
Technical Standard

Extended API Set Part 4

The Open Group

© October 2006, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Technical Standard

Extended API Set Part 4

ISBN: 1-931624-69-0
Document Number: C065

Published in the U.K. by The Open Group, October 2006.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Thames Tower
37-45 Station Road
Reading
Berkshire, RG1 1LX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii Technical Standard (2006)

Contents

Chapter 1 Introduction... 1
 1.1 Scope.. 1
 1.2 Relationship to Other Formal Standards ... 1

Chapter 2 Changes to the Base Definitions Volume................................ 3
 2.1 Section 1.5.1, Codes .. 3
 2.2 Chapter 13, Headers... 3

Chapter 3 Changes to the System Interfaces Volume............................. 7
 3.1 Changes to Exising Reference Pages... 7
 3.2 New Interfaces... 8
 duplocale ().. 9
 freelocale () .. 11
 newlocale () ... 13
 uselocale()... 16
 3.3 Alternative Locale Versions of Existing Interfaces 18
 isalnum_l()... 19
 isalpha_l () .. 20
 isblank_l () .. 21
 iscntrl_l() ... 22
 isdigit_l ().. 23
 isgraph_l ().. 24
 islower_l () .. 25
 isprint_l() ... 27
 ispunct_l().. 28
 isspace_l()... 29
 isupper_l() .. 30
 iswalnum_l().. 31
 iswalpha_l () ... 32
 iswblank_l () ... 33
 iswcntrl_l() .. 34
 iswctype_l().. 35
 iswdigit_l ()... 37
 iswgraph_l ()... 38
 iswlower_l() ... 39
 iswprint_l() .. 40
 iswpunct_l()... 41
 iswspace_l().. 42
 iswupper_l() ... 43
 iswxdigit_l ()... 44
 isxdigit_l ().. 45
 nl_langinfo_l ()... 46

Extended API Set Part 4 iii

Contents

 strcasecmp_l() .. 47
 strcoll_l ().. 48
 strfmon_l() ... 49
 strftime_l() ... 50
 strxfrm_l().. 51
 tolower_l ().. 52
 toupper_l() ... 53
 towctrans_l ().. 54
 towlower_l ()... 55
 towupper_l() .. 56
 wcscasecmp_l() .. 57
 wcscoll_l () .. 58
 wcsxfrm_l() .. 59
 wctrans_l() ... 61
 wctype_l()... 62

 Index... 63

iv Technical Standard (2006)

Preface

The Open Group

The Open Group is a vendor-neutral and technology-neutral consortium, whose vision of
Boundaryless Information Flow will enable access to integrated information within and between
enterprises based on open standards and global interoperability. The Open Group works with
customers, suppliers, consortia, and other standards bodies. Its role is to capture, understand,
and address current and emerging requirements, establish policies, and share best practices; to
facilitate interoperability, develop consensus, and evolve and integrate specifications and Open
Source technologies; to offer a comprehensive set of services to enhance the operational
efficiency of consortia; and to operate the industry’s premier certification service, including
UNIX certification.

Further information on The Open Group is available at www.opengroup.org.

The Open Group has over 15 years’ experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of test
suites used to validate conformance to an open standard or specification.

More information is available at www.opengroup.org/certification.

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business
titles. Full details and a catalog are available at www.opengroup.org/bookstore.

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards-compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published at www.opengroup.org/corrigenda.

This Document

This document has been prepared by The Open Group Base Working Group. The Open Group
Base Working Group is considering submitting a number of API sets to the Austin Group as
input to the revision of the Base Specifications, Issue 6.

This is the fourth document in that set.

Extended API Set Part 4 v

Trademarks

Boundaryless Information FlowTM and TOGAFTM are trademarks and Motif®, Making Standards
Work®, OSF/1®, The Open Group®, UNIX®, and the ‘‘X’’ device are registered trademarks of
The Open Group in the United States and other countries.

vi Technical Standard (2006)

Acknowledgements

The contributions of the following to the development of this document are gratefully
acknowledged:

• The Open Group Base Working Group

Extended API Set Part 4 vii

Acknowledgements

viii Technical Standard (2006)

Chapter 1

Introduction

1.1 Scope
The purpose of this document is to define a set of new API extensions to further increase
application capture and hence portability for systems built upon the Single UNIX Specification,
Version 3.

This proposal adds a set of interfaces that allow applications to use multiple locales concurrently
and allow multi-threaded applications to use a different base locale in each thread.

1.2 Relationship to Other Formal Standards
This Technical Standard is being forwarded to the Austin Group for consideration as input to the
revision of the Base Specifications, Issue 6.

It is recommended that these functions be integrated as follows:

• When an implementation claims support of this option, all functions except uselocale() shall
be provided.

• If an implementation claims to support both the new option and the Threads option, it must
also provide uselocale().

Extended API Set Part 4 1

Introduction

2 Technical Standard (2006)

Chapter 2

Changes to the Base Definitions Volume

It is proposed that these additions comprise a new option called the Multiple Concurrent
Locales option.

2.1 Section 1.5.1, Codes
Add a new margin code as follows:

MCL Multiple Concurrent Locales

The functionality described is optional. The functionality described is also an extension to
the ISO C standard.

Where applicable, functions are marked with the MCL margin legend in the SYNOPSIS
section. Where additional semantics apply to a function, the material is identified by use
of the MCL margin legend.

Notes:

1. This section is repeated in XBD, XSH, and XCU and therefore will appear in XBD (Section
1.5.1), XSH (Section 1.8.1), and XCU (Section 1.8.1).

2. The use of MCL as a margin code is a placeholder and may change in the final
publication.

2.2 Chapter 13, Headers
The following header file reference pages will need the following additions:

<ctype.h>

The following will be added:

MCL The <ctype.h> header shall provide a definition for a type locale_t as defined in <locale.h>
representing a locale object.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

int isalnum_l(int, locale_t);
int isalpha_l(int, locale_t);
int isblank_l(int, locale_t);
int iscntrl_l(int, locale_t);
int isdigit_l(int, locale_t);
int isgraph_l(int, locale_t);
int islower_l(int, locale_t);
int isprint_l(int, locale_t);
int ispunct_l(int, locale_t);
int isspace_l(int, locale_t);
int isupper_l(int, locale_t);
int isxdigit_l(int, locale_t);
int tolower_l(int, locale_t);
int toupper_l(int, locale_t);

Extended API Set Part 4 3

Chapter 13, Headers Changes to the Base Definitions Volume

<locale.h>

The following will be added:

MCL The <locale.h> header shall contain at least the following macros representing bitmasks for use
with the newlocale () function for each supported locale category:

LC_COLLATE_MASK
LC_CTYPE_MASK
LC_MESSAGES_MASK
LC_MONETARY_MASK
LC_NUMERIC_MASK
LC_TIME_MASK

Implementations may add additional masks using the form LC_*_MASK.

In addition, a macro to set the bits for all categories set shall be defined:

LC_ALL_MASK

The <locale.h> shall define LC_GLOBAL_LOCALE, a special locale object descriptor used by the
uselocale() function.

The <locale.h> header shall provide a definition for a type locale_t representing a locale object.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

locale_t newlocale (int, const char *, locale_t);
locale_t duplocale (locale_t);
void freelocale (locale_t);
locale_t uselocale (locale_t);

<monetary.h>

The following will be added:

MCL The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

ssize_t strfmon_l(char *restrict, size_t, locale_t,
const char *restrict, ...);

<string.h>

The following will be added:

MCL The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

int strcoll_l(const char *, const char *, locale_t);
size_t strxfrm_l(char *restrict, const char *restrict,

size_t, locale_t);

4 Technical Standard (2006)

Changes to the Base Definitions Volume Chapter 13, Headers

<strings.h>

The following will be added:

MCL The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

int strcasecmp_l(const char *, const char *, locale_t);
int strncasecmp_l(const char *, const char *, size_t, locale_t);

<unistd.h>

The following will be added:

MCL _POSIX_MULTIPLE_LOCALES
The implementation supports the Multiple Concurrent Locales option. If this symbol is
defined in <unistd.h>, it shall be defined to be −1, 0, or 200ymmL. The value of this symbol
reported by sysconf() shall be either −1 or 200ymmL.

Note: 200ymmL is to be replaced by the year and month of approval of the standard.

