
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

X.25 Programming Interface
using XTI (XX25)

[This page intentionally left blank]

X/Open CAE Specification

X.25 Programming Interface using XTI (XX25)

X/Open Company Ltd.

 November 1995, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

X.25 Programming Interface using XTI (XX25)

ISBN: 1-85912-136-5
X/Open Document Number: C411

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

ii X/Open CAE Specification

Contents

Chapter 1 Introduction... 1
 1.1 Scope of the Specification.. 1
 1.2 Relationship to the XTI Specification ... 2
 1.3 Modes of the X.25 Service ... 2
 1.4 Terminology... 2
 1.5 Conformance Requirements... 3
 1.5.1 API Implementation.. 3
 1.5.2 UnderlyingX.25 Service Provider .. 3
 1.6 Future Directions .. 3

Chapter 2 Overview of the Connection-Oriented Service................... 5
 2.1 Overview of Initialisation/De-initialisation... 5
 2.2 Overview of Connection Establishment .. 5
 2.3 Overview of Data Transfer ... 6
 2.3.1 Receiving Data.. 6
 2.3.2 Sending Data... 7
 2.3.3 Acknowledgements of Data (D bit and Expedited Data)................ 7
 2.3.4 Data with the D bit .. 7
 2.3.5 Connection Resets ... 8
 2.4 Overview of Connection Release .. 9

Chapter 3 States and Events.. 11

Chapter 4 Functions ... 13

Chapter 5 Options... 19
 5.1 Description of the XX25 Options... 20
 5.2 Use of XX25 Options .. 28

Appendix A XX25 Header File .. 29

Appendix B ISO X.25 Protocol Terminology... 33

 Glossary ... 35

 Index... 37

List of Tables

5-1 X25_NP-level Options .. 21

X.25 Programming Interface using XTI (XX25) iii

Contents

iv X/Open CAE Specification

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

X.25 Programming Interface using XTI (XX25) v

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

vi X/Open CAE Specification

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This document is an X/Open CAE Specification. It defines an Application Programming
Interface (API) to support X.25 working under the established X/Open independent transport-
service interface (XTI).

The X.25 networking service is an accepted standard which is in widespread use throughout the
world, both as a public tariffed service provided by many national networks, and in private
switches as a component in corporate networks. Its pervasive presence in the marketplace, and
the consequential huge industry-wide investment in X.25 applications, provides a good business
case for supporting X.25 networking through any complementary X/Open APIs. Such is the
case with the X/Open XTI API. This XX25 API defines an X.25 service interface that is
independent of any X.25 provider. This is achieved by using the existing XTI functions.

Structure

• Chapter 1 on page 1 gives a brief introduction to X.25 and how the X/Open XTI API to any
transport provider offers significant benefits to X.25 application writers and users. It also
describes the requirements that a conforming implementation of this XX25 API must satisfy.
Finally, it indicates possible future development directions that may impact this API.

• Chapter 2 on page 5 outlines the key elements involved in providing a connection-oriented
service for X.25.

• Chapter 3 on page 11 indicates that the XX25 API is fully compatible with the states, the
incoming and outgoing events and the sequence of function calls defined for XTI.

• Chapter 4 on page 13 describes the specific extensions to existing XTI functions for X.25
requirements.

• Chapter 5 on page 19 identifies the options available in X.25, and explains how these are
handled by this XX25 API.

• Appendix A on page 31 presents the additional header file information needed for XX25, to
be added to the existing XTI header file information provided in the XTI specification.

• Appendix B on page 35 summarises relevant X.25 protocol information for the convenience
of users of this XX25 API.

X.25 Programming Interface using XTI (XX25) vii

Preface

Intended Audience

This API is aimed at X.25 users who wish to ensure the portability and interoperability of their
X.25 applications by making them independent of the X.25 provider. X/Open’s XTI API provides
an established interface to achieve this independence. Implementors who already know XTI will
additionally benefit from their familiarity with the XTI programming environment.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members, language-independent names, and symbols that are specific to
the XX25 API.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— function parameters, command operands, command option-arguments or variable
names, for example, substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(). Names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [ABCD] is used to identify a return value ABCD, including if this is an error
value.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items. In syntax the | symbol is used to separate alternatives, and ellipses (...) are used to
show that additional arguments are optional.

viii X/Open CAE Specification

Trade Marks

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

X.25 Programming Interface using XTI (XX25) ix

Referenced Documents

The following documents are referenced in this Preliminary Specification:

ISO/IEC 8208
ISO/IEC 8208:1990(E): Information Technology — Data Communications — X.25 Packet
Layer Protocol for Data Terminal Equipment.

ISO/IEC 8348
ISO/IEC 8348:1987(F): Information Processing Systems — Data Communications —
Network Service Definition.

ITU-T X.3
ITU-T, 1993, Data Communication Networks: Services, Facilities and Interfaces, Series X
Recommendations (X.1 to X.32), Recommendation X.3 — Packet Assembly Disassembly
Facility (PAD) in a Public Data Network.

ITU-T X.25
ITU-T, 1993, Data Communication Networks: Services, Facilities and Interfaces, Series X
Recommendations (X.1 to X.32), Recommendation X.25 — Interface Between Data Terminal
Equipment (DTE) and Data Circuit-terminating Equipment (DCE) for Terminals Operating
in the Packet Mode and Connected to Public Data Networks by Dedicated Circuit.

ITU-T X.28
ITU-T, 1993, Data Communication Networks: Services, Facilities and Interfaces, Series X
Recommendations (X.1 to X.32), Recommendation X.28 — DTE/DCE Interface for a Start-
Stop Mode Data Terminal Equipment Accessing the Packet Assembly/Disassembly Facility
(PAD) in a Public Data Network Situated in the Same Country.

ITU-T X.29
ITU-T, 1993, Data Communication Networks: Services, Facilities and Interfaces, Series X
Recommendations (X.1 to X.32), Recommendation X.29 — Procedures for the Exchange of
Control Information and User Data Between a Packet Assembly/Disassembly (PAD)
Facility and a Packet Mode DTE or Another PAD.

XNS (Networking Services, Issue 4)
X/Open CAE Specification, August 1994, Networking Services, Issue 4
(ISBN: 1-85912-049-0, C438).
The XNS Specification includes the XTI specification.

x X/Open CAE Specification

Chapter 1

Introduction

1.1 Scope of the Specification
The purpose of the XX25 API is to provide the X.25 Network Service under the X/Open
Transport Interface.

Well known and understood around the world, X.25 is an accepted standard, provided by many
national networks as a tariffed service, and is readily available in private switches for building
corporate networks.

X.25 is ideally suited for users requiring access on a global scale to computing services, or even
on a national scale to far-flung locations. The protocol is reliable and takes responsibility for
networks integrity, always ensuring that transmitted packets are received correctly at their
destination address. The service also applies flow control and buffering mechanisms, acting as a
store-and-forward for packets.

Since X.25 is a readily available service spanning the globe, there will always be applications that
simply cannot be handled cost-effectively by any other means. In addition, many companies
already have investments in private X.25 networks, and it therefore makes sense to continue to
use the X.25 fabric for the organisation’s networking requirements.

Examples of applications which may be interested in the extension of XTI for X.25 include:

• terminal and host PAD applications based on ITU-T Recommendation X.3, ITU-T
Recommendation X.28 and ITU-T Recommendation X.29

• VIDEOTEX — referring to the ETS 300 080 document from ETSI (ISDN lower-layer protocols
for telematics terminals), the VIDEOTEX lower layers have the OSI transport layer not
applicable, so the application directly accesses the X.25 packet service.

The functions offer full access to all X.25 level 3 services (for example, Q bit, negotiation of the
facilities) for applications such as videotext servers or other servers with direct X.25 access.

The basic X.25 services (connection establishment and release, data transfer and reset
mechanism) are provided either by the existing XTI functions or by a compatible extension of
these functions.

This XX25 API provides for portability and interoperability of X.25 applications, so encouraging
the development of X.25 applications in open systems. It defines an X.25 service interface that is
independent of any underlying X.25 provider. Programmers with prior knowledge of XTI
benefit further from familiarity with the XTI programming environment.

X.25 Programming Interface using XTI (XX25) 1

Relationship to the XTI Specification Introduction

1.2 Relationship to the XTI Specification
XX25 provides access to X.25 providers through the XTI interface.

This document details the X.25-specific options and X.25-specific behaviours of the XTI interface
when used to access an X.25 provider. The XX25 specification has been designed in such a way
as to allow existing generic XTI applications to run unchanged over X.25.

