
Technical Standard

Extended API Set Part 2

The Open Group

© October 2006, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Technical Standard

Extended API Set Part 2

ISBN: 1-931624-67-4
Document Number: C063

Published in the U.K. by The Open Group, October 2006.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Thames Tower
37-45 Station Road
Reading
Berkshire, RG1 1LX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii Technical Standard (2006)

Contents

Chapter 1 Introduction... 1
 1.1 Scope.. 1
 1.2 Relationship to Other Formal Standards ... 1

Chapter 2 Changes to the Base Definitions Volume................................ 3
 2.1 Section 1.5.1, Codes .. 3
 2.2 Chapter 13, Headers... 3

Chapter 3 Changes to the System Interfaces Volume............................. 7
 3.1 Changes to Sockets-Related Reference Pages....................................... 7
 3.2 Changes to File-Related Reference Pages .. 7
 3.3 Reference Pages... 9
 faccessat() ... 10
 fchmodat () .. 12
 fchownat () .. 14
 fdopendir ().. 16
 fexecve().. 17
 fstatat () ... 19
 futimesat() .. 21
 linkat ().. 22
 mkdirat() .. 24
 mkfifoat () .. 25
 mknodat () ... 26
 openat()... 27
 readlinkat .. 29
 renameat() .. 30
 symlinkat () ... 32
 unlinkat () ... 33

 Index... 35

Extended API Set Part 2 iii

Contents

iv Technical Standard (2006)

Preface

The Open Group

The Open Group is a vendor-neutral and technology-neutral consortium, whose vision of
Boundaryless Information Flow will enable access to integrated information within and between
enterprises based on open standards and global interoperability. The Open Group works with
customers, suppliers, consortia, and other standards bodies. Its role is to capture, understand,
and address current and emerging requirements, establish policies, and share best practices; to
facilitate interoperability, develop consensus, and evolve and integrate specifications and Open
Source technologies; to offer a comprehensive set of services to enhance the operational
efficiency of consortia; and to operate the industry’s premier certification service, including
UNIX certification.

Further information on The Open Group is available at www.opengroup.org.

The Open Group has over 15 years’ experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of test
suites used to validate conformance to an open standard or specification.

More information is available at www.opengroup.org/certification.

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business
titles. Full details and a catalog are available at www.opengroup.org/bookstore.

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards-compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published at www.opengroup.org/corrigenda.

This Document

This document has been prepared by The Open Group Base Working Group. The Open Group
Base Working Group is considering submitting a number of API sets to the Austin Group as
input to the revision of the Base Specifications, Issue 6.

This is the second document in that set.

Extended API Set Part 2 v

Trademarks

Boundaryless Information FlowTM and TOGAFTM are trademarks and Motif®, Making Standards
Work®, OSF/1®, The Open Group®, UNIX®, and the ‘‘X’’ device are registered trademarks of
The Open Group in the United States and other countries.

vi Technical Standard (2006)

Acknowledgements

The contributions of the following to the development of this document are gratefully
acknowledged:

• The Open Group Base Working Group

Extended API Set Part 2 vii

Acknowledgements

viii Technical Standard (2006)

Chapter 1

Introduction

1.1 Scope
The purpose of this document is to define a set of new API extensions to further increase
application capture and hence portability for systems built upon the Single UNIX Specification,
Version 3.

The scope of this set of extensions has been to consider a set of interfaces drawn from existing
implementations that address a number of common problems with existing functions.

1.2 Relationship to Other Formal Standards
No decision has been made on whether these interfaces will be added to a future Technical
Standard of The Open Group, how these interfaces would announce themselves in the name
space, or whether related interfaces should be merged with existing reference pages. This
Technical Standard is being forwarded to the Austin Group for consideration as input to the
revision of the Base Specifications, Issue 6.

Extended API Set Part 2 1

Introduction

2 Technical Standard (2006)

Chapter 2

Changes to the Base Definitions Volume

It is proposed that these additions comprise a new Option Group called the Extended Interfaces.

2.1 Section 1.5.1, Codes
Add a new margin code as follows:

UX Extended Interfaces

The functionality described is optional. The functionality described is also an extension to
the ISO C standard.

Where applicable, functions are marked with the UX margin legend in the SYNOPSIS
section. Where additional semantics apply to a function, the material is identified by use of
the UX margin legend.

Notes:

1. This section is repeated in XBD, XSH, and XCU and therefore will appear in XBD (Section
1.5.1), XSH (Section 1.8.1), and XCU (Section 1.8.1).

2. The use of UX as a margin code is a placeholder and may change in the final publication.

2.2 Chapter 13, Headers
The following header file reference pages will need the following additions or changes. The
additions should be marked with the UX margin legend and shaded as part of the Extended
Interfaces Option Group.

<dirent.h>

UX The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

DIR *fdopendir(int);

<fcntl.h>

In the Base Definitions volume of IEEE Std 1003.1-2001, Page 224, change Lines 7859-7862 from:

File access modes used for open() and fcntl() are as follows:

O_RDONLY Open for reading only.

O_RDWR Open for reading and writing.

O_WRONLY Open for writing only.

to:

File access modes used for open() and fcntl() are as follows:

UX O_EXEC Open for execute only (non-directory files). Use of this flag on directories
is currently unspecified.

