
Technical Standard

Application Response Measurement (ARM)

Issue 4.1 Version 1 – C Binding

ii Technical Standard (2007)

Copyright © 2007, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the
copyright owner.

For any software code contained within this specification, permission is hereby granted, free-of-charge, to
any person obtaining a copy of this specification (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
above copyright notice and this permission notice being included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF, OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Permission is granted for implementers to use the names, labels, etc. contained within the specification. The
intent of publication of the specification is to encourage implementations of the specification.

This specification has not been verified for avoidance of possible third-party proprietary rights. In
implementing this specification, usual procedures to ensure the respect of possible third-party intellectual
property rights should be followed.

Technical Standard

Application Response Measurement (ARM) Issue 4.1 Version 1 – C Binding

ISBN: 1-931624-74-7

Document Number: C071

Published by The Open Group, April 2007.

Comments relating to the material contained in this document may be submitted to:

The Open Group, Thames Tower, 37-45 Station Road, Reading, Berkshire, RG1 1LX, United Kingdom

or by electronic mail to: ospecs@opengroup.org

mailto:ogspecs@opengroup.org

ARM Issue 4.1 Version 1 – C Binding iii

Contents
1 Introduction...1

1.1 What is ARM? ..1
1.2 How is ARM Used?..1
1.3 Selecting Transactions to Measure ...2
1.4 The Evolution of ARM...3
1.5 Compatibility between ARM C Binding Versions4
1.6 ARM 4.0/4.1 C Bindings Overview ...4
1.7 Linking to an ARM 4.0/4.1 Implementation ..6

1.7.1 64-Bit Compiler Restriction ..6
1.8 Terminology ...7

2 Getting Started Using ARM 4.0/4.1 C Bindings...9
2.1 Basic End-to-End Measurements..9
2.2 Detailed Timing and Threading Measurements....................................9
2.3 Messaging ...10

3 Programming Options ...11
3.1 ARM Measures Response Times..11
3.2 Application Measures Response Time ...12
3.3 Selecting which Option to Use ...12

4 Understanding the Relationships between Transactions...............................13
4.1 Distributed Transactions with Synchronous Flows13
4.2 Distributed Transactions with Asynchronous Flows (ARM 4.1)16

4.2.1 Indicating Asynchronous Flows..18
4.2.2 Indicating Independent Flows ...19
4.2.3 Event Flows (ARM 4.1) ..20

5 Describing Applications and Transactions..21
5.1 Identity Properties...21
5.2 Context Properties ..22

6 Transaction Response Time Elements ..23
6.1 Arrival and Preparation Time ...24

6.1.1 Opaque Timestamp (ARM 4.0)...24
6.1.2 Formatted Timestamp (ARM 4.1).......................................24
6.1.3 Measured Prep Time (ARM 4.1)...24

6.2 Blocked Time..24
6.3 Thread Binding ...25

7 Additional Data about a Transaction ..26

iv Technical Standard (2007)

7.1 Metrics ..27
7.1.1 Counters ..27
7.1.2 Gauges...27
7.1.3 Numeric IDs ..28
7.1.4 Strings ...28

7.2 Diagnostic Detail ..28
7.3 Diagnostic Properties (ARM 4.1) ...29

8 API Overview ...30
8.1 Overall API Structure ...30
8.2 Structure of Optional Buffer and Sub-Buffers....................................30
8.3 API Functions and Thread-Safe Behavior ..31
8.4 Byte Order Markers in Character Strings ...31
8.5 Overview of API Functions to Register Metadata..............................32
8.6 Overview of API Functions for Application Starts/Stops...................33
8.7 Overview of Common API Functions to Measure Transactions34
8.8 Overview of Other API Functions ..35
8.9 Allowable Sub-Buffer Use per API Function.....................................36
8.10 Processing Multiple Values of the Same Metric.................................37

8.10.1 Counters ..37
8.10.2 Gauges...38
8.10.3 Numeric IDs ..39
8.10.4 Strings ...39

9 Error Handling Philosophy ...40
9.1 Reserved Error Codes ...40

10 Instrumentation Control (ARM 4.1) ...41
10.1 Scope: Application-Wide for all Transactions....................................42
10.2 Scope: All instances of a Registered Transaction ID..........................42
10.3 Scope: One Transaction Instance..43

11 API Macros ...44
ARM_SET_CORRELATOR_FLAG()...45

12 The API Functions ..46
arm_bind_thread()...47
arm_block_transaction() ...48
arm_destroy_application() ..50
arm_discard_transaction()...51
arm_generate_correlator()...52
arm_get_arrival_time() ...55
arm_get_correlator_flags()..56
arm_get_correlator_length() ...57
arm_get_error_message()..58
arm_is_charset_supported() ..60
arm_register_application() ..62

ARM Issue 4.1 Version 1 – C Binding v

arm_register_metric()..64
arm_register_transaction() ..67
arm_report_transaction()...69
arm_start_application() ...72
arm_start_transaction() ...75
arm_stop_application() ...78
arm_stop_transaction()..80
arm_unbind_thread()...82
arm_unblock_transaction() ...84
arm_update_transaction()..86

13 Optional Buffer and Sub-Buffers ..87
13.1 Optional Buffer ...87
13.2 User...91
13.3 Arrival Time ...92
13.4 Metric Values..94
13.5 System Address ..97
13.6 Diagnostic Detail ..100
13.7 Block Cause ..101
13.8 Message Received Event ..103
13.9 Message Sent Event..106
13.10 Formatted Arrival Time UsecJan1970..108
13.11 Formatted Arrival Time Strings..110
13.12 Preparation Time ..112
13.13 Preparation Statistics ..113
13.14 Diagnostic Properties..115
13.15 Application Identity ..117
13.16 Application Context Values..119
13.17 Transaction Identity ..120
13.18 Transaction Context..123
13.19 Metric Bindings ..125
13.20 Character Set Encoding ..127
13.21 Application Control ..129
13.22 Transaction ID Control ...134
13.23 Transaction Instance Control ..138

14 <arm4.h> Header File for Compiling ...142

15 <arm41.h> Header File for Compiling ...153

16 <arm4os.h> Header File for Compiling..158

A Application Instrumentation Samples ...159
16.1 Sample: Basic End-to-End Measurements159
16.2 Sample: Detailed Timing and Threading Measurements..................161
16.3 Sample: Messaging...164
16.4 Sample: Instrumentation Control..169

vi Technical Standard (2007)

B Information for Implementers...173
B.1 Reserved Values ...173
B.2 Byte Ordering in Correlators ..173
B.3 Limits on Interoperability between ARM Implementations174
B.4 Avoiding Interference between ARM Implementations...................174
B.5 Correlator Formats..174
B.6 ARM Correlator Format Constraints ..174

ARM Issue 4.1 Version 1 – C Binding vii

Preface

The Open Group

The Open Group is a vendor-neutral and technology-neutral consortium, whose vision of
Boundaryless Information Flow™ will enable access to integrated information within and
between enterprises based on open standards and global interoperability. The Open Group works
with customers, suppliers, consortia, and other standards bodies. Its role is to capture,
understand, and address current and emerging requirements, establish policies, and share best
practices; to facilitate interoperability, develop consensus, and evolve and integrate
specifications and Open Source technologies; to offer a comprehensive set of services to
enhance the operational efficiency of consortia; and to operate the industry's premier
certification service, including UNIX® certification.

Further information on The Open Group is available at www.opengroup.org.

The Open Group has over 15 years' experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of test
suites used to validate conformance to an open standard or specification.

More information is available at www.opengroup.org/certification.

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business titles.
Full details and a catalog are available at www.opengroup.org/bookstore.

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards-compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it
replaces the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained
in the previous publication of that title, and there may also be additions/extensions. As
such, both previous and new documents are maintained as current publications.

Readers should note that updates – in the form of Corrigenda – may apply to any publication.
This information is published at www.opengroup.org/corrigenda.

http://www.opengroup.org/
http://www.opengroup.org/certification
http://www.opengroup.org/bookstore
http://www.opengroup.org/corrigenda

viii Technical Standard (2007)

This Document

This document is the Technical Standard for the C Binding to Application Response
Measurement (ARM) Issue 4.1. It has been developed and approved by The Open Group.

ARM is a standard for measuring service levels of single-system and distributed applications.
ARM measures the availability and performance of transactions, both visible to the users of the
business application and those visible only within the IT infrastructure.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for filenames, type names, and data structures.

• Italics in text denote variable names and function names. Italic strings are also used for
emphasis.

• Normal font is used for the names of constants and literals.

• Syntax and code examples are shown in fixed width font.

• Sections marked with a revision number of the ARM standard in parentheses – e.g.,
(ARM 4.0) – describe a feature that exists since the introduction of the given revision.
Features remain in effect in all higher revisions of the same major ARM release.

ARM Issue 4.1 Version 1 – C Binding ix

Trademarks
Boundaryless Information Flow™ and TOGAF™ are trademarks and Making Standards Work®,
The Open Group®, and UNIX® are registered trademarks of The Open Group in the United
States and other countries.

Hewlett-Packard® is a registered trademark of Hewlett-Packard Company.

Java® is a registered trademark of Sun Microsystems, Inc.

Tivoli® is a trademark of IBM Corporation, Inc.

WebSphere® is a registered trademark of IBM Corporation.

The Open Group acknowledges that there may be other brand, company, and product names
used in this document that may be covered by trademark protection and advises the reader to
verify them independently.

x Technical Standard (2007)

Acknowledgements
The Open Group gratefully acknowledges the contribution of the following people in the
development of this document:

• Bill Furnas, Hewlett-Packard

• Mark Johnson, IBM

• Marcus Thoss, tang-IT Consulting GmbH

• Van Wiles, BMC

ARM Issue 4.1 Version 1 – C Binding xi

Referenced Documents
The following documents are referenced in this Technical Standard:

ARM 2.0 Technical Standard, July 1998, Systems Management: Application Response
Measurement (ARM) (C807), published by The Open Group.

ARM 3.0 Technical Standard, October 2001, Application Response Measurement (ARM)
Issue 3.0 Java Binding (C014), published by The Open Group.

ARM 4.0 (C Binding)
Technical Standard, August 2004, Application Response Measurement (ARM)
Issue 4.0 Version 2 – C Binding (C041), published by The Open Group.

ARM 4.0 (Java Binding)
Technical Standard, August 2004, Application Response Measurement (ARM)
Issue 4.0 Version 2 – Java Binding (C042), published by The Open Group.

ARM 4.1 (Java Binding)
Technical Standard, April 2007, Application Response Measurement (ARM) Issue
4.1 Version 1 – Java Binding (C072), published by The Open Group.

DCE 1.1: RPC
Technical Standard, August 1997, DCE 1.1: Remote Procedure Call (C706),
published by The Open Group.

IETF RFC 1155
Structure and Identification of management Information for TCP/IP-based
Internets, May 1990.

IETF RFC 1321
The MD5 Message-Digest Algorithm, April 1992.

ARM Issue 4.1 Version 1 – C Binding 1

1 Introduction

1.1 What is ARM?

It is hard to imagine conducting business around the globe without computer systems, networks,
and software. People distribute and search for information, communicate with each other, and
transact business. Computers are increasingly faster, smaller, and less expensive. Networks are
increasingly faster, have more capacity, and are more reliable. Software has evolved to better
exploit the technological advances and to meet demanding new requirements. The IT
infrastructure has become more complex. We have become more dependent on the business
applications built on this infrastructure because they offer more services and improved
productivity.

No matter how much applications change, administrators and analysts responsible for the
applications care about the same things they have always cared about:

• Are transactions succeeding?

• If a transaction fails, what is the cause of the failure?

• What is the response time experienced by the end-user?

• Which sub-transactions of the user transaction take too long?

• Where are the bottlenecks?

• How many of which transactions are being used?

• How can the application and environment be tuned to be more robust and perform better?

ARM helps answer these questions. ARM is a standard for measuring service levels of single-
system and distributed applications. ARM measures the availability and performance of
transactions (any units of work), both those visible to the users of the business application and
those visible only within the IT infrastructure, such as client/server requests to a data server.

1.2 How is ARM Used?

ARM is a means through which business applications and management applications cooperate to
measure the response time and status of transactions executed by the business applications.

Applications using ARM define transactions that are meaningful within the application. Typical
examples are transactions initiated by a user and transactions with servers. As shown in Figure
1, applications on clients and/or servers call ARM when transactions start and/or stop. The agent
in turn communicates with management applications, as shown in Figure 2, which provide
analysis and reporting of the data.

2 Technical Standard (2007)

The management agent collects the status and response time, and optionally other measurements
associated with the transaction. The business application, in conjunction with the agent, may
also provide information to correlate parent and child transactions. For example, a transaction
that is invoked on a client may drive a transaction on an application server, which in turn drives
ten other transactions on other application and/or data servers. The transaction on the client
would be the parent of the transaction on the application server, which in turn would be the
parent of the ten other transactions.

From the application developer’s perspective ARM is a set of interfaces that the application
loads and calls. What happens to the data after it calls the interfaces is not the developer’s
concern.

ARM Interface

Used by application
developers to

instrument software

Application

Figure 1: Application – ARM Interface

From the system administrator’s perspective, ARM consists of the interfaces that applications
load and call and the classes that implement these interfaces, plus programs to process the data,
as shown in Figure 2. How the data is processed is not part of the ARM specification, but it is, of
course, important to the system administrator.

ARM Interface

Used by application
developers to

instrument software

Application

Application

Application

Management Agent
+

Analysis
+

Reporting

Figure 2: Application – ARM Management System Interaction

1.3 Selecting Transactions to Measure

ARM is designed to measure a unit of work, such as a business transaction, or a major
component of a business transaction, that is performance-sensitive. These transactions should be
something that needs to be measured, monitored, and for which corrective action can be taken if
the performance is determined to be too slow.

ARM Issue 4.1 Version 1 – C Binding 3

Some questions to ask that aid in selecting which transactions to measure are:

• What unit of work does this transaction define?

• Are the transaction counts and/or response times important?

• Who will use this information?

• If performance of this transaction is too slow, what corrective actions will be taken?

1.4 The Evolution of ARM

ARM 1.0 was developed by Tivoli and Hewlett-Packard and released in June 1996. It provides a
means to measure the response time and status of transactions. The interface is in the C
programming language.

ARM 2.0 was developed by the ARM Working Group in 1997. The ARM Working Group was a
consortium of vendors and end-users interested in promoting and advancing ARM. ARM 2.0
was approved as a Technical Standard of The Open Group in July 1998, part of the IT DialTone
initiative. ARM 2.0 added the ability to correlate parent and child transactions, and to collect
other measurements associated with the transactions, such as the number of records processed.
The interface is in the C programming language.

ARM 3.0 was developed by The Open Group in 2001. It added new capabilities and specified
interfaces in the Java programming language. ARM 3.0 added the following capabilities:

• Java bindings

• Changes to the length of application and transaction identifiers and handles

• The ability to report the status and response time of a transaction with a single call,
executed after the transaction completes; the transaction could have executed on a
different system

• The ability to identify a user on a per-transaction basis

ARM 4.0 was developed to implement new capabilities, and to provide equivalent functions for
both C and Java programs. ARM 4.0 added the following capabilities:

• A richer and more flexible model for specifying application and transaction identity

• Report attributes of a transaction that change on a per-instance basis

• Bind a transaction to a thread

• Indicate the amount of time a transaction is blocked waiting for an external event

• Indicate the true time when a transaction started executing for a specialized situation in
which the standard indication of a start [arm_start_transaction() in ARM 4.0 C bindings]
will not yield an accurate time

ARM 4.1 has been developed to implement new capabilities while maintaining equivalent
functions for both C and Java programs. This document describes the C program bindings. A

4 Technical Standard (2007)

companion document describes the Java program bindings. ARM 4.1 adds the following
capabilities:

• An instrumentation control interface that an application may use to query an
implementation to determine how much information about a transaction would be useful
(from none to very detailed)

• Interfaces to improve ARM’s usefulness in messaging and workflow environments

• More flexible mechanisms for reporting properties about a transaction; this is especially
useful in instrumented middleware that may not know the properties about a transaction of
an application that runs on the middleware until the transaction executes

• Additional flexibility to report when transactions begin executing

1.5 Compatibility between ARM C Binding Versions

ARM defines low-level programming interfaces to be used between program modules that are
dynamically linked together. This limits how much an interface can change from version to
version and still link with programs using a previous version. In particular, changing function
entry points, or the call signatures of an entry point, prevents working with a different version.

• ARM 1.0 and ARM 2.0 are interoperable. More specifically, any application
instrumenting with ARM 1.0 can link to an ARM implementation using ARM 2.0, and
vice versa. In cases in which the application uses ARM 2.0 and the implementation uses
1.0, the implementation ignores the 2.0 capabilities.

• ARM 4.0 and ARM 4.1 are interoperable. More specifically, any application
instrumenting with ARM 4.0 can link to an ARM implementation using ARM 4.1, and
vice versa. In cases in which the application uses ARM 4.1 and the implementation uses
4.0, the implementation ignores the 4.1 capabilities.

• No other versions of ARM are similarly interoperable.

It is expected that management agents may simultaneously support multiple versions of ARM.
For example, a product may support both the ARM 2.0 and ARM 4.0 C interfaces. However, a
business application loading and using the ARM 2.0 library cannot load and link to an ARM 4.0
library, and vice versa.

1.6 ARM 4.0/4.1 C Bindings Overview

This specification describes an interface that consists of a set of API calls. To satisfy the
requirements of the specification, all of the API calls must be implemented. The calls are
typically implemented in a library that is dynamically loaded. While developing the program,
programmers insert code into the application to call the library. The program is compiled using
the provided header file, <arm41.h>. <arm41.h> includes the ARM 4.0 header file <arm4.h>.

At runtime, applications load and link to the library in their own process, as shown in Figure 3.
After the library has been linked, the application (including middleware, such as an application

ARM Issue 4.1 Version 1 – C Binding 5

server instrumented to call ARM) calls the library to identify itself and its transactions, and to
indicate when transactions start and stop.

Application’s processApplication’s process

ARM Library

ApplicationIncoming request External request

ARM Library

Application

ARM
standard

Figure 3: What ARM Looks Like to an Application

How the ARM library processes the information is transparent to the application. This
characteristic is one of the strengths of the ARM architecture, because a programmer can
“ARM” his or her application without being dependent on or constrained by any particular
management solution. Purchasers of the application can select the solution that best meets their
needs.

Figure 4 shows a typical ARM implementation. A provider of a management solution, either
sold commercially or developed in-house, provides both the ARM library and a matching agent,
and perhaps also management applications. The agent runs in a separate process. The ARM
library and agent communicate through some sort of inter-process communications mechanism.
The agent performs functions such as creating summaries, monitoring response time thresholds,
capturing trace data, managing log files, and interfacing with management applications. The
management applications provide functions such as managing service-level agreements and
problem determination. Figure 4 shows a separate agent for each process, but in practice there is
often one agent for a system that simultaneously supports libraries in many processes.

Management
Application

Management
Application

Management
Application

Agent
Trace Data

Summaries
Records Agent

Application’s processApplication’s process

ARM Library

ApplicationIncoming request External request

ARM Library

Application

ARM
standard

Figure 4: Behind the Scenes of the ARM Interface

6 Technical Standard (2007)

1.7 Linking to an ARM 4.0/4.1 Implementation

The most common and most interoperable ways to link to an ARM 4.0/4.1 implementation are
via a dynamically linked or loaded (shared) library. The default name of the library is libarm4
(although some operating environments may need to add additional names in the future). The
full name, including suffix, depends on the platform. Here are some example defaults:

Operating System/File System Environment Application Mode Library Name

HP-UX libarm4.sl

IBM AIX libarm4.a

IBM I5/OS (formerly OS/400) LIBARM4

31-bit non-XPLINK LARM431

31-bit XPLINK LARM43X

IBM zOS – Partitioned Data Set Extended

64-bit LARM464

31-bit non-XPLINK libarm4_31.so

31-bit XPLINK libarm4_3x.so

IBM zOS – Hierarchical File System

64-bit libarm4_64.so

Linux libarm4.so

Microsoft Windows libarm4.dll

Sun Solaris libarm4.so

Different operating systems have different conventions for how an application locates a library.
Two suggested approaches are the following:

1. Provide a way for a system administrator to specify the name and path to the library as a
runtime parameter. For example, the path could be in a property file. This provides
maximum flexibility, and could even allow a way for different ARM implementations to
be simultaneously active, each supporting a different set of applications.

2. Load a library with the default library name (e.g., libarm4) and assume that if one can be
found somewhere in the path, it is the one to use. This would also be a good choice for a
default path in approach (1) above.

ARM implementations may provide other ways to link to them, either out of necessity or choice.
For example, operating systems in small pervasive devices may have no file system and no
concept of dynamic linking or loading of a library. In this case, the application statically links to
an ARM implementation. Some operating systems may contain the API calls in a runtime
environment available to all applications without specifically linking and loading a library.
Applications that use mechanisms like these become bound to that one implementation; their
customers do not have the option of using a different ARM implementation.

1.7.1 64-Bit Compiler Restriction

To maintain compatibility between applications and ARM libraries on 64-bit platforms, the
compiler must use automatic alignment of pointers on 64-bit platforms.

ARM Issue 4.1 Version 1 – C Binding 7

1.8 Terminology

The following terminology is used throughout this document:

Can Describes a permissible optional feature or behavior available to the user or
application. The feature or behavior is mandatory for an implementation that
conforms to this document. An application can rely on the existence of the feature
or behavior.

Implementation-defined
(Same meaning as “implementation-dependent”.) Describes a value or behavior that
is not defined by this document but is selected by an implementer. The value or
behavior may vary among implementations that conform to this document. An
application should not rely on the existence of the value or behavior. An application
that relies on such a value or behavior cannot be assured to be portable across
conforming implementations. The implementer shall document such a value or
behavior so that it can be used correctly by an application.

Legacy Describes a feature or behavior that is being retained for compatibility with older
applications, but which has limitations which make it inappropriate for developing
portable applications. New applications should use alternative means of obtaining
equivalent functionality.

May Describes a feature or behavior that is optional for an implementation that conforms
to this document. An application should not rely on the existence of the feature or
behavior. An application that relies on such a feature or behavior cannot be assured
to be portable across conforming implementations. To avoid ambiguity, the
opposite of “may” is expressed as “need not”, instead of “may not”.

Must Describes a feature or behavior that is mandatory for an application or user. An
implementation that conforms to this document shall support this feature or
behavior.

Shall Describes a feature or behavior that is mandatory for an implementation that
conforms to this document. An application can rely on the existence of the feature
or behavior.

Should For an implementation that conforms to this document, describes a feature or
behavior that is recommended but not mandatory. An application should not rely on
the existence of the feature or behavior. An application that relies on such a feature
or behavior cannot be assured to be portable across conforming implementations.
For an application, describes a feature or behavior that is recommended
programming practice for optimum portability.

Undefined Describes the nature of a value or behavior not defined by this document that
results from use of an invalid program construct or invalid data input. The value or
behavior may vary among implementations that conform to this document. An
application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be
portable across conforming implementations.

8 Technical Standard (2007)

Unspecified Describes the nature of a value or behavior not specified by this document that
results from use of a valid program construct or valid data input. The value or
behavior may vary among implementations that conform to this document. An
application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be
portable across conforming implementations.

Will Same meaning as “shall”; “shall” is the preferred term.

ARM Issue 4.1 Version 1 – C Binding 9

2 Getting Started Using ARM 4.0/4.1 C Bindings

ARM is designed to be a relatively simple interface with several optional capabilities. Many
applications need only the essential elements, perhaps augmented by a small subset of the
optional capabilities, to satisfy their instrumentation requirements.

In order to describe all of ARM’s optional capabilities, this specification is by necessity large.
Most users need to understand only a subset of the specification. This chapter describes three
common sets of capabilities and directs the reader to the relevant sections in the specification. It
is hoped this will assist users to quickly start using ARM.

2.1 Basic End-to-End Measurements

All applications must use or are recommended to use the following capabilities:

Capability
Suggested
Reading API Calls Used Sub-Buffers Used

Registration and
initialization

Chapter 5
Chapter 8

arm_register_application
arm_register_transaction
arm_start_application
arm_stop_application

[all are optional]
Application Identity
Application Context Values
Transaction Identity
Transaction Context

Measure response time
and status

Chapter 3 arm_start_transaction
arm_stop_transaction

[optional] Correlate
transactions end-to-end

Section 4.1 arm_get_correlator_length
(Additional parameters of
arm_start_transaction)

There is a code sample in Section 16.1.

Table 1: ARM Capabilities for Basic End-to-End Measurements

2.2 Detailed Timing and Threading Measurements

The blocking and threading capabilities described below are useful with management software
that monitors and/or manages how transactions interact with the operating system, such as
workload management software.

The response time detail measurements are useful when there are transactions that begin
executing prior to the time when all the identity context data for the transaction is known.

The best practice instrumentation uses the capabilities described in Table 2: in addition to the
basic capabilities described in Table 1.

10 Technical Standard (2007)

Capability
Suggested
Reading API Calls Used Sub-Buffers Used

[optional] Measure time
that transactions are
blocked

Section 6.2 arm_block_transaction
arm_unblock_transaction

[optional]
Block Cause

[optional] Associate
transactions to threads

Section 6.3 arm_bind_thread
arm_unbind_thread

[optional] Measure
response times more
accurately in certain
situations

Section 6.1 arm_get_arrival_time [use at least one of the
following]
Arrival Time
Formatted Arrival Time
UsecJan1970
Formatted Arrival Time Strings
Preparation Time
Preparation Statistics

There is a code sample in Section 16.2.

Table 2: ARM Capabilities for Detailed Timing and Threading Measurements

2.3 Messaging

The message instrumentation capabilities described below are useful with transactions that are
invoked via messages or that use messages to invoke other transactions. The best practice
instrumentation uses the capabilities described in Table 3 in addition to the basic capabilities
described in Table 1.

Capability
Suggested
Reading Macro Used Sub-Buffers Used

[optional] Indicate
asynchronous flows
and independent
transactions

Section 4.2 ARM_SET_CORRELATOR_FLAG

[optional] Indicate
message sent and
received events

Section 4.2 [use at least one of the
following]
Message Received Event
Message Sent Event

There is a code sample in Section 16.3.

Table 3: ARM Capabilities for Messaging Instrumentation

ARM Issue 4.1 Version 1 – C Binding 11

3 Programming Options

The application has two options for providing measurement data:

• In Option 1, the preferred and more widely used option, the application calls ARM just
before and after a transaction executes. Based on the time when these calls are made,
ARM measures the response time and the time of day.

• In Option 2, the application makes all the measurements itself and reports the data some
time later. Option 2 should only be used in situations that preclude using Option 1.

3.1 ARM Measures Response Times

Figure 5 shows Option 1, the preferred and most widely used option. Immediately prior to
starting a transaction, the application invokes arm_start_transaction(). The ARM 4.0/4.1 library
captures and saves the timestamp and returns a unique handle. Immediately after the transaction
ends, the application calls arm_stop_transaction(), passing the previously returned handle plus
the completion status of the transaction. The ARM library captures the stop time. The difference
between the stop time and the start time is the response time of the transaction.

Application ARM 4.x Library

arm_start_transaction()

arm_stop_transaction()

Figure 5: Measurement using Start/Stop

The application optionally provides any number of heartbeat and progress indicators using
arm_update_transaction() between an arm_start_transaction() and an arm_stop_transaction().
This is shown in Figure 6. Heartbeats are useful for long-running transactions, such as a batch
job.

Application ARM 4.x Library

arm_start_transaction()

arm_stop_transaction()

arm_update_transaction()

arm_update_transaction()

Figure 6: Application using Heartbeats

12 Technical Standard (2007)

3.2 Application Measures Response Time

Figure 7 shows Option 2. The application itself measures the response time of the transaction.
After the transaction completes (the delay could be short or long), it calls
arm_report_transaction() to communicate the status, response time, and stop time to the ARM
library.

Application ARM 4.x Library
arm_report_transaction()

Figure 7: Measurement by the Application

3.3 Selecting which Option to Use

In many situations the business application can use either programming option. In general, the
recommendation is to use Option 1 (separate start and stop calls), unless that is not practical.

There is one situation for which the application must use Option 1:

• To provide heartbeats, the application must use arm_update_transaction() between
arm_start_transaction() and arm_stop_transaction(). Heartbeats are particularly valuable
for long-running transactions. An ARM implementation may process updates, such as a
real-time progress display, or check a threshold for a transaction that is taking too long.

There are two situations for which applications must use Option 2 [arm_report_transaction()]:

• Option 1 uses inline synchronous arm_start_transaction() and arm_stop_transaction()
calls. The calls are made at the moment the real transaction starts and stops, though there
is an optional feature to indicate an earlier start time. If they are not, the timings will not
be accurate. If the application finds this inconvenient or impractical, it must perform the
measurements itself and report them with arm_report_transaction().

• If the transaction executes on System A but is reported to ARM on System B,
arm_report_transaction() must be used for all the reasons stated above. In addition, the
application provides additional information that identifies the system of the remote system
where the transaction ran. A typical reason why ARM reporting through a different
system might be necessary is that the originating system does not support ARM facilities.

ARM Issue 4.1 Version 1 – C Binding 13

4 Understanding the Relationships between Transactions

There are several solutions available that measure transaction response times, such as measuring
the response time as seen by a client, or measuring how long a method on an application server
takes to complete. ARM can be used for this purpose as well. This is useful data, but it doesn’t
provide insight into how transactions on servers are related to business transactions executed by
users or other application programs. ARM provides a facility for correlating transactions within
and across systems. This section describes how this is done.

Most modern applications consist of programs distributed across multiple systems, processes,
and threads. Figure 8 is an example.

Client Application
Server

Application
Server

Data
Server

Data
Server

Data
Server

Figure 8: A Common Distributed Application Architecture

4.1 Distributed Transactions with Synchronous Flows

Figure 9 is an example transaction that runs on this application architecture. More correctly,
Figure 9 shows a hierarchy of several transactions. To the user there is one transaction, but it is
not unusual for the one transaction visible to the end-user to consist of tens or even over 100
sub-transactions.

14 Technical Standard (2007)

Submit
order

Process
order

query

query

query

verify
order

execute
order

query

query

query

query

update

update

Figure 9: An Example of a Distributed Transaction

In ARM each transaction instance is assigned a unique token, named in ARM parlance a
“correlator”. To the application a correlator appears as an opaque byte array. The correlator
format is known to the implementation that creates it, and management agents and applications
that understand it can take advantage of the information in it to determine where and when a
transaction executed, which can aid enormously in problem diagnosis. Figure 10 shows the same
transaction hierarchy as Figure 9, except that the descriptive names in Figure 9 have been
replaced with identifiers. The lines are dotted instead of solid to indicate that without additional
information, this would look to a management application like thirteen unrelated transactions.

S1 P1 Q1

Q2

Q3

V1

E1

Q4

Q5

Q6

Q7

U2

U1

Figure 10: Distributed Transactions that Appear Unrelated

ARM Issue 4.1 Version 1 – C Binding 15

To relate the transactions together, the application components are each instrumented with
ARM. In addition, each transaction passes the correlator that identifies itself to its children. In
Figure 9 and Figure 10, the Submit Order transaction passes its correlator (S1) to its child,
Process Order. Process Order passes its correlator (P1) to its five children – three queries, Verify
Order, and Execute Order. Verify Order passes its correlator (V1) to its four children, and
Execute Order passes its correlator (E1) to its two children.

The last piece in the puzzle is that each of the transactions instrumented with ARM passes its
parent correlator to the ARM library. The ARM library knows the correlator of the current
transaction. The correlators can be combined into a tuple of (parent correlator, correlator). Some
of the tuples in Figure 10 are (S1,P1), (P1,Q1), (P1,E1), and (E1, U1). By putting the different
tuples together, the management application can create the full calling hierarchy using the
correlators to identify the transaction instances, as shown in Figure 11.

As an example of how this information could be used, if S1 failed, it would now be possible to
determine that it failed because P1 failed, P1 failed because V1 failed, and V1 failed because Q6
failed.

Similar types of analysis could determine the source of response time problems. To analyze
response time problems, additional information is needed. It is necessary to know if the child
transactions execute serially, in parallel, or some combination of the two. The information may
also be useful in locating unacceptable network latencies. For example, if the response time of
S1 is substantially more than the response time of P1, and it is known that there is very little
processing done on P1 that isn’t accounted for in the measured response times, it suggests that
there are unacceptable network or queuing delays between S1 and P1.

S1 P1 Q1

Q2

Q3

V1

E1

Q4

Q5

Q6

Q7

U2

U1

(P1,Q1)

(P1,Q2)

(P1,Q3)

(P1,V1)

(P1,E1)

(V1,Q4)

V1,Q5)

(V1,Q6)

(V1,Q7)

(E1,U1)

(E1,U2)

(S1,P1)

Figure 11: A Distributed Transaction Calling Hierarchy

16 Technical Standard (2007)

4.2 Distributed Transactions with Asynchronous Flows (ARM 4.1)

The discussion in Section 4.1 implies synchronous flows between all the component transactions
of the distributed transactions. Asynchronous flows using a queuing system are another widely
used model for distributed transactions.

An asynchronous flow is one that is accomplished using an asynchronous mechanism, such as a
messaging protocol OR if the relationship between the transactions is asynchronous in nature. In
the latter case, a parent transaction might initiate a service using a synchronous protocol, but if
the parent continues processing other logic in parallel with the invoked service then the overall
relationship between the transactions is asynchronous in nature.

In the examples from Figure 12 through Figure 16 the yellow boxes with a single letter in them
represent transaction instances. The transactions communicate with each other using queues.

• Figure 12 represents a simple request/response flow. The business logic of A and B are
the same as they would be with synchronous flows, but the communication mechanisms
are message queues.

• Figure 13 represents a simple request/response flow from the perspective of B or C, each
using message queues for communication. From the perspective of A there are two
parallel flows that are in a race condition – it is not possible for A to predict in advance
whether B or C will return a response first.

• Figure 14: represents a daisy chain flow in which each component passes the results of the
transaction on to another component. The last component returns a message to A, which
initiated the first flow. Also shown is an optional independent flow (to D) that is spawned
by the main flow but which is independent after it is spawned.

• Figure 15 represents a sequential workflow in which no results are returned to the
originating transaction (A). This is a common semantic with batch jobs.

• Figure 16 represents a workflow similar to the one in Figure 15, but with parallel paths
that converge. C represents a synchronization point, waiting for input from both B and D
before proceeding to execute.

A B

Queue

Queue

Figure 12: Request/Response with Asynchronous Flows

ARM Issue 4.1 Version 1 – C Binding 17

A B

Queue

Queue

C

Queue

Figure 13: Request/Response with Parallel Asynchronous Flows

A

B

C

Queue

Queue

Queue

Queue
D

(optional spawning an
independent transaction)

Figure 14: Asynchronous “Daisy-Chain” Asynchronous Flows

A

B
C

Queue Queue

Figure 15: Workflow with Sequential Asynchronous Flows

A

B

C
Queue

Queue

D
Queue

Figure 16: Workflow with Parallel Asynchronous Flows

In each of these five cases it is reasonable for a management application to wish to construct a
call graph along the lines of the one depicted in Figure 11. The basic mechanism that is used is
the same – creating (parent correlator, current correlator) pairs and then analyzing them to

18 Technical Standard (2007)

construct the call graph. ARM 4.1 adds extensions that applications can use to make it clearer
that the flows are asynchronous and to understand when a transaction is represented by a circular
flow, such as is shown in Figure 14:, or a one-way flow, such as is shown in Figure 15.

ARM 4.1 adds three features that enable applications to indicate conditions that describe the
relationship between a parent transaction and transactions that it invokes:

• Section 4.2.1 describes the Asynchronous Flow flag in the correlator that indicates that
there is an asynchronous relationship between a parent transaction and transactions that it
invokes. This flag can be set with the ARM_SET_CORRELATOR_FLAG() macro.

• Section 4.2.2 describes the Independent Transaction flag in the correlator that indicates
that an invoked transaction does not influence its parent transaction. This flag can be set
with the ARM_SET_CORRELATOR_FLAG() macro.

