data element contains the value of the Publisher High Water Mark (PHWM). The PHWM is
the maximum number of reusable units simultaneously in use since the last time this value was
reset to zero, and is logically the same quantity as counted by the Administrator HWM, the only
difference being when they are reset, and by whom. The PHWM is reset to zero by the Licensing
System with a frequency specified in the RESETTING_FREQUENCY data element.

Systems Management: Software License Use Management (XSLM) 163

Detailed Data Element Descriptions Data Elements

PUBLISHER STRUCT yes 156

This data element describes a publisher by ID and name.

Components:

PUBLISHER_ID Required
PUBLISHER_NAME Required

PUBLISHER_ID UUID yes 157

This data element uniquely identifies (by means of a UUID)the publisher of the application
software or the publisher of the Licensing System, depending on the "parent" data element
where it appears.

PUBLISHER_NAME TEXT yes 158

This data element provides the textual representation of the name of the publisher, normally
used by the Licensing System or a management tool to display external information about the
publisher in a human readable form.

PUBLISHER_SECTION STRUCT no 159

This data element of the certificate contains publisher defined information, which will be passed
to the application by the Licensing System in answer to a "query" call .The components of this
data element will be publisher defined.

Components:

Publisher defined Required

PUBLISHER_USE TEXT yes 160

This data element contains additional publisher defined information, which can be used either
by the application (which can retrieve it via a "query" call) or by the Licensing System or a
management tool for external display. This data element can be used as an alternative to the
PUBLISHER_SECTION data element in those Licensing System which do not support the latter.

REMOVE_ANNOTATION TEXT yes 161

This data element contains any descriptive text which the administrator chooses to provide
when requesting that this certificate be removed or replaced. The value of this data element is set
by the xslm_set_admin_policy () call.

164 Technical Standard:

Data Elements Detailed Data Element Descriptions

REMOVED_DATE TIME yes 162

This data element specifies the date and time at which this certificate was removed from the
Licensing System per the administrator’s request or was replaced by a replacement certificate.

REPLACE_CERTIFICATE LIST no 163

The presence of this data element in the certificate indicates that this entire certificate is to
replace one or more previously installed certificates. The certificates to be replaced are identified
by a list of CERTIFICATE_ID data elements. If a match is found for all the CERTIFICATE_IDs,
the certificates being replaced are "logically deleted" from the Licensing System and the present
certificate is installed. However the Licensing System must maintain enough information to
prevent the re-installation of the certificates being replaced. If a match is not found, no
replacement will occur.

Components:

CERTIFICATE_ID One required

REPLACEMENT_DATE TIME no 164

This data element specifies the date and time at which this certificate was replaced by another
certificate.

REQUESTED_UNITS FIXED yes 165

This data element contains the number of licensed units which have been requested by the
application with a "request license" call.

REQUESTOR_ID STRUCT no 166

This data identifies the requester of a license on the part of the Licensing System. The requester
is the combination of a node and a user, and is provided to the Licensing System by the
application client agent.

Components:

NODE Required
USER Required

RESET_INTERVAL INTVL no 167

This data element specifies the value of the time interval at which the Licensing System must
reset to zero the value of the Publisher High Water Mark, or reset to their initial value the
resettable counters. If this data element is not present the Licensing System will assume that the
resetting interval is infinite, unless the RESET_MODE data element specifies a value other than
1.

Systems Management: Software License Use Management (XSLM) 165

Detailed Data Element Descriptions Data Elements

RESET_MODE FIXED no 168

This data element specifies the frequency with which the Licensing System must reset to zero
the value of the Publisher High Water Mark, or reset to their initial value the resettable counters.

Value = 1 Frequency in RESET_INTERVAL
Value = 2 Every hour
Value = 3 Every day
Value = 4 Every week
Value = 5 Every month
Value = 6 Every year

RESETABLE_COUNTER STRUCT no 169

This data element indicates a counter (consumptive or cumulative) whose value must be reset to
the initial value by the Licensing System, and the frequency of the resetting action.

Components:

COUNTER_ID Required
RESET_MODE Optional
RESET_INTERVAL Optional

RESETABLE_COUNTERS_LIST LIST no 170

This data element specifies the counters (consumptive or cumulative) whose value must be reset
to the initial value by the Licensing System, and the frequency of the resetting action.

Components:

RESETABLE_COUNTER One required

RESETTING_FREQUENCY STRUCT no 171

This data element specifies the data elements whose value is to be reset to an initial value by the
Licensing System , and the frequency of the resetting action.

Components:

PUBLISHER_HIGH_WATER_MARK Optional
RESETABLE_COUNTERS Optional

RETURN_FUNCTION_CODE FIXED yes 172

This data element contains the code being returned by the Licensing System as the value of the
function being invoked by the client library (application or management). The possible values
and meaning of this data element are described for each API function.

166 Technical Standard:

Data Elements Detailed Data Element Descriptions

RETURN_STATUS STRUCT yes 173

This data element contains the values being returned by the Licensing System at the completion
of an API call.

Components:

RETURN_FUNCTION_CODE Required
RETURN_STATUS_CODE Optional

RETURN_STATUS_CODE FIXED yes 174

This data element contains the code being returned by the Licensing System as the output
parameter value which appears in each function being invoked by the client library (application
or management).

The possible values and meaning of this data element are described for each API function.

RETURNED_UNITS FIXED yes 175

This data element contains the number of reusable licensed units which have been returned by
the application with a "release license" call. This number must match the number of units
granted by the Licensing System in a previous "request license" call.

SERVER_LAST_STOP TIME yes 176

This data element specifies the date and time that this license server was last stopped.

SERVER_START TIME yes 177

This data element specifies the date and time that this license server was last started.

SERVER_TIME_STAMP TIME yes 178

This data element contains the date and time at which the License Server logged this event.

SESSION_HANDLE STRUCT yes 179

This data element contains the reference established by the Licensing System in order to
uniquely identify a session of an application with the Licensing System. The components of this
data element are implementation dependent and are defined by the Licensing System publisher.

Components:

Licensing System defined

Systems Management: Software License Use Management (XSLM) 167

Detailed Data Element Descriptions Data Elements

SIGNATURE STRUCT no 180

This data element of the certificate contains the specification of the digest algorithm used to
generate the message digest, the encryption algorithm used to encrypt the digest, and the
encrypted message digest itself.

Components:

SIGNATURE_DIGEST_ALGORITHM Required
SIGNATURE_ENCRYPTION_ALGORITHM Required
SIGNATURE_ENCRYPTED_DIGEST Required

SIGNATURE_DIGEST_ALGORITHM FIXED no 181

This data element specifies the algorithm used to generate the digest of the certificate. Presently
the only algorithm defined is MD5.

Value = 1 MD5

SIGNATURE_ENCRYPTED_DIGEST BSTR no 182

This data element contains the digest of the certificate, encrypted with the publisher’s private
key. The input to the digest algorithm consists of the whole certificate, except this data element
itself.

SIGNATURE_ENCRYPTION_ALGORITHM FIXED no 183

This data element specifies the algorithm used to encrypt (with the publisher’s private key) the
digest of the certificate. Presently the only algorithm defined is RSA.

Value = 1 RSA

SUBNODE STRUCT no 184

This data element contains further identification of a node, for those platforms where the notion
of "sub-node" is relevant

Components:

SUBNODE_TYPE Required
SUBNODE_ID Required

SUBNODE_ID BSTR no 185

This data element contains a byte string which uniquely identifies a node where the application
is licensed to run. The exact meaning and format of the byte string is determined by the
NODE_TYPE data element. At run time, this information is provided to the Licensing System by
the client library (application or management agent).

168 Technical Standard:

Data Elements Detailed Data Element Descriptions

SUBNODE_TYPE FIXED no 186

This data element indicates the format and the meaning of the SUBNODE_ID data element
associated with it. Only one sub-node type is presently defined.

Value = 1 LPAR

SYSTEM_ERROR_CODE FIXED no 187

This data element specifies the type of error which was detected by the Licensing System in the
platform where the License Server was running. The error may have been caused by the
Licensing system itself, by the Operating System, or by the hardware. System error codes are the
implementation-defined values.

SYSTEM_ERROR_MESSAGE TEXT no 188

This data element contains the implementation-defined error messages.

SYSTEM_RESET_COUNTER_LIST LIST no 189

This data element contains the list of counters and their values when the Licensing System resets
them to their initial value, with a frequency specified by the application publisher in the
certificate.

Components:

COUNTER_UNITS One required

TRANSACTION_HANDLE STRUCT yes 190

This data element contains the reference established by the Licensing System in order to
uniquely identify a "request license" transaction with an application. The components of this
data element are implementation dependent and are defined by the Licensing System publisher.

Components:

Licensing System defined

USER STRUCT yes 191

This data element identifies a user to which the application has been licensed. At run time the
information about the user of the application is provided to the Licensing System by the
application agent by means of information derived from the operating system. Additional
information may be provided by the application itself, through a parameter of the "request
license" call.

Components:

USER_TYPE Required

Systems Management: Software License Use Management (XSLM) 169

Detailed Data Element Descriptions Data Elements

USER_ID Required

USER_ID BSTR yes 192

The value of this data element is a byte string which uniquely identifies a user of an application.
The exact meaning and format of the byte string is determined by the USER_TYPE data element.
If the value of USER_TYPE data element is 1 (login name), the content of this data element must
be parsed as if it was of type TEXT. At run time this information is provided to the Licensing
System by the application agent by means of information derived from the operating system.
Additional information may be provided by the application itself through a parameter of the
"request license" call (e.g. an application server which provides the identity of the application
clients "logging on" to the application).

USER_ID_FROM_API STRUCT yes 193

This data element identifies the user to which the application is licensed and is passed by the
"request" call. The user type is the same as that defined by the USER_TYPE data element.

USER_LIST LIST no 194

This data element is a list of users to which the application has been licensed. At run time the
information about the user of the application is provided to the Licensing System by the
application itself , through a parameter of the "request license" call, and also by the application
agent by means of information derived from the operating system.

Components:

USER One required

USER_TYPE FIXED yes 195

The value of this data element indicates the format and the meaning of the USER_ID data
element associated with it. The user types presently defined are:

Value = 1 Login name

VERSION STRUCT yes 196

This data element describes a publisher by ID and name.

Components:

VERSION_ID Required
VERSION_NAME Required

170 Technical Standard:

Data Elements Detailed Data Element Descriptions

VERSION_ID FIXED yes 197

The value of this data element is a publisher defined integer which uniquely identifies the
version of the product among all the other versions of this product.

VERSION_NAME TEXT yes 198

The value of this data element is the textual representation of the version of the product for
which this certificate was created, normally used by the Licensing System or a management tool
to provide external information about the product in a human readable form.

Systems Management: Software License Use Management (XSLM) 171

Defined Symbols and their Assigned Values Data Elements

10.5 Defined Symbols and their Assigned Values

Symbol Assigned Value
XSLM_AUTH_ERROR 151
XSLM_BAD_BUFFER_LENGTH 101
XSLM_BAD_LICENSE_HANDLE 102
XSLM_BAD_PARM 103
XSLM_BAD_SERVER_ID 104
XSLM_BAD_SESSION_HANDLE 105
XSLM_CAPACITY_LIMIT 106
XSLM_CERT_AUTH_NONE 0
XSLM_CERT_AUTH_PUB_KEY 1
XSLM_CERT_AUTH_CA 2
XSLM_CERT_ERR 2
XSLM_CERT_EXP 107
XSLM_CERT_IN_USE 108
XSLM_CERT_NOT_FOUND 109
XSLM_CERT_NOT_REMOVABLE 110
XSLM_CERT_NOT_STARTED 111
XSLM_CERT_NOT_SUPPORTED 112
XSLM_CERT_VALIDITY_FAILURE 113
XSLM_COMM_ERR 1
XSLM_COMM_UNAVAIL 114
XSLM_COUNT_OVERFLOW 115
XSLM_COUNT_UNDERFLOW 116
XSLM_DEFAULT_UNITS 0
XSLM_DUPLICATE_CERT 117
XSLM_GRANT_FULL 1
XSLM_GRANT_PARTIAL 2
XSLM_INVALID_API_USE 118
XSLM_INVALID_PUBLIC_KEY 119
XSLM_INVALID_STRUCTURE 120
XSLM_INVALID_TOKEN 121
XSLM_INVALID_VALUE 122
XSLM_INVALID_VALUES 123
XSLM_INV_COUNTER_ID 124
XSLM_IN_RECOVERY_MODE 125
XSLM_IN_SOFT_STOP 126
XSLM_LIC_SYS_NOT_RESP 131
XSLM_LOGCLASS_ADMIN 1
XSLM_LOGCLASS_APPL 2
XSLM_LOGCLASS_SYSTEM 3
XSLM_LOGCLASS_ANY 9
XSLM_LOGTYPE_ANY 99
XSLM_LOGSUBTYPE_ANY 999
XSLM_LOGTOD_APPL 1
XSLM_LOGTOD_SERVER 2
XSLM_LOG_ERROR 128
XSLM_MASK_APPLIED 129
XSLM_MSG_TOO_LONG 130
XSLM_NOT_AUTHORIZED 152
XSLM_NOT_ENOUGH_CAPACITY 132
XSLM_NOT_ENOUGH_LICS 133
XSLM_NO_CERTIFICATES 134

172 Technical Standard:

Data Elements Defined Symbols and their Assigned Values

Symbol Assigned Value
XSLM_NO_LICS 135
XSLM_NO_LONGER_CHANGABLE 136
XSLM_NO_MATCHING_NODE 137
XSLM_NO_MATCHING_USERID 138
XSLM_NO_MATCHING_INSTANCE 139
XSLM_NO_RES 140
XSLM_OK 0
XSLM_PARM_ERR 4
XSLM_PARTIAL_DATA 142
XSLM_QUERY_CERTIFICATE 3
XSLM_QUERY_CERT_RELATED_INFO 4
XSLM_QUERY_CUST_DEF_INFO 1
XSLM_QUERY_PUBLISHER_INFO 2
XSLM_RESRC_UNAVL 3
XSLM_SERVER_ERROR 143
XSLM_SET_POLICY_ADD 1
XSLM_SET_POLICY_DELETE 2
XSLM_SET_POLICY_REPLACE 3
XSLM_STATUS_OK 0
XSLM_TOO_MANY_UNITS 144
XSLM_TOO_SMALL 145
XSLM_UNCHANGABLE_POLICY 146
XSLM_UNRECOGNIZED_ID 147
XSLM_UNRECOGNIZED_SEQ 148
XSLM_UPDATE_ID_ERROR 149
XSLM_ZERO_REACHED 150

Systems Management: Software License Use Management (XSLM) 173

Data Elements

174 Technical Standard:

Appendix A

License Types

This section contains two lists:

• Commonly experienced licensing terms and conditions with a brief description of each

• Terms and conditions by license type.

