
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

OSI-Abstract-Data Manipulation API (XOM)
Issue 2

[This page intentionally left blank]

X/Open CAE Specification

OSI-Abstract-Data Manipulation API (XOM), Issue 2

X/Open Company Ltd.

 February 1994, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

OSI-Abstract-Data Manipulation API (XOM), Issue 2

ISBN: 1-85912-008-3
X/Open Document Number: C315

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

ii X/Open CAE Specification (1994)

OSI-Abstract-Data Manipulation API (XOM), Issue 2 iii

ii X/Open CAE Specification (1994)

Contents

Chapter 1 Introduction... 1
 1.1 Purpose ... 1
 1.2 Motivation.. 2
 1.3 Levels... 3
 1.4 C Naming Conventions .. 3
 1.5 Options.. 4
 1.6 Conformance ... 4
 1.7 Abbreviations .. 5

Chapter 2 Information Architecture .. 7
 2.1 Introduction ... 7
 2.2 Objects... 7
 2.3 Object Attributes... 8
 2.4 Classes... 9
 2.5 Class Definitions ... 10
 2.6 Packages.. 11
 2.7 Package Definitions .. 12
 2.8 Workspaces .. 12
 2.9 Storage Management ... 13

Chapter 3 Information Syntaxes .. 15
 3.1 Introduction ... 15
 3.2 Syntax Templates .. 15
 3.3 Syntaxes .. 15
 3.4 Strings.. 17
 3.5 Representation of String Values... 18
 3.6 Relationship to ASN.1 Simple Types.. 18
 3.7 Relationship to ASN.1 Useful Types... 18
 3.8 Relationship to ASN.1 Character String Types 19
 3.9 Relationship to ASN.1 Type Constructors .. 20

Chapter 4 Service Interface ... 21
 4.1 Introduction ... 21
 4.2 Data Types.. 21
 4.2.1 Boolean... 22
 4.2.2 Descriptor.. 22
 4.2.3 Enumeration ... 24
 4.2.4 Exclusions.. 24
 4.2.5 Integer .. 25
 4.2.6 Modification.. 25
 4.2.7 Object.. 25
 4.2.8 Object Identifier.. 26

OSI-Abstract-Data Manipulation API (XOM), Issue 2 iii

Contents

 4.2.9 Private Object.. 27
 4.2.10 Public Object ... 28
 4.2.11 Real ... 28
 4.2.12 Return Code .. 28
 4.2.13 String .. 29
 4.2.14 Syntax... 30
 4.2.15 Type .. 30
 4.2.16 Type List... 31
 4.2.17 Value ... 31
 4.2.18 Value Length... 33
 4.2.19 Value Position ... 33
 4.2.20 Workspace ... 33
 4.3 Functions .. 34
 copy() .. 37
 copy-value () ... 38
 create() .. 40
 decode()... 41
 delete() .. 42
 encode()... 43
 get()... 44
 instance().. 47
 put() .. 48
 read()... 50
 remove().. 52
 write() ... 53
 4.4 Return Codes ... 55
 4.5 Declaration Summary .. 58

Chapter 5 Workspace Interface ... 65
 5.1 Introduction ... 65
 5.2 Representation of Objects ... 65
 5.3 Types and Macros ... 67
 5.3.1 Standard Internal Representation of an Object 67
 5.3.2 Standard Internal Representation of a Workspace 67
 5.3.3 Useful Macros... 70
 5.4 Dispatcher Macros.. 71

Chapter 6 Object Management Package ... 75
 6.1 Introduction ... 75
 6.2 Class Hierarchy... 75
 6.3 Class Definitions ... 76
 6.3.1 Encoding.. 76
 6.3.2 External.. 77
 6.3.3 Object.. 78

iv X/Open CAE Specification (1994)

Contents

Appendix A Differences from IEEE OM Standard... 79
 A.1 Copy-Value() Clarification ... 79
 A.2 Meaning of Value Length Column.. 79
 A.3 Meaning of Private Bit ... 80
 A.4 Constant Values Optional ... 80
 A.5 Deletion of SPUBs on Workspace Closure .. 80
 A.6 Meaning of ‘‘present’’ .. 80
 A.7 Addition of a REAL data syntax.. 81
 A.8 Creation of Restricted or Abstract Classes .. 81
 A.9 Definition of Dispatcher Macros.. 81
 A.10 Representation of OPTIONAL ASN.1 Constructs............................... 81
 A.11 Support of Internationalised Character Strings 81

 Glossary ... 83

 Index... 87

List of Figures

1-1 Conceptual Model of Object Management .. 1
2-1 Structure of an Object ... 8

List of Tables

1-1 Derivation of C Identifiers ... 3
3-1 String Syntax Identifiers ... 17
3-2 Syntax for ASN.1’s Simple Types ... 18
3-3 Syntaxes for ASN.1’s Useful Types.. 18
3-4 Syntaxes for ASN.1’s Character String Types.. 19
3-5 Syntaxes for ASN.1’s Type Constructors .. 20
4-1 Service Interface Data Types ... 21
4-2 Service Interface Functions .. 34
4-3 Service Interface Return Codes... 55
6-1 Attributes Specific to Encoding .. 76
6-2 Attributes Specific to External .. 77
6-3 Attributes Specific to Object .. 78

OSI-Abstract-Data Manipulation API (XOM), Issue 2 v

Contents

vi X/Open CAE Specification (1994)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Developers who base their products on a current CAE specification can be sure that either
the current specification or an upwards-compatible version of it will be referenced by a
future X/Open brand (if not referenced already), and that a variety of compatible, X/Open-
branded systems capable of hosting their products will be available, either immediately or in
the near future.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 vii

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

viii X/Open CAE Specification (1994)

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This document is a CAE Specification (see above). It defines the application programming
interface (API) to management of Open Systems Interconnection (OSI) objects. This interface is
needed by other APIs specific to particular OSI services. Currently, these include the X/Open
APIs to Directory Services (XDS), Electronic Mail (X.400), and Systems Management Protocols
(XMP).

This Issue 2 of the XOM CAE Specification includes revisions to align with the IEEE OSI Abstract
Data Manipulation group of standards, that themselves are based on the previous version of this
X/Open specification.

All new implementation work by API providers should be based on this Issue 2. The previous
specification will be retained by X/Open for only so long as branding is available for products
based on it.

XOM is one of several specifications that X/Open originally developed in collaboration with the
X.400 API Association. The other documents are XDS, X.400, XMS and XEDI API specifications,
and a Guide to Selected X.400 and Directory Services APIs.

The XDS and X.400 specifications have similarly served as bases for corresponding IEEE
standards. X/Open has now also revised the XDS and X.400 specifications into Issue 2
publications, to align them with the corresponding IEEE Standards.

Structure

This document is organised as follows:

• Chapter 1 identifies the scope and purpose of this API, explains the C naming conventions,
and conformance criteria for conformant implementations. It also lists commonly used
abbreviations used.

• Chapter 2 specifies the architecture of the information that the client and service exchange,
and that the service maintains and makes accessible to the client.The architecture provides a
basis for specifying in Chapter 4 and Chapter 5 how the client communicates with the
service, how the service communicates with the client in response, and how components of

OSI-Abstract-Data Manipulation API (XOM), Issue 2 ix

Preface

the service communicate with one another.

• Chapter 3 defines the permitted syntaxes of attribute values.

• Chapter 4 defines the service interface, in terms of the functions that the service makes
available to the client, the data types of which the arguments and results of those functions
are data values, and the return codes that denote the outcomes (in particular, the exceptions)
that the functions may report. It also summarises the declarations that define the C service
interface.

• Chapter 5 defines the workspace interface, which defines types which specify the initial part
of the representation of objects, and some associated data structures.

• Chapter 6 defines the OM package.

• Appendix A identifies the known substantive differences between this X/Open OSI-
Abstract-Data Manipulation (XOM) API specification and the corresponding IEEE Object
Management Standard.

A glossary and index are provided.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members, and language-independent names.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(). Names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

• Roman font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [EABCD] is used to identify a return value ABCD, including if this is an an error
value.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items.

• Further details on the C naming conventions used in this specificaction are given in Section
1.4 on page 3.

x X/Open CAE Specification (1994)

Preface

OSI-Abstract-Data Manipulation API (XOM), Issue 2 xi

Trade

X/OpenTM and the ‘‘X’’ device are trade marks of X/Open Company Ltd.

xii X/Open CAE Specification (1994)

Referenced Documents

ANSI-C
Information Processing: Programming Language C, ISO Draft International Standard
DIS9899 (also known as ANSI C, American National Standard X3.159-1989).

ASN.1
ISO 8824: 1990, CCITT X.208: 1988. Information Technology - Open Systems
Interconnection - Specification of Abstract Syntax Notation One (ASN.1),

BER
ISO/IEC 8825:1990 (ITU-T Recommendation X.209 (1988)), Information Technology —
Open Systems Interconnection — Specification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.1).

IEEE 1224-1993
IEEE 1224-1993: IEEE Standard for Information Technology - Open Systems Interconnection
(OSI) Abstract Data Manipulation - Application Programming Interface (API) [Language
Independent], ISBN 1-55937-301-6.

IEEE 1327-1993
IEEE 1327-1003: IEEE Standard for Information Technology - Open Systems Interconnection
(OSI) Abstract Data Manipulation C Language Interfaces - Binding for Application
Programming Interface (API), ISBN 1-55937-311-3.

X.400
X/Open CAE Specification, February 1994, API to Electronic Mail (X.400), Issue 2,
(ISBN: 1-85912-009-1, X/Open document C316).

X.509
Recommendation X.509, The Directory: Authentication Framework, CCITT Blue Book,
International Telecommunications Union, 1988. (Also published by ISO as ISO 9594-8.)

XDS
X/Open CAE Specification, February 1994, API to Directory Services (XDS), Issue 2,
(ISBN: 1-85912-007-5, X/Open document C317).

XPG4
X/Open Systems and Branded Products: XPG4, July 1992 (ISBN: 1-872630-52-9, X924).

OSI-Abstract-Data Manipulation API (XOM), Issue 2 xiii

Referenced Documents

xiv X/Open CAE Specification (1994)

Chapter 1

Introduction

This Chapter introduces the interface and its specification. It indicates the purpose of the
interface, provides the motivation for it, identifies the levels of abstraction at which the interface
is defined, explains how identifiers at one level are derived from those at the other, summarises
the service implementation options, gives the conformance requirements imposed upon
manufacturers and their products, lists the abbreviations used in the document, and describes
the document’s organisation.

1.1 Purpose
This document defines a general-purpose OSI Object Management Application Program
Interface (API) for use in conjunction with, but otherwise independent of, other application-
specific APIs for Open Systems Interconnection (OSI).

Object Management (OM) is the creation, examination, modification and deletion of potentially
complex information objects1. It presents to programmers a uniform model, or architecture, of
information based upon the concept of groups, or classes, of similar information objects. The
OM API provides facilities to manipulate both small objects and those too large to be held in
main memory.

This API is designed to work with groups of ASN.1 objects that are called packages. These
packages are defined by the application specific APIs that use this API. The packages contain all
the ASN.1 objects necessary to accomplish a specific task. Thus, the API does not work with any
arbitrary ASN.1 objects, only those defined in packages.

The information objects to which OM applies are those that arise in OSI, that is, those that
correspond to the types defined by, or by means of, Abstract Syntax Notation One (ASN.1). The
OM API comprises tools for manipulating ASN.1 objects. It shields the programmer from much
of ASN.1’s complexity, for example, its Basic Encoding Rules (BER).

The OM API is designed to be implemented by one or more manufacturers working
independently. As illustrated in the figure below, each manufacturer effectively provides the
programmer with the ability to manipulate information objects of particular kinds. This division
of implementation responsibility is achieved by means of workspaces (see Section 2.8 on page
12).

1. These objects, which are described in Chapter 2, differ from the directory objects defined in ISO 9594.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 1

Purpose Introduction

Client

Service

Messaging Objects Directory Objects

Figure 1-1 Conceptual Model of Object Management

Throughout this document, the term ‘interface’ denotes the OM API, the term ‘service’ denotes
software that supplies (that is, implements) the interface, and the term ‘client’ denotes software
that uses the interface. The term ‘service interface’ denotes the interface realised by the service
as a whole, and is thus a synonym for ‘interface’.

1.2 Motivation
The OM interface is designed to be used with other, application-specific APIs, for example, for
message transfer or directory access. Such an API typically defines both a set of functions and a
set of structured information objects that serve as the functions’ arguments and results. The OM
interface defines a general information architecture for structuring such information objects, as
well as general functions for manipulating them. Both the architecture and the functions are
independent of the application-specific APIs they support.

The OM information architecture is object-oriented and thus enjoys the modularity and
extensibility inherent in that approach. Collections of data are referred to as objects, objects of
like structure are grouped together into classes, and classes are related to one another by means
of subclassing. The information architecture is described in detail in Chapter 2. Among its
important features, however, is that wherever an application-specific API requires an instance of
a particular class, an instance of any of that class’ subclasses may be supplied instead. This
permits the refinement and extension of objects and the use of the extended objects in
application-specific APIs.

Note: While OM takes an object-oriented view of structured information, it does not
incorporate all the characteristics of other object-oriented systems. In particular, the
implementations of the functions for manipulating objects are separate from the
definitions of the objects’ classes, and there is no notion of encapsulating or hiding the
information associated with objects (although the interface hides the information’s
representation).

The OM interface is specifically designed for use with application-specific APIs that provide OSI
services. The objects addressed by the information architecture, therefore, are those arising from
ASN.1, the descriptive tool used pervasively in OSI. By providing tools for manipulating ASN.1
objects, the OM interface shields the client from much (but not all) of ASN.1’s complexity.

While it presents to the client a single model of information, the OM interface neither defines nor
unnecessarily constrains the representation of the objects that the service maintains internally.
The interface is designed as a general information management facility that can accommodate

2 X/Open CAE Specification (1994)

Introduction Motivation

the varied objects required by application-specific OSI APIs. Therefore, no constraints are
placed on the structure, size or location of the information objects held by the service. The
internal representation of such objects, which may be application-specific, is hidden from the
client; the objects can be accessed only using OM interface functions.

Objects are conveyed between the client and the service, in whole or in part, using sequences of
descriptors. Unlike that of the objects themselves, the representation of such sequences is part of
the OM interface specification.

The extent to which the OM interface is able to hide the internal representation of objects is
insufficient to fully meet the needs of environments supporting several application-specific APIs.
Such APIs may impose varied and even conflicting requirements upon the internal
representations of objects, and may even be implemented by different vendors. Therefore, the
OM interface is designed to permit any number of OM interface implementations to coexist,
each representing objects differently. This is accomplished by means of workspaces (see Section
2.8 on page 12).

The various OM interface implementations cannot be completely independent. Two different
application-specific services using two different OM interface implementations may have to
exchange information. A message transfer system, for example, may require a name or address
obtained from a directory system. The OM interface enables such information exchange by
providing a single OM interface (used by all application-specific services) to any number of
implementations of that interface (workspaces). While it recognises that different workspaces
handle objects of different kinds, the client need not explicitly move information from workspace
to workspace in order to effectively convey it from one application-specific service to another.

1.3 Levels
This document defines the interface at two levels of abstraction. It defines a generic interface
independent of any particular programming language, and a C interface based on the variant of
C standardised by the American National Standards Institute (ANSI). (It does not define
interfaces specific to other languages.)

The C interface definition provides language-specific declarations beyond the scope of the
generic interface definition. For readability alone, the specifications of the generic and C
interfaces are physically combined, rather than physically separated.

1.4 C Naming Conventions
How the identifier for an element of the C interface is derived from the name of the
corresponding element of the generic interface depends on the element’s type, as specified in the
following table. The generic name is prefixed with the character string in the second column of
the table, alphabetic characters are converted to the case in the third column, and an underscore
(_) is substituted for each hyphen (-) or space ().

OSI-Abstract-Data Manipulation API (XOM), Issue 2 3

C Naming Conventions Introduction

Element Type Prefix Case
Data type OM_ Lower
Data value OM_ Upper
Data value (Class1) OM_C_ Upper
Data value (Syntax) OM_S_ Upper
Data value component (Structure member) none Lower
Function om_ Lower
Function argument none Lower
Function result none Lower
Macro OM_ Upper
Reserved for use by implementors OMP any
Reserved for use by implementors omP any
Reserved for proprietary extension omX any
Reserved for proprietary extension OMX any

Table 1-1 Derivation of C Identifiers

The prefixes ‘‘omP’’ and ‘‘OMP’’ are reserved for use by implementors of the service. The
prefixes ‘‘omX’’ and ‘‘OMX’’ are reserved for the proprietary extension of the interface. In all
other respects, such extension is outside the scope of this document.

1.5 Options
The following aspects of the service’s behaviour are implementation-defined:

1. The local character set representation and the precise mappings between it and the various
string syntaxes.

2. The precise definitions in C of the intermediate data types.

3. The length of the longest string that the Get function will return. This number is no less
than 1024.

4. Whether the service reports an exception if an object supplied to it as an argument is not
minimally consistent.

1.6 Conformance
A service manufacturer shall claim conformance to this document only if it and its product
collectively satisfy the following requirements:

• Version.
The manufacturer shall claim to support the version of the interface defined by the present
edition of this document.

Note: Proprietary versions of the interface are outside the document’s scope. However, to
denote additional types, syntaxes and exceptions, such versions should employ
integers outside of the intervals used by editions of this document.

• Workspaces.
The service shall comprise one or more workspaces (see Chapter 4), each of which shall
support the OM package (see Chapter 5).

4 X/Open CAE Specification (1994)

Introduction Conformance

• Aspects.
The service shall implement all defined aspects of the interface, subject to the options
summarised in Section 1.5.

