
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

FTAM High-Level API (XFTAM)
Version 2



[This page intentionally left blank]



X/Open CAE Specification

FTAM High-Level API (XFTAM) Version 2

X/Open Company Ltd.



 October 1995, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

FTAM High-Level API (XFTAM) Version 2

ISBN: 1-85912-092-X
X/Open Document Number: C415

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

ii X/Open CAE Specification



Contents

Chapter 1 Introduction............................................................................................... 1
  1.1    Dependencies............................................................................................... 4
  1.2    Overview of FTAM..................................................................................... 5
  1.2.1       FTAM Specification ................................................................................. 5
  1.2.2       FTAM Profile............................................................................................. 5
  1.2.3       Model for the FTAM file service ........................................................... 6
  1.2.4       File Attributes ........................................................................................... 7
  1.2.5       Document Types ...................................................................................... 8
  1.2.6       File Actions................................................................................................ 10
  1.2.7       FTAM Quality of Service........................................................................ 10
  1.3    Terminology and Conventions ................................................................ 11
  1.4    Conformance ............................................................................................... 12
  1.5    Future Directions ........................................................................................ 14

Chapter 2 XFTAM Overview.................................................................................. 15
  2.1    XFTAM Model ............................................................................................. 16
  2.1.1       Context Free Operations ........................................................................ 16
  2.1.2       Context Sensitive Operations................................................................ 17
  2.2    XFTAM Feature Summary ........................................................................ 18
  2.3    Using XFTAM.............................................................................................. 20
  2.3.1       Include files ............................................................................................... 20
  2.3.2       Library files ............................................................................................... 20
  2.3.3       XFTAM Instances..................................................................................... 20
  2.3.4       Using XOM................................................................................................ 20
  2.3.5       Addressing the Remote Filestore ......................................................... 27
  2.3.6       Filenames................................................................................................... 27
  2.3.7       Source Effect.............................................................................................. 27
  2.3.8       Destination Effect..................................................................................... 27
  2.3.9       Synchronous and Asynchronous Processing Modes ....................... 28
  2.3.10       Context Free and Sensitive Processing Modes .................................. 29
  2.3.11       Interrupt Handling .................................................................................. 30
  2.3.12       Session Handle ......................................................................................... 30
  2.3.13       XFTAM Result Reporting....................................................................... 31
  2.3.14       VFS Mapping ............................................................................................ 31
  2.3.15       FTAM Attributes ...................................................................................... 32
  2.3.16       Access Control.......................................................................................... 33

Chapter 3 XFTAM Base Package - XOM Class Definitions................. 37
  3.1    Package Definition...................................................................................... 38
  3.2    Access-Control-Element............................................................................ 39
  3.3    AE-Title......................................................................................................... 40
  3.4    API-Input-Parameters................................................................................ 41

FTAM High-Level API (XFTAM) Version 2 iii



Contents

  3.5    API-Output-Parameters ............................................................................ 42
  3.6    Charging ....................................................................................................... 43
  3.7    Content-Type ............................................................................................... 44
  3.8    Directory-List............................................................................................... 45
  3.9    Document-Type........................................................................................... 46
  3.10    Document-Type-Text ................................................................................. 47
  3.11    Document-Type-FTAM-1.......................................................................... 48
  3.12    Document-Type-FTAM-2.......................................................................... 49
  3.13    Document-Type-Binary............................................................................. 50
  3.14    Document-Type-FTAM-3.......................................................................... 51
  3.15    Document-Type-NBS-9.............................................................................. 52
  3.16    File-Action.................................................................................................... 53
  3.17    FTAM-Attribute-Names............................................................................ 55
  3.18    FTAM-Attributes......................................................................................... 56
  3.19    FTAM-Diagnostic........................................................................................ 58
  3.20    FTAM-Input-Parameters ........................................................................... 59
  3.21    FTAM-Output-Parameters........................................................................ 61
  3.22    Password....................................................................................................... 62
  3.23    New-Attributes ........................................................................................... 63
  3.24    Session........................................................................................................... 64
  3.25    Declaration Summary ................................................................................ 65
  3.25.1       Class Identifiers........................................................................................ 65
  3.25.2       Attribute Type Identifiers....................................................................... 65
  3.25.3       C Identifier List......................................................................................... 66

Chapter 4 XFTAM Function Manual Pages ................................................... 69
       ft_abandon( ).................................................................................................. 70
       ft_abort( ) ....................................................................................................... 71
       ft_close( ) ........................................................................................................ 72
       ft_connect( ) ................................................................................................... 73
       ft_disconnect( ) .............................................................................................. 75
       ft_fcattributes( )............................................................................................. 77
       ft_fdelete( ) ..................................................................................................... 81
       ft_frattributes( ) ............................................................................................. 84
       ft_frdir( ) ........................................................................................................ 88
       ft_freceive( ) ................................................................................................... 92
       ft_fsend( ) ....................................................................................................... 97
       ft_gperror( ).................................................................................................... 103
       ft_open( ) ........................................................................................................ 105
       ft_rcvresult .................................................................................................... 107

Chapter 5 XFTAM Return Codes ......................................................................... 109

Appendix A Summary of XOM.................................................................................. 115
  A.1    Syntax............................................................................................................ 115
  A.2    Value .............................................................................................................. 115
  A.3    XOM Attribute............................................................................................. 115
  A.4    XOM Object.................................................................................................. 116

iv X/Open CAE Specification



Contents

  A.5    XOM Class.................................................................................................... 116
  A.6    Package ......................................................................................................... 117
  A.7    Package Closure .......................................................................................... 117
  A.8    Workspace .................................................................................................... 118
  A.9    Descriptor..................................................................................................... 118
  A.10    Use of Objects .............................................................................................. 119

    Glossary ....................................................................................................... 121

    Index............................................................................................................... 123

List of Figures

1-1 X/Open OSI APIs .......................................................................................... 1
1-2 FTAM File Service Model............................................................................. 6
2-1 XFTAM Model ................................................................................................ 16
2-2 Example OM_Descriptor List...................................................................... 22
2-3 Descriptors for the FTAM-Attributes Class ............................................. 25
2-4 Access Control Attribute Example OM Objects...................................... 34

FTAM High-Level API (XFTAM) Version 2 v



Contents

vi X/Open CAE Specification



Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

FTAM High-Level API (XFTAM) Version 2 vii



Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

viii X/Open CAE Specification



Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This XFTAM Version 2 CAE Specification supersedes the previously published XFTAM CAE
Specification (C304, January 1994). It includes revisions to align it with the IEEE FTAM Standard
which is itself based on the previously published XFTAM CAE Specification.

This Specification defines the X/Open File Transfer, Access and Management (XFTAM) Version
2 API, which is a programming interface to the OSI File Transfer, Access and Management
protocol. The IEEE alignment includes support for context-sensitive mode of operation of the
XFTAM API; this support was at X/Open Preliminary Specification status in the previous
XFTAM Specification (C304, January 1994).

XFTAM’s functions implement high-level file transfer and file management operations using the
service of an FTAM initiator and service provider which underly the API. This specification
therefore defines an API to the simple file transfer and management functions of the OSI file
manipulation service element, including the functions and data structures which it provides for
use by applications writers.

It is not the purpose of this specification to define a particular subset of the FTAM protocol
which XFTAM implementations must support.

Structure

• Chapter 1, Introduction, describes the positioning of X/Open OSI APIs, and XFTAM
dependencies. It then gives a brief introduction to the FTAM file service. After that, it
explains particular terminology and conventions used in this document, then conformance
requirements for an API implementation and for the underlying FTAM service provider, and
it closes with indications of development directions regarding the OSI standards upon which
this XFTAM specification is based.

• Chapter 2, XFTAM Overview, lists XFTAM’s functions and data structures and describes the
model on which the API is based. It includes description of the context-sensitive mode of
operation. This chapter also describes aspects of the use of the API, including the use of the
XOM API to support transfer of control information between XFTAM and the API user.

• Chapter 3, XFTAM Base Package - XOM Class Definitions, lists the XOM Class Definitions
which are used to pass information control between XFTAM and the API user. This chapter

FTAM High-Level API (XFTAM) Version 2 ix



Preface

defines a class hierarchy for the basic XFTAM XOM Package and, for each class in the
package, it lists the XOM attributes of the class, defining the syntax of each attribute and other
aspects such as limits on its value or number of occurrences.

• Chapter 4, XFTAM Function Manual Pages, presents the manual page definitions for the
functions provided by the XFTAM API.

• Chapter 5, XFTAM Return Codes, lists the standardised values returned by XFTAM
functions, describing the meaning of each code and a possible corrective action.

• Appendix A, Summary of XOM, presents a short summary of the X/Open OSI-Abstract-
Data Manipulation API (reference XOM), describing its functionality. This appendix is
provided for the convenience of readers who are not familiar with X/Open’s XOM API.

• The Glossary provides a short description of the meaning of some key terms used in this
specification.

Intended Audience

The intended audience for this specification includes two distinct groups of readers:

• API Implementors
System Vendors who are implementing an OSI stack may use this specification to design an
XFTAM-conformant interface for the services of an FTAM initiator. XFTAM supports the
design of portable file transfer applications.

• Applications Programmers
Implementors of applications which are to use FTAM-based file transfer can use the set of
functions and data structures described in this specification in order to produce an
application which is portable across OSI protocol stacks from a range of system vendors.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, class
names, data structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name( ). Names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

x X/Open CAE Specification



Preface

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [ABCD] is used to identify a return value ABCD, including if this is an an error
value.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [ ] , are part of the syntax and do not indicate optional
items.

FTAM High-Level API (XFTAM) Version 2 xi



Trade Marks

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

UNIX is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

xii X/Open CAE Specification



Referenced Documents

The following documents comprise the FTAM file service:

ISO/IEC 8571-1
Information processing systems - Open Systems Interconnection - File Transfer, Access and
Management - Part 1: General Introduction. ISO/IEC 8571-1:1988 (E)

ISO/IEC 8571-2
Information processing systems - Open Systems Interconnection - File Transfer, Access and
Management - Part 2: Virtual Filestore Definition. ISO/IEC 8571-2:1988 (E)

ISO/IEC 8571-3
Information processing systems - Open Systems Interconnection - File Transfer, Access and
Management - Part 3: File Service Definition. ISO/IEC 8571-3:1988 (E)

ISO/IEC 8571-4
Information processing systems - Open Systems Interconnection - File Transfer, Access and
Management - Part 4: File Protocol Specification. ISO/IEC 8571-4:1988 (E)

ISO/IEC 8571-5
Information processing systems - Open Systems Interconnection - File Transfer, Access and
Management - Part 5: Protocol Implementation Conformance Statement Proforma.
ISO/IEC 8571-5:1990(E)

Four filestore management addenda to ISO/IEC 8571 FTAM have been published:

ISO/IEC 8571 DAM
Information processing systems - Open Systems Interconnection - File Transfer, Access and
Management:

— Amendment 1:1992 to ISO 8571-1:1988: Filestore Management

— Amendment 1:1992 to ISO 8571-2:1988: Filestore Management

— Amendment 1:1992 to ISO 8571-3:1988: Filestore Management

— Amendment 1:1992 to ISO 8571-4:1988: Filestore Management.

The following documents comprise the FTAM Profile, ISP 10607.

ISP 10607-1
Information technology - International Standardized Profiles AFTnn - File Transfer, Access
and Management - Part 1: Specification of ACSE, Presentation and Session Protocols for the
use by FTAM. ISO/IEC ISP 10607-1:1990(E)

ISP 10607-2
Information technology - International Standardized Profiles AFTnn - File Transfer, Access
and Management - Part 2: Definition of document types, constraint sets and syntaxes.
ISO/IEC ISP 10607-2:1990(E)

ISP 10607-3
Information technology - International Standardized Profiles AFTnn - File Transfer, Access
and Management - Part 3: AFT11 - Simple File Transfer Service (unstructured). ISO/IEC ISP
10607-3:1990(E)

FTAM High-Level API (XFTAM) Version 2 xiii



Referenced Documents

ISP 10607-4
Information technology - International Standardized Profiles AFTnn - File Transfer, Access
and Management - Part 4: AFT12 - Positional File Transfer Service (flat). ISO/IEC ISP
10607-4:1991(E)

ISP 10607-5
Information technology - International Standardized Profiles AFTnn - File Transfer, Access
and Management - Part 5: AFT22 - Positional File Access Service (flat). ISO/IEC ISP
10607-5:1991(E)

ISP 10607-6
Information technology - International Standardized Profiles AFTnn - File Transfer, Access
and Management - Part 5: AFT3 - File Management Service. ISO/IEC ISP 10607-6:1991(E)

The following X/Open publications are referenced in this specification:

I/W SG
Interworking API Style Guide, X/Open Snapshot, S030, December 1990.

XDS
API to Directory Services (XDS), X/Open CAE Specification, C317, ISBN 1-85912-007-5,
December 1993.

XNFS
Protocols for X/Open Interworking: XNFS, Issue 4, X/Open CAE Specification, C218, ISBN
1-872630-66-9, October 1992.

XOM
OSI-Abstract-Data Manipulation API (XOM), X/Open CAE Specification, C315, ISBN 1-
85912-008-3, December 1993.

xiv X/Open CAE Specification



Chapter 1

Introduction

This document is a CAE Specification defining the X/Open XFTAM API, a programming
interface to the OSI File Transfer, Access and Mangement protocol. XFTAM’s functions
implement high-level file transfer and file management operations using the service of an FTAM
initiator and service provider which underly the API.

Motivation

X/Open has defined Application Programming Interfaces (APIs) which can be used to access the
OSI protocol stack at a number of levels. Figure 1-1, X/Open OSI APIs, shows some of these
interfaces. The X/Open Transport Interface (XTI) provides an interface to the Transport Layer
services of a range of protocol stacks including OSI and TCP/IP. XTI facilitates portability of
applications among different protocol suites and among operating system and protocol stack
platforms. Higher-up the stack, the ACSE/Presentation Services Application Programming
Interface (XAP) provides access to the common connection-oriented services of the upper layers
of the OSI protocol stack. XAP provides a standardised interface at the highest point of
commonality shared by most Application Layer services, making possible the separation of
application-specific and common elements of the OSI protocol stack.

Whilst both may be made available to system users for implementation of local applications,
these interfaces are considered to be ’low-level’, designed principally for use by systems
suppliers and software vendors, providing portability interfaces which increase the applicability
of software products and allow a range of application products to be supported by a single
common protocol stack.

X/Open is also actively developing a number of APIs to application-specific OSI application
service elements. These APIs are in general higher-level than those discussed previously, In
particular, there may not be a one-to-one mapping between an API’s functions and the service
primitives of the underlying protocol. The XAP API gives direct access to the primitives of its
underlying services, allowing the API user to send and receive individual primitives. On the
other hand, these application-specific APIs are likely to operate in a request-response mode, in
which an API function initiates an action and returns the response to the caller when it arrives.
XFTAM belongs to this category of APIs, providing an API to the simple file transfer and
management functions of the OSI file manipulation service element.

FTAM High-Level API (XFTAM) Version 2 1



Introduction

APPLICATION
-SPECIFIC
SERVICES

APPLICATION
-SPECIFIC API

OSI
APPLICATION

NON-OSI
APPLICATION

OSI TRANSPORT
SERVICES

XTI API

ACSE

OSI UPPER
LAYERS

XAP API

Figure 1-1 X/Open OSI APIs

Purpose of Specification

The purpose of this CAE Specification is to describe the XFTAM API and to define the functions
and data structures which it provides for use by applications.

It is not the purpose of this specification to define a particular subset of the FTAM protocol
which XFTAM implementations must support. The compliance requirements for an
implementation of the API and the underlying FTAM service to which is provides access are
defined in Section 1.4 on page 12.

Scope of Specification

This section discusses the scope of this version of the XFTAM specification, it uses some terms
defined by the FTAM specification. These terms are described in the Glossary at the end of this
specification, and in the summary of FTAM functions provided in Section 1.2 on page 5.

XFTAM specifies a ’C’ programming interface only. No language independent definition of the
API is provided. The API is operating system independent - it is not limited to X/Open CAE-
conformant systems.

The ISO FTAM specification (reference ISO 8571) provides a wide range of services for the
manipulation of an FTAM virtual filestore. An international standardised profile exists to define
subsets of the full FTAM capabilities that are sufficient to support specific applications of the
protocol. This version of the XFTAM API supports the Simple File Transfer and the File
Management Services and thus provides functions for file transfer and file management only.

2 X/Open CAE Specification



Introduction

The Positional File Transfer and Positional File Access Services have been excluded from this
version of XFTAM, partly because these profiles are not yet stable, and partly because the scope
of XFTAM has been limited in order to benefit from implementation experience before
developing the API to include other FTAM services. As a consequence, access to the individual
data units of an FTAM file is not supported.

Extensions to the FTAM protocol to support Filestore Maintenence are currently being developed
within ISO. These features are excluded from the scope of XFTAM as they do not yet have
International Standard status.

FTAM defines two roles for a service user - initiator and responder. XFTAM provides access to the
services of an FTAM initiator only, for the purposes of transferring files to and from a FTAM
virtual filestore and managing files in such a filestore. XFTAM provides access to the local
filestore of the system in which it runs - an XFTAM implementation is not required to implement
the full semantics of the FTAM VFS in the local filestore.

The FTAM specification provides a mechanism for the storage and transfer of arbitrarily
complex document types, and defines a small number of basic document types. This version of
the specification supports the transfer of FTAM-1, FTAM-2 and FTAM-3 document types only.
The types of file that can be managed are not restricted.

Note: Whilst file transfer operations which transfer complete files are supported for the
FTAM-2 document type, file access operations which access individual parts of an
FTAM-2 file are not supported).

The NBS-9 document type, defined in the FTAM Profile (reference ISP 10607), is included for the
purposes of supporting multiple file transfers. Such a file may not be the subject of a file transfer
or management function itself.

FTAM High-Level API (XFTAM) Version 2 3



Dependencies Introduction

1.1 Dependencies
An implementation of XFTAM must be supported by the following APIs:

• XOM - XFTAM relies upon an implementation of the XOM API, as specified in the XOM
specification (reference XOM), to support the passing of control information between the
API user and XFTAM.

• Directory Service - In order to use the file transfer and management functions of XFTAM, the
API user must supply a presentation address to identify the FTAM responder that serves the
remote filestore. The mechanism by which the API user obtains such a presentation address
is not defined by XFTAM (it may be via a local lookup mechanism, or by access to a
distributed directory service). X/Open have published the XDS API (reference XDS) to
specify a means to provide portable access to a directory service. Whilst it is not a
requirement to use the XDS API, XFTAM uses the Presentation-Address object class defined in
the Directory Service (DS) package of the XDS specification in order to facilitate the transfer of
presentation addresses between XDS and XFTAM.

4 X/Open CAE Specification



Introduction Overview of FTAM

1.2 Overview of FTAM
This section gives a brief overview of the FTAM file service for those readers not familiar with
the general concepts. For further details the reader is referred to the FTAM specifications
outlined below (particularly part 1, the general overview). An understanding of FTAM is
assumed in the remaining parts of this specification. Readers who are already familiar with
FTAM may wish to proceed with the remainder of the Introduction.

Due to the limited scope of the XFTAM API compared to that of the FTAM file service as a
whole, this overview covers only those aspects of the service which are relevant. This means
that significant areas of FTAM functionality are not mentioned. In particular, the FTAM
hierarchical file model is not discussed in detail, and features applicable only to file access are
ignored.

1.2.1 FTAM Specification

The FTAM file service is defined by the referenced FTAM specification, ISO 8571, which consists
of five parts, as follows:

• Part 1: General introduction

• Part 2: Virtual Filestore Definition

• Part 3: File Service Definition

• Part 4: File Protocol Specification

• Part 5: Protocol Implementation Conformance Statement Proforma.

In addition, an addendum specifying facilities for maintenance of entire file systems is under
preparation (see Section 1.5 on page 14).

1.2.2 FTAM Profile

The FTAM file service provides a wide range of features related to the transfer, access and
management of files, many of which are optional. An implementation designed for a specific
type of application or environment may wish to implement a subset of the FTAM service,
leaving out optional features that are not relevant. However, unless there is agreement on
which features are to be supported, such an implementation may not be able to interwork with
other implementations due to incompatibilities caused by the selection of different subsets.

To address this problem, the referenced International Standardised Profile, ISO ISP 10607, has
been defined for the FTAM file service. This ISP consists of six parts, not all of which have been
ratified as international standards at the time of publication. The profile specifies requirements
in addition to those in the FTAM specifications, for an implementation of the FTAM file service.
It identifies as mandatory some of the features marked as optional in the base FTAM
specification (where a feature is mandatory in FTAM, it is of course mandatory in the profile
too). The profile consists of six parts. Parts 3 to 6 specify requirements for specific types of file
service applications; parts 1 and 2 specify requirements which apply to all the types of
application identified by the profile.

The constituent parts of ISP 10607 are as follows:

• Part 1: Specification of ACSE, Presentation and Session Protocols for the use by FTAM -
specifies requirements for the use of the services of the upper layers of the OSI protocol stack.

• Part 2: Definition of document types, constraint sets and syntaxes - specifies the
requirements for support of the various document types defined by the FTAM standard and
by other organisations such as the regional OSI workshops.

FTAM High-Level API (XFTAM) Version 2 5



Overview of FTAM Introduction

• Part 3: AFT11 - Simple File Transfer Service - supports transfer of files and reading of file
attributes.

• Part 4: AFT12 - Positional File Transfer Service.

• Part 5: AFT22 - Positional File Access Service.

• Part 6: AFT3 - File Management Service - supports all file management operations, including
writing file attributes and deleting files.

The requirements for support of these profiles by the service provider which underlies an
implementation of XFTAM are discussed in Section 1.4 on page 12.

1.2.3 Model for the FTAM file service

The FTAM file service is based upon the FTAM virtual filestore (VFS), a model for describing files
and their attributes. The VFS allows two systems with different real file systems to interwork in
terms which are mutually understood. FTAM file service users must map the VFS onto the real
filestore that exists on the local system. In the VFS, a file consists of a set of file attributes, zero or
more data units representing the contents of the file, plus structuring information required to
represent the organisation of the information in the file.

FTAM
INITIATOR

 file actions

data transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transferdata transfer

FTAM
INITIATOR

FTAM
RESPONDER

LOCAL
FILESTORE REMOTE

FILESTORE

Mapping between FTAM VFS
and real filestore

Key:

FTAM Application Association

LOCAL
FILESTORE

Figure 1-2 FTAM File Service Model

FTAM implements an asymetric dialogue between the two file service users participating in an
FTAM association. The roles in the dialogue are as follows:

Initiator The initiator of an association is the controlling party responsible for initiating all
activity in order accomplish the objective of the file service user, such as transfer of
file data or a file maintenance operation.

Responder The responder takes a purely passive role in an association, performing actions as
requested by the initiator of the association.

A common mode of FTAM usage allows initiator clients to access a remote virtual filestore
controlled by an FTAM responder. In this mode an FTAM initiator performs a file transfer
between its local filestore and a filestore controlled by the remote responder. Alternatively, the

6 X/Open CAE Specification



Introduction Overview of FTAM

initiator may perform maintenance actions on files in the remote filestore. Figure 1-2 on page 6,
FTAM File Service Model, illustrates this mode of use.

1.2.4 File Attributes

FTAM defines a comprehensive set of attributes that can be used to describe the characteristics
and content of a file. These are listed below. A particular responder implementation may not
support every attribute that FTAM defines because they are not all relevant to the real filestore to
which it provides access. For this reason the attributes are grouped, with support of some
groups being optional for a responder implementation. A responder may support an optional
attribute group but only partially support one or more of the attributes in the group, supplying
the value ’no value available’ when the value of the attribute is passed to an initiator. (As an
initiator implementation, XFTAM must support all groups in the sense that it must be capable of
accepting and supplying values for all FTAM file attributes.) The FTAM file attributes are listed
below. Some of them have no relevance to the types of FTAM file operations supported by an
XFTAM implementation. As described in Chapter 2, only a few of them must be specified when
a file is created in a remote filestore.

Kernel Group

This group contains attributes that are always supported. An FTAM responder always stores
and returns values for these attributes. The kernel attributes are:

• Filename - allowing the file to be referenced in the VFS without ambiguity.

• Permitted actions - identifies the set of actions that are permitted on the file (for example,
read, replace, extend and change attribute). Permitted actions also identifies the set of FADU
identity styles that are permitted for the file. However, as this aspect of FTAM is not relevant
to the types of file access supported by XFTAM, they are not described here.

The value of this attribute is set when the file is created and cannot be modified subsequently
(the attribute is intended to reflect the basic characteristics of the file as opposed to file access
permissions which may vary during the lifetime of the file).

• Contents Type - indicates the structure of the file and the type of data stored in it. The
contents type is used to preserve the meaning of the file during transfer. The type may be
specified in one two ways. For the purposes of XFTAM, however, contents type may only be
specified as a Document Type Name (described below).

This attribute is set when the file is created and cannot be modified subsequently.

Storage Attribute Group

Support of this attribute group is optional for a responder. If the group is supported, each
attribute is either fully supported (a meaningful value is returned by the responder) or
partially supported (the value "no value available" is returned).

• Storage Account - identifies who is responsible for charges associated with storing the file.

• Date and time attributes - these attributes indicate the date and time of file creation and of
the last content modification, read access, and attribute modification.

These attributes are set by the FTAM responder as a result of the completion of the related
file actions and cannot be modified directly by a file service user.

• Identity attributes - these attributes indicate the identity of the file creator and the previous
content modifier, reader or attribute modifier.

FTAM High-Level API (XFTAM) Version 2 7



Overview of FTAM Introduction

These attributes are set by the FTAM responder as a result of the completion of the related
file actions and cannot be modified directly by a file service user.

• File availability - indicates the delay that should be expected when the file is opened. The
value is immediately available (i.e. the file is stored on a non-demountable device) or deferred
availability (the file may be stored on a demountable device such as magnetic tape).

The attribute is set when the file is created and can be modified subsequently.

• Filesize - indicates the size (in octets) of the file. This attribute is set by the FTAM responder
as a result of modification or extension.

This attribute is set by the FTAM responder as a result of the completion of the related file
actions and cannot be modified directly by a file service user.

• Future filesize - indicates the size (in octets) to which the file may grow as a result of
modification or extension.

Access Control Attribute Group

Support of this attribute group by a responder is optional. If the group is supported, each
attribute is either fully supported (a meaningful value is returned by the responder) or
partially supported (the value "no value available" is returned).

• Access Control Attribute - specifies a set of conditions under which access to the file is to be
permitted. Conditions may include the identity of the initiator, the location of the initiator,
and provision of passwords required to perform file actions. Chapter 2, provides more
details of how this attribute may be used.

• Legal Qualifications - indicates the legal status of the file in respect of national data
protection legislation. The FTAM specification makes no further statement about the use of
this attribute.

Private Group

This optional attribute group consists of a single attribute private use. The form and meaning of
this attribute is not defined by the FTAM specification.

1.2.5 Document Types

The FTAM VFS provides a flexible file model for describing the attributes, structure and contents
of file in a manner independent of the real filestore in which it resides. The FTAM specification
defines a small set of named document types which use the file model to represent simple
commonly encountered types of file. Other organisations, such as the regional OSI workshops,
have defined other document types for specific applications. The following sections describe
document types supported by the XFTAM API.

A document type is uniquely identified by an ASN.1 object identifier and object descriptor.
However, the type is usually referred to by an entry number (for example FTAM-1). A document
type specifies rules for the structure of the file (known as the constraint set) and for its content
(known as the abstract syntax). In addition, a document type can define one or more qualifying
parameters which allow it to apply to a group of closely related document types.

8 X/Open CAE Specification



Introduction Overview of FTAM

FTAM-1 Document Type

The FTAM-1 document type specifies an unstructured file consisting of zero or more text strings.
An application may only access the contents of an unstructured file as a whole; access to
portions of the file is not possible. Optional parameters may be used to specify characteristics of
the strings in the file. These are the universal class number (ASN.1 character set for the characters
which make up the strings of the file), and a maximum string length and a string significance, which
together constrain the strings in the file.

This document type is the natural one for representing a real file containing lines of text, where
the strings of the document type may be mapped to the text strings of the file as delimited by the
local end-of-line convention. Note that FTAM-1 does not associate any semantics with lines of
text, so that such mapping is outside the scope of the FTAM standard. It may also represent text
files such as screen or print images, where the contents contain format effectors which control
the display or printing of the information. All XFTAM implementations support this document
type, as do responder implementations which conform to the FTAM profile.

FTAM-2 Document Type

The FTAM-2 document type specifies a sequential file consisting of zero or more records, each of
which consists of zero or more text strings. The records in the file may be referenced by position
(record number) or in sequence (first/next, last/previous). As for the FTAM-1 document type,
the records of the file contain text strings, with the same set of optional parameters to specify
their characteristics.