The following will be added to the list of symbolic constants that shall be defined for sysconf():

_SC_MULTIPLE_LOCALES

<wchar.h>

The following will be added:

MCL The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

int wcscasecmp_l(const wchar_t *, const wchar_t *, locale_t);
int wcsncasecmp_l(const wchar_t *, const wchar_t *, size_t, locale_t);
int wcscoll_l(const wchar_t *, const wchar_t *, locale_t);
size_t wcsxfrm_l(wchar_t *restrict, const wchar_t *restrict,

size_t, locale_t);

<wctype.h>

The following will be added:

MCL The <ctype.h> header shall provide a definition for a type locale_t as defined in <locale.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided for use with ISO C standard compilers.

int iswalnum_l(wint_t, locale_t);
int iswalpha_l(wint_t, locale_t);
int iswblank_l(wint_t, locale_t);
int iswcntrl_l(wint_t, locale_t);
int iswdigit_l(wint_t, locale_t);
int iswgraph_l(wint_t, locale_t);
int iswlower_l(wint_t, locale_t);
int iswprint_l(wint_t, locale_t);
int iswpunct_l(wint_t, locale_t);

Extended API Set Part 4 5

Chapter 13, Headers Changes to the Base Definitions Volume

int iswspace_l(wint_t, locale_t);
int iswupper_l(wint_t, locale_t);
int iswxdigit_l(wint_t, locale_t);
int iswctype_l(wint_t, wctype_t, locale_t);
wint_t towctrans_l(wint_t, wctrans_t, locale_t);
wint_t towlower(wint_t, locale_t);
wint_t towupper(wint_t, locale_t);
wctrans_t wctrans_l(const char *, locale_t);
wctype_t wctype_l(const char *, locale_t);

6 Technical Standard (2006)

Chapter 3

Changes to the System Interfaces Volume

3.1 Changes to Exising Reference Pages

strerror()

The following changes will be made to the strerror() reference page (Page 1441).

Change the NAME section to:

strerror, strerror_l, strerror_r — get error message string

The following will be added between the current entries for strerror() and strerror_r() in the
SYNOPSIS section:

MCL char *strerror_l(int errnum, locale_t locale);

The following paragraph will be added in the DESCRIPTION before the current paragraph that
says: "The strerror() function shall not change the setting of errno if successful.":

MCL The strerror_l() function shall not change the setting of errno if successful.

The following will be added before the last paragraph in the DESCRIPTION:

MCL The strerror_l() function shall map the error number in errnum to a locale-dependent error
message string in the locale represented by locale and shall return a pointer to it.

Change the following paragraph in the DESCRIPTION from:

The string pointed to shall not be modified by the application, but may be overwritten by a
subsequent call to strerror() or perror().

to the following two paragraphs:

The string pointed to shall not be modified by the application. The string may be overwritten by
CX a subsequent call to strerror() orperror().

MCL The string may be overwritten by a subsquent call to strerror_l() in the same thread.

The following paragraph will be added to the RETURN VALUE section before the current last
paragraph:

MCL Upon successful completion, strerror_l() shall return a pointer to the generated message string. If
errnum is not a valid error number, errno may be set to [EINVAL], but a pointer to a message
string shall still be returned. If any other error occurs, errno shall be set to indicate the error and a
null pointer shall be returned.

The following will be added to the ERRORS section before the strerror_r() ‘‘may fail’’ entries:

The strerror_l() function may fail if:

MCL [EINVAL] The locale argument is not a valid locale object handle.

The following will be added to the RATIONALE:

The strerror_l() function is required to be thread-safe, thereby eliminating the need for an
equivalent to the strerror_r() function.

Extended API Set Part 4 7

New Interfaces Changes to the System Interfaces Volume

3.2 New Interfaces
The following are new functions to add basic locale handling. These functions create, modify,
duplicate, and release locale objects.

8 Technical Standard (2006)

Changes to the System Interfaces Volume duplocale()

NAME
duplocale — duplicate a locale object

SYNOPSIS
MCL #include <locale.h>

locale_t duplocale(locale_t locobj);

DESCRIPTION
The duplocale () function shall create a duplicate copy of the locale object referenced by the locobj
argument.

RETURN VALUE
Upon successful completion, the duplocale () function shall return a handle for a new locale
object. Otherwise, duplocale () shall return (locale_t)0 and set errno to indicate the error.

ERRORS
The duplocale () function shall fail if:

[ENOMEM] There is not enough memory available to create the locale object or load the
locale data.

The duplocale () function may fail if:

[EINVAL] locobj is not a handle for a locale object.

EXAMPLES

Constructing an Altered Version of an Existing Locale Object

The following example shows a code fragment to create a slightly altered version of an existing
locale object. The function takes a locale object and a locale name and it replaces the LC_TIME
category data in the locale object with that from the named locale.

#include <locale.h>
...

locale_t
with_changed_lc_time (locale_t obj, const char *name)
{

locale_t retval = duplocale (obj);
if (retval != (locale_t) 0)
{

locale_t changed = newlocale (LC_TIME_MASK, name, retval);
if (changed == (locale_t) 0)

/* An error occurred. Free all allocated resources. */
freelocale (retval);

retval = changed;
}
return retval; }

}

APPLICATION USAGE
The duplocale () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

The use of the duplocale () function is recommended for situations where a locale object is being
used in multiple places, and it is possible that the lifetime of the locale object might end before

Extended API Set Part 4 9

duplocale() Changes to the System Interfaces Volume

all uses are finished. Another reason to duplicate a locale object is if a slightly modified form is
needed. This can be achieved by a call to newlocale () following the duplocale () call.

As with the newlocale () function, handles for locale objects created by the duplocale () function
should be released by a corresponding call to freelocale ().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
freelocale (), newlocale (), the Base Definitions volume of IEEE Std 1003.1-2001, <locale.h>

CHANGE HISTORY
First released in Issue X.

10 Technical Standard (2006)

Changes to the System Interfaces Volume freelocale()

NAME
freelocale — free resources allocated for a locale object

SYNOPSIS
MCL #include <locale.h>

void freelocale(locale_t locobj);

DESCRIPTION
The freelocale () function shall cause the resources allocated for a locale object returned by a call
to the newlocale () or duplocale () functions to be released.

Any use of a locale object that has been freed results in undefined behavior.

RETURN VALUE
None.

ERRORS
None.

EXAMPLES

Freeing Up a Locale Object

The following example shows a code fragment to free a locale object created by newlocale ():

#include <locale.h>
...

/* Every locale object allocated with newlocale() should be
* freed using freelocale():
*/

locale_t loc;

/* Get the locale. */

loc = newlocale (LC_CTYPE_MASK | LC_TIME_MASK, "locname", NULL);

/* ... Use the locale object ... */
...

/* Free the locale object resources. */
freelocale (loc);

APPLICATION USAGE
The freelocale () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
duplocale (), newlocale (), uselocale(), the Base Definitions volume of IEEE Std 1003.1-2001,
<locale.h>

Extended API Set Part 4 11

freelocale() Changes to the System Interfaces Volume

CHANGE HISTORY
First released in Issue X.

12 Technical Standard (2006)

Changes to the System Interfaces Volume newlocale()

NAME
newlocale — create or modify a locale object

SYNOPSIS
MCL #include <locale.h>

locale_t newlocale(int category_mask, const char *locale,
locale_t base);

DESCRIPTION
The newlocale () function shall create a new locale object or modify an existing one. If the base
argument is (locale_t)0, a new locale object shall be created. It is unspecified whether the locale
object pointed to by base shall be modified or freed and a new locale object created.

The category_mask argument specifies the locale categories to be set or modified. Values for
category_mask shall be constructed by a bitwise-inclusive OR of the symbolic constants
LC_CTYPE_MASK, LC_NUMERIC_MASK, LC_TIME_MASK, LC_COLLATE_MASK,
LC_MONETARY_MASK, and LC_MESSAGES_MASK, or any of the other implementation-
defined LC_*_MASK values defined in <locale.h>.

For each category with the corresponding bit set in category_mask the data from the locale named
by locale shall be used. In the case of modifying an existing locale object, the data from the locale
named by locale shall replace the existing data within the locale object. If a completely new locale
object is created, the data for all sections not requested by category_mask shall be taken from the
default locale.

The following preset values of locale are defined for all settings of category_mask :

"POSIX" Specifies the minimal environment for C-language translation called the
POSIX locale.

"C" Equivalent to "POSIX".

" " Specifies an implementation-defined native environment. This corresponds to
the value of the associated environment variables, LC_* and LANG; see the
Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale and the
Base Definitions volume of IEEE Std 1003.1-2001, Chapter 8, Environment
Variables.