This specification must be used in conjunction with the XTI specification.

1.3 Modes of the X.25 Service
The X.25 service interface supports a connection-oriented service with two modes:

• the switched-connection mode

• the permanent-connection mode.

The switched-connection mode enables data to be transferred over an established connection
(called a Switched Virtual Circuit (SVC)) in a flow-controlled, sequenced manner. This circuit-
oriented mode is attractive to applications that require relatively long-lived, datastream-oriented
interactions.

The permanent-connection mode has the same features as the switched-connection mode for the
transfer of data. This service requires a pre-existing association (called a Permanent Virtual
Circuit (PVC)) between the peer users involved, which determines the characteristics of the data
to be transmitted. No dynamic negotiation of options is supported by this mode.

A single X.25 endpoint does not support different modes of connections simultaneously.

The use of the interface - that is, the functions called and the order in which they are called - is
identical for SVCs or for PVCs.

1.4 Terminology

Definition of Terms

The terminology used in this specification is that of the ISO standards which define the X.25
service to which XX25 provides access. For convenience, the abbreviations have been defined in
the Glossary for this specification.

In addition, terms particular to the ISO X.25 protocol are described in Appendix B.

Use of Naming Prefixes

In order to preserve uniqueness of the additions to XTI support the X.25 service, the constants
and the flags defined by this specification have names that have the format T_X25_xxx.

The new definitions are presented in the XX25 header file summary, see Appendix A.

2 X/Open CAE Specification

Introduction Conformance Requirements

1.5 Conformance Requirements
The XX25 conformance has two facets:

• the XX25 API

• the underlying X.25 Service Provider.

1.5.1 API Implementation

An XX25 conformant implementation provides the functions defined in Chapter 4.

The following points should be noted:

• When the XX25 user requests a feature which is supported by the XX25 API but not
supported by the underlying X.25 Service provider, the XX25 API returns a
[TNOTSUPPORT] error.

• An implementation of the XX25 API must only return the error codes defined by this
specification and the XTI specification.

1.5.2 Underlying X.25 Service Provider

An implementation of the underlying X.25 Service Provider which complies with this XX25
specification will also comply with the requirements specified in ISO/IEC 8208 or ITU-T
Recommendation X.25. The version supported by the provider (X.25-1980, X.25-1984 X.25-1988,
X.25-1993, and so on) is indicated in an XX25 option (named T_X25_VERSION), which is
defined in Chapter 5.

1.6 Future Directions

Appendix for Security

X.25-specific interworking security issues will be addressed in the XTI security appendix.

Extensions to use XX25 over ISDN Networks

ETSI has defined in the specification ETS 300 325 (Programming Communication Interface (PCI)
for Euro-ISDN) a programming interface to provide Programming Users Facilities (PUFs) with
interfaces to ISDN Network Access Facilities. XX25 could be a candidate as an X.25 user plane
PUF, when X.25 is used as a protocol over ISDN networks. However, some extensions will be
necessary to manage the control plane for signalling and the administration plane for resource
management, which are specific to ISDN networks.

X.25 Programming Interface using XTI (XX25) 3

Introduction

4 X/Open CAE Specification

Chapter 2

Overview of the Connection-Oriented Service

The connection-oriented service for X.25 consists of five phases of communication. Like the
transport service, it includes:

• Initialisation/De-initialisation

• Connection Establishment

• Data Transfer

• Connection Release.

In addition, it includes:

• Reset.

Notes:

1. The underlying X.25 provider manages NSDUs (Network Service Data Units) in
order to carry data packets, whereas a transport provider deals with TSDUs
(Transport Service Data Units). In the following sections, we consider NSDU
when the word TSDU is used.

2. Bold font is used in text for symbols that are XX25 API-specific.

2.1 Overview of Initialisation/De-initialisation
There are no special considerations involved in the local management of an X.25 endpoint.

When the packet layer is restarted, or reset, all open user XX25 connections (including PVCs) are
given a disconnect indication.

2.2 Overview of Connection Establishment
For an SVC, the connection establishment functions map onto the X.25 call setup procedures, so
that t_connect() and t_accept() cause call request and call accepted packets to be generated, and
incoming call and call confirmed packets cause T_LISTEN and T_CONNECT events to be
generated.

There is no equivalent protocol exchange on PVCs. Function t_connect() causes a T_CONNECT
event to be generated immediately, if the PVC is operable, and a T_DISCONNECT event to be
generated immediately if it is inoperable. When listening, a data or interrupt packet arriving
from a remote DTE on an idle PVC causes the packet to be queued and a T_LISTEN event to be
generated. The user can invoke t_accept() as usual, after which a T_DATA or T_EXDATA event
is generated for the queued packet.

X.25 Programming Interface using XTI (XX25) 5

Overview of Data Transfer Overview of the Connection-Oriented Service

2.3 Overview of Data Transfer
Once an X.25 connection has been established between two users, data may be transferred back
and forth over the connection in full duplex mode.

Two existing XTI functions support data transfer in connection-oriented service:

• t_snd()

• t_rcv().

These two functions enable X.25 users to send or receive over an X.25 connection:

• normal data

• expedited data (interrupt packets)

• qualified (Q-bit) data

• data with the Delivery Confirmation bit (D-bit) set

• explicit acknowledgements of D-bit data (see Section 2.3.3 on page 7)

• explicit acknowledgements of Expedited data (see Section 2.3.3 on page 7)

• connection resets.

2.3.1 Receiving Data

X.25 users are able to receive:

• normal data

• expedited data (if the T_EXPEDITED flag is set on return from the call)

• data sent with Delivery Confirmation bit (if the T_X25_D flag is set)

• qualified data (if the T_X25_Q flag is set)

• an acknowledgement of data previously sent with the D bit (if the T_X25_DACK flag is set)

• an acknowledgement of expedited data (if the T_X25_EACK flag is set)

• a reset indication (if the T_X25_RST flag is set).

Each element of this list generates an event that unblocks a synchronous call.

If a reset indication or an explicit acknowledgement arrives during receipt of a data TSDU and
some data has already been transferred to the users buffer, then t_rcv() returns, indicating the
number of bytes of data in the users buffer and with T_MORE set in flags. The reset indication
or explicit acknowledgement is returned by the next t_rcv() call.

In order to allow unmodified programs to run over XX25, reset indications and D-bit
notifications are only given to the application if the appropriate option has been negotiated on.
By default, D-bit acknowledgement is silently handled by the provider (T_X25_DACK option
defaults to T_NO) and receipt of a reset causes the connection to be released (T_X25_RST_OPT
option defaults to T_NO).

6 X/Open CAE Specification

Overview of the Connection-Oriented Service Overview of Data Transfer

2.3.2 Sending Data

X.25 users are able to send over an X.25 connection:

• normal data

• expedited data (by setting the T_EXPEDITED flag)

• normal data sent with the Delivery Confirmation bit (by setting the T_X25_D flag)

• qualified data (by setting the T_X25_Q flag)

• an explicit acknowledgement of data previously sent with the D bit (by setting the
T_X25_DACK flag)

• an explicit acknowledgement of expedited data (by setting the T_X25_EACK flag)

• a reset request or a confirmation (by setting the T_X25_RST flag).

Note: Setting both the T_EXPEDITED flag and the T_X25_D flag results in a [TBADFLAG]
error.

2.3.3 Acknowledgements of Data (D bit and Expedited Data)

There are two modes for acknowledging receipt of data with the D bit and expedited data:

• implicit acknowledgement

• explicit acknowledgement.

In implicit mode (the default), the X.25 service provider automatically generates an
acknowledgement when it passes the data to the user. In this mode the user is not notified that
the D-bit is set.

In explicit mode, the XX25 user specifically acknowledges the data by calling t_snd() with one or
more of the following flags:

• T_X25_DACK to acknowledge data with the D bit

• T_X25_EACK to acknowledge expedited data.

Note: When used in this manner to acknowledge received data, a t_snd() call can not contain
any user data and can not have any other flags set.

Explicit acknowledgement of D-bit data is selected by setting T_X25_DACK option to T_YES.
Explicit acknowledgement of expedited data is selected by setting T_X25_EACK option to
T_YES.