This specification also makes an allowance for software-publisher-unique requirements within
the license certificate.

A.1 License Types and Terms and Conditions

BASIC

The BASIC license type is the base line. It represents a license for which there are no restrictions,
other than time. In contrast, all the other license types define restrictions within which the
application is licensed and the customer is to abide.

BUNDLE

A pricing and packaging option for two or more products which are licensed individually, not
collectively. For instance if a customer were licensed for a bundle of five products and 50 uses,
when 40 of product A are in use and 10 of product B are in use then the customer has available
for use ten on product A, 40 on product B, and 50 on each of the remaining three products by
users either actively using one or more of the products or not currently using any of the
products. This type of terms and conditions is derived from the CONCURRENT license type.

CAPACITY

The CAPACITY license types compares the capacity of the operating environment (as defined by
the machine serial number) along with a predefined table, for instance, to assure the application
is running in a machine whose computing capacity is not larger that that for which the product
is licensed.

CHECKOUT

See DISCONNECTED.

COMPLEX-WIDE

A license assigned to a complex, which is comprised of one or more unique serial numbers. This
type of terms and conditions is derived from the CAPACITY or NAMED license types.

Systems Management: Software License Use Management (XSLM) 175

License Types and Terms and Conditions License Types

COMPONENT

A license that governs the use of other licensed runtime software components with the
application being developed. An example of this would be the inclusion of a spell checker from
software publisher A within a word processor from software publisher B. This type of terms and
conditions can be any of the license types.

CONCURRENT

A license type for which the charges are based on counting the number of simultaneous
demands or uses of a product, independent of who or what user is using the application, quite
the opposite from the NAMED concept. Further, these license uses are reusable: when the
license is no longer required it is returned to the license system and becomes available for re-
issuance against another license request. The number and defined unit of measure may include a
minimum or maximum number permitted per request. For instance, a CONCURRENT license
may require that whenever a license request is made, five units of the measure defined (users, for
instance), must be requested as a minimum.

CONSUMPTIVE

A license type for which the charges are based on counting the defined units executed, perhaps
over a specified period of time, against those licensed. Of principal importance with this license
type is that a license count once used is not retrievable or reusable. As with CONCURRENT
licensing, the number and defined unit of measure may include a minimum or maximum
number permitted per request. For instance, a CONSUMPTIVE license may require that
whenever a license request is made, five units of the measure defined (blocks of time or
gigabytes of storage, for instance), must be requested as a minimum. This license type might be
useful in a "peak" use or need situation.

CUMULATIVE

A license type for which the charges are based on counting a defined unit of measure against the
number of units of that measure which were licensed. While CUMULATIVE licensing merely
accumulates the defined units of measure, as with CONSUMPTIVE licensing, once used these
units are not retrievable, or reusable. This license type might be useful in a post- pay term and
condition.

DEMO

A license typically restricted to a certain time period, number of executions, or limited set of
functions. These licenses may allow any of the other types of use. This license is also known as
"Try and Buy" or "Supply before Buy". This type of terms and conditions can be an added
restriction to any of the license types.

DEPLOYMENT

See RUN TIME.

176 Technical Standard:

License Types License Types and Terms and Conditions

DISASTER RECOVERY

A license granted by the vendor to allow a specified product to execute under conditions defined
as "disaster recovery" for a specified period of time or for a specified number of occurrences. This
type of terms and conditions can be an added restriction to any of the license types.

DISCONNECTED

A license that allows an end-user application use to be licensed while disconnected from the
licensing system. (Also known as Laptop or Checkout). This circumstance can be associated
with any of the license types.

ENTERPRISE

A license assigned to an enterprise, which may be comprised of multiple sites, complexes, nodes
and or serial numbers. It is an all encompassing license to a single entity. This type of terms and
conditions is derived from any of the license types.

FEATURES

A packaging and enablement option. An optional feature of a product can be packaged, licensed
and enabled at the discretion of the software publisher. Features can be licensed in the same
manner as software products and can, therefore, be of any license type.

FLOATING

A license for which the software product (including application client and server) is not tied to a
specific ID, site, or user. This type of terms and conditions is derived from CONCURRENT,
CUMULATIVE, or CONSUMPTIVE license types.

GROUP-BASED subsets

A license that allows the customer to subdivide uses within an organization. For instance, the
customer might allocate 10 uses to engineering and 10 to accounting. This type of terms and
conditions is derived from the Named license type.

LAPTOP

See DISCONNECTED.

LPAR

A license granted for use on less than a full machine. Some mainframe computers can be
logically divided into smaller pieces (known as LPARs) and the licenses are for these smaller
pieces. This is an interpretation of the CAPACITY or NAMED license types.

MEASURED USE

A license for which the charges are based on counting a defined unit of measure; it is a
measurement based on the function of the product. For example a backup product would be
based on the number of bytes backed up over the course of a specified period. This type of terms
and conditions is derived from the CUMULATIVE, CONCURRENT, and CONSUMPTIVE
license types.

Systems Management: Software License Use Management (XSLM) 177

License Types and Terms and Conditions License Types

MIPS

A license based upon the number of MIPS - either single processor or aggregated across several
processors. This type of terms and conditions is based on the CAPACITY license type.

NAMED

A license type which compares name or serial number or ID or node address etc., against those
licensed. The NAMED license type implies pre-definition of the name. However, to build the
registered or named "authorization list," the NAMED license type can also allow for a "first
come-first served" concept where license-requesting users (for instance) are registered
(accepted/defined) until the number of users licensed is reached.

NODE

A license based upon a specific node(s); some examples of nodes are Network Nodes and JES
Nodes. This type of terms and conditions is based on either the Capacity or the Named license
type.

PARTITIONING

A license granted for use on less than a full machine. Some processors can be divided into
smaller pieces (e.g. partitions) and the licenses are for these smaller pieces. This type of terms
and conditions is derived from the Capacity license type. PEAK - A license for which the
charges are based on the maximum number of defined units used during a specific time period.
This type of terms and conditions can be any of the license types.

POTENTIAL USE

See RESOURCE.

PROCESSOR

A license for which charges are based on the size of a machine. This type of terms and conditions
is based on the CAPACITY license type.

REGISTERED USE

This license relies upon the counting and comparing of the ID or node address (for example)
against the pre-defined IDs or node addresses licensed. The REGISTERED USE license type
implies pre-definition of the user. However, it can also allow for "first come-first served" concept
where license-requesting users are registered (accepted/defined) until the entitled number of
registered users licensed is reached. This type of terms and conditions is an implementation of
the NAMED license type.

RESOURCE

A license for which charges are based on the size of specifically identified resources, such as
amount of memory used, number of gigabytes managed, etc. This type of terms and conditions
comes from the CAPACITY or NAMED license type.

178 Technical Standard:

License Types License Types and Terms and Conditions

RUN-TIME

A kind of software license that governs the use of run time software where run time software is
defined as those modules of compilers, data base programs, and other development tools that
are required in order to operate a program developed using the tools. This type of terms and
conditions is a form or descriptor of the COMPONENT type of terms and conditions, and is
sometimes referred to as a DEPLOYMENT license.

SERIAL NUMBER

A license assigned to a serial number of a specific hardware device, including those devices that
can be carved into smaller pieces (for example an LPAR serial number). This type of terms and
conditions is derived from the Named license type.

SITE

A license of a software product on all computers at a geographic location. This type of terms and
conditions is implemented from the Capacity or Named license type.

SUITE

A pricing and packaging option for two or more products which are licensed collectively, not
individually. For instance if a customer were licensed for a suite of five products and 50 uses,
when 40 of product A are in use and 10 of product B are in use by 50 different users, then the
maximum allowable uses are reached; there are no remaining uses for the other three products
by users not represented in the current count of 50. One of the concepts with this option is that
an individual using one of the products in the suite can use all of the other products in the suite
without them being counted as additional uses. This type of terms and conditions option is
derived from the CONCURRENT license type.

SUPPLY BEFORE BUY

See DEMO.

TARGET ID

See NAMED.

TIME

Each license type is modifiable by time (also known as TIME DELIMITED).

TIME DELIMITED

See TIME.

TIME-SHIFTED

A license which, because of time differences in various locations of the licensee, allows use in
multiple geographic locations, but not more than once at a time. For example, a multinational
corporation may acquire licenses allowing use within either the US office or the Japanese office,
but not both at the same time. This type of terms and conditions is a variant of the
CONCURRENT or CONSUMPTIVE or CUMULATIVE license type.

Systems Management: Software License Use Management (XSLM) 179

License Types and Terms and Conditions License Types

TRY AND BUY

See DEMO.

UNRESTRICTED

See BASIC.

USE-ONCE

See CONSUMPTIVE.

USER-SPECIFIED

A customer administrator can specify more restrictive conditions then stated in the type of terms
and conditions of the license. This type of terms and conditions is derived from any of the
license types.

YEAR 2000

A license granted by the vendor to allow a specified product to support Year 2000 testing for a
specified period of time or for a specified number of occurrences. This type of terms and
conditions is derived from the time-option of any of the license types. It is similar to the DEMO
type of terms and conditions.

180 Technical Standard:

License Types Terms and Conditions by License Type

A.2 Terms and Conditions by License Type
BASIC

CHECKOUT
COMPONENT
DEMO
DEPLOYMENT
DISASTER RECOVERY
DISCONNECTED
ENTERPRISE
FEATURES
LAPTOP
PEAK
RUN-TIME
SUPPLY BEFORE BUY
TIME
TRY AND BUY
UNRESTRICTED
USER-SPECIFIED
YEAR 2000

CAPACITY
CHECKOUT
COMPLEX-WIDE
COMPONENT
DEMO
DEPLOYMENT
DISASTER RECOVERY
DISCONNECTED
ENTERPRISE
FEATURES
LAPTOP
LPAR
MIPS
NODE
PARTITIONING
PEAK
POTENTIAL USE
PROCESSOR
RESOURCE
RUN-TIME
SITE
SUPPLY BEFORE BUY
TIME
TRY AND BUY
USER-SPECIFIED
YEAR 2000

CONCURRENT
BUNDLE
CHECKOUT
COMPONENT
DEMO
DEPLOYMENT
DISASTER RECOVERY
DISCONNECTED
ENTERPRISE
FEATURES
FLOATING
LAPTOP
MEASURED USE

Systems Management: Software License Use Management (XSLM) 181

Terms and Conditions by License Type License Types

PEAK
RUN-TIME
SUITE
SUPPLY BEFORE BUY
TIME
TIME-SHIFTED
TRY AND BUY
USER-SPECIFIED
YEAR 2000

CONSUMPTIVE
CHECKOUT
COMPONENT
DEMO
DEPLOYMENT
DISASTER RECOVERY
DISCONNECTED
ENTERPRISE
FEATURES
FLOATING
LAPTOP
MEASURED USE
PEAK
RUN-TIME
SUPPLY BEFORE BUY
TIME
TIME-SHIFTED
TRY AND BUY
USE-ONCE
USER-SPECIFIED
YEAR 2000

CUMULATIVE
CHECKOUT
COMPONENT
DEMO
DEPLOYMENT
DISASTER RECOVERY
DISCONNECTED
ENTERPRISE
FEATURES
FLOATING
LAPTOP
MEASURED USE
PEAK
RUN-TIME
SUPPLY BEFORE BUY
TIME
TIME-SHIFTED
TRY AND BUY
USER-SPECIFIED
YEAR 2000

NAMED
CHECKOUT
COMPLEX-WIDE
COMPONENT
DEMO
DEPLOYMENT
DISASTER RECOVERY
DISCONNECTED
ENTERPRISE

182 Technical Standard:

License Types Terms and Conditions by License Type

FEATURES
GROUP-BASED
LAPTOP
LPAR
NODE
PEAK
POTENTIAL USE
REGISTERED USE
RESOURCE
RUN-TIME
SERIAL NUMBER
SITE
SUPPLY BEFORE BUY
TARGET ID
TIME
TRY AND BUY
USER-SPECIFIED
YEAR 2000

Systems Management: Software License Use Management (XSLM) 183

License Types

184 Technical Standard:

Appendix B

Implementation Guidelines

The following sections give examples of the interrelationships between a license management
enabled application and a license server. The Named, Concurrent, and Consumptive license
types and the Demo terms and conditions are used as examples to illustrate how the data,
process and the license entitlement interrelate to affect the behavior of the application. The
requests and responses are similar, but they are clearly not identical and their relationship
depends largely on the license type. The logic to challenge the XSLM license server and to
interpret its response is implementation specific. The application behaviors based on the
possible responses are summarized in the last paragraph.