If the base argument is not (locale_t)0 and the newlocale () function call succeeds, the contents of
base are unspecified. Applications shall ensure that they stop using base as a locale object before
calling newlocale (). If the function call fails and the base argument is not (locale_t)0, the contents
of base shall remain valid and unchanged.

The results are undefined if the base argument is the special locale object LC_GLOBAL_LOCALE.

RETURN VALUE
Upon successful completion, the newlocale () function shall return a handle which the caller may
use on subsequent calls to duplocale (), freelocale (), and other functions taking a locale_t
argument.

Upon failure, the newlocale () function shall return (locale_t)0 and set errno to indicate the error.

ERRORS
The newlocale () function shall fail if:

[ENOMEM] There is not enough memory available to create the locale object or load the
locale data.

Extended API Set Part 4 13

newlocale() Changes to the System Interfaces Volume

[EINVAL] The category_mask contains a bit that does not correspond to a valid category.

[ENOENT] For any of the categories in category_mask, the locale data is not available.

The newlocale () function may fail if:

[EINVAL] The locale argument is not a valid string pointer.

EXAMPLES

Constructing a Locale Object from Different Locales

The following example shows the construction of a locale where the LC_CTYPE category data
comes from a locale loc1 and the LC_TIME category data from a locale tok2 :

#include <locale.h>
...
locale_t loc, new_loc;

/* Get the "loc1" data. */

loc = newlocale (LC_CTYPE_MASK, "loc1", NULL);
if (loc == (locale_t) 0)

abort ();

/* Get the "loc2" data. */

new_loc = newlocale (LC_TIME_MASK, "loc2", loc);
if (new_loc != (locale_t) 0)

/* We don t abort if this fails. In this case this
simply used to unchanged locale object. */

loc = new_loc;

...

Freeing up a Locale Object

The following example shows a code fragment to free a locale object created by newlocale ():

#include <locale.h>
...

/* Every locale object allocated with newlocale() should be
* freed using freelocale():
*/

locale_t loc;

/* Get the locale. */

loc = newlocale (LC_CTYPE_MASK | LC_TIME_MASK, "locname", NULL);

/* ... Use the locale object ... */
...

/* Free the locale object resources. */
freelocale (loc);

14 Technical Standard (2006)

Changes to the System Interfaces Volume newlocale()

APPLICATION USAGE
The newlocale () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

Handles for locale objects created by the newlocale () function should be released by a
corresponding call to freelocale ().

The special locale object LC_GLOBAL_LOCALE must not be passed for the base argument, even
when returned by the uselocale() function.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
duplocale (), freelocale (), uselocale(), the Base Definitions volume of IEEE Std 1003.1-2001,
<locale.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 15

uselocale() Changes to the System Interfaces Volume

NAME
uselocale — use locale in current thread

SYNOPSIS
MCL THR #include <locale.h>

locale_t uselocale(locale_t newloc);

DESCRIPTION
The uselocale() function shall set the current locale for the current thread to the locale
represented by newloc .

The value for the newloc argument shall be one of the following:

1. A value returned by the newlocale () or duplocale () functions

2. The special locale object descriptor LC_GLOBAL_LOCALE

3. (locale_t)0

Once the uselocale() function has been called to install a thread-local locale, the behavior of every
interface using data from the current locale shall be affected for the calling thread. The current
locale for other threads shall remain unchanged.

If the newloc argument is a null pointer, the object returned is the current locale or
LC_GLOBAL_LOCALE if there has been no previous call to uselocale() for the current thread.

If the newloc argument is LC_GLOBAL_LOCALE, the thread shall use the global locale
determined by the setlocale () function.

RETURN VALUE
The uselocale() function returns the locale handle from the previous call for the current thread. If
there was no such previous call, the function shall return the value LC_GLOBAL_LOCALE.

ERRORS
The uselocale() function may fail if:

[EINVAL] locale is not a valid locale object.

EXAMPLES
None.

APPLICATION USAGE
The uselocale() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

Unlike the setlocale () function, the uselocale() function does not allow replacing some locale
categories only. Applications that need to install a locale which differs only in a few categories
must use newlocale () to change a locale object equivalent to the currently used locale and install
it.

RATIONALE
None.

FUTURE DIRECTIONS
None.

16 Technical Standard (2006)

Changes to the System Interfaces Volume uselocale()

SEE ALSO
duplocale (), newlocale (), setlocale (), the Base Definitions volume of IEEE Std 1003.1-2001,
<locale.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 17

uselocale() Changes to the System Interfaces Volume

3.3 Alternative Locale Versions of Existing Interfaces
The following functions are similar to existing standard functions. All of them take a locale
object argument that specifies an alternative locale to be used instead of the process’ or thread’s
current locale.

These references pages are to be merged into the System Interfaces volume of
IEEE Std 1003.1-2001, Chapter 3, System Interfaces in alphabetic order.

18 Technical Standard (2006)

Changes to the System Interfaces Volume isalnum_l()

NAME
isalnum_l — test for an alphanumeric character

SYNOPSIS
MCL #include <ctype.h>

int isalnum_l(int c, locale_t locale);

DESCRIPTION

The isalnum_l() function shall test whether c is a character of class alpha or digit in the locale
represented by locale ; see the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is representable as an
unsigned char or equal to the value of the macro EOF. If the argument has any other value, the
behavior is undefined.

RETURN VALUE
The isalnum_l() function shall return non-zero if c is an alphanumeric character; otherwise, it
shall return 0.

ERRORS
The isalnum_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The isalnum_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalpha_l (), iscntrl_l(), isdigit (), isgraph_l (), islower_l (), isprint_l(), ispunct_l(), isspace_l(),
isupper_l(), isxdigit_l (), uselocale(), the Base Definitions volume of IEEE Std 1003.1-2001, Chapter
7, Locale, <ctype.h>, <locale.h>, <stdio.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 19

isalpha_l() Changes to the System Interfaces Volume

NAME
isalpha_l — test for an alphabetic character

SYNOPSIS
MCL #include <ctype.h>

int isalpha_l(int c, locale_t locale);

DESCRIPTION
The isalpha_l () function shall test whether c is a character of class alpha in the locale represented
by locale ; see the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is representable as an
unsigned char or equal to the value of the macro EOF. If the argument has any other value, the
behavior is undefined.

RETURN VALUE
The isalpha_l () function shall return non-zero if c is an alphabetic character; otherwise, it shall
return 0.

ERRORS
The isalpha_l () function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The isalpha_l () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum_l(), iscntrl_l(), isdigit (), isgraph_l (), islower_l (), isprint_l(), ispunct_l(), isspace_l(),
isupper_l(), isxdigit_l (), uselocale(), the Base Definitions volume of IEEE Std 1003.1-2001, Chapter
7, Locale, <ctype.h>, <locale.h>, <stdio.h>

CHANGE HISTORY
First released in Issue X.

20 Technical Standard (2006)

Changes to the System Interfaces Volume isblank_l()

NAME
isblank_l — test for a blank character

SYNOPSIS
MCL #include <ctype.h>

int isblank_l(int c, locale_t locale);

DESCRIPTION

The isblank_l () function shall test whether c is a character of class blank in the locale represented
by locale ; see the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale.

The c argument is a type int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
The isblank_l () function shall return non-zero if c is a <blank>; otherwise, it shall return 0.

ERRORS
The isblank_l () function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The isblank_l () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum_l(), isalpha_l (), iscntrl_l(), isdigit (), isgraph_l (), islower_l (), isprint_l(), ispunct_l(),
isspace_l(), isupper_l(), isxdigit_l (), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale, <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 21

iscntrl_l() Changes to the System Interfaces Volume

NAME
iscntrl_l — test for a control character

SYNOPSIS
MCL #include <ctype.h>

int iscntrl_l(int c, locale_t locale);

DESCRIPTION
The iscntrl_l() function shall test whether c is a character of class cntrl in the locale represented
by locale ; see the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale.

The c argument is a type int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
The iscntrl_l() function shall return non-zero if c is a control character; otherwise, it shall return
0.

ERRORS
The iscntrl_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The iscntrl_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum_l(), isalpha_l (), isdigit (), isgraph_l (), islower_l (), isprint_l(), ispunct_l(), isspace_l(),
isupper_l(), isxdigit_l (), uselocale(), the Base Definitions volume of IEEE Std 1003.1-2001, Chapter
7, Locale, <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue X.

22 Technical Standard (2006)

Changes to the System Interfaces Volume isdigit_l()

NAME
isdigit_l — test for a decimal digit

SYNOPSIS
MCL #include <ctype.h>

int isdigit_l(int c, locale_t locale);

DESCRIPTION
The isdigit_l () function shall test whether c is a character of class digit in the locale represented
by locale ; see the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
The isdigit_l () function shall return non-zero if c is a decimal digit; otherwise, it shall return 0.

