
Technical Standard

Extended API Set Part 1

The Open Group



© October 2006, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Technical Standard

Extended API Set Part 1

ISBN: 1-931624-66-6
Document Number: C062

Published in the U.K. by The Open Group, October 2006.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Thames Tower
37-45 Station Road
Reading
Berkshire, RG1 1LX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii Technical Standard (2006)



Contents

Chapter 1 Introduction............................................................................................... 1
  1.1    Scope.............................................................................................................. 1
  1.2    Relationship to Other Formal Standards ............................................... 1

Chapter 2 Changes to the Base Definitions Volume................................ 3
  2.1    Section 1.5.1, Codes .................................................................................... 3
  2.2    Section 3.362, Stream.................................................................................. 3
  2.3    Chapter 13, Headers................................................................................... 3

Chapter 3 Changes to the Shell and Utilities Volume............................ 5

Chapter 4 Changes to the System Interfaces Volume............................. 7
  4.1    Section 2.5, Standard I/O Streams .......................................................... 7
  4.2    fclose( ) and fflush( ).................................................................................... 7
  4.3    Reference Pages........................................................................................... 8
    alphasort ( ) ........................................................................................................ 9
    dirfd( )................................................................................................................ 11
    dprintf( )............................................................................................................ 13
    fmemopen( )....................................................................................................... 14
    getdelim( ) ......................................................................................................... 17
    mbsnrtowcs( ).................................................................................................... 19
    mkdtemp( ) ........................................................................................................ 21
    open_memstream( ) .......................................................................................... 23
    psiginfo ( ) .......................................................................................................... 25
    stpcpy( )............................................................................................................. 26
    stpncpy( ) .......................................................................................................... 27
    strndup( ) .......................................................................................................... 28
    strnlen( )............................................................................................................ 29
    strsignal( )......................................................................................................... 30
    wcpcpy( ) ........................................................................................................... 31
    wcpncpy( )......................................................................................................... 32
    wcscasecmp( ).................................................................................................... 33
    wcsdup( ) ........................................................................................................... 34
    wcsncasecmp( ) ................................................................................................. 35
    wcsnlen( ) .......................................................................................................... 36
    wcsnrtombs( ).................................................................................................... 37

    Index............................................................................................................... 39

Extended API Set Part 1 iii



Contents

iv Technical Standard (2006)



Preface

The Open Group

The Open Group is a vendor-neutral and technology-neutral consortium, whose vision of
Boundaryless Information Flow will enable access to integrated information within and between
enterprises based on open standards and global interoperability. The Open Group works with
customers, suppliers, consortia, and other standards bodies. Its role is to capture, understand,
and address current and emerging requirements, establish policies, and share best practices; to
facilitate interoperability, develop consensus, and evolve and integrate specifications and Open
Source technologies; to offer a comprehensive set of services to enhance the operational
efficiency of consortia; and to operate the industry’s premier certification service, including
UNIX certification.

Further information on The Open Group is available at www.opengroup.org.

The Open Group has over 15 years’ experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of test
suites used to validate conformance to an open standard or specification.

More information is available at www.opengroup.org/certification.

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business
titles. Full details and a catalog are available at www.opengroup.org/bookstore.

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards-compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published at www.opengroup.org/corrigenda.

This Document

This document has been prepared by The Open Group Base Working Group. The Open Group
Base Working Group is considering submitting a number of API sets to the Austin Group as
input to the revision of the Base Specifications, Issue 6.

This is the first document in that set.

Extended API Set Part 1 v



Trademarks

Boundaryless Information FlowTM and TOGAFTM are trademarks and Motif®, Making Standards
Work®, OSF/1®, The Open Group®, UNIX®, and the ‘‘X’’ device are registered trademarks of
The Open Group in the United States and other countries.

vi Technical Standard (2006)



Acknowledgements

The contributions of the following to the development of this document are gratefully
acknowledged:

• The Open Group Base Working Group

Extended API Set Part 1 vii



Acknowledgements

viii Technical Standard (2006)



Chapter 1

Introduction

1.1 Scope
The purpose of this document is to define a set of new API extensions to further increase
application capture and hence portability for systems built upon the Single UNIX Specification,
Version 3.

The scope of this set of extensions has been to consider interfaces from existing open source
implementations, such as the GNU C library.

1.2 Relationship to Other Formal Standards
No decision has been made on whether these interfaces will be added to a future Technical
Standard of The Open Group, how these interfaces would announce themselves in the name
space, or whether related interfaces should be merged with existing reference pages. This
Technical Standard is being forwarded to the Austin Group for consideration as input to the
revision of the Base Specifications, Issue 6.

Extended API Set Part 1 1



Introduction

2 Technical Standard (2006)



Chapter 2

Changes to the Base Definitions Volume

It is proposed that these additions comprise a new Option Group called Extended Interfaces.

2.1 Section 1.5.1, Codes
Add a new margin code as follows:

UX Extended Interfaces

The functionality described is optional. The functionality described is also an extension to
the ISO C standard.

Where applicable, functions are marked with the UX margin legend in the SYNOPSIS
section. Where additional semantics apply to a function, the material is identified by use of
the UX margin legend.

Notes:

1. This section is repeated in XBD, XSH, and XCU and therefore will appear in XBD (Section
1.5.1), XSH (Section 1.8.1), and XCU (Section 1.8.1).

2. The use of UX as a margin code is a placeholder and may change in the final publication.

2.2 Section 3.362, Stream
Add fmemopen( ) and open_memstream( ) to the list of functions that can create a stream, marked
with the UX margin legend and shaded.

2.3 Chapter 13, Headers
The following header file reference pages will need the following additions, marked with the UX
margin legend and shaded as part of the Extended Interfaces Option Group.