• Encoding Rules.
In its implementation of the Encode and Decode functions, the service shall support the BER.

1.7 Abbreviations
The following abbreviations are used throughout this document.

ANSI American National Standards Institute

API Application Program Interface

ASN.1 Abstract Syntax Notation One

BER Basic Encoding Rules

CCITT International Telegraph and Telephone Consultative Committee

CPUB Client-generated Public Object

IA5 International Alphabet No. 5

ISO International Organisation for Standardisation

OM Object Management

OSI Open Systems Interconnection

PRI Private Object

SPUB Service-generated Public Object

UTC Universal Coordinated Time

XDS (X/Open) Directory Services

X.400 X.400-Based Electronic Messaging

OSI-Abstract-Data Manipulation API (XOM), Issue 2 5

Introduction

6 X/Open CAE Specification (1994)

Chapter 2

Information Architecture

2.1 Introduction
This Chapter specifies the architecture of the information that the client and service exchange,
and that the service maintains and makes accessible to the client.

The architecture provides a basis for specifying, in Chapter 4 and Chapter 5, how the client
communicates with the service, how the service communicates with the client in response, and
how components of the service communicate with one another. The architecture’s purpose is
not to dictate the physical structure of information as the service maintains it internally; this is
implementation-specific and thus unspecified.

2.2 Objects
The principal purpose of the service is to create, examine, modify and destroy complex
information objects under the client’s direction. A principal purpose of the interface is to enable
the client and service to exchange objects in whole or in part. This requirement provides the
rationale for the information architecture whose specification follows.

Objects are of two kinds: public and private. A public object is represented by a data structure
whose format is part of the service’s specification (see Section 4.2 on page 21). A private object , on
the other hand, is represented in a fashion that is implementation-specific and thus unspecified.
The client therefore accesses private objects only indirectly, that is, by means of interface
functions.

The interface comprises functions for both examining and modifying private objects. For
application-specific reasons, however, the service may deny a client request to modify a
particular object at a particular time. The specification of each application-specific API shall
identify any circumstances under which this may occur.

Public objects themselves are of two kinds: client-generated and service-generated. A client-
generated public object is fabricated by the client in storage it provides. A service-generated
public object is fabricated by the service in storage it provides. The client creates, examines,
modifies, and destroys client-generated public objects directly, that is, by means of
programming language constructs.

Note: Client-generated public objects simplify application programs, enabling them, where
appropriate, to statically define objects, rather than requiring them to dynamically
construct the objects by means of sequences of interface function calls.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 7

Object Attributes Information Architecture

2.3 Object Attributes
Objects have internal structure, as illustrated in Figure 2-1 below. An object comprises zero or
more information items called attributes. An attribute , in turn, comprises an integer denoting the
attribute’s type and one or more information items called values, each accompanied by an
integer denoting that value’s syntax. A value (for example, one) is an information item, possibly
complex, which can be viewed as a characteristic or property of the object of which it is a part. A
syntax (Integer) is a category into which a value is placed on the basis of its form. A type
(for example, Priority) is a category into which all of the values of an attribute are placed on the
basis of their purpose. The attribute type is used as the name of the attribute.

Type
Integer

Syntax
Integer
Value

...........

Object

Attribute

Figure 2-1 Structure of an Object

The client and service exchange values by means of descriptors. A descriptor normally comprises
a value and the integers that denote the value’s syntax and type; sometimes the value is absent
(see the Get function).

While syntaxes and types are denoted by integers, the scope of the integers differs. Syntaxes are
defined and assigned integers by this document. The integers’ scope is global. Types are defined
and assigned integers by OM applications. The integers’ scope is a package (see Section 2.6 on
page 11).

An object’s attributes are unordered, but an attribute’s values are ordered. The position of the
first value is zero. The positions of successive values are successive positive integers.

One object, O2, may be a value of an attribute of another object, O1. O2 is called an immediate
subobject of O1, and O1 the immediate superobject of O2. The immediate subobjects of O1, and all of
their subobjects, are the subobjects of O1. The immediate superobject of O2, and all of its
superobjects, are the superobjects of O2. The package (see Section 2.6 on page 11) that contains
an object’s class may differ from those containing the classes of its immediate subobjects, which
may differ from one another.

8 X/Open CAE Specification (1994)

Information Architecture Classes

2.4 Classes
Objects are categorised on the basis of their purpose and internal structure. Each category is
called a class. An object (for example, a message) is said to be an instance of its class (for
example, Message). A class is characterised by the types of the attributes that may appear in its
instances. A class is denoted by an ASN.1 object identifier. The object identifier that denotes a
class is an attribute of every instance of the class. In particular, it is the value of the Class
attribute, which is specific to the Object class.

An object identifier may (but need not) be assigned to a class in two steps. First, a distinct
integer is assigned to each class in a package (see Section 2.6 on page 11). Second, the integer is
appended to the object identifier assigned to the package, becoming its final subidentifier.

The types that may appear in an instance of one class, C2, are often a superset of those that may
appear in an instance of another class, C1. When this is so, C2 may (but need not) be designated
a subclass of C1, making C1 a superclass of C2. If C1 is a superclass of no other superclass of C2, C1
is called the immediate superclass of C2, and C2 an immediate subclass of C1. Every class (except
Object) is the immediate subclass of exactly one other class; thus the class hierarchy is a tree.

The package (see Section 2.6 on page 11) containing an object’s class may differ from those
containing its immediate subclasses, which may differ from one another. The specification of
such a class must ensure that each attribute type in the package-closure is allocated a unique
integer representation. Specifications produced by X/Open and the X.400 API Association
achieve this by use of disjoint sets of integers for each package in all specifications.

The classes form a hierarchy by virtue of the superclass relationships between them. The
hierarchy’s root is a special class, Object, of which all other classes are subclasses. (Class Object
is defined in Section 6.3.3 on page 78). The class hierarchy is fixed by the classes’ definitions (see
Section 2.5 on page 10); it cannot be altered programatically.

The types that may appear in an instance of a class but not in an instance of its immediate
superclass are said to be specific to the class. Thus the types that may appear in an object are
those specific to its class and those specific to each of its superclasses. The set of types that may
appear in an object is fixed by the definitions of the classes involved (see Section 2.5 on page 10);
it cannot be altered programatically. The fact that an attribute may appear in instances of a class
does not (itself) imply that it must appear (that is, have a value) in every instance of the class.

An instance of a class is also considered an instance of each of its superclasses, and thus may
appear wherever the interface requires an instance of any of those classes.

Note: This is one of the most useful consequences of the subclassing mechanism.

Classes are of two kinds, concrete and abstract . Instances of a concrete class are permitted, but
instances of an abstract class are forbidden. An abstract class may be defined as a superclass in
order to share attributes between classes, or simply to ensure that the class hierarchy is
convenient for the interface definition.

The definition of each concrete class may also indicate that the client may not create instances; in
this case, instances can only be created as a result of an application-specific function. It is an
error for a client to attempt to create an object of such a class (function-declined), or of an abstract
class (not-concrete).

Note: The OM information architecture has some, but not all, of the important characteristics
of object-oriented programming systems. The functions by means of which objects are
manipulated, for example, may vary from workspace to workspace (see Section 2.8 on
page 12) but not from class to class.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 9

Classes Information Architecture

2.5 Class Definitions
For purposes of the generic interface, and within the context provided by a package (see Section
2.6 on page 11), the definition of a class has the following elements:

• the class’ name, which denotes the class’ object identifier

• identification of the class’ immediate superclass

• the definitions of the attribute types specific to the class

• an indication of whether the class is abstract or concrete.

The types specific to a class are themselves defined by means of a table (see Chapter 6 on page
75). The table gives:

• under the heading Attribute, the name of each attribute

• under the heading Value Syntax, the syntax or syntaxes of each of its values

• under the heading Value Length, any constraints upon the number of bits, octets or
characters in each value that is a string

• under the heading Value Number, any constraints upon the number of values

• under the heading Value Initially, any value the Create function supplies upon request.

With respect to the syntax of attribute values, the designation ‘any’ denotes any defined syntax.

A class table imposes certain constraints upon instances of the class. The definition of a class
may impose additional constraints which may be arbitrarily complex. Such constraints are
specified in prose.

Note that classes are often constrained in the following additional ways. Each instance of the
class may be constrained to contain exactly one member of a set of attributes. An attribute may
be constrained to have:

• no more than a fixed number of values

• either zero or one value, that value thus being optional

• exactly one value, that value thus being mandatory.

An attribute’s values may be constrained to a single syntax. A syntax may be constrained to a
proper subset of its defined values.

An object is said to be minimally consistent if, and only if:

• the type of each of its attributes is specific to the object’s class or one of its superclasses

• the number of values of each attribute is no greater than the class permits

• the syntax of each value is among those the class permits

• the number of bits, octets or characters in each value that is a string is among those the class
permits.

Each object that an interface function returns as a result is minimally consistent. Furthermore,
the intent of the interface definition is that each object supplied as a function argument is
minimally consistent. However, whether the service reports an exception if this is not so is
implementation-defined.

10 X/Open CAE Specification (1994)

Information Architecture Packages

2.6 Packages
Related classes are grouped into collections called ‘packages’. A package defines the scope of
the integers that denote the types specific to the classes in the package. Thus the integers shall
be distinct. A package is denoted by an ASN.1 object identifier.

The closure of a package P is the set of classes that need to be supported in order to be able to
create all possible instances of all classes defined in P.

Package closure is formally defined in terms of class closure, which is the set of classes that need
to be supported in order to be able to create all possible instances of a particular class.

More specifically, the closure of a class C is a set that consists of:

1. the class C itself

2. the closures of any subclasses of C defined in the same package as C

3. the closures of the classes of all permitted subobjects of instances of C.

The closure of a package P is the set of classes made up of the union of the closures of all the
classes defined in P.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 11

Package Definitions Information Architecture

2.7 Package Definitions
For purposes of the generic interface, the definition of a package has the following elements:

1. The package’s name, which denotes the package’s object identifier.

2. The definitions of the one or more classes which make up the package.

3. The identification of zero or more concrete classes in the package to which the Create
function applies (in every implementation of the service).

4. The identification of zero or more concrete classes in the package to which the Encode
function applies (in every implementation of the service).

5. The explicit identification of the zero or more classes in other packages that appear in the
package’s closure (as a convenience to the reader).

2.8 Workspaces
Two application-specific APIs may involve the same class, the two APIs may employ different
implementations of the service, for example, because they are supplied by different vendors, and
the two implementations may represent private objects differently. If it is to use both
application-specific APIs, the client must be able to specify which service implementation is to
create an instance of the class that both support. In addition, the client may wish to present the
object at both application-specific APIs, in which case the object must be converted from one
internal format to another. Such interworking between service implementations is achieved by
means of workspaces.

The service maintains private objects in workspaces. A ‘workspace’ is a repository for instances
of classes in the closures of one or more packages associated with the workspace. The
implementations of the OM interface functions may differ from one workspace to another. A
package may be associated with any number of workspaces. The OM package is implicitly
associated with every workspace. Other packages may be explicitly associated with a
workspace when it is defined.

The interface includes functions for effectively copying and moving objects from one workspace
to another, provided that the objects’ classes are associated with both. How workspaces are
created, made known to the client and destroyed, however, is outside the scope of this
document. In all cases, destroying a workspace effectively applies the Delete function to each
private object it contains.

Notes:

1. Typically workspaces are created, made known to the client, and destroyed by
means of application-specific APIs designed to be used in conjunction with the
present interface.

2. Failure to delete private objects before closing the workspace could result in
consumption of resources by those objects with no mechanism available for
freeing those resources.

12 X/Open CAE Specification (1994)

Information Architecture Storage Management

2.9 Storage Management
An object occupies storage. A public object occupies main storage, and a private object occupies
main storage, secondary storage or a combination of the two, at the option of the workspace in
which the object resides. The storage occupied by a public object is directly accessible to the
client, while the storage occupied by a private object is not. The storage an object occupies is
allocated and released by the client if the object is client-generated, or by the service if the object
is service-generated or private.

An object is accessed via an object handle . An object handle is the means by which the client
supplies an object to the service as an argument of an interface function, and the service returns
an object as the result of an interface function to the client. For a public object, the object handle
is simply a pointer to the data structure containing the object attributes. For a private object, the
object handle is a pointer to a data structure whose layout is implementation-specific and is
unknown to the client.

The client creates a client-generated public object by using normal programming language
constructs. The client is responsible for managing any storage involved.

The service creates service-generated public objects and allocates any necessary storage. The
client destroys a service-generated public object and releases the storage by applying the Delete
function to it.

At any point in time, a private object is either accessible or inaccessible to the client. An object is
accessible if the client possesses a valid object handle for it. The object is inaccessible otherwise,
i.e. the client does not possess an object handle, or the handle is invalid. Should the client
designate an inaccessible object as an argument, the effect on the service’s subsequent behaviour
is undefined.

The service makes a private object accessible by returning an object handle as the result of a
function in this or another (application-specific) interface. The client makes such an object
inaccessible by applying the Delete function to it, or by supplying it as an argument of any other
function that, according to the specification, makes the argument inaccessible. Applying Delete
to a service-generated public object does not make its private subobjects inaccessible: the
handles to these private subobjects stay valid. They can always be made accessible again by
means of the Get function.

A private object is also destroyed when the workspace containing it is destroyed. A service-
generated public object is unaffected by the destruction of the workspace that generated it, but
the handles to the private sub-objects are invalidated. A client-generated public object is not
associated with a workspace.

The storage occupied by a service-generated public object must not be changed by the client, and
the effect of doing so is undefined. This includes all values (strings, subobjects, integers, etc.).
It is possible, however, to use a value that is a private subobject as an argument to an interface
function that modifies the subobject.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 13

Information Architecture

14 X/Open CAE Specification (1994)

Chapter 3

Information Syntaxes

3.1 Introduction
This Chapter defines the permitted syntaxes of attribute values. The syntaxes are highly aligned
with the types and type constructors of ASN.1. How a value of each syntax is represented in the
C interface is specified by the Value data type (see Section 4.2 on page 21).

3.2 Syntax Templates
The names of certain syntaxes are constructed from syntax templates. A syntax template is a
lexical construct comprising a primary identifier followed by an asterisk enclosed in
parentheses: identifier (*).

A syntax template encompasses a group of related syntaxes. Any member of the group, without
distinction, is denoted by the primary identifier alone: identifier. A particular member is denoted
by the template with the asterisk replaced by one of a set of secondary identifiers associated with
the template: identifier1 (identifier2).

3.3 Syntaxes
A variety of syntaxes are defined. Most are functionally equivalent to ASN.1 types, as
documented in Section 3.6 through to Section 3.9.

The following syntaxes are defined:

Boolean
A value of this syntax is a Boolean, that is, may be false or true.

Enumeration (*)
A value of any syntax encompassed by this syntax template is one of a set of values
associated with the syntax. The only significant characteristic of the values is that they are
distinct.

The group of syntaxes encompassed by this template is open-ended. Zero or more
members are added to the group by each package definition. The secondary identifiers that
denote the members are assigned there also.

Integer
A value of this syntax is a (positive or negative) integer.

Real
A value of this syntax is a real number, that is, it is composed of a (positive or negative)
mantissa and an integer exponent.

Null
The one value of this syntax is a valueless placeholder.

Object (*)
A value of any syntax encompassed by this syntax template is an object, any instance of a
class associated with the syntax.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 15

Syntaxes Information Syntaxes

The group of syntaxes encompassed by this template is open-ended. One member is added
to the group by each class definition. The secondary identifier that denotes the member is
the name of the class.

String (*)
A value of any syntax encompassed by this syntax template is a string (as defined in Section
3.4), whose form and meaning are associated with the syntax.

The group of syntaxes encompassed by this template is closed. One syntax is defined for
each ASN.1 string type. The secondary identifier that denotes the member is, in general, the
first word of the type’s name.

16 X/Open CAE Specification (1994)

Information Syntaxes Strings

3.4 Strings
A string is an ordered sequence of zero or more bits, octets or characters. A string is categorised
as either a bit string, an octet string or a character string, depending upon whether it comprises
bits, octets or characters, respectively.

The value length of a string is the number of bits in a bit string, octets in an octet string, or
characters in a character string. It is confined to the interval [0, 232). Any constraints on the
value length of a string are specified in the appropriate class definitions.

Note: The value length of an attribute value that is a string may not be equal to the number of
octets required to represent the value, as for some character encodings the
representation of a single character may require several octets.

The syntaxes that form the String group are identified in Table 3-1 below, which gives the
secondary identifier assigned to each such syntax. The identifiers in the first, second and third
columns denote the syntaxes of bit, octet and character strings, respectively. The String group
comprises all syntaxes identified in the table.

Bit String Octet String Character String
Identifier Identifier Identifier
Bit Encoding1 General

Object Identifier2 Generalised Time
Octet Graphic

IA5
Numeric
Object Descriptor
Printable
Teletex
UTC Time
Universal
Unrestricted3

Videotex
Visible

1 The encoding method used to generate the string contents is determined by the context
in which this syntax is used. For example, when used in the context of an object of class
Encoding, the Rules attribute of the object defines which encoding method was used to
generate the string (currently limited to either ber or canonical-ber).
2The octets are those the BER permit for the contents octets of the encoding of a value of
ASN.1’s Object Identifier type.

3Values of this syntax are represented in their BER encoded form.

Table 3-1 String Syntax Identifiers

OSI-Abstract-Data Manipulation API (XOM), Issue 2 17

Representation of String Values Information Syntaxes

3.5 Representation of String Values
In the service interface, a string value is represented by the string data type. This is defined in
Section 4.2.13 on page 29. The length of a string is the number of octets by which it is
represented at the interface. It is confined to the interval [0,232).

