
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

Systems Management:
Common Management Facilities (XCMF)

[This page intentionally left blank]

CAE Specification

Systems Management:

Common Management Facilities

The Open Group

 October 1997, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

CAE Specification

Systems Management: Common Management Facilities

ISBN: 1-85912-174-8
Document Number: C423

Published in the U.K. by The Open Group, October 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

This specification is published by The Open Group under the terms of its joint publication
agreement with the Object Management Group (OMG).

The OMG Document Reference is formal/97-09-32 .

ii CAE Specification

Contents

Chapter 1 Introduction... 1
 1.1 Overview .. 1
 1.2 Relationship to the OMG Object Model... 2
 1.3 Scope of this Specification... 3
 1.4 Components Not Addressed.. 5
 1.4.1 Security .. 5
 1.4.2 Graphical User Interface/Desktop... 5
 1.4.3 Application Specific Resource Interfaces.. 5
 1.5 Interoperability Issues ... 6
 1.6 Future Directions .. 7

Chapter 2 Management Facilities Architecture .. 9
 2.1 Managed Set Service .. 10
 2.2 Policy-driven Base Service .. 12
 2.3 Instance Management Service.. 13
 2.3.1 Instances .. 13
 2.3.2 Basic Instance Managers .. 14
 2.3.3 Instance Managers... 17
 2.3.4 Library.. 19
 2.4 Policy Management Service.. 20
 2.4.1 Policy and Administrators ... 20
 2.4.2 Policy Region .. 22
 2.4.3 Enforcement of Policy... 22

Chapter 3 Management Facilities Specification... 25
 3.1 SysAdminTypes Module ... 26
 3.1.1 Specified IDL... 26
 3.2 SysAdminExcept Module ... 28
 3.2.1 Specified IDL... 28
 3.3 Identification Module .. 30
 3.3.1 Interfaces and Operations .. 30
 3.3.2 Specified IDL... 30
 3.3.3 Identification::Labeled Interface ... 30
 3.3.3.1 The set_label Operation... 30
 3.3.3.2 The get_label Operation .. 31
 3.4 SysAdminLifeCycle Module .. 32
 3.4.1 Interfaces and Operations .. 32
 3.4.2 Specified IDL... 32
 3.4.3 SysAdminLifeCycle::Location Interface ... 33
 3.4.4 SysAdminLifeCycle::HostLocation Interface 33
 3.4.4.1 InheritedInterfaces... 33
 3.4.4.2 The get_platform Operation... 33

Systems Management: Common Management Facilities iii

Contents

 3.5 ManagedSets Module .. 34
 3.5.1 Interfaces and Operations .. 34
 3.5.2 Specified IDL... 34
 3.5.3 ManagedSets::Member Interface .. 38
 3.5.3.1 InheritedInterfaces... 38
 3.5.3.2 The add_backref Operation.. 38
 3.5.3.3 The get_backrefs Operation.. 38
 3.5.3.4 The remove_backref Operation ... 39
 3.5.4 ManagedSets::SetIterator Interface .. 39
 3.5.4.1 The next_one Operation.. 39
 3.5.4.2 The next_n Operation .. 40
 3.5.4.3 The destroy Operation... 40
 3.5.5 ManagedSets::MemberIterator Interface .. 40
 3.5.5.1 The next_one Operation.. 40
 3.5.5.2 The next_n Operation .. 41
 3.5.5.3 The destroy Operation... 41
 3.5.6 ManagedSets::ObjectLabelIterator Interface...................................... 41
 3.5.6.1 The next_one Operation.. 42
 3.5.6.2 The next_n Operation .. 42
 3.5.6.3 The destroy Operation... 42
 3.5.7 ManagedSets::Set Interface .. 43
 3.5.7.1 InheritedInterfaces... 43
 3.5.7.2 The get_cardinality Operation ... 43
 3.5.7.3 The add_object Operation... 43
 3.5.7.4 The add_n_objects Operation .. 44
 3.5.7.5 The remove_object Operation.. 45
 3.5.7.6 The remove_n_objects Operation ... 45
 3.5.7.7 The get_members Operation.. 45
 3.5.7.8 The intersection_members Operation.. 46
 3.5.7.9 The union_members Operation... 46
 3.5.8 ManagedSets::FilteredSet Interface.. 47
 3.5.8.1 InheritedInterfaces... 47
 3.5.8.2 The find_members Operation .. 47
 3.5.8.3 The lookup_object Operation... 48
 3.5.8.4 The lookup_labels Operation... 49
 3.6 ManagedInstances Module... 50
 3.6.1 Interfaces and Operations .. 50
 3.6.2 Specified IDL... 51
 3.6.3 ManagedInstances::Instance Interface .. 52
 3.6.3.1 InheritedInterfaces... 52
 3.6.3.2 UniqueBehavior of Inherited Interfaces.. 52
 3.6.3.3 The get_manager Operation... 53
 3.6.3.4 The get_type_name Operation .. 53
 3.6.3.5 The get_resource_location Operation .. 53
 3.6.4 ManagedInstances::BasicInstanceManager Interface....................... 53
 3.6.4.1 InheritedInterfaces... 54
 3.6.4.2 UniqueBehavior of Inherited Interfaces.. 54
 3.6.4.3 The get_instances_interface Operation.. 55

iv CAE Specification

Contents

 3.6.5 ManagedInstances::InstanceManager Interface 56
 3.6.5.1 InheritedInterfaces... 56
 3.6.5.2 UniqueBehavior of Inherited Interfaces.. 56
 3.6.6 ManagedInstances::Library Interface .. 57
 3.6.6.1 InheritedInterfaces... 57
 3.6.6.2 UniqueBehavior of Inherited Interfaces.. 58
 3.6.7 ManagedInstances::PolicyRegionsInstanceManager Interface 60
 3.6.7.1 InheritedInterfaces... 60
 3.6.7.2 UniqueBehavior of Inherited Interfaces.. 61
 3.7 PolicyRegions Module... 62
 3.7.1 Interfaces and Operations .. 62
 3.7.2 Specified IDL... 62
 3.7.3 PolicyRegions::PolicyResultIterator... 66
 3.7.3.1 The next_one Operation.. 66
 3.7.3.2 The next_n Operation .. 66
 3.7.3.3 The destroy Operation... 67
 3.7.4 PolicyRegions::PolicyDrivenBase... 67
 3.7.4.1 InheritedInterfaces... 67
 3.7.4.2 The get_policy_region_info Operation .. 67
 3.7.4.3 The move_to_policy_region Operation ... 67
 3.7.4.4 The add_to_policy_region Operation .. 68
 3.7.4.5 The remove_from_policy_region Operation 69
 3.7.4.6 The list_enabled_validation_policies Operation 69
 3.7.4.7 The list_initialization_policies Operation 70
 3.7.5 PolicyRegions::PolicyRegion Interface .. 71
 3.7.5.1 InheritedInterfaces... 72
 3.7.5.2 The add_instance_manager Operation .. 73
 3.7.5.3 The remove_instance_manager Operation 74
 3.7.5.4 The get_instance_manager_list Operation...................................... 74
 3.7.5.5 The set_initialization_policy Operation... 75
 3.7.5.6 The get_initialization_policy Operation .. 76
 3.7.5.7 The set_validation_policy Operation ... 76
 3.7.5.8 The get_validation_policy Operation... 77
 3.7.5.9 The policy_validation Operation .. 77
 3.7.5.10 The is_validation_enabled Operation .. 77
 3.7.5.11 The verify_policy Operation .. 78
 3.7.5.12 The get_policy_failures Operation.. 79
 3.7.5.13 The get_all_initialization_policies Operation................................. 80
 3.7.5.14 The get_all_enabled_validation_policies Operation..................... 80
 3.8 Policies Module ... 82
 3.8.1 Interfaces and Operations .. 82
 3.8.2 Specified IDL... 82
 3.8.3 Policies::PolicyObjectAdmin Interface .. 85
 3.8.3.1 The get_initialization_policies Operation 85
 3.8.3.2 The get_default_initialization Operation .. 85
 3.8.3.3 The get_validation_policies Operation.. 86
 3.8.3.4 The get_default_validation Operation... 86
 3.8.3.5 The add_initialization Operation .. 86

Systems Management: Common Management Facilities v

Contents

 3.8.3.6 The set_default_initialization Operation... 87
 3.8.3.7 The remove_initialization Operation ... 87
 3.8.3.8 The add_validation Operation... 88
 3.8.3.9 The remove_validation Operation.. 88
 3.8.3.10 The set_default_validation Operation ... 89
 3.8.3.11 The add_pr_backref Operation.. 89
 3.8.3.12 The remove_pr_backref Operation... 89
 3.8.3.13 The get_pr_backrefs Operation ... 90
 3.8.4 Policies::PolicyObject Interface ... 90
 3.8.4.1 InheritedInterfaces... 90
 3.8.4.2 The get_policy_driven_object_type Operation 91
 3.8.4.3 The get_policy_driven_object_interface() Operation 91
 3.8.5 Policies::InitializationPolicy Interface ... 91
 3.8.5.1 The initialize_policy_driven_object Operation 91
 3.8.6 Policies::ValidationPolicy Interface .. 92
 3.8.6.1 The validate_policy_driven_object Operation 92

Chapter 4 Command Line Interface... 93
 4.1 Type Mappings.. 95
 4.2 Argument Ordering.. 97
 4.3 Defined Commands ... 97
 4.3.1 The idlcall Command.. 97
 4.3.2 The idlinput Command.. 98
 4.3.3 The idlarg Command.. 98
 4.3.4 The idlresults Command.. 99
 4.3.5 The idlexception Command .. 99
 4.3.6 The idllookup Command... 99

Appendix A IDL Definitions for Management Facilities Interfaces... 101
 A.1 SysAdminTypes.idl... 102
 A.2 Identification.idl.. 103
 A.3 ManagedSets.idl.. 104
 A.4 ManagedInstances.idl .. 108
 A.5 PolicyRegions.idl... 110
 A.6 Policies.idl... 114
 A.7 SysAdminExcept.idl... 117
 A.8 SysAdminLifeCycle.idl.. 119

Appendix B Inheritance Relationships... 113

 Glossary ... 115

 Index... 119

List of Figures

1-1 Systems Management Framework Components 3
2-1 Managed Sets Compared with UNIX File Systems................................ 11

vi CAE Specification

Contents

2-2 Managed Object Types Relationship to Basic Instance Managers 14
2-3 Client View of Object Creation ... 16
2-4 Instance Managers and Policy Object Relationships.............................. 18
2-5 Policy Region and Policy-Driven Object Relationships......................... 21
B-1 Common Management Facilities: Inheritance... 113

List of Tables

3-1 Interfaces and Operations for the Identification Module...................... 30
3-2 Interfaces and Operations for the SysAdminLifeCycle Module.......... 32
3-3 Interfaces and Operations for the ManagedSets Module...................... 34
3-4 Interfaces and Operations for the Instances Module 50
3-5 Interfaces and Operations for the PolicyRegions Module 62
3-6 Interfaces and Operations for the Policies Module 82

Systems Management: Common Management Facilities vii

Contents

viii CAE Specification

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers and
suppliers of technology. Its mission is to cause the development of a viable global information
infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the telephone. The
essential functionality embedded in this infrastructure is what we term the IT DialTone. The
Open Group creates an environment where all elements involved in technology development
can cooperate to deliver less costly and more flexible IT solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the Open
Software Foundation (founded in 1988), The Open Group is supported by most of the world’s
largest user organizations, information systems vendors, and software suppliers. By combining
the strengths of open systems specifications and a proven branding scheme with collaborative
technology development and advanced research, The Open Group is well positioned to meet its
new mission, as well as to assist user organizations, vendors, and suppliers in the development
and implementation of products supporting the adoption and proliferation of systems which
conform to standard specifications.

With more than 200 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• consolidating, prioritizing, and communicating customer requirements to vendors

• conducting research and development with industry, academia, and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• adopting, integrating, and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• licensing and promoting the Open Brand, represented by the ‘‘X’’ mark, that designates
vendor products which conform to Open Group Product Standards

• promoting the benefits of the IT DialTone to customers, vendors, and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development, and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trademark on behalf of the industry.

Systems Management: Common Management Facilities ix

Preface

The Development of Product Standards

This process includes the identification of requirements for open systems and, now, the IT
DialTone, development of CAE and Preliminary Specifications through an industry consensus
review and adoption procedure (in parallel with formal standards work), and the development
of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product. There are currently two forms of Product Standard, namely the
Profile Definition and the Component Definition, although these will eventually be merged into
one.

The ‘‘X’’ mark is used by vendors to demonstrate that their products conform to the relevant
Product Standard. By use of the Open Brand they guarantee, through the X/Open Trade Mark
Licence Agreement (TMLA), to maintain their products in conformance with the Product
Standard so that the product works, will continue to work, and that any problems will be fixed
by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys,
and business titles.

There are several types of specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our Product Standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. Where appropriate, they can demonstrate
product compliance through the Open Brand. CAE Specifications are published as soon as
they are developed, so enabling vendors to proceed with development of conformant
products without delay.

• Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organizations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.

x CAE Specification

Preface

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif, and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation—programmer’s guides, user manuals, and so on—
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development, or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Program. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/public/pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/public/pubs.

Systems Management: Common Management Facilities xi

Preface

This Document

This specification describes an approach to the development of standards-based, open system
administration applications, using common management facilities (or services).

It defines a framework (object request broker and management facilities) to allow the
development of applications that will significantly decrease the effort required to administer
distributed systems. The framework is based upon an industry-standard object request broker
(implementations of CORBA 1.2) and Object Service Specifications.

In addition, a set of management facilities are defined that allow management-specific interfaces
to be common across environments, allowing the development of heterogeneous, interoperable
applications. These management facilities are key to building a foundation such that systems
management applications and objects may be defined and built that span multiple vendors’
framework implementations.

Audience

This specification is directed towards systems management architects, analysts, and
programmers who wish to provide systems management services in an open framework based
on the distributed systems management reference model (see reference XRM) and its
components. This framework is important because it promotes application interoperability
across platform types and provides a common object model for application development. It
employs object-oriented programming.

It is assumed that the reader of this specification is familiar with the work of the Object
Management Group (OMG). Specifically, this should include the Common Object Request
Broker: Architecture and Specification (see reference CORBA), and the Object Management
Architecture (see reference OMAG).

Structure

This specification is organized as follows:

• Chapter 1 explains the scope and purpose of this specification, and identifies its relationship
to the OMH Object Model and to other systems ,anagement issues.

• Chapter 2 describes the architectural framework of the specification.

• Chapter 3 provides the specification of the Management Facilities.

• Chapter 4 describes the command line interfaces that allow the services to be invoked from
within shell scripts.

• Appendix A provides IDL interface definitions that can be compiled for the systems
management interfaces defined in this specification.

• Appendix B provides an inheritance diagram for the Common Management Facilities
described in this specification.

A Glossary and Index are also provided.

xii CAE Specification

Preface

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members, language-independent names, and symbols that are specific to
the management services interfaces in this specification.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— Function parameters, or variable names

— Environment variables

— Utility names

— External variables.

• The notation [ABCD] is used to identify a return value ABCD, including if this is an error
value.

• Syntax and IDL code examples are shown in Helvetica Bold font.

Systems Management: Common Management Facilities xiii

Trademarks

OMG and Object Management are registered trademarks of the Object Management Group,
Inc.

Motif, OSF/1, and UNIX are registered trademarks and the IT DialToneTM, The Open
GroupTM, and the ‘‘X Device’’TM are trademarks of The Open Group.

xiv CAE Specification

Acknowledgements

The Open Group acknowledges the work of the Object Management Group’s (OMG) Revision
Task Force (RTF) on the Common Management Facilities (XCMF) Specification. The OMG
adopted the X/Open XCMF Preliminary Specification (P421) as their base document, developing
it to produce their OMG XCMF Specification. The active members of the OMG RTF were:

Zoely Canela Alcatel
Michael Greenberg (Chairman) NEC
Jim Hughes Fujitsu
Russell Newcombe IBM
Jim Willits HP

This XCMF CAE Specification from The Open Group is fully aligned with the OMG’s XCMF
Specification.

Systems Management: Common Management Facilities xv

Referenced Documents

The following documents are referenced in this specification:

CORBA 1.2
CAE Specification, July 1994, The Common Object Request Broker: Architecture and
Specification (ISBN: 1-85912-044-X, C432), in conjunction with the Object Management
Group (OMG).

DTP
Guide, February 1996,, Distributed Transaction Processing: Reference Model, Version 3
(ISBN: 1-85912-170-5, G504).

Internationalisation Guide
Guide, July 1993, Internationalisation Guide, Version 2 (ISBN: 1-859120-02-4, G304).

OMAG
OMG (Object Management Group) Object Management Architecture Guide (OMA Guide),
Version 2.0, September 1992. Published by OMG, 492 Old Connecticut Path, Framingham,
MA 01701, USA.

OMGOM
OMG (Object Management Group) Object Model (OM). Included as Chapter 4 of reference
OMAG, but being separately revised at the time of publication of this Common
Management Facilities Volume 1 Preliminary Specification.

COS, Volume 1
Preliminary Specification, July 1994, Common Object Services, Volume 1
(ISBN: 1-85912-482-2, P432), in conjunction with the Object Management Group (OMG).

RDSMF
UNIX International System Management Working Group, Requirements for the Distributed
System Management Framework, April 20, 1991.

XA
CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN: 1-872630-24-3, C193).

XPG3
X/Open Specification, 1988, 1989, February 1992 (ISBN: 1-872630-43-X, T921); this
specification was formerly X/Open Portability Guide, seven volumes, January 1989
(ISBN: 0-13-685819-8, XO/XPG/89/000).

XPG3 Overview
X/Open Portability Guide, February 1992, XPG3 Portability Guide Overview, Issue 3
(ISBN: 1-872630-44-8, X200).

XPG4
X/Open Systems and Branded Products: XPG4, October 1994 (ISBN: 1-872630-52-9, X924).

XPG4, Version 2
The X/Open Branding Programme, How to Brand — What to Buy, February 1995
(ISBN: 1-85912-084-9, X951).

XPS
Snapshot, 1991, Systems Management: Problem Statement (XO/SNAP/91/010 or S110).

xvi CAE Specification

Referenced Documents

XRM
Guide, August 1993, Systems Management: Reference Model (ISBN: 1-85912-05-9, G207).

Systems Management: Common Management Facilities xvii

Referenced Documents

xviii CAE Specification

Chapter 1

Introduction

1.1 Overview
The Systems Management Reference Model (see reference XRM) consists of 3 basic components:

• Managers which implement Management Tasks and other composite management functions.

• Managed Objects which encapsulate resources. Resources are the entities within a system or
network of systems that require management.

• Services which provide the System Management (XSM) Support Environment. The XSM
Support Environment consists of the capabilities and interfaces that are necessary to support
the other components of the Reference Model.

Management Facilities are a category of services which have been specialized for XSM
distributed systems management. This specification defines a set of management facilities that
supplement the Object Management Group’s (OMG) Object Model so that it supports the
System Management Reference Model. The Systems Management Reference Model (see
reference XRM) provides a complete description of the mapping to the OMG Object Model.

Systems Management: Common Management Facilities 1

Relationship to the OMG Object Model Introduction

1.2 Relationship to the OMG Object Model
The OMG has developed a conceptual model, known as the core object model, and a reference
architecture upon which applications can be constructed (see references OMAG and OMGOM).
The OMG OMA defines the composition of objects and their interfaces.

A fundamental architecture of the OMA is the Common Object Request Broker Architecture (see
reference CORBA) that specifies a framework for transparent communication between
application objects. The Object Request Broker (ORB), a key component of this architecture,
provides the mechanisms for issuing requests to objects and returning responses.

In addition to CORBA, the OMG has also published a set of Object Services that are common to
a wide range of application domains. The first set of these services (see reference COS Volume
1) includes:

• Life Cycle Services

• Naming Services

• Event Services

Life Cycle services define interfaces for creating, deleting, moving, and copying objects. Naming
Services specify interfaces for binding and resolving names. The Event Services provides
mechanisms for decoupled communication between objects, supporting both a push and a pull
model of communication.

In addition to these services, additional activity is underway in the OMG to adopt specifications
for Concurrency Services, Externalization Services, Persistent Storage Services, Relationship
Services, Transaction Services, Time Services, and Security Services. Work is also coming to
completion on a Licensing Service, a Properties Service, and a Query Service.

It is the implementation of the OMG architectures and Object Services that constitute an OMG
environment. This environment provides much of the necessary infrastructure for supporting
distributed system management.

2 CAE Specification

Introduction Scope of this Specification

1.3 Scope of this Specification
This specification presents a set of management services that integrate with the OMG
environment and provide extended services specifically for the distributed systems
management. These services, in conjunction with the OMG environment, are fundamental to
provide a framework for developing distributed systems management applications.

The management facilities specified assumes an OMG CORBA 1.2-compliant ORB and a
compliant implementation of the Common Object Services (see reference COS Volume 1). This
implies the management facilities described in this specification may use types and interfaces
defined in OMG standard header files (for example, <orb.idl>).

The components addressed in this specification are those focused on the management of policy-
driven objects including the mechanisms and facilities that enable the establishment and
enforcement of policy on these objects. The Reference Model is used in Figure 1-1. to illustrate
the focus of this specification. The Object Request Broker and Object Services discussed in this
specification are drawn from the OMG environment.

Object Request Broker
(OMG CORBA)

Management
Applications

Printers

File
System

Data
Source

Hosts

Managed
Objects

Object Services
(OMG)

User Interface

Common
Facilities

Management
Facilities

Policy
Instance Manager
Managed Sets

Legend: Object Interface

Optional User Interface

Figure 1-1 Systems Management Framework Components

The systems management application domain is a vertical application market with specialized
requirements. The work OMG is performing at the ORB and Object Services level is common
across many, if not most, application spaces. Systems management requirements exist today
and a considerable industry is beginning to build applications in this area. Thus, there is a need
to standardize interfaces for systems management. This specification does not supersede the
OMG Object Services. Rather, it complements the OMG Object Services by defining interfaces
that are fundamental for developing distributed system administration applications.

Systems Management: Common Management Facilities 3

Scope of this Specification Introduction

This specification also fully backs application portability and internationalization objectives. In
areas where relevant standards have been identified (see referenced documents), these standards
are used. Examples are the Portability Guide, Issues 3 and 4 (see references to XPG documents,
and to reference Internationalization Guide). Adhering to these specifications is critical to all
implementations and the interfaces for a system administration framework must enable the use
and accommodation of these specifications.

4 CAE Specification

Introduction Components Not Addressed

1.4 Components Not Addressed
This section outlines a set of application development issues that are not addressed in this
specification, but that must be addressed during the development of system administration
applications.

1.4.1 Security

Providing a robust and flexible security service is crucial for the development of distributed
management applications. Providing such a service in a heterogeneous and distributed
environment is a very complex undertaking. The OMG is currently developing a Security
service for the CORBA environment. The Open Group is tracking its progress closely and hopes
to build upon this service. Because of the complexity of defining the service and the ongoing
working in the OMG, a Security service is beyond the scope of this Specification.

1.4.2 Graphical User Interface/Desktop

There are other standards groups and industry consortia working to define a common desktop
environment, including the graphical user interface (GUI) technology. Proposing a particular
approach to this effort through a parallel process is inappropriate. While the GUI and desktop is
critical to the success of individual administration applications, it is not fundamental for the
development of distributed management applications.

1.4.3 Application Specific Resource Interfaces

This specification details a set of interfaces for management facilities that enables the
development of distributed management applications. These applications will include policy-
driven objects that encapsulate managed resources. The definition of the interfaces to the objects
to encapsulate managed resources is outside the scope of this specification.

Systems Management: Common Management Facilities 5

Interoperability Issues Introduction

1.5 Interoperability Issues
Interoperability is key to building distributed systems management applications. Distributed
systems management applications using the OMG environment requires interoperability at two
distinct levels:

• ORB-to-ORB

Interoperability at this level requires that ORBs developed by two independent entities are
able to communicate with each other. The method requests dispatched by one ORB are able
to be received and understood by another.