Support for transfer of this document type is optional in the FTAM profile. A particular XFTAM
implementation, or the responders with which it interacts, may not support it. XFTAM does
NOT support file access operations on individual parts of an FTAM-2 document.

FTAM-3 Document Type

The FTAM-3 document type defines an unstructured file containing zero or more strings of
binary data. The structure and content of the file are as for the FTAM-1 document type with the
exception that there is no universal class number parameter; each string in the file is a simple
sequence of octets, unrestricted in value.

This document type can be used to represent files where the content of the file is not restricted.
All XFTAM implementations support this document type, as do responder implementations
which conform to the FTAM profile.

NBS-9 Document Type

This document type, defined by the FTAM Profile (reference ISP 10607), allows the transfer of
information about the directory structure of a real file system (FTAM currently defines the name
of a file as an uninterpreted string and does not recognise the concept of a filestore structure).
The document type contains zero or more records, each listing the attributes of a file in the
named directory. The list of attributes returned in a particular request contains only those
supported by the responder - thus it might contain only the attributes in the kernel group.

XFTAM provides indirect access to this file type to assist in the implementation of multiple file
transfers. Support of the file type is optional in the FTAM profile - XFTAM implementations
must be able to request it but some responder implementations may not return the requested
information.

FTAM High-Level API (XFTAM) Version 2 9



Overview of FTAM Introduction

1.2.6 File Actions

The FTAM VFS defines a set of generalised actions that can be performed on its files. XFTAM
uses these actions to implement its functions. FTAM provides access to these actions via its
service primitives. An initiator invokes these primitives to implement a file operation such as a
file transfer or retrieval of file attributes. Only those actions which are relevant to understanding
XFTAM are listed below (although other actions may be used in implementing a particular
XFTAM function):

• Change attribute - change the values of one or more file attributes of the currently selected file

• Read attribute - read the values on one or more file attributes of the currently selected file

• Delete file

• Read

• Replace

• Extend - add data to the end of a file.

1.2.7 FTAM Quality of Service

FTAM recovery action is based upon an FTAM Quality of Service agreed between the initiator and
responder when an FTAM regime is initialised. This quality of service indicates the error classes
to which the application is susceptible, i.e. the error classes for which the initiating user wishes
the underlying FTAM implementation to attempt recovery.

FTAM defines an error recovery protocol, with associated service primitives, that implements
the requested recovery action. The actual FQoS negotiated for an association is based upon the
level of support of these optional recovery primitives, along with local considerations (such as
the inherent reliability of the systems involved). Consequently, the FQoS agreed for an
association may be lower than that requested by the initiating user. In this case it is up to the
FTAM service user to decide whether to terminate the regime or to continue despite the reduced
service quality.

10 X/Open CAE Specification



Introduction Terminology and Conventions

1.3 Terminology and Conventions
The special terminology and conventions used in this specification are derived primarily from
the referenced XOM and FTAM specifications. An overview of the former is presented in
Appendix A, and of the latter in the FTAM Overview, Section 1.2.

Both specifications make use of the term attribute. XOM uses it to describe a value type which
forms part of an XOM Object Class, whilst XFTAM uses it to describe a characteristic of an FTAM
file. In this specification, in general, the particular meaning intended is clear from the context of
its use. However, where this is not clear, the reference is qualified as FTAM attribute or XOM
attribute. The term XFTAM attribute is used to refer to an XOM attribute of an object class defined
by the XFTAM package. .

Similarly there is a clash between FTAM’s use of the term parameter, which refers to a value
passed in an FTAM service primitive, and this specification, where it refers to a value passed to
or from an API function. When used on its own, it refers to the API meaning. It is qualified as
FTAM parameter when used to refer to the other meaning.

The XFTAM functions and associated identifiers are defined as a binding to the ’C’ language,
using the general typographical conventions established for X/Open APIs. The prefix ft or FT is
used for all names to ensure uniqueness of identifiers which appear in header files or are visible
when a program is linked. In addition, all identifiers beginning with ftp or FTP are reserved for
internal use within an implementation of XFTAM. Identifiers beginning with ftx or FTX are
reserved for use by vendor extensions to this specification.

The convention for XOM packages is to use abstract names from which the ’C’ binding can be
derived mechanically. The rules for deriving the ’C’ binding are defined by the X/Open
Interworking API Style Guide (reference I/WSG). The following list summarises how those rules
are applied to derive the ’C’ binding for the XTAM Base Package.

• XOM class identifiers are derived from the abstract class name by converting it to upper case,
converting hyphens to underscores, and adding the prefix FTC_. Thus, Access-Control-
Element becomes FTC_CONTROL_ELEMENT.

• XOM attribute identifiers are derived from the abstract attribute name in the same way as
XOM class identifiers except that the prefix is FT_. Thus, File-Action-List becomes
FT_FILE_ACTION_LIST.

• Enumeration tag identifiers are derived from the name of the value set by converting
hyphens to underscores (but preserving case) and adding the prefix FTA_. Thus, File-Action-
List becomes FTA_FILE_ACTION_LIST.

• Enumeration constant identifiers are derived from the abstract name of the constant in the
same way as XOM attribute identifiers. Thus, Printable-String becomes
FT_PRINTABLE_STRING.

FTAM High-Level API (XFTAM) Version 2 11



Conformance Introduction

1.4 Conformance
Two groups of conformance requirements are defined in this specification: conformance
requirements for an API implementation, and conformance requirements for the underlying
FTAM service provider.

Conformance Requirements for an API Implementation

A conformant XFTAM implementation provides, as a minimum, all the functions defined in
Chapter 4, and all the OM classes of the XFTAM Base Package defined in Chapter 3. The
following points should be noted:

• When the API user requests a feature which is supported by the API but which the
underlying FTAM service provider does not support, the API returns an FTE_NOTSUP_XXX
error.

• An implementation of the API defines values for all the return codes defined by this
specification. However, the functions of the API return only those values which the
underlying FTAM service provider is capable of indicating. Conversely, where an FTAM
service provider indicates an error for which XFTAM defines a return code, the API returns
that code rather than any other (XFTAM provides an optional vendor-defined return code to
further qualify the result of a function).

• An implementation may extend the API by adding new functions or by defining new XOM
packages containing additional classes (which may be sub-classes of classes defined by the
XFTAM API package). An implementation may not change the definition or semantics of
existing XFTAM functions or XOM classes or add new OM attributes to existing XOM
classes.

List of Optional Features

The following list highlights the features of the XFTAM API that are defined as optional. In
general, features of the underlying FTAM initiator that are defined as optional in the base
specification or associated ISPs are not included in this list.

• ft_abandon function - supported if the implementation supports asynchronous operations.

• ft_rcvresult function - supported if the implementation supports asynchronous operations.

• Asynchronous XOM Attribute - supported if the implementation supports asynchronous
operations.

• Invoke-ID XOM Attribute - supported if the implementation supports asynchronous
operations.

• Session-Handle XOM Attribute - supported if the implementation supports XFTAM instances
in the local event handling mechanisms.

• Source_attributes or return_attributes parameter of ft_receive( ) specifying Document-Type-
FTAM-2 - supported if the implementation supports the FTAM-2 document type.

• Initial_attributes or return_attributes parameter of ft_send( ) specifying Document-Type-FTAM-2
- supported if the implementation supports the FTAM-2 document type.

• FQoS enum values other than No Recovery - supported if the implementation provides the
corresponding level of recovery support.

• Contents type lookup service - supported if the implementation is capable of determining a file
contents type by ft_fsend( ) function when no contents type specified by the XFTAM user.

12 X/Open CAE Specification



Introduction Conformance

Conformance Requirements for the Underlying Service Provider

An implementation which complies with this specification shall also comply with the
International Standardized Profiles (ISP) which are listed in the XFTAM Component Definition.

International Standardized Profiles place additional constraints on the PICS (the Protocol
Implementation Conformance Statements). These constraints are in terms of a requirement list -
effectively deltas to the (protocol) PICS status colum - and contain additional questions relevant
to the profile (for example, required ranges of supported parameter values).

The ISPs relevant to this specification are part of the multi-part profile ISO/IEC ISP 10607, which
references the ISO/IEC Session, Presentation, ACSE and FTAM protocols. PICS Proforma for the
ISO/IEC Session, Presentation and ACSE protocols are currently under ballot.

An implementation of XFTAM must be accompanied by a completed set of the available PICS
Proforma, showing that the requirement lists of the ISPs are met by the implementation.

The following points should be noted:

• An FTAM service provider must support all FTAM file attributes when sending files to a
remote filestore, reading attributes and changing attributes. When receiving files for storage
in the local filestore, the service provider must accept values for all attributes but XFTAM is
NOT required to store those attributes which do not map to an equivalent local filestore file
attribute.

• An FTAM implementation is required to support the file attributes within the minimum
attribute range defined in ISO 8571-2, section 15.

• Implementation, by the underlying FTAM initiator, of the error recovery procedures (and the
associated RESTART and RECOVER functional units) is optional. Where the XFTAM user
requests a level of FTAM quality of service (FQoS) that is not supported by the initiator
because of implementation-defined restrictions, the requested XFTAM operation fails with
the error code [FTE_NOTSUP_FQOS]. Where the requested FQoS is reduced during
negotiation of the FTAM association, the operation fails with error code
[FTE_FQOS_NOT_NEGOTIATED].

FTAM High-Level API (XFTAM) Version 2 13



Future Directions Introduction

1.5 Future Directions
This section highlights possible future developments in scope and functionality of the FTAM
specification. Mention of these possible developments does not imply a commitment on the part
of X/Open to produce a revised version of this specification.

Filestore Management

Four addenda to the FTAM specification (see reference ISO 8571-x) have been published by ISO.
These addenda extend the FTAM file model and introduce new filestore maintenance actions.

File Access Functions

X/Open has no plans at the time of writing to extend the scope of this API to encompass file
access functions.

Transparent File Access

X/Open has no plans at the time of writing to provide lower level APIs to the FTAM file service.
Other organisations involved in the development of standards are working on a definition of the
protocols and file system semantics required to provide transparent file access using FTAM. When
this work is complete, X/Open may define a mapping of the X/Open CAE filestore onto the
FTAM VFS for the purposes of supporting transparent file access over FTAM. This is similar to
the definition of the semantics of the X/Open CAE filestore when accessing NFS-based files,
published in the referenced XNFS specification.

14 X/Open CAE Specification



Chapter 2

XFTAM Overview

This chapter provides an overview of the features of the XFTAM API, listing its functions and
providing information on how to use them, including details of how the OSI-Abstract-Data
Manipulation API supports passing of control information between the API and the user and the
use of the XDS API to support addressing the remore filestore.

FTAM High-Level API (XFTAM) Version 2 15



XFTAM Model XFTAM Overview

2.1 XFTAM Model
The elements of the XFTAM API model are shown in Figure 2-1. It should be noted that whilst
the figure shows the FTAM initiator and service provider as separate boxes, XFTAM makes no
statements about the architecture or implementation of the software underlying the API other
than defining the functions that it performs. Also the responder elements show a typical
arrangement, and do not imply any requirement imposed on the types of responder
architectures with which an implementation of XFTAM may interwork.

FTAM file actions

and data transfer

FTAM
INITIATOR

FTAM
RESPONDER

XFTAM API USER

LOCAL
FILESTORE REMOTE

FILESTORE

FTAM SERVICE
PROVIDER

XFTAM

API

VFS <-> real filestore mapping

FTAM service
 primitives

XFTAM
 function calls

Key:

Figure 2-1 XFTAM Model

The XFTAM API provides a set of functions which implement high-level file transfer and
management tasks. These are termed XFTAM operations in this specification, as an operation can
be a request to transfer a file from the local filestore to a remote one, or to read the attributes of a
remote file.

Underlying the API is an FTAM initiator that implements the XFTAM operations using the
services of an FTAM service provider.

2.1.1 Context Free Operations

In the context-free processing mode, in order to implement an operation, the local initiator
establishes an application association with an FTAM responder that serves the remote filestore, and
performs a series of FTAM file actions (for example, going through the steps required to establish
the FTAM select regime, invoking the read attributes file service, and then terminating the regime
created), closing the association and returning the result of the operation to the API user once all
the steps are complete. This is termed context free operation and is the default mode of operation
for XFTAM.

16 X/Open CAE Specification



XFTAM Overview XFTAM Model

2.1.2 Context Sensitive Operations

In the alternative, context-sensitive processing mode, the FTAM initiator establishes the
application association with the FTAM responder (using the F-INITIALIZE FTAM service to
establish an FTAM regime), and this association remains to provide a context for subsequent
operations (for example, invoking the delete file servies). When each operation completes, it
returns the result to the API user and the association remains, ready for another operation.

When the API user has completed all the required operations the association is destroyed (using
the F-TERMINATE FTAM service).

The initiator interfaces to the local filestore in order to implement file transfers, mapping
between the attributes and content of a file as defined by the FTAM VFS, and the local file
semantics - for example, mapping the local file name to the FTAM attribute filename, or mapping
the strings of an FTAM-1 unstructured text file into lines of text in a local file, terminated by the
local end-of-line convention. The initiator uses the FTAM service to set up an association with a
remote FTAM responder which provides access to the remote VFS. Of course the responder is
usually implementing a similar mapping between the semantics of the VFS and those of its local
filestore. However no assumptions are made about the architecture of the remote FTAM
implementation.

A user interacts with the API via an XFTAM instance, which is the collection of state information
required to perform XFTAM operations on the user’s behalf. XFTAM instances are created and
deleted by the API user as required. A user may create many independent XFTAM instances
within a single program (for example where distinct sections of the application make
independent use of the API).

FTAM High-Level API (XFTAM) Version 2 17



XFTAM Feature Summary XFTAM Overview

2.2 XFTAM Feature Summary
The XFTAM API provides a set of functions to support FTAM file transfer and management
operations. That is, XFTAM allows an application to transfer complete files to and from a
remote Virtual Filestore (VFS) and to perform management operations on those files (read
attributes, change attributes, and delete file). A function is provided to list the contents of a
directory on a remote filestore (this function relies upon an optional feature of FTAM - the NBS-9
document type - which may not be supported by the underlying initiator or the responder which
provides access to the remote filestore).

The XFTAM API provides the following functions and features:

API Support Functions

• ft_open( ) - create an XFTAM instance and allocate an XOM workspace for the associated
package(s).

• ft_close( ) - destroy an XFTAM instance and free the associated workspace.

• ft_connect( ) - create an association to a remote FTAM responder within an existing XFTAM
instance

• ft_disconnect( ) - destroy an association established by ft_connect( )

• ft_abort( ) - abort an association and any outstanding asynchronous operations.

• ft_abandon( ) - abandon an outstanding asynchronous operation (optional).

• ft_rcvresult( ) - receive the results of an outstanding asynchronous operation (optional).

• ft_gperror( ) - translate an XFTAM return code into a printable string.

File Transfer Functions

• ft_fsend( ) - send a file from the local filestore to a remote VFS.

• ft_freceive( ) - receive a file from a remote VFS into the local filestore.

File Management Functions

• ft_frattributes( ) - read the attributes of a file in a remote VFS.

• ft_fcattributes( ) - change the attributes of a file in a remote VFS.

• ft_fdelete( ) - delete a file in a remote VFS.

Miscellaneous Functions

• ft_frdir( ) - return a list of entries from a directory in a remote VFS.

Document Types

XFTAM supports the following document types as the source or destination for file transfers.

• FTAM-1 - unstructured text.

• FTAM-2 - sequential text (optional).

• FTAM-3 - unstructured binary.

Support for transfer of the FTAM-2 document type is optional in the FTAM profile - a particular
XFTAM implementation, or the responders with which it interacts, may not support it. XFTAM

18 X/Open CAE Specification



XFTAM Overview XFTAM Feature Summary

does NOT support file access operations on individual parts of an FTAM-2 document. XFTAM
optionally supports the NBS-9 document type for listing contents of a directory on a remote
filestore.

XFTAM Base Package

In order to facilitate the passing of control information between the API user and XFTAM, the
services of the OSI-Abstract-Data Manipulation API (XOM) are used. An XOM package has been
defined which contains object class definitions for the information to be passed.

Supporting APIs

XFTAM relies upon an implementation of the X/Open XOM API, as specified in the referenced
XOM specification, to support the passing of control information between the API user and
XFTAM.

Also, optionally an implementation of the X/Open XDS API (reference XDS) may be used to
provide an interface to a directory service for the purposes of obtaining addressing information
needed to locate a remote FTAM responder.

FTAM High-Level API (XFTAM) Version 2 19



Using XFTAM XFTAM Overview

2.3 Using XFTAM
The remainder of this Chapter is devoted to discussing specific aspects of usage of the XFTAM
API that the user must understand in order to use this API successfully.

2.3.1 Include files

The macros and constant definitions which support the use of the XFTAM API are collected in a
header file that must be included in each source file that makes use of XFTAM API functions. In
addition, the header file for the XOM must also be included in source files that reference
definitions associated with this API. The following #include statements are required for a source
file that references definitions both APIs:

#include <xom.h> /* definitions for the XOM API */
#include <xftam.h> /* definitions for the XFTAM API */

2.3.2 Library files

XFTAM provides a library which allows the API user to link its functions into a program. The
name of this library, and the mechanisms provided to link a program are a local matter and are
not defined in this specification.

2.3.3 XFTAM Instances

Before an API user can invoke file transfer and management operations, an XFTAM instance
must be created by a call to ft_open( ), which initialises the associated resources (such as an XOM
workspace). ft_open() returns a pointer to a read-only private object of class Session. This session
object is subsequently used to identify the created instance in calls to other XFTAM functions.

A single application program may create multiple XFTAM instances by calling ft_open( ) as
required. This allows independent parts of a program such as code loaded as link libraries to
use XFTAM functions independently.

Once an application program has completed its use of XFTAM functions, it can release the
resources associated with an XFTAM instance by calling ft_close( ), passing it the associated
Session object.

2.3.4 Using XOM

Appendix A describes the basic services provided by XOM. This section provides specific
guidance on how the API user uses XOM to exchange control information with XFTAM. The
XFTAM API relies upon the services of the XOM API to support the passing of control
information to and from the API user. The following description discusses aspects of XOM and
the XFTAM API that a user must understand in order to use XFTAM successfully.

Creating and deleting the XFTAM workspace

The private objects passed to and returned from an XFTAM instance are stored in an XOM
workspace which is associated with that instance. As noted above, this workspace is created by
the function ft_open( ), which returns a handle of type OM_workspace. This handle can be used
in calls to the XOM functions to manage private objects on behalf of the XFTAM instance.

By default, the workspace created contains the XFTAM Base Package, defined in this specification.
ft_open( ) allows the API user to specify additional optional package for inclusion in the
workspace created. ft_open( ) returns an indication of which of the optional additional packages
have been included. This specification does not define any optional XOM packages for use with
the XFTAM API. However, future version of XFTAM may specify additional packages to

20 X/Open CAE Specification



XFTAM Overview Using XFTAM

support extensions to the base functionality. Alternatively, individual implementations of
XFTAM may choose to define optional packages to support proprietary extensions to the API.

The workspace, and any objects contained in it, are deleted by the ft_close( ) function.

Importing XOM Classes

In order to make reference to a particular XOM class within a particular source file, the user of
the XFTAM API must import the data declarations associated with it (using the macro
OM_IMPORT). Thus, each source file includes a set of calls to this macro at the beginning of the
file (that is before any reference to the XOM class being imported). For example, a reference in a
source file to the FTAM-Input-Parameters XOM class must be preceded by the following
statement:

OM_IMPORT(FTC_FTAM_INPUT_PARAMETERS)

In addition, one source file within the program must arrange for the actual storage associated
with these declarations to be allocated. Thus one source file within the program must export the
definition instead of importing it (using the macro OM_EXPORT). For example, source files
which import the data associated with the FTAM-Input-Parameters XOM class must be supported
by one source file that contains the following statement:

OM_EXPORT(FTC_FTAM_INPUT_PARAMETERS)

Passing Objects to XFTAM

Many of the input parameters to XFTAM are passed as XOM objects. There are two strategies
for creating the objects that are to be passed. One is a static method in which a public object is
created at compile-time, and the other is a dynamic method in which a private object is created
and attribute values added to it at run-time. Both methods make use of the structure
OM_descriptor, which is used to specify a list of one or more XOM attribute values.

FTAM High-Level API (XFTAM) Version 2 21



Using XFTAM XFTAM Overview

Figure 2-2 shows how this structure is used to represent values for the XOM attributes Initiator-
Identity, Filestore-Password and File-Action-List from the class FTAM-Input-Parameters:

OM_descriptor:

type:

syntax:

value: OM_string:

length:

elements:

FT_INITIATOR_IDENTITY
OM_S_PRINTABLE_STRING

"DYLAN THOMAS"

OM_descriptor:

type:

syntax:

value: OM_string:

length:

elements:

FT_FILESTORE_PASSWORD
OM_S_PRINTABLE_STRING

"LLAREGUB"

OM_descriptor:

type:

syntax:

value: OM_padded_object:

padding:

object:

FT_FILE_ACTION_LIST
OM_S_OBJECT

Points to a File-Action
public/private object

Figure 2-2  Example OM_Descriptor List

In general, if none of the attributes of an interface object class are required for a particular
function call, the API user may either supply an object with no attribute values, or supply a null
object handle (null pointer).

Creating a Public Object

A public object is created by declaring and initialising a list of OM_descriptor structures. Such an
object can be set up at compile time using static structures. Each descriptor represents one XOM
attribute value in the object. The first XOM attribute in the list is the Class attribute (initialised
using the OM_OID_DESC macro), and the list is terminated by a null descriptor (initialised
using the OM_NULL_DESCRIPTOR macro). Of course, one or more of the XOM attributes of the
class may themselves be public objects, thus creating a hierarchy of descriptor lists.

22 X/Open CAE Specification



XFTAM Overview Using XFTAM

For example, the following code fragment creates a public object of class FTAM-Input-Parameters
and sets values for its Initiator-Identity and Filestore-Password attributes (the OM_STRING macro
is used to initialise the OM_string sub-structure of the value union):

/*
* declare a list of OM_descriptors for the FTAM-Input-Parameters class
*/

static ftam_input OM_descriptor[] = {
OM_OID_DESC( OM_CLASS, FTC_FTAM_INPUT_PARAMETERS),
{FT_INITIATOR_IDENTITY, OM_S_PRINTABLE_STRING, {OM_STRING("Dylan Thomas")} },
OM_NULL_DESCRIPTOR

};

XOM specifies that the ordering of the descriptors in a public object is not significant except that
multiple values of a single attribute type appear in the list consecutively. For example, an object
of class Access-Control-Element may contain one or more attribute values of type File-Action-List.
Descriptors for these values may appear anywhere in the list representing an object of this class.
However, all such values must be grouped together.

Creating a Private Object

A private object is created by first calling OM_create( ), and then calling OM_put( ) as required,
adding one or more attributes to the object at each call. Again, a list of one or more
OM_descriptor structures are used to pass the attributes to be put into the class. The following
example uses XOM functions to create a similar object to that of the previous example:

{
/*

* set up a blank public object to use for adding attributes to the
* private object being created.
*/

static desc_list OM_descriptor[] = {
OM_NULL_DESCRIPTOR,
OM_NULL_DESCRIPTOR

};

/*
* create the object, FTC_FTAM_INPUT_PARAMETERS is an imported
* global variable containing the object id of the class we are
* creating.
* Returns handle for created object in private_ftam_input
* For simplicity, errors are ignored
*/

return_code = OM_create( FTC_FTAM_INPUT_PARAMETERS, OM_TRUE,
workspace_handle, &private_ftam_input) ;

/*
* prompt for and read an Initiator-Identity string from the terminal,
* skip attribute if the string we get is null
*/

puts( stdin, "Enter Initiator Identity for remote filestore: ");
if ( strlen( gets( &input_string) ) != 0)
{

/*
* set up a descriptor for the Initiator-Identity attribute
* and add it to the object just created
* For simplicity, errors are ignored
*/

desc_list[1].type = FT_INITIATOR_IDENTITY ;

FTAM High-Level API (XFTAM) Version 2 23



Using XFTAM XFTAM Overview

desc_list[1].syntax = OM_S_PRINTABLE_STRING ;
desc_list[1].value.string.length =

(OM_element_position) strlen( input_string) ;
desc_list[1].value.string.elements = (void *) input_string ;
return_code = OM_put( private_ftam_input, OM_INSERT_AT_END,

desc_list, 0, 0, 0);
}

/*
* repeat for other attributes
*/

}

Objects Returned by XFTAM

All of the output parameters returned by XFTAM functions are private objects. This means that a
handle is returned which points to some private representation of an object of the required class.
In order to examine the contents of such an object, the API user must extract one or more of its
attribute values into a system-generated public object using one or more calls to the OM_get( )
function. When calling get, the API user specifies the set of attributes to be retrieved, using the
OM_exclusions and OM_type_list parameters. By default, OM_get( ) returns the full hierarchy of
objects associated with the retrieved attributes. That is, where the value of an attribute is itself
an object (a sub-object), selected attribute values of that object are also returned. If this is not the
required behaviour, the exclude-subobjects flag in the OM_exclusions parameter can be use to
restrict the get to a single level. In this case, a sub-object is represented by a private object
handle and must be retrieved as required using the get function.

The rules regarding the ordering of the descriptors in a public object, summarised above for
user-created public objects, are also applied by XFTAM in the creation of system-created public
objects. The storage associated with a system-created public object is directly accessible by an
API user for the purposes of examining and copying the information within it. The application
must not modify the contents of such an object. The effect of doing so is undefined.

24 X/Open CAE Specification



XFTAM Overview Using XFTAM

type:

syntax:

value:

length:

elements:

FT_FILENAME
OM_S_PRINTABLE_STRING

"/usr/dylan/milkwood.txt"

type:

syntax:

value:

padding:

object:

FT_CONTENT_TYPE
OM_S_OBJECT

type:

syntax:

value: OM_enumeration:

FT_CONTENT_CLASS
OM_S_ENUMERATION

FT_PRINTABLE_STRING

type:

syntax:

value:

length:

elements:

FT_TYPE_NAME
OM_S_OBJID

Object Id for "FTAM-1"

OM_descriptor

OM_string

OM_descriptor

OM_padded_obj

OM_descriptor

OM_string

OM_descriptor_t

Figure 2-3  Descriptors for the FTAM-Attributes Class

FTAM High-Level API (XFTAM) Version 2 25



Using XFTAM XFTAM Overview

The following code fragment demonstrates how the various elements of an object of class
FTAM-Attributes are retrieved and processed, and the associated Figure 2-3 shows the structure
retrieved by the OM_get( ) call.

/*
* retrieve selected values for the FTAM Attributes returned by some
* function return the sub-objects too
*/

{
static OM_type ftam_att_attribute_types[] = {

FT_FILENAME, FT_CONTENT_TYPE, FT_TYPE_NAME, FT_CONTENT_CLASS,
.
.

} ;
xom_return = OM_get(ftam_attributes,OM_EXCLUDE_ALL_BUT_THESE_TYPES,

ftam_att_attribute_types, OM_FALSE, 0, 0
&public_p, &descriptor_count ) ;

/*
* Now process each of the descriptors in turn, printing the info.
* Last descriptor is the null descriptor that terminates the list
*/

for ( descriptor_p = public_p ;
descriptor_p->type != OM_NO_MORE_TYPES; descriptor_p+ + )

switch ( descriptor_p->type) {
FT_FILENAME:

printf( "Filename: %*s 0,
descriptor_p->value.string.length,
descriptor_p->value.string.elements) ;

break ;
FT_CONTENT_TYPE:

/*
* extract pointer to the Content Type sub-object,
* loop through its attributes
*/

for ( content_p = descriptor_p->value.object.object ;
content_p->type != OM_NO_MORE_TYPES; content_p++ )

switch ( content_p->type) {
FT_TYPE_NAME:

*
* interpret and print an object identifier
*/

break ;
FT_CONTENT_CLASS:

printf( " Content class: %d 0,
content_p->value.integer) ;

break ;
.
.

26 X/Open CAE Specification



XFTAM Overview Using XFTAM

Deleting objects and workspaces

The storage associated with an object created by XFTAM (either public or private) is allocated by
the API and, if the space is to be reused, the API user must call the OM_delete( ) function to free
the associated storage. A pointer which points at part of a deleted public object is invalid. The
effect of using such a pointer is undefined. Any information which is to be retained must be
copied into storage controlled by the API user before the object is deleted. The storage
associated with a user-created public object is of course under the control of the API user, such
an object cannot be the subject of an OM_delete( ) call.

Before an application exits, or once it has finished using the XFTAM API, it must call ft_close( ) to
release the resources associated with the API instance.

2.3.5 Addressing the Remote Filestore

All of the file transfer and management functions provided by XFTAM require the API user to
identify a remote FTAM responder which provides access to a virtual filestore. A responder is
identified to XFTAM by its presentation address.