ERRORS
The isdigit_l () function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The isdigit_l () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum_l(), isalpha_l (), iscntrl_l(), isgraph_l (), islower_l (), isprint_l(), ispunct_l(), isspace_l(),
isupper_l(), isxdigit_l (), the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale,
<ctype.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 23

isgraph_l() Changes to the System Interfaces Volume

NAME
isgraph_l — test for a visible character

SYNOPSIS
MCL #include <ctype.h>

int isgraph_l(int c, locale_t locale);

DESCRIPTION
The isgraph_l () function shall test whether c is a character of class graph in the locale represented
by locale ; see the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
The isgraph_l () function shall return non-zero if c is a character with a visible representation;
otherwise, it shall return 0.

ERRORS
The isgraph_l () function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The isgraph_l () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum_l(), isalpha_l (), iscntrl_l(), isdigit (), islower_l (), isprint_l(), ispunct_l(), isspace_l(),
isupper_l(), isxdigit_l (), uselocale(), the Base Definitions volume of IEEE Std 1003.1-2001, Chapter
7, Locale, <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue X.

24 Technical Standard (2006)

Changes to the System Interfaces Volume islower_l()

NAME
islower_l — test for a lowercase letter

SYNOPSIS
MCL #include <ctype.h>

int islower_l(int c, locale_t locale);

DESCRIPTION
The islower_l () function shall test whether c is a character of class lower in the locale represented
by locale ; see the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
The islower_l () function shall return non-zero if c is a lowercase letter; otherwise, it shall return 0.

ERRORS
The islower_l () function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES

Testing for a Lowercase Letter

The following example tests whether the value is a lowercase letter, based on the locale of the
user, then uses it as part of a key value.

#include <ctype.h>
#include <stdlib.h>
#include <locale.h>
...
char *keystr;
int elementlen, len;
char c;
...
locale_t loc = newlocale (LC_ALL_MASK, "", (locale_t) 0);
...
len = 0;
while (len < elementlen) {

c = (char) (rand() % 256);
...

if (islower_l(c, loc))
keystr[len++] = c;

}
...

APPLICATION USAGE
The islower_l () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

Extended API Set Part 4 25

islower_l() Changes to the System Interfaces Volume

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum_l(), isalpha_l (), iscntrl_l(), isdigit (), isgraph_l (), isprint_l(), ispunct_l(), isspace_l(),
isupper_l(), isxdigit_l (), uselocale(), the Base Definitions volume of IEEE Std 1003.1-2001, Chapter
7, Locale, <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue X.

26 Technical Standard (2006)

Changes to the System Interfaces Volume isprint_l()

NAME
isprint_l — test for a printable character

SYNOPSIS
MCL #include <ctype.h>

int isprint_l(int c, locale_t locale);

DESCRIPTION
The isprint_l() function shall test whether c is a character of class print in the locale represented
by locale ; see the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
The isprint_l() function shall return non-zero if c is a printable character; otherwise, it shall
return 0.

ERRORS
The isprint_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The isprint_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum_l(), isalpha_l (), iscntrl_l(), isdigit (), isgraph_l (), islower_l (), ispunct_l(), isspace_l(),
isupper_l(), isxdigit_l (), uselocale(), the Base Definitions volume of IEEE Std 1003.1-2001, Chapter
7, Locale, <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 27

ispunct_l() Changes to the System Interfaces Volume

NAME
ispunct_l — test for a punctuation character

SYNOPSIS
MCL #include <ctype.h>

int ispunct_l(int c, locale_t locale);

DESCRIPTION
The ispunct_l() function shall test whether c is a character of class punct in the locale represented
by locale ; see the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
The ispunct_l() function shall return non-zero if c is a punctuation character; otherwise, it shall
return 0.

ERRORS
The ispunct_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The ispunct_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum_l(), isalpha_l (), iscntrl_l(), isdigit (), isgraph_l (), islower_l (), isprint_l(), isspace_l(),
isupper_l(), isxdigit_l (), uselocale(), the Base Definitions volume of IEEE Std 1003.1-2001, Chapter
7, Locale, <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue X.

28 Technical Standard (2006)

Changes to the System Interfaces Volume isspace_l()

NAME
isspace_l — test for a white-space character

SYNOPSIS
MCL #include <ctype.h>

int isspace_l(int c, locale_t locale);

DESCRIPTION
The isspace_l() function shall test whether c is a character of class space in the locale represented
by locale ; see the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
The isspace_l() function shall return non-zero if c is a white-space character; otherwise, it shall
return 0.

ERRORS
The isspace_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The isspace_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum_l(), isalpha_l (), iscntrl_l(), isdigit (), isgraph_l (), islower_l (), isprint_l(), ispunct_l(),
isupper_l(), isxdigit_l (), uselocale(), the Base Definitions volume of IEEE Std 1003.1-2001, Chapter
7, Locale, <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 29

isupper_l() Changes to the System Interfaces Volume

NAME
isupper_l — test for an uppercase letter

SYNOPSIS
MCL #include <ctype.h>

int isupper_l(int c, locale_t locale);

DESCRIPTION
The isupper_l() function shall test whether c is a character of class upper in the locale
represented by locale ; see the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
The isupper_l() function shall return non-zero if c is an uppercase letter; otherwise, it shall return
0.

ERRORS
The isupper_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The isupper_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum_l(), isalpha_l (), iscntrl_l(), isdigit (), isgraph_l (), islower_l (), isprint_l(), ispunct_l(),
isspace_l(), isxdigit_l (), uselocale(), the Base Definitions volume of IEEE Std 1003.1-2001, Chapter
7, Locale, <ctype.h>, <locale.h>

CHANGE HISTORY
First released in Issue X.

30 Technical Standard (2006)

Changes to the System Interfaces Volume iswalnum_l()

NAME
iswalnum_l — test for an alphanumeric wide-character code

SYNOPSIS
MCL #include <wctype.h>

int iswalnum_l(wint_t wc, locale_t locale);

DESCRIPTION
The iswalnum_l() function shall test whether wc is a wide-character code representing a
character of class alpha or digit in the locale represented by locale ; see the Base Definitions
volume of IEEE Std 1003.1-2001, Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
The iswalnum_l() function shall return non-zero if wc is an alphanumeric wide-character code;
otherwise, it shall return 0.

ERRORS
The iswalnum_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The iswalnum_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalpha_l (), iswcntrl_l(), iswctype_l(), iswdigit_l (), iswgraph_l (), iswlower_l(), iswprint_l(),
iswpunct_l(), isspace_l(), iswupper_l(), iswxdigit (), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale, <locale.h>, <stdio.h>, <wchar.h>, <wctype.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 31

iswalpha_l() Changes to the System Interfaces Volume

NAME
iswalpha_l — test for an alphabetic wide-character code

SYNOPSIS
MCL #include <wctype.h>

int iswalpha_l(wint_t wc, locale_t locale);

DESCRIPTION
The iswalpha_l () function shall test whether wc is a wide-character code representing a character
of class alpha in the locale represented by locale ; see the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
The iswalpha_l () function shall return non-zero if wc is an alphabetic wide-character code;
otherwise, it shall return 0.

ERRORS
The iswalpha_l () function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The iswalpha_l () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum_l(), iswcntrl_l(), iswctype_l(), iswdigit_l (), iswgraph_l (), iswlower_l(), iswprint_l(),
iswpunct_l(), isspace_l(), iswupper_l(), iswxdigit (), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale, <locale.h>, <stdio.h>, <wchar.h>, <wctype.h>

CHANGE HISTORY
First released in Issue X.

32 Technical Standard (2006)

Changes to the System Interfaces Volume iswblank_l()

NAME
iswblank_l — test for a blank wide-character code

SYNOPSIS
MCL #include <wctype.h>

int iswblank_l(wint_t wc, locale_t locale);

DESCRIPTION

The iswblank_l () function shall test whether wc is a wide-character code representing a character
of class blank in the locale represented by locale ; see the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
The iswblank_l () function shall return non-zero if wc is a blank wide-character code; otherwise, it
shall return 0.