<dirent.h>

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int alphasort(const struct dirent **, const struct dirent **);
int dirfd (DIR *);
int scandir (const char *, struct dirent ***,

int (*) (const struct dirent *),
int (*) (const struct dirent **, const struct dirent **));

Extended API Set Part 1 3



Chapter 13, Headers Changes to the Base Definitions Volume

<signal.h>

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void psignal (int, const char *);
void psiginfo (siginfo_t *, const char *);

<stdio.h>

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

int dprintf (int, const char *, ...);
FILE *fmemopen(void *,size_t, const char *);
ssize_t getdelim (char **, size_t *, int, FILE *);
ssize_t getline (char **, size_t *, FILE *);
FILE *open_memstream(char **, size_t *);

<stdlib.h>

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

char *mkdtemp(char *);

<string.h>

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

char *stpcpy (char *, const char *);
char *stpncpy (char *, const char *, size_t);
char *strndup (const char *, size_t);
size_t strnlen (const char *, size_t);
char *strsignal(int signum);

<wchar.h>

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

size_t mbsnrtowcs (wchar_t *, const char **, size_t, size_t, mbstate_t *);
wchar_t *wcpcpy (wchar_t *, const wchar_t *);
wchar_t *wcpncpy (wchar_t *, const wchar_t *, size_t);
int wcscasecmp (const wchar_t *, const wchar_t *);
wchar_t *wcsdup (const wchar_t *);
int wcsncasecmp (const wchar_t *, const wchar_t *, size_t);
size_t wcsnlen (const wchar_t *, size_t);
size_t wcsnrtombs (char *, const wchar_t **, size_t, size_t, mbstate_t *);

4 Technical Standard (2006)



Chapter 3

Changes to the Shell and Utilities Volume

It is proposed that the following changes are made to Chapter 4, Utilities, the ls command.

Note: All page and line numbers in this proposal refer to the Shell and Utilities volume of
IEEE Std 1003.1-2001, 2004 Edition.

SYNOPSIS

In the SYNOPSIS section on Page 571, Line 22014 add the −S option by changing the SYNOPSIS
from:

UX ls [−CFRacdilqrtu1][−H | −L ][−fgmnopsx][file...]

to:

UX ls [−CFRSacdilqrtu1][−H | −L ][−fgmnopsx][file...]

OPTIONS

In the OPTIONS section after Page 571, Line 22054 add a description of the new −S option as
follows:

−S Sort with the primary key being file size (in decreasing order) and the secondary
key being filename in the collating sequence (in increasing order).

On Page 572, Lines 22065-22067 specify the interaction between the −f and −S options by
changing the description of the −f option from:

UX −f Force each argument to be interpreted as a directory and list the name found in
each slot. This option shall turn off −l, −t, −s, and −r, and shall turn on −a; the order
is the order in which entries appear in the directory.

to:

UX −f Force each argument to be interpreted as a directory and list the name found in
each slot. This option shall turn off −l, −t, −S, −s, and −r, and shall turn on −a; the
order is the order in which entries appear in the directory.

On Page 572, Line 22082 note the interaction between −S and −r by changing the description of
the −r option from:

−r Reverse the order of the sort to get reverse collating sequence or oldest first.

to:

−r Reverse the order of the sort to get reverse collating sequence oldest first, or
smallest file size first depending on the other options given.

On Page 572, Lines 22092-22094 add −t and −S to the list of mutually-exclusive options by
changing from:

Specifying more than one of the options in the following mutually-exclusive pairs shall not be
UX considered an error: −C and −l (ell), −m and −l (ell), −x and −l (ell), −C and −1 (one), −H and −L,

−c and −u. The last option specified in each pair shall determine the output format.

to:

Extended API Set Part 1 5



Changes to the Shell and Utilities Volume

Specifying more than one of the options in the following mutually-exclusive pairs shall not be
UX considered an error: −C and −l (ell), −m and −l (ell), −x and −l (ell), −C and −1 (one), −H and −L,

−c and −u, −t and −S. The last option specified in each pair shall determine the output format.

RATIONALE

Add a new paragraph after Page 577, Line 22291:

The −S option was added to the standard in Issue 7, but had been provided by several
implementations for many years. The description given in the standard documents historic
practice, but does not match much of the documentation that described its behavior. Historical
documentation typically described it as something like:

−S Sort by size (largest size first) instead of by name. Special character devices (listed
last) are sorted by name.

even though the file type was never considered when sorting the output. Character special files
do typically sort close to the end of the list because their file size on most implementations is
zero. But they are sorted alphabetically with any other files that happen to have the same file
size (zero), not sorted separately and added to the end.

6 Technical Standard (2006)



Chapter 4

Changes to the System Interfaces Volume

It is proposed that the following changes are made to Section 2.5, Standard I/O Streams.

Note: The text described in this proposal refers to the System Interfaces volume of IEEE Std 1003.1,
2004 Edition.

4.1 Section 2.5, Standard I/O Streams
Change the first sentence to:

UX A stream is associated with an external file (which may be a physical device) or memory buffer
UX by ‘‘opening’’ a file or buffer. This may involve ‘‘creating’’ a new file.

Add the following to the end:

UX A stream associated with a memory buffer shall have the same operations for text files that a
stream associated with an external file would have. In addition, the stream orientation shall be
determined in exactly the same fashion.

Input and output operations on a stream associated with a memory buffer by a call to
fmemopen( ) shall be constrained by the implementation to take place within the bounds of the
memory buffer. In the case of a stream opened by open_memstream( ) or open_wmemstream( ), the
memory area shall grow dynamically to accommodate write operations as necessary. For output,
data is moved from the buffer provided by setvbuf( ) to the memory stream during a flush or
close operation.

4.2 fclose( ) and fflush( )
Add the following to the ‘‘shall fail’’ section within the ERRORS section:

[ENOMEM] The underlying stream was created by open_memstream( ) or
open_wmemstream( ) and insufficient memory is available.

Update the [ENOSPC] error condition to:

[ENOSPC] There was no free space remaining on the device containing the file or in the
buffer used by the fmemopen( ) function.

Extended API Set Part 1 7



Reference Pages Changes to the System Interfaces Volume

4.3 Reference Pages
Add the following new system interface descriptions in alphabetical order with the existing
system interface descriptions in Chapter 3, System Interfaces.

8 Technical Standard (2006)



Changes to the System Interfaces Volume alphasort( )

NAME
alphasort, scandir — scan a directory

SYNOPSIS
UX #include <dirent.h>

int alphasort(const struct dirent **d1, const struct dirent **d2);

int scandir(const char *dir, struct dirent ***namelist,
int (*sel)(const struct dirent *),
int (*compar)(const struct dirent **, const struct dirent **));

DESCRIPTION
The alphasort ( ) function can be used as the comparison function for the scandir( ) function to sort
the directory entries into alphabetical order, as if by the strcoll( ) function. Its parameters are the
two directory entries, d1 and d2, to compare.

The scandir( ) function shall scan the directory dir, calling the function referenced by sel on each
directory entry. Entries for which the function referenced by sel returns non-zero shall be stored
in strings allocated as if by a call to malloc ( ), and sorted using qsort( ) with the comparison
function compar( ), and collected in array namelist which shall be allocated as if by a call to
malloc ( ). If sel is a null pointer, all entries shall be selected.