Extended API Set Part 2 3

Chapter 13, Headers Changes to the Base Definitions Volume

O_RDONLY Open for reading only.

O_RDWR Open for reading and writing.

O_WRONLY Open for writing only.

Add a statement in FUTURE DIRECTIONS on Page 225, Line 7903:

The meaning of the O_EXEC flag on directories may be specified in a future version.

UX The following value is a special value used in place of a file descriptor:

AT_FDCWD Use the current working directory to determine the target of relative file
paths.

The following is a value for flag used by faccessat():

AT_EACCESS Check access using effective user and group ID.

The following is a value for flag used by fstatat (), fchmodat (), and fchownat ():

AT_SYMLINK_NOFOLLOW
Do not follow symbolic links.

The following is a value for flag used by linkat ():

AT_SYMLINK_FOLLOW
Follow symbolic link.

The following is a value for flag used by open() and openat():

O_DIRECTORY Fail if not a directory.

O_NOFOLLOW Do not follow symbolic links.

The following is a value for flag used by unlinkat ():

AT_REMOVEDIR Remove directory instead of file.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int openat(int, const char *, int, ...);

<stdio.h>

UX The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int renameat(int, const char *, int, const char *);

<sys/socket.h>

Add to the DESCRIPTION section of <sys/socket.h> after MSG_OOB on Line 12593:

UX MSG_NOSIGNAL No SIGPIPE generated when an attempt to send is made on a stream-
oriented socket that is no longer connected.

4 Technical Standard (2006)

Changes to the Base Definitions Volume Chapter 13, Headers

<sys/stat.h>

UX The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int fstatat(int, const char *, struct stat *, int);
int mkdirat(int, const char *, mode_t);
int mkfifoat(int, const char *, mode_t);
int mknodat(int, const char *, mode_t, dev_t);

<sys/time.h>

UX The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int futimesat(int, const char *, const struct timeval [2]);

<unistd.h>

UX The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int faccessat(int, const char *, int);
int fchmodat(int, const char *, mode_t, int);
int fchownat(int, const char *, uid_t, gid_t, int);
int fexecve(int, char *const [], char *const []);
int linkat(int, const char *, int, const char *, int flag);
ssizt_t readlinkat(int, const char *, char *, size_t);
int symlinkat(const char *, int, const char *);
int unlinkat(int, const char *, int);

Extended API Set Part 2 5

Changes to the Base Definitions Volume

6 Technical Standard (2006)

Chapter 3

Changes to the System Interfaces Volume

3.1 Changes to Sockets-Related Reference Pages
Add the following to the text describing the flags argument after MSG_OOB within the
DESCRIPTION section of send(), sendmsg(), and sendto():

MSG_NOSIGNAL Requests not to send the SIGPIPE signal if an attempt to send is made on
a stream-oriented socket that is no longer connected. The [EPIPE] error
shall still be returned.

3.2 Changes to File-Related Reference Pages
Make the following changes to the open() reference page (the System Interfaces volume of
IEEE Std 1003.1-2001, Page 850).

Change from:

Values for oflag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>. Applications shall specify exactly one of the first three values (file access modes)
below in the value of oflag:

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing. The result is undefined if this flag is
applied to a FIFO.

to:

Values for oflag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>. Applications shall specify exactly one of the first four values (file access modes)
below in the value of oflag:

UX O_EXEC Open for execute only (non-directory files). Use of this flag on directories
is currently unspecified.

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing. The result is undefined if this flag is
applied to a FIFO.

Add the following description between O_CREAT and O_DSYNC:

O_DIRECTORY If path does not name a directory, fail and set errno to [ENOTDIR].

Add the following description between O_NOCTTY and O_NONBLOCK:

O_NOFOLLOW If path names a symbolic link, fail and set errno to [ELOOP].

Extended API Set Part 2 7

Changes to File-Related Reference Pages Changes to the System Interfaces Volume

Under O_TRUNC, change from:

The result of using O_TRUNC with O_RDONLY is undefined.

to:

The result of using O_TRUNC without either O_RDWR or O_WRONLY is undefined.

In the ERRORS section, change from:

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

to:

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument, or O_NOFOLLOW was specified and the path argument names a
symbolic link.

and change from:

[ENOTDIR] A component of the path prefix is not a directory.

to:

[ENOTDIR] A component of the path prefix is not a directory, or O_DIRECTORY was
specified and the path argument does not name a directory.

In the RATIONALE, insert the following text after the paragraphs talking about symbolic links
O_CREAT and O_EXCL (System Interfaces volume of IEEE Std 1003.1-2001, Page 855, Line
27922):

In addition, the open() function refuses to open non-directories if the O_DIRECTORY flag is set.
This avoids race conditions whereby a user might compromise the system by substituting a hard
link to a sensitive file (e.g., a device or a FIFO) while a privileged application is running, where
opening a file even for read access might have undesirable side-effects.

In addition, the open() function does not follow symbolic links if the O_NOFOLLOW flag is set.
This avoids race conditions whereby a user might compromise the system by substituting a
symbolic link to a sensitive file (e.g., a device) while a privileged application is running, where
opening a file even for read access might have undesirable side-effects.