• Section 4.2.3 describes message event sub-buffers that can be used to provide additional
details about messages that have been exchanged.

4.2.1 Indicating Asynchronous Flows

Setting the Asynchronous Flow flag to TRUE indicates that the control flow from the parent was
accomplished via an asynchronous mechanism, such as a messaging protocol OR that the
transaction flow is asynchronous in nature. For example, it would be appropriate to set the
Asynchronous Flow flag in the following situation even though synchronous protocols are being
used:

• A parent uses a synchronous web service call to send a message to a child that starts a
transaction. The response to the web service means “I’ve received your request”, NOT
“I’ve completed your request”.

• The parent transaction continues executing business logic.

• At some later point in time the parent transaction may issue another synchronous web
service call to retrieve the results.

Another way to think about it is that if there is a race condition between the parent and the child
transaction such that it is unknown whether the child transaction will complete before the parent
transaction continues executing, it is appropriate to use the Asynchronous Flow flag. The
circumstance in which it is inappropriate to use the Asynchronous Flow flag is when the caller
makes a synchronous call using a synchronous protocol and blocks waiting for the child
transaction to complete. It would be appropriate to use the Asynchronous Flow flag if a message
is sent using a message queuing protocol even if the application immediately blocks to await a
response.

When the flag is FALSE, the ARM agent cannot presume anything about the nature of parent-
child interaction.

When used, this flag needs to be set prior to specification of a parent correlator on an
arm_start_transaction(), arm_generate_correlator(), or arm_report_transaction() call. The flag
could be set by the child recipient of the correlator, but the expectation is that the flag is set most
frequently by the parent prior to the control transfer protocol invocation. Note that the

ARM Issue 4.1 Version 1 – C Binding 19

Independent Transaction (IT) flag, described below, has a semantic dependency on this flag,
which also potentially influences where this flag is set.

4.2.2 Indicating Independent Flows

The Independent Transaction flag indicates that the invoked transaction will not influence the
parent transaction in any way, and in many cases, the invoked transaction would be best thought
of and modeled as a new business transaction.

Setting the Independent Transaction flag to TRUE indicates that ARM-reported program logic
execution in the child recipient of this correlator reflects transaction work that, although initiated
by this parent, is performed independently of the parent’s ARM-reported transaction work in
scope and purpose. More specifically, setting the flag to TRUE indicates that neither the parent
transaction’s response time nor status is dependent on the child transaction’s execution, nor is
there any expected use of the same transaction context.

It logically follows that the child transaction is executing asynchronously to the parent
transaction and therefore the Independent Transaction flag may be set to TRUE only if the
Asynchronous Flow flag is also set to TRUE. If the Asynchronous Flow flag is FALSE, the
Independent Transaction flag is ignored.

Asynchronous
Flow Flag

Independent
Transaction Flag Interpretation

FALSE FALSE No assumptions about the parent/child interaction can be
made.

FALSE TRUE The Independent Transaction flag is ignored. No
assumptions about the parent/child interaction can be made.

TRUE FALSE The child transaction is executing asynchronously to the
parent transaction but not independently.

TRUE TRUE The child transaction is executing asynchronously to the
parent transaction and is also independent of the parent
transaction.

Table 4: Correlator Flags in Asynchronous Flows

When used, this flag needs to be set prior to specification of a parent correlator on an
arm_start_transaction(), arm_generate_correlator(), or arm_report_transaction() call. The flag
could be set by the child recipient of the correlator, but the expectation is that the flag is set most
frequently by the parent prior to the control transfer protocol invocation.

The Asynchronous Flow and Independent Transaction flags are interpreted only within the scope
of a single parent-child control transfer, and are exclusively manipulated by applications. The
ARM agent never sets these flags. The application uses the ARM_SET_CORRELATOR_FLAG()
macro to set the flags. All correlators constructed by the ARM agent and returned as output on
arm_start_transaction() and arm_generate_correlator() calls are constructed with the
Asynchronous Flow and Independent Transaction flags set to FALSE. Note that the flags are
never inherited from parent correlators to child correlators, unlike the Agent Trace and
Application Trace flags (bit positions 0 and 1, respectively), which often are inherited from the
parent correlator.

20 Technical Standard (2007)

4.2.3 Event Flows (ARM 4.1)

Asynchronous flows between programs are initiated, controlled, and terminated through the
exchange of messages. It can be useful to programs that analyze asynchronous flows and how
they impact applications to understand the underlying event flows.

There are two types of events:

• Message Received

The Message Received Event sub-buffer is optionally used to describe one or more
messages that have been received that have an effect on the execution state of a
transaction. The cases of interest are the following:

— A message causes the transaction to initiate.

— A message causes the transaction to unblock.

— A message is received that terminates an asynchronous transaction or a step in an
asynchronous transaction.

— A message is received that is related to the transaction, though it may not change the
blocked or running state of the transaction.

• Message Sent

The Message Sent Event sub-buffer is optionally used to describe one or more messages
that have been sent that have an effect on the execution state of a transaction. The cases of
interest are the following:

— A message is sent that causes the transaction to block.

— A message is sent that initiates or terminates an asynchronous transaction or a step in
an asynchronous transaction.

— A message is sent that is part of an exchange between this transaction and another
transaction.

With either a Message Received or Message Sent event an application can indicate with the
End-Of-Flow flag that the current transaction is the last in a series of transactions that together
represent one logical flow. For example, if there are three transactions (A,B,C) that together
perform some service, and if the flow between them is A invokes B, which invokes C, and
neither B nor C return status or other data to the transaction that invoked it, then C represents the
end of the flow A→B→C.

The event data is provided in the Message Received Event sub-buffer (see Section 13.8) and the
Message Sent Event sub-buffer (see Section 13.9), respectively. The data may be provided on
any of the following API calls: arm_start_transaction(), arm_update_transaction(),
arm_stop_transaction(), arm_block_transaction(), arm_unblock_transaction().

ARM Issue 4.1 Version 1 – C Binding 21

5 Describing Applications and Transactions

ARM 4.1 uses two types of properties to describe applications and transactions: “identity”
properties (for applications and transactions), and “context” properties (for applications and
transactions). Each property consists of a name string and a value string.

They differ based on when the names and/or values are set, as shown in Table 5.

Type of Property Same for all Instances May Vary per Instance

Identity Property
(applications and transactions)

Name
Value

Context Property
(applications and transactions)

Name Value

Table 5: Descriptive Property Types

When deciding which property type to use, instrumenters should be aware of the trade-offs:

• Processing of identity properties can generally be optimized more than processing of
context properties because it can be done once at registration time for both the names and
the values and apply to all transaction instances.

• Processing of context property values may occur for every transaction instance. This
increases overhead but it is a good practice if each transaction “flavor”, where a flavor
represents a different combination of properties, is a slight variation on the same type of
transaction. An implementation that does not process the context properties could still
provide useful reports if the performance characteristics of each flavor are similar.

5.1 Identity Properties

An identity property is a property that has the same name and value for all instances of an
application or transaction.

• The application name and transaction name parameters are mandatory and provide the
most basic identification. Many applications and transactions are satisfactorily identified
through the use of only the name parameter.

• In addition, there can be up to 20 identity properties of the pattern (name,value) pair, in
which both name and value are separate character strings.

• Transactions can also have a URI property that is part of the identity when it is provided.

Identity property names and values are provided when an application or transaction is registered.

22 Technical Standard (2007)

5.2 Context Properties

A context property name is the same for all instances of an application or transaction, but each
instance may have different values.

• In addition, applications have two implicitly named context properties – the group name
and instance name.

• In addition, transactions can also have a URI property and a user name property that can
be used to help define the context.

Context property names are provided when an application or transaction is registered.

Context property values are provided when an application or transaction instance starts.

ARM Issue 4.1 Version 1 – C Binding 23

6 Transaction Response Time Elements

The use of ARM implies a model in which the total response time of a transaction can be sub-
divided into finer grained elements, as shown in Figure 17:.

Arrives

Context
Gathered;

Execution
begins Blocked Unblocked

Execution
complete

Response Time

Prep Time

Execution Time

may block n times

Blocked

Blocked Unblocked

Blocked

ar
m

_s
ta

rt
_t

ra
ns

ac
tio

n(
)

ar
m

_g
et

_a
rr

iv
al

_t
im

e(
)

ar
m

_b
lo

ck
_t

ra
ns

ac
tio

n(
)

ar
m

_u
nb

lo
ck

_t
ra

ns
ac

tio
n(

)

ar
m

_b
lc

ok
_t

ra
ns

ac
tio

n(
)

ar
m

_u
nb

lo
ck

_t
ra

ns
ac

tio
n(

)

ar
m

_s
to

p_
tr

an
sa

ct
io

n(
)

Figure 17: Response Time Elements

• The processing begins when the transaction “arrives”; i.e., when the message (including
synchronous RPC invocations) that invokes the transaction is retrieved by the application.
The message could have been delayed substantially prior to retrieval, such as a message
sitting in a queue.

• In some environments the application first gathers context related to the transaction before
it can be processed and/or the arm_start_transaction() call made. For example,
instrumentation in the Apache web server makes a JNDI call to retrieve some context
properties passed on arm_start_transaction(). This is shown in the example as Preparation
Time. However, because this Prep Time is part of the response time, the application
captures a timestamp as soon as it starts executing. It will later provide the timestamp as a
parameter on arm_start_transaction().

• The transaction begins executing. The application calls arm_start_transaction() to
indicate the fact. For environments that do not have any Prep Time, the actual time that

24 Technical Standard (2007)

arm_start_transaction() is called is used as the time that the response time measurement
starts.

• The transaction may block one or more times waiting for an external event, such as a
database call or a call to another application program. It indicates the beginning and end
of each period when it is blocked with arm_block_transaction() and
arm_unblock_transaction(), respectively.

• The transaction completes executing and indicates the same to ARM with
arm_stop_transaction(). The actual time that arm_stop_transaction() is called is used as
the time that the response time measurement ends.

6.1 Arrival and Preparation Time

ARM 4.0 specified one way to indicate the duration of the Prep Time. With ARM 4.1, there are
three ways to indicate the duration of the Prep Time.

6.1.1 Opaque Timestamp (ARM 4.0)

Use arm_get_arrival_time() as shown in the example in Figure 17:. arm_get_arrival_time()
returns an opaque timestamp that the application provides with arm_start_transaction() in the
Arrival Time sub-buffer (see Section 13.3).

6.1.2 Formatted Timestamp (ARM 4.1)

Capture the arrival time using some unspecified means, convert it into a format that ARM
recognizes, and provide it with arm_start_transaction() in either the Formatted Arrival Time
MsecJan1970 sub-buffer (see Section 13.10) or the Formatted Arrival Time Strings sub-buffer
(see Section 13.11).

6.1.3 Measured Prep Time (ARM 4.1)

Measure the Prep Time (or a mean over several transaction instances) as a duration and provide
it with arm_start_transaction() in the Preparation Time or Preparation Statistics sub-buffer (see
Sections 13.12 and 13.13).

6.2 Blocked Time

A blocking condition is one in which an application suspends execution of a transaction while
awaiting the completion of an external event, such as the completion of a database query or
other service request. If an application makes a service request but is able to continue executing
other logic, it is not in a blocked condition. After completing the other logic it may enter a
blocked condition if it is still waiting for the previous service request to complete before
continuing.

The application indicates that it is blocked and unblocked using arm_block_transaction() and
arm_unblock_transaction(). The moment at which either call is made is considered the time
when the blocked condition begins or ends.

ARM Issue 4.1 Version 1 – C Binding 25

Beginning with ARM 4.1, the application may optionally provide information indicating
whether the blocking event is a synchronous or an asynchronous event, plus some additional
information describing the cause of the blocking condition. This data is passed in the Block
Cause sub-buffer (see Section 13.7) on arm_block_transaction().

6.3 Thread Binding

Independent of blocking conditions, it can be useful to know which threads are executing which
transactions. The thread binding could be useful for managing computing resources at a finer
level of granularity than a process.

This information is not readily apparent to the operating system because it does not inspect the
context of each thread and does not know the association of a thread to a transaction measured
with ARM. The application does know the binding and can indicate the same to ARM. There are
two ways to indicate the binding:

• arm_bind_thread() indicates that the thread from which it is called is performing on
behalf of the transaction identified by the start handle. A transaction remains bound to a
thread until either an arm_discard_transaction(), arm_stop_transaction(), or
arm_unbind_thread() is executed passing the same start handle.

• The ARM_FLAG_BIND_THREAD flag of arm_start_transaction() may be set to 1 if the
started transaction is bound to the executing thread. Setting this flag is equivalent to
immediately calling arm_bind_thread() after the arm_start_transaction() completes,
except the timing is a little more accurate and the extra call is avoided.

There can be any number of threads simultaneously bound to the same transaction.

Note that arm_bind_thread() and arm_block_transaction() are used independently of each other.

26 Technical Standard (2007)

7 Additional Data about a Transaction

The identification information and measurement information (status, response time, stop time)
for any transaction measured with ARM provides a great deal of value, and there may be no
requirement to augment the information. However, there are situations in which additional
information could be useful, such as:

• How “big” is a transaction? Knowing a backup operation took 47 seconds may not be
sufficient to know whether the performance was good. Additional information – such as
the number of bytes or files backed-up – provides much more meaning to the 47 seconds
measurement.

• A transaction such as “get design drawings” may execute in less than a second for a
simple part (e.g., a bracket). For complex parts, such as an engine, it may take many
seconds to retrieve all the drawings, even if the system is performing well. Knowing the
part number in this case makes the response time meaningful.

• The performance of a transaction will be affected by other workloads running on the same
physical or logical system. Performance management tools may capture other information
(e.g., CPU utilization) and combine it with response time measurements to plot the effect
of CPU time on response time, which could be useful for planning the capacity of a
system. However, other information that could be useful may not be available to
performance management tools (e.g., the length of a queue internal to a program). It
would be helpful for the application to provide this information.

• If a transaction fails it can be useful to know why. The required ARM status has four
possible values: Good, Failed, Aborted, and Unknown. A detailed error code would be
useful to understand why a transaction failed or was aborted. Capturing the code along
with the other transaction information simplifies analysis by avoiding a later merge with,
for example, error messages in a log file.

• It can be useful to know additional context information about a transaction, especially if it
fails. For example, instrumentation about a servlet might provide the following diagnostic
properties when there is a failure: query string, remote host, remote address, remote user,
protocol, request attributes, request header, request parameters, etc.

ARM provides four ways for applications to provide these types of data. The use of either is
optional.

• One is the identity and context properties described in Chapter 5.

• One is a set of short numeric or character strings named “metrics” in ARM. They are
described in Section 7.1.

• One is a long character string, named “diagnostic detail”. It is described in Section 7.2.

ARM Issue 4.1 Version 1 – C Binding 27

• One is a set of properties, named “diagnostic properties”. They are described in
Section 7.3.

ARM is not intended as a general-purpose interface for recording data. It is good practice to
limit the use of metrics to data that is directly related to a transaction, and that helps to
understand measurements about the transaction.

7.1 Metrics

Metrics are provided for transaction instances.

• Each metric has a format and name. These are provided when a transaction is registered
and do not change afterwards.

• The metric values may vary per transaction instance.

• The metric values are provided at any or all of when a transaction starts, stops, or is
updated between the start and stop.

ARM supports nine data types. The data types are grouped in four categories. The categories are
counters, gauges, numeric IDs, and strings.

7.1.1 Counters

A counter is a monotonically increasing non-negative value up to its maximum possible value, at
which point it wraps around to zero and starts again. This is the IETF (Internet Engineering Task
Force) RFC 1155 definition of a counter.

A counter should be used when it makes sense to sum up the values over an interval. Examples
are bytes printed and records written. The values can also be averaged, maximums and
minimums (per transaction) can be calculated, and other kinds of statistical calculations can be
performed.

ARM supports three counter types:

• 32-bit integer: (format=1, ARM_METRIC_FORMAT_COUNTER32)

• 64-bit integer: (format=2, ARM_METRIC_FORMAT_COUNTER64)

• 32-bit integer plus a 32-bit divisor, used to simulate floating-point data, without needing
to specify floating-point formats:
(format=3, ARM_METRIC_FORMAT_CNTRDIVR32)

7.1.2 Gauges

A gauge value can go up and down, and it can be positive or negative. This is the IETF RFC
1155 definition of a gauge.

A gauge should be used instead of a counter when it is not meaningful to sum up the values over
an interval. An example is the amount of memory used. If the amount of memory used over 20
transactions in an interval is measured and the average usage for each of these transactions was

28 Technical Standard (2007)

15MB, it does not make sense to say that 20*15=300MB of memory were used over the interval.
It would make sense to say that the average was 15MB, that the median was 12MB, and that the
standard deviation was 8MB. The values can be averaged, maximums and minimums per
transaction calculated, and other kinds of statistical calculations performed.

ARM supports three gauge types:

• 32-bit integer: (format=4, ARM_METRIC_FORMAT_GAUGE32)

• 64-bit integer: (format=5, ARM_METRIC_FORMAT_GAUGE64)

• 32-bit integer plus a 32-bit divisor, used to simulate floating-point data, without needing
to specify floating-point formats:
(format=6, ARM_METRIC_FORMAT_GAUGEDIVR32)

7.1.3 Numeric IDs

A numeric ID is a numeric value that is used as an identifier, and not as a measurement value.
Examples are message numbers and error codes.

Numeric IDs are classified as non-calculable because it doesn’t make sense to perform
arithmetic with them. For example, the mean of the last seven message numbers would hardly
ever provide useful information. By using a data type of numeric ID instead of a gauge or
counter, the application indicates that arithmetic with the numbers is probably nonsensical. An
agent could create statistical summaries based on these values, such as generating a frequency
histogram by part number or error number.

ARM supports two numeric ID types:

• 32-bit integer: (format=7, ARM_METRIC_FORMAT_NUMERICID32)

• 64-bit integer: (format=8, ARM_METRIC_FORMAT_NUMERICID64)

7.1.4 Strings

A string is used in the same way that a numeric ID is used. It is an identifier, not a measurement
value. Examples are part numbers, names, and messages.

ARM supports one string type:

• Strings of 1-32 characters: (format=10, ARM_METRIC_FORMAT_STRING32)

7.2 Diagnostic Detail

Diagnostic detail is provided for transaction instances.

• The diagnostic detail is in the form of a long null-terminated character string.

• The diagnostic detail string is provided when a transaction instance stops.

ARM Issue 4.1 Version 1 – C Binding 29

• There are no constraints on the contents of the string. It can contain any information that
the application thinks may be useful. For example, if a database query fails, the
application might provide the text of the SQL query.

The application may provide either Diagnostic Detail OR Diagnostic Properties for any
transaction instance, but not both.

7.3 Diagnostic Properties (ARM 4.1)

Diagnostic properties are provided for transaction instances.

• Each property consists of a name and a value, both strings.

• Both names and values are provided when a transaction instance stops.

• Both names and values may vary per transaction instance. They are particularly useful in
some middleware environments in which the property names used by hosted applications
are not known when the middleware starts executing.

The application may provide either Diagnostic Detail OR Diagnostic Properties for any
transaction instance, but not both.

30 Technical Standard (2007)

8 API Overview

8.1 Overall API Structure

Figure 18: shows the overall structure of the API calls. All calls have function parameters. Some
calls also have a pointer to an optional buffer, which in turn contains sub-buffers. For function
calls that use sub-buffers, the application builds the buffer and sub-buffers first (step 1), then
makes the call (step 2). The valid sub-buffers vary depending on which call is being made.

Application

ARM 4.x Library
ARM 4.0 API function calls (with parameters, …)

Buffer for optional data
containing sub-buffers:

User

Arrival Time

Metric values

Diagnostic detail

Transaction context

System address

Application identity

Application context

Transaction identity

Metric bindings

Update sub-buffer & entries
before calling ARM library

1

2

Encoding

Figure 18: Overall API Structure

8.2 Structure of Optional Buffer and Sub-Buffers

Figure 19 shows the structure of the optional buffer (“Buffer4”) that contains sub-buffers. The
buffer is structured so that any number of sub-buffers can be supported, and the format of each

ARM Issue 4.1 Version 1 – C Binding 31

sub-buffer can be determined. This allows new sub-buffer formats to be used without impacting
the ability of existing ARM implementations to function correctly. If an ARM implementation
encounters a sub-buffer it does not recognize, it ignores it and continues to step through the list
to find any that it does know how to support.

Buffer4

Count of sub-buffer pointers in array

Pointer to an array of pointers to sub-buffers

Sub-buffer pointer array

Pointer to a sub-buffer

Pointer to a sub-buffer

…
Sub-buffer

Format ID

Sub-buffer data

Figure 19: Structure of Optional Buffer and Sub-Buffers

8.3 API Functions and Thread-Safe Behavior

All API calls are thread-safe. On a platform that is multi-threaded, execution of a function in one
thread will not impact the execution of a function in any other thread, as long as the application
doesn’t share dynamic data across threads. This would most likely happen when optional data
is passed in the “Buffer4” in each API call. An example is a metric value that is changing – if it
is updated in one thread while being processed by another thread, the results are unpredictable.
If the application does share dynamic data across threads, the application is responsible for
maintaining synchronization.

8.4 Byte Order Markers in Character Strings

Applications must not pass byte order marker characters in strings, even if the application is
using a character set that defines such characters. They are not needed because strings are not
being passed between systems that may use different byte orders. The application is responsible
for stripping the character before calling the API.

32 Technical Standard (2007)

8.5 Overview of API Functions to Register Metadata

Before any transactions can be measured, metadata describing the application and the
transaction, and any metrics that are used, are registered. Figure 20 shows the three registration
functions.

• The labeled arrows represent the function names.

• The boxes represent the function parameters and sub-buffers. In the box:

— Mandatory parameters are above the line in the box. Optional parameters are below the
line.

— Optional data that is in italics is passed in sub-buffers. Optional data that is not in
italics is passed as function parameters.

Application ARM 4.x Library

Application Name
Application ID (out)

Application ID (in)
Application identity properties

Encoding

Application ID
Transaction Name

Transaction ID (out)

Transaction ID (in)
Transaction identity properties

Metric bindings

arm_register_transaction()

arm_register_application()

Application ID
Name

Format
Usage

Metric ID (out)

Metric ID (in)
Units

arm_register_metric()

Application ID
arm_destroy_application()

Figure 20: API Functions to Register Metadata

arm_register_application() establishes the identity of an application by a mandatory name (e.g.,
“Acme Billing Application Version 2.3”) and optional identity properties. In most cases it is
executed once when an application first loads the ARM library. However, it could be executed
several times in the same process if there are multiple logical applications, or (for example) if
middleware calls ARM in lieu of having the application itself do it. In this case, the middleware
would register an application for each application. There could be many instances of the same
registered application active in the process at once.

ARM Issue 4.1 Version 1 – C Binding 33

arm_register_metric() is executed once for each unique metric. If a transaction uses metrics, the
metrics it uses must be registered before the transaction is registered. Registration establishes the
name, format, and special usage of the metric (if any), and optionally a string indicating the units
(such as, “files backed up”).

arm_register_transaction() is executed once for each unique transaction. It establishes the
identity of a transaction by a mandatory name (e.g., “Query Balance Due”) and optional identity
properties. It also optionally binds registered metric definitions to the transaction.

arm_destroy_application() indicates that no more API calls will be executed for this application.
It can be treated as a signal that the ARM library can discard any data and storage it is holding
for the application.

8.6 Overview of API Functions for Application Starts/Stops

Figure 21: lists the functions used to indicate when an instance of an application has started or is
stopping. They are performed after the metadata has been registered. The application instance
must be started before transactions can be measured.

• The labeled arrows represent the function names.

• The boxes represent the function parameters and sub-buffers. In the box:

— Mandatory parameters are above the line in the box. Optional parameters are below the
line.

— Optional data that is in italics is passed in sub-buffers. Optional data that is not in
italics is passed as function parameters.

Application ARM 4.x Library

arm_start_application() Registered application ID
Started application handle (out)

Group
Instance

Application context properties
Application instrumentation control

Application system address

arm_stop_application()
Started application handle

Figure 21: API Functions for Application Starts and Stops

arm_start_application() indicates that an instance of an application is executing.
arm_stop_application() is the inverse function. It indicates that the application instance will not
make any more ARM calls (which serves as a strong hint to the ARM implementation to release
memory associated with this instance).

34 Technical Standard (2007)

8.7 Overview of Common API Functions to Measure Transactions

Figure 22 lists the most commonly used functions after the metadata has been registered and the
application is processing transactions.

• The labeled arrows represent the function names.

• The boxes represent the function parameters and sub-buffers. In the box:

— Mandatory parameters are above the line in the box. Optional parameters are below the
line.

— Optional data that is in italics is passed in sub-buffers. Optional data that is not in
italics is passed as function parameters.

Application ARM 4.x Library

arm_start_transaction() Started application handle
Registered Transaction ID

Started transaction handle (out)
Parent correlator
Current correlator

Transaction context properties
User

Arrival time
Metric values

Message received/sent

arm_stop_transaction() Started transaction handle
Status

Transaction dynamic context
Metric values

Diagnostic detail
Message received/sent

arm_bind _thread()
arm_unbind_thread()

arm_unblock_transaction()

Started transaction handle

Started transaction handle
Blocked handle

Message received/sent

arm_block_transaction() Started transaction handle
Blocked handle (out)

Block cause
Message received/sent

Figure 22: Most Frequently Used API Functions to Measure Transactions

arm_start_transaction() indicates that a transaction has started. arm_stop_transaction()
indicates that the transaction has completed. The process was described in Section 3.1.

arm_bind_thread() indicates that a thread is executing on behalf of the specified transaction. It is
executed after arm_start_transaction() and before arm_stop_transaction().
arm_unbind_thread() is the inverse function.

ARM Issue 4.1 Version 1 – C Binding 35

arm_block_transaction() indicates that a transaction is blocked waiting on an external event
(which may or may not be a child transaction). arm_unblock_transaction() is the inverse
function.

8.8 Overview of Other API Functions

In addition to the functions in Figure 22, there are other functions that are used for specialized
purposes.

arm_discard_transaction() is executed when for some reason a previously issued
arm_start_transaction() should be ignored.

arm_generate_correlator() is used by applications that use arm_report_transaction() (see
below) and that use correlators. It is also used for a special purpose – to enable an application
and an ARM implementation to exchange information indicating the level of instrumentation
that the implementation prefers.

arm_get_arrival_time() is used by applications that incur significant delays after processing
begins before arm_start_transaction() can be executed. This most commonly occurs when a
query must be issued to retrieve the transaction context properties, and the query may take a
non-trivial amount of time to process. (A team writing a plug-in for the Apache web server first
observed this phenomenon.) arm_get_arrival_time() returns an integer that represents the time
when the arm_get_arrival_time() executed. This integer can be passed in a sub-buffer to
arm_start_transaction() so the arrival time is used as the start time.

arm_get_correlator_flag() returns the value of the specified flag in the correlator header.

arm_get_correlator_length() returns the length of a correlator so the application knows how
many bytes to transmit to applications it calls.

arm_get_error_message() returns a character string that is associated with a non-zero return
code from a function call.

arm_report_transaction() can be used in place of arm_start_transaction() and
arm_stop_transaction(), as described in Chapter 3.

arm_update_transaction() can be used as a heartbeat, as a way to provide message event sub-
buffers, and as a way to pass metric or diagnostic data while a transaction executes. This was
described in Section 3.1.

36 Technical Standard (2007)

8.9 Allowable Sub-Buffer Use per API Function

Table 6: Sub-Buffer Usage per API Function

API Function Allowable Sub-Buffers

arm_bind_thread()

arm_block_transaction() Block Cause (ARM 4.1)
Message Received Event (ARM 4.1)
Message Sent Event (ARM 4.1)

arm_destroy_application()

arm_discard_transaction()

arm_generate_correlator() User
Transaction Context
Application Control (ARM 4.1)
Transaction ID Control (ARM 4.1)
Transaction Instance Control (ARM 4.1)

arm_get_arrival_time()

arm_get_correlator_flags()

arm_get_correlator_length()

arm_get_error_message()

arm_is_charset_supported()

arm_register_application() Application Identity
Character Set Encoding

arm_register_metric()

arm_register_transaction() Transaction Identity
Metric Bindings

arm_report_transaction() User
Metric Values
Diagnostic Detail
Transaction Context
Diagnostic Properties (ARM 4.1)

arm_start_application() System Address
Application Context Values
Application Control (ARM 4.1)

ARM Issue 4.1 Version 1 – C Binding 37

API Function Allowable Sub-Buffers

arm_start_transaction() User
Arrival Time
Metric Values
Message Received Event (ARM 4.1)
Message Sent Event (ARM 4.1)
Formatted Arrival Time MsecJan1970 (ARM 4.1)
Formatted Arrival Time Strings (ARM 4.1)
Preparation Time (ARM 4.1)
Preparation Statistics (ARM 4.1)
Transaction Context

arm_stop_application()

arm_stop_transaction() Metric Values
Diagnostic Detail
Message Received Event (ARM 4.1)
Message Sent Event (ARM 4.1)
Diagnostic Properties (ARM 4.1)

arm_unbind_thread()

arm_unblock_transaction() Message Received Event (ARM 4.1)
Message Sent Event (ARM 4.1)

arm_update_transaction() Metric Values
Message Received Event (ARM 4.1)
Message Sent Event (ARM 4.1)

8.10 Processing Multiple Values of the Same Metric

Additional semantics are defined when using arm_start_transaction(),
arm_update_transaction(), and arm_stop_transaction() in order to eliminate ambiguity. The
ambiguity arises because the metric may be valid on some or all of the arm_start_transaction(),
arm_update_transaction(), and arm_stop_transaction() function calls. The following sections
describe the semantics for each of the data type categories.

This section does not apply when using arm_report_transaction(), because at most one value is
provided per transaction. So the value provided is the value used.

8.10.1 Counters

If a counter is used, its initial value must be set at the time of the arm_start_transaction() call.
The difference between the value when the arm_start_transaction() executes and when the
arm_stop_transaction() executes (or the value in the last arm_update_transaction() if no metric
value is passed on arm_stop_transaction()) is the value attributed to this transaction. Similarly,
the difference between successive arm_update_transaction()s, or from the
arm_start_transaction() to the first arm_update_transaction(), or from the last
arm_update_transaction() to the arm_stop_transaction(), equals the value for the time period
between the respective calls.

38 Technical Standard (2007)

Here are three examples of how a counter would probably be used:

• The counter is set to zero at arm_start_transaction() and to some value at
arm_stop_transaction() (or the last arm_update_transaction()). In this case, the
application probably measured the value for this transaction and provided that value in the
arm_stop_transaction(). The application always sets the value to zero at the
arm_start_transaction() so the value at arm_stop_transaction() reflects both the
difference from the arm_start_transaction() value and the absolute value. When using
arm_report_transaction(), the value provided is equivalent to the difference between zero
and the provided value.

• The counter is x1 at arm_start_transaction(), x2 at its corresponding
arm_stop_transaction(), x2 at the next arm_start_transaction(), and x3 at its
corresponding arm_stop_transaction(). In this case, the application is probably keeping a
rolling counter. Perhaps this is a server application that counts the total workload. The
application simply takes a snapshot of the counter at the start of a transaction and another
snapshot at the end of the transaction. The agent determines the difference attributed to
this transaction.

• The counter is x1 at arm_start_transaction(), x2 at arm_stop_transaction(), x3 (not equal
to x2) at the next arm_start_transaction(), and x4 at its arm_stop_transaction(). In this
case, the application is probably keeping a rolling counter as in the previous example. But
in this case the measurement represents a value affected by other users or transaction
classes, so the value often changes from one arm_stop_transaction() to the next
arm_start_transaction() for the same transaction class.

8.10.2 Gauges

Gauges can be set before arm_start_transaction(), arm_update_transaction(), and
arm_stop_transaction() calls. This creates the potential for different interpretations. If several
values are provided for a transaction [e.g., one at arm_start_transaction(), one at each
arm_update_transaction(), and one at arm_stop_transaction()], which one(s) should be used? In
order to have consistent interpretation, the following conventions apply. Measurement agents are
free to process the data in any way within these guidelines.

• The maximum value for a transaction will be the largest valid value passed at any time
between and including the arm_start_transaction() and arm_stop_transaction() calls.

• The minimum value for a transaction will be the smallest valid value passed at any time
between and including the arm_start_transaction() and arm_stop_transaction() calls.

• The mean value for a transaction will be the mean of all valid values passed at any time
between and including the arm_start_transaction() and arm_stop_transaction() calls. All
valid values will be weighted equally each time a arm_start_transaction(),
arm_update_transaction(), or arm_stop_transaction() executes.

• The median value for a transaction will be the median of all valid values passed at any
time during the transaction. All valid values will be weighted equally each time a
arm_start_transaction(), arm_update_transaction(), or arm_stop_transaction() executes.

ARM Issue 4.1 Version 1 – C Binding 39

• The last value for a transaction will be the last valid value passed whenever any
arm_start_transaction(), arm_update_transaction(), or arm_stop_transaction() executes.

8.10.3 Numeric IDs

The last value passed when any of the arm_start_transaction(), arm_update_transaction(), or
arm_stop_transaction() calls is made will be the value attributed to the transaction instance. For
example, if a value is valid at arm_start_transaction() but not when any
arm_update_transaction() or arm_stop_transaction() executes, the value passed at the
arm_start_transaction() is used. If a value is valid when arm_start_transaction() executes and
when arm_stop_transaction() executes, the value when arm_stop_transaction() executes is the
value for the transaction instance. This convention is identical to the string convention.

8.10.4 Strings

The last value passed when any of the arm_start_transaction(), arm_update_transaction(), or
arm_stop_transaction() calls is made will be the value attributed to the transaction instance. For
example, if a value is valid at arm_start_transaction() but not when any
arm_update_transaction() or arm_stop_transaction() executes, the value passed at the
arm_start_transaction() is used. If a value is valid when arm_start_transaction() executes and
when arm_stop_transaction() executes, the value when arm_stop_transaction() executes is the
value for the transaction instance. This convention is identical to the numeric ID convention.

40 Technical Standard (2007)

9 Error Handling Philosophy

The error handling philosophy of the ARM specification can be summed up as the following:

“Programmers and system administrators need to know about errors; programs do not.”

The practical effect of this philosophy is that applications do not need to check for errors, except
when initially loading and linking to a library.

Many functions return an error code that the application may optionally test. If the value is not
zero, an error occurred. However, any other data that is returned (in an out parameter) is usable
without causing the program to fail, even when an error occurs. The measurements may be
useless, but the program will not fail, even if the returned data is passed back to ARM on a later
function call.

For example, an application may issue arm_start_transaction() using an ID that has not been
registered. The ARM implementation will return a handle that can be input to
arm_stop_transaction() without causing the program to fail, and the implementation may return
an error code as well. In this case, the ARM implementation will probably discard the
measurement data, and note the error in some way, such as writing a message to a log file.

An application that contains programming errors, or that receives invalid data, could generate
invalid measurement data. This is a problem that programmers and system administrators should
correct. But at runtime there’s nothing an application can do about it, so the ARM interface takes
the approach of being as unobtrusive as possible, and permitting the application logic to flow
normally. Programmers testing programs, and system administrators managing systems using
ARM, should check for error reports from ARM implementations.

Applications that want to test the error codes and report the error may use the
arm_get_error_message() function to get a character string error message, which could then be
written to a log file, for example.

9.1 Reserved Error Codes

At present all error return codes are specific to the ARM library. However, a range has been
reserved for possible future use. The range is –20999 to –20000, inclusive. The ARM library
must never return an error code in this range, unless the ARM specification assigns a value.

There is a special case that is described in the ‘Special Note’ on page 53 in the description of
arm_generate_correlator(). Because of this special case, implementations are recommended to
not use the return code –1012 with arm_generate_correlator() unless it has the semantic related
to the null or invalid current_correlator parameter that is described in the ‘Special Note’.