B.1 Named License
The following are assumed to exist:

• A license certificate specifying the unique identity of the licensed processor

• The application with (implicit) access to the identification of its run-time processor

• Logic both to challenge the XSLM license server and to interpret its response.

After loading, the application would determine the identification of its current host and issue a
query to XSLM requesting authorization to execute. Possible responses would be:

• Both the license ID and the run-time processor’s host identifications are the same.

• No license certificate could be found (the license server is not aware of this product or its
entitlement).

• A license exists for the application but the host processor’s ID does not match that of the
certificate.

B.2 Concurrent License
The following are assumed to exist:

• A license certificate specifying the number of concurrent users in accordance with the
entitlement

• The check-in time within which the application re-states its need to be in execution

• The application with logic to challenge the XSLM license server and to interpret its response.

After loading, the application program would issue a query to XSLM requesting authorization to
execute. Possible responses would be:

• A concurrent use is available.(the count of use requests is less than the entitlement)

• No license certificate could be found (the license server is not aware of this product or its
entitlement)

• A concurrent use is not available (the count of use requests has equaled or exceeded the
entitlement).

Assuming the application goes into execution, from time to time the application confirms to the
license server the fact that the application program is still in operation. When that condition is

Systems Management: Software License Use Management (XSLM) 185

Concurrent License Implementation Guidelines

no longer valid, the authorization at that time assigned to this instance of use of the application
is returned to the license server, and becomes available as a positive response to another
program-use request.

B.3 Consumptive License
The following are assumed to exist:

• A license certificate specifying the number of uses in accordance with the entitlement

• The application, with logic to challenge the XSLM license server and to interpret its response.

After loading, the application program would issue a query to XSLM, requesting authorization
to execute. Possible responses would be:

• A license is available (the count of use requests is less than the entitlement)

• No license certificate could be found (the license server is not aware of this product or its
entitlement)

• A license is not available (the count of use requests has equaled or exceeded the entitlement).

Continued checking of operation by the licensing system in conjunction with the application and
the license client is not required because the authorization, once granted, cannot be returned for
reuse.

B.4 Demo License
The following are assumed to exist:

• A license certificate specifying the duration of the license

• Licensed code with access to the duration (specified time period) of the license

• Logic to challenge the demo license and to interpret the response.

After loading, the program would periodically request authorization to start or to continue
executing by issuing a query to XSLM. Possible responses could be:

• The program is within the specified duration of the license

• No license certificate could be found

• A license exists for the program but the time period allowed for running the period has
ended.

186 Technical Standard:

Implementation Guidelines Summary

B.5 Summary
In all of the above examples there is a relationship between the response and the application
behavior. For the first response in each example, the application will execute its intended
functions, the terms of the license agreement having been met. In the other two responses, the
application will cause the appropriate messages and logs and initiate actions that support the
license terms and conditions. For instance, the application will not go into execution or the
application will go into execution but will inform the licensing system of that fact and cause a
logging of the excess of entitlement execution.

Systems Management: Software License Use Management (XSLM) 187

Implementation Guidelines

188 Technical Standard:

Appendix C

Function Sets and Functional Towers

XSLM functionality is described in terms of a set of Base Function and one or more optional
Function Towers. Function Towers provide for the optional extensions in licensing system
functionality while retaining consistency across all licensing systems that implement the same
function towers.

The Base Function set is a prerequisite for all function towers. That is, the Base Function set must
be present before any optional function tower may be implemented. Each Function Tower offers
a complete set of functions; that is, if one function of the Tower is implemented, then all
functions defined as being part of that same Tower must also be implemented.

C.1 Currently Defined Functional Towers
The relationship between the Base Function set and the Functional Towers is depicted in Figure
C-1. The current level of the XSLM specification defines four Functional Towers:

• Advanced Management API (Advanced XMAPI) tower

• Basic Application API (Basic XAAPI) tower

• Advanced Application API (Advanced XAAPI) tower

• Advanced License Certificate Architecture (Advanced XLCA) tower.

Figure C-1 Base Function Set and Functional Towers

Systems Management: Software License Use Management (XSLM) 189

Base Function Set Function Sets and Functional Towers

C.2 Base Function Set
The Base Function set consists of two elements:

• A common License Certificate Architecture (XLCA)

• A standard set of management application programming interfaces (referred to as the
XMAPI function set).

The common License Certificate (data) Architecture provides the capability to fully encode
application license terms and conditions in the form of an architected (standardized) license
certificate that may be installed into any XSLM-compliant licensing system that supports the
embedded certificate data elements. These certificates may be subsequently managed and/or
interpreted by any compliant management application. The XLCA is also used to define license
certificate meta data (for example, usage measures) and optionally, licensing system specific
certificate data elements.

The XMAPI defines the set of programming interfaces necessary to build licensing system
management tools capable of managing (installing, removing, etc.) standardized license
certificates and/or providing comprehensive application license usage reports.

The XAAPI defines the set of programming interfaces (API functions) necessary to enable for
license management those applications that run in trusted environments. A trusted environment
is, in this context, one which is by design physically secured, or through hardware and/or
software services protects programs and data from unauthorized alteration. (The Base Function
set does not include the XAAPI).

C.3 Advanced Function Towers
The Advanced Application API Function Tower adds a set of services intended to provide more
comprehensive protection (with respect to licensing) and flexibility for application publishers,
particularly for those applications that run in untrusted operating environments.

C.4 Function-Related Management API Functions
Management applications must have the ability to determine the set of XLCA defined data
elements, as well as the APIs, supported by the license servers that comprise a customer’s
licensing system. The xslm_query_server_info() function is defined to satisfy this requirement.

This function facilitates processing of licensing data provided by Legacy Functional Level license
servers; servers which may, at the discretion of the implementor, elect to limit support to a
proper subset of XLCA-defined certificate data (and meta data) elements and logged data.

190 Technical Standard:

Function Sets and Functional Towers Legacy Functional Level (Level 0)

C.5 Legacy Functional Level (Level 0)
This functional level is intended to provide a transition path to the standard compliance level (or
higher) for existing licensing systems; specifically, the ability to respond to a subset of XMAPI
functions (the ones querying certificate and logged data), returning a semantically correct subset
of XLCA-defined (the Basic XLCA set) certificate data elements and a semantically correct subset
of logged data.

To support Legacy Functional Level a licensing system must implement the following XMAPI
functions (the Basic XMAPI set):

xslm_get_certificate()
xslm_query_cert_ids()
xslm_query_next_level_cert_names()
xslm_query_servers()
xslm_get_license_instances()
xslm_get_logged_data ()

Systems Management: Software License Use Management (XSLM) 191

Function Sets and Functional Towers

192 Technical Standard:

Appendix D

Futures

The discussion is this section pertains to those items that have been reviewed, analyzed and
evaluated by the XSLM specification team and have been deferred to the next release of the
specification.

Note: The discussion in this Appendix represents an indication of current thinking only. It
is not an expression of commitment to adopt and deliver this functionality in a future
version of this Technical Standard.

D.1 Network Computing and Component Licensing
The world of network computing presents a number of new challenges to license use
management.

As the software industry moves toward the adoption of distributed object and component
technologies it becomes less and less clear as to what constitutes (from the customer’s point of
view) a product, and what exactly is being licensed. A customer consumable product may be
comprised of objects and components that themselves are licensed (from other software
publishers) by the product developer.

When objects or components are statically bound into a single customer product entity, or
shipped in their entirety as a single customer product, there is no real problem. However, when
these components/objects are dynamically acquired by a product from a network of distributed
object/component servers the product packages containing the objects and components
themselves become individually licensable products. As a result a customer consumable product
may in fact be comprised of several sub-products, each requiring its own license. These sub-
licenses are, in a well-defined way, ultimately tied to the customer product license.

There is high customer value in being able to maintain a single copy of a given distributed
component or object that can be shared by multiple products, potentially from multiple software
publishers, across a single logical computing network. This fact when considered in conjunction
with Java’s promise of true binary portability across disparate computing platforms, would tend
to indicate there is a reasonably high probability that the aforementioned multiple-license-to-
one-product problem will become a very real licensing issue in the not too distant future.

Performance is always a key concern in a distributed computing network. Network
distributable objects and components (including Java applets and beans) represent a formidable
performance challenge to those who would like to individually license those entities. Questions
such as when and how often these entities should interact with a software license use
management system quickly arise.

Systems Management: Software License Use Management (XSLM) 193

Mobile Computing Futures

D.2 Mobile Computing
The mobile (also known as nomad or "disconnected") computer user represents a unique
challenge with respect to license use management. This is due to the fact that these users are not
continuously connected to the corporate/office network. While this specification is not intended
to address the software licensing needs of unmanaged computers (that is, computers which are
never connected to a network), the mobile computer users most definitely fall within the domain
of interest.

When connected to the network a mobile user possesses all the attributes of a standard desktop
computer user. However, when disconnected from the network a mobile user must be able to
retain all non-network related application functionality in absence of a network connection. It is
this basic difference that presents an interesting set of problems to software license use
management systems.

D.3 Server-to-Server Interaction
This specification assumes that all license servers taking part in a licensing system are,
somehow, interconnected so that certain actions taken on one server are reflected to other
servers. For example, a license certificate should only be installable once within a licensing
system (even though it may possibly be installed on more than one physical server to provide
redundancy, if the particular implementation supports this). While this requirement is clearly
stated, this version of the specification doesn’t fully provide the definitions needed for such an
interaction between different implementations.

194 Technical Standard:

Appendix E

Java Bindings for Application Program API

This appendix contains the description of the standard Java bindings for the APIs (both basic
and advanced) of the application programs for the License Use Management (XSLM) Technical
Standard.

Systems Management: Software License Use Management (XSLM) 195

Java Bindings for Application Program API

package org.opengroup.xslm

Interface Index
AdvancedApplicationClient
BasicApplicationClient
XSLMConstants

Class Index
LicenseAgent
LicenseBroker
LicenseUseManagement
Publisher
Session

Exception Index
CommunicationException
InvalidParameterException
LicenseCertificateException
LicenseClientException
NoSuchAPILevelException
NoSuchPublisherException
ResourceUnavailableException

196 Technical Standard:

Java Bindings for Application Program API

Interface
org.opengroup.xslm.AdvancedApplicationClient
public interface AdvancedApplicationClient The AdvancedApplicationClient interface is the
interface for the first functional tower of the XSLM specification the Advanced XAAPI.
See Also:

BasicApplicationClient, LicenseAgent, LicenseBroker

Method Index
confirm(long, int)

Confirms that a license is currently in use.

getAuthenticationSignature()
Returns the digital signature created by the licensing system from the input and output
parameters and the authorization token.

logMessage(String, int)
Logs an application-specified text message into license system's log

queryAPILevel()
Returns the maximum API specification level supported by all license servers in the licensing
system.

queryCertificateInfo(int, int)
Returns various types of license certificate information.

queryFunctionalTowers()
Returns an array of functional tower identifiers supported by all license servers in the
licensing system.

record(long, float, int)
Informs the license system about a metering activity in progress

releaseLicense(long, int)
Releases some or all license units associated with this instance of the license client

requestLicense(PublicKey, long, boolean, int)
Requests the license system for specified number of license units

requestLicense(PublicKey, long, int)
Requests the license system for default number of units licenses (as specified within a license
certificate).

requestLicense(PublicKey, String, int)
Requests the license system to grant default number of units licenses to the specified user.

requestLicense(PublicKey, String, long, long, boolean, int)
Requests the license system for specified number of units licenses

Systems Management: Software License Use Management (XSLM) 197

Java Bindings for Application Program API

Methods
��confirm

 public abstract void confirm(long confirmTime,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Confirms that a license is currently in use. Should the license system not receive any confirm
from the application client within the default time period specified in the certificate, the
license is no longer in use and will return it to the pool of free, available licenses.