Notes: 1. An "octet" is defined as an ordered sequence of eight bits. Octets can be stored in
larger objects if appropriate to a particular architecture.

2. Note that the length of a character string may not equal the number of characters
it comprises, because for example a single character may be represented using
several octets.

When passing large string values across the interface it may be necessary to segment them. A
segment is any zero or more contiguous octets of a string value. Segment boundaries are without
semantic significance.

3.6 Relationship to ASN.1 Simple Types
As shown in Table 3-2 below, for every ASN.1 simple type except Real, there is an OM syntax
that is functionally equivalent to it. The simple types are listed in the first column of the table,
and the corresponding syntax is in the second.

Type Syntaxes
Bit String String (Bit)
Boolean Boolean
Integer Integer
Null Null
Object Identifier String (Object Identifier)
Octet String String (Octet)
Real Real

Table 3-2 Syntax for ASN.1’s Simple Types

3.7 Relationship to ASN.1 Useful Types
As shown in Table 3-3 below, for every ASN.1 useful type, there is an OM syntax that is
functionally equivalent to it. The useful types are listed in the first column of the table, and the
corresponding syntaxes are in the second.

Type Syntax
External Object (External)
Generalised Time String (Generalised Time)
Object Descriptor String (Object Descriptor)
Universal Time String (UTC Time)

Table 3-3 Syntaxes for ASN.1’s Useful Types

18 X/Open CAE Specification (1994)

Information Syntaxes Relationship to ASN.1 Character String Types

3.8 Relationship to ASN.1 Character String Types
As shown in Table 3-4 below, for every ASN.1 character string type, there is an OM syntax that is
functionally equivalent to it. The ASN.1 character string types are listed in the first column of
the table, and the corresponding syntax in the second.

Type Syntax
General String String (General)
Graphic String String (Graphic)
IA5 String String (IA5)
- String (Local)
Numeric String String (Numeric)
Printable String String (Printable)
Teletex String String (Teletex)
Universal String String(Universal)
Unrestricted String String(Unrestricted)
Videotex String String (Videotex)
Visible String String (Visible)

Table 3-4 Syntaxes for ASN.1’s Character String Types

OSI-Abstract-Data Manipulation API (XOM), Issue 2 19

Relationship to ASN.1 Type Constructors Information Syntaxes

3.9 Relationship to ASN.1 Type Constructors
As shown in Table 3-5 below, for some, but not all, ASN.1 type constructors there are
functionally equivalent OM syntaxes. The constructors are listed in the first column of the table,
and the corresponding syntaxes are in the second.

Type Constructor Syntax
Any any1

Choice Object
Enumerated Enumeration
Selection none2

Sequence Object
Sequence Of Object
Set Object
Set Of Object
Tagged none3

1 This type constructor denotes that any one of the other valid OM syntaxes are
permitted as a value for the OM attribute, within the restrictions laid out for the
interpretation of this syntax for a particular package.
2This type constructor, a purely specification-time phenomenon, has no corresponding
syntax.
3This type constructor is used to distinguish the alternatives of a choice or the elements
of a sequence or set. This function is performed by attribute types, as indicated in the
text.

Table 3-5 Syntaxes for ASN.1’s Type Constructors

The effects of the principal type constructors may be achieved, in any of a variety of ways, by
using objects to group attributes, or by using attributes to group values. An OM application
designer may (but need not) model these constructors as classes of the following kinds:

• Choice
An attribute type may be defined for each alternative, exactly one being permitted in an
instance of the class.

• Sequence or Set
An attribute type may be defined for each sequence or set element.

• Sequence Of or Set Of
A single, multi-valued attribute may be defined.

An ASN.1 definition of an EnumeratedType component of a structured type is generally
mapped to an OM attribute with an OM syntax Enumeration (*) in this interface.

If an element of an ASN.1 construct is optional, then it is recommended that its corresponding
OM attribute in the service’s class definitions should also be defined as optional (that is, Value
Number 0-1, or 0-or-more). This leads to consistency in the manner in which classes are defined.

Note: Some packages, which were defined using a previous version of this specification, may
use a different convention, where an optional enumeration sequence element is
represented by defining an additional enumeration member, not-present.

20 X/Open CAE Specification (1994)

Chapter 4

Service Interface

4.1 Introduction
This Chapter defines the service interface. It specifies the functions that the service makes
available to the client, the data types of which the arguments and results of those functions are
data values, and the return codes that denote the outcomes (in particular, the exceptions) that
the functions may report. This Chapter also summarises the declarations that define the C
service interface.

4.2 Data Types
This section defines, and the following table lists, the data types of the service interface. The
data types of both the generic and C interfaces are specified. Those of the C interface are
repeated in Section 4.5, Declaration Summary, which serves as a summary and a reference.

Data Type Description
Boolean type definition for a Boolean data value.
Descriptor type definition for describing an attribute type and value.
Enumeration type definition for an Enumerated data value.
Exclusions type definition for ‘exclusions’ argument for the Get function.
Integer type definition for an Integer data value.
Modifications type definition for ‘modifications’ argument for the Put function.
Object type definition for a handle to either a private or a public object.
Object Identifier type definition for an Object Identifier data value.

type definition for a handle to an object in an implementation-defined,
or private, representation.

Private Object

type definition for a defined representation of an object that can be directly
interrogated by a programmer.

Public Object

Real type definition for Real data value.
type definition for a value returned from all OM functions indicating either
that the function succeeded or why it failed.

Return Code

String type definition for a data value of ‘String’ syntax.
Syntax type definition for identifying a syntax type.
Type type definition for identifying an OM attribute type.
Type List type definition for enumerating a sequence of OM attribute types.
Value type definition for representing any data value.

type definition for designating a particular location within a String data value.Value Position
type definition for identifying an application-speci fic API that implements OM,
such as directory or message handling.

Workspace

Table 4-1 Service Interface Data Types

OSI-Abstract-Data Manipulation API (XOM), Issue 2 21

Data Types Service Interface

Some data types are defined in terms of the following ‘intermediate data types’, whose precise
definitions in C are system-defined:

Sint The positive and negative integers representable in 16 bits.

Sint16 The positive and negative integers representable in 16 bits.

Sint32 The positive and negative integers representable in 32 bits.

Uint The non-negative integers representable in 16 bits.

Uint16 The non-negative integers representable in 16 bits.

Uint32 The non-negative integers representable in 32 bits.

Double The positive and negative floating point numbers representable in 64 bits.

The OM_sint and OM_uint data types are defined above by the ranges of integers they must
accommodate. Implementations can define them by the range of integers the host machine’s
word size permits. The following examples will work on most machines.

typedef int OM_sint;
typedef int OM_sint16;
typedef long int OM_sint32;
typedef unsigned OM_uint;
typedef unsigned OM_uint16;
typedef long unsigned OM_uint32;
typedef system-defined e.g., double OM_double;

4.2.1 Boolean

NAME
Boolean - type definition for a Boolean data value

C DECLARATION

typedef OM_uint32 OM_boolean;

DESCRIPTION
A data value of this data type is a Boolean, that is, it is either false or true.

In the C interface, false is denoted by zero (OM_FALSE), true by any other integer, although
the symbolic constant (OM_TRUE) refers to the integer one specifically.

4.2.2 Descriptor

NAME
Descriptor - type definition for describing an attribute type and value

C DECLARATION

typedef struct OM_descriptor_struct
{

OM_type type;
OM_syntax syntax;
OM_value value;

} OM_descriptor;

Note: Other components are encoded in high bits of the syntax member.

22 X/Open CAE Specification (1994)

Service Interface Data Types

DESCRIPTION
A data value of this type is a descriptor, which embodies an attribute value. A sequence of
descriptors (an array in C) can represent all the values of all the attributes of an object, and
is the representation called a Public Object. A descriptor has the following components:

Type (Type)
Identifies the type of the attribute value.

Syntax (Syntax)
Identifies the syntax of the attribute value.

In the C interface, Long-String to Private below are encoded in the high-order bits of this
structure member. The syntax should always be masked with the constant
(OM_S_SYNTAX) because of this. For example:

my_syntax = my_public_object[3].syntax & OM_S_SYNTAX;

my_public_object[4].syntax =
my_syntax + (my_public_object[4].syntax & ˜OM_S_SYNTAX);

Alternatively, the macros OM_SYNTAX(d) and OM_SYNTAX_ASSIGN(d,s) may be
used for this purpose:

my_syntax = OM_SYNTAX(my_public_object[3]) ;
OM_SYNTAX_ASSIGN(my_public_object[4], my_syntax) ;

Long-String (Boolean)
True, if and only, if the descriptor is service-generated and the length of the value is
greater than an implementation-defined limit.

In the C interface, this component occupies bit 15 (0x8000) of the syntax and is
represented by the constant (OM_S_LONG_STRING).

The macro OM_IS_LONG_STRING(d) may be used to test this flag.

No-Value (Boolean)
Only true if the descriptor is service-generated and the value is not present (because
exclude-values or exclude-multiples was set in the call to Get()).

In the C interface, this component occupies bit 14 (0x4000) of the syntax and is
represented by the constant (OM_S_NO_VALUE).

The macro OM_HAS_VALUE(d) may be used to test this flag.

Local-String (Boolean)
Only significant if the Syntax is String(*). True if, and only if, the string is represented
in an implementation-defined local character set. The local character set may be more
amenable for use as keyboard input or display output than the non-local character set,
and may include specific treatment of line termination sequences. Certain interface
functions may convert information in string syntaxes to or from the local
representation, which may result in a loss of information.

In the C interface, this component occupies bit 13 (0x2000) of the syntax and is
represented by the constant (OM_S_LOCAL_STRING).

The macro OM_IS_LOCAL_STRING(d) may be used to test this flag, and
OM_SET_LONG_STRING(d) to set it.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 23

Data Types Service Interface

Service-Generated (Boolean)
True if, and only if, the descriptor is service-generated and the first descriptor of a
public object, or the defined part of a private object (see Chapter 4).

In the C interface, this component occupies bit 12 (0x1000) of the syntax and is
represented by the constant (OM_S_SERVICE_GENERATED).

The macro OM_IS_SERVICE_GENERATED(d) may be used to test this flag.

Private (Boolean)
True if, and only if, the descriptor in the service-generated public object contains a
reference to the handle of a private subobject, or in the defined part of a private object.

Note: This applies only when the descriptor is service-generated. The client need not
set this bit in a client-generated descriptor containing a reference to a private
object.

In the C interface, this component occupies bit 11 (0x0800) of the syntax and is
represented by the constant (OM_S_PRIVATE).

The macro OM_IS_PRIVATE(d) may be used to test this flag.

Value (Value)
The attribute value.

4.2.3 Enumeration

NAME
Enumeration - type definition for an Enumerated data value.

C DECLARATION

typedef OM_sint32 OM_enumeration;

DESCRIPTION
A data value of this data type is an attribute value whose syntax is an Enumeration syntax.

4.2.4 Exclusions

NAME
Exclusions - type definition for exclusions argument of the Get function

C DECLARATION

typedef OM_uint OM_exclusions;

DESCRIPTION
A data value of this data type is an unordered set of one or more values, all of which are
distinct. Each value denotes an exclusion, as defined by the Get function, and is chosen
from the following set:

exclude-all-but-these-types
exclude-multiples
exclude-all-but-these-values
exclude-values
exclude-subobjects
exclude-descriptors

Alternatively, the single value no-exclusions may be chosen, which selects the entire object.

24 X/Open CAE Specification (1994)

Service Interface Data Types

In the C interface, each value except no-exclusions is represented by a distinct bit, the
presence of the value being represented as one, and its absence as zero. Thus multiple
exclusions are requested by adding or, equivalently, or-ing the values that denote the
individual exclusions.

4.2.5 Integer

NAME
Integer - type definition for an Integer data value

C DECLARATION

typedef OM_sint32 OM_integer;

DESCRIPTION
A data value of this data type is an attribute value whose syntax is Integer.

4.2.6 Modification

NAME
Modification - type definition for modifications argument of the Put function.

C DECLARATION

typedef OM_uint OM_modification;

DESCRIPTION
A data value of this data type denotes a kind of modification, as defined by the Put function.
It is chosen from the following set:

insert-at-beginning
insert-at-certain-point
insert-at-end
replace-all
replace-certain-values.

4.2.7 Object

NAME
Object - type definition for a handle to either a private or a public object

C DECLARATION

typedef struct OM_descriptor_struct *OM_object;

DESCRIPTION
A data value of this data type represents an object, public or private. It is an ordered
sequence of one or more instances of the Descriptor data type. See the Private Object and
Public Object data types for constraints upon that sequence.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 25

Data Types Service Interface

4.2.8 Object Identifier

NAME
Object Identifier - type definition for an Object Identifier data value

C DECLARATION

typedef OM_string OM_object_identifier;

DESCRIPTION
A data value of this data type contains an octet string that comprises the contents octets of
the BER encoding of an ASN.1 object identifier.

C Declaration of Object Identifiers

Every application program that makes use of a class or other Object Identifier must
explicitly import it into every compilation unit (C source module) that uses it. Each such
class or Object Identifier name must be explicitly exported from just one compilation
module. Most application programs will find it convenient to export all the names they use
from the same compilation unit. Exporting and importing is done by the following two
macros:

OM_IMPORT(class_name)
OM_IMPORT(OID_name)

This macro makes the class or other Object Identifier constants available within a
compilation unit.

OM_EXPORT(class_name)
OM_EXPORT(OID_name)

This macro allocates memory for the constants that represent the class or other Object
Identifier.

Package implementors must ensure that there are constants defined in the appropriate
header files, with the define identifier having the prefix OMP_O_ followed by the variable
name for the object identifier. The constant itself provides the hexadecimal value of the
object identifier string. See the example for OMP_O_OM_BER (in Example 4-0 on page 58).

Use of Object Identifiers in C

OM_OID_DESC(type, OID_name)

This macro initialises a descriptor. It sets the type component to that given, sets the syntax
component to (OM_S_OBJECT_IDENTIFIER_STRING), and sets the value component to be
the given Object Identifier.

OM_NULL_DESCRIPTOR

This macro initialises a descriptor to mark the end of a client-allocated public object.

OM_C_class_name

For each class, and for other Object Identifiers, there is a global variable of type
OM_STRING with the same name (for example, the External class has a variable called
OM_C_EXTERNAL; the Object Identifier for BER rules has a variable called OM_BER). This
variable can be supplied as an argument to functions when required. This variable is valid
only when it is exported by an OM_EXPORT macro, and imported by an OM_IMPORT
macro, in the compilation units that use it. This variable cannot form part of a descriptor,
but the value of its length and elements components can be used.

26 X/Open CAE Specification (1994)

Service Interface Data Types

/* Examples of the use of the macros and constants. */

#include <xom.h>

OM_IMPORT(OM_C_ENCODING)
OM_IMPORT(OM_CANONICAL_BER)

/* The following sequence must appear in exactly one compilation
* unit in place of the above:
*
* #include <xom.h>
*
* OM_EXPORT(OM_C_ENCODING)
* OM_EXPORT(OM_CANONICAL_BER)
*/

main()
{
/* Use #1 - Define a public object of class Encoding

* Note that xxx is a Message Handling class which can be encoded */
OM_descriptor my_public_object[] = {

OM_OID_DESC(OM_CLASS, OM_C_ENCODING),
OM_OID_DESC(OM_OBJECT_CLASS, MA_C_xxx),
{ OM_OBJECT_ENCODING, OM_S_ENCODING, some_BER_value },
OM_OID_DESC(OM_RULES, OM_CANONICAL_BER),
OM_NULL_DESCRIPTOR
};

/* Use #2 - Pass class Encoding as an argument to om_instance() */
return_code = om_instance(my_object, OM_C_ENCODING, &boolean_result);
}

4.2.9 Private Object

NAME
Private Object - type definition for a handle to an object in an implementation-defined, or
private, representation.

C DECLARATION

typedef OM_object OM_private_object;

DESCRIPTION
A data value of this data type is the designator or handle for a private object. It comprises a
single descriptor whose Type component is private-object and whose Syntax and Value
components are unspecified.

Note: The descriptor’s Syntax and Value components are essential to the service’s proper
operation with respect to the private object. Of no concern to the client, their
nature is of concern to service implementors and is therefore further specified in
Chapter 4 and Chapter 5. The service-generated (OM_S_SERVICE_GENERATED)
and private-object (OM_S_PRIVATE) bits in the syntax component are always set
by the service, though they are of no concern to the client.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 27

Data Types Service Interface

4.2.10 Public Object

NAME
Public Object - type definition for a defined representation of an object that can be directly
interrogated by a programmer

C DECLARATION

typedef OM_object OM_public_object;

DESCRIPTION
A data value of this data type is a public object. It comprises one or (typically) more
descriptors, all but the last of which represent values of attributes of the object.

The descriptors for the values of a particular attribute having two or more values are
adjacent to one another in the sequence. Their order is that of the values they represent.
The order of the resulting groups of descriptors is unspecified.

To the extent that it is represented among the descriptors, the Class attribute specific to class
Object shall be represented before any other attributes.

Whether or not the class attribute is present, the syntax field of the first descriptor must
have the (OM_S_SERVICE_GENERATED) bit set or cleared appropriately.

The last descriptor signals the end of the sequence of descriptors. Its Type component is
no-more-types, and its Syntax component and Value component are wholly unspecified.

4.2.11 Real

NAME
Real - type definition for a Real data value

C DECLARATION

typedef OM_double OM_real;

DESCRIPTION
A data value of this data type is an attribute value whose syntax is Real.