Add rationale for open(). On Page 855, after Line 27916 (after O_RDONLY | O_WRONLY ==
O_RDWR), insert the following text:

O_EXEC is specified as one of the four file access modes. On implementations where none of
O_RDONLY, O_WRONLY, or O_RDWR is zero, applications may open a directory with
O_EXEC OR’d in with one of the other three file access modes. On many historical
implementations, this cannot be done since O_RDONLY has been defined to be zero.

Add a statement to FUTURE DIRECTIONS as follows:

The meaning of the O_EXEC flag on directories may be specified in a future version.

Make the following change to the opendir() reference page.

At the end of the DESCRIPTION, add:

If the type DIR is implemented using a file descriptor, the descriptor shall be obtained as if the
O_DIRECTORY flag was passed to open().

8 Technical Standard (2006)

Changes to the System Interfaces Volume Reference Pages

3.3 Reference Pages
Add the following new system interface descriptions in alphabetical order with the existing
system interface descriptions in Chapter 3, System Interfaces.

Extended API Set Part 2 9

faccessat() Changes to the System Interfaces Volume

NAME
faccessat — determine accessibility of a file relative to directory file descriptor

SYNOPSIS
UX #include <unistd.h>

int faccessat(int fd, const char *path, int amode, int flag);

DESCRIPTION
The faccessat() function shall be equivalent to the access() function except in the case where path
specifies a relative path. In this case the file whose accessibility is to be determined shall be
located relative to the directory associated with the file descriptor fd instead of the current
working directory.

If faccessat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to access().

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_EACCESS The checks for accessibility are performed using the effective user and group
IDs instead of the real user and group ID as required in a call to access().

RETURN VALUE
Upon successful completion, the function shall return 0. Otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
Refer to access(). In addition, the faccessat() function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor.

The faccessat() function may fail if:

[EINVAL] The value of the flag argument is not valid.

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES
None.

APPLICATION USAGE
The faccessat() function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

The use of the AT_EACCESS value for flag enables functionality not available in access().

RATIONALE
The purpose of the faccessat() interface is to enable the checking of the accessibility of files in
directories other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to access(), resulting in unspecified
behavior. By opening a file descriptor for the target directory and using the faccessat() function it
can be guaranteed that the file tested for accessibility is located relative to the desired directory.

10 Technical Standard (2006)

Changes to the System Interfaces Volume faccessat()

FUTURE DIRECTIONS
None.

SEE ALSO
access(), chmod(), stat(), the Base Definitions volume of IEEE Std 1003.1-2001, <fcntl.h>,
<unistd.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 2 11

fchmodat() Changes to the System Interfaces Volume

NAME
fchmodat — change mode of a file relative to directory file descriptor

SYNOPSIS
UX #include <sys/stat.h>

int fchmodat(int fd, const char *path, mode_t mode, int flag);

DESCRIPTION
The fchmodat () function shall be equivalent to the chmod() function except in the case where path
specifies a relative path. In this case the file to be changed is determined relative to the directory
associated with the file descriptor fd instead of the current working directory. The test for
whether fd is searchable is based on whether fd is open for searching, not whether the underlying
directory currently permits searches.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_SYMLINK_NOFOLLOW
If path names a symbolic link, then the mode of the symbolic link is changed.

If fchmodat () is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used. If also flag is zero, the behavior shall be identical to a call to chmod().

RETURN VALUE
Upon successful completion, the function shall return 0. Otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
Refer to chmod(). In addition, the fchmodat () function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

The fchmodat () function may fail if:

[EINVAL] The value of the flag argument is not valid.

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

[EOPNOTSUPP] The AT_SYMLINK_NOFOLLOW bit is set in the flag argument, path names a
symbolic link, and the system does not support changing the mode of a
symbolic link.

EXAMPLES
None.

APPLICATION USAGE
The fchmodat () function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
The purpose of the fchmodat () interface is to enable changing the mode of files in directories
other than the current working directory without exposure to race conditions. Any part of the
path of a file could be changed in parallel to a call to chmod(), resulting in unspecified behavior.
By opening a file descriptor for the target directory and using the fchmodat () function it can be
guaranteed that the changed file is located relative to the desired directory. Some
implementations might allow changing the mode of symbolic links. This is not supported by the

12 Technical Standard (2006)

Changes to the System Interfaces Volume fchmodat()

interfaces in the POSIX specification. Systems with such support provide an interface named
lchmod(). To support such implementations fchmodat () has a flag parameter.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), stat(), the Base Definitions volume of IEEE Std 1003.1-2001, <fcntl.h>, <sys/stat.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 2 13

fchownat() Changes to the System Interfaces Volume

NAME
fchownat — change owner and group of a file relative to directory file descriptor

SYNOPSIS
UX #include <unistd.h>

int fchownat(int fd, const char *path, uid_t owner, gid_t group,
int flag);

DESCRIPTION
The fchownat () function shall be equivalent to the chown() and lchown() functions except in the
case where path specifies a relative path. In this case the file to be changed is determined relative
to the directory associated with the file descriptor fd instead of the current working directory.
The test for whether fd is searchable is based on whether fd is open for searching, not whether
the underlying directory currently permits searches.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_SYMLINK_NOFOLLOW
If path names a symbolic link, ownership of the symbolic link is changed.