RETURN VALUE
Upon successful completion, alphasort ( ) shall return an integer greater than, equal to, or less
than 0, according to whether the name of the directory entry pointed to by d1 is lexically greater
than, equal to, or less than the directory pointed to by d2 when both are interpreted as
appropriate to the current locale. There is no return value reserved to indicate an error.

Upon successful completion, the scandir( ) function shall return the number of entries in the
array and a pointer to the array through the parameter namelist. Otherwise, the scandir( )
function shall return −1.

ERRORS
The scandir( ) function shall fail if:

[EACCES] Search permission is denied for the component of the path prefix of dir or read
permission is denied for dir .

[ELOOP] A loop exists in symbolic links encountered during resolution of the dir
argument.

[ENAMETOOLONG]
The length of the dir argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of dir does not name an existing directory or dir is an empty
string.

[ENOMEM] Insufficient storage space is available.

[ENOTDIR] A component of dir is not a directory.

The scandir( ) function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the dir argument.

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

Extended API Set Part 1 9



alphasort( ) Changes to the System Interfaces Volume

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the dir argument,
the length of the substituted pathname string exceeded {PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

EXAMPLES
An example to print the files in the current directory:

#include <dirent.h>
#include <stdio.h>
...
struct dirent **namelist;
int i,n;

n = scandir(".", &namelist, 0, alphasort);
if (n < 0)

perror("scandir");
else {

for (i = 0; i < n; i++) {
printf("%s\n", namelist[i]->d_name);
free(namelist[i]);
}

}
free(namelist);

...

APPLICATION USAGE
These functions are part of the Extended Interfaces Option Group and need not be available on
all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
compar( ), malloc ( ), qsort( ), strcoll( ), the Base Definitions volume of IEEE Std 1003.1-2001,
<dirent.h>

CHANGE HISTORY
First released in Issue X.

10 Technical Standard (2006)



Changes to the System Interfaces Volume dirfd( )

NAME
dirfd — extract the file descriptor used by a DIR stream

SYNOPSIS
UX #include <dirent.h>

int dirfd(DIR *dirp);

DESCRIPTION
The dirfd( ) function shall return a file descriptor referring to the same directory as the dirp
argument. This file descriptor shall be closed by a call to closedir( ). The behavior of future calls
to readdir( ) and readdir_r( ) is undefined if the application attempts to alter the file position
indicator using the returned file descriptor. The behavior of future calls to closedir( ), readdir( ),
and readdir_r( ) is undefined if the application attempts to close the file descriptor.

RETURN VALUE
Upon successful completion, the dirfd( ) function shall return an integer which contains a file
descriptor for the stream pointed to by dirp. Otherwise, it shall return −1 and may set errno to
indicate the error.

ERRORS
The dirfd( ) function may fail if:

[EINVAL] The dirp argument does not refer to a valid directory stream.

[ENOTSUP] The implementation does not support the association of a file descriptor with
a directory.

EXAMPLES
None.

APPLICATION USAGE
The dirfd( ) function is part of the Extended Interfaces Option Group and need not be available
on all implementations.

The dirfd( ) function is intended to be a mechanism by which an application may obtain a file
descriptor to use for the fchdir( ) function.

RATIONALE
This interface was introduced because the Base Definitions volume of IEEE Std 1003.1-2001 does
not make public the DIR data structure. Applications tend to use the fchdir( ) function on the file
descriptor returned by this interface, and this has proven useful for security reasons; in
particular, it is a better technique than others where directory names might change.

The description uses the term ‘‘a file descriptor’’ rather than ‘‘the file descriptor’’. The
implication intended is that an implementation that does not use an fd for diropen( ) could still
open( ) the directory to implement the dirfd( ) function. Such a descriptor must be closed later
during a call to closedir( ).

An implementation that does not support file descriptors referring to directories may fail with
[ENOTSUP].

If it is necessary to allocate an fd to be returned by dirfd( ), it should be done at the time of a call
to opendir( ).

Extended API Set Part 1 11



dirfd( ) Changes to the System Interfaces Volume

FUTURE DIRECTIONS
None.

SEE ALSO
closedir( ), diropen( ), fchdir( ), fileno( ), open( ), opendir( ), readdir( ), readdir_r( ), the Base Definitions
volume of IEEE Std 1003.1-2001, <dirent.h>, <stdio.h>

CHANGE HISTORY
First released in Issue X.

12 Technical Standard (2006)



Changes to the System Interfaces Volume dprintf( )

NAME
dprintf — formatted output conversion to a file descriptor

SYNOPSIS
UX #include <stdio.h>

int dprintf(int fildes, const char *format, ...);

DESCRIPTION
The dprintf( ) function shall be equivalent to the fprintf ( ) function, except that dprintf( ) shall
write output to the file associated with the file descriptor specified by the fildes argument rather
than place output on a stream.

RETURN VALUE
Upon successful completion, the dprintf( ) function shall return the number of bytes transmitted.
If an output error was encountered, it shall return a negative value.

ERRORS
Refer to fprintf ( ).

In addition, the dprintf( ) function may fail if:

[EBADF] The fildes argument is not a valid file descriptor.

EXAMPLES
None.

APPLICATION USAGE
The dprintf( ) function is part of the Extended Interfaces Option Group and need not be available
on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fprintf ( ), the Base Definitions volume of IEEE Std 1003.1-2001, <stdio.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 1 13



fmemopen( ) Changes to the System Interfaces Volume

NAME
fmemopen — open a memory buffer stream

SYNOPSIS
UX #include <stdio.h>

FILE *fmemopen(void *restrict buf, size_t size,
const char *restrict mode);

DESCRIPTION
The fmemopen( ) function shall associate the buffer given by the buf and size arguments with a
stream. The buf argument shall be either a null pointer or point to a buffer that is at least size
bytes long.

The mode argument is a character string having one of the following values:

r or rb Open the stream for reading.

w or wb Open the stream for writing.

a or ab Append; open the stream for writing at the first null byte.

r+ or rb+ or r+b Open the stream for update (reading and writing).

w+ or wb+ or w+b Open the stream for update (reading and writing). Truncate the buffer
contents.

a+ or ab+ or a+b Append; open the stream for update (reading and writing); the initial
position is at the first null byte.