2.3.4 Data with the D bit

Note: As the D-bit procedures are not supported by all networks, their use may impact
application portability.

The level of support for the D-bit procedures by the X.25 provider is indicated in the
T_X25_D_OPT.

• When T_X25_D_OPT is set to T_NO, an attempt to send data with the D-bit set generates a
[TBADDATA] error; receipt of a data packet with the D-bit set will cause the X.25 provider to
reset the connection (as specified in Section 6.3 of ISO/IEC 8208).

X.25 Programming Interface using XTI (XX25) 7

Overview of Data Transfer Overview of the Connection-Oriented Service

• When T_X25_D_OPT is set to T_YES, the D-bit can be set on sent data packets and receipt of
data packets with the D-bit set is permitted. The user may select either implicit
acknowledgement or notification and explicit acknowledgement by setting the
T_X25_USER_DACK option as described above.

The T_X25_D_OPT option is a read-only option.

The optional D-bit negotiation mechanism (as described in Section 6.3 of ISO/IEC 8208) can be
invoked at connection establishment time by use of the T_X25_CONN_DBIT. However, as this
mechanism is optional, its failure does not necessarily mean that the D-bit procedures cannot be
used — it may be that the remote provider does not implement the mechanism. Where an X.25
provider allows access to D-bit procedures, the user can issue t_snd() calls with the T_X25_D
flag, regardless of the outcome of the D-bit negotiation at connection establishment.

2.3.5 Connection Resets

A reset may be invoked from the data transfer phase. During this phase, either the user or the
network may reinitialise a virtual circuit at any time.

The reset is supported by using an additional flag T_X25_RST in the functions t_snd() and
t_rcv().

1. Sending a reset

A reset request is sent by setting the T_X25_RST flag in a t_snd() call with the cause and
the diagnostic of the reset in the two first octets of the buf argument. The cause is in the
first octet and the diagnostic in the second octet.

The t_snd() function returns immediately. If further t_snd() calls are accepted while the
reset is being performed, the send data will remain pending until the X.25 provider
receives the confirmation of reset. This confirmation of reset is not returned to the user.
The normal flow control mechanism may result in a subsequent t_snd() in synchronous
mode blocking, or a t_snd() call in asynchronous mode returning the [TFLOW] error.

2. Receiving a reset

When a reset indication is received and the option T_X25_RST_OPT is set to T_YES, the
X.25 provider notifies the user with a T_DATA event. The user consumes this event with
the t_rcv() call. On return from t_rcv(), T_X25_RST is set in the flags field, and the buf
argument contains the cause of the reset in the first octet and the diagnostic in the second
octet. If the users buffer is less than two bytes long then the diagnostic value is discarded,
and if the length is zero the cause is also discarded. All further data presented on t_snd()
calls is discarded by the X.25 provider until the user acknowledges the reset by issuing a
t_snd() call with the T_X25_RST flag set. Any cause and diagnostic passed with the
t_snd() call is ignored by the X.25 provider. If the X.25 user attempts to send data while a
reset indication is pending, the t_snd() call returns with a [TLOOK] error. A subsequent
t_look () call will return a T_DATA event. The user must consume the event before sending
further data.

Notes:

1. Data sent prior to a reset may be discarded. Data sent after a reset will be
delivered to the peer entity after it has been notified of the reset. Data received
after a reset will have been sent by the peer entity after the reset. No explicit
acknowledgements will be received after a reset for data sent prior to the reset.

2. Reset collisions are managed by the X.25 provider and have no effect for the user.

8 X/Open CAE Specification

Overview of the Connection-Oriented Service Overview of Data Transfer

2.4 Overview of Connection Release
The X.25 switched-connection mode only supports the abortive release.

The functions that support connection release in all cases are already defined:

• t_snddis(), to send a request of a connection release

• t_rcvdis(), to receive an indication of a connection release.

Outstanding sent and received data may be discarded.

In addition, the user can indicate the reason of the connection release (the cause and the
diagnostic) by setting the T_X25_DISCON_REASON option by calling t_optmgmt() prior to
calling t_snddis().

Optionally, after receiving an indication of a connection release, the address of the user that
released the connection can be retrieved in the T_X25_DISCON_ADD option, by calling the
function t_optmgmt(). In the same way, the X.25 facilities associated with the connection release
can be retrieved in specific XTI options defined to support the X.25 facilities (see Chapter 5). The
information may be overwritten if an incoming call is queued on the endpoint.

When t_snddis() is invoked on a PVC, the circuit is reset with the cause and diagnostic from
T_X25_DISCON_REASON, unless T_X25_DISCON_REASON is set to T_UNSPEC, in which
case the PVC is not reset. The default value of T_X25_DISCON_REASON for a PVC gives a
cause of 0x80 and a diagnostic of 0xf1. These values may be changed by using t_optmgmt().

Note: The T_X25_DISCON_REASON option is not permitted to take the value T_UNSPEC
on an endpoint representing an SVC.

Receipt of a reset indication with certain cause and diagnostic values generates a disconnect
indication. These include the reset causes 0x01 (out of order), 0x11 (incompatible destination)
and 0x1d (network out of order), their private network equivalents (0x81, 0x91 and 0x9d) and
the cause/diagnostic pair 0x80/0xf1 which are generated by t_snddis().

For further details of the functions referred to in this chapter, see their descriptions in Chapter 4.

X.25 Programming Interface using XTI (XX25) 9

Overview of the Connection-Oriented Service

10 X/Open CAE Specification

Chapter 3

States and Events

To avoid major changes to the XTI state definitions and state tables, resets are handled within
the data transfer state T_DATAXFER.

The only difference is that a reset indication causes a t_snd() call to return with a [TLOOK] error.
The event is reported as a T_DATA event by a subsequent call to t_look ().

X.25 Programming Interface using XTI (XX25) 11

States and Events

12 X/Open CAE Specification

Chapter 4

Functions

This chapter describes extensions to the existing XTI functions (as defined in the XTI
specification), required for XTI support of X.25.

The relevant description for X.25 use of existing XTI functions are presented below in
alphabetical order.

To ensure clarity of presentation, the options that contain X.25 facilities are specified separately,
in Chapter 5.

t_accept() No special consideration.

t_bind() The address field of the t_bind() structure contains the matching
requirements for routing incoming calls to the endpoint. This may include
(but is not limited to) representations of one or more of the following:

• a local SNPA identifier

• a local X.25 address

• a local X.25 subaddress

• a local NSAP

• a call user data matching requirement

• a PVC number.

Where an incoming call can be routed to multiple endpoints on the basis of
their matching requirements, the actual endpoint selected will be
implementation dependent.

If the application likes to initiate a connection, it can either bind itself to a
NULL address (by setting req to NULL or req→addr.len to zero) or use any of
the matching requirements defined above. If a NULL address is used, the
application is free to use both SVCs and PVCs and any X.25 line. If matching
requirements have been defined, connections may be restricted to SVCs, a
certain PVC, or a certain X.25 line, depending on the matching criteria.

It is not possible to receive connection indications on a NULL address.

Note: An implementation may choose to provide support for a wildcard
mechanism for address information, for example to route incoming
calls whose call user data starts with a particular pattern.

t_connect() The sndcall→addr is used to select either an SVC or a PVC.

For an SVC the sndcall→addr structure contains a representation of the
addressing information necessary to reach the destination, it may contain (but
is not limited to) one or more of the following:

• SNPA identifier

• destination X.25 address

• destination NSAP.

When the connection has been established, the rcvcall→addr structure
represents the address on which the call has been accepted.

X.25 Programming Interface using XTI (XX25) 13

Functions

For a PVC, the sndcall→addr structure represents the PVC to be used. If it is
already in use, the error [TADDRBUSY] is returned. On successful return:

• In synchronous mode, the PVC will be in state T_DATAXFER.

• In asynchronous mode, the PVC will be in state T_OUTCON and a
T_CONNECT event will be outstanding.

When the connection has been established, the rcvcall→addr structure
represents the actual PVC allocated.

t_getinfo() The information returned by t_getinfo() reflects the characteristics of the X.25
connection or, if no connection is established, the maximum characteristics an
X.25 connection could take on using the underlying X.25 provider.

The parameters of the t_getinfo() function, for the different versions of the X.25
protocol (X.25-1980, X.25-1984, X.25-1988, X.25-1993, and so on) are presented
in the table below.