If fchownat () is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to chown() or lchown() respectively,
depending on whether or not the AT_SYMLINK_NOFOLLOW bit is set in the flag argument.

RETURN VALUE
Upon successful completion, the function shall return 0. Otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
Refer to lchown(). In addition, the fchownat () function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

The fchownat () function may fail if:

[EINVAL] The value of the flag argument is not valid.

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

[EOPNOTSUPP] The path argument names a symbolic link and the implementation does not
support setting the owner or group of a symbolic link.

EXAMPLES
None.

APPLICATION USAGE
The fchownat () function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
The purpose of the fchownat () interface is to enable changing ownership of files in directories
other than the current working directory without exposure to race conditions. Any part of the
path of a file could be changed in parallel to a call to chown() or lchown(), resulting in
unspecified behavior. By opening a file descriptor for the target directory and using the
fchownat () function it can be guaranteed that the changed file is located relative to the desired

14 Technical Standard (2006)

Changes to the System Interfaces Volume fchownat()

directory.

FUTURE DIRECTIONS
None.

SEE ALSO
chown(), lchown(), the Base Definitions volume of IEEE Std 1003.1-2001, <fcntl.h>, <unistd.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 2 15

fdopendir() Changes to the System Interfaces Volume

NAME
fdopendir — open directory associated with file descriptor

SYNOPSIS
UX #include <dirent.h>

DIR *fdopendir(int fd);

DESCRIPTION
The fdopendir () function shall be equivalent to the opendir() function except that the directory is
specified by a file descriptor rather than by a name. The file offset associated with the file
descriptor at the time of the call determines which entries are returned.

Upon successful return from fdopendir (), the file descriptor is under the control of the system,
and if any attempt is made to close the file descriptor, or to modify the state of the associated
description other than by means of closedir(), readdir(), readdir_r(), or rewinddir(), the behavior is
implementation-defined. Upon calling closedir() the file descriptor shall be closed.

It is unspecified whether the FD_CLOEXEC flag will be set on the file descriptor by a successful
call to fdopendir ().

RETURN VALUE
Upon successful completion, fdopendir () shall return a pointer to an object of type DIR.
Otherwise, a null pointer shall be returned and errno set to indicate the error.

ERRORS
The fdopendir () function shall fail if:

[EBADF] The fd argument is not a valid file descriptor open for searching.

[ENOTDIR] The descriptor fd is not associated with a directory.

EXAMPLES
None.

APPLICATION USAGE
The fdopendir () function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
The purpose of the fdopendir () interface is to enable opening files in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to opendir(), resulting in unspecified behavior.

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), open(), openat(), opendir(), readdir(), readdir_r(), rewinddir(), the Base Definitions
volume of IEEE Std 1003.1-2001, <dirent.h>

CHANGE HISTORY
First released in Issue X.

16 Technical Standard (2006)

Changes to the System Interfaces Volume fexecve()

NAME
fexecve — execute a file

SYNOPSIS
UX #include <unistd.h>

int fexecve(int fd, char *const argv[], char *const envp[]);

DESCRIPTION
The fexecve() function shall be equivalent to the execve() function except that the file to be
executed is determined by the file descriptor fd instead of a pathname.

The file offset of fd is ignored.

RETURN VALUE
If the fexecve() function returns to the calling process image, an error has occurred; the return
value shall be −1, and errno shall be set to indicate the error.

ERRORS
The fexecve() function shall fail if:

[E2BIG] The number of bytes used by the new process image’s argument list and
environment list is greater than the system-imposed limit of {ARG_MAX}
bytes.

[EACCESS] The new process image file denies execution permission, or the new process
image file is not a regular file and the implementation does not support
execution of files of its type.

[EBADF] The fd argument is not a valid file descriptor open for executing.

[EINVAL] The new process image file has the appropriate permission and has a
recognized executable binary format, but the system does not support
execution of a file with this format.

[ENOEXEC] The new process image file has the appropriate access permission but has an
unrecognized format.

The fexecve() function may fail if:

[ENOMEM] The new process image requires more memory than is allowed by the
hardware or system-imposed memory management constraints.

[ETXTBSY] The new process image file is a pure procedure (shared text) file that is
currently open for writing by some process.

EXAMPLES
None.

APPLICATION USAGE
The fexecve() function is part of the Extended Interfaces Option Group and need not be available
on all implementations.

If an application wants to perform a checksum test of the file being executed before executing it,
the file will need to be opened with read permission to perform the checksum test.

Since execute permission is checked by fexecve(), the file description fd need not have been
opened with the O_EXEC flag. However, if the file to be executed denies read and write
permission for the process preparing to do the exec, the only way to provide the fd to fexecve()
will be to use the O_EXEC flag when opening fd . In this case, the application will not be able to

Extended API Set Part 2 17

fexecve() Changes to the System Interfaces Volume

perform a checksum test since it will not be able to read the contents of the file.