The mechanism by which the API user obtains the presentation address identifying a particular
FTAM responder is not defined by XFTAM (for example, it may be by a local look-up service or a
distributed directory service). X/Open has defined the XDS API (defined in reference XDS) as
an API to directory services. Whilst XFTAM does not require the use of XDS for obtaining
presentation addresses, XFTAM uses the Presentation-Address object class defined in the
XDS-defined Directory Service (DS) package in order to facilitate the transfer of presentation
addresses between XDS and XFTAM.

To pass an XDS Presentation-Address to XFTAM, the API user must obtain the address as a
service-generated public object, using OM_get( ). The resulting public object handle can then be
passed to XFTAM as the src_p_address or dest_p_address parameter for an operation.

2.3.6 Filenames

When specifying the source or destination filename for an XFTAM file transfer function, the
name is specified using the semantics defined by the filestore being addressed (local or remote).
XFTAM places no restrictions on this. A remote filename is passed to the remote responder as
supplied by the API user - no conversion is performed. For files sent, the remote responder may
modify the filename when creating the destination file, to match it to the local filename
conventions.

The destination filename may be left blank in a file transfer request, implying that the source
filename should be used for the destination file. In this case the transfer may fail if the resulting
filename is not compatible with the file naming conventions of the destination filestore.

2.3.7 Source Effect

The src_effect parameter to a file transfer function determines what happens to the source file
when the transfer is completed successfully. Possible values are copy, where the source file for
the transfer is left in place when the transfer is complete; or move, where the source file is deleted
once the transfer has completed successfully.

Of course, in order for the source file to be deleted, the API user must have established the
appropriate access rights for the file. For files received, this requires permission to perform the
FTAM delete action (see Section 2.3.16 on page 34. For files sent, permission is controlled by the
API user’s access rights in the local filestore and is outside the scope of FTAM and the XFTAM
API.

FTAM High-Level API (XFTAM) Version 2 27



Using XFTAM XFTAM Overview

2.3.8 Destination Effect

The dest_effect parameter to a file transfer function determines the required action when the
destination file for a file transfer function already exists. The values for this parameter depend
on the direction of transfer:

• For files being received:
The possible values are fail, extend or overwrite. These are self-explanatory.

• For files being sent:
The possible values for this enumeration correspond to the values of the FTAM override
parameter (that is create-failure, select-old-file, delete-and-create-with-old-attributes, and delete-
and-create-with-new-attributes). Select-old-file has the effect of appending the contents of the
local file to those of the remote one. For both select-old-file and delete-and-create-with-new-
attributes values, the transfer fails if the contents type for the file being transferred are not
compatible with those of the target file.

Again, for any destination effect which results in an existing file being modified or overwritten,
the API user must have established the appropriate access rights for the affected file. For files
sent, this is permission to perform the FTAM file actions defined by the ft_fsend( ) manual page
(see Section 2.3.16 on page 34). For files received, permission is controlled by the API user’s
access rights in the local filestore and is outside the scope of FTAM and the XFTAM API.

2.3.9 Synchronous and Asynchronous Processing Modes

An XFTAM file transfer or management function performs a high-level operation (for example,
file transfer to a remote filestore) which is implemented by a series of low-level file actions. By
default, when an XFTAM function is called, execution control is passed to the API, which only
returns control to the caller once the requested operation invocation has been completed. The
result code returned by the function indicates the result of the requested operation (such as
[FTE_SUCCESS] if a file transfer succeeded). This is termed synchronous processing and is the
default mode of execution for XFTAM. In a interrupt handler function the API user can initiate
the cancellation of an interrupted synchronous invocation by calling ft_abandon( ) and passing
the implementation defined constant [FT_CANCEL_SYNC_OP] as the Invoke-ID. The
interrupted XFTAM function will then return the error code [FTE_CANCEL].

Where the API user is to perform other activities whilst an XFTAM operation is in progress (for
example, an application might initiate several concurrent file transfers), XFTAM provides a
second optional mode of operation, termed asynchronous processing. In this mode the function call
returns as soon as its parameters have been validated and the requested operation initiated. The
operation then proceeds in the background, with the result being returned later.

Support for this mode of execution is optional because, in some operating system environments,
similar functionality is achieved by alternative means (for example, by implementing an
asynchronous request as a separate thread of execution, allowing the initiating thread to
continue with other tasks). Support is indicated by a non-zero value for the constant
FT_MAX_ASYNC_OPS, which indicates the number of asynchronous XFTAM operation
invocations that may exist concurrently. A value of FT_MAX_ASYNC_UNLIMITED indicates
that the implementation imposes no fixed limit. If an implementation supports asynchronous
operation mode, it must support it at least for ft_fsend( ) and ft_freceive( ). The support for all
other functions remains optional. When asynchronous XFTAM operations are permitted, no
assumptions can be made regarding the sequence in which the operations are performed.

Attempting to invoke more asynchronous operations than is allowed causes the function to
return the error code [FTE_TOO_MANY_OPS]. Attempting to invoke an XFTAM function
asynchronously causes the function to return the error code [FTE_NOTSUP_ASYNC] if the

28 X/Open CAE Specification



XFTAM Overview Using XFTAM

implementation doesn’t support asynchronous operation either generally
(FT_MAX_ASYNC_OPS is defined to be zero) or specific to this function.

The result code returned by an asynchronous function call refers to the result of initiating the
operation, not the result of the operation invocation itself. Thus the return code [FTE_SUCCESS]
in asynchronous processing mode indicates that the requested operation has been successfully
invoked. In this case no output object handles are returned for API-Output-Parameters, FTAM-
Output-Parameters, and other output objects returned by XFTAM functions. These objects are
returned by a subsequent call to the ft_rcvresult( ) function which returns the result of the
XFTAM operation invocation.

The asynchronous mode of processing is selected by setting the Asynchronous attribute of the
API-Input-Parameters object to TRUE. The function then returns an invocation identifier in the
Invoke-ID attribute of the API-Output-Parameters object. This identifier is guaranteed to be
unique amongst the concurrent requests outstanding for this particular XFTAM instance and can
be matched to the Invoke-ID returned by a subsequent call to the ft_rcvresult( ) function to
indicate that the associated XFTAM operation invocation has completed. It may also be used in
a call to the ft_abandon( ) function to abandon a particular outstanding operation invocation.

When ft_rcvresult( ) returns an Invoke-ID that indicates a particular operation invocation has
completed, the call also returns the output object handles that would have been returned by the
initiating function if it had been executed in synchronous mode. These objects can then be used
in the same way as they are for the equivalent synchronous function call, to determine the
outcome of the requested operation invocation and to receive any output information. Thus,
ft_rcvresult( ) returns object handles for the API-Output-Parameters and FTAM-Output-Parameters
objects associated with the completed operation. An additional object handle may be returned
in the result_return output parameter for those XFTAM operations which return a result object
(for example, the FTAM-Attributes object returned in the return_attributes output parameter of the
ft_frattributes( ) function).

In summary, the sequence of steps involved when using the asynchronous processing mode are
as follows:

1. Call the required XFTAM function, passing it an API-Input-Parameters object with the
Asynchronous attribute set to TRUE.

2. Check the function return code to confirm that the asynchronous operation has been
invoked successfully.

3. Save the Invoke-ID attribute from the API-Output-Parameters output object to identify the
completion of the operation invocation.

4. Call the ft_rcvresult( ) function to receive the Invoke-ID of a completed operation invocation.
The function returns a completion flag which may be FT_COMPLETED_INVOKATIONS
to indicate that a completed invocation has been returned.

5. Process the API-Output-Parameters object pointed to by the op_api_out parameter to
determine the result of the asynchronous operation.

6. Process the FTAM-Output-Parameters object pointed to by the operation_ftam_out parameter
and the output object pointed to by operation_output_object as required, depending on the
result of the operation.

FTAM High-Level API (XFTAM) Version 2 29



Using XFTAM XFTAM Overview

2.3.10 Context Free and Sensitive Processing Modes

As outlined in Section 2.1 on page 16, XFTAM supports two processing modes: context free and
context-sensitive.

To use XFTAM for context free operation, all the parameters needed to carry out identification of
the remote file filestore authentication and negotiate service levels (FTAM-input-parameters) are
provided with each operation, in addition to those needed to complete the file operation. This is
the default mode of operation for both synchronous and asynchronous operations.

However, when a number of XFTAM operations are to be performed with the same FTAM
responder it is desirable to avoid the overhead of creating an association for each operation, and
provide a consistent context for successive operations. In this case, context-sensitive operation
may be used.

To use context-sensitive processing mode, an association is created to the FTAM responder using
ft_connect( ) (which maps onto the FTAM F-INITIALISE service). This requires the supply of the
FTAM-Input-Parameters needed to identify the responder, complete the authentication and
negotiate service levels. Upon completion, ft_connect( ) returns an Association-ID as an identifier
used to identify the association for subsequent operations within the FTAM instance.

To use an existing association, subsequent XFTAM functions supply only the Association-Id as
an input parameter, in addition to the parameters needed to complete the file transfer or file
management operation.

When operating in context-sensitive mode, XFTAM functions do not use the FTAM F-
INITIALISE service, and do not use the values needed for it. Instead, they use the existing
association. Upon completion of their function, they do not use F-TERMINATE to destroy the
association, but leave it intact. In the same way, ft_abandon ( ) will abandon any active file
operation using the association but will leave the association intact.

An association may be ended in an orderly manner using the ft_disconnect ( ) function (which
uses F-TERMINATE to carry out an orderly close of the association) or it can be destroyed using
ft_abort ( ) (which uses F-U-ABORT) to bring the FTAM regime to an abrupt end.

Support for context sensitive processing mode is mandatory. However, the number of
concurrent FTAM associations that may be created by a single XFTAM instance may be limited
by an implementation. The error code [FTE_TOO_MANY_ASSOC] is returned when this limit
is exceeded.

2.3.11 Interrupt Handling

It is strongly recommended not to call XFTAM functions from within interrupt handler
functions. XFTAM implementations are not required to be reentrant. There are only two
exceptions:

• ft_abandon( ) may be called to terminate an interrupted synchronous operation as described in
Section 2.3.9 on page 28. This mechanism enables the API user to install a watch dog timer.

• ft_close( ) may be called for workplace shutdown if the API user intends to terminate the
XFTAM application. If the interrupt handler function returns control to an interrupted
synchronous XFTAM function, this function returns the error code [FTE_SESSION] to
indicate, that an workspace shutdown occured.

30 X/Open CAE Specification



XFTAM Overview Using XFTAM

2.3.12 Session Handle

Where an implementation supports it, the Session object, returned by ft_open( ) to identify the
created XFTAM instance, contains a Session Handle attribute that can be used in conjunction with
the local operating system’s asynchronous event handling mechanisms to poll for events relating
to a particular XFTAM instance. Where provided, this handle may be used by an application to
identify when an outstanding operation completion is available for collection using the
ft_rcvresult( ) function. The manner in which the handle is used is of course implementation-
defined.

2.3.13 XFTAM Result Reporting

There are two levels of result reporting provided by the XFTAM API — API-level and FTAM-
level.

API-Level result reporting

Two types of API-level return codes are defined - return code and vendor code. A value of the first
type is returned as the function value and also as the Return-Code attribute of the API-Output-
Parameters object. The return code is used to indicate the successful completion of an XFTAM
function, or return the reason why it failed. It may indicate a failure detected by the API, the
underlying FTAM responder or service provider, or by some remote entity. Values are defined
by this specification, along with the meaning of the code and a possible action, in Chapter 5 on
page 109.

The values returned in the vendor code (returned as the Vendor-Code attribute of the API-Output-
Parameters class) are not defined in this specification. The documentation for a particular
implementation of the API may define values for the vendor code that provide additional
implementation-specific information about why a particular function failed.

FTAM-level result reporting

This level of result reporting is specified by FTAM itself and is based upon diagnostic structures
that may be returned as parameters in FTAM service primitives. XFTAM makes these structures
available to the API user as zero or more Diagnostic objects returned as attributes of the FTAM-
Output-Parameters object class. The diagnostic structures may be used to report errors or to
return information deemed to be of interest to the FTAM responder. Because a single XFTAM
function results in a series of FTAM service primitives being issued, more than one of these
structures may be returned from a function

2.3.14 VFS Mapping

XFTAM is responsible for accessing the local file system when transferring files to and from a
remote filestore. In order to do this it performs a mapping between the FTAM VFS
representation of a file and that of the local filestore. Two mappings are defined, one for files
received and one for files sent.

FTAM High-Level API (XFTAM) Version 2 31



Using XFTAM XFTAM Overview

Mapping Received Files

When receiving a file, XFTAM maps the contents and attributes into the semantics defined by
the local filestore. For text files (FTAM-1 and FTAM-2), this involves mapping the strings of the
FTAM file into lines of text in the local file, using the local convention for representing the end-
of-line. For implementations which support the optional FTAM-2 document type, the
mechanism for representing the records of the file in the local filestore is a local matter, not
defined by XFTAM. See ft_freceive( ) on page 92 for detailed information about mapping
received files into the local filestore.

Mapping File Sent

For files sent, by default a file is transferred as an FTAM-1 file with the text lines from the local
file being transferred as individual FTAM file strings. If the content of the local file means that
the default handling is not appropriate, the API user must use the file attribute content type to
specify an alternative document type, or override the default document type parameters. See
ft_fsend( ) on page 97 for detailed information about mapping sent files from the local filestore.

2.3.15 FTAM Attributes

The FTAM VFS defines a set of file attributes that are used to describe the characteristics and
contents of a file (see Section 1.2.4 on page 7). As an FTAM initiator, an implementation of
XFTAM supports all file attribute groups. However the capabilities of the local filestore and
remote responders may limit the attributes that can be specified or returned for a file (see below
for individual cases).

XFTAM provides the object class FTAM-Attributes to pass FTAM file attribute information to and
from the API. This class includes an XOM attribute for each file attribute defined by FTAM.
Where the FTAM attribute consists of a vector of values, multiple values of the equivalent XOM
attribute type may appear in an FTAM-Attributes object. Absence of an XOM attribute in the
FTAM-Attributes object implies that the equivalent FTAM file attribute is also absent.

As described in Section 1.2.4 on page 7, FTAM attributes are divided into groups. A particular
FTAM responder must support the kernel group of attributes but support of the other groups is
optional. When XFTAM establishes an FTAM regime with a remote responder, it negotiates
which attribute groups are to be supported for this association. The remote responder is entitled
to reject support of any attribute group other than the kernel group. If the underlying FTAM
service provider fails to negotiate the use of an FTAM attribute group, attempts to specify an
attribute from an unsupported group causes the function in question to return an error.

It is possible to perform a file transfer to or from the local filestore without having to deal with
FTAM file attributes directly. However, most of the XFTAM functions either accept or return
attribute information. The following description highlights salient aspects of the way that some
of the XFTAM functions utilise the FTAM-Attributes object.

ft_fcattributes( )

The class New-Attributes, a sub-class of FTAM-Attributes, is used to specify the modified file
attributes to be set for a file in a remote filestore. The FTAM-Attributes class is used to return the
resulting values which the remote responder sets for the file.

Specification of values for those file attributes not directly settable by an FTAM initiator (for
example: date and time of creation or identity of creator), and those only settable at file creation
time, causes the function to fail, as does specifying attributes from groups not supported on this
association. The Access-Control-List attribute of the FTAM-Attributes object class is used to
specify additional conditions to be added to the file’s current list. An additional OM attribute,

32 X/Open CAE Specification



XFTAM Overview Using XFTAM

Delete-Access-Control-List, is used to delete existing conditions from the list. Deletion of a
condition only occurs if all attributes specified for a condition in this call match those of an
existing condition. The output attributes are those returned by the remote responder as a result
of modifying the files attributes. These can be interrogated to determine the effect of the change
attributes request. Return of attribute information as a result of the change attribute file action is
optional - some responders may not do so.

ft_frattributes( )

For this function, the FTAM-Attributes class is used to return the current attributes for the
specified destination file. On input, a related object class, FTAM-Attribute-Names, can be used to
specify which file attribute values are to be returned by the function. Absence of this object
implies that all attributes of the negotiated attribute groups are to be read.

ft_freceive( )

On input, only the XOM Content-Type attribute of the FTAM-Attributes class may be set. This is
used to specify what type of file the API user is expecting to receive and causes the transfer to
fail if the document type of the source file does not match exactly the specified type. On output,
the FTAM-Attributes class is used to return the actual filename (which may differ from that
specified in the request) and the actual content type of the file accessed.

ft_fsend( )

For ft_fsend( ), the FTAM-Attributes class is used both to specify the initial attribute values
proposed for the file being created in the remote filestore, and to return the actual values which
the remote responder has set for the file.

For the input attributes, the presence of those file attributes not directly settable by an FTAM
initiator (for example: date and time of creation or identity of creator) cause the function call to fail,
as does specifying attributes from groups not supported on this association. In some cases
FTAM defines a default action for the responder when an attribute value is not passed. Apart
from the exceptions noted below, values of file attributes not included in the FTAM-Attributes
object are not passed to the remote responder:

• Filename.
The filename for the created file is specified using the dest_filename parameter to the function.
The equivalent XOM attribute in the FTAM-Attributes class is ignored if present.

• Content type.
If not specified by the user, XFTAM assumes a default Document Type of FTAM-1 as specified
in the ft_fsend( ) manual page -see ft_fsend( ) on page 97. This means that the file is assumed
to contain lines of text (terminated by the local end-of-line convention). If the user wishes to
transfer a file containing binary data or text which is not arranged into lines (for example, a
character screen image), an appropriate alternative document type should be specified using
this FTAM file attribute.

The output attributes are those returned by the remote responder as a result of creating the file.
On output, the FTAM-Attributes class may be used to report local modifications performed by
the responder to the filename of the file created, and its permitted actions attribute.

FTAM High-Level API (XFTAM) Version 2 33



Using XFTAM XFTAM Overview

ft_frdir( )

This function returns an object of class Directory-List which contains one FTAM-Attribute object
per file in the specified remote directory. Only values of attributes supported by the remote
responder for the NBS-9 document type are returned.

2.3.16 Access Control

FTAM provides three related mechanisms for control of file access. These are access control file
attributes, filestore access control, and access passwords. They are discussed individually
below.

Access Control File Attribute

The access control file attribute provides a set of conditions which may be attached to each of the
FTAM actions permitted for a file. A condition consists of an optional password which may be
attached to the action, which must be supplied by an initiator wishing to perform the action. In
addition the responder may limit who may perform the action (identity) and from where (location).
(Use of a particular identity may in turn be controlled by the filestore password as described
below.)

This attribute may be set when the file is created, and modified subsequently using the change
attributes operation. XFTAM provides the Access-Control object class to set and retrieve the
value of this file attribute. Figure 2-4 shows how a list of such objects can be used to specify a set
of access conditions for a file, allowing anyone running the application identified by the
application entity title ‘‘Milkwood’’ and possessing the appropriate passwords to access its
contents or attributes, but limiting file modification actions to user ‘‘Captain Cat’’.

Access Control Entry

File Action:

Location:

File Action:

File Action

Action:

Password:

Read

"RHIANON"

File Action

Action:

Password:

Read Atts

"CURLEW"

AET

Access Control Entry

File Action:

Identity:

File Action:

File Action

Action: Insert

File Action

Action: Replace"Captain Cat"

AP-Title:

AE-Qualifier
:

Object Id for Application's AP-Title

Integer AE-Qualifier for  FTAM AE

Password

Password Graphic:

Password Graphic:

Password

Figure 2-4  Access Control Attribute Example OM Objects

34 X/Open CAE Specification



XFTAM Overview Using XFTAM

Filestore Access Control

When an FTAM service Provider establishes an FTAM regime with a remote responder, it may
optionally specify an initiator identity and optional filestore password. These FTAM parameters
define who is requesting the access and authenticate that this is a valid use of the specified
identity. FTAM does not specify how the identity and password are used - that is up to the
remote responder. (For example, a responder on a CAE conformant system might use the FTAM
identity parameter as the login user name, with the associated password matched against the
FTAM filestore password parameter.)

XFTAM allows the API user to specify values for these FTAM parameters using the Initiator-
Identity and Filestore-Password attributes of the FTAM-Input-Parameters object class.

Access Passwords

When FTAM service provider identifies a file in the remote responder’s filestore that is to be the
target of an operation, it lists the set of file actions it is going to perform (the content of this list
depends upon the operation implemented by the particular XFTAM function called). At the
same time it may supply a list of access passwords associated with the action list. These
passwords are subsequently used by the responder to authorise the requested actions in the case
where the selected file’s access control file attributes requires a password to be supplied for a
particular action.

XFTAM allows the API user to specify values for this FTAM parameter using the File-Action-List
attribute of the FTAM-Input-Parameters object class. The individual functions identify the file
actions that are performed as part of the operation implemented.

FTAM High-Level API (XFTAM) Version 2 35



XFTAM Overview

36 X/Open CAE Specification



Chapter 3

XFTAM Base Package - XOM Class Definitions

This chapter defines the XOM classes that make up the XFTAM Base Package. The classes are
listed in alphabetical order, in the form defined by the referenced XOM specification
(summarised in Appendix A, Summary of XOM). To avoid repetitive detail, an XOM class is
assumed to be a sub-class of the XOM class Object unless otherwise stated. Similarly, an XOM
class is assumed to be a concrete class unless otherwise stated.

FTAM High-Level API (XFTAM) Version 2 37



Package Definition XFTAM Base Package - XOM Class Definitions

3.1 Package Definition
This specification defines a single XOM package which contains all the classes required by the
XFTAM API. The package is known as the XFTAM Base Package, and is uniquely identified to
XOM by the object identifier:

ISO(1) National Body Member (2) BSI(826) DISC(0) X/Open(1050) XFTAM API(2) Base
Package(1)

The class hierarchy for the XFTAM Base package is given below, using indentation to show the
relationship between classes. Classes listed in bold type are concrete classes, whilst those in
normal type are abstract classes. Those marked "(Read Only)" are used by XFTAM to return
information to the user and may not be created or modified by the API user.

Access-Control-Element
AE-Title
API-Input-Parameters
API-Output-Parameters (Read Only)
Charging (Read Only)
Content-Type

Document-Type
Document-Type-NBS-9 (Read Only)
Document-Type-Text

Document-Type-FTAM-1
Document-Type-FTAM-2

Document-Type-Binary
Document-Type-FTAM-3

Directory-List (Read Only)
File-Action
FTAM-Attribute-Names
FTAM-Attributes

New-Attributes
FTAM-Diagnostic (Read Only)
FTAM-Input-Parameters
FTAM-Output-Parameters (Read Only)
Presentation-Address (See note)
Session (Read Only)

Note: Presentation-Address is defined in the Directory Services (DS) package defined in the
referenced XDS specification.

38 X/Open CAE Specification



XFTAM Base Package - XOM Class Definitions Access-Control-Element

3.2 Access-Control-Element
This XOM class specifies a single condition under which access to a file is valid. The condition
consists of a list of permitted FTAM file actions and a number of optional terms which must be
satisfied if the identified actions are to be allowed.

Value Value Value Value
XOM Attribute Syntax Length Number Initially
File-Action-List Object(File-Action) - 1 or more -
Identity String(Graphic) - 0-1 -
Location Object(AE-Title) - 0-1 -

OM Attributes of an Access-Control-Element object

File-Action-List
A set of zero or more File-Action objects, each identifying an FTAM file action permitted on
this file, along with an optional access password and concurrency key for that action. Each
FTAM file action should appear once in this list at most, additional occurrences are ignored.

Identity
Optional XOM attribute indicating the current initiator identity activity attribute value for
which the identified file actions are to be permitted on this file.

Location
Optional AE-Title object indicating the current calling application entity title activity attribute
value for which the identified file actions are to be permitted on this file.

FTAM High-Level API (XFTAM) Version 2 39



AE-Title XFTAM Base Package - XOM Class Definitions

3.3 AE-Title
This XOM class is used to pass the collection of naming parameters (defined by the ACSE
service as an AE-Title for the convenience of other application layer standards) to XFTAM. An
object of this class may appear in an Access-Control-Element object to specify a location from
which the identified FTAM actions may be performed.

Value Value Value Value
XOM Attribute Syntax Length Number Initially
AP-Title String(Object-Identifier) - 0-1 -
AE-Qualifier Integer - 0-1 -

OM Attributes of an AE-Title object

AP-Title
Optional object identifier that identifies a particular application process.

AE-Qualifier
Optional integer that identifies a particular application entity of the application process.

40 X/Open CAE Specification



XFTAM Base Package - XOM Class Definitions API-Input-Parameters

3.4 API-Input-Parameters
This XOM class is used to pass API-specific parameters to an XFTAM function call.

Value Value Value Value
XOM Attribute Syntax Length Number Initially
Association-ID integer - 0-1 -
Asynchronous Boolean - 0-1 -

OM Attributes of an API-Input-Parameters object

Association-Id
For context-sensitive operating mode, this attribute is used to identify an association which
is to be used to perform the operation. The value of the attribute is the integer returned by
ft_connect( ) when creating the association.

If this parameter is not present, XFTAM operates in context free mode and creates and
destroys an association to perform the requested operation.

If this parameter is present, context-sensitive processing mode is selected and XFTAM does
not require the p_address parameter and FTAM-Input-Parameters which relate to
establishing an FTAM regime. If these parameters are supplied, an error code is returned
[FT_CONTEXT_MISMATCH].

Supplying a value for Association-Id which is not valid for the identified XFTAM instance
(does not represent an existing association) causes an error code [FT_INV_ASSOC].

Asynchronous
If TRUE, the associated XFTAM operation is to be executed asynchronously. In this case an
Invoke-ID attribute is returned by the called function in the API-Output-Parameters object. If
this attribute is not present, or is FALSE, the function is executed synchronously.

An implementation’s support of asynchronous operations is indicated by a non-zero value
for the constant FT_MAX_ASYNC_OPS, which indicates the maximum number of
asynchronous operations that may be outstanding at any one time. Attempting to invoke
more asynchronous operations than is allowed causes the function to return the error code
[FTE_TOO_MANY_OPS]. Attempting to invoke an XFTAM function asynchronously
causes the function to return the error code [FTE_NOTSUP_ASYNC] if the implementation
doesn’t support asynchronous operation either generally (FT_MAX_ASYNC_OPS is defined
to be zero) or specific to this function.

FTAM High-Level API (XFTAM) Version 2 41



API-Output-Parameters XFTAM Base Package - XOM Class Definitions

3.5 API-Output-Parameters
This XOM class is used to return API-specific output parameters from an XFTAM function call.

Value Value Value Value
XOM Attribute Syntax Length Number Initially
Return-Code Integer - 1 -
Vendor-Code Integer - 0-1 -
Invoke-ID Integer - 0-1 -

OM Attributes of an API-Output-Parameters object

Return-Code
The result code for an XFTAM function, the values for this XOM attribute are listed in
Chapter 5. Each XFTAM function lists its possible return codes.

Vendor-Code
An optional, implementation-defined return code which further qualifies the result of a
function. These codes may be defined in the documentation accompanying a particular
implementation.

Invoke-ID
This attribute is returned if the API user requests that the XFTAM operation associated with
the called function is to be executed in asynchronous mode. The returned ID may be
matched against Invoke-ID values returned by subsequent calls to ft_rcvresult( ) to determine
when the associated XFTAM operation has completed. This attribute is only returned if the
Return-Code attribute is [FTE_SUCCESS].

42 X/Open CAE Specification



XFTAM Base Package - XOM Class Definitions Charging

3.6 Charging
This XOM class is mapped from the FTAM charging parameters which may be returned by a
number of FTAM confirmation service primitives, it conveys information on the costs incurred
during an FTAM regime.

Value Value Value Value
XOM Attribute Syntax Length Number Initially
Resource-Identifier String(Graphic) - 1 -
Charging-Unit String(Graphic) - 1 -
Charge-Value Integer - 1 -

OM Attributes of a Charging object

Resource-Identifier
A string identifying the resource for which a charge is being levied. The contents of this
string are specific to the responder implementation accessed.

Charging-Unit
The units in which the Charge-Value are measured. The contents of this string are specific to
the responder implementation accessed.

Charge-Value
The number of Charge-Units that have been accumulated for use of the identified resource.

FTAM High-Level API (XFTAM) Version 2 43



Content-Type XFTAM Base Package - XOM Class Definitions

3.7 Content-Type
Identifies the abstract data types of an FTAM VFS file’s contents plus other structuring
information necessary to maintain its structure and semantics.

FTAM defines two forms in which this information can be specified. XFTAM supports only the
Document Type form. Content-Type is an abstract XOM class with no specific XOM attributes.

There is only one sub-class defined: Document-Type.

44 X/Open CAE Specification



XFTAM Base Package - XOM Class Definitions Directory-List

3.8 Directory-List
This XOM class is used by the ft_frdir( ) to return a list of directory entries, each of which is an
FTAM-attributes object listing the FTAM file attributes for a single file.