ORB-to-ORB interoperability is addressed by OMG’s CORBA 2.0 Specification.

• Object Interfaces

Interoperability of object interfaces requires that a objects developed in one OMG
environment have an interface (or subset of inherited interfaces) that is common to another
environment. That is, an object developed by one vendor may make a request on an object
developed by a different vendor through a known interface. This is true for both compiled,
executable applications development as well as for implementations of policy by the system
administrators.

Object Interfaces interoperability is being addressed by the OMG in the Object Services.
These object service interface specifications address a very general class of distributed,
object-oriented applications. The management services interfaces detailed in this
specification define interfaces for the development of system administration applications.
Thus, this specification provides interfaces and command line interface equivalents that are
specific to developing interoperable system administration applications integrated with the
OMG environment.

Interoperable object interfaces also allow objects to be portable across different
implementations of the OMG environment.

6 CAE Specification

Introduction Future Directions

1.6 Future Directions
The facilities specified in this specification provide only a subset of all the facilities necessary to
build portable and interoperable management applications. As CORBA based management
frameworks become more prevalent in the industry, more management facilities will be
developed and deployed. The developers of this Specification recognize this fact and hence
expect to identify and standardize additional management facilities in future.

Some number of facilities and language bindings were identified as important during the
development of this Specification, but because of resource limitations are not included in this
Specification. Some of the facilities identified were such things as process management,
scheduling, event management, and a Perl language binding. These facilities are excellent
candidates for inclusion in a future volume of management facilities. However, this vision
should in no way be interpreted as limiting the breadth of future submissions in this area.

Systems Management: Common Management Facilities 7

Introduction

8 CAE Specification

Chapter 2

Management Facilities Architecture

This chapter describes the management facilities for developing system administration
applications. These management facilities use and build on the CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve, and specialize functionality

The following sections provide a detailed description of how the interfaces and functionality
combine to form the basis for system administration applications.

Systems Management: Common Management Facilities 9

Managed Set Service Management Facilities Architecture

2.1 Managed Set Service
The object model supports the concept of sets of managed objects. Managedsets organize objects
into groups. The Set and Member interfaces support the basic set functionality. This
functionality can also be satisfied by other, more general, relationship services. The Set interface
defines the operations required for one object to maintain a reference to each object it contains.
The Member interface defines operations that allow an object to maintain references to objects
by which it is contained. Managed sets provide a many-to-many relationship.

In the set relationship, all member objects know of all sets to which they are members, and all
sets know of all objects which are members of the set. Each participant in the relationship
maintains a list of the other participant’s object references. Objects supporting the Member
interface contain back references. A back reference is a reference from an object to the set object to
which the object belongs.

Sets may be subject to policies, in that an object can inherit both the Set and PolicyDrivenBase
interfaces. The decision about whether a set is policy-driven is independent from the decision of
whether to associate policy with the members of a set. A set may be subject to policy, and its
members may not.

Set objects contain references to a set of objects, which are referred to as it’s members. There is
no unified ordering to the members of a set. Objects must support the Member interface in
order to be allowed as members of a set. The Set interface itself inherits the Member interface.
Therefore, set objects can be members of sets.

An example of a set could be the users within a system who are members of the company
volleyball team, or all users that receive mail regarding company marketing plans. Sets offer a
way for system administrators to organize resources into logical groups.

Because sets can refer to other sets, they can be organized into hierarchies. In addition, because
sets are just groups of references to objects, an object can belong to any number of sets. Users of
an application can organize their managed resources into a suitable hierarchy, and create
multiple sets of those resources. A set can be heterogeneous, meaning that it can group objects of
different types. Application developers can create sets that have as members a combination of
hosts, users, or other types of objects.

10 CAE Specification

Management Facilities Architecture Managed Set Service

UNIX File System

Root Directory

etc usr bin

system
files

commands

bin lib

commands libraries

users

martin neil

Martin’s
files

Neil’s
files

Managed Sets

Hosts

Engineering

Chicago
Office

Atlanta
Office

Marketing

Austin
Office

Houston
Office

Figure 2-1 Managed Sets Compared with UNIX File Systems

Figure 2-1 illustrates the parallel nature of managed sets and UNIX directories. Both sets and
directories contain various types of items, including subsets and subdirectories. You can think of
a set as a directory and an object as a file. Note that the figure shows the Hosts set object as an
example of an set that is not a member of any other set. In this way it is similar to the root
directory of a file system. As shown in the figure, the Hosts object contains the Engineering and
Marketing objects, which contain the hosts maintained by these departments. The parallel to a
UNIX file system is not exact, however, because you can remove a set without deleting its
members. In fact, you can remove the last set to which an object belongs without deleting the
object.

Because they inherit the Member and Set interfaces, operations invoked on an object supporting
the Set interface will not propagate along the relationships of the set. That is, when a set is
removed, the objects that are members of the set are not affected.

Systems Management: Common Management Facilities 11

Policy-driven Base Service Management Facilities Architecture

2.2 Policy-driven Base Service
The PolicyDrivenBase interface provides common operations on all policy-driven objects within
a system administration application. The operations are a common set of operations that have
been grouped within a single interface. These common operations are a set of behaviors that
allow objects to be managed by policy regions. This interface is the basis for application
development in the systems management framework when dealing with policy-driven objects.

The operations defined in the PolicyDrivenBase interface are the minimum required to support
object-oriented policy-driven application integration and installation in the framework. Without
such a capability each application and policy-driven object within an application would not be
able to be integrated except in a superficial manner. This service provides a strong foundation
that enables applications to be more fully integrated and function in a similar manner.

The PolicyDrivenBase interface inherits the ManagedInstances::Instance interface. Thus, all
policy-driven base objects exhibit the behaviors of managed instances, such as having a name,
being capable of belonging to sets, and being managed by an instance manager.

The PolicyDrivenBase interface is to be inherited by policy regions and by any object that is to
be a member of a policy region. A policy region is a entity that allows a system administrator to
associate custom rules or policies with objects in an installation.

12 CAE Specification

Management Facilities Architecture Instance Management Service

2.3 Instance Management Service
The systems management framework is implemented in an OMG environment. In an OMG
environment, there is no explicit support for creating and managing objects for the systems
management domain. However, for developers of management applications it is useful to use
traditional object-oriented concepts to manage and create managed objects. The instance
management service provides basic object creation and management capabilities for all types of
managed objects, including policy-driven and representative types.

The Instance Management Service defines interfaces for creating and managing object instances
within the systems management framework. This service is provided by the ManagedInstances
module and defines three fundamental roles; an object can be:

• A managed instance

• A factory for and managed set of a specific type of managed instances (instance manager)

• A factory for and managed set of instance manager objects (library)

A managed instance is an instance of a particular type of managed object that is represented and
managed by a single instance manager. A managed instance object supports the Instance
interface. The Instance interface provides operations that determine and report the object’s type
and return the object reference of the instance manager by which it is managed.

An instance manager acts as a factory for managed instances, encapsulating the type and
implementation specific information needed for managed object creation. There may be many
managed instances of a given type within an installation. Additionally, there may be one or
more instance managers that manage the instances of a given managed object type. The
BasicInstanceManager interface defines operations needed to create managed instances and
group them into sets. The InstanceManager interface provides all capabilities of the
BasicInstanceManager and the additional capability to support the specification of policy to be
associated with managed instances.

A library acts as a factory for creating instance managers and has the ability to maintain a list of
instance manager objects. A library also acts as a factory finder, allowing instance managers to
be selected based on characteristics such as the interface of managed instance that they support
and the type of policy objects that are registered with them. The creation and deletion of instance
manager objects through the library has the effect of adding and removing managed object types
to the running environment. In a given installation, there may be more than one library object
maintaining instance manager information.

2.3.1 Instances

The Instance interface provides the fundamental operations that are needed for an object to be
managed by an instance manager. Through inheritance and newly introduced operations, the
Instance interface provides a set of generic, low-level behaviors that allow objects to be
managed, grouped and named.

The Instance interface inherits the ManagedSets::Member interface. This is fundamental to
allowing managed instances to be managed by instance managers. It also provides the
Identification::Labeled interface which allows a managed instance to be named, which instance
managers require of their instances.

The Instance interface introduces new operations which can report information about the
managed object’s type, who its instance manager is and the location where the managed object
exists.

Systems Management: Common Management Facilities 13

Instance Management Service Management Facilities Architecture

2.3.2 Basic Instance Managers

A basic instance manager object exists for each defined managed object type. The basic instance
manager encapsulates implementation specific details of a managed object type. Creation of
managed objects is one of the important implementation specific details. A basic instance
manager can report some of this information by returning the InterfaceDef for the type it
manages. In order for a type to be managed by the BasicInstanceManager interface, it must
support the Instance interface.

It is important to note that the relationship between managed instances and basic instance
managers is one-to-many — one instance manager for many instances. The relationship between
managed object types and basic instance managers is also one-to-many — potentially many
basic instance managers supporting a single managed object type.

This is illustrated in Figure 2-2. Because there may be more that one basic instance manager per
managed object type, basic instance managers could also represent a scope of influence, and
manage the object types within their scope.

module foo {
interface bar {
...

};
};

IM1 IM2
.....

Instance Instance

IM = Instance Manager

Figure 2-2 Managed Object Types Relationship to Basic Instance Managers

Each managed object type controlled by a basic instance manager can be identified by both a
type name and a type definition. The type definition is specified in the IDL interface defined by a
programmer and is contained in an InterfaceDef. The type name should be a name suitable for
display at the user interface and for use as an argument in command line operations and
programs. The basic instance manager maintains the type definition and the type name. The
type name is available on a read-only basis from each managed instance of the type.

As a participant in object creation, a basic instance manager encapsulates much of the behavior
commonly considered factory object and factory finder object behavior. A factory can create objects.
A factory finder locates a factory for a particular type of object in a particular location. In the
general case, a factory finder can be used to locate a factory that can create objects of type X in
location Y . The factory behavior of the basic instance manager is exposed to the client through

14 CAE Specification

Management Facilities Architecture Instance Management Service

the CosLifeCycle::GenericFactory interface, while the factory finder behavior is not exposed to
the client for direct use.

The client’s view of object creation is depicted in Figure 2-3. When a client creates a managed
object, the client locates the basic instance manager associated with the managed object type to
be created. The basic instance manager can be located using the library object. The client invokes
the create_object operation, inherited from the OMG standard CosLifeCycle::GenericFactory
interface, on the instance manager object. This operation provides a common interface for
creation of all managed objects. The create_object operation is a specialization of object creation
as defined in the OMG Life Cycle Service. When invoking the create_object operation, the client
specifies a label for the new managed instance and the desired location of the managed instance
identified by a location object reference. These parameters are passed through the the_criteria
parameter of the create_object operation. If each of these parameters is not specified, an exception
is raised. The label and location are a specialization of object creation as defined in the OMG
Life Cycle Service.

The Common Object Services Specification (see reference COS Volume 1) defines the k
parameter of the create_object operation (of type Key) as being used to identify the desired type
of object to be created. This definition, while interesting in a more general application domain, is
redundant with the concept of instance managers. Thus, the specification of the Key in the k
parameter is not required, and may be ignored by implementations of the create_object operation
of the GenericFactory interface when inherited by the BasicInstanceManager interface.
Alternatively, implementations may use this information, if supplied by clients of creation, as a
basic form of run-time type checking to ensure that the basic instance manager really creates the
managed object type the client desires.

When a managed instance is created, the requested label must be verified for uniqueness. The
label that is stored within the state of each managed instance is actually comprised of two fields:
id and kind . The id field is set to the string passed by the client of object creation, while the kind
field is filled in by the BasicInstanceManager to uniquely identify the
BasicInstanceManager/Library object pair that was responsible for creating the instance.
BasicInstanceManagers are responsible for enforcing the fact that the value for the id field
supplied by the client is not already in use by a managed instance contained within the same
BasicInstanceManager. In this way, the two-component label of any object is unique among all
managed instances created within the environment. If the requested label id is already used by a
managed instance contained by the BasicInstanceManager upon which a creation request was
performed, an exception is returned and the creation fails. Note that since the label type is really
the NameComponent type defined in the CosNaming module, usage of the COS Naming
Service (see reference COS Volume 1) to maintain consistency between the managed object
namespace and managed object containment hierarchy is straightforward1.

The location of the managed instance is specified by supplying an object reference to an object
supporting the Location interface. This interface defines the logical location for the managed
instance. The location could be a set of hosts in an environment, or it could be a specific machine.
In system administration applications it is critical to be able to locate a managed instance on a
particular host. For example, if a managed instance represents a user account, then when the
account information changes, the files on exactly one specific machine should be changed to
reflect the new information.

1. In fact, a possible implementation of the ManagedSet service would be to wrapper an implementation of the CosNaming
service.

Systems Management: Common Management Facilities 15

Instance Management Service Management Facilities Architecture

Any type-specific initialization for a newly created object is handled by interactions between the
basic instance manager and the factory object. This design allows a client to treat managed
objects of all types identically for object creation, yet allows object-type specific interfaces to be
used with the actual operation on object factories. Therefore, to the client a managed object
creation request simply involves invoking a standard request on a basic instance manager and
having the object reference of the new object returned.

Type- or implementation-specific initialization may involve creating or allocating persistent
storage, defining default values for attributes or states, or involving the new managed instance
in relationships with other objects. When a managed instance is created, regardless of the type, it
becomes a member of the basic instance manager set. This set serves as a repository that may be
queried to find managed instances of a given type. Other name spaces for managed instances
may be created for performance or organizational reasons. However, this default set ensures that
managed instances are not orphaned, and serves as a starting point for building alternate name
spaces.

LO

IM1 IM2 IMp
.....

Instance1

(reference)

Client
objref1

create object()

LO = Library Object
IM = Instance Manager Object

Figure 2-3 Client View of Object Creation

The basic instance manager performs all required work to satisfy the request for managed object
creation. The basic instance manager finds a factory of the correct type, in the correct location.
Once the factory is located, the basic instance manager can enter into a private protocol with the
factory to provide object type- or implementation-specific initialization or other information.
The basic instance manager can obtain the object reference of a factory in a particular place in
any of a variety of ways. For example, by querying a name service, if one is present, or it can
maintain a private copy of the object references to factories on other client machines or servers
using the location object reference.

Because of their use for object creation and the need to interact with the actual object factories
for creation of managed objects, much of the implementation of a basic instance manager will
normally be tied to a specific ORB implementation. Since a basic instance manager deals with
only one type of object, the InterfaceDef used when registering managed instances with the
basic object adapter (BOA) will be the same for all instances. The ImplementationDef used may
vary across instances based on the host or server in which the managed instance is created. The

16 CAE Specification

Management Facilities Architecture Instance Management Service

information needed by a basic instance manager at the time it is created and installed in an
environment will be dependent upon the needs of the ORB implementation to which it is
related.

2.3.3 Instance Managers

Objects that support the InstanceManager interface provide all of the capabilities that the basic
instance managers provide, and in addition provide operations and behavior that allow it’s
managed instances to be subject to policy management. Instances managed by an instance
manager must support the PolicyRegions::PolicyDrivenBase interface.

The create_object operation on an instance manager is a further specialization of what is defined
in the OMG Life Cycle Service. In addition to the specializations defined for the basic instance
manager, the instance manager requires that one or more policy regions be passed in the
the_criteria parameter of the create_object call. The policy-driven base managed object that is
created will be added as a member of each of these policy regions.

Instance managers provide operations for the registration of initialization policy objects and
validation policy objects . These policy objects are specifically associated with the type of policy-
driven base managed object supported by the instance manager. These are the policy objects that
are available to policy regions for use with this type of managed object.

The initialization policy objects and validation policy objects are used by policy regions to
encapsulate a set of management policies and support high-level operations that control a
particular managed object type. Initialization policy objects support operations to define the
initial (default) values of the policy-driven object attributes. Validation policy objects support
methods that can validate initial values or changes to object attributes, and also methods that
can be used to control object behaviors. In Figure 2-4, the Library object is shown referencing an
instance manager and several basic instance manager objects.

Systems Management: Common Management Facilities 17

Instance Management Service Management Facilities Architecture

LO

IM1 IM2 IMp
.....

Instance Instance

Instance

Initial.
Policy
Object

Valid.
Policy
Object

(reference)

(reference)

(reference)

(reference)

LO = Library Object
IM = Basic Instance Manager

or Instance Manager

Figure 2-4 Instance Managers and Policy Object Relationships

A single instance manager object may contain references to one or more initialization policy
objects and one or more validation policy objects. Each such policy object can define different
policies that can be used to control managed instances. Users can define their own management
policies by customizing an implementation for an existing initialization policy or validation
policy object, or by creating a new implementation of an initialization policy or validation policy
object and attaching the new object to the instance manager.

In general, throughout this specification, the use of the terms instance manager and basic instance
manager is not precise. A reference to a basic instance manager describes all instance managers,
and reference to an instance manager may well also apply to basic instance managers, unless the
subject matter specifically deals with policy management.

18 CAE Specification

Management Facilities Architecture Instance Management Service

2.3.4 Library

The Library interface introduces no new operations, but performs three major functions through
the interfaces that it inherits. First, through the inheritance of the CosLifeCycle::GenericFactory
interface, a library acts as a factory object for the creation of the various kinds of instance
manager objects. Through the inheritance of the ManagedSets::FilteredSet interface a library is
able to track and manage the instance manager objects that it creates. Finally, through the
inheritance of the CosLifeCycle::FactoryFinder interface, the library performs the service of
locating instance managers for clients.

When a new instance manager is developed, it is installed into an environment when it is
created by a library object. The create_object method used to create the instance manager is a
specialization of object creation as defined in the OMG Life Cycle Service. There are several
different elements that can be passed on the create_object call using the the_criteria parameter
(these are defined in Chapter 3). Which of these elements are required, which are optional and
which are not supported is implementation specific.

The find_factories method of the CosLifeCycle::FactoryFinder interface is used to locate instance
managers which have certain characteristics. These include thing such as the type of objects the
instance manager supports, the interface of the instance manager itself and the kinds of policy
objects registered with it. Clients can use this capability to locate an instance manager which
meets their exact needs.

It is anticipated that in an implementation of the system administration framework with a name
service, the name(s) and object reference(s) to the library object(s) will be bound into the name
service. This binding will allow objects to know very little about an installation prior to
beginning to discover instance manager objects and managed objects in the installation starting
at the library object.

Systems Management: Common Management Facilities 19

Policy Management Service Management Facilities Architecture

2.4 Policy Management Service
Policies give administrators a way to customize applications to their specific needs. A policy is a
rule that an administrator places on the system. For instance, a policy can determine which users
belong to a group, which users have access to a certain host, or where a user’s home directory
must reside.

Policy makes it easier for administrators to customize applications by allowing administrators to
make the applications reflect the way their systems are managed. With policy, administrators
can implement their own organization-specific rules for system administration.

Like any other set of rules, policy must be enforced to be effective. Policy regions enable the
enforcement of policy. Policy regions associate specific policies with instances of policy-driven
object types. A policy region is a special type of set of policy-driven objects. Like sets, policy
regions can be arranged hierarchically according to organization- and administrator-specific
criteria and can contain any set of objects an administrator wants.

The policy service defines interfaces related to policy and the management of policy. These
interfaces relate to the establishment of policy regions, the objects within a policy region, the
reporting of associated policy, and the definition of policies themselves.

This section describes the policy management service including policy regions and policy
objects.

2.4.1 Policy and Administrators

A policy region is a set of managed resources that share common management policies. As such,
a policy region object is a set object that supports the PolicyRegion interface and has management
policies associated with it. A policy-driven object must belong to at least one policy region, and
the policy regions it belongs to establish the policies enforced on the object. Each policy-driven
object initially belongs to the policy regions specified as part of the create_object operation
invocation. However, policy-driven objects may be added, deleted or moved from one region to
another by an administrator. Policy regions may support many types of policy-driven objects.
For example, a policy region that supports user, host, and group objects would have policies
defined in a user policy object, a host policy object, and a group policy object, and thus have
access to methods for managing each of these types of object.

Policy regions are filtered sets to allow them to be grouped and managed in an organization that
is natural to the administrator. While the selection of members for a policy region is arbitrary in
terms of the framework itself, policy regions can be used to model real-world organizations. For
example, an administrator could create a policy region that represents the network resources
belonging to the Engineering Department. Member objects of the policy region would follow
policies governed by the Engineering Department. A policy region can contain any object
supporting the PolicyDrivenBase interface, including other policy region objects.

One of the most important requirements of policy regions is that they be easily customizable by
an administrator to implement the local policy of an organization. This can be done in one of
two ways: by replacing or customizing one or more operations of an existing policy object
whose operations are used by the policy region object, or by creating entirely new policy objects
that implement a different policy than the original. A single instance manager that supports
objects of a single type may reference many policy objects, each of which implement a different
kind of policy, such as an engineering user policy and marketing user policy. Only one of a given
instance manager’s policy objects may be associated with any given policy region.

20 CAE Specification

Management Facilities Architecture Policy Management Service

Policy
Region1

Policy
Region2

Policy
Regionn

Policy
Regions

Instance Manager

(reference) (reference)

Validation
Policy
Object

Initialization
Policy
Object

(reference)

Instance
Manager

(reference)

members

(reference)

Figure 2-5 Policy Region and Policy-Driven Object Relationships

Figure 2-5 illustrates the relationships between policy regions and policy-driven objects. A
policy region is shown referencing several instance managers, initialization policy and
validation policy objects, and instances of policy-driven objects. Each policy region object
references a set of policy-driven objects called its members. In the Engineering policy region,
these objects might represent all the users and all the hosts that are part of Engineering. For each
type of object supported, the policy region maintains a reference to the appropriate instance
manager object and uses the methods from a single initialization policy object and a validation
policy object associated with that instance manager.

In addition, this figure reflects the fact policy regions are themselves managed by an instance
manager. This is labeled ‘‘Policy Regions Instance Manager’’.

Systems Management: Common Management Facilities 21

Policy Management Service Management Facilities Architecture

2.4.2 Policy Region

Policy regions support management policies by using methods of the initialization policy and
validation policy objects that are associated with object types supported by the policy region. If
a type is supported, objects of that type are allowed to be members of the policy region.
Supporting an object type means that:

• The policy region has a reference to the instance manager(s) for the type.

• The policy region maintains a reference to an initialization policy object for the instance
manager.

• The policy region maintains a reference to a validation policy object for the instance
manager.

Policy region objects supply the policy implemented by the initialization policy and validation
policy objects for each supported type. The initialization policy object for a type provides a
method to initialize new objects. New objects are thus always created within the context of a
policy region and are said to be members of the policy region.

An initialization policy object provides methods to generate initial (default) values for the
attributes of the policy-driven objects. The methods of an initialization policy object thus
provide a set of recommended values to use when creating new objects. These may be modified
on a per-policy region basis, thus allowing for different configurations for the same type in
separate policy regions. For example, the default login shell policy for a user in the Engineering
policy region might be /bin/ksh while the default login shell policy for a manager in the
Executive policy region might be a window-shell. Note that an initialization policy object does
not, however, provide enforcement as far as maintaining those values. This is performed by
validation policy methods.

A policy region may also use the methods from a validation policy object for an object type.
When this is true, the policy region object is said to have validation of policy enabled for that
type managed by the instance manager. When validation of policy is enabled, the policy region
object provides a powerful mechanism that enables enforcement of management policy. The
validation policy object provides a validation method for each aspect of a managed object that is
subject to policy. Validation operations enable the state of objects to be verified against policy.
Object state in this context includes such things as data values stored by the object (attributes)
and operational information related to the object (backup this object’s state daily), etc. Thus, a
broad range of components may be validated using this service. Typically, each validate
operation is defined to take as input data that reflects the proposed change to the state and
returns TRUE or FALSE as to whether the new value is valid. If FALSE is returned by the
validate method, the update (or initial value) of the attribute is rejected and the modification
request can be aborted.