Note that when a file descriptor is opened with O_RDONLY, O_RDWR, or O_WRONLY mode,
the file descriptor can be used to read, read and write, or write the file, respectively, even if the
mode of the file changes after the file was opened. Using the O_EXEC open mode is different;
fexecve() will ignore the mode that was used when the file descriptor was opened and the exec
will fail if the mode of the file associated with fd does not grant execute permission to the calling
process at the time fexecve() is called.

RATIONALE
The purpose of the fexecve() interface is to enable executing a file which has been verified to be
the intended file. It is possible to actively check the file by reading from the file descriptor and be
sure that the file is not exchanged for another between the reading and the execution.
Alternatively, an interface like openat() can be used to open a file which has been found by
reading the content of a directory using readdir().

FUTURE DIRECTIONS
None.

SEE ALSO
exec, open(), openat(), readdir(), the Base Definitions volume of IEEE Std 1003.1-2001, <unistd.h>

CHANGE HISTORY
First released in Issue X.

18 Technical Standard (2006)

Changes to the System Interfaces Volume fstatat()

NAME
fstatat — get status of a file relative to directory file descriptor

SYNOPSIS
UX #include <sys/stat.h>

int fstatat(int fd, const char *restrict path,
struct stat *restrict buf, int flag);

DESCRIPTION
The fstatat () function shall be equivalent to the stat() and lstat() functions except in the case
where path specifies a relative path. In this case the status shall be retrieved from a file relative to
the directory associated with the file descriptor fd instead of the current working directory. The
test for whether fd is searchable is based on whether fd is open for searching, not whether the
underlying directory currently permits searches.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_SYMLINK_NOFOLLOW
If path names a symbolic link, the status of the symbolic link is returned.

If fstatat () is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to stat() or lstat() respectively,
depending on whether or not the AT_SYMLINK_NOFOLLOW bit is set in flag .

RETURN VALUE
Upon successful completion, the function shall return 0. Otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
Refer to lstat(). In addition, the fstatat () function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

The fstatat () function may fail if:

[EINVAL] The value of the flag argument is not valid.

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES
None.

APPLICATION USAGE
The fstatat () function is part of the Extended Interfaces Option Group and need not be available
on all implementations.

RATIONALE
The purpose of the fstatat () interface is to obtain the status of files in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to stat(), resulting in unspecified behavior. By opening a
file descriptor for the target directory and using the fstatat () function it can be guaranteed that
the file for which status is returned is located relative to the desired directory.

Extended API Set Part 2 19

fstatat() Changes to the System Interfaces Volume

FUTURE DIRECTIONS
None.

SEE ALSO
lstat(), stat(), the Base Definitions volume of IEEE Std 1003.1-2001, <fcntl.h>, <sys/stat.h>

CHANGE HISTORY
First released in Issue X.

20 Technical Standard (2006)

Changes to the System Interfaces Volume futimesat()

NAME
futimesat — set access and modification time of a file relative to directory file descriptor

SYNOPSIS
UX #include <sys/time.h>

int futimesat(int fd, const char *path, const struct timeval times[2]);

DESCRIPTION
The futimesat() function shall be equivalent to the utimes() function except in the case where path
specifies a relative path. In this case the access and modification time is set to that of a file
relative to the directory associated with the file descriptor fd instead of the current working
directory. The test for whether fd is searchable is based on whether fd is open for searching, not
whether the underlying directory currently permits searches.

If futimesat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to utimes().

RETURN VALUE
Upon successful completion, the function shall return 0. Otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
Refer to utimes(). In addition, the futimesat() function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

The futimesat() function may fail if:

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES
None.

APPLICATION USAGE
The futimesat() function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
The purpose of the futimesat() interface is to set the access and modification time of files in
directories other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to utimes(), resulting in unspecified
behavior. By opening a file descriptor for the target directory and using the futimesat() function
it can be guaranteed that the changed file is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
utimes(), the Base Definitions volume of IEEE Std 1003.1-2001, <fcntl.h>, <sys/time.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 2 21

linkat() Changes to the System Interfaces Volume

NAME
linkat — link one file to another file relative to two directory file descriptors

SYNOPSIS
UX #include <unistd.h>

int linkat(int fd1, const char *path1, int fd2, const char *path2,
int flag);

DESCRIPTION
The linkat () function shall be equivalent to the link () function except in the case where either
path1 or path2 or both are relative paths. In this case a relative path path1 is interpreted relative to
the directory associated with the file descriptor fd1 instead of the current working directory and
similarly for path2 and the file descriptor fd2 . The test for whether fd is searchable is based on
whether fd is open for searching, not whether the underlying directory currently permits
searches.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_SYMLINK_FOLLOW
If path1 names a symbolic link, a new link for the target of the symbolic link is
created.

If linkat () is passed the special value AT_FDCWD in the fd1 or fd2 parameter, the current
working directory is used for the respective path argument. If both fd1 and fd2 have value
AT_FDCWD, the behavior shall be identical to a call to link ().

Unless flag contains the AT_SYMLINK_FOLLOW flag, if path1 names a symbolic link, a new link
is created for the symbolic link path1 and not its target.

RETURN VALUE
Upon successful completion, the function shall return 0. Otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
Refer to link (). In addition, the linkat () function shall fail if:

[EBADF] The path1 or path2 argument does not specify an absolute path and the fd1 or
fd2 argument, respectively, is neither AT_FDCWD nor a valid file descriptor
open for searching.