The character ’b’ shall have no effect.

If a null pointer is specified as the buf argument, fmemopen( ) shall allocate size bytes of memory
as if by a call to malloc ( ). This buffer shall be automatically freed when the stream is closed.
Because this feature is only useful when the stream is opened for updating (because there is no
way to get a pointer to the buffer) the fmemopen( ) call may fail if the mode argument does not
include a ’+’.

The stream maintains a current position in the buffer. This position is initially set to either the
beginning of the buffer (for r and w modes) or to the first null byte in the buffer (for a modes). If
no null byte is found in append mode, the initial position is set to one byte after the end of the
buffer.

If buf is a null pointer, the initial position shall always be set to the beginning of the buffer.

The stream also maintains the size of the current buffer contents. For modes r and r+ the size is
set to the value given by the size argument. For modes w and w+ the initial size is zero and for
modes a and a+ the initial size is either the position of the first null byte in the buffer or the value
of the size argument if no null byte is found.

A read operation on the stream cannot advance the current buffer position behind the current
buffer size. Reaching the buffer size in a read operation counts as ‘‘end-of-file’’. Null bytes in the
buffer have no special meaning for reads. The read operation starts at the current buffer position
of the stream.

A write operation starts either at the current position of the stream (if mode has not specified
’a’ as the first character) or at the current size of the stream (if mode had ’a’ as the first
character). If the current position at the end of the write is larger than the current buffer size, the
current buffer size is set to the current position. A write operation on the stream cannot advance
the current buffer size behind the size given in the size argument.

14 Technical Standard (2006)



Changes to the System Interfaces Volume fmemopen( )

When a stream open for writing is flushed or closed, a null byte is written at the current position
or at the end of the buffer, depending on the size of the contents. If a stream open for update is
flushed or closed and the last write has advanced the current buffer size, a null byte is written at
the end of the buffer if it fits.

An attempt to seek a memory buffer stream to a negative position or to a position larger than the
buffer size given in the size argument shall fail.

RETURN VALUE
Upon successful completion, fmemopen( ) shall return a pointer to the object controlling the
stream. Otherwise, a null pointer shall be returned, and errno shall be set to indicate the error.

ERRORS
The fmemopen( ) function shall fail if:

[EINVAL] The size argument specifies a buffer size of zero.

The fmemopen( ) function may fail if:

[EINVAL] The value of the mode argument is not valid.

[EINVAL] The buf argument is a null pointer and the mode argument does not include a
’+’ character.

[ENOMEM] The buf argument is a null pointer and the allocation of a buffer of length size
has failed.

[EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

EXAMPLES

#include <stdio.h>

static char buffer[] = "foobar";

int
main (void)
{

int ch;
FILE *stream;

stream = fmemopen(buffer, strlen (buffer), "r");
if (stream == NULL)

/* handle error */;

while ((ch = fgetc(stream)) != EOF)
printf("Got %c\n", ch);

fclose(stream);
return (0);

}

This program produces the following output:

Got f
Got o
Got o
Got b
Got a
Got r

Extended API Set Part 1 15



fmemopen( ) Changes to the System Interfaces Volume

APPLICATION USAGE
The fmemopen( ) function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
This interface has been introduced to eliminate many of the errors encountered in the
construction of strings, notably overflowing of strings. This interface prevents overflow.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopen( ), fopen( ), freopen( ), malloc ( ), the Base Definitions volume of IEEE Std 1003.1-2001,
<stdio.h>

CHANGE HISTORY
First released in Issue X.

16 Technical Standard (2006)



Changes to the System Interfaces Volume getdelim( )

NAME
getdelim, getline — read a delimited record from stream

SYNOPSIS
UX #include <stdio.h>

ssize_t getdelim(char **lineptr, size_t *n, int delimiter,
FILE *stream);

ssize_t getline(char **lineptr, size_t *n, FILE *stream);

DESCRIPTION
The getdelim( ) function shall read from stream until it encounters a character matching the
delimiter character. The argument delimiter (when converted to a char) shall specify the character
that terminates the read process.

The delimiter argument is an int, the value of which the application shall ensure is a character
representable as an unsigned char or equal value to the macro EOF. If the delimiter argument has
any other value, the behavior is undefined.

The application shall ensure that *lineptr is a valid argument that could be passed to the free( )
function. If *n is non-zero, the application shall ensure that *lineptr points to an object of size at
least *n bytes.

The size of the object pointed to by *lineptr shall be increased to fit the incoming line, if it isn’t
already large enough. The characters read shall be stored in the string pointed to by the lineptr
argument.

The getline( ) function shall be equivalent to the getdelim( ) function with the delimiter character
equal to the <newline> character.

RETURN VALUE
Upon successful completion, the getdelim( ) function shall return the number of characters
written into the buffer, including the delimiter character if one was encountered before EOF.
Otherwise, it shall return −1 and set errno to indicate the error.

ERRORS
These functions shall fail if:

[EINVAL] When lineptr or n are a null pointer.

[ENOMEM] Insufficient memory is available.

These functions may fail if:

[EINVAL] stream is not a valid file descriptor.

[EOVERFLOW] More than {SSIZE_MAX} characters were read without encountering the
delimiter character.

Extended API Set Part 1 17



getdelim( ) Changes to the System Interfaces Volume

EXAMPLES

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE * fp;
char * line = NULL;
size_t len = 0;
ssize_t read;
fp = fopen("/etc/motd", "r");
if (fp == NULL)

exit(1);
while ((read = getline(&line, &len, fp)) != -1) {

printf("Retrieved line of length %zu :\n", read);
printf("%s", line);

}
if (line)

free(line);
fclose(fp);
return 0;

}

APPLICATION USAGE
These functions are part of the Extended Interfaces Option Group and need not be available on
all implementations.

Setting *lineptr to a null pointer and *n to zero are allowed and a recommended way to start
parsing a file.

RATIONALE
These functions are widely used to solve the problem that the fgets( ) function has with long
lines. The functions automatically enlarge the target buffers if needed. These are especially
useful since they reduce code needed for applications.

FUTURE DIRECTIONS
None.

SEE ALSO
fgets( ), free( ), the Base Definitions volume of IEEE Std 1003.1-2001, <stdio.h>

CHANGE HISTORY
First released in Issue X.