Parameters:
confirmTime - elapsed time (in seconds) whithin which the liscense system may expect the
next confirm.

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��getAuthenticationSignature

 public abstract byte[] getAuthenticationSignature()
throws LicenseClientException

Returns the digital signature created by the licensing system from the input and output
parameters and the authorization token.

Returns:
the digital signature created by the licensing system.

Throws: LicenseClientException
if a generic license client error occurs

��logMessage

 public abstract void logMessage(String message,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Logs an application-specified text message into license system's log

198 Technical Standard:

Java Bindings for Application Program API

Parameters:
message - the text string of the message, it can be of any length; however, a licensing system
is not required to accept more than 4096 bytes.

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��queryAPILevel

 public abstract long queryAPILevel()
throws CommunicationException , LicenseClientException ,
ResourceUnavailableException

Returns the maximum API specification level supported by all license servers in the licensing
system.

Returns:
the maximum API specification level supported by all license servers in the licensing system

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��queryFunctionalTowers

 public abstract long[] queryFunctionalTowers()
throws CommunicationException , LicenseClientException ,
ResourceUnavailableException

Returns an array of functional tower identifiers supported by all license servers in the
licensing system.

Returns:
an array of functional tower identifiers supported by all license servers in the licensing
system

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Systems Management: Software License Use Management (XSLM) 199

Java Bindings for Application Program API

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��queryCertificateInfo

 public abstract byte[] queryCertificateInfo(int queryType,
 int authenticationToken)
 throws CommunicationException, LicenseCertificateException ,
 LicenseClientException, ResourceUnavailableException

Returns the various types of license certificate information associated with this license client
object

Parameters:
queryType - a value which identifies the information to be returned

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Returns:
When queryType=XSLM_QUERY_PUBLISHER_INFO, the data element
PUBLISHER_SECTION, if present, followed by the data element PUBLISHER_USE, if
present.

When queryType=XSLM_QUERY_CUST_DEF_INFO, the data element
CUSTOMER_ASSIGNED_APPL_INFO, if present.

When queryType=XSLM_QUERY_CERTIFICATE, the data element CERTIFICATE.

When queryType=XSLM_QUERY_CERT_RELATED_INFO, the data element
CERTIFICATE_RELATED_INFORMATION

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��record

 public abstract void record(long counterIdentifier,
 float counter,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Informs the license system about a metering activity in progress

200 Technical Standard:

Java Bindings for Application Program API

Parameters:
counterIdentifier - the identifier of one of the 8 different counters (defined within the license
certificate)

counter - the value of the number of units the license system should add to or subtract from
the total count

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��releaseLicense

 public abstract void releaseLicense(long units,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Releases some or all license units associated with this instance of the license client

Parameters:
units - number of license units to be released

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

Systems Management: Software License Use Management (XSLM) 201

Java Bindings for Application Program API

��requestLicense

 public abstract long requestLicense(PublicKey publicKey,
 String namedUser,
 int authenticationToken)
 throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Requests the license system to grant default number of units licenses to the specified user.

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

namedUser - the named user for which license units are being requested

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Returns:
number of license units granted

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��requestLicense

 public abstract long requestLicense(PublicKey publicKey,
 long confirmTime,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Requests the license system for default number of units licenses (as specified within a license
certificate).

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

confirmTime - elapsed time (in seconds) whithin which the license system may expect the
next confirm.

202 Technical Standard:

Java Bindings for Application Program API

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Returns:
number of license units granted

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��requestLicense

 public abstract long requestLicense(PublicKey publicKey,
 String namedUser,
 long confirmTime,
 long units,
 boolean forceNumber,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Requests the license system for specified number of units licenses

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

namedUser - the named user for which license units are being requested

confirmTime - elapsed time (in seconds) whithin which the liscense system may expect the
next confirm.

units - number of license units to be requested

forceNumber - whether or not a lower number of license units than that specified should be
granted

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Returns:
number of license units granted

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Systems Management: Software License Use Management (XSLM) 203

Java Bindings for Application Program API

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��requestLicense

 public abstract long requestLicense(PublicKey publicKey,
 long units,
 boolean forceNumber,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Requests the license system for specified number of license units

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

units - number of license units to be requested

forceNumber - whether or not a lower number of license units than that specified should be
granted

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Returns:
number of license units granted

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

204 Technical Standard:

Java Bindings for Application Program API

Interface org.opengroup.xslm.BasicApplicationClient
public interface BasicApplicationClient The BasicApplicationClient interface is the interface for
the Base Functional Level of the XSLM Application API.
See Also:

AdvancedApplicationClient, LicenseAgent, LicenseBroker

Method Index
confirm()

Confirms that a license is currently in use.

queryAPILevel()
Returns the maximum API specification level supported by all license servers in the licensing
system.

queryFunctionalTowers()
Returns an array of functional tower identifiers supported by all license servers in the
licensing system.

releaseLicense()
Releases the licenses associated with this instance of the license client

requestLicense(PublicKey)
Requests the license system for default number of units licenses (as specified within a license
certificate)

Methods
��confirm

 public abstract void confirm()
throws CommunicationException , LicenseCertificateException ,
LicenseClientException , ResourceUnavailableException

Confirms that a license is currently in use. Should the license system not receive any confirm
from the application client within the default time period specified in the certificate, the
license is no longer in use and will return it to the pool of free, available licenses.

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

Systems Management: Software License Use Management (XSLM) 205

Java Bindings for Application Program API

��queryAPILevel

 public abstract long queryAPILevel()
throws CommunicationException , LicenseClientException ,
ResourceUnavailableException

Returns the maximum API specification level supported by all license servers in the licensing
system.

Returns:
the maximum API specification level supported by all license servers in the licensing system

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��queryFunctionalTowers

 public abstract long[] queryFunctionalTowers()
throws CommunicationException , LicenseClientException ,
ResourceUnavailableException

Returns an array of functional tower identifiers supported by all license servers in the
licensing system.

Returns:
an array of functional tower identifiers supported by all license servers in the licensing
system

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��releaseLicense

 public abstract void releaseLicense()
throws CommunicationException , LicenseCertificateException ,
LicenseClientException , ResourceUnavailableException

Releases the licenses associated with this instance of the license client

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

206 Technical Standard:

Java Bindings for Application Program API

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��requestLicense

 public abstract long requestLicense(PublicKey publicKey)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Requests the license system for default number of units licenses (as specified within a license
certificate)

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

Systems Management: Software License Use Management (XSLM) 207

Java Bindings for Application Program API

Interface org.opengroup.xslm.XSLMConstants
public interface XSLMConstants The XSLMConstants interface defines all the constants used
thoughout the org.opengroup.xslm package

Variable Index

DEFAULT_CONFIRM_TIME
Confirm time value used to request default confirm time

DEFAULT_UNIT
Number of units value used to request default number of units licenses

 XSLM_QUERY_PUBLISHER_INFO
 Query the application publisher specific section

XSLM_QUERY_CUST_DEF_INFO
 Query application-related information defined by the customer

XSLM_QUERY_CERTIFICATE
 Query the certificate as it has been created by the application publisher

XSLM_QUERY_CERT_RELATED_INFO
 Query the certificate related information such as certificate status

Variables

DEFAULT_CONFIRM_TIME
 public static final long DEFAULT_CONFIRM_TIME

Confirm time value used to request default confirm time

DEFAULT_UNITS

 public static final long DEFAULT_UNITS
Number of units value used to request default number of units licenses

 public static final int XSLM_QUERY_PUBLISHER_INFO
 Query the application publisher specific section

 public static final int XSLM_QUERY_CUST_DEF_INFO
 Query application-related information defined by the customer

 public static final int XSLM_QUERY_CERTIFICATE
 Query the certificate as it has been created by the application publisher

 public static final int XSLM_QUERY_CERT_RELATED_INFO
 Query the certificate related information such as certificate status

208 Technical Standard:

Java Bindings for Application Program API

Class org.opengroup.xslm.LicenseAgent

java.lang.Object
 |
 +----org.opengroup.xslm.LicenseAgent

public abstract class LicenseAgent
extends Object
implements BasicApplicationClient, AdvancedApplicationClient, XSLMConstants The
LicenseAgent class provides LicenseBroker and application clients with access to a specific
publisher's implementation of the XSLM API. Whereas the LicenseBroker class provides
implementation transparency to application clients, the LicenseAgent class provides server
transparency.
Like other classes in org.opengroup.xslm, the LicenseAgent class has two major components:
LicenseAgent API (Application Program Interface)

This is the interface of methods called either by applications needing License Agent services
to have their requests forwarded to that specifc publisher's licensing system implementation,
or by license brokers routing application client's methods invocation to any of the licensing
systems available in the environment. The API consists of all public methods.

LicenseAgent SPI (Service Provider Interface)
This is the interface implemented by licensing system publishers that supply specific license
use management packages. It consists of all methods whose names are prefixed by engine .
Each such method is called by a correspondingly-named public API method. For example,
the engineRequestLicense method is called by the requestLicense method. The SPI
methods are abstract; publishers must supply a concrete implementation.

LicenseAgent provides implementation-independent objects, a caller (license broker or
application code) can request a particular implementation of a LicenseAgent object from a
particular publisher. The system will determine if there is an implementation of the requested
LicenseAgent object in the package requested, and throw an exception if there is not.
See Also:

BasicApplicationClient, AdvancedApplicationClient, LicenseBroker

Constructor Index

LicenseAgent()

Method Index

confirm()
Confirms that a license is currently in use.

confirm(long, int)
Confirms that a license is currently in use.

Systems Management: Software License Use Management (XSLM) 209

Java Bindings for Application Program API

engineConfirm()
SPI: Confirms that a license is currently in use.

engineConfirm(long, int)
SPI: Confirms that a license is currently in use.

engineGetAuthenticationSignature()
SPI: Returns the digital signature created by the licensing system from the input and output
parameters and the authorization token.

engineLogMessage(String, int)
SPI: Logs and application-specified text message into license system's log.

engineQueryAPILevel()
SPI: Returns the maximum API specification level supported by all license servers in the
licensing system.

engineQueryCertificateInfo(int, int)
SPI: Returns various types of license certificate information

engineQueryFunctionalTowers()
SPI: Returns the maximum API specification level supported by all license servers in the
licensing system.

engineRecord(long, float, int)
SPI: Informs the license system about a metering activity in progress

engineReleaseLicense()
SPI: Releases the licenses associated with this instance of the license client

engineReleaseLicense(long, int)
SPI: Releases some or all license units associated with this instance of the license client

engineRequestLicense(PublicKey)
SPI: Requests the license system for default number of units licenses (as specified within a
license certificate).

engineRequestLicense(PublicKey, String, long, long, boolean, int)
SPI: Requests the license system for the specified number of units licenses.

getAdvancedApplicationClientInstance(String, Session, String, long, long, long)
Generates an AdvancedApplicationClient object as suppled from the specified publisher.

getAuthenticationSignature()
Returns the digital signature created by the licensing system from the input and output
parameters and the authorization token.

getBasicApplicationClientInstance(String, String, long, long, long)
Generates a BasicApplicationClient object as supplied from the specified publisher.

init(Session, String, long, long, long)
Initializes the LicenseBroker object returned by either a
getBasicApplicationClientInstance or
getAdvancedApplicationClientInstance method invocation.

logMessage(String, int)
Logs and application-specified text message into license system's log

210 Technical Standard:

Java Bindings for Application Program API

queryAPILevel()
Returns the maximum API specification level supported by all license servers in the licensing
system.

queryCertificateInfo(int, int)
 Returns various types of license certificate information.

queryFunctionalTowers()
Returns an array of functional tower identifiers supported by all license servers in the
licensing system.

record(long, float, int)
Informs the license system about a metering activity in progress

releaseLicense()
Releases the licenses associated with this instance of the license client

releaseLicense(long, int)
Releases some or all license units associated with this instance of the license client

requestLicense(PublicKey)
Requests the license system for default number of units licenses (as specified within a license
certificate).

requestLicense(PublicKey, long, boolean, int)
Requests the license system for specified number of license units

requestLicense(PublicKey, long, int)
Requests the license system for default number of units licenses (as specified within a license
certificate).

requestLicense(PublicKey, String, int)
Requests the license system for default number of units licenses (as specified within a license
certificate).

requestLicense(PublicKey, String, long, long, boolean, int)
Requests the license system for specified number of units licenses

Constructors

LicenseAgent

 public LicenseAgent()

Systems Management: Software License Use Management (XSLM) 211

Java Bindings for Application Program API

Methods

��getBasicApplicationClientInstance

 public static BasicApplicationClient
getBasicApplicationClientInstance(String licensingSystemPublisher,
 String publisherID,
 long productID,
 long versionID,
 long featureID)
throws NoSuchPublisherException , NoSuchAPILevelException

Generates a BasicApplicationClient object as supplied from the specified publisher.