2.4.3 Enforcement of Policy

The enforcement of policy may be performed in a variety of ways. The discussion presented in
this specification addresses examples of mechanisms to enforce policy, and is not an exhaustive
list.

The mechanism for the enforcement of policy is an application development-time procedure.
The policy-driven base object designer defines which attributes, activities or methods should be
subject to policy. Recall that policy is enforced by methods that encapsulate the particular policy
and evaluate a proposed change. The policy method either evaluates to true or false and the
requested activity is either allowed or rejected, respectively. Given that it is not possible to
associate a policy with something at application run-time, it is strongly recommended that the
application developer take a liberal view of what might be subject to policy. In general, all

22 CAE Specification

Management Facilities Architecture Policy Management Service

operations that can cause a change in state of the object and the underlying system resource it
models are appropriate for the application of policy. Typically, policy methods are, by default,
disabled so that the policy is not checked, or the policy methods are hard-coded to return true
without any further processing.

Each invocation of a policy method is preceded by a check to see whether policy has been
enabled or disabled. If policy is disabled, then the policy-driven base object should be structured
to act as if there was no policy associated with the activity. Again, if policy is enabled, then the
policy method associated with the particular activity is invoked to determine whether to allow
or disallow the operation.

Given this means for the enforcement of policy, the application developer has significant
latitude in the ways in which policy is enforced by an application. For example, when an object
could not be subjected to policy validation on a regular basis, it could be an administrator
defined time when the policies are checked. As another example, when an object is moved from
one set to another, or simply added to a set, then the set object could, prior to adding it to the set,
check to verify that the object to be added conforms to the relevant policy for the set.

This discussion has focused primarily on policy validation, the verification that an object
conforms to the policy to which it is subject. In addition, there are initialization policies that
might be associated with objects. Initialization policies are generally associated with object
creation and enable system administrators to write a method that will generate default values
for parameters that might follow a simple formula, thereby saving the administrator significant
time during the operation of the network and day-to-day administration. Additionally, a more
senior administrator might determine the defaults to be used and thus not require or enable a
more junior administrator to ‘‘make up’’ values for particular parameters.

Systems Management: Common Management Facilities 23

Management Facilities Architecture

24 CAE Specification

Chapter 3

Management Facilities Specification

This chapter fully specifies the management facilities described in the previous chapters. In
designing the interfaces presented in this specification, several design principles guided the
activity.

• The interfaces have been developed with an eye towards the implementation on a generic
ORB environment. Every attempt has been made so the interfaces, as well as their semantics,
will be portable among all CORBA-compliant, ORB implementations. In the specification of
the interfaces, no implementation specific features of any ORB environments are used.

• The interfaces have been designed such that the scalability of the implementation is not
limited by the interface defined in IDL.

For example, if an interface is defined to return a list of items and the list is not guaranteed to
be short, then it should not have the entire list returned in one, possibly enormous, set of
data. This issue has been addressed primarily through the use of iteratorobjects. When a list
of items is to be returned initially, a number of the items are returned along with an object
reference to an iterator object. The client may use the iterator object to retrieve the remainder
of the list in manageable subsets.

For complex characteristics of interfaces, we have chosen to represent those characteristics as
methods instead of attributes. This not only has scalability advantages, but also performance
advantages.

• Certain design decisions were made that effects the programming model that results from
the style of interface definition selected. In some cases interfaces have been designed or
organized simply so that the programmer suffers the minimal amount of complexity. Two
areas where this is particularly true are the organization of the common type definitions and
the definitions of exceptions.

Systems Management: Common Management Facilities 25

SysAdminTypes Module Management Facilities Specification

3.1 SysAdminTypes Module
This module defines the common types for the management facilities in this specification.
Having these types defined in a common IDL module, allows an application developer to simply
recall the appropriate language mapping from an IDL source in a consistent manner. If these
types were defined in the module which primarily used them, the application developer would
have to remember in which module these various types were defined. This is due to the IDL
scoping rules that require operation names to have mappings dependent upon the derived
interface by which they are inherited, and types to have mappings dependent upon the defining
scope.

3.1.1 Specified IDL

//
// Component Name: SysAdminTypes.idl
//
// Description:
// The SysAdminTypes file defines types and data
// structures that are used frequently throughout the
// development of system administration applications.
//

#ifndef SYSADMINTYPES_IDL
#define SYSADMINTYPES_IDL

#include <orb.idl>
#include <CosNaming.idl>

module SysAdminTypes {

typedef sequence <CORBA::InterfaceDef> InterfaceDefList;

typedef CosNaming::NameComponent LabelType;

struct ObjectLabel {
Object objref;
LabelType label;

};

struct LabelExpression {
string id_regex;
string kind_regex;

};

typedef sequence <ObjectLabel> ObjectLabelList;

// The Platform structure defines elements for information
// related to the hardware and operating system of a
// client machine. The elements represent the following
// information.

struct Platform {
string host_name;
string machine_hardware_name;
string operating_system_name;
string operating_system_version;
string operating_system_release;

};

26 CAE Specification

Management Facilities Specification SysAdminTypes Module

};

#endif //SYSADMINTYPES_IDL

Systems Management: Common Management Facilities 27

SysAdminExcept Module Management Facilities Specification

3.2 SysAdminExcept Module
The design of the interfaces and systems management framework in this specification have been
influenced by the philosophy of making a few, general exception types defined in a common IDL
module, specializing exceptions by use of their data fields, and the integration with an XPG
messaging system. Limiting the number and types of exceptions allows future implementations
to specialize an exception without the redefinition or subtyping of the original interface. In
addition, it allows clients to have simpler, more robust exception handling code by having a
string comparison for a smaller number of exception types. The inclusion of XPG message
information in an exception allows the server, at the point of error detection, to specify a
minimal amount of context and error information for eventual presentation to the user. As the
exception is returned, other servers that pass the exception through to other clients may add
additional information related to the context or nature of the error. This approach allows an
administrator to receive more information about an exception other than simply ‘‘something
undesirable happened’’, and allows the potential for the administrator to alter the operation
intelligently and to hopefully succeed upon retry.

3.2.1 Specified IDL

//
// Component Name: SysAdminExcept.idl
//
// Description:
// The SysAdminExcept module defines the exceptions
// commonly used by system management applications.
//

#ifndef SYSADMINEXCEPT_IDL
#define SYSADMINEXCEPT_IDL

#include <SysAdminTypes.idl>

typedef sequence<any> MsgContext;

#define XPG_FIELDS \
string type_name; \
string catalog; \
long key; \
string default_msg; \
long time_stamp; \
MsgContext msg_context;

module SysAdminException {
exception ExException {

XPG_FIELDS

};

exception ExFailed {
XPG_FIELDS
string operation_name;

};

exception ExInvalid {
XPG_FIELDS
string resource_name;

};

28 CAE Specification

Management Facilities Specification SysAdminExcept Module

exception ExNotUniqueLabel {
XPG_FIELDS
SysAdminTypes::LabelType label;
};

exception ExNotFound {
XPG_FIELDS
string resource_name;

};

exception ExExists {
XPG_FIELDS
string resource_name;

};

exception ExObjNotFound {
XPG_FIELDS
string resource_name;

};
};

#endif //SYSADMINEXCEPT_IDL

Systems Management: Common Management Facilities 29

Identification Module Management Facilities Specification

3.3 Identification Module
The Identification module defines interfaces that allow an object to be identified.

3.3.1 Interfaces and Operations

Module Interface Operation
Identification Labeled get_label

set_label

Table 3-1 Interfaces and Operations for the Identification Module

3.3.2 Specified IDL

//
// Component Name: Identification.idl
//
// Description:
// This module defines the methods that implement an object’s
// label, which is a name that uniquely identifies the object
// within an environment.
//

#ifndef IDENTIFICATION_IDL
#define IDENTIFICATION_IDL

#include <SysAdminTypes.idl>

module Identification {

interface Labeled {

SysAdminTypes::LabelType get_label();

void set_label (in SysAdminTypes::LabelType label);

};
};

#endif //IDENTIFICATION_IDL

3.3.3 Identification::Labeled Interface

The Identification::Labeled interface provides the operations needed to allow an object to have a
label. The underlying type of the label is a CosNaming::NameComponent, which allows an
object’s label to also be used as its name within a COS Naming Service name space (see reference
COS Volume 1).

3.3.3.1 The set_label Operation

The set_label operation sets the object’s label to the value passed in the label parameter. This
operation is only intended to be invoked by an InstanceManager at the time an object is created.
Conforming implementations are highly discouraged from allowing subsequent invocations
upon objects that have already had their labels set. Such invocations may lead to unpredictable
behavior in the other services described in this specification.

30 CAE Specification

Management Facilities Specification Identification Module

Syntax

void set_label(in SysAdminTypes::LabelType label);

Exceptions

CORBA 1.2 standard exceptions.

3.3.3.2 The get_label Operation

The get_label operation returns the current value of the objects label.

Syntax

SysAdminTypes::LabelType get_label();

Exceptions

CORBA 1.2 standard exceptions.

Systems Management: Common Management Facilities 31

SysAdminLifeCycle Module Management Facilities Specification

3.4 SysAdminLifeCycle Module
The SysAdminLifecycle module defines the Location and HostLocation interfaces and their
operations. These interfaces allow the object that supports them to identify a specific location at
which an operation (typically object creation) should be performed. The Location interface is
extremely generic and supports no attributes or operations. It is mainly intended to be used as
an abstract interface that will be subtyped to form interfaces that provide more specific
information about particular types of locations. The HostLocation interface is an example of a
subtype of the Location interface that is capable of providing information about a particular
type of location: in this case, a host. It is defined due to it’s general purpose usefulness, and to
provide an example of how the Location interface can be used.

The possible definitions for subtypes of the Location interfaces are quite broad and are not
specified. Because of this, the scope of applicability of the Location interface and its subtypes is
guaranteed only within a single vendor’s framework implementation.

3.4.1 Interfaces and Operations

Module Interface Operation
SysAdminLifeCycle Location

HostLocation get_platform

Inheritance:
SysAdminLifeCycle::Location

Table 3-2 Interfaces and Operations for the SysAdminLifeCycle Module

3.4.2 Specified IDL

//
// Component Name: SysAdminLifecycle.idl
//
//
// Description:
// The SysAdminLifeCycle module defines interfaces
// for specifying objects. Currently interfaces for copying and
// moving objects are not supported. These will be added as needed.
//

#ifndef SYSADMINLIFECYCLE_IDL
#define SYSADMINLIFECYCLE_IDL

#include <SysAdminTypes.idl>

module SysAdminLifeCycle {

// The Location interface allows the specification of
// the location for lifecycle operations to occur.

interface Location {
};

// the HostLocation interface allows the specification
// of a particular client machine on which the
// lifecycle operation should execute

32 CAE Specification

Management Facilities Specification SysAdminLifeCycle Module

interface HostLocation : Location {

SysAdminTypes::Platform get_platform();

};

};

#endif // SYSADMINLIFECYCLE_IDL

3.4.3 SysAdminLifeCycle::Location Interface

The SysAdminLifeCycle::Location interface defines no operations and does not inherit any
other interfaces. It is an abstract type that is intended to be inherited by other interfaces. It’s
primary purpose is to introduce the idea that, for object creation, the location of where to create
an object must somehow be specified. However, since the concept of location is very ORB
implementation dependent, how to specify location cannot be addressed in this specification. By
introducing this interface, it allows other interfaces (such as
ManagedInstances::BasicInstanceManager) to specify that they require a Location object in
order to perform particular operations.

3.4.4 SysAdminLifeCycle::HostLocation Interface

The SysAdminLifeCycle::HostLocation interface defines the get_platform operation, which
returns information related to the platform on which the object currently resides. This
information is related to the hardware type and the operating system.

3.4.4.1 Inherited Interfaces

The SysAdminLifeCycle::HostLocation interface inherits from the
SysAdminLifecycle::Location interface to represent the fact that it can be viewed as a specific
type of location.

3.4.4.2 The get_platform Operation

The get_platform operation gets the client machine information of the host on which the target
object resides. This information should be accurate even after the target object migrates from one
client machine to another. The host_name element of the Platform structure is typically the
name by which the client machine is known to the communications network. The
machine_hardware_name is the standard name that identifies the hardware on which the object
is running. The operating_system_name element is the current operating system under which
the object is running. The operating_system_release element specifies the specific release
number of the operating system (for example, 5.4). The operating_system_version element
specifies the exact version of the operating system. Often times a version of an operating system
is determined by its relationship to hardware (for example, generic).

Syntax

SysAdminTypes::Platform get_platform();

Exceptions

CORBA 1.2 standard exceptions.

Systems Management: Common Management Facilities 33

ManagedSets Module Management Facilities Specification

3.5 ManagedSets Module
The ManagedSets module defines interfaces that provide operations for establishing two way
reference relationships between objects.

3.5.1 Interfaces and Operations

Module Interface Operation
Set

Inheritance:
ManagedSets::Member

get_cardinality
add_object
add_n_objects
remove_object
remove_n_objects
get_members
intersection_members
union_members

ManagedSets

Member

Inheritance:
Identification::Labeled

add_backref
get_backrefs
remove_backref

FilteredSet

Inheritance:
ManagedSets::Set

find_members
lookup_object
lookup_labels

next_one
next_n
destroy

SetIterator

next_one
next_n
destroy

MemberIterator

next_one
next_n
destroy

MemberLabelIterator

Table 3-3 Interfaces and Operations for the ManagedSets Module

3.5.2 Specified IDL

//
// Component Name: ManagedSets.idl
//
// Description:
// The following interfaces provide the functionality
// for support of managed sets.
//

#ifndef MANAGEDSETS_IDL
#define MANAGEDSETS_IDL

#include <SysAdminTypes.idl>
#include <SysAdminExcept.idl>
#include <Identification.idl>

34 CAE Specification

Management Facilities Specification ManagedSets Module

module ManagedSets {

//--
//Forward references
//--
interface Member;
interface SetIterator;
interface MemberIterator;
interface MemberLabelIterator;
interface Set;
interface FilteredSet;

//--
//typedefs needed for the managed set interfaces
//--
typedef sequence <Set> SetList;
typedef sequence <Member> MemberList;
typedef SysAdminTypes::ObjectLabel MemberLabel;
typedef SysAdminTypes::ObjectLabelList MemberLabelList;

interface Member : Identification::Labeled {

void add_backref (
in Set s

);

void get_backrefs (
in unsigned long how_many,
out SetList s_list,
out SetIterator iterator

);

void remove_backref (
in Set s

) raises (
SysAdminException::ExNotFound

);

}; // End Member interface

interface SetIterator {

boolean next_one (
out Set s

);

boolean next_n (
in unsigned long how_many,
out SetList s_list

);

void destroy();

}; // End SetIterator interface

interface MemberIterator {

boolean next_one (

Systems Management: Common Management Facilities 35

ManagedSets Module Management Facilities Specification

out Member m
);

boolean next_n (
in unsigned long how_many,
out MemberList m_list

);

void destroy();

}; // End of MemberIterator

interface ObjectLabelIterator {

boolean next_one (
out ObjectLabel ol

);

boolean next_n (
in unsigned long how_many,
out ObjectLabelList ol_list

);

void destroy();

}; // End of ObjectLabelIterator

typedef ObjectLabelIterator MemberLabelIterator;

interface Set : Member {

unsigned long get_cardinality();

void add_object (
in boolean add_backref,
in Member m

) raises (
SysAdminException::ExNotUniqueLabel

);

void add_n_objects (
in MemberList m_list,
out MemberList not_added

);

void remove_object (
in boolean remove_backref,
in Member m

) raises (
SysAdminException::ExNotFound

);

void remove_n_objects (
in boolean remove_backref,
in MemberList m_list,
out MemberList not_removed

);

36 CAE Specification

Management Facilities Specification ManagedSets Module

void get_members (
in unsigned long how_many,
out MemberList m_list,
out MemberIterator iterator

);

void intersection_members (
in unsigned long how_many,
in SetList s_list,
out MemberList m_list,
out MemberIterator iterator

) raises (
SysAdminException::ExInvalid

);

void union_members (
in unsigned long how_many,
in SetList s_list,
out MemberList m_list,
out MemberIterator iterator

) raises (
SysAdminException::ExInvalid

);

}; // End of Set interface

interface FilteredSet : Set {

void find_members (
in SysAdminTypes::InterfaceDefList interfaces,
in SysAdminTypes::LabelExpression regular_expression,
in unsigned long how_many,
out MemberLabelList ml_list,
out MemberLabelIterator iterator

) raises (
SysAdminException::ExNotFound

);

Member lookup_object (
in SysAdminTypes::LabelType label,
in SysAdminTypes::InterfaceDefList interfaces

) raises (
SysAdminException::ExNotFound

);

SysAdminTypes::ObjectLabelList lookup_labels (
in MemberList m_list

);

}; // End of FilteredSet interface

}; // End ManagedSets module

#endif //MANAGEDSETS_IDL

Systems Management: Common Management Facilities 37

ManagedSets Module Management Facilities Specification

3.5.3 ManagedSets::Member Interface

The Member interface defines the following operations that allow an object to be member of a
set object:

• add_backref

• get_backrefs

• remove_backref

3.5.3.1 Inherited Interfaces

The ManagedSets::Member interface inherits from the Identification::Labeled interface.

3.5.3.2 The add_backref Operation

The add_backref operation adds an object reference to an unordered list. The references are to
objects supporting the Set interface. Adding a back reference provides a means for objects to
know about the containment relationships of which they are a part. Typically this operation
would never be called by client code, but would be called by an implementation of the
ManagedSets::Set interface, in particular from the add_object or add_n_objects operations.
Arbitrary use of the add_backref operation by client code can, and probably will, result in
referential integrity problems in Set-Member relationships. It is made a public part of the
Member interface as it is anticipated that set to set member relationships will exist between
objects that exist in different vendors’ framework implementations.

Syntax

void add_backref(
in Set s

);

Exceptions

CORBA 1.2 standard exceptions.

If the target object already maintains a reference to the input set s, the invocation of add_backref
will be a no-op: no exception will be raised and only one reference to the set s will be maintained
by the target object.

3.5.3.3 The get_backrefs Operation

The get_backrefs operation returns the object references (back references) for the Sets of which the
object is a member. If how_many is greater than or equal to the total number of back references
maintained by the target object, then all of the back references will be returned in s_list and
iterator will be returned as OBJECT_NIL.

Syntax

void get_backrefs(
in unsigned long how_many,
out SetList s_list,
out SetIterator iterator

);

38 CAE Specification

Management Facilities Specification ManagedSets Module

Exceptions

CORBA 1.2 standard exceptions.

3.5.3.4 The remove_backref Operation

The remove_backref operation removes the back reference to the Set specified by the s argument.
Typically this operation would never be called by client code, but would be called by an
implementation of the ManagedSets::Set interface, in particular from the remove_object or
remove_n_objects operations. Arbitrary use of the remove_backref operation by client code can, and
probably will, result in referential integrity problems in Set-Member relationships. It is made a
public part of the Member interface as it is anticipated that set to set member relationships will
exist between objects that exist in different vendors’ framework implementations.

Objects that inherit from both ManagedSets::Set and CosLifeCycle::LifeCycleObject will
inherit the latter’s remove operation. If an object which is a Set destroys itself via the remove
operation, then it must first remove itself from its member objects’ lists of backrefs by invoking
remove_backref upon each of them in turn, with the Set’s own object reference as the input
parameter.

Syntax

void remove_backref(
in Set s

) raises (
SysAdminException::ExNotFound

);

Exceptions

If the object upon which this operation is invoked is not a member of the set indicated by the
input argument the SysAdminException::ExNotFound exception is raised.

3.5.4 ManagedSets::SetIterator Interface

The SetIterator interface defines the following operations that allow an object to iteratively
request a list of sets to which an object is a member. The SetIterator provides a static view of the
sets to which the object belonged at the time the iterator was created, and does not reflect
subsequent changes to the object’s membership in sets. The operations provided are:

• next_one

• next_n

• destroy

3.5.4.1 The next_one Operation

The next_one operation returns the next object. If the last set object is being returned on this call
(or was returned on a previous call), this operation returns FALSE, indicating subsequent calls to
the iterator are not needed.

Syntax

boolean next_one(
out Set s

);

Systems Management: Common Management Facilities 39

ManagedSets Module Management Facilities Specification

Exceptions

CORBA 1.2 standard exceptions.

3.5.4.2 The next_n Operation

The next_n operation returns at most the requested number of set objects. If the last set object is
being returned on this call (or was returned on a previous call), this operation returns FALSE,
indicating subsequent calls to the iterator are not needed.

Syntax

boolean next_n(
in unsigned long how_many,
out SetList s_list

);

Exceptions

CORBA 1.2 standard exceptions.

3.5.4.3 The destroy Operation

The destroy operation destroys the iterator.

Syntax

void destroy();

Exceptions

CORBA 1.2 standard exceptions.

3.5.5 ManagedSets::MemberIterator Interface

The MemberIterator interface defines the following operation that allows an object to iteratively
request a list of members that belong to a set. The MemberIterator provides a static view of the
set’s members at the time the iterator was created, and does not reflect subsequent changes to
the set’s membership. The operations provided are:

• next_one

• next_n

• destroy

3.5.5.1 The next_one Operation

The next_one operation returns the next set member object. If the last set member object is being
returned on this call (or was returned on a previous call), this operation returns FALSE,
indicating subsequent calls to the iterator are not needed.

Syntax

boolean next_one(
out Member m

);

40 CAE Specification

Management Facilities Specification ManagedSets Module

Exceptions

CORBA 1.2 standard exceptions.

3.5.5.2 The next_n Operation

The next_n operation returns at most the requested number of set member objects. If the last set
member object is being returned on this call (or was returned on a previous call), this operation
returns FALSE, indicating subsequent calls to the iterator are not needed.

Syntax

boolean next_n(
in unsigned long how_many,
out MemberList m_list

);

Exceptions

CORBA 1.2 standard exceptions.

3.5.5.3 The destroy Operation

The destroy operation destroys the iterator.

Syntax

void destroy();

Exceptions

CORBA 1.2 standard exceptions.

3.5.6 ManagedSets::ObjectLabelIterator Interface

The ObjectLabelIterator interface is a general-purpose iterator interface that defines the
following operations that allow an object to iteratively request a list of ObjectLabel structures
that correspond to objects that have a special relationship to the target object whose ‘‘get’’ or
‘‘list’’ operation generated the iterator. In the case of ManagedSets, this means that the
ObjectLabels correspond to objects that are members of the target set. In the case of
PolicyRegions, the ObjectLabels correspond to policy-driven objects that are supported by the
target PolicyRegion (see, for example, Section 3.7.5.4 on page 74). The ObjectLabelIterator
provides a static view of the objects that had this special relationship to the original target object
at the time the iterator was created, and does not reflect subsequent changes to the list of objects
that continue to have this special relationship. The operations provided are:

• next_one

• next_n

• destroy

Systems Management: Common Management Facilities 41

ManagedSets Module Management Facilities Specification

3.5.6.1 The next_one Operation

The next_one operation returns the next ObjectLabel structure. If the last ObjectLabel structure
is being returned on this call (or was returned on a previous call), this operation returns FALSE,
indicating subsequent calls to the iterator are not needed.

Syntax

boolean next_one (
out MemberLabel ol;

);

Exceptions

CORBA 1.2 standard exceptions.

3.5.6.2 The next_n Operation

The next_n operation returns at most the requested number of ObjectLabel structures. If the last
ObjectLabel structure is being returned on this call (or was returned on a previous call), this
operation returns FALSE, indicating subsequent calls to the iterator are not needed. If
how_many is greater than or equal to the total number of ObjectLabel structures remaining in
the iterator object, then all of the ObjectLabel structures will be returned in ol_list and no
exception will be raised.

Syntax

boolean next_n(
in unsigned long how_many,
out ObjectLabelList ol_list

);

Exceptions

CORBA 1.2 standard exceptions.