Value Value Value Value
XOM Attribute Syntax Length Number Initially
Directory-Entry Object(FTAM-Attributes) - 0 or more -

OM Attributes of a Directory-List object

Directory-Entry
This XOM Attribute is used to return the FTAM file attributes for a single file in the source
directory.

FTAM High-Level API (XFTAM) Version 2 45



Document-Type XFTAM Base Package - XOM Class Definitions

3.9 Document-Type
This is XOM class is a sub-class of Content-Type. It represents the Document Type form of the
equivalent FTAM file attribute. Sub-classes are defined for each supported document type. Two
abstract sub-classes are currently defined in this specification representing generic document
types which have parameters in common, these are Document-Type-Text and Document-Type-
Binary.

In addition, an object of this class may be returned by the ft_frattributes and ft_frdir( ) functions
when returning FTAM file attribute information for files of a type not supported by XFTAM (that
is, no information is returned about the values of any parameters that may be associated with an
un-supported document type).

Value Value Value Value
XOM Attribute Syntax Length Number Initially
Type-Name String(Object-Identifier) - 1 -

OM Attributes of a Document-Type object

Type-Name
The object identifier of the selected document type, defined in the FTAM specification and
elsewhere.

46 X/Open CAE Specification



XFTAM Base Package - XOM Class Definitions Document-Type-Text

3.10 Document-Type-Text
This is an abstract XOM class which is a sub-class of the Document-Type XOM class. It represents
a generic document type text, which defines XOM attributes for the parameters common to the
FTAM text document types (FTAM-1 and FTAM-2). Sub-classes are defined for the concrete
classes Document-Type-FTAM-1 and Document-Type-FTAM-2.

Value Value Value Value
XOM Attribute Syntax Length Number Initially
Content-Class Enum(Universal-Class) - 0-1 -
String-Length Integer - 0-1 -
String-Significance Enum(String-Significance) - 0-1 -

OM Attributes of a Document-Type-FTAM-1 object

Content-Class 
This XOM attribute defines the character set (Universal Class) from which the file’s strings
are formed. It can take the following values:

— Printable-String (Optional)

— Teletex-String (Optional)

— Videotex-String (Optional)

— IA5-String (Mandatory for FTAM-1 files)

— Graphic-String (Mandatory)

— Visible-String (Optional)

— General-String (Mandatory for FTAM-1 files and Optional for FTAM-2 files).

If this XOM attribute is not present, the character set is General-String.

Note that for file transfer operations, support of IA5-String and General-String is mandatory
for FTAM-1 files, and support of General-String is mandatory for FTAM-2 files. Support of
the other classes is optional in each case. That is, some implementations may not allow
these values to be specified for files being sent, for files being received, the transfer may fail
if the source file specifies one of these values as its universal class number.

String-Length 
Maximum length of a file’s strings. If this XOM attribute is omitted, the string length for
this file is unlimited. The minimum value for the maximum-string-length that an XFTAM
implementation must support is 134 characters for the FTAM-1 and FTAM-2 document
types. The [FTE_INV_STRING_LENGTH] error is returned if the user attempts to send or
receive a document which exceeds the maximum supported value for this parameter.

String-Significance 
This parameter defines the significance of the string length for this file:

— Variable - the length of the character strings is less than or equal to String-Length.

— Fixed - the length of the character strings is exactly equal to String-Length.

— Not-Significant - the boundaries of the character strings is not necessarily preserved
when the file is stored.

If this XOM attribute is omitted, the string significance for this file is not significant.

FTAM High-Level API (XFTAM) Version 2 47



Document-Type-FTAM-1 XFTAM Base Package - XOM Class Definitions

3.11 Document-Type-FTAM-1
This XOM class is a sub-class of the Document-Type-Text class.

The value of the Type-Name attribute, inherited from the Document-Type superclass, is
‘‘1 0 8571 5 1’’. No additional attributes are defined.

48 X/Open CAE Specification



XFTAM Base Package - XOM Class Definitions Document-Type-FTAM-2

3.12 Document-Type-FTAM-2
This XOM class is a sub-class of the Document-Type-Text class.

The value of the Type-Name attribute, inherited from the Document-Type superclass, is
‘‘1 0 8571 5 2’’. No additional attributes are defined.

Support for this document type is optional. Setting the Content Type XOM attribute to point to an
object of this type may cause an XFTAM function to return the error code
[FTE_NOTSUP_FTAM2].

FTAM High-Level API (XFTAM) Version 2 49



Document-Type-Binary XFTAM Base Package - XOM Class Definitions

3.13 Document-Type-Binary
This is an abstract XOM class which is a sub-class of the Document-Type class. It represents a
generic document type binary, which defines XOM attributes for the parameters common to the
FTAM binary document types (FTAM-3 and FTAM-4). A sub-class is defined for the concrete
class Document-Type-FTAM-3 only, (FTAM-4 is not supported by XFTAM).

Value Value Value Value
XOM Attribute Syntax Length Number Initially
String-Length Integer - 0-1 -
String-Significance Enum(String-Significance) - 0-1 -

OM Attributes of a Document-Type-FTAM-3 object

String-Length 
Maximum length of this file’s strings. If this XOM attribute is missing, the string length for
this file is unlimited. The minimum value for the maximum-string-length that an XFTAM
implementation must support is 512 octets for the FTAM-3 document type. The
[FTE_INV_STRING_LENGTH] error is returned if the user attempts to send or receive a
document which exceeds the maximum supported value for this parameter.

String-Significance 
This parameter defines the significance of the string length for this file:

— Variable - the length of the character strings is less than or equal to String-Length.

— Fixed - the length of the character strings is exactly equal to String-Length.

— Not-Significant - the boundaries of the character strings is not necessarily preserved
when the file is stored.

If this XOM attribute is omitted, the string significance for this file is not significant.

50 X/Open CAE Specification



XFTAM Base Package - XOM Class Definitions Document-Type-FTAM-3

3.14 Document-Type-FTAM-3
This XOM class is a sub-class of the Document-Type-Binary class.

The value of the Type-Name attribute, inherited from the Document-Type superclass, is
‘‘1 0 8571 5 3’’. No additional attributes are defined.

FTAM High-Level API (XFTAM) Version 2 51



Document-Type-NBS-9 XFTAM Base Package - XOM Class Definitions

3.15 Document-Type-NBS-9
This XOM class is a sub-class of the Document-Type Class.

The value of the Type-Name attribute, inherited from the Document-Type superclass, is
‘‘1 3 14 5 5 9’’. No additional attributes are defined.

This document type may be returned as the Content-Type attribute of a file, by the
ft_frattributes( ) and ft_frdir( ) functions, in the case where the identified file is directory.

Such a file may not be the subject of a file transfer request. An attempt to transfer such a file will
result in the error code [FTE_INV_DOC_RCVD] or [FTE_INV_DOC_SPEC] being returned, as
appropriate.

52 X/Open CAE Specification



XFTAM Base Package - XOM Class Definitions File-Action

3.16 File-Action
This XOM class is used to identify an FTAM file action and an optional password and
concurrency lock associated with that action. It is used as part of the Access-Control-Element class
to specify conditions which must be satisfied for a file access to be valid. It may also appear as
an attribute of the FTAM-Input-Parameters class to specify the passwords and concurrency keys
used to validate a file access.

Value Value Value Value
XOM Attribute Syntax Length Number Initially
File-Action Enum(File-Actions) - 1 -
Conc_Key Enum(Concurrency-Key) - 0-1 -
Access-Password Object(Password) - 0-1 -

OM Attributes of a File-Action object

File-Action
Identifies a single FTAM file action. Possible values are:

— Read

— Insert

— Replace

— Extend

— Erase

— Read-Attribute

— Change-Att

— Delete-File.

Concurrency-Key
Where the File-Action object is used as a sub-object of an Access-Control-Element object, this
optional attribute may be used to specify a concurrency lock to be associated with the target
file for the identified action. The specified lock must then be acquired as part of a
subsequent attempt to perform this action on the target file.

Alternatively, where the File-Action object is used as a sub-object of an FTAM-Input-
Parameters object, this optional attribute may be used to specify the lock to be acquired in
the case where it is required in order to perform the identified action on the target file:

— Not Required

— Shared

— Exclusive

— No Access.

Access-Password
An object of class Password.

Where the File-Action object is used as a sub-object of an Access-Control-Element object, this
optional attribute may be used to specify a password to be associated with the target file for
the identified action. The specified password must then be supplied as part of a subsequent
attempt to perform this action on the target file.

FTAM High-Level API (XFTAM) Version 2 53



File-Action XFTAM Base Package - XOM Class Definitions

Alternatively, where the File-Action object is used as a sub-object of an FTAM-Input-
Parameters object, this optional attribute may be used to specify a password in the case
where one must be supplied in order to perfom the identified action on the target file.

54 X/Open CAE Specification



XFTAM Base Package - XOM Class Definitions FTAM-Attribute-Names

3.17 FTAM-Attribute-Names
This XOM class is used to identify the FTAM file attributes that are to be returned from a call to
ft_frattributes( ).

Value Value Value Value
XOM Attribute Syntax Length Number Initially
FTAM-Attribute-Name-List Enum(FTAM-Attribute-Name) - 0 or more -

OM Attributes of an FTAM-Attribute-Names object

FTAM-Attribute-Name-List 
A set of one or more attribute names, each identifying an attribute that is to be returned by
an XFTAM function call. Values are:

— Filename

— Permitted-Actions

— Content-Type

— Storage-Account

— Creation-Date-Time

— Modification-Date-Time

— Read-Date-Time

— Attribute-Mod-Date-Time

— Creator-Identity

— Modifier-Identity

— Reader-Identity

— Attribute-Mod-Identity

— File-Availability

— Filesize

— Future-Filesize

— Access-Control

— Legal-Qual

— Private-Use.

FTAM High-Level API (XFTAM) Version 2 55



FTAM-Attributes XFTAM Base Package - XOM Class Definitions

3.18 FTAM-Attributes
This XOM class is used to pass FTAM file attribute values between the API user and XFTAM. It
has one XOM attribute per FTAM file attribute. Where an object of this class is passed to an
XFTAM function, the description of the function may define which attributes are valid for the
function and any additional constraints upon the values of the object’s attributes.

This class has a sub-class, New-Attributes, which adds an additional XOM attribute required for
the ft_fcattributes( ) function.

Value Value Value Value
XOM Attribute Syntax Length Number Initially
Filename String(Graphic) - 0-1 -
Permitted-Actions Enum(Permitted-Action) - 0 or more -
Content-Type Object(Content-Type) - 0-1 -
Storage-Account String(Graphic) - 0-1 -
Creation-Date-Time String(Generalised Time) - 0-1 -
Modification-Date-Time String(Generalised Time) - 0-1 -
Read-Date-Time String(Generalised Time) - 0-1 -
Attribute-Mod-Date-Time String(Generalised Time) - 0-1 -
Creator-Identity String(Graphic) - 0-1 -
Modifier-Identity String(Graphic) - 0-1 -
Reader-Identity String(Graphic) - 0-1 -
Attribute-Mod-Identity String(Graphic) - 0-1 -
File-Availability Enum(File-Availability) - 0-1 -
Filesize Integer - 0-1 -
Future-Filesize Integer - 0-1 -
Access-Control-List Object(Access-Control-Element) - 0 or more -
Legal-Qualifications String(Graphic) - 0-1 -
Private-Use Object(External) - 0-1 -

OM Attributes of an FTAM-Attributes object

Filename 
The name of a file in the FTAM filestore. XFTAM supports only single-component
filenames.

Permitted-Actions 
A set of zero or more FTAM file actions and FADU-identity styles that are permitted for the
file. Values are:

— Read

— Insert

— Replace

— Extend

— Erase

— Read-Attribute

— Change-Att

56 X/Open CAE Specification



XFTAM Base Package - XOM Class Definitions FTAM-Attributes

— Delete-File

— Traversal

— Reverse-Traversal

— Random-Order.

Content-Type 
Identifies the abstract data types of the file’s contents plus other structuring information
necessary to maintain its structure and semantics. An object of class Content-Type.

Storage-Account 
The accountable authority responsible for accumulating file storage charges.

Creation-Date-Time 
Indicates when the file was created.

Modification-Date-Time 
Indicates when the contents of the file were last modified.

Read-Date-Time 
Indicates when the contents of the file were last read.

Attribute-Mod-Date-Time 
Indicates when an attribute of the file was last modified.

Creator-Identity 
Indicates the initiator identity activity attribute when the file was created.

Modifier-Identity 
Indicates the initiator identity activity attribute when the contents of the file were last
modified.

Reader-Identity 
Indicates the initiator identity activity attribute when the contents of the file were last read.

Attribute-Mod-Identity 
Indicates the initiator identity activity attribute when an attribute of the file was last
modified.

File-Availability 
Indicates whether a delay should be expected before the file can be opened. Values are:

— Immediate-Availability - meaning no delay is expected.

— deferred-Availability - meaning that the file MAY be stored on a demountable device.

Filesize 
Nominal size in octets of the file when it was last closed.

Future-Filesize 
Nominal size in octets to which the file may grow as a result of modification and extension.

Access-Control-List 
A set of zero or more access control elements, each specifying a single condition under
which access to the file is valid. Objects of class Access-Control-Element.

Legal-Qualifications 
Conveys information about the the legal status of the file and its use.

Private-Use 
The meaning of this attribute is not defined.

FTAM High-Level API (XFTAM) Version 2 57



FTAM-Attributes XFTAM Base Package - XOM Class Definitions

3.19 FTAM-Diagnostic
This XOM class is mapped from the FTAM diagnostic parameter returned by most FTAM
confirmation service primitives, providing information about the result of the collection of
FTAM actions performed as part of the high-level XFTAM operation.

Value Value Value Value
XOM Attribute Syntax Length Number Initially
Error-Type Enum(FTAM-Error-Type) - 1 -
Error-Identifier Integer - 1 -
Observer Enum(FTAM-Entity) - 1 -
Source Enum(FTAM-Entity) - 1 -
Suggested-Delay Integer - 0-1 -
Text-Message String(Graphic) - 0-1 -

OM Attributes of a Diagnostic object

Error-Type 
The type of error being reported by this diagnostic. Error types are defined by the FTAM
specification. Possible values are:

— Information

— Transient-Error

— Permanent-Error.

Error-Identifier 
An integer identifying a specific error and error class. Error identifiers and Error Classes are
defined by the FTAM specification. They are listed in the xftam.h header file.

Observer 
The type of entity which detected the error. Error observers are defined by the FTAM
specification. Possible values are:

— Initiating-User - the initiating file service user.

— Initiating-FPM - the initiating file protocol machine.

— Responding-User - the responding file service user (filestore).

— Responding-FPM - the responding file protocol machine.

Source 
The type of entity which is believed to have caused the error. Error sources are defined by
the FTAM specification. Possible values are those listed above for the Observer XOM
attribute, plus the following:

— None - no categorisation possible.

— Supporting-Service - service supporting the file protocol machines.

Suggested-Delay 
Where the Error-Type is Transient-Error, an optional period that should elapse before the
action is tried again. For a value of ‘‘x’’, the suggested delay is ‘‘2 to the power x’’.

Text-Message 
An optional text message in natural language.

58 X/Open CAE Specification



XFTAM Base Package - XOM Class Definitions FTAM-Input-Parameters

3.20 FTAM-Input-Parameters
This XOM class groups together FTAM-specific input parameters that are common to a number
of different XFTAM functions or whose values may remain constant over a series of calls to
XFTAM functions. All of these parameters are optional unless otherwise specified in the
description of an XFTAM function call. Individual XFTAM function descriptions may define
specific requirements or significance for some of these parameters.

Value Value Value Value
XOM Attribute Syntax Length Number Initially
Initiator-Identity String(Graphic) - 0-1 -
Filestore-Password Object(Password) - 0-1 -
Create-Password Object(Password) - 0-1 -
Account String(Graphic) - 0-1 -
FQos Enum(FQoS) - 0 or more -
File-Action-List Object(File-Action) - 0 or more -

OM Attributes of an FTAM-Input-Parameters object

Initiator-Identity
This optional XOM attribute is used to identify the calling user to the FTAM responder.

Filestore-Password
This optional XOM attribute is an object of type Password, used to authenticate the calling
user to the FTAM responder. FTAM defines the equivalent parameter as either OctetString
or GraphicString.

Create-Password
This optional XOM attribute is an object of type Password, used to authorise the calling user
to create a file in the called filestore. FTAM defines the equivalent parameter as either
OctetString or GraphicString.

Account
This optional XOM attribute is used as the account to which costs incurred in the FTAM
regime to be used by this XFTAM request are charged. For context-sensitive file transfer or
file management operations, this parameter may be used to override the account context
established when the association was created by ft_connect( ). In this case, such charges are
returned when the operation completes.

FQoS
This optional XOM attribute is used to indicate what level of recovery should be attempted
by FTAM in the case of errors during an XFTAM file transfer operation. For file management
operations, any value of the FQoS attribute other than No-Recovery will be ignored.
Possible values are:

— No-Recovery - do not attempt recovery, any error is reported as a permanent error.

— Class-1-Recovery - recover from errors which damage the data transfer regime.

— Class-2-Recovery - recover from errors which damage the select or open regimes.

— Class-3-Recovery - recover from errors which lose the association supporting the FTAM
regime.

If this attribute is not present, the requested operation is performed with a FQoS of No-
Recovery.

FTAM High-Level API (XFTAM) Version 2 59



FTAM-Input-Parameters XFTAM Base Package - XOM Class Definitions

The user may supply multiple values for this attribute where a number of levels of recovery
are acceptable. The underlying FTAM initiator requests the highest level of recovery which
has been specified by the user and which it supports. If none of the specified FQoS values
are supported by the underlying FTAM service, the XFTAM operation fails with an error
code of [FTE_NOTSUP_FQOS]. Where the requested FQoS is reduced by the underlying
FTAM service during negotiation of the FTAM regime and the resulting level is not one of
those requested by the user in this attribute, the association is terminated and the XFTAM
operation fails with an error code of [FTE_FQOS_NOT_NEGOTIATED]. Otherwise, the
operation proceeds using the negotiated FQoS value.

File-Action-List.
This optional XOM attribute is a set of zero or more File-Action objects, used to specify
passwords and concurrency locks required for the file actions to be performed on the target
file. Each XFTAM function identifies the FTAM file actions which it performs, for which the
accessed file may require the API user to supply passwords or specify concurrency locks.
Each FTAM file action should appear once in this list at most; subsequent occurrences are
ignored.

60 X/Open CAE Specification



XFTAM Base Package - XOM Class Definitions FTAM-Output-Parameters

3.21 FTAM-Output-Parameters
This XOM class groups together FTAM-specific output parameters that are common to a number
of XFTAM functions.

Value Value Value Value
XOM Attribute Syntax Length Number Initially
Charging-List Object(Charging) - 0 or more -
FTAM-Result Enum(FTAM-Result) - 1 -
FTAM-Diagnostic-List Object(FTAM-Diagnostic) - 0 or more -

OM Attributes of an FTAM-Output-Parameters object

Charging-List
This XOM attribute provides information on the costs attributed to the account during the
file action. Zero or more charging objects may be returned, each detailing charges for a
particular resource. Responders for CAE-conformant file-stores may not return charging
information. For context-sensitive processing mode, file transfer or file management
operations only return charges when an override account has been specified in the Ftam-
Input-Parameters. All connection charges are returned when the association is destroyed by
ft_disconnect( ).

FTAM-Result
This XOM attribute is mapped from the FTAM action result parameter and returns the
overall result of the series of FTAM actions which were performed as part of the XFTAM
function. Possible values are:

— Success

— Permanent-Error.

If Permanent-Error is returned, one of the FTAM actions performed as part of the XFTAM
function has failed. Exactly which action has failed may not be precisely identifiable;
however the error identifier of the FTAM diagnostic parameter includes an error classification
which may provide clarification, and the Return-Code XOM attribute of API-Output-
Parameters object may provide further information. If Success is returned, Diagnostics-List
may contain informational FTAM diagnostic parameters returned by one or more of the
FTAM actions performed.

FTAM defines a third value for the action result parameter - Transient Error. However, this
value is for use by the FTAM Error Protocol and is never returned to FTAM External File
Service Users. All errors are reported to XFTAM users as Permanent Error.

Diagnostic-List
Each occurrence of this XOM attribute is an XOM object of class Diagnostic, mapped from
the FTAM Diagnostic parameter, providing additional information about the result of an
FTAM action.

FTAM High-Level API (XFTAM) Version 2 61



Password XFTAM Base Package - XOM Class Definitions

3.22 Password
This XOM class is mapped to the FTAM password type, used in a number of FTAM PDUs. It
provides the ability to specify a password as either GraphicString or OCTET STRING.

Value Value Value Value
XOM Attribute Syntax Length Number Initially
Password-Octet String(Octet) - 0-1* -
Password-Graphic String(Graphic) - 0-1* -

* Both attributes are optional, but one or other must be present in a valid instance of this class. A valid
instance of this class may not contain both attributes.

OM Attributes of a Password object

Password-Octet
This XOM attribute maps to the OCTET STRING form of an FTAM password.

Password-Graphic
This XOM attribute maps to the GraphicString form of an FTAM password.

62 X/Open CAE Specification



XFTAM Base Package - XOM Class Definitions New-Attributes

3.23 New-Attributes
This XOM class is a sub-class of the FTAM_Attributes class, used to pass modified FTAM file
attribute values to the ft_fcattributes( ) function. In addition to the attributes inherited from the
FTAM-Attributes object class, it has one specific attribute which specifies a set of access control
conditions that are to be deleted.

Value Value Value Value
XOM Attribute Syntax Length Number Initially
Delete-Access-Control-List Object(Access-Control-Element) - 0 or more -

OM Attributes of an FTAM-Attributes object

Delete-Access-Control-List
A set of zero or more access control elements to be deleted from the target file’s access control
attribute. FTAM requires that a specified condition exactly matches one in the current
attributes if the delete is to succeed. Each element of the list is an object of class Access-
Control-Element.

FTAM High-Level API (XFTAM) Version 2 63



Session XFTAM Base Package - XOM Class Definitions

3.24 Session
This XOM class is used to identify a particular XFTAM instance. Instances of this object are
read-only, created by the ft_open( ) function and destroyed by the ft_close( ) function.

Value Value Value Value
XOM Attribute Syntax Length Number Initially
Session-Handle Integer - 0-1 -

OM Attributes of a Session object

Session-Handle
An optional attribute that may be used to return an implementation-specific identifier for
use in the local asynchronous event handling mechanisms. (For example, in a UNIX
system, this handle might be a file descriptor that is used in subsequent calls to a poll( ) or
select( ) function to wait for events on a number of such file descriptors).

64 X/Open CAE Specification



XFTAM Base Package - XOM Class Definitions Declaration Summary

3.25 Declaration Summary
This section lists the C identifiers that are required by an implementation of the XFTAM Base
Package for use by applications. Definitions of the identifiers and their values appear in the
XFTAM header file <xftam.h>.

Whilst it is not required to define actual values for such identifiers in order to enable portability
of applications, values are defined here in order facilitate interoperability amongst APIs which are
based upon XOM and which may share the definitions of one or more OM classes. That is, to
support an application which wishes to obtain an OM object from one API and pass it to another
API (which may be from a different supplier and be supported by a different implementation of
the XOM API from that of the first), it is necessary for the implementations to share common
definitions of the class and attribute identifiers, and enumeration values used by the shared
classes.

3.25.1 Class Identifiers

In the following identifier list, each class in the XFTAM Base Package has an identifier (prefixed
with the characters FTC_), which defines the ASN.1 object identifier that is used to denote the
class. The object identifier is derived from the object identifier that denotes the XFTAM Base
Package, by appending to it the integer from the list. Thus the object identifier defined by
FTC_ACCESS_CONTROL_ELEMENT is:

1.2.826.0.1050.2.1.1

3.25.2 Attribute Type Identifiers

In order to retain uniqueness amongst the values assigned to attribute types for the APIs defined
by X/Open, the attribute types for the XFTAM Base Package have been allocated in the range
5000 - 5099.

FTAM High-Level API (XFTAM) Version 2 65



Declaration Summary XFTAM Base Package - XOM Class Definitions

3.25.3 C Identifier List

FTC_ACCESS_CONTROL_ELEMENT <Base Package> (1)
FTA_FILE_ACTION_LIST 5001
FTA_IDENTITY 5002
FTA_LOCATION 5003

FTC_AE_TITLE <Base Package> (2)
FTA_AP_TITLE 5004
FTA_AE_QUALIFIER 5005

FTC_API_INPUT_PARAMETERS <Base Package> (3)
FTA_ASSOCIATION 5059
FTA_ASYNCHRONOUS 5006

FTC_API_OUTPUT_PARAMETERS <Base Package> (4)
FTA_RETURN_CODE 5007
FTA_VENDOR_CODE 5008
FTA_INVOKE_ID 5009

FTC_CHARGING <Base package> (5)
FTA_RESOURCE_IDENTIFIER 5010
FTA_CHARGING_UNIT 5011
FTA_CHARGE_VALUE 5012

FTC_CONTENT_TYPE <Base Package> (6)

FTC_DIRECTORY_LIST <Base Package> (7)
FTA_DIRECTORY_ENTRY 5013

FTC_DOCUMENT_TYPE <Base Package> (8)
FTA_TYPE_NAME 5014

FTC_DOCUMENT_TYPE_TEXT <Base Package> (9)
FTA_CONTENT_CLASS 5015

FT_PRINTABLE_STRING 1
FT_TELETEX_STRING 2
FT_VIDEOTEX_STRING 3
FT_IA5_STRING 4
FT_GRAPHIC_STRING 5
FT_VISIBLE_STRING 6
FT_GENERAL_STRING 7

FTA_STRING_LENGTH 5016
FTA_STRING_SIGNIFICANCE 5017

FT_VARIABLE 1
FT_FIXED 2
FT_NOT_SIGNIFICANT 3

FTC_DOCUMENT_TYPE_FTAM_1 <Base Package> (10)

FTC_DOCUMENT_TYPE_FTAM_2 <Base Package> (11)

FTC_DOCUMENT_TYPE_BINARY <Base Package> (12)

FTC_DOCUMENT_TYPE_FTAM_3 <Base Package> (13)

FTC_FILE_ACTION <Base Package> (14)
FTA_FILE_ACTION 5018

FT_READ 1

66 X/Open CAE Specification



XFTAM Base Package - XOM Class Definitions Declaration Summary

FT_INSERT 2
FT_REPLACE 3
FT_EXTEND 4
FT_ERASE 5
FT_READ_ATTRIBUTE 6
FT_CHANGE_ATTRIBUTE 7
FT_DELETE_FILE 8

FTA_CONCURRENCY_KEY 5019
FT_NOT_REQUIRED 1
FT_SHARED 2
FT_EXCLUSIVE 3
FT_NO_ACCESS 4

FTA_ACCESS_PASSWORD 5020

FTC_FTAM_ATTRIBUTE_NAMES <Base Package> (15)
FTA_FTAM_ATTRIBUTE_NAME_LIST 5021

FT_FILENAME 1
FT_PERMITTED_ACTIONS 2
FT_CONTENT_TYPE 3
FT_STORAGE_ACCOUNT 4
FT_CREATION_DATE_TIME 5
FT_MODIFICATION_DATE_TIME 6
FT_READ_DATE_TIME 7
FT_ATTRIBUTE_MOD_DATE_TIME 8
FT_CREATOR_IDENTITY 9
FT_MODIFIER_IDENTITY 10
FT_READER_IDENTITY 11
FT_ATTRIBUTE_MOD_IDENTITY 12
FT_FILE_AVAILABILITY 13
FT_FILESIZE 14
FT_FUTURE_FILESIZE 15
FT_ACCESS_CONTROL 16
FT_LEGAL_QUAL 17
FT_PRIVATE_USE 18

FTC_FTAM_ATTRIBUTES <Base Package> (16)
FTA_FILENAME 5022
FTA_PERMITTED_ACTIONS 5023

FT_TRAVERSAL 9
FT_REVERSE_TRAVERSAL 10
FT_RANDOM_ORDER 11

FTA_CONTENT_TYPE 5024
FTA_STORAGE_ACCOUNT 5025
FTA_CREATION_DATE_TIME 5026
FTA_MODIFICATION_DATE_TIME 5027
FTA_READ_DATE_TIME 5028
FTA_ATTRIBUTE_MOD_DATE_TIME 5029
FTA_CREATOR_IDENTITY 5030
FTA_MODIFIER_IDENTITY 5031
FTA_READER_IDENTITY 5032
FTA_ATTRIBUTE_MOD_IDENTITY 5033
FTA_FILE_AVAILABILITY 5034

FT_IMMEDIATE_AVAILABILITY 1
FT_DEFERRED_AVAILABILITY 2

FTA_FILESIZE 5035
FTA_FUTURE_FILESIZE 5036
FTA_ACCESS_CONTROL 5037
FTA_LEGAL_QUAL 5038
FTA_PRIVATE_USE 5039

FTAM High-Level API (XFTAM) Version 2 67



Declaration Summary XFTAM Base Package - XOM Class Definitions

FTC_FTAM_DIAGNOSTIC <Base Package> (17)
FTA_ERROR_TYPE 5040

FT_INFORMATION 1
FT_TRANSIENT_ERROR 2
FT_PERMANENT_ERROR 3

FTA_ERROR_IDENTIFIER 5041
FTA_OBSERVER 5042

FT_INITIATING_USER 1
FT_INITIATING_FPM 2
FT_RESPONDING_USER 3
FT_RESPONDING_FPM 4

FTA_SOURCE 5043
FT_NONE 5
FT_SUPPORTING_SERVICE 6

FTA_SUGGESTED_DELAY 5044
FTA_TEXT_MESSAGE 5045

FTC_FTAM_INPUT_PARAMETERS <Base Package> (18)
FTA_INITIATOR_IDENTITY 5046
FTA_FILESTORE_PASSWORD 5047
FTA_CREATE_PASSWORD 5048
FTA_ACCOUNT 5049
FTA_FQOS 5050

FT_NO_RECOVERY 1
FT_CLASS_1_RECOVERY 2
FT_CLASS_2_RECOVERY 3
FT_CLASS_3_RECOVERY 4

FTA_FILE_ACTION_LIST 5001

FTC_FTAM_OUTPUT_PARAMETERS <Base Package> (19)
FTA_CHARGING_LIST 5052
FTA_FTAM_RESULTS 5053

/* FT_PERMANENT_ERROR implied */
FT_SUCCESS 4

FTA_DIAGNOSTIC_LIST 5054

FTC_PASSWORD <Base Package> (20)
FTA_PASSWORD_OCTET 5055
FTA_PASSWORD_GRAPHIC 5056

FTC_NEW_ATTRIBUTES <Base Package> (21)
FTA_DELETE_ACCESS_CONTROL_LIST 5057

FTC_SESSION <Base Package> (22)
FTA_SESSION_HANDLE 5058

FTC_DOCUMENT_TYPE_NBS_9 (23)

68 X/Open CAE Specification



Chapter 4

XFTAM Function Manual Pages

This chapter contains a manual page for each of the functions provided by the XFTAM API.