ERRORS
The iswblank_l () function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The iswblank_l () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum_l(), iswalpha_l (), iswcntrl_l(), iswctype_l(), iswdigit_l (), iswgraph_l (), iswlower_l(),
iswprint_l(), iswpunct_l(), isspace_l(), iswupper_l(), iswxdigit (), uselocale(), the Base Definitions
volume of IEEE Std 1003.1-2001, Chapter 7, Locale, <locale.h>, <stdio.h>, <wchar.h>,
<wctype.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 33

iswcntrl_l() Changes to the System Interfaces Volume

NAME
iswcntrl_l — test for a control wide-character code

SYNOPSIS
MCL #include <wctype.h>

int iswcntrl_l(wint_t wc, locale_t locale);

DESCRIPTION

The iswcntrl_l() function shall test whether wc is a wide-character code representing a character
of class cntrl in the locale represented by locale ; see the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
The iswcntrl_l() function shall return non-zero if wc is a control wide-character code; otherwise,
it shall return 0.

ERRORS
The iswcntrl_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The iswcntrl_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum_l(), iswalpha_l (), iswctype_l(), iswdigit_l (), iswgraph_l (), iswlower_l(), iswprint_l(),
iswpunct_l(), isspace_l(), iswupper_l(), iswxdigit (), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale, <locale.h>, <wchar.h>, <wctype.h>

CHANGE HISTORY
First released in Issue X.

34 Technical Standard (2006)

Changes to the System Interfaces Volume iswctype_l()

NAME
iswctype_l — test character for a specified class

SYNOPSIS
MCL #include <wctype.h>

int iswctype_l(wint_t wc, wctype_t charclass,
locale_t locale);

DESCRIPTION
The iswctype_l() function shall determine whether the wide-character code wc has the character
class charclass , returning true or false. The iswctype_l() function is defined on WEOF and wide-
character codes corresponding to the valid character encodings in the locale represented by
locale . If the wc argument is not in the domain of the function, the result is undefined. If the
value of charclass is invalid (that is, not obtained by a call to wctype()) the result is unspecified.

RETURN VALUE
The iswctype_l() function shall return non-zero (true) if and only if wc has the property described
by charclass . If charclass is 0, iswctype_l() shall return 0.

ERRORS
The iswctype_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The iswctype_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

The twelve strings "alnum", "alpha", "blank", "cntrl", "digit", "graph", "lower",
"print", "punct", "space", "upper", and "xdigit" are reserved for the standard
character classes. In the table below, the functions in the left column are equivalent to the
functions in the right column.

iswalnum_l(wc, locale) iswctype_l(wc, wctype("alnum"), locale)
iswalpha_l(wc, locale) iswctype_l(wc, wctype("alpha"), locale)
iswblank(wc, locale) iswctype_l(wc, wctype("blank"), locale)
iswcntrl_l(wc, locale) iswctype_l(wc, wctype("cntrl"), locale)
iswdigit_l(wc, locale) iswctype_l(wc, wctype("digit"), locale)
iswgraph_l(wc, locale) iswctype_l(wc, wctype("graph"), locale)
iswlower_l(wc, locale) iswctype_l(wc, wctype("lower"), locale)
iswprint_l(wc, locale) iswctype_l(wc, wctype("print"), locale)
iswpunct_l(wc, locale) iswctype_l(wc, wctype("punct"), locale)
isspace_l(wc, locale) iswctype_l(wc, wctype("space"), locale)
iswupper_l(wc, locale) iswctype_l(wc, wctype("upper"), locale)
iswxdigit(wc, locale) iswctype_l(wc, wctype("xdigit"), locale)

RATIONALE
None.

FUTURE DIRECTIONS
None.

Extended API Set Part 4 35

iswctype_l() Changes to the System Interfaces Volume

SEE ALSO
iswalnum_l(), iswalpha_l (), iswcntrl_l(), iswdigit_l (), iswgraph_l (), iswlower_l(), iswprint_l(),
iswpunct_l(), isspace_l(), iswupper_l(), iswxdigit (), uselocale(), wctype(), the Base Definitions
volume of IEEE Std 1003.1-2001, <locale.h>, <wchar.h>, <wctype.h>

CHANGE HISTORY
First released in Issue X.

36 Technical Standard (2006)

Changes to the System Interfaces Volume iswdigit_l()

NAME
iswdigit_l — test for a decimal digit wide-character code

SYNOPSIS
MCL #include <wctype.h>

int iswdigit_l(wint_t wc, locale_t locale);

DESCRIPTION
The iswdigit_l () function shall test whether wc is a wide-character code representing a character
of class digit in the locale represented by locale ; see the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
The iswdigit_l () function shall return non-zero if wc is a decimal digit wide-character code;
otherwise, it shall return 0.

ERRORS
The iswdigit_l () function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The iswdigit_l () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum_l(), iswalpha_l (), iswcntrl_l(), iswctype_l(), iswgraph_l (), iswlower_l(), iswprint_l(),
iswpunct_l(), isspace_l(), iswupper_l(), iswxdigit_l (), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale, <locale.h>, <wchar.h>, <wctype.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 37

iswgraph_l() Changes to the System Interfaces Volume

NAME
iswgraph_l — test for a visible wide-character code

SYNOPSIS
MCL #include <wctype.h>

int iswgraph_l(wint_t wc, locale_t locale);

DESCRIPTION
The iswgraph_l () function shall test whether wc is a wide-character code representing a character
of class graph in the locale represented by locale ; see the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
The iswgraph_l () function shall return non-zero if wc is a wide-character code with a visible
representation; otherwise, it shall return 0.

ERRORS
The iswgraph_l () function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The iswgraph_l () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum_l(), iswalpha_l (), iswcntrl_l(), iswctype_l(), iswdigit_l (), iswlower_l(), iswprint_l(),
iswpunct_l(), isspace_l(), iswupper_l(), iswxdigit (), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale, <locale.h>, <wchar.h>, <wctype.h>

CHANGE HISTORY
First released in Issue X.

38 Technical Standard (2006)

Changes to the System Interfaces Volume iswlower_l()

NAME
iswlower_l — test for a lowercase letter wide-character code

SYNOPSIS
MCL #include <wctype.h>

int iswlower_l(wint_t wc, locale_t locale);

DESCRIPTION
The iswlower_l() function shall test whether wc is a wide-character code representing a character
of class lower in the locale represented by locale ; see the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
The iswlower_l() function shall return non-zero if wc is a lowercase letter wide-character code;
otherwise, it shall return 0.

ERRORS
The iswlower_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The iswlower_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum_l(), iswalpha_l (), iswcntrl_l(), iswctype_l(), iswdigit_l (), iswgraph_l (), iswprint_l(),
iswpunct_l(), isspace_l(), iswupper_l(), iswxdigit (), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale, <locale.h>, <wchar.h>, <wctype.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 39

iswprint_l() Changes to the System Interfaces Volume

NAME
iswprint_l — test for a printable wide-character code

SYNOPSIS
MCL #include <wctype.h>

int iswprint_l(wint_t wc, locale_t locale);

DESCRIPTION
The iswprint_l() function shall test whether wc is a wide-character code representing a character
of class print in the locale represented by locale ; see the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
The iswprint_l() function shall return non-zero if wc is a printable wide-character code;
otherwise, it shall return 0.

ERRORS
The iswprint_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The iswprint_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum_l(), iswalpha_l (), iswcntrl_l(), iswctype_l(), iswdigit_l (), iswgraph_l (), iswlower_l(),
iswpunct_l(), isspace_l(), iswupper_l(), iswxdigit (), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale, <locale.h>, <wchar.h>, <wctype.h>

CHANGE HISTORY
First released in Issue X.

40 Technical Standard (2006)

Changes to the System Interfaces Volume iswpunct_l()

NAME
iswpunct_l — test for a punctuation wide-character code

SYNOPSIS
MCL #include <wctype.h>

int iswpunct_l(wint_t wc, locale_t locale);

DESCRIPTION
The iswpunct_l() function shall test whether wc is a wide-character code representing a character
of class punct in the locale represented by locale ; see the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
The iswpunct_l() function shall return non-zero if wc is a punctuation wide-character code;
otherwise, it shall return 0.

ERRORS
The iswpunct_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The iswpunct_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum_l(), iswalpha_l (), iswcntrl_l(), iswctype_l(), iswdigit_l (), iswgraph_l (), iswlower_l(),
iswprint_l(), isspace_l(), iswupper_l(), iswxdigit (), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale, <locale.h>, <wchar.h>, <wctype.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 41

iswspace_l() Changes to the System Interfaces Volume

NAME
iswspace_l — test for a white-space wide-character code

SYNOPSIS
MCL #include <wctype.h>

int iswspace_l(wint_t wc, locale_t locale);

DESCRIPTION

The iswspace_l() function shall test whether wc is a wide-character code representing a character
of class space in the locale represented by locale ; see the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
The iswspace_l() function shall return non-zero if wc is a white-space wide-character code;
otherwise, it shall return 0.