Parameters:
licensingSystemPublisher - the name of the license system publisher.

publisherID - the identifier of the software publisher

productID - the identifier of the product

versionID - the identifier of the version

featureID - the identifier of the feature

Returns:
the new BasicApplicationClient object

Throws: NoSuchPublisherException
if there is no subclass of LicenseAgent provided by the specified publisher.

Throws: NoSuchAPILevelException
if the package provded by the specified publisher does not contain the requested API level

See Also:
LicenseBroker, Publisher

��getAdvancedApplicationClientInstance

 public static AdvancedApplicationClient
getAdvancedApplicationClientInstance(String licensingSystemPublisher,
 Session session,
 String publisherID,
 long productID,
 long versionID,
 long featureID)
throws NoSuchPublisherException , NoSuchAPILevelException

Generates an AdvancedApplicationClient object as suppled from the specified publisher.

Parameters:
licensingSystemPublisher - the name of the license system publisher.

session - the session this application client object is bound to

publisherID - the identifier of the software publisher

productID - the identifier of the product

212 Technical Standard:

Java Bindings for Application Program API

versionID - the identifier of the version

featureID - the identifier of the feature

Returns:
the new AdvancedApplicationClient object

Throws: NoSuchPublisherException
if there is no subclass of LicenseAgent provided by the specified publisher.

Throws: NoSuchAPILevelException
if the package provded by the specified publisher does not contain the requested API level

See Also:
Publisher

��confirm

 public void confirm()
throws CommunicationException , LicenseCertificateException ,
LicenseClientException , ResourceUnavailableException

Confirms that a license is currently in use. Should the license system not receive any confirm
fromthe application client within the default time period specified in the certificate, the
license is no longer in use and will return it to the pool of free, available licenses.

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��releaseLicense

 public void releaseLicense()
throws CommunicationException , LicenseCertificateException ,
LicenseClientException , ResourceUnavailableException

Releases the licenses associated with this instance of the license client

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

Systems Management: Software License Use Management (XSLM) 213

Java Bindings for Application Program API

��requestLicense

 public long requestLicense(PublicKey publicKey)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Requests the license system for default number of units licenses (as specified within a license
certificate).

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

Returns:
number of license units granted

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��confirm

 public void confirm(long confirmTime,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Confirms that a license is currently in use. Should the license system not receive any confirm
from the application client within the default time period specified in the certificate, the
license is no longer in use and will return it to the pool of free, available licenses.

Parameters:
confirmTime - elapsed time (in seconds) whithin which the liscense system may expect the
next confirm.

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

214 Technical Standard:

Java Bindings for Application Program API

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��getAuthenticationSignature

 public byte[] getAuthenticationSignature()
throws LicenseClientException

Returns the digital signature created by the licensing system from the input and output
parameters and the authorization token.

Returns:
the digital signature created by the licensing system.

Throws: LicenseClientException
if a generic license client error occurs

��logMessage

 public void logMessage(String message,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Logs and application-specified text message into license system's log

Parameters:
message - the text string of the message, it can be of any length; however, a licensing system
is not required to accept more than 4096 bytes.

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

Systems Management: Software License Use Management (XSLM) 215

Java Bindings for Application Program API

��queryAPILevel

 public long queryAPILevel()
throws CommunicationException , LicenseClientException ,
ResourceUnavailableException

Returns the maximum API specification level supported by all license servers in the licensing
system.

Returns:
the API level supported by all license servers in the licensing system

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��queryFunctionalTowers

 public long[] queryFunctionalTowers()
throws CommunicationException , LicenseClientException ,
ResourceUnavailableException

Returns an array of functional tower identifiers supported by all license servers in the
licensing system.

Returns:
an array of functional tower identifiers supported by all license servers in the licensing
system

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��queryCertificateInfo

 public byte[] queryCertificateInfo(int queryType, int
authenticationToken) throws CommunicationException,
LicenseCertificateException, LicenseClientException,
ResourceUnavailableException

Returns the various types of license certificate information associated with this license client
object.

Parameters:
queryType - a value which identifies the information to be returned

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

216 Technical Standard:

Java Bindings for Application Program API

Returns:
When queryType=XSLM_QUERY_PUBLISHER_INFO, the data element
PUBLISHER_SECTION, if present, followed by the data element PUBLISHER_USE, if
present.

When queryType=XSLM_QUERY_CUST_DEF_INFO, the data element
CUSTOMER_ASSIGNED_APPL_INFO, if present.

When queryType=XSLM_QUERY_CERTIFICATE, the data element CERTIFICATE.

When queryType=XSLM_QUERY_CERT_RELATED_INFO, the data element
CERTIFICATE_RELATED_INFORMATION

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��record

 public void record(long counterIdentifier,
 float counter,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Informs the license system about a metering activity in progress

Parameters:
counterIdentifier - the identifier of one of the 8 different counters (defined within the license
certificate)

counter - the value of the number of units the license system should add to or subtract from
the total count

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Systems Management: Software License Use Management (XSLM) 217

Java Bindings for Application Program API

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��releaseLicense

 public void releaseLicense(long units,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Releases some or all license units associated with this instance of the license client

Parameters:
units - number of license units to be released

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��requestLicense

 public long requestLicense(PublicKey publicKey,
 String namedUser,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Requests the license system for default number of units licenses (as specified within a license
certificate).

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

namedUser - the named user for which license units are being requested

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Returns:
number of license units granted

218 Technical Standard:

Java Bindings for Application Program API

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��requestLicense

 public long requestLicense(PublicKey publicKey,
 long confirmTime,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Requests the license system for default number of units licenses (as specified within a license
certificate).

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

confirmTime - elapsed time (in seconds) whithin which the license system may expect the
next confirm.

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Returns:
number of license units granted

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

Systems Management: Software License Use Management (XSLM) 219

Java Bindings for Application Program API

��requestLicense

 public long requestLicense(PublicKey publicKey,
 String namedUser,
 long confirmTime,
 long units,
 boolean forceNumber,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Requests the license system for specified number of units licenses

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

namedUser - the named user for which license units are being requested

confirmTime - elapsed time (in seconds) whithin which the liscense system may expect the
next confirm.

units - number of license units to be requested

forceNumber - whether or not a lower number of license units than that specified should be
granted

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Returns:
number of license units granted

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

220 Technical Standard:

Java Bindings for Application Program API

��requestLicense

 public long requestLicense(PublicKey publicKey,
 long units,
 boolean forceNumber,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Requests the license system for specified number of license units

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

units - number of license units to be requested

forceNumber - whether or not a lower number of license units than that specified should be
granted

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Returns:
number of license units granted

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��init

 protected final void init(Session session,
 String publisherID,
 long productID,
 long versionID,
 long featureID)

Initializes the LicenseBroker object returned by either a
getBasicApplicationClientInstance or
getAdvancedApplicationClientInstance method invocation.

Parameters:
session - the session this LicenseBroker object is associated with

publisherID - the identifier of the software publisher

Systems Management: Software License Use Management (XSLM) 221

Java Bindings for Application Program API

productID - the identifier of the product

versionID - the identifier of the version

featureID - the identifier of the feature

��engineConfirm

 protected abstract void engineConfirm()
throws CommunicationException , LicenseCertificateException ,
LicenseClientException , ResourceUnavailableException

SPI: Confirms that a license is currently in use.

Parameters:
authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��engineReleaseLicense

 protected abstract void engineReleaseLicense()
throws CommunicationException , LicenseCertificateException ,
LicenseClientException , ResourceUnavailableException

SPI: Releases the licenses associated with this instance of the license client

Parameters:
authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

222 Technical Standard:

Java Bindings for Application Program API

��engineRequestLicense

 protected abstract long engineRequestLicense(PublicKey publicKey)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

SPI: Requests the license system for default number of units licenses (as specified within a
license certificate).

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Returns:
number of license units granted

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��engineConfirm

 protected abstract void engineConfirm(long confirmTime,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

SPI: Confirms that a license is currently in use.

Parameters:
confirmTime - elapsed time (in seconds) whithin which the liscense system may expect the
next confirm.

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Systems Management: Software License Use Management (XSLM) 223

Java Bindings for Application Program API

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��engineGetAuthenticationSignature

 protected abstract byte[] engineGetAuthenticationSignature()
throws LicenseClientException

SPI: Returns the digital signature created by the licensing system from the input and output
parameters and the authorization token.

Returns:
the digital signature created by the licensing system.

Throws: LicenseClientException
if a generic license client error occurs

��engineLogMessage

 protected abstract void engineLogMessage(String message,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

SPI: Logs and application-specified text message into license system's log.

Parameters:
message - the text string of the message, it can be of any length; however, a licensing system
is not required to accept more than 4096 bytes.

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

224 Technical Standard:

Java Bindings for Application Program API

��engineQueryAPILevel

 protected abstract long engineQueryAPILevel()
throws CommunicationException , LicenseClientException ,
ResourceUnavailableException

SPI: Returns the maximum API specification level supported by all license servers in the
licensing system.

Returns:
the maximum API specification level supported by all license servers in the licensing system

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��engineQueryFunctionalTowers

 protected abstract long[] engineQueryFunctionalTowers()
throws CommunicationException , LicenseClientException ,
ResourceUnavailableException

SPI: Returns the maximum API specification level supported by all license servers in the
licensing system.

Returns:
the maximum API specification level supported by all license servers in the licensing system

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��engineQueryCertificateInfo

 protected abstract byte[]
engineQueryCertificateInfo(int queryType,
 int authenticationToken)
throws CommunicationException, LicenseCertificateException ,
LicenseClientException, ResourceUnavailableException

SPI: Returns the various types of license certificate information associated with this license
client object.

Parameters:
queryType - a value which identifies the information to be returned

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Systems Management: Software License Use Management (XSLM) 225

Java Bindings for Application Program API

Returns:
When queryType=XSLM_QUERY_PUBLISHER_INFO, the data element
PUBLISHER_SECTION, if present, followed by the data element PUBLISHER_USE, if
present.

When queryType=XSLM_QUERY_CUST_DEF_INFO, the data element
CUSTOMER_ASSIGNED_APPL_INFO, if present.

When queryType=XSLM_QUERY_CERTIFICATE, the data element CERTIFICATE.

When queryType=XSLM_QUERY_CERT_RELATED_INFO, the data element
CERTIFICATE_RELATED_INFORMATION

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��engineRecord

 protected abstract void engineRecord(long counterIdentifier,
 float counter,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

SPI: Informs the license system about a metering activity in progress

Parameters:
counterIdentifier - the identifier of one of the 8 different counters (defined within the license
certificate)

counter - the value of the number of units the license system should add to or subtract from
the total count

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

226 Technical Standard:

Java Bindings for Application Program API

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��engineReleaseLicense

 protected abstract void engineReleaseLicense(long units,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

SPI: Releases some or all license units associated with this instance of the license client

Parameters:
authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

units - number of license units to be released

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��engineRequestLicense

 protected abstract long engineRequestLicense(PublicKey publicKey,
 String namedUser,
 long confirmTime,
 long units,
 boolean forceNumber,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

SPI: Requests the license system for the specified number of units licenses.

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

namedUser - the named user for which license units are being requested

confirmTime - elapsed time (in seconds) whithin which the liscense system may expect the
next confirm.

units - number of license units to be requested

Systems Management: Software License Use Management (XSLM) 227

Java Bindings for Application Program API

forceNumber - whether or not a lower number of license units than that specified should be
granted

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Returns:
number of license units granted

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

228 Technical Standard:

Java Bindings for Application Program API

Class org.opengroup.xslm.LicenseBroker

java.lang.Object
 |
 +----org.opengroup.xslm.LicenseBroker

public abstract class LicenseBroker
extends Object
implements BasicApplicationClient, AdvancedApplicationClient, XSLMConstants The
LicenseBroker class is used to render the presence of multiple licensing systems implementations
transparent to application clients; that is to create the illusion of a single logical license
management system, when two or more implementations are available in the environment.
Like other classes in org.opengroup.xslm, the LicenseBroker class has two major components:
LicenseBroker API (Application Program Interface)

This is the interface of methods called by applications needing License Broker services to
have their requests routed to real implementations of licensing systems available in the
environment. The API consists of all public methods.

LicenseBroker SPI (Service Provider Interface)
This is the interface implemented by licensing system publishers that supply specific license
use management packages. It consists of all methods whose names are prefixed by engine .
Each such method is called by a correspondingly-named public API method. For example,
the engineRequestLicense method is called by the requestLicense method. The SPI
methods are abstract; publishers must supply a concrete implementation.