Parameters Before Call After Call
X.25-1988 X.25-1980
X.25-1984
X.25-1993

fd x / /
info→addr x x
info→options / x x
info→tsdu / x (1) x (1)
info→etsdu / −2 / 32 (2) −2 / 1 (3)
info→connect / 16/128 (4) 16/128 (4)
info→discon / 0/128 (5) 0/128 (5)
info→servtype / T_COTS T_COTS
info→flags / T_SENDZERO T_SENDZERO

1. −1 or an integral number greater than zero.

2. −2 if no expedited data transfer can be exchanged, and 32
otherwise.

3. −2 if no expedited data transfer can be exchanged, and 1
otherwise.

4. 16 in basic format or 128 in extended format (if the X.25
facility Fast Select has been negotiated).

5. 0 in basic format or 128 in extended format (if the X.25
facility Fast Select has been negotiated).

t_look() No special consideration.

t_listen() No special consideration.

t_open() The function t_open() is called at the first step in the initialisation of an X.25
endpoint. This function returns various default characteristics associated with
the different versions of X.25 that are supported. If, for example an X.25
provider supports X.25-1984 and X.25-1988, the characteristics returned are
those of X.25-1988. If the X.25 provider is limited to X.25-1980, the
characteristics returned are those of X.25-1980.

14 X/Open CAE Specification

Functions

The parameters of the t_open() function, for the different versions of the X.25
protocol (X.25-1980, X.25-1984, X.25-1988, X.25-1993, and so on) are presented
in the table below.

Parameters Before Call After Call
X.25-1988 X.25-1980
X.25-1984
X.25-1993

fd x / /
info→addr x x
info→options / x x
info→tsdu / x (1) x (1)
info→etsdu / 32 1
info→connect / 128 128
info→discon / 128 128
info→servtype / T_COTS T_COTS
info→flags / T_SENDZERO T_SENDZERO

(1) −1 or an integral number greater than zero.

t_optmgmt() The function t_optmgmt() uses specific options to support the X.25 service.
The options are described in Chapter 5 on page 19.

t_rcv() The behaviour of the function t_rcv() remains unchanged. The function can
operate in synchronous and asynchronous modes. It follows the current flow
control rules.

The default behaviour is to acknowledge, in an automatic way, data sent with
the Delivery Confirmation bit and expedited data.

The optional explicit acknowledgement is selected in the functions
t_optmgmt(), t_connect(), t_accept() either with the T_X25_USER_DACK
option, for the acknowledgement of data sent with the D bit, or with the
T_X25_USER_EACK option, for the acknowledgement of expedited data.

If expedited data arrives after part of a TSDU has been retrieved, receipt of the
remainder of the TSDU is suspended until the ETSDU has been processed.
Only after the full ETSDU has been retrieved (the T_MORE flag not set), the
remainder of the TSDU is made available to the user.

In addition to the T_EXPEDITED and T_MORE flags, the following flags can
be set in the argument flags:

• On return from the call, if T_X25_D is set in flags , this indicates that the
data returned was sent with the D bit, and the T_X25_USER_DACK
option is set. This data has to be acknowledged explicitly by the receiver.

• On return from the call, if T_X25_DACK is set in flags , data previously
sent with the D bit has been acknowledged.

• On return from the call, if T_X25_EACK is set in flags , the previously sent
expedited data has been acknowledged.

Note: If either T_X25_DACK or T_X25_EACK is set in flags , then no
other flags are set and no user data is returned to the user.

• On return from the call, if T_X25_Q is set in flags , the data returned are
qualified.

X.25 Programming Interface using XTI (XX25) 15

Functions

• On return from the call, if T_X25_RST is set in flags , this indicates that a
reset indication occurred.

When T_X25_RST is returned, the argument buf contains the cause and
diagnostic of the reset. Each one is coded into one octet. The cause is encoded
in the first octet, and the diagnostic in the second octet. If the user’s buffer is
less than two bytes long then the diagnostic value is discarded, and if the
length is zero the cause is also discarded.

t_rcvconnect() No special consideration.

t_rcvdis() This function is used to retrieve an indication of a connection release.

The field discon→reason contains the X.25 cause and diagnostic of the
connection release. The cause and the diagnostic are both encoded in an octet
and can be retrieved by using respectively the T_X25_GET_CAUSE macro
and the T_X25_GET_DIAG macro.

This function allows operations in accordance with XTI, but cannot be used to
retrieve charging information or the address of the user that released the
connection. For these purposes, the user has to call the function t_optmgmt()
and retrieve the meaningful options.

For further details about the management of options, see Chapter 5.

t_snd() The behaviour of the function t_snd() remains unchanged. The function can
operate in synchronous and asynchronous modes.

In addition to the T_EXPEDITED and T_MORE flags, the following flags can
be set in the argument flags:

• T_X25_D
If set in flags , the data is sent with the D bit set. This data has to be
acknowledged by the peer.

As with normal t_snd() requests, the user may issue multiple t_snd()
requests with the D-bit set which will be queued by the provider. A
separate acknowledgement is generated for each one. The normal flow
control mechanism applies: if a t_snd() cannot be accepted, the [TFLOW]
code is returned.

Note: As a D-bit send requires end-to-end acknowledgement, it can
considerably delay the transmission of further packets.

• T_X25_Q
If set in flags , the data is sent as normal qualified data.

• T_X25_RST
If set in flags , this indicates to the underlying provider that a request or a
confirmation of reset is required.

The t_snd() function returns immediately. If further t_snd() calls are
accepted while the reset request is being performed the send data will
remain pending until the X.25 provider receives the confirmation of reset.
This confirmation of reset is not returned to the user. The normal flow
control mechanism may result in a subsequent t_snd() in synchronous
mode blocking, or a t_snd() call in asynchronous mode returning the
[TFLOW] error.

16 X/Open CAE Specification

Functions

The cause and diagnostic of a reset request are encoded in the two first
octets of the buf argument. The cause is in the first octet and the diagnostic
in the second octet. If the buf argument is NULL or the nbytes is 0, then a
cause of 0 and a diagnostic of 0xFA (that means user resynchronisation)
are used. If nbytes is 1, the diagnostic is set to 0.

Any cause and diagnostic passed in the t_snd() call are ignored by the X.25
provider when sending a reset confirmation.

Data received after a successful t_snd() call requesting a reset is data
transmitted by the peer after completion of the reset.

• T_X25_DACK
If set in flags , this indicates that an explicit acknowledgement of data with
the D bit is sent.

• T_X25_EACK
If set in flags , this indicates that an explicit acknowledgement of expedited
data is sent.

Note: When either the T_X25_DACK or the T_X25_EACK flag is set, no
other flags can be set, and there must be no user data present on the
t_snd() call.

If T_X25_DACK or T_X25_EACK is set, although no (expedited) data need be
acknowledged, the t_snd() call either fails with t_errno set to [TBADDATA], or
a subsequent call fails with t_errno set to [TSYSERR] or [TPROTO].

t_snddis() The function is used to send a request of a connection release.

The function induces a state transfer to T_IDLE and returns at the receipt of
the confirmation of the connection release.

In case of PVC-connection mode, t_snddis() dissociates the user from the PVC
and normally resets the PVC.

X.25 Programming Interface using XTI (XX25) 17

Functions

18 X/Open CAE Specification

Chapter 5

Options

The functions t_optmgmt(), t_connect(), t_listen(), t_accept(), and t_rcvconnect(), all contain an opt
argument of type struct netbuf as an input or output parameter. This argument is used to
convey options, and in particular X.25 facilities, between the X.25 user and the X.25 provider.

Each option is formatted according to the structure t_opthdr, possibly followed by the option
value.

In the structure t_opthdr, the name field specifies the mnemonic of the option.

The level field specifies the protocol affected (here T_X25_NP for all options of the XX25 API).

The len field specifies the total length of the option (that is, the length of the option header
t_opthdr plus the length of the option value, without the possible alignment characters).

The status field of the returned options contains information about the success or failure of a
negotiation.

The structure t_opthdr is followed by the option value.

The XX25 user has to ensure that each option starts at a long-word boundary.

X.25 Programming Interface using XTI (XX25) 19

Description of the XX25 Options Options

5.1 Description of the XX25 Options
The table presented in this section, describes the options available in the XX25 API. An XTI
implementation supports none, all or any subset of them.

All the names of the options are defined in the ‘‘New Options to Support X.25 Service’’ part of
the <xti.h> header file.