ERRORS
The iswspace_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The iswspace_l() function is part of the Multiple Concurrent Locales option be available on all
implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum_l(), iswalpha_l (), iswcntrl_l(), iswctype_l(), iswdigit_l (), iswgraph_l (), iswlower_l(),
iswprint_l(), iswpunct_l(), iswupper_l(), iswxdigit_l (), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale, <locale.h>, <wchar.h>, <wctype.h>

CHANGE HISTORY
First released in Issue X.

42 Technical Standard (2006)

Changes to the System Interfaces Volume iswupper_l()

NAME
iswupper_l — test for an uppercase letter wide-character code

SYNOPSIS
MCL #include <wctype.h>

int iswupper_l(wint_t wc, locale_t locale);

DESCRIPTION
The iswupper_l() function shall test whether wc is a wide-character code representing a character
of class upper in the locale represented by locale ; see the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
The iswupper_l() function shall return non-zero if wc is an uppercase letter wide-character code;
otherwise, it shall return 0.

ERRORS
The iswupper_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The iswupper_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum_l(), iswalpha_l (), iswcntrl_l(), iswctype_l(), iswdigit_l (), iswgraph_l (), iswlower_l(),
iswprint_l(), iswpunct_l(), isspace_l(), iswxdigit (), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale, <locale.h>, <wchar.h>, <wctype.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 43

iswxdigit_l() Changes to the System Interfaces Volume

NAME
iswxdigit_l — test for a hexadecimal digit wide-character code

SYNOPSIS
MCL #include <wctype.h>

int iswxdigit_l(wint_t wc, locale_t locale);

DESCRIPTION
The iswxdigit_l () function shall test whether wc is a wide-character code representing a character
of class xdigit in the locale represented by locale ; see the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale.

The wc argument is a wint_t, the value of which the application shall ensure is a wide-character
code corresponding to a valid character in the current locale, or equal to the value of the macro
WEOF. If the argument has any other value, the behavior is undefined.

RETURN VALUE
The iswxdigit_l () function shall return non-zero if wc is a hexadecimal digit wide-character code;
otherwise, it shall return 0.

ERRORS
The iswxdigit_l () function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The iswxdigit_l () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum_l(), iswalpha_l (), iswcntrl_l(), iswctype_l(), iswdigit_l (), iswgraph_l (), iswlower_l(),
iswprint_l(), iswpunct_l(), isspace_l(), iswupper_l(), uselocale(), the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 7, Locale, <locale.h>, <wchar.h>, <wctype.h>

CHANGE HISTORY
First released in Issue X.

44 Technical Standard (2006)

Changes to the System Interfaces Volume isxdigit_l()

NAME
isxdigit_l — test for a hexadecimal digit

SYNOPSIS
MCL #include <ctype.h>

int isxdigit_l(int c, locale_t locale);

DESCRIPTION
The isxdigit_l () function shall test whether c is a character of class xdigit in the locale
represented by locale ; see the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale.

The c argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal to the value of the macro EOF. If the argument has
any other value, the behavior is undefined.

RETURN VALUE
The isxdigit_l () function shall return non-zero if c is a hexadecimal digit; otherwise, it shall
return 0.

ERRORS
The isxdigit_l () function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The isxdigit_l () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum_l(), isalpha_l (), iscntrl_l(), isdigit (), isgraph_l (), islower_l (), isprint_l(), ispunct_l(),
isspace_l(), isupper_l(), the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale,
<ctype.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 45

nl_langinfo_l() Changes to the System Interfaces Volume

NAME
nl_langinfo_l — language information

SYNOPSIS
MCL #include <langinfo.h>

char *nl_langinfo_l(nl_item item, locale_t locale);

DESCRIPTION
The nl_langinfo_l() function shall return a pointer to a string containing information relevant to
the particular language or cultural area defined in the locale represented to by locale (see
<langinfo.h>). The manifest constant names and values of item are defined in <langinfo.h>. For
example:

nl_langinfo_l(ABDAY_1, loc)

would return a pointer to the string "Dom" if the identified language of the locale represented by
loc was Portuguese, and "Sun" if the identified language of the locale represented by loc was
English.

RETURN VALUE
In a locale where langinfo data is not defined, nl_langinfo_l() shall return a pointer to the
corresponding string in the POSIX locale. In all locales, nl_langinfo_l() shall return a pointer to
an empty string if item contains an invalid setting.

This pointer may point to static data that may be overwritten on the next call.

ERRORS
The nl_langinfo_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The nl_langinfo_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

The array pointed to by the return value should not be modified by the program, but may be
modified by further calls to nl_langinfo_l().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
uselocale(), the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale,
<langinfo.h>, <locale.h>, <nl_types.h>

CHANGE HISTORY
First released in Issue X.

46 Technical Standard (2006)

Changes to the System Interfaces Volume strcasecmp_l()

NAME
strcasecmp_l, strncasecmp_l — case-insensitive string comparisons

SYNOPSIS
MCL #include <strings.h>

int strcasecmp_l(const char *s1, const char *s2,
locale_t locale);

int strncasecmp_l(const char *s1, const char *s2,
size_t n, locale_t locale);

DESCRIPTION
The strcasecmp_l() function shall compare, while ignoring differences in case, the string pointed
to by s1 to the string pointed to by s2. The strncasecmp_l() function shall compare, while
ignoring differences in case, not more than n bytes from the string pointed to by s1 to the string
pointed to by s2.

The information about the case of the characters come from the locale represented by locale .

RETURN VALUE
Upon completion, strcasecmp_l() shall return an integer greater than, equal to, or less than 0, if
the string pointed to by s1 is, ignoring case, greater than, equal to, or less than the string pointed
to by s2, respectively.

Upon successful completion, strncasecmp_l() shall return an integer greater than, equal to, or less
than 0, if the possibly null-terminated array pointed to by s1 is, ignoring case, greater than, equal
to, or less than the possibly null-terminated array pointed to by s2, respectively.

ERRORS
The strcasecmp_l() and strncasecmp_l() functions may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The strcasecmp_l() and strncasecmp_l() functions are part of the Multiple Concurrent Locales
option and need not be available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-2001, <strings.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 47

strcoll_l() Changes to the System Interfaces Volume

NAME
strcoll_l — string comparison using collating information

SYNOPSIS
MCL #include <string.h>

int strcoll_l(const char *s1, const char *s2,
locale_t locale);

DESCRIPTION
The strcoll_l () function shall compare the string pointed to by s1 to the string pointed to by s2,
both interpreted as appropriate to the LC_COLLATE category of the locale represented by locale.

The strcoll_l () function shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call strcoll_l (), then check errno.

RETURN VALUE
Upon successful completion, strcoll_l () shall return an integer greater than, equal to, or less than
0, according to whether the string pointed to by s1 is greater than, equal to, or less than the string
pointed to by s2 when both are interpreted as appropriate to the locale represented by locale . On
error, strcoll_l () may set errno, but no return value is reserved to indicate an error.

ERRORS
The strcoll_l () function may fail if:

[EINVAL] The s1 or s2 arguments contain characters outside the domain of the collating
sequence.

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The strcoll_l () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

The strxfrm_l() and strcmp() functions should be used for sorting large lists.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcmp(), strxfrm(), the Base Definitions volume of IEEE Std 1003.1-2001, <string.h>

CHANGE HISTORY
First released in Issue X.

48 Technical Standard (2006)

Changes to the System Interfaces Volume strfmon_l()

NAME
strfmon_l — convert monetary value to a string

SYNOPSIS
MCL #include <monetary.h>

ssize_t strfmon_l(char *restrict s, size_t maxsize,
locale_t locale, const char *restrict format, ...);

DESCRIPTION
The strfmon_l() function shall be equivalent to the strfmon() function, except that the current
locale data used is from the locale represented by locale .

RETURN VALUE
See strfmon().

ERRORS
See strfmon(), with the additional error below.

The strfmon_l() function may fail if:

[EINVAL] locale is not a valid locale object.

EXAMPLES
None.

APPLICATION USAGE
The strfmon_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS

SEE ALSO
fprintf (), localeconv (), strfmon(), the Base Definitions volume of IEEE Std 1003.1-2001,
<monetary.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 49

strftime_l() Changes to the System Interfaces Volume

NAME
strftime_l — convert date and time to a string

SYNOPSIS
MCL #include <time.h>

size_t strftime_l(char *restrict s, size_t maxsize,
const char *restrict format, const struct tm *restrict timeptr,
locale_t locale);

DESCRIPTION
The strftime_l() function shall be equivalent to the strftime() function, except that the current
locale data used is from the locale represented by locale .