The linkat () function may fail if:

[EINVAL] The value of the flag argument is not valid.

[ENOTDIR] The path1 or path2 argument is not an absolute path and fd1 or fd2,
respectively, is neither AT_FDCWD nor a file descriptor associated with a
directory.

22 Technical Standard (2006)

Changes to the System Interfaces Volume linkat()

EXAMPLES
None.

APPLICATION USAGE
The linkat () function is part of the Extended Interfaces Option Group and need not be available
on all implementations.

RATIONALE
The purpose of the linkat () interface is to link files in directories other than the current working
directory without exposure to race conditions. Any part of the path of a file could be changed in
parallel to a call to link (), resulting in unspecified behavior. By opening a file descriptor for the
directory of both the existing file and the target location and using the linkat () function it can be
guaranteed that the both filenames are in the desired directories.

The AT_SYMLINK_FOLLOW flag allows for implementing both common behaviors of the link ()
function. The POSIX specification requires that if path1 is a symbolic link, a new link for the
target of the symbolic link is created. Many systems by default or as an alternative provide a
mechanism to avoid the implicit symlink lookup and create a new link for the symbolic link
itself.

FUTURE DIRECTIONS
None.

SEE ALSO
link (), the Base Definitions volume of IEEE Std 1003.1-2001, <fcntl.h>, <unistd.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 2 23

mkdirat() Changes to the System Interfaces Volume

NAME
mkdirat — make a directory relative to directory file descriptor

SYNOPSIS
UX #include <sys/stat.h>

int mkdirat(int fd, const char *path, mode_t mode);

DESCRIPTION
The mkdirat() function shall be equivalent to the mkdir() function except in the case where path
specifies a relative path. In this case the newly created directory is created relative to the
directory associated with the file descriptor fd instead of the current working directory. The test
for whether fd is searchable is based on whether fd is open for searching, not whether the
underlying directory currently permits searches.

If mkdirat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to mkdir().

RETURN VALUE
Upon successful completion, the function shall return 0. Otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
Refer to mkdir(). In addition, the mkdirat() function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

The mkdirat() function may fail if:

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES
None.

APPLICATION USAGE
The mkdirat() function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
The purpose of the mkdirat() interface is to create a directory in directories other than the current
working directory without exposure to race conditions. Any part of the path of a file could be
changed in parallel to the call to mkdir(), resulting in unspecified behavior. By opening a file
descriptor for the target directory and using the mkdirat() function it can be guaranteed that the
newly created directory is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
mkdir(), the Base Definitions volume of IEEE Std 1003.1-2001, <fcntl.h>, <sys/stat.h>

CHANGE HISTORY
First released in Issue X.

24 Technical Standard (2006)

Changes to the System Interfaces Volume mkfifoat()

NAME
mkfifoat — make a FIFO special file relative to directory file descriptor

SYNOPSIS
UX #include <sys/stat.h>

int mkfifoat(int fd, const char *path, mode_t mode);

DESCRIPTION
The mkfifoat () function shall be equivalent to the mkfifo() function except in the case where path
specifies a relative path. In this case the newly created FIFO is created relative to the directory
associated with the file descriptor fd instead of the current working directory. The test for
whether fd is searchable is based on whether fd is open for searching, not whether the underlying
directory currently permits searches.

If mkfifoat () is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to mkfifo().

RETURN VALUE
Upon successful completion, the function shall return 0. Otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
Refer to mkfifo(). In addition, the mkfifoat () function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

The mkfifoat () function may fail if:

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES
None.

APPLICATION USAGE
The mkfifoat () function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
The purpose of the mkfifoat () interface is to create a FIFO special file in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to mkfifo(), resulting in unspecified behavior. By opening a
file descriptor for the target directory and using the mkfifoat () function it can be guaranteed that
the newly created FIFO is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
mkfifo(), the Base Definitions volume of IEEE Std 1003.1-2001, <fcntl.h>, <sys/stat.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 2 25

mknodat() Changes to the System Interfaces Volume

NAME
mknodat — make a directory, a special file, or a regular file relative to directory file descriptor

SYNOPSIS
UX #include <sys/stat.h>

int mknodat(int fd, const char *path, mode_t mode, dev_t dev);

DESCRIPTION
The mknodat () function shall be equivalent to the mknod() function except in the case where path
specifies a relative path. In this case the newly created directory, special file, or regular file is
located relative to the directory associated with the file descriptor fd instead of the current
working directory. The test for whether fd is searchable is based on whether fd is open for
searching, not whether the underlying directory currently permits searches.

If mknodat () is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to mknod().

RETURN VALUE
Upon successful completion, the function shall return 0. Otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
Refer to mknod(). In addition, the mknodat () function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

The mknodat () function may fail if:

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES
None.

APPLICATION USAGE
The mknodat () function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
The purpose of the mknodat () interface is to create directories, special files, or regular files in
directories other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to mknod(), resulting in unspecified
behavior. By opening a file descriptor for the target directory and using the mknodat () function it
can be guaranteed that the newly created directory, special file, or regular file is located relative
to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
mknod(), the Base Definitions volume of IEEE Std 1003.1-2001, <fcntl.h>, <sys/stat.h>

CHANGE HISTORY
First released in Issue X.