18 Technical Standard (2006)



Changes to the System Interfaces Volume mbsnrtowcs( )

NAME
mbsnrtowcs — convert a multi-byte string to a wide-character string

SYNOPSIS
UX #include <wchar.h>

size_t mbsnrtowcs(wchar_t *restrict dst, const char **restrict src,
size_t nmc, size_t len, mbstate_t *restrict ps);

DESCRIPTION
The mbsnrtowcs( ) function works like the mbsrtowcs( ) function, except that the conversion of
characters pointed to by src is limited to at most nmc bytes (the size of the input buffer).

If dst is not a null pointer, then mbsnrtowcs( ) shall attempt to convert nmc bytes from the multi-
byte string pointed to by src into a wide-character string starting at dst. No more than len wide
characters shall be written to dst. The shift state, pointed at by ps, is updated by the conversion.
Each conversion shall take place, as if by repeated calls to mbrtowc(dest, *src, n, ps), where n is a
positive number. As long as this call succeeds, it is repeated, each time incrementing dst by one
and *src by the number of bytes converted.

Conversion shall stop early if any of the following cases occurs:

1. An invalid sequence of bytes was encountered in the src buffer. Under these conditions *src
is left pointing to the bytes which caused the conversion to halt. −1 is returned, and errno is
set to [EILSEQ].

2. Either the nmc limit has been reached, or len non-null wide characters have already been
stored in dst. Here, *src is left to point to the next multi-byte sequence that has not been
converted, and the total number of wide characters written to dst is returned.

3. The conversion of the multi-byte buffer pointed to by src has been completed by
encountering a null byte. In this case *src is set to a null pointer, *ps is returned to its initial
state, and the number of wide characters written to dst, excluding the terminating null
character, is returned.

When dst is a null pointer, the conversion proceeds as above, except that no wide characters are
written to memory, and the len argument is ignored, so no destination length limit is imposed.

In either case, if ps is a null pointer, mbsnrtowcs( ) shall use its own internal mbstate_t object,
which is initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t
object pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence.

It is the responsibility of the calling program to ensure that dst is large enough to hold at least len
wide characters.

RETURN VALUE
The mbsnrtowcs( ) function shall return the number of characters successfully converted, not
including the terminating null (if any). If an error occurs, mbsnrtowcs( ) shall return −1 and may
set errno to indicate the error.

ERRORS
The mbsnrtowcs( ) function may fail if:

[EILSEQ] An invalid multi-byte sequence was encountered.

Extended API Set Part 1 19



mbsnrtowcs( ) Changes to the System Interfaces Volume

EXAMPLES
None.

APPLICATION USAGE
The mbsnrtowcs( ) function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iconv( ), mbsrtowcs( ), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE HISTORY
First released in Issue X.

20 Technical Standard (2006)



Changes to the System Interfaces Volume mkdtemp( )

NAME
mkdtemp — create a unique directory

SYNOPSIS
UX #include <stdlib.h>

char *mkdtemp(char *template);

DESCRIPTION
The mkdtemp( ) function uses the contents of template to construct a unique directory name. The
string provided in template shall be a filename ending with six trailing ’X’s. The mkdtemp( )
function shall replace each ’X’ with a character from the portable filename character set. The
characters are chosen such that the resulting name does not duplicate the name of an existing file
at the time of a call to mkdtemp( ). The unique directory name is used to attempt to create the
directory using mode 0700 as modified by the file creation mask.

RETURN VALUE
Upon successful completion, the mkdtemp( ) function shall return a pointer to the string
containing the directory name if it was created. Otherwise, it shall return a null pointer and shall
set errno to indicate the error.

ERRORS
The mkdtemp( ) function shall fail if:

[EACCES] Search permission is denied on a component of the path prefix, or write
permission is denied on the parent directory of the directory to be created.

[EINVAL] The string pointed to by template does not end in "XXXXXX".

[ELOOP] A loop exists in symbolic links encountered during resolution of the path of
the directory to be created.

[EMLINK] The link count of the parent directory would exceed {LINK_MAX}.

[ENAMETOOLONG]
The length of the template argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of the path prefix specified by the template argument does not
name an existing directory or path is an empty string.

[ENOSPC] The file system does not contain enough space to hold the contents of the new
directory or to extend the parent directory of the new directory.

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] The parent directory resides on a read-only file system.

The mkdtemp( ) function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path of the directory to be created.

[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path of the
directory to be created, the length of the substituted pathname string
exceeded {PATH_MAX}.

Extended API Set Part 1 21



mkdtemp( ) Changes to the System Interfaces Volume

EXAMPLES
None.

APPLICATION USAGE
The mkdtemp( ) function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mkdir( ), the Base Definitions volume of IEEE Std 1003.1-2001, <stdlib.h>

CHANGE HISTORY
First released in Issue X.

22 Technical Standard (2006)



Changes to the System Interfaces Volume open_memstream( )

NAME
open_memstream, open_wmemstream — open a dynamic memory buffer stream

SYNOPSIS
UX #include <stdio.h>

FILE *open_memstream(char **bufp, size_t *sizep);

#include <wchar.h>

FILE *open_wmemstream(wchar_t **bufp, size_t *sizep);

DESCRIPTION
The open_memstream( ) and open_wmemstream( ) functions shall create an I/O stream associated
with a dynamically allocated memory buffer. The stream shall be opened for writing and shall be
seekable.

The stream associated with a call to open_memstream( ) shall be byte-oriented.

The stream associated with a call to open_wmemstream( ) shall be wide-oriented.

The stream shall maintain a current position in the allocated buffer and a current buffer length.
The position shall be initially set to zero (the start of the buffer). Each write to the stream shall
start at the current position and move this position by the number of successfully written bytes
for open_memstream( ) or the number of successfully written wide characters for
open_wmemstream( ). The length shall be initially set to zero. If a write moves the position to a
value larger than the current length, the current length shall be set to this position. In this case a
null character for open_memstream( ) or a null wide character for open_wmemstream( ) shall be
appended to the current buffer. For both functions the terminating null is not included in the
calculation of the buffer length.

After a successful fflush( ) or fclose( ), the pointer referenced by bufp shall contain the address of
the buffer, and the variable pointed to by sizep shall contain the number of successfully written
bytes for open_memstream( ) or the number of successfully written wide characters for
open_wmemstream( ). The buffer shall be terminated by a null character for open_memstream( ) or a
null wide character for open_wmemstream( ).

After a successful fflush( ) the pointer referenced by bufp and the variable referenced by sizep
remain valid only until the next write operation on the stream or a call to fclose( ).