ARM Issue 4.1 Version 1 – C Binding 41

10 Instrumentation Control (ARM 4.1)

ARM is designed to be a high performing interface so applications and middleware can invoke it
as often as there is an interesting event to report. The ARM implementation determines whether
to process the passed data and the manner of processing. In most cases this is entirely
satisfactory and the application does not include conditional logic to determine when to call
ARM nor how much data to provide with each call.

Certain applications or middleware may provide fine-grained instrumentation, both in terms of
the number of instrumentation points and the depth of data available at each instrumentation
point. IBM WebSphere is an example. Beginning with ARM 4.1, ARM provides a mechanism
that enables an application or middleware program to query the ARM implementation for the
desired instrumentation granularity.

The mechanism works as shown in Figure 23:. Its use is optional for both instrumented
applications and ARM implementations, and there is a handshake so an application knows
whether to depend on the capability. There are three control scopes: application-wide for all
transactions, application-wide for all transactions of a specified ID, and each individual
transaction instance. There is a code sample using all three scopes in Figure 16.4.

Application ARM 4.x Library

arm_start_application()
arm_generate_correlator()

arm_generate_correlator()

Note: these is a special form of
arm_generate_correlator() that is a
vehicles for exchanging the control sub-
buffers. These special forms are added
in ARM 4.1.

Application control sub-buffer
•app_control_used [in/out]
•tran_id_control_used [out]
•tran_instance_control_used [out]
•collectionDepth [out]
•(various controls) [out]

Transaction ID control sub-buffer
•control_used [in/out]
•tran_id [in]
•collectionDepth [out]
•(various controls) [out]

arm_generate_correlator() Transaction Instance control sub-buffer
•controlUsed [in/out]
•tran_id [in]
•parent_correlator [in]
•collectionDepth [out]
•(various controls) [out]

Figure 23: Instrumentation Control APIs

42 Technical Standard (2007)

10.1 Scope: Application-Wide for all Transactions

An application determines whether instrumentation control is being used, and if so, establishes
the instrumentation level for the entire application, by passing the Application Control sub-
buffer when it starts, using arm_start_application(). It sets the app_control_used flag to False
and inspects this flag upon return from the API call.

• If the flag is still False, then the ARM implementation is not using instrumentation control
and the application uses its default instrumentation settings.

• If the flag is True, then the ARM implementation is using instrumentation control and the
other control settings have been set to meaningful values. Three important settings are:

— tran_id_control_used, which indicates whether the control settings may vary per
transaction ID

— tran_instance_control_used, which indicates whether the control settings may vary per
transaction instance

— collection_depth, which sets the default level (None, Process, Container, Maximum)
for all transactions in the process

The application may pass the Application Control sub-buffer periodically after starting to see if
any control settings have changed. For example, the settings might be re-queried every 1000
transactions or every 15 minutes. This is a good practice, especially if the instrumentation level
has previously been set to None. The check is done using a special form of
arm_generate_correlator(), with the current correlator set to NULL to indicate that no correlator
is to be generated.

10.2 Scope: All instances of a Registered Transaction ID

If the ARM implementation returned tran_id_control_used=True in the Application Control
sub-buffer, then the application is invited to request the instrumentation controls for every
instance of a registered transaction ID. It does this by passing the Transaction ID Control sub-
buffer using the special form of arm_generate_correlator(), with the current correlator set to
NULL to indicate that no correlator is to be generated. These settings override the application-
wide settings. It is a good practice to periodically check to see if any control settings have
changed, especially if the instrumentation level has previously been set to None. For example,
the settings might be re-queried every 1000 transactions or every 15 minutes.

The control_used setting in the Transaction ID Control sub-buffer provides the same handshake
that app_control_used provides in the Application Control sub-buffer. The application sets the
flag to False and tests the value upon return. If the value is still False, then the implementation
has provided no guidance and the application uses its current defaults for transactions of this
type. If the value has been changed to True, then the other values set by the ARM
implementation are used.

The settings are valid for every instance of the registered transaction ID unless the value is
overridden by a setting in the Transaction Instance Control sub-buffer.

ARM Issue 4.1 Version 1 – C Binding 43

10.3 Scope: One Transaction Instance

If the ARM implementation returned tran_instance_control_used=True in the Application
Control sub-buffer, then the application is invited to request the instrumentation controls for
each instance of a transaction. It does this by passing the Transaction Instance Control sub-
buffer using the special form of arm_generate_correlator(), with the current correlator set to
NULL to indicate that no correlator is to be generated, prior to calling arm_start_transaction().

The control_used setting in the Transaction Instance Control sub-buffer provides the same
handshake that app_control_used provides in the Application Control sub-buffer. The
application sets the flag to False and tests the value upon return. If the value is still False, then
the implementation has provided no guidance and the application uses its current defaults for
transactions of this type. If the value has been changed to True, then the other values set by the
ARM implementation are used.

The settings are valid for exactly one instance of a transaction. They do not carry over to other
instances or change the defaults set with the Application Control or Transaction ID Control sub-
buffers.

44 Technical Standard (2007)

11 API Macros

This chapter describes macros that are provided with the specification to encapsulate details that
should be transparent to programmers using ARM.

ARM Issue 4.1 Version 1 – C Binding 45

ARM_SET_CORRELATOR_FLAG()
NAME

ARM_SET_CORRELATOR_FLAG – set value of flag

SYNOPSIS
ARM_SET_CORRELATOR_FLAG(corr, flag_num, boolean_value)

DESCRIPTION
The macro sets the Boolean value of one of the flags in the correlator pointed to by corr. If the
application intends to set both the Asynchronous Flow and Independent Transaction flags, it
would use the macro twice. Since this is a macro, compile-time type checking might not apply.
Two flags can be set with the macro:

• Asynchronous Flow (see Section 4.2.1)

• Independent Transaction (see Section 4.2.2)

PARAMETERS

corr Pointer to a correlator. The type of the pointer must be const arm_correlator_t *.

flag_num Enumerated value indicating the flag to be changed. The following values are
allowed:

3 = ARM_CORR_FLAGNUM_ASYNCH = mark asynchronous control flow; see
Section 4.2.1

4 = ARM_CORR_FLAGNUM_INDEPENDENT = mark child transaction as
independent; see Section 4.2.2

boolean_value
The value to set the flag to. Must be ARM_TRUE or ARM_FALSE.

46 Technical Standard (2007)

12 The API Functions

This chapter defines the ARM 4.1 API functions.

ARM Issue 4.1 Version 1 – C Binding 47

arm_bind_thread()
NAME

arm_bind_thread() – bind thread

SYNOPSIS
arm_error_t
arm_bind_thread(
 /*[in]*/ const arm_tran_start_handle_t tran_handle,
 /*[opt in]*/ const arm_int32_t flags, /*no current use*/
 /*[opt in]*/ const arm_buffer4_t *buffer4); /*no current use*/

DESCRIPTION
arm_bind_thread() indicates that the thread from which it is called is performing on behalf of
the transaction identified by the start handle.

The thread binding could be useful for managing computing resources at a finer level of
granularity than a process. There can be any number of threads simultaneously bound to the
same transaction.

A transaction remains bound to a thread until either an arm_discard_transaction(),
arm_stop_transaction(), or arm_unbind_thread() is executed passing the same start handle.

arm_bind_thread() and arm_block_transaction() are used independently of each other.

PARAMETERS

buffer4 Pointer to the optional buffer, if any. If the pointer is null, there is no buffer. No
sub-buffer types are currently valid with this function call, so the pointer should be
null (ARM_BUF4_NONE).

flags Contains 32-bit flags. No values are currently defined. The field should be zero
(ARM_FLAG_NONE).

tran_handle
A handle returned in an out parameter from an arm_start_transaction() call in the
same process.

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_block_transaction(), arm_discard_transaction(), arm_start_transaction(),
arm_stop_transaction(), arm_unbind_thread()

48 Technical Standard (2007)

arm_block_transaction()
NAME

arm_block_transaction() – block transaction

SYNOPSIS
arm_error_t
arm_block_transaction(
 /*[in]*/ const arm_tran_start_handle_t tran_handle,
 /*[opt in]*/ const arm_int32_t flags, /*no current use*/
 /*[opt in]*/ const arm_buffer4_t *buffer4,
 /*[out]*/ arm_tran_block_handle_t *block_handle);

DESCRIPTION
arm_block_transaction() is used to indicate that the transaction instance is blocked waiting on
an external transaction (which may or may not be instrumented with ARM) or some other event
to complete. It has been found useful to separate out this “blocked” time from the elapsed time
between the arm_start_transaction() and arm_stop_transaction().

A transaction remains blocked until arm_unblock_transaction() is executed passing the same
tran_block_handle, or either an arm_discard_transaction() or arm_stop_transaction() is
executed passing the same tran_handle.

The blocking conditions of most interest are those that could result in a significant and/or
variable length delay relative to the response time of the transaction. For example, a remote
procedure call would be a good situation to indicate with arm_block_transaction() or
arm_unblock_transaction(), whereas a disk I/O would not.

A transaction may be blocked by multiple conditions simultaneously. In many application
architectures arm_block_transaction() would be called just prior to a thread suspending, because
the thread is waiting to be signaled that an event has occurred. In other application architectures
there would not be a tight relationship between the thread behavior and the blocking conditions.
arm_bind_thread() and arm_block_transaction() are used independently of each other.

A description of the blocking cause can be provided in the optional Block Cause sub-buffer.

PARAMETERS

block_handle
Pointer to a handle that is passed on arm_unblock_transaction() calls in the same
process. There are no requirements on what value it is set to, except that it must be
possible to pass it on arm_unblock_transaction() without the application needing to
do any error checking.

buffer4 Pointer to the optional buffer, if any. If the pointer is null, there is no buffer. The
sub-buffers that may be used are:

arm_subbuffer_block_cause_t
arm_subbuffer_message_rcvd_event_t
arm_subbuffer_message_sent_event_t

ARM Issue 4.1 Version 1 – C Binding 49

flags Contains 32-bit flags. No values are currently defined. The field should be zero
(ARM_FLAG_NONE).

tran_handle
A handle returned in an out parameter from an arm_start_transaction() call in the
same process.

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_bind_thread(), arm_discard_transaction(), arm_start_transaction(),
arm_stop_transaction(), arm_unblock_transaction()

50 Technical Standard (2007)

arm_destroy_application()
NAME

arm_destroy_application() – destroy application data

SYNOPSIS
arm_error_t
arm_destroy_application(
 /*[in]*/ const arm_id_t *app_id,
 /*[opt in]*/ const arm_int32_t flags, /*no current use*/
 /*[opt in]*/ const arm_buffer4_t *buffer4); /*no current use*/

DESCRIPTION
arm_destroy_application() indicates that the registration data about an application previously
registered with arm_register_application() is no longer needed.

The purpose of this call is to signal the ARM implementation so that it can release any storage it
is holding. Ending a process or unloading the ARM library results in an implicit
arm_destroy_application() for any previously registered applications.

It is possible for multiple arm_register_application() calls to be made in the same process with
identical identity data. When this is done, arm_destroy_application() is assumed to be paired
with one arm_register_application(). For example, if arm_register_application() is executed
twice with the same output ID, and arm_destroy_application() is executed once using this ID, it
is assumed that an instance of the application is still active and it is not safe to discard the
application registration data associated with the ID.

PARAMETERS

app_id Application ID returned from an arm_register_application() call in the same
process.

buffer4 Pointer to the optional buffer, if any. If the pointer is null, there is no buffer. No
sub-buffer types are currently valid with this function call, so the pointer should be
null (ARM_BUF4_NONE).

flags Contains 32-bit flags. No values are currently defined. The field should be zero
(ARM_FLAG_NONE).

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_register_application()

ARM Issue 4.1 Version 1 – C Binding 51

arm_discard_transaction()
NAME

arm_discard_transaction() – discard transaction

SYNOPSIS
arm_error_t
arm_discard_transaction(
 /*[in]*/ const arm_tran_start_handle_t tran_handle,
 /*[opt in]*/ const arm_int32_t flags, /*no current use*/
 /*[opt in]*/ const arm_buffer4_t *buffer4); /*no current use*/

DESCRIPTION
arm_discard_transaction() signals that the referenced arm_start_transaction() should be
ignored and treated as if it never happened. Measurements associated with a transaction that is
processing should be discarded. Either arm_discard_transaction() or arm_stop_transaction() is
used – never both.

An example of when a transaction would be discarded could happen is if proxy instrumentation
believes a transaction is starting, but then learns that it did not. It can be called from any thread
in the process that executed the arm_start_transaction(). In general, the use of
arm_discard_transaction() is discouraged, but experience has shown a few use cases that
require the functionality.

arm_discard_transaction() clears any thread bindings [arm_bind_thread()] and blocking
conditions [arm_block_transaction()].

PARAMETERS

buffer4 Pointer to the optional buffer, if any. If the pointer is null, there is no buffer. No
sub-buffer types are currently valid with this function call, so the pointer should be
null (ARM_BUF4_NONE).

flags Contains 32-bit flags. No values are currently defined. The field should be zero
(ARM_FLAG_NONE).

tran_handle
A handle returned in an out parameter from an arm_start_transaction() call in the
same process.

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_bind_thread(), arm_block_transaction(), arm_start_transaction(), arm_stop_transaction()

52 Technical Standard (2007)

arm_generate_correlator()
NAME

arm_generate_correlator() – generate a correlator

SYNOPSIS
arm_error_t
arm_generate_correlator(
 /*[in]*/ const arm_app_start_handle_t app_handle,
 /*[in]*/ const arm_id_t *tran_id,
 /*[opt in]*/ const arm_correlator_t *parent_correlator,
 /*[opt in]*/ const arm_int32_t flags,
 /*[opt in]*/ const arm_buffer4_t *buffer4,
 /*[out]*/ arm_correlator_t *current_correlator);

DESCRIPTION
arm_generate_correlator() is used for two very different purposes:

1. It is used to generate a correlator for use with arm_report_transaction().

2. It is used (beginning with ARM 4.1) to exchange control information that indicates the
level of instrumentation for this transaction that is desired by the ARM implementation.

Generating a Correlator

A correlator is a correlation token passed from a calling transaction to a called transaction. The
correlation token may be used to establish a calling hierarchy across processes and systems. A
correlator contains a two-byte length field, a one-byte format ID, a one-byte flag field, plus it
may contain other data that is used to uniquely identify an instance of a transaction. Applications
do not need to understand correlator internals. The maximum length is 512
(ARM_CORR_MAX_LENGTH) bytes.

It is useful to think about its use in the context of what arm_start_transaction() and
arm_stop_transaction() do:

• arm_start_transaction() performs two functions. It establishes the identity of a transaction
instance (encapsulated in the current correlator) and begins the measurements of the
instance. arm_stop_transaction() causes the measurements to be captured. The start
handle links an arm_start_transaction() and an arm_stop_transaction().

• arm_generate_correlator() establishes the identity of a transaction instance – like
arm_start_transaction() – also encapsulating it in a correlator. It has no relationship to
measurements about the transaction instance. arm_report_transaction() combines the
measurement function of both arm_start_transaction() and arm_stop_transaction().

Based on this positioning, it should be clear that arm_generate_correlator() can be used
whenever an arm_start_transaction() can be used. More specifically, the following calls must
have been executed first: arm_register_application(), arm_register_transaction(), and
arm_start_application(). The same parameters are also used, except there is no need for a start
handle, and there is no need for the Arrival Time or Metric Values sub-buffers. The other sub-
buffers may be used. The correlator that is output can be used in the same way that a correlator
output from arm_start_transaction() is used.

ARM Issue 4.1 Version 1 – C Binding 53

Controlling the Level of Instrumentation for a Transaction

There is a special use of arm_generate_correlator() that is not intuitive because it is unrelated to
generating a correlator. It is used because this allowed a new capability to be added without
adding any new function calls, which would have impacted backwards-compatibility with ARM
libraries that support ARM 4.0 but not ARM 4.1 or later ARM 4.x versions. The use is described
in Chapter 10. Further details are available in the descriptions of the Application Control sub-
buffer (see Section 13.21) and Transaction Instance Control sub-buffer (see Section 13.22).

When used for this special purpose, the meaningful parameters are:
app_handle
buffer4 arm_subbuffer_app_control_t,
 arm_subbuffer_tran_id_control_t, or
 arm_subbuffer_tran_instance_control_t
current_correlator = NULL

This special form is recognized by setting the current_correlator pointer to null, which renders
the call meaningless for the purpose of generating a correlator.

Note: Some ARM 4.0 implementations check for and do not expect to find a null current
correlator value in arm_generate_correlator(), and these implementations set the
return code to –1012 if they are called with a null or invalid current_correlator
pointer. If the application is using arm_generate_correlator() for purposes of
instrumentation control and has therefore set current_correlator to null, and the return
value from arm_generate_correlator() = -1012, it is likely that the implementation
does not recognize the use of arm_generate_correlator() for instrumentation control,
and the application should proceed accordingly. The suggested course of action is to
discontinue using arm_generate_correlator() for instrumentation control.

PARAMETERS

app_handle
The value returned from an arm_start_application() call in the same process. The
ARM implementation may use this handle to access application instance data that
may become part of the correlator; e.g., the arm_subbuffer_system_address_t.

buffer4 Pointer to the optional buffer, if any. If the pointer is null (ARM_BUF4_NONE),
there is no buffer. The sub-buffers that may be used are:

arm_subbuffer_app_control_t
arm_subbuffer_tran_context_t
arm_subbuffer_tran_id_control_t
arm_subbuffer_tran_instance_control_t
arm_subbuffer_user_t

current_correlator
A pointer to a buffer into which the ARM implementation will store a correlator for
the transaction instance, if any. The length of the buffer should be (at least) 512
(ARM_CORR_MAX_LENGTH). The value must be non-null if
arm_generate_correlator() is being used to generate a correlator. If

54 Technical Standard (2007)

arm_generate_correlator() is being used to pass the Application Control,
Transaction ID Control, or Transaction Instance Control sub-buffer, then
current_correlator must be set to null.

flags Contains 32-bit flags.

0x00000001 (ARM_FLAG_TRACE_REQUEST) is set to 1 if the application
requests/suggests a trace.

0x00000004 (ARM_FLAG_CORR_IN_PROCESS) is set to 1 if the application is
stating that it will not send the correlator outside the current process. An ARM
implementation may be able to optimize correlator handling if it knows this,
because it may be able to avoid serialization to create the correlator.

parent_correlator
A pointer to the parent correlator, if any. The pointer may be null
(ARM_CORR_NONE). If arm_generate_correlator() is being used for purposes of
instrumentation control, parent_correlator is ignored.

tran_id A transaction ID returned in an out parameter from an arm_register_transaction()
call in the same process. If arm_generate_correlator() is being used for purposes of
instrumentation control, tran_id is ignored.

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_register_application(), arm_register_transaction(), arm_report_transaction(),
arm_start_application(), arm_start_transaction(), arm_stop_transaction()

ARM Issue 4.1 Version 1 – C Binding 55

arm_get_arrival_time()
NAME

arm_get_arrival_time() – store current time

SYNOPSIS
arm_error_t
arm_get_arrival_time(
 /*[out]*/ arm_arrival_time_t *opaque_time);

DESCRIPTION
arm_get_arrival_time() stores a 64-bit integer representing the current time.

There are situations in which there is a significant delay between the time when processing of a
transaction begins and when all the context property values that are needed before
arm_start_transaction() can be executed are known. In order to get a more accurate response
time, arm_get_arrival_time() can be used to capture an implementation-defined representation
of the current time. This integer value is later stored in the Arrival Time sub-buffer when
arm_start_transaction() executes. The ARM library will use the “arrival time” as the start time
rather than the moment when the arm_start_transaction() executes.

PARAMETERS

opaque_time
Pointer to an arm_int64_t that will contain the arrival time value. Note that the
value is implementation-defined so the application should not make any
conclusions based on its contents.

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_start_transaction()

56 Technical Standard (2007)

arm_get_correlator_flags()
NAME

arm_get_correlator_flags() – get value of flag

SYNOPSIS
arm_error_t
arm_get_correlator_flags(
 /*[in]*/ const arm_correlator_t *correlator,
 /*[in]*/ const arm_int32_t corr_flag_num,
 /*[out]*/ arm_boolean_t *flag);

DESCRIPTION
arm_get_correlator_flags() returns the value of a specified flag in the correlator header.

A correlator header contains bit flags. arm_get_correlator_flags() is used to test the value of
those flags. See arm_generate_correlator() for a description of a correlator.

PARAMETERS

corr_flag_num
An enumerated value that indicates which flag’s value is requested. The
enumerated values are:

1 (ARM_CORR_FLAGNUM_APP_TRACE) = Application trace flag

2 (ARM_CORR_FLAGNUM_AGENT_TRACE) = Agent trace flag

3 (ARM_CORR_FLAGNUM_ASYNCH) = mark asynchronous control flow; see
Section 4.2.1

4 (ARM_CORR_FLAGNUM_INDEPENDENT) = mark child transaction as
independent; see Section 4.2.2

correlator Pointer to a buffer containing a correlator. It serves no purpose to make the call if
the pointer is null.

flag Pointer to a boolean that is output indicating whether the flag is set.

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_generate_correlator(), arm_start_transaction()

ARM Issue 4.1 Version 1 – C Binding 57

arm_get_correlator_length()
NAME

arm_get_correlator_length() – get length of correlator

SYNOPSIS
arm_error_t
arm_get_correlator_length(
 /*[in]*/ const arm_correlator_t *correlator,
 /*[out]*/ arm_correlator_length_t *length);

DESCRIPTION
arm_get_correlator_length() returns the length of a correlator, based on the length field within
the correlator header. Note that this length is not necessarily the length of the buffer containing
the correlator.

A correlator header contains a length field. arm_get_correlator_length() is used to return the
length. The function handles any required conversion from the network byte order used in the
header and the endian (big versus little) of the platform. See arm_generate_correlator() for a
description of a correlator.

PARAMETERS

correlator Pointer to a buffer containing a correlator. It serves no purpose to make the call if
the pointer is null.

length Pointer to an arm_correlator_length_t (a 16-bit integer) into which the ARM
implementation will store the length. It serves no purpose to make the call if the
pointer is null. If the pointer is not null, some value will be stored. The stored value
will be the actual value if the value is apparently correct; otherwise, it will be zero.
Examples of when zero would be stored are when the input correlator pointer is null
or the length field is invalid, such as being greater than 512
(ARM_CORR_MAX_LENGTH) bytes.

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_generate_correlator(), arm_start_transaction()

58 Technical Standard (2007)

arm_get_error_message()
NAME

arm_get_error_message() – get error message

SYNOPSIS
arm_error_t
arm_get_error_message(
 /*[in]*/ const arm_charset_t charset, /* an IANA MIBenum value */
 /*[in]*/ const arm_error_t code,
 /*[out]*/ arm_message_buffer_t msg);

DESCRIPTION
arm_get_error_message() stores a string containing an error message for the specified error
code.

ARM implementations return values that are specific to the implementation. The only enforced
convention is that a return code of zero indicates that no errors are reported (though an error
could have occurred), and a negative return code indicates that some error occurred. Some
implementations may report an error at times when another implementation would not.

To help an application developer or administrator understand what a negative error code means,
arm_get_error_message() can be used to store a string containing an error message for the
specified error code. The ARM library is not obliged to return a message, even if it returned a
non-zero return code.

PARAMETERS

charset An IANA (Internet Assigned Numbers Authority – see www.iana.org) MIBenum
value [see arm_is_charset_supported()]. If a non-null message is returned, it will
be in this encoding. It is strongly recommended that no value be used for charset
that has not been tested for support by the library using
arm_is_charset_supported().

code An error code returned as arm_error_t from an API call.

msg Pointer to a buffer that can contains 256 characters (including the termination
character) into which the null-terminated error message will be copied. The
message will be in the encoding specified by the charset parameter. If the
implementation cannot honor the request, the implementation must store at least the
null termination character (i.e., which it would do if it does not return a message or
does not recognize the error code or cannot return the message in the application’s
encoding). The function is ignored if the pointer is null and an error status may be
returned.

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is

http://www.iana.org/

ARM Issue 4.1 Version 1 – C Binding 59

returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_get_error_message(), arm_is_charset_supported()

60 Technical Standard (2007)

arm_is_charset_supported()
NAME

arm_is_charset_supported() – check character encoding

SYNOPSIS
arm_error_t
arm_is_charset_supported(
 /*[in]*/ const arm_charset_t charset, /* an IANA MIBenum value */
 /*[out]*/ arm_boolean_t *supported);

DESCRIPTION
arm_is_charset_supported() indicates whether an ARM library supports a specified character
encoding.

The default encoding for all strings provided by the application on all operating systems is
UTF-8. An application may specify an alternate encoding when executing
arm_register_application(), and then use it for all strings it provides on all calls including
arm_register_application(), but should never do so without first issuing
arm_is_charset_supported() to test whether the value is supported.

An ARM library on the operating systems listed in Table 7 must support the specified
encodings. Applications are encouraged to use one of these encodings to ensure that any ARM
implementation will support the application’s ARM instrumentation. Another alternative is to
use one of these encodings along with a preferred encoding. If the ARM library supports the
preferred encoding, it is used; otherwise, one of the mandatory encodings is used.

IANA MIBenum
Character Set

Common Name
UNIX &

Linux
Microsoft
Windows

IBM
I5/OS

IBM
zOS

3 ARM_CHARSET_ASCII ASCII-7 (US-ASCII) Yes Yes Yes Yes

106 ARM_CHARSET_UTF8 UTF-8
(UCS-2 characters
only)

Yes Yes Yes Yes

1014 ARM_CHARSET_UTF16LE UTF-16 Little Endian
(UCS-2 characters
only)

 Yes

2028 ARM_CHARSET_IBM037 IBM037 Yes

2102 ARM_CHARSET_IBM1047 IBM1047 Yes

Table 7: Mandatory Encodings by Platform

PARAMETERS

charset An IANA (Internet Assigned Numbers Authority – see www.iana.org) MIBenum
value. Support for some values is mandatory by any ARM implementation on a
specified platform, as shown in the table.

supported Pointer to a boolean value that is set to true or false to indicate whether charset is a
supported encoding.

http://www.iana.org/

ARM Issue 4.1 Version 1 – C Binding 61

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_get_error_message(), arm_register_application()

62 Technical Standard (2007)

arm_register_application()
NAME

arm_register_application() – describe application

SYNOPSIS
arm_error_t
arm_register_application(
 /*[in]*/ const arm_char_t *app_name,
 /*[opt in]*/ const arm_id_t *input_app_id,
 /*[opt in]*/ const arm_int32_t flags, /*no current use*/
 /*[opt in]*/ const arm_buffer4_t *buffer4,
 /*[out]*/ arm_id_t *output_app_id;

DESCRIPTION
arm_register_application() describes metadata about an application.

The application uses arm_register_application() to inform the ARM library of metadata about
the application. This metadata does not change from one application instance to another. It
contains part of the function of the ARM 2.0 call arm_init(); arm_start_application() contains
the other part.

ARM generates an ID that is passed in arm_register_transaction() and arm_start_application().

PARAMETERS

app_name Pointer to a null-terminated string containing the name of the application. The
maximum length of the name is 128 characters, including the termination character.
It serves no purpose and is illegal to make this call if the pointer is null. A name
should be chosen that is unique, so generic names that might be used by a different
development team, such as “Payroll Application”, should not be used. The name
should not contain trailing blank characters or consist of only blank characters. If
the application has a copyrighted product name, the copyrighted name would be a
good choice.

buffer4 Pointer to the optional buffer, if any. If the pointer is null (ARM_BUF4_NONE),
there is no buffer. The sub-buffer formats that might be used are:

arm_subbuffer_app_identity_t
arm_subbuffer_encoding_t

flags Contains 32-bit flags. No values are currently defined. The field should be zero
(ARM_FLAG_NONE).

input_app_id
Pointer to an optional 128-bit ID (16 bytes) that is unique and that can be treated as
an alias for the other metadata. It can be any value except all zeros or all ones. If the
pointer is null (ARM_ID_NONE), no ID is provided.

An ID is unique if the probability of the ID being associated with more than one set
of metadata is vanishingly small. The selection of 128-bit IDs yields 3.4 x 10**38
unique IDs, so the objective is to select an ID that makes use of all 128 bits and is

ARM Issue 4.1 Version 1 – C Binding 63

reasonably likely to not be selected by another person creating an ID of the same
form. Two suggested algorithms that generate 128-bit values with these
characteristics are:

1. The Universal Unique Identifier (UUID) algorithm that is part of The Open
Group specification DCE 1.1: Remote Procedure Call. A developer could use
the algorithm at the time the application is developed using a utility on his or
her system, and be reasonably certain that nobody else would generate the same
128-bit ID.

2. The MD5 Message-Digest Algorithm, described in IETF RFC 1321. Applying
this algorithm to a concatenation of all the metadata properties would almost
certainly result in a value that would not collide with any other ID created with
a different set of metadata properties.

If an ARM implementation is passed an ID that was previously registered within
this process, the implementation can ignore the other metadata parameters and
assume they are identical to the previously registered metadata. The application
metadata consists of the following fields: app_name and the
arm_subbuffer_app_identity_t sub-buffer passed in buffer4.

output_app_id
Pointer to a 16-byte field. ARM will store a 16-byte value. There are no
requirements on what value it is set to, except that it must be possible to pass it on
other calls, such as arm_start_application(), without the application needing to do
any error checking.

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_destroy_application(), arm_register_transaction(), arm_start_application()

64 Technical Standard (2007)

arm_register_metric()
NAME

arm_register_metric() – describe metrics

SYNOPSIS
arm_error_t
arm_register_metric(
 /*[in]*/ const arm_id_t *app_id,
 /*[in]*/ const arm_char_t *name,
 /*[in]*/ const arm_metric_format_t format,
 /*[in]*/ const arm_metric_usage_t usage,
 /*[opt in]*/ const arm_char_t *unit,
 /*[opt in]*/ const arm_id_t *input_metric_id,
 /*[opt in]*/ const arm_int32_t flags, /*no current use*/
 /*[opt in]*/ const arm_buffer4_t *buffer4, /*no current use*/
 /*[out]*/ arm_id_t *output_metric_id);

DESCRIPTION
arm_register_metric() describes metadata about a metric.

The application uses arm_register_metric() to inform the ARM library of metadata about each
metric the application provides.

ARM generates an ID that is passed in the metric binding sub-buffer to
arm_register_transaction().

PARAMETERS

app_id Application ID returned from an arm_register_application() call in the same
process.

buffer4 Pointer to the optional buffer, if any. If the pointer is null, there is no buffer. No
sub-buffer types are currently valid with this function call, so the pointer should be
null (ARM_BUF4_NONE).

flags Contains 32-bit flags. No values are currently defined. The field should be zero
(ARM_FLAG_NONE).

format Describes the data type. The value must be one of the following:

1 (ARM_METRIC_FORMAT_COUNTER32) = arm_int32_t counter

2 (ARM_METRIC_FORMAT_COUNTER64) = arm_int64_t counter

3 (ARM_METRIC_FORMAT_CNTRDIVR) = arm_int32_t counter +
arm_int32_t divisor

4 (ARM_METRIC_FORMAT_GAUGE32) = arm_int32_t gauge

5 (ARM_METRIC_FORMAT_GAUGE64) = arm_int64_t gauge

ARM Issue 4.1 Version 1 – C Binding 65

6 (ARM_METRIC_FORMAT_GAUGEDIVR32) = arm_int32_t gauge +
arm_int32_t divisor

7 (ARM_METRIC_FORMAT_NUMERICID32) = arm_int32_t numeric ID

8 (ARM_METRIC_FORMAT_NUMERICID64) = arm_int64_t numeric ID

9 = deprecated

10 (ARM_METRIC_FORMAT_STRING32) = string (null-terminated) of a
maximum length of 32 characters (33 including the null termination character)

input_metric_id
Pointer to an optional 128-bit ID (16 bytes) that is unique and that can be treated as
an alias for the other metadata. It can be any value except all zeros or all ones. If the
pointer is null (ARM_ID_NONE), no ID is provided.

An ID is unique if the probability of the ID being associated with more than one set
of metadata is vanishingly small. The selection of 128-bit IDs yields 3.4 x 10**38
unique IDs, so the objective is to select an ID that makes use of all 128 bits and is
reasonably likely to not be selected by another person creating an ID of the same
form. Two suggested algorithms that generate 128-bit values with these
characteristics are:

1. The Universal Unique Identifier (UUID) algorithm that is part of The Open
Group specification DCE 1.1: Remote Procedure Call. A developer could use
the algorithm at the time the application is developed using a utility on his or
her system, and be reasonably certain that nobody else would generate the same
128-bit ID.

2. The MD5 Message-Digest Algorithm, described in IETF RFC 1321. Applying
this algorithm to a concatenation of all the metadata properties would almost
certainly result in a value that would not collide with any other ID created with
a different set of metadata properties.

If an ARM implementation is passed an ID that was previously registered within
this process, the implementation can ignore the other metadata parameters and
assume they are identical to the previously registered metadata. The metric
metadata consists of the following fields: app_id, name, format, usage, and unit.

name Pointer to a null-terminated string containing the name of the metric. The maximum
length of the string is 128 characters, including the termination character. It serves
no purpose and is illegal to make this call if the pointer is null. The name should not
contain trailing blank characters or consist of only blank characters.

The name can be any string, with one exception. Strings beginning with the four
characters “ARM:” are reserved for the ARM specification. The specification will
define names with known semantics using this prefix. One name format is currently
defined. Any name beginning with the eight character prefix “ARM:CIM:”
represents a name defined using the DMTF CIM (Distributed Management Task
Force Common Information Model) naming rules. For example,

66 Technical Standard (2007)

“ARM:CIM:CIM_SoftwareElement.Name” indicates that the metric value has the
semantics of the Name property of the CIM_SoftwareElement class. It is anticipated
that additional naming semantics are likely to be added in the future.

output_metric_id
Pointer to a 16-byte field. ARM will store a 16-byte value. There are no
requirements on the value it is set to, except that it must be possible to pass it in the
metric binding sub-buffer on the arm_register_transaction() call, without the
application needing to do any error checking.

unit Pointer to a null-terminated string containing the units (such as “files transferred”)
of the metric. The maximum length of the string is 128 characters, including the
termination character. The pointer may be null.

usage Describes how the metric is used. The value must be one of the following values, or
a negative value (any negative value is specific to the application; the negative
values are not expected to be widely used).

0 (ARM_METRIC_USE_GENERAL) = a metric without a specified usage. Most
metrics are described with a GENERAL usage.

1 (ARM_METRIC_USE_TRAN_SIZE) = a metric that indicates the “size” of a
transaction. The “size” is something that would be expected to affect the response
time, such as the number of bytes in a file transfer or the number of files backed up
by a “backup” transaction. ARM implementations can use this knowledge to better
interpret the response time.

2 (ARM_METRIC_USE_TRAN_STATUS) = a metric that further explains the
transaction status passed on arm_stop_transaction(), such as a sense code that
explains why a transaction failed.

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_register_application(), arm_register_transaction()

ARM Issue 4.1 Version 1 – C Binding 67

arm_register_transaction()
NAME

arm_register_transaction() – describe transaction

SYNOPSIS
arm_error_t
arm_register_transaction(
 /*[in]*/ const arm_id_t *app_id,
 /*[in]*/ const arm_char_t *tran_name,
 /*[opt in]*/ const arm_id_t *input_tran_id,
 /*[opt in]*/ const arm_int32_t flags, /*no current use*/
 /*[opt in]*/ const arm_buffer4_t *buffer4,
 /*[out]*/ arm_id_t *output_tran_id);

DESCRIPTION
arm_register_transaction() describes metadata about a transaction.

The application uses arm_register_transaction() to inform the ARM library of metadata about
the transaction measured by the application. This metadata does not change from one application
instance to another. It is the equivalent of the ARM 2.0 call arm_getid().

ARM generates an ID that is passed in arm_start_transaction() and arm_report_transaction().

