
Technical Standard

Application Response Measurement (ARM)

Issue 4.0 – Java Binding

ii Technical Standard (2003)

Copyright © 2003, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the
copyright owner.

It is fair use of this specification for implementers to use the names, labels, etc. contained within the
specification. The intent of publication of the specification is to encourage implementations of the
specification.

This specification has not been verified for avoidance of possible third-party proprietary rights. In
implementing this specification, usual procedures to ensure the respect of possible third-party intellectual
property rights should be followed.

Technical Standard

Application Response Measurement (ARM) Issue 4.0 – Java Binding

ISBN: 1-931624-36-4

Document Number: C037

Published by The Open Group, October 2003.

Comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by electronic mail to:

ogspecs@opengroup.org

ARM Issue 4.0 – Java Binding iii

Contents
1 Introduction.. 1

1.1 What is ARM? ... 1
1.2 How is ARM Used?... 1
1.3 Selecting Transactions to Measure .. 2
1.4 The Evolution of ARM .. 3
1.5 Compatibility between ARM Versions.. 4
1.6 ARM 4.0 Java Bindings Overview .. 4
1.7 Terminology... 4

2 Using the ARM 4.0 Java Binding .. 6
2.1 Example ... 6

3 Programming Options .. 8
3.1 ARM Measures Transactions... 8
3.2 Application Measures Transactions... 9
3.3 Selecting which Option to Use .. 9

4 Understanding the Relationships between Transactions.................................... 11
4.1 A Typical Distributed Transaction... 11

5 Additional Data About a Transaction .. 14
5.1 Data Categories.. 14

5.1.1 Counters... 15
5.1.2 Gauges ... 15
5.1.3 Numeric IDs .. 15
5.1.4 Strings.. 16

5.2 How to Provide the Additional Data.. 16
5.2.1 Using ArmTransactionWithMetrics .. 16
5.2.2 Using ArmTranReportWithMetrics... 17

5.3 Processing Multiple Values of the Same Metric...................................... 17
5.3.1 Counters... 17
5.3.2 Gauges ... 18
5.3.3 Numeric IDs .. 18
5.3.4 Strings.. 19

6 Creating ARM Objects... 20
6.1 Overview of Java Interfaces... 20
6.2 Creating ARM Objects in an Application.. 21

6.2.1 Convenience Methods ... 23
6.3 Creating ARM Objects in an Applet.. 24

iv Technical Standard (2003)

7 Error Handling Philosophy .. 26
7.1 Errors the Application Should Test For ... 26
7.2 Errors the Application Does Not Need to Test For.................................. 26
7.3 How an Application Tests for Errors ... 27

7.3.1 Testing a Method Return Code.. 28
7.3.2 Testing an Object Error Code.. 28
7.3.3 Registering a Callback... 28

8 The ARM 4.0 Data Model ... 29
8.1 Data Model Using ArmTransaction... 29
8.2 Data Model Using ArmTranReport ... 31

9 The org.opengroup.arm40.* Packages ... 32
9.1 Interface List (by Java Package) .. 32
9.2 Interface List (in Alphabetical Order).. 33
9.3 Method Naming Conventions .. 34
9.4 org.opengroup.arm40.transaction.ArmApplication 35
9.5 org.opengroup.arm40.transaction.ArmApplicationDefinition................. 36
9.6 org.opengroup.arm40.tranreport.ArmApplicationRemote....................... 37
9.7 org.opengroup.arm40.transaction.ArmConstants 37
9.8 org.opengroup.arm40.transaction.ArmCorrelator.................................... 38
9.9 org.opengroup.arm40.transaction.ArmErrorCallback 39
9.10 org.opengroup.arm40.transaction.ArmID.. 40
9.11 org.opengroup.arm40.transaction.ArmIdentityProperties 40
9.12 org.opengroup.arm40.transaction.ArmIdentityPropertiesTransaction..... 41
9.13 org.opengroup.arm40.transaction.ArmInterface...................................... 42
9.14 org.opengroup.arm40.metric.ArmMetric... 42
9.15 org.opengroup.arm40.metric.ArmMetricCounter32................................ 43
9.16 org.opengroup.arm40.metric.ArmMetricCounter32Definition 43
9.17 org.opengroup.arm40.metric.ArmMetricCounter64................................ 43
9.18 org.opengroup.arm40.metric.ArmMetricCounter64Definition 44
9.19 org.opengroup.arm40.metric.ArmMetricCounterFloat32........................ 44
9.20 org.opengroup.arm40.metric.ArmMetricCounterFloat32Definition 44
9.21 org.opengroup.arm40.metric.ArmMetricDefinition 44
9.22 org.opengroup.arm40.metric.ArmMetricFactory 45
9.23 org.opengroup.arm40.metric.ArmMetricGauge32 50
9.24 org.opengroup.arm40.metric.ArmMetricGauge32Definition.................. 50
9.25 org.opengroup.arm40.metric.ArmMetricGauge64 50
9.26 org.opengroup.arm40.metric.ArmMetricGauge64Definition.................. 50
9.27 org.opengroup.arm40.metric.ArmMetricGaugeFloat32 51
9.28 org.opengroup.arm40.metric.ArmMetricGaugeFloat32Definition.......... 51
9.29 org.opengroup.arm40.metric.ArmMetricGroup 51
9.30 org.opengroup.arm40.metric.ArmMetricGroupDefinition 52
9.31 org.opengroup.arm40.metric.ArmMetricNumericId32 52
9.32 org.opengroup.arm40.metric.ArmMetricNumericId32Definition 53
9.33 org.opengroup.arm40.metric.ArmMetricNumericId64 53
9.34 org.opengroup.arm40.metric.ArmMetricNumericId64Definition 53
9.35 org.opengroup.arm40.metric.ArmMetricString32................................... 53

ARM Issue 4.0 – Java Binding v

9.36 org.opengroup.arm40.metric.ArmMetricString32Definition................... 54
9.37 org.opengroup.arm40.tranreport.ArmSystemAddress 54
9.38 org.opengroup.arm40.transaction.ArmToken.. 55
9.39 org.opengroup.arm40.tranreport.ArmTranReport 56
9.40 org.opengroup.arm40.tranreport.ArmTranReportFactory 59
9.41 org.opengroup.arm40.metric.ArmTranReportWithMetrics..................... 60
9.42 org.opengroup.arm40.transaction.ArmTransaction 61
9.43 org.opengroup.arm40.transaction.ArmTransactionDefinition................. 64
9.44 org.opengroup.arm40.transaction.ArmTransactionFactory 65
9.45 org.opengroup.arm40.metric.ArmTransactionWithMetrics 67
9.46 org.opengroup.arm40.metric.ArmTransactionWithMetricsDefinition 68
9.47 org.opengroup.arm40.transaction.ArmUser .. 68

A Application Instrumentation Sample.. 70

B Information for Implementers .. 80

vi Technical Standard (2003)

Preface

The Open Group

The Open Group, a vendor and technology-neutral consortium, has a vision of Boundaryless
Information Flow achieved through global interoperability in a secure, reliable, and timely
manner. The Open Group mission is to drive the creation of Boundaryless Information Flow by:

• Working with customers to capture, understand, and address current and emerging
requirements, establish policies, and share best practices

• Working with suppliers, consortia, and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate open specifications and open source
technologies

• Offering a comprehensive set of services to enhance the operational efficiency of
consortia

• Developing and operating the industry's premier certification service and encouraging
procurement of certified products

The Open Group provides opportunities to exchange information and shape the future of IT. The
Open Group members include some of the largest and most influential organizations in the
world. The flexible structure of The Open Group membership allows for almost any
organization, no matter what their size, to join and have a voice in shaping the future of the IT
world.

More information is available at www.opengroup.org.

The Open Group has over 15 years' experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of test
suites used to validate conformance to an open standard or specification.

More information is available at www.opengroup.org/testing.

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business titles.
Full details and a catalog are available at www.opengroup.org/pubs.

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards-compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it
replaces the previous publication.

ARM Issue 4.0 – Java Binding vii

• A new Issue indicates there is substantive change to the definitive information contained
in the previous publication of that title, and there may also be additions/extensions. As
such, both previous and new documents are maintained as current publications.

Readers should note that updates – in the form of Corrigenda – may apply to any publication.
This information is published at www.opengroup.org/corrigenda.

This Document

This document is the Technical Standard for the Java Binding for Application Response
Measurement (ARM) Issue 4.0. It has been developed and approved by The Open Group.

ARM is a standard for measuring service levels of single-system and distributed applications.
ARM measures the availability and performance of transactions, both visible to the users of the
business application and those visible only within the IT infrastructure.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Arial font is used in text for Java elements.

• Arial Bold font is used in text for Java methods.

• Syntax and code examples are shown in fixed width font.

viii Technical Standard (2003)

Trademarks
Boundaryless Information Flow™ and IT DialTone™ are trademarks and UNIX® and The Open
Group® are registered trademarks of The Open Group in the United States and other countries.

Hewlett-Packard® is a registered trademark of Hewlett-Packard Company.

Java® is a registered trademark of Sun Microsystems, Inc.

Tivoli™ is a trademark of Tivoli Systems, Inc.

The Open Group acknowledges that there may be other brand, company, and product names
used in this document that may be covered by trademark protection and advises the reader to
verify them independently.

ARM Issue 4.0 – Java Binding ix

Acknowledgements
The Open Group gratefully acknowledges the contribution of the following people in the
development of this document:

• Mark Johnson, IBM

• Bill Furnas, Hewlett-Packard

• Marcus Thoss, tang-IT gmbH

x Technical Standard (2003)

Referenced Documents
The following documents are referenced in this document:

ARM 2.0 Technical Standard, July 1998, Systems Management: Application Response
Measurement (ARM) (C807), published by The Open Group.

ARM 3.0 Technical Standard, October 2001, Application Response Measurement (ARM)
Issue 3.0 Java Binding (C014), published by The Open Group.

ARM 4.0 (C Binding)
Technical Standard, October 2003, Application Response Measurement (ARM)
Issue 4.0 – C Binding (C036), published by The Open Group.

IEEE Std 754-1985
IEEE Standard for Binary Floating-Point Arithmetic.

Unicode (UCS)
Refer to www.unicode.org.

ARM Issue 4.0 – Java Binding 1

1 Introduction

1.1 What is ARM?

It is hard to imagine conducting business around the globe without computer systems, networks,
and software. People distribute and search for information, communicate with each other, and
transact business. Computers are increasingly faster, smaller, and less expensive. Networks are
increasingly faster, have more capacity, and are more reliable. Software has evolved to better
exploit the technological advances and to meet demanding new requirements. The IT
infrastructure has become more complex. We have become more dependent on the business
applications built on this infrastructure because they offer more services and improved
productivity.

No matter how much applications change, administrators and analysts responsible for the
applications care about the same things they have always cared about:

• Are transactions succeeding?

• If a transaction fails, what is the cause of the failure?

• What is the response time experienced by the end-user?

• Which sub-transactions of the user transaction take too long?

• Where are the bottlenecks?

• How many of which transactions are being used?

• How can the application and environment be tuned to be more robust and perform better?

ARM helps answer these questions. ARM is a standard for measuring service levels of single-
system and distributed applications. ARM measures the availability and performance of
transactions (any units of work), both those visible to the users of the business application and
those visible only within the IT infrastructure, such as client/server requests to a data server.

1.2 How is ARM Used?

ARM is a means through which business applications and management applications cooperate to
measure the response time and status of transactions executed by the business applications.

Applications using ARM define transactions that are meaningful within the application. Typical
examples are transactions initiated by a user and transactions with servers. As shown in Figure 1,
applications on clients and/or servers call ARM when transactions start and/or stop. The agent in
turn communicates with management applications, as shown in Figure 2, which provide analysis
and reporting of the data.

2 Technical Standard (2003)

The management agent collects the status and response time, and optionally other measurements
associated with the transaction. The business application, in conjunction with the agent, may also
provide information to correlate parent and child transactions. For example, a transaction that is
invoked on a client may drive a transaction on an application server, which in turn drives ten
other transactions on other application and/or data servers. The transaction on the client would
be the parent of the transaction on the application server, which in turn would be the parent of
the ten other transactions.