FTAM High-Level API (XFTAM) Version 2 69



ft_abandon( ) XFTAM Function Manual Pages

NAME
ft_abandon - abandon an outstanding or interrupted operation

SYNOPSIS
#include <xftam.h>

FT_return_code ft_abandon(
OM_private_object session ,
OM_sint invoke_id ,
OM_private_object *api_out

);

DESCRIPTION
This function cancels an interrupted synchronous function or abandons the result of an
asynchronous function invocation. A cancelled synchronous function will return the error code
[FTE_CANCEL]. An abandoned asynchronous function is no longer outstanding after
ft_abandon( ) returns and its results will never be returned by ft_rcvresult( ).

Note that this function may cause the associated XFTAM operation to be aborted, or a data
transfer to be cancelled. However, XFTAM only guarantees that the result of the operation will
not be returned. No statement is made regarding the state of the file(s) and filestore(s) involved
in the abandoned operation.

Asynchronous execution mode is an optional feature of XFTAM. If an implementation does not
support this feature, ft_abandon( ) returns the error code [FT_NO_SUCH_INVOKATION] since
the API user cannot pass a valid Invoke-ID.

ARGUMENTS

session (Private Object (Session))
This parameter is a handle for a private object of class Session which identifies the
particular XFTAM instance that is to perform the required XFTAM operation. The session
identifies the resources associated with the instance, including the XOM workspace that
contains all private objects passed to or returned from this XFTAM function call.

invoke-ID (Integer)
Selects the operation invocation to be aborted. To cancel an interrupted synchronous
operation, the implementation defined constant [FT_CANCEL_SYNC_OP] has to be
passed. To abandon an asynchronous operation, the value of Invoke-ID must be that which
was returned by this function call.

api_out (Private Object (API-Output-Parameters))
This parameter is always returned and is a handle for a private object of class API-Output-
Parameters. It returns API-specific output parameters for this function call.

RETURN VALUES
ft_abandon( ) returns either [FTE_SUCCESS] or one of the values listed below in ERRORS.

ERRORS

Operation Error Codes
FT_NO_SUCH_INVOKATION

API Error Codes
FTE_VENDOR
FTE_SESSION

70 X/Open CAE Specification



XFTAM Function Manual Pages ft_abort( )

NAME
ft_abort - abort an association and any outstanding operations using it.

SYNOPSIS
#include <xftam.h>

ft_return_code ft_abort(
OM_private_object session ,
OM_uint32 association_id ,

OM_private_object *api_out
);

DESCRIPTION
This function aborts an association and any operation currently in progress on that association.
Any such operation is no longer outstanding and its result will never be returned by
ft_rcvresult( ).

This function differs from ft_abandon( ) in that it will destroy the XFTAM association as well as
any oustanding operation for this association. As with ft_abandon( ), no statement is made
regarding the state of the file(s) and filestore(s) involved in the aborted operation.

If the value of Association-Id does not represent an existing association within the XFTAM
instance referenced by the session parameter, an error code is returned [FT_INV_ASSOC].

ARGUMENTS

session (Private Object (Session))
This parameter is a handle for a private object of the class session which identifies the
particular XFTAM instance that is to perform the required operation.

association-ID (OM_uint32)
This parameter is an integer which identifies the association to be aborted.

The value of Association-Id must be that returned by ft_connect( ) when the association was
created.

api_out (Private Object (API-Output-Parameters))
This parameter is always returned and is a handle for the private object of class API-
Output-Parameters. It returns API-specific output parameters for this function call.

RETURN VALUES
ft_abort( ) returns either [FTE_SUCCESS] or one of the values listed in ERRORS.

ERRORS

Operation error codes
FT_INV_ASSOC

API Error Codes
FTE_VENDOR
FTE_SESSION

FTAM High-Level API (XFTAM) Version 2 71



ft_close( ) XFTAM Function Manual Pages

NAME
ft_close - destroy an XFTAM instance and release associated resources

SYNOPSIS
#include <xftam.h>

FT_return_code ft_close(
OM_private_object session

);

DESCRIPTION
This function deletes an XFTAM instance established by ft_open( ) and releases associated
resources. No XFTAM function may reference the specified session and its associated
workspace once it has been closed.

Any asynchronous operations that are outstanding when a session is closed are abandoned in
the manner defined by the ft_abandon( ) function. The warnings stated there with regard to the
state of the files and filestores involved in a file transfer apply in this case too. Underlying
XFTAM associations are destroyed in the manner described by either the ft_abort ( ) or
ft_disconnect ( ) functions.

ARGUMENTS

session (Private Object (Session))
This parameter is a handle for a private object of class Session which identifies the
particular XFTAM instance that is to perform the required XFTAM operation. The session
identifies the resources associated with the instance, including the XOM workspace that
contains all private objects passed to or returned from this XFTAM function call.

RETURN VALUES
ft_close( ) returns either [FTE_SUCCESS] or one of the values listed below in ERRORS.

ERRORS

API Error Codes
FTE_VENDOR
FTE_SESSION

72 X/Open CAE Specification



XFTAM Function Manual Pages ft_connect( )

NAME
ft_connect - establish an association with an FTAM filestore

SYNOPSIS
#include <xftam.h>

ft_return_code ft_connect(
OM_private_object session ,
OM_object p_address ,
OM_object ftam_in,
OM_object api_in,

OM_uint32 *association_id ,
OM_private_object *ftam_out,
OM_private_object *api_out

);

DESCRIPTION
The ft_connect( ) function creates an association with an FTAM filestore identified by p_address
and establishes an FTAM regime.

The function returns association_id as an integer which is used to identify the new association to
other XFTAM functions which will operate within the context of the association created.

ft_connect( ) must be invoked first for context-sensitive operations to operate on any association.
It may be invoked multiple times within a single XFTAM instance and may be to the same
p_address as each call creates a separate association.

ARGUMENTS

session (Private Object (Session))
This parameter is a handle for a private object of the class session which identifies the
particular XFTAM instance within which the association is to be created.

p_address (Object (Presentation-Address))
This parameter is a handle for an object of the class Presentation Address. It is a mandatory
parameter that identifies the FTAM responder which serves the remote filestore.

ftam_in (Object(FTAM-Input-Parameters))
This parameter is a handle for an object class FTAM-Input-Parameters, specifying general
FTAM parameters for use in this function. The parameter is optional. However, failure to
specify some of its OM attributes may result in the remote responder rejecting the
association request. The ft_connect( ) function has the following specific requirements for
the input object:

• Initiator-Identity.
This is provided to identify the FTAM initator to the responder.

• Filestore-Password.
This password is provided to authenticate the initiator to the FTAM responder.

• Account.
The account given is charged for all costs incurred by the FTAM regime. This may be
overridden by providing an account parameter for subsequent FTAM operations on the
association.

FTAM High-Level API (XFTAM) Version 2 73



ft_connect( ) XFTAM Function Manual Pages

• FQoS.
The FTAM quality of service parameter is used to indicate the level of error recovery
available at the FTAM initiator.

association_id (OM_uint32)
Upon sucessful completion, this parameter is used to return an integer which identifies the
XFTAM association created. This value may be passed to other XFTAM functions in order
to identify the association to be used for a context-sensitive request.

ftam_out(Object(FTAM-Output-Parameters))
This parameter is a handle for a private object of class FTAM-Output-Parameters, and is
returned only if there are relavent FTAM output parameters to be returned as a result of the
FTAM actions performed.

api_out (Private Object(API-Output-Parameters)
This parameter is always returned and is a handle for a private object of class API-Output-
Parameters. It returns API-Specific output parameters for this function call.

RETURN VALUES
ft_connect( ) returns either [FTE_SUCCESS] or one of the values listed in ERRORS.

ERRORS

FTAM Error Codes
FTE_FTAM_CANCEL
FTE_FTAM_PERMANENT
FTE_PROVIDER_ABORT
FTE_USER_ABORT
FTE_FQOS_NOT_NEGOTIATED

Operation Error Code
FTE_ATTR_GRP_NOT_NEGOTIATED

API Error Codes
FTE_NO_RESOURCES
FTE_VENDOR
FTE_INV_PADDRESS
FTE_SESSION
FTE_TOO_MANY_ASSOC

74 X/Open CAE Specification



XFTAM Function Manual Pages ft_disconnect( )

NAME
ft_disconnect - disconnect an XFTAM association

SYNOPSIS
#include <xftam.h>

ft_return_code ft_disconnect(
OM_private_object session ,
OM_uint32 association_id ,
OM_private_object *ftam_out,
OM_private_object *api_out

);

DESCRIPTION
This function terminates an FTAM regime and destroys the underlying association.

If the identified association has active functions in progress, ft_disconnect( ) returns an error code
of [FTE_PENDING_OP] and takes no action.

If the Association-Id provided does not represent an active association within the specified
FTAM instance, ft_disconnect( ) returns an error code of [FTE_INV_ASSOC].

ARGUMENTS

session (Private Object (Session))
This parameter is a handle for a private object of the class Session which identifies the
particular XFTAM instance within which the association exists.

association_Id (integer)
This parameter is an integer which identifies the FTAM association to be closed by
ft_disconnect( ) and must be the value returned by ft_connect( ) when the association was
created.

ftam_out (Object(FTAM-Output-Parameters))
This parameter is a handle for a private object of class FTAM-Output-Parameters, and is
returned only if there are relevant FTAM output parameters to be returned as a result of the
FTAM actions performed. ft_disconnect( ) has the following specific requirement for the
output object:

• Charging-List
When this attribute is present, charges associated with the FTAM regime and any
operations completed using it are returned. The charges returned do not include
charges for file transfer or file management operations for which a different account was
provided in the FTAM-Input-Parameters, these charges being returned upon completion
of that function.

api_out (Private Object (API-Output-Parameters))
This parameter is always returned and is a handle for the private object of class API-
Output-Parameters. It returns API-specific output parameters for this function call.

RETURN VALUES
ft_disconnect( ) returns either [FTE_SUCCESS] or one of the values listed in ERRORS.

FTAM High-Level API (XFTAM) Version 2 75



ft_disconnect( ) XFTAM Function Manual Pages

ERRORS

Operation Error Codes
FT_INV_ASSOC
FT_PENDING_OP

API Error Codes
FTE_VENDOR
FTE_SESSION

76 X/Open CAE Specification



XFTAM Function Manual Pages ft_fcattributes( )

NAME
ft_fcattributes - change the file attributes of an FTAM file

SYNOPSIS
#include <xftam.h>

FT_return_code ft_fcattributes(
OM_private_object session ,
OM_object p_address ,
OM_string *filename ,
OM_object new_attributes ,
OM_object ftam_in ,
OM_object api_in ,

OM_private_object *return_attributes ,
OM_private_object *ftam_out ,
OM_private_object *api_out

) ;

DESCRIPTION
The ft_fcattributes( ) function modifies the FTAM file attributes of filename in the filestore
identified by p_address.

The function may only be used to modify those attributes listed in the description of the
new_attributes parameter below. In addition, the FTAM attributes date_time_of_attribute_mod and
identity_of_attribute_mod are changed by the responder as a result of invoking ft_fcattributes( ).

If ft_fcattributes( ) is not successful, all FTAM file attributes of the target file (except attributes
implicitly changed by the responder) have the same value as before invoking ft_fcattributes( ). If
ft_fcattributes( ) is successful, the values of all FTAM attributes of the target file are returned in
the return_attributes object.

ARGUMENTS

session (Private Object (Session))
This parameter is a handle for a private object of class Session which identifies the
particular XFTAM instance that is to perform the required XFTAM operation. The session
identifies the resources associated with the instance, including the XOM workspace that
contains all private objects passed to or returned from this XFTAM function call.

p_address (Object (Presentation-Address))
This parameter is a handle for an object of class Presentation Address. If present, the
Association-Id attribute of API-Input-Parameters shall be absent as the operation is being
carried out in context free mode. When present, this attribute identifies the FTAM
responder which serves the remote filestore.

If not present, the Association-Id attribute of API-Input-Parameters shall be present as the
operation is being carried out in context sensitive mode.

If both P-address and Association-Id are present, the function returns an error code
[FT_CONTEXT_MISMATCH].

filename (String(Graphic))
The name of the file for which attributes are to be modified. A mandatory parameter, given
in the syntax used by the real filestore containing the file.

new_attributes (Object (New_Attributes))
This parameter is a handle for an object of class New-Attributes which contains the new

FTAM High-Level API (XFTAM) Version 2 77



ft_fcattributes( ) XFTAM Function Manual Pages

values for the FTAM file attributes to be changed. It is a mandatory parameter which must
contain at least one FTAM attribute value. Only the following attributes may be changed by
a call to this function:

FILENAME
STORAGE_ACCOUNT
FILE_AVAILABILITY
FUTURE_FILESIZE
ACCESS_CONTROL
LEGAL_QUAL
PRIVATE_USE

If the underlying FTAM service provider fails to negotiate the use of an FTAM attribute
group required for one of the specified attibutes, the function returns an error. A request to
change attributes other that those listed also results in an error.

In the case of access-control, additional conditions, to be added to the target file’s current list
are specified in the OM attribute Access-Control-List, conditions to be deleted are specified
using Delete-Access-Control-List. FTAM states that a condition in the deletion list must
exactly match one in the target file’s current access control attribute if the deletion is to
succeed.

ftam_in (Object (FTAM-Input-Parameters))
This parameter is a handle for an object of class FTAM-Input-Parameters, specifying
general FTAM parameters for use in this function. The parameter is optional. However,
failure to specify some of its OM attributes may result in the remote responder rejecting the
requested file actions. The ft_fcattributes( ) function has the following specific requirements
for these parameters:

• Account.
If context-sensitive processing mode is in use for this operation (Association-Id is present)
this parameter is optional.

When present, for the duration of this file transfer or file management function, it
overrides the current identified account to which charges are made (as defined when
ft_connect( ) created the association). In this case charges for this operation are returned
upon completion.

When not present, the account identified when ft_connect( ) created the association is
used for any charges and no charging information is returned when this function
completes, all charging information being returned when the association is destroyed by
ft_disconnect( ).

• File-Passwords.
This parameter is used to specify file passwords for the FTAM file actions to be
performed. Set the read and change_attribute passwords if filename contains an access
control element which specifies passwords for these actions.

• Concurrency-Control.
This parameter is used to specify concurrency locks for the FTAM file actions to be
performed. Set the read and change_attribute concurrency keys if filename contains an
access control element which specifies locks required for these actions.

If context-sensitive processing mode is in use for this function call (Association-Id is present),
the following parameters should not be present as they have already been provided when
the association was created. In this case, if any of these are present, the function returns an

78 X/Open CAE Specification



XFTAM Function Manual Pages ft_fcattributes( )

error code [FT_CONTEXT_MISMATCH].

— Initiator-Identity

— Filestore-Password

— FQoS.

api_in (Object (API-Input-Parameters))
This optional parameter is the handle of an object of class API-Input-Parameters, which may
contain API-specific parameters for use in this function call.

If context-sensitive processing mode is in use, this parameter contains the Association-Id for
an existing association. If the Association-Id provided does not represent an active
association within the FTAM instance identified by Session, the function returns an error
code [FTE_INV_ASSOC].

return_attributes (Private Object (FTAM-Attributes))
If successful, this parameter is a handle for a private object of class FTAM-Attributes which
contains the new values of all the target file’s attributes (not just those for which new values
were supplied). Return of attribute information as a result of the change attribute file action
is optional; some responders may not do so.

Values are returned only for FTAM attributes from groups which the underlying FTAM
service provider was able to negotiate for the association.  

ftam_out (Private Object (FTAM-Output-Parameters))
This parameter is a handle for a private object of class FTAM-Output-Parameters, and is
returned only if there are relevant FTAM output parameters to be returned as a result of the
FTAM actions performed.

If context-sensitive processing mode is in use, the following specific parameter use applies:

• Charging-List.
If an override account was provided (in the account attribute within ftam_in), any
charges returned are those for this function only and do not include connection changes.
The charges returned here are not included in the charges returned when the association
is destroyed with ft_disconnect( ).

api_out (Private Object (API-Output-Parameters))
This parameter is always returned and is a handle for a private object of class API-Output-
Parameters. It returns API-specific output parameters for this function call.

RETURN VALUE

For synchronous calls:
ft_fcattributes( ) returns either [FTE_SUCCESS] or one of the values listed below in ERRORS.
The function return code and the Return-Code XOM attribute of the API-Output-parameters
output object are identical for synchronous calls.

For asynchronous calls:
ft_fcattributes( ) returns either [FTE_SUCCESS] or one of the values in the API Error Codes list
of the ERRORS section below. If the call returns [FTE_SUCCESS] the contents of ftam_out,
api_out and any other output parameters that this function returns are undefined (these
parameters are returned by a subsequent call to ft_rcv_result( )). For return codes other than
[FTE_SUCCESS] the function return code and the Return-Code XOM attribute of the API-
Output-Parameters output object are identical.

FTAM High-Level API (XFTAM) Version 2 79



ft_fcattributes( ) XFTAM Function Manual Pages

ERRORS

FTAM Error Codes
FTE_FTAM_CANCEL
FTE_FTAM_PERMANENT
FTE_PROVIDER_ABORT
FTE_USER_ABORT

Operation Error Codes
FTE_INV_ATTRIBUTES
FTE_ATTR_GRP_NOT_NEGOTIATED
FTE_SERV_CLS_NOT_NEGOTIATED
FTE_FUNCT_UNIT_NOT_NEGOTIATED

API Error Codes
FTE_CANCEL
FTE_NO_RESOURCES
FTE_VENDOR
FTE_NOTSUP_ASYNC
FTE_INV_PADDRESS
FTE_SESSION
FTE_TOO_MANY_OPS
FTE_INV_ASSOC
FTE_CONTEXT_MISMATCH

WARNINGS
The Access-Passwords OM attribute of the Attributes class is never returned.

80 X/Open CAE Specification



XFTAM Function Manual Pages ft_fdelete( )

NAME
ft_fdelete - delete an FTAM file

SYNOPSIS
#include <xftam.h>

FT_return_code ft_fdelete(
OM_private_object session ,
OM_object p-address ,
OM_string *filename ,
OM_object ftam_in ,
OM_object api_in ,

OM_private_object *ftam_out ,
OM_private_object *api_out

) ;

DESCRIPTION
The ft_fdelete( ) function removes filename from the filestore identified by p-address.

ARGUMENTS

session (Private Object (Session))
This parameter is a handle for a private object of class Session which identifies the
particular XFTAM instance that is to perform the required XFTAM operation. The session
identifies the resources associated with the instance, including the XOM workspace that
contains all private objects passed to or returned from this XFTAM function call.

p_address (Object (Presentation-Address))
This parameter is a handle for an object of class Presentation Address. If present, the
Association-Id attribute of API-Input-Parameters shall be absent as the operation is being
carried out in context free mode. When present, this attribute identifies the FTAM
responder which serves the remote filestore.

If not present, the Association-Id attribute of API-Input-Parameters shall be present as the
operation is being carried out in context sensitive mode.

If both P-address and Association-Id are present, the function returns an error code
[FT_CONTEXT_MISMATCH].

filename (String(Graphic))
The name of the file to be deleted. A mandatory parameter, given in the syntax used by the
real filestore containing the file.

ftam_in (Object (FTAM-Input-Parameters))
This parameter is a handle for an object of class FTAM-Input-Parameters, specifying
general FTAM parameters for use in this function. The parameter is optional. However,
failure to specify some of its OM attributes may result in the remote responder rejecting the
requested file actions. The ft_fdelete( ) function has the following specific requirements for
these parameters:

• Account.
If context-sensitive processing mode is in use for this operation (Association-Id is
present), this parameter is optional.

When present, for the duration of this file transfer or file management function, it
overrides the current identified account to which charges are made (as defined when
ft_connect( ) created the association). In this case, charges for this operation are returned

FTAM High-Level API (XFTAM) Version 2 81



ft_fdelete( ) XFTAM Function Manual Pages

upon completion.

When not present, the account identified when ft_connect( ) created the association is
used for any charges, and no charging information is returned when this function
completes, all charging information being returned when the association is destroyed by
ft_disconnect( ).

• File-Passwords.
This parameter is used to specify file passwords for the FTAM file actions to be
performed. Set the delete password if filename contains an access control element which
specifies passwords for these actions.

• Concurrency-Control.
This parameter is used to specify concurrency locks for the FTAM file actions to be
performed. Set the delete concurrency key if filename contains an access control element
which specifies locks for these actions.

If context-sensitive processing mode is in use for this function call (Association-Id is present),
the following parameters should not be present as they have already been provided when
the association was created. In this case, if any of these are present, the function returns an
error code [FT_CONTEXT_MISMATCH].

— Initiator-Identity

— Filestore-Password

— FQoS.

api_in (Object (API-Input-Parameters))
This optional parameter is the handle of an object of class API-Input-Parameters, which may
contain API-specific parameters for use in this function call.

If context-sensitive processing mode is in use, this parameter contains the Association-Id for
an existing association. If the Association-Id provided does not represent an active
association within the FTAM instance identified by Session, the function returns an error
code [FTE_INV_ASSOC].

ftam_out (Private Object (FTAM-Output-Parameters))
This parameter is a handle for a private object of class FTAM-Output-Parameters, and is
returned only if there are relevant FTAM output parameters to be returned as a result of the
FTAM actions performed.

If context-sensitive processing mode is in use, the following specific parameter use applies:

• Charging-List.
If an override account was provided (in the account attribute within ftam_in), any
charges returned are those for this function only and do not include connection changes.
The charges returned here are not included in the charges returned when the association
is destroyed with ft_disconnect( ).

api_out (Private Object (API-Output-Parameters))
This parameter is always returned and is a handle for a private object of class API-Output-
Parameters. It returns API-specific output parameters for this function call.

82 X/Open CAE Specification



XFTAM Function Manual Pages ft_fdelete( )

RETURN VALUES

For synchronous calls:
ft_fdelete( ) returns either [FTE_SUCCESS] or one of the values listed below in ERRORS. The
function return code and the Return-Code OM attribute of the API-Output-parameters output
object are identical for synchronous calls.

For asynchronous calls:
ft_fdelete( ) returns either [FTE_SUCCESS] or one of the values in the API Error Codes list of
the ERRORS section below. If the call returns [FTE_SUCCESS] the contents of ftam_out,
api_out and any other output parameters that this function returns are undefined (these
parameters are returned by a subsequent call to ft_rcv_result( )). For return codes other than
[FTE_SUCCESS] the function return code and the Return-Code XOM attribute of the API-
Output-Parameters output object are identical.

ERRORS

FTAM Error Codes
FTE_FTAM_CANCEL
FTE_FTAM_PERMANENT
FTE_PROVIDER_ABORT
FTE_USER_ABORT

Operation Error Codes
FTE_ATTR_GRP_NOT_NEGOTIATED
FTE_SERV_CLS_NOT_NEGOTIATED
FTE_FUNCT_UNIT_NOT_NEGOTIATED

API Error Codes
FTE_CANCEL
FTE_NO_RESOURCES
FTE_VENDOR
FTE_NOTSUP_ASYNC
FTE_INV_PADDRESS
FTE_SESSION
FTE_TOO_MANY_OPS
FTE_INV_ASSOC
FTE_CONTEXT_MISMATCH

FTAM High-Level API (XFTAM) Version 2 83



ft_frattributes( ) XFTAM Function Manual Pages

NAME
ft_frattributes - read the FTAM attributes of a file

SYNOPSIS
#include <xftam.h>

FT_return_code ft_frattributes(
OM_private_object session ,
OM_object p-address ,
OM_string *filename ,
OM_object attribute_names ,
OM_object ftam_in ,
OM_object api_in ,

OM_private_object *return-attributes ,
OM_private_object *ftam_out ,
OM_private_object *api_out

) ;

DESCRIPTION
The ft_frattributes function reads the values of the specified FTAM file attributes of filename in the
filestore identified by p-address. The set of attributes returned depend on the FTAM file attribute
groups negotiated for the connection and on the level of support for the attributes in groups
which the responder supports partially. Some responders may return an integer or string
indicating "No value available" for partially supported attributes. The values of the Access-
Passwords OM attribute of the Attributes class are never returned.

The filestore changes the FTAM file attributes date_time_of_read and identity_of_reader as a result
of the read attribute action.

ARGUMENTS

session (Private Object (Session))
This parameter is a handle for a private object of class Session which identifies the
particular XFTAM instance that is to perform the required XFTAM operation. The session
identifies the resources associated with the instance, including the XOM workspace that
contains all private objects passed to or returned from this XFTAM function call.

p_address (Object (Presentation-Address))
This parameter is a handle for an object of class Presentation Address. If present, the
Association-Id attribute of API-Input-Parameters shall be absent as the operation is being
carried out in context free mode. When present, this attribute identifies the FTAM
responder which serves the remote filestore.

If not present, the Association-Id attribute of API-Input-Parameters shall be present as the
operation is being carried out in context sensitive mode.

If both P-address and Association-Id are present, the function returns an error code
[FT_CONTEXT_MISMATCH].

filename (String(Graphic))
The name of the file for which attributes are to be read. A mandatory parameter, given in the
syntax used by the real filestore containing the file.

attribute_names (Object (FTAM-Attribute-names))
This optional parameter is a handle for an object of class FTAM-Attribute-Names which
indicates which file attributes from the kernel or negotiated FTAM attribute groups to read.

84 X/Open CAE Specification



XFTAM Function Manual Pages ft_frattributes( )

If not specified, attribute_names defaults to all the attributes associated with the attribute
groups negotiated for the association.

The attributes which may be read are:

FILENAME,
PERMITTED_ACTIONS,
CONTENTS_TYPE,
CREATE_DATE_TIME,
MOD_DATE_TIME,
READ_DATE_TIME,
ATT_MOD_DATE_TIME,
ID_OF_CREATOR,
ID_OF_MODIFIER,
ID_OF_READER,
ID_OF_ATT_MOD,
STORAGE_ACCOUNT,
FILE_AVAILABILITY,
FILESIZE,
FUTURE_FILESIZE,
ACCESS_CONTROL,
LEGAL_QUAL,
PRIVATE_USE.

If the underlying FTAM service provider fails to negotiate the use of an FTAM attribute
group required for one of the specified attibutes, the function returns an error. A request to
read attributes other than those listed here also results in an error.

ftam_in (Object (FTAM-Input-Parameters))
This parameter is a handle for an object of class FTAM-Input-Parameters, specifying
general FTAM parameters for use in this function. The parameter is optional. However,
failure to specify some of its OM attributes may result in the remote responder rejecting the
requested file actions. The ft_frattributes( ) function has the following specific requirements
for these parameters:

• Account.
If context-sensitive processing mode is in use for this operation (Association-Id is
present), this parameter is optional.