PARAMETERS

app_id Application ID returned from an arm_register_application() call in the same
process.

buffer4 Pointer to the optional buffer, if any. If the pointer is null (ARM_BUF4_NONE),
there is no buffer. The sub-buffers that may be used are:

arm_subbuffer_metric_bindings_t
arm_subbuffer_tran_identity_t

The names of any transaction context properties are supplied in the
arm_subbuffer_tran_identity_t sub-buffer. They do not change afterwards; that
is, the names are immutable. The transaction context values may change with each
arm_start_transaction(), arm_report_transaction(), or arm_generate_correlator().

flags Contains 32-bit flags. No values are currently defined. The field should be zero
(ARM_FLAG_NONE).

input_tran_id
Pointer to an optional 128-bit ID (16 bytes) that is unique and that can be treated as
an alias for the other metadata. It can be any value except all zeros or all ones. If the
pointer is null (ARM_ID_NONE), no ID is provided.

An ID is unique if the probability of the ID being associated with more than one set
of metadata is vanishingly small. The selection of 128-bit IDs yields 3.4 x 10**38
unique IDs, so the objective is to select an ID that makes use of all 128 bits and is
reasonably likely to not be selected by another person creating an ID of the same

68 Technical Standard (2007)

form. Two suggested algorithms that generate 128-bit values with these
characteristics are:

1. The Universal Unique Identifier (UUID) algorithm that is part of The Open
Group specification DCE 1.1: Remote Procedure Call. A developer could use
the algorithm at the time the application is developed using a utility on his or
her system, and be reasonably certain that nobody else would generate the same
128-bit ID.

2. The MD5 Message-Digest Algorithm, described in IETF RFC 1321. Applying
this algorithm to a concatenation of all the metadata properties would almost
certainly result in a value that would not collide with any other ID created with
a different set of metadata properties.

If an ARM implementation is passed an ID that was previously registered within
this process, the implementation can ignore the other metadata parameters and
assume they are identical to the previously registered metadata. The transaction
metadata consists of the following fields: app_id, tran_name, and the
arm_subbuffer_metric_bindings_t and arm_subbuffer_tran_identity_t sub-
buffers passed in buffer4.

output_tran_id
Pointer to a 16-byte field. ARM will store a 16-byte value. There are no
requirements on the value it is set to, except that it must be possible to pass it on
other calls, such as arm_start_transaction(), without the application needing to do
any error checking.

tran_name Pointer to a null-terminated string containing the name of the transaction. Each
transaction registered by an application must have a unique name. The maximum
length of the string is 128 characters, including the termination character. It serves
no purpose and is illegal to make this call if the pointer is null. The name should not
contain trailing blank characters or consist of only blank characters.

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_register_application(), arm_report_transaction(), arm_start_transaction()

ARM Issue 4.1 Version 1 – C Binding 69

arm_report_transaction()
NAME

arm_report_transaction() – report transaction statistics

SYNOPSIS
arm_error_t
arm_report_transaction(
 /*[in]*/ const arm_app_start_handle_t app_handle,
 /*[in]*/ const arm_id_t *tran_id,
 /*[in]*/ const arm_tran_status_t tran_status,
 /*[in]*/ const arm_response_time_t response_time,
 /*[in]*/ const arm_stop_time_t stop_time,
 /*[opt in]*/ const arm_correlator_t *parent_correlator,
 /*[opt in]*/ const arm_correlator_t *current_correlator,
 /*[opt in]*/ const arm_int32_t flags,
 /*[opt in]*/ const arm_buffer4_t *buffer4);

DESCRIPTION
arm_report_transaction() is used to report statistics about a transaction that has already
completed.

arm_report_transaction() may be used instead of a paired arm_start_transaction() and
arm_stop_transaction() call. The application would have measured the response time. The
transaction could have executed on the local system or on a remote system. If it executes on a
remote system, the System Address sub-buffer passed on the arm_start_application() provides
the addressing information for the remote system.

If the transaction represented by the arm_report_transaction() call is the correlation parent of
another transaction, arm_generate_correlator() must be used to get a parent correlator, prior to
invoking the child transaction (because it must be passed to the child). In this case, the sequence
is the following:

1. arm_generate_correlator() to get a correlator for this transaction.

2. Invoke the child transaction, passing the correlator returned in step (1) to the child.

3. When this transaction is complete, invoke arm_report_transaction() to report the statistics
about the transaction.

When used, it prevents certain types of proactive management – such as monitoring for hung
transactions or adjusting priorities – because the ARM implementation is not invoked when the
transaction is started. Because of this, the use of arm_start_transction() and
arm_stop_transaction() is preferred over arm_report_transaction().

The intended use is to report status and response time about transactions that recently completed
(typically several seconds ago) in the absence of an ARM-enabled application and/or ARM
implementation on the system on which the transaction executed.

70 Technical Standard (2007)

PARAMETERS

app_handle
A handle returned in an out parameter from an arm_start_application() call in the
same process.

buffer4 Pointer to the optional buffer, if any. If the pointer is null (ARM_BUF4_NONE),
there is no buffer. The sub-buffers that may be used are:

arm_subbuffer_diag_detail_t
arm_subbuffer_diag_properties_t
arm_subbuffer_metric_values_t
arm_subbuffer_tran_context_t
arm_subbuffer_user_t

current_correlator
Pointer to the correlator for the transaction that has completed, if any. If the pointer
is null (ARM_CORR_NONE), there is no current correlator.

flags Contains 32-bit flags. In the least significant byte, 0x00000001
(ARM_FLAG_TRACE_REQUEST) is set to 1 if the application requests/suggests
a trace.

parent_correlator
Pointer to a parent correlator, if any. If the pointer is null (ARM_CORR_NONE),
there is no parent correlator.

response_time
Response time in nanoseconds.

stop_time An arm_int64_t that contains the number of milliseconds since Jan 1, 1970 using
the Gregorian calendar. The time base is GMT (Greenwich Mean Time). There is
one special value, –1 (ARM_USE_CURRENT_TIME), which means use the
current time.

tran_id A transaction ID returned in an out parameter from an arm_register_transaction()
call in the same process.

tran_status Indicates the status of the transaction. The following values are allowed:

0 (ARM_STATUS_GOOD) = transaction completed successfully

1 (ARM_STATUS_ABORTED) = transaction was aborted before it completed. For
example, the user might have pressed “Stop” or “Back” on a browser while a
transaction was in process, causing the transaction, as measured at the browser, to
be aborted.

2 (ARM_STATUS_FAILED) = transaction completed in error

3 (ARM_STATUS_UNKNOWN) = transaction completed but the status was
unknown. This would most likely occur if middleware or some other form of proxy
instrumentation measured the transaction. This instrumentation may know enough

ARM Issue 4.1 Version 1 – C Binding 71

to know when the transaction starts and stops, but does not understand the
application-specific semantics sufficiently well to know whether the transaction
was successful.

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_generate_correlator(), arm_register_transaction(), arm_start_application(),
arm_start_transaction(), arm_stop_transaction()

72 Technical Standard (2007)

arm_start_application()
NAME

arm_start_application() – check application is running

SYNOPSIS
arm_error_t
arm_start_application(
 /*[in]*/ const arm_id_t *app_id,
 /*[opt in]*/ const arm_char_t *app_group,
 /*[opt in]*/ const arm_char_t *app_instance,
 /*[opt in]*/ const arm_int32_t flags, /*no current use*/
 /*[opt in]*/ const arm_buffer4_t *buffer4,
 /*[out]*/ arm_app_start_handle_t *app_handle);

DESCRIPTION
arm_start_application() indicates that an instance of an application has started running and is
prepared to make ARM calls.

arm_start_application() indicates that an instance of an application has started running and is
prepared to make ARM calls. In many cases, there will be only one application instance in a
process, but there are cases in which there could be multiple instances. An example of multiple
application instances in the same process is if several Java applications run in the same JVM
(Java Virtual Machine) in the same process, and they each call the ARM 4.0 C interface (either
directly, or indirectly via an implementation of the ARM 4.0 Java interface). They might share
the same application ID or they might be separately registered.

Application context properties may be used to differentiate between instances. The values do not
have to be different from other instances, though making them unique is suggested. The context
properties are provided through function parameters and/or a sub-buffer.

The group and instance names are provided as function parameters.

Up to twenty (name,value) pairs of context properties may be provided in a sub-buffer.

ARM 4.1 added a new capability for controlling the level of instrumentation that the ARM
implementation prefers. The capability is described in Chapter 10. It uses the Application
Control sub-buffer described in Section 13.21.

There is a special case in which a System Address sub-buffer is provided. The System Address
sub-buffer is provided when arm_report_transaction() will be used to report data about
transactions that executed on a different system. In this case, the arm_start_application()
provides a scoping context for the transaction instances, but does not indicate that the
application instance is running on the local system. If the System Address sub-buffer is
provided, it is meaningless to use arm_start_transaction() or arm_stop_transaction(), or any of
the API calls that are used after arm_start_transaction() and before arm_stop_transaction().

The combination of arm_register_application() and arm_start_application() is equivalent to the
ARM 2.0 call arm_init().

ARM Issue 4.1 Version 1 – C Binding 73

PARAMETERS

app_group Pointer to a null-terminated string containing the identity of a group of application
instances, if any. Application instances for a given software product that are started
for a common runtime purpose are typically very good candidates for using the
same group name. For example, identical replica instances of a product started
across multiple processes or servers to address a specific transaction workload
objective can be, advantageously to the ARM agent, commonly identified by the
group name. The maximum length of the string is 256
(ARM_PROPERTY_VALUE_MAX_CHARS) characters, including the
termination character. A null pointer indicates that there is no group.

app_handle Pointer to an arm_int64_t into which the ARM library will store the value of the
handle that will represent the application instance in all calls, up to and including
the arm_stop_application() that indicates that the instance has completed executing.
The scope of the handle is the process in which the arm_start_application() is
executed. There are no requirements on the value it is set to, except that it must be
possible to pass it on other calls, such as arm_start_transaction(), without the
application needing to do any error checking. Whether the data is meaningful, or
partially meaningful, is at the discretion of the ARM implementation.

app_id Pointer to a 16-byte ID returned by an arm_register_application() call.

app_instance
Pointer to a null-terminated string containing the identity of this instance of the
application. It might contain the process ID, or a UUID in printable characters, for
example. The maximum length of the string is 256
(ARM_PROPERTY_VALUE_MAX_CHARS) characters, including the
termination character. A null pointer indicates that there is no instance value.

buffer4 Pointer to the optional buffer, if any. If the pointer is null (ARM_BUF4_NONE),
there is no buffer. The sub-buffer formats that might be used are:

arm_subbuffer_app_context_t
arm_subbuffer_app_control_t
arm_subbuffer_system_address_t

If no System Address sub-buffer is provided on arm_start_application(), all
transactions reported by this application instance execute in the current process.

If a System Address sub-buffer is provided on arm_start_application(), all
transactions execute in a different process.

If a System Address sub-buffer is provided in which the system address length is
zero, or the system address pointer is null, the system is the “local” system, as
determined by the ARM implementation.

If a System Address sub-buffer is provided in which there is a non-null system
address and length, the system may be the local system or a remote system.
Interpretation of what is local versus remote is at the discretion of the ARM
implementation.

74 Technical Standard (2007)

flags Contains 32-bit flags. No values are currently defined. The field should be zero
(ARM_FLAG_NONE).

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_register_application(), arm_report_transaction(), arm_start_transaction(),
arm_stop_application()

ARM Issue 4.1 Version 1 – C Binding 75

arm_start_transaction()
NAME

arm_start_transaction() – start transaction

SYNOPSIS
arm_error_t
arm_start_transaction(
 /*[in]*/ const arm_app_start_handle_t app_handle,
 /*[in]*/ const arm_id_t *tran_id,
 /*[opt in]*/ const arm_correlator_t *parent_correlator,
 /*[opt in]*/ const arm_int32_t flags,
 /*[opt in]*/ const arm_buffer4_t *buffer4,
 /*[out]*/ arm_tran_start_handle_t *tran_handle,
 /*[out]*/ arm_correlator_t *current_correlator);

DESCRIPTION
arm_start_transaction() is used to indicate that a transaction is beginning execution.

Call arm_start_transaction() just prior to a transaction beginning execution.
arm_start_transaction() signals the ARM library to start timing the transaction response time.
There is one exception: when arm_get_arrival_time() is used to get a start time before
arm_start_transaction() executes. See arm_get_arrival_time() to understand this usage.

arm_start_transaction() is also the means to pass to ARM the correlation token (called a
“correlator” in ARM) from a caller – the “parent” – and to request a correlator that can be passed
to transactions called by this transaction. The correlation token may be used to establish a calling
hierarchy across processes and systems. A correlator contains a two-byte length field, a one-byte
format ID, a one-byte flag field, plus it may contain other data that is used to uniquely identify
an instance of a transaction. Applications do not need to understand correlator internals. The
maximum length of a correlator is 512 (ARM_CORR_MAX_LENGTH) bytes. (In ARM 2.0 it
was 168 bytes.)

PARAMETERS

app_handle A handle returned in an out parameter from an arm_start_application() call in the
same process.

buffer4 Pointer to the optional buffer, if any. If the pointer is null (ARM_BUF4_NONE),
there is no buffer. The sub-buffers that may be used are:

arm_subbuffer_arrival_time_t
arm_subbuffer_prep_stats_t
arm_subbuffer_prep_time_t
arm_subbuffer_formatted_arrival_time_msecJan1970_t
arm_subbuffer_formatted_arrival_time_strings_t
arm_subbuffer_message_rcvd_event_t
arm_subbuffer_message_sent_event_t
arm_subbuffer_metric_values_t
arm_subbuffer_tran_context_t
arm_subbuffer_user_t

76 Technical Standard (2007)

current_correlator
Pointer to a buffer into which the ARM implementation will store a correlator for
the transaction instance, if any. The length of the buffer should be (at least) 512
(ARM_CORR_MAX_LENGTH) bytes.

If the pointer is null (ARM_CORR_NONE), the application is not requesting that a
correlator be created.

If the pointer is not null, the application is requesting that a correlator be created. In
this case the ARM implementation may (but need not) create a correlator in the
buffer. It may not create a correlator if it does not support the function or if it is
configured to not create a correlator.

After arm_start_transaction() completes, the application tests the length field using
arm_get_correlator_length() to determine whether a correlator has been stored. If
the length is still zero, no correlator has been stored. The ARM implementation
must store zero in the length field if it does not generate a correlator.

flags Contains 32-bit flags. Three flags are defined:

0x00000001 (ARM_FLAG_TRACE_REQUEST) is set to 1 if the application
requests/suggests a trace.

0x00000002 (ARM_FLAG_BIND_THREAD) is set to 1 if the started transaction is
bound to this thread. Setting this flag is equivalent to immediately calling
arm_bind_thread() after the arm_start_transaction() completes, except the timing
is a little more accurate and the extra call is avoided.

0x00000004 (ARM_FLAG_CORR_IN_PROCESS) is set to 1 if the application is
stating that it will not send the correlator outside the current process. An ARM
implementation may be able to optimize correlator handling if it knows this,
because it may be able to avoid serialization to create the correlator.

parent_correlator
Pointer to the parent correlator, if any. The pointer may be null
(ARM_CORR_NONE).

tran_handle
Pointer to an arm_int64_t into which the ARM library will store the value of the
handle that will represent the transaction instance in all calls, up to and including
the arm_stop_transaction() that indicates that the instance has completed executing.
The scope of the handle is the process in which the arm_start_transaction() is
executed.

There are no defined behaviors for the value returned – it is implementation-
defined. Note that the returned value will always be a value that the application can
use in future calls that take a handle [arm_bind_thread(), arm_block_transaction(),
arm_stop_transaction(), arm_unbind_thread(), arm_unblock_transaction(), and
arm_arm_update_transaction()].

ARM Issue 4.1 Version 1 – C Binding 77

tran_id A transaction ID returned in an out parameter from an arm_register_transaction()
call in the same process.

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_bind_thread(), arm_block_transaction(), arm_get_arrival_time(),
arm_get_correlator_length(), arm_register_transaction(), arm_start_application(),
arm_stop_transaction(), arm_unbind_thread(), arm_unblock_transaction(),
arm_update_transaction()

78 Technical Standard (2007)

arm_stop_application()
NAME

arm_stop_application() – stop application

SYNOPSIS
arm_error_t
arm_stop_application(
 /*[in]*/ const arm_app_start_handle_t app_handle,
 /*[opt in]*/ const arm_int32_t flags, /*no current use*/
 /*[opt in]*/ const arm_buffer4_t *buffer4); /*no current use*/

DESCRIPTION
arm_stop_application() indicates that the application instance has finished making ARM calls. It
typically means that the instance is ending, such as just prior to the process exiting or a thread
that represents an application instance terminating.

For any transactions that are still in-process [arm_start_transaction() executed without a
matching arm_stop_transaction()], an implicit arm_discard_transaction() is executed.

If the arm_start_application() used the System Address sub-buffer to indicate that the ARM
calls would be about an application instance on a different system, arm_stop_application()
indicates that no more calls about that application instance and its transactions will be made.

After executing arm_stop_application(), no further calls should be made for this application,
including calls for transactions created by this application, until a new instance “session” is
started using arm_start_application(). Data from any other calls that are made will be ignored.
This function is the equivalent of the ARM 2.0 function arm_end().

PARAMETERS

app_handle The handle returned an out parameter from an arm_start_application() call in the
same process.

buffer4 Pointer to the optional buffer, if any. If the pointer is null, there is no buffer. No
sub-buffer types are currently valid with this function call, so the pointer should be
null (ARM_BUF4_NONE).

flags Contains 32-bit flags. No values are currently defined. The field should be zero
(ARM_FLAG_NONE).

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

ARM Issue 4.1 Version 1 – C Binding 79

SEE ALSO
arm_discard_transaction(), arm_start_application(), arm_start_transaction(),
arm_stop_transaction()

80 Technical Standard (2007)

arm_stop_transaction()
NAME

arm_stop_transaction() – stop transaction

SYNOPSIS
arm_error_t
arm_stop_transaction(
 /*[in]*/ const arm_tran_start_handle_t tran_handle,
 /*[in]*/ const arm_tran_status_t tran_status,
 /*[opt in]*/ const arm_int32_t flags, /*no current use*/
 /*[opt in]*/ const arm_buffer4_t *buffer4);

DESCRIPTION
arm_stop_transaction() signals the end of a transaction.

Call arm_stop_transaction() just after a transaction completes. arm_start_transaction() signals
the ARM library to start timing the transaction response time. arm_stop_transaction() signals
the ARM library to stop timing the transaction response time. It can be called from any thread in
the process that executed the arm_start_transaction().

Implicit arm_unbind_thread() and arm_unblock_transaction() calls are made for any pending
arm_bind_thread() and arm_block_transaction() calls, respectively, that have not been
explicitly unbound or unblocked with arm_unbind_thread() and arm_unblock_transaction().

PARAMETERS

buffer4 Pointer to the optional buffer, if any. If the pointer is null (ARM_BUF4_NONE),
there is no buffer. The sub-buffers that may be used are:

arm_subbuffer_diag_detail_t
arm_subbuffer_diag_properties_t
arm_subbuffer_message_rcvd_event_t
arm_subbuffer_message_sent_event_t
arm_subbuffer_metric_values_t

flags Contains 32-bit flags. No values are currently defined. The field should be zero
(ARM_FLAG_NONE).

tran_handle
A handle returned in an out parameter from an arm_start_transaction() call in the
same process.

tran_status Indicates the status of the transaction. The following values are allowed:

0 (ARM_STATUS_GOOD) = transaction completed successfully

1 (ARM_STATUS_ABORTED) = transaction was aborted before it completed. For
example, the user might have pressed “Stop” or “Back” on a browser while a
transaction was in process, causing the transaction, as measured at the browser, to
be aborted.

ARM Issue 4.1 Version 1 – C Binding 81

2 (ARM_STATUS_FAILED) = transaction completed in error

3 (ARM_STATUS_UNKNOWN) = transaction completed but the status was
unknown. This would most likely occur if middleware or some other form of proxy
instrumentation measured the transaction. This instrumentation may know enough
to know when the transaction starts and stops, but does not understand the
application-specific semantics sufficiently well to know whether the transaction
was successful.

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_bind_thread(), arm_block_transaction(), arm_start_transaction(), arm_unbind_thread(),
arm_unblock_transaction()

82 Technical Standard (2007)

arm_unbind_thread()
NAME

arm_unbind_thread() – unbind a thread

SYNOPSIS
arm_error_t
arm_unbind_thread(
 /*[in]*/ const arm_tran_start_handle_t tran_handle,
 /*[opt in]*/ const arm_int32_t flags, /*no current use*/
 /*[opt in]*/ const arm_buffer4_t *buffer4); /*no current use*/

DESCRIPTION
arm_unbind_thread() indicates that the thread from which it is called is no longer performing on
behalf of the transaction identified by the start handle.

Call arm_unbind_thread() when a thread is no longer executing a transaction. The thread
binding is useful for managing computing resources at a finer level of granularity than the
process. It should be called when, for this transaction and this thread, either:

• arm_bind_thread() was previously called.

• The ARM_FLAG_BIND_THREAD flag was on in the arm_start_transaction() call.
arm_stop_transaction() is an implicit arm_unbind_thread() for any threads still bound to the
transaction instance [arm_bind_thread() issued without a matching arm_unbind_thread()]. As
long as the transaction is bound to the thread when the arm_stop_transaction() executes, there is
no need nor any value in calling arm_unbind_thread() before calling arm_stop_transaction().

PARAMETERS

buffer4 Pointer to the optional buffer, if any. If the pointer is null, there is no buffer. No
sub-buffer types are currently valid with this function call, so the pointer should be
null (ARM_BUF4_NONE).

flags Contains 32-bit flags. No values are currently defined. The field should be zero
(ARM_FLAG_NONE).

tran_handle
A handle returned in an out parameter from an arm_start_transaction() call in the
same process.

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

ARM Issue 4.1 Version 1 – C Binding 83

SEE ALSO
arm_bind_thread(), arm_start_transaction(), arm_stop_transaction()

84 Technical Standard (2007)

arm_unblock_transaction()
NAME

arm_unblock_transaction() – unblock transaction

SYNOPSIS
arm_error_t
arm_unblock_transaction(
 /*[in]*/ const arm_tran_start_handle_t tran_handle,
 /*[in]*/ const arm_tran_block_handle_t block_handle,
 /*[opt in]*/ const arm_int32_t flags, /*no current use*/
 /*[opt in]*/ const arm_buffer4_t *buffer4); /*no current use*/

DESCRIPTION
arm_unblock_transaction() indicates that the suspension indicated by the block_handle for the
transaction identified by the start handle is no longer waiting for a downstream transaction to
complete.

Call arm_unblock_transaction() when a transaction is no longer blocked on an external event. It
should be called when arm_block_transaction() was previously called and the blocking
condition no longer exists. Knowledge of when a transaction is blocked can be useful for better
understanding response times. It is useful to separate out this “blocked” time from the elapsed
start-to-stop time. The unblocked call is paired with a block call for finer grained analysis.

arm_stop_transaction() is an implicit arm_unblock_transaction() for any blocking condition for
the transaction instance that has not been cleared yet [arm_block_transaction() issued without a
matching arm_unblock_transaction()]. It should only be called without calling
arm_unblock_transaction() first when the blocking condition ends immediately prior to the
transaction ending.

PARAMETERS

block_handle
A handle returned in an out parameter from an arm_block_transaction() call in the
same process.

buffer4 Pointer to the optional buffer, if any. If the pointer is null, there is no buffer. The
sub-buffers that may be used are:

arm_subbuffer_message_rcvd_event_t
arm_subbuffer_message_sent_event_t

flags Contains 32-bit flags. No values are currently defined. The field should be zero
(ARM_FLAG_NONE).

tran_handle
A handle returned in an out parameter from an arm_start_transaction() call in the
same process.

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ARM Issue 4.1 Version 1 – C Binding 85

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_block_transaction(), arm_start_transaction(), arm_stop_transaction()

86 Technical Standard (2007)

arm_update_transaction()
NAME

arm_update_transaction() – get transaction status

SYNOPSIS
arm_error_t
arm_update_transaction(
 /*[in]*/ const arm_tran_start_handle_t tran_handle,
 /*[opt in]*/ const arm_int32_t flags, /*no current use*/
 /*[opt in]*/ const arm_buffer4_t *buffer4);

DESCRIPTION
arm_update_transaction() signals that a transaction is still processing.

arm_update_transaction() is useful as a heartbeat. It is also used to pass additional data about a
transaction. It can be called from any thread in the process that executed the
arm_start_transaction().

PARAMETERS

buffer4 Pointer to the optional buffer, if any. If the pointer is null (ARM_BUF4_NONE),
there is no buffer. The sub-buffers that might be used are:

arm_subbuffer_message_rcvd_event_t
arm_subbuffer_message_sent_event_t
arm_subbuffer_metric_values_t

flags Contains 32-bit flags. No values are currently defined. The field should be zero
(ARM_FLAG_NONE).

tran_handle
A handle returned in an out parameter from an arm_start_transaction() call in the
same process.

RETURN VALUE
The returned code is a status that may indicate whether an error was detected.

ERRORS
If the return code is negative, an error occurred. If the return code is not negative, an error may
or may not have occurred – the determination of what is an error and whether an error code is
returned is at the discretion of the ARM implementation. The application can test the return code
if it wants to provide its own error logging.

SEE ALSO
arm_start_transaction(), arm_stop_transaction()

ARM Issue 4.1 Version 1 – C Binding 87

13 Optional Buffer and Sub-Buffers

13.1 Optional Buffer

(*buffer4 in all calls)

Syntax
typedef struct arm_buffer4
{
 arm_int32_t count;
 arm_subbuffer_t **subbuffer_array;
} arm_buffer4_t;

typedef struct arm_subbuffer {
 arm_subbuffer_format_t format;
 /* format-specific data fields are following here */
} arm_subbuffer_t;

Description

Many of the ARM function calls provide a way for the application and ARM implementation to
exchange optional data, in addition to the required data in other function parameters. This buffer
describes the format of the exchanged data.

Almost all functions define a *buffer4 parameter. When the value is not null, the value points to
a buffer in the following format. It differs from the ARM 2.0 format in that the buffer contains
pointers to sub-buffers, rather than inline contiguous data. The sub-buffers contain the
meaningful data.

Each sub-buffer may be in the optional buffer once. If there is more than one instance of a sub-
buffer in the buffer, all instances after the first will be ignored.

The buffer is aligned on a pointer boundary for the platform. The byte layout depends on the
platform.

88 Technical Standard (2007)

Format

(See Figure 19.)

• Count of sub-buffer pointers: An arm_int32_t count of sub-buffers in the following
array.

• Array of pointers to sub-buffers: A pointer to an array of pointers to sub-buffers. The
array is aligned on a pointer boundary for the platform. A null pointer indicates that this
element in the array is not used on this call; later elements in the array may be non-null.

Each sub-buffer is in the following format:

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID.

Known sub-buffer formats (all unassigned values in the non-negative range are reserved):

ID arm41.h Constant, if Applicable Usage Description

3 ARM_SUBBUFFER_USER User

4 ARM_SUBBUFFER_ARRIVAL_TIME Arrival Time

5 ARM_SUBBUFFER_METRIC_VALUES Metric Values

6 ARM_SUBBUFFER_SYSTEM_ADDRESS System

7 ARM_SUBBUFFER_DIAG_DETAIL Diagnostic Details

8 ARM_SUBBUFFER_BLOCK_CAUSE Block Cause (ARM 4.1)

9 ARM_SUBBUFFER_MESSAGE_RCVD_
EVENT

Message Received Event (ARM 4.1)

10 ARM_SUBBUFFER_MESSAGE_SENT_
EVENT

Message Sent Event (ARM 4.1)

11 ARM_SUBBUFFER_FORMATTED_
ARRIVAL_TIME_USECJAN1970

Formatted Arrival Time UsecJan1970
(ARM 4.1)

12 ARM_SUBBUFFER_FORMATTED_
ARRIVAL_TIME_STRINGS

Formatted Arrival Time Strings
(ARM 4.1)

13 ARM_SUBBUFFER_PREP_TIME Preparation Time (ARM 4.1)

14 ARM_SUBBUFFER_PREP_STATS Preparation Statistics (ARM 4.1)

15 ARM_SUBBUFFER_DIAG_PROPERTIES Diagnostic Properties (ARM 4.1)

102 ARM_SUBBUFFER_APP_IDENTITY Application Identity Properties

103 ARM_SUBBUFFER_APP_CONTEXT Application Context Properties

104 ARM_SUBBUFFER_TRAN_IDENTITY Transaction Identity Properties

105 ARM_SUBBUFFER_TRAN_CONTEXT Transaction Context Properties

106 ARM_SUBBUFFER_METRIC_BINDINGS Metric Bindings

107 ARM_SUBBUFFER_CHARSET Character Set Encoding

ARM Issue 4.1 Version 1 – C Binding 89

ID arm41.h Constant, if Applicable Usage Description

108 ARM_SUBBUFFER_APP_CONTROL Application Control (ARM 4.1)

109 ARM_SUBBUFFER_TRAN_ID_CONTROL Transaction ID Control (ARM 4.1)

110 ARM_SUBBUFFER_TRAN_INSTANCE_
CONTROL

Transaction Instance Control
(ARM 4.1)

30000 –
30999

 Reserved for IBM

Table 8: Sub-Buffer Formats

All negative values are available for implementation-specific purposes. Some negative
values are known to be in use or planned for future use so users of the ARM interface are
advised to avoid them to avoid conflicts:

Value Range User

–30999 : –30000 IBM

Table 9: Known Implementation-Specific Sub-Buffer Format IDs

• Other sub-buffer data: There are two common patterns, each illustrated below:

— The sub-buffer does not contain an array of elements. In this case, the data is inline
immediately (subject to byte alignment requirements for the data type on this platform)
following the format ID. See Figure 24.

— The sub-buffer contains one or more arrays of elements. In this case, the sub-buffer is
in the following format. See Figure 25.

— Sub-buffer format ID

— Non-array data, if any

— One or more sets of array count/pointer pairs

— Count of array elements

— Pointer to an array of elements

— Other non-array data, if any

90 Technical Standard (2007)

Sub-buffer

Format ID

Sub-buffer data

Figure 24: Format of Sub-Buffer that does not Contain an Array

Sub-buffer

Format ID

Count of elements in the array

Pointer to an array of elements

Other non-array sub-buffer data, if any

Array of any type

Array element

Array element

…

Could be multiple (element
count + array pointer) pairs

Figure 25: Format of Sub-Buffer that Contains One or More Arrays of Data

ARM Issue 4.1 Version 1 – C Binding 91

13.2 User

(format=3, ARM_SUBBUFFER_USER)

Syntax
typedef struct arm_subbuffer_user
{
 arm_subbuffer_t header;
 const arm_char_t *name;
 arm_boolean_t id_valid;
 arm_id_t id;
} arm_subbuffer_user_t;

Description

A user name and/or ID may be optionally associated with each transaction instance. A name is a
null-terminated character string. An ID is a 16-byte binary value, such as a UUID. Either or both
may be provided.

Format

The pattern is illustrated in Figure 24:

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=3
(ARM_SUBBUFFER_USER).

• User name: A null-terminated character string with a maximum length of 128 characters,
including the termination character. A null value indicates no name is provided.

• ID valid: A boolean indicating whether the ID field contains a valid ID.

• ID: 16-byte ID (16 bytes) that is associated with and can be used as an alias for the user
name.

92 Technical Standard (2007)

13.3 Arrival Time

(format=4, ARM_SUBBUFFER_ARRIVAL_TIME)

Syntax
typedef struct arm_subbuffer_arrival_time
{
 arm_subbuffer_t header;
 arm_arrival_time_t opaque_time;
} arm_subbuffer_arrival_time_t;

Description

Some applications may start processing a transaction before all the context information that
identifies the transaction is known. For example, it might by necessary to retrieve the context
information as the first step in processing the transaction. This scenario is described in
Chapter 6.

When the application can call ARM when the transaction starts but not call
arm_start_transaction() because it does not yet have all the data it needs, the application can call
arm_get_arrival_time() to receive a timestamp value for the current time from the ARM
implementation. This timestamp value is known as the “arrival time”. When the transaction
context data is all known, arm_start_transaction() is called, passing the optional arrival time
value in the Arrival Time sub-buffer, to indicate when the transaction actually started executing.
This scenario is described in Section 6.1.1.

The arrival time field is a 64-bit integer containing the value returned by the
arm_get_arrival_time() function. The format of the data within the arm_int64_t is
implementation-defined.

There are five sub-buffers (listed below) that are used for essentially the same purpose – to
provide a more accurate start time than can be achieved with arm_start_transaction() alone. If
more than one of these sub-buffers is passed, the ARM implementation will select which one to
use, such as a heuristic that it will use the first sub-buffer in the list that it recognizes and ignore
all others. Under no circumstances should the ARM implementation use data from more than
one of the sub-buffers.

• Arrival Time sub-buffer (which contains an opaque formatted time)

• Formatted Arrival Time MsecJan1970 sub-buffer

• Formatted Arrival Time Strings sub-buffer

• Preparation Time sub-buffer

• Preparation Statistics sub-buffer

ARM Issue 4.1 Version 1 – C Binding 93

Format

The pattern is illustrated in Figure 24:

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=4
(ARM_SUBBUFFER_ARRIVAL_TIME).

• Arrival time: An arm_int64_t value containing an opaque time indicator generated by
and recognizable by the ARM implementation.

94 Technical Standard (2007)

13.4 Metric Values

(format=5, ARM_SUBBUFFER_METRIC_VALUES)

Syntax
typedef struct arm_subbuffer_metric_values
{
 arm_subbuffer_t header;
 arm_int32_t count;
 const arm_metric_t *metric_value_array;
} arm_subbuffer_metric_values_t;

typedef struct arm_metric
{
 arm_metric_slot_t slot;
 arm_metric_format_t format;
 arm_metric_usage_t usage;
 arm_boolean_t valid;
 union
 {
 arm_metric_counter32_t counter32;
 arm_metric_counter64_t counter64;
 arm_metric_cntrdivr32_t counterdivisor32;
 arm_metric_gauge32_t gauge32;
 arm_metric_gauge64_t gauge64;
 arm_metric_gaugedivr32_t gaugedivisor32;
 arm_metric_numericID32_t numericid32;
 arm_metric_numericID64_t numericid64;
 arm_metric_string32_t string32;
 } metric_u;
} arm_metric_t;

Description

The buffer is used to pass metric values on any of arm_start_transaction(),
arm_update_transaction(), arm_stop_transaction(), and arm_report_transaction().

Format

The pattern is illustrated in Figure 25:

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=5
(ARM_SUBBUFFER_METRIC_VALUES).

• Count of metric value pointers: An arm_int32_t count of metric value pointers.

• Pointer to an array of metric value structures: The number of pointers in the array is
specified by the previous count value.

ARM Issue 4.1 Version 1 – C Binding 95

Each structure is in the following format, and is aligned as required for the C compiler on
the platform:

— Slot number: A single-byte slot number. Valid values are 0 to 6. The slot number
must be the same as the corresponding entry in the Metric Bindings sub-buffer. Each
slot number should be used at most once; if a slot number is re-used, the first entry is
used and all others are ignored.

— Metric format: A single-byte format indicator. Valid values are 1 to 10 and are the
same as ARM 2.0. Only values 1 to 8 are valid in slots 0-5. Only value 10 is valid in
slot 6. This is a carry-over from ARM 2.0. The format must be the same as the
corresponding entry in the Metric Bindings sub-buffer.

1 ARM_METRIC_FORMAT_COUNTER32 arm_int32_t counter

2 ARM_METRIC_FORMAT_COUNTER64 arm_int64_t counter

3 ARM_METRIC_FORMAT_CNTRDIVR arm_int32_t counter + arm_int32_t
divisor

4 ARM_METRIC_FORMAT_GAUGE32 arm_int32_t gauge

5 ARM_METRIC_FORMAT_GAUGE64 arm_int64_t gauge

6 ARM_METRIC_FORMAT_GAUGEDIVR32 arm_int32_t gauge + arm_int32_t
divisor

7 ARM_METRIC_FORMAT_NUMERICID32 arm_int32_t numeric ID

8 ARM_METRIC_FORMAT_NUMERICID64 arm_int64_t numeric ID

9 (DEPRECATED)

10 ARM_METRIC_FORMAT_STRING32 arm_char_t* null-terminated string
of a maximum length of 32
characters (33 including the null
termination character)

Table 10: Metric Formats

— Usage: An arm_metric_usage_t indicating how the metric is used. The usage must be
the same as the usage parameter passed on the arm_register_metric() call that
registered the metric ID with the same slot number that is in the Metric Bindings sub-
buffer.