3.5.6.3 The destroy Operation

The destroy operation destroys the iterator.

Syntax

void destroy();

Exceptions

CORBA 1.2 standard exceptions.

42 CAE Specification

Management Facilities Specification ManagedSets Module

3.5.7 ManagedSets::Set Interface

The set relationship supported by a set object is a many-to-many reference relationship. An
object may be a member of an arbitrary number of sets. Sets are a way for system administrator
to group objects and to develop subsets of objects and resources to be managed similarly. In
addition to the Containment functionality of the basic set, behaviors are supported to provide a
means of selecting a subset of the set’s membership.

The Set interface defines the following operations that provide basic set object functionality:

• get_cardinality

• add_object

• add_n_objects

• remove_object

• remove_n_objects

• get_members

• intersection_members

• union_members

3.5.7.1 Inherited Interfaces

The ManagedSets::Set interface inherits from the ManagedSets::Member interface, thus
allowing sets to be arranged into hierarchies.

3.5.7.2 The get_cardinality Operation

The get_cardinality operation returns the current number of members of the set.

Syntax

unsigned long get_cardinality();

Exceptions

CORBA 1.2 standard exceptions.

3.5.7.3 The add_object Operation

The add_object operation adds a new object reference to the set of member objects.

If the add_backref parameter is TRUE, then the member object being added is notified to add a
back reference to the set. If the add_backref parameter is FALSE, then the newly-contained
member object is not notified. This is useful for the case in which a member object adds itself to
the set; the object does not need the notification to add a back reference (it already knows it is
being added).

Systems Management: Common Management Facilities 43

ManagedSets Module Management Facilities Specification

Syntax

void add_object(
in boolean add_backref,
in Member m

) raises (
SysAdminException::ExNotUniqueLabel

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExNotUniqueLabel.

If the label of the member being added to the set is not unique among members of the set, the
SysAdminException::ExNotUniqueLabel exception may be raised subject to the following
conditions:

1. If the input object m has the same label as an already-existing set member and if the
CORBA::Object defined is_equivalent method returns TRUE when invoked on the input
object m passing the already existing set member, no exception is raised and there remains
only one reference to that object from the set.

2. If the input object m has the same label as an already-existing set member and if the
CORBA::Object defined is_equivalent method returns FALSE when invoked on the input
object m passing the already existing set member, then the
SysAdminException::ExNotUniqueLabel exception is raised. The client is thus alerted
that it is holding a superfluous reference to the set member which it should discard in
favor of the reference that the set already holds.

Note that a label is comprised of two components: an id field and a kind field. The label of the
input object m is only considered to be the same as that of an already-existing member if both of
these fields are identical to that of the member.

3.5.7.4 The add_n_objects Operation

The add_n_objects operation adds new object references to the set of Member object held by a Set.
If any of the objects were unable to be added to the Set, their object references are returned for
appropriate error handling. If some objects are not able to be added, the remainder of the objects
are added. Note that the most likely reason why an object was not added is because its label is
identical to that of an object that is already a member of the set (see Section 3.5.7.3 on page 43).

Syntax

void add_n_objects(
in MemberList m_list,
out MemberList not_added

);

Exceptions

CORBA 1.2 standard exceptions.

44 CAE Specification

Management Facilities Specification ManagedSets Module

3.5.7.5 The remove_object Operation

The remove_object operation removes the member object specified by the m argument from a Set
object. The remove_object operation does not remove the specified objects. It only removes
references to the objects.

If the remove_backref argument is set to TRUE, then the member object being removed is notified
to remove its back reference to the set. If the remove_backref argument is FALSE, the contained
object is not notified. This operation is useful when a contained object is removed. Upon
deletion, it removes itself from all Sets. There is no need for the set object to notify the member
object to remove a back reference in this scenario.

Syntax

void remove_object(
in boolean remove_backref,
in Member m

) raises (
SysAdminException::ExNotFound

);

Exceptions

If the object indicated by the second input parameter is not a member of the target set, the
SysAdminException::ExNotFound exception is raised.

3.5.7.6 The remove_n_objects Operation

The remove_n_objects operation removes the member objects, specified by the s_list argument,
from a Set object. The remove_n_objects operation does not remove the specified objects. It only
removes references to the objects. If the remove_backref argument is set to TRUE, then the
member object being removed is notified to remove its back reference to the Set. If the
remove_backref argument is FALSE, the member object is not notified. This operation is useful
when member objects are to be destroyed. Upon deletion they remove themselves from all Sets.
There is no need for the Set object to notify the member objects to remove a back reference in this
scenario.

Syntax

void remove_n_objects(
in boolean remove_backref,
in MemberList m_list,
out MemberList not_removed

);

Exceptions

CORBA 1.2 standard exceptions.

3.5.7.7 The get_members Operation

The get_members operation returns the object references of object’s members. If how_many is
greater than or equal to the total number of members In the Set, then all of the members will be
returned in m_list and iterator will be returned as OBJECT_NIL.

Systems Management: Common Management Facilities 45

ManagedSets Module Management Facilities Specification

Syntax

void get_members (
in unsigned long how_many,
out MemberList m_list,
out MemberIterator iterator

);

Exceptions

CORBA 1.2 standard exceptions.

3.5.7.8 The intersection_members Operation

The intersection_members operation provides the list of members that are the intersection of sets.
Given a list of sets, a list of members will be returned that represents the intersection of the
target set and all of the sets specified in the s_list argument. The initial size of m_list is
determined by the how_many argument. The rest of the Member objects, if any, can be retrieved
using the returned iterator object. When how_many is equal to or greater than the total number of
members that could potentially be returned, all of the members will be returned in s_list and the
iterator will be returned as OBJECT_NIL.

Syntax

void intersection_members (
in unsigned long how_many,
in SetList s_list,
out MemberList m_list,
out MemberIterator iterator

) raises (
SysAdminException::ExInvalid

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExInvalid.

If s_list is an empty list or if an element of s_list is OBJECT_NIL, the
SysAdminException::ExInvalid exception is raised. This is not the same thing as taking the
intersection of a Set with the empty set (a Set that contains no Members), which is allowed and
which will not cause this exception to be raised.

3.5.7.9 The union_members Operation

The union_members operation provides the list of members that represent the union of the sets.
Given a list of sets, a list of members will be returned that represents the union of the target set
and all of the sets specified in the s_list argument. This operation ensures no duplicates in the
member list. The initial size of m_list is determined by the how_many argument. The rest of the
Member objects, if any, can be retrieved using the returned iterator object. When how_many is
equal to or greater than the total number of members that could potentially be returned, all of
the members will be returned in s_list and the iterator will be returned as OBJECT_NIL.

46 CAE Specification

Management Facilities Specification ManagedSets Module

Syntax

void union_members (
in unsigned long how_many,
in SetList s_list,
out MemberList m_list,
out MemberIterator iterator

) raises (
SysAdminException::ExInvalid

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExInvalid.

If s_list is an empty list or if an element of s_list is OBJECT_NIL, the
SysAdminException::ExInvalid exception is raised. This is not the same thing as taking the
union of a Set with the empty set (a Set that contains no Members), which is allowed and which
will not cause this exception to be raised.

3.5.8 ManagedSets::FilteredSet Interface

An object supporting the FilteredSet interface is called a filtered set. A filtered set is able to filter
across the the member objects and return a subset of its membership based on simple search
criteria, which supports filtering based on the interfaces supported by members, or the labels of
members.

The FilteredSet interface defines the following operations that enable the management of
managed sets:

• find_members

• lookup_object

• lookup_labels

3.5.8.1 Inherited Interfaces

The ManagedSets::FilteredSet interface inherits from the ManagedSets::Set interface:

3.5.8.2 The find_members Operation

The find_members operation returns a list of the object references for the objects contained in a set
meeting the specified selection criteria. Objects may be selected on the basis of the interfaces
they support and their labels. The interfaces argument is a sequence of types defined in the
InterfaceDef interface. Only objects that support all of the interfaces in the sequence are
returned. If this sequence is of zero length, then objects may be returned regardless of their
supported interfaces. The regular_expression argument specifies a POSIX 1003.2 regular
expression for matching on the basis of object labels. Only objects that have labels matching the
regular expression are returned. If a regular expression is not specified, then objects will be
selected irrespective of their labels. Note that labels are comprised of two components: an id
field and a kind field. A client can specify a regular expression to be matched for one, both, or
neither of these fields.

Both the object references and the labels of the objects are returned. The order of the objects
returned is unspecified. If a member of the generic set does not have a label, then it will not
match any regular expressions.

Systems Management: Common Management Facilities 47

ManagedSets Module Management Facilities Specification

The initial size of ml_list is determined by the how_many argument. The rest of the MemberLabel
structures, if any, can be retrieved using the returned iterator object. If how_many is greater than
or equal to the total number of members that match the filter criteria, then all of the members
will be returned in ml_list and iterator will be returned as OBJECT_NIL.

Syntax

void find_members (
in SysAdminTypes::InterfaceDefList interfaces,
in SysAdminTypes::LabelExpression regular_expression,
in unsigned long how_many,
out MemberLabelList ol_list,
out MemberLabelIterator iterator

) raises (
SysAdminException::ExNotFound

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExNotFound.

SysAdminException::ExNotFound is raised if no objects in the set meet the specified selection
criteria.

3.5.8.3 The lookup_object Operation

The lookup_object operation returns an object reference to the set member that has the same label
as the label specified in the label argument. Labels are unique within sets, therefore at most one
object with that label can be found and returned. However, if the kind field of the label argument
is specified as a zero length string, only the id field of the label is used in searching for the set
member to return. Since the id fields of a set’s members are not necessarily unique within the set,
this operation will return one of possibly many set members that have the matching id field.

The interfaces argument specifies a sequence of interfaces that the object with the matching label
must support in order to be returned. If a zero length sequence of interface definitions is passed,
any object with a matching label will be returned.

Syntax

Member lookup_object(
in SysAdminTypes::LabelType label,
in SysAdminTypes::InterfaceDefList interfaces

)raises(
SysAdminException::ExNotFound

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExNotFound.

SysAdminException::ExNotFound is raised when no object in the set has the specified label.

48 CAE Specification

Management Facilities Specification ManagedSets Module

3.5.8.4 The lookup_labels Operation

The lookup_labels operation returns a list of object references and their labels. The objects whose
labels are requested are specified by the m_list argument. The objects and their labels are
returned in the same order in which they were input in m_list . If m_list contains duplicate
members, then the returned ObjectLabelList will contain the corresponding duplicate object
labels in list positions that correspond to the input duplicate members’ list positions. If the input
m_list contains elements that are set to Object::_nil() , then the returned ObjectLabelList will
contain ObjectLabels whose objref members are Object::_nil() . Similarly, input objects that are
not members of the set cause a Object::_nil() to be placed in the output list in place of the errant
input object. Finally, errors in processing a list element (for example, an exception when getting
the object’s label) cause a Object::_nil() to be placed in the output list in place of the errant object.
These ‘‘null’’ ObjectLabels will appear in the output list in list positions that correspond to the
appropriate input members’ list positions, and the kind field of the label will be used to explain
why the object field contains a Object::_nil() value. If m_list is zero-length, then the output
ObjectLabelList will also be zero-length.

Syntax

SysAdminTypes::ObjectLabelList lookup_labels(
in MemberList m_list

);

Exceptions

CORBA 1.2 standard exceptions.

Systems Management: Common Management Facilities 49

ManagedInstances Module Management Facilities Specification

3.6 ManagedInstances Module
The ManagedInstances module defines the Instance, BasicInstanceManager, InstanceManager
and Library interfaces and their operations. The ManagedInstances::Instance interface defines
operations that determine and report the instance manager of an object instance. The
ManagedInstances::BasicInstanceManager interface defines operations that encapsulate type-
specific information related to object creation and instances of the object type. The
ManagedInstances::InstanceManager extends this to also include information related to policy
for instances of the object type. The ManagedInstances::Library interface defines operations for
the creation and finding of instance manager objects.

3.6.1 Interfaces and Operations

Module Interface Operation
Instance

Inheritance
CosLifeCycle::LifeCycleObject
ManagedSets::Member

get_manager
get_type_name
get_resource_location

ManagedInstances

BasicInstanceManager

Inheritance
CosLifeCycle::LifeCycleObject
CosLifeCycle::GenericFactory
ManagedSets::FilteredSet

get_instances_interface

InstanceManager

Inheritance
ManagedInstances::BasicInstanceManager
Policies::PolicyObjectAdmin

Library

Inheritance:
CosLifeCycle::FactoryFinder
CosLifeCycle::GenericFactory
ManagedSets::FilteredSet

PolicyRegionsInstanceManager

Inheritance:
ManagedInstances::InstanceManager

Table 3-4 Interfaces and Operations for the Instances Module

50 CAE Specification

Management Facilities Specification ManagedInstances Module

3.6.2 Specified IDL

//
// Component Name: ManagedInstances.idl
//
// Description:
// The following interfaces provide the functionality
// for support of instances and instance managers.
//

#ifndef MANAGEDINSTANCES_IDL
#define MANAGEDINSTANCES_IDL

#include <SysAdminTypes.idl>
#include <SysAdminExcept.idl>
#include <SysAdminLifeCycle.idl>
#include <CosLifeCycle.idl>
#include <Policies.idl>
#include <ManagedSets.idl>

module ManagedInstances {

// Forward reference
interface Instance;
interface BasicInstanceManager;
interface InstanceManager;
interface Library;

interface Instance :
CosLifeCycle::LifeCycleObject,
ManagedSets::Member

{

BasicInstanceManager get_manager();

string get_type_name();

SysAdminLifeCycle::Location get_resource_location();

}; // End of Instance interface

interface Library :
CosLifeCycle::FactoryFinder,
CosLifeCycle::GenericFactory,
ManagedSets::FilteredSet

{
}; // End of Library interface

interface BasicInstanceManager :
CosLifeCycle::LifeCycleObject,
CosLifeCycle::GenericFactory,
ManagedSets::FilteredSet

{

CORBA::InterfaceDef get_instances_interface();

}; // End of BasicInstanceManager interface

Systems Management: Common Management Facilities 51

ManagedInstances Module Management Facilities Specification

interface InstanceManager :
BasicInstanceManager,
Policies::PolicyObjectAdmin

{
}; // End of InstanceManager interface

interface PolicyRegionsInstanceManager :
InstanceManager

{
}; // End of PolicyRegionsInstanceManager interface

}; // End ManagedInstances module

#endif // MANAGEDINSTANCES_IDL

3.6.3 ManagedInstances::Instance Interface

The ManagedInstances::Instance interface defines the operations required for an object to be
managed by an instance manager. An instance is able to report the IDL interface name for its
principal interface type, and the object reference of the instance manager associated with the
type.

The ManagedInstance::Instance interface defines the following operations:

• get_manager

• get_type_name

• get_resource_location

3.6.3.1 Inherited Interfaces

The Instance interface inherits from the following interfaces:

• CosLifeCycle::LifeCycleObject

• ManagedSets::Member

3.6.3.2 Unique Behavior of Inherited Interfaces

Operations defined within these interfaces may have unique behavior when inherited by the
Instance interface.

CosLifeCycle::LifeCycleObject

The remove operation must invoke the ManagedSets::Set::remove_object operation with it’s own
object reference specified for removal on all sets that contain the target object at the time of
deletion. This operation notifies the sets that one of it’s member objects is being removed. This
also applies to the instance’s membership in its instance manager. The only way that an instance
may be removed from its instance manager is by virtue of a client having invoked the instance’s
inherited remove operation to destroy the instance.

52 CAE Specification

Management Facilities Specification ManagedInstances Module

3.6.3.3 The get_manager Operation

The get_manager operation returns the object reference of the instance manager that manages the
target object.

Syntax

BasicInstanceManager get_manager();

Exceptions

CORBA 1.2 standard exceptions.

3.6.3.4 The get_type_name Operation

The get_type_name operation returns the fully scoped IDL interface name of an instance.

Syntax

string get_type_name();

Exceptions

CORBA 1.2 standard exceptions.

3.6.3.5 The get_resource_location Operation

The get_resource_location operation returns the object reference of the
SysAdminLifeCycle::Location for the location where the current object resides. This operation
can be used during life cycle-defined operations. For example, when the location of one object
needs to be determined so that another object may be created in the same location, the
get_resource_location operation is invoked. The returned object reference is used as an input to the
CosLifeCycle::GenericFactory::create_object operation.

Syntax

SysAdminLifeCycle::Location get_resource_location();

Exceptions

CORBA 1.2 standard exceptions.

3.6.4 ManagedInstances::BasicInstanceManager Interface

The ManagedInstances::BasicInstanceManager interface defines operations needed to group
objects into sets for purposes of object management. An object supporting the
ManagedInstances::BasicInstanceManager interface manages a group of objects of one type.
Basic instance managers maintain references to all instances they manage, and are able to report
the interface that is supported by instances they manage. Additionally, instance managers are
able to create instances of the type of objects they support. Instances created and managed by a
BasicInstanceManager must support the ManagedInstances::Instance interface.

Basic instance managers are created by invoking the create_object operation on a library object
that is responsible for supporting object types within a specified scope of influence, which may
be some subset of the overall managed environment.

Systems Management: Common Management Facilities 53

ManagedInstances Module Management Facilities Specification

The ManagedInstances::BasicInstanceManager interface defines the following operations:

• get_instances_interface

3.6.4.1 Inherited Interfaces

The BasicInstanceManager interface inherits from the following interfaces:

• CosLifeCycle::LifeCycleObject

• CosLifeCycle::GenericFactory

• ManagedSets::FilteredSet

3.6.4.2 Unique Behavior of Inherited Interfaces

Operations defined within these interfaces may have unique behavior when inherited by the
BasicInstanceManager interface:

CosLifeCycle::LifeCycleObject

BasicInstanceManager inherits the remove operation. Conforming implementations of the
BasicInstanceManager must disallow the invocation of the remove operation while instances
are presently contained by the instance manager. Further, as with instances, an instance
manager may only be removed from the library that contains it as a consequence of a client
having invoked the remove operation upon the instance manager in order to destroy it.

CosLifeCycle::GenericFactory

BasicInstanceManager uses this interface to create objects of the type it manages.

The k argument is used with both the create_object and supports operations. It is defined to take
the following:

kind field id field
The fully scoped name of the principal IDL interface for the
type of instance to be created.

‘‘object interface’’

The name of the implementation to be used with the instance
to be created.

‘‘object implementation’’

For the supports operation the k argument is required. It is implementation dependent as to
whether just ‘‘object interface’’ or ‘‘object implementation’’, or both, are required to be specified.
If the BasicInstanceManager is capable of creating objects of the specified interface and
implementation, it returns TRUE, otherwise it returns FALSE.

For the create_object operation, the k argument is optional and may be specified as an empty
sequence (that is, sequence of length zero). This is because the basic instance manager already
knows the type of object it creates, including the InterfaceDef and ImplementationDef for that
type. If the k argument is specified, the values specified must be consistent with the InterfaceDef
and ImplementationDef associated with this basic instance manager object. If it is not, the
CosLifeCycle::NoFactory exception is raised.

For the create_object operation, after the new instance is created, the add_object operation on the
basic instance manager must be invoked to add the new instance to this basic instance manager’s
set.

54 CAE Specification

Management Facilities Specification ManagedInstances Module

The following table defines the name/value pairs that are passed in the the_criteria argument of
the create_object call.

Name Type Value Interpretation
A symbolic name for the instance being created. The id field of
the instance’s label will be set to this value, and the kind field will
be set to the concatenation of the Instance Manager’s id and kind
fields (separated by a vertical bar, ‘‘|’’). Note that the latter
indicates the name of the Library object that created the
InstanceManager.

‘‘labelid’’ string

Object reference of an object that indicates the location where the
new instance should be created.

‘‘location’’ Location

If ‘‘labelid’’ or ‘‘location’’ are not specified in the_criteria argument, or if the string passed in the
‘‘labelid’’ matches the id field of the label of any existing members of this instance manager, the
CosLifeCycle::InvalidCriteria exception will be raised.

Note that an instance’s label is the primary distinguishing characteristic for that instance. For
that reason, an instance’s label must be unique in space and time. The ‘‘labelid’’ criterion above
must be constructed with that end in view.

ManagedSets::FilteredSet

BasicInstanceManager inherits the add_object , add_n_objects , remove_object and remove_n_objects
operations, among others, via its inheritance from ManagedSets::FilteredSet. Since instances
are intended to spend their entire existence as members of the instance manager that created
them, these four operations must be constrained to work only in the context of other operations
that affect an instance’s lifecycle. Specifically, the instance manager’s inherited remove_object
operation should only be invoked by an instance’s inherited
CosLifeCycle::LifeCycleObject::remove operation, and add_object , add_n_objects and
remove_n_objects must be disabled.

3.6.4.3 The get_instances_interface Operation

The get_instances_interface operation returns an object reference to a description of the interface
supported by instances supported by this basic instance manager.

Syntax

CORBA::InterfaceDef get_instances_interface();

Exceptions

CORBA 1.2 standard exceptions.

Systems Management: Common Management Facilities 55

ManagedInstances Module Management Facilities Specification

3.6.5 ManagedInstances::InstanceManager Interface

The ManagedInstances::InstanceManager interface provides all of the
ManagedInstances::BasicInstanceManager capabilities, and in addition provides capabilities
that support the specification of policy to be associated with managed instances. This is done
through the inheritance of the Policies::PolicyObjectAdmin interface. Instances created and
managed by an InstanceManager must support the PolicyRegions::PolicyDrivenBase interface.

Instance managers are created by invoking the create_object operation on a library object that is
responsible for supporting object types within a specified scope of influence, which may be some
subset of the overall managed environment.

The ManagedInstances::InstanceManager interface does not introduce any new operations
other than those that are inherited.

3.6.5.1 Inherited Interfaces

The InstanceManager interface inherits from the following interfaces:

• ManagedInstances::BasicInstanceManager

• Policies::PolicyObjectAdmin

3.6.5.2 Unique Behavior of Inherited Interfaces

Operations defined within these interfaces may have unique behavior when inherited by the
InstanceManager interface.

CosLifeCycle::GenericFactory

InstanceManager objects have the same unique behaviors for this inherited interface as those
described for BasicInstanceManager objects.

For the create_object operation, after the new instance is created and added to this instance
manager, the add_object operation on the policy region must be invoked to cause the created
policy driven base object to be added to the policy region.

The following table defines the name/value pairs that are passed in the the_criteria argument of
the create_object call in addition to those defined for BasicInstanceManager

Name Type Value Interpretation
A list of object references of the PolicyRegion
objects that the new PolicyDrivenBase object
should be added to. At least one PolicyRegion
must be in the list.

‘‘policy regions’’ PolicyRegionList

An indicator if initialization policy from nested
policy regions should be used. TRUE indicates
that it should, while FALSE indicates that it
should not.

‘‘nested initialization’’ boolean

If ‘‘policy regions’’ is not specified in the_criteria argument, the CosLifeCycle::InvalidCriteria
exception is raised. If an error occurs during the processing of the ‘‘policy regions’’ criterion,
then the CosLifeCycle::CannotMeetCriteria exception is raised and all processing that has so far
occurred in the create_object () operation is rolled back as if it was a transaction, including the
deletion of the newly-created instance.

56 CAE Specification

Management Facilities Specification ManagedInstances Module

If ‘‘nested initialization’’ is not specified, then nested initialization will not take place — the
default behavior will be the same as if a value of FALSE had been specified. The ordering of
initialization policy objects on which the initialize_policy_driven_object operation will be called is
defined as follows:

• The order will be the same as the ordering of policy regions within the ‘‘policy regions’’ name
value pair of the the_criteria parameter.

• If nested initialization is to take place, the topmost containing policy region’s initialization
policy object is used prior to that of the policy region in the parameter2.

3.6.6 ManagedInstances::Library Interface

The ManagedInstances::Library interface acts as both a factory for the creation of instance
managers and as a factory finder for locating instance managers. This includes all of the various
instance manager types defined in this specification, namely:

• ManagedInstances::BasicInstanceManager

• ManagedInstances::InstanceManager

The library also acts as a factory and factory finder for subtypes of these interfaces.