From the application developer’s perspective ARM is a set of interfaces that the application
loads and calls. What happens to the data after it calls the interfaces is not the developer’s
concern.

ARM Interface

Used by application
developers to

instrument software

Application

Figure 1: Application – ARM Interface

From the system administrator’s perspective, ARM consists of the interfaces that applications
load and call and the classes that implement these interfaces, plus programs to process the data,
as shown in Figure 2. How the data is processed is not part of the ARM specification, but it is, of
course, important to the system administrator.

ARM Interface

Used by application
developers to

instrument software

Application

Application

Application

Management Agent
+

Analysis
+

Reporting

Figure 2: Application – ARM Management System Interaction

1.3 Selecting Transactions to Measure

ARM is designed to measure a unit of work, such as a business transaction, or a major
component of a business transaction, that is performance-sensitive. These transactions should be
something that needs to be measured, monitored, and for which corrective action can be taken if
the performance is determined to be too slow.

ARM Issue 4.0 – Java Binding 3

Some questions to ask that aid in selecting which transactions to measure are:

• What unit of work does this transaction define?

• Are the transaction counts and/or response times important?

• Who will use this information?

• If performance of this transaction is too slow, what corrective actions will be taken?

1.4 The Evolution of ARM

ARM 1.0 was developed by Tivoli and Hewlett-Packard and released in June 1996. It provides a
means to measure the response time and status of transactions. The interface is in the C
programming language.

ARM 2.0 was developed by the ARM Working Group in 1997. The ARM Working Group was a
consortium of vendors and end-users interested in promoting and advancing ARM. ARM 2.0
was approved as a Technical Standard of The Open Group in July 1998, part of the IT DialTone
initiative. ARM 2.0 added the ability to correlate parent and child transactions, and to collect
other measurements associated with the transactions, such as the number of records processed.
The interface is in the C programming language.

ARM 3.0 was developed by The Open Group in 2001. It added new capabilities and specified
interfaces in the Java programming language.

ARM 4.0 has been developed to implement new capabilities, and to provide equivalent functions
for both C and Java programs. This document describes the Java program bindings. A
companion document describes the C program bindings. ARM 4.0 adds the following
capabilities:

• A richer and more flexible model for specifying application and transaction identity

• Tighter and more clarified semantics of registration

• Report attributes of a transaction that change on a per-instance basis

• Bind a transaction to a thread

• Indicate the amount of time a transaction is blocked waiting for an external event

• Indicate the true time when a transaction started executing for a specialized situation in
which the standard indication of a start [arm_start_transaction() in ARM 4.0 C bindings]
will not yield an accurate time

• Add a mechanism with which an application can register a callback that is called
whenever an error occurs

4 Technical Standard (2003)

1.5 Compatibility between ARM Versions

ARM defines low-level programming interfaces to be used between programs that are
dynamically linked together. This limits how much an interface can change from version to
version and still link with programs using a previous version. In particular, changing function
entry points, or the call signatures of an entry point, prevents working with a different version.

ARM 1.0 and ARM 2.0 are interoperable. More specifically, any application instrumenting with
ARM 1.0 can link to an ARM implementation using ARM 2.0, and vice versa. No other versions
of ARM are similarly interoperable. It is expected that management agents may simultaneously
support multiple versions of ARM. For example, a product may support both the ARM 3.0 and
ARM 4.0 Java interfaces. However, a business application using the ARM 3.0 interfaces cannot
instantiate the ARM 4.0 interfaces, and vice versa.

1.6 ARM 4.0 Java Bindings Overview

This specification describes three Java packages. Each package is equivalent to the block titled
“ARM Interface” in Figure 1 and Figure 2.

• org.opengroup.arm40.transaction is the primary package that most applications use. The
application calls a method when a transaction begins and ends, and the ARM
implementation measures the response time.

• org.opengroup.arm40.tranreport is an alternative package that can be used by applications
that measure the response time of their own transactions, and report the measurements
after the fact.

• org.opengroup.arm40.metric can be used in addition to the
org.opengroup.arm40.transaction package to report additional measurements about each
transaction, such as a count of the amount of work accomplished.

An ARM implementation contains concrete classes that implement these interfaces. An ARM
implementation may also be known as a “Management Agent” (and would be the part of the
block labeled “Management Agent + Analysis + Reporting” that collects data). It is expected
that companies will produce commercial ARM implementations, as was done for ARM 1.0 and
ARM 2.0.

Business applications use ARM by creating objects that implement the interfaces in the
packages, and then executing methods of the objects. The implementation of the classes takes
care of all processing of the data, including moving the data outside the thread or JVM (Java
Virtual Machine) process to be analyzed and reported.

1.7 Terminology

The following terminology is used throughout this document:

Can Describes a permissible optional feature or behavior available to the user or
application. The feature or behavior is mandatory for an implementation that

ARM Issue 4.0 – Java Binding 5

conforms to this document. An application can rely on the existence of the feature
or behavior.

Implementation-defined
(Same meaning as "implementation-dependent".) Describes a value or behavior that
is not defined by this document but is selected by an implementer. The value or
behavior may vary among implementations that conform to this document. An
application should not rely on the existence of the value or behavior. An application
that relies on such a value or behavior cannot be assured to be portable across
conforming implementations. The implementer shall document such a value or
behavior so that it can be used correctly by an application.

May Describes a feature or behavior that is optional for an implementation that conforms
to this document. An application should not rely on the existence of the feature or
behavior. An application that relies on such a feature or behavior cannot be assured
to be portable across conforming implementations. To avoid ambiguity, the
opposite of "may" is expressed as "need not", instead of "may not".

Must Describes a feature or behavior that is mandatory for an application or user. An
implementation that conforms to this document shall support this feature or
behavior.

Shall Describes a feature or behavior that is mandatory for an implementation that
conforms to this document. An application can rely on the existence of the feature
or behavior.

Should For an implementation that conforms to this document, describes a feature or
behavior that is recommended but not mandatory. An application should not rely on
the existence of the feature or behavior. An application that relies on such a feature
or behavior cannot be assured to be portable across conforming implementations.
For an application, describes a feature or behavior that is recommended
programming practice for optimum portability.

Undefined Describes the nature of a value or behavior not defined by this document that results
from use of an invalid program construct or invalid data input. The value or
behavior may vary among implementations that conform to this document. An
application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be
portable across conforming implementations.

Unspecified Describes the nature of a value or behavior not specified by this document that
results from use of a valid program construct or valid data input. The value or
behavior may vary among implementations that conform to this document. An
application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be
portable across conforming implementations.

Will Same meaning as "shall"; "shall" is the preferred term.

6 Technical Standard (2003)

2 Using the ARM 4.0 Java Binding

2.1 Example

An application uses ARM by creating objects that implement the ArmTransaction or
ArmTranReport interfaces, and then invoking methods on these objects. A factory interface is
provided to create the objects. The implementations of the ArmTransaction and ArmTranReport
interfaces, which will generally be provided by software vendors, process the measurement data
transparently to the application. Here is an example:
// This snippet assumes these are already created:
ArmTransactionFactory tranFactory;
BankAccount myAccount;

// These objects will be created at initialization:
ArmApplicationDefinition defnOnlineBank;
ArmApplication onlineBank;
ArmTransactionDefinition defnQueryBalance;
ArmTransaction queryBalance;

// Initialization: Create the application and transaction definitions:
defnOnlineBank = tranFactory.newArmApplicationDefinition(“My Bank”,
 null, null);
defnQueryBalance = tranFactory.newArmTransactionDefinition(
 defnOnlineBank, “QueryBalance”, null, null);

// Initialization: Create the application and transaction objects:
onlineBank = tranFactory.newArmApplication(defnOnlineBank, null,
 null, null);
queryBalance = tranFactory.newArmTransaction(onlineBank,
 defnQueryBalance);

// At runtime: measure transactions as they execute:
queryBalance.start();
 // The following line is the real job of the application:
 status = myAccount.queryBalance(myCredentials);
queryBalance.stop(ARM_GOOD);

Many applications need no more. For a little more work, and a great deal more value, an
application can link related transactions together. For example, a client transaction can be linked
to an application server transaction, and the application server transaction can be linked to data
server transactions. Understanding these relationships is tremendously useful for problem
diagnosis, performance tuning, and capacity modeling. It also provides the means to link
transactions to business transactions.

ARM Issue 4.0 – Java Binding 7

Here is an example of an application server, which both receives a correlation token from its
parent, and passes a correlation token to its children. The additional code to handle the
correlation tokens is highlighted in boldface type.
// This snippet assumes these are already created:
ArmTransactionFactory tranFactory;
BankAccount myAccount;

// These objects will be created at initialization:
ArmApplicationDefinition defnOnlineBank;
ArmApplication onlineBank;
ArmTransactionDefinition defnQueryBalance;
ArmTransaction queryBalance;

// Initialization: Create the application and transaction definitions:
defnOnlineBank = tranFactory.newArmApplicationDefinition(“My Bank”,
 null, null);
defnQueryBalance = tranFactory.newArmTransactionDefinition(
 defnOnlineBank, “QueryBalance”, null, null);

// Initialization: Create the application and transaction objects:
onlineBank = tranFactory.newArmApplication(defnOnlineBank, null,
 null, null);
queryBalance = tranFactory.newArmTransaction(onlineBank,
 defnQueryBalance);

// At runtime: measure transactions as they execute:
byte[] parentBytes; // Correlation token received from parent.
ArmCorrelator parent = tranFactory.newArmCorrelator(parentBytes);
queryBalance.start(parent);
ArmCorrelator corr = queryBalance.getCorr();
 // The following line is the real job of the application.
 // Note how the correlation token is sent along with the
 // transaction parameters.
 status = myAccount.queryBalance(myCredentials, corr);
queryBalance.stop(ARM_GOOD);

There are other optional features, but the examples above address many of the requirements for
using ARM. One feature enables applications to provide additional information about a
transaction, such as a count of the work done (for example, files processed).

8 Technical Standard (2003)

3 Programming Options

The application has two options for providing measurement data:

• In Option 1, the preferred, and more widely used option, the application calls an
ArmTransaction interface just before and after a transaction executes, and the
ArmTransaction object makes the measurements.

• In Option 2, the application makes all the measurements itself and reports the data some
time later. Option 2 should only be used in situations that preclude using Option 1.

3.1 ARM Measures Transactions

Figure 3 shows Option 1, the preferred, and most widely used option. The application creates an
instance of ArmTransaction. Immediately prior to starting a transaction, the application invokes
start(). The ArmTransaction instance captures and saves the timestamp. Immediately after the
transaction ends, the application calls the stop() method, passing the status as an argument. The
ArmTransaction instance captures the stop time. The difference between the stop time and the
start time is the response time of the transaction. As soon as the stop() method returns, the
application is free to reuse the ArmTransaction instance. The data will have already been copied
from it to be processed.

Application

start()

ArmTransaction
stop()

Figure 3: Measurement using Start/Stop

The application optionally provides any number of heartbeat and progress indicators using
update() between a start() and a stop(). This is shown in Figure 4. Heartbeats are useful for
long-running transactions.

ARM Issue 4.0 – Java Binding 9

Application

start()

ArmTransaction
update()

stop()

update()

Figure 4: Application using Heartbeats

3.2 Application Measures Transactions

Figure 5 shows Option 2. The application itself measures the response time of the transaction.
After the transaction completes (the delay could be short or long), it populates an
ArmTranReport object with data, and calls report() to initiate processing of the data. As soon as
the report() method returns, the application is free to reuse the ArmTranReport instance. The
data will have already been copied from it to be processed.

Application ArmTranReport
report()

Figure 5: Measurement by the Application

3.3 Selecting which Option to Use

In many situations the business application can use either programming option. In general, the
recommendation is to use Option 1 (ArmTransaction), unless that is not practical.

There is one situation for which the application must use Option 1:

• To provide heartbeats, the application must use the update() method of ArmTransaction
between a start() and a stop(). Heartbeats are particularly valuable for long-running
transactions. An ARM implementation may process updates, such as a real-time progress
display, or check a threshold for a transaction that is taking too long.