RETURN VALUE
See strftime().

ERRORS
The strftime_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The strftime_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock (), ctime(), difftime(), getdate(), gmtime(), localtime (), mktime(), strftime(),
strptime(), time(), tzset(), uselocale(), utime(), Base Definitions volume of IEEE Std 1003.1-2001,
Section 7.3.5, LC_TIME, <time.h>

CHANGE HISTORY
First released in Issue X.

50 Technical Standard (2006)

Changes to the System Interfaces Volume strxfrm_l()

NAME
strxfrm_l — string transformation

SYNOPSIS
MCL #include <string.h>

size_t strxfrm_l(char *restrict s1, const char *restrict s2,
size_t n, locale_t locale);

DESCRIPTION
The strxfrm_l() function shall transform the string pointed to by s2 and place the resulting string
into the array pointed to by s1. The transformation is such that if strcmp() is applied to two
transformed strings, it shall return a value greater than, equal to, or less than 0, corresponding to
the result of strcoll_l () applied to the same two original strings with the same locale . No more
than n bytes are placed into the resulting array pointed to by s1, including the terminating null
byte. If n is 0, s1 is permitted to be a null pointer. If copying takes place between objects that
overlap, the behavior is undefined.

The strxfrm_l() function shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call strxfrm_l(), then check errno.

RETURN VALUE
Upon successful completion, strxfrm_l() shall return the length of the transformed string (not
including the terminating null byte). If the value returned is n or more, the contents of the array
pointed to by s1 are unspecified.

On error, strxfrm_l() may set errno but no return value is reserved to indicate an error.

ERRORS
The strxfrm_l() function may fail if:

[EINVAL] The string pointed to by the s2 argument contains characters outside the
domain of the collating sequence.

[EINVAL] locale is not a valid locale object.

EXAMPLES
None.

APPLICATION USAGE
The strxfrm_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcmp(), strcoll(), the Base Definitions volume of IEEE Std 1003.1-2001, <string.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 51

tolower_l() Changes to the System Interfaces Volume

NAME
tolower_l — transliterate uppercase characters to lowercase

SYNOPSIS
MCL #include <ctype.h>

int tolower_l(int c, locale_t locale);

DESCRIPTION
The tolower_l () function has as a domain a type int, the value of which is representable as an
unsigned char or the value of EOF. If the argument has any other value, the behavior is
undefined. If the argument of tolower_l () represents an uppercase letter, and there exists a
corresponding lowercase letter (as defined by character type information in the category
LC_CTYPE in the locale represented by locale), the result shall be the corresponding lowercase
letter. All other arguments in the domain are returned unchanged.

RETURN VALUE
Upon successful completion, tolower_l () shall return the lowercase letter corresponding to the
argument passed; otherwise, it shall return the argument unchanged.

ERRORS
The tolower_l () function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The tolower_l () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
uselocale(), the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale, <ctype.h>,
<locale.h>

CHANGE HISTORY
First released in Issue X.

52 Technical Standard (2006)

Changes to the System Interfaces Volume toupper_l()

NAME
toupper_l — transliterate lowercase characters to uppercase

SYNOPSIS
MCL #include <ctype.h>

int toupper_l(int c, locale_t locale);

DESCRIPTION
The toupper_l() function has as a domain a type int, the value of which is representable as an
unsigned char or the value of EOF. If the argument has any other value, the behavior is
undefined. If the argument of toupper_l() represents a lowercase letter, and there exists a
corresponding uppercase letter (as defined by character type information in the category
LC_CTYPE in the locale represented by locale), the result shall be the corresponding uppercase
letter. All other arguments in the domain are returned unchanged.

RETURN VALUE
Upon successful completion, toupper_l() shall return the uppercase letter corresponding to the
argument passed.

ERRORS
The toupper_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The toupper_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
uselocale(), the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale, <ctype.h>,
<locale.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 53

towctrans_l() Changes to the System Interfaces Volume

NAME
towctrans_l — wide-character transliteration

SYNOPSIS
MCL #include <wctype.h>

wint_t towctrans_l(wint_t wc, wctrans_t desc,
locale_t locale);

DESCRIPTION

The towctrans_l () function shall transliterate the wide-character code wc using the mapping
described by desc. The setting of the LC_CTYPE category in the locale represented by locale
should be the same as during the call to wctrans_l() that returned the value desc. If the value of
desc is invalid (that is, not obtained by a call to wctrans_l() with the same locale object locale) the
result is unspecified.

An application wishing to check for error situations should set errno to 0 before calling
towctrans_l (). If errno is non-zero on return, an error has occurred.

RETURN VALUE
If successful, the towctrans_l () function shall return the mapped value of wc using the mapping
described by desc. Otherwise, it shall return wc unchanged.

ERRORS
The towctrans_l () function may fail if:

[EINVAL] desc contains an invalid transliteration descriptor.

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The towctrans_l () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

The strings "tolower" and "toupper" are reserved for the standard mapping names. In the
table below, the functions in the left column are equivalent to the functions in the right column.

towlower_l(wc, locale) towctrans_l(wc, wctrans("tolower"), locale)
towupper_l(wc, locale) towctrans_l(wc, wctrans("toupper"), locale)

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
towlower(), towupper(), wctrans(), the Base Definitions volume of IEEE Std 1003.1-2001,
<wctype.h>

CHANGE HISTORY
First released in Issue X.

54 Technical Standard (2006)

Changes to the System Interfaces Volume towlower_l()

NAME
towlower_l — transliterate uppercase wide-character code to lowercase

SYNOPSIS
MCL #include <wctype.h>

wint_t towlower_l(wint_t wc, locale_t locale);

DESCRIPTION
The towlower_l () function has as a domain a type wint_t, the value of which the application shall
ensure is a character representable as a wchar_t, and a wide-character code corresponding to a
valid character in the current locale or the value of WEOF. If the argument has any other value,
the behavior is undefined. If the argument of towlower_l () represents an uppercase wide-
character code, and there exists a corresponding lowercase wide-character code (as defined by
character type information in the locale category LC_CTYPE in the locale represented by locale),
the result shall be the corresponding lowercase wide-character code. All other arguments in the
domain are returned unchanged.

RETURN VALUE
Upon successful completion, towlower_l () shall return the lowercase letter corresponding to the
argument passed; otherwise, it shall return the argument unchanged.

ERRORS
The towlower_l () function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The towlower_l () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
uselocale(), the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale, <locale.h>,
<wctype.h>, <wchar.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 55

towupper_l() Changes to the System Interfaces Volume

NAME
towupper_l — transliterate lowercase wide-character code to uppercase

SYNOPSIS
MCL #include <wctype.h>

wint_t towupper_l(wint_t wc, locale_t locale);

DESCRIPTION
The towupper_l() function has as a domain a type wint_t, the value of which the application
shall ensure is a character representable as a wchar_t, and a wide-character code corresponding
to a valid character in the current locale or the value of WEOF. If the argument has any other
value, the behavior is undefined. If the argument of towupper_l() represents a lowercase wide-
character code, and there exists a corresponding uppercase wide-character code (as defined by
character type information in the locale category LC_CTYPE in the locale represented by locale),
the result shall be the corresponding uppercase wide-character code. All other arguments in the
domain are returned unchanged.

RETURN VALUE
Upon successful completion, towupper_l() shall return the uppercase letter corresponding to the
argument passed. Otherwise, it shall return the argument unchanged.

ERRORS
The towupper_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The towupper_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
uselocale(), the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 7, Locale, <locale.h>,
<wctype.h>, <wchar.h>

CHANGE HISTORY
First released in Issue X.

56 Technical Standard (2006)

Changes to the System Interfaces Volume wcscasecmp_l()

NAME
wcscasecmp_l, wcsncasecmp_l — case-insensitive wide-character string comparisons

SYNOPSIS
MCL #include <wchar.h>

int wcscasecmp_l(const char *ws1, const char *ws2,
locale_t locale);

int wcsncasecmp_l(const char *ws1, const char *ws2,
size_t n, locale_t locale);

DESCRIPTION
The wcscasecmp_l() function shall compare, while ignoring differences in case, the wide-
character string pointed to by ws1 to the wide-character string pointed to by ws2. The
wcsncasecmp_l() function shall compare, while ignoring differences in case, not more than n
wide-characters from the string pointed to by ws1 to the wide-character string pointed to by ws2.