There may be one or more objects that supports the ManagedInstances::Library interface in an
environment.

The ManagedInstances::Library interface does not introduce any new operations other than
those that are inherited.

Objects inheriting from the ManagedInstances::Library interface may not be destroyed while
instance managers are members of those objects.

3.6.6.1 Inherited Interfaces

The ManagedInstances::Library interface inherits from the following interfaces:

• ManagedSets::FilteredSet

• CosLifeCycle::GenericFactory

• CosLifeCycle::FactoryFinder

2. It is possible for a policy region itself to be a member of multiple policy regions. When this occurs, the order of initialization
policies used is not defined. Because of this, it is recommended that policy regions should not belong to more than one other
policy region if deterministic ordering of initialization policies is required.

Systems Management: Common Management Facilities 57

ManagedInstances Module Management Facilities Specification

3.6.6.2 Unique Behavior of Inherited Interfaces

Operations defined within these interfaces may have unique behavior when inherited by the
Library interface:

ManagedSets::FilteredSet

Library inherits the add_object , add_n_objects , remove_object and remove_n_objects operations,
among others, via its inheritance from ManagedSets::FilteredSet. Since instance managers are
intended to spend their entire existence as members of the library that created them, these four
operations must be constrained to work only in the context of other operations that affect an
instance manager’s lifecycle. Specifically, remove_object may only be invoked by or as a
consequence of an instance manager’s inherited CosLifeCycle::LifeCycleObject::remove
operation, and add_object , add_n_objects and remove_n_objects must be disabled.

CosLifeCycle::GenericFactory

The Library uses this interface to create objects that are instances of the BasicInstanceManager
interface as well as objects that are sub-types of BasicInstanceManager (including
InstanceManager, and PolicyRegionsInstanceManager).

The k argument is used with both the create_object and supports operations. It is defined to take
the following:

kind field id field
The fully scoped name of the principal IDL interface for the type
of instance manager to be created.

‘‘object interface’’

The name of the implementation to be used with the instance
manager to be created.

‘‘object implementation’’

For both the supports and create_object operations the k argument is required. It is implementation
dependent as to whether just ‘‘object interface’’ or ‘‘object implementation’’, or both, are required
to be specified. The ‘‘object interface’’ must specify a principal IDL interface that supports the
BasicInstanceManager interface. For supports , if the Library is capable of creating an instance
manager of the specified type and implementation, it returns TRUE, otherwise it returns FALSE.
For create_object , if the Library is not capable of creating an instance manager of the specified
type and implementation, the CosLifeCycle::NoFactory exception is raised.

The the_criteria argument of the create_object operation may pass the elements defined in the
following table:

58 CAE Specification

Management Facilities Specification ManagedInstances Module

Name Type Value Interpretation
A symbolic name for the instance manager
being created. This value will be stored as the
id field of the instance manager’s label. The
kind field of the instance manager’s label will
be set to the id field of the library object upon
which this operation was invoked. The id and
kind fields of an instance manager’s label are
then concatenated, with a vertical bar (‘‘|’’)
between them as a delimiter, to form the kind
field of any instance that the instance manager
creates.

‘‘labelid’’ string

Object reference of the default initialization
policy object associated with the instance
manager being created.

‘‘default initialization’’ InitializationPolicy

Object references of additional initialization
policy objects associated with the instance
manager being created.

‘‘initializations’’ sequence <InitializationPolicy>

Object reference of the default validation
policy object associated with the instance
manager being created.

‘‘default validation’’ ValidationPolicy

Object references of additional validation
policy objects associated with the instance
manager being created.

‘‘validations’’ sequence <ValidationPolicy>

Object reference indicating location of where
the instance manager being created should
reside.

‘‘location’’ Location

The fully scoped name of the principal IDL
interface of the type of instances this instance
manager will create.

‘‘type’’ string

The InterfaceDef associated with the type of
instances this instance manager will create.

‘‘interface’’ CORBA::InterfaceDef

The ImplementationDef associated with the
type of instances this instance manager will
create.

‘‘implementation’’ ImplementationDef

Note that not all criteria are required to be supported in all implementations. It’s important that
the client supply sufficient information to describe the type of object the instance manager will
create. In some implementations, the type criteria alone may be sufficient for this. Other
implementations may require the interface and implementation criteria, but not the type. Within a
particular implementation, if sufficient information is not supplied by the client to describe the
types of objects the Instance Manager will create, the CosLifeCycle::InvalidCriteria exception is
raised.

If the string passed in the ‘‘labelid’’ matches the id field of the label of any existing members of
this library, the CosLifeCycle::InvalidCriteria exception is raised.

If an error occurs during the processing of the ‘‘initializations’’ or ‘‘validations’’ criteria, then the
CosLifeCycle::CannotMeetCriteria exception is raised and all processing that has so far
occurred in the create_object () operation will be rolled back as if it was a transaction, including
the deletion of the newly-created instance manager.

Systems Management: Common Management Facilities 59

ManagedInstances Module Management Facilities Specification

CosLifeCycle::FactoryFinder

The find_factories operation is invoked on instances of the ManagedInstances::Library interface
in order to obtain a list of instance managers that meet a set of selection constraints. These
constraints are passed in the factory_key argument, and are composed as a sequence of
CosNaming::NameComponent structures, each containing a kind field and an id field. The
following table defines what can be passed in this argument:

kind field id field
Fully scoped interface name for the instances this instance
manager creates

‘‘object interface’’

Name of the implementation for the instances this instance
manager creates

‘‘object implementation’’

One of ‘‘with’’, ‘‘without’’‘‘initialization policy’’

One of ‘‘with’’, ‘‘without’’‘‘validation policy’’

Fully scoped interface name for the instance manager‘‘factory interface’’

Note that not all of these selection constraints are required to be supported by all
implementations. If the Library does not contain any instance manager objects that meet the
specified constraints, or if the factory_key argument is specified as an empty sequence, the
CosLifeCycle::NoFactory exception is raised.

3.6.7 ManagedInstances::PolicyRegionsInstanceManager Interface

The ManagedInstances::PolicyRegionsInstanceManager interface defines a specialized instance
manager that is used to create and manage instances of the PolicyRegions::PolicyRegion
interface. It enables a policy region to be initialized when it is created, setting it up similar to
another policy region specified at object creation time.

3.6.7.1 Inherited Interfaces

The PolicyRegionsInstanceManager interface inherits from the
ManagedInstances::InstanceManager interface.

60 CAE Specification

Management Facilities Specification ManagedInstances Module

3.6.7.2 Unique Behavior of Inherited Interfaces

Operations within the following interface have unique behavior when inherited by the
PolicyRegionsInstanceManager interface:

CosLifeCycle::GenericFactory

The create_object operation is invoked on instances of
ManagedInstances::PolicyRegionsInstanceManager in order to create new policy regions. This
operation is the same as is defined for the ManagedInstances::InstanceManager interface, with
the exception that the_criteria argument can also contain the following element:

Name Type Value Interpretation
Object reference to the PolicyRegion that the new
PolicyRegion should initially be modeled after.
This means that the new policy region will be
initialized to support all of the same instance
managers (using the same InitializationPolicy and
ValidationPolicy objects) as the model policy
region.

‘‘model policy region’’ PolicyRegion

Systems Management: Common Management Facilities 61

PolicyRegions Module Management Facilities Specification

3.7 PolicyRegions Module
The PolicyRegions module defines the PolicyRegion, and PolicyDrivenBase interfaces and their
operations. These policy-related interfaces allow administrators to organize applications to
reflect site-specific rules of system administration.

3.7.1 Interfaces and Operations

Module Interface Operation
PolicyRegion

Inheritance:
PolicyRegions::PolicyDrivenBase
ManagedSets::FilteredSet
CosLifeCycle::GenericFactory

add_instance_manager
remove_instance_manager
get_instance_manager_list
set_initialization_policy
get_initialization_policy
set_validation_policy
get_validation_policy
policy_validation
is_validation_enabled
verify_policy
get_policy_failures
get_all_initialization_policies
get_all_enabled_validation_policies

PolicyRegions

PolicyDrivenBase

Inheritance:
ManagedInstances::Instance

get_policy_region_info
move_to_policy_region
add_to_policy_region
remove_from_policy_region
list_enabled_validation_policies
list_initialization_policies

Table 3-5 Interfaces and Operations for the PolicyRegions Module

3.7.2 Specified IDL

//
// Component Name: PolicyRegions.idl
//
// Description:
// The following interfaces provide the functionality
// for support of policy regions.
//

#ifndef POLICYREGIONS_IDL
#define POLICYREGIONS_IDL

#include <SysAdminTypes.idl>
#include <SysAdminExcept.idl>
#include <SysAdminLifeCycle.idl>
#include <CosLifeCycle.idl>
#include <ManagedSets.idl>
#include <ManagedInstances.idl>

module PolicyRegions {

// forward references

62 CAE Specification

Management Facilities Specification PolicyRegions Module

interface PolicyRegion;
interface PolicyDrivenBase;

struct PolicyResult {
PolicyDrivenBase object_verified;
PolicyRegion containing_region;
Policies::ValidationPolicy validation_object_used;
boolean passed_policy;
string description;

};

typedef sequence<PolicyResult> PolicyResultList;

enum SelectionCriteria {
all,
with_initialization,
with_validation,
with_validation_enabled,
with_initialization_or_validation,
with_initialization_or_validation_enabled

};

typedef sequence<PolicyRegion> PolicyRegionList;

interface PolicyResultIterator {
boolean next_one (

out PolicyResult pr;
};

boolean next_n (
in unsigned long how_many,
out PolicyResultList pr_list;

};

void destroy();

}; // End PolicyResultIterator interface

interface PolicyDrivenBase : ManagedInstances: :Instance {

SysAdminTypes::ObjectLabelList get_policy_region_info();

void move_to_policy_region (
in PolicyRegions::PolicyRegion pr_from,
in PolicyRegions::PolicyRegion pr_to

) raises (
SysAdminException::ExObjNotFound,
SysAdminException::ExNotFound,
SysAdminException::ExInvalid

);

void add_to_policy_region (
in PolicyRegions::PolicyRegion pr

) raises (
SysAdminException::ExNotFound,
SysAdminException::ExInvalid

);

void remove_from_policy_region (

Systems Management: Common Management Facilities 63

PolicyRegions Module Management Facilities Specification

in PolicyRegions::PolicyRegion pr
) raises (

SysAdminException::ExObjNotFound,
SysAdminException::ExInvalid

);

SysAdminTypes::ObjectLabelList list_enabled_validation_policies (
in PolicyRegionList policy_regions,
in CORBA::InterfaceDef interface_def,
in boolean include_nested

) raises (
SysAdminException::ExNotFound

);

SysAdminTypes::ObjectLabelList list_initialization_policies
(

in PolicyRegionList policy_regions,
in CORBA::InterfaceDef interface_def,
in boolean include_nested

) raises (
SysAdminException::ExNotFound

);

}; // End of PolicyDrivenBase interface

interface PolicyRegion :
PolicyDrivenBase,
ManagedSets::FilteredSet,
CosLifeCycle::GenericFactory

{

void add_instance_manager (
in ManagedInstances: :InstanceManager im,
in Policies::InitializationPolicy initialization_policy,
in Policies::ValidationPolicy validation_policy

) raises (
SysAdminException::ExExists

);

void remove_instance_manager (
in ManagedInstances: :InstanceManager im

) raises (
SysAdminException::ExObjNotFound,
SysAdminException::ExExists

);

void get_instance_manager_list (
in SelectionCriteria select
in unsigned long how_many;
out SysAdminTypes::ObjectLabelList ol_list;
out ManagedSets::ObjectLabelIterator iterator;

);

void set_initialization_policy (
in ManagedInstances: :InstanceManager im,
in Policies::InitializationPolicy initialization_policy

) raises (
SysAdminException::ExObjNotFound

);

64 CAE Specification

Management Facilities Specification PolicyRegions Module

SysAdminTypes::ObjectLabel get_initialization_policy (
in ManagedInstances: :InstanceManager im

) raises (
SysAdminException::ExObjNotFound

);

void set_validation_policy (
in ManagedInstances: :InstanceManager im,
in Policies::ValidationPolicy validation_policy

) raises (
SysAdminException::ExObjNotFound

);

SysAdminTypes::ObjectLabel get_validation_policy (
in ManagedInstances: :InstanceManager im

) raises (
SysAdminException::ExObjNotFound

);

void policy_validation (
in ManagedInstances: :InstanceManager im,
in boolean enable

) raises (
SysAdminException::ExObjNotFound

);

boolean is_validation_enabled (
in ManagedInstances: :InstanceManager im

) raises (
SysAdminException::ExObjNotFound

);

void verify_policy (
in ManagedSets::Set scope,
in boolean included_nested,
in unsigned long how_many,
out PolicyResultList pr_list,
out PolicyResultIterator iterator

);

PolicyResultList get_policy_failures (
in ManagedSets::Set scope,
in boolean include_nested
in unsigned long how_many,
out PolicyResultList pr_list,
out PolicyResultIterator iterator

);

SysAdminTypes::ObjectLabelList get_all_initialization_policies
(

in ManagedInstances: :InstanceManager im
) raises (

SysAdminException::ExNotFound
);

SysAdminTypes::ObjectLabelList get_all_enabled_validation_policies (
in ManagedInstances: :InstanceManager im

) raises (
SysAdminException::ExNotFound

Systems Management: Common Management Facilities 65

PolicyRegions Module Management Facilities Specification

);

}; // End of PolicyRegion interface

}; // End of PolicyRegions module

#endif // POLICYREGIONS_IDL

3.7.3 PolicyRegions::PolicyResultIterator

The PolicyResultIterator interface defines the following operations that allow an object to
iteratively request a list of PolicyResult structures that were generated by verifying policy upon
members of the current PolicyRegion. The PolicyResultIterator provides a static view of the
policy conformance of the target members of the PolicyRegion at the time the iterator was
created, and does not reflect subsequent changes to either the objects’ membership in the
PolicyRegion or their conformance to the current policies of the PolicyRegion. The operations
provided are:

• next_one

• next_n

• destroy

3.7.3.1 The next_one Operation

The next_one operation returns the next PolicyResult structure. If the last PolicyResult structure
is being returned on this call (or was returned on a previous call), this operation returns FALSE,
indicating subsequent calls to the iterator are not needed.

Syntax

boolean next_one (
out PolicyResult pr;

};

Exceptions

CORBA 1.2 standard exceptions.

3.7.3.2 The next_n Operation

The next_n operation returns at most the requested number of PolicyResult structures. If the last
PolicyResult structure is being returned on this call (or was returned on a previous call), this
operation returns FALSE, indicating subsequent calls to the iterator are not needed.

Syntax

boolean next_n(
in unsigned long how_many,
out PolicyResultList pr_list,

};

Exceptions

CORBA 1.2 standard exceptions.

66 CAE Specification

Management Facilities Specification PolicyRegions Module

3.7.3.3 The destroy Operation

The destroy operation destroys the iterator.

Syntax

void destroy();

Exceptions

CORBA 1.2 standard exceptions.

3.7.4 PolicyRegions::PolicyDrivenBase

The PolicyDrivenBase interface defines the operations required for an object to be managed by a
policy region. It serves as a base interface to be inherited by interfaces for objects that will be
managed and subject to policy.

The PolicyRegions::PolicyDrivenBase interface defines the following operations:

• get_policy_region_info

• move_to_policy_region

• add_to_policy_region

• remove_from_policy_region

• list_enabled_validation_policies

• list_initialization_policies

3.7.4.1 Inherited Interfaces

The PolicyRegions::PolicyDrivenBase interface inherits from the ManagedInstances::Instance
interface.

3.7.4.2 The get_policy_region_info Operation

The get_policy_region_info operation returns information about the policy regions that the target
object is a member of. This includes both the object reference and the label for each of the policy
regions.

Syntax

SysAdminTypes::ObjectLabelList get_policy_region_info();

Exceptions

CORBA 1.2 standard exceptions.

3.7.4.3 The move_to_policy_region Operation

The move_to_policy_region operation moves the target PolicyDrivenBase object from the
PolicyRegion object specified in the pr_from argument to the PolicyRegion object specified in
the pr_to argument. The InstanceManager that the target object belongs to must be in the list of
instance managers supported by the pr_to policy region. The target object must also be a
member of the pr_from policy region.

Systems Management: Common Management Facilities 67

PolicyRegions Module Management Facilities Specification

Syntax

void move_to_policy_region(
in PolicyRegions::PolicyRegion pr_from,
in PolicyRegions::PolicyRegion pr_to

) raises (
SysAdminException::ExObjNotFound,
SysAdminException::ExNotFound,
SysAdminException::ExInvalid

);

Exceptions

CORBA 1.2 standard exceptions, SysAdminException::ExObjNotFound,
SysAdminException::ExNotFound and SysAdminException::ExInvalid.

SysAdminException::ExObjNotFound is raised when the target object is not currently a
member of the pr_from policy region.

SysAdminException::ExNotFound is raised when the target object is being added to a policy
region that does not support objects managed by the target object’s instance manager.

SysAdminException::ExInvalid is raised when an implementation restriction on policy region
membership would be violated by moving this PolicyDrivenBase object to this PolicyRegion.

SysAdminException::ExInvalid is raised when the label of the target object matches that of an
object that is already in the PolicyRegion specified by pr_to , and the CORBA::Object defined
is_equivalent method returns FALSE when invoked on the target object, passing the already
existing PolicyRegion member. In this case the target object is still a member of the source
PolicyRegion. If the CORBA::Object defined is_equivalent method returns TRUE in the situation
described above, no exception is raised and there remains only one reference to the object in the
PolicyRegion.

3.7.4.4 The add_to_policy_region Operation

The add_to_policy_region operation adds the target PolicyDrivenBase object to the PolicyRegion
set specified in the pr argument. The InstanceManager that the target object belongs to must be
in the list of instance managers supported by the policy region.

Syntax

void add_to_policy_region(
in PolicyRegions::PolicyRegion pr

) raises (
SysAdminException::ExNotFound,
SysAdminException::ExInvalid

);

Exceptions

CORBA 1.2 standard exceptions, SysAdminException::ExNotFound and
SysAdminException::ExInvalid.

SysAdminException::ExNotFound is raised when the target object is being added to a policy
region that does not support objects managed by the target object’s instance manager.

SysAdminException::ExInvalid is raised when an implementation restriction on policy region
membership would be violated by adding this PolicyDrivenBase object to this PolicyRegion.

68 CAE Specification

Management Facilities Specification PolicyRegions Module

SysAdminException::ExInvalid is raised when the label of the target object matches that of an
object that is already in the PolicyRegion specified by pr, and the CORBA::Object defined
is_equivalent method returns FALSE when invoked on the target object, passing the already
existing PolicyRegion member. If the CORBA::Object defined is_equivalent method returns
TRUE in this case, no exception is raised and there remains only one reference to the object in the
PolicyRegion.

3.7.4.5 The remove_from_policy_region Operation

The remove_from_policy_region operation removes the target PolicyDrivenBase object from the
PolicyRegion set specified in the pr argument. If the specified policy region is the only policy
region that the target object belongs to, the target object will not be removed.

Syntax

void remove_from_policy_region(
in PolicyRegions::PolicyRegion pr

) raises (
SysAdminException::ExObjNotFound,
SysAdminException::ExInvalid

);

Exceptions

CORBA 1.2 standard exceptions, SysAdminException::ExObjNotFound and
SysAdminException::ExInvalid.

SysAdminException::ExObjNotFound is raised when the target object is not currently a
member of the specified policy region.

SysAdminException::ExInvalid is raised if the target object belongs to no other policy regions
than the one specified in the pr argument.

3.7.4.6 The list_enabled_validation_policies Operation

The list_enabled_validation_policies operation returns a list of validation policies that the target
policy driven base object is subject to. Only validation policies for which validation is enabled
will be returned. The selection of the validation policies returned can be controlled through the
arguments specified on the call to this operation.

The policy_regions argument is a list of policy regions of which the search is to be limited to. If
the target policy driven base object is not a direct member of any of the listed policy regions,
those policy regions are ignored in the search. If this argument is passed as an empty sequence
(that is, sequence of zero length), all of the policy regions to which the target policy driven base
object belongs will be included in the search.

The include_nested argument, if specified as FALSE, indicates that the search is to be limited to
policy regions that the target object is directly a member of. If this argument is specified as
TRUE, the search will include not only those policy regions to which the target policy driven
base object is a direct member, but also all policy regions that are up the containment hierarchy
from them.

The interface_def argument allows the validation policy objects being returned to be restricted to
those that support the specified interface. If this argument is specified as NULL, all validation
policy objects that meet the other selection criteria will be returned.

Systems Management: Common Management Facilities 69

PolicyRegions Module Management Facilities Specification

The validation policies returned will be ordered based on the following set of rules:

• If the policy_regions parameter is not specified, the order is undefined.

• If the policy_regions parameter is specified, the order will be the same as the ordering of
policy regions within the parameter.

• If the include_nested parameter is specified as TRUE, then for each policy region in the
policy_regions parameter, the topmost containing policy region’s validation policy occurs
prior to that of the policy region in the parameter3.

Syntax

SysAdminTypes::ObjectLabelList list_enabled_validation_policies(
in PolicyRegionList policy_regions,
in CORBA::InterfaceDef interface_def,
in boolean include_nested

) raises (
SysAdminException::ExNotFound

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExNotFound.

SysAdminException::ExNotFound is raised when no validation policy objects meet the
selection criteria specified on the call.

3.7.4.7 The list_initialization_policies Operation

The list_initialization_policies operation returns a list of initialization policies that the target
policy driven base object is subject to. The selection of the initialization policies returned can be
controlled through the arguments specified on the call to this operation.

The policy_regions argument is a list of policy regions of which the search is to be limited to. If
the target policy driven base object is not a direct member of any of the listed policy regions,
those policy regions are ignored in the search. If this argument is passed as an empty sequence
(that is, sequence of zero length), all of the policy regions to which the target policy driven base
object belongs will be included in the search.

The include_nested argument, if specified as FALSE, indicates that the search is to be limited to
policy regions that the target object is directly a member of. If this argument is specified as
TRUE, the search will include not only those policy regions to which the target policy driven
base object is a direct member, but also all policy regions that are up the containment hierarchy
from them.

The interface_def argument allows the initialization policy objects being returned to be restricted
to those that support the specified interface. If this argument is specified as NULL, all
initialization policy objects that meet the other selection criteria will be returned.

The initialization policies returned will be ordered based on the following set of rules:

3. It is possible for a policy region itself to be a member of multiple policy regions. When this occurs, the order of validation policies
returned is not defined. Because of this, it is recommended that policy regions should not belong to more than one other policy
region if deterministic ordering of validation policies is required.

70 CAE Specification

Management Facilities Specification PolicyRegions Module

• If the policy_regions parameter is not specified, the order is undefined.

• If the policy_regions parameter is specified, the order will be the same as the ordering of
policy regions within the parameter.

• If the include_nested parameter is specified as TRUE, then for each policy region in the
policy_regions parameter, the topmost containing policy region’s initialization policy occurs
prior to that of the policy region in the parameter4.

Syntax

SysAdminTypes::ObjectLabelList list_initialization_policies(
in PolicyRegionList policy_regions,
in CORBA::InterfaceDef interface_def,
in boolean include_nested

) raises (
SysAdminException::ExNotFound

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExNotFound.

SysAdminException::ExNotFound is raised when no initialization policy objects meet the
selection criteria specified on the call.

3.7.5 PolicyRegions::PolicyRegion Interface

The PolicyRegions::PolicyRegion interface defines the operations that provide the ability for
system administration applications to group a set of managed resources and to define and
uniformly apply the policies to the set of resources. In addition, operations that allow querying
the policy region for the policy that applies to a particular instance manager are defined.