When present, for the duration of this file transfer or file management function, it
overrides the current identified account to which charges are made (as defined when
ft_connect( ) created the association). In this case, charges for this operation are returned
upon completion.

When not present, the account identified when ft_connect( ) created the association is
used for any charges, and no charging information is returned when this function
completes, all charging information being returned when the association is destroyed by
ft_disconnect( ).

• File-Passwords.
This parameter is used to specify file passwords for the FTAM file actions to be
performed. Set the read and read_attribute passwords if filename contains an access
control element which specifies passwords for these actions.

• Concurrency-Control.
This parameter is used to specify concurrency locks for the FTAM file actions to be

FTAM High-Level API (XFTAM) Version 2 85



ft_frattributes( ) XFTAM Function Manual Pages

performed. Set the read and read_attribute concurrency keys if filename contains an access
control element which specifies locks for these actions.

If context-sensitive processing mode is in use for this function call (Association-Id is present),
the following parameters should not be present as they have already been provided when
the association was created. In this case, if any of these are present, the function returns an
error code [FT_CONTEXT_MISMATCH].

— Initiator-Identity

— Filestore-Password

— FQoS.

api_in (Object (API-Input-Parameters))
This optional parameter is the handle of an object of class API-Input-Parameters, which may
contain API-specific parameters for use in this function call.

If context-sensitive processing mode is in use, this parameter contains the Association-Id for
an existing association. If the Association-Id provided does not represent an active
association within the FTAM instance identified by Session, the function returns an error
code [FTE_INV_ASSOC].

return_attributes (Private Object (FTAM-Attributes))
If sucessful, this parameter is a handle for a private object of class FTAM-Attributes which
contains the values of the attributes requested.

If the accessed file is of a type supported by XFTAM, the object handle returned in the
Content-Type XOM attribute will point to an object describing the specific document type of
the file (for example Document-Type-FTAM-1), including any associated parameters.
Alternatively, if the document type is not supported, the returned object will be a simple
Document-Type object (that is, no information is returned about the values of any parameters
that may be associated with the document type).

ftam_out (Private Object (FTAM-Output-Parameters))
This parameter is a handle for a private object of class FTAM-Output-Parameters, and is
returned only if there are relevant FTAM output parameters to be returned as a result of the
FTAM actions performed.

If context-sensitive processing mode is in use, the following specific parameter use applies:

• Charging-List.
If an override account was provided (in the account attribute within ftam_in), any
charges returned are those for this function only and do not include connection changes.
The charges returned here are not included in the charges returned when the association
is destroyed with ft_disconnect( ).

api_out (Private Object (API-Output-Parameters))
This parameter is always returned and is a handle for a private object of class API-Output-
Parameters. It returns API-specific output parameters for this function call.

RETURN VALUES

For synchronous calls:
ft_frattributes( ) returns either [FTE_SUCCESS] or one of the values listed below in ERRORS.
The function return code and the Return-Code OM attribute of the API-Output-parameters
output object are identical for synchronous calls.

For asynchronous calls:
ft_frattributes( ) returns either [FTE_SUCCESS] or one of the values in the API Error Codes list

86 X/Open CAE Specification



XFTAM Function Manual Pages ft_frattributes( )

of the ERRORS section below. If the call returns [FTE_SUCCESS] the contents of ftam_out,
api_out and any other output parameters that this function returns are undefined (these
parameters are returned by a subsequent call to ft_rcv_result( )). For return codes other than
[FTE_SUCCESS] the function return code and the Return-Code XOM attribute of the API-
Output-Parameters output object are identical.

ERRORS

FTAM Error Codes
FTE_FTAM_CANCEL
FTE_FTAM_PERMANENT
FTE_PROVIDER_ABORT
FTE_USER_ABORT

Operation Error Codes
FTE_ATTR_GRP_NOT_NEGOTIATED
FTE_SERV_CLS_NOT_NEGOTIATED
FTE_FUNCT_UNIT_NOT_NEGOTIATED

API Error Codes
FTE_CANCEL
FTE_NO_RESOURCES
FTE_VENDOR
FTE_NOTSUP_ASYNC
FTE_INV_PADDRESS
FTE_SESSION
FTE_TOO_MANY_OPS
FTE_INV_ASSOC
FTE_CONTEXT_MISMATCH

WARNINGS
The Access-Passwords XOM attribute of the FTAM-Attributes XOM class is never returned.

SEE ALSO
ft_gperror( ), ft_rcvresult( ).

FTAM High-Level API (XFTAM) Version 2 87



ft_frdir( ) XFTAM Function Manual Pages

NAME
ft_frdir - read the contents of an FTAM file-store directory

SYNOPSIS
#include <xftam.h>

FT_return_code ft_frdir(
OM_private_object session ,
OM_object p_address ,
OM_string *pathname ,
OM_object attribute_names ,
OM_object ftam_in ,
OM_object api_in ,

OM_private_object *directory_list ,
OM_private_object *ftam_out ,
OM_private_object *api_out

) ;

DESCRIPTION
The ft_frdir function reads the contents of the directory pathname in the file-store identified by
p_address. A list of zero or more FTAM-Attributes objects is returned, one for each file in the
remote directory. The order of files in this list is determined by the source file-store.

The ft_frdir function uses the NBS-9 document type to retrieve directory information from the
remote file-store. The function may fail if the remote file-store does not support this document
type.

Two factors may constrain the list of attributes returned for each file:

• The FTAM file attribute groups negotiated for the connection with the FTAM responder may
limit the list of attributes that are requested for each file.

• The attributes that the remote FTAM responder supports for the NBS-9 file type may limit
the list of attributes returned for each file. The definition of the NBS-9 document type requires
only that the Filename attribute is returned for each file.

ARGUMENTS

session (Private Object (Session))
This parameter is a handle for a private object of class Session which identifies the
particular XFTAM instance that is to perform the required XFTAM operation. The session
identifies the resources associated with the instance, including the XOM workspace that
contains all private objects passed to or returned from this XFTAM function call.

p_address (Object (Presentation-Address))
This parameter is a handle for an object of class Presentation Address. If present, the
Association-Id attribute of API-Input-Parameters shall be absent as the operation is being
carried out in context free mode. When present, this attribute identifies the FTAM
responder which serves the remote filestore.

If not present, the Association-Id attribute of API-Input-Parameters shall be present as the
operation is being carried out in context sensitive mode.

If both P-address and Association-Id are present, the function returns an error code
[FT_CONTEXT_MISMATCH].

88 X/Open CAE Specification



XFTAM Function Manual Pages ft_frdir( )

pathname (String(Octet))
The name of the directory file for which a file list is to be retrieved.

attribute_names (Object(FTAM_Attribute_names))
This optional parameter is a handle for an object of class FTAM-Attribute-Names which
indiacates which file attributes from the kernel or negotiated FTAM attribute group to read.
If not specified, attribute_names defaults to the attribute filename only.

The attributes which may be read are:
FILENAME
PERMITTED_ACTIONS
CONTENTS_TYPE
CREATE_DATE_TIME
MOD_DATE_TIME
READ_DATE_TIME
ATT_MOD_DATE_TIME
ID_OF_CREATOR
ID_OF_MODIFIER
ID_OF_READER
ID_OF_ATT_MOD
STORAGE_ACCOUNT
FILE_AVAILABILITY
FILESIZE
FUTURE_FILESIZE
ACCESS_CONTROL
LEGAL_QUAL
PRIVATE_USE

If the underlaying FTAM service provider fails to negotiate the use of an FTAM attribute
group required for one of the specified attributes, the function returns an error. A request to
read attributes other than those listed here also results in an error. " A mandatory parameter,
given in the syntax used by the real filestore containing the file.

ftam_in (Object (FTAM-Input-Parameters))
This parameter is a handle for an object of class FTAM-Input-Parameters, specifying
general FTAM parameters for use in this function. The parameter is optional. However,
failure to specify some of its OM attributes may result in the remote responder rejecting the
requested file actions. For the ft_frdir( ) the following attributes of this object may be set:

• Account.
If context-sensitive processing mode is in use for this operation (Association-Id is
present), this parameter is optional.

When present, for the duration of this file transfer or file management function, it
overrides the current identified account to which charges are made (as defined when
ft_connect( ) created the association). In this case, charges for this operation are returned
upon completion.

When not present, the account identified when ft_connect( ) created the association is
used for any charges, and no charging information is returned when this function
completes, all charging information being returned when the association is destroyed by
ft_disconnect( ).

• File-Passwords.
This parameter is used to specify file passwords for the FTAM file actions to be
performed. Set the read password if filename contains an access control element which

FTAM High-Level API (XFTAM) Version 2 89



ft_frdir( ) XFTAM Function Manual Pages

specifies a password for this action.

• Concurrency-Control.
This parameter is used to specify concurrency locks for the FTAM file actions to be
performed. Set the read concurrency key if filename contains an access control element
which specifies a lock for this action.

If context-sensitive processing mode is in use for this function call (Association-Id is present),
the following parameters should not be present as they have already been provided when
the association was created. In this case, if any of these are present, the function returns an
error code [FT_CONTEXT_MISMATCH].

— Initiator-Identity

— Filestore-Password

— FQoS.

api_in (Object (API-Input-Parameters))
This optional parameter is the handle of an object of class API-Input-Parameters, which may
contain API-specific parameters for use in this function call.

If context-sensitive processing mode is in use, this parameter contains the Association-Id for
an existing association. If the Association-Id provided does not represent an active
association within the FTAM instance identified by Session, the function returns an error
code [FTE_INV_ASSOC].

directory_list (Private Object (Directory-List))
If sucessful, this parameter is a handle for a private object of class Directory-List which
contains a list of zero or more FTAM-Attribute objects, one for each file in the directory
accessed. Only values of attributes from groups supported by responder for the NBS-9
document type are returned.

ftam_out (Private Object (FTAM-Output-Parameters))
This parameter is a handle for a private object of class FTAM-Output-Parameters, and is
returned only if there are relevant FTAM output parameters to be returned as a result of the
FTAM actions performed.

If context-sensitive processing mode is in use, the following specific parameter use applies:

• Charging-List.
If an override account was provided (in the account attribute within ftam_in), any
charges returned are those for this function only and do not include connection changes.
The charges returned here are not included in the charges returned when the association
is destroyed with ft_disconnect( ).

api_out (Private Object (API-Output-Parameters))
This parameter is always returned and is a handle for a private object of class API-Output-
Parameters. It returns API-specific output parameters for this function call.

RETURN VALUES

For synchronous calls:
ft_frdir( ) returns either SUCCESS or one of the values listed below in ERRORS. The
function return code and the Return-Code OM attribute of the API-Output-parameters output
object are identical for synchronous calls.

For asynchronous calls:
ft_frdir( ) returns either SUCCESS or one of the values in the API Error Codes list of the
ERRORS section below. If the call returns [FTE_SUCCESS] the contents of ftam_out, api_out

90 X/Open CAE Specification



XFTAM Function Manual Pages ft_frdir( )

and any other output parameters that this function returns are undefined (these parameters
are returned by a subsequent call to ft_rcv_result( )). For return codes other than
[FTE_SUCCESS] the function return code and the Return-Code XOM attribute of the API-
Output-Parameters output object are identical.

ERRORS

FTAM Error Codes
FTE_FTAM_CANCEL
FTE_FTAM_PERMANENT
FTE_PROVIDER_ABORT
FTE_USER_ABORT

Operation Error Codes
FTE_ATTR_GRP_NOT_NEGOTIATED
FTE_SERV_CLS_NOT_NEGOTIATED
FTE_FUNCT_UNIT_NOT_NEGOTIATED

API Error Codes
FTE_CANCEL
FTE_NO_RESOURCES
FTE_VENDOR
FTE_NOTSUP_ASYNC
FTE_INV_PADDRESS
FTE_SESSION
FTE_TOO_MANY_OPS
FTE_INV_ASSOC
FTE_CONTEXT_MISMATCH

WARNINGS
The Access-Passwords attribute of the Attributes class is never returned.

FTAM High-Level API (XFTAM) Version 2 91



ft_freceive( ) XFTAM Function Manual Pages

NAME
ft_freceive - receive a file from an FTAM filestore

SYNOPSIS
#include <xftam.h>

FT_return_code ft_receive(
OM_private_object session ,
OM_object p_address ,
OM_string *src_filename ,
OM_enum src_effect ,
OM_string *dest_filename ,
OM_enum dest_effect ,
OM_object src_attributes ,
OM_object ftam_in ,
OM_object api_in ,

OM_private_object *return_attributes ,
OM_private_object *ftam_out ,
OM_private_object *api_out

) ;

DESCRIPTION
The ft_freceive( ) function copies the src_filename in the FTAM filestore identified by p-address to
the local file dest_filename. If dest_filename is NULL, the function attempts to use the source
filename as the name of the destination file, this may result in a modified filename being created
or the transfer may fail.

Src_effect allows the source file to be deleted if the copy completes successfully. If the API user
does not establish sufficient authorisation in the remote FTAM VFS to delete the source file, the
file transfer succeeds but the function returns an error indicating that the source file was not
deleted.

Dest_effect specifies the action to be taken if the destination file already exists in the remote file
system. The transfer fails if fail is specified, or if overwrite or extend is specified and the API user
does not have permission to perform the required action in the local filestore.

The setting of the file access permissions of the resulting destination file are implementation
dependant.

ARGUMENTS

session (Private Object (Session))
This parameter is a handle for a private object of class Session which identifies the
particular XFTAM instance that is to perform the required XFTAM operation. The session
identifies the resources associated with the instance, including the XOM workspace that
contains all private objects passed to or returned from this XFTAM function call.

p_address (Object (Presentation-Address))
This parameter is a handle for an object of class Presentation Address. If present, the
Association-Id attribute of API-Input-Parameters shall be absent as the operation is being
carried out in context free mode. When present, this attribute identifies the FTAM
responder which serves the remote filestore.

If not present, the Association-Id attribute of API-Input-Parameters shall be present as the
operation is being carried out in context sensitive mode.

92 X/Open CAE Specification



XFTAM Function Manual Pages ft_freceive( )

If both P-address and Association-Id are present, the function returns an error code
[FT_CONTEXT_MISMATCH].

src_filename (String(Graphic))
The name of the source file. A mandatory parameter, given in the syntax used by the real
filestore containing the file.

src_effect (Enum(Copy-Move))
This parameter is an enumeration which specifies the effect of the file transfer upon the
source file. Possible values are:

• FT_COPY_FILE, meaning that the source file is to be left in place when the file transfer is
complete (i.e. the transfer is a file copy). The option uses the read FTAM file action.

• FT_MOVE_FILE, meaning that the source file is to be deleted once the file transfer is
complete (i.e. the transfer is a file move). If an error occurs which means that the file
tranfer does not complete, source file is left in place. The option uses the read and delete
FTAM file actions.

The transfer fails if the required file actions are not allowed by the file’s permitted actions
attribute, or if concurrency locks or file passwords are required for the actions and are not
correctly specified in the File-Passwords and Concurrency-Control OM attributes of the
FTAM-Input-Parameters object.

dest_filename (String(Graphic))
The name of the local destination file. A mandatory parameter, given in the syntax used by
the real filestore containing the file.

A NULL value indicates that src_filename should be used as the filename in the destination
filestore. The source filename may be modified by XFTAM to conform to local file naming
conventions, or the transfer may fail if the source filename cannot be used. The actual name
of the file created is returned in the function’s return_attributes output parameter.

dest_effect (Enum (Receive-Effect))
This parameter is an enumeration which defines the action to be taken if the destination file
dest_filename exists. It takes one of the following values:

• FT_OVERWRITE - delete the existing file and replace with the file received. The transfer
fails if the user does not have permission to delete the file.

• FT_APPEND - the remote file is appended to the existing local file. The transfer fails if
the user does not have write permission for the file.

• FT_FAIL - the file transfer fails.

src_attributes (Object (FTAM-Attributes))
This parameter is a handle to an object of class FTAM-Attributes. Only the Content-Type
OM attribute is significant for this call. Other OM attributes are ignored. If this parameter
is NULL, or if no Document-Type OM attribute is included, XFTAM does not specify what
document type it is expecting to receive. In this case the transfer may fail if the actual
document type or parameter combination specified by the source file’s file attributes is not
supported by the local XFTAM implementation.

The API user may set the Content-Type OM attribute to restrict the type of file read from
the responder. This may case the request to fail if the specified content type does not match
that of the source file or a valid simplification/relaxation of it according to the rules
specified by FTAM. It may also fail if the local implementation does not support the
specified document type or combination of parameters.

FTAM High-Level API (XFTAM) Version 2 93



ft_freceive( ) XFTAM Function Manual Pages

ftam_in (Object (FTAM-Input-Parameters))
This parameter is a handle for an object of class FTAM-Input-Parameters, specifying
general FTAM parameters for use in this function. The parameter is optional. However,
failure to specify some of its OM attributes may result in the remote responder rejecting the
requested file actions.

The ft_freceive( ) function has the following specific requirements these parameters:

• Account.
If context-sensitive processing mode is in use for this operation (Association-Id is
present), this parameter is optional.

When present, for the duration of this file transfer or file management function, it
overrides the current identified account to which charges are made (as defined when
ft_connect( ) created the association). In this case, charges for this operation are returned
upon completion.

When not present, the account identified when ft_connect( ) created the association is
used for any charges, and no charging information is returned when this function
completes, all charging information being returned when the association is destroyed by
ft_disconnect( ).

• File-Passwords.
This parameter is used to specify file passwords for the FTAM file actions to be
performed. Set the password for the required action if src_filename contains an access
control element which specifies a password for this action. (See the discussion of the
src_effect parameter above for a description of the FTAM file actions that this function
may perform.)

• Concurrency-Control.
This parameter is used to specify concurrency locks for the FTAM file actions to be
performed. Set the concurrency key for the required action if src_filename contains an
access control element which specifies a lock for this action. (See the discussion of the
src_effect parameter above for a description of the FTAM file actions that this function
may perform.)

If context-sensitive processing mode is in use for this function call (Association-Id is present),
the following parameters should not be present as they have already been provided when
the association was created. In this case, if any of these are present, the function returns an
error code [FT_CONTEXT_MISMATCH].

— Initiator-Identity

— Filestore-Password

— FQoS.

api_in (Object (API-Input-Parameters))
This optional parameter is the handle of an object of class API-Input-Parameters, which may
contain API-specific parameters for use in this function call.

If context-sensitive processing mode is in use, this parameter contains the Association-Id for
an existing association. If the Association-Id provided does not represent an active
association within the FTAM instance identified by Session, the function returns an error
code [FTE_INV_ASSOC].

return-Attributes (Private Object (FTAM-Attributes))
If sucessful, this parameter is a handle for a private object of class FTAM-Attributes which
returns the attributes of the file as received. Attribute values are returned for the actual

94 X/Open CAE Specification



XFTAM Function Manual Pages ft_freceive( )

filename (which may differ from that specified in the request) and the actual content type of
the file accessed.

The content type attribute is either that of the source file, or a valid simplification if one was
requested using the source-attribute input parameter. The contents of the file received may
be processed by the local FTAM initiator according to the content type received:

• FTAM-1. This is an unstructured text file. The contents of the file are filtered to convert
FTAM format effectors (in particular end of line) into the equivalent local representation.
An XFTAM implementation must support a string length of at least 134 characters for
FTAM-1 files received (132 characters plus <CR> <LF>). Implementations may support
larger or unlimited string lengths.

• FTAM-2. This is a sequential text file. Support for this document type is optional.
XFTAM supports the transfer of entire files only. No mechanism is provided for
transferring individual records from such a file.

The strings of the file are processed as for the FTAM-1 document type. The mechanism
by which the record boundaries of the FTAM-2 document are preserved in the local
filestore is outside of the scope of XFTAM.

• FTAM-3. This is an unstructured binary file. The contents are not interpreted or
changed in any way when it is received. An XFTAM implementation must support a
string length of at least 512 octets for FTAM-3 files received. Implementations may
support larger or unlimited string lengths.

The [FTE_INV_STRING_LENGTH] error is returned if the user attempts to receive a
document which exceeds the maximum supported value for the maximum-string-length
document type parameter.

ftam_out (Private Object (FTAM-Output-Parameters))
This parameter is a handle for a private object of class FTAM-Output-Parameters, and is
returned only if there are relevant FTAM output parameters to be returned as a result of the
FTAM actions performed.

If context-sensitive processing mode is in use, the following specific parameter use applies:

• Charging-List.
If an override account was provided (in the account attribute within ftam_in), any
charges returned are those for this function only and do not include connection changes.
The charges returned here are not included in the charges returned when the association
is destroyed with ft_disconnect( ).

api_out (Private Object (API-Output-Parameters))
This parameter is always returned and is a handle for a private object of class API-Output-
Parameters. It returns API-specific output parameters for this function call.

RETURN VALUES

For synchronous calls:
ft_freceive( ) returns either [FTE_SUCCESS] or one of the values listed below in ERRORS.
The function return code and the Return-Code OM attribute of the API-Output-parameters
output object are identical for synchronous calls.

For asynchronous calls:
ft_receive( ) returns either [FTE_SUCCESS] or one of the values in the API Error Codes list of
the ERRORS section below. If the call returns [FTE_SUCCESS] the contents of ftam_out,
api_out and any other output parameters that this function returns are undefined (these
parameters are returned by a subsequent call to ft_rcv_result( )). For return codes other than

FTAM High-Level API (XFTAM) Version 2 95



ft_freceive( ) XFTAM Function Manual Pages

[FTE_SUCCESS] the function return code and the Return-Code XOM attribute of the API-
Output-Parameters output object are identical.

ERRORS

FTAM Error Codes
FTE_FTAM_CANCEL
FTE_FTAM_PERMANENT
FTE_PROVIDER_ABORT
FTE_USER_ABORT

Operation Error Codes
FTE_FILE_EXISTS
FTE_INV_DOC_RCVD
FTE_INV_DOC_SPEC
FTE_INV_STRING_LENGTH
FTE_LOCAL_FILE_ERROR
FTE_LOCAL_PERMISSION
FTE_ATTR_GRP_NOT_NEGOTIATED
FTE_SERV_CLS_NOT_NEGOTIATED
FTE_FUNCT_UNIT_NOT_NEGOTIATED

API Error Codes
FTE_CANCEL
FTE_NO_RESOURCES
FTE_VENDOR
FTE_NOTSUP_ASYNC
FTE_NOTSUP_FQOS
FTE_NOTSUP_FTAM2
FTE_INV_PADDRESS
FTE_SESSION
FTE_TOO_MANY_OPS
FTE_INV_ASSOC
FTE_CONTEXT_MISMATCH

96 X/Open CAE Specification



XFTAM Function Manual Pages ft_fsend( )

NAME
ft_fsend - send a file to an FTAM filestore

SYNOPSIS
#include <xftam.h>

FT_return_code ft_fsend(
OM_private_object session ,
OM_string *src_filename ,
OM_enum src_effect ,
OM_object p_address ,
OM_string *dest_filename ,
OM_enum dest_effect ,
OM_object initial_attributes ,
OM_object ftam_in ,
OM_object api_in

OM_private_object *return_attributes ,
OM_private_object *ftam_out ,
OM_private_object *api_out

) ;

DESCRIPTION

The ft_fsend( ) function copies the local src_filename to dest_filename on the FTAM filestore
identified by p_address. If dest_filename is NULL, the function attempts to use the source
filename as the name of the destination file. The transfer fails if the source filename is not
compatible with the destination filestore.

Whether it is derived from src_filename or dest_filename, the actual filename created in the remote
filestore may be modified by the remote responder.

Dest_effect specifies the action to be taken if the destination file already exists in the remote
filestore. The transfer fails if the destination file exists and one of the dest_effect options is chosen
which is not permitted for the file or for which the API user does not supply the appropriate file
passwords or concurrency locks.

The initial_attributes input parameter allows the user to override the values of some of the FTAM
file attributes in the file created. If this parameter is not provided, some of the file’s FTAM
attributes are determined by XFTAM and others by the receiving FTAM responder. The
return_attributes parameter returns the actual file attributes of the file created by the destination
responder (including the actual filename created.

ARGUMENTS

session (Private Object (Session))
This parameter is a handle for a private object of class Session which identifies the
particular XFTAM instance that is to perform the required XFTAM operation. The session
identifies the resources associated with the instance, including the XOM workspace that
contains all private objects passed to or returned from this XFTAM function call.

src_filename (String(Graphic))
The name of the local source file. A mandatory parameter, given in the syntax used by the
real filestore containing the file.

src_effect (Enum(Copy-Move))
This parameter is an enumeration which specifies the effect of the file transfer upon the

FTAM High-Level API (XFTAM) Version 2 97



ft_fsend( ) XFTAM Function Manual Pages

source file. The value is one of:

• FT_COPY_FILE, meaning that the source file is to be left in place when the file transfer is
complete (i.e. the transfer is a file copy).

• FT_MOVE_FILE, meaning that the source file is to be deleted once the file transfer is
complete (i.e. the transfer is a file move). If an error occurs which means that the file
tranfer does not complete, source file is left in place. If the user does not have
permission to delete the source file, the file transfer succeeds but the function returns an
error indicating that the source file has not been deleted.

p_address (Object (Presentation-Address))
This parameter is a handle for an object of class Presentation Address. If present, the
Association-Id attribute of API-Input-Parameters shall be absent as the operation is being
carried out in context free mode. When present, this attribute identifies the FTAM
responder which serves the remote filestore.

If not present, the Association-Id attribute of API-Input-Parameters shall be present as the
operation is being carried out in context sensitive mode.

If both P-address and Association-Id are present, the function returns an error code
[FT_CONTEXT_MISMATCH].

dest_filename (String(Graphic))
The name of the destination file. Given in the syntax used by the real destination file
system. A NULL value indicates that src_filename should be used as the filename in the
destination filestore.

Whether it is derived from src_filename or dest_filename, the created filename may be
modified by the responder to conform to the file naming conventions of the remote filestore.
The transfer fails if the filename is not compatible with these conventions. The actual name
of the file created is returned in the function’s return_attributes output parameter.

dest_effect (Enum (FTAM-Override))
This parameter maps onto the FTAM override parameter to the F-CREATE request primitive
and specifies the action to be taken by the responder in the case where dest_filename exists.
The parameter can take the following parameters:

• FT_CREATE_FAILURE - the file transfer fails.

• FT_SELECT_OLD_FILE - the local file is appended to the existing file on the destination
file store. For FTAM-1 and FTAM-3 document types, this option uses the FTAM extend
file action; for FTAM-2, it uses insert.

• FT_DELETE_AND_CREATE_WITH_OLD_ATTRIBUTES - the local file overwrites the
destination file, preserving the attributes of the destination. This option uses the FTAM
delete file action. In addition, for FTAM-1 and FTAM-3 document types, this option uses
the FTAM replace file action; for FTAM-2, it uses insert.

• FT_DELETE_AND_CREATE_WITH_NEW_ATTRIBUTES - the local file overwrites the
destination file, the new file’s attributes are as specified by the FTAM Initial Attributes
parameter. This option uses the FTAM delete file action. In addition, for FTAM-1 and
FTAM-3 document types, this option uses the FTAM replace file action; for FTAM-2, it
uses insert.

Note: As the FTAM file attributes of the new file are established as part of the create
operation, no password need be specified in the File-Passwords attribute of
FTAM-Input-Parameters in order to perform the replace/insert action in this
case.

98 X/Open CAE Specification



XFTAM Function Manual Pages ft_fsend( )

The transfer fails if one of the required file actions is not allowed by the file’s permitted
actions attribute, or if concurrency locks or file password is required for the action and are
not correctly specified in the File-Passwords and Concurrency-Control OM attributes of the
FTAM-Input-Parameters object.

initial-attributes (Object (FTAM-Attributes))
This optional parameter is a handle for an object of class FTAM-Attributes specifying the file
attributes which are to be set for the destination file in the initial attributes FTAM parameter
to the F-CREATE request primitive. A value for an attribute specified here overrides any
default value that the local XFTAM implementation may provide. In turn, the receiving
responder may modify certain attributes when creating the file, or set attributes other than
those in the kernel group to ‘‘no value available’’. The user may specify the following
FTAM file attributes in a call to the ft_send( ) function:

PERMITTED_ACTIONS
CONTENTS_TYPE
STORAGE_ACCOUNT,
FILE_AVAILABILITY
FUTURE_FILESIZE
ACCESS_CONTROL
LEGAL_QUAL
PRIVATE_USE

If the underlying FTAM service provider fails to negotiate the use of an FTAM attribute
group required for one of the specified attibutes, the function returns an error. A request to
specify an intial value for an attribute other than those listed here also results in an error.