There are two situations for which the application must use Option 2 (creating and populating
ArmTranReport):

• Option 1 (ArmTransaction) requires that inline synchronous start() and stop() calls are
used. The calls must be made at the moment the real transaction starts and stops. If they
are not, the timings will not be accurate. If the application finds this inconvenient or
impractical, the application must use Option 2 (ArmTranReport). ArmTranReport can be
used because the application provides both the response time and the stop time.

10 Technical Standard (2003)

• If the transaction executes on System A but is reported to ARM on System B, Option 2
must be used for all the reasons stated above. In addition, the application provides
additional information that identifies the system and JVM (Java Virtual Machine) instance
of the remote system where the transaction ran.

ARM Issue 4.0 – Java Binding 11

4 Understanding the Relationships between Transactions

There are several solutions available that measure transaction response times, such as measuring
the response time as seen by a client, or measuring how long a method on an application server
takes to complete. ARM can be used for this purpose as well. This is useful data, but it doesn’t
provide insight into how transactions on servers are related to business transactions executed by
users or other application programs. ARM provides a facility for correlating transactions within
and across systems. This section describes how this is done.

4.1 A Typical Distributed Transaction

Most modern applications consist of programs distributed across multiple systems, processes,
and threads. Figure 6 is an example.

Client Application
Server

Application
Server

Data
Server

Data
Server

Data
Server

Figure 6: A Common Distributed Application Architecture

Figure 7 is an example transaction that runs on this application architecture. More correctly,
Figure 7 shows a hierarchy of several transactions. To the user there is one transaction, but it is
not unusual for the one transaction visible to the end-user to consist of tens or even over 100
sub-transactions.

12 Technical Standard (2003)

Submit
order

Process
order

query

query

query

verify
order

execute
order

query

query

query

query

update

update

Figure 7: An Example of a Distributed Transaction

In ARM each transaction instance is assigned a unique token, named in ARM parlance a
“correlator”. To the application a correlator appears as an opaque byte array. There actually is a
well-defined format to a correlator, and management agents and applications that understand it
can take advantage of the information in it to determine where and when a transaction executed,
which can aid enormously in problem diagnosis. Figure 8 shows the same transaction hierarchy
as Figure 7, except that the descriptive names in Figure 7 have been replaced with identifiers.
The lines are dotted instead of solid to indicate that without additional information, this would
look to a management application like thirteen unrelated transactions.

S1 P1 Q1

Q2

Q3

V1

E1

Q4

Q5

Q6

Q7

U2

U1

Figure 8: Distributed Transactions that Appear Unrelated

ARM Issue 4.0 – Java Binding 13

To relate the transactions together, the application components are each instrumented with
ARM. In addition, each transaction passes the correlator that identifies itself to its children. In
Figure 7 and Figure 8, the Submit Order transaction passes its correlator (S1) to its child, Process
Order. Process Order passes its correlator (P1) to its five children – three queries, Verify Order,
and Execute Order. Verify Order passes its correlator (V1) to its four children, and Execute
Order passes its correlator (E1) to its two children.

The last piece in the puzzle is that each of the transactions instrumented with ARM passes its
parent correlator to the ARM instrumentation class. The ARM instrumentation class knows the
correlator of the current transaction. The correlators can be combined into a tuple of (parent
correlator, correlator). Some of the tuples in Figure 8 are (S1,P1), (P1,Q1), (P1,E1), and (E1,
U1). By putting the different tuples together, the management application can create the full
calling hierarchy using the correlators to identify the transaction instances, as shown in Figure 9.

As an example of how this information could be used, if S1 failed, it would now be possible to
determine that it failed because P1 failed, P1 failed because V1 failed, and V1 failed because Q6
failed.

Similar types of analysis could determine the source of response time problems. To analyze
response time problems, additional information is needed. It’s necessary to know if the child
transactions execute serially, in parallel, or some combination of the two. The information may
also be useful in locating unacceptable network latencies. For example, if the response time of
S1 is substantially more than the response time of P1, and it is known that there is very little
processing done on P1 that isn’t accounted for in the measured response times, it suggests that
there are unacceptable network or queuing delays between S1 and P1.

S1 P1 Q1

Q2

Q3

V1

E1

Q4

Q5

Q6

Q7

U2

U1

(P1,Q1)

(P1,Q2)

(P1,Q3)

(P1,V1)

(P1,E1)

(V1,Q4)

V1,Q5)

(V1,Q6)

(V1,Q7)

(E1,U1)

(E1,U2)

(S1,P1)

Figure 9: A Distributed Transaction Calling Hierarchy

14 Technical Standard (2003)

5 Additional Data About a Transaction

The identification information and measurement information (status, response time, stop time)
for any transaction measured with ARM provides a great deal of value, and there may be no
requirement to augment the information. However, there are situations in which additional
information could be useful, such as:

• How “big” is a transaction? Knowing a backup operation took 47 seconds may not be
sufficient to know if the performance was good. Additional information, such as the
number of bytes or files backed-up, provides much more meaning to the 47 seconds
measurement.

• A transaction such as “get design drawings” may execute in less than a second for a
simple part (e.g., a bracket). For complex parts, such as an engine, it may take many
seconds to retrieve all the drawings, even if the system is performing well. Knowing the
part number in this case makes the response time meaningful.

• The performance of a transaction will be affected by other workloads running on the same
physical or logical system. Performance management tools may capture other information
(e.g., CPU utilization) and combine it with response time measurements to plot the effect
of CPU time on response time, which could be useful for planning the capacity of a
system. However, other information that could be useful may not be available to
performance management tools (e.g., the length of a queue internal to a program). It
would be helpful for the application to provide this information.

• If a transaction fails it can be useful to know why. The required ARM status has four
possible values: Good, Failed, Aborted, and Unknown. A detailed error code would be
useful to understand why a transaction failed or was aborted. Capturing the code along
with the other transaction information simplifies analysis by avoiding a later merge with,
for example, error messages in a log file.

ARM provides a way for applications to provide these types of data. In ARM parlance the data is
called “metrics”. The use of metrics is optional.

ARM is not intended as a general-purpose interface for recording data. It is good practice to
limit the use of metrics to data that is directly related to a transaction, and that helps to
understand measurements about the transaction.

5.1 Data Categories

ARM supports nine data types. The data types are grouped in four categories. The categories are
counters, gauges, numeric IDs, and strings.

ARM Issue 4.0 – Java Binding 15

5.1.1 Counters

A counter is a monotonically increasing non-negative value up to its maximum possible value, at
which point it wraps around to zero and starts again. This is the IETF (Internet Engineering Task
Force) definition of a counter.

A counter should be used when it makes sense to sum up the values over an interval. Examples
are bytes printed and records written. The values can also be averaged, maximums and
minimums (per transaction) can be calculated, and other kinds of statistical calculations can be
performed.

ARM supports three counter types:

• 32-bit integer: ArmMetricCounter32

• 64-bit integer: ArmMetricCounter64

• 32-bit floating-point: ArmMetricCounterFloat32
The floating-point standard is IEEE 754 (the same as the Java language).

5.1.2 Gauges

A gauge value can go up and down, and it can be positive or negative. This is the IETF
definition of a gauge.

A gauge should be used instead of a counter when it is not meaningful to sum up the values over
an interval. An example is the amount of memory used. If the amount of memory used over 20
transactions in an interval is measured and the average usage for each of these transactions was
15MB, it does not make sense to say that 20*15=300MB of memory were used over the interval.
It would make sense to say that the average was 15MB, that the median was 12MB, and that the
standard deviation was 8MB. The values can be averaged, maximums and minimums per
transaction calculated, and other kinds of statistical calculations performed.

ARM supports three gauge types:

• 32-bit integer: ArmMetricGauge32

• 64-bit integer: ArmMetricGauge64

• 32-bit floating-point: ArmMetricGaugeFloat32
The floating-point standard is IEEE 754 (the same as the Java language).

5.1.3 Numeric IDs

A numeric ID is a numeric value that is used as an identifier, and not as a measurement value.
Examples are message numbers and error codes.

Numeric IDs are classified as non-calculable because it doesn’t make sense to perform
arithmetic with them. For example, the mean of the last seven message numbers would hardly
ever provide useful information. By using a data type of numeric ID instead of a gauge or
counter, the application indicates that arithmetic with the numbers is probably nonsensical. An

16 Technical Standard (2003)

agent could create statistical summaries based on these values, such as generating a frequency
histogram by part number or error number.

ARM supports two numeric ID types:

• 32-bit integer: ArmMetricNumericId32

• 64-bit integer: ArmMetricNumericId64

5.1.4 Strings

A string is used in the same way that a numeric ID is used. It is an identifier, not a measurement
value. Examples are part numbers, names, and messages.

The strings are in standard 16-bit Unicode (UCS-2) characters (the same as the Java language).

ARM supports one string type:

• Strings of 1-32 characters: ArmMetricString32

5.2 How to Provide the Additional Data

The application provides the values in one of two ways, depending on how the transaction data
is measured.

5.2.1 Using ArmTransactionWithMetrics

If the application is calling ArmTransaction start() and stop(), it creates instances of subclasses
of ArmMetric (e.g., ArmMetricCounter32) and binds an instance to an
ArmTransactionWithMetrics instance using ArmMetricGroup. Each ArmMetric subclass supports
the set() method. Figure 10 shows this process. ArmTransactionWithMetrics is a subclass of
ArmTransaction and, hence, implements all the methods of ArmTransaction, in addition to some
methods for manipulating metrics.

Application

ArmTransactionWithMetrics
start()

ArmMetricGroup

ArmMetricArmMetricArmMetric

stop()

setMetricValid()

set()

Figure 10: Providing Additional Data using ArmTransaction and ArmMetric

ARM Issue 4.0 – Java Binding 17

Prior to calling start(), update(), or stop(), the application may set the value in each metric. The
ArmMetricGroup method setMetricValid() is used to indicate whether the data is valid. This is
needed because the data might be valid only when stop() is executed, as an example. Figure 10
shows this process.

5.2.2 Using ArmTranReportWithMetrics

The process is similar if the application is calling ArmTranReport report(). It creates instances of
subclasses of ArmMetric (e.g., ArmMetricCounter32) and binds an instance to an
ArmTranReportWithMetrics instance using ArmMetricGroup. Each ArmMetric subclass supports
the set() method. Figure 11 shows this process. ArmTranReportWithMetrics is a subclass of
ArmTranReport and, hence, implements all the methods of ArmTranReport, in addition to some
methods for manipulating metrics.

Application

ArmTranReportWithMetrics
report()

ArmMetricGroup

ArmMetricArmMetricArmMetric

setMetricValid()

set()

Figure 11: Providing Additional Data using ArmTranReport

Prior to calling report(), the application may set the value in each metric. The ArmMetricGroup
method setMetricValid() is used to indicate whether the data is valid. This is needed because the
data may not always be valid. Figure 11 shows this process.

5.3 Processing Multiple Values of the Same Metric

Additional semantics are defined when using ArmTransactionWithMetrics in order to eliminate
ambiguity. The ambiguity arises because the metric may be valid on some or all of the start(),
update(), and stop() method calls. The following sections describe the semantics for each of the
data type categories.

5.3.1 Counters

If a counter is used, its initial value must be set at the time of the start() call. The difference
between the value when the start() executes and when stop() executes (or the value in the last
update() call if no metric value is passed in stop()) is the value attributed to this transaction.
Similarly, the difference between successive update() calls, or from the start() to the first

18 Technical Standard (2003)

update() call, or from the last update() to the stop() call, equals the value for the time period
between the calls.

Here are three examples of how a counter would probably be used:

• The counter is set to zero at start() and to some value at stop() (or the last update() call).
In this case, the application probably measured the value for this transaction and provided
that value in the stop() call. The application always sets the value to zero at the start() call
so the value at stop() reflects both the difference from the start() value and the absolute
value.

• The counter is x1 at start(), x2 at its stop(), x2 at the next start(), and x3 at its stop(). In
this case, the application is probably keeping a rolling counter. Perhaps this is a server
application that counts the total workload. The application simply takes a snapshot of the
counter at the start of a transaction and another snapshot at the end of the transaction. The
agent determines the difference attributed to this transaction.