While the ITU-T X.25 standard mentions both normal and extended facilities, the facilities
described below combine both into one facility which allows values into the extended limits. The
provider will resolve the issue of which facility (normal or extended) to use, transparently to the
user.

The legal option values shown in the X.25 facilities table are those limits defined in X.25 1993.
They are given as an example only.

The actual legal option values in force for X.25 facilities are dependent on the version of the X.25
protocol in use and the network subscription options in force on a particular SNPA.

For each facility, if the user gives a value that is not one of the allowed values, the provider will
negotiate it to a valid value.

The normal XTI option handling is employed for XX25. Chapter 5 of the XTI specification
describes this in detail.

XX25 options relevant only to a version of the X.25 protocol specification later than that in use
are treated as ‘‘unknown’’ or ‘‘not supported’’ by the XX25 provider.

Negotiable numeric XX25 options which contain a value outside those defined for the particular
version of X.25 in use are not considered to be ‘‘illegal options’’, but are negotiated to the nearest
legal option value by the XX25 provider. (This allows for forward compatibility with newer
versions of X.25.)

Other XX25 options are considered to be illegal if they contain a value which cannot be
represented in the protocol or which cannot be interpreted by the provider.

Note: Examples of the option values which cannot be represented are a CUG number greater
than that allowed for basic format when X.25-1980 is in use, and a CUG number greater
than that allowed for extended format when X.25-1984 is in use. An example of an
option value which cannot be interpreted by the provider is T_X25_REVCHG being set
to a value other than T_YES or T_NO.

The handling of ‘‘unknown’’, ‘‘not supported’’ and ‘‘illegal’’ options is clearly described in
Section 5.3.2, Illegal Options of the XTI specification.

X.25 facilities are conveyed by the options described under ‘‘X.25 facilities’’ in the following
table.

The option values associated with the endpoint are used by the X.25 provider to build a call
packet. Before user modification, the effective option values are the implementation defined
default values (for example a combination of subscription time options and local provider
configuration data). The effective values can be modified at any time by the functions
t_optmgmt(), t_connect(), t_listen(), t_accept() and t_rcvconnect(). Function t_optmgmt() can be
used to retrieve the implementation defined default values or to reset the effective values to
these defaults. If an option value is set to T_UNSPEC, the associated X.25 facility will not be
specified in the call packet.

Options which are not user-settable are marked as read-only in the table below.

20 X/Open CAE Specification

Options Description of the XX25 Options

Table 5-1 X25_NP-level Options

Type of Option Legal
Option Name Value Option Value Meaning

T_YES/T_NO
The default value is T_NO.

T_X25_RST_OPT unsigned long User supports resets.

T_X25_D_OPT
read-only

T_YES/T_NO
The value is
implementation defined.

unsigned long Support of the D bit.

T_YES/T_NO
The default value is T_NO.

Explicit acknowledgement of data
with delivery bit.

T_X25_USER_DACK unsigned long

T_YES/T_NO
The default value is T_NO.

Explicit acknowledgement of
expedited data.

T_X25_USER_EACK unsigned long

T_X25_VERSION
read-only

T_X25_yyyy with ‘‘yyyy’’
representing the year of the
X.25 Recommendation.
The value is
implementation defined.

Version of the ITU-T
Recommendation X.25 or of
ISO/IEC 8208 supported by the
provider (X.25-1980, X.25-1984,
X.25-1988, and so on).

unsigned long

See meaning.
The default value is 0xf1.

Reason for a connection release
that includes the cause and the
diagnostic. This reason can be
encoded by using the
T_X25_SET_CAUSE_DIAG
macro.

T_X25_DISCON_REASON unsigned long

T_X25_DISCON_ADD
read-only

Address of the user that released
the connection.

struct t_x25facaddr See text.

T_YES/T_NO
The default value is T_NO.

Setting of the D-bit during the
connection phase in order to
negotiate the support of the D-bit
during data transfer.

T_X25_CONN_DBIT unsigned long

X.25 Facilities

Legal option values are those specified in the ITU-T Recommendation X.25 or ISO/IEC 8208 (see
T_X25_VERSION).

Type of Option Legal
Option Name Value Option Value Meaning

Size in octets from 16 to
4096, T_UNSPEC.
See text.

T_X25_PKTSIZE struct t_x25facval Packet Size

Size from 1 to 7 or from 1 to
127 (in extended format),
T_UNSPEC.
See text.

T_X25_WINDOWSIZE struct t_x25facval Window Size

Throughput in bits/s from
75 to 192000, T_UNSPEC.
See text.

T_X25_TCN struct t_x25facval Throughput Class Negotiation

Index from 0 to 9999,
T_UNSPEC.

CUG (Closed User Group)T_X25_CUG unsigned long

Index from 0 to 9999,
T_UNSPEC.

CUG with Outgoing AccessT_X25_CUGOUT unsigned long

X.25 Programming Interface using XTI (XX25) 21

Description of the XX25 Options Options

Type of Option Legal
Option Name Value Option Value Meaning

Index from 0 to 9999,
T_UNSPEC.

T_X25_BCUG unsigned long Bilateral CUG

T_X25_FASTSELECT unsigned long See text. Fast Select
T_X25_REVCHG unsigned long T_YES / T_NO Reverse Charging
T_X25_NUI string Identifier. See text. NUI (Network User Identification)

Charging Information - Service
Request

T_X25_CHGINFO_REQ unsigned long T_YES / T_NO

T_X25_CHGINFO_MU
read-only

Charging Information - Monetary
Unit

string Unit. See text.

T_X25_CHGINFO_SC
read-only

Number of octets
See text.

Charging Information - Segment
Count

struct t_x25facval

T_X25_CHGINFO_CD
read-only

Charging Information - Call
Duration

struct t_x25facinfocd See text.

Array of unsigned longs Indexes of each RPOA from
0 to 9999.

RPOA (Recognised Private
Operating Agency)

T_X25_RPOA

Call Deflection SelectionT_X25_CALLDEF struct t_x25facaddr See text.

T_X25_CALLRED
read-only

Call Redirection or Deflection
Notification

struct t_x25facaddr See text.

Called Line Address Modified
Notification

T_X25_CALLADDMOD unsigned long See text.

Transit delay in
milliseconds from 0 to
65534, T_UNSPEC.

Transit Delay Selection and
Indication

T_X25_TDSAI unsigned long

Calling Address ExtensionT_X25_CALLING_ADDEXT struct t_x25addext See text.

Called Address ExtensionT_X25_CALLED_ADDEXT struct t_x25addext See text.

Throughput in bits/s from
75 to 64000, T_UNSPEC.
See text.

Minimum Throughput Class
Negotiation

T_X25_MTCN struct t_x25facval

Transit delay in
milliseconds from 0 to
65534, T_UNSPEC.
See text.

End-to-End Transit Delay
Negotiation

T_X25_EETDN struct t_x25faceetdn

T_X25_PRIORITY struct t_x25facpr T_UNSPEC. See text. Priority
T_X25_PROTECTION struct t_x25facpr T_UNSPEC. See text. Protection

Expedited Data NegotiationT_X25_EDN unsigned long T_YES / T_NO, T_UNSPEC

Non-X.25 facilities provided by
the local network.

T_X25_LOC_NONX25 string See text.

Non-X.25 facilities provided by
the remote network.

T_X25_REM_NONX25 string See text.

A detailed description of the X.25 facilities can be found in ISO/IEC 8208 and ITU-T
Recommendation X.25. Most of the fields elements of the structures specified above in the table
are self-explanatory.

22 X/Open CAE Specification

Options Description of the XX25 Options

The following details provide further relevant information:

• T_X25_PACKETSIZE
T_X25_WINDOWSIZE
T_X25_TCN
T_X25_MTCN

The option value is in form of struct t_x25facval.

struct t_x25facval {
unsigned long remote; /* value for the direction of data */

/* transmission from the called DTE. */
unsigned long local; /* value for the direction of data */

/* transmission from the calling DTE. */
}

• T_X25_NUI
T_X25_CHGINFO_MU

For these options of type string, the length of the option value is the total length of the option
(specified in the len field of the t_opthdr structure) minus the length of the option header.

• T_X25_FASTSELECT

The option value is in form of unsigned long . The different values are:

— T_NO
Fast Select not requested.

— T_X25_FASTSEL_NOREST
Fast Select requested with no restriction on response.