RETURN VALUE
Upon successful completion, these functions shall return a pointer to the object controlling the
stream. Otherwise, a null pointer shall be returned, and errno shall be set to indicate the error.

ERRORS
These functions may fail if:

[EINVAL] bufp or sizep are NULL.

[EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

[ENOMEM] Memory for the stream or the buffer could not be allocated.

Extended API Set Part 1 23



open_memstream( ) Changes to the System Interfaces Volume

EXAMPLES

#include <stdio.h>
int main (void)
{

FILE *stream;
char *buf;
size_t len;

stream = open_memstream(&buf, &len);

if (stream == NULL)
/* handle error */;

fprintf(stream, "hello my world");
fflush(stream);
printf("buf=%s, len=%zu\n", buf, len);
fseeko(stream, 0, SEEK_SET);
fprintf(stream, "good-bye");
fclose(stream);
printf("buf=%s, len=%zu\n", buf, len);
free(buf);
return 0;

}

This program produces the following output:

buf=hello my world, len=14
buf=good-bye world, len=14

APPLICATION USAGE
These functions are part of the Extended Interfaces Option Group and need not be available on
all implementations.

The buffer created by these functions should be freed by the application after closing the stream,
by means of a call to free( ).

RATIONALE
These functions are similar to fmemopen( ) except that the memory is always allocated
dynamically by the function, and the stream is opened only for output.

FUTURE DIRECTIONS
None.

SEE ALSO
fclose( ), fdopen( ), fflush( ), fopen( ), fmemopen( ), free( ), freopen( ), the Base Definitions volume of
IEEE Std 1003.1-2001, <stdio.h>

CHANGE HISTORY
First released in Issue X.

24 Technical Standard (2006)



Changes to the System Interfaces Volume psiginfo( )

NAME
psiginfo, psignal — print signal information to standard error

SYNOPSIS
UX #include <signal.h>

void psiginfo(siginfo_t *pinfo, const char *message);

void psignal(int signum, const char *message);

DESCRIPTION
The psiginfo ( ) and psignal ( ) functions shall print a message out on stderr associated with a signal
number. If message is not null and is not the empty string, then the string pointed to by the
message argument shall be printed first, followed by a colon, a space, and the signal description
string indicated by signum, or by the signal associated with pinfo. If the message argument is null
or points to an empty string, then only the signal description shall be printed. For psiginfo ( ), the
argument pinfo references a valid siginfo_t structure. For psignal ( ), if signum is not a valid signal
number, the behavior is implementation-defined.

RETURN VALUE
These functions shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Extended Interfaces Option Group and need not be available on
all implementations.

RATIONALE
System V historically has psignal ( ) and psiginfo ( ) in <siginfo.h>. However, the <siginfo.h>
header is not specified in the Base Definitions volume of IEEE Std 1003.1-2001, and the type
siginfo_t is defined in <signal.h>.

FUTURE DIRECTIONS
None.

SEE ALSO
perror( ), strsignal( ), the Base Definitions volume of IEEE Std 1003.1-2001, <signal.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 1 25



stpcpy( ) Changes to the System Interfaces Volume

NAME
stpcpy — copy a string and return a pointer to the end of the result

SYNOPSIS
UX #include <string.h>

char *stpcpy(char *restrict dst, const char *restrict src);

DESCRIPTION
The stpcpy( ) function shall be equivalent to strcpy( ), copying the string pointed to by src into the
array pointed to by dst, with the exception that stpcpy( ) shall return a pointer to the terminating
null byte in dst, rather than the beginning of this array, allowing succeeding calls to add
additional text to the dst array.

If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
The stpcpy( ) function shall return a pointer to the terminating null byte at the end of the dst
buffer. No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
The following example demonstrates the construction of a multi-part message in a single buffer.

#include <string.h>
#include <stdio.h>

int
main (void)
{

char buffer [10];
char *name = buffer;

name = stpcpy (stpcpy (stpcpy (name, "ice"),"-"), "cream");
puts (buffer);
return 0;

}

APPLICATION USAGE
The stpcpy( ) function is part of the Extended Interfaces Option Group and need not be available
on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcpy( ), the Base Definitions volume of IEEE Std 1003.1-2001, <string.h>

CHANGE HISTORY
First released in Issue X.

26 Technical Standard (2006)



Changes to the System Interfaces Volume stpncpy( )

NAME
stpncpy — copy fixed length string, returning a pointer to the array end

SYNOPSIS
UX #include <string.h>

char *stpncpy(char *restrict dst, const char *restrict src, size_t size);

DESCRIPTION
The stpncpy( ) function shall be equivalent to the stpcpy( ) function, with the added restriction
that it shall copy at most size bytes from src into dst.

If size is less than or equal to the length of the string pointed to by src then no termination null
byte shall be inserted into the dst array after the size bytes have been copied.

If size is greater than the length of the string pointed to by src then all of the bytes in src are
copied into the dst array. As many terminating null bytes are inserted as are needed to bring the
total bytes transferred equal to size.

If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUE
If a null byte is written to the destination, the stpncpy( ) function shall return the address of the
first such null byte. Otherwise, it shall return &src[size]. No return values are reserved to
indicate an error.

ERRORS
No errors are defined.

EXAMPLES

APPLICATION USAGE
The stpncpy( ) function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

Applications must provide the space in dst for the size bytes to be transferred, as well as ensure
that the src and dst arrays do not overlap.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
stpcpy( ), the Base Definitions volume of IEEE Std 1003.1-2001, <string.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 1 27



strndup( ) Changes to the System Interfaces Volume

NAME
strndup — duplicate a specific number of bytes from a string

SYNOPSIS
UX #include <string.h>

char *strndup(const char *string, size_t size);

DESCRIPTION
The strndup( ) function shall be equivalent to the strdup( ) function, duplicating the provided
string in a new block of memory allocated as if by using malloc ( ), with the exception being that
strndup( ) copies at most size plus one bytes into the newly allocated memory, terminating the
new string with a null byte.

If the length of string is larger than size, only size bytes shall be duplicated. If size is larger than
the length of string, all bytes in string shall be copied into the new memory buffer, including the
terminating null byte. The newly created string shall always be properly terminated.

RETURN VALUE
Upon successful completion, the strndup( ) function shall return a pointer to the newly allocated
memory containing the duplicated string. Otherwise, it shall return a null pointer and set errno
to indicate the error.

ERRORS
The strndup( ) function shall fail if:

[ENOMEM] Insufficient memory available for the target string.