• The counter is x1 at start(), x2 at stop(), x3 (not equal to x2) at the next start(), and x4 at
stop(). In this case, the application is probably keeping a rolling counter as in the previous
example. But in this case the measurement represents a value affected by other users or
transaction classes, so the value often changes from one stop() to the next start() for the
same transaction class.

5.3.2 Gauges

Gauges can be set before start(), update(), and stop() calls. This creates the potential for
different interpretations. If several values are provided for a transaction [one at start(), one at
update()(s), and one at stop()], which one(s) should be used? In order to have consistent
interpretation, the following conventions apply. Measurement agents are free to process the data
in any way within these guidelines.

• The maximum value for a transaction will be the largest valid value passed at any time
between and including the start() and stop() calls.

• The minimum value for a transaction will be the smallest valid value passed at any time
between and including the start() and stop() calls.

• The mean value for a transaction will be the mean of all valid values passed at any time
between and including the start() and stop() calls. All valid values will be weighted
equally each time a start(), update(), or stop() executes.

• The median value for a transaction will be the median of all valid values passed at any
time during the transaction. All valid values will be weighted equally each time a start(),
update(), or stop() executes.

• The last value for a transaction will be the last valid value passed whenever any start(),
update(), or stop() executes.

5.3.3 Numeric IDs

The last value passed when any of the start(), update(), or stop() calls are made will be the
value attributed to the transaction instance. For example, if a value is valid at start() but not

ARM Issue 4.0 – Java Binding 19

when any update() or stop() call executes, the value passed at the start() is used. If a value is
valid when start() executes and when stop() executes, the value when stop() executes is the
value for the transaction instance. This convention is identical to the string convention.

5.3.4 Strings

The last value passed when any of the start(), update(), or stop() calls are made will be the
value attributed to the transaction instance. For example, if a value is valid at start() but not
when any update() or stop() call executes, the value passed at the start() is used. If a value is
valid when start() executes and when stop() executes, the value when stop() executes is the
value for the transaction instance. This convention is identical to the numeric ID convention.

20 Technical Standard (2003)

6 Creating ARM Objects

6.1 Overview of Java Interfaces

This document defines Java interfaces. A Java interface is an abstract specification of method
signatures. Following is an example of an interface. This interface is named ArmMetricGroup; it
is part of the org.opengroup.arm40.metric package, and it defines four method signatures:
getDefinition(), getMetric(int), isMetricValid(int), and setMetricValid(int,boolean).
package org.opengroup.arm40.metric;
public interface ArmMetricGroup
{
 public ArmMetricGroupDefinition getDefinition();
 public ArmMetric getMetric(int index);
 public boolean isMetricValid(int index);
 public int setMetricValid(int index, boolean value);
}

A program cannot create an instance (object) of an interface because there’s no code to execute.
Instead, a program creates an instance of a concrete class that implements the interface. In the
following two code fragments, each of which would be in its own file, two classes are defined
(MyGroup and AnotherVendorsOne). Each class declares that it implements the ArmMetricGroup
interface (and they import all the class and interface definitions in the
org.opengroup.arm40.metric so the Java compiler can reconcile all the names). Each class
includes method bodies for at least the three methods defined in ArmMetricGroup. If it doesn’t,
the Java compiler will generate an error. Other methods may also be included. In these
examples, MyGroup has one other method [privateStuff()] and AnotherVendorsOne has two
other methods [differentStuff1() and differentStuff2()].
import org.opengroup.arm40.metric.*;
public class MyGroup
 implements ArmMetricGroup
{
 public ArmMetricGroupDefinition getDefinition();
 { // program code goes here }
 public ArmMetric getMetric(int index);
 { // program code goes here }
 public boolean isMetricValid(int index);
 { // program code goes here }
 public int setMetricValid(int index, boolean value);
 { // program code goes here }
 public int privateStuff();
 { // program code goes here }
}

import org.opengroup.arm40.metric.*;
public class AnotherVendorsOne

ARM Issue 4.0 – Java Binding 21

 implements ArmMetricGroup
{
 public ArmMetricGroupDefinition getDefinition();
 { // program code goes here }
 public ArmMetric getMetric(int index);
 { // program code goes here }
 public boolean isMetricValid(int index);
 { // program code goes here }
 public int setMetricValid(int index, boolean value);
 { // program code goes here }
 private void differentStuff1()
 { // program code goes here }
 private void differentStuff2()
 { // program code goes here }
}

To create an object that implements the ArmMetricGroup interface, a program could create an
instance of either MyGroup or AnotherVendorsOne. By assigning the object to a variable of type
ArmMetricGroup, this variable can be used as if ArmMetricGroup is a concrete class. In the
following code snippet, group is of type MyGroup and can execute any of the five methods of
MyGroup. g5 is of type ArmMetricGroup so it can execute only the four methods in
ArmMetricGroup. The program statement g5.privateStuff() would generate a compiler error
because privateStuff() is not defined in the ArmMetricGroup interface, whereas
group.privateStuff() does not result in a compiler error.
MyGroup group = new MyGroup();
ArmMetricGroup g5 = (ArmMetricGroup) group;
int mySlot = 4;
g5.setMetricValid(mySlot, true);
group.setMetricValid(mySlot, false);
group.privateStuff();

6.2 Creating ARM Objects in an Application

The discussion so far has been a short tutorial on Java interfaces and would apply to any Java
program. The remainder of this section describes how applications (not applets) create objects
that implement the ARM 4.0 Java Bindings interfaces. The next section describes how applets
create the objects.

A fundamental characteristic of ARM is that an application that uses ARM will be able to work
with any ARM implementation, whether written in-house or purchased from a vendor. Vendors
compete with each other to provide better ARM implementations. The use of Java interfaces
creates a potential problem because each vendor will have its own names for its own classes. In
the examples above, MyGroup and AnotherVendorsOne are names that are not part of the ARM
specification. Further, a program that uses ARM should never use either name in a program
because if it does, that program is restricted to only working with the ARM implementation from
that particular vendor. But a program cannot create an instance of an object which implements
an interface, such as the ArmMetricGroup interface, without naming a specific class. It is a
compiler error to code:
ArmMetricGroup g5 = new ArmMetricGroup();

22 Technical Standard (2003)

So how can a program create a concrete class without naming the class directly?

ARM uses two mechanisms to create objects that implement the ARM interfaces. Together,
these mechanisms permit a system administrator to choose an ARM implementation regardless
of the class names of the implementation while allowing the application to work with any ARM
implementation.

1. This document defines three factory interfaces, one for each package. New objects are
created by first creating an object that implements a factory interface, then invoking
methods of the factory interface. The factory methods are used instead of using the Java
new operator. The three factory interfaces are ArmMetricFactory, ArmTranReportFactory,
and ArmTransactionFactory.

2. Using factory interfaces alone does not avoid naming the classes in each ARM
implementation, because the objects implementing the factory interfaces need to be
created by name. The application does not know the factory class names in advance
(otherwise it would only work with one ARM implementation). The application gets the
names of the factory classes through the use of the Java system properties. A system
administrator assigns the names of the factory classes to the properties before starting an
application that uses ARM.

The remainder of this section describes the process in more detail.

All JDKs implement the java.lang.System and java.util.Properties classes. These classes contain
several methods to manipulate properties. java.util.Properties is a hash table containing
properties. A property is a string and it is referenced within the hash table by a key, which is also
a string. Java programs can create instances of java.util.Properties for their own purposes.
java.lang.System creates a special instance of java.util.Properties that is a singleton within the
JVM (Java Virtual Machine). It provides a single place to store property values that will be
available to all programs running within the JVM.

ARM defines three property keys, one for each of the three factory classes. Each factory
interface defines a static (class) constant named propertyKey. The value of each constant is the
same name as the factory interface. For example, the ArmMetricFactory interface assigns the
value ArmMetricFactory to its constant variable propertyKey. Each of the following statements is
in the respective factory interfaces:
public static final String propertyKey = "Arm40.ArmMetricFactory";
public static final String propertyKey = "Arm40.ArmTranReportFactory";
public static final String propertyKey = "Arm40.ArmTransactionFactory";

During initialization of the ARM environment in a JVM, a program provided by the system
administrator will assign a class name in the system properties for each property key. For
example, the following code snippet assigns the class name com.vendor1.arm.ArmTranFactory
to the property key for ArmTransactionFactory. This would be repeated for the other three
factory interfaces. In this case a company with a domain name of vendor1.com presumably
supplies the ARM implementation.
Properties p = System.getProperties();
String valueTranFactoryClass = "com.vendor1.arm.ArmTranFactory";
String keyTranFactoryClass = ArmTransactionFactory.propertyKey;
p.put(keyTranFactoryClass, valueTranFactoryClass);

ARM Issue 4.0 – Java Binding 23

To create any of the ARM objects an application first creates an instance of the appropriate
factory class. It then uses the methods of the factory class to create the objects that implement
the ARM interfaces. It is common for an application to create one instance of each of the four
factory classes during initialization, and then use them to create all the other objects. However,
there is no requirement to do so – the application can create any number of instances of each
factory, and can create one whenever it needs one.

In the following code snippet, tranFactoryName is the name of the factory class (for example,
com.vendor1.arm.ArmTranFactory), tranFactoryClass is the factory class (all Java classes can be
represented by an instance of java.lang.Class), and tranFactory is an instance of the factory
class. tranFactory can be used to create any number of instances of ArmTransaction and related
classes. Three are created in this example, all for the same transaction ID. In this example, the
Class.forName() method specifically names the system class loader, which can avoid problems
if multiple class loaders are involved and the factory implementation uses JNI (Java Native
Interface).
// Create the factory object
Properties p = System.getProperties();
String keyTranFactoryClass = ArmTransactionFactory.propertyKey;
String tranFactoryName = p.getProperty(keyTranFactoryClass);
Class tranFactoryClass = Class.forName(tranFactoryName, true,
 ClassLoader.getSystemClassLoader());
ArmTransactionFactory tranFactory;
tranFactory = (ArmTransactionFactory) tranFactoryClass.newInstance();

// The application and transaction objects
ArmApplicationDefinition myAppDefn;
ArmApplication myApp;
ArmTransactionDefinition myTranDefn;
ArmTransaction tran1, tran2, tran3;

// Create application objects
myAppDefn = tranFactory.newArmApplicationDefinition(“My Application”,
 null, null);
myApp = tranFactory.newArmApplication(myAppDefn, null, null, null);

// Create three transaction objects
myTranDefn = tranFactory.newArmTransactionDefinition(
 myAppDefn, “My Transaction”, null, null);
tran1 = tranFactory.newArmTransaction(myApp, myTranDefn);
tran2 = tranFactory.newArmTransaction(myApp, myTranDefn);
tran3 = tranFactory.newArmTransaction(myApp, myTranDefn);

6.2.1 Convenience Methods

ARM implementations or SDKs may (but are not required to) provide convenience routines that
hide some of these details. A suggested way to do this would be to provide class methods to
create the factories by embedding the logic from above. For example:
public class ArmFactory
{
 public static ArmTransactionFactory createArmTransactionFactory(){}
 public static ArmTransReportFactory createArmTransReportFactory(){}

24 Technical Standard (2003)

 public static ArmMetricFactory createArmMetricFactory(){}
}

6.3 Creating ARM Objects in an Applet

The approach of using the system properties to identify the names of the concrete classes works
for Java applications but it will not work for Java applets. Applets do not have access to the
system properties, except a few that are expressly permitted. This section describes how to
provide the class names to applets.

The basic principles remain the same. The applet should not change even if the ARM
implementation changes. A system administrator should control which ARM implementation is
used by each applet. This will be the system administrator of the server from which the applet is
loaded.

The Java language permits applets to access files on the server system from which they
originated, as long as those files are in the applet’s codebase. By default the codebase is the
directory that contains the HTML file that loaded the applet. The HTML file can specify the
codebase to be a different directory using the CODEBASE tag. Classes in the applet’s unnamed
package (any class that doesn’t specify a package) are taken from the same directory as the
codebase. For classes that are members of a package, the codebase is extended by the package
name. For example, if the codebase is www.abc.com/test, the ARM package would be in
directory www.abc.com/test/org/opengroup/arm40/transaction. An applet can get the URL of the
codebase using the getCodeBase() method of the java.applet class.