26 Technical Standard (2006)

Changes to the System Interfaces Volume openat()

NAME
openat — open file relative to directory file descriptor

SYNOPSIS
UX #include <fcntl.h>

int openat(int fd, const char *path, int flag, ...);

DESCRIPTION
The openat() function shall be equivalent to the open() function except in the case where path
specifies a relative path. In this case the file to be opened is determined relative to the directory
associated with the file descriptor fd instead of the current working directory. The test for
whether fd is searchable is based on whether fd is open for searching, not whether the underlying
directory currently permits searches. The flag parameter and the optional fourth parameter
correspond exactly to the parameters of open().

If openat() is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to open().

RETURN VALUE
Upon successful completion, the function shall open the file and return a non-negative integer
representing the lowest numbered unused file descriptor. Otherwise, −1 shall be returned and
errno shall be set to indicate the error. No files shall be created or modified if the function returns
−1.

ERRORS
Refer to open(). In addition, the openat() function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

The openat() function may fail if:

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES
None.

APPLICATION USAGE
The openat() function is part of the Extended Interfaces Option Group and need not be available
on all implementations.

RATIONALE
The purpose of the openat() interface is to enable opening files in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to open(), resulting in unspecified behavior. By opening a
file descriptor for the target directory and using the openat() function it can be guaranteed that
the opened file is located relative to the desired directory. Some implementations use the
openat() interface for other purposes as well. In some cases, if the flag parameter has the
O_XATTR bit set, the returned file descriptor provides access to extended attributes. This
functionality is not standardized here.

FUTURE DIRECTIONS
None.

Extended API Set Part 2 27

openat() Changes to the System Interfaces Volume

SEE ALSO
open(), the Base Definitions volume of IEEE Std 1003.1-2001, <fcntl.h>

CHANGE HISTORY
First released in Issue X.

28 Technical Standard (2006)

Changes to the System Interfaces Volume readlinkat

NAME
readlinkat — read the content of a symlink relative to a directory file descriptor

SYNOPSIS
XSI #include <unistd.h>

ssize_t readlinkat(int fd, const char *path, char *buf,
size_t bufsize);

DESCRIPTION
The readlinkat () function shall be equivalent to the readlink () function except in the case where
path specifies a relative path. In this case the symbolic link whose content is read is relative to the
directory associated with the file descriptor fd instead of the current working directory. The test
for whether fd is searchable is based on whether fd is open for searching, not whether the
underlying directory currently permits searches.

If readlinkat () is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to readlink ().

RETURN VALUE
Upon successful completion, the function shall return 0. Otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
Refer to readlink (). In addition, the readlinkat () function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

The readlinkat () function may fail if:

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES
None.

APPLICATION USAGE
The readlinkat () function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
The purpose of the readlinkat () interface is to read the content of symbolic links in directories
other than the current working directory without exposure to race conditions. Any part of the
path of a file could be changed in parallel to a call to readlink (), resulting in unspecified behavior.
By opening a file descriptor for the target directory and using the readlinkat () function it can be
guaranteed that the symbolic link read is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
readlink (), the Base Definitions volume of IEEE Std 1003.1-2001, <fcntl.h>, <unistd.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 2 29

renameat() Changes to the System Interfaces Volume

NAME
renameat — rename a file relative to directory file descriptor

SYNOPSIS
UX #include <stdio.h>

int renameat(int oldfd, const char *old, int newfd,
const char *new);

DESCRIPTION
The renameat() function shall be equivalent to the rename() function except in the case where
either old or new specifies a relative path. If old is a relative path, the file to be renamed is located
relative to the directory associated with the file descriptor oldfd instead of the current working
directory. If new is a relative path, the same happens only relative to the directory associated
with newfd. The test for whether oldfd is searchable is based on whether oldfd is open for
searching, not whether the underlying directory currently permits searches.

If renameat() is passed the special value AT_FDCWD in the oldfd or newfd parameter, the current
working directory shall be used in the determination of the file for the respective path parameter.

RETURN VALUE
Upon successful completion, the function shall return 0. Otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
Refer to rename(). In addition, the renameat() function shall fail if:

[EBADF] The old argument does not specify an absolute path and the oldfd argument is
neither AT_FDCWD nor a valid file descriptor open for searching, or the new
argument does not specify an absolute path and the newfd argument is neither
AT_FDCWD nor a valid file descriptor open for searching.

The renameat() function may fail if:

[ENOTDIR] The old argument is not an absolute path and oldfd is neither AT_FDCWD nor
a file descriptor associated with a directory, or the new argument is not an
absolute path and newfd is neither AT_FDCWD nor a file descriptor associated
with a directory.

EXAMPLES
None.

APPLICATION USAGE
The renameat() function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
The purpose of the renameat() interface is to rename files in directories other than the current
working directory without exposure to race conditions. Any part of the path of a file could be
changed in parallel to a call to rename(), resulting in unspecified behavior. By opening file
descriptors for the source and target directories and using the renameat() function it can be
guaranteed that that renamed file is located correctly and the resulting file is in the desired
directory.