LicenseBroker provides implementation-independent objects, a caller (application code) can
request a LicenseBroker object, the system will determine if there is an implementation available
in the environment, and if there is more than one, if there is a preferred one.
See Also:

BasicApplicationClient, AdvancedApplicationClient, LicenseAgent

Constructor Index

LicenseBroker()

Method Index

confirm()
Confirms that a license is currently in use.

confirm(long, int)
Confirms that a license is currently in use.

engineConfirm()
SPI: Confirms that a license is currently in use.

engineConfirm(long, int)

Systems Management: Software License Use Management (XSLM) 229

Java Bindings for Application Program API

SPI: Confirms that a license is currently in use.

engineGetAuthenticationSignature()
SPI: Returns the digital signature created by the licensing system from the input and output
parameters and the authorization token.

engineGetLicensingSystemPublisherID()
SPI: Returns the licensing system publisher identifier of this LicenseBroker object.

engineLogMessage(String, int)
SPI: Logs and application-specified text message into license system's log.

engineQueryAPILevel()
Returns the API level supported by all license servers in the licensing system.

engineQueryCertificateInfo(int, int)
Returns various types of license certificate information.

engineQueryFunctionalTowers()
SPI: Returns the maximum API specification level supported by all license servers in the
licensing system.

engineRecord(long, float, int)
SPI: Informs the license system about a metering activity in progress

engineReleaseLicense()
SPI: Releases the licenses associated with this instance of the license client

engineReleaseLicense(long, int)
SPI: Releases some or all license units associated with this instance of the license client

engineRequestLicense(PublicKey)
SPI: Requests the license system for default number of units licenses (as specified within a
license certificate).

engineRequestLicense(PublicKey, String, long, long, boolean, int)
SPI: Requests the license system for the specified number of units licenses.

getAdvancedApplicationClientInstance(Session, String, long, long, long)
Generates an AdvancedApplicationClient object of the default LicenseUseManagement
package.

getAuthenticationSignature()
Returns the digital signature created by the licensing system from the input and output
parameters and the authorization token.

getBasicApplicationClientInstance(String, long, long, long)
Generates a BasicApplicationClient object of the default LicenseUseManagement package.

getLicensingSystemPublisherID()
Returns the licensing system publisher identifier of this LicenseBroker object.

init(Session, String, long, long, long)
Initializes the LicenseBroker object returned by either a
getBasicApplicationClientInstance or
getAdvancedApplicationClientInstance method invocation.

230 Technical Standard:

Java Bindings for Application Program API

logMessage(String, int)
Logs and application-specified text message into license system's log

queryAPILevel()
Returns the maximum API specification level supported by all license servers in the licensing
system.

queryCertificateInfo(int, int)
Returns various types of license certificate information

queryFunctionalTowers()
Returns an array of functional tower identifiers supported by all license servers in the
licensing system.

record(long, float, int)
Informs the license system about a metering activity in progress

releaseLicense()
Releases the licenses associated with this instance of the license client

releaseLicense(long, int)
Releases some or all license units associated with this instance of the license client

requestLicense(PublicKey)
Requests the license system for default number of units licenses (as specified within a license
certificate).

requestLicense(PublicKey, long, boolean, int)
Requests the license system for the specified number of license units

requestLicense(PublicKey, long, int)
Requests the license system for default number of units licenses (as specified within a license
certificate).

requestLicense(PublicKey, String, int)
Requests the license system for default number of units licenses (as specified within a license
certificate).

requestLicense(PublicKey, String, long, long, boolean, int)
Requests the license system for specified number of units licenses

Constructors

LicenseBroker

 public LicenseBroker()

Systems Management: Software License Use Management (XSLM) 231

Java Bindings for Application Program API

Methods

��getBasicApplicationClientInstance

 public static BasicApplicationClient
getBasicApplicationClientInstance(String publisherID,
 long productID,
 long versionID,
 long featureID)
throws NoSuchPublisherException , NoSuchAPILevelException

Generates a BasicApplicationClient object of the default LicenseUseManagement package.
The default LicenseUseManagement package is looked for in the xslm.properties file.

Parameters:
publisherID - the identifier of the software publisher

productID - the identifier of the product

versionID - the identifier of the version

featureID - the identifier of the feature

Returns:
the new BasicApplicationClient object.

Throws: NoSuchPublisherException
if there is no subclass of LicenseAgent provided by the specified publisher.

Throws: NoSuchAPILevelException
if the package provded by the specified publisher does not contain the requested API level

��getAdvancedApplicationClientInstance

 public static AdvancedApplicationClient
getAdvancedApplicationClientInstance(Session session,
 String publisherID,
 long productID,
 long versionID,
 long featureID)
throws NoSuchPublisherException , NoSuchAPILevelException

Generates an AdvancedApplicationClient object of the default LicenseUseManagement
package. The default LicenseUseManagement package is looked for in the xslm.properties
file.

Parameters:
session - the session this application client object is bound to

publisherID - the identifier of the software publisher

productID - the identifier of the product

versionID - the identifier of the version

featureID - the identifier of the feature

Returns:
the new AdvancedApplicationClient object.

232 Technical Standard:

Java Bindings for Application Program API

Throws: NoSuchPublisherException
if there is no subclass of LicenseAgent provided by the specified publisher.

Throws: NoSuchAPILevelException
if the package provded by the specified publisher does not contain the requested API level

��confirm

 public void confirm()
throws CommunicationException , LicenseCertificateException ,
LicenseClientException , ResourceUnavailableException

Confirms that a license is currently in use. Should the license system not receive any confirm
fromthe application client within the default time period specified in the certificate, the
license is no longer in use and will return it to the pool of free, available licenses.

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��releaseLicense

 public void releaseLicense()
throws CommunicationException , LicenseCertificateException ,
LicenseClientException , ResourceUnavailableException

Releases the licenses associated with this instance of the license client

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��requestLicense

 public long requestLicense(PublicKey publicKey)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Requests the license system for default number of units licenses (as specified within a license
certificate).

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license

Systems Management: Software License Use Management (XSLM) 233

Java Bindings for Application Program API

certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

Returns:
number of license units granted

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��confirm

 public void confirm(long confirmTime,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Confirms that a license is currently in use. Should the license system not receive any confirm
from the application client within the default time period specified in the certificate, the
license is no longer in use and will return it to the pool of free, available licenses.

Parameters:
confirmTime - elapsed time (in seconds) whithin which the liscense system may expect the
next confirm.

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

234 Technical Standard:

Java Bindings for Application Program API

��getAuthenticationSignature

 public byte[] getAuthenticationSignature()
throws LicenseClientException

Returns the digital signature created by the licensing system from the input and output
parameters and the authorization token.

Returns:
the digital signature created by the licensing system.

Throws: LicenseClientException
if a generic license client error occurs

��getLicensingSystemPublisherID

 public String getLicensingSystemPublisherID()
throws LicenseClientException

Returns the licensing system publisher identifier of this LicenseBroker object. It may be used
to determine how to calculate the digital signature required to authenticate the licensing
system itself.

Returns:
the licensing system publisher identifier of this LicenseBrokerObject.

Throws: LicenseClientException
if a generic license client error occurs

��logMessage

 public void logMessage(String message,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Logs and application-specified text message into license system's log

Parameters:
message - the text string of the message, it can be of any length; however, a licensing system
is not required to accept more than 4096 bytes.

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

Systems Management: Software License Use Management (XSLM) 235

Java Bindings for Application Program API

��queryAPILevel

 public long queryAPILevel()
throws CommunicationException , LicenseClientException ,
ResourceUnavailableException

Returns the maximum API specification level supported by all license servers in the licensing
system.

Returns:
the API level supported by all license servers in the licensing system

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��queryFunctionalTowers

 public long[] queryFunctionalTowers()
throws CommunicationException , LicenseClientException ,
ResourceUnavailableException

Returns an array of functional tower identifiers supported by all license servers in the
licensing system.

Returns:
an array of functional tower identifiers supported by all license servers in the licensing
system

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��queryCertificateInfo

 public byte[] queryCertificateInfo(int queryType,
 int authenticationToken)
throws CommunicationException, LicenseCertificateException ,
LicenseClientException, ResourceUnavailableException

Returns the various types of license certificate information associated with this license client
object

Parameters:
queryType - a value which identifies the information to be returned

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

236 Technical Standard:

Java Bindings for Application Program API

Returns:
When queryType=XSLM_QUERY_PUBLISHER_INFO, the data element
PUBLISHER_SECTION, if present, followed by the data element PUBLISHER_USE, if
present.

When queryType=XSLM_QUERY_CUST_DEF_INFO, the data element
CUSTOMER_ASSIGNED_APPL_INFO, if present.

When queryType=XSLM_QUERY_CERTIFICATE, the data element CERTIFICATE.

When queryType=XSLM_QUERY_CERT_RELATED_INFO, the data element
CERTIFICATE_RELATED_INFORMATION

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��record

 public void record(long counterIdentifier,
 float counter,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Informs the license system about a metering activity in progress

Parameters:
counterIdentifier - the identifier of one of the 8 different counters (defined within the license
certificate)

counter - the value of the number of units the license system should add to or subtract from
the total count

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException

Systems Management: Software License Use Management (XSLM) 237

Java Bindings for Application Program API

if a resource required to execute the requested method is not available

��releaseLicense

 public void releaseLicense(long units,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Releases some or all license units associated with this instance of the license client

Parameters:
units - number of license units to be released

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��requestLicense

 public long requestLicense(PublicKey publicKey,
 String namedUser,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Requests the license system for default number of units licenses (as specified within a license
certificate).

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

namedUser - the named user for which license units are being requested

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Returns:
number of license units granted

238 Technical Standard:

Java Bindings for Application Program API

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��requestLicense

 public long requestLicense(PublicKey publicKey,
 long confirmTime,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Requests the license system for default number of units licenses (as specified within a license
certificate).

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

confirmTime - elapsed time (in seconds) whithin which the license system may expect the
next confirm.

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Returns:
number of license units granted

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

Systems Management: Software License Use Management (XSLM) 239

Java Bindings for Application Program API

��requestLicense

 public long requestLicense(PublicKey publicKey,
 String namedUser,
 long confirmTime,
 long units,
 boolean forceNumber,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Requests the license system for specified number of units licenses

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

namedUser - the named user for which license units are being requested

confirmTime - elapsed time (in seconds) whithin which the liscense system may expect the
next confirm.

units - number of license units to be requested

forceNumber - whether or not a lower number of license units than that specified should be
granted

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Returns:
number of license units granted

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

240 Technical Standard:

Java Bindings for Application Program API

��requestLicense

 public long requestLicense(PublicKey publicKey,
 long units,
 boolean forceNumber,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

Requests the license system for the specified number of license units

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

units - number of license units to be requested

forceNumber - whether or not a lower number of license units than that specified should be
granted

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Returns:
number of license units granted

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��init

 protected final void init(Session session,
 String publisherID,
 long productID,
 long versionID,
 long featureID)

Initializes the LicenseBroker object returned by either a
getBasicApplicationClientInstance or
getAdvancedApplicationClientInstance method invocation.

Parameters:
session - the session this LicenseBroker object is associated with

publisherID - the identifier of the software publisher

Systems Management: Software License Use Management (XSLM) 241

Java Bindings for Application Program API

productID - the identifier of the product

versionID - the identifier of the version

featureID - the identifier of the feature

��engineConfirm

 protected abstract void engineConfirm()
throws CommunicationException , LicenseCertificateException ,
LicenseClientException , ResourceUnavailableException

SPI: Confirms that a license is currently in use.

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��engineReleaseLicense

 protected abstract void engineReleaseLicense()
throws CommunicationException , LicenseCertificateException ,
LicenseClientException , ResourceUnavailableException

SPI: Releases the licenses associated with this instance of the license client

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��engineRequestLicense

 protected abstract long engineRequestLicense(PublicKey publicKey)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

SPI: Requests the license system for default number of units licenses (as specified within a
license certificate).

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in

242 Technical Standard:

Java Bindings for Application Program API

the license certificate.

Returns:
number of license units granted

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��engineConfirm

 protected abstract void engineConfirm(long confirmTime,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

SPI: Confirms that a license is currently in use.

Parameters:
confirmTime - elapsed time (in seconds) whithin which the liscense system may expect the
next confirm.

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

Systems Management: Software License Use Management (XSLM) 243

Java Bindings for Application Program API

��engineGetLicensingSystemPublisherID

 protected abstract String engineGetLicensingSystemPublisherID()
throws LicenseClientException

SPI: Returns the licensing system publisher identifier of this LicenseBroker object. It may be
used to determine how to calculate the digital signature required to authenticate the licensing
system itself.

Returns:
the licensing system publisher identifier of this LicenseBrokerObject.

Throws: LicenseClientException
if a generic license client error occurs

��engineGetAuthenticationSignature

 protected abstract byte[] engineGetAuthenticationSignature()
throws LicenseClientException

SPI: Returns the digital signature created by the licensing system from the input and output
parameters and the authorization token.

Returns:
the digital signature created by the licensing system.

Throws: LicenseClientException
if a generic license client error occurs

��engineLogMessage

 protected abstract void engineLogMessage(String message,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

SPI: Logs and application-specified text message into license system's log.

Parameters:
message - the text string of the message, it can be of any length; however, a licensing system
is not required to accept more than 4096 bytes.