ARM defines a similar mechanism for applets as for applications. The main difference is that an
application gets its properties from the system properties, whereas an applet gets its properties
from a file named arm.properties. arm.properties must reside in the codebase of the applet. An
application uses java.lang.System.getProperties() to create an instance of the
java.util.Properties class. An applet creates an instance of java.util.Properties by loading it from
the data in arm.properties. The format of each property, and the keys that identify the three
factory classes, are identical.

The following example shows how an applet would initialize its Properties object and create an
instance of ArmTransactionFactory, then use the factory to create an instance of ArmTransaction.
// Retrieve properties file from codebase
URL urlCodeBase = getCodeBase();
URL urlArmProp = new URL(urlCodeBase.getProtocol(),
 urlCodeBase.getHost(),
 urlCodeBase.getPort(),
 urlCodeBase.getFile()
 +"arm.properties");
InputStream in = urlArmProp.openStream();
Properties armProp = new Properties();
armProp.load(in);

// Get the factory class name and create an instance
String keyTranFactoryClass = ArmTransactionFactory.propertyKey;
String tranFactoryName = armProp.getProperty(keyTranFactoryClass);
Class tranFactoryClass = Class.forName(tranFactoryName);

ARM Issue 4.0 – Java Binding 25

ArmTransactionFactory tranFactory;
tranFactory = (ArmTransactionFactory) tranFactoryClass.newInstance();

// The application and transaction objects
ArmApplicationDefinition myAppDefn;
ArmApplication myApp;
ArmTransactionDefinition myTranDefn;
ArmTransaction tran1, tran2, tran3;

// Create application objects
myAppDefn = tranFactory.newArmApplicationDefinition(“My Application”,
 null, null);
myApp = tranFactory.newArmApplication(myAppDefn, null, null, null);

// Create transaction objects
myTranDefn = tranFactory.newArmTransactionDefinition(myAppDefn,
 “My Transaction”, null, null);
tran1 = tranFactory.newArmTransaction(myApp, myTranDefn);

One final restriction, imposed by the Java language on applets, is that the implementation of the
interface – that is, the concrete classes that implement the ARM interfaces – must also reside in
the applet’s codebase.

26 Technical Standard (2003)

7 Error Handling Philosophy

The error handling philosophy of the ARM specification can be summed up as the following:

“Programmers and system administrators need to know about errors; programs do not.”

The practical effect of this philosophy is that applications do not need to check for errors, except
when creating factory classes, when exceptions could be thrown.

An application that contains programming errors, or that receives invalid data, could generate
invalid measurement data. This is a problem that programmers and system administrators should
correct. But at runtime there’s nothing an application can do about it, so the ARM interface takes
the approach of being as unobtrusive as possible, and permitting the application logic to flow
normally. Programmers testing programs, and system administrators managing systems using
ARM, should check for error reports from ARM implementations.

Any method that creates an ARM object, or a copy of an ARM object, will always return a valid
non-null object of that type. If invalid data is provided, the data within that object may be
incorrect or meaningless. However, the object will be syntactically correct; that is, it will be a
valid Java object, and any of its methods can be invoked without causing an exception.

7.1 Errors the Application Should Test For

There is one situation in which the application needs to test for errors. This situation is when the
application is creating factory classes. When doing so, there are three exceptions, all thrown by
the static methods of java.lang.Class, which the application should be prepared to catch. They
most likely indicate that the ARM environment has not been initialized correctly. For example,
an ARM implementation may not be in the class path, or the java.lang.properties file may
contain invalid class names. These exceptions are:

• java.lang.ClassNotFoundException signals that a class to be loaded could not be found. It
is thrown by Class.forName().

• java.lang.IllegalAccessException signals that a class or initializer is not accessible. It is
thrown by Class.newInstance().

• java.lang.InstantiationException signals an attempt to instantiate an interface or an abstract
class. It is thrown by Class.newInstance().

7.2 Errors the Application Does Not Need to Test For

None of the interfaces in the three packages that comprise the ARM specification define
exceptions, and none throw exceptions, except those that are so pervasive in Java classes that
they do not have to be declared. Exceptions that do not have to be declared are those that are

ARM Issue 4.0 – Java Binding 27

subclasses of java.lang.Error or java.lang.RuntimeException. Such exceptions can be thrown by
practically any method. One RuntimeException that is often encountered is
ArrayIndexOutOfBoundsException. Examples of exceptions that do have to be declared are
IOExceptions.

Here are some examples of errors in the use of the ARM interface that are not exceptions:

• The application passes a null pointer when a non-null pointer is required.

• The application passes an invalid format ID or status value.

• The application passes an incorrectly formed correlator (which it may have received from
the program that called it, in which case the problem is in the program or system that
called it).

• When using ArmTransaction, two start() methods are executed consecutively without an
intervening stop() or reset(), or an update() method is executed without a start() first
being executed.

ARM has two principles for handling this type of error:

• The programmer (during program development) and/or the system administrator (after the
application has been deployed into production) need to be aware of them so the problem
can be corrected.

• An application running in production does not need to be aware of and test for them, but
has the opportunity to do so. To enable this, an application can test method return codes,
get an error status from an object, and register a callback that is invoked when an error
occurs.

The recommended approach is for the ARM implementation to have a mechanism for providing
programmers and/or system administrators with error notification. For example, the ARM
implementation could write the data to a log file and/or create and send an error event to an
event console. During development and testing, the programmer would inspect the log file for
errors. During production a system administrator would do the same. In this way a system
administrator will have one place to look for errors for all applications using ARM.

Except for the callback via the ArmErrorCallback interface, the content, format, and delivery
mechanisms for error notifications are not part of the ARM specification. They are
implementation-defined. A good implementation will provide sufficient detail to not only detect
that a problem occurred, but to also isolate and resolve the problem.

7.3 How an Application Tests for Errors

If an application chooses to test for errors that don’t result in throwing an exception, it may do so
in three ways. Note again that testing for these errors is entirely optional. They can be ignored
(the data about the transactions and related entities may not be valid or useful to an ARM
implementation, but the application’s execution will not be disrupted in any way).

Anytime a method results in an error the ARM implementation does the following:

28 Technical Standard (2003)

• Sets the object’s error code. This error code can be retrieved with the getErrorCode()
method of ArmInterface, from which all other ARM interfaces with methods derive.

• Calls errorCodeSet() in ArmErrorCallback, if an ArmErrorCallback has been successfully
registered with the ArmApplication.

• Returns the error code if the method that caused the error returns an error code.

Anytime a method of an object is invoked, any previous error code value is overwritten with the
status of the last method invoked.

7.3.1 Testing a Method Return Code

Many methods return an int. Unless otherwise noted, the returned integer is an error code. It has
a value of zero if no error occurred. Any non-zero value indicates that there was an error.

7.3.2 Testing an Object Error Code

Many methods may result in the ARM implementation detecting an error. Some of these
methods return an error code and some do not. Regardless of whether a method returns an error
code, all methods that detect an error set the object’s error code. The application may retrieve the
error code with the getErrorCode() method of ArmInterface, from which all other ARM
interfaces with methods derive. The application may use getErrorMessage() to get a string
message describing the error.

7.3.3 Registering a Callback

An application may create an object that implements the ArmErrorCallback interface and register
it with the setErrorCallback() method of ArmApplication. setErrorCallback() returns a boolean
indicating whether the registration was accepted. If it was accepted, any method that causes an
object’s error code to be set to a non-zero value will cause the ArmErrorCallback method
errorCodeSet() to be invoked, passing a reference to the object and the name of the interface
and method in which the error was detected.

ARM Issue 4.0 – Java Binding 29

8 The ARM 4.0 Data Model

8.1 Data Model Using ArmTransaction

Figure 12 shows the data model when using ArmTransaction. To avoid clutter in the diagrams,
some interfaces, such as ArmCorrelator, ArmID, and ArmUser, are not shown as separate classes.

Four interfaces must be used: ArmApplicationDefinition, ArmTransactionDefinition,
ArmApplication, and ArmTransaction. All others are optional. The relationships between
interfaces are implemented via Java object references.

• ArmApplicationDefinition describes metadata about the application. It is the root object that
anchors all other objects. There is one per application. Note, however, that an ARM
application is a logical entity. The same process may support several very different logical
applications.

• ArmTransactionDefinition describes metadata about a transaction. There may be any
number of transaction definitions in each application.

• ArmIdentityProperties and its subclass ArmIdentityPropertiesTransaction are used to
provide additional optional metadata about applications and transactions.

• ArmApplication represents an application instance. It is common for there to be one
instance per definition, but there could be any number of instances per definition.

• ArmTransaction represents an executing transaction. It is the most important and the most
widely used ARM interface. More specifically, the application uses the paired methods
start() and stop() to indicate the beginning and end of the transaction. At all other times
the ArmTransaction object is unused and does not represent anything. ArmTransaction
objects may be reused. An application may create one ArmTransaction per thread, or it
might create a pool of ArmTransaction instances, and reuse them on an as-needed basis.

The measurements common to all transaction instances are status, response time, and the
time-of-day when the transaction executed. Optionally, the application can also provide
data to correlate parent and child transactions and context data such as the user on whose
behalf the transaction executes. Substitute ArmTransactionWithMetrics if additional metric
data is provided.

• ArmTransactionWithMetrics is a subclass of ArmTransaction. If metrics are used (see the
following descriptions of ArmMetric and ArmMetricGroup), ArmTransactionWithMetrics is
used instead of ArmTransaction.

• ArmMetric (and its ten subclasses, such as ArmMetricCounter32). The application can
optionally augment the basic and correlation data with other data, called “metrics”. A
metric is a numeric or string value. It may represent a counter (such as the number of files
processed), a gauge (such as the queue length when the transaction executes), or

30 Technical Standard (2003)

information (such as an error number or the name of a file that was processed). An
application creates ArmMetric instances and associates them with one or more
ArmTransactionWithMetrics instances. When ArmTransactionWithMetrics methods are
processed, the values in the ArmMetric instances are captured and considered part of the
data for the transaction.

A benefit of this approach is that the same ArmMetric object can be shared by many
instances of the same transaction or different transactions. Updating the value in one place
(the ArmMetric object) effectively propagates it to many ArmTransactionWithMetrics
objects, though the data is only captured when a start(), update(), or stop() call is made.

• ArmMetricGroup is used to bind a set of ArmMetric objects to an
ArmTransactionWithMetrics object.

• ArmTransactionWithMetricsDefinition, ArmMetricGroupDefinition, and ArmMetricDefinition
are used to provide metadata about metric groups and metrics.

ArmApplicationDefinition

name
id

ArmIdentityProperties

identityNames[20]
identityValues[20]
contextNames[20]

ArmIdentityPropertiesTransaction

identityURIValue

ArmTransactionDefinition

name
id

ArmTransactionWithMetricsDefinition

ArmMetricGroupDefinition

ArmMetricDefinition

name
units
usage
id

ArmApplication

contextValues[20]
group
instance

ArmTransaction

contextURI
contextValues[20]
user
correlator
parentCorrelator
status
diagnosticDetail
traceRequested

ArmTransactionWithMetrics

ArmMetricGroup

metricValid[7]

ArmMetric

value

0..1 n

0..1 n 1 n

1 n

1
n

1
n

n
1

n
1

n
0..7

n
0..7

1 n

1 n

1 n

subclasses

subclasses

subclasses

Figure 12: ARM 4.0 Data Model Using ArmTransaction

ARM Issue 4.0 – Java Binding 31

8.2 Data Model Using ArmTranReport

Figure 13 summarizes the data model when using ArmTranReport. All the interfaces that are
already depicted in Figure 12 and described above are not shaded. Only the interfaces that
specifically support the use of ArmTranReport are shared and described below.

• ArmTranReport and its subclass ArmTranReportWithMetrics contain the information about
a completed transaction. Typically an application might create one ArmTranReport
instance for each type of transaction that it executes, or a pool of them if it is multi-
threaded. When a transaction completes, the application extracts one of the objects,
populates it, then calls report(). As soon as report() returns, the application can reuse the
ArmTranReport instance.