0 ARM_METRIC_USE_GENERAL No usage is declared

1 ARM_METRIC_USE_TRAN_SIZE The metric indicates the transaction
size (e.g., the size of a file or the
number of jobs in a network backup
operation)

96 Technical Standard (2007)

2 ARM_METRIC_USE_TRAN_
STATUS

The metric is a status code (numeric
ID) or text message (string). It would
typically be used with
arm_stop_transaction() or
arm_report_transaction() to provide
additional details about a transaction
status of Failed.

3:32767 Reserved.

–32768: –1 Available for implementation-
defined purposes.

Table 11: Metric Usage Indicators

— Valid flag: A boolean that indicates whether the data in the “Metric value” field is
currently valid.

— Metric value: A C union containing the metric value. The data type matches the
metric format indicator (above).

ARM Issue 4.1 Version 1 – C Binding 97

13.5 System Address

(format=6, ARM_SUBBUFFER_SYSTEM_ADDRESS)

Syntax
typedef struct arm_subbuffer_system_address
{
 arm_subbuffer_t header;
 arm_int16_t address_format;
 arm_int16_t address_length;
 const arm_uint8_t *address;
 arm_boolean_t id_valid;
 arm_id_t id;
} arm_subbuffer_system_address_t;

Description

The System Address sub-buffer is used with arm_start_application() when the transactions that
will be reported execute on a different system than the one on which they will be reported.

• If no System Address sub-buffer is provided on arm_start_application(), all transactions
reported by this application instance execute in the current process.

• If a System Address sub-buffer is provided on arm_start_application(), all transactions
execute in a different process.

• If a System Address sub-buffer is provided in which the system address length is zero, or
the system address pointer is null, the system is the “local” system, as determined by the
ARM implementation.

• If a System Address sub-buffer is provided in which there is a non-null system address
and length, the system may be the local system or a remote system. Interpretation of what
is local versus remote is at the discretion of the ARM implementation.

Format

The pattern is illustrated in Figure 24:

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=6
(ARM_SUBBUFFER_SYSTEM_ADDRESS).

• Format of the system address: An arm_int16_t format of the system address field. The
following formats are defined:

Format Format Name Details

0 Reserved

1 ARM_SYSADDR_FORMAT_IPV4 Bytes 0:3 = 4-byte IP address

98 Technical Standard (2007)

Format Format Name Details

2 ARM_SYSADDR_FORMAT_IPV4PORT Bytes 0:3 = 4-byte IP address
Bytes 4:5 = 2-byte IP port number

3 ARM_SYSADDR_FORMAT_IPV6 Bytes 0:15 = 16-byte IP address

4 ARM_SYSADDR_FORMAT_IPV6PORT Bytes 0:15 = 16-byte IP address
Bytes 16:17 = 2-byte IP port
number

5 ARM_SYSADDR_FORMAT_SNA Bytes 0:7 = EBCDIC-encoded
network ID
Bytes 8:15 = EBCDIC-encoded
network accessible unit (control
point or LU)

6 ARM_SYSADDR_FORMAT_X25 Bytes 0:15 = the X.25 address (also
referred to as an X.121 address).
This is up to 16 ASCII character
digits ranging from 0-9.

7 ARM_SYSADDR_FORMAT_HOSTNAME Bytes 0:?? = hostname (characters,
not null-terminated), where ?? is
determined based on the
arm_int16_t address_length field.

8 ARM_SYSADDR_FORMAT_UUID Bytes 0:15 = UUID in binary. This
is useful for applications that define
their system by a UUID rather than
a network address or hostname or
some other address form.

9 : 32767 Reserved

–32768 : –
1

Available for implementation-defined use. There are no semantics associated
with the address format. It will be
an unusual situation where a new
format is needed, but this provides a
solution if this is needed. The
preferred approach is to get a new
format defined that is in the 0-32767
range. There is a risk that two
different agent developers will
choose the same ID, but this risk is
deemed small.

Table 12: System Address Formats

• Length of system address: An arm_int16_t length of system address in bytes.

— There is no maximum length.

— A length of zero refers to the local system.

• System address: A pointer to a byte array containing the system address.

ARM Issue 4.1 Version 1 – C Binding 99

— The byte array is the length specified by the “Length of system address” field. Note
that it could have a length of zero bytes, or be a null pointer, indicating that it is the
local system.

• ID valid: A boolean indicating whether the system address ID field contains a valid ID.

• System address ID: A 16-byte character array containing an ID that can be used as a
synonym for the tuple of (format, length, system address). If the “System Address” format
is a UUID, and a “System Address ID” is provided, it is a coincidence if the values are
identical. Nothing precludes or requires that they be the same.

— The ID is an optional identifier that is mapped to the other fields. If the value is all
zeros, the ID is not being provided.

100 Technical Standard (2007)

13.6 Diagnostic Detail

(format=7, ARM_SUBBUFFER_DIAG_DETAIL)

Syntax
typedef struct arm_subbuffer_diag_detail
{
 arm_subbuffer_t header;
 const arm_char_t *diag_detail;
} arm_subbuffer_diag_detail_t;

Description

When a transaction completion is reported with arm_stop_transaction() or
arm_report_transaction(), and the transaction status is not ARM_STATUS_GOOD, the
application may provide a character string containing any arbitrary diagnostic data. The string
may not be longer than 4096 characters, including the null-termination character. For example,
the application might provide the SQL query text for a failing database transaction.

Format

The pattern is illustrated in Figure 24:

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=7
(ARM_SUBBUFFER_DIAG_DETAIL).

• Value: An arm_char_t* to a null-terminated string containing the diagnostic data. Each
string has a maximum length of 4096 characters, including the termination character. If
the pointer is null, it is equivalent to not providing the sub-buffer at all.

ARM Issue 4.1 Version 1 – C Binding 101

13.7 Block Cause

[Added in ARM 4.1]

(format=8, ARM_SUBBUFFER_BLOCK_CAUSE)

Syntax
typedef struct arm_subbuffer_block_cause
{
 arm_subbuffer_t header;
 arm_block_cause_t cause;
 arm_int32_t extended_cause ;
 const arm_char_t *description;
} arm_subbuffer_block_cause_t;

Description

Applications may indicate that they are blocked waiting on an external event using the
arm_block_transaction() function. When the application becomes unblocked it indicates the
same using arm_unblock_transaction(). Calling arm_stop_transaction() implicitly executes an
arm_unblock_transaction() for every blocking condition whose end has not been explicitly
indicated using arm_unblock_transaction().

Calling arm_block_transaction() with no further information does not indicate the cause of the
blocking condition. The Block Cause sub-buffer provides a means to indicate the cause of the
blocking condition. Its use is optional. It is valid on the following calls:

• arm_block_transaction()

In the case of application servers that loop on queued message requests, it is important to
distinguish between the application being blocked and a message being blocked (or simply not
available yet). arm_block_transaction() and arm_unblock_transaction() are used only within the
scope of paired arm_start_transaction() and arm_stop_transaction() calls that indicate the time
that work is being processed. If the application server is idle waiting for work to process it
would not report this time using arm_block_transaction() and arm_unblock_transaction().

Format

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=8
(ARM_SUBBUFFER_BLOCK_CAUSE).

• Block cause: An arm_block_cause_t value that indicates the cause of the blocking
condition. All non-negative values are defined by or reserved by this specification.

102 Technical Standard (2007)

Value #define Name Description

1 ARM_BLOCK_CAUSE_SYNCHRONOUS_
EVENT

A synchronous call, such as an
RPC (Remote Procedure Call) has
been made and the application is
awaiting a response before
proceeding.

2 ARM_BLOCK_CAUSE_ASYNCHRONOUS_
EVENT

The application has invoked an
asynchronous transaction and/or is
involved in a conversation that
consists of exchanging messages.
It is currently waiting for another
message or prior message response
or some asynchronous event before
proceeding with the execution of
the current transaction.

All
other
values

 Reserved for future use. All
implementations should accept
these values and ignore them if the
meaning is unknown. This enables
compatibility in future versions of
the ARM standard if some of these
values are defined.

Table 13: Block Causes

• Extended Block Cause: This is an optional value that can be used to further qualify the
type of blocking cause within the two possible blocking types: synchronous and
asynchronous.

Value #define Name Description

All non-negative
values

N/A Reserved by the standard. It is anticipated that
ranges will be assigned to organizations that
instrument their software.

Negative values N/A The extended blocking cause is not defined by the
standard. There are no restrictions on who uses
these values or what they mean.

Table 14: Extended Block Causes

• Description: This is an optional null-terminated character string with a maximum length
of 128 characters, including the termination character, which describes the block cause. A
null value indicates that no description is provided.

ARM Issue 4.1 Version 1 – C Binding 103

13.8 Message Received Event

[Added in ARM 4.1]

(format=9, ARM_SUBBUFFER_MESSAGE_RCVD_EVENT)

Syntax
typedef struct arm_subbuffer_message_rcvd_event
{
 arm_subbuffer_t header;
 arm_boolean_t end_of_flow;
 arm_int32_t event_count;
 const arm_message_rcvd_event_t *message_event_array;
} arm_subbuffer_message_rcvd_event_t;

typedef struct arm_message_rcvd_event
{
 const arm_correlator_t *received_correlator;
 const arm_char_t *description;
} arm_message_rcvd_event_t;

Description

The Message Received Event sub-buffer is optionally used to indicate that one or more
messages have been received that have an effect on the execution state of a transaction. Some
cases of interest are the following. For examples, see Section 4.2.

• A message causes the transaction to initiate.

• A message causes the transaction to unblock.

• A message is received that terminates an asynchronous transaction or a step in an
asynchronous transaction.

• A message has been received during the processing of a transaction that does not fall into
one of the categories above.

The Message Received Event sub-buffer can be provided on the following function calls:

• arm_start_transaction()

• arm_update_transaction()

• arm_stop_transaction()

• arm_block_transaction()

• arm_unblock_transaction()

104 Technical Standard (2007)

Format

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=9
(ARM_SUBBUFFER_MESSAGE_RCVD_EVENT).

• End of Flow indicator: An arm_boolean_t that if true indicates that the currently
executing transaction represents the last processing step in a compound transaction that
started in another process. The arm_stop_transaction() of the currently executing
transaction can be considered the stop time for the entire compound transaction. After this
flag has been set to True, the value for the transaction instance is True; the flag is ignored
in any other Message Received Event sub-buffers associated with this transaction
instance.

• Count of message received event structures: An arm_int32_t count of message
received event structures. The maximum value is 32. The minimum value is 0, which
might occur if the purpose of passing the sub-buffer is to set the End of Flow indicator,
even though there are no new message events to report.

• Pointer to an array of message received event structures:

— Received Correlator: An optional pointer to a buffer in which the correlator
associated with a received message may optionally be stored. The correlator is useful
for indicating the transaction and message originator to which this message event
relates. A null pointer indicates that no correlator is provided.

A further restriction is that there can be no more than 32 received correlators
associated with a transaction, including the parent correlator parameter of
arm_start_transaction(), even if multiple API calls are made. For example, if a
correlator is passed as a parameter on arm_start_transaction() only 31 other
correlators could be passed in any combination of calls using this sub-buffer. There are
no constraints on the uniqueness of the received correlators or any requirements that
either the application or the ARM implementation test the contents of the correlator to
see if it is unique.

There are now two ways to provide parent correlators: this field and the
parent_correlator parameter of arm_start_transaction(). Two considerations affecting
which to use are the following:

— The contents of a parent correlator often influence the contents of a transaction’s
current correlator. For example, information about the originating user
transaction (the root parent of the call graph) may be copied from the parent
correlator to each child correlator at each node in the call graph, so they are
available at all the nodes. Because a current correlator is created when
arm_start_transaction() executes, only parent correlators available at that time
influence the contents of the current correlator.

— Applications that use ARM 4.1 can call ARM libraries that implement either
ARM 4.0 and/or ARM 4.1. Because ARM 4.0 implementations do not recognize
the Message Received Event sub-buffer, a correlator in the parent_correlator
parameter of arm_start_transaction() will be recognized and may be used,

ARM Issue 4.1 Version 1 – C Binding 105

whereas a correlator in the Message Received Event sub-buffer will not be
recognized or used.

The recommended practice for correlators in arm_start_transaction() is the following.
Correlators received after arm_start_transaction() executes can only be passed in the
Message Received Event sub-buffer.

— If there is one parent correlator available when arm_start_transaction()
executes, pass the correlator in the parent_correlator parameter of
arm_start_transaction().

— If there are multiple parent correlators available when arm_start_transaction()
executes, and one of them is considered the primary parent, pass that one in the
parent_correlator parameter of arm_start_transaction() and the other(s) in the
Message Received Event sub-buffer.

— If there are multiple parent correlators available when arm_start_transaction()
executes and none are considered the most important, pass all the correlators in
the Message Received Event sub-buffer.

— Description: This is an optional null-terminated character string with a maximum
length of 128 characters, including the termination character, which describes the
message event. A null value indicates no message event description is provided.

106 Technical Standard (2007)

13.9 Message Sent Event

[Added in ARM 4.1]

(format=10, ARM_SUBBUFFER_MESSAGE_SENT_EVENT)

Syntax
typedef struct arm_subbuffer_message_sent_event
{
 arm_subbuffer_t header;
 arm_boolean_t end_of_flow;
 arm_int32_t event_count;
 const arm_message_sent_event_t *message_event_array;
} arm_subbuffer_message_sent_event_t;

typedef struct arm_message_sent_event
{
 arm_int32_t sent_message_count;
 const arm_char_t *description;
} arm_message_sent_event_t;

Description

The Message Sent Event sub-buffer is optionally used to indicate that one or more messages
have been sent that have an effect on the execution state of a transaction. The cases of interest
are the following. For examples, see Section 4.2.

• A message is sent that causes the transaction to block.

• A message is sent that initiates or terminates an asynchronous transaction or a step in an
asynchronous transaction.

• A message is sent that is part of a conversational exchange between this transaction and
another transaction.

• A message is sent that is not part of a known conversational exchange.

The Message Sent Event sub-buffer can be provided on the following function calls:

• arm_start_transaction()

• arm_update_transaction()

• arm_stop_transaction()

• arm_block_transaction()

• arm_unblock_transaction()

ARM Issue 4.1 Version 1 – C Binding 107

Format

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=10
(ARM_SUBBUFFER_MESSAGE_SENT_EVENT).

• End of Flow indicator: An arm_boolean_t that if true indicates that the currently
executing transaction represents the last processing step in a compound transaction that
started in another process. The arm_stop_transaction() of the currently executing
transaction can be considered the stop time for the entire compound transaction. It serves
no purpose to set this flag more than once for a given transaction instance.

• Count of message sent event structures: An arm_int32_t count of message sent event
structures. The maximum value is 32. The minimum value is 0, which might occur if the
End of Flow indicator = true and there are no new message events to report.

• Pointer to an array of message sent event structures:

Each message event structure is in the following format and is aligned as required for the
C compiler on the platform:

— Sent Count: A count of the number of messages sent that are considered equivalent at
the discretion of the instrumenter. A value of 0 is treated as the default value of 1. The
count field provides an optional way for an application to indicate multiple messages
of the same type with a single message event buffer.

— Description: This is an optional null-terminated character string with a maximum
length of 128 characters, including the termination character, which describes the
message event. A null value indicates that no message event description is provided.

108 Technical Standard (2007)

13.10 Formatted Arrival Time UsecJan1970

[Added in ARM 4.1]

(format=11, ARM_SUBBUFFER_FORMATTED_ARRIVAL_TIME_USECJAN1970)

Syntax
typedef struct arm_subbuffer_formatted_arrival_time_usecJan1970
{
 arm_subbuffer_t header;
 arm_int64_t usecJan1970;
} arm_subbuffer_formatted_arrival_time_usecJan1970_t;

Description

Some applications may start processing a transaction before all the context information that
identifies the transaction is known. For example, it might by necessary to retrieve the context
information as the first step in processing the transaction. This scenario is described in
Chapter 6.

When the application is unable to call ARM when the transaction starts, but it can capture and
save a timestamp at that time, the application can format the arrival time, store it in the
Formatted Arrival Time UsecJan1970 sub-buffer, and provide the sub-buffer with
arm_start_transaction().

There are five sub-buffers (listed below) that are used for essentially the same purpose – to
provide a more accurate start time than can be achieved with arm_start_transaction() alone. If
more than one of these sub-buffers is passed, the ARM implementation will select which one to
use, such as a heuristic that it will use the first sub-buffer in the list that it recognizes and ignore
all others. Under no circumstances should the ARM implementation use data from more than
one of the sub-buffersL

• Arrival Time sub-buffer (which contains an opaque formatted time)

• Formatted Arrival Time MsecJan1970 sub-buffer

• Formatted Arrival Time Strings sub-buffer

• Preparation Time sub-buffer

• Preparation Statistics sub-buffer

ARM Issue 4.1 Version 1 – C Binding 109

Format

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=11
(ARM_SUBBUFFER_FORMATTED_ARRIVAL_TIME_MSECJAN1970).

• Microseconds since Jan 1, 1970: An arm_int64_t containing the number of
microseconds since midnight January 1, 1970, UTC (coordinated universal time). The
time source should be the same as the process in which the arm_start_transaction()
executes.

110 Technical Standard (2007)

13.11 Formatted Arrival Time Strings

[Added in ARM 4.1]

(format=12, ARM_SUBBUFFER_FORMATTED_ARRIVAL_TIME_STRINGS)

Syntax
typedef struct arm_subbuffer_formatted_arrival_time_strings
{
 arm_subbuffer_t header;
 const arm_char_t *yyyymmdd;
 const arm_char_t *hhmmssth;
 const arm_char_t *muuu; /* null pointer implies muuu = '0000' */
} arm_subbuffer_formatted_arrival_time_strings_t;

Description

Some applications may start processing a transaction before all the context information that
identifies the transaction is known. For example, it might by necessary to retrieve the context
information as the first step in processing the transaction. This scenario is described in
Chapter 6.

When the application is unable to call ARM when the transaction starts, but it can capture and
save a timestamp at that time, the application can format the arrival time, store it in the
Formatted Arrival Time Strings sub-buffer, and provide the sub-buffer with
arm_start_transaction().

There are five sub-buffers (listed below) that are used for essentially the same purpose – to
provide a more accurate start time than can be achieved with arm_start_transaction() alone. If
more than one of these sub-buffers is passed, the ARM implementation will select which one to
use, such as a heuristic that it will use the first sub-buffer in the list that it recognizes and ignore
all others. Under no circumstances should the ARM implementation use data from more than
one of the sub-buffers.

• Arrival Time sub-buffer (which contains an opaque formatted time)

• Formatted Arrival Time MsecJan1970 sub-buffer

• Formatted Arrival Time Strings sub-buffer

• Preparation Time sub-buffer

• Preparation Statistics sub-buffer

Format

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=12
(ARM_SUBBUFFER_FORMATTED_ARRIVAL_TIME).

ARM Issue 4.1 Version 1 – C Binding 111

• yyyymmdd: An arm_char_t* to a null-terminated string containing the date (UTC) in
the format Year, Month, Date. The time source should be the same one as the process in
which the arm_start_transaction() executes.

• hhmmssth: An arm_char_t* to a null-terminated string containing the time (UTC) in the
format Hours, Minutes, Seconds, Tenths of seconds, Hundredths of seconds. The time
source should be the same as the process in which the arm_start_transaction() executes.

• muuu: An arm_char_t* to a null-terminated string containing the time (UTC) in the
format milliseconds (one digit), microseconds (three digits). The time source should be
the same as the process in which the arm_start_transaction() executes.

112 Technical Standard (2007)

13.12 Preparation Time

[Added in ARM 4.1]

(format=13, ARM_SUBBUFFER_PREP_TIME)

Syntax
typedef struct arm_subbuffer_prep_time
{
 arm_subbuffer_t header;
 arm_int64_t prep_time_nanosec;
} arm_subbuffer_prep_time_t;

Description

Some applications may start processing a transaction before all the context information that
identifies the transaction is known. For example, it might by necessary to retrieve the context
information as the first step in processing the transaction. This scenario is described in
Chapter 6.

When the application is unable to call ARM when the transaction starts, but it can measure the
delay for the transaction instance, the application can provide the measurements in the
Preparation Time sub-buffer, and provide the sub-buffer with arm_start_transaction().

There are five sub-buffers (listed below) that are used for essentially the same purpose – to
provide a more accurate start time than can be achieved with arm_start_transaction() alone. If
more than one of these sub-buffers is passed, the ARM implementation will select which one to
use, such as a heuristic that it will use the first sub-buffer in the list that it recognizes and ignore
all others. Under no circumstances should the ARM implementation use data from more than
one of the sub-buffers.

• Arrival Time sub-buffer (which contains an opaque formatted time)

• Formatted Arrival Time MsecJan1970 sub-buffer

• Formatted Arrival Time Strings sub-buffer

• Preparation Time sub-buffer

• Preparation Statistics sub-buffer

Format

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=13
(ARM_SUBBUFFER_PREPARATION TIME).

• Preparation Time in Nanoseconds: An arm_int64_t containing the number of
nanoseconds for this transaction instance that are considered the Prep Time.

ARM Issue 4.1 Version 1 – C Binding 113

13.13 Preparation Statistics

[Added in ARM 4.1]

(format=14, ARM_SUBBUFFER_PREP_STATS)

Syntax
typedef struct arm_subbuffer_prep_stats
{
 arm_subbuffer_t header;
 arm_int64_t prep_time_mean_nanosec;
 arm_int64_t prep_time_std_dev_nanosec;
 arm_int32_t prep_time_mean_count;
 arm_int32_t prep_time_mean_interval_millisec;
} arm_subbuffer_prep_stats_t;

Description

Some applications may start processing a transaction before all the context information that
identifies the transaction is known. For example, it might by necessary to retrieve the context
information as the first step in processing the transaction. This scenario is described in
Chapter 6.

When the application is unable to call ARM when the transaction starts, or measure the delay for
a specific transaction instance (for which it uses the Preparation Time sub-buffer), but it can
measure the mean over several transactions, the application can provide the measurements in the
Arrival Statistics sub-buffer, and provide the sub-buffer with arm_start_transaction().

There are five sub-buffers (listed below) that are used for essentially the same purpose – to
provide a more accurate start time than can be achieved with arm_start_transaction() alone. If
more than one of these sub-buffers is passed, the ARM implementation will select which one to
use, such as a heuristic that it will use the first sub-buffer in the list that it recognizes and ignore
all others. Under no circumstances should the ARM implementation use data from more than
one of the sub-buffers.

• Arrival Time sub-buffer (which contains an opaque formatted time)

• Formatted Arrival Time MsecJan1970 sub-buffer

• Formatted Arrival Time Strings sub-buffer

• Preparation Time sub-buffer

• Preparation Statistics sub-buffer

Format

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=14
(ARM_SUBBUFFER_PREP_STATS).

114 Technical Standard (2007)

• Preparation Time Mean in Nanoseconds: An arm_int64_t containing the arithmetic
mean of the Prep Time in nanoseconds.

• Preparation Time Standard Deviation Nanoseconds: An arm_int64_t containing the
standard deviation of the Prep Time in nanoseconds. Its purpose is to provide more
information for statistical analysis. This value is optional; a value of zero indicates that no
value is provided.

• Preparation Time Mean Count: An arm_int32_t containing a count of the number of
transactions that were used when calculating the preparation time mean. Its purpose is to
provide more information for statistical analysis. This value is optional; a value of zero
indicates that no value is provided.

• Preparation Time Mean Interval Milliseconds: An arm_int32_t containing the
duration of the interval in milliseconds that was used when calculating the preparation
time mean. Its purpose is to provide more information for statistical analysis. This value is
optional; a value of zero indicates that no value is provided.

ARM Issue 4.1 Version 1 – C Binding 115

13.14 Diagnostic Properties

[Added in ARM 4.1]

(format=15, ARM_SUBBUFFER_DIAG_PROPERTIES)

Syntax
typedef struct arm_subbuffer_diag_properties
{
 arm_subbuffer_t header;
 arm_int32_t tran_property_count;
 const arm_property_t *tran_property_array;
} arm_subbuffer_diag_properties_t;

typedef struct arm_property
{
 const arm_char_t *name;
 const arm_char_t *value;
} arm_property_t;

Description

Applications may provide additional properties of the form name=value when a transaction ends
[arm_stop_transaction() or arm_report_transaction()] by passing properties in the Diagnostic
Properties sub-buffer. The sub-buffer is ignored on all other calls. There are no implicit
requirements on how or if these values are processed.

Either the Diagnostic Properties or the Diagnostic Details sub-buffer may be provided, but not
both.

There are constraints on the number of non-null properties and their size at any point in time.

Constraint Description
Constraint

Value

Maximum number of non-null properties 20

Maximum number of characters of any property name, including the termination
character

128

Maximum number of characters of any property name + property value, including the
termination characters

2048

Maximum number of characters of all property names + property values, including
the termination characters

4096

Table 15: Diagnostic Property Constraints

116 Technical Standard (2007)

Format

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=14
(ARM_SUBBUFFER_DIAG_PROPERTIES).

• Count of property values: An arm_int32_t count of property values in the following
array.

• Pointer to an array of diagnostic properties: An array of C structures containing the
property names and values.

The array index of a property value in the value array is bound to the property name at the
same index in the name array.

If a name is repeated in the array, the name and its corresponding value are ignored, and
the first instance of the name and value in the array is used. The implementation may
return an error code but is not obliged to do so.

Each structure is aligned as required for the C compiler on the platform. Each structure
contains:

— Name: An arm_char_t* to a null-terminated string representing the name part of the
(name,value) pair. If the pointer is null or points to a zero-length string, the
(name,value) pair is ignored. Names should not contain trailing blank characters or
consist of only blank characters.

— Value: An arm_char_t* to a null-terminated string representing the value part of the
(name,value) pair. If the pointer is null or points to a zero-length string, the
(name,value) pair is ignored. Values should not contain trailing blank characters or
consist of only blank characters.

ARM Issue 4.1 Version 1 – C Binding 117

13.15 Application Identity

(format=102, ARM_SUBBUFFER_APP_IDENTITY)

Syntax
typedef struct arm_subbuffer_app_identity
{
 arm_subbuffer_t header;
 arm_int32_t identity_property_count;
 const arm_property_t *identity_property_array;
 arm_int32_t context_name_count;
 const arm_char_t **context_name_array;
} arm_subbuffer_app_identity_t;

typedef struct arm_property
{
 const arm_char_t *name;
 const arm_char_t *value;
} arm_property_t;

Description

Applications are identified by a name and an optional set of identity attribute (name,value) pairs.
Application instances are further identified by an optional set of context (name,value) pairs. The
optional context property names are provided in this sub-buffer on the
arm_register_application() call. The optional context property values are provided on the
arm_start_application() call. The sub-buffer is ignored if it is passed on any other call.

The names of identity and context properties can be any string, with one exception. Strings
beginning with the four characters “ARM:” are reserved for the ARM specification. The
specification will define names with known semantics using this prefix. One name format is
currently defined. Any name beginning with the eight-character prefix “ARM:CIM:” represents
a name defined using the DMTF CIM (Distributed Management Task Force Common
Information Model) naming rules. For example, “ARM:CIM:CIM_SoftwareElement.Name”
indicates that the property value has the semantics of the Name property of the
CIM_SoftwareElement class. It is anticipated that additional naming semantics are likely to be
added in the future.

Format

The pattern is illustrated in Figure 25:

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=102
(ARM_SUBBUFFER_APP_IDENTITY).

• Count of property values: An arm_int32_t count of property values in the following
array.

118 Technical Standard (2007)

• Pointer to an array of identity properties: An array of C structures containing the
property names and values.

The array index of a property value in the value array is bound to the property name at the
same index in the name array. Moving the (name,value) pair to a different index does not
affect the identity of the application. For example, if an application registers once with a
name A and a value X in array indices 0 and once with the same name and value in array
indices 1, the registered identity has not changed.

If a name is repeated in the array, the name and its corresponding value are ignored, and
the first instance of the name and value in the array is used. The implementation may
return an error code but is not obliged to do so.

Each structure is aligned as required for the C compiler on the platform. Each structure
contains:E

— Name: An arm_char_t* to a null-terminated string representing the name part of the
(name,value) pair. Each string has a maximum length of 128 characters, including the
termination character. If the pointer is null or points to a zero-length string, the
(name,value) pair is ignored. Names should not contain trailing blank characters or
consist of only blank characters.

— Value: An arm_char_t* to a null-terminated string representing the value part of the
(name,value) pair. Each string has a maximum length of 256 characters, including the
termination character. If the pointer is null or points to a zero-length string, the
(name,value) pair is ignored. Values should not contain trailing blank characters or
consist of only blank characters.

• Pointer to an array of context property names: An array of character pointers to the
context property names.

If a name is repeated in the array, the name and its corresponding value (in the application
context sub-buffer) are ignored, and the first instance of the name in the array (and its
corresponding value) is used. The implementation may return an error code but is not
obliged to do so.

Each pointer in the array is aligned as required for the C compiler on the platform. Each
array element contains:

— Name: An arm_char_t* to a null-terminated string representing the name part of the
(name,value) pair. Each string has a maximum length of 128 characters, including the
termination character. If any pointer is null or points to a zero-length string, the
(name,value) pair is ignored. The values are provided in the Application Context
Values sub-buffer. Names should not contain trailing blank characters or consist of
only blank characters.

ARM Issue 4.1 Version 1 – C Binding 119

13.16 Application Context Values

(format=103, ARM_SUBBUFFER_APP_CONTEXT)

Syntax
typedef struct arm_subbuffer_app_context
{
 arm_subbuffer_t header;
 arm_int32_t context_value_count;
 const arm_char_t **context_value_array;
} arm_subbuffer_app_context_t;

Description

Applications are identified by a name and an optional set of identity attribute (name,value) pairs.
Application instances are further identified by an optional set of context (name,value) pairs.
These properties could indicate something about the runtime instance of the application, such as
the instance identifier and the name of a configuration file used.

The optional context property names are provided in the Application Identity sub-buffer on the
arm_register_application() call. The optional context property values are provided in this sub-
buffer on the arm_start_application() call. The sub-buffer is ignored if it is passed on any other
call.

Format

The pattern is illustrated in Figure 25:

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=103
(ARM_SUBBUFFER_APP_CONTEXT).

• Count of property values: An arm_int32_t count of property values in the following
array.

• Pointer to an array of context property values: An array of pointers to character strings
containing the property values. The values in the array are position-sensitive; each must
align with the corresponding context property name in the Application Identity sub-buffer.
If the corresponding property name pointer is null or points to a zero-length string, the
value is ignored. Each pointer is aligned as required for the C compiler on the platform.
Each array element contains:

— Value: An arm_char_t* to a null-terminated string representing the value part of the
(name,value) pair. Each string has a maximum length of 256 characters, including the
termination character. If any pointer is null or points to a zero-length string, the
meaning is that there is no value for this instance. The value should not contain trailing
blank characters or consist of only blank characters.

120 Technical Standard (2007)

13.17 Transaction Identity

(format=104, ARM_SUBBUFFER_TRAN_IDENTITY)

Syntax
typedef struct arm_subbuffer_tran_identity
{
 arm_subbuffer_t header;
 arm_int32_t identity_property_count;
 const arm_property_t *identity_property_array;
 arm_int32_t context_name_count;
 const arm_char_t **context_name_array;
 const arm_char_t *uri;
} arm_subbuffer_tran_identity_t;

typedef struct arm_property
{
 const arm_char_t *name;
 const arm_char_t *value;
} arm_property_t;

Description

Transactions are identified by a name, an optional URI value, and an optional set of attribute
(name,value) pairs. The URI and optional (name,value) pairs are provided in this sub-buffer on
the arm_register_transaction() call. The sub-buffer is ignored if it is passed on any other call.
The identity is scoped to a single application.

The names of identity and context properties can be any string, with one exception. Strings
beginning with the four characters “ARM:” are reserved for the ARM specification. The
specification will define names with known semantics using this prefix. One name format is
currently defined. Any name beginning with the eight-character prefix “ARM:CIM:” represents
a name defined using the DMTF CIM (Distributed Management Task Force Common
Information Model) naming rules. For example, “ARM:CIM:CIM_SoftwareElement.Name”
indicates that the property value has the semantics of the Name property of the
CIM_SoftwareElement class. It is anticipated that additional naming semantics are likely to be
added in the future.

Format

The pattern is illustrated in Figure 25:

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=104
(ARM_SUBBUFFER_TRAN_IDENTITY).

• Count of elements in the identity property names and values array: An arm_int32_t
count of elements in the following array.

ARM Issue 4.1 Version 1 – C Binding 121

• Pointer to an array of identity property names and values: An array of C structures
containing the property names and values.

The array index of a property value in the value array is bound to the property name at the
same index in the name array. Moving the (name,value) pair to a different index does not
affect the identity of the transaction. For example, if an application is registered once with
a name A and a value X in array indices 0 and once with the same name and value in array
indices 1, the registered identity has not changed.

If a name is repeated in the array, the name and its corresponding value (in the
Transaction Context sub-buffer) are ignored, and the first instance of the name in the array
(and its corresponding value) is used. The implementation may return an error code but is
not obliged to do so.

Each structure is aligned as required for the C compiler on the platform. Each structure
contains:

— Name: An arm_char_t* to a null-terminated string representing the name part of the
(name,value) pair. Each string has a maximum length of 128 characters, including the
termination character. If the pointer is null or points to a zero-length string, the
(name,value) pair is ignored. Names should not contain trailing blank characters or
consist of only blank characters.

— Value: An arm_char_t* to a null-terminated string representing the value part of the
(name,value) pair. Each string has a maximum length of 256 characters, including the
termination character. If the pointer is null or points to a zero-length string, the
(name,value) pair is ignored. Values should not contain trailing blank characters or
consist of only blank characters.

• Count of elements in the context property names array: An arm_int32_t count of
elements in the following array.

• Pointer to an array of context property names: An array of strings, each containing a
context property name. If any pointer is null or points to a zero-length string, the name is
ignored. Each array element is an arm_char_t* to a null-terminated string representing
the name part of the (name,value) pair. Each string has a maximum length of 128
characters, including the termination character. The name is passed on
arm_register_transaction(). If any pointer is null when arm_register_transaction()
executes, the corresponding value is ignored on all future calls using the Transaction
Context Property Values sub-buffer.

If a name is repeated in the array, the name and its corresponding value (in the
Transaction Context sub-buffer) are ignored, and the first instance of the name in the array
(and its corresponding value) is used. The implementation may return an error code but is
not obliged to do so.

Each pointer in the array is aligned as required for the C compiler on the platform. Each
array element contains:

— Name: An arm_char_t* to a null-terminated string representing the name part of the
(name,value) pair. Each string has a maximum length of 128 characters, including the

122 Technical Standard (2007)

termination character. If any pointer is null or points to a zero-length string, the
(name,value) pair is ignored. The values are provided in the Transaction Context
Values sub-buffer. Names should not contain trailing blank characters or consist of
only blank characters.

• Pointer to URI: Pointer to a string containing a URI, with a maximum of 4096
characters, including the termination character. The string is null terminated. The pointer
may be null. A zero-length string is treated as a null value.

ARM Issue 4.1 Version 1 – C Binding 123

13.18 Transaction Context

(format=105, ARM_SUBBUFFER_TRAN_CONTEXT)

Syntax
typedef struct arm_subbuffer_tran_context
{
 arm_subbuffer_t header;
 arm_int32_t context_value_count;
 const arm_char_t **context_value_array;
 const arm_char_t *uri;
} arm_subbuffer_tran_context_t;

Description

In addition to the identity properties, a transaction may be described with additional context
properties. Context properties differ from identity properties in that although the name is
provided when the transaction is registered [arm_register_transaction()], the values are
provided when a transaction is measured [arm_start_transaction() or arm_report_transaction()].
The value of an identity property never changes, whereas the value of a context property may
change every time a transaction executes.