4.2.12 Return Code

NAME
Return Code - type definition for a value returned from all OM functions indicating either
that the function succeeded or why it failed

C DECLARATION

typedef OM_uint OM_return_code;

DESCRIPTION
A data value of this data type is the integer in the interval [0, 216) that denotes an outcome of
an interface function. It is chosen from the set specified in Section 4.3 on page 34.

This document employs integers in the (narrower) interval [0, 215) to denote the return
codes they define.

28 X/Open CAE Specification (1994)

Service Interface Data Types

4.2.13 String

NAME
String - type definition for a data value of String syntax

C DECLARATION

typedef OM_uint32 OM_string_length;

typedef struct {
OM_string_length length;
void *elements;

} OM_string;

#define OM_STRING(string) \
{ (OM_string_length)(sizeof(string)-1), (string) }

DESCRIPTION
A data value of this data type is a string (that is, an instance of a String syntax). In the C
interface, a string is represented as either a length-specified or a null-terminated string. A
string has the following components:

Length (String Length)
The number of octets by means of which the string is represented or the value length-
unspecified if the string is null-terminated.

Elements
The string’s elements (the octets that make up its value).

In the C interface, the bits of a bit string are represented as a sequence of octets as
follows. The first octet stores the number of unused bits in the last octet. The bits in the
bit string, commencing with the first bit and proceeding to the trailing bit, shall be
placed in bits 7 to 0 of the second octet, followed by bits 7 to 0 of the third octet,
followed by bits 7 to 0 of each octet in turn, followed by as many bits as are needed of
the final octet, commencing with bit 7.

2nd octet 3rd octet

position in bit string: 0 1 2 3 4 5 6 7 8 9 . . .

bit position in octet: 7 6 5 4 3 2 1 0 7 6 . . .

↑ ↑
most least

significant significant

bit bit

The service supplies a string value in the length-specified form. The client may supply
a string value to the service in either form.

In the C interface, the characters of a character string are represented as any sequence
of octets admissible as the primitive contents octets of the BER encoding of a value of
the ASN.1 type that defines the variety of character string in question. Universal and
Unrestricted strings can contain null octets. Only the length-specified form shall be used
to represent strings of these types. When either form is used, a null character (that is, an
instance of the character whose encoding is zero) follows.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 29

Data Types Service Interface

In the C interface, a macro (OM_STRING) is provided for fabricating a data value of
this data type given only the value of its Elements component. The macro, however,
applies to octet strings and character strings but not to bit strings.

4.2.14 Syntax

NAME
Syntax - type definition for identifying a syntax type

C DECLARATION

typedef OM_uint16 OM_syntax;

DESCRIPTION
A data value of this data type is an integer in the interval [0, 29) that denotes an individual
syntax, or a set of syntaxes taken together.

The data value is chosen from among the following:

• boolean, integer, null and real. Each denotes the syntax of the same name.

• generalised-time-string, object-descriptor-string, object-identifier-string and utc-
time-string. Each denotes the String syntax of the same name.

• enumeration and object. Each denotes a syntax associated with the syntax template of
the same name.

• bit-string, encoding, general-string, graphic-string, ia5-string, numeric-string, octet-
string, printable-string, teletex-string, universal string, unrestricted string, videotex-
string and visible-string. Each denotes the String syntax of the same name.

This document employs integers in the (narrower) interval [0, 29) to denote the syntaxes
they define. The range [29, 210) is reserved for vendor extensions. Wherever possible, the
integers used are the same as the corresponding ASN.1 universal class number. The
exception to this rule is the uppermost integer available in the range defined by this
document.

4.2.15 Type

NAME
Type - type definition for identifying an OM attribute type.

C DECLARATION

typedef OM_uint16 OM_type;

DESCRIPTION
A data value of this data type is an integer in the interval [0, 216) that denotes a type in the
context of a package, except that the values no-more-types, and private-object have the
meanings given them by the Type List and Private Object data types, respectively.

This document employs integers in the (narrower) interval [0, 215) to denote the types they
define.

30 X/Open CAE Specification (1994)

Service Interface Data Types

4.2.16 Type List

NAME
Type List - type definition for enumerating a sequence of OM attribute types

C DECLARATION

typedef OM_type *OM_type_list;

DESCRIPTION
A data value of this data type is an unordered sequence of zero or more type numbers, each
an instance of the Type data type.

In the C interface, an additional data value, no-more-types, follows (and thus delimits) the
sequence. The C representation of the sequence is an array.

4.2.17 Value

NAME
Value - type definition for representing any data value

C DECLARATION

typedef union OM_value_union {
OM_string string;
OM_boolean boolean;
OM_enumeration enumeration;
OM_integer integer;
OM_real real;

} OM_value;

Note that the identifier OM_value_union is defined for reasons of compilation order. It is
used in the definition of the Descriptor data type.

Data values of this type are used for representing all types of values, including objects.
String, boolean, enumeration and integer values are accessed directly, by dereferencing the
appropriate member of the OM_value union. Object values, however, are accessed
indirectly using the following macros:

#define OM_OBJ_VALUE(v) ((OM_object)((v).string.elements))
Converts a value v of type OM_value into a value of type OM_object.

OM_OBJ_VALUE_ASSIGN(v,o) (((v).string.elements = o)
Assigns to a value v of type OM_value the object o of type OM_object.

Note: In order to provide backwards compatibility with applications that access an
object identifier using the syntax value.object.object , an implementation
may supply the following alternative definition.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 31

Data Types Service Interface

typedef struct {
OM_uint32 padding;
OM_object object;

} OM_padded_object;

typedef union OM_value_union {
OM_string string;
OM_boolean boolean;
OM_enumeration enumeration;
OM_integer integer;
OM_padded_object object;

} OM_value;

Note: This is designed to allow static initialisation of public objects. While it is realised
that Standard C does not guarantee that a union of structures will have anything
but their first elements aligned, these constructs will work on most architectures
and compilers.

DESCRIPTION
A data value of this data type is an attribute value.

Note: The value length of an attribute value that is a string may not be equal to the
number of octets required to represent the value, as for some character encodings
the representation of a single character may require several octets.

Its components are wholly unspecified if the value’s type is no-more-types, or if the value’s
syntax is no-value. It has (exactly) one of the following components otherwise:

String (String)
The value if its syntax is String.

Boolean (Boolean)
The value if its syntax is Boolean.

Enumeration (Enumeration)
The value if its syntax is Enumeration.

Integer (Integer)
The value if its syntax is Integer.

Object (Object)
The value if its syntax is Object.

Real (Real)
The value if its syntax is Real.

A data value of this data type appears only as a component of a descriptor. Thus it is
always accompanied by indicators of the value’s syntax. The latter indicator reveals which
component above is present.

32 X/Open CAE Specification (1994)

Service Interface Data Types

4.2.18 Value Length

NAME
Value Length - the number of bits, octets or characters in a string

C DECLARATION

typedef OM_uint32 OM_value_length;

DESCRIPTION
A data value of this data type is the number of bits in a bit string, octets in an octet string, or
characters in a character string, an integer in the interval [0, 232).

Note: This data type is not used in the definition of the interface. It is provided for use
by client programmers in defining attribute constraints.

4.2.19 Value Position

NAME
Value Position - type definition for denoting an attribute value’s position within an attribute.

C DECLARATION

typedef OM_uint32 OM_value_position;

DESCRIPTION
A data value of this data type is the integer in the interval [0, 232-1) that denotes the position
of a value within an attribute, except that the value all-values has the meaning given to it
by the Get function.

4.2.20 Workspace

NAME
Workspace - type definition for identifying an application-specific API that implements OM,
such as directory or message handling.

C DECLARATION

typedef void *OM_workspace;

DESCRIPTION
A data value of this data type is the designator or handle for a workspace.

Note: The nature of the handle is of no concern to the client. However, the nature of the
handle is of concern to service implementors and is therefore further specified in
Chapter 4.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 33

Functions Service Interface

4.3 Functions
This section defines, and the following table lists, the functions of the service interface. The
functions of both the generic and C interfaces are specified. Those of the C interface are repeated
in Section 4.5 on page 58, which serves as a summary and a reference.

Function Description
Copy Copy a private object.
Copy Value Copy a string between private objects.
Create Create a private object.
Decode Decode the result of encoding a private object.
Delete Delete a private or service-generated object.
Encode Encode a private object.
Get Get copies of attribute values from a private object.
Instance Test an object’s class.
Put Put attribute values into a private object.
Read Read a segment of a string in a private object.
Remove Remove attribute values from a private object.
Write Write a segment of a string into a private object.

Table 4-2 Service Interface Functions

As indicated in the table, the service interface comprises a number of functions whose purpose
and range of capabilities are summarised as follows:

Copy
This function creates an independent copy of an existing private object, and all of its
subobjects. The copy is placed in the workspace specified by the client.

Copy Value
This function replaces an existing attribute value or inserts a new value in one private object
with a copy of an existing attribute value found in another. Both values must be strings.

Create
This function creates a new private object that is an instance of a particular class. The object
may be initialised with the attribute values specified as initial in the class’ definition.

The service need not permit the client to explicitly create instances of all classes, but rather
only those indicated, by a package’s definition, as having this property.

Decode
This function creates a new private object that is an exact, but independent, copy of the
object that an existing private object encodes. The encoding identifies the class of the
existing object and the rules used to encode it. The allowed rules include, but are not
limited to, the BER and the canonical BER.

The service need not permit the client to decode instances of all classes, but rather only
those indicated, by a package’s definition, as having this property.

Delete
This function deletes a service-generated public object, or makes a private object
inaccessible.

34 X/Open CAE Specification (1994)

Service Interface Functions

Encode
This function creates a new private object that encodes an existing private object for
conveyance between workspaces, transport via a network, or storage in a file. The client
identifies the encoding rules that the service is to follow. The allowed rules include, but are
not limited to, the BER and the canonical BER.

The service need not permit the client to encode instances of all classes, but rather only
those indicated, by a package’s definition, as having this property.

Get
This function creates a new public object that is an exact, but independent, copy of an
existing private object. The client may request certain exclusions, each of which reduces the
copy to a portion of the original. The client may also request that values are converted from
one syntax to another before they are returned.

The copy may exclude attributes of other than specified types, values at other than specified
positions within an attribute, the values of multi-valued attributes, copies of (not handles
for) subobjects, or all attribute values (revealing only an attribute’s presence).

Instance
This function determines whether an object is an instance of a particular class. The client
can determine an object’s class simply by inspection. The utility of this function is that it
reveals that an object is an instance of a particular class, even if the object is an instance of a
subclass of that class.

Put
This function places or replaces, in one private object, copies of the attribute values of
another public or private object.

The source values may be inserted before any existing destination values, before the value
at a specified position in the destination attribute, or after any existing destination values.
Alternatively, the source values may be substituted for any existing destination values or
for the values at specified positions in the destination attribute.

Read
This function reads a segment of a value of an attribute of a private object. The value must
be a string. The value may first be converted from one syntax to another. The function
enables the client to read an arbitrarily long value without requiring that the service place a
copy of the entire value in memory.

Remove
This function removes and discards particular values of an attribute of a private object. The
attribute itself is removed if no values remain.

Write
This function writes a segment of a value of an attribute to a private object. The value must
be a string. The segment may first be converted from one syntax to another. The written
segment is made the value’s last, any elements beyond it being discarded. The function
enables the client to write an arbitrarily long value without having to place a copy of the
entire value in memory.

In the C interface, the functions are realised by macros. The function prototype in the C
Synopsis clause of a function’s specification is only an exposition aid.

The intent of the interface definition is that each function is atomic, that is, that it either carries
out its assigned task in full and reports success, or fails to carry out even a portion of the task
and reports an exception. However, the service does not guarantee that a task will not
occasionally be carried out in part but not in full.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 35

Functions Service Interface

Whether a function detects and reports each of the exceptions listed in the Errors clause of its
specification is unspecified. If a function detects two or more exceptions, which it reports, is
unspecified. If a function reports an exception for which a return code is defined, however, it
uses that (rather than another) return code to do so.

36 X/Open CAE Specification (1994)

Service Interface copy()

NAME
copy - create a new private object that is an exact, but independent, copy of an existing private
object

SYNOPSIS
[#include <xom.h>]

OM_return_code
om_copy (

const OM_private_object original,
const OM_workspace workspace,
OM_private_object *copy

);

DESCRIPTION
This function creates a new private object, the copy, that is an exact, but independent, copy of an
existing private object, the original. The function is recursive in that copying the original also
copies its subobjects.

ARGUMENTS

Original (Private Object)
The original, which remains accessible.

Workspace (Workspace)
The workspace in which the copy is to be created. The original’s class shall be in a package
associated with this workspace.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It is success or one of the values listed
under Errors below.

Copy (Private Object)
The copy. This result is present if, and only if, the Return Code result is success.

ERRORS
function-interrupted, memory-insufficient, network-error, no-such-class, no-such-object, no-
such-workspace, not-private, permanent-error, pointer-invalid, system-error, temporary-error or
too-many-values.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 37

copy-value() Service Interface

NAME
Copy Value - place or replace a string in one private object with a copy of a string in another
private object

SYNOPSIS
[#include <xom.h>]

OM_return_code
om_copy_value (

const OM_private_object source,
const OM_type source_type,
const OM_value_position source_value_position,
OM_private_object destination,
OM_type destination_type,
OM_value_position destination_value_position

);

DESCRIPTION
This operation places or replaces an attribute value in one private object, the destination, with a
copy of an attribute value in another private object, the source.

The source value shall be a string. If the source value does not have the syntax String(*) , the
error code wrong-value-syntax shall be returned.

If the value of the destination attribute exists, the resulting value shall have the syntax of the
replaced value. If the source value does not have the same syntax as the replaced value, the
error code wrong-value-syntax shall be returned.

If the value of the destination attribute does not exist, the new value shall have the syntax of the
source value. If the syntax of the source value is not compatible with the description of the
destination attribute, the error code wrong-value-syntax shall be returned.

ARGUMENTS

Source (Private Object)
The source, which remains accessible.

Source Type (Type)
Identifies the type of the attribute, one of whose values is to be copied.

Source Value Position (Value Position)
The position within the above attribute of the value to be copied.

Destination (Private Object)
The destination, which remains accessible.

Destination Type (Type)
Identifies the type of the attribute, one of whose values is to be placed or replaced.

Destination Value Position (Value Position)
The position within the above attribute of the value to be placed or replaced.

If the value Position exceeds the number of values present in the destination attribute, the
argument is taken to be equal to that number.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It is success or one of the values listed
under Errors below.

38 X/Open CAE Specification (1994)

Service Interface copy-value()

ERRORS
function-declined, function-interrupted, memory-insufficient, network-error, no-such-object,
no-such-type, not-present, not-private, permanent-error, pointer-invalid, system-error,
temporary-error, wrong-value-length, wrong-value-syntax or wrong-value-type.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 39

create() Service Interface

NAME
Create - create a new private object that is an instance of a particular class

SYNOPSIS
[#include <xom.h>]

OM_return_code
om_create (

const OM_object_identifier class,
const OM_boolean initialize,
const OM_workspace workspace,
OM_private_object *object

);

DESCRIPTION
This function creates a new private object that is an instance of a particular class.

ARGUMENTS

Class (Object Identifier)
Identifies the class of the object to be created. The specified class shall be concrete and shall
be among those that are permissible to be created for its associated package.

Initialize (Boolean)
Whether the created object is to be initialised as specified in the definition of its class. If this
argument is true, the object is made to comprise the attribute values specified as initial
values in the tabular definitions of the object’s class and its superclasses. If this argument is
false, the object is made to comprise the Class attribute alone.

Note: By subsequently adding new values to the object and replacing and removing
existing values, the client can create all conceivable instances of the object’s class.

Workspace (Workspace)
The workspace in which the object is to be created. The specified class shall be in a package
associated with this workspace.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It is success or one of the values listed
under Errors below.

Object (Private Object)
The created object. This result is present if, and only if, the Return Code result is success.

ERRORS
function-declined, function-interrupted, memory-insufficient, network-error, no-such-class, no-
such-workspace, not-concrete, permanent-error, pointer-invalid, system-error or temporary-
error.

40 X/Open CAE Specification (1994)

Service Interface decode()

NAME
Decode - create a new private object that is an exact, but independent, copy of the object that an
existing private object encodes

SYNOPSIS
[#include <xom.h>]

OM_return_code
om_decode (

const OM_private_object encoding,
OM_private_object *original

);

DESCRIPTION
This function creates a new private object, the original, that is an exact, but independent, copy of
the object that an existing private object, the encoding, encodes.

ARGUMENTS

Encoding (Private Object)
The encoding, which remains accessible. It shall be an instance of class Encoding.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It is success or one of the values listed
under Errors below.

Original (Private Object)
The original, which is created in the encoding’s workspace. This result is present if, and
only if, the Return Code result is success.

ERRORS
encoding-invalid, function-declined, function-interrupted, memory-insufficient, network-error,
no-such-class, no-such-object, no-such-rules, not-an-encoding, not-private, permanent-error,
pointer-invalid, system-error, temporary-error, too-many-values, wrong-value-length, wrong-
value-makeup, wrong-value-number, wrong-value-syntax or wrong-value-type.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 41

delete() Service Interface

NAME
Delete - delete a private or service-generated object

SYNOPSIS
[#include <xom.h>]

OM_return_code
om_delete (

OM_object subject
);

DESCRIPTION
This function deletes a service-generated public object, or makes a private object inaccessible. It
is prohibited for use on client-generated public objects.

If applied to a service-generated public object, the function deletes the object and releases any
resources associated with the object, including the space occupied by descriptors and attribute
values. The function is applied recursively to any public subobjects. The handles to the
subobjects will be invalid. There is no effect on any private subobjects. The user should not use
om_delete() directly on public subobjects (for example, subobjects existing within the public
object copy , returned from a call to om_get() with no exclusions), but should only apply the
function to the top-level object (the object pointed to by copy itself), otherwise results are
unspecified.