30 Technical Standard (2006)

Changes to the System Interfaces Volume renameat()

FUTURE DIRECTIONS
None.

SEE ALSO
rename(), the Base Definitions volume of IEEE Std 1003.1-2001, <fcntl.h>, <stdio.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 2 31

symlinkat() Changes to the System Interfaces Volume

NAME
symlinkat — make a symlink relative to directory file descriptor

SYNOPSIS
UX #include <unistd.h>

int symlinkat(const char *path1, int fd, const char *path2);

DESCRIPTION
The symlinkat () function shall be equivalent to the symlink() function except in the case where
path2 specifies a relative path. In this case the symbolic link is created relative to the directory
associated with the file descriptor fd instead of the current working directory. The test for
whether fd is searchable is based on whether fd is open for searching, not whether the underlying
directory currently permits searches.

If symlinkat () is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to symlink().

RETURN VALUE
Upon successful completion, the function shall return 0. Otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
Refer to symlink(). In addition, the symlinkat () function shall fail if:

[EBADF] The path2 argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

The symlinkat () function may fail if:

[ENOTDIR] The path2 argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

EXAMPLES
None.

APPLICATION USAGE
The symlinkat () function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
The purpose of the symlinkat () interface is to create symbolic links in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to symlink(), resulting in unspecified behavior. By opening
a file descriptor for the target directory and using the symlinkat () function it can be guaranteed
that the created symbolic link is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
symlink(), the Base Definitions volume of IEEE Std 1003.1-2001, <fcntl.h>, <unistd.h>

CHANGE HISTORY
First released in Issue X.

32 Technical Standard (2006)

Changes to the System Interfaces Volume unlinkat()

NAME
unlinkat — remove a directory entry relative to directory file descriptor

SYNOPSIS
UX #include <unistd.h>

int unlinkat(int fd, const char *path, int flag);

DESCRIPTION
The unlinkat () function shall be equivalent to the unlink() or rmdir() function except in the case
where path specifies a relative path. In this case the directory entry to be removed is determined
relative to the directory associated with the file descriptor fd instead of the current working
directory. The test for whether fd is searchable is based on whether fd is open for searching, not
whether the underlying directory currently permits searches.

Values for flag are constructed by a bitwise-inclusive OR of flags from the following list, defined
in <fcntl.h>:

AT_REMOVEDIR Remove the directory entry specified by fd and path as a directory, not a
normal file.

If unlinkat () is passed the special value AT_FDCWD in the fd parameter, the current working
directory is used and the behavior shall be identical to a call to unlink() or rmdir() respectively,
depending on whether or not the AT_REMOVEDIR bit is set in flag .

RETURN VALUE
Upon successful completion, the function shall return 0. Otherwise, it shall return −1 and set
errno to indicate the error.

ERRORS
Refer to unlink(). In addition, the unlinkat () function shall fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is
neither AT_FDCWD nor a valid file descriptor open for searching.

[EEXIST] or [ENOTEMPTY]
The flag parameter has the AT_REMOVEDIR bit set and the path argument
names a directory that is not an empty directory, or there are hard links to the
directory other than dot or a single entry in dot-dot.

[ENOTDIR] The flag parameter has the AT_REMOVEDIR bit set and path does not name a
directory.

The unlinkat () function may fail if:

[EINVAL] The value of the flag argument is not valid.

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a
file descriptor associated with a directory.

Extended API Set Part 2 33

unlinkat() Changes to the System Interfaces Volume

EXAMPLES
None.

APPLICATION USAGE
The unlinkat () function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
The purpose of the unlinkat () interface is to remove directory entries in directories other than the
current working directory without exposure to race conditions. Any part of the path of a file
could be changed in parallel to a call to unlink(), resulting in unspecified behavior. By opening a
file descriptor for the target directory and using the unlinkat () function it can be guaranteed that
the removed directory entry is located relative to the desired directory.

FUTURE DIRECTIONS
None.

SEE ALSO
rmdir(), unlink(), the Base Definitions volume of IEEE Std 1003.1-2001, <fcntl.h>, <unistd.h>

CHANGE HISTORY
First released in Issue X.

34 Technical Standard (2006)

Index

AT_EACCESS ..4
AT_FDCWD...4
AT_REMOVEDIR ...4
AT_SYMLINK_FOLLOW4, 22
AT_SYMLINK_NOFOLLOW................4, 12, 14, 19
dirent.h..3
faccessat() ..10
fchmodat() ...12
fchownat() ...14
fcntl.h...3
fdopendir() ..16
fexecve()...17
fstatat() ...19
futimesat() ...21
linkat() ..22
mkdirat() ..24
mkfifoat() ...25
mknodat() ..26
MSG_NOSIGNAL ..4
openat() ..27
O_DIRECTORY...4
O_EXEC ..3, 7
O_NOFOLLOW ..4
O_RDONLY ...3
O_RDWR..3
O_WRONLY ..3
readlinkat ...29
renameat() ...30
stdio.h..4
symlinkat() ..32
sys/socket.h ...4
sys/stat.h ..5
sys/time.h ..5
unistd.h ...5
unlinkat() ...33

Extended API Set Part 2 35

Index

36 Technical Standard (2006)