The following specific points should be noted:

• Filename
This parameter is set by XFTAM from the src_filename and dest_filename function
parameters as noted above. The FTAM responder may modify the value of this attribute
for the created file, the modified value is returned in the function’s return_attributes
output parameter.

• Permitted actions
The FTAM responder may modify the value of this attribute for the created file, the
modified value is returned in the return_attributes function output parameter.

• Contents type
If the user does not specify a value for this FTAM attribute, XFTAM defaults it to the
defined FTAM-1 set or optionally determines the file contents type by an
implementation defined lookup service. If the implementation defined service is unable
to determine the file contents type, it defaults it to the FTAM-1 set. The implementation
of the lookup service is beyond the scope of this specification.

Note: When the user application is able to determine the contents type, it is
recommended to specify a value for this FTAM attribute. Relying on the setting
of the default value may be inappropriate. For example, transferring a binary
file (FTAM-3) as a text file (FTAM-1) may fail due to ‘‘new line’’ manipulation.

The FTAM-1 default contents type:

— Document type = FTAM-1 (unstructured text)

— Universal class = General String (text may contain format effectors)

FTAM High-Level API (XFTAM) Version 2 99



ft_fsend( ) XFTAM Function Manual Pages

— Maximum string length = unlimited.

— String significance = non-significant (lines from the source file are delimited by the
FTAM format effectors <CR> <LF>).

The source file is assumed to be an unstructured file, containing a stream of bytes. If the
file contains text such as screen or print images, the document type may be specified as
FTAM-1 with additional parameters to specify the appropriate universal class number
(for example IA5-String).

If the file to be transferred contains binary information, the API user may specify an
alternative document type (FTAM-3), to avoid unwanted interpretation of the source
file’s contents.

If an implementation supports the optional FTAM-2 document type, the API user may
specify that the file is to be transferred as a sequential text file. XFTAM supports the
transfer of entire files only, no mechanism is provided for transferring individual records
from such a file. The default parameters for such a file are as for the FTAM-1 document
type. The mechanism by which the record boundaries of the FTAM-2 document are
identified in the local filestore is outside of the scope of XFTAM.

The transfer may fail if a document type or parameter combination not supported by the
local implementation is specified.

The minimum value for the maximum-string-length document type parameter that an
XFTAM implementation must support is 134 characters for the FTAM-1 and FTAM-2
document types, and 512 octets for FTAM-3. The [FTE_INV_STRING_LENGTH] error is
returned if the user attempts to send a document which exceeds the maximum
supported value for this parameter.

ftam_in (Object (FTAM-Input-Parameters))
This parameter is a handle for an object of class FTAM-Input-Parameters, specifying
general FTAM parameters for use in this function. The parameter is optional. However,
failure to specify some of its OM attributes may result in the remote responder rejecting the
requested file actions. The ft_fsend( ) function has the following specific requirements for
the input object:

• Account.
If context-sensitive processing mode is in use for this operation (Association-Id is
present), this parameter is optional.

When present, for the duration of this file transfer or file management function, it
overrides the current identified account to which charges are made (as defined when
ft_connect( ) created the association). In this case, charges for this operation are returned
upon completion.

When not present, the account identified when ft_connect( ) created the association is
used for any charges, and no charging information is returned when this function
completes, all charging information being returned when the association is destroyed by
ft_disconnect( ).

• Create-Password
Some responders may require this FTAM attribute to be specified when a file is to be
created in the destination filestore.

• File-Passwords
This parameter is used to specify file passwords for the FTAM file actions to be
performed. Set the password for the required action if dest_filename already exists and

100 X/Open CAE Specification



XFTAM Function Manual Pages ft_fsend( )

contains an access control element which specifies a password for this action. (See the
discussion of the dest_effect parameter above for a description of the FTAM file actions
that this function may perform).

• Concurrency-Control
This parameter is used to specify concurrency locks for the FTAM file actions to be
performed. Set the concurrency key for the required action if dest_filename already exists
and contains an access control element which specifies a lock for this action. (See the
discussion of the dest_effect parameter above for a description of the FTAM file actions
that this function may perform).

If context-sensitive processing mode is in use for this function call (Association-Id is present),
the following parameters should not be present as they have already been provided when
the association was created. In this case, if any of these are present, the function returns an
error code [FT_CONTEXT_MISMATCH].

— Initiator-Identity

— Filestore-Password

— FQoS.

api_in (Object (API-Input-Parameters))
This optional parameter is the handle of an object of class API-Input-Parameters, which may
contain API-specific parameters for use in this function call.

If context-sensitive processing mode is in use, this parameter contains the Association-Id for
an existing association. If the Association-Id provided does not represent an active
association within the FTAM instance identified by Session, the function returns an error
code [FTE_INV_ASSOC].

return_attributes (Private Object (FTAM-Attributes))
If sucessful, attribute values are returned for the actual filename of the file created, and its
permitted actions, either of which may have been modified by the remote responder when
creating the file in the virtual filestore.

ftam_out (Private Object (FTAM-Output-Parameters))
This parameter is a handle for a private object of class FTAM-Output-Parameters, and is
returned only if there are relevant FTAM output parameters to be returned as a result of the
FTAM actions performed.

If context-sensitive processing mode is in use, the following specific parameter use applies:

• Charging-List.
If an override account was provided (in the account attribute within ftam_in), any
charges returned are those for this function only and do not include connection changes.
The charges returned here are not included in the charges returned when the association
is destroyed with ft_disconnect( ).

api_out (Private Object (API-Output-Parameters))
This parameter is always returned and is a handle for a private object of class API-Output-
Parameters. It returns API-specific output parameters for this function call.

RETURN VALUE

For synchronous calls:
ft_fsend( ) returns either [FTE_SUCCESS] or one of the values listed below in ERRORS. The
function return code and the Return-Code OM attribute of the API-Output-parameters output
object are identical for synchronous calls.

FTAM High-Level API (XFTAM) Version 2 101



ft_fsend( ) XFTAM Function Manual Pages

For asynchronous calls:
ft_fsend( ) returns either [FTE_SUCCESS] or one of the values in the API Error Codes list of
the ERRORS section below. If the call returns [FTE_SUCCESS] the contents of ftam_out,
api_out and any other output parameters that this function returns are undefined (these
parameters are returned by a subsequent call to ft_rcv_result( )). For return codes other than
[FTE_SUCCESS] the function return code and the Return-Code XOM attribute of the API-
Output-Parameters output object are identical.

ERRORS

FTAM Error Codes
FTE_FTAM_CANCEL
FTE_FTAM_PERMANENT
FTE_PROVIDER_ABORT
FTE_USER_ABORT

Operation Error Codes
FTE_INV_ATTRIBUTE
FTE_INV_DOC_SPEC
FTE_INV_STRING_LENGTH
FTE_LOCAL_FILE_ERROR
FTE_LOCAL_PERMISSION
FTE_NO_SRC_FILE
FTE_ATTR_GRP_NOT_NEGOTIATED
FTE_SERV_CLS_NOT_NEGOTIATED
FTE_FUNCT_UNIT_NOT_NEGOTIATED

API Error Codes
FTE_CANCEL
FTE_NO_RESOURCES
FTE_VENDOR
FTE_NOTSUP_ASYNC
FTE_NOTSUP_FQOS
FTE_NOTSUP_FTAM2
FTE_INV_PADDRESS
FTE_SESSION
FTE_TOO_MANY_OPS
FTE_INV_ASSOC
FTE_CONTEXT_MISMATCH

102 X/Open CAE Specification



XFTAM Function Manual Pages ft_gperror( )

NAME
ft_gperror - translate an FTAM error to a printable string

SYNOPSIS
#include <xftam.h>

FT_return_code ft_gperror(
OM_private_object api_out_in ,
OM_string **return_string ,
OM_string **vendor_string ,
OM_private_object *api_out

) ;

DESCRIPTION
The ft_gperror function translates the result of a previous call to an XFTAM API function into a
pair of printable strings, corresponding to the Return-Code and Vendor-Code attributes of the
API-Output-Parameters object class.

ARGUMENTS

api_out_in (Private Object (API-Output-Parameters))
This mandatory parameter is a handle for an object of class API_Output-Parameters which
contains the API output parameters for a previous another function call for which the
printable errors strings are required.

return_string (OM_String(*))
A text string in the natural language of the current locale that represents the Return-Code
attribute of the API_out_in parameter. This is the XFTAM-specified error code and is always
returned. The resulting string is formatted for printing as a self-contained unit (for example,
in an English language locale, it includes a terminating newline character). The user must
pass a pointer to a location of type OM_string *. If the pointer in the referenced location is
NULL, ft_gperror( ) will allocate storage for the string and return a pointer to it into the
referenced location. Otherwise, the pointer in the referenced location must point to at least
256 octets of storage, the string will be stored in the locations pointed to.

vendor_string (OM_String (*))
A text string in the natural language of the current locale that represents the Vendor-Code
attribute of the API_out_in parameter. This is an optional implementation-specific error
code and is not returned if the API_out_in parameter did not contain an equivalent code.
The resulting string is formatted for printing as a self-contained unit (for example, in an
English language locale, it includes a terminating newline character). The comments
regarding allocation of storage for the return_string return parameter also apply to this
parameter. If no vendor string is available, the returned string will be zero-length (if the
user supplies the storage), or the returned pointer will be NULL (if the allocation of storage
is left to ft_gperror( )).

api_out (Private Object (API-Output-Parameters))
This parameter is always returned and is a handle for a private object of class API-Output-
Parameters. It returns API-specific output parameters for this function call.

FTAM High-Level API (XFTAM) Version 2 103



ft_gperror( ) XFTAM Function Manual Pages

RETURN VALUES
ft_gperror( ) returns either [FTE_SUCCESS] or one of the values listed below in ERRORS.

ERRORS

Operation Error Codes
FTE_INV_RETURN_CODE
FTE_INV_VENDOR_CODE

API Error Code
FTE_CANCEL

104 X/Open CAE Specification



XFTAM Function Manual Pages ft_open( )

NAME
ft_open - initialise a session with XFTAM and allocate a workspace

SYNOPSIS
#include <xftam.h>

FT_return_code ft_open(
FT_package_t package_list[ ],
OM_private_object *session ,
OM_workspace *workspace

);

DESCRIPTION
This function creates an XFTAM instance and performs any necessary initialisation of the API,
including allocation of an XOM workspace for the storage of private objects defined by the
XFTAM Base package. The function returns a private object of class Session which is used to
identify the new XFTAM instance to other XFTAM functions.

ft_open must be invoked before any other XFTAM functions. It may be invoked multiple times
from within a single program, in which case each call creates a separate XFTAM instance,
returning a distinct session and associated workspace.

The package_list parameter may be used to negotiate the use of additional optional packages with
this XFTAM instance. On return, the package list is modified to indicate which of the requested
packages are available in the newly created workspace. (Failure to negotiate the use of an
optional package does not cause the ft_open( ) function to fail - an application must check the
returned array to determine if it can proceed without the use of any rejected packages.)

XFTAM does not currently define any optional packages. Additional packages may be defined
in the future to provide optional extensions to the base XFTAM functionality. Alternatively,
individual XFTAM implementations may define additional packages to support vendor
extensions.

ARGUMENTS

package_list (Feature-List)
A sequence of proposed optional XOM packages to be included in the workspace created for
this XFTAM instance. Each proposed package is represented by an ft_package structure. The
sequence is terminated by an object identifier having no components (a length of zero and
any value of the data pointer).

typedef struct {
OM_object_identifier package ;
OM_boolean included ;

} FT_package_t ;

On input, each package is identified by its allocated OSI object identifier. On output, if the
result of the function is [FTE_SUCCESS], the list is updated to indicate, via the included field,
whether each proposed package has been included in the workspace.

FTAM High-Level API (XFTAM) Version 2 105



ft_open( ) XFTAM Function Manual Pages

session (Private Object (Session))
Upon successful completion, this parameter returns a handle to an object of class Session
which is used to identify the XFTAM instance created. The contents of this object are not
modifiable by the API user. An object of this class must be passed to most other XFTAM
functions in order to identify the XFTAM instance that is to process the request.

workspace (Workspace)
Upon successful completion, contains a handle to a workspace in which OM objects,
defined by the XFTAM Base Package and any negotiated packages, can be created and
manipulated. Private objects created in this workspace, and only such objects, may be used
as arguments to the other XFTAM API functions.

RETURN VALUES
ft_open( ) returns either SUCCESS or one of the values listed below in ERRORS.

ERRORS
FTE_NO_RESOURCES
FT_NO_WORKSPACE

106 X/Open CAE Specification



XFTAM Function Manual Pages ft_rcvresult

NAME
ft_rcvresult - receive result of an asynchronous operation invocation

SYNOPSIS
#include <xftam.h>

FT_return_code ft_rcvresult(
OM_private_object session ,

OM_uint *completion_flag ,
OM_uint32 *op_invoke_id ,
OM_private_object *op_api_out ,
OM_private_object *op_ftam_out ,
OM_private_object *op_result_object ,
OM_private_object *api_out

) ;

DESCRIPTION
This function is used to retrieve the completed result of a previous asynchronous operation
invocation. The completion flag parameter indicates if an outstanding invocation has completed,
if so the other parameters are used to return the invocation identifier and output object handles
associated with the completed operation. The result of a completed outstanding invocation will
be returned exactly once.

Asynchronous execution mode is an optional feature of XFTAM. If an implementation does not
support this feature, ft_rcvresult( ) returns an error code of [FTE_NOTSUP_ASYNC].

ARGUMENTS

session (Private Object (Session))
This parameter is a handle for a private object of class Session which identifies the
particular XFTAM instance that is to perform the required XFTAM operation. The session
identifies the resources associated with the instance, including the XOM workspace that
contains all private objects passed to or returned from this XFTAM function call.

completion_flag (Integer)
One of the following values to indicate the status of outstanding asynchronous operations:

• FT_COMPLETED_INVOKATION
At least one outstanding invocation has completed and its result is made available.

• FT_OUTSTANDING_INVOKATIONS
There are outstanding invocations, but none has yet completed.

• FT_NO_OUTSTANDING_INVOKATIONS
There are no outstanding invocations.

Upon successful return with completion_flag having the value
[FT_COMPLETED_INVOKATION], the Invoke-ID and the return object handles associated
with the completed invocation are returned as noted below.

FTAM High-Level API (XFTAM) Version 2 107



ft_rcvresult XFTAM Function Manual Pages

op_invoke_id (Integer)
This parameter is used to return the Invoke-ID of a completed operation. The value returned
can be matched to those returned by oustanding asynchronous operations. It is only valid if
the completion_flag parameter returned [FT_COMPLETED_INVOKATION].

op_api_out (Private Object (API-Output-Parameters))
This parameter is used to return an object handle for the API-Output-Parameters associated
with the completed invocation. It is only valid if the completion_flag parameter returned
[FT_COMPLETED_INVOKATION].

op_ftam_out (Private Object (FTAM-Output-Parameters))
This parameter is used to return an object handle for the FTAM-Output-Parameters
associated with the completed invocation. It is only valid if the completion_flag parameter
returned [FT_COMPLETED_INVOKATION] and op_api_out indicated that the
asynchronous operation succeeded.

op_result_object (Private Object (Object))
This parameter is used to return an object handle for a possible output object associated
with the completed operation. It is only valid if the completion_flag parameter returned
[FT_COMPLETED_INVOKATION] and op_api_out indicated that the asynchronous
operation succeeded and depending on the definition of the XFTAM function which intiated
the asynchronous operation.

For example, if the function ft_frattributes( ) is invoked in asynchronous mode, this output
parameter is used to return a pointer to the resulting FTAM-Attributes object returned by the
read attributes operation.

api_out (Private Object (API-Output-Parameters))
This parameter is always returned and is a handle for a private object of class API-Output-
Parameters. It returns API-specific output parameters for this function call.

RETURN CODES
ft_rcvresult( ) returns either [FTE_SUCCESS] or one of the values listed below under ERRORS.

ERRORS
FTE_VENDOR
FTE_NOTSUP_ASYNC
FTE_SESSION

108 X/Open CAE Specification



Chapter 5

XFTAM Return Codes

This section lists the return codes defined by XFTAM and listed by the XFTAM functions. Each
entry includes a description of the meaning of the code.

FTAM Error Codes

These codes indicate that the underlying FTAM implementation reported an error. The
application must examine any FTAM diagnostics objects returned in order to obtain a detailed
description for the failure.

[FTE_FTAM_CANCEL]
This error is returned when XFTAM receives an F-CANCEL indication primitive during
data transfer, indicating that the remote responder cannot continue with the data transfer.
The responder may provide diagnostic structures to specify the reason for the abort. When
XFTAM issues an F-CANCEL request to abandon a data transfer regime, the cause of the
error is indicated by an alternative XFTAM return code.

[FTE_FTAM_PERMANENT]
This type of error will occur every time the user attempts the requested operation. This
type of error would be reported when, for example, the create password specified does not
match the one held by the responder.

[FTE_PROVIDER_ABORT]
This error is returned when XFTAM receives an F-P-ABORT indication primitive from the
service provider. The primitive may have been initiated by either the initiating service
provider (as a result of an state error or a communications error) or the responding service
provider (as a result of a state error - of course communications errors detected by the
responder cannot be reported to the initiator). The only way to determine which entity
caused the abort is to examine the source parameters of any diagnostic structures associated
with the abort primitive.

[FTE_USER_ABORT]
This error is returned when XFTAM receives an F-U-ABORT indication primitive from the
service provider, as a result of the responder issuing an equivalent request. The responder
may provide diagnostic structures to specify the reason for the abort.

Operation Error Codes

These error codes indicate operation-related errors detected by the XFTAM API.

[FTE_ATTR_GRP_NOT_NEGOTIATED]
Returned by a function when an optional FTAM attribute group, required by the requested
operation, has not been negotiated by XFTAM for the FTAM regime (XFTAM always
requests support of all attribute groups - this error occurs when the responder refuses to
support one or more groups).

For example, this error would be returned by ft_fcattributes( ) when an attempt is made to
modify an attribute from the storage attribute group but the responder declines to support
that group. Another example is where the API user specifies an values for the FTAM access
passwords parameter (via the Access-Passwords XOM attribute of the FTAM-Input-Parameters
object class) but support of the security attribute group is refused by the remote responder.

FTAM High-Level API (XFTAM) Version 2 109



XFTAM Return Codes

[FTE_FILE_EXISTS]
This error is returned by ft_freceive( ) when the destination file exists and the dest_effect
function parameter is set to fail.

[FTE_FQOS_NOT_NEGOTIATED]
This error is returned when XFTAM is not able to negotiate the requested Quality of Service
(specified in the FQoS attribute of the FTAM-Input-Parameters) for the the XFTAM
operation. It indicates that the FTAM regime was established with a lower FQoS value than
that requested, and the operation was terminated as a consequence. If the requested FQoS
is not supported by the underlying FTAM intiator because of an XFTAM implementation
restriction, [FTE_NOTSUP_FQOS] is returned instead.

[FTE_FUNCT_UNIT_NOT_NEGOTIATED]
Returned by a function when a functional unit, required by the requested operation, is not
supported by the responder.

For example, this error would be returned by ft_fcattributes() when the responder does not
support the enhanced file management functional unit.

[FTE_INV_ATTRIBUTE]
Returned by ft_fcattributes( ) when an attempt is made to change an attribute that FTAM
defines as non-modifiable. Returned by ft_fsend( ) when an attempt is made to specify initial
FTAM attributes that are not settable by the initiator.

For example, this error would be returned if the user specified a value for the permitted
actions FTAM attribute (only settable at file creation) in a call to ft_fcattributes( ) or a value for
date and time of creation (only settable by the responder) in a call to ft_fsend( ).

[FTE_INV_DOC_RCVD]
This error is returned by ft_freceive( ) when the content type of the file being received is not
supported by the initiator. It may be possible to transfer the file successfully by specifying a
valid simplification or relaxation of the actual file content type (via the Content-Type XOM
attribute of the Attributes object class).

For example, this error is returned where the responder indicates that the file to be accessed
is of type FTAM-2 and the local XFTAM implementation does not support that document
type. Another example is the case where the document type is FTAM-1 (which must be
supported) but the universal class document type parameter is specified to be TeletextString,
which may not be supported by the local implementation.

[FTE_INV_DOC_SPEC]
This error is returned by ft_freceive( ) and ft_fsend( ) when the API user specifies a content
type for the file to be transferred (via the Content-Type XOM attribute of the Attributes object
class) which is not supported by the local XFTAM implementation. In the send case, the
content type refers to the type of file to be created in the reponder’s filestore. In the receive
case, it is the expected type of the file to be received. See [FTE_INV_DOC_RCVD] for
examples.

[FTE_INV_RETURN_CODE]
Returned by ft_gperror( ) when the Return-Code XOM attribute of the API-Output-Parameters
object is not a valid error code as defined by this specification.

[FTE_INV_STRING_LENGTH]
The value of the maximum-string-length parameter for FTAM document types may be
restricted by an implementation of XFTAM. This error is returned if the user attempts to
send or receive a document which exceeds the maximum supported value for this
parameter. The error may be returned even if a value is not specified for the parameter, as

110 X/Open CAE Specification



XFTAM Return Codes

the default value is unbounded. The minimum value for the maximum-string-length that an
XFTAM implementation must support is 134 characters for the FTAM-1 and FTAM-2
document types, and 512 octets for FTAM-3.

[FTE_INV_VENDOR_CODE]
Returned by ft_gperror( ) when the Vendor-Code XOM attribute of the API-Output-Parameters
object is not a valid error code as defined by the particular implementation.

[FTE_LOCAL_FILE_ERROR]
Returned by ft_freceive( ) or ft_fsend( ) when XFTAM is unable to perform the required action
in the local filestore for a reason other than one for which a specific error code is defined.
The precise reason for the failure is indicated by the local operation system error reporting
mechanism.

For example, if this error is returned by a call to ft_freceive( ) in a CAE-conformant system,
the system error variable errno contains the CAE-defined error code which is set as a result
of the attempt to create or overwrite the local destination file.

[FTE_LOCAL_PERMISSION]
Returned by ft_freceive( ) or ft_fsend( ) when XFTAM is unable to perform the required action
in the local filestore for reasons of access control. In the send case, this may occur when the
user specifies a src_effect of move-file (in which case XFTAM attempts to delete the local file
once the transfer is complete - the error indicates that the local file deletion failed, though the
transfer of the file has been completed successfully). In the receive case, the error is returned
when the dest_effect parameter is set to delete-file (in which case XFTAM attempts to delete
the local file if it already exists).

[FTE_NO_SRC_FILE]
This error is returned by ft_send( ) when the local file does not exist.

[FTE_NO_SUCH_INVOKATION]
This error is returned when an attempt is made to abandon an XFTAM operation which is
not outstanding, or to cancel a synchronous operation while no such operation has been
interrupted.

[FTE_SERV_CLS_NOT_NEGOTIATED]
Returned by a function when a service class, required by the requested operation, is not
supported by the responder.

For example, this error would be returned by ft_fcattributes() when the responder does not
support the file management service class.

API Error Codes

These error codes indicate errors detected by the XFTAM API, other than those directly related
to the operation being requested.

[FTE_CANCEL]
This error code is returned by a synchronously-invoked function when ft_abandon( ) has
been called from within an interrupt handler function to terminate the interrupted XFTAM
operation.

FTAM High-Level API (XFTAM) Version 2 111



XFTAM Return Codes

[FTE_CONTEXT_MISMATCH]
The error code is returned when there is a mismatch in the use of connection related
parameters, and includes the following conditions:

— When neither neither p_address or Association-Id is provided to identify the FTAM
responder. p_address is used when context free operation is in use, and Association-Id
identifies the FTAM association when context-sensitive operation is in use.

— When any connection related parameters are supplied in addition to Association-Id.
When Association-Id is provided, the operation is context-sensitive and these are not
provided.

[FTE_INV_ASSOC]
This error is returned when XFTAM is supplied with an Association-Id which does not
represent an existing association within the XFTAM instance indicated by the session input
parameter.

[FTE_INV_PADDRESS]
The Presentation-Address object passed to a file transfer or management function does not
represent an valid address for the XFTAM operation. This error indicates that the object
passed does not have a valid set of XOM attributes:

A valid instance of the Presentation-Address class must contain, as a minimum, one
N-Addresses attribute and one of the attributes P-Selector, S-Selector or T-Selector.

Alternatively, it indicates that none of the list of N-Addresses attributes contain a valid
NSAP address. The NSAP address formats supported are a feature of the individual
XFTAM implementation and the environment in which it is running.

[FTE_NO_RESOURCES]
This error code is returned when a request to execute an XFTAM operation cannot be
completed due to a lack of some resource required to perform it. An implementation may
use the Vendor-Code attribute of the API-Output-Parameters object to provide a more specific
indication of the resource required to execute the operation.

[FTE_NO_WORKSPACE]
Returned by ft_open( ) if an XFTAM instance cannot be created because storage cannot be
allocated for the associated XOM workspace.

[FTE_NOTSUP_ASYNC]
This error code is returned in the case where an implementation does not support
asynchronous execution mode and the user attempts to invoke an XFTAM operation with
the Asynchronous XOM attribute in API-Input-Parameters set to TRUE. If an implementation
defines the value of the constant FT_MAX_ASYNC_OPS to be zero, asynchronous
operations are not supported. If the constant FT_MAX_ASYNC_OPS is not defined to be
zero, the support of asynchronous operations is mandatory for ft_fsend( ) and ft_freceive( )
but remains optional for all other functions.

[FTE_NOTSUP_FQOS]
This error code indicates that the level of recovery requested using the FQoS XOM attribute
is not supported by this implementation of XFTAM. Support for FQoS values other than No
Recovery is optional.

[FTE_NOTSUP_FTAM2]
This error indicates that the optional document type FTAM-2 is not supported by this
implementation of XFTAM. It may be returned by ft_freceive( ) if the specified source file in
the remote filestore is of type FTAM-2, or by ft_fsend( ) if the user requests that the file
created in the remote filestore is to be of type FTAM-2.

112 X/Open CAE Specification



XFTAM Return Codes

[FTE_PENDING_OP]
The error is returned by XFTAM when an ft_disconnect( ) function is attempted on an
association which is currently carrying active functions. ft_abandon( ) should be used to
terminate the action, or ft_abort( ) used to abort the association.

[FTE_SESSION]
The Session object passed to a function in the session parameter does not identify a valid
XFTAM instance. A Session object is returned when an XFTAM instance is created by a call
to ft_open( ), and destroyed when the object is passed to ft_close( ).

[FTE_SYSTEM_ERROR]
An error related to the OS has occurred. The user should examine the Vendor-Code XOM
attribute of the API-Output-Parameters return object to determine the precise error.

[FTE_TOO_MANY_OPS]
This error is returned if the API user attempts to invoke too many simultaneous
asynchronous operations. The constant FT_MAX_ASYNC_OPS indicates how many such
operations may be outstanding at any one time. It is the users responsibility to keep track of
asynchronous operations and check against this number. If this error is returned, the user
must wait until one of the current operations to complete and use ft_rcvresult( ) to return its
results before further asynchronous operations may be invoked.

[FTE_VENDOR]
An error related to the specific implementation of XFTAM has occurred. The user should
examine the Vendor-Code XOM attribute of the API-Output-Parameters return object to
determine the precise error.

[FTE_XDS_ERROR]
An error related to the XDS has occurred. The user should examine the Vendor-Code XOM
attribute of the API-Output-Parameters return object to determine the precise error.

Note: This is for XFTAM implementations that use the XDS bind( ) function to get a
bound session.

[FTE_XOM_ERROR]
An error related to the XOM has occurred. The user should examine the Vendor-Code XOM
attribute of the API-Output-Parameters return object to determine the precise error.

FTAM High-Level API (XFTAM) Version 2 113



XFTAM Return Codes

114 X/Open CAE Specification



Appendix A

Summary of XOM

The XFTAM API makes use of facilities provided by the OSI-Abstract-Data Manipulation API to
support the passing of control information between XFTAM and the API user. This API is fully
described in the referenced XOM specification. However, a brief outline is presented here for
the convenience of the reader of this specification.

Both specifications make use of the term attribute. XOM uses it to describe a value type which
forms part of an XOM Object Class, whilst XFTAM uses it to describe a characteristic of an FTAM
file. In this specification, in general, the particular meaning intended is clear from the context of
its use. However, where this is not clear, the reference is qualified as FTAM attribute or XOM
attribute. The term XFTAM attribute is used to refer to an XOM attribute of an object class defined
by the XFTAM package. .

The description below introduces the various concepts that are used in object management,
starting with the smallest.

A.1 Syntax
A syntax is the basis for the classification and representation of values in object management.
Examples of syntaxes are Boolean, Integer, String(Octet) and Object.

Syntaxes are defined in the Object Management Specification, and nowhere else, and are
themselves represented by integers.