— T_X25_FASTSEL_REST
Fast Select requested with restriction on response.

• T_X25_CHGINFO_SC

The option value is in form of one or many struct t_x25facval . There is one structure per tariff
period managed by the network.

• T_X25_CHGINFO_CD

The option value is in form of struct t_x25facinfocd . There is one structure per tariff period
managed by the network.

struct t_x25facinfocd {
unsigned char day; /* number of days for the call */
unsigned char hour; /* number of hours for the call */
unsigned char min; /* number of minutes for the call */
unsigned char sec; /* number of seconds for the call */

}

• T_X25_RPOA

The length of the option value determines how many RPOA transit networks are defined.
This length is the total length of the option (specified in the len field of the t_opthdr structure)
minus the length of the option header. As there is one entry in the array of unsigned longs
per RPOA transit network, the number of defined RPOA transit networks is the total number
of entries in the array.

X.25 Programming Interface using XTI (XX25) 23

Description of the XX25 Options Options

• T_X25_CALLDEF

The option value is in form of struct t_x25facaddr .

struct t_x25facaddr {
unsigned char code; /* reason code */
unsigned char len; /* length in semi-octets */
unsigned char addr[8]; /* DTE address */

}

The code field representing the reason for the call deflection or redirection is defined as below:

— T_X25_CLDEF1
Call-deflection by the originally-called DTE.

— T_X25_CLDEF2
Call-deflection by gateway as a result of call redirection due to originally-called DTE
busy.

— T_X25_CLDEF3
Call-deflection by gateway as a result of call redirection due to originally-called DTE out-
of-order.

— T_X25_CLDEF4
Call-deflection by gateway as a result of call redirection due to prior request from
originally-called DTE for systematic call redirection.

• T_X25_CALLRED

The option value is in form of struct t_x25facaddr described above. The code field represents
the reason for the call deflection or redirection.

In addition to T_X25_CLDEF1 T_X25_CLDEF2 T_X25_CLDEF3 and T_X25_CLDEF4, the
code field can have the following values:

— T_X25_CLRED1
Call-redirection due to originally-called DTE busy.

— T_X25_CLRED2
Call-distribution within a hunt group.

— T_X25_CLRED3
Call-redirection due to originally-called DTE out-of-order.

— T_X25_CLRED4
Call-redirection due to prior request from originally-called DTE for systematic call
redirection.

• T_X25_CALLADDMOD

The value of the option T_X25_CALLADDMOD can take one of the following values:
T_X25_CLDEF1 T_X25_CLDEF2 T_X25_CLDEF3 T_X25_CLDEF4 T_X25_CLRED1
T_X25_CLRED2 T_X25_CLRED3 or T_X25_CLRED4.

• T_X25_CALLING_ADDEXT
T_X25_CALLED_ADDEXT

The option value is in form of struct t_x25addext .

24 X/Open CAE Specification

Options Description of the XX25 Options

struct t_x25addext {
unsigned char addr_type;
unsigned char len; /* length in bytes */
unsigned char addr[20];

The addr_type field represents the type of the address extension:

— T_X25_NSAPADDR
For an address defined according to ISO/IEC 8348.

— T_X25_OTHERADDR
For an address defined in another format.

• T_X25_EETDN

The option value is in form of struct t_x25faceetdn .

struct t_x25faceetdn {
unsigned short cumuldel; /* cumulative end-to-end transit

delay */
unsigned short targetdel; /* target end-to-end transit

delay */
unsigned short maxdel; /* maximum end-to-end transit

delay */
}

The values of the fields are used as follows:

— On an outgoing call:

If set T_UNSPEC the facility is omitted, otherwise value of the
field is placed in outgoing packet.

cumuldel

Ignored if cumuldel is T_UNSPEC.

If set T_UNSPEC the target and maximum values are omitted
from the outgoing packet, otherwise the target value is placed in
the outgoing packet.

targetdel

Ignored if cumuldel or targetdel is T_UNSPEC.

If set T_UNSPEC the maximum value is omitted from the
outgoing packet, otherwise the maximum value is placed in the
outgoing packet.

maxdel

— On an incoming call:

Set T_UNSPEC if the field is not present in the received packet,
otherwise set to the value present in the received packet.

cumuldel

Set T_UNSPEC if the field is not present in the received packet,
otherwise set to the value present in the received packet.

targetdel

Set T_UNSPEC if the field is not present in the received packet,
otherwise set to the value present in the received packet.

maxdel

X.25 Programming Interface using XTI (XX25) 25

Description of the XX25 Options Options

— On an outgoing call accept:

Ignored if the facility was not present in the incoming call,
otherwise the value of the field is placed in the outgoing packet.

cumuldel

targetdel Ignored.
maxdel Ignored.

Note: When the cumuldel field has been set by receipt of a call packet, options
negotiation will not permit the value to be negotiated to a lower value or to be
set to T_UNSPEC.

— On an incoming call accept:

Set T_UNSPEC if the field is not present in the received packet.
Otherwise set to the value present in the received packet.

cumuldel

targetdel Unchanged.
maxdel Unchanged.

• T_X25_PRIORITY

The option value is in form of struct t_x25facpr .

struct t_x25facpr {
unsigned char typeval; /* type of the value */
unsigned char targetval; /* target value */
unsigned char lowval; /* lowest-acceptable value */

}

The typeval field can take the following values:

— T_X25_PRIDATA
Priority on data on a connection.

— T_X25_PRIGAIN
Priority to gain a connection.

— T_X25_PRIKEEP
Priority to keep a connection.

The targetval and the lowval fields have the following values: T_PRITOP, T_PRIHIGH,
T_PRIMID, T_PRILOW or T_PRIDFLT, T_UNSPEC.

The length of the option value allows to determine how many types of priority are defined.
The length of the option value is the total length of the option (specified in the len field of the
t_opthdr structure) minus the length of the option header. For each define type, the target
and the lowest acceptable values have to be given. The value T_UNSPEC allows not
specifying a value.

• T_X25_PROTECTION

The option value is in form of struct t_x25facpr described above. The typeval field can take the
following values:

— T_X25_SRCPROTECT
Source-address specific protection.

26 X/Open CAE Specification

Options Description of the XX25 Options

— T_X25_DESTPROTECT
Destination-address specific protection.

— T_X25_GLBPROTECT
Global protection.

The protection levels defined for the targetval and the lowval fields are :

— T_NOPROTECT
No protection (default value).

— T_PASSIVEPROTECT

— T_ACTIVEPROTECT

• T_X25_LOC_NONX25

The option contains all local non-X.25 facilities in raw form as encoded in the local non-X25
facilities part of the facilities field. It may contain multiple local non-X.25 facilities.

Note: As with all facilities markers, the marker itself is not present in the option buffer.

• T_X25_REM_NONX25

The option contains all remote non-X.25 facilities in raw form as encoded in the remote non-
X25 facilities part of the facilities field. It may contain multiple remote non-X.25 facilities.

Note: As with all facilities markers, the marker itself is not present in the option buffer.

X.25 Programming Interface using XTI (XX25) 27

Use of XX25 Options Options

5.2 Use of XX25 Options
The following tables identify the name field of the structure t_opthdr with the mnemonic of the
option, and the functions with which the option is meaningful.

X.25 Service

t_optmgmt t_optmgmt
before a call after a call

Option Name t_optmgmt t_connect t_listen t_accept t_rcvconnect of t_snddis of t_rcvdis
T_X25_RST_OPT X X X
T_X25_D_OPT X X X X
T_X25_USER_DACK X X X X X
T_X25_USER_EACK X X X X X
T_X25_VERSION X X X X X X
T_X25_DISCON_REASON X X X
T_X25_DISCON_ADD X X
T_X25_CONN_DBIT X X X X

X.25 Facilities

t_optmgmt t_optmgmt
before a call after a call

Option Name t_optmgmt t_connect t_listen t_accept t_rcvconnect of t_snddis of t_rcvdis
T_X25_PKTSIZE X X X X X
T_X25_WINDOWSIZE X X X X X
T_X25_TCN X X X X X
T_X25_CUG X X X
T_X25_CUGOUT X X X
T_X25_BCUG X X X
T_X25_FASTSELECT X X X
T_X25_REVCHG X X X
T_X25_NUI X X X
T_X25_CHGINFO_REQ X X X
T_X25_CHGINFO_MU X X
T_X25_CHGINFO_SC X X
T_X25_CHGINFO_CD X X
T_X25_RPOA X X
T_X25_CALLDEF X
T_X25_CALLRED X X
T_X25_CALLADDMOD X X X X X
T_X25_TDSAI X X X X
T_X25_CALLING_ADDEXT X X X X
T_X25_CALLED_ADDEXT X X X X X X X
T_X25_MTCN X X X X
T_X25_EETDN X X X X X X
T_X25_PRIORITY X X X X X X
T_X25_PROTECTION X X X X X X
T_X25_EDN X X X X X X

28 X/Open CAE Specification

Appendix A

XX25 Header File

This appendix presents the additional header file information for XX25. Implementations
supporting XX25 will provide equivalent definitions in <xti_xx25.h>. XX25 programs should
include <xti_xx25.h> as well as <xti.h>.