• ArmApplicationRemote may execute on the local system or a remote system. When it
executes on the local system, it is associated with an ArmApplication object. When it
executes on a remote system, it is associated with a subclass of ArmApplication –
ArmApplicationRemote. ArmApplicationRemote differs from ArmApplication only in that it
may be associated with an ArmSystemAddress object. An ArmSystemAddress object
contains the network address of the remote system in one of several possible formats.

ArmApplicationDefinitionArmIdentityProperties

ArmIdentityPropertiesTransaction ArmTransactionDefinition

ArmTransactionWithMetricsDefinition

ArmMetricGroupDefinition

ArmMetricDefinition

ArmApplication

ArmTranReport

contextURI
contextValues[20]
user
correlator
parentCorrelator
status
diagnosticDetail
responseTime
stopTime

ArmTranReportWithMetrics

ArmMetricGroup

ArmMetric

0..1 n

0..1 n 1 n

1 n

1

n

1

n

n

1
n
1

n
0..7

n
0..7

1 n

1 n

1 n

ArmApplicationRemote

ArmSystemAddress

format
address
id

n
1

subclasses

subclasses

subclasses

subclasses

Figure 13: ARM 4.0 Data Model Using ArmTranReport

32 Technical Standard (2003)

9 The org.opengroup.arm40.* Packages

9.1 Interface List (by Java Package)

The following table lists all the interfaces, arranged by package name, and in alphabetical order
within the package. Most applications will use only the transaction package and can ignore the
other packages, which address specialized requirements.

There is one factory interface for each package. Use this factory interface to create instances of
the other interfaces.

org.opengroup.arm40.
 transaction

org.opengroup.arm40.
 tranreport

org.opengroup.arm40.metric

ArmApplication
ArmApplicationDefinition
ArmConstants
ArmCorrelator
ArmErrorCallback
ArmID
ArmIdentityProperties
ArmIdentityPropertiesTransaction
ArmInterface
ArmToken
ArmTransaction
ArmTransactionDefinition
ArmTransactionFactory
ArmUser

ArmApplicationRemote
ArmSystemAddress
ArmTranReport
ArmTranReportFactory

ArmMetric
ArmMetricCounter32
ArmMetricCounter32Definition
ArmMetricCounter64
ArmMetricCounter64Definition
ArmMetricCounterFloat32
ArmMetricCounterFloat32Definition
ArmMetricDefinition
ArmMetricFactory
ArmMetricGauge32
ArmMetricGauge32Definition
ArmMetricGauge64
ArmMetricGauge64Definition
ArmMetricGaugeFloat32
ArmMetricGaugeFloat32Definition
ArmMetricGroup
ArmMetricGroupDefinition
ArmMetricNumericId32
ArmMetricNumericId32Definition
ArmMetricNumericId64
ArmMetricNumericId64Definition
ArmMetricString32
ArmMetricString32Definition
ArmTranReportWithMetrics
ArmTransactionWithMetrics
ArmTransactionWithMetricsDefinition

ARM Issue 4.0 – Java Binding 33

9.2 Interface List (in Alphabetical Order)

The following table lists in alphabetical order all the interfaces that comprise the ARM
specification, and lists the Java package in which they can be found. It also lists whether
instances of the interface can be instantiated. Some interfaces cannot be instantiated because
they define only constants or they are abstract superclasses. To create instances of instantiable
interfaces, use the appropriate method of the factory class for the package.

Class Name (in Alphabetic Order) Java Package Can be Instantiated?

ArmApplication org.opengroup.arm40.transaction Yes

ArmApplicationDefinition org.opengroup.arm40.transaction Yes

ArmApplicationRemote org.opengroup.arm40.tranreport Yes

ArmConstants org.opengroup.arm40.transaction No

ArmCorrelator org.opengroup.arm40.transaction Yes

ArmErrorCallback org.opengroup.arm40.transaction Yes

ArmID org.opengroup.arm40.transaction Yes

ArmIdentityProperties org.opengroup.arm40.transaction Yes

ArmIdentityPropertiesTransaction org.opengroup.arm40.transaction Yes

ArmInterface org.opengroup.arm40.transaction No

ArmMetric org.opengroup.arm40.metric No

ArmMetricCounter32 org.opengroup.arm40.metric Yes

ArmMetricCounter32Definition org.opengroup.arm40.metric Yes

ArmMetricCounter64 org.opengroup.arm40.metric Yes

ArmMetricCounter64Definition org.opengroup.arm40.metric Yes

ArmMetricCounterFloat32 org.opengroup.arm40.metric Yes

ArmMetricCounterFloat32Definition org.opengroup.arm40.metric Yes

ArmMetricDefinition org.opengroup.arm40.metric No

ArmMetricFactory org.opengroup.arm40.metric Yes

ArmMetricGauge32 org.opengroup.arm40.metric Yes

ArmMetricGauge32Definition org.opengroup.arm40.metric Yes

ArmMetricGauge64 org.opengroup.arm40.metric Yes

ArmMetricGauge64Definition org.opengroup.arm40.metric Yes

ArmMetricGaugeFloat32 org.opengroup.arm40.metric Yes

ArmMetricGaugeFloat32Definition org.opengroup.arm40.metric Yes

ArmMetricGroup org.opengroup.arm40.metric Yes

ArmMetricGroupDefinition org.opengroup.arm40.metric Yes

ArmMetricNumericId32 org.opengroup.arm40.metric Yes

34 Technical Standard (2003)

Class Name (in Alphabetic Order) Java Package Can be Instantiated?

ArmMetricNumericId32Definition org.opengroup.arm40.metric Yes

ArmMetricNumericId64 org.opengroup.arm40.metric Yes

ArmMetricNumericId64Definition org.opengroup.arm40.metric Yes

ArmMetricString32 org.opengroup.arm40.metric Yes

ArmMetricString32Definition org.opengroup.arm40.metric Yes

ArmSystemAddress org.opengroup.arm40.tranreport Yes

ArmToken org.opengroup.arm40.transaction No

ArmTranReport org.opengroup.arm40.tranreport Yes

ArmTranReportFactory org.opengroup.arm40.tranreport Yes

ArmTranReportWithMetrics org.opengroup.arm40.tranreport Yes

ArmTransaction org.opengroup.arm40.transaction Yes

ArmTransactionDefinition org.opengroup.arm40.transaction Yes

ArmTransactionFactory org.opengroup.arm40.transaction Yes

ArmTransactionWithMetrics org.opengroup.arm40.metric Yes

ArmTransactionWithMetricsDefinition org.opengroup.arm40.metric Yes

ArmUser org.opengroup.arm40.transaction Yes

9.3 Method Naming Conventions

Every attempt has been made to adhere to the naming conventions commonly used in Java
programs. Here is a list of a few to be aware of:

• get() or getSomething() returns a primitive value or a reference to an object or array. If it
is a reference, the object (or array) to which it refers is treated as immutable. Treating the
object or array as immutable means the ARM implementation will not change the data in
the object or array. Some object types are entirely immutable, including String, ArmToken,
and its subclasses (ArmCorrelator, ArmSystemAddress, ArmID), and ArmSystem. Some
object types will not be changed by the ARM implementation, but could be changed by
the application (an array or an object that implements ArmMetric).

• set() or setSomething() sets a primitive value or a reference to an object or array.

• copySomething(destination) copies the actual data to a byte array. It does not merely
copy the reference.

• isSomething() returns a boolean.

• newSomething() creates a Something object and returns a reference to it.

ARM Issue 4.0 – Java Binding 35

9.4 org.opengroup.arm40.transaction.ArmApplication

ArmApplication represents an instance of an executing application. It provides an anchor point
for associating ArmTransaction objects with the application instance. Instances of
ArmApplication are created using the newArmApplication() method of ArmTransactionFactory.
It has the following attributes, all of which are immutable:

• Application definition. The metadata common to all instances of this application. The
value must not be null.

• Group (optional). A group is a set of application instances that are treated as a group for
some aspects of management, such as workload balancing (work could be routed to any
instance of the group). The maximum length is 255 characters. The value may be null.

• Instance (optional). The instance could be used to distinguish between instances of the
same application. ARM does not require that this field be used or that it be unique, though
its use is suggested. The maximum length is 255 characters. The value may be null.

• Context values (optional). The “value” part of “name=value” properties that may vary per
application instance. The “name” part is available via
ArmApplicationDefinition ArmIdentityProperties. The values are position-sensitive – they
match the context name array in the referenced ArmIdentityProperties. If either the name
or value of a property is null, both the name and value are considered to have a null value.

Note that both ArmApplication and ArmTransaction have context values that may be
unique for each application and transaction instance, respectively. However, the
mechanisms for setting the context values are different. In ArmApplication, they are set in
the factory method and are immutable afterwards. In ArmTransaction, they are set at any
time and processed each time a start() executes.

The reason for the difference is that ArmApplication objects are not reused. One object is
created per application instance. If another instance starts, a new ArmApplication is
created. This is a reasonable design pattern because applications are long-lived. In most
cases, once an application starts, it continues to execute for a long time, so the cost of
creating the ArmApplication object and then garbage collecting it is not significant.

Transactions, on the other hand, are often very short-lived, with response times that are
often measured in milliseconds. Creating a new ArmTransaction object for each
transaction instance, and then garbage collecting it afterwards, would result in
unacceptable and unnecessary overhead. Instead, an ArmTransaction object is created and
then reused over and over. Each executing transaction is represented by the paired
start()/stop() methods. For this reason, context values are set using setter methods.

end() indicates that the application instance has halted. After end() executes, the application
instance may not call any other method of the ArmApplication object, it may not use any
reference to the ArmApplication object, nor may it call any method of any object created using a
reference to the ArmApplication object (e.g., creating an instance of ArmTransaction using the
newArmTransaction() method of ArmTransactionFactory). Any transactions that are currently
in-process [start() executed but stop() not executed] will be discarded by implicitly executing

36 Technical Standard (2003)

the ArmTransaction reset() method. The ARM implementation should protect itself against a
poorly behaved application that does not respect the specification.
public interface ArmApplication extends ArmInterface {
// No Public Constructors
// Public Instance Methods
 public int end();
 public String getContextValue(int index);
 public ArmApplicationDefinition getDefinition();
 public String getGroup();
 public String getInstance();
}

9.5 org.opengroup.arm40.transaction.ArmApplicationDefinition

ArmApplicationDefinition describes the attributes of an application that do not change from one
instance of the application to another. It provides an anchor point for associating
ArmTransactionDefinition and ArmMetricDefinition objects with the application. It is created with
the newArmApplicationDefinition() method of ArmTransactionFactory. It has the following
attributes, all of which are immutable:

• Name. The maximum length is 127 characters (CIM allows 256 but ARM 4.0 C Bindings
allow 128 characters, including the null-termination character, so 127 is used). The name
must not be null or zero length. A name should be chosen that is unique, so generic names
that might be used by a different development team, such as “Payroll Application”, should
not be used.

• (optional) Identity property names and values and context property names. They may be
null.

• (optional) ID. An optional 16-byte ID may be associated with the identity of an
application definition. The returned value, which could be null, is the same value passed
to the newArmApplicationDefinition() method of ArmTransactionFactory. The ID value
is bound to a unique combination of the application name, any identity property names
and values, and any context property names. When provided, the ID may be used as a
concise alias for the unique combination. It may be null.

destroy() does not, of course, destroy the ArmApplicationDefinition object. It does signal to the
ARM implementation that the definition and all related definitions (e.g.,
ArmTransactionDefinition) within its scope are no longer needed. The normal behavior would be
for the ARM implementation to release its references to all those objects. If the application also
releases its references, the objects would be eligible for garbage collection. After destroy() is
called, no method on any object that is scoped by the ArmApplicationDefinition should be called
again. If a method is called, the results are unpredictable.
public interface ArmApplicationDefinition extends ArmInterface {
// No Public Constructors
// Public Instance Methods
 public void destroy();
 public String getName();
 public ArmIdentityProperties getIdentityProperties();
 public ArmID getID();

ARM Issue 4.0 – Java Binding 37

}

9.6 org.opengroup.arm40.tranreport.ArmApplicationRemote

ArmApplicationRemote represents an instance of an application executing on a remote system. It
differs from ArmApplication in that ArmApplication represents an application executing on the
local system.