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

244 Technical Standard:

Java Bindings for Application Program API

��engineQueryAPILevel

 protected abstract long engineQueryAPILevel()
throws CommunicationException , LicenseClientException ,
ResourceUnavailableException

Returns the API level supported by all license servers in the licensing system.

Returns:
the API level supported by all license servers in the licensing system

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��engineQueryFunctionalTowers

 protected abstract long[] engineQueryFunctionalTowers()
throws CommunicationException , LicenseClientException ,
ResourceUnavailableException

SPI: Returns the maximum API specification level supported by all license servers in the
licensing system.

Returns:
the maximum API specification level supported by all license servers in the licensing system

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��engineQueryCertificateInfo

 protected abstract byte[]
 engineQueryCertificateInfo(int queryType, int authenticationToken)
throws CommunicationException , LicenseCertificateException ,
LicenseClientException , ResourceUnavailableException

SPI: Returns the various types of license certificate information associated with this license
client object

Parameters:
queryType - a value which identifies the information to be returned

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Systems Management: Software License Use Management (XSLM) 245

Java Bindings for Application Program API

Returns:
When queryType=XSLM_QUERY_PUBLISHER_INFO, the data element
PUBLISHER_SECTION, if present, followed by the data element PUBLISHER_USE, if
present.

When queryType=XSLM_QUERY_CUST_DEF_INFO, the data element
CUSTOMER_ASSIGNED_APPL_INFO, if present.

When queryType=XSLM_QUERY_CERTIFICATE, the data element CERTIFICATE.

When queryType=XSLM_QUERY_CERT_RELATED_INFO, the data element
CERTIFICATE_RELATED_INFORMATION

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��engineRecord

 protected abstract void engineRecord(long counterIdentifier,
 float counter,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

SPI: Informs the license system about a metering activity in progress

Parameters:
counterIdentifier - the identifier of one of the 8 different counters (defined within the license
certificate)

counter - the value of the number of units the license system should add to or subtract from
the total count

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

246 Technical Standard:

Java Bindings for Application Program API

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��engineReleaseLicense

 protected abstract void engineReleaseLicense(long units,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

SPI: Releases some or all license units associated with this instance of the license client

Parameters:
units - number of license units to be released

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

��engineRequestLicense

 protected abstract long engineRequestLicense(PublicKey publicKey,
 String namedUser,
 long confirmTime,
 long units,
 boolean forceNumber,
 int authenticationToken)
throws CommunicationException , InvalidParameterException ,
LicenseCertificateException , LicenseClientException ,
ResourceUnavailableException

SPI: Requests the license system for the specified number of units licenses.

Parameters:
publicKey - the software publisher public key. Used to confirm authenticity of a license
certificate. The value passed must match the value of the publisher's public key contained in
the license certificate.

namedUser - the named user for which license units are being requested

confirmTime - elapsed time (in seconds) whithin which the liscense system may expect the
next confirm.

units - number of license units to be requested

Systems Management: Software License Use Management (XSLM) 247

Java Bindings for Application Program API

forceNumber - whether or not a lower number of license units than that specified should be
granted

authenticationToken - a 32-bit arbitrary value created by the application and used as part of
the licensing system authentication process

Returns:
number of license units granted

Throws: CommunicationException
if a communication error occurs between the license client and the license server

Throws: InvalidParameterException
if a parameter passed to a method is invalid

Throws: LicenseCertificateException
if the requested method cannot be completed on any license crtificate

Throws: LicenseClientException
if a generic license client error occurs

Throws: ResourceUnavailableException
if a resource required to execute the requested method is not available

248 Technical Standard:

Java Bindings for Application Program API

Class org.opengroup.xslm.LicenseUseManagement

java.lang.Object
 |
 +----org.opengroup.xslm.LicenseUseManagement

public final class LicenseUseManagement
extends Object
This class centralizes all License Use Management properties and common methods. One of its
primary uses is to manage License System Publishers.

Method Index

addPublisher(Publisher)
Adds a publisher to the next position available.

getProperty(String)
Gets a licenseUseManagement property.

getPublisher(String)
Returns the publisher installed with the specified name, if any.

getPublishers()
Returns all publishers currently installed.

insertPublisherAt(Publisher, int)
Adds a new publisher, at a specified position.

removePublisher(String)
Removes the publisher with the specified name.

setProperty(String, String)
Sets a licenseUseManagement property.

Methods

��insertPublisherAt

 public static int insertPublisherAt(Publisher publisher,
 int position)

Adds a new publisher, at a specified position. The position is the preference order in which
publishers are chosen when no specific publisher is requested. Note that it is not guaranteed
that this preference will be respected. The position is 1-based, that is, 1 is most preferred,
followed by 2, and so on. Sometimes it will be legal to add a publisher, but only in the last
position, in which case the position argument will be ignored.

A publisher cannot be added if it is already installed.

Systems Management: Software License Use Management (XSLM) 249

Java Bindings for Application Program API

Parameters:
publisher - the publisher to be added.

position - the preference position that the caller would like for this publisher.

Returns:
the actual preference position in which the publisher was added, or -1 if the publisher was
not added because it is already installed.

See Also:
getPublisher, removePublisher

��addPublisher

 public static int addPublisher(Publisher publisher)
Adds a publisher to the next position available.

Parameters:
publisher - the publisher to be added.

Returns:
the preference position in which the publisher was added, or -1 if the publisher was not
added because it is already installed.

See Also:
getPublisher, removePublisher

��removePublisher

 public static void removePublisher(String name)
Removes the publisher with the specified name. This method returns silently if the publisher
is not installed.

Parameters:
name - the name of the publisher to remove.

See Also:
getPublisher, addPublisher

��getPublishers

 public static Publisher [] getPublishers()
Returns all publishers currently installed.

Returns:
an array of all publishers currently installed.

��getPublisher

 public static Publisher getPublisher(String name)
Returns the publisher installed with the specified name, if any. Returns null if no publisher
with the speicified name is installed.

Parameters:
name - the name of the publisher to get.

250 Technical Standard:

Java Bindings for Application Program API

Returns:
the publisher of the specified name.

See Also:
removePublisher, addPublisher

��getProperty

 public static String getProperty(String key)
Gets a licenseUseManagement property.

Parameters:
key - the key of the property being retrieved.

Returns:
the value of the licenseUseManagement property corresponding to key.

��setProperty

 public static void setProperty(String key,
 String datum)

Sets a licenseUseManagement property.

Parameters:
key - the name of the property to be set.

datum - the value of the property to be set.

Systems Management: Software License Use Management (XSLM) 251

Java Bindings for Application Program API

Class org.opengroup.xslm.Publisher

java.lang.Object
 |
 +----java.util.Dictionary
 |
 +----java.util.Hashtable
 |
 +----java.util.Properties
 |
 +----org.opengroup.xslm.Publisher

public abstract class Publisher
extends Properties This class represents a "License System Publisher", publisher for short, for the
Java XSLM API. A Publisher implements the Base functional set of Java XSLM and some or all
functional towers.
Each Publisher has a name and a version number, and is configured in each runtime it is installed
in.

Constructor Index

Publisher(String, double, String)
Constructs a Publisher with the specified name, version number, and information.

getInfo()
Returns a human-readable description of the publisher and its services.

getName()
Returns the name of this publisher.

getVersion()
Returns the version number for this publisher.

toString()
Returns a string with the name and the version number of this publisher.

Constructors

Publisher

 protected Publisher(String name,
 double version,
 String info)

Constructs a Publisher with the specified name, version number, and information.

Parameters:
name - the publisher name.

version - the publisher version number.

252 Technical Standard:

Java Bindings for Application Program API

info - a description of the publisher and its services.

Methods

��getName

 public String getName()
Returns the name of this publisher.

Returns:
the name of this publisher.

��getVersion

 public double getVersion()
Returns the version number for this publisher.

Returns:
the version number for this publisher.

��getInfo

 public String getInfo()
Returns a human-readable description of the publisher and its services. This may return an
HTML page, with relevant links.

Returns:
a description of the publisher and its services.

��toString

 public String toString()
Returns a string with the name and the version number of this publisher.

Returns:
the string with the name and the version number for this publisher.

Overrides:
toString in class Hashtable

Systems Management: Software License Use Management (XSLM) 253

Java Bindings for Application Program API

Class org.opengroup.xslm.Session

java.lang.Object
 |
 +----org.opengroup.xslm.Session

public abstract class Session
extends Object This Session class is used to establish a reference which is used to keep track of
composite licensing activities as a whole. A session may include licenses for products from one or
more publishers.
Like other classes in org.opengroup.xslm, the Session class has two major components:
Session API (Application Program Interface)

This is the interface of methods called by applications needing session objects to call the
AdvancedApplicationClient methods. The API consists of all public methods.

Session SPI (Service Provider Interface)
This is the interface implemented by licensing system publishers that supply specific license
use management packages. It consists of all methods whose names are prefixed by engine .
Each such method is called by a correspondingly-named public API method. For example,
the engineEnd method is called by the end method. The SPI methods are abstract;
publishers must supply a concrete implementation.

Also Session provides implementation-independent objects, whereby a caller (application code)
requests just a session object and is handed back a properly initialized Session object to be used
with a AdvancedApplicationClient provided by a LicenseBroker . It is also possible, if
desired, to request a particular implementation of a session object from a particular publisher to
be used with a AdvancedApplicationClient provided by a LicenseAgent . See the
getInstance methods.
Thus, there are two ways to request a Session object: by not specifying any parameter, or by
specifying a package publisher.
If no parameter is specified, the system will determine if there is an implementation of the
requested session object available in the environment, and if there is more than one, if there is a
preferred one.
If a package publisher is specified, the system will determine if there is an implementation of the
session object in the package requested, and throw an exception if there is not.

Variable Index

STARTED
Possible state value, signifying that this session object has been started.

state
Current state of this session object.

STOPPED
Possible state value, signifying that this session object has been stopped.

254 Technical Standard:

Java Bindings for Application Program API

UNINITIALIZED
Possible state value, signifying that this session object has not yet been initialized.

Constructor Index

Session()
Creates a Session object.

Method Index

begin()
Starts a session to keep track of composite licensing activity

end()
Terminates a session established by a begin method invocation

engineBegin()
SPI: Starts a session to keep track of composite licensing activity

engineEnd()
SPI: Terminates a session established by a engineBegin method invocation

getHandle()
Returns the handle of this session object.

getInstance()
Generates a Session object.

getInstance(String)
Generates a Session object as supplied from the specified publisher, if a Session subclass is
available from the provider.

Variables

UNINITIALIZED
 protected static final int UNINITIALIZED

Possible state value, signifying that this session object has not yet been initialized.

STARTED
 protected static final int STARTED

Possible state value, signifying that this session object has been started.

STOPPED
 protected static final int STOPPED

Possible state value, signifying that this session object has been stopped.

state
 protected int state

Current state of this session object.

Systems Management: Software License Use Management (XSLM) 255

Java Bindings for Application Program API

Constructors

Session

 protected Session()
Creates a Session object.

Methods

��getInstance

 public static Session getInstance()
throws NoSuchAPILevelException

Generates a Session object. Packages are searched until one implementing a Session object is
found and an instance of that subclass is returned.

Returns:
the new Session object.

Throws: NoSuchAPILevelException
if an implementation for the Session class is not available in the environment

��getInstance

 public static Session getInstance(String publisher)
throws NoSuchPublisherException , NoSuchAPILevelException

Generates a Session object as supplied from the specified publisher, if a Session subclass is
available from the provider.

Parameters:
publisher - the name of the publisher.

Returns:
the new Session object.

Throws: NoSuchAPILevelException
if the Session subclass is not available in the package supplied by the requested publisher.

Throws: NoSuchPublisherException
if the publisher is not available in the environment.

See Also:
Publisher

��begin

 public final void begin()
Starts a session to keep track of composite licensing activity

��end

 public final void end()
Terminates a session established by a begin method invocation

256 Technical Standard:

Java Bindings for Application Program API

��getHandle

 public final String getHandle()
Returns the handle of this session object.

Returns:
the handle of this session object.

��engineBegin

 protected abstract void engineBegin()
SPI: Starts a session to keep track of composite licensing activity

��engineEnd

 protected abstract void engineEnd()
SPI: Terminates a session established by a engineBegin method invocation

Systems Management: Software License Use Management (XSLM) 257

Java Bindings for Application Program API

Class org.opengroup.xslm.CommunicationException

java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----org.opengroup.xslm.CommunicationException

public class CommunicationException
extends Exception This exception is thrown when a communication error occurrs between the
LicenseAgent and a license server.

Constructors Index

CommunicationException()
Constructs a CommunicationException with no detail message.

CommunicationException(String)
Constructs a CommunicationException with the specified detail message.

Constructors

��CommunicationException

 public CommunicationException()
Constructs a CommunicationException with no detail message. A detail message is a String
that describes this particular exception.

��CommunicationException

 public CommunicationException(String msg)
Constructs a CommunicationException with the specified detail message. A detail message is
a String that describes this particular exception.

Parameters:
msg - the detail message.