Context properties are of two forms. There may be one URI value and up to twenty (name,value)
pairs. No name may duplicate the name of a transaction identity property.

Format

The pattern is illustrated in Figure 25:

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=105
(ARM_SUBBUFFER_TRAN_CONTEXT).

• Count of elements in the context property values array: An arm_int32_t count of
elements in the following array.

• Pointer to an array of context property values: An array of pointers to character strings
containing the property values. The values in the array are position-sensitive; each must
align with the corresponding context property name in the Transaction Identity sub-buffer.
If the corresponding property name pointer is null or points to a zero-length string, the
value is ignored. Each pointer is aligned as required for the C compiler on the platform.
Each array element contains:

— Value: An arm_char_t* to a null-terminated string representing the value part of the
(name,value) pair. Each string has a maximum length of 256 characters, including the
termination character. If any pointer is null or points to a zero-length string, the
meaning is that there is no value for this instance. Values should not contain trailing
blank characters or consist of only blank characters.

124 Technical Standard (2007)

• Pointer to URI: Pointer to a string containing a URI, with a maximum of 4096
characters, including the termination character. The string is null terminated. The pointer
may be null.

If a URI is provided in both the Transaction Identity sub-buffer and in the Transaction
Context sub-buffer, the URI in the Transaction Identity sub-buffer must be the same as the
URI provided in the Transaction Context sub-buffer, or a truncated subset.

ARM Issue 4.1 Version 1 – C Binding 125

13.19 Metric Bindings

(format=106, ARM_SUBBUFFER_METRIC_BINDINGS)

Syntax
typedef struct arm_subbuffer_metric_bindings
{
 arm_subbuffer_t header;
 arm_int32_t count;
 const arm_metric_binding_t *metric_binding_array;
} arm_subbuffer_metric_bindings_t;

typedef struct arm_metric_binding
{
 arm_metric_slot_t slot;
 arm_id_t id;
} arm_metric_binding_t;

Description

Applications may provide additional data about a transaction when the transaction starts, while it
is executing, and/or after it has stopped. This additional data may serve several purposes, such as
indicating the size of a transaction (e.g., the number of bytes in a file for a file transfer
transaction), the state of the system (e.g., the number of queued up transactions when this
transaction arrived), or an error code. The metadata describing each metric is provided with the
arm_register_metric() function.

Each transaction definition may define zero to seven metrics for which data values may be
provided on arm_start_transaction(), arm_update_transaction(), arm_stop_transaction(), or
arm_report_transaction(). Each metric is assigned to an array slot numbered 0 to 6 (they were
numbered 1 to 7 in ARM 2.0). This sub-buffer is passed on the arm_register_transaction()
function to indicate which metrics are assigned to which slots.

The combination of this sub-buffer plus the arm_register_metric() function replaces ARM 2.0
format = 101. Unlike ARM 2.0, the metric definitions do not influence the transaction identity.
Any properties besides the transaction name that affect identity are provided in the Transaction
Identity Properties (format=104) sub-buffer.

Format

The pattern is illustrated in Figure 25.

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=106
(ARM_SUBBUFFER_METRIC_BINDINGS).

• Count of metric bindings: An arm_int32_t count of metric values in the following
array.

126 Technical Standard (2007)

• Pointer to an array of metric bindings: An array of C structures containing the metric
bindings. Each structure is aligned as required for the C compiler on the platform. Each
structure contains:

— Slot number: A byte slot number. Valid values are 0 to 6 (replacing the ARM 2.0
numbering standard). If a slot number is repeated, the first time it appears is the only
one processed; all others are ignored.

— ID: A 16-byte array for the ID of this metric definition. The ID must have been
previously returned as an out parameter from arm_register_metric().

ARM Issue 4.1 Version 1 – C Binding 127

13.20 Character Set Encoding

(format=107, ARM_SUBBUFFER_CHARSET)

Syntax
typedef struct arm_subbuffer_charset
{
 arm_subbuffer_t header;
 arm_charset_t charset; /* one of the IANA MIBenum values */
 arm_int32_t flags;
} arm_subbuffer_charset_t;

Description

Applications may specify on arm_register_application() the character set encoding for all
strings passed by the application. An ARM library must support certain encodings, depending on
the platform (see Table 7). The application may always use one of the mandatory encodings.
The <arm4.h> file defines names of the form ARM_CHARSET_* for all the mandatory
encodings. The application may optionally ask the ARM library if another encoding is supported
using arm_is_charset_supported().

When the application registers with arm_register_application(), it may optionally provide the
Character Set Encoding sub-buffer. In the sub-buffer, the application specifies the MIBenum
value of a character set encoding that has been assigned by the IANA (Internet Assigned
Numbers Authority – see www.iana.org). The MIBenum value in the sub-buffer should only be
either a mandatory encoding for the platform or a MIBenum value for which support has been
verified using arm_is_charset_supported().

The encoding must comply with the following constraints:

• The character set must not contain any embedded null bytes. Exceptions are permitted for
character sets that have fixed-length characters (e.g., two bytes) and that do not allow a
character of all zeros (e.g., 0x0000). These include UTF-16LE, UTF-16BE, and UTF-16
(MIBenum values 1013, 1014, 1015). For these encodings, there will be a convention that
a character of all zeros is the null-termination character.

• No more than three bytes may be used to encode each character.

For any encodings that are of a fixed size greater than one byte, such as UTF-16 (all characters
are two bytes in length), the characters must be aligned on the natural boundary for the system
(e.g., two-byte characters on a 16-bit boundary, etc.).

If an ARM implementation supports characters that are longer than one byte, the application and
implementation are both responsible to cast (virtually, at least) the characters to wide characters,
but the function signature does not change. For example, if UTF-16 is supported, the application
must write pairs of characters into the arm_char_t* array (there would always be an even
number of characters), and the implementation must process the data in pairs (looking for
0x0000 as a termination character rather than 0x00, for example).

http://www.iana.org/

128 Technical Standard (2007)

Format

The pattern is illustrated in Figure 24:

• Sub-buffer format ID: An arm_int32_t sub-buffer format ID, value=107
(ARM_SUBBUFFER_CHARSET).

• Character set ID (MIBenum): An arm_int32_t containing a MIBenum value assigned
by the IANA. Some common encodings are listed in Table 7.

• Flags: An arm_int32_t containing bit flags. The field is currently reserved for future use.

ARM Issue 4.1 Version 1 – C Binding 129

13.21 Application Control

[Added in ARM 4.1]

(format=108, ARM_SUBBUFFER_APP_CONTROL)

Syntax
typedef struct arm_subbuffer_app_control
{
 /*[in]*/ arm_subbuffer_t header;
 /*[in]*/ arm_int32_t control_count_app;
 /*[out]*/ arm_int32_t control_count_arm;
 /*[in/out]*/ arm_boolean_t app_control_used;
 /*[out]*/ arm_boolean_t tran_id_control_used;
 /*[out]*/ arm_boolean_t tran_instance_control_used;
 /*[out]*/ arm_int32_t collection_depth;
 /*[out]*/ arm_boolean_t show_private;
 /*[out]*/ arm_boolean_t show_secure;
 /*[out]*/ arm_boolean_t use_bind_thread;
 /*[out]*/ arm_boolean_t use_block;
 /*[out]*/ arm_boolean_t use_diagnostic;
 /*[out]*/ arm_boolean_t use_message_event;
 /*[out]*/ arm_boolean_t use_metric;
 /*[out]*/ arm_boolean_t use_user;
} arm_subbuffer_app_control_t;

Description

The Application Control sub-buffer is used by applications to request the type and scope of
instrumentation the ARM implementation prefers. Its use is optional for both applications and
ARM implementations. Further, the control settings represent preferences; they are not binding
on the application.

The scope of the settings applies to all transactions registered by this application. These settings,
except for app_control_used, tran_id_control_used, tran_instance_control_used, show_private,
and show_secure may be overridden for specific transaction IDs and/or instances.

The Application Control sub-buffer is passed on arm_start_applicaiton() or with a special form
of arm_generate_correlator(), as described in Chapter 10. This special form sets
current_correlator = Null. Setting current_correlator = Null renders the
arm_generate_correlator() call meaningless for the purpose of generating a correlator.

Note: Some ARM 4.0 implementations do not expect to find a null current correlator value in
arm_generate_correlator() and set the return code to –1012. See the Note in the
arm_generate_correlator() description for an explanation of how to proceed.

The app_control_used setting is used as a handshake to determine whether both the application
and the ARM implementation are using instrumentation control. Both must agree if

130 Technical Standard (2007)

instrumentation control is to be used. This provides protection for applications and
implementations that do not support the capability.

Note: A return value of app_control_used=False does not indicate that the ARM library is
not collecting data. The application should continue to make ARM calls using its
default assumptions about the appropriate amount of transaction detail.

Format

The pattern is illustrated in Figure 24:

• header (sub-buffer format ID): An arm_int32_t sub-buffer format ID, value=108
(ARM_SUBBUFFER_APP_CONTROL).

• control_count_app: An arm_int32_t constant that indicates the sub-buffer version used
by the application. This provides a way to add new controls in later versions of ARM
without breaking backwards compatibility. The version number equals the number of
controls starting with app_control_used. For ARM 4.1 this value is 12
(ARM41_APP_CONTROL_COUNT).

• control_count_arm: An arm_int32_t constant that indicates the sub-buffer version used
by the ARM implementation. This provides a way to add new controls in later versions of
ARM without breaking backwards compatibility. The version number equals the number
of controls starting with app_control_used. For ARM 4.1 this value is 12
(ARM41_APP_CONTROL_COUNT).

• app_control_used: An arm_boolean_t that indicates whether instrumentation control is
being used. This in/out value provides a handshake between the application and the ARM
implementation to determine whether controls are used. This value must be set to False by
the application. The ARM implementation leaves the value False if it is not using
controls, such as if it does not recognize the sub-buffer or chooses not to use it. The
meaning upon return from the API call is as follows:

— True = The other flags in the Application Control sub-buffer are set to meaningful
values.

— False = All other values in the Application Control sub-buffer must be ignored and the
Transaction ID Control and Transaction Instance Control sub-buffers must be ignored
if either is passed.

• tran_id_control_used: An arm_boolean_t that indicates whether the ARM
implementation uses the Transaction ID Control sub-buffer. The Transaction ID Control
sub-buffer is used to set the default collection parameters for all transaction instances for
that registered ID.

— True =Preferences may be set at the (registered) transaction ID level, and therefore it
would be useful to use the Transaction ID Control sub-buffer.

— False =The Transaction ID Control sub-buffer must be ignored if it is passed.

• tran_instance_control_used: An arm_boolean_t that indicates whether the ARM
implementation uses the Transaction Instance Control sub-buffer. The Transaction

ARM Issue 4.1 Version 1 – C Binding 131

Instance Control sub-buffer is used to set the collection parameters for a single transaction
instance.

— True =Preferences may be set at the transaction instance level, and therefore it would
be useful to use the Transaction Instance Control sub-buffer.

— False =The Transaction Instance Control sub-buffer must be ignored if it is passed.

• collection_depth: An arm_int32_t that indicates the granularity of transactions that the
ARM implementation prefers. This setting is orthogonal to other control settings, such as
use_bind_thread and use_block. It influences only whether and how often
start/update/stop API calls are used.

If set to a value >0, then the following ARM capabilities should be used if the application
supports them:

— arm_start_transaction()

— arm_update_transaction()

— arm_stop_transaction()

— Parent correlator

— Current correlator

— Application Identity sub-buffer

— Application Context sub-buffer

— Transaction Identity sub-buffer

— Transaction Context sub-buffer

There are four possible values:

— 0 (ARM_COLLECTION_DEPTH_NONE)
The implementation prefers that the application does not instrument any transactions.

— 1 (ARM_COLLECTION_DEPTH_PROCESS)
The implementation prefers that the application instrument these transactions at a
process granularity; i.e., that it uses a single
arm_start_transaction()/arm_stop_transaction() pair per process.

— 2 (ARM_COLLECTION_DEPTH_CONTAINER)
The implementation prefers that the application instruments these transactions at a
container granularity; i.e., that it use a single start/stop pair per container.

The determination of what constitutes a container is at the discretion of the application
architect who designs the ARM instrumentation. For many applications the only
logical container boundary is also the process boundary, in which case there would be
no difference in how the settings of 1 and 2 would be interpreted. For other
applications, such as complex middleware that may contain a web server, J2EE

132 Technical Standard (2007)

container, JDBC connectors, there could be multiple containers running within the
same process.

— 3 (ARM_COLLECTION_DEPTH_MAX)
The implementation prefers that the application instruments transactions at the
maximum possible granularity. This may be the same as the process or container
granularity, depending on the application.

• show_private: An arm_boolean_t that indicates whether private data (e.g., account
numbers) should be provided in any form, such as in a metric or diagnostic data, or in a
correlator. The determination of what constitutes private data is made by the application.

— True = Provide private data

— False = Do not provide private data

• show_secure: An arm_boolean_t that indicates whether secure data (e.g., passwords)
should be provided in any form, such as in a metric or diagnostic data, or in a correlator.
The determination of what constitutes secure data is made by the application.

— True = Provide secure data

— False = Do not provide secure data

• use_bind_thread: An arm_boolean_t that indicates that the implementation prefers that
the application makes arm_bind_thread() and arm_unbind_thread() calls.

Note that this control is orthogonal to the collection_depth control for all values except
ARM_COLLECTION_DEPTH_NONE: if thread bindings are reported, then all thread
bindings should be reported regardless of the number of arm_start_transaction() and
arm_stop_transaction() calls.

— True = Call arm_bind_thread()/arm_unbind_thread() whenever a transaction is newly
bound/unbound to/from a thread.

— False = The implementation will ignore any arm_bind_thread() and
arm_unbind_thread() calls.

• use_block: An arm_boolean_t that indicates that the implementation prefers that the
application makes arm_block_transaction() and arm_unblock_transaction() calls,
optionally passing the Block Cause sub-buffer on each call.

Note that this control is orthogonal to the collection_depth control for all values except
ARM_COLLECTION_DEPTH_NONE: if blocking conditions are reported then all
blocking conditions should be reported regardless of the number of
arm_start_transaction() and arm_stop_transaction() calls.

— True = Call arm_block_transaction()/arm_unblock_transaction() whenever a control
flow is blocked waiting on an external event.

— False = The implementation will ignore any arm_block_transaction() and
arm_unblock_transaction() calls.

ARM Issue 4.1 Version 1 – C Binding 133

• use_diagnostic: An arm_boolean_t that indicates that the implementation prefers that
the application use the Diagnostic Detail and/or Diagnostic Properties sub-buffers.

— True = Use the Diagnostic Detail and/or Diagnostic Properties sub-buffers whenever
appropriate.

— False = The Diagnostic Detail and Diagnostic Properties sub-buffers will be ignored if
they are passed.

• use_message_event: An arm_boolean_t that indicates that the implementation prefers
that the application inform it about message exchanges and other asynchronous flows.

— True = Use the Message Received and Message Sent sub-buffers, and use the
SET_CORRELATOR_FLAG macro to set the Asynchronous Flow and Independent
Transaction flags.

— False = The Message Received and Message Sent sub-buffers will be ignored if they
are passed.

• use_metric: An arm_boolean_t that indicates that the implementation prefers that the
application provide metric data.

— True = Use the Metric Values sub-buffer whenever appropriate.

— False = The Metric Values sub-buffer will be ignored if it is passed.

• use_user: An arm_boolean_t that indicates that the implementation prefers that the
application provide the identity of the user, if known.

— True = Use the User sub-buffer whenever appropriate.

— False = The User sub-buffer will be ignored if it is passed.

134 Technical Standard (2007)

13.22 Transaction ID Control

[Added in ARM 4.1]

(format=109, ARM_SUBBUFFER_TRAN_ID_CONTROL)

Syntax
typedef struct arm_subbuffer_tran_id_control
{
 /*[in]*/ arm_subbuffer_t header;
 /*[in]*/ arm_int32_t control_count_app;
 /*[out]*/ arm_int32_t control_count_arm;
 /*[in/out]*/ arm_boolean_t control_used;
 /*[in]*/ const arm_id_t *tran_id,
 /*[out]*/ arm_int32_t collection_depth;
 /*[out]*/ arm_boolean_t use_bind_thread;
 /*[out]*/ arm_boolean_t use_block;
 /*[out]*/ arm_boolean_t use_diagnostic;
 /*[out]*/ arm_boolean_t use_message_event;
 /*[out]*/ arm_boolean_t use_metric;
 /*[out]*/ arm_boolean_t use_user;
} arm_subbuffer_tran_id_control_t;

Description

The Transaction ID Control sub-buffer is used by applications to request the type and scope of
instrumentation the ARM implementation prefers for all instances using a registered transaction
ID. Its use is optional for both applications and ARM implementations. Further, the control
settings represent preferences; they are not binding on the application.

The scope of the settings applies to all instances of the specified transaction ID. These settings
may be overridden by the Transaction Instance Control sub-buffer.

The Transaction ID Control sub-buffer is passed using a special form of
arm_generate_correlator(), as described in Chapter 10. This special form sets
current_correlator = Null. Setting current_correlator = Null renders the
arm_generate_correlator() call meaningless for the purpose of generating a correlator.

Note: Some ARM 4.0 implementations do not expect to find a null current correlator value in
arm_generate_correlator() and set the return code to –1012. See the Note in the
arm_generate_correlator() description for an explanation of how to proceed.

The control_used setting is used as a handshake to determine whether both the application and
the ARM implementation are using instrumentation control. Both must agree if instrumentation
control is to be used. This provides protection for applications and implementations that do not
support the capability.

ARM Issue 4.1 Version 1 – C Binding 135

Note: A return value of control_used=False does not indicate that the ARM library is not
collecting data. The application should continue to make ARM calls using its default
assumptions about the appropriate amount of transaction detail, or the settings
established using the application control buffer.

Format

The pattern is illustrated in Figure 25:

• header (sub-buffer format ID): An arm_int32_t sub-buffer format ID, value=109
(ARM_SUBBUFFER_TRAN_ID_CONTROL).

• control_count_app: An arm_int32_t constant that indicates the sub-buffer version used
by the application. This provides a way to add new controls in later versions of ARM
without breaking backwards compatibility. The version number equals the number of
controls starting with control_used. For ARM 4.1 this value is 9
(ARM41_TRAN_ID_CONTROL_COUNT).

• control_count_arm: An arm_int32_t constant that indicates the sub-buffer version used
by the ARM implementation. This provides a way to add new controls in later versions of
ARM without breaking backwards compatibility. The version number equals the number
of controls starting with control_used. For ARM 4.1 this value is 9
(ARM41_TRAN_ID_CONTROL_COUNT).

• control_used: An arm_boolean_t that indicates whether instrumentation control per
transaction instance is being used. This in/out value provides a handshake between the
application and the ARM implementation to determine whether controls are used. This
value must be set to False by the application. The ARM implementation leaves the value
False if it is not using instance-level controls, such as if it does not recognize the sub-
buffer or chooses not to use it. The meaning upon return from the API call is as follows

— True = The other flags in the Transaction ID Control sub-buffer are set to meaningful
values.

— False = All other values in the Transaction ID Control sub-buffer must be ignored.

• tran_id: An arm_id_t constant that points to a transaction ID values returned in an out
parameter from an arm_register_transaction() call in the same process.

• collection_depth: An arm_int32_t that indicates the granularity of transactions that the
ARM implementation prefers. This setting is orthogonal to other control settings, such as
use_bind_thread and use_block. It influences only whether and how often
start/update/stop API calls are used.

If set to a value >0, then the following ARM capabilities should be used if the application
supports them:

— arm_start_transaction()

— arm_update_transaction()

— arm_stop_transaction()

136 Technical Standard (2007)

— Parent correlator

— Current correlator

— Application Identity sub-buffer

— Application Context sub-buffer

— Transaction Identity sub-buffer

— Transaction Context sub-buffer

There are four possible values:

— 0 (ARM_COLLECTION_DEPTH_NONE)
The implementation prefers that the application does not instrument any transactions.

— 1 (ARM_COLLECTION_DEPTH_PROCESS)
The implementation prefers that the application instrument these transactions at a
process granularity; i.e., that it use a single
arm_start_transaction()/arm_stop_transaction() pair per process.

— 2 (ARM_COLLECTION_DEPTH_CONTAINER)
The implementation prefers that the application instruments these transactions at a
container granularity; i.e., that it use a single start/stop pair per container.

The determination of what constitutes a container is at the discretion of the application
architect who designs the ARM instrumentation. For many applications the only
logical container boundary is also the process boundary, in which case there would be
no difference in how the settings of 1 and 2 would be interpreted. For other
applications, such as complex middleware that may contain a web server, J2EE
container, JDBC connectors, there could be multiple containers running within the
same process.

— 3 (ARM_COLLECTION_DEPTH_MAX)
The implementation prefers that the application instruments transactions at the
maximum possible granularity. This may be the same as the process or container
granularity, depending on the application.

• use_bind_thread: An arm_boolean_t that indicates that the implementation prefers that
the application makes arm_bind_thread() and arm_unbind_thread() calls.

Note that this control is orthogonal to the collection_depth control for all values except
ARM_COLLECTION_DEPTH_NONE: if thread bindings are reported, then all thread
bindings should be reported regardless of the number of arm_start_transaction() and
arm_stop_transaction() calls.

— True = Call arm_bind_thread()/arm_unbind_thread() whenever a transaction is newly
bound/unbound to/from a thread.

— False = The implementation will ignore any arm_bind_thread() and
arm_unbind_thread() calls.

ARM Issue 4.1 Version 1 – C Binding 137

• use_block: An arm_boolean_t that indicates that the implementation prefers that the
application makes arm_block_transaction() and arm_unblock_transaction() calls and the
Block Cause sub-buffer, if appropriate.

Note that this control is orthogonal to the collection_depth control for all values except
ARM_COLLECTION_DEPTH_NONE: if blocking conditions are reported, then all
blocking conditions should be reported regardless of the number of
arm_start_transaction() and arm_stop_transaction() calls.

— True = Call arm_block_transaction()/arm_unblock_transaction() whenever a control
flow is blocked waiting on an external event.

— False = The implementation will ignore any arm_bind_thread() and
arm_unbind_thread() calls.

• use_diagnostic: An arm_boolean_t that indicates that the implementation prefers that
the application use the Diagnostic Detail and/or Diagnostic Properties sub-buffers.

— True = Use the Diagnostic Detail and/or Diagnostic Properties sub-buffers whenever
appropriate.

— False = The Diagnostic Detail and Diagnostic Properties sub-buffers will be ignored if
they are passed.

• use_message_event: An arm_boolean_t that indicates that the implementation prefers
that the application inform it about message exchanges and other asynchronous flows.

— True = Use the Message Received and Message Sent sub-buffers, and use the
SET_CORRELATOR_FLAG macro to set the Asynchronous Flow and Independent
Transaction flags.

— False = The Message Received and Message Sent sub-buffers will be ignored if they
are passed.

• use_metric: An arm_boolean_t that indicates that the implementation prefers that the
application provide metric data.

— True = Use the Metric Values sub-buffer whenever appropriate.

— False = The Metric Values sub-buffer will be ignored if it is passed.

• use_user: An arm_boolean_t that indicates that the implementation prefers that the
application provide the identity of the user, if known.

— True = Use the User sub-buffer whenever appropriate.

— False = The User sub-buffer will be ignored if it is passed.

138 Technical Standard (2007)

13.23 Transaction Instance Control

[Added in ARM 4.1]

(format=110, ARM_SUBBUFFER_TRAN_INSTANCE_CONTROL)

Syntax
typedef struct arm_subbuffer_tran_instance_control
{
 /*[in]*/ arm_subbuffer_t header;
 /*[in]*/ arm_int32_t control_count_app;
 /*[out]*/ arm_int32_t control_count_arm;
 /*[in/out]*/ arm_boolean_t control_used;
 /*[in]*/ const arm_id_t *tran_id,
 /*[opt in]*/ const arm_correlator_t *parent_correlator,
 /*[out]*/ arm_int32_t collection_depth;
 /*[out]*/ arm_boolean_t use_bind_thread;
 /*[out]*/ arm_boolean_t use_block;
 /*[out]*/ arm_boolean_t use_diagnostic;
 /*[out]*/ arm_boolean_t use_message_event;
 /*[out]*/ arm_boolean_t use_metric;
 /*[out]*/ arm_boolean_t use_user;
} arm_subbuffer_tran_instance_control_t;

Description

The Transaction Instance Control sub-buffer is used by applications to request the type and
scope of instrumentation the ARM implementation prefers for a transaction instance. Its use is
optional for both applications and ARM implementations. Further, the control settings represent
preferences; they are not binding on the application.

The scope of the settings applies to a single transaction instance. They do not carry over to any
other transaction instance. These settings override any settings set using the Application Control
or Transaction ID Control sub-buffers.

The Transaction Instance Control sub-buffer is passed using a special form of
arm_generate_correlator(), as described in Chapter 10. This special form sets
current_correlator = Null. Setting current_correlator = Null renders the
arm_generate_correlator() call meaningless for the purpose of generating a correlator.

Note: Some ARM 4.0 implementations do not expect to find a null current correlator value in
arm_generate_correlator() and set the return code to –1012. See the Note in the
arm_generate_correlator() description for an explanation of how to proceed.

The control_used setting is used as a handshake to determine whether both the application and
the ARM implementation are using instrumentation control. Both must agree if instrumentation
control is to be used. This provides protection for applications and implementations that do not
support the capability.

ARM Issue 4.1 Version 1 – C Binding 139

Note: A return value of control_used=False does not indicate that the ARM library is not
collecting data. The application should continue to make ARM calls using its default
assumptions about the appropriate amount of transaction detail, or the settings
estabslished using the application control buffer.

Format

The pattern is illustrated in Figure 25:

• header (sub-buffer format ID): An arm_int32_t sub-buffer format ID, value=110
(ARM_SUBBUFFER_TRAN_INSTANCE_CONTROL).

• control_count_app: An arm_int32_t constant that indicates the sub-buffer version used
by the application. This provides a way to add new controls in later versions of ARM
without breaking backwards compatibility. The version number equals the number of
controls starting with control_used. For ARM 4.1 this value is 10
(ARM41_TRAN_INSTANCE_CONTROL_COUNT).

• control_count_arm: An arm_int32_t constant that indicates the sub-buffer version
used by the ARM implementation. This provides a way to add new controls in later
versions of ARM without breaking backwards compatibility. The version number equals
the number of controls starting with control_used. For ARM 4.1 this value is 10
(ARM41_TRAN_INSTANCE_CONTROL_COUNT).

• control_used: An arm_boolean_t that indicates whether instrumentation control per
transaction instance is being used. This in/out value provides a handshake between the
application and the ARM implementation to determine whether controls are used. This
value must be set to False by the application. The ARM implementation leaves the value
False if it is not using instance level controls, such as if it does not recognize the sub-
buffer or chooses not to use it. The meaning upon return from the API call is as follows:

— True = The other flags in the Transaction Instance Control sub-buffer are set to
meaningful values.

— False = All other values in the Transaction Instance Control sub-buffer must be
ignored.

• tran_id: An arm_id_t constant that points to a transaction ID values returned in an out
parameter from an arm_register_transaction() call in the same process.

• parent_correlator: An arm_correlator_t constant that points to the parent correlator, if
any, for the transaction instance. The pointer may be null (ARM_CORR_NONE).

• collection_depth: An arm_int32_t that indicates the granularity of transactions that the
ARM implementation prefers. This setting is orthogonal to other control settings, such as
use_bind_thread and use_block. It influences only whether and how often
start/update/stop API calls are used.

140 Technical Standard (2007)

If set to a value >0, then the following ARM capabilities should be used if the application
supports them:

— Transaction measurements; e.g., using arm_start_transaction(),
arm_stop_transaction(), and arm_report_transaction(). It is assumed that the
application will provide arrival time information if that is needed to achieve accurate
response time measurements.

— Parent and child correlators

— Application and transaction identity and context

There are four possible values:

— 0 (ARM_COLLECTION_DEPTH_NONE)
The implementation prefers that the application does not instrument any transactions.

— 1 (ARM_COLLECTION_DEPTH_PROCESS)
The implementation prefers that the application instrument these transactions at a
process granularity; i.e., that it use a single
arm_start_transaction()/arm_stop_transaction() pair per process.

— 2 (ARM_COLLECTION_DEPTH_CONTAINER)
The implementation prefers that the application instruments these transactions at a
container granularity; i.e., that it use a single start/stop pair per container.

The determination of what constitutes a container is at the discretion of the application
architect who designs the ARM instrumentation. For many applications the only
logical container boundary is also the process boundary, in which case there would be
no difference in how the settings of 1 and 2 would be interpreted. For other
applications, such as complex middleware that may contain a web server, J2EE
container, JDBC connectors, there could be multiple containers running within the
same process.

— 3 (ARM_COLLECTION_DEPTH_MAX)
The implementation prefers that the application instruments transactions at the
maximum possible granularity. This may be the same as the process or container
granularity, depending on the application.

• use_bind_thread: An arm_boolean_t that indicates that the implementation prefers that
the application makes arm_bind_thread() and arm_unbind_thread() calls.

Note that this control is orthogonal to the collection_depth control for all values except
ARM_COLLECTION_DEPTH_NONE: if thread bindings are reported, then all thread
bindings should be reported regardless of the number of arm_start_transaction() and
arm_stop_transaction() calls.

— True = Call arm_bind_thread()/arm_unbind_thread() whenever a transaction is newly
bound/unbound to/from a thread.

— False = The implementation will ignore any arm_bind_thread() and
arm_unbind_thread() calls.

ARM Issue 4.1 Version 1 – C Binding 141

• use_block: An arm_boolean_t that indicates that the implementation prefers that the
application makes arm_block_transaction() and arm_unblock_transaction() calls and the
Block Cause sub-buffer, if appropriate.

Note that this control is orthogonal to the collection_depth control for all values except
ARM_COLLECTION_DEPTH_NONE: if blocking conditions are reported, then all
blocking conditions should be reported regardless of the number of
arm_start_transaction() and arm_stop_transaction() calls.

— True = Call arm_block_transaction()/arm_unblock_transaction() whenever a control
flow is blocked waiting on an external event.

— False = The implementation will ignore any arm_bind_thread() and
arm_unbind_thread() calls.

• use_diagnostic: An arm_boolean_t that indicates that the implementation prefers that
the application use the Diagnostic Detail and/or Diagnostic Properties sub-buffers.

— True = Use the Diagnostic Detail and/or Diagnostic Properties sub-buffers whenever
appropriate.

— False = The Diagnostic Detail and Diagnostic Properties sub-buffers will be ignored if
they are passed.

• use_message_event: An arm_boolean_t that indicates that the implementation prefers
that the application informs it about message exchanges and other asynchronous flows.

— True = Use the Message Received and Message Sent sub-buffers, and use the
SET_CORRELATOR_FLAG macro to set the Asynchronous Flow and Independent
Transaction flags.

— False = The Message Received and Message Sent sub-buffers will be ignored if they
are passed.

• use_metric: An arm_boolean_t that indicates that the implementation prefers that the
application provide metric data.

— True = Use the Metric Values sub-buffer whenever appropriate.

— False = The Metric Values sub-buffer will be ignored if it is passed.

• use_user: An arm_boolean_t that indicates that the implementation prefers that the
application provide the identity of the user, if known.

— True = Use the User sub-buffer whenever appropriate.

— False = The User sub-buffer will be ignored if it is passed.