Values specified for some of the symbolic constants in this X25 header definitions are designated
as not mandatory for conformance purposes. These are indentified by the comment
accompanying the constant definition.

/*
* New Error Codes to Support X.25 Service
*/

#define TX25NOTOACK 41 /* no data to acknowledge */

/*
* New Flags, defined to support X.25 Service
*/

#define T_X25_D 0x0800 /* Data with D bit set */
#define T_X25_Q 0x1000 /* Qualified Data */
#define T_X25_RST 0x2000 /* Request or Indication of reset */
#define T_X25_DACK 0x4000 /* Acknowledgement of data sent */

/* with D bit. */
#define T_X25_EACK 0x8000 /* Acknowledgement of expedited data */

/*
* New Macros to Set and Retrieve Cause and Diagnostic
* of a Connection Release
*/

#define T_X25_SET_CAUSE_DIAG(x,y) (((x) << 8) + (y))
#define T_X25_GET_CAUSE(x) (((x) >> 8) & 0xff)
#define T_X25_GET_DIAG(x) ((x) & 0xff)

/*
* X.25 Level
*/

#define T_X25_NP 0x101 /* X.25 Level; value is recommended */
/* only, not mandatory */

/*
* New Options to Support X.25 Service.
* These values are recommended only, not mandatory.
*/

#define T_X25_USER_DACK 0x0001 /* Explicit Acknowledgement of data */
#define T_X25_USER_EACK 0x0002 /* Explicit Acknowledgement */

/* of expedited data */
#define T_X25_RST_OPT 0x0003 /* Reset is known to the appli. */
#define T_X25_VERSION 0x0004 /* Version of ITU-T Recommendation */

/* X.25 or ISO/IEC X.25 */
#define T_X25_DISCON_REASON 0x0005 /* Reason of a Connection release */
#define T_X25_DISCON_ADD 0x0006 /* Address of the user */

/* that released the connection */
#define T_X25_D_OPT 0x0007 /* Support of the D bit */
#define T_X25_CONN_DBIT 0x0008 /* Setting of the D-bit */

/* at the connection phase */

X.25 Programming Interface using XTI (XX25) 29

XX25 Header File

/*
* Options to support X.25 facilities.
* These values are recommended only, not mandatory.
*/

#define T_X25_PKTSIZE 0x0009 /* Packet Size */
#define T_X25_WINDOWSIZE 0x000A /* Window Size */
#define T_X25_TCN 0x000B /* Througput Class Negotiation */

/* (basic format) */
#define T_X25_CUG 0x000C /* CUG (basic format) */
#define T_X25_CUGOUT 0x000D /* CUG with Outgoing Access */

/* (basic format) */
#define T_X25_BCUG 0x000E /* Bilateral CUG */
#define T_X25_FASTSELECT 0x000F /* Fast Select */
#define T_X25_REVCHG 0x0010 /* Reverse Charging */
#define T_X25_NUI 0x0011 /* NUI - Network User Identification */
#define T_X25_CHGINFO_REQ 0x0012 /* Charging Information Req. Service */
#define T_X25_CHGINFO_MU 0x0013 /* Charging Information Monetary Unit */
#define T_X25_CHGINFO_SC 0x0014 /* Charging Information Segment Count */
#define T_X25_CHGINFO_CD 0x0015 /* Charging Information Call Duration */
#define T_X25_RPOA 0x0016 /* RPOA-Recognised Private */

/* Operating Agency-(basic format) */
#define T_X25_CALLDEF 0x0017 /* Call Deflection Selection */
#define T_X25_CALLRED 0x0018 /* Call Redirection or */

/* Deflection Notification */
#define T_X25_CALLADDMOD 0x0019 /* Called Line Address */

/* Modified Notification */
#define T_X25_TDSAI 0x001A /* Transit Delay Selection */

/* and Indication */
#define T_X25_CALLING_ADDEXT 0x001B /* Calling Address Extension */
#define T_X25_CALLED_ADDEXT 0x001C /* Called Address Extension */
#define T_X25_MTCN 0x001D /* Minimum Throughput Class Neg. */
#define T_X25_EETDN 0x001E /* End-to-End Transit Delay Neg. */
#define T_X25_PRIORITY 0x001F /* Priority */
#define T_X25_PROTECTION 0x0020 /* Protection */
#define T_X25_EDN 0x0021 /* Expedited Data Negotiation */
#define T_X25_LOC_NONX25 0x0022 /* Non-X25 local facilities */
#define T_X25_REM_NONX25 0x0023 /* Non-X25 remote facilities */

/*
* New Values for the XX25 Options
*/

/*
* New Values for the T_X25_VERSION Option
* "Version of ITU-T Recommendation X.25 or ISO/IEC X.25"
*/

#define T_X25_1980 1980 /* X.25 1980 version */
#define T_X25_1984 1984 /* X.25 1984 version */
#define T_X25_1988 1988 /* X.25 1988 version */
#define T_X25_1993 1993 /* X.25 1993 version */

/*
* New Values for the T_X25_FASTSELECT Option
* "Fast Select X.25 facility"
*/

#define T_X25_FASTSEL_NOREST 0x0002 /* Fast Select requested with no */
/* restriction on response */

#define T_X25_FASTSEL_REST 0x0003 /* Fast Select requested with */
/* restriction on response */

30 X/Open CAE Specification

XX25 Header File

/*
* New Defines for the reason code for the DTE deflecting the call
* for the Options:
* T_X25_CALLDEF "Call Deflection Selection facility"
* T_X25_CALLRED "Call Redirection or Deflection Notification facility"
* T_X25_CALLADDMOD "Called Line Address Modified Notification facility"
*/

#define T_X25_CLDEF1 0x0001 /* Call-deflection by the */
/* originally-called DTE */

#define T_X25_CLDEF2 0x0002 /* Call-deflection by gateway as a result */
/* of call redirection due to */
/* originally-called DTE busy */

#define T_X25_CLDEF3 0x0003 /* Call-deflection by gateway as a result */
/* of call redirection due to */
/* originally-called DTE out-of-order */

#define T_X25_CLDEF4 0x0004 /* Call-deflection by gateway as a result */
/* of call redirection due to prior */
/* request from originally-called DTE */
/* systematic call redirection */

#define T_X25_CLRED1 0x0005 /* Call-redirection due to */
/* originally-called DTE busy */

#define T_X25_CLRED2 0x0006 /* Call-distribution within a hunt group */
#define T_X25_CLRED3 0x0007 /* Call-redirection due to */

/* originally-called DTE out-of-order */
#define T_X25_CLRED4 0x0008 /* Call-redirection due to prior request */

/* from originally-called DTE for */
/* systematic call redirection */

/*
* New Defines for the type of the address extension for the Options:
* T_X25_CALLING_ADDEXT "Calling Address Extension facility"
* T_X25_CALLED_ADDEXT "Called Address Extension facility"
*/

#define T_X25_NSAPADDR 0x0001 /* address defined according to */
/* ISO/IEC 8348 */

#define T_X25_OTHERADDR 0x0002 /* address defined in another format */

/*
* New Defines for the type of the priority for the T_X25_PRIORITY
* option "Priority facility"
*/

#define T_X25_PRIDATA 0x0001 /* priority on data on a connection */
#define T_X25_PRIGAIN 0x0002 /* priority to gain a connection */
#define T_X25_PRIKEEP 0x0003 /* priority to keep a connection */

/*
* New Defines for the Type of the Protection for the T_X25_PROTECTION
* option "Protection Facility"
*/

#define T_X25_SRCPROTECT 0x0001 /* Source-address specific protection */
#define T_X25_DESTPROTECT 0x0002 /* destination-address specific */