If applied to a private object, the function makes the object inaccessible. Any existing object
handles for the object are invalidated. The function is applied recursively to any private
subobjects.

ARGUMENTS

Subject (Object)
The subject, which is to be deleted.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It is success or one of the values listed
under Errors below.

ERRORS
function-interrupted, memory-insufficient, network-error, no-such-object, no-such-syntax, no-
such-type, not-the-services, permanent-error, pointer-invalid, system-error or temporary-error.

42 X/Open CAE Specification (1994)

Service Interface encode()

NAME
Encode - create a new private object that encodes an existing private object

SYNOPSIS
[#include <xom.h>]

OM_return_code
om_encode (

const OM_private_object original,
const OM_object_identifier rules,
OM_private_object *encoding

);

DESCRIPTION
This function creates a new private object, the encoding, that exactly and independently encodes
an existing private object, the original. The client identifies the set of rules that the service is to
follow to produce the encoding.

The definition of a package identifies zero or more of its concrete classes to which this function
applies. Thus the function will encode instances of those classes. It will also encode instances of
zero or more additional concrete classes in the package. The identities of these latter classes are
implementation-defined.

ARGUMENTS

Original (Private Object)
The original, which remains accessible.

Rules (Object Identifier)
Identifies the set of rules that the service is to follow to produce the encoding. The defined
values of this argument are those of the Rules attribute specific to the Encoding class.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It is success or one of the values listed
under Errors below.

Encoding (Private Object)
The encoding, an instance of class Encoding, which is created in the original’s workspace.
This result is present if, and only if, the Return Code result is success.

ERRORS
function-declined, function-interrupted, memory-insufficient, network-error, no-such-object,
no-such-rules, not-private, permanent-error, pointer-invalid, system-error or temporary-error.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 43

get() Service Interface

NAME
Get - create a public copy of all or particular parts of a private object

SYNOPSIS
[#include <xom.h>]

OM_return_code
om_get (

const OM_private_object original,
const OM_exclusions exclusions,
const OM_type_list included_types,
const OM_boolean local_strings,
const OM_value_position initial_value,
const OM_value_position limiting_value,
OM_public_object *copy,
OM_value_position *total_number

);

DESCRIPTION
This operation creates a new public object that is a copy of an existing private object, the
original. The client may request certain exclusions, each of which reduces the copy to a portion
of the original. The copy is an independent copy unless the use of exclude-subobjects results in
the sharing of subobjects.

One exclusion is always requested implicitly. For each attribute value in the original that is a
string whose length exceeds an implementation-defined number, the copy includes a descriptor
that omits the elements (but not the length) of the string; the Elements component of the String
component of the Value component of the descriptor is elements-unspecified, and the Long-
String bit of the Syntax component is set to true.

Note: The client can access long values by means of the Read function.

ARGUMENTS

Original (Private Object)
The original, which remains accessible.

Exclusions (Exclusions)
Explicit requests for zero or more exclusions, each of which reduces the copy to a prescribed
portion of the original. The exclusions apply to the attributes of the object but not to those of
its subobjects.

Apart from no-exclusions, each value is chosen from the following list. When multiple
exclusions are specified each is applied in the order in which it appears in the list, with
lower numbered exclusions having precedence over higher numbered exclusions. If, after
the application of an exclusion, that portion of the object would not be returned, no further
exclusions need be applied to that portion.

• exclude-all-but-these-types
The copy includes descriptors encompassing only attributes of specified types. This
exclusion provides a means for determining the values of specified attributes, as well as
the syntaxes of those values.

44 X/Open CAE Specification (1994)

Service Interface get()

• exclude-multiples
The copy includes a single descriptor for each attribute (actually) having two or more
values, rather than one descriptor for each value. Each such descriptor contains no
attribute value and the No-Value bit of the syntax component is set.

If the attribute (actually) has values of two or more syntaxes, the descriptor identifies
one of those syntaxes, but which one is unspecified.

This exclusion provides a means for discerning the presence of multi-valued attributes
without simultaneously getting their values.

• exclude-all-but-these-values
The copy includes descriptors encompassing only values at specified positions within an
attribute.

When used in conjunction with the exclude-all-but-these-types exclusion, this exclusion
provides a means for determining the values of a specified attribute, as well as the
syntaxes of those values, one or more but not all attributes at a time.

• exclude-values
The copy includes a single descriptor for each attribute value, but the descriptor does
not contain the value, and the No-Value bit of the syntax component is set.

This exclusion provides a means for determining an objects composition, that is, the
type and syntax of each of its attribute values.

• exclude-subobjects
The copy includes, for each value whose syntax is object, a descriptor containing an
object handle for the original private subobject, rather than a public copy of it. This
handle thus makes that subobject accessible for use in subsequent function calls.

This exclusion provides a means for examining an object one level at a time.

• exclude-descriptors
When this exclusion is specified, no descriptors are returned and the copy result is not
present. The total number result reflects the number of descriptors that would have
been returned by applying the other inclusion and exclusion specifications.

This exclusion provides an attribute analysis capability. For instance, the total number
of values in a multi-valued attribute can be determined by specifying an inclusion of the
specific attribute type, and exclusions of exclude-all-but-these-types, exclude-
subobjects and exclude-descriptors.

Note: The exclude-all-but-these-values exclusion affects the choice of descriptors, while
the exclude-values exclusion affects the composition of descriptors.

Included Types (Type List)
Relevant if, and only if, the exclude-all-but-these-types exclusion is requested, in which
case it identifies the types of the attributes to be included in the copy (provided that they
appear in the original).

Local Strings (Boolean)
If true, indicates that all String(*) values included in the copy are to be translated into the
implementation-defined local character set representation (which may entail the loss of
some information).

OSI-Abstract-Data Manipulation API (XOM), Issue 2 45

get() Service Interface

Initial Value (Value Position)
Relevant if, and only if, the exclude-all-but-these-values exclusion is requested, in which
case it identifies the position within each attribute of the first value to be included in the
copy.

If it is all-values or exceeds the number of values present in an attribute, the argument is
taken to be equal to that number.

Limiting Value (Value Position)
Relevant if, and only if, the exclude-all-but-these-values exclusion is requested, in which
case it identifies the position within each attribute one beyond that of the last value to be
included in the copy. If this argument is not greater than the Initial Value argument, no
values are included (and hence no descriptors are returned).

If it is all-values or exceeds the number of values present in an attribute, the argument is
taken to be equal to that number.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It is success or one of the values listed
under Errors below.

Copy (Public Object)
The copy. This result is present if, and only if, the Return Code result is success and the
exclude-descriptors exclusion is not specified.

The space occupied by the public object, and every attribute value that is a string, is
service-provided. If the client alters any portion of that space, the effect upon the service’s
subsequent behavior is unspecified.

Total Number (Value Position)
The number of attribute descriptors returned in the public object, but not in any of its
subobjects, based on the inclusion and exclusion arguments specified. If the exclude-
descriptors exclusion is specified no Copy result is returned and the Total Number result
reflects the actual number of attribute descriptors that would have been returned based on
the remaining inclusion and exclusion values.

Note: The total includes only the attribute descriptors in the Copy result. It excludes the
special descriptor signalling the end of a public object.

ERRORS
function-interrupted, memory-insufficient, network-error, no-such-exclusion, no-such-object,
no-such-type, not-private, permanent-error, pointer-invalid, system-error, temporary-error, or
wrong-value-type.

46 X/Open CAE Specification (1994)

Service Interface instance()

NAME
Instance - determine whether an object is an instance of a particular class or any of its subclasses

SYNOPSIS
[#include <xom.h>]

OM_return_code
om_instance (

const OM_object subject,
const OM_object_identifier class,
OM_boolean *instance

);

DESCRIPTION
This function determines whether a service-generated public or private object, the subject, is an
instance of a particular class or any of its subclasses.

Note: The client can determine an object’s class, C , by simply inspecting the object (using
programming language constructs if the object is public, or the Get function if it is
private). The utility of the present function is that it reveals that an object is an instance
of the specified class, even if C is a subclass of that class.

ARGUMENTS

Subject (Object)
The subject, which remains accessible.

Class (Object Identifier)
Identifies the class in question.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It is success or one of the values listed
under Errors below.

Instance (Boolean)
Whether the subject is an instance of the specified class or any of its subclasses. This result
is present if, and only if, the Return Code result is success.

ERRORS
function-interrupted, memory-insufficient, network-error, no-such-class, no-such-object, no-
such-syntax, not-the-services, permanent-error, pointer-invalid, system-error or temporary-
error.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 47

put() Service Interface

NAME
Put - place or replace in one private object copies of the attribute values of another, public or
private object

SYNOPSIS
[#include <xom.h>]

OM_return_code
om_put (

OM_private_object destination,
const OM_modification modification,
const OM_object source,
const OM_type_list included_types,
const OM_value_position initial_value,
const OM_value_position limiting_value

);

DESCRIPTION
This function places or replaces in one private object, the destination, copies of the attribute
values of another, public or private object, the source. Only those attributes that pertain to the
destination object are copied, attributes that are not relevant are ignored. The client may specify
that the source’s values are to replace all or particular values in the destination, or to be inserted
at a particular position within each attribute. All string values being copied that are in the local
representation are first converted into the non-local representation for that syntax (which may
entail the loss of some information).

ARGUMENTS

Destination (Private Object)
The destination, which remains accessible. The destination’s class is unaffected.

Modification (Modification)
The nature of the requested modification. The modification determines how the Put
function uses the attribute values in the source to modify the object. In all cases, for each
attribute present in the source, copies of its values are placed in the object’s destination
attribute of the same type. The data value is chosen from among the following:

• insert-at-beginning
The source values are inserted before any existing destination values. (The latter are
retained.)

• insert-at-certain-point
The source values are inserted before the value at a specified position in the destination
attribute. (The latter are retained.)

• insert-at-end
The source values are inserted after any existing destination values. (The latter are
retained.)

• replace-all
The source values are placed in the destination attribute. The existing destination values,
if any, are discarded. (The latter are discarded.)

• replace-certain-values
The source values are substituted for the values at specified positions in the destination
attribute. (The latter are discarded.)

48 X/Open CAE Specification (1994)

Service Interface put()

Source (Object)
The source, which remains accessible. The source’s class is ignored. However, the
attributes being copied from the source must be compatible with the destination’s class
definition.

Included Types (Type List)
Identifies the types of the attributes to be included in the destination (provided that they
appear in the source); if the list is empty, or if (in the C interface) the argument is a NULL
pointer, then all attributes are to be included.

Initial Value (Value Position)
Relevant if, and only if, the Modification argument is insert-at-certain-point or replace-
certain-values, in which case it identifies the position within each destination attribute at
which source values are to be inserted, or of the first value to be replaced, respectively.

If the Modification argument is insert-at-certain-point and if the Initial Value argument is
all-values or exceeds the number of values present in a destination attribute, the argument
is taken to be equal to the number of values present.

Limiting Value (Value Position)
Relevant if, and only if, the Modification argument is replace-certain-values, in which case
it identifies the position within each destination attribute, one beyond that of the last value
to be replaced. If this argument is present, it must be greater than the Initial Value
argument.

If it is all-values or exceeds the number of values present in a destination attribute, the
argument is taken to be equal to that number.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It is success or one of the values listed
under Errors below.

ERRORS
function-declined, function-interrupted, memory-insufficient, network-error, no-such-class, no-
such-modification, no-such-object, no-such-syntax, no-such-type, not-concrete, not-present,
not-private, permanent-error, pointer-invalid, system-error, temporary-error, too-many-values,
values-not-adjacent, wrong-value-length, wrong-value-makeup, wrong-value-number, wrong-
value-position, wrong-value-syntax or wrong-value-type.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 49

read() Service Interface

NAME
Read - read a segment of a string in a private object

SYNOPSIS
[#include <xom.h>]

OM_return_code
om_read (

const OM_private_object subject,
const OM_type type,
const OM_value_position value_position,
const OM_boolean local_string,
const OM_string_length *string_offset,
OM_string *elements

);

DESCRIPTION
This function reads a segment of an attribute value in a private object, the subject. The segment
that is returned is a segment of the string value that would have been returned if the complete
value had been read in a single call.

Note: This function enables the client to read an arbitrarily long value without requiring that
the service place a copy of the entire value in memory.

ARGUMENTS

Subject (Private Object)
The subject, which remains accessible.

Type (Type)
Identifies the type of the attribute, one of whose values is to be read.

Value Position (Value Position)
The position within the above attribute of the value to be read.

Local-String (Boolean)
If true, indicates that the value is to be translated into the implementation-defined local
character set representation (which may entail the loss of some information).

Starting Position (String Offset)
The offset, in octets, of the start of the string segment to be read.

If it exceeds the total length of the string, the argument is taken to be equal to the string
length.

In the C interface, the Starting Position argument and the Next Position result of the generic
interface are realised as the String Offset argument.

Elements (String)
The space the client provides for the segment to be read. The string’s contents initially are
unspecified. The string’s length initially is the number of octets required to contain the
segment that the function is to read.

The service modifies this argument. The string’s elements are made the elements actually
read. The string’s length is made the number of octets required to hold the segment actually
read. This may be smaller than the initial length if the segment is the last in a long string.

50 X/Open CAE Specification (1994)

Service Interface read()

If Local-String is true, the segments that will be returned will be those of the translated
string. Depending on the characteristics of the implementation-defined local character set,
these may not correspond directly to the segments that would be obtained if Local-String
were false.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It is success or one of the values listed
under Errors below.

Next Position (String Offset)
The offset, in octets, of the start of the next string segment to be read, or zero if the value’s
final segment was read. This result is present if, and only if, the Return Code result is
success.

In the C interface, the Starting Position argument and the Next Position result of the generic
interface are realised as the String Offset argument. The value returned as the Next Position
result may be used as the value for the Starting Position argument in the next call of the
function. This allows for sequential reading of the value of a long string.

ERRORS
function-interrupted, memory-insufficient, network-error, no-such-object, no-such-type, not-
present, not-private, permanent-error, pointer-invalid, system-error, temporary-error or wrong-
value-syntax.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 51

remove() Service Interface

NAME
Remove - remove and discard values of an attribute of a private object

SYNOPSIS
[#include <xom.h>]

OM_return_code
om_remove (

const OM_private_object subject,
const OM_type type,
const OM_value_position initial_value,
const OM_value_position limiting_value

);

DESCRIPTION
This function removes and discards particular values of an attribute of a private object, the
subject. If no values remain, the attribute itself is removed also. If the value is a subobject, the
value is first removed and then the Delete function is applied to it, thus destroying the object.

ARGUMENTS

Subject (Private Object)
The subject, which remains accessible. The subject’s class is unaffected.

Type (Type)
Identifies the type of the attribute, some of whose values are to be removed. The type shall
not be Class.

Initial Value (Value Position)
The position within the above attribute of the first value to be removed.

If it is all-values, or exceeds the number of values present in the attribute, the argument is
taken to be equal to that number.

Limiting Value (Value Position)
The position within the attribute one beyond that of the last value to be removed. If this
argument is not greater than the Initial Value argument, no values are removed.

If it is all-values or exceeds the number of values present in an attribute, the argument is
taken to be equal to that number.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It is success or one of the values listed
under Errors below.

ERRORS
function-declined, function-interrupted, memory-insufficient, network-error, no-such-object,
no-such-type, not-private, permanent-error, pointer-invalid, system-error or temporary-error.

52 X/Open CAE Specification (1994)

Service Interface write()

NAME
Write - write a segment of a string into a private object

SYNOPSIS
[#include <xom.h>]

OM_return_code
om_write (

const OM_private_object subject,
const OM_type type,
const OM_value_position value_position,
OM_syntax syntax,
const OM_string_length *string_offset,
OM_string elements

);

DESCRIPTION
This function writes a segment of an attribute value in a private object, the subject. The segment
that is supplied is a segment of the string value that would have been supplied if the complete
value had been written in a single call.

The written segment is made the value’s last; the function discards any values whose offset
equals or exceeds the Starting Position argument. If the value being written is in the local
representation, it is converted to the non-local representation (which may entail the loss of
information and which may yield a different number of elements than that provided).

Note: This function enables the client to write an arbitrarily long value without having to
place a copy of the entire value in memory.

ARGUMENTS

Subject (Private Object)
The subject, which remains accessible.

Type (Type)
Identifies the type of the attribute, one of whose values is to be written.

Value Position (Value Position)
The position within the above attribute of the value to be written. The value position shall
not exceed the number of values present. If it equals the number of values present, the
segment is inserted into the attribute as a new value.

Syntax (Syntax)
If the value being written was not already present in the subject, this identifies the syntax
the value is to have. It must be a permissible syntax for the attribute of which this is a
value. If the value being written was already present in the subject then that value’s syntax
is preserved.

Starting Position (String Offset)
The offset, in octets, of the start of the string segment to write.

If it exceeds the current length of the string value being written, the argument is taken to be
equal to that current length.

In the C interface, the Starting Position argument and the Next Position result of the generic
interface are realised as the String Offset argument.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 53

write() Service Interface

Elements (String)
The string segment to be written. A copy of this segment will occupy a position within the
string value being written, starting at the offset given by the Starting Position argument. Any
values already at or beyond this offset are discarded.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It is success or one of the values listed
under Errors below.

Next Position (String Offset)
The offset, in octets, after the last string segment written. This result is present if, and only if,
the Return Code result is success.

In the C interface, the Starting Position argument and the Next Position result of the generic
interface are realised as the String Offset argument. The value returned as the Next Position
result may be used as the value for the Staring Position argument in the next call of the
function. This allows for sequential writing of the value of a long string.