The PolicyRegions::PolicyRegion interface defines the following operations:

• add_instance_manager

• remove_instance_manager

• get_instance_manager_list

• set_initialization_policy

• get_initialization_policy

• set_validation_policy

• get_validation_policy

• policy_validation

• is_validation_enabled

4. It is possible for a policy region itself to be a member of multiple policy regions. When this occurs, the order of initialization
policies returned is not defined. Because of this, it is recommended that policy regions should not belong to more than one other
policy region if deterministic ordering of initialization policies is required.

Systems Management: Common Management Facilities 71

PolicyRegions Module Management Facilities Specification

• verify_policy

• get_policy_failures

• get_all_initialization_policies

• get_all_enabled_validation_policies

3.7.5.1 Inherited Interfaces

The PolicyRegion interface inherits from the following interfaces:

• PolicyRegions::PolicyRegionBase

• CosLifeCycle::GenericFactory

• ManagedSets::FilteredSet

Unique Behavior of Inherited Interfaces

Operations defined within these interfaces may have unique behavior when inherited by the
PolicyRegions::PolicyRegion interface:

CosLifeCycle::LifeCycleObject
The implementation of the remove operation within the PolicyRegions::PolicyRegion
interface must insure that the policy region is empty prior to deleting itself. If the policy
region is not empty, an exception is raised.

CosLifeCycle::GenericFactory
PolicyRegion uses this interface to provide a convenience function, allowing other
PolicyRegion objects similar to itself to be created and initialized.

The k argument is used with both the create_object and supports operations. It is defined to
take the following:

kind field id field
The fully scoped name of the principal IDL interface for the
type of policy region to be created

‘‘object interface’’

The name of the implementation to be used with the policy
region to be created

‘‘object implementation’’

For the supports operation the k argument is required. It is implementation dependent as to
whether just ‘‘object interface’’ or ‘‘object implementation’’, or both, are required to be
specified. If the PolicyRegion is capable of creating another policy region of the specified
interface and implementation, it returns TRUE, otherwise it returns FALSE. Note that a
PolicyRegion only creates objects of the same interface and implementation as itself.

For the create_object operation, the k argument is optional and may be specified as an empty
sequence (that is, sequence of length zero). This is because the policy region already has a
defined interface and implementation. If the k argument is specified, the values specified
must be consistent with the interface and implementation of this policy region object. If it is
not, the CosLifeCycle::NoFactory exception is raised.

The implementation of the create_object operation within the PolicyRegions::PolicyRegion
interface creates another policy region that is contained in the creating region. That is, the
new region is made a member of the policy region’s set. The new policy region is an exact
duplicate of the owner, including the set of supported instance managers and policies,
except that it is created empty of members. This is similar to calling the

72 CAE Specification

Management Facilities Specification PolicyRegions Module

ManagedInstances::PolicyRegionsInstanceManager specifying the target policy region
object in the ‘‘policy regions’’ and ‘‘model policy region’’ name/value pairs of the_criteria
argument.

For the create_object operation, after the new policy region is created and added to this policy
region, the newly created policy region should be added to this policy region’s instance
manager (which must support the PolicyRegionsInstanceManager interface).

The name/value pairs that are passed in the_criteria argument of the create_object call should
contain the named values for labelid and location . These have the same meaning as defined
for the ManagedInstances::InstanceManager interface. If these are not specified, the
CosLifeCycle::InvalidCriteria exception is raised.

3.7.5.2 The add_instance_manager Operation

The add_instance_manager operation adds a new supported instance manager to the target object.
The target object must be a policy region object. This operation optionally assigns an
initialization policy object and validation policy object to the region. The im argument specifies
the object reference of the instance manager to be added to the policy region. The
validation_policy argument specifies the object reference of the validation policy to be assigned to
the policy region. If this parameter is set to the object reference for a validation policy object,
policy validation is enabled in the policy region for the instance manager. If this parameter is set
to OBJECT_NIL, no policy validation is assigned to the new instance manager and policy
validation is not enabled for it. The initialization_policy argument specifies the object reference of
the initialization policy object to be assigned to the policy region. If this parameter is set to
OBJECT_NIL, no initialization policy is assigned to the new instance manager and no
initialization policy is applied. The policy objects specified by the initialization_policy and
validation_policy parameters must already have been registered with the instance manager
specified by the im parameter5.

Syntax

void add_instance_manager(
in ManagedInstances: :InstanceManager im,
in Policies::InitializationPolicy initialization_policy,
in Policies::ValidationPolicy validation_policy

)raises(
SysAdminException::ExExists

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExExists.

SysAdminException::ExExists is raised when the specified instance manager is already a
member of the policy region.

5. Refer to the operations of the PolicyObjectAdmin interface, described elsewhere in this specification.

Systems Management: Common Management Facilities 73

PolicyRegions Module Management Facilities Specification

3.7.5.3 The remove_instance_manager Operation

The remove_instance_manager operation removes the specified instance manager from the target
object, which must support the PolicyRegions::PolicyRegion
interface. There must be no members of the specified instance manager in the policy region for
this operation to succeed. The im argument specifies the object reference of the instance manager
object that manages the object type that is to be removed from the policy region.

Syntax

void remove_instance_manager(
in ManagedInstances: :InstanceManager im

)raises(
SysAdminException::ExObjNotFound,
SysAdminException::ExExists

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExObjNotFound and
SysAdminException::ExExists.

The SysAdminException::ExObjNotFound exception is raised if the instance manager object
passed in the im parameter is not registered with this policy region.

The SysAdminException::ExExists exception is raised if this policy region currently has any
policy driven base objects as members who are also members of the instance manager passed in
the im parameter.

3.7.5.4 The get_instance_manager_list Operation

The get_instance_manager_list operation lists the instance manager supported by the target object,
which must support the PolicyRegions::PolicyRegion interface. This operation lists the instance
manager’s object references and labels. The select argument specifies which of the instance
managers supported by the target policy region will be returned in the list. The values for this
argument have the following meaning:

all list all instance managers registered with the policy region

with_initialization
list all instance managers that have an InitializationPolicy object registered with the policy
region

with_validation
list all instance managers that have a ValidationPolicy object registered with the policy
region

with_validation_enabled
list all instance managers that have validation enabled with the policy region

with_initialization_or_validation
list all instance managers that have an InitializationPolicy object or ValidationPolicy object
registered with the policy region

with_initialization_or_validation_enabled
list all instance managers that have an InitializationPolicy object registered or have
validation enabled with the policy region.

74 CAE Specification

Management Facilities Specification PolicyRegions Module

The initial size of ol_list is determined by the how_many argument. The rest of the ObjectLabel
structures, if any, can be retrieved using the returned iterator object. When how_many is equal to
or greater than the total number of ObjectLabel structures that could potentially be returned, all
of the ObjectLabel structures will be returned in ol_list and the iterator will be returned as
OBJECT_NIL.

Syntax

enum SelectionCriteria {
all,
with_initialization,
with_validation,
with_validation_enabled,
with_initialization_or_validation,
with_initialization_or_validation_enabled

};

void get_instance_manager_list (
in SelectionCriteria select,
in unsigned long how_many,
out ObjectLabelList ol_list,
out ObjectLabelIterator iterator

);

Exceptions

CORBA 1.2 standard exceptions.

3.7.5.5 The set_initialization_policy Operation

The set_initialization_policy operation assigns the specified initialization policy object to the
specified instance manager, replacing any previous assignment. This assignment is in effect only
in the policy region represented by the target object. The initialization policy supplies the new
instance manager members with initial attribute values. The policy region must already support
the specified instance manager. Use the add_instance_manager operation to add a new supported
instance manager to a policy region. The im argument is the object reference of the instance
manager that defines the instance manager to which the initialization policy is to be assigned in
the target policy region. The initialization_policy argument is the object reference of the
initialization policy object whose methods return the proper default values. If this parameter is
set to OBJECT_NIL, no initialization policy is assigned to the instance manager and the default
initialization policy, if set, is applied.

Syntax

void set_initialization_policy(
in Instances::InstanceManager im,
in Policies::InitializationPolicy initialization_policy

)raises(
SysAdminException::ExObjNotFound

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExObjNotFound.

Systems Management: Common Management Facilities 75

PolicyRegions Module Management Facilities Specification

SysAdminException::ExObjNotFound is raised when the instance manager to which the
initialization policy is being set is not supported by the policy region.

3.7.5.6 The get_initialization_policy Operation

The get_initialization_policy operation returns the object reference of the initialization policy
object assigned to the specified instance manager. The instance manager may have other
initialization policy objects for other policy regions. The im argument is the object reference of
the instance manager for the initialization policy object to be returned.

Syntax

SysAdminTypes::ObjectLabel get_initialization_policy (
in ManagedInstances: :InstanceManager im

)raises(
SysAdminException::ExObjNotFound

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExObjNotFound.

SysAdminException::ExObjNotFound is raised when the specified instance manager does not
have an initialization policy object registered for it.

3.7.5.7 The set_validation_policy Operation

The set_validation_policy operation assigns and enables the specified validation policy object to
the specified instance manager, replacing any previous validation policy assignment. This
assignment is in effect only in the policy region represented by the target object. The validation
policy object supplies methods that validate changes to attributes defined by the instance
manager. The im argument specifies the object reference of the instance manger to which the
validation policy is to be assigned in the target policy region. If the policy_validation parameter is
set to OBJECT_NIL, no validation policy is assigned to the instance manager and the default
validation policy, if set, is used if enabled for it.

Syntax

void set_validation_policy (
in ManagedInstances: :InstanceManager im,
in Policies::ValidationPolicy validation_policy

)raises(
SysAdminException::ExObjNotFound

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExObjNotFound.

SysAdminException::ExObjNotFound is raised when the instance manager associated with the
policy region.

76 CAE Specification

Management Facilities Specification PolicyRegions Module

3.7.5.8 The get_validation_policy Operation

The get_validation_policy returns the object reference of the validation policy object assigned to
the specified instance manager. The instance manager may have other policy validation objects
in other policy regions. The im argument is the object reference of the instance manager whose
validation policy object reference is to be returned.

Syntax

SysAdminTypes::ObjectLabel get_validation_policy (
in ManagedInstances: :InstanceManager im

)raises(
SysAdminException::ExObjNotFound

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExObjNotFound.

SysAdminException::ExObjNotFound is raised when a validation policy object is not registered
for the instance manager or the instance manager is not registered in the policy region.

3.7.5.9 The policy_validation Operation

The policy_validation operation enables or disables validation policy for the specified instance
manager. This setting applies only to the specified instance manager in the target policy region.
The instance manager can have validation policy independently enabled or disabled in other
policy regions. The im argument is the object reference of the instance manager whose validation
policy state is to be set. The enable argument is set to TRUE if policy validation is to be enabled
for the specified instance manager. This argument is set to FALSE if validation policy is to be
disabled.

Syntax

void policy_validation(
in ManagedInstances: :InstanceManager im,
in boolean enable

)raises(
SysAdminException::ExObjNotFound

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExObjNotFound.

SysAdminException::ExObjNotFound is raised when the specified instance manager is not
supported by the policy region or if there is no ValidationPolicy object for the specified instance
manager registered in the policy region.

3.7.5.10 The is_validation_enabled Operation

The is_validation_enabled operation returns TRUE or FALSE, depending on whether validation
policy is enabled for the instance manager defined by the im argument. If there is no validation
policy object for the instance manager, the method returns FALSE.

Systems Management: Common Management Facilities 77

PolicyRegions Module Management Facilities Specification

Syntax

boolean is_validation_enabled(
in ManagedInstances: :InstanceManager im

) raises(
SysAdminException::ExObjNotFound

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExObjNotFound.

SysAdminException::ExObjNotFound is raised when the specified instance manager is not
supported by the policy region.

3.7.5.11 The verify_policy Operation

The verify_policy operation is used to verify if objects within the target policy region adhere to
the policy for the region. This operation provides positive feedback, with information being
returned about every object that was checked, irrespective of whether it passed or failed
validation. The returned PolicyResultList contains a PolicyResult structure for every object that
was checked, and the passed_policy boolean in that structure can be used to see if the object
passed or failed validation. It is the validate_policy_driven_object operation defined on the
Policies::ValidationPolicy object that is used to perform the verification.

The operation may include all objects within the policy region or be scoped to only include
objects within the region that are also members of a set passed in the scope argument. Note that if
OBJECT_NIL is passed as the scope argument, or if the object reference of the target policy region
itself is passed as the scope argument, all of the members of the policy region will be checked.

If the include_nested boolean is set to TRUE, then policy defined in all of the target policy region’s
containing policy regions will be used to validate the objects as well.

For any object whose instance manager does not currently have validation enabled within a
policy region, no checking is done in respect to policy for that object relative to that region.

Since each object can be checked multiple times when include_nested is TRUE, it is possible for
there to be multiple PolicyResult structures in the PolicyResultList for any one object in the
target policy region. The PolicyResult structure for each validation that was performed contains:

• An object reference to the object that was checked

• An object reference to the policy region within which the policy is defined

• An object reference to the validation policy object that was used to perform the validation

• A boolean indicator as to whether or not the object passed validation

• A string with a description of the reason for validation failure

This provides sufficient information for the caller to determine exactly what was validated and
from where any validation failures originated.

The initial size of pr_list is determined by the how_many argument. The rest of the PolicyResult
structures, if any, can be retrieved using the returned iterator object. When how_many is equal to
or greater than the total number of PolicyResult structures that could potentially be returned, all
of the PolicyResult structures will be returned in pr_list and the iterator will be returned as
OBJECT_NIL.

78 CAE Specification

Management Facilities Specification PolicyRegions Module

Syntax

PolicyResultList verify_policy(
in ManagedSets::Set scope,
in boolean include_nested
in unsigned long how_many,
out PolicyResultList pr_list,
out PolicyResultIterator iterator

);

Exceptions

CORBA 1.2 standard exceptions.

3.7.5.12 The get_policy_failures Operation

The get_policy_failures operation is used to verify if objects within the target policy region adhere
to the policy for the region. This operation provides feedback only for objects that failed
validation. The returned PolicyResultList contains a PolicyResult structure for every object that
failed validation. It is the validate_policy_driven_object operation defined on the
Policies::ValidationPolicy object that is used to perform the verification.

The operation may include all objects within the policy region or be scoped to only include
objects within the region that are also members of a set passed in the scope argument. Note that if
OBJECT_NIL is passed as the scope argument, or if the object reference of the target policy region
itself is passed as the scope argument, all of the members of the policy region will be checked.

If the include_nested boolean is set to TRUE, then policy defined in all of the target policy region’s
containing policy regions will be used to validate the objects as well.

For any object whose instance manager does not currently have validation enabled within a
policy region, no checking is done in respect to policy for that object relative to that region.

Since each object can be checked multiple times when include_nested is TRUE, it is possible for
there to be multiple PolicyResult structures in the PolicyResultList for any one object in the
target policy region, assuming it failed validation in respect to more than one region. The
PolicyResult structure for each failure contains:

• An object reference to the object that was checked

• An object reference to the policy region within which the policy is defined

• An object reference to the validation policy object that was used to perform the validation

• A boolean indicator set to FALSE

• A string with a description of the reason for validation failure

This provides sufficient information for the caller to determine exactly where any validation
failures originated from.

The initial size of pr_list is determined by the how_many argument. The rest of the PolicyResult
structures, if any, can be retrieved using the returned iterator object. When how_many is equal to
or greater than the total number of PolicyResult structures that could potentially be returned, all
of the PolicyResult structures will be returned in pr_list and the iterator will be returned as
OBJECT_NIL.

Systems Management: Common Management Facilities 79

PolicyRegions Module Management Facilities Specification

Syntax

PolicyResultList get_policy_failures(
in ManagedSets::Set scope,
in boolean include_nested
in unsigned long how_many,
out PolicyResultList pr_list,
out PolicyResultIterator iterator

);

Exceptions

CORBA 1.2 standard exceptions.

3.7.5.13 The get_all_initialization_policies Operation

The get_all_initialization_policies operation returns a list of initialization policy objects, within the
target policy region and all of it’s containing policy regions, that are assigned to the instance
manager specified in the im argument. The initialization policies returned will be ordered in the
same order as the nesting of policy regions, with the topmost containing policy region’s
initialization policy occurring first in the sequence and the target policy region’s initialization
policy occurring last in the sequence6.

Syntax

SysAdminTypes::ObjectLabelList get_all_initialization_policies(
in ManagedInstances: :InstanceManager im

) raises (
SysAdminException::ExNotFound

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExNotFound.

SysAdminException::ExNotFound is raised when no initialization policy objects are found that
satisfy the request.

3.7.5.14 The get_all_enabled_validation_policies Operation

The get_all_enabled_validation_policies operation returns a list of validation policy objects, within
the target policy region and all of it’s containing policy regions, that are assigned to the instance
manager specified in the im argument. Only those validation policy objects for which validation
is enabled are returned. The validation policies returned will be ordered in the same order as the
nesting of policy regions, with the topmost containing policy region’s validation policy
occurring first in the sequence and the target policy region’s validation policy occurring last in
the sequence7.

6. It is possible for a policy region itself to be a member of multiple policy regions. When this occurs, the order of initialization
policies returned is not defined. Because of this, it is recommended that policy regions should not belong to more than one other
policy region if deterministic ordering of initialization policies is required."

7. It is possible for a policy region itself to be a member of multiple policy regions. When this occurs, the order of validation policies
returned is not defined. Because of this, it is recommended that policy regions should not belong to more than one other policy
region if deterministic ordering of validation policies is required.

80 CAE Specification

Management Facilities Specification PolicyRegions Module

Syntax

SysAdminTypes::ObjectLabelList get_all_enabled_validation_policies(
in ManagedInstances: :InstanceManager im

) raises (
SysAdminException::ExNotFound

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExNotFound.

SysAdminException::ExNotFound is raised when no validation policy objects are found that
satisfy the request.

Systems Management: Common Management Facilities 81

Policies Module Management Facilities Specification

3.8 Policies Module
The Policies module defines the interfaces related to policy objects. These interfaces support
interaction between policy objects and objects supporting the PolicyRegion or the
InstanceManager interface.

3.8.1 Interfaces and Operations

Module Interface Operation
PolicyObject

Inheritance:
Identification::Labeled

Policies get_policy_driven_object_type

get_initialization_policies
get_default_initialization
get_validation_policies
get_default_validation
add_initialization
set_default_initialization
remove_initialization
add_validation
remove_validation
set_default_validation
add_pr_backref
remove_pr_backref
get_pr_backrefs

PolicyObjectAdmin

InitializationPolicy

Inheritance:
Policies::PolicyObject

initialize_policy_driven_object

ValidationPolicy

Inheritance:
Policies::PolicyObject

validate_policy_driven_object

Table 3-6 Interfaces and Operations for the Policies Module

3.8.2 Specified IDL

//
// Component Name: Policies.idl
//
// Description:
// The following interfaces provide the functionality
// for support of policy objects.
//

#ifndef POLICIES_IDL
#define POLICIES_IDL

#include <SysAdminTypes.idl>
#include <SysAdminExcept.idl>
#include <Identification.idl>

82 CAE Specification

Management Facilities Specification Policies Module

#include <CosLifeCycle.idl>
#include <ManagedSets.idl>

module Policies {

// forward references
interface PolicyObject;
interface PolicyObjectAdmin;
interface InitializationPolicy;
interface ValidationPolicy;

interface PolicyObjectAdmin
{

SysAdminTypes::ObjectLabelList get_initialization_policies();

InitializationPolicy get_default_initialization (
) raises (

SysAdminException::ExNotFound
);

SysAdminTypes::ObjectLabelList get_validation_policies();

ValidationPolicy get_default_validation (
) raises (

SysAdminException::ExNotFound
);

void add_initialization (
in InitializationPolicy initialization_policy

) raises (
SysAdminException::ExExists,
SysAdminException::ExInvalid

);

void set_default_initialization (
in InitializationPolicy initialization_policy

) raises (
SysAdminException::ExInvalid

);

void remove_initialization (
in InitializationPolicy initialization_policy

) raises (
SysAdminException::ExObjNotFound

);

void add_validation (
in ValidationPolicy validation_policy

) raises (
SysAdminException::ExExists,
SysAdminException::ExInvalid

);

void remove_validation (
in ValidationPolicy validation_policy

) raises (
SysAdminException::ExObjNotFound

);

Systems Management: Common Management Facilities 83

Policies Module Management Facilities Specification

void set_default_validation (
in ValidationPolicy validation_policy

) raises (
SysAdminException::ExInvalid

);

void add_pr_backref (
in PolicyRegion pr

);

void remove_pr_backref (
in PolicyRegion pr

) raises (
SysAdminException::ExNotFound

);

void get_pr_backrefs (
in unsigned long how_many,
out SetList s_list,
out SetIterator iterator

);

}; // End of PolicyObjectAdmin interface

// The PolicyObject interface defines the common
// requirements of policy objects

interface PolicyObject :
Identification::Labeled

{
string get_policy_driven_object_type();

CORBA::InterfaceDef get_policy_driven_object_interface();

}; // End of PolicyObject interface

// The InitializationPolicy interface defines the
// requirements of an initialization policy object

interface InitializationPolicy :
PolicyObject

{
void initialize_policy_driven_object (

in Object object_to_initialize,
in CosLifeCycle::Criteria override_criteria

);

}; // End of InitializationPolicy interface

// The ValidationPolicy interface defines the
// requirements of an validation policy object

interface ValidationPolicy :
PolicyObject

{

boolean validate_policy_driven_object (
in Object object_to_validate,
out string description

84 CAE Specification

Management Facilities Specification Policies Module

);

}; // End of ValidationPolicy interface

}; // End of Policies module

#endif // POLICIES_IDL

3.8.3 Policies::PolicyObjectAdmin Interface

The Policies::PolicyObjectAdmin interface defines operations that all instance managers that
have policy associated with them must support. These operations allow the reporting of the
policy objects associated with the establishment and enforcement of policy, along with the
administration of these policy objects.

The Policies::PolicyObjectAdmin interface defines the following operations:

• get_initialization_policies

• get_default_initialization

• get_validation_policies

• get_default_validation

• add_initialization

• set_default_initialization

• remove_initialization

• add_validation

• remove_validation

• set_default_validation

3.8.3.1 The get_initialization_policies Operation

The get_initialization_policies operation returns the object references and labels of the
initialization policy objects associated with the instance manager.

Syntax

SysAdminTypes::ObjectLabelList get_initialization_policies();

Exceptions

CORBA 1.2 standard exceptions.

3.8.3.2 The get_default_initialization Operation

The get_default_initialization operation returns the default initialization policy object for the
instance manager. If no initialization policy has been explicitly set for the target instance
manager in the current policy region, then the default initialization policy will be used to
initialize new policy-driven objects during object creation.

Systems Management: Common Management Facilities 85

Policies Module Management Facilities Specification

Syntax

InitializationPolicy get_default_initialization(
)raises(

SysAdminException::ExNotFound
);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExNotFound.

SysAdminException::ExNotFound is raised if a initialization policy object is not found for the
object.

3.8.3.3 The get_validation_policies Operation

The get_validation_policies operation returns the object references and labels of any validation
policy objects associated with the instance manager.

Syntax

SysAdminTypes::ObjectLabelList get_validation_policies();

Exceptions

CORBA 1.2 standard exceptions.

3.8.3.4 The get_default_validation Operation

The get_default_validation operation returns the default validation policy object for the instance
manager. If no validation policy has been explicitly set for the target instance manager in the
current policy region, then the default validation policy will be used to validate policy-driven
objects if policy validation is enabled for the instance manager in the policy region of interest.

Syntax

ValidationPolicy get_default_validation(
)raises(

SysAdminException::ExNotFound
);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExNotFound.

SysAdminException::ExNotFound is raised if a validation policy object is not registered for the
object.

3.8.3.5 The add_initialization Operation

The add_initialization operation adds a reference to a new initialization policy object for the
instance manager. Object::_nil() is not permitted as an input value.