/* protection */
#define T_X25_GLBPROTECT 0x0003 /* global protection */

X.25 Programming Interface using XTI (XX25) 31

XX25 Header File

/*
* New Structures for the XX25 Options (X.25 facilities)
*/

struct t_x25addext {
unsigned char addr_type;
unsigned char len;
unsigned char addr[20];

};

struct t_x25facval {
unsigned long remote; /* value for the direction of data */

/* transmission from the called DTE */
unsigned long local; /* value for the direction of data */

/* transmission from the calling DTE */
}

struct t_x25facinfocd {
unsigned char day; /* number of days for the call */
unsigned char hour; /* number of hours for the call */
unsigned char min; /* number of minutes for the call */
unsigned char sec; /* number of seconds for the call */

}

struct t_x25facaddr {
unsigned char code; /* reason code */
unsigned char len; /* length in semi-octets */
unsigned char addr[8]; /* DTE address */

}

struct t_x25faceetdn {
unsigned short cumuldel; /* cumulative transit delay */
unsigned short targetdel; /* target end-to-end transit delay */
unsigned short maxdel; /* maximum end-to-end transit delay */

}

struct t_x25facpr {
unsigned char typeval; /* type of the value */
unsigned char targetval; /* target value */
unsigned char lowval; /* lowest-acceptable value */

}

32 X/Open CAE Specification

Appendix B

ISO X.25 Protocol Terminology

Protocol Address
The protocol address is the X.25 address.

Sending Data of Zero Octets
The X.25 service definition, both in connection-oriented mode and in permanent-connection
mode, permits sending of a TSDU of zero octets.

Expedited Data Negotiation
Expedited Data Negotiation is an optional ITU-T-specified DTE facility which may be used
for a given Virtual Call. The calling DTE uses the Expedited Data Negotiation Facility
during the connection phase to indicate whether it wishes to use the expedited data-transfer
procedures. This indication is provided by a higher layer entity in the calling DTE. This
facility is conveyed transparently by public data networks but may be set to non-use of the
expedited data-transfer procedures by gateways and private networks that do not support
them (see ISO/IEC 8208 and ITU-T Recommendation X.25).

Fast Select
Fast Select is an optional user facility which may be requested by a DTE for a given Virtual
Call. The Fast Select facility allows the DTE to transmit call setup and clearing packets with
an User Data Field of up to 128 octets.

Segmentation and Concatenation
The X.25 provider manages the segmentation and the concatenation of the TSDU (if the X.25
user did not already make it). At the XTI interface, when a TSDU is broken up into more
than one sub-unit, the T_MORE flag is set on each sub-unit passed across the interface,
except the last.

User Data
Since, at most, 128 octets of User Data may be sent in X.25 call and clear packets, the field
udata.len in the functions t_connect(), t_listen(), t_rcvdis() and t_snddis() should have a value
up to 128.

X.25 Programming Interface using XTI (XX25) 33

ISO X.25 Protocol Terminology

34 X/Open CAE Specification

Glossary

API
Application Programming Interface

CUD
Call User Data

DCE
Data Communication Equipment

DTE
Data Terminal Equipment

DXE
DTE or DCE

EM
Event Management

ENSDU
Expedited Network Service Data Unit

ETSI
European Telecommunications Standards Institute

ISO
International Organization for Standardization

ITU-T
International Telecommunications Union - Telecommunications. Previously called CCITT.

NSAP
Network Service Access Point

NSDU
Network Service Data Unit

OSI
Open System Interconnection

PVC
Permanent Virtual Circuit

SVC
Switched Virtual Circuit

VC
Virtual Circuit

X.25
ITU-T Recommendation X.25: interface between a Data Terminal Equipment (DTE) and a
Data Circuit terminating Equipment (DCE) for terminals operating in the packet mode and
connected to public data networks by dedicated circuits [ITU-T Blue Book, 1988]

XX25
API for X.25 under X/Open Transport Interface (XTI)

X.25 Programming Interface using XTI (XX25) 35

Glossary

36 X/Open CAE Specification

Index

abortive release ...9
acknowledgements of data.......................................7
address..33
API ...35
application..2
connection establishment ...5
connection mode...2, 5
connection release ..5, 9
connection reset ..8
connection-oriented mode..5
CUD...35
data transfer ...5-6
DCE..35
de-initialisation ...5
DTE..35
duplex ...6
DXE..35
EM..35
ENSDU..35
errors

TX25NOTOACK...29
ETSI..35
event ..11
expedited data...15
Expedited Data Negotiation...................................33
Fast Select ...33
flags

T_X25_D ...29
T_X25_DACK..29
T_X25_EACK...29
T_X25_Q ...29
T_X25_RST...29

full duplex ..6
header file...29
initialisation ...5
initialisation de-initialisation5
ISO ...35
ITU-T ...35
mode

connection-oriented ...5
NSAP...35
NSDU ..35
OSI ...35
permanent-connection mode2
Protocol Address ..33
PVC..35

Receiving Data ..6
release..5, 9
reset ...5, 8
Segmentation and Concatenation33
Sending Data..7
Sending Data of Zero Octets33
service definition

ISO ...9, 33
state..11
SVC ..35
TSDU...15, 33
TX25NOTOACK...29
t_accept ...13
t_bind ..13
t_connect ..13
t_getinfo..14
t_listen...14
t_look...14
t_open..14
t_opthdr ..19
t_optmgmt ...15
t_rcv...15
t_rcvconnect...16
t_rcvdis ...16
t_snd ..16
t_snddis...17
t_x25addext..32
t_x25facaddr ..32
t_x25faceetdn...32
t_x25facinfocd ...32
t_x25facpr ...32
t_x25facval ...32
T_X25_1980 ..30
T_X25_1984 ..30
T_X25_1988 ..30
T_X25_1993 ..30
T_X25_BCUG...30
T_X25_CALLADDMOD ...30
T_X25_CALLDEF ...30
T_X25_CALLED_ADDEXT....................................30
T_X25_CALLING_ADDEXT..................................30
T_X25_CALLRED...30
T_X25_CHGINFO_CD ..30
T_X25_CHGINFO_MU ...30
T_X25_CHGINFO_REQ..30
T_X25_CHGINFO_SC ...30

X.25 Programming Interface using XTI (XX25) 37

Index

T_X25_CLDEF1...31
T_X25_CLDEF2...31
T_X25_CLDEF3...31
T_X25_CLDEF4...31
T_X25_CLRED1 ..31
T_X25_CLRED2 ..31
T_X25_CLRED3 ..31
T_X25_CLRED4 ..31
T_X25_CONN_DBIT ...29
T_X25_CUG ...30
T_X25_CUGOUT ..30
T_X25_D ...29
T_X25_DACK ..29
T_X25_DESTPROTECT...31
T_X25_DISCON_ADD ..29
T_X25_DISCON_REASON29
T_X25_D_OPT...29
T_X25_EACK...29
T_X25_EDN ...30
T_X25_EETDN ..30
T_X25_FASTSELECT...30
T_X25_FASTSEL_NOREST30
T_X25_FASTSEL_REST...31
T_X25_GLBPROTECT ...31
T_X25_LOC_NONX25 ..30
T_X25_MTCN ...30
T_X25_NSAPADDR...31
T_X25_NUI ..30
T_X25_OTHERADDR ...31
T_X25_PKTSIZE ...30
T_X25_PRIDATA ..31
T_X25_PRIGAIN ..31
T_X25_PRIKEEP ...31
T_X25_PRIORITY ...30
T_X25_PROTECTION ...30
T_X25_Q ...29
T_X25_REM_NONX25 ..30
T_X25_REVCHG ..30
T_X25_RPOA...30
T_X25_RST...29
T_X25_RST_OPT ..29
T_X25_SRCPROTECT ...31
T_X25_TCN ...30
T_X25_TDSAI..30
T_X25_USER_DACK ...29
T_X25_USER_EACK..29
T_X25_VERSION..29
T_X25_WINDOWSIZE..30
User Data..33
VC ..35
X.25 ..35

X.25 address...33
X.25 Protocol Information.......................................33
X.25 service ..1, 33
X25_NP ...29
XTI specification ...2
XX25 ..35
Zero length TSDU and TSDU fragments.............33

38 X/Open CAE Specification

	c411cov.pdf
	Page 1

	blank.pdf
	Page 1