258 Technical Standard:

Java Bindings for Application Program API

Class org.opengroup.xslm.InvalidParameterException

java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----java.lang.RuntimeException
 |
 +----java.lang.IllegalArgumentException
 |
 +----
org.opengroup.xslm.InvalidParameterException

public class InvalidParameterException
extends IllegalArgumentException This exception is thrown when an invalid parameter is passed
to a method.

Constructor Index

InvalidParameterException()
Constructs an InvalidParameterException with no detail message.

InvalidParameterException(String)
Constructs an InvalidParameterException with the specified detail message.

Constructors

InvalidParameterException

 public InvalidParameterException()
Constructs an InvalidParameterException with no detail message. A detail message is a
String that describes this particular exception.

��InvalidParameterException

 public InvalidParameterException(String msg)
Constructs an InvalidParameterException with the specified detail message. A detail message
is a String that describes this particular exception.

Parameters:
msg - the detail message.

Systems Management: Software License Use Management (XSLM) 259

Java Bindings for Application Program API

Class org.opengroup.xslm.LicenseCertificateException

java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----org.opengroup.xslm.LicenseCertificateException

public class LicenseCertificateException
extends Exception This exception is thrown when the requested method cannot be completed on
any of the license certificates available, or to a particular license certificate if the application client
is already bound to one.

Constructor Index

LicenseCertificateException()
Constructs a LicenseCertificateException with no detail message.

LicenseCertificateException(String)
Constructs a LicenseCertificateException with the specified detail message.

Constructors

��LicenseCertificateException

 public LicenseCertificateException()
Constructs a LicenseCertificateException with no detail message. A detail message is a String
that describes this particular exception.

��LicenseCertificateException

 public LicenseCertificateException(String msg)
Constructs a LicenseCertificateException with the specified detail message. A detail message
is a String that describes this particular exception.

Parameters:
msg - the detail message.

260 Technical Standard:

Java Bindings for Application Program API

Class org.opengroup.xslm.LicenseClientException

java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----org.opengroup.xslm.LicenseClientException

public class LicenseClientException
extends Exception This exception is thrown when a generic AdvancedApplicationClient or
BasicApplicationClient error occurs, as when a releaseLicense method is called before
calling a requestLicense method.

Constructor Index

LicenseClientException()
Constructs a LicenseClientException with no detail message.

LicenseClientException(String)
Constructs a LicenseClientException with the specified detail message.

Constructors

��LicenseClientException

 public LicenseClientException()
Constructs a LicenseClientException with no detail message. A detail message is a String that
describes this particular exception.

��LicenseClientException

 public LicenseClientException(String msg)
Constructs a LicenseClientException with the specified detail message. A detail message is a
String that describes this particular exception.

Parameters:
msg - the detail message.

Systems Management: Software License Use Management (XSLM) 261

Java Bindings for Application Program API

Class org.opengroup.xslm.NoSuchAPILevelException

java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----org.opengroup.xslm.NoSuchAPILevelException

public class NoSuchAPILevelException
extends Exception This exception is thrown when the requested API level is not available in the
environment.

Constructor Index

NoSuchAPILevelException()
Constructs a NoSuchAPILevelException with no detail message.

NoSuchAPILevelException(String)
Constructs a NoSuchAPILevelException with the specified detail message.

Constructors

��NoSuchAPILevelException

 public NoSuchAPILevelException()
Constructs a NoSuchAPILevelException with no detail message. A detail message is a String
that describes this particular exception.

��NoSuchAPILevelException

 public NoSuchAPILevelException(String msg)
Constructs a NoSuchAPILevelException with the specified detail message. A detail message
is a String that describes this particular exception.

Parameters:
msg - the detail message.

262 Technical Standard:

Java Bindings for Application Program API

Class org.opengroup.xslm.NoSuchPublisherException

java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----org.opengroup.xslm.NoSuchPublisherException

public class NoSuchPublisherException
extends Exception This exception is thrown when a particular License System Publisher is
requested but is not available in the environment.

Constructor Index

NoSuchPublisherException()
Constructs a NoSuchPublisherException with no detail message.

NoSuchPublisherException(String)
Constructs a NoSuchPublisherException with the specified detail message.

Constructors

��NoSuchPublisherException

 public NoSuchPublisherException()
Constructs a NoSuchPublisherException with no detail message. A detail message is a String
that describes this particular exception.

��NoSuchPublisherException

 public NoSuchPublisherException(String msg)
Constructs a NoSuchPublisherException with the specified detail message. A detail message
is a String that describes this particular exception.

Parameters:
msg - the detail message.

Systems Management: Software License Use Management (XSLM) 263

Java Bindings for Application Program API

Class
org.opengroup.xslm.ResourceUnavailableException

java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----org.opengroup.xslm.ResourceUnavailableException

public class ResourceUnavailableException
extends Exception This exception is thrown when a resource required to execute the requestedp
method is not available in the environment.

Constructor Index

ResourceUnavailableException()
Constructs a ResourceUnavailableException with no detail message.

ResourceUnavailableException(String)
Constructs a ResourceUnavailableException with the specified detail message.

Constructors

��ResourceUnavailableException

 public ResourceUnavailableException()
Constructs a ResourceUnavailableException with no detail message. A detail message is a
String that describes this particular exception.

��ResourceUnavailableException

 public ResourceUnavailableException(String msg)
Constructs a ResourceUnavailableException with the specified detail message. A detail
message is a String that describes this particular exception.

Parameters:
msg - the detail message.

264 Technical Standard:

Glossary

Terminology
administrator
A person, or program, that manages software licenses; this includes receiving and acting upon
messages from the licensing system.

application agent
A licensing-system provided component that provides an interface between an application
program (usually via an XSLM Broker) and the licensing system’s licensing server.

customer
See licensee.

end-user
A person using an instance of an application program.

grace period
A time period during which the defined license type terms are permitted by the software
application publisher to be exceeded.

hard stop license policy
Specifies that the licensing system will not grant a license request when there are no available
licenses using the non-Soft Stop data elements. See also Soft Stop License Policy.

license agreement
A contract providing a license to use a program, including all terms and conditions governing
such use.

license certificate
A machine-readable representation of the terms and conditions contained within a license
agreement, together with certain license-management-related information that is not directly
included within the license agreement, such as encoded passwords.

license certificate issuer
The entity that creates a license certificate associated with a license agreement. Often, the license
certificate issuer is the software publisher, but it can also be a software distributor, a software
reseller, or a separate certificate issuing authority.

license policy
Collection of all terms and conditions, agreed upon between a license certificate issuer and a
customer, that govern the customers rights to use a software product. The license policy, or just
policy, includes actions the software publishers application will take when a license condition is
not met, for example hard stop or soft stop. The policy also includes optional customer-specified
conditions, if permitted by the software publisher, such as implement hard stop even if the
software publisher normally implements soft stop.

license type
The scope of use of a specific product. It specifies a set of restrictions that are defined in the
license policy.

Systems Management: Software License Use Management (XSLM) 265

Glossary

license use management
The ability of the customer to manage the use of an organizations software assets within the
limits defined by the license policies.

licensee
One of the two parties to a licensing agreement, obtaining the right to use a software product
subject to certain terms and conditions.

licensing system
A software product that implements the Software License Use Management (XSLM)
specification.

licensing system publisher
A provider of a licensing system.

platform
Combination of computing hardware and operating system. Also called environment.

policy
See license policy.

soft stop license policy
Specifies that the licensing system will also use the values in the following Soft Stop data
elements when granting a license request, which can not be satisfied by the non-Soft Stop data
elements alone — LICENSED_ADDITIONAL_UNITS or CAPACITY_ADDITIONAL or
COUNTER_ADDITIONAL_VALUE and DURATION_ADDITIONAL. Licenses granted under
the Soft Stop policy must be logged. See also Hard Stop License Policy.

software publisher
An entity that owns a software product and, generally, sets the licensing terms and conditions of
the licensing of the software; the software publisher may also manufacture, distribute, and
market the software.

technical license manager
A software product, used to restrict a licensee’s ability to use a software product as specified
within the governing license agreement, but not providing any additional significant
management capabilities. A technical license manager does not provide an implementation of
this specification.

266 Technical Standard:

Glossary

Acronyms

API Application Programming Interface
CAE Common Applications Environment
CIM Common Information Model
DLL Dynamic Link Library
DLM Dynamically Loaded Module
GUID Globally Unique Identifier
HWM High Water Mark
ISO International Standards Organization
JES Job Entry Subsystem
LPAR Logically Partitioned (Mode)
LS Licensing System
LSAPI License Service Application Programming Interface
MIPS Millions of Instructions Per Second
MNLU Maximum Number of License Units
OSF The Open Software Foundation, Inc.
Ts&Cs Terms and Conditions
TLM Technical License Manager
UCS Unicode Character Set
UTC Universal Time Coordinate
UTF Unified Test System
UUID Universal Unique Identifier (see also GUID)
XAAPI XSLM Application API
XLCA XSLM License Certificate Architecture
XMAPI XSLM Management API
XSLM X/Open Software License Use Management

Systems Management: Software License Use Management (XSLM) 267

Glossary

268 Technical Standard:

Index

administrator...265
administrator-defined

assignments ...111
policy...111

advanced set ..5, 41
API

advanced set ..5
basic set...5

API data types ...36
application agent..20, 265
application API..4-5, 41
application broker ..19
audit trail ..109
authentication ...25, 27
authentication certificate...25
authentication process...28
authentication section..26
authenticity ..27
basic set...5, 41
business requirements ...1
certificate ..4, 37
certification authority ..25
coexistence with TLM..8
customer...11, 14-15, 37, 265
customers perspective ...15
data elements ..31, 34

API data types...36
basic set...39
certificate ..122
compound..35, 37
defined symbols..172
definitions ..121
detailed descriptions ...130
logged event/data..128
optional...39
predefined ..5
private ...5
simple..34
state information ..125

data integrity ...25
data types ...31

byte strings...32
character strings..32
date/time ...32
fixed-point numbers ..31
floating-point numbers32

ordering..31
UUIDs ...33

decryption ..25
digital certificate ...25
digital signature..5, 37
DLM...19
dynamically loadable module19
encryption ..25
end-user..265
function sets...189
functional towers..189
grace period ...265
hard stop license policy...265
implementation guidelines...................................185
integrity ..5, 25-26, 37, 109
interoperability..1
license

certificate ..4, 25
customer...11
customer’s perspective..15
enabled application..4
licensing system publisher11
management-enabled application185
policies ..4
process ..4, 11
publisher’s perspective..13
server...185
software publisher ...11
terms and conditions.............................4, 175, 181
types ..16

license agreement ...265
license certificate...265

authentication section ...26
authenticity..25, 27
format..37
integrity ..26
state data ..39
structure ...38

license certificate format ...1
license certificate issuer...265
license management system.....................................1
license policy ...265
license type ..265
license types...175
license use management266

administration...1

Systems Management: Software License Use Management (XSLM) 269

Index

concepts ..1
costs ...1
goals ..1
license usage..1
link to application ..19
link to license system...19
logical view..7
process flow...19

licensee..266
licensing system..266
licensing system authentication27
licensing system generated data110
licensing system publisher.........................4, 11, 266
link to application...19
link to license system...19
log file..109
logged event classes...113
logged events

class ADMINISTRATION114
class APPLICATION ...117
class LICENSING SYSTEM..............................119

logging..4, 6, 109
LSAPI-enabled licensing systems8
management agent...22
management API ..4-5, 73
overview of XSLM..3
PKI ...25
platform..266
policy...266
private key ...25
process flow ...19
public key...25
publishers perspective...13
recording ..4, 6, 109
recording and logging

certificate data...109
historic data ...109
persistent data...109
transient data...109

security ...5, 25, 37
process ..28
verification ...25

soft stop license policy ..266
software license management

process ..4
software publisher.................................1, 11, 13, 266
system authentication..25
technical license manager.................................2, 266
TLM ...2
trust..25
types of license ..16

XAAPI...5, 20
advanced set ..41-42
basic set ...41-42

XMAPI...5
certificate-related functions................................74
license instance-related functions.....................74
log-related functions..74
server-related functions74

XSLM functional level42, 73
xslm_adv_begin_session()43
xslm_adv_confirm() ..45
xslm_adv_end_session() ..47
xslm_adv_log()...49
xslm_adv_query() ..52
xslm_adv_record()...55
xslm_adv_release_license()57
xslm_adv_request_license()59
xslm_basic_confirm()..63
xslm_basic_release_license()65
xslm_basic_request_license()67
xslm_get_certificate() ..75
xslm_get_license_instances()78
xslm_get_log_data() ..81
xslm_install_certificate() ..85
xslm_query_api_level() ..70
xslm_query_cert_ids() ..88
xslm_query_next_level_cert_names()91
xslm_query_servers()..97
xslm_query_server_info()94
xslm_release_license_instance()99
xslm_remove_certificate()....................................102
xslm_set_admin_policy()105

270 Technical Standard:

	c806cov.pdf
	Page 1

	blank.pdf
	Page 1