ERRORS
function-declined, function-interrupted, memory-insufficient, network-error, no-such-object,
no-such-syntax, no-such-type, not-present, not-private, permanent-error, pointer-invalid,
system-error, temporary-error, wrong-value-length, wrong-value-makeup, wrong-value-
position or wrong-value-syntax.

54 X/Open CAE Specification (1994)

Service Interface write()

4.4 Return Codes
This section defines, and the following table lists, the return codes of the service interface, and
thus the exceptions that can prevent the successful completion of an interface function. The
return codes of the generic interface alone are specified here. The return codes of the C interface
are specified in Section 4.5 on page 58.

The table’s first column lists the return codes. The other columns identify with an ‘‘x’’ the return
codes that apply to each function. (This information, organised differently, also appears in the
Errors clauses of the function descriptions in Section 4.3 on page 34.

Return Code Cop CoV Cre Dec Del Enc Get Ins Put Rea Rem Wri
encoding-invalid - - - x - - - - - - - -
function-declined - x x x - x - - x - x x
function-interrupted x x x x x x x x x x x x
memory-insufficient x x x x x x x x x x x x
network-error x x x x x x x x x x x x
no-such-class x - x x - - - x x - - -
no-such-exclusion - - - - - - x - - - - -
no-such-modification - - - - - - - - x - - -
no-such-object x x - x x x x x x x x x
no-such-rules - - - x - x - - - - - -
no-such-syntax - - - - x - - x x - - x
no-such-type - x - - x - x - x x x x
no-such-workspace x - x - - - - - - - - -
not-an-encoding - - - x - - - - - - - -
not-concrete - - x - - - - - x - - -
not-present - x - - - - - - x x - x
not-private x x - x - x x - x x x x
not-the-services - - - - x - - x - - - -
permanent-error x x x x x x x x x x x x
pointer-invalid x x x x x x x x x x x x
success x x x x x x x x x x x x
system-error x x x x x x x x x x x x
temporary-error x x x x x x x x x x x x
too-many-values x - - x - - - - x - - -
values-not-adjacent - - - - - - - - x - - -
wrong-value-length - x - x - - - - x - - x
wrong-value-makeup - - - x - - - - x - - x
wrong-value-number - - - x - - - - x - - -
wrong-value-position - - - - - - - - x - - x
wrong-value-syntax - x - x - - - - x x - x
wrong-value-type - x - x - - x - x - - -

Table 4-3 Service Interface Return Codes

The return codes are as follows:

success
The function completed successfully.

encoding-invalid
The octets that constitute the value of an encoding’s Object Encoding attribute are invalid.

function-declined
The function does not apply to the object to which it is addressed.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 55

Return Codes Service Interface

function-interrupted
The function was aborted by an external force (for example, a keystroke, designated for this
purpose, at a user interface).

memory-insufficient
The service cannot allocate the main memory it needs to complete the function.

network-error
The service could not successfully employ the network upon which its implementation
depends.

no-such-class
A purported class identifier is undefined.

no-such-exclusion
A purported exclusion identifier is undefined.

no-such-modification
A purported modification identifier is undefined.

no-such-object
A purported object is nonexistent or the purported handle is invalid.

no-such-rules
A purported rules identifier is undefined.

no-such-syntax
A purported syntax identifier is undefined.

no-such-type
A purported type identifier is undefined.

no-such-workspace
A purported workspace is nonexistent.

not-an-encoding
An object is not an instance of the Encoding class.

not-concrete
A class is abstract, not concrete.

not-present
An attribute value is absent, not present.

not-private
An object is public, not private.

not-the-services
An object is client-generated, rather than service-generated or private.

permanent-error
The service encountered a permanent difficulty other than those denoted by other return
codes.

pointer-invalid
In the C interface, an invalid pointer was supplied as a function argument or as the
receptacle for a function result.

system-error
The service could not successfully employ the operating system upon which its
implementation depends.

56 X/Open CAE Specification (1994)

Service Interface Return Codes

temporary-error
The service encountered a temporary difficulty other than those denoted by other return
codes.

too-many-values
An implementation limit prevents the addition to an object of another attribute value. This
limit is undefined.

values-not-adjacent
The descriptors for the values of a particular attribute are not adjacent.

wrong-value-length
An attribute has, or would have, a value that violates the value length constraints in force.

wrong-value-makeup
An attribute has, or would have, a value that violates a constraint of the value’s syntax.

wrong-value-number
An attribute has, or would have, a value that violates the value number constraints in force.

wrong-value-position
The usage of value position(s) identified in the argument(s) of a function is invalid.

wrong-value-syntax
An attribute has, or would have, a value whose syntax is not permitted.

wrong-value-type
An object has, or would have, an attribute whose type is not permitted.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 57

Declaration Summary Service Interface

4.5 Declaration Summary
This section lists the declarations that define the C service interface. All of the declarations,
except those for symbolic constants, also appear in Section 4.2 on page 21, and

The function macros that appear (in Section 5.3 on page 67) in the specification of the workspace
interface here replace the function prototypes that appear (in Section 4.3 on page 34) in the
specification of the service interface.

The declarations, as assembled here, constitute the contents of a header file to be made accessible
to client programmers. The header file includes by reference a second header file comprising the
declarations defining the C workspace interface (see Chapter 5). The header files are <xom.h>
and <xomi.h>, respectively. The symbols the declarations define are the only symbols the
service makes visible to the client.

/* BEGIN SERVICE INTERFACE */

/* INTERMEDIATE DATA TYPES */

typedef system-defined, e.g., int OM_sint;
typedef system-defined, e.g., int OM_sint16;
typedef system-defined, e.g., long int OM_sint32;
typedef system-defined, e.g., unsigned OM_uint;
typedef system-defined, e.g., unsigned OM_uint16;
typedef system-defined, e.g., long unsigned OM_uint32;
typedef system-defined, e.g., double OM_double;

/* PRIMARY DATA TYPES */

/* Boolean */

typedef OM_uint32 OM_boolean;

/* String Length */

typedef OM_uint32 OM_string_length;

/* Enumeration */

typedef OM_sint32 OM_enumeration;

/* Exclusions */

typedef OM_uint OM_exclusions;

/* Integer */

typedef OM_sint32 OM_integer;

/* Real */

typedef OM_double OM_real;

/* Modification */

typedef OM_uint OM_modification;

/* Object */

typedef struct OM_descriptor_struct *OM_object;

/* String */

58 X/Open CAE Specification (1994)

Service Interface Declaration Summary

typedef struct {
OM_string_length length;
void *elements;

} OM_string;

#define OM_STRING(string) {(OM_string_length)(sizeof(string)-1), (string)}

/* Workspace */

typedef void *OM_workspace;

/* SECONDARY DATA TYPES */

/* Object Identifier */

typedef OM_string OM_object_identifier;

/* Private Object */

typedef OM_object OM_private_object;

/* Public Object */

typedef OM_object OM_public_object;

/* Return Code */

typedef OM_uint OM_return_code;

/* Syntax */

typedef OM_uint16 OM_syntax;

/* Type */

typedef OM_uint16 OM_type;

/* Type List */

typedef OM_type *OM_type_list;

/* Value */

typedef struct {
OM_uint32 padding;
OM_object object;

} OM_padded_object;

typedef union OM_value_union {
OM_string string;
OM_boolean boolean;
OM_enumeration enumeration;
OM_integer integer;
OM_padded_object object;
OM_real real;

} OM_value;

/* macro to extract an object from a value */

#define OM_OBJ_VALUE(v) ((OM_object)((v).string.elements))

/* Macro to extract syntax from a descriptor */

#define OM_SYNTAX(d) ((d).syntax & OM_S_SYNTAX)

OSI-Abstract-Data Manipulation API (XOM), Issue 2 59

Declaration Summary Service Interface

/* Macro to assign a syntax to a descriptor */

#define OM_SYNTAX_ASSIGN(d,s) ((d).syntax=(s)|((d).syntax & ˜OM_S_SYNTAX))

/* Macro to extract additional information contained in the syntax */

#define OM_HAS_VALUE(d) (!((d).syntax & OM_S_NO_VALUE))
#define OM_IS_PRIVATE(d) ((d).syntax & OM_S_PRIVATE)
#define OM_IS_SERVICE_GENERATED(d) ((d).syntax & OM_S_SERVICE_GENERATED)
#define OM_IS_LOCAL_STRING(d) ((d).syntax & OM_S_LOCAL_STRING)
#define OM_IS_LONG_STRING(d) ((d).syntax & OM_S_LONG_STRING)

/* Macro to set additional information contained in the syntax */

#define OM_SET_LOCAL_STRING(d) ((d).syntax |= OM_S_LOCAL_STRING)

/* Value Length */

typedef OM_uint32 OM_value_length;

/* Value Position */

typedef OM_uint32 OM_value_position;

/* TERTIARY DATA TYPES */

/* Descriptor */

typedef struct OM_descriptor_struct {
OM_type type;
OM_syntax syntax;
union OM_value_union value;

} OM_descriptor;

/* SYMBOLIC CONSTANTS */

/* Boolean */

#define OM_FALSE ((OM_boolean) 0)
#define OM_TRUE ((OM_boolean) 1)

/* Element Position */

#define OM_LENGTH_UNSPECIFIED ((OM_string_length) 0xFFFFFFFF)

/* Exclusions */

#define OM_NO_EXCLUSIONS ((OM_exclusions) 0)
#define OM_EXCLUDE_ALL_BUT_THESE_TYPES ((OM_exclusions) 1)
#define OM_EXCLUDE_ALL_BUT_THESE_VALUES ((OM_exclusions) 2)
#define OM_EXCLUDE_MULTIPLES ((OM_exclusions) 4)
#define OM_EXCLUDE_SUBOBJECTS ((OM_exclusions) 8)
#define OM_EXCLUDE_VALUES ((OM_exclusions) 16)
#define OM_EXCLUDE_DESCRIPTORS ((OM_exclusions) 32)

/* Modification */

#define OM_INSERT_AT_BEGINNING ((OM_modification) 1)
#define OM_INSERT_AT_CERTAIN_POINT ((OM_modification) 2)
#define OM_INSERT_AT_END ((OM_modification) 3)
#define OM_REPLACE_ALL ((OM_modification) 4)
#define OM_REPLACE_CERTAIN_VALUES ((OM_modification) 5)

60 X/Open CAE Specification (1994)

Service Interface Declaration Summary

/* Object Identifiers */

/* Note: */
/* These macros rely on the ## token-pasting operator of ANSI C. */
/* On many pre-ANSI compilers the same effect can be obtained by */
/* replacing ## with /*. */

/* Private macro to calculate length of an object identifier. */

#define OMP_LENGTH(oid_string) (sizeof(OMP_O_# #oid_string)-1)

/* Macro to initialise the syntax and value of an object identifier. */

#define OM_OID_DESC(type, oid_name) \
{ (type), OM_S_OBJECT_IDENTIFIER_STRING, \
{ { OMP_LENGTH(oid_name) , OMP_D_##oid_name } } }

/* Macro to mark the end of a public object. */

#define OM_NULL_DESCRIPTOR \
{ OM_NO MORE_TYPES, OM_S_NO_MORE_SYNTAXES, \

{0,OM_ELEMENTS_UNSPECIFIED} }

/* Macro to make class constants available within a compilation unit */

#define OM_IMPORT(class_name) \
extern char OMP_D_##class_name []; \
extern OM_string class_name;

/* Macro to allocate memory for class constants within a */
/* compilation unit */

#define OM_EXPORT(class_name) \
char OMP_D_##class_name[] = OMP_O_##class_name ; \
OM_string class_name = \

{ OMP_LENGTH(class_name), OMP_D_##class_name } ;

/* Constant for the OM package */

#define OMP_O_OM_OM "\x2A\x86\x48\xCE\x21\x00"

/* Constant for the Encoding class */

#define OMP_O_OM_C_ENCODING "\x2A\x86\x48\xCE\x21\x00\x01"

/* Constant for the External class */

#define OMP_O_OM_C_EXTERNAL "\x2A\x86\x48\xCE\x21\x00\x02"

/* Constant for the Object class */

#define OMP_O_OM_C_OBJECT "\x2A\x86\x48\xCE\x21\x00\x03"

/* Constant for the BER Object Identifier */

#define OMP_O_OM_BER "\x51\x01"

/* Constant for the Canonical-BER Object Identifier */

#define OMP_O_OM_CANONICAL_BER "\x2A\x86\x48\xCE\x21\x00\x04"

/* Return Code */

#define OM_SUCCESS ((OM_return_code) 0)
#define OM_ENCODING_INVALID ((OM_return_code) 1)

OSI-Abstract-Data Manipulation API (XOM), Issue 2 61

Declaration Summary Service Interface

#define OM_FUNCTION_DECLINED ((OM_return_code) 2)
#define OM_FUNCTION_INTERRUPTED ((OM_return_code) 3)
#define OM_MEMORY_INSUFFICIENT ((OM_return_code) 4)
#define OM_NETWORK_ERROR ((OM_return_code) 5)
#define OM_NO_SUCH_CLASS ((OM_return_code) 6)
#define OM_NO_SUCH_EXCLUSION ((OM_return_code) 7)
#define OM_NO_SUCH_MODIFICATION ((OM_return_code) 8)
#define OM_NO_SUCH_OBJECT ((OM_return_code) 9)
#define OM_NO_SUCH_RULES ((OM_return_code) 10)
#define OM_NO_SUCH_SYNTAX ((OM_return_code) 11)
#define OM_NO_SUCH_TYPE ((OM_return_code) 12)
#define OM_NO_SUCH_WORKSPACE ((OM_return_code) 13)
#define OM_NOT_AN_ENCODING ((OM_return_code) 14)
#define OM_NOT_CONCRETE ((OM_return_code) 15)
#define OM_NOT_PRESENT ((OM_return_code) 16)
#define OM_NOT_PRIVATE ((OM_return_code) 17)
#define OM_NOT_THE_SERVICES ((OM_return_code) 18)
#define OM_PERMANENT_ERROR ((OM_return_code) 19)
#define OM_POINTER_INVALID ((OM_return_code) 20)
#define OM_SYSTEM_ERROR ((OM_return_code) 21)
#define OM_TEMPORARY_ERROR ((OM_return_code) 22)
#define OM_TOO_MANY_VALUES ((OM_return_code) 23)
#define OM_VALUES_NOT_ADJACENT ((OM_return_code) 24)
#define OM_WRONG_VALUE_LENGTH ((OM_return_code) 25)
#define OM_WRONG_VALUE_MAKEUP ((OM_return_code) 26)
#define OM_WRONG_VALUE_NUMBER ((OM_return_code) 27)
#define OM_WRONG_VALUE_POSITION ((OM_return_code) 28)
#define OM_WRONG_VALUE_SYNTAX ((OM_return_code) 29)
#define OM_WRONG_VALUE_TYPE ((OM_return_code) 30)

/* String (Elements component) */

#define OM_ELEMENTS_UNSPECIFIED ((void *) 0)

/* Syntax */

#define OM_S_NO_MORE_SYNTAXES ((OM_syntax) 0)
#define OM_S_BIT_STRING ((OM_syntax) 3)
#define OM_S_BOOLEAN ((OM_syntax) 1)
#define OM_S_ENCODING_STRING ((OM_syntax) 8)
#define OM_S_ENUMERATION ((OM_syntax) 10)
#define OM_S_GENERAL_STRING ((OM_syntax) 27)
#define OM_S_GENERALISED_TIME_STRING ((OM_syntax) 24)
#define OM_S_GRAPHIC_STRING ((OM_syntax) 25)
#define OM_S_IA5_STRING ((OM_syntax) 22)
#define OM_S_INTEGER ((OM_syntax) 2)
#define OM_S_NULL ((OM_syntax) 5)
#define OM_S_NUMERIC_STRING ((OM_syntax) 18)
#define OM_S_OBJECT ((OM_syntax) 127)
#define OM_S_OBJECT_DESCRIPTOR_STRING ((OM_syntax) 7)
#define OM_S_OBJECT_IDENTIFIER_STRING ((OM_syntax) 6)
#define OM_S_OCTET_STRING ((OM_syntax) 4)
#define OM_S_PRINTABLE_STRING ((OM_syntax) 19)
#define OM_S_REAL ((OM_syntax) 9)
#define OM_S_TELETEX_STRING ((OM_syntax) 20)
#define OM_S_UNIVERSAL_STRING ((OM_syntax) 28)
#define OM_S_UNRESTRICTED_STRING ((OM_syntax) 29)
#define OM_S_UTC_TIME_STRING ((OM_syntax) 23)
#define OM_S_VIDEOTEX_STRING ((OM_syntax) 21)
#define OM_S_VISIBLE_STRING ((OM_syntax) 26)

62 X/Open CAE Specification (1994)

Service Interface Declaration Summary

#define OM_S_LONG_STRING ((OM_syntax) 0x8000)
#define OM_S_NO_VALUE ((OM_syntax) 0x4000)
#define OM_S_LOCAL_STRING ((OM_syntax) 0x2000)
#define OM_S_SERVICE_GENERATED ((OM_syntax) 0x1000)
#define OM_S_PRIVATE ((OM_syntax) 0x0800)
#define OM_S_SYNTAX ((OM_syntax) 0x03FF)

/* Type */

#define OM_NO_MORE_TYPES ((OM_type) 0)
#define OM_ARBITRARY_ENCODING ((OM_type) 1)
#define OM_ASN1_ENCODING ((OM_type) 2)
#define OM_CLASS ((OM_type) 3)
#define OM_DATA_VALUE_DESCRIPTOR ((OM_type) 4)
#define OM_DIRECT_REFERENCE ((OM_type) 5)
#define OM_INDIRECT_REFERENCE ((OM_type) 6)
#define OM_OBJECT_CLASS ((OM_type) 7)
#define OM_OBJECT_ENCODING ((OM_type) 8)
#define OM_OCTET_ALIGNED_ENCODING ((OM_type) 9)
#define OM_PRIVATE_OBJECT ((OM_type) 10)
#define OM_RULES ((OM_type) 11)

/* Value Position */

#define OM_ALL_VALUES ((OM_value_position) 0xFFFFFFFF)

/* WORKSPACE INTERFACE */

#include <xomi.h>

/* END SERVICE INTERFACE */

OSI-Abstract-Data Manipulation API (XOM), Issue 2 63

Service Interface

64 X/Open CAE Specification (1994)

Chapter 5

Workspace Interface

5.1 Introduction
This Chapter defines the workspace interface. The workspace interface defines types which
specify the initial part of the representation of objects, and some associated data structures. This
representation is mandatory, in order that interworking of services provided by different
vendors can be achieved. The representation of objects beyond this is not specified (particularly
the representation of attributes and values), and can be chosen by vendors to suit their
individual needs.