86 CAE Specification

Management Facilities Specification Policies Module

Syntax

void add_initialization(
in InitializationPolicy initialization_policy

)raises(
SysAdminException::ExExists,
SysAdminException::ExInvalid

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExExists.

SysAdminException::ExExists is raised if the specified object is already registered for the
instance manager.

SysAdminException::ExInvalid is raised if the specified object indicates that it supports a policy
driven object type that is not an interface supported by objects managed by the receiving
instance manager.

3.8.3.6 The set_default_initialization Operation

The set_default_initialization operation sets the default initialization policy object for the instance
manager. If the input initialization policy object is not associated with the instance manager,
then the initialization policy object will be added to the instance manager automatically before
set_initialization_policy returns control to the caller. If the value of the input initialization_policy is
Object::_nil() , then the default initialization policy is set to Object::_nil() and there is effectively no
default initialization policy for the instance manager.

Syntax

void set_default_initialization(
in InitializationPolicy initialization_policy

)raises(
SysAdminException::ExInvalid

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExInvalid.

SysAdminException::ExInvalid is raised if the input initialization policy object indicates that it
supports a policy driven object type that is not an interface supported by objects managed by the
receiving instance manager.

3.8.3.7 The remove_initialization Operation

The remove_initialization operation removes the reference to the specified initialization policy
object from the instance manager. Object::_nil() is not permitted as an input value.

If the input initialization policy happens to be the instance manager’s default initialization
policy, then remove_initialization should set the instance manager’s default initialization policy to
Object::_nil() .

Systems Management: Common Management Facilities 87

Policies Module Management Facilities Specification

Syntax

void remove_initialization(
in InitializationPolicy initialization_policy

)raises(
SysAdminException::ExObjNotFound

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExObjNotFound.

SysAdminException::ExObjNotFound is raised when the requested initialization policy object is
not currently associated with the instance manager.

3.8.3.8 The add_validation Operation

The add_validation operation adds a reference to a new validation policy object for the instance
manager. Object::_nil() is not permitted as an input value.

Syntax

void add_validation(
in ValidationPolicy validation_policy

)raises(
SysAdminException::ExExists,
SysAdminException::ExInvalid

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExExists.

SysAdminException::ExExists is raised if the specified validation policy object is already
associated with the instance manager.

SysAdminException::ExInvalid is raised if the specified object indicates that it supports a policy
driven object type that is not an interface supported by objects managed by the receiving
instance manager.

3.8.3.9 The remove_validation Operation

The remove_validation operation removes a reference to a validation policy object from the
instance manager. Object::_nil() is not permitted as an input value.

If the input validation policy happens to be the instance manager’s default validation policy,
then remove_validation should set the instance manager’s default validation policy to
Object::_nil() .

Syntax

void remove_validation(
in ValidationPolicy validation_policy

)raises(
SysAdminException::ExObjNotFound

);

88 CAE Specification

Management Facilities Specification Policies Module

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExObjNotFound.

SysAdminException::ExObjNotFound is raised when the requested validation policy object is
not currently associated with the instance manager.

3.8.3.10 The set_default_validation Operation

The set_default_validation operation sets the default validation policy object for the instance
manager. If the input validation policy object parameter is not associated with the instance
manager, then the validation policy object will be added to the instance manager automatically
before set_default_validation returns control to the caller. If the value of the input
initialization_policy is Object::_nil() , then the default initialization policy is set to Object::_nil() and
there is effectively no default initialization policy for the instance manager.

Syntax

void set_default_validation(
in ValidationPolicy validation_policy

)raises(
SysAdminException::ExInvalid

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExInvalid.

SysAdminException::ExInvalid is raised if the input validation policy object indicates that it
supports a policy driven object type that is not an interface supported by objects managed by the
receiving instance manager.

3.8.3.11 The add_pr_backref Operation

The add_pr_backref operation adds a reference from the target object to a policy region. The
purpose of this operation is to allow instance managers to maintain references to the policy
regions that support them. The intended usage is that this operation should only be invoked
within the implementation of the policy region’s add_instance_manager operation, and not by an
arbitrary client.

Syntax

void add_pr_backref (
in PolicyRegion pr

);

Exceptions

CORBA 1.2 standard exceptions

3.8.3.12 The remove_pr_backref Operation

The remove_pr_backref operation removes a reference from the target object to a policy region.
The intended usage is that this operation should only be invoked within the implementation of
the policy region’s remove_instance_manager operation, and not by an arbitrary client.

Systems Management: Common Management Facilities 89

Policies Module Management Facilities Specification

Syntax

void remove_pr_backref (
in PolicyRegion pr

) raises (
SysAdminException::ExNotFound

);

Exceptions

CORBA 1.2 standard exceptions and SysAdminException::ExNotFound.

SysAdminException::ExNotFound is raised if the target instance manager does not currently
have a back reference to the policy region passed in as an input parameter.

3.8.3.13 The get_pr_backrefs Operation

The get_pr_backrefs operation returns as an output parameter a list of references to the policy
regions by which the target object is currently supported. It accepts an input parameter,
how_many, that designates the maximum desired number of such references to return in the list.
The list of returned references is contained in the first output parameter. If the number of policy
regions that the target object is currently supported by is great than how_many , a Set iterator
object is created as a bi-product of this operation and contained in the second output parameter.
This iterator can be used to iterate through the additional supporting policy regions not returned
in the first output parameter, using SetIterator operations as previously described in this
specification.

Syntax

void get_pr_backrefs (
in unsigned long how_many,
out SetList s_list,
out SetIterator iterator

);

Exceptions

CORBA 1.2 standard exceptions.

3.8.4 Policies::PolicyObject Interface

The Policies::PolicyObject interface defines operations that all policy objects support. It serves
as a base interface definition from which all other policy interfaces are derived.

The Policies::PolicyObject interface defines a single operation, get_policy_driven_object_type .

3.8.4.1 Inherited Interfaces

The Policies::PolicyObject interface inherits from the Identification::Labeled interface to ensure
that all policy objects have a label.

90 CAE Specification

Management Facilities Specification Policies Module

3.8.4.2 The get_policy_driven_object_type Operation

The get_policy_driven_object_type operation returns the type name that describes an interface
supported by the policy driven objects that this policy object can be associated with. Note that
the type does not have to be the principal interface of the policy driven object, only a supported
interface.

Syntax

string get_policy_driven_object_type();

Exceptions

CORBA 1.2 standard exceptions.

3.8.4.3 The get_policy_driven_object_interface() Operation

The get_policy_driven_object_interface () operation returns the CORBA::InterfaceDef that
describes an interface supported by the policy-driven objects with which this policy object can
be associated. Note that this type does not have to be the principal interface of the policy-driven
object, only a supported interface.

Syntax

CORBA::InterfaceDef get_policy_driven_object_interface();

Exceptions

CORBA 1.2 standard exceptions.

3.8.5 Policies::InitializationPolicy Interface

The Policies::InitializationPolicy interface defines a single operation,
initialize_policy_driven_object .

3.8.5.1 The initialize_policy_driven_object Operation

The initialize_policy_driven_object initializes a single policy-driven object. This operation is
intended to be called during the processing of the create_object operation by an instance manager,
rather than being called directly by a client. In addition to accepting the object to be initialized
as an input, initialize_policy_driven_object also accepts a sequence of name/value pairs or criteria.
The criteria can be used to override the default values that will be used to initialize the object at
creation time. This allows instance specific initialization data to be combined with the policy
region specific data (as embodied in the InitializationPolicy object) to define the initial object
values.

It is expected that for every specialization of the PolicyDrivenBase type, there will be an
implementation of this operation that specifically knows how to initialize objects of that type.
Also, the definition of what name/value pairs are passed in the override_criteria parameter will
typically be unique to each implementation.

Systems Management: Common Management Facilities 91

Policies Module Management Facilities Specification

Syntax

void initialize_policy_driven_object(
in Object object_to_initialize,
in CosLifeCycle::Criteria override_criteria

);

Exceptions

CORBA 1.2 standard exceptions.

3.8.6 Policies::ValidationPolicy Interface

The Policies::ValidationPolicy interface defines a single operation, validate_policy_driven_object .

3.8.6.1 The validate_policy_driven_object Operation

The validate_policy_driven_object validates a single policy-driven object. This operation is
intended to be called by the verify_policy or get_policy_failures operations on a policy region or it
can also be called directly by client code. It is expected that for every specialization of the
PolicyDrivenBase type, there will be an implementation of this operation that specifically knows
how to validate objects of that type. If the object conforms to the policy embodied by this
ValidationPolicy object, the operation returns TRUE, otherwise it returns FALSE. When the
return value is FALSE, the description out parameter contains a string indicating the reason the
object did not conform to policy.

Syntax

boolean validate_policy_driven_object(
in Object object_to_validate,
out string description

);

Exceptions

CORBA 1.2 standard exceptions.

92 CAE Specification

Chapter 4

Command Line Interface

In order to provide the developer and the end-user system administrator with the ability to write
implementations of methods and client programs in shell or other interpreted languages, several
general purpose commands are defined. This effectively specifies a shell binding to OMG IDL.

One goal of a means to invoke operations defined in IDL using a shell script is to provide access
to as many IDL operations as possible. Initially client programs are written for each IDL
operation desired. This has the unfortunate side effect of requiring many executables in an
environment, and requiring system administration environment providers to anticipate what an
end user of the environment would like to do from the command line. Another goal of the effort
is to provide a general purpose mapping that is easily parsed by a shell script and was natural
for a shell programmer. The shell model of interacting with an ORB is to present ORB methods
as programs that communicate using standard input and standard output. A consequence of this
idiom is that any shell script that has side effects on standard input or standard output will
break the linkage between the callee and the caller. Thus it is part of the IDL contract that
standard input and standard output are not affected by side effects arising from the method
being called.

The shell programmer should deal naturally with the data being used. For example, an instance
of an IDL struct:

struct X { long a; string b; short c; };

might look like the following to a shell programmer:

{ 100000 "now is the time to do something" 20 }

A sequence of struct X might be:

{2 {100000 "now is the time ..." 20}
{900000 "now it is too late" 40}}

To do this, a program is needed that can turn a client’s input into this format. Conversely, a
program is also needed that can take this as input and generate the appropriate ‘‘idl’’ invocation.
The program will use the operation’s type signature (possibly from an interface repository) to
get rules for parsing the input and output.

If the needs of a shell script writer are examined, one can see how a script might be organized to
provide the necessary functionality. First, the shell script writer needs access to the input
arguments in some kind of native format. In the previous example, if a struct X is the input
argument, the writer needs the struct in a string-like format that can be used and manipulated.
Shells work with strings and shell variables - this is what is needed. If there are multiple
arguments, the shell script writer needs to be able to get to each argument individually or as a
group - much like $0 or $n in awk. Secondly, the shell script writer needs to pass values to other
methods and receive their results. Thirdly, the shell script writers needs to return output
arguments in a similar fashion to receiving input arguments. To do this requires some order on
how results are returned.

Systems Management: Common Management Facilities 93

Command Line Interface

Presume the signatures:

interface Intf1 {
long foo(

in Object tgt,
in X x,
inout string y,
out X z

);
};
interface Intf2 {

long bar(
inout X x,
out string y

);
};

The following script shows how operation foo is implemented using a shell script, and how the
shell implementation can use bar.

#!/bin/sh
#
interface Intf1 {
long foo (
in Object tgt,
in X x,
inout string y,
out X z
);
}

Get all of the idl input arguments into a shell variable
my_sigs = ‘idllookup Intf1‘

Alternatively, the signature could have been defined in an
included file generated by an idl compiler.

inargs=‘idlinput $my_sigs‘

oper=‘idlarg 1 $inargs‘
self=‘idlarg 2 $inargs‘
if [$oper -ne "Intf1::foo"]; then

idlexception {{tk_struct BAD_OPERATION}}
exit 1

fi

tgt=‘idlarg 3 $inargs‘
x=‘idlarg 4 $inargs‘
y=‘idlarg 5 $inargs‘

Call the bar method
The target signature could be defined (perhaps in a file
generated by an idl compiler) as
#
tgt_sig = "tk_long Intf2::bar {
inout x $X_tc
out x tk_string
}"
#

94 CAE Specification

Command Line Interface

or it could be retrieved from the interface repository via
#
tgt_sig=‘idllookup Intf2::bar‘
#
See section 4.3.1 for the format of signatures.

bar_results=‘idlcall $tgt $tgt_sig <<!EOF
$x
!EOF
`
if [$? -ne 0]; then
if an exception, the results have the stringified exception data

idlexception $bar_results
exit 1

fi

now fetch the result arguments from bar’s result string.
bar_long=`idlarg 3 $bar_results`
x=`idlarg 1 $bar_results`
bar_str=`idlarg 2 $bar_results`

Pass the bar output back as the result to the caller. Note
that the order of the results is important (first the
out/inout arguments in the same order as the IDL signature,
then the result (if any).
out_args=‘idlresult ${mysig[0]} << !EOF
$bar_str
$x
$bar_long
!EOF
`
echo $out_args

exit 0

In the above script, the typecodes are directly supplied for the idlinput, idlcall and idlresult
calls. If a signature passed into a command has the form:

{tk_indirect op-name}

then the command attempts to find the appropriate signature (perhaps using the interface
repository).

4.1 Type Mappings
All types in the string-based binding must be represented by strings. The same rules that apply
to manipulating strings in the Bourne shell apply here. The strings are delimited by spaces, not
commas.

All scalar types will be represented by a string. Boolean true is represented by TRUE and false is
represented by FALSE. All constructed types (array, sequence, struct, union) are described by
listing their members enclosed within a pair of { }. The following are more explicit rules.

• array
List all of the elements starting at the first index.

• sequence
List the length, followed by the members.

Systems Management: Common Management Facilities 95

Type Mappings Command Line Interface

The number of members listed must match the length. If the length is zero, no members are
listed.

• struct
List the members in the order of its IDL description.

• union
List the discriminator followed by the value.

• object
List the stringified representation (Object_to_string).

• TypeCode
List the ‘‘kind’’ (tk_long, tk_objref, or tk_sequence, ...) followed by the parameters for the
typecode. Parameters for a typecode can be found in CORBA 1.2 Table 16 (reproduced here):

tk_null
tk_void
tk_short
tk_long
tk_ushort
tk_ulong
tk_float
tk_double
tk_boolean
tk_char
tk_octet
tk_string
tk_any
tk_TypeCode
tk_Principal
{tk_objref interface-id}
{tk_struct struct-name member-name TypeCode, ... (repeat pairs)}
{tk_exception exception-name member-name TypeCode, ... (repeat pairs)}
{tk_union union-name switch-TypeCode label-value member-name

TypeCode, ... (repeat triples)}
{tk_enum enum-name enum-id ...}
{tk_sequence typecode maxlen-integer}
{tk_array typecode length-integer}

Note: interface-id , struct-name , exception-name , union-name and enum-name are
fully scoped. member-names and enum-ids are not.

• enum
List the enum identifier.

• any
List the TypeCode followed by the value. For example:

{tk_long 10}
{{tk_struct X a tk_long b tk_string} {10 "hello world"}}

• exception
The data is returned as the exception type, the exception identifier, and the exception value
as a struct (defined previously).

96 CAE Specification

Command Line Interface Argument Ordering

4.2 Argument Ordering
When an IDL interface is mapped to this binding, on invocation only the in and inout arguments
are placed in the input stream to the command. Thus, all out parameters are omitted during the
invocation. When results are returned, the out and inout parameters and then return value are
placed in the results stream. The out and inout parameters are in the same order of appearance
as the IDL definition of the operation. As an example, if the IDL definition of an operation is as
follows:

long op1(in long a1, out long a2, inout long a3, out long a4);

and $A1 is the string version of a1, and $A2 the string version of a2, etc., then to call op1 from a
shell the command would be:

target signature obtained directly (or via compiler generated code):
#
tgt_sig = "tk_long Intf3::op1 {
in a1 tk_long
out a2 tk_long
inout a3 tk_long
out a4 tk_long
}"
#
or via the interface repository:
#
tgt_sig = ‘idllookup Intf3::op1‘

$op1_results=idlcall $tgt $tgt_sig << !EOF
$A1
$A3
!EOF
T

The results stream, contained in op1_results, will have the string version of a2, a3 and a4, then
the long specified by the return value of operation op1.

4.3 Defined Commands
This section defines the commands necessary for the invocation of operations, receipt of input,
output and exceptions in natural shell style, and the parsing of arguments in a shell variable.

4.3.1 The idlcall Command

The idlcall command has the following syntax:

idlcall target signature [arg1 [arg2 ...]]

This command may accept arguments either from the command line or from standard input. If
any arguments (that is, those items marked arg[n] in the above syntax) are specified on the
command line, then standard input will be ignored. This command will invoke the IDL defined
operation described by signature on the object represented by target: target is a stringified object
reference. An IDL attribute X is mapped to the methods ‘‘_get_X’’ and ‘‘_set_X’’. The initial ‘‘_’’
ensures that these methods will not collide with method names that may be explicitly declared
in the interface. Read-only attributes do not have a ‘‘_set_X’’ method. The arguments passed
will be converted into the proper in-memory format, as defined in the IDL interface, in their
order in the argument list. Only in and inout parameters should be present in the parameter list.
The results will be returned with the return parameter of the operation as the first element in the

Systems Management: Common Management Facilities 97

Defined Commands Command Line Interface

results and the remainder in the order of their position in the parameter list. Only inout and out
parameters are returned in addition to results. The resulting strings are written to standard
output.

If the invocation of the operation results in the raising of an exception, only exception
information will be contained in the results passed to standard out. When an exception is raised,
the idlcall command exits non-zero. An exception is returned in the result parameter as an Any
(that is, {type-code value}).

The signature used in the call has the following form:

{return-typecode operation-name
{direction param-name parm-typecode ... (repeat triple)}
{exception-typecode ... (list all exceptions)}}

Signatures may be specified explicitly or may be obtained via idllookup (see Section 4.3.6 on
page 99. It is expected that explicitly specified signatures will be obtained from included files
emitted by idl compilers.

If a signature has the form:

{"tk_indirect" operation-name},

then the actual signature will be supplied by the command (possibly using an interface
repository).

4.3.2 The idlinput Command

The idlinput command has the following syntax:

idlinput signature-list

This command returns the input passed to an operation implemented in shell and converts it to
string form for processing/parsing in the shell implementation. The results of the conversion
are written to standard output.

The signature-list is a list of method signatures (including ‘‘_get_X ’’and ‘‘_set_X’’ methods
associated with attributes) that the shell script implements. The result of this call will be of the
form:

{operation-name object-id in-arg1 in-arg2 ...}

arg 1 of the results that appear on stdout will be the stringified object reference for the current
shell; arg 2 of the results will be the the method actually being invoked.

4.3.3 The idlarg Command

The idlarg command has the following syntax:

idlarg op_name parameter_num arg

This command accepts the operation name, op_name, the numeric 1-based position of the
desired attribute and the parameters. The position is the number of the parameter in the
argument list, that is, the first parameter is in position 1, the second in position 2, etc.,
parameters contains the formatted string of parameters. Please note that the operation_name
and the object_id are returned as the first 2 parameters from the idl_input command.

This command is also capable of extracting particular items or elements of structures, sequences,
etc. This is achieved by extracting the complex type using idlarg and then using idlarg to extract
components of the complex type.

98 CAE Specification

Command Line Interface Defined Commands

4.3.4 The idlresults Command

The idlresults command has the following syntax:

idlresults signature [results]

This command returns the results of the method specified by the signature , whose format is
defined in Section 4.3.1 on page 97, to a shell implementation. The format of the results is the
string representation of the return value and the inout/out parameters of the IDL operation. The
results strings are read from standard input or are provided in an argument list on the command
line.

4.3.5 The idlexception Command

The idlexception command has the following syntax:

idlexception results-as-any

This command extracts the string form of the exception data from results, and writes this
information to standard output.

4.3.6 The idllookup Command

The idllookup command has the following syntax:

idllookup -s name

idllookup -t name

The first form returns the signature of name, which may be a fully-qualified interface name,
operation name, or attribute name. For an interface name, the result of the call is a signature list
for the interface, suitable for passing to idlinput. For an operation name, the result of the call is
the signature of the operation, suitable for passing to idlcall or idlresult. For an operation name,
the result is the two operation signatures describing the attribute’s ‘‘get’’ and ‘‘set’’ methods. A
read-only attribute will return a single signature, for the ‘‘get’’ method.

The second form returns the typecode associated with name, which may be a fully-qualified
type (including interface) name or interface name.

The two forms are needed to resolve the ambiguity in the case of interfaces and attributes.

The operation is undefined when called with the fully-qualified name of a module.

Systems Management: Common Management Facilities 99

Command Line Interface

100 CAE Specification

Appendix A

IDL Definitions for Management Facilities Interfaces

This Appendix provides interface definitions that can be compiled for the system management
interfaces defined within this specification. If there is a conflict between the IDL found in this
appendix and the IDL found in Chapter 3, the IDL found in Chapter 3 should be assumed to be
correct.