ArmApplicationRemote provides an anchor point for associating ArmTranReport objects with a
system’s network address. Instances of ArmApplicationRemote are created using the
newArmApplicationRemote() method of ArmTranReportFactory. It adds the following attribute
to those in ArmApplication:

• System address. The system address is the address (format and address byte array) of the
system.

public interface ArmApplicationRemote extends ArmApplication {
// No Public Constructors
// Public Instance Methods
 public ArmSystemAddress getSystemAddress();
}

9.7 org.opengroup.arm40.transaction.ArmConstants

ArmConstants are constants that are widely used in the ARM 4.0 interfaces. They are declared in
one interface as a matter of convenience (instead of duplicating them in multiple interfaces).
public interface ArmConstants {
// No Public Constructors
// Constants
 public static final int CORR_MAX_LENGTH;
 // Max length of a correlator (currently = 512 bytes)
 public static final int CORR_MIN_LENGTH;
 // Minimum length of a correlator (= 4 bytes)
 public static final int DIAG_DETAIL_MAX_LENGTH;
 // Maximum length of diagnostic detail string
 // (currently = 4095 characters)
 public static final int ID_LENGTH;
 // Length of all IDs (16 bytes)
 public static final int METRIC_MAX_COUNT;
 // Max number of metric slots (currently = 7)
 public static final int METRIC_MAX_INDEX;
 // Max index of a metric slot (currently = 6)
 public static final int METRIC_MIN_INDEX;
 // Min index of a metric slot (currently = 0)
 public static final int NAME_MAX_LENGTH;
 // Max chars in app/tran/metric name (currently = 127)
 public static final int PROPERTY_MAX_COUNT;
 // Maximum number of identity and context properties
 // (currently = 20)
 public static final int PROPERTY_MAX_INDEX;
 // Maximum array index of an identity or context property

38 Technical Standard (2003)

 // (currently = 19)
 public static final int PROPERTY_MIN_INDEX;
 // Minimum array index of an identity or context property
 // (currently = 0)
 public static final int PROPERTY_NAME_MAX_LENGTH;
 // Max chars in an identity or context property
 // (currently = 127)
 public static final int PROPERTY_URI_MAX_LENGTH;
 // Maximum chars in an URI property (currently = 4095)
 public static final int PROPERTY_VALUE_MAX_LENGTH;
 // Max chars in an identity or context property
 // (currently = 255)
 public static final int STATUS_ABORT;
 // Valid status value for ArmTranReport and ArmTransaction (=1)
 public static final int STATUS_FAILED;
 // Valid status value for ArmTranReport and ArmTransaction (=2)
 public static final int STATUS_GOOD;
 // Valid status value for ArmTranReport and ArmTransaction (=0)
 public static final int STATUS_INVALID;
 // Status value used when appl. passes an invalid value (=-1)
 public static final int STATUS_UNKNOWN;
 // Valid status value for ArmTranReport and ArmTransaction (=3)
 public static final int USE_CURRENT_TIME;
 // Used with ArmTranReport (= -1)
// No Instance Methods
}

9.8 org.opengroup.arm40.transaction.ArmCorrelator

ArmCorrelator represents a correlation token passed from a calling transaction to a called
transaction. The correlation token may be used to establish a calling hierarchy across processes
and systems. A correlator contains a two-byte length field, a one-byte format ID, a one-byte flag
field, plus it may contain other data that is used to uniquely identify an instance of a transaction.
Applications do not need to understand correlator internals. See Appendix B for more
information about correlator formats.

A correlation token is a maximum of 512 bytes, including the header.

ArmCorrelator is created in one of three ways:

• The newArmCorrelator() method of ArmTransactionFactory takes as input a byte array in
network byte order, such as would be received from a caller.

• The getCorrelator() method of ArmTransaction creates a correlator object for the
currently or most recently executed transaction.

• The generateCorrelator() method of ArmTranReport creates a correlator object for what
is presumed to be the next transaction to be executed.

An application may extract the byte array in network byte order, which is the format needed to
send to a called transaction, using the copyBytes() or getBytes() methods of ArmToken,
ArmCorrelator’s parent interface.

ARM Issue 4.0 – Java Binding 39

Interface methods:

• isAgentTrace() indicates whether the “agent trace” flag is on in the correlator.

• isApplicationTrace() indicates whether the “application trace” flag is on in the correlator.
public interface ArmCorrelator extends ArmToken {
// No Public Constructors
// Public Instance Methods (in addition to those defined in ArmToken)
// (Implementations should also override equals() and hashCode()
// from java.lang.Object.)
 public boolean isAgentTrace();
 public boolean isApplicationTrace();
}

9.9 org.opengroup.arm40.transaction.ArmErrorCallback

The use of ArmErrorCallback is optional.

ArmErrorCallback is different from all the other ARM interfaces because instead of the ARM
implementation creating objects that implement the interface, the application creates an object
that implements it. The application can create an ArmErrorCallback and register it with the
ArmApplication setErrorCallback() method. If the registration is accepted, anytime a method
results in an error, the ARM implementation:

• Sets the object’s error code. This error code can be retrieved with the getErrorCode()
method of ArmInterface, from which all other ARM interfaces with methods derive.

• Calls errorCodeSet() in ArmErrorCallback, if an ArmErrorCallback has been successfully
registered.

• Returns the error code if the method that caused the error returns an error code.

There are no expected or required behaviors for the implementation of errorCodeSet().
Examples of things a callback method may do are:

• Nothing.

• Log an error. This would be a common behavior during program debug.

• Reset the error code to zero, or set it to some other value. This is a way for an error
handling policy to be implemented centrally, and communicated to the rest of the
application code.

When errorCodeSet() is called, all the parameters must contain non-null values.

• errorObject is a reference to the ARM implementation’s object that detected the error. The
callback method can use the errorObject getErrorCode() to get the error code value,
which will be negative.

• interfaceName is the name of an interface in one of the ARM specification packages.

• methodName is the name of a method in that interface.

40 Technical Standard (2003)

public interface ArmErrorCallback {
// No Public Constructors
// Public Instance Methods
 public void errorCodeSet(ArmInterface errorObject,
 String interfaceName, String methodName);
}

9.10 org.opengroup.arm40.transaction.ArmID

ArmID implements an immutable wrapper around a 16-byte ID. IDs may be used to identify
metadata about applications, transactions, metrics, systems, and users. The ID may be a standard
DCE UUID (universally unique identifier) but need not be. Any unique 16-byte value will
suffice. There is no central registry of IDs that would guarantee uniqueness. Programs creating
these IDs are expected to use an algorithm that will take advantage of the available 128 bits to
create an ID for which there will be a vanishingly small probability of its being a duplicate of an
ID created by another program.

It is created with the newArmID() method of ArmTransactionFactory, whose input is the 16
bytes in a byte array.

This interface was named ArmUUID in ARM 3.0. There are no other changes for ARM 4.0.
public interface ArmID extends ArmToken {
// No Public Constructors
// No Public Instance Methods (see ArmToken for applicable methods)
// (Implementations should override equals() and hashCode()
// from java.lang.Object.)
}

9.11 org.opengroup.arm40.transaction.ArmIdentityProperties

ArmIdentityProperties is new in ARM 4.0. It addresses a requirement to accept a set of string
name=value pairs that extend the concept of application and transaction identity and context.

ARM defines two types of properties – identity and context. The difference between them is as
follows:

• An identity property’s name and value are the same for all instances of an application or
transaction.

• A context property’s name is the same for all instances of an application or transaction,
but a context property’s value may vary for each instance.

ArmIdentityProperties contains some attributes that are common to the identity of both an
application and a transaction. The full identity is captured in ArmApplicationDefinition and
ArmTransactionDefinition, which each adds other attributes to those listed here. All these
attributes are immutable.

• A set of identity names (maximum of 20; maximum length of 127 characters)

• A set of identity values (maximum of 20; maximum length of 255 characters)

ARM Issue 4.0 – Java Binding 41

• A set of context names (maximum of 20; maximum length of 127 characters). The context
values may change with each instance so they are not part of the identity.

ArmIdentityProperties is created with the newArmIdentityProperties() method of
ArmTransactionFactory.

Interface methods:

• getIdentityName() returns the string (the name part of the name=value identity property)
at the specified array index. The returned value will be null if either the name or value at
the index is set to null.

• getIdentityValue() returns the string (the value part of the name=value identity property)
at the specified array index. The returned value will be null if either the name or value at
the index is set to null.

• getContextName() returns the string (the name part of the name=value context property)
at the specified array index. The returned value may be null.

public interface ArmIdentityProperties extends ArmInterface {
// No Public Constructors
// Public Instance Methods
 public String getIdentityName(int index);
 public String getIdentityValue(int index);
 public String getContextName(int index);
}

9.12 org.opengroup.arm40.transaction.ArmIdentityPropertiesTransaction

ArmIdentityPropertiesTransaction extends ArmIdentityProperties for transactions by adding a
URI property. Unlike the other identity properties, the URI property is implicitly named.

Like other identity properties, it is the same for all instances of the same transaction, and is
immutable. In practice, this means that the URI value may be truncated from the URI that is
actually used. In particular, parameters that are appended to the end of a URI will often be
truncated because they are often different each time the URI is invoked. In this case, the
parameters might be provided as part of the URI context value of an ArmTransaction object.

ArmIdentityPropertiesTransaction is created using the newArmIdentityPropertiesTransaction()
method of ArmTransactionFactory.

Interface methods:

• getURIValue() returns the string representing the URI value, if any. The returned value
will be null if the value is set to null.

public interface ArmIdentityPropertiesTransaction extends
 ArmIdentityProperties {
// No Public Constructors
// Public Instance Methods
 public String getURIValue();
}

42 Technical Standard (2003)

9.13 org.opengroup.arm40.transaction.ArmInterface

ArmInterface is the root of the inheritance hierarchy for almost all ARM interfaces. It provides a
common way to handle errors. If a method invocation on any ARM object causes an error, the
error code returned by the object’s getErrorCode() will be negative. If no error occurs, the error
code is zero. Several methods also return the error code as an int return value. If an error occurs
in a factory method (e.g., a method in ArmTransactionFactory), the error code is set in both the
factory object and the newly created object. The implementation of the object has sole discretion
as to whether a method results in an error.

The error code may change any time a method of the object is executed. Executing a method
overrides the previous error code value. The only methods that will never change the error code
are getErrorCode() and getErrorMessage(). If multiple threads are processing the same object
simultaneously, the results are unpredictable. An error code set as a result of an operation in
method X could be replaced by an operation in method Y before thread X executes
getErrorCode().

The error code can also be set with setErrorCode(). setErrorCode() is a way for the application
to reset or change the error code. It would most typically be used in a callback registered with
the application’s ArmApplication. In this way the application can implement a central error
handling policy in the callback. A value set with setErrorCode() in a callback overwrites the
previous value (i.e., the value that caused the callback to be made).

For any non-zero error code returned by an object, the application can request from the same
object a string message describing the error using getErrorMessage(). If the object does not
support the function or does not recognize the error code, it returns null.
public interface ArmInterface {
// No Public Constructors
// Public Instance Methods
 public int getErrorCode();
 public void setErrorCode(int errorCode);
 public String getErrorMessage(int errorCode);
}

9.14 org.opengroup.arm40.metric.ArmMetric

ArmMetric is a superclass for all the metric interfaces. The common behavior of all metric
subclasses is:

• getDefinition() returns the descriptive metadata (name, units, usage, ID) about the metric.
The returned object will be the appropriate subclass of ArmMetricDefinition.

• Each subclass is also expected to implement get() and set() methods that take and/or
return data of the appropriate type for the subclass. These methods are not defined in this
interface because they have different signatures, depending on the type of metric.