A.2 Value
A value is a single datum, or piece of information. Each value belongs to exactly one syntax by
which its representation is defined. A value may be as simple as a Boolean value (e.g. True), or
as complicated as an entire XOM object (e.g. a Message).

A.3 XOM Attribute
An XOM attribute type is an arbitrary category into which a specification places some values.

OM attribute types are represented by integers, which are assigned in individual service
specifications, and which are only meaningful within a particular package.

An XOM attribute is an XOM attribute type, together with an ordered sequence of one or more
values. OM attributes can occur only as parts of an XOM object and the XOM attribute type, and
values are constrained by the XOM class specification of that XOM object.

The XOM attribute type can be thought of as the name of the XOM attribute.

There is no general representation for an XOM attribute, but a descriptor represents an XOM
attribute type together with a single syntax and value.

FTAM High-Level API (XFTAM) Version 2 115



XOM Object Summary of XOM

A.4 XOM Object
An XOM object is a collection of XOM attributes, the values of which can be accessed by means
of functions. The particular XOM attribute types that may occur in an XOM object are
determined by the XOM class of the XOM object, as are the constraints on those XOM attributes.
The XOM class of an XOM object is determined when the XOM object is created, and cannot be
changed.

OM objects are represented in the interface by a handle, or opaque pointer. The internal
representation of an XOM object is not specified, though there is a defined data structure, called
a descriptor list, which can also be used directly in a program.

A.5 XOM Class
An XOM class is a category of XOM object, set out in a specification. It determines the XOM
attributes that may be present in the XOM object, and details the constraints on those XOM
attributes.

Each XOM object belongs directly to exactly one XOM class, and is called an instance of that
XOM class.

The XOM classes of XOM objects form a tree. Each XOM class has exactly one immediate
superclass (except for the XOM class Object, which is the root of the tree), and each XOM class
may have an arbitrary number of subclasses. The tree structure is also known as the XOM class
hierarchy. The importance of the XOM class hierarchy stems from the inheritance property
discussed below.

Each XOM class of XOM object has a fixed list of XOM attribute types, and every XOM object
that is an instance of the XOM class has only these XOM attributes (some XOM attributes may
not be present in particular instances, as permitted by the constraints in the XOM class
specification). The list of XOM attribute types that may appear in instances of an XOM class has
two parts. Each XOM class inherits all the XOM attribute types that are permitted in its
immediate superclass as legal XOM attribute types. There is also a list of additional XOM
attribute types that are permitted in the XOM class. Any subclasses of this XOM class will
inherit all of these XOM attribute types, from both lists.

Because of inheritance, an XOM object is also said to be an instance of all its superclasses. It is
required that the XOM class constraints of each superclass are met, considering just those XOM
attribute types that are permitted in the superclass.

The XOM class hierarchy and the list of XOM attribute types for each XOM class are determined
solely by the interface specification and cannot be changed by a program.

The XOM class specification may impose arbitrary constraints on the OM attributes. The most
common of these are tabulated in the XOM class specification and are marked with a * below.
Frequently encountered cases include constraints as follows:

• to restrict the syntaxes permitted for values of an XOM attribute (often to a single syntax) *

• to restrict the particular values to a subset of those permitted by the syntax

• to require one or more values of the XOM attribute (a mandatory XOM attribute) *

• to require either zero or more values of the XOM attribute (an optional XOM attribute) *

• to permit multiple values, perhaps up to some limit known as the value number constraint *

116 X/Open CAE Specification



Summary of XOM XOM Class

• to restrict the length of strings, up to a limit known as the value length constraint *.

Note: The constraint is expressed in terms of bits, octets or characters according to the
kind of string. However, the lengths of strings are stated everywhere else in terms
of the number of elements, which are either bits or octets. The number of elements in
a string with multibyte characters (for example, T.61 Teletext) may thus exceed the
value length constraint. (In C, an array with more bytes will be needed to store it.)

The constraints may affect multiple XOM attributes at once, for example a rule that only one of
several XOM attributes may be present in any XOM object.

Every XOM object includes the XOM class to which it belongs as the single value of the
mandatory XOM attribute type Class, which cannot be modified. The value of this XOM
attribute is an OSI Object Identifier, which is assigned to the XOM class by the specification.

An abstract class is an XOM class of which instances are forbidden. It may be defined as a
superclass in order to share XOM attributes between XOM classes, or simply to ensure that the
XOM class hierarchy is convenient for the interface definition.

A.6 Package
A Package is a set of XOM classes that are grouped together by the specification, because they are
functionally related.

A package is identified by an OSI Object-Identifier, which is assigned to the package by the
specification. Thus the identity of each package is completely unique.

A.7 Package Closure
An XOM class may be defined to have an XOM attribute whose value is an XOM object of an
XOM class defined in some other package. This is done to share definitions and to avoid
duplication. For example, the Directory Contents package (reference XDS) defines an XOM class
called Teletex-Terminal-Identifier. This XOM class has an XOM attribute whose value is an
XOM object of XOM class Teletex-NBPs, which is defined in another package. An XOM class
may also be a subclass of an XOM class in another package. These relationships between
packages lead to the concept of a Package-Closure.

A Package-Closure is the set of classes which need to be supported in order to be able to create all
possible instances of all classes defined in the package. A formal definition is given in the XOM
specification.

FTAM High-Level API (XFTAM) Version 2 117



Workspace Summary of XOM

A.8 Workspace
Details of the representation of XOM objects, and of the implementation of the functions that are
used to manipulate them, are not specified because they are not the concern of the application
programmer. However, the programmer sometimes needs to be aware of which
implementation is being used for a particular XOM object.

The case of the XOM class Teletex-NBPs was mentioned above. This XOM class is used in both
the Message Transfer Service and in the Directory Service. If an application uses both services,
and the two services use different internal representations of XOM objects (perhaps because they
are supplied by different vendors), then it is necessary for the application to specify which
implementation should create a Teletex-NBPs OM object. This is done by means of a
workspace.

A workspace is one or more Package-Closures, together with an implementation of the object
management functions that supports all the XOM classes of XOM objects in the Package-
Closures.

The notion of a workspace also includes the storage used to represent OM objects and
management of that storage. The interested reader should refer to the relevant part of the OSI
Object Management API Specification (reference XOM) for more details of how workspaces are
implemented.

The application must obtain a workspace that supports an XOM class before it is able to create
any XOM objects of that XOM class. The workspaces are returned by functions in the
appropriate service. For example, ft_shutdown( ) returns a workspace that supports the XFTAM
API package, whilst another function in another OSI service API returns a workspace that
supports another package.

Some implementations may support additional packages in a workspace. For example, vendors
may provide XOM classes for document types not supported by the base XFTAM API
specification. The API user may negotiate these packages into a workspace when it is set up.
Another important case is where two or more services are supported by the same
implementation. In this case, the workspaces returned by ft_shutdown( ) and ds_initialize( ) are
likely to have the same implementation. The application need take no account of this, but may
experience improved performance.

A.9 Descriptor
A descriptor is a defined data structure that is used to represent an XOM attribute type and a
single value. The structure has three components: a type, a syntax and a value.

A descriptor list is an ordered sequence of descriptors that is used to represent several XOM
attribute types and values.

Where the list contains several descriptors with the same XOM attribute type (representing a
multi-valued XOM attribute), the order of the values in the XOM attribute is the same as the
order in the list. Such descriptors will always be adjacent.

Where the list contains a descriptor representing the XOM class, this must occur before any
others.

A public object is a descriptor list that contains all the XOM attribute values of an XOM object,
including the XOM class. Public objects are used to simplify application programs by enabling
the use of static data structures instead of a sequence of XOM function calls.

118 X/Open CAE Specification



Summary of XOM Descriptor

A private object is an XOM object created in a workspace using the object management functions
or the functions in an OSI service. The term is simply used for contrast with a public object.

A.10 Use of Objects
OM objects are used to represent the data collections used in the interface, such as
FTAM_Input_Parameters defined in Section 3.20 on page 59.

An important feature of the interface is that an instance of a subclass can be used wherever a
particular XOM class is needed. This means both that the application can supply a subclass and
that the service can return a subclass. For example, the FTAM-Attributes class defined in Chapter
3 includes an XOM attribute which is itself an object, of class Content-Type. This is an abstract
class and both the API user and XFTAM itself use it to refer to occurences of concrete sub-classes,
such as Document-Type-FTAM-1 for example.

Because the service may return a subclass of the specified XOM class, applications should
always use the om_instance( ) function when checking the XOM class of an XOM object, rather
than testing the value of the Class OM attribute.

When the application supplies a subclass of the specified XOM class as an argument, the service
will either recognise them as vendor extensions or will ignore all XOM attribute types that are
not permitted in the specified XOM class.

The application can generally supply either a public object or a private object as an argument of
the interface functions. There are exceptions, such as where an argument must be a private
object - in the interests of efficiency for example. The interface always returns private objects.
The application can convert these into public objects by a call to om_get( ), if required.

Note that public objects returned by om_get( ) are read-only and must not be modified in any
way.

FTAM High-Level API (XFTAM) Version 2 119



Summary of XOM

120 X/Open CAE Specification



Glossary

Some of the definitions listed here are closely based upon definitions from the FTAM
specification. Where this is so, the description is preceded by the tag "FTAM". Others are taken
from the XOM specification and are tagged "XOM".

abstract class
(XOM) An XOM Class, instances of which are forbidden.

attribute
(XOM) A component of an object, comprising an integer denoting the attributes’s type and an
ordered sequence of one or more attributes values, each accompanied by an integer denoting the
value’s syntax.

class
(XOM) A static grouping of objects, within a specification, based on both their semantics and
their form.

concrete Class
(XOM) A class, instances of which are allowed.

data unit
(FTAM) The smallest unit of a file’s contents which the filestore actions can manipulate.

descriptor
(XOM) A ’C’ structure - the means by which the client and service exchange an attribute values
and the interferes that denote its representation, type and syntax.

document type
(FTAM) The specification of a class of documents, which states their necessary semantics,
abstract syntaxes and dynamics.

file[store] action
(FTAM) One of the actions specified as part of the definition of the virtual filestore.

file attributes
(FTAM) The name and other identifiable properties of a file.

initiator
(FTAM) That file service user which requests FTAM regime establishment.

instance
(XFTAM) An API user interacts with the XFTAM via an XFTAM instance which is the collection
of state information required to perform XFTAM operations on the user’s behalf.

instance
(XOM) An object in the category represented by an class.

object
(XOM) A composite information object comprising zero or more attributes.

operation
(XFTAM) A high-level file transfer or management task performed by an XFTAM function. An
operation is implemented by the underlying FTAM service provider by performing a series of
low-level file actions.

FTAM High-Level API (XFTAM) Version 2 121



Glossary

package
(XOM) A specified group of related classes, denoted by an Object Identifier.

responder
(FTAM) That file service user which accepts an FTAM regime establishment requested by the
initiator.

private object
(XOM) An object that is represented in an unspecified fashion. Such an object is created in a
workspace using the XOM functions.

public object
(XOM) A list of descriptors which contain all the attributes of an object.

virtual filestore
(FTAM) An abstract model for describing files and filestores, and the possible actions on them.

workspace
(XOM) A space in which objects can be created, together with an implementation of the
functions which support the related classes.

122 X/Open CAE Specification



Index

abstract class........................................37-38, 117, 121
access control

file attribute............................................8, 34, 55-56
access control group

file attribute group .................................................8
Access-Control

XFTAM class .............................................40, 53, 57
Access-Control-Element

XFTAM class....................................................34, 39
Access-Control-List

XFTAM attribute ......................................32, 57, 78
Access-Password

XFTAM attribute...................................................53
Account

XFTAM attribute...................................................59
Action-List

XFTAM class..........................................................39
AE-Qualifier

XFTAM attribute...................................................40
AE-Title

XFTAM class ....................................................39-40
AP-Title

XFTAM attribute...................................................40
API-Input-Parameters

XFTAM class ..................28, 41, 79, 82, 90, 94, 101
API-Output-Parameters

XFTAM class.....................28, 31, 42, 70, 79, 82, 86
....................................................90, 95, 102-103, 108

application association ............................................16
Asynchronous

XFTAM attribute ............................................28, 41
asynchronous processing mode......................28, 41
Asynchronous-Id

XFTAM attribute...................................................41
attribute ....................................................................121

constraint .............................................................116
FTAM ................................................6-7, 11, 32, 115
identity of file creator.................................7, 55-56
identity of last attribute modifier ............7, 55-56
identity of last modifier.............................7, 55-56
identity of last reader.................................7, 55-56
XFTAM ...........................................................11, 115
XOM................................................................11, 115

attribute type ...........................................................116
Attribute-Mod-Date-Time

XFTAM attribute...................................................57

Attribute-Mod-Identity
XFTAM attribute...................................................57

base package........................................................20, 38
change attribute file action.........................10, 53, 56
Charge-Value

XFTAM attribute...................................................43
Charging

XFTAM class....................................................43, 61
Charging-List

XFTAM attribute...................................................61
Charging-Unit

XFTAM attribute...................................................43
class.............................................................37, 116, 121

abstract......................................................37-38, 117
concrete .............................................................37-38

class hierarchy.........................................................116
concrete class .......................................................37-38
concrete Class..........................................................121
Concurrency-Control

XFTAM attribute..................78, 81, 85, 89, 94, 100
Concurrency-Key

XFTAM attribute...................................................53
constraint..................................................................116
content type

file attribute .....................................................95, 99
Content-Class

XFTAM attribute...................................................47
Content-Type

XFTAM attribute ......................................33, 57, 86
XFTAM class .............................................44, 46, 57

contents type
file attribute..................................................7, 55-56

context free mode .....................................................29
Create-Password

XFTAM attribute ..........................................59, 101
Creation-Date-Time

XFTAM attribute...................................................57
Creator-Identity

XFTAM attribute...................................................57
data unit ...........................................................2, 6, 121
date and time of file creation ............................55-56

file attribute..............................................................7
date and time of last attribute mod.................55-56

file attribute..............................................................7
date and time of last modification...................55-56

file attribute..............................................................7

FTAM High-Level API (XFTAM) Version 2 123



Index

date and time of last read access .....................55-56
file attribute..............................................................7

delete file action ........................................................10
delete file file action ...........................................53, 56
Delete-Access-Control-List

XFTAM attribute ......................................32, 63, 78
descriptor.....................................21-24, 115, 118, 121
descriptor list...........................................................116
Diagnostic

XFTAM attribute...................................................31
XFTAM class..........................................................61

Diagnostic-List
XFTAM attribute...................................................61

directory .....................................................................27
Directory Service ......................................................27
Directory-Entry

XFTAM attribute...................................................45
Directory-List

XFTAM class .............................................33, 45, 90
document type....................................3, 8, 33, 47, 121

FTAM-1...........................................9, 47-48, 95, 100
FTAM-2..........................................9, 47, 49, 95, 100
FTAM-3...........................................9, 50-51, 95, 100
FTAM-4...................................................................50
NBS-9 ......................................................................52

Document-Type
XFTAM class ..................................46-47, 50-52, 86

Document-Type-Binary
XFTAM class ..............................................46, 50-51

Document-Type-FTAM-1
XFTAM class ....................................................47-48

Document-Type-FTAM-2
XFTAM class....................................................47, 49

Document-Type-FTAM-3
XFTAM class..........................................................50

Document-Type-NBS-9
XFTAM class..........................................................52

Document-Type-Text
XFTAM class ....................................................46-49

element .....................................................................117
erase file action....................................................53, 56
Error-Identifier

XFTAM attribute...................................................58
Error-Type

XFTAM attribute...................................................58
extend file action ..........................................10, 53, 56
file access ................................................................2, 18
file action........................................................10, 39, 53

change attribute........................................10, 53, 56
delete.......................................................................10
delete file ..........................................................53, 56

erase ..................................................................53, 56
extend .........................................................10, 53, 56
insert .................................................................53, 56
read .............................................................10, 53, 56
read attribute.............................................10, 53, 56
replace ........................................................10, 53, 56

File Action XFTAM class.........................................53
file attribute ...................................6-7, 11, 32, 34, 115

access control.........................................8, 34, 55-56
content type.....................................................95, 99
contents type................................................7, 55-56
date and time of creation ......................................7
date and time of file creation........................55-56
date and time of last attribute mod ........7, 55-56
date and time of last modification ..........7, 55-56
date and time of last read access .............7, 55-56
file availability .............................................8, 55-56
filename ........................................................7, 55-56
Filename .................................................................99
filesize............................................................8, 55-56
future filesize ...............................................8, 55-56
legal qualifications......................................8, 55-56
permitted actions ........................................7, 55-56
Permitted Actions.................................................99
private ...............................................................55-56
private use................................................................8
storage account ...........................................7, 55-56

file attribute group
access control group ..............................................8
kernel group ............................................................7
private use group ...................................................8
storage group ..........................................................7

file attributes............................................................121
file availability

file attribute..................................................8, 55-56
file management ...................................................2, 18
file transfer .............................................................2, 18
File-Action

XFTAM attribute...................................................53
XFTAM class..........................................................60

File-Action-List
XFTAM attribute ......................................35, 39, 60

File-Availability
XFTAM attribute...................................................57

File-Passwords
XFTAM attribute..................78, 81, 85, 89, 94, 100

filename
file attribute..................................................7, 55-56

Filename
file attribute ...........................................................99
XFTAM attribute...................................................56

124 X/Open CAE Specification



Index

filesize
file attribute..................................................8, 55-56

Filesize
XFTAM attribute...................................................57

filestore management ....................................2, 14, 18
Filestore-Password

XFTAM attribute ............................................34, 59
file[store] action ......................................................121
FQoS

XFTAM attribute...................................................59
FTAM

data unit ...............................................................2, 6
document type........................................3, 8, 33, 47
file access............................................................2, 18
file action....................................................10, 39, 53
file attribute .......................................6-7, 32, 34, 95
file management ...............................................2, 18
file transfer.........................................................2, 18
filestore management................................2, 14, 18
FTAM-1 document type..........3, 9, 47-48, 95, 100
FTAM-2 document type .........3, 9, 47, 49, 95, 100
FTAM-3 document type..........3, 9, 50-51, 95, 100
FTAM-4 document type......................................50
initiator ...........................................................3, 6, 16
NBS-9 document type ...............................3, 33, 52
operation ................................................................16
parameter ...............................................................11
quality of service ..................................................10
responder .......................................................3, 6, 16
structuring information.........................................6
virtual filestore..............................................2, 6, 18

FTAM
file ....................................................................11, 115

FTAM-1 .........................................................................3
FTAM-1 document type..................9, 47-48, 95, 100
FTAM-2 .........................................................................3
FTAM-2 document type .................9, 47, 49, 95, 100
FTAM-3 .........................................................................3
FTAM-3 document type..................9, 50-51, 95, 100
FTAM-4 document type ..........................................50
FTAM-Attribute-Names

XFTAM class .............................................32, 55, 85
FTAM-Attributes

XFTAM attribute...................................................90
XFTAM class.......32-33, 56, 63, 79, 86, 95, 99, 101

FTAM-Attributes-Name-List
XFTAM attribute...................................................55

FTAM-Diagnostic
XFTAM class..........................................................58

FTAM-Input-Parameters
XFTAM class 34-35, 53, 59, 78, 81, 85, 89, 94, 100

FTAM-Output-Parameters
XFTAM class ....31, 61, 79, 82, 86, 90, 95, 101, 108

FTAM-Result
XFTAM attribute...................................................61

ft_abandon( )..............................................................70
ft_abandon( ) .............................................................28
ft_abort( ) ....................................................................71
ft_close( ).....................................................................72
ft_connect( )................................................................73
ft_disconnect( ) ..........................................................75
ft_fcattributes( ).........................................................77
ft_fcattributes ( ) ............................................32, 56, 63
ft_fdelete( ) .................................................................81
ft_frattributes( ) .........................................................84
ft_frattributes( ) ............................................32, 46, 55
ft_frdir( )......................................................................88
ft_frdir( ) ...............................................................33, 46
ft_freceive( ) ...............................................................92
ft_freceive( ) ...............................................................33
ft_fsend( )....................................................................97
ft_fsend( ) ...................................................................33
ft_gperror( )..............................................................103
FT_MAX_ASYNC_OPS ..........................................28
ft_open( )...................................................................105
ft_rcvresult ...............................................................107
ft_rcvresult( ) .............................................................28
future filesize

file attribute..................................................8, 55-56
Future-Filesize

XFTAM attribute...................................................57
get( ).............................................................................24
header file...................................................................20
Identity

XFTAM attribute...................................................39
identity of creator............................................7, 55-56
identity of last attribute modifier ................7, 55-56
identity of last modifier .................................7, 55-56
identity of last reader .....................................7, 55-56
import..........................................................................21
initiator.......................................................3, 6, 16, 121
Initiator-Identity

XFTAM attribute ............................................34, 59
insert file action...................................................53, 56
instance.............................................................116, 121
Invoke-ID

XFTAM attribute ............................................28, 42
ISO

8571........................................................................2, 5
8571-x AD1.............................................................14
ISP 10607 ............................................................5, 13

ISP 10607.....................................................................13

FTAM High-Level API (XFTAM) Version 2 125



Index

kernel group
file attribute group .................................................7

legal qualifications
file attribute..................................................8, 55-56

Legal-Qualifications
XFTAM attribute...................................................57

Modification-Date-Time
XFTAM attribute...................................................57

Modifier-Identity
XFTAM attribute...................................................57

NBS-9 ......................................................................3, 33
NBS-9 document type..............................................52
New-Attributes

XFTAM class .......................................32, 56, 63, 78
object .............................................21-24, 116, 119, 121

private...................................................................119
public ....................................................................118

object handle............................................................116
object identifier .......................................................117
Observer

XFTAM attribute...................................................58
OM_create( ) ..............................................................23
OM_delete( ) ..............................................................26
OM_descriptor.....................................................21-24
OM_put( )...................................................................23
operation......................................................16, 28, 121
OSI

object identifier ...................................................117
OSI-Abstract-Data Manipulation API................115
p-address

XFTAM class...........................77, 81, 84, 88, 92, 98
package ................................................20, 38, 117, 122
package closure...............................................117-118
parameter ...................................................................11
Password-Graphic ....................................................62
Password-Octet .........................................................62
permitted actions

file attribute..................................................7, 55-56
Permitted Actions

file attribute ...........................................................99
Permitted-Actions

XFTAM attribute...................................................56
presentation address................................................27
private

file attribute......................................................55-56
private object.................................21, 23-24, 119, 122
private use

file attribute..............................................................8
private use group

file attribute group .................................................8

Private-Use
XFTAM attribute...................................................57

public object.........................................21-22, 118, 122
quality of service.......................................................10
read attribute file action..............................10, 53, 56
read file action...............................................10, 53, 56
Read-Date-Time

XFTAM attribute...................................................57
Reader-Identity

XFTAM attribute...................................................57
replace file action..........................................10, 53, 56
Resource-Identifier

XFTAM attribute...................................................43
responder...................................................3, 6, 16, 122
Return-Code

XFTAM attribute ............................................31, 42
sensitive processing mode......................................29
Session

XFTAM class..........................................................64
Session-Handle

XFTAM attribute...................................................64
Source

XFTAM attribute...................................................58
storage account

file attribute..................................................7, 55-56
storage group

file attribute group .................................................7
Storage-Account

XFTAM attribute...................................................57
String-Length

XFTAM attribute ............................................47, 50
String-Significance

XFTAM attribute ............................................47, 50
structuring information.............................................6
Suggested-Delay

XFTAM attribute...................................................58
synchronous processing mode ........................28, 41
syntax ........................................................................115
Text-Message

XFTAM attribute...................................................58
Type-Name

XFTAM attribute...................................................46
universal class ...........................................................47
value..........................................................................115
Vendor-Code

XFTAM attribute ............................................31, 42
virtual filestore..............................................2, 18, 122

1 ..................................................................................6
workspace ...........................................20, 26, 118, 122
workspace handle.....................................................20

126 X/Open CAE Specification



Index

XDS
header file...............................................................20
xds.h ........................................................................20

xds.h ............................................................................20
XFTAM

asynchronous processing mode..................28, 41
class .........................................................................37
header file...............................................................20
operation ................................................................28
synchronous processing mode....................28, 41
xftam.h....................................................................20

XFTAM attribute...............................................11, 115
Access-Control-List .................................32, 57, 78
Access-Password ..................................................53
Account ..................................................................59
AE-Qualifier...........................................................40
AP-Title...................................................................40
Asynchronous.................................................28, 41
Asynchronous-Id..................................................41
Attribute-Mod-Date-Time..................................57
Attribute-Mod-Identity.......................................57
Charge-Value.........................................................43
Charging-List ........................................................61
Charging-Unit .......................................................43
Concurrency-Control .........78, 81, 85, 89, 94, 100
Concurrency-Key .................................................53
Content-Class ........................................................47
Content-Type ............................................33, 57, 86
Create-Password ..........................................59, 101
Creation-Date-Time .............................................57
Creator-Identity ....................................................57
Delete-Access-Control-List ....................32, 63, 78
Diagnostic ..............................................................31
Diagnostic-List ......................................................61
Directory-Entry.....................................................45
Error-Identifier ......................................................58
Error-Type..............................................................58
File-Action..............................................................53
File-Action-List.........................................35, 39, 60
File-Availability ....................................................57
File-Passwords .....................78, 81, 85, 89, 94, 100
Filename .................................................................56
Filesize ....................................................................57
Filestore-Password.........................................34, 59
FQoS........................................................................59
FTAM-Attributes-Name-List .............................55
FTAM-Result .........................................................61
Future-Filesize.......................................................57
Identity ...................................................................39
Initiator-Identity.............................................34, 59
Invoke-ID.........................................................28, 42

Legal-Qualifications.............................................57
Modification-Date-Time .....................................57
Modifier-Identity ..................................................57
Observer .................................................................58
Permitted-Actions ................................................56
Private-Use.............................................................57
Read-Date-Time....................................................57
Reader-Identity .....................................................57
Resource-Identifier...............................................43
Return-Code....................................................31, 42
Session-Handle .....................................................64
Source......................................................................58
Storage-Account ...................................................57
String-Length ..................................................47, 50
String-Significance .........................................47, 50
Suggested-Delay...................................................58
Text-Message.........................................................58
Type-Name ............................................................46
Vendor-Code ...................................................31, 42

XFTAM base package ........................................20, 38
XFTAM class

Access-Control .........................................40, 53, 57
Access-Control-Element .....................................34
Access-Control-Element 1 ..................................39
AE-Title.............................................................39-40
API-Input-Parameters ..28, 41, 79, 82, 90, 94, 101
API-Output-Parameters.......28, 31, 42, 70, 79, 82
.............................................86, 90, 95, 102-103, 108
Charging...........................................................43, 61
Content-Type ............................................44, 46, 57
Diagnostic ..............................................................61
Directory-List............................................33, 45, 90
Document-Type ..................................46-47, 50, 86
Document-Type-Binary...........................46, 50-51
Document-Type-FTAM-1..............................47-48
Document-Type-FTAM-2 .............................47, 49
Document-Type-FTAM-3..............................50-51
Document-Type-NBS-9 .......................................52
Document-Type-Text .....................................46-49
File Action..............................................................53
File-Action .......................................................39, 60
FTAM-Attribute-Names .........................32, 55, 85
FTAM-Attributes....................32-33, 56, 63, 79, 86
.............................................................90, 95, 99, 101
FTAM-Diagnostic .................................................58
FTAM-Input-Parameters ............34-35, 53, 59, 78
.......................................................81, 85, 89, 94, 100
FTAM-Output-Parameters...............31, 61, 79, 82
.....................................................86, 90, 95, 101, 108
New-Attributes ..................................32, 56, 63, 78
p-address.................................77, 81, 84, 88, 92, 98

FTAM High-Level API (XFTAM) Version 2 127



Index

Session ....................................................................64
xftam.h ........................................................................20
XOM....................................................................20, 115

attribute ................................................................115
attribute constraint.............................................116
attribute type ...............................................115-116
class .......................................................................116
class hierarchy.....................................................116
descriptor...............................................23, 115, 118
descriptor list.......................................................116
element .................................................................117
get( ).........................................................................24
header file...............................................................20
import .....................................................................21
instance.................................................................116
object .................................................21-24, 116, 119
object handle .......................................................116
OM_create( ) ..........................................................23
OM_delete( )..........................................................26
OM_descriptor ................................................21-24
OM_put( )...............................................................23
package ....................................................20, 38, 117
package closure...........................................117-118
private object .....................................21, 23-24, 119
public object.............................................21-22, 118
syntax....................................................................115
value......................................................................115
workspace................................................20, 26, 118
workspace handle ................................................20
xom.h ......................................................................20

XOM API..................................................................115
XOM attribute ...................................................11, 115
xom.h...........................................................................20

128 X/Open CAE Specification


	c415cov.pdf
	Page 1

	blank.pdf
	Page 1