EXAMPLES
None.

APPLICATION USAGE
The strndup( ) function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
malloc ( ), strdup( ), the Base Definitions volume of IEEE Std 1003.1-2001, <string.h>

CHANGE HISTORY
First released in Issue X.

28 Technical Standard (2006)



Changes to the System Interfaces Volume strnlen( )

NAME
strnlen — determine length of fixed size string

SYNOPSIS
UX #include <string.h>

size_t strnlen(const char *s, size_t maxlen);

DESCRIPTION
The strnlen( ) function shall compute the smaller of the number of bytes in the string to which s
points, not including the terminating null byte, or the value of the maxlen argument. The
strnlen( ) function shall never examine more than maxlen bytes of the string pointed to by s.

RETURN VALUE
The strnlen( ) function shall return an integer containing the smaller of either the length of the
string pointed to by s or maxlen.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The strnlen( ) function is part of the Extended Interfaces Option Group and need not be available
on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strlen( ), the Base Definitions volume of IEEE Std 1003.1-2001, <string.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 1 29



strsignal( ) Changes to the System Interfaces Volume

NAME
strsignal — get name of signal

SYNOPSIS
UX #include <string.h>

char *strsignal(int signum);

DESCRIPTION
The strsignal( ) function shall map the signal number in signum to an implementation-defined
string and shall return a pointer to it. It shall use the same set of messages as the psignal ( )
function.

The string pointed to shall not be modified by the application, but may be overwritten by a
subsequent call to strsignal( ) or setlocale ( ).

The contents of the message strings returned by strsignal( ) should be determined by the setting
of the LC_MESSAGES category in the current locale.

The implementation shall behave as if no function defined in this standard calls strsignal( ).

Since no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call strsignal( ), then check errno.

The strsignal( ) function need not be reentrant. A function that is not required to be reentrant is
not required to be thread-safe.

RETURN VALUE
Upon successful completion, strsignal( ) shall return a pointer to a string. Otherwise, if signum is
not a valid signal number, the return value is unspecified.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The strsignal( ) function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
If signum is not a valid signal number, some implementations return NULL, while for others the
strsignal( ) function returns a pointer to a string containing an unspecified message denoting an
unknown signal. This standard leaves this return value unspecified.

FUTURE DIRECTIONS
None.

SEE ALSO
perror( ), psignal ( ), setlocale ( ), the Base Definitions volume of IEEE Std 1003.1-2001, <string.h>

CHANGE HISTORY
First released in Issue X.

30 Technical Standard (2006)



Changes to the System Interfaces Volume wcpcpy( )

NAME
wcpcpy — copy a wide-character string, returning a pointer to its end

SYNOPSIS
UX #include <wchar.h>

wchar_t *wcpcpy(wchar_t *restrict dst, const wchar_t *restrict src);

DESCRIPTION
The wcpcpy( ) function is the wide-character equivalent of the stpcpy( ) function. It shall copy the
wide-character string pointed to by src, including the terminating null wide-character code, into
the array pointed to by dst.

The application shall ensure that there is room for at least wcslen(src)+1 wide characters in the
dst array, and that the src and dst arrays do not overlap.

RETURN VALUE
The wcpcpy( ) function shall return a pointer to the last wide character written into the dst array
that is a pointer to the terminating null wide-character code. No return value is reserved to
indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The wcpcpy( ) function is part of the Extended Interfaces Option Group and need not be available
on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
stpcpy( ), strcpy( ), wcscpy( ), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 1 31



wcpncpy( ) Changes to the System Interfaces Volume

NAME
wcpncpy — copy a fixed-size wide-character string, returning a pointer to its end

SYNOPSIS
UX #include <wchar.h>

wchar_t *wcpncpy(wchar_t restrict *dst, const wchar_t *restrict src,
size_t n);

DESCRIPTION
The wcpncpy( ) function is the wide-character equivalent of the stpncpy( ) function. It shall copy
at most n wide characters from the string pointed to by src, including the terminating null wide-
character code, into the array pointed to by dst. Exactly n wide characters shall be written into
dst. If the length of src is smaller than n, remaining characters for dst are filled in using the
terminating null wide-character code. If the src array length is greater than or equal to n, then n
characters from src shall be copied to dst with no terminating null wide-character code in the dst
array.

The application shall ensure that there is room for at least n wide characters in the dst array, and
that the src and dst arrays do not overlap.

RETURN VALUE
If any null wide-character codes were written into the dst array, the wcpncpy( ) function shall
return the address of the first such null wide-character code. Otherwise, it shall return &dst[n].
No return values are reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The wcpncpy( ) function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
stpncpy( ), wcpcpy( ), wcsncpy( ), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE HISTORY
First released in Issue X.

32 Technical Standard (2006)



Changes to the System Interfaces Volume wcscasecmp( )

NAME
wcscasecmp — compare two wide-character strings, ignoring case

SYNOPSIS
UX #include <wchar.h>

int wcscasecmp(const wchar_t *st1, const wchar_t *st2);

DESCRIPTION
The wcscasecmp( ) function is the wide-character equivalent of the strcasecmp( ) function.

The wcscasecmp( ) function shall compare, while ignoring differences in case, the string pointed
to by st1 to the string pointed to by st2.

In the POSIX locale, wcscasecmp( ) shall behave as if the strings had been converted to lowercase
and then a character comparison performed. The results are unspecified in other locales.

RETURN VALUE
Upon completion, the wcscasecmp( ) function shall return an integer greater than, equal to, or less
than 0 if the wide-character string pointed to by st1 is, ignoring case, greater than, equal to, or
less than the wide-character string pointed to by st2, respectively. No return value is reserved to
indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The wcscasecmp( ) function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcasecmp( ), wcscmp( ), wcsncasecmp( ), the Base Definitions volume of IEEE Std 1003.1-2001,
<wchar.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 1 33



wcsdup( ) Changes to the System Interfaces Volume

NAME
wcsdup — duplicate a wide-character string

SYNOPSIS
UX #include <wchar.h>

wchar_t *wcsdup(const wchar_t *string);

DESCRIPTION
The wcsdup( ) function is the wide-character equivalent of the strdup( ) function.

The wcsdup( ) function shall return a pointer to a new wide-character string, which is the
duplicate of the wide-character string string. The returned pointer can be passed to free( ). A null
pointer is returned if the new wide-character string cannot be created.