The workspace interface is C-specific; there is no generic specification of it. Designers of
additional programming language bindings to the OM specification will need to produce an
appropriate solution in the alternative language.

The workspace interface also provides a macro definition, for each function in the service
interface, which uses the defined data structures to call the implementation of the functions
appropriate for the particular arguments. These are called the dispatcher macros.

All implementations must provide an <xom.h> and <xomi.h> header containing the data types
and macros and declarations defined in the C workspace interface, as defined in this
specification, and this should be the default when application programs are compiled. Vendors
may additionally provide alternative means of invoking the function definitions (by new
definitions of the macros, or by function libraries). This might be used, for example, to provide
additional error-checking capabilities. Such alternatives are vendor extensions, and the vendor
may choose any appropriate method to select them.

5.2 Representation of Objects
There are three types of objects, from a service implementation’s point of view:

• private objects (PRI)
These are represented in an unspecified, private way in storage allocated by the service. The
client is only able to access these objects by calling OM functions.

• service-generated public objects (SPUB)
These are represented as arrays of (OM_descriptor), in storage allocated by the service. String
values are also allocated in this way. The client may not modify any of this store. For
example, it must not make assignments to any of the fields of the descriptors.

• client-generated public objects (CPUB)
These are represented as arrays of (OM_descriptor), in storage allocated by the client. The
client is responsible for management of this store and may freely modify it.

Implementations also need to discover whether a PRI or a SPUB belongs to their workspace, or
to some other. These objects are allocated by a particular service implementation, in a
workspace associated with that service. Note that:

• the internal representation (service view) and external representation (client view) of a CPUB
are completely identical

OSI-Abstract-Data Manipulation API (XOM), Issue 2 65

Representation of Objects Workspace Interface

• the external representation of a CPUB and a SPUB are identical

• the internal representation of a SPUB and a PRI must provide additional information in order
to be able to call the OM function implementation associated with each SPUB and PRI.

The third statement is achieved by basing the internal representation of all service-generated
objects on a two-element descriptor array. These are referred to as the -1st and 0th elements.

The external representation (that is, the pointer returned to the client by om_create(), etc.) points
to the second, 0th , descriptor. The client is not aware of the existence of the first, -1st , descriptor.

Note: In the case of CPUBs and SPUBs there will usually be additional descriptors following
the 0th, which are visible to the client.

Then a service implementation can distinguish the type of object using the type and syntax
components of the 0th descriptor, as follows:

1. Inspect the type component. If it is (OM_PRIVATE_OBJECT), the object is a PRI.
Otherwise, it is a SPUB or CPUB.

2. Inspect the (OM_S_SERVICE_GENERATED) bit. If this is set, the object is an SPUB.
Otherwise, it is a CPUB.

If it is a PRI or a SPUB, the associated workspace pointer is stored in the value.string.elements
component of the -1st descriptor, and the correct function implementation can be called using
this.

This means the storage for the workspace structure, and the function jump table, must remain
allocated after the workspace has been shut down. In order to eventually reclaim this storage,
implementations may use a reference count of the number of service-generated descriptor arrays
which have been allocated by om_get() and not subsequently freed by om_delete() .

Implementations need not, but may, allocate storage for the other components of the -1st
descriptor (that is, type, syntax and value.string.length) of PRIs and SPUBs. They may, but need
not, allocate storage for the value component of the 0th descriptor of a PRI. They must allocate
the whole of the 0th descriptor of a SPUB, since this forms part of the data returned to the client.
Clients do not allocate the -1st descriptor of a CPUB, and the service must not refer to it.

Implementations may attach arbitrary private data in storage before or after the defined region
of a PRI, and before the defined region of a SPUB. They may use this as they wish.

Notes:

1. A service-generated public object might reference private subobjects, the handles
of which are no longer valid, for example, when the corresponding parent private
object has been deleted. In order to determine whether a subobject in a service-
generated public object is private, for example, when the service deletes a
service-generated public object, the (OM_S_PRIVATE) bit in the public object’s
descriptor having the reference might be inspected.

2. If a Service-Generated Public Object has public subobjects (for example, due to an
om_get() with no exclusions), the -1st descriptor will exist and the
OM_S_SERVICE_GENERATED bit will be set on all public subobjects.

66 X/Open CAE Specification (1994)

Workspace Interface Types and Macros

5.3 Types and Macros

5.3.1 Standard Internal Representation of an Object

The OMP_object_header and OMP_object types provide the standard representation.

typedef OM_descriptor OMP_object_header[2];
typedef OMP_object_header *OMP_object;

The (OM_S_SERVICE_GENERATED) bit in the Syntax component of a descriptor of Type
OM_CLASS determines whether a service allocated the storage for the descriptor array.

5.3.2 Standard Internal Representation of a Workspace

typedef OM_return_code
(*OMP_copy) (

OM_private_object original,
OM_workspace workspace,
OM_private_object *copy

);

typedef OM_return_code
(*OMP_copy_value) (

OM_private_object source,
OM_type source_type,
OM_value_position source_value_position,
OM_private_object destination,
OM_type destination_type,
OM_value_position destination_value_position

);

typedef OM_return_code
(*OMP_create) (

OM_object_identifier class,
OM_boolean initialise,
OM_workspace workspace,
OM_private_object *object

);

typedef OM_return_code
(*OMP_decode) (

OM_private_object encoding,
OM_private_object *original

);

typedef OM_return_code
(*OMP_delete) (

OM_object subject
);

typedef OM_return_code
(*OMP_encode) (

OM_private_object original,
OM_object_identifier rules,
OM_private_object *encoding

);
typedef OM_return_code
(*OMP_get) (

OM_private_object original,

OSI-Abstract-Data Manipulation API (XOM), Issue 2 67

Types and Macros Workspace Interface

OM_exclusions exclusions,
OM_type_list included_types,
OM_boolean local_strings,
OM_value_position initial_value,
OM_value_position limiting_value,
OM_public_object *copy,
OM_value_position *total_number

);

typedef OM_return_code
(*OMP_instance) (

OM_object subject,
OM_object_identifier class,
OM_boolean *instance

);

typedef OM_return_code
(*OMP_put) (

OM_private_object destination,
OM_modification modification,
OM_object source,
OM_type_list included_types,
OM_value_position initial_value,
OM_value_position limiting_value

);

typedef OM_return_code
(*OMP_read) (

OM_private_object subject,
OM_type type,
OM_value_position value_position,
OM_boolean local_string,
OM_string_length *string_offset,
OM_string *elements

);

typedef OM_return_code
(*OMP_remove) (

OM_private_object subject,
OM_type type,
OM_value_position initial_value,
OM_value_position limiting_value

);

typedef OM_return_code
(*OMP_write) (

OM_private_object subject,
OM_type type,
OM_value_position value_position,
OM_syntax syntax,
OM_string_length *string_offset,
OM_string elements

);
typedef struct OMP_functions_body {

OM_uint32 function_number;
OMP_copy omp_copy;
OMP_copy_value omp_copy_value;
OMP_create omp_create;
OMP_decode omp_decode;

68 X/Open CAE Specification (1994)

Workspace Interface Types and Macros

OMP_delete omp_delete;
OMP_encode omp_encode;
OMP_get omp_get;
OMP_instance omp_instance;
OMP_put omp_put;
OMP_read omp_read;
OMP_remove omp_remove;
OMP_write omp_write;

} OMP_functions;

typedef struct OMP_workspace_body {
struct OMP_functions_body *functions;

} *OMP_workspace;

Description

A data value of this data type is the designator or handle for a workspace, refined for the
workspace interface.

The first component of a data value of type OMP_functions_body, Function Number, is the
number of the other components, which are implementations of the workspace interface
functions, those pertaining to (private) objects in the workspace.

Notes:

1. The purpose of the Function Number component is to enable functions to be
backward-compatibly added to the workspace interface to create future versions
of it.

2. Because the interface calls for workspaces to provide the storage for all data
values of this data type, the above information may be accompanied (e.g.,
followed in memory) by other pieces of information whose number, types and
purposes are outside the scope of this document and workspace-specific. In the
context of a particular operating system, this information may be subject to
system-wide agreements designed, for example, to facilitate storage management.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 69

Types and Macros Workspace Interface

5.3.3 Useful Macros

• The following macro converts (a pointer to) the internal representation of an object to (a
pointer to) the external representation.

#define OMP_EXTERNAL(internal) \
((OM_object)((OM_descriptor *)(internal) + 1))

• The following macro converts (a pointer to) the external representation of an object to (a
pointer to) the internal representation.

#define OMP_INTERNAL(external) ((OM_descriptor *)(external) - 1)

• The following macro extracts the type component of a descriptor, given the pointer to it.

#define OMP_TYPE(desc) (((OM_descriptor *)(desc))->type)

• The following macro extracts the workspace of an object, given the external pointer to it. The
effect of applying it to a client-generated public object is undefined.

#define OMP_WORKSPACE(external) \
((OMP_workspace)(OMP_INTERNAL(external)->value.string.elements))

• The following macro extracts the function jump-table associated with an object, given the
external pointer to it. The effect of applying it to a client-generated public object is
undefined.

#define OMP_FUNCTIONS(external) (OMP_WORKSPACE(external)->functions)

70 X/Open CAE Specification (1994)

Workspace Interface Dispatcher Macros

5.4 Dispatcher Macros
The dispatcher macros provide the interface between application programs and
implementations of the OM service.

Each macro must check if the object is valid (different from NULL) and is a private object. If not,
the macro must return the corresponding error code.

#include <stddef.h>

#define om_copy(ORIGINAL,WORKSPACE,COPY) \
((WORKSPACE) == NULL ? \

OM_NO_SUCH_WORKSPACE : \
(((OMP_workspace)(WORKSPACE))->functions->omp_copy(\

(ORIGINAL),(WORKSPACE),(COPY))) \
)

#define om_create(CLASS,INITIALISE,WORKSPACE,OBJECT) \
((WORKSPACE) == NULL ? \

OM_NO_SUCH_WORKSPACE : \
(((OMP_workspace)(WORKSPACE))->functions->omp_create(\

(CLASS),(INITIALISE),(WORKSPACE),(OBJECT))) \
)

#define om_delete(SUBJECT) \
((SUBJECT) == NULL ? \

OM_NO_SUCH_OBJECT : \
(((SUBJECT)->syntax & OM_S_SERVICE_GENERATED) ? \

(OMP_FUNCTIONS(SUBJECT)->omp_delete((SUBJECT))) : \
OM_NOT_THE_SERVICES \

) \
)

#define om_instance(SUBJECT,CLASS,INSTANCE) \
((SUBJECT) == NULL ? \

OM_NO_SUCH_OBJECT : \
(((SUBJECT)->syntax & OM_S_SERVICE_GENERATED) ? \

(OMP_FUNCTIONS(SUBJECT)->omp_instance(\
(SUBJECT),(CLASS),(INSTANCE))) : \

OM_NOT_THE_SERVICES \
) \

)

#define om_copy_value(SOURCE, SOURCE_TYPE, SOURCE_POSITION, \
DEST, DEST_TYPE, DEST_POSITION) \

((DEST) == NULL ? \
OM_NO_SUCH_OBJECT : \
(((DEST)->syntax & OM_S_PRIVATE) ? \

(OMP_FUNCTIONS(DEST)->omp_copy_value(\
(SOURCE), (SOURCE_TYPE), (SOURCE_POSITION), \
(DEST), (DEST_TYPE), (DEST_POSITION))): \

OM_NOT_PRIVATE \
) \

)

OSI-Abstract-Data Manipulation API (XOM), Issue 2 71

Dispatcher Macros Workspace Interface

#define om_decode(ENCODING,ORIGINAL) \
((ENCODING) == NULL ? \

OM_NO_SUCH_OBJECT : \
(((ENCODING)->syntax & OM_S_PRIVATE) ? \

(OMP_FUNCTIONS(ENCODING)->omp_decode((ENCODING),(ORIGINAL))): \
OM_NOT_PRIVATE \

) \
)

#define om_encode(ORIGINAL,RULES,ENCODING) \
((ORIGINAL) == NULL ? \

OM_NO_SUCH_OBJECT : \
(((ORIGINAL)->syntax & OM_S_PRIVATE) ? \

(OMP_FUNCTIONS(ORIGINAL)->omp_encode(\
(ORIGINAL),(RULES),(ENCODING))) : \

OM_NOT_PRIVATE \
) \

)

#define om_get(ORIGINAL,EXCLUSIONS,TYPES,LOCAL_STRINGS, \
INITIAL,LIMIT,COPY,TOTAL_NUMBER) \

((ORIGINAL) == NULL ? \
OM_NO_SUCH_OBJECT : \
(((ORIGINAL)->syntax & OM_S_PRIVATE) ? \

(OMP_FUNCTIONS(ORIGINAL)->omp_get(\
(ORIGINAL),(EXCLUSIONS),(TYPES),(LOCAL_STRINGS), \

(INITIAL),(LIMIT),(COPY),(TOTAL_NUMBER))): \
OM_NOT_PRIVATE \

) \
)

#define om_put(DESTINATION,MODIFICATION,SOURCE,TYPES,INITIAL,LIMIT) \
((DESTINATION) == NULL ? \

OM_NO_SUCH_OBJECT : \
(((DESTINATION)->syntax & OM_S_PRIVATE) ? \

(OMP_FUNCTIONS(DESTINATION)->omp_put(\
(DESTINATION),(MODIFICATION),(SOURCE),(TYPES), \

(INITIAL),(LIMIT))) : \
OM_NOT_PRIVATE \

) \
)

#define om_read(SUBJECT,TYPE,VALUE_POS,LOCAL_STRING, \
STRING_OFFSET,ELEMENTS) \

((SUBJECT) == NULL ? \
OM_NO_SUCH_OBJECT : \
(((SUBJECT)->syntax & OM_S_PRIVATE) ? \

(OMP_FUNCTIONS(SUBJECT)->omp_read(\
(SUBJECT),(TYPE),(VALUE_POS),(LOCAL_STRING), \

(STRING_OFFSET),(ELEMENTS))) : \
OM_NOT_PRIVATE \

) \
)

72 X/Open CAE Specification (1994)

Workspace Interface Dispatcher Macros

#define om_remove(SUBJECT,TYPE,INITIAL,LIMIT) \
((SUBJECT) == NULL ? \

OM_NO_SUCH_OBJECT : \
(((SUBJECT)->syntax & OM_S_PRIVATE) ? \

(OMP_FUNCTIONS(SUBJECT)->omp_remove(\
(SUBJECT),(TYPE),(INITIAL),(LIMIT))) : \

OM_NOT_PRIVATE \
) \

)

#define om_write(SUBJECT,TYPE,VALUE_POS,SYNTAX,STRING_OFFSET,ELEMENTS) \
((SUBJECT) == NULL ? \

OM_NO_SUCH_OBJECT : \
(((SUBJECT)->syntax & OM_S_PRIVATE) ? \

(OMP_FUNCTIONS(SUBJECT)->omp_write(\
(SUBJECT),(TYPE),(VALUE_POS), \
(SYNTAX),(STRING_OFFSET),(ELEMENTS))) : \

OM_NOT_PRIVATE \
) \

)

OSI-Abstract-Data Manipulation API (XOM), Issue 2 73

Workspace Interface

74 X/Open CAE Specification (1994)

Chapter 6

Object Management Package

6.1 Introduction
This Chapter defines the OM package. The object identifier, referred to symbolically as om, that
is assigned to the package, as defined by this edition of this document, is that specified in ASN.1
as

[iso(1) member-body(2) us(840) IEEE-1224(10017) om(0)]

6.2 Class Hierarchy
This section depicts the hierarchical organisation of the OM classes. Subclassification is
indicated by indentation. The names of abstract classes are in italics. Thus, for example,
Encoding is an immediate subclass of Object, an abstract class. The names of classes to which the
Encode function applies are in bold. The Create function applies to all concrete classes.

Object

• Encoding

• External

OSI-Abstract-Data Manipulation API (XOM), Issue 2 75

Class Definitions Object Management Package

6.3 Class Definitions
This section defines the OM classes.

6.3.1 Encoding

An instance of class Encoding is an object represented in a form suitable for conveyance
between workspaces, transport via a network, or storage in a file. An encoding also may be a
suitable way to present to an intermediate service provider (for example, a directory or message
transfer system) an object it does not recognise.

This class has the attributes of its superclass (Object) and the specific attributes listed in the
following table.

Value Value Value Value
Attribute Syntax Length Number Initially
Object Class String(Object Identifier) - 0-1 -
Object Encoding String1 - 1 -
Rules String (Object Identifier) - 1 ber

1 The syntax of this attribute is determined by the requirements of the encoding rules used to perform the
encoding. If the Rules attribute is ber or canonical-ber, the syntax is String(Encoding) .