The information about the case of the characters come from the locale represented by locale .

RETURN VALUE
Upon completion, wcscasecmp_l() shall return an integer greater than, equal to, or less than 0, if
the wide-character string pointed to by ws1 is, ignoring case, greater than, equal to, or less than
the wide-character string pointed to by ws2, respectively.

Upon successful completion, wcsncasecmp_l() shall return an integer greater than, equal to, or
less than 0, if the possibly null-terminated array pointed to by ws1 is, ignoring case, greater than,
equal to, or less than the possibly null-terminated array pointed to by ws2, respectively.

ERRORS
The wcscasecmp_l() and wcsncasecmp_l() functions may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The wcscasecmp_l() and wcsncasecmp_l() functions are part of the Multiple Concurrent Locales
option and need not be available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 57

wcscoll_l() Changes to the System Interfaces Volume

NAME
wcscoll_l — wide-character string comparison using collating information

SYNOPSIS
MCL #include <wchar.h>

int wcscoll_l(const wchar_t *ws1, const wchar_t *ws2,
locale_t locale);

DESCRIPTION
The wcscoll_l () function shall compare the wide-character string pointed to by ws1 to the wide-
character string pointed to by ws2, both interpreted as appropriate to the LC_COLLATE category
of the locale represented by locale .

The wcscoll_l () function shall not change the setting of errno if successful.

An application wishing to check for error situations should set errno to 0 before calling
wcscoll_l (). If errno is non-zero on return, an error has occurred.

RETURN VALUE
Upon successful completion, wcscoll_l () shall return an integer greater than, equal to, or less
than 0, according to whether the wide-character string pointed to by ws1 is greater than, equal
to, or less than the wide-character string pointed to by ws2, when both are interpreted as
appropriate to the locale represented by locale . On error, wcscoll_l () shall set errno, but no return
value is reserved to indicate an error.

ERRORS
The wcscoll_l () function may fail if:

[EINVAL] The ws1 or ws2 arguments contain wide-character codes outside the domain of
the collating sequence.

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The wcscoll_l () function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscmp(), wcsxfrm(), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE HISTORY
First released in Issue X.

58 Technical Standard (2006)

Changes to the System Interfaces Volume wcsxfrm_l()

NAME
wcsxfrm_l — wide-character string transformation

SYNOPSIS
MCL #include <wchar.h>

size_t wcsxfrm_l(wchar_t *restrict ws1, const wchar_t *restrict ws2,
size_t n, locale_t locale);

DESCRIPTION
The wcsxfrm_l() function shall transform the wide-character string pointed to by ws2 and place
the resulting wide-character string into the array pointed to by ws1. The transformation shall be
such that if wcscmp() is applied to two transformed wide strings, it shall return a value greater
than, equal to, or less than 0, corresponding to the result of wcscoll() applied to the same two
original wide-character strings and the same locale object locale . No more than n wide-character
codes shall be placed into the resulting array pointed to by ws1, including the terminating null
wide-character code. If n is 0, ws1 is permitted to be a null pointer. If copying takes place
between objects that overlap, the behavior is undefined.

The wcsxfrm_l() function shall not change the setting of errno if successful.

Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call wcsxfrm_l(), then check errno.

RETURN VALUE
The wcsxfrm_l() function shall return the length of the transformed wide-character string (not
including the terminating null wide-character code). If the value returned is n or more, the
contents of the array pointed to by ws1 are unspecified.

On error, the wcsxfrm_l() function may set errno, but no return value is reserved to indicate an
error.

ERRORS
The wcsxfrm_l() function may fail if:

[EINVAL] The wide-character string pointed to by ws2 contains wide-character codes
outside the domain of the collating sequence.

locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The wcsxfrm_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscmp(), wcscoll(), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

Extended API Set Part 4 59

wcsxfrm_l() Changes to the System Interfaces Volume

CHANGE HISTORY
First released in Issue X.

60 Technical Standard (2006)

Changes to the System Interfaces Volume wctrans_l()

NAME
wctrans_l — define character mapping

SYNOPSIS
MCL #include <wctype.h>

wctrans_t wctrans_l(const char *charclass, locale_t locale);

DESCRIPTION
The wctrans_l() function is defined for valid character mapping names identified in the current
locale. The charclass is a string identifying a generic character mapping name for which codeset-
specific information is required. The following character mapping names are defined in all
locales: tolower and toupper.

The function shall return a value of type wctrans_t, which can be used as the second argument
to subsequent calls of towctrans_l (). The wctrans_l() function shall determine values of
wctrans_t according to the rules of the coded character set defined by character mapping
information in the locale represented by locale (category LC_CTYPE). The values returned by
wctrans_l() are only valid in calls to wctrans_l() with the same locale object locale .

RETURN VALUE
The wctrans_l() function shall return 0 and may set errno to indicate the error if the given
character mapping name is not valid for the current locale (category LC_CTYPE); otherwise, it
shall return a non-zero object of type wctrans_t that can be used in calls to towctrans_l ().

ERRORS
The wctrans_l() function may fail if:

[EINVAL] The character mapping name pointed to by charclass is not valid in the current
locale.

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The wctrans_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
towctrans_l (), the Base Definitions volume of IEEE Std 1003.1-2001, <wctype.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 4 61

wctype_l() Changes to the System Interfaces Volume

NAME
wctype_l — define character class

SYNOPSIS
MCL #include <wctype.h>

wctype_t wctype_l(const char *property, locale_t locale);

DESCRIPTION
The wctype_l() function is defined for valid character class names as defined in the locale
represented by locale . The property argument is a string identifying a generic character class for
which codeset-specific type information is required. The following character class names shall be
defined in all locales:

alnum
alpha
blank
cntrl

digit
graph
lower
print

punct
space
upper
xdigit

Additional character class names defined in the locale definition file (category LC_CTYPE) can
also be specified.

The function shall return a value of type wctype_t, which can be used as the second argument to
subsequent calls of iswctype_l(). The wctype_l() function shall determine values of wctype_t
according to the rules of the coded character set defined by character type information in the
locale represented by locale (category LC_CTYPE). The values returned by wctype_l() are only
valid in calls to iswctype_l() with the same locale .

RETURN VALUE
The wctype_l() function shall return 0 if the given character class name is not valid for the
current locale (category LC_CTYPE); otherwise, it shall return an object of type wctype_t that
can be used in calls to iswctype_l().

ERRORS
The wctype_l() function may fail if:

[EINVAL] locale is not a valid locale object handle.

EXAMPLES
None.

APPLICATION USAGE
The wctype_l() function is part of the Multiple Concurrent Locales option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswctype_l(), the Base Definitions volume of IEEE Std 1003.1-2001, <wctype.h>

CHANGE HISTORY
First released in Issue X.

62 Technical Standard (2006)

Index

_POSIX_MULTIPLE_LOCALES..............................5
ABDAY_1..46
duplocale()...9
freelocale() ...11
isalnum_l()...19
isalpha_l() ..20
isblank_l() ..21
iscntrl_l() ..22
isdigit_l()..23
isgraph_l()..24
islower_l()..25
isprint_l() ...27
ispunct_l()..28
isspace_l() ..29
isupper_l() ...30
iswalnum_l() ...31
iswalpha_l()...32
iswblank_l()...33
iswcntrl_l() ..34
iswctype_l()...35
iswdigit_l() ..37
iswgraph_l() ..38
iswlower_l() ..39
iswprint_l()..40
iswpunct_l() ..41
iswspace_l()...42
iswupper_l()..43
iswxdigit_l() ..44
isxdigit_l()..45
LC_COLLATE ...48, 58
LC_CTYPE..52-56, 61-62
locale.h ..4
monetary.h ...4
newlocale() ..13
nl_langinfo_l() ..46
strcasecmp_l()...47
strcoll_l() ..48
strfmon_l()...49
strftime_l() ...50
string.h ..4
strings.h ..5
strncasecmp ...47
strxfrm_l()..51
tolower_l() ...52
toupper_l()...53
towctrans_l() ...54

towlower_l()..55
towupper_l() ...56
unistd.h ...5
uselocale()..16
wchar.h ...5
wcscasecmp_l() ..57
wcscoll_l()..58
wcsncasecmp...57
wcsxfrm_l() ...59
wctrans_l()...61
wctype.h ...5
wctype_l()..62
WEOF.................................31-32, 34-35, 37-44, 55-56

Extended API Set Part 4 63

Index

64 Technical Standard (2006)