Systems Management: Common Management Facilities 101

SysAdminTypes.idl IDL Definitions for Management Facilities Interfaces

A.1 SysAdminTypes.idl
//
// Component Name: SysAdminTypes.idl
//
// Description:
// The SysAdminTypes file defines types and data
// structures that are used frequently throughout the
// development of system administration applications.
//

#ifndef SYSADMINTYPES_IDL
#define SYSADMINTYPES_IDL

#include <orb.idl>
#include <CosNaming.idl>

module SysAdminTypes {

typedef sequence <CORBA::InterfaceDef> InterfaceDefList;

typedef CosNaming::NameComponent LabelType;

struct ObjectLabel {
Object objref;
LabelType label;

};

struct LabelExpression {
string id_regex;
string kind_regex;

};

typedef sequence <ObjectLabel> ObjectLabelList;

// The Platform structure defines elements for information
// related to the hardware and operating system of a
// client machine. The elements represent the following
// information.

struct Platform {
string host_name;
string machine_hardware_name;
string operating_system_name;
string operating_system_version;
string operating_system_release;

};

};

#endif //SYSADMINTYPES_IDL

102 CAE Specification

IDL Definitions for Management Facilities Interfaces Identification.idl

A.2 Identification.idl
//
// Component Name: Identification.idl
//
// Description:
// This module defines the methods that implement an object’s
// label, which is a name that uniquely identifies the object
// within an environment.
//

#ifndef IDENTIFICATION_IDL
#define IDENTIFICATION_IDL

#include <SysAdminTypes.idl>

module Identification {

interface Labeled {

SysAdminTypes::LabelType get_label();

void set_label (in SysAdminTypes::LabelType label);

};
};

#endif //IDENTIFICATION_IDL

Systems Management: Common Management Facilities 103

ManagedSets.idl IDL Definitions for Management Facilities Interfaces

A.3 ManagedSets.idl
//
// Component Name: ManagedSets.idl
//
// Description:
// The following interfaces provide the functionality
// for support of managed sets.
//

#ifndef MANAGEDSETS_IDL
#define MANAGEDSETS_IDL

#include <SysAdminTypes.idl>
#include <SysAdminExcept.idl>
#include <Identification.idl>

module ManagedSets {

//--
//Forward references
//--
interface Member;
interface SetIterator;
interface MemberIterator;
interface MemberLabelIterator;
interface Set;
interface FilteredSet;

//--
//typedefs needed for the managed set interfaces
//--
typedef sequence <Set> SetList;
typedef sequence <Member> MemberList;
typedef SysAdminTypes::ObjectLabel MemberLabel;
typedef SysAdminTypes::ObjectLabelList MemberLabelList;

interface Member : Identification::Labeled {

void add_backref (
in Set s

);

void get_backrefs (
in unsigned long how_many,
out SetList s_list,
out SetIterator iterator

);

void remove_backref (
in Set s

) raises (
SysAdminException::ExNotFound

);

}; // End Member interface

interface SetIterator {

104 CAE Specification

IDL Definitions for Management Facilities Interfaces ManagedSets.idl

boolean next_one (
out Set s

);

boolean next_n (
in unsigned long how_many,
out SetList s_list

);

void destroy();

}; // End SetIterator interface

interface MemberIterator {

boolean next_one (
out Member m

);

boolean next_n (
in unsigned long how_many,
out MemberList m_list

);

void destroy();

}; // End of MemberIterator

interface ObjectLabelIterator {

boolean next_one (
out ObjectLabel ol

);

boolean next_n (
in unsigned long how_many,
out ObjectLabelList ol_list

);

void destroy();

}; // End of ObjectLabelIterator

typedef ObjectLabelIterator MemberLabelIterator;

interface Set : Member {

unsigned long get_cardinality();

void add_object (
in boolean add_backref,
in Member m

) raises (
SysAdminException::ExNotUniqueLabel

);

void add_n_objects (

Systems Management: Common Management Facilities 105

ManagedSets.idl IDL Definitions for Management Facilities Interfaces

in MemberList m_list,
out MemberList not_added

);

void remove_object (
in boolean remove_backref,
in Member m

) raises (
SysAdminException::ExNotFound

);

void remove_n_objects (
in boolean remove_backref,
in MemberList m_list,
out MemberList not_removed

);

void get_members (
in unsigned long how_many,
out MemberList m_list,
out MemberIterator iterator

);

void intersection_members (
in unsigned long how_many,
in SetList s_list,
out MemberList m_list,
out MemberIterator iterator

) raises (
SysAdminException::ExInvalid

);

void union_members (
in unsigned long how_many,
in SetList s_list,
out MemberList m_list,
out MemberIterator iterator

) raises (
SysAdminException::ExInvalid

);

}; // End of Set interface

interface FilteredSet : Set {

void find_members (
in SysAdminTypes::InterfaceDefList interfaces,
in SysAdminTypes::LabelExpression regular_expression,
in unsigned long how_many,
out MemberLabelList ml_list,
out MemberLabelIterator iterator

) raises (
SysAdminException::ExNotFound

);

Member lookup_object (
in SysAdminTypes::LabelType label,
in SysAdminTypes::InterfaceDefList interfaces

) raises (

106 CAE Specification

IDL Definitions for Management Facilities Interfaces ManagedSets.idl

SysAdminException::ExNotFound
);

SysAdminTypes::ObjectLabelList lookup_labels (
in MemberList m_list

);

}; // End of FilteredSet interface

}; // End ManagedSets module

#endif //MANAGEDSETS_IDL

Systems Management: Common Management Facilities 107

ManagedInstances.idl IDL Definitions for Management Facilities Interfaces

A.4 ManagedInstances.idl
//
// Component Name: ManagedInstances.idl
//
// Description:
// The following interfaces provide the functionality
// for support of instances and instance managers.
//

#ifndef MANAGEDINSTANCES_IDL
#define MANAGEDINSTANCES_IDL

#include <SysAdminTypes.idl>
#include <SysAdminExcept.idl>
#include <SysAdminLifeCycle.idl>
#include <CosLifeCycle.idl>
#include <Policies.idl>
#include <ManagedSets.idl>

module ManagedInstances {

// Forward reference
interface Instance;
interface BasicInstanceManager;
interface InstanceManager;
interface Library;

interface Instance :
CosLifeCycle::LifeCycleObject,
ManagedSets::Member

{

BasicInstanceManager get_manager();

string get_type_name();

SysAdminLifeCycle::Location get_resource_location();

}; // End of Instance interface

interface Library :
CosLifeCycle::FactoryFinder,
CosLifeCycle::GenericFactory,
ManagedSets::FilteredSet

{
}; // End of Library interface

interface BasicInstanceManager :
CosLifeCycle::LifeCycleObject,
CosLifeCycle::GenericFactory,
ManagedSets::FilteredSet

{

CORBA::InterfaceDef get_instances_interface();

}; // End of BasicInstanceManager interface

108 CAE Specification

IDL Definitions for Management Facilities Interfaces ManagedInstances.idl

interface InstanceManager :
BasicInstanceManager,
Policies::PolicyObjectAdmin

{
}; // End of InstanceManager interface

interface PolicyRegionsInstanceManager :
InstanceManager

{
}; // End of PolicyRegionsInstanceManager interface

}; // End ManagedInstances module

#endif // MANAGEDINSTANCES_IDL

Systems Management: Common Management Facilities 109

PolicyRegions.idl IDL Definitions for Management Facilities Interfaces

A.5 PolicyRegions.idl
//
// Component Name: PolicyRegions.idl
//
// Description:
// The following interfaces provide the functionality
// for support of policy regions.
//

#ifndef POLICYREGIONS_IDL
#define POLICYREGIONS_IDL

#include <SysAdminTypes.idl>
#include <SysAdminExcept.idl>
#include <SysAdminLifeCycle.idl>
#include <CosLifeCycle.idl>
#include <ManagedSets.idl>
#include <ManagedInstances.idl>

module PolicyRegions {

// forward references
interface PolicyRegion;
interface PolicyDrivenBase;

struct PolicyResult {
PolicyDrivenBase object_verified;
PolicyRegion containing_region;
Policies::ValidationPolicy validation_object_used;
boolean passed_policy;
string description;

};

typedef sequence<PolicyResult> PolicyResultList;

enum SelectionCriteria {
all,
with_initialization,
with_validation,
with_validation_enabled,
with_initialization_or_validation,
with_initialization_or_validation_enabled

};

typedef sequence<PolicyRegion> PolicyRegionList;

interface PolicyResultIterator {
boolean next_one (

out PolicyResult pr;
};

boolean next_n (
in unsigned long how_many,
out PolicyResultList pr_list;

};

void destroy();

110 CAE Specification

IDL Definitions for Management Facilities Interfaces PolicyRegions.idl

}; // End PolicyResultIterator interface

interface PolicyDrivenBase : ManagedInstances: :Instance {

SysAdminTypes::ObjectLabelList get_policy_region_info();

void move_to_policy_region (
in PolicyRegions::PolicyRegion pr_from,
in PolicyRegions::PolicyRegion pr_to

) raises (
SysAdminException::ExObjNotFound,
SysAdminException::ExNotFound,
SysAdminException::ExInvalid

);

void add_to_policy_region (
in PolicyRegions::PolicyRegion pr

) raises (
SysAdminException::ExNotFound,
SysAdminException::ExInvalid

);

void remove_from_policy_region (
in PolicyRegions::PolicyRegion pr

) raises (
SysAdminException::ExObjNotFound,
SysAdminException::ExInvalid

);

SysAdminTypes::ObjectLabelList list_enabled_validation_policies (
in PolicyRegionList policy_regions,
in CORBA::InterfaceDef interface_def,
in boolean include_nested

) raises (
SysAdminException::ExNotFound

);

SysAdminTypes::ObjectLabelList list_initialization_policies
(

in PolicyRegionList policy_regions,
in CORBA::InterfaceDef interface_def,
in boolean include_nested

) raises (
SysAdminException::ExNotFound

);

}; // End of PolicyDrivenBase interface

interface PolicyRegion :
PolicyDrivenBase,
ManagedSets::FilteredSet,
CosLifeCycle::GenericFactory

{

void add_instance_manager (
in ManagedInstances: :InstanceManager im,
in Policies::InitializationPolicy initialization_policy,
in Policies::ValidationPolicy validation_policy

) raises (

Systems Management: Common Management Facilities 111

PolicyRegions.idl IDL Definitions for Management Facilities Interfaces

SysAdminException::ExExists
);

void remove_instance_manager (
in ManagedInstances: :InstanceManager im

) raises (
SysAdminException::ExObjNotFound,
SysAdminException::ExExists

);

void get_instance_manager_list (
in SelectionCriteria select
in unsigned long how_many;
out SysAdminTypes::ObjectLabelList ol_list;
out ManagedSets::ObjectLabelIterator iterator;

);

void set_initialization_policy (
in ManagedInstances: :InstanceManager im,
in Policies::InitializationPolicy initialization_policy

) raises (
SysAdminException::ExObjNotFound

);

SysAdminTypes::ObjectLabel get_initialization_policy (
in ManagedInstances: :InstanceManager im

) raises (
SysAdminException::ExObjNotFound

);

void set_validation_policy (
in ManagedInstances: :InstanceManager im,
in Policies::ValidationPolicy validation_policy

) raises (
SysAdminException::ExObjNotFound

);

SysAdminTypes::ObjectLabel get_validation_policy (
in ManagedInstances: :InstanceManager im

) raises (
SysAdminException::ExObjNotFound

);

void policy_validation (
in ManagedInstances: :InstanceManager im,
in boolean enable

) raises (
SysAdminException::ExObjNotFound

);

boolean is_validation_enabled (
in ManagedInstances: :InstanceManager im

) raises (
SysAdminException::ExObjNotFound

);

void verify_policy (
in ManagedSets::Set scope,
in boolean included_nested,

112 CAE Specification

IDL Definitions for Management Facilities Interfaces PolicyRegions.idl

in unsigned long how_many,
out PolicyResultList pr_list,
out PolicyResultIterator iterator

);

PolicyResultList get_policy_failures (
in ManagedSets::Set scope,
in boolean include_nested
in unsigned long how_many,
out PolicyResultList pr_list,
out PolicyResultIterator iterator

);

SysAdminTypes::ObjectLabelList get_all_initialization_policies
(

in ManagedInstances: :InstanceManager im
) raises (

SysAdminException::ExNotFound
);

SysAdminTypes::ObjectLabelList get_all_enabled_validation_policies (
in ManagedInstances: :InstanceManager im

) raises (
SysAdminException::ExNotFound

);

}; // End of PolicyRegion interface

}; // End of PolicyRegions module

#endif // POLICYREGIONS_IDL

Systems Management: Common Management Facilities 113

Policies.idl IDL Definitions for Management Facilities Interfaces

A.6 Policies.idl
//
// Component Name: Policies.idl
//
// Description:
// The following interfaces provide the functionality
// for support of policy objects.
//

#ifndef POLICIES_IDL
#define POLICIES_IDL

#include <SysAdminTypes.idl>
#include <SysAdminExcept.idl>
#include <Identification.idl>
#include <CosLifeCycle.idl>
#include <ManagedSets.idl>

module Policies {

// forward references
interface PolicyObject;
interface PolicyObjectAdmin;
interface InitializationPolicy;
interface ValidationPolicy;

interface PolicyObjectAdmin
{

SysAdminTypes::ObjectLabelList get_initialization_policies();

InitializationPolicy get_default_initialization (
) raises (

SysAdminException::ExNotFound
);

SysAdminTypes::ObjectLabelList get_validation_policies();

ValidationPolicy get_default_validation (
) raises (

SysAdminException::ExNotFound
);

void add_initialization (
in InitializationPolicy initialization_policy

) raises (
SysAdminException::ExExists,
SysAdminException::ExInvalid

);

void set_default_initialization (
in InitializationPolicy initialization_policy

) raises (
SysAdminException::ExInvalid

);

void remove_initialization (
in InitializationPolicy initialization_policy

114 CAE Specification

IDL Definitions for Management Facilities Interfaces Policies.idl

) raises (
SysAdminException::ExObjNotFound

);

void add_validation (
in ValidationPolicy validation_policy

) raises (
SysAdminException::ExExists,
SysAdminException::ExInvalid

);

void remove_validation (
in ValidationPolicy validation_policy

) raises (
SysAdminException::ExObjNotFound

);

void set_default_validation (
in ValidationPolicy validation_policy

) raises (
SysAdminException::ExInvalid

);

void add_pr_backref (
in PolicyRegion pr

);

void remove_pr_backref (
in PolicyRegion pr

) raises (
SysAdminException::ExNotFound

);

void get_pr_backrefs (
in unsigned long how_many,
out SetList s_list,
out SetIterator iterator

);

}; // End of PolicyObjectAdmin interface

// The PolicyObject interface defines the common
// requirements of policy objects

interface PolicyObject :
Identification::Labeled

{
string get_policy_driven_object_type();

CORBA::InterfaceDef get_policy_driven_object_interface();

}; // End of PolicyObject interface

// The InitializationPolicy interface defines the
// requirements of an initialization policy object

interface InitializationPolicy :
PolicyObject

{

Systems Management: Common Management Facilities 115

Policies.idl IDL Definitions for Management Facilities Interfaces

void initialize_policy_driven_object (
in Object object_to_initialize,
in CosLifeCycle::Criteria override_criteria

);

}; // End of InitializationPolicy interface

// The ValidationPolicy interface defines the
// requirements of an validation policy object

interface ValidationPolicy :
PolicyObject

{

boolean validate_policy_driven_object (
in Object object_to_validate,
out string description

);

}; // End of ValidationPolicy interface

}; // End of Policies module

#endif // POLICIES_IDL

116 CAE Specification

IDL Definitions for Management Facilities Interfaces SysAdminExcept.idl

A.7 SysAdminExcept.idl
//
// Component Name: SysAdminExcept.idl
//
// Description:
// The SysAdminExcept module defines the exceptions
// commonly used by system management applications.
//

#ifndef SYSADMINEXCEPT_IDL
#define SYSADMINEXCEPT_IDL

#include <SysAdminTypes.idl>

typedef sequence<any> MsgContext;

#define XPG_FIELDS \
string type_name; \
string catalog; \
long key; \
string default_msg; \
long time_stamp; \
MsgContext msg_context;

module SysAdminException {
exception ExException {

XPG_FIELDS

};

exception ExFailed {
XPG_FIELDS
string operation_name;

};

exception ExInvalid {
XPG_FIELDS
string resource_name;

};

exception ExNotUniqueLabel {
XPG_FIELDS
SysAdminTypes::LabelType label;
};

exception ExNotFound {
XPG_FIELDS
string resource_name;

};

exception ExExists {
XPG_FIELDS
string resource_name;

};

exception ExObjNotFound {
XPG_FIELDS
string resource_name;

Systems Management: Common Management Facilities 117

SysAdminExcept.idl IDL Definitions for Management Facilities Interfaces

};
};

#endif //SYSADMINEXCEPT_IDL

118 CAE Specification

IDL Definitions for Management Facilities Interfaces SysAdminLifeCycle.idl

A.8 SysAdminLifeCycle.idl
//
// Component Name: SysAdminLifecycle.idl
//
//
// Description:
// The SysAdminLifeCycle module defines interfaces
// for specifying objects. Currently interfaces for copying and
// moving objects are not supported. These will be added as needed.
//

#ifndef SYSADMINLIFECYCLE_IDL
#define SYSADMINLIFECYCLE_IDL

#include <SysAdminTypes.idl>

module SysAdminLifeCycle {

// The Location interface allows the specification of
// the location for lifecycle operations to occur.

interface Location {
};

// the HostLocation interface allows the specification
// of a particular client machine on which the
// lifecycle operation should execute

interface HostLocation : Location {

SysAdminTypes::Platform get_platform();

};

};

#endif // SYSADMINLIFECYCLE_IDL

Systems Management: Common Management Facilities 119

IDL Definitions for Management Facilities Interfaces

120 CAE Specification

Appendix B

Inheritance Relationships

This Appendix provides an inheritance diagram for the Common Management Facilities
described in this specification.

ManagedSets::
Member

ManagedSets::SetIterator

ManagedSets::MemberIterator

ManagedSets::MemberLabelIterator

ManagedSets::
Set

ManagedSets::
FilteredSet

Identification::
Labeled

ManagedInstances::
InstanceManager

PolicyRegions::
PolicyDrivenBase

ManagedInstances::
Instance

ManagedInstances::
Library

CosLifecycle::
GenericFactory

Policies::
PolicyObjectAdmin

Policies::
PolicyObject

Policies::
InitializationPolicy

Policies::
ValidationPolicy

PolicyRegions::
PolicyRegion

CosLifeCycle::
LifeCycleObject

SysAdminLifeCycle::
Location

SysAdminLifeCycle::
HostLocation

ManagedInstances::
BasicInstanceManager

ManagedInstances::
PolicyRegionsInstanceManager

CosLifeCycle::
FactoryFinder

base
interface

derived
interface

inheritance

KEY:

COSS
interface

XCMF
interface

Figure B-1 Common Management Facilities: Inheritance

Systems Management: Common Management Facilities 113

Inheritance Relationships

114 CAE Specification

Glossary

activation
Preparing an object to execute an operation. For example, copying the persistent form of
methods and stored data into an executable address space to allow execution of the
methods on the stored data.

adapter
Same as object adapter.

attribute
An identifiable association between an object and a value. An attribute A is made visible to
clients as a pair of operations: get_A and set_A . Read-only attributes only generate a get
operation.

behaviour
The observable effects of an object performing the requested operation including its results.

client
The code or process that invokes an operation on an object.

context
A collection of name-value pairs that provides environmental or user-preference
information.

CORBA
Common Object Request Broker Architecture.

COS
Common Object Services. See reference COS Volume 1.

COSS
Common Object Services Specification. See reference COS Volume 1.

data type
A categorization of values operation arguments, typically covering both behaviour and
representation (that is, the traditional non-object-oriented programming language notion of
type).

dynamic invocation
Constructing and issuing a request whose signature is possibly not known until run time.

event
A state change of an object that causes the behaviour of an object.

factory object
An object that creates another object.

federation
The principle whereby each component retains its autonomy rather than becoming
subordinate to another.

implementation definition language
A notation for describing implementations. The implementation definition language is
currently beyond the scope of the ORB standard. It may contain vendor-specific and
adapter-specific notations.

Systems Management: Common Management Facilities 115

Glossary

implementation inheritance
The construction of an implementation by incremental modification of other
implementations. The ORB does not provide implementation inheritance. Implementation
inheritance may be provided by higher level tools.

inheritance
The construction of a definition by incremental modification of other definitions. See
interface and implementation inheritance.

instance
An object is an instance of an interface if it provides the operations, signatures and
semantics specified by that interface. An object is an instance of an implementation if its
behaviour is provided by that implementation.

interface
A listing of the operations and attributes that an object provides. This includes the
signatures of the operations, and the types of the attributes. An interface definition ideally
includes the semantics as well. An object satisfies an interface if it can be specified as the
target object in each potential request described by the interface.

interface inheritance
The construction of an interface by incremental modification of other interfaces. The IDL
language provides interface inheritance.

interface object
An object that serves to describe an interface. Interface objects reside in an interface
repository.

interface type
A type satisfied by any object that satisfies a particular interface.

interoperability
The ability for two or more ORBs to cooperate to deliver requests to the proper object.
Interoperating ORBs appear to a client to be a single ORB.

language binding
The means and conventions by which a programmer writing in a specific programming
language accesses ORB capabilities.

language mapping
Language binding.

life cycle object
An object whose interfaces are defined by the life cycle services, specifically remove, copy
and move.

method
An implementation of an operation. Code that may be executed to perform a requested
service. Methods associated with an object may be structured into one or more programs.

multiple inheritance
The construction of a definition by incremental modification of more than one other
definition.

name binding
A name-to-object association. A name binding is always defined relative to a naming
context.

116 CAE Specification

Glossary

object
A combination of state and a set of methods that explicitly embodies an abstraction
characterized by the behaviour of relevant requests. An object is an instance of an
implementation and an interface. An object models a real-world entity, and it is
implemented as a computational entity that encapsulates state and operations (internally
implemented as data and methods) and responds to requestor services.

object reference
A value that unambiguously identifies an object. Object references are never reused to
identify another object.

OMA
Object Management Architecture

OMG
Object Management Group

operation
A service that can be requested. An operation has an associated signature, which may
restrict which actual parameters are valid.

ORB
Object Request Broker. Provides the means by which clients make and receive requests and
responses. A persistent object exists until it is explicitly deleted.

relationship
Relationships allow semantics to be added to references between objects. For example,
relationships allow one object to contain another. Life cycle services must work in the
presence of graphs of related objects.

request
A client issues a request to cause a service to be performed. A request consists of an
operation and zero or more actual parameters.

results
The information returned to the client, which may include values as well as status
information indicating that exceptional conditions were raised in attempting to perform the
requested service.

server
A process implementing one or more operations on one or more objects.

signature
Defines the parameters of a given operation including their number order, data types and
passing mode; the results if any; and the possible outcome (normal as opposed to
exceptional) that might occur.

single inheritance
The construction of a definition by incremental modification of one definition. Contrast with
multiple inheritance.

state
The time varying properties of an object that affect its behaviour.

stub
A local procedure corresponding to a single operation that invokes that operation when
called.

Systems Management: Common Management Facilities 117

Glossary

typed event
An event for which an interface is defined in terms of IDL.

value
Any entity that may be a possible actual parameter in a request. Values that serve to
identify objects are called object references.

118 CAE Specification

Index

activation..115
adapter..115
API ...5
application interfaces...5
application portability ...4
argument ordering ...97
attribute ..115
basic instance manager..14
behaviour ...115
client ..115
command line interface...93
concurrency service..2
context...115
CORBA ...2, 115
COS..115
COS naming service...15
COSS ...115
data type...115
defined commands ...97
dynamic invocation ...115
enforcement mechanism...22
enforcement of policy ..22
event ..115
event service ..2
externalization service...2
factory finder ...13
factory finder object ...14
factory object ...14, 115
federation ...115
get_label..31
graphical user interface ...5
guiding principles...25
Identification module ..30

interfaces and operations....................................30
Identification.idl..103
Identification::Labeled interface30
IDL definitions ..101
implementation definition language..................115
implementation inheritance116
inheritance..116
inheritance relationships.......................................113
initialization policy object.......................................17
instance...13, 116
instance management service13

library interface...13
managed object creation13

managed object types ..14
registering instance managers13
roles ...13

instance manager..17
Instances module

interfaces and operations....................................50
interface ..116
interface inheritance...116
interface object ..116
interface type...116
interfaces and operations

Identification module ..30
Instances module..50
ManagedSets module ..34
Policies module...82
PolicyRegions module...62
SysAdminLifeCycle module32

internationalization..4
interoperability ...6, 116
language binding..116
language mapping..116
library..19
library interface ...13
licensing service ..2
life cycle object ..116
life cycle service ..2
managed object ...1
managed object creation ...13
managed object types ..14
managed set service ...10
ManagedInstances module.....................................50
ManagedInstances.idl..108
ManagedSets module ..34

interfaces and operations....................................34
ManagedSets.idl..104
management domain...13
management facilities..1

guiding principles ..25
Identification module ..30
ManagedInstances module50
ManagedSets module ..34
Policies module...82
PolicyRegions module...62
SysAdminExcept module28
SysAdminLifeCycle module32
SysAdminTypes module.....................................26

Systems Management: Common Management Facilities 119

Index

management facilities architecture.........................9
managers ..1
member...10
method..116
multiple inheritance...116
name binding...116
name service ..19
naming service ..2, 15
nature of sets..11
object ...117

management ..2
object creation ...16
object reference ...117
object services..2
OMA..2, 117
OMG..117
OMG environment ...2
OMG life cycle service...15
OMG object services ..3
operation ..117
ORB ...2, 117
Policies module ...82

interfaces and operations....................................82
Policies.idl ..114
policy...10
policy enforcement...22
policy management service....................................20
policy method..22
policy region ..20-22
policy service interfaces ..20
policy validation ...23
policy-driven base service12
policy-driven object..3
policy-driven object relationships.........................21
PolicyRegions module...62

interfaces and operations....................................62
PolicyRegions.idl ..110
portability...4
properties service..2
query service..2
reference model...3
registering instance managers13
relationship ..117
relationship service ..2
request...117
results..117
security..5
security service..2
server...117
services..1
set hierarchy...10

set_label ..30
shell binding to OMG IDL93
signature...117
single inheritance..117
state ...117
stub ..117
SysAdminExcept module28
SysAdminExcept.idl ..117
SysAdminLifeCycle module32

interfaces and operations....................................32
SysAdminLifeCycle.idl ...119
SysAdminTypes module ...26
SysAdminTypes.idl ..102
systems management framework...........................3
time service ..2
transaction service..2
type mappings...95
typed event ..118
validation policy object ...17
value..118

120 CAE Specification

	c423cov.pdf
	Page 1

	blank.pdf
	Page 1