142 Technical Standard (2007)

14 <arm4.h> Header File for Compiling

/* --- */
/* */
/* Copyright (c) 2003 The Open Group */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining a */
/* copy of this software (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, copy, */
/* modify, merge, publish, distribute, sublicense, and/or sell copies of */
/* the Software, and to permit persons to whom the Software is furnished */
/* to do so, subject to the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be included */
/* in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS */
/* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT */
/* OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR */
/* THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/* */
/* --- */
/* */
/* File revision information */
/* */
/* $Source: /hand_cvs/arm4/sdk4/c/include/arm4.h,v $ */
/* $Revision: 1.2.2.1 $ */
/* $Date: 2006/02/19 18:33:50 $ */
/* */
/* --- */
/* arm4.h - ARM4 standard header file */
/* */
/* This header file defines all defines, typedefs, structures, */
/* and API functions visible for an application which uses an ARM */
/* agent. All compiler/platform specifics are handled in a */
/* separate header file named <arm4os.h>. */
/* */
/* NOTE: The ARM4 C language binding differs completely from */
/* ARM1 and ARM2 bindings. */
/* --- */

#ifndef ARM4_H_INCLUDED
#define ARM4_H_INCLUDED

#ifndef ARM4OS_H_INCLUDED
#include "arm4os.h"
#endif /* ARM4OS_H_INCLUDED */

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

ARM Issue 4.1 Version 1 – C Binding 143

/* --- */
/* ---------------------- defines section ------------------------ */
/* --- */

/* Boolean values */
#define ARM_FALSE 0
#define ARM_TRUE 1

/* Transaction status */
#define ARM_STATUS_GOOD 0
#define ARM_STATUS_ABORTED 1
#define ARM_STATUS_FAILED 2
#define ARM_STATUS_UNKNOWN 3

/* -------------- reserved error codes range --------------------- */

#define ARM_ERROR_CODE_RESERVED_MIN -20999
#define ARM_ERROR_CODE_RESERVED_MAX -20000

/* --------------- known sub-buffer formats ---------------------- */

#define ARM_SUBBUFFER_USER 3
#define ARM_SUBBUFFER_ARRIVAL_TIME 4
#define ARM_SUBBUFFER_METRIC_VALUES 5
#define ARM_SUBBUFFER_SYSTEM_ADDRESS 6
#define ARM_SUBBUFFER_DIAG_DETAIL 7

#define ARM_SUBBUFFER_APP_IDENTITY 102
#define ARM_SUBBUFFER_APP_CONTEXT 103
#define ARM_SUBBUFFER_TRAN_IDENTITY 104
#define ARM_SUBBUFFER_TRAN_CONTEXT 105
#define ARM_SUBBUFFER_METRIC_BINDINGS 106
#define ARM_SUBBUFFER_CHARSET 107

/* -------------------- metric defines --------------------------- */

#define ARM_METRIC_FORMAT_RESERVED 0
#define ARM_METRIC_FORMAT_COUNTER32 1
#define ARM_METRIC_FORMAT_COUNTER64 2
#define ARM_METRIC_FORMAT_CNTRDIVR32 3
#define ARM_METRIC_FORMAT_GAUGE32 4
#define ARM_METRIC_FORMAT_GAUGE64 5
#define ARM_METRIC_FORMAT_GAUGEDIVR32 6
#define ARM_METRIC_FORMAT_NUMERICID32 7
#define ARM_METRIC_FORMAT_NUMERICID64 8
/* format 9 (string8) is deprecated */
#define ARM_METRIC_FORMAT_STRING32 10

#define ARM_METRIC_USE_GENERAL 0
#define ARM_METRIC_USE_TRAN_SIZE 1
#define ARM_METRIC_USE_TRAN_STATUS 2

#define ARM_METRIC_MIN_ARRAY_INDEX 0
#define ARM_METRIC_MAX_ARRAY_INDEX 6
#define ARM_METRIC_MAX_COUNT 7

#define ARM_METRIC_STRING32_MAX_CHARS 31
#define ARM_METRIC_STRING32_MAX_LENGTH \
 (ARM_METRIC_STRING32_MAX_CHARS*3+1)

144 Technical Standard (2007)

/* ------------------- misc string defines ----------------------- */

#define ARM_NAME_MAX_CHARS 127
#define ARM_NAME_MAX_LENGTH (ARM_NAME_MAX_CHARS*3+1)

#define ARM_DIAG_DETAIL_MAX_CHARS 4095
#define ARM_DIAG_DETAIL_MAX_LENGTH (ARM_DIAG_DETAIL_MAX_CHARS*3+1)

#define ARM_MSG_BUFFER_CHARS 255
#define ARM_MSG_BUFFER_LENGTH (ARM_MSG_BUFFER_CHARS*3+1)

/* ------------------- properties defines ------------------------ */

#define ARM_PROPERTY_MIN_ARRAY_INDEX 0
#define ARM_PROPERTY_MAX_ARRAY_INDEX 19
#define ARM_PROPERTY_MAX_COUNT 20

#define ARM_PROPERTY_NAME_MAX_CHARS (ARM_NAME_MAX_CHARS)
#define ARM_PROPERTY_NAME_MAX_LENGTH \
 (ARM_PROPERTY_NAME_MAX_CHARS*3+1)
#define ARM_PROPERTY_VALUE_MAX_CHARS 255
#define ARM_PROPERTY_VALUE_MAX_LENGTH \
 (ARM_PROPERTY_VALUE_MAX_CHARS*3+1)

#define ARM_PROPERTY_URI_MAX_CHARS 4095
#define ARM_PROPERTY_URI_MAX_LENGTH (ARM_PROPERTY_URI_MAX_CHARS*3+1)

/* -------------- system address format values ------------------- */

#define ARM_SYSADDR_FORMAT_RESERVED 0
#define ARM_SYSADDR_FORMAT_IPV4 1
#define ARM_SYSADDR_FORMAT_IPV4PORT 2
#define ARM_SYSADDR_FORMAT_IPV6 3
#define ARM_SYSADDR_FORMAT_IPV6PORT 4
#define ARM_SYSADDR_FORMAT_SNA 5
#define ARM_SYSADDR_FORMAT_X25 6
#define ARM_SYSADDR_FORMAT_HOSTNAME 7
#define ARM_SYSADDR_FORMAT_UUID 8

/* ------------------ mandatory charsets ------------------------- */

/* IANA charset MIBenum numbers (http://www.iana.org/) */
#define ARM_CHARSET_ASCII 3 /* mandatory */
#define ARM_CHARSET_UTF8 106 /* mandatory */
#define ARM_CHARSET_UTF16BE 1013
#define ARM_CHARSET_UTF16LE 1014
 /* mandatory on Windows */
#define ARM_CHARSET_UTF16 1015
#define ARM_CHARSET_IBM037 2028
 /* mandatory on iSeries */
#define ARM_CHARSET_IBM1047 2102
 /* mandatory on zSeries */

/* ------------- flags to be passed on API calls ----------------- */

/* Use ARM_FLAG_NONE instead of zero to be more readable. */
#define ARM_FLAG_NONE (0x00000000)

/* ARM_FLAG_TRACE_REQUEST could be used in the following calls to */

ARM Issue 4.1 Version 1 – C Binding 145

/* request a trace: */
/* - arm_generate_correlator() */
/* - arm_start_transaction() */
/* - arm_report_transaction() */
/* NOTE: The agent need not support instance tracing, so to be */
/* sure check the generated correlator using the */
/* arm_get_correlator_flags() function. */
#define ARM_FLAG_TRACE_REQUEST (0x00000001)

/* ARM_FLAG_BIND_THREAD could be used on arm_start_transaction() */
/* call to do an implicit arm_bind_thread(). */
#define ARM_FLAG_BIND_THREAD (0x00000002)

/* ARM_FLAG_CORR_IN_PROCESS indicates that a correlator will only */
/* be used within the process it was created. So an ARM */
/* implementation may optimize the generation of a correlator */
/* for that special usage. This flag can be passed to: */
/* - arm_generate_correlator() */
/* - arm_start_transaction() */
/* NOTE: The agent need not support in-process correlation at all. */
#define ARM_FLAG_CORR_IN_PROCESS (0x00000004)

/* --------------- correlator defines ---------------------------- */

#define ARM_CORR_MAX_LENGTH 512
 /* total max length */

/* Correlator interface flag numbers. See */
/* arm_get_correlator_flags(). */
#define ARM_CORR_FLAGNUM_APP_TRACE 1
#define ARM_CORR_FLAGNUM_AGENT_TRACE 2

/* Use if no correlator should be provided (e.g., in */
/* arm_start_transaction(). */
#define ARM_CORR_NONE ((arm_correlator_t *) NULL)

/* --- current time for arm_report_transaction() stop time ------- */

#define ARM_USE_CURRENT_TIME ((arm_stop_time_t)-1)

/* ------------------ misc defines ------------------------------- */

/* Use ARM_BUF4_NONE instead of a NULL to be more readable. */
#define ARM_BUF4_NONE ((arm_buffer4_t*) NULL)

/* Use ARM_ID_NONE instead of a NULL to be more readable. */
#define ARM_ID_NONE ((arm_id_t *) NULL)

/* --- */
/* --------------- basic typedef section ------------------------- */
/* --- */

/* Generic data types */
/* ARM4_*INT* defines are set in the <arm4os.h> header file. */
/* They are platform/compiler-specific. */
typedef ARM4_CHAR arm_char_t;

typedef ARM4_INT8 arm_int8_t;
typedef ARM4_UINT8 arm_uint8_t;

146 Technical Standard (2007)

 /* used to define an opaque byte array */

typedef ARM4_INT16 arm_int16_t;
typedef ARM4_UINT16 arm_uint16_t;

typedef ARM4_INT32 arm_int32_t;
typedef ARM4_UINT32 arm_uint32_t;

typedef ARM4_INT64 arm_int64_t;
typedef ARM4_UINT64 arm_uint64_t;

/* ARM-specific simple types */
typedef arm_int32_t arm_boolean_t;
typedef arm_int32_t arm_error_t;

typedef arm_int64_t arm_arrival_time_t; /* opaque arrival time */
typedef arm_int64_t arm_stop_time_t; /* stop time in milli secs */
typedef arm_int64_t arm_response_time_t;
 /* response time in nano secs */

typedef arm_int32_t arm_tran_status_t; /* ARM_TRAN_STATUS_* values */
typedef arm_int32_t arm_charset_t; /* IANA MIBenum values */
typedef arm_int32_t arm_sysaddr_format_t; /* ARM_SYSADDR_* values */

/* ARM string buffer types */
typedef arm_char_t arm_message_buffer_t[ARM_MSG_BUFFER_LENGTH];

/* subbuffer types */
typedef arm_int32_t arm_subbuffer_format_t;

/* metric types */
typedef arm_uint8_t arm_metric_format_t;
typedef arm_uint8_t arm_metric_slot_t;
typedef arm_int16_t arm_metric_usage_t;

/* handle types */
typedef arm_int64_t arm_app_start_handle_t;
typedef arm_int64_t arm_tran_start_handle_t;
typedef arm_int64_t arm_tran_block_handle_t;

/* correlator types */
typedef arm_int16_t arm_correlator_length_t;

/* --- */
/* ---------------- compound typedefs section -------------------- */
/* --- */

/* All IDs are 16 bytes on an 8-byte boundary. */
typedef struct arm_id
{
 union
 {
 arm_uint8_t uint8[16];
 arm_uint32_t uint32[4];
 arm_uint64_t uint64[2];
 } id_u;
} arm_id_t;

/* Correlator */
typedef struct arm_correlator

ARM Issue 4.1 Version 1 – C Binding 147

{
 arm_uint8_t opaque[ARM_CORR_MAX_LENGTH];
} arm_correlator_t;

/* User-defined metrics */
typedef arm_int32_t arm_metric_counter32_t;
typedef arm_int64_t arm_metric_counter64_t;
typedef arm_int32_t arm_metric_divisor32_t;
typedef arm_int32_t arm_metric_gauge32_t;
typedef arm_int64_t arm_metric_gauge64_t;
typedef arm_int32_t arm_metric_numericID32_t;
typedef arm_int64_t arm_metric_numericID64_t;
typedef const arm_char_t *arm_metric_string32_t;
typedef struct arm_metric_cntrdivr32
{
 arm_metric_counter32_t counter;
 arm_metric_divisor32_t divisor;
} arm_metric_cntrdivr32_t;
typedef struct arm_metric_gaugedivr32
{
 arm_metric_gauge32_t gauge;
 arm_metric_divisor32_t divisor;
} arm_metric_gaugedivr32_t;

typedef struct arm_metric
{
 arm_metric_slot_t slot;
 arm_metric_format_t format;
 arm_metric_usage_t usage;
 arm_boolean_t valid;
 union
 {
 arm_metric_counter32_t counter32;
 arm_metric_counter64_t counter64;
 arm_metric_cntrdivr32_t counterdivisor32;
 arm_metric_gauge32_t gauge32;
 arm_metric_gauge64_t gauge64;
 arm_metric_gaugedivr32_t gaugedivisor32;
 arm_metric_numericID32_t numericid32;
 arm_metric_numericID64_t numericid64;
 arm_metric_string32_t string32;
 } metric_u;
} arm_metric_t;

typedef struct arm_metric_binding
{
 arm_metric_slot_t slot;
 arm_id_t id;
} arm_metric_binding_t;

typedef struct arm_property
{
 const arm_char_t *name;
 const arm_char_t *value;
} arm_property_t;

/* --- */
/* -------------- sub-buffer typedefs section ------------------ */
/* --- */

148 Technical Standard (2007)

typedef struct arm_subbuffer {
 arm_subbuffer_format_t format;
 /* Format-specific data fields follow here. */
} arm_subbuffer_t;

/* This macro could be used avoid a compiler warning if you */
/* direct one of the following arm_subbuffer_*_t structure */
/* pointers to a function accepting sub-buffer pointers. Any */
/* sub-buffer is passed to the ARM API call as a */
/* (arm_subbuffer_t *) pointer. Use this macro if you pass a */
/* "real" subbuffer to an API function. Note for the special */
/* ARM SDK subbuffers the ARM_SDKSB() macro has to be used. */
#define ARM_SB(x) (&((x).header))

/* The user data buffer */
typedef struct arm_buffer4
{
 arm_int32_t count;
 arm_subbuffer_t **subbuffer_array;
} arm_buffer4_t;

typedef struct arm_subbuffer_charset
{
 arm_subbuffer_t header; /* ARM_SUBBUFFER_CHARSET */

 arm_charset_t charset; /* One of the IANA MIBenum values */
 arm_int32_t flags;
} arm_subbuffer_charset_t;

typedef struct arm_subbuffer_app_identity
{
 arm_subbuffer_t header; /* ARM_SUBBUFFER_APP_IDENTITY */

 arm_int32_t identity_property_count;
 const arm_property_t *identity_property_array;
 arm_int32_t context_name_count;
 const arm_char_t **context_name_array;
} arm_subbuffer_app_identity_t;

typedef struct arm_subbuffer_app_context
{
 arm_subbuffer_t header; /* ARM_SUBBUFFER_APP_CONTEXT */

 arm_int32_t context_value_count;
 const arm_char_t **context_value_array;
} arm_subbuffer_app_context_t;

typedef struct arm_subbuffer_tran_identity
{
 arm_subbuffer_t header; /* ARM_SUBBUFFER_TRAN_IDENTITY */

 arm_int32_t identity_property_count;
 const arm_property_t *identity_property_array;
 arm_int32_t context_name_count;
 const arm_char_t **context_name_array;
 const arm_char_t *uri;
} arm_subbuffer_tran_identity_t;

typedef struct arm_subbuffer_tran_context
{

ARM Issue 4.1 Version 1 – C Binding 149

 arm_subbuffer_t header; /* ARM_SUBBUFFER_TRAN_CONTEXT */

 arm_int32_t context_value_count;
 const arm_char_t **context_value_array;
 const arm_char_t *uri;
} arm_subbuffer_tran_context_t;

typedef struct arm_subbuffer_arrival_time
{
 arm_subbuffer_t header; /* ARM_SUBBUFFER_ARRIVAL_TIME */

 arm_arrival_time_t opaque_time;
} arm_subbuffer_arrival_time_t;

typedef struct arm_subbuffer_metric_bindings
{
 arm_subbuffer_t header; /* ARM_SUBBUFFER_METRIC_BINDINGS */

 arm_int32_t count;
 const arm_metric_binding_t *metric_binding_array;
} arm_subbuffer_metric_bindings_t;

typedef struct arm_subbuffer_metric_values
{
 arm_subbuffer_t header; /* ARM_SUBBUFFER_METRIC_VALUES */

 arm_int32_t count;
 const arm_metric_t *metric_value_array;
} arm_subbuffer_metric_values_t;

typedef struct arm_subbuffer_user
{
 arm_subbuffer_t header; /* ARM_SUBBUFFER_USER */

 const arm_char_t *name;
 arm_boolean_t id_valid;
 arm_id_t id;
} arm_subbuffer_user_t;

typedef struct arm_subbuffer_system_address
{
 arm_subbuffer_t header; /* ARM_SUBBUFFER_SYSTEM_ADDRESS */

 arm_int16_t address_format;
 arm_int16_t address_length;
 const arm_uint8_t *address;
 arm_boolean_t id_valid;
 arm_id_t id;
} arm_subbuffer_system_address_t;

typedef struct arm_subbuffer_diag_detail
{
 arm_subbuffer_t header; /* ARM_SUBBUFFER_DIAG_DETAIL */

 const arm_char_t *diag_detail;
} arm_subbuffer_diag_detail_t;

/* --- */
/* ------------------ ARM4 API section --------------------------- */
/* --- */

150 Technical Standard (2007)

/* register metadata API functions */
ARM4_API_DYNAMIC(arm_error_t)
arm_register_application(
 const arm_char_t *app_name,
 const arm_id_t *input_app_id,
 const arm_int32_t flags,
 const arm_buffer4_t *buffer4,
 arm_id_t *output_app_id);

ARM4_API_DYNAMIC(arm_error_t)
arm_destroy_application(
 const arm_id_t *app_id,
 const arm_int32_t flags,
 const arm_buffer4_t *buffer4);

ARM4_API_DYNAMIC(arm_error_t)
arm_register_transaction(
 const arm_id_t *app_id,
 const arm_char_t *tran_name,
 const arm_id_t *input_tran_id,
 const arm_int32_t flags,
 const arm_buffer4_t *buffer4,
 arm_id_t *output_tran_id);

ARM4_API_DYNAMIC(arm_error_t)
arm_register_metric(
 const arm_id_t *app_id,
 const arm_char_t *metric_name,
 const arm_metric_format_t metric_format,
 const arm_metric_usage_t metric_usage,
 const arm_char_t *metric_unit,
 const arm_id_t *input_metric_id,
 const arm_int32_t flags,
 const arm_buffer4_t *buffer4,
 arm_id_t *output_metric_id);

/* application instance API functions */
ARM4_API_DYNAMIC(arm_error_t)
arm_start_application(
 const arm_id_t *app_id,
 const arm_char_t *app_group,
 const arm_char_t *app_instance,
 const arm_int32_t flags,
 const arm_buffer4_t *buffer4,
 arm_app_start_handle_t *app_handle);

ARM4_API_DYNAMIC(arm_error_t)
arm_stop_application(
 const arm_app_start_handle_t app_handle,
 const arm_int32_t flags,
 const arm_buffer4_t *buffer4);

/* transaction instance API functions */
ARM4_API_DYNAMIC(arm_error_t)
arm_start_transaction(
 const arm_app_start_handle_t app_handle,
 const arm_id_t *tran_id,
 const arm_correlator_t *parent_correlator,
 const arm_int32_t flags,

ARM Issue 4.1 Version 1 – C Binding 151

 const arm_buffer4_t *buffer4,
 arm_tran_start_handle_t *tran_handle,
 arm_correlator_t *current_correlator);

ARM4_API_DYNAMIC(arm_error_t)
arm_stop_transaction(
 const arm_tran_start_handle_t tran_handle,
 const arm_tran_status_t tran_status,
 const arm_int32_t flags,
 const arm_buffer4_t *buffer4);

ARM4_API_DYNAMIC(arm_error_t)
arm_update_transaction(
 const arm_tran_start_handle_t tran_handle,
 const arm_int32_t flags,
 const arm_buffer4_t *buffer4);

ARM4_API_DYNAMIC(arm_error_t)
arm_discard_transaction(
 const arm_tran_start_handle_t tran_handle,
 const arm_int32_t flags,
 const arm_buffer4_t *buffer4);

ARM4_API_DYNAMIC(arm_error_t)
arm_block_transaction(
 const arm_tran_start_handle_t tran_handle,
 const arm_int32_t flags,
 const arm_buffer4_t *buffer4,
 arm_tran_block_handle_t *block_handle);

ARM4_API_DYNAMIC(arm_error_t)
arm_unblock_transaction(
 const arm_tran_start_handle_t tran_handle,
 const arm_tran_block_handle_t block_handle,
 const arm_int32_t flags,
 const arm_buffer4_t *buffer4);

/* thread support API functions */
ARM4_API_DYNAMIC(arm_error_t)
arm_bind_thread(
 const arm_tran_start_handle_t tran_handle,
 const arm_int32_t flags,
 const arm_buffer4_t *buffer4);

ARM4_API_DYNAMIC(arm_error_t)
arm_unbind_thread(
 const arm_tran_start_handle_t tran_handle,
 const arm_int32_t flags,
 const arm_buffer4_t *buffer4);

/* report transaction data API function */
ARM4_API_DYNAMIC(arm_error_t)
arm_report_transaction(
 const arm_app_start_handle_t app_handle,
 const arm_id_t *tran_id,
 const arm_tran_status_t tran_status,
 const arm_response_time_t response_time,
 const arm_stop_time_t stop_time,
 const arm_correlator_t *parent_correlator,
 const arm_correlator_t *current_correlator,

152 Technical Standard (2007)

 const arm_int32_t flags,
 const arm_buffer4_t *buffer4);

/* correlator API functions */
ARM4_API_DYNAMIC(arm_error_t)
arm_generate_correlator(
 const arm_app_start_handle_t app_handle,
 const arm_id_t *tran_id,
 const arm_correlator_t *parent_correlator,
 const arm_int32_t flags,
 const arm_buffer4_t *buffer4,
 arm_correlator_t *current_correlator);

ARM4_API_DYNAMIC(arm_error_t)
arm_get_correlator_length(
 const arm_correlator_t *correlator,
 arm_correlator_length_t *length);

ARM4_API_DYNAMIC(arm_error_t)
arm_get_correlator_flags(
 const arm_correlator_t *correlator,
 const arm_int32_t corr_flag_num,
 arm_boolean_t *flag);

/* miscellaneous API functions */
ARM4_API_DYNAMIC(arm_error_t)
arm_get_arrival_time(
 arm_arrival_time_t *opaque_time);

ARM4_API_DYNAMIC(arm_error_t)
arm_get_error_message(
 const arm_charset_t charset,
 const arm_error_t code,
 arm_message_buffer_t msg);

ARM4_API_DYNAMIC(arm_error_t)
arm_is_charset_supported(
 const arm_charset_t charset,
 arm_boolean_t *supported);

#ifdef __cplusplus
}
#endif /* __cplusplus */

#ifndef ARM4DYN_H_INCLUDED
#include "arm4dyn.h"
#endif /* !ARM4DYN_H_INCLUDED */

#endif /* ARM4_H_INCLUDED */

ARM Issue 4.1 Version 1 – C Binding 153

15 <arm41.h> Header File for Compiling

/* **** NOTE: preliminary version, not for public release !! **** */
/* --- */
/* */
/* Copyright (c) 2006 The Open Group */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining a */
/* copy of this software (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, copy, */
/* modify, merge, publish, distribute, sublicense, and/or sell copies of */
/* the Software, and to permit persons to whom the Software is furnished */
/* to do so, subject to the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be included */
/* in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS */
/* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT */
/* OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR */
/* THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/* */
/* --- */
/* */
/* File revision information */
/* */
/* $Source: /tang_cvs/arm4/sdk4/c/include/Attic/arm41.h,v $ */
/* $Revision: 1.1.2.5 $ */
/* $Date: 2006/06/12 11:29:47 $ */
/* */
/* --- */
/* arm41.h - ARM4.1 standard header file */
/* */
/* This header file defines all defines, typedefs, structures, */
/* and API functions visible for an application which uses an ARM */
/* agent. All compiler/platform specifics are handled in a */
/* separate header file named <arm4os.h>. */
/* */
/* NOTE: The ARM4.1 C language binding extends the ARM 4.0 C */
/* binding. */
/* --- */

#if !defined(ARM41_H_INCLUDED)
#define ARM41_H_INCLUDED

#ifndef ARM4_H_INCLUDED
#include "arm4.h"
#endif /* ARM4_H_INCLUDED */

/* ------------------------- correlator flags ----------------------------- */

154 Technical Standard (2007)

/* Correlator interface flag numbers. See */
/* arm_get_correlator_flags(). */
/* MMT: anticipated spec change: rename _FLAG_ to _FLAGNUM_ */
#define ARM_CORR_FLAGNUM_ASYNCH 3
#define ARM_CORR_FLAGNUM_INDEPENDENT 4

/* Macro for modifying correlator flags. The flag parameter */
/* must be one of the *_FLAGNUM_* constants. */
#define ARM_SET_CORRELATOR_FLAG(corr, flag_num, boolean_value) \
do \
{ \
 if (boolean_value) \
 (corr)->opaque[3] |= (arm_uint8_t)0x80 >> (arm_uint8_t)((flag_num)-1) ; \
 else \
 (corr)->opaque[3] &= ~((arm_uint8_t)0x80 >> (arm_uint8_t)((flag_num)-1)) ;
\
} while(0)

/* ---------------------- message event constants ------------------------- */

#define ARM_MESSAGE_SENT_EVENT_MAX_COUNT 32
#define ARM_MESSAGE_RCVD_EVENT_MAX_COUNT 32

/* ------------------ diagnostic properties constants --------------------- */

/* max. length of name+value of a diagnostic property */
#define ARM_DIAG_PROPERTY_MAX_CHARS 2046
#define ARM_DIAG_PROPERTY_MAX_LENGTH \
 (ARM_DIAG_PROPERTY_MAX_CHARS*3+2)

/* max. total length of diagnostic properties */
/* MMT Cannot provide an accurate formula here. This rule was meant */
/* to keep the property block below 4KB length? tbd. */
#define ARM_DIAG_PROPERTY_MAX_BYTES 4096

/* ---------------------- miscellaneous constants ------------------------- */

/* max. length of the description fields of block cause and message events */
#define ARM_EVENT_DESCRIPTION_MAX_CHARS 127
#define ARM_EVENT_DESCRIPTION_MAX_LENGTH \
 (ARM_EVENT_DESCRIPTION_MAX_CHARS*3+1)

/* ------------------------ block cause constants ------------------------- */

#define ARM_BLOCK_CAUSE_SYNCHRONOUS_EVENT 1
#define ARM_BLOCK_CAUSE_ASYNCHRONOUS_EVENT 2

/* -------------- application/transaction control constants --------------- */

#define ARM41_APP_CONTROL_COUNT 12
#define ARM41_TRAN_ID_CONTROL_COUNT 9
#define ARM41_TRAN_INSTANCE_CONTROL_COUNT 10

#define ARM_COLLECTION_DEPTH_NONE 0
#define ARM_COLLECTION_DEPTH_PROCESS 1
#define ARM_COLLECTION_DEPTH_CONTAINER 2
#define ARM_COLLECTION_DEPTH_MAX 3

/* --------------- known sub-buffer formats ---------------------- */

ARM Issue 4.1 Version 1 – C Binding 155

#define ARM_SUBBUFFER_BLOCK_CAUSE 8
#define ARM_SUBBUFFER_MESSAGE_RCVD_EVENT 9
#define ARM_SUBBUFFER_MESSAGE_SENT_EVENT 10
#define ARM_SUBBUFFER_FORMATTED_ARRIVAL_TIME_USECJAN1970 11
#define ARM_SUBBUFFER_FORMATTED_ARRIVAL_TIME_STRINGS 12
#define ARM_SUBBUFFER_PREP_TIME 13
#define ARM_SUBBUFFER_PREP_STATS 14
#define ARM_SUBBUFFER_DIAG_PROPERTIES 15

#define ARM_SUBBUFFER_APP_CONTROL 108
#define ARM_SUBBUFFER_TRAN_ID_CONTROL 109
#define ARM_SUBBUFFER_TRAN_INSTANCE_CONTROL 110

/* --- */
/* --------------- basic typedef section ------------------------- */
/* --- */

typedef arm_int32_t arm_block_cause_t;

/* --- */
/* -------------- sub-buffer typedefs section ------------------ */
/* --- */

/* --------------------- block cause event sub-buffer --------------------- */

typedef struct arm_subbuffer_block_cause
{
 arm_subbuffer_t header;
 arm_block_cause_t cause;
 arm_int32_t extended_cause;
 const arm_char_t *description;
} arm_subbuffer_block_cause_t;

/* ------------------ message received event sub-buffer ------------------- */

typedef struct arm_message_rcvd_event
{
 const arm_correlator_t *received_correlator;
 const arm_char_t *description;
} arm_message_rcvd_event_t;

typedef struct arm_subbuffer_message_rcvd_event
{
 arm_subbuffer_t header;
 arm_boolean_t end_of_flow;
 arm_int32_t event_count;
 const arm_message_rcvd_event_t *message_event_array;
} arm_subbuffer_message_rcvd_event_t;

/* ------------------- message sent event sub-buffer ---------------------- */

typedef struct arm_message_sent_event
{
 arm_int32_t sent_message_count;
 const arm_char_t *description;
} arm_message_sent_event_t;

typedef struct arm_subbuffer_message_sent_event
{
 arm_subbuffer_t header;

156 Technical Standard (2007)

 arm_boolean_t end_of_flow;
 arm_int32_t event_count;
 const arm_message_sent_event_t *message_event_array;
} arm_subbuffer_message_sent_event_t;

/* ------------- formatted arrival time usecJan1970 sub-buffer ------------ */

typedef struct arm_subbuffer_formatted_arrival_time_usecJan1970
{
 arm_subbuffer_t header;
 arm_int64_t usecJan1970;
} arm_subbuffer_formatted_arrival_time_usecJan1970_t;

/* -------------- formatted arrival time strings sub-buffer --------------- */

typedef struct arm_subbuffer_formatted_arrival_time_strings
{
 arm_subbuffer_t header;
 const arm_char_t *yyyymmdd;
 const arm_char_t *hhmmssth;
 const arm_char_t *muuu;
 /* null pointer implies muuu = '0000' */
} arm_subbuffer_formatted_arrival_time_strings_t;

/* -------------------- preparation time sub-buffer ----------------------- */

typedef struct arm_subbuffer_prep_time
{
 arm_subbuffer_t header;
 arm_int64_t prep_time_nanosec;
} arm_subbuffer_prep_time_t;

/* ------------------ preparation statistics sub-buffer ------------------- */

typedef struct arm_subbuffer_prep_stats
{
 arm_subbuffer_t header;
 arm_int64_t prep_time_mean_nanosec;
 arm_int64_t prep_time_std_dev_nanosec;
 arm_int32_t prep_time_mean_count;
 arm_int32_t prep_time_mean_interval_millisec;
} arm_subbuffer_prep_stats_t;

/* ------------------ diagnostic properties sub-buffer -------------------- */

typedef struct arm_subbuffer_diag_properties
{
 arm_subbuffer_t header;
 arm_int32_t tran_property_count;
 const arm_property_t *tran_property_array;
} arm_subbuffer_diag_properties_t;

/* ------------------- application control sub-buffer --------------------- */

typedef struct arm_subbuffer_app_control
{
 const arm_subbuffer_t header;
 arm_int32_t control_count_app;
 arm_int32_t control_count_arm;
 arm_boolean_t app_control_used;

ARM Issue 4.1 Version 1 – C Binding 157

 arm_boolean_t tran_id_control_used;
 arm_boolean_t tran_instance_control_used;
 arm_int32_t collection_depth;
 arm_boolean_t show_private;
 arm_boolean_t show_secure;
 arm_boolean_t use_bind_thread;
 arm_boolean_t use_block;
 arm_boolean_t use_diagnostic;
 arm_boolean_t use_message_event;
 arm_boolean_t use_metric;
 arm_boolean_t use_user;
} arm_subbuffer_app_control_t;

/* ----------------- transaction ID control sub-buffer -------------------- */

typedef struct arm_subbuffer_tran_id_control
{
 const arm_subbuffer_t header;
 arm_int32_t control_count_app;
 arm_int32_t control_count_arm;
 arm_boolean_t control_used;
 const arm_id_t *tran_id;
 arm_int32_t collection_depth;
 arm_boolean_t use_bind_thread;
 arm_boolean_t use_block;
 arm_boolean_t use_diagnostic;
 arm_boolean_t use_message_event;
 arm_boolean_t use_metric;
 arm_boolean_t use_user;
} arm_subbuffer_tran_id_control_t;

/* --------------- transaction instance control sub-buffer ---------------- */

typedef struct arm_subbuffer_tran_instance_control
{
 const arm_subbuffer_t header;
 arm_int32_t control_count_app;
 arm_int32_t control_count_arm;
 arm_boolean_t control_used;
 const arm_id_t *tran_id;
 const arm_correlator_t *parent_correlator;
 arm_int32_t collection_depth;
 arm_boolean_t use_bind_thread;
 arm_boolean_t use_block;
 arm_boolean_t use_diagnostic;
 arm_boolean_t use_message_event;
 arm_boolean_t use_metric;
 arm_boolean_t use_user;
} arm_subbuffer_tran_instance_control_t;

#endif /* ARM41_H_INCLUDED */

158 Technical Standard (2007)

16 <arm4os.h> Header File for Compiling

Within the <arm4.h> header file, macros are used to separate compiler and operating system
specifics from the ARM API. These macros are defined in the <arm4os.h> header file. The
standard <arm4.h> header file includes the <arm4os.h> header file. This section describes the
minimum set of macros that must be defined in the <arm4os.h> header. For a reference
implementation of these macros, the <arm4os.h> header file found in the ARM4 SDK can be
downloaded from The Open Group web site at www.opengroup.org/tech/management/arm.

The following macros define the required ARM4 data types, and each must be defined in
<arm4.h>, or a header file accessible to it, in order to satisfy all platform and compiler-specific
data types. The typedef statement is used with an appropriate preprocessor #define.

For example, the arm_int64_t type is defined as follows:
typedef ARM4_INT64 arm_int64_t;

The ARM4_INT64 macro must contain the correct native 64-bit integer type for the platform
and compiler used.

ARM4_CHAR Defines the type of a character (mostly this is a “char”).

ARM4_INT8 Defines the type of an 8-bit wide signed integer value.

ARM4_UINT8 Defines the type of an 8-bit wide unsigned integer value.

ARM4_INT16 Defines the type of a 16-bit wide signed integer value.

ARM4_UINT16 Defines the type of a 16-bit wide unsigned integer value.

ARM4_INT32 Defines the type of a 32-bit wide signed integer value.

ARM4_UINT32 Defines the type of a 32-bit wide unsigned integer value.

ARM4_INT64 Defines the type of a 64-bit wide signed integer value.

ARM4_UINT64 Defines the type of a 64-bit wide unsigned integer value.