RETURN VALUE
Upon successful completion, the wcsdup( ) function shall return a pointer to the newly allocated
wide-character string. Otherwise, it shall return a null pointer and set errno to indicate the error.

ERRORS
The wcsdup( ) function shall fail if:

[ENOMEM] Memory large enough for the duplicate string could not be allocated.

EXAMPLES
None.

APPLICATION USAGE
The wcsdup( ) function is part of the Extended Interfaces Option Group and need not be available
on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
free( ), strdup( ), wcscpy( ), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE HISTORY
First released in Issue X.

34 Technical Standard (2006)



Changes to the System Interfaces Volume wcsncasecmp( )

NAME
wcsncasecmp — compare two fixed-size wide-character strings, ignoring case

SYNOPSIS
UX #include <wchar.h>

int wcsncasecmp(const wchar_t *st2, const wchar_t *st2, size_t n);

DESCRIPTION
The wcsncasecmp( ) function is the wide-character equivalent of the strncasecmp( ) function.

The wcsncasecmp( ) function shall compare, while ignoring differences in case, not more than n
characters from the wide-character string pointed to by st1 to the wide-character string pointed
to by st2.

In the POSIX locale, wcsncasecmp( ) shall behave as if the strings had been converted to lowercase
and then a character comparison performed. The results are unspecified in other locales.

RETURN VALUE
Upon completion, the wcsncasecmp( ) function shall return an integer greater than, equal to, or
less than 0 if the possibly null wide-character terminated string pointed to by st1 is, ignoring
case, greater than, equal to, or less than the possibly null wide-character terminated string
pointed to by st2, respectively. No return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The wcsncasecmp( ) function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncasecmp( ), wcscasecmp( ), wcsncmp( ), the Base Definitions volume of IEEE Std 1003.1-2001,
<wchar.h>

CHANGE HISTORY
First released in Issue X.

Extended API Set Part 1 35



wcsnlen( ) Changes to the System Interfaces Volume

NAME
wcsnlen — determine the length of a fixed-sized wide-character string

SYNOPSIS
UX #include <wchar.h>

size_t wcsnlen(const wchar_t *wcs, size_t maxlen);

DESCRIPTION
The wcsnlen( ) function is the wide-character equivalent of the strnlen( ) function.

The wcsnlen( ) function shall compute the smaller of the number of wide characters in the string
to which wcs points, not including the terminating null wide-character code, and the value of
maxlen. The wcsnlen( ) function shall never examine more than the first maxlen characters of the
wide-character string pointed to by wcs.

RETURN VALUE
The wcsnlen( ) function shall return an integer containing the smaller of either the length of the
wide-character string pointed to by wcs or maxlen. No return value is reserved to indicate an
error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The wcsnlen( ) function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strnlen( ), wcslen( ), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE HISTORY
First released in Issue X.

36 Technical Standard (2006)



Changes to the System Interfaces Volume wcsnrtombs( )

NAME
wcsnrtombs — convert wide-character string to multi-byte string

SYNOPSIS
UX #include <wchar.h>

size_t wcsnrtombs(char *dst, const wchar_t **src, size_t nwc,
size_t len, mbstate_t *ps);

DESCRIPTION
The wcsnrtombs( ) function shall be equivalent to the wcsrtombs( ) function, except that the
conversion is limited to the first nwc wide characters.

The wcsnrtombs( ) function shall convert a sequence of at most nwc wide characters from the
array indirectly pointed to by src into a sequence of corresponding characters, beginning in the
conversion state described by the object pointed to by ps. If dst is not a null pointer, the
converted characters shall then be stored into the array pointed to by dst. Conversion continues
up to and including a terminating null wide character, which shall also be stored. Conversion
shall stop earlier in the following cases:

• When a code is reached that does not correspond to a valid character

• When the next character would exceed the limit of len total bytes to be stored in the array
pointed to by dst (and dst is not a null pointer)

• When nwc wide characters from src have been converted

Each conversion shall take place as if by a call to the wcrtomb( ) function.

If dst is not a null pointer, the pointer object pointed to by src shall be assigned either a null
pointer (if conversion stopped due to reaching a terminating null wide character) or the address
just past the last wide character converted (if any). If conversion stopped due to reaching a
terminating null wide character, the resulting state described shall be the initial conversion state.

If ps is a null pointer, the wcsnrtombs( ) function shall use its own internal mbstate_t object,
which is initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t
object pointed to by ps shall be used to completely describe the current conversion state of the
associated character sequence. The implementation shall behave as if no function defined in
System Interfaces volume of IEEE Std 1003.1-2001 calls wcsnrtombs( ).

UX  CX If the application uses any of the _POSIX_THREAD_SAFE_FUNCTIONS or _POSIX_THREADS
functions, the application shall ensure that the wcsnrtombs( ) function is called with a non-NULL
ps argument.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

RETURN VALUE
Refer to wcsrtombs( ).

ERRORS
Refer to wcsrtombs( ).

Extended API Set Part 1 37



wcsnrtombs( ) Changes to the System Interfaces Volume

EXAMPLES
None.

APPLICATION USAGE
The wcsnrtombs( ) function is part of the Extended Interfaces Option Group and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcrtomb( ), wcsrtombs( ), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE HISTORY
First released in Issue X.

38 Technical Standard (2006)



Index

alphasort( ) ...................................................................9
dirent.h..........................................................................3
dirfd( )..........................................................................11
dprintf( )......................................................................13
fmemopen( )...............................................................14
FOPEN_MAX ............................................................15
getdelim( ) ..................................................................17
mbsnrtowcs( ) ............................................................19
mkdtemp( ).................................................................21
NAME_MAX ...............................................................9
OPEN_MAX.................................................................9
open_memstream( ) .................................................23
PATH_MAX.................................................................9
psiginfo( )....................................................................25
signal.h..........................................................................4
stdio.h............................................................................4
stdlib.h...........................................................................4
stpcpy( ) ......................................................................26
stpncpy( ) ....................................................................27
string.h ..........................................................................4
strndup( ) ....................................................................28
strnlen( ) ......................................................................29
strsignal( ) ...................................................................30
wchar.h .........................................................................4
wcpcpy( ) ....................................................................31
wcpncpy( )..................................................................32
wcscasecmp( )............................................................33
wcsdup( ) ....................................................................34
wcsncasecmp( ) .........................................................35
wcsnlen( )....................................................................36
wcsnrtombs( ) ............................................................37

Extended API Set Part 1 39



Index

40 Technical Standard (2006)