Table 6-1 Attributes Specific to Encoding

Object Class
Identifies the class of the object that the Object Encoding attribute encodes. The service shall
provide a value for this attribute if and only if the class is represented in one of the packages
that the client has negotiated, in the workspace of the Encoding object. The client may but
need not, provide a value for this attribute. The class, if present, shall be concrete.

Object Encoding
The encoding itself.

Rules
Identifies the set of rules that were followed to produce the Object Encoding attribute.
Among the defined values of this attribute are those referred to symbolically as follows:

• ber.
This value denotes the BER (Clause 25.2 of Recommendation X.208 - see references
ASN.1 and BER). It is specified in ASN.1 as

{joint-iso-ccitt asn1(1) basic-encoding(1)}

• canonical-ber.
This value denotes the canonical BER (Clause 8.7 of Recommendation X.509 - see
reference X.509). It is specified in ASN.1 as

{joint-iso-ccitt mhs-motis(6) group(6) white(1) api(2) om(4) \
canonical-ber(4)}

Note: An instance of this class may not appear, in general, as a value whose syntax is
Object (C) if C is not Encoding , even if the class of the object encoded is C.

76 X/Open CAE Specification (1994)

Object Management Package Class Definitions

6.3.2 External

An instance of class External is a data value, not necessarily describable using ASN.1, and one or
more information items that describe the data value and identify its data type. This class
corresponds to ASN.1’s External type, and thus the class and the attributes specific to it are more
fully described, indirectly, in Clause 34 of Recommendation X.208 (see reference ASN.1).

This class has the attributes of its superclass (Object) and the specific attributes listed in the
following table.

Value Value Value Value
Attribute Syntax Length Number Initially
Arbitrary Encoding String (Bit) - 0-11 -
ASN1 Encoding String (Encoding) - 0-11 -
Data Value Descriptor String (Object Descriptor) - 0-1 -
Direct Reference String (Object Identifier) - 0-1 -
Indirect Reference Integer - 0-1 -
Octet Aligned Encoding String (Octet) - 0-11 -

1Exactly one of these three attributes shall be present.

Table 6-2 Attributes Specific to External

Arbitrary Encoding
A representation of the data value as a bit string. This attribute is described more fully in
Clause 34 of Recommendation X.208 (see reference ASN.1).

ASN1 Encoding
The data value. This attribute may be present only if the data type is an ASN.1 type. This
attribute is described more fully in Clause 34 of Recommendation X.208 (see reference
ASN.1).

If this attribute value’s syntax is an Object syntax, the data value’s implied representation
is that produced by the Encode function when its Object argument is the attribute value and
its Rules argument is ber. Thus the object’s class shall be one to which the Encode function
applies.

Data Value Descriptor
A description of the data value. This attribute is described more fully in Clause 34 of
Recommendation X.208 (see reference ASN.1).

Direct Reference
A direct reference to the data type. This attribute is described more fully in Clause 34 of
Recommendation X.208 (see reference ASN.1).

Indirect Reference
An indirect reference to the data type. This attribute is described more fully in Clause 34 of
Recommendation X.208 (see reference ASN.1).

Octet Aligned Encoding
A representation of the data value as an octet string. This attribute is described more fully
in Clause 34 of Recommendation X.208 (see reference ASN.1).

OSI-Abstract-Data Manipulation API (XOM), Issue 2 77

Class Definitions Object Management Package

6.3.3 Object

The class Object represents information objects of any variety. This abstract class is
distinguished by the fact that it has no superclass and that all other classes are its subclasses.

The attributes specific to this class are listed in the following table.

Value Value Value Value
Attribute Syntax Length Number Initially
Class String (Object Identifier) - 1 -

Table 6-3 Attributes Specific to Object

Class
Identifies the object’s class.

78 X/Open CAE Specification (1994)

Appendix A

Differences from IEEE OM Standard

The IEEE has published its Object Management (OM) Standard. It is published as IEEE
1224-1993 (language independent standard) and IEEE 1327-1993 (C binding). Development of
this IEEE Standard was based on the X/Open OSI-Abstract-Data Manipulation (XOM) API
CAE Specification (November 1991).

The intent of this Issue 2 of X/Open’s OSI-Abstract-Data Manipulation (XOM) API CAE
Specification is to align with the corresponding IEEE OM Standard wherever possible.
However, there are a few instances where full alignment between the IEEE 1224/1327 Standard
and the X/Open XOM API CAE Specification has not been achieved.

This Appendix identifies the known substantive differences between this X/Open XOM API
CAE Specification Issue 2, and the corresponding IEEE Object Management Standard.

A.1 Copy-Value() Clarification
In the Description section of the Copy-Value function, the XOM specification states:

If the value of the destination attribute exists, the resulting value shall have the
syntax of the replaced value. If the source valur does not have the same syntax as
the replaced value, the error code wrong-value-syntax shall be returned.

If the value of the destination attribute does not exist, the new value shall have the
syntax of the source value. If the syntax of the source value is not compatible with
the description of the destination attribute, the error code wrong-value-syntax shall
be returned.

The corresponding description in IEEE 1224-1993 does not state that the error code wrong-
value-syntax shall be returned when the syntax of the source does not satisfy the description of
the destination object. It is arguable, however, that the description of the wrong-value-syntax
error code in IEEE 1224-1993 implies that this must be the case. Subject to a favourable
interpretation of this point by the IEEE, this is an instance of a clearer statement in the XOM
specification, rather than a substantive difference between the specifications.

A.2 Meaning of Value Length Column
IEEE 1224-1993 states that the Value Length column of each class definition table indicates any
constraints on the number of octets in a string attribute, whereas XOM states that that the
indicated constraints are on the numbers of bits, octets or characters.

X/Open believes that the definition in IEEE 1224-1993 is inconsistent with other definitions in
IEEE 1224-1993, and is wrong.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 79

Meaning of Private Bit Differences from IEEE OM Standard

A.3 Meaning of Private Bit
IEEE 1327 states that the OM_S_PRIVATE bit is true if and only if the descriptor is service
generated and the first descriptor of a public object or the defined part of a private object. XOM
states that it is true if and only if the descriptor in the service generated public object contains a
reference to the handle of a private subobject, or in the defined part of a private object.

The difference between these definitions is substantive. X/Open believes that the IEEE definition
is unworkable.

A.4 Constant Values Optional
The numerical values of constants in the #define values in Section 4.5 on page 58 (Declaration
Summary) and the #define values, structures and macros defined in Chapter 5 (Workspace
Interface) are mandatory in XOM but are optional in IEEE 1327-1993.

This means that XOM is more restrictive than IEEE 1224-1993. An implementation that
conforms to XOM in this respect will therefore conform to IEEE 1224-1993 also. However, an
implementation that conforms to IEEE 1224-1993 need not conform to XOM. A well-behaved
application (that is, one which uses the #define symbols rather than their numerical equivalents)
will not be affected by this difference.

A.5 Deletion of SPUBs on Workspace Closure
IEEE 1224-1993 states that a service-generated public object associated with a workspace shall be
destroyed when the workspace containing it is destroyed, but XOM states that a service
generated public object is unaffected by the destruction of the workspace that generated it.

This is a substantive difference between the two specifications. X/Open believes that some
applications of the X.400 API (see reference X.400) require SPUBS to be preseved on workspace
destruction, and therefore decided not to align XOM with IEEE 1224-1993.

A.6 Meaning of ‘‘present’’
In IEEE 1224-1993, the meaning of the word present in the descriptions of the Included Types,
Initial Value and Limiting Value arguments of om_get() and om_put() is unclear.

In XOM, the word present is replaced by relevant in the description of the Initial Value and
Limiting Value arguments of om_get() and om_put(), and in the Included Types argument of
om_get(), and further minor wording changes consistent with this have been made. The
description of the Included Types argument of om_put() in XOM has been changed to:

Identifies the types of the attributes to be included in the destination (provided that
they appear in the source); if the list is empty, or if (in the C interface) the argument
is a NULL pointer, then all attributes are to be included.

Subject to a favourable interpretation of this point by the IEEE, this is an instance of a clearer
statement in the XOM specification, rather than a substantive difference between the
specifications.

80 X/Open CAE Specification (1994)

Differences from IEEE OM Standard Addition of a REAL data syntax

A.7 Addition of a REAL data syntax
A new REAL data syntax has been added to this issue of the XOM specification. This represents
a difference between this XOM API and the API defined by the IEEE 1224-1993 standard.

A.8 Creation of Restricted or Abstract Classes
In a previous issue of the XOM specification, the client of an API was not allowed to create an
abstract class or one for which the definition states that a client may not create instances. In the
present issue, this restriction has been removed. This represents a difference between this XOM
API and the API defined by the IEEE 1224-1993 standard.

A.9 Definition of Dispatcher Macros
In this issue of the XOM specification, the definition of the dispatcher macros has been modified
to ensure that the object or workspace handle is not NULL and that an object is service-
generated. This change is intended to trap a potential core dump if an invalid handle is passed
to these macros. This additional error checking represents a difference between this XOM API
and the API defined by the IEEE 1224-1993 standard.

A.10 Representation of OPTIONAL ASN.1 Constructs
In aligning this issue of the XOM specification with the IEEE 1224-1993 standard, the convention
for the representation of OPTIONAL ASN.1 constructs has been made advisory (should) rather
than mandatory (shall). This allows packages that were defined using the convention defined by
a previous version of the XOM specification to continue to comply with the requirements of this
specification and maintains the advisory spirit of the text. This represents a difference between
this XOM API and the API defined by the IEEE 1224-1993 standard.

A.11 Support of Internationalised Character Strings
Two new character string syntaxes (Universal String and Unrestricted String) have
been added to this issue of the XOM specification, to support internationalised client
applications. This represents a difference between this XOM API and the API defined by the
IEEE 1224-1993 standard.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 81

Differences from IEEE OM Standard

82 X/Open CAE Specification (1994)

Glossary

Abstract
Said of a class, instances of which are forbidden.

Accessible
Said of an object for which the client possesses a valid designator or handle.

Attribute
A component of an object, comprising an integer denoting the attribute’s type and an ordered
sequence of one or more attribute values, each accompanied by an integer denoting the value’s
syntax.

Bit String
A string comprising bits.

C Interface
The interface, defined at a level that depends upon the variant of C standardised by ANSI.

Character String
A string comprising characters.

Class
A category into which objects are placed on the basis of both their purpose and their internal
structure.

Client
Software that uses the interface.

Concrete
Said of a class, instances of which are permitted.

Descriptor
The means by which the client and service exchange an attribute value and the integers that
denote its representation, type and syntax.

Dispatcher
The software that implements the service interface functions using workspace interface
functions.

Element
Any of the bits of a bit string, the octets of an octet string, or the octets by means of which the
characters of a character string are represented.

Generic Interface
The interface, defined at a level that is independent of any particular programming language

Immediate Subclass
A subclass, of a class C, having no superclasses that are themselves subclasses of C.

Immediate Subobject
One object that is a value of an attribute of another.

Immediate Superclass
The superclass, of a class C, having no subclasses that are themselves superclasses of C.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 83

Glossary

Immediate Superobject
One object that contains another among its attribute values.

Inaccessible
Said of an object for which the client does not possess a valid designator or handle.

Instance
An object in the category represented by a class.

Interface
The interface this document defines.

Intermediate Data Type
Any of the basic data types in terms of which the other, substantive data types of the interface
are defined.

Intermediate Macro
In the C interface, any of the basic macros in terms of which the other, substantive macros used
to realise the dispatcher are defined.

Length
The number of elements in a string.

Minimally Consistent
Said of an object that satisfies various conditions set forth in the definition of its class.

Object Management
The creation, examination, modification and deletion of potentially complex information objects.

Object
Any of the complex information objects created, examined, modified or destroyed by means of
the interface.

Octet String
A string comprising octets.

OSI Object Management API
The interface this document defines.

Package
A group of related classes.

Package Closure
The set of classes that need to be supported in order to be able to create all possible instances of
all classes defined in the package.

Position (within a string)
The ordinal position of one element of a string relative to another.

Position (within an attribute)
The ordinal position of one value relative to another.

Primary Representation
The form in which the service supplies an attribute value to the client.

Private Object
An object that is represented in an unspecified fashion.

Public Object
An object that is represented by a data structure whose format is part of the service’s
specification.

84 X/Open CAE Specification (1994)

Glossary

Secondary Representation
A second form, an alternative to the primary representation, in which the client may supply an
attribute value to the service.

Segment
Zero or more contiguous elements of a string.

Service Interface
The interface as realised, for the client’s benefit, by the service as a whole.

Service
Software that implements the interface.

Specific
Said, with respect to a class, of the attribute types that may appear in an instance of the class but
not in an instance of its superclasses.

String
An ordered sequence of zero or more bits, octets or characters, accompanied by the string’s
length.

Subclass
One of the classes, designated as such, whose attribute types are a superset of those of another
class.

Subobject
An immediate subobject of an object or of one of its subobjects.

Superclass
One of the classes, designated as such, whose attribute types are a subset of those of another
class.

Superobject
An object’s immediate superobject, or one of its superobjects.

Syntax template
A lexical construct containing an asterisk from which several attribute syntaxes can be derived
by substituting text for the asterisk.

Syntax
A category into which an attribute value is placed on the basis of its form.

Type
A category into which attribute values are placed on the basis of their purpose.

Value
An arbitrarily complex information item that can be viewed as a characteristic or property of an
object.

Workspace Interface
The interface as realised, for the dispatcher’s benefit, by each workspace individually.

Workspace
A repository for instances of classes in the closures of one or more packages associated with the
workspace.

OSI-Abstract-Data Manipulation API (XOM), Issue 2 85

Glossary

86 X/Open CAE Specification (1994)

Index

-1st descriptor..66
0th descriptor...66
0th element...66
1st element ...66
Abstract...83
Accessible ...83
ANSI ..5
any ...10
API ...1, 5
Application Program Interface1
architecture ..7, 9
ASN.1 ...2, 5, 15, 17, 20, 75
attribute ..8
Attribute ...83
attribute values ...15
Basic Encoding Rules (BER)1
BER ..5, 17
Bit String...83
boolean..22
C interface..3, 15, 22, 58, 65
C Interface ..83
CCITT..5
Character String..83
class..9
Class ..83
class

abstract..9
concrete...9
constraints..10
definitions ..10

class closure ...11
client ..2, 7, 58
Client ...83
client-generated public object65
closure...11
Concrete..83
copy ...37
copy value ..38
copy()..37
copy-value() ..38
CPUB ...5
create ...40
create()..40
data types ...21
decode ...41
decode()..41

delete ...42
delete()..42
descriptor ...8, 22
Descriptor...83
descriptors..3
Dispatcher ..83
dispatcher macros ..65, 71
Element ...83
encode ...43
encode()..43
encoding ...76
enumeration...24
exclusions ...24
external ...77
functions

copy ...37
copy value..38
create ...40
decode...41
delete...42
encode...43
get ..44
instance...47
put..48
read..50
remove ..52
return codes ...55
write ..53

functions summary ..34
generic interface..3, 55
Generic Interface...83
get...44
get() ...44
handle ...13, 33
header file...58
IA5..5
Immediate Subclass ...83
Immediate Subobject ...83
Immediate Superclass..83
Immediate Superobject..84
Inaccessible ..84
instance ...47
Instance...84
instance()..47
integer ...25
Interface ..84

OSI-Abstract-Data Manipulation API (XOM), Issue 2 87

Index

Intermediate Data Type...84
intermediate data types...22
Intermediate Macro..84
ISO ...5
Length ...84
macros...70
Minimally Consistent ..84
object ...13, 65, 78
Object ..84
object

handle ...25
standard internal representation.......................67

object identifier ...9, 26
Object Management ...84
Octet String ..84
OM ...5
OM API...1
OM class

encoding...76
external ...77
object ...78

OM classes ...75
OM package...75
OSI ...5
OSI Object Management ...1
OSI Object Management API.................................84
package...9, 11, 75
Package ...84
package closure...11
Package Closure..84
Position (within a string)...84
Position (within an attribute)84
PRI..5
Primary Representation ..84
private object...13, 27, 65
Private Object ..84
private object

accessible ..13
inaccessible ..13

public object...13, 28
Public Object ..84
put..48
put() ..48
read..50
read()...50
remove ..52
remove()...52
return code ...28
return codes ...55
Secondary Representation85
segment...18

Segment ..85
service ...2
Service ...85
service interface ..21
Service Interface..85
service interface

copy ...37
copy value..38
create ...40
data types ...21
declarations..58
decode...41
delete...42
encode...43
functions...34
get ..44
instance...47
put..48
read..50
remove ..52
return codes ...55
write ..53

service-generated public object65
Specific ..85
SPUB..5
storage...13
string ...17, 29
String ...85
string

data type...18
segment ..18
value length ...17

Subclass ..85
Subobject ..85
Superclass...85
Superobject...85
syntax..8, 15, 30, 66
Syntax..85
syntax

template..15
Syntax template ..85
template ..15
type..8, 15, 30, 66
Type ...85
type list ...31
UTC..5
value..8, 31
Value..85
value length ...33
value position..33
workspace ..1, 3, 12-13, 33

88 X/Open CAE Specification (1994)

Index

Workspace..85
workspace

designator ..33
handle ...33
standard internal representation.......................67

workspace interface ...65
Workspace Interface...85
write...53
write() ...53
X.400 ..5
XDS ..5
xom.h ..58, 65
xomi.h ...58, 65

OSI-Abstract-Data Manipulation API (XOM), Issue 2 89

Index

90 X/Open CAE Specification (1994)

	c315cov.pdf
	Page 1

	blank.pdf
	Page 1