ARM4_API_DYNAMIC(return_type)
The ARM4_API_DYNAMIC macro is used to place compiler and/or
operating system-specific keywords before each prototype of the ARM4 API
calls that are placed inside a shared library. On some systems the keywords
have to be placed before the prototype, and on other systems the keywords
have to be placed between the return type and the function name. Therefore
the macro takes the return type as its argument.

http://www.opengroup.org/tech/management/arm/

ARM Issue 4.1 Version 1 – C Binding 159

A Application Instrumentation Samples

16.1 Sample: Basic End-to-End Measurements
/* -- */
/* ----------- ARM 4.0 C API Example: using basic capabilities ----------- */
/* -- */

#include <stdio.h>

/* from ARM 4.1 on, use arm41.h INSTEAD */
#include "arm4.h"

arm_id_t application_id;
arm_id_t parent_transaction_id, child_transaction_id;
arm_app_start_handle_t application_handle;

/* In-process nested transaction. The return value signals
 * successful completion if 0, failed completion otherwise.
 */
int child_transaction(arm_correlator_t *parent_correlator);

int main(int argc, char *argv[])
{
 arm_correlator_t new_correlator;
 arm_tran_start_handle_t parent_transaction_handle;
 arm_tran_status_t child_status = ARM_STATUS_GOOD;

 /* Capability used: ARM registration and initialization */

 arm_register_application("ARM Spec Basic Example",
 ARM_ID_NONE, ARM_FLAG_NONE, ARM_BUF4_NONE,
 &application_id);

 arm_register_transaction(&application_id,
 "ExampleParentTx", /* transaction name */
 ARM_ID_NONE, ARM_FLAG_NONE, ARM_BUF4_NONE,
 &parent_transaction_id);

 arm_register_transaction(&application_id,
 "ExampleChildTx",
 ARM_ID_NONE, ARM_FLAG_NONE, ARM_BUF4_NONE,
 &child_transaction_id);

 arm_start_application(&application_id,
 "Examples", /* ARM group name */
 NULL, /* ARM instance name */
 ARM_FLAG_NONE, ARM_BUF4_NONE,
 &application_handle);

 /* Capability used: Measure response time and status */
 arm_start_transaction(application_handle,
 &parent_transaction_id, ARM_CORR_NONE,

160 Technical Standard (2007)

 ARM_FLAG_NONE, ARM_BUF4_NONE,
 &parent_transaction_handle,
 &new_correlator);

 printf("In parent transaction, before child transaction\n");

 if (child_transaction(&new_correlator))
 child_status = ARM_STATUS_FAILED;

 printf("In parent transaction, after child transaction\n");

 arm_stop_transaction(parent_transaction_handle,
 child_status,
 ARM_FLAG_NONE, ARM_BUF4_NONE);

 /* ARM shutdown */
 arm_stop_application(application_handle,
 ARM_FLAG_NONE, ARM_BUF4_NONE);

 arm_destroy_application(&application_id,
 ARM_FLAG_NONE, ARM_BUF4_NONE);
}

/* In-process nested transaction. The return value signals
 * successful completion if 0, failed completion otherwise.
 */
int child_transaction(arm_correlator_t *parent_correlator)
{
 /* will be generated using arm_start_transaction() */
 arm_tran_start_handle_t child_transaction_handle;
 /* will be generated using arm_start_transaction() */
 arm_correlator_t new_correlator;
 /* this variable emulates the child processing result */
 arm_tran_status_t arm_status = ARM_STATUS_GOOD;

 /* Capability used: Measure response time and status */
 arm_start_transaction(application_handle,
 &child_transaction_id, parent_correlator,
 ARM_FLAG_NONE, ARM_BUF4_NONE,
 &child_transaction_handle,
 &new_correlator);

 /* Child transaction work is performed here.
 * When there are more nested transcation below this level,
 * the contents of new_correlator could be passed to
 * a child of this transaction.
 *
 * In the pseudo code below it is assumed that a child transaction
 * level exists that is invoked remotely using synchronous send/receive
 * calls.
 *
 * Also note how the effective length of the correlator content
 * is determined to limit the amount of data transferred.
 */
#ifdef GRANDCHILD_REMOTE_TRANSACTION_EXISTS
 {
 /* assume mymsg_t contains a byte buffer and length field
 * for carrying a correlator.
 */
 mymsg_t msg;

ARM Issue 4.1 Version 1 – C Binding 161

 arm_correlator_length_t new_corr_len = 0;

 arm_get_correlator_length(&new_correlator, &new_corr_len);

 memcpy(msg.corr_buff, new_correlator.opaque, new_corr_len);
 msg.corr_len = new_corr_len;

 /* assuming socket_descr is initialized */
 send(socket_descr, &msg, sizeof(msg), 0);
 /* recv etc. */
 }
#endif /* GRANDCHILD_REMOTE_TRANSACTION_EXISTS */

 arm_stop_transaction(child_transaction_handle,
 arm_status,
 ARM_FLAG_NONE, ARM_BUF4_NONE);

 return (ARM_STATUS_GOOD == arm_status) ? 0 : -1;
}

16.2 Sample: Detailed Timing and Threading Measurements
/* -- */
/* ----- ARM 4.0 C API Example: using timing/threading capabilities ------ */
/* -- */

#include <stdio.h>

/* from ARM 4.1 on, use arm41.h INSTEAD */
#include "arm4.h"

arm_id_t application_id;
arm_id_t parent_transaction_id, child_transaction_id;
arm_app_start_handle_t application_handle;

/* A pseudo dispatcher function. Conceptually, this function
 * creates a new thread, lets the childTransaction() function
 * execute in this thread, blocks waiting for completion
 * and finally returns the execution result to the caller.
 */
int dispatch_child_transaction_to_thread();

/* A pseudo remote procedure call */
void perform_rpc();

/* In-process nested transaction. The return value signals
 * successful completion if 0, failed completion otherwise.
 * See comments in dispatch_child_transaction_to_thread()
 * for an explanation of the arrival_time parameter.
 */
int child_transaction(arm_correlator_t *parent_correlator,
 arm_arrival_time_t arrival_time);

int main(int argc, char *argv[])
{
 arm_correlator_t new_correlator;
 arm_tran_start_handle_t parent_transaction_handle;
 arm_tran_status_t child_status = ARM_STATUS_GOOD;
 int child_execution_count = 5;

162 Technical Standard (2007)

 /* Capability used: ARM registration and initialization */

 arm_register_application("ARM Spec Threading Example",
 ARM_ID_NONE, ARM_FLAG_NONE, ARM_BUF4_NONE,
 &application_id);

 arm_register_transaction(&application_id,
 "ThreadExampleParentTx", /* transaction name */
 ARM_ID_NONE, ARM_FLAG_NONE, ARM_BUF4_NONE,
 &parent_transaction_id);

 arm_register_transaction(&application_id,
 "ThreadExampleChildTx",
 ARM_ID_NONE, ARM_FLAG_NONE, ARM_BUF4_NONE,
 &child_transaction_id);

 arm_start_application(&application_id,
 "Examples", /* ARM group name */
 NULL, /* ARM instance name */
 ARM_FLAG_NONE, ARM_BUF4_NONE,
 &application_handle);

 /* Capability used: Measure response time and status */
 arm_start_transaction(application_handle,
 &parent_transaction_id, ARM_CORR_NONE,
 ARM_FLAG_NONE, ARM_BUF4_NONE,
 &parent_transaction_handle,
 &new_correlator);

 printf("In parent transaction, before child transaction\n");

 /* see comments in dispatch_child_transaction_to_thread() */
 if (dispatch_child_transaction_to_thread(&new_correlator))
 child_status = ARM_STATUS_FAILED;

 printf("In parent transaction, after child transaction\n");

 arm_stop_transaction(parent_transaction_handle,
 child_status,
 ARM_FLAG_NONE, ARM_BUF4_NONE);

 /* ARM shutdown */
 arm_stop_application(application_handle,
 ARM_FLAG_NONE, ARM_BUF4_NONE);

 arm_destroy_application(&application_id,
 ARM_FLAG_NONE, ARM_BUF4_NONE);
}

/* A pseudo dispatcher function. Conceptually, this function
 * creates a new thread or selects one from a thread pool,
 * lets the childTransaction() function execute in this thread,
 * blocks waiting for completion
 * and finally returns the execution result to the caller.
 */
int dispatch_child_transaction_to_thread(arm_correlator_t *parent_correlator)
{
 /* filled by arm_get_arrival_time() */
 arm_arrival_time_t opaque_arrival_time;

ARM Issue 4.1 Version 1 – C Binding 163

 /* This code location - before the thread select/dispatch - is considered
 * the effictive start time of the transaction. Therefore, the arrival
 * time is taken here.
 */
 arm_get_arrival_time(&opaque_arrival_time);

#ifdef SYNCHRONOUSLY_EXECUTE_FUNCTION_IN_THREAD_SUPPORTED
 /* Vreate a new thread or select one from a thread pool
 * This is pseudo code; the functions used below are imaginary.
 */
 thread_t child_thread = get_some_thread();
 /* Now let child_transaction() execute with the arguments
 * &parent_correlatr and opaque_arrival_time in the givien thread
 */

 return synchronously_execute_function_in_thread(child_thread,
 child_transaction,
 parent_correlator,
 opaque_arrival_time);
#else
 /* for demonstration purposes, the function is called directly instead */
 return child_transaction(parent_correlator, opaque_arrival_time);
#endif /* SYNCHRONOUSLY_EXECUTE_FUNCTION_IN_THREAD_SUPPORTED */
}

/* A pseudo remote procedure call */
void perform_rpc()
{
 /* During the RPC, the caller is 'blocked' */
}

/* In-process nested transaction. The return value signals
 * successful completion if 0, failed completion otherwise.
 */
int child_transaction(arm_correlator_t *parent_correlator,
 arm_arrival_time_t arrival_time)
{
 /* will be generated using arm_start_transaction() */
 arm_tran_start_handle_t child_transaction_handle;
 /* will be generated using arm_start_transaction() */
 arm_correlator_t new_correlator;
 /* this variable emulates the child processing result */
 arm_tran_status_t arm_status = ARM_STATUS_GOOD;
 /* used for pairing arm_block()/arm_unblock() calls */
 arm_tran_block_handle_t block_handle;

 /* Capability used: Measure response time and status */
 arm_start_transaction(application_handle,
 &child_transaction_id, parent_correlator,
 ARM_FLAG_NONE, ARM_BUF4_NONE,
 &child_transaction_handle,
 &new_correlator);

 /* Capability used: Associate transactions to threads */
 /* In this example, several child_transaction() calls are assumed to
 * be executed by different threads.
 */
 arm_bind_thread(child_transaction_handle,
 ARM_FLAG_NONE, ARM_BUF4_NONE);

164 Technical Standard (2007)

 /* Indicate a blocked status during a RPC */
 arm_block_transaction(child_transaction_handle,
 ARM_FLAG_NONE, ARM_BUF4_NONE,
 &block_handle);

 perform_rpc();

 arm_unblock_transaction(child_transaction_handle,
 block_handle,
 ARM_FLAG_NONE, ARM_BUF4_NONE);

 /* Not strictly necessary in this example, because an implicit
 * unbind_thread() will be performed by arm_stop_transaction() */
 arm_unbind_thread(child_transaction_handle,
 ARM_FLAG_NONE, ARM_BUF4_NONE);

 arm_stop_transaction(child_transaction_handle,
 arm_status,
 ARM_FLAG_NONE, ARM_BUF4_NONE);

 return (ARM_STATUS_GOOD == arm_status) ? 0 : -1;
}

16.3 Sample: Messaging
/* -- */
/* --------- ARM 4.1 C API Example: using messaging capabilities --------- */
/* -- */

#include <stdio.h>
#include <string.h>

/* ARM 4.1 features are used in this example */
#include "arm41.h"

/* a pseudo message containing correlator data only. */
typedef struct pseudo_msg
{
 arm_correlator_length_t actual_correlator_length;
 /* in a real-world application, the size of correlator_bytes[] would
 * be actual_correlator_length.
 */
 arm_uint8_t correlator_bytes[ARM_CORR_MAX_LENGTH];
} pseudo_msg_t;

arm_id_t application_id;
arm_id_t parent_transaction_id, child1_transaction_id, child2_transaction_id;
arm_app_start_handle_t application_handle;

/* for this example, the two message instances below serve as
 * message forwarding substitute (1-element queues)
 */
pseudo_msg_t message_sent_from_parent;
pseudo_msg_t message_sent_from_child1;

/* In-process child transactions (levels 1 and 2). Although for demonstration
 * purposes, this function is called synchronously from main(), its
 * execution should be regarded as asynchronous message send/receive

ARM Issue 4.1 Version 1 – C Binding 165

 * processing.
 */
void child_transaction1(void);
void child_transaction2(void);

int main(int argc, char *argv[])
{
 arm_correlator_t new_correlator;
 arm_tran_start_handle_t parent_transaction_handle;
 arm_correlator_length_t new_corr_len = 0;

 arm_message_sent_event_t msg_tx_ev_array[1] = {{
 1, /* sent message count */
 "parent message" /* description */
 }};

 arm_subbuffer_message_sent_event_t sb_msg_tx_ev =
 {
 {ARM_SUBBUFFER_MESSAGE_SENT_EVENT},
 ARM_FALSE, /* end_of_flow */
 sizeof(msg_tx_ev_array)/sizeof(arm_message_sent_event_t),
 msg_tx_ev_array
 };

 arm_subbuffer_t *subbuffers[] = {ARM_SB(sb_msg_tx_ev)};

 arm_buffer4_t buffer4 = {
 sizeof(subbuffers)/sizeof(arm_subbuffer_t*),
 subbuffers
 };

 /* Capability used: ARM registration and initialization */

 arm_register_application("ARM Spec Basic Example",
 ARM_ID_NONE, ARM_FLAG_NONE, ARM_BUF4_NONE,
 &application_id);

 arm_register_transaction(&application_id,
 "ExampleParentTx", /* transaction name */
 ARM_ID_NONE, ARM_FLAG_NONE, ARM_BUF4_NONE,
 &parent_transaction_id);

 arm_register_transaction(&application_id,
 "ExampleChildTx1",
 ARM_ID_NONE, ARM_FLAG_NONE, ARM_BUF4_NONE,
 &child1_transaction_id);

 arm_register_transaction(&application_id,
 "ExampleChildTx2",
 ARM_ID_NONE, ARM_FLAG_NONE, ARM_BUF4_NONE,
 &child2_transaction_id);

 arm_start_application(&application_id,
 "Examples", /* ARM group name */
 NULL, /* ARM instance name */
 ARM_FLAG_NONE, ARM_BUF4_NONE,
 &application_handle);

 /* Capability used: Measure response time and status */
 arm_start_transaction(application_handle,

166 Technical Standard (2007)

 &parent_transaction_id, ARM_CORR_NONE,
 ARM_FLAG_NONE, ARM_BUF4_NONE,
 &parent_transaction_handle,
 &new_correlator);

 printf("In parent transaction, before child transaction\n");

 /* contruct a message to child1, send() is implied here
 * The copying, shown here to clarify the steps) could be avoided if
 * message_sent_from_parent.correlator_bytes is used directly instead
 * of new_correlator in the arm_start_transaction() call.
 */
 arm_get_correlator_length(&new_correlator,
 &message_sent_from_parent.actual_correlator_length);
 memcpy(message_sent_from_parent.correlator_bytes,
 new_correlator.opaque,
 message_sent_from_parent.actual_correlator_length);

 /* Capability used: ARM messaging */
 /* signal a messge sent event to the ARM library: buffer4 contains
 * the prepared arm_subbuffer_message_sent_event_t.
 */
 arm_update_transaction(parent_transaction_handle,
 ARM_FLAG_NONE, &buffer4);

 /* Techically, the child transaction functions are invoked synchronously.
 * This ensures that all processing in child_transaction1() is finished
 * when child_transaction2() begins, and both are finished before
 * the application ends.
 * Semantically, the child transaction functions "collect and process
 * messages" asynchronously.
 */
 child_transaction1();
 child_transaction2();

 /* In this example, the stop time of the parent transaction is not
 * relevant for calculating the parent/child transaction flow. Still,
 * calling arm_stop_transaction() for every arm_start_transaction()
 * is mandatory.
 */
 arm_stop_transaction(parent_transaction_handle,
 ARM_STATUS_GOOD,
 ARM_FLAG_NONE, ARM_BUF4_NONE);

 /* ARM shutdown */
 arm_stop_application(application_handle,
 ARM_FLAG_NONE, ARM_BUF4_NONE);

 arm_destroy_application(&application_id,
 ARM_FLAG_NONE, ARM_BUF4_NONE);
}

/* In-process child transaction (level 1). Although for demonstration
 * purposes, this function is called synchronously from main(), its
 * execution should be regarded as asynchronous message send/receive
 * processing.
 */
void child_transaction1(void)
{

ARM Issue 4.1 Version 1 – C Binding 167

 /* will be generated using arm_start_transaction() */
 arm_tran_start_handle_t child_transaction_handle;
 /* will be generated using arm_start_transaction() */
 arm_correlator_t new_correlator;
 arm_correlator_length_t new_corr_len = 0;

 /* Capability used: ARM messaging */
 arm_message_rcvd_event_t msg_rx_ev_array[1] = {{
 ARM_CORR_NONE, /* parent correlator, will be filled in below */
 "parent message" /* description */
 }};

 arm_subbuffer_message_rcvd_event_t sb_msg_rx_ev =
 {
 {ARM_SUBBUFFER_MESSAGE_RCVD_EVENT},
 ARM_FALSE, /* end_of_flow */
 sizeof(msg_rx_ev_array)/sizeof(arm_message_rcvd_event_t),
 msg_rx_ev_array
 };

 arm_message_sent_event_t msg_tx_ev_array[1] = {{
 1, /* sent message count */
 "child1 message" /* description */
 }};

 arm_subbuffer_message_sent_event_t sb_msg_tx_ev =
 {
 {ARM_SUBBUFFER_MESSAGE_SENT_EVENT},
 ARM_FALSE, /* end_of_flow */
 sizeof(msg_tx_ev_array)/sizeof(arm_message_sent_event_t),
 msg_tx_ev_array
 };

 arm_subbuffer_t *subbuffers[] = {ARM_SB(sb_msg_rx_ev)};

 arm_buffer4_t buffer4 = {
 sizeof(subbuffers)/sizeof(arm_subbuffer_t*),
 subbuffers
 };

 /* assume this transaction is triggered by the receipt of a message */

 /* prepare message received event buffer. The correlator data could also
 * be copied from the message, depending on data memory layout.
 */
 msg_rx_ev_array[0].received_correlator =
 (arm_correlator_t *)message_sent_from_parent.correlator_bytes;

 /* Capability used: ARM messaging */
 arm_start_transaction(application_handle,
 &child1_transaction_id,
 /* The correlator is passed via the message received event sub-buffer */
 ARM_CORR_NONE,
 ARM_FLAG_NONE, &buffer4,
 &child_transaction_handle,
 &new_correlator);

 /* prepare a "message" to be sent to child2 */
 /* The correlator bytes have already been created in the message struct */

168 Technical Standard (2007)

 arm_get_correlator_length(&new_correlator,
 &message_sent_from_child1.actual_correlator_length);

 /* In this example, the stop time of the child1 transaction coincides
 * with the (assumed) sending of a message to child2, therefore the message
 * received sub-buffer is provided with arm_stop_transaction().
 */

 /* Capability used: ARM messaging */
 subbuffers[0] = ARM_SB(sb_msg_tx_ev); /* re-using subbufers[] */
 arm_stop_transaction(child_transaction_handle,
 ARM_STATUS_GOOD,
 ARM_FLAG_NONE, &buffer4);
}

/* In-process child transaction (level 2). Although for demonstration
 * purposes, this function is called synchronously from main(), its
 * execution should be regarded as asynchronous message send/receive
 * processing.
 */
void child_transaction2(void)
{
 /* will be generated using arm_start_transaction() */
 arm_tran_start_handle_t child_transaction_handle;

 /* Capability used: ARM messaging */
 arm_message_rcvd_event_t msg_rx_ev_array[1] = {{
 ARM_CORR_NONE, /* parent correlator, will be filled in below */
 "child1 message" /* description */
 }};

 arm_subbuffer_message_rcvd_event_t sb_msg_rx_ev =
 {
 {ARM_SUBBUFFER_MESSAGE_RCVD_EVENT},
 ARM_FALSE, /* end_of_flow */
 sizeof(msg_rx_ev_array)/sizeof(arm_message_rcvd_event_t),
 msg_rx_ev_array
 };

 arm_subbuffer_t *subbuffers[] = {ARM_SB(sb_msg_rx_ev)};

 arm_buffer4_t buffer4 = {
 sizeof(subbuffers)/sizeof(arm_subbuffer_t*),
 subbuffers
 };

 /* assume this transaction is triggered by the receipt of a message */

 /* prepare message received event buffer. The correlator data could also
 * be copied from the message, depending on data memory layout.
 */
 msg_rx_ev_array[0].received_correlator =
 (arm_correlator_t *)message_sent_from_child1.correlator_bytes;

 /* this transaction signals the end of a flow chain */
 sb_msg_rx_ev.end_of_flow = ARM_TRUE;

 /* Capability used: ARM messaging */
 arm_start_transaction(application_handle,
 &child1_transaction_id,

ARM Issue 4.1 Version 1 – C Binding 169

 /* The correlator is passed via the message received event sub-buffer */
 ARM_CORR_NONE,
 ARM_FLAG_NONE, &buffer4,
 &child_transaction_handle,
 ARM_CORR_NONE);

 arm_stop_transaction(child_transaction_handle,
 ARM_STATUS_GOOD,
 ARM_FLAG_NONE, ARM_BUF4_NONE);
}

16.4 Sample: Instrumentation Control
/* -- */
/* --------- ARM 4.0 C API Example: using instrumentation control --------- */
/* -- */

#include <stdio.h>

/* ARM 4.1 features are used in this example */
#include "arm41.h"

#define TOTAL_CHILD_CALLS 10000 /* call child_transaction N times */
#define CHECK_CONTROL_INTERVAL 1000 /* check every N transactions */

arm_id_t application_id;
arm_id_t parent_transaction_id, child_transaction_id;
arm_app_start_handle_t application_handle;

/* gobal flags reflecting the instrumentation control state */
arm_boolean_t enable_global;
arm_boolean_t enable_child_tran;

/* Capability used: ARM instrumentation control */
/* For simplicity, the buffer results are made globally accessible */
arm_subbuffer_app_control_t sb_app_control =
{
 {ARM_SUBBUFFER_APP_CONTROL},
 ARM41_APP_CONTROL_COUNT,
 0,
};

/* In-process nested transaction. The return value signals
 * successful completion if 0, failed completion otherwise.
 */
int child_transaction(arm_correlator_t *parent_correlator);

int main(int argc, char *argv[])
{
 arm_correlator_t new_correlator;
 arm_tran_start_handle_t parent_transaction_handle;
 arm_tran_status_t child_status = ARM_STATUS_GOOD;

 arm_subbuffer_t *subbuffers[] = {ARM_SB(sb_app_control)};

 arm_buffer4_t buffer4 = {
 sizeof(subbuffers)/sizeof(arm_subbuffer_t*),
 subbuffers
 };

170 Technical Standard (2007)

 /* Capability used: ARM registration and initialization */

 arm_register_application("ARM Spec Basic Example",
 ARM_ID_NONE, ARM_FLAG_NONE, ARM_BUF4_NONE,
 &application_id);

 arm_register_transaction(&application_id,
 "ExampleParentTx", /* transaction name */
 ARM_ID_NONE, ARM_FLAG_NONE, ARM_BUF4_NONE,
 &parent_transaction_id);

 arm_register_transaction(&application_id,
 "ExampleChildTx",
 ARM_ID_NONE, ARM_FLAG_NONE, ARM_BUF4_NONE,
 &child_transaction_id);

 /* Capability used: ARM instrumentation control */

 sb_app_control.app_control_used = ARM_FALSE; /* required */
 arm_start_application(&application_id,
 "Examples", /* ARM group name */
 NULL, /* ARM instance name */
 ARM_FLAG_NONE,
 /* contains the application control sub-buffer */
 &buffer4,
 &application_handle);

 /* Note: Real-world applications should check control_count_arm */

 /* Default: if no instrumentation control is provided, enable everything */
 enable_global = ARM_TRUE;
 enable_child_tran = ARM_TRUE;
 if (ARM_TRUE == sb_app_control.app_control_used)
 {
 /* For simplicity, this example interprets only on/off granularity */
 if (sb_app_control.collection_depth <= ARM_COLLECTION_DEPTH_NONE)
 {
 enable_global = ARM_FALSE;
 enable_child_tran = ARM_FALSE;
 }
 }
 else
 {
 /* signal absence of control for nested checks */
 sb_app_control.tran_id_control_used = ARM_FALSE;
 }

 if (ARM_TRUE == enable_global)
 arm_start_transaction(application_handle,
 &parent_transaction_id, ARM_CORR_NONE,
 ARM_FLAG_NONE, ARM_BUF4_NONE,
 &parent_transaction_handle,
 &new_correlator);

 printf("In parent transaction, before child transaction\n");

 if (child_transaction(&new_correlator))
 child_status = ARM_STATUS_FAILED;

ARM Issue 4.1 Version 1 – C Binding 171

 printf("In parent transaction, after child transaction\n");

 if (ARM_TRUE == enable_global)
 arm_stop_transaction(parent_transaction_handle,
 child_status,
 ARM_FLAG_NONE, ARM_BUF4_NONE);

 /* ARM shutdown */
 arm_stop_application(application_handle,
 ARM_FLAG_NONE, ARM_BUF4_NONE);

 arm_destroy_application(&application_id,
 ARM_FLAG_NONE, ARM_BUF4_NONE);
}

/* In-process nested transaction. The return value signals
 * successful completion if 0, failed completion otherwise.
 */
int child_transaction(arm_correlator_t *parent_correlator)
{
 /* will be generated using arm_start_transaction() */
 arm_tran_start_handle_t child_transaction_handle;
 /* will be generated using arm_start_transaction() */
 arm_correlator_t new_correlator;
 /* this variable emulates the child processing result */
 arm_tran_status_t arm_status = ARM_STATUS_GOOD;

 /* Capability used: ARM instrumentation control */
 arm_subbuffer_tran_id_control_t sb_tran_id_control =
 {
 {ARM_SUBBUFFER_TRAN_ID_CONTROL},
 ARM41_TRAN_ID_CONTROL_COUNT,
 ARM_FALSE,
 0,
 &child_transaction_id, /* query control state for this ID */
 };
 arm_subbuffer_t *subbuffers[] = {ARM_SB(sb_tran_id_control)};

 arm_buffer4_t buffer4 = {
 sizeof(subbuffers)/sizeof(arm_subbuffer_t*),
 subbuffers
 };

 int i;

 for(i=0; i<TOTAL_CHILD_CALLS; ++i)
 {
 /* Check for transaction ID level control, if supported and
 * interval count is reached .
 */
 if ((ARM_TRUE == sb_app_control.tran_id_control_used)&&
 (0 == i%CHECK_CONTROL_INTERVAL))
 {
 sb_tran_id_control.control_used = ARM_FALSE; /* required */
 arm_generate_correlator(
 application_handle,
 &child_transaction_id, /* ignored */
 ARM_CORR_NONE, /* ignored */
 ARM_FLAG_NONE,
 &buffer4,

172 Technical Standard (2007)

 ARM_CORR_NONE); /* required to signal special purpose */

 /* Note: Real-world applications should check control_count_arm */
 if (ARM_TRUE == sb_tran_id_control.control_used)
 {
 /* override application control settings */
 if (sb_tran_id_control.collection_depth <=
ARM_COLLECTION_DEPTH_NONE)
 enable_child_tran = ARM_FALSE;
 else
 enable_child_tran = ARM_TRUE;
 }
 }

 if (ARM_TRUE == enable_child_tran)
 arm_start_transaction(application_handle,
 &child_transaction_id, parent_correlator,
 ARM_FLAG_NONE, ARM_BUF4_NONE,
 &child_transaction_handle,
 &new_correlator);

 /* Child transaction work is performed here.*/

 if (ARM_TRUE == enable_child_tran)
 arm_stop_transaction(child_transaction_handle,
 arm_status,
 ARM_FLAG_NONE, ARM_BUF4_NONE);
 }

 return (ARM_STATUS_GOOD == arm_status) ? 0 : -1;
}

ARM Issue 4.1 Version 1 – C Binding 173

B Information for Implementers

This appendix contains information useful to creators of ARM implementations, and analysis
and reporting programs that process ARM data. Applications using ARM to measure
transactions do not use any of this information.

B.1 Reserved Values

Some fields have been reserved for future use.

Field in <arm4.h> Functions that Use the Field Reserved Values

arm_tran_status_t arm_stop_transaction()
arm_report_transaction()

All negative values, except those
between –999 and –1.

arm_error_t Most functions –20000: –20999

B.2 Byte Ordering in Correlators

Correlators are passed from application to application. The transfer may occur within a single
system or a single process, or it may occur across a network. The recipient and sender of a
correlator may run on different machines with different architectures, and the conventions for
ordering bytes in data fields, such as integers and arrays, may be different.

If all the programs that touch a correlator were written in Java, the JVM (Java Virtual Machine)
would ensure that the same ordering conventions are followed and no order would need to be
specified. However, correlators are meant to be passed between applications using any version
of ARM (both C and Java) and running on any platform, including both big-endian and little-
endian platforms. Because big-endian and little-endian platforms order bytes differently, the
specification needs to explicitly state the required ordering, in order to make the correlators
interchangeable.

Recognizing this fact, ARM is designed expressly to permit correlators to be exchanged between
any application using ARM and any ARM implementation, regardless of how it is written. For
example, an application using ARM 4.0 Java bindings may receive a (parent) correlator from an
application using ARM 2.0 (for C programs), and it may send its correlator to an application
using ARM 3.0 for Java programs. To permit these types of exchanges, ARM specifies the
ordering of bytes within the correlator.

All correlator fields, and the correlator itself, are sent in network byte order. Network byte order
is a standard described as follows. The most significant bit is the first bit sent, and the least
significant bit is the last bit sent. For example, a 32-bit integer field would be sent with the most
significant byte first, and the least significant byte would be the fourth byte sent.

174 Technical Standard (2007)

Byte 0 Byte 1 Byte 2 Byte 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bit 0 is the most
significant bit

 Bit 31 is the least
significant bit

B.3 Limits on Interoperability between ARM Implementations

There is one limit on interoperability. In ARM 2.0 and 3.0, the maximum length of a correlator
is 168 bytes. ARM 4.0 has changed the maximum to 512 bytes. If ARM 4.0 implementations
restrict themselves to correlators of no more than 168 bytes, then the correlators are fully
interchangeable with any other version of ARM. If an ARM 4.0 implementation uses a
correlator that is more than 168 bytes long, it can only be successfully interchanged with another
ARM 4.0 implementation.

B.4 Avoiding Interference between ARM Implementations

Each ARM implementation should be installed and configured in a way that avoids interfering
with other ARM implementations. This does not mean that all ARM implementations that are
installed on a system will receive calls from every application that uses ARM. Only one
implementation will receive the calls from the applications in each process. The selection of the
implementation is generally dependent on how the system administrator installs and configures
the implementations (see Section 1.7), unless the application has been statically linked to one
implementation.

B.5 Correlator Formats

ARM specifies formatting constraints that all correlators must adhere to. These are described in
the following section. In addition, different versions of ARM have defined three specific
correlator formats. ARM 4.0 has not defined any formats, and, in general, has taken the
approach of making correlators as opaque as possible.

B.6 ARM Correlator Format Constraints

These constraints apply to all formats.

ARM Issue 4.1 Version 1 – C Binding 175

Table 16: ARM Correlator Format Constraints

Position Length Contents

Bytes 0:1 2 bytes Length of the correlator, including these two bytes.
Valid lengths are 4 <= length <= 512. Lengths shorter than four bytes are not
permitted because all correlators must have the four bytes defined in this table.
Note that a correlator that is longer than 168 bytes could not be passed to and
used by an application using ARM 2.0 or ARM 3.0, because the maximum size
in those versions was 168 bytes.
Some correlator formats impose shorter length restrictions. In particular,
formats 1, 2, and 127 have a maximum of 168 bytes.

Byte 2 1 byte Correlator format
The range 0:127 (unsigned) is reserved by the ARM specification. Six values
have been assigned:
1 – Defined in ARM 2.0
2 – Defined in ARM 3.0
28 – Reserved for Hewlett-Packard
100 – Reserved for MyARM's implementation
103 – Reserved for IBM
122 – Reserved for tang-IT
127 – Defined in ARM 3.0
The range 128:255 (unsigned) is available for use by ARM implementers.
Known used values include:
128 – Hewlett-Packard
203 – IBM
204 – IBM

176 Technical Standard (2007)

Position Length Contents

Byte 3 1 byte Flags
All eight-bit flags are reserved by the ARM specification. Four flags are defined
in positions 0:3 (the highest order bits), as in abcd0000, where a, b, c, and d are
bit flags.
a = 1 if a trace of this transaction is requested by the agent that generated the
correlator. This is transparent to the applications.
b = 1 if the application indicates that this transaction is of particular importance,
such as a test transaction, and therefore worthy of being traced.
There are no requirements for how these flags are handled, if at all. By
convention, if the flags are turned on in a correlator, the setting is copied into
the correlators for child transactions. However, local policy or the ARM
implementation may override this convention.
The usage scenario that led to their creation was to enable a trace of selected
transactions throughout an enterprise. A selective trace would yield much useful
information without being a significant burden on the systems processing the
transaction.
For example, a client could be experiencing response time problems. The agent
on the client could turn on the trace flag (bit 0) in the correlators that it
generates. When this correlator is passed, as the parent correlator, to the ARM
implementation on the server, the ARM implementation could turn on the trace
flag in the correlators that it generates. The process could continue recursively.
What has resulted is a trace of all the transactions associated with the client
experiencing the response time problem, but only those transactions. If there are
1,000 clients in the enterprise running this application, 0.1% of all transactions
are traced, which is a minimal load on the systems. The value of a surgical trace
like this was considered great enough to justify including it in the ARM
specification.
c = 1 if the control flow from the parent was accomplished via an asynchronous
mechanism such as a messaging protocol or that the transaction flow is
asynchronous in nature. See Section 4.2.1 for a more complete description.
d = 1 indicates that ARM-reported program logic execution in the child
recipient of this correlator reflects transaction work that, although initiated by
this parent, is performed independently of the parent’s ARM-reported
transaction work in scope and purpose. See Section 4.2.2 for a more complete
description.
It logically follows that the child transaction is executing asynchronously to the
parent transaction and therefore d=1 only if c=1. If c=0, d is ignored.

ARM Issue 4.1 Version 1 – C Binding 177

Index
<arm4.h>4, 127, 142, 153
<arm4os.h>...................................158
API functions............................31, 46
API overview..................................30
API structure30
application context values sub-buffer

.........................119, 129, 134, 138
application identity sub-buffer117
application instrumentation159
ARM

compatibility between versions ...4
evolution of3
usage of ..1

ARM 4.0
new capabilities............................3

arm_bind_thread()47
arm_block_transaction().................48
arm_destroy_application().............50
arm_discard_transaction().............51
arm_generate_correlator()52
arm_get_arrival_time()55
arm_get_correlator_flags()......45, 56
arm_get_correlator_length()57
arm_get_error_message()58
arm_is_charset_supported()60
arm_register_application()62
arm_register_metric()64
arm_register_transaction()67
arm_report_transaction()...............69
arm_start_application()72
arm_start_transaction()75
arm_stop_application()78
arm_stop_transaction()80
arm_unbind_thread()82
arm_unblock_transaction()84
arm_update_transaction()..............86
arrival time sub-buffer....................92
byte order markers..........................31
C Bindings....................................4, 9
calling hierarchy.............................15
character set encoding sub-buffer.127
context properties21

correlator14, 75
format constraints174

correlator formats174
correlators

byte ordering............................173
counters ..27
diagnostic data..........................28, 29
diagnostic detail sub-buffer..........100
distributed transaction13, 16, 20
error handling.................................40
gauges ..27

conventions................................38
GMT...70
heartbeat11, 35
identification information26
identity properties21
interoperability limits174
JVM..72, 173
libarm4 ..6
linked library6
management agent............................2
measurement information26
metadata

registration of.............................32
metric bindings sub-buffer125
metric values sub-buffer.................94
metrics..26

categories of...............................27
multiple values37
numeric IDs....................................28
optional buffer................................30
optional buffers87
parent..75
programming options11
reserved error codes40, 42
reserved values.............................173
response time..................................26
response times11
shared library....................................6
status ..26

values of.....................................26
stop time...26

178 Technical Standard (2007)

strings ...28
system address sub-buffer97
thread-safe31
transaction context sub-buffer123
transaction identity sub-buffer......120
transaction measurement2

transaction relationships.................13
transactions

measurement of....................33, 34
user data buffer...............................87
user sub-buffer91

	1 Introduction
	1.1 What is ARM?
	1.2 How is ARM Used?
	1.3 Selecting Transactions to Measure
	1.4 The Evolution of ARM
	1.5 Compatibility between ARM C Binding Versions
	1.6 ARM 4.0/4.1 C Bindings Overview
	1.7 Linking to an ARM 4.0/4.1 Implementation
	1.7.1 64-Bit Compiler Restriction

	1.8 Terminology

	2 Getting Started Using ARM 4.0/4.1 C Bindings
	2.1 Basic End-to-End Measurements
	2.2 Detailed Timing and Threading Measurements
	2.3 Messaging

	3 Programming Options
	3.1 ARM Measures Response Times
	3.2 Application Measures Response Time
	3.3 Selecting which Option to Use

	4 Understanding the Relationships between Transactions
	4.1 Distributed Transactions with Synchronous Flows
	4.2 Distributed Transactions with Asynchronous Flows (ARM 4.1)
	4.2.1 Indicating Asynchronous Flows
	4.2.2 Indicating Independent Flows
	4.2.3 Event Flows (ARM 4.1)

	5 Describing Applications and Transactions
	5.1 Identity Properties
	5.2 Context Properties

	6 Transaction Response Time Elements
	6.1 Arrival and Preparation Time
	6.1.1 Opaque Timestamp (ARM 4.0)
	6.1.2 Formatted Timestamp (ARM 4.1)
	6.1.3 Measured Prep Time (ARM 4.1)

	6.2 Blocked Time
	6.3 Thread Binding

	7 Additional Data about a Transaction
	7.1 Metrics
	7.1.1 Counters
	7.1.2 Gauges
	7.1.3 Numeric IDs
	7.1.4 Strings

	7.2 Diagnostic Detail
	7.3 Diagnostic Properties (ARM 4.1)

	8 API Overview
	8.1 Overall API Structure
	8.2 Structure of Optional Buffer and Sub-Buffers
	8.3 API Functions and Thread-Safe Behavior
	8.4 Byte Order Markers in Character Strings
	8.5 Overview of API Functions to Register Metadata
	8.6 Overview of API Functions for Application Starts/Stops
	8.7 Overview of Common API Functions to Measure Transactions
	8.8 Overview of Other API Functions
	8.9 Allowable Sub-Buffer Use per API Function
	8.10 Processing Multiple Values of the Same Metric
	8.10.1 Counters
	8.10.2 Gauges
	8.10.3 Numeric IDs
	8.10.4 Strings

	9 Error Handling Philosophy
	9.1 Reserved Error Codes

	10 Instrumentation Control (ARM 4.1)
	10.1 Scope: Application-Wide for all Transactions
	10.2 Scope: All instances of a Registered Transaction ID
	10.3 Scope: One Transaction Instance

	11 API Macros
	12 The API Functions
	13 Optional Buffer and Sub-Buffers
	13.1 Optional Buffer
	13.2 User
	13.3 Arrival Time
	13.4 Metric Values
	13.5 System Address
	13.6 Diagnostic Detail
	13.7 Block Cause
	13.8 Message Received Event
	13.9 Message Sent Event
	13.10 Formatted Arrival Time UsecJan1970
	13.11 Formatted Arrival Time Strings
	13.12 Preparation Time
	13.13 Preparation Statistics
	13.14 Diagnostic Properties
	13.15 Application Identity
	13.16 Application Context Values
	13.17 Transaction Identity
	13.18 Transaction Context
	13.19 Metric Bindings
	13.20 Character Set Encoding
	13.21 Application Control
	13.22 Transaction ID Control
	13.23 Transaction Instance Control

	14 <arm4.h> Header File for Compiling
	15 <arm41.h> Header File for Compiling
	16 <arm4os.h> Header File for Compiling
	A Application Instrumentation Samples
	16.1 Sample: Basic End-to-End Measurements
	16.2 Sample: Detailed Timing and Threading Measurements
	16.3 Sample: Messaging
	16.4 Sample: Instrumentation Control

	B Information for Implementers
	B.1 Reserved Values
	B.2 Byte Ordering in Correlators
	B.3 Limits on Interoperability between ARM Implementations
	B.4 Avoiding Interference between ARM Implementations
	B.5 Correlator Formats
	B.6 ARM Correlator Format Constraints