Objects that implement a subclass of ArmMetric are used with ArmTransactionWithMetrics and
ArmTranReportWithMetrics. They are bound via ArmMetricGroup when the
ArmTransactionWithMetrics or ArmTranReportWithMetrics instance is created. Each ArmMetric

ARM Issue 4.0 – Java Binding 43

instance can be bound to any number of transaction instances. Setting the value of the ArmMetric
instance effectively sets the value for all the transaction instances to which it is bound. The value
affects each ArmTransactionWithMetrics instance the next time a start(), update(), or stop() is
executed on the instance. The value affects each ArmTranReportWithMetrics instance the next
time a report() is executed on the instance.
public interface ArmMetric extends ArmInterface {
// No Public Constructors
// Public Instance Methods
 public ArmMetricDefinition getDefinition();
}

9.15 org.opengroup.arm40.metric.ArmMetricCounter32

ArmMetricCounter32 implements a 32-bit integer counter. It is the same as ARM 2.0 metric type=1
(ARM_Counter32).
public interface ArmMetricCounter32 extends ArmMetric {
// No Public Constructors
// Public Instance Methods
 public int get();
 public int set(int value);
}

9.16 org.opengroup.arm40.metric.ArmMetricCounter32Definition

ArmMetricCounter32Definition is a subclass of ArmMetricDefinition and serves as a marker
interface that binds the metadata in ArmMetricDefinition to the metric data type, and describes an
object interface that can be instantiated (there are no factory methods for objects that implement
only ArmMetricDefinition). No new methods beyond those in ArmMetricDefinition are added.
public interface ArmMetricCounter32Definition extends
 ArmMetricDefinition {
// No Public Constructors
// No new Public Instance Methods.
// All methods are inherited from ArmMetricDefinition.
}

9.17 org.opengroup.arm40.metric.ArmMetricCounter64

ArmMetricCounter64 implements a 64-bit integer counter. It is the same as ARM 2.0 metric
type=2 (ARM_Counter64).
public interface ArmMetricCounter64 extends ArmMetric {
// No Public Constructors
// Public Instance Methods
 public long get();
 public int set(long value);
}

44 Technical Standard (2003)

9.18 org.opengroup.arm40.metric.ArmMetricCounter64Definition

ArmMetricCounter64Definition is a subclass of ArmMetricDefinition and serves as a marker
interface that binds the metadata in ArmMetricDefinition to the metric data type, and describes an
object interface that can be instantiated (there are no factory methods for objects that implement
only ArmMetricDefinition). No new methods beyond those in ArmMetricDefinition are added.
public interface ArmMetricCounter64Definition extends
 ArmMetricDefinition {
// No Public Constructors
// No new Public Instance Methods.
// All methods are inherited from ArmMetricDefinition.
}

9.19 org.opengroup.arm40.metric.ArmMetricCounterFloat32

ArmMetricCounterFloat32 implements a 32-bit floating-point counter. It is roughly equivalent to
the ARM 2.0 metric type=3 (ARM_CntrDivr32). Instead of providing two integer values that can
be divided to produce a floating-point value, which is what was done in the C bindings for ARM
2.0 and ARM 4.0, a floating-point value is provided directly. This was not done with the C
bindings because ARM would have to support multiple floating-point formats, depending on the
programming language and/or machine architecture, and the complexity was not deemed
worthwhile.
public interface ArmMetricCounterFloat32 extends ArmMetric {
// No Public Constructors
// Public Instance Methods
 public float get();
 public int set(float value);
}

9.20 org.opengroup.arm40.metric.ArmMetricCounterFloat32Definition

ArmMetricCounterFloat32Definition is a subclass of ArmMetricDefinition and serves as a marker
interface that binds the metadata in ArmMetricDefinition to the metric data type, and describes an
object interface that can be instantiated (there are no factory methods for objects that implement
only ArmMetricDefinition). No new methods beyond those in ArmMetricDefinition are added.
public interface ArmMetricCounterFloat32Definition extends
 ArmMetricDefinition {
// No Public Constructors
// No new Public Instance Methods.
// All methods are inherited from ArmMetricDefinition.
}

9.21 org.opengroup.arm40.metric.ArmMetricDefinition

ArmMetricDefinition is a superclass for all the metric definition interfaces. All the methods are
defined in ArmMetricDefinition. The subclasses serve as markers for the data types.

ARM Issue 4.0 – Java Binding 45

All the publicly accessible attributes are immutable and have a getter method for them. The
attributes are:

• The definition of the application that contains the transaction. It must not be null.

• Name. The maximum length is 127 characters. The name must not be null or zero length.

• Units. An optional string describing the units of measurement, such as “files” or “jobs in
queue”. It may be null.

• Usage. Describes any additional information about the semantics of the metric. Most
metrics will be classified as “general”, indicating that there is no specific semantic
declared. The two specific semantics are the size of the transaction, such as the number of
files that were backed up, and a status that could contain data, such as an error code that
describes why a transaction failed. See the ArmMetricDefinition interface for constants for
the defined value. Any negative value is also permitted; the negative range is reserved for
application-specific values.

• Optional ID. An optional 16-byte ID may be associated with the identity of a metric
definition. The returned value, which could be null, is the same value passed to the
newArmMetricDefinition() method of ArmMetricFactory. The ID value is bound to a
unique combination of the metric format (e.g., Counter32), name, usage, and unit
properties. When provided, the ID may be used as a concise alias for the unique
combination. It may be null.

public interface ArmMetricDefinition extends ArmInterface {
// No Public Constructors
// Constants
 public static final int METRIC_USE_GENERAL;
 // No usage semantics are declared.
 public static final int METRIC_USE_TRAN_SIZE;
 // Metric represents the “size” of the transaction
 // (counter and gauge only).
 public static final int METRIC_USE_TRAN_STATUS;
 // Metric represents status, like an error code
 // (numeric ID and string only).
// Public Instance Methods (subclasses should also declare get(),
// new(), and set() for the appropriate data types).
 public ArmApplicationDefinition getApplicationDefinition();
 public ArmID getID();
 public String getName();
 public String getUnits();
 public short getUsage();
}

9.22 org.opengroup.arm40.metric.ArmMetricFactory

ArmMetricFactory provides methods to create instances of the classes in the
org.opengroup.arm40.metric package.

newArmMetricCounter32Definition
newArmMetricCounter64Definition
newArmMetricCounterFloat32Definition

46 Technical Standard (2003)

newArmMetricGauge32Definition
newArmMetricGauge64Definition
newArmMetricGaugeFloat32Definition
newArmMetricNumericId32Definition
newArmMetricString32Definition

Creates the metadata for the respective data type. All metrics have the same
metadata. See the ArmMetricDefinition interface description for details.

newArmMetricGroupDefinition()
Creates an ordered set of ArmMetricDefinition subclasses ready for binding to
transaction definition objects. The input is an array of ArmMetricDefinition objects.
The ordering in the array is important. The array can have up to seven elements and
is position-sensitive. To remain consistent with ARM 2.0, any ArmMetricDefinition
subclass except ArmMetricString32Definition can be assigned to elements 0:5 and
only ArmMetricString32Definition can be assigned to element 6.

Any element can be null. If the input array has fewer than seven elements, the rest
of the elements are assigned a value of null. The array can be sparsely populated.
For example, there can be a non-null ArmMetricDefinition reference in element 0 and
6, and null references in elements 1:5.

newArmTransactionWithMetricsDefinition()
Creates an object that contains the metadata about a transaction. Details about the
metadata are found in the ArmTransactionDefinition section. In addition, a binding
to a set of metadata about metrics is added via an ArmMetricGroupDefinition object.

newArmMetricCounter32
newArmMetricCounter64
newArmMetricCounterFloat32
newArmMetricGauge32
newArmMetricGauge64
newArmMetricGaugeFloat32
newArmMetricNumericId32
newArmMetricNumericId64
newArmMetricString32

Creates a metric of the specified type, using the input metadata.

newArmMetricGroup()
Creates an ordered set of ArmMetric subclasses ready for binding to transaction
objects. The input is an array of ArmMetric objects plus a metric group definition
object. The ordering in the array is important. The array can have up to seven
elements and is position-sensitive. To remain consistent with ARM 2.0, any
ArmMetric subclass except ArmMetricString32 can be assigned to elements 0:5 and
only ArmMetricString32 can be assigned to element 6. The ArmMetricDefinition
objects associated with each ArmMetric object must have the exact same values as
the ArmMetricDefinition objects associated with the ArmMetricGroupDefinition
object (they will often be the same objects, though this is not mandatory).

Any element can be null. If the input array has fewer than seven elements, the rest

ARM Issue 4.0 – Java Binding 47

of the elements are assigned a value of null. The array can be sparsely populated.
For example, there can be a non-null ArmMetric reference in element 0 and 6, and
null references in elements 1:5.

newArmTranReportWithMetrics()
Creates an object that represents an instance of a transaction. The metadata about
the transaction is supplied in an ArmTransactionWithMetricsDefinition object. An
application instance (ArmApplication) provides a scoping context. The metrics are
bound via an ArmMetricGroup object. If the metric group reference is null, the
resulting ArmTransactionWithMetrics has no metrics, so it would have no more
functions than an ArmTransaction object, except to return null to the
getMetricGroup() method.

newArmTransactionWithMetrics()
Creates an object that represents an instance of a transaction. The metadata about
the transaction is supplied in an ArmTransactionWithMetricsDefinition object. An
application instance (ArmApplication) provides a scoping context. The metrics are
bound via an ArmMetricGroup object. If the metric group reference is null, the
resulting ArmTransactionWithMetrics has no metrics, so it would have no more
functions than an ArmTransaction object, except to return null to the
getMetricGroup() method.

Error Handling Philosophy

If an invalid set of parameters is passed to any method, such as an offset that extends beyond the
end of an array, an object is returned that may contain dummy data. For example, a null byte[]
addressBytes parameter might result in creating an object with an address of all zeros. Different
ARM implementations may handle the situation in different ways, but in all cases, they will
return an object that is syntactically correct; that is, any of its methods can be invoked without
causing an exception, even if the data may be at least partially meaningless. The getErrorCode()
method of each object can be used after it is created to test whether errors occurred. Refer to
Chapter 7 for a more complete explanation.

ArmMetricFactory also serves as the anchor point for an application-registered callback function.
setErrorCallback() is used to register a callback that will be called if any method of an object
created by this factory object sets the error code to a negative value. The error code is retrieved
using getErrorCode(), defined in ArmInterface, the root for most interfaces in the ARM
specification. The boolean returned by setErrorCallback() indicates whether the registration is
accepted. If an ARM implementation does not support the callback function, it will return false.
setErrorCallback(null) unregisters any previously registered callback. Note that due to timing
conditions or specifics of the ARM implementation, a previously registered callback may
continue to be called for an indeterminate length of time after setErrorCallback(null) is
executed. For a broader discussion of error handling, refer to Chapter 7.

Note that in the interface description below, the methods are not strictly alphabetical like they
are with all other interfaces. This is because there are some logical groupings of methods, and it
was felt that it would be more intuitive to present them in the groups.
public interface ArmMetricFactory extends ArmInterface {
// Public Constants

48 Technical Standard (2003)

 public static final String propertyKey;
// Public Instance Methods
 /* --- metric definitions --- */
 public ArmMetricCounter32Definition
 newArmMetricCounter32Definition(
 ArmApplicationDefinition app,
 String name,
 String units,
 short usage,
 ArmID id);
 public ArmMetricCounter64Definition
 newArmMetricCounter64Definition(
 ArmApplicationDefinition app,
 String name,
 String units,
 short usage,
 ArmID id);
 public ArmMetricCounterFloat32Definition
 newArmMetricCounterFloat32Definition(
 ArmApplicationDefinition app,
 String name,
 String units,
 short usage,
 ArmID id);
 public ArmMetricGauge32Definition newArmMetricGauge32Definition(
 ArmApplicationDefinition app,
 String name,
 String units,
 short usage,
 ArmID id);
 public ArmMetricGauge64Definition newArmMetricGauge64Definition(
 ArmApplicationDefinition app,
 String name,
 String units,
 short usage,
 ArmID id);
 public ArmMetricGaugeFloat32Definition
 newArmMetricGaugeFloat32Definition(
 ArmApplicationDefinition app,
 String name,
 String units,
 short usage,
 ArmID id);
 public ArmMetricNumericId32Definition
 newArmMetricNumericId32Definition(
 ArmApplicationDefinition app,
 String name,
 String units,
 short usage,
 ArmID id);
 public ArmMetricNumericId64Definition
 newArmMetricNumericId64Definition(
 ArmApplicationDefinition app,
 String name,

ARM Issue 4.0 – Java Binding 49

 String units,
 short usage,
 ArmID id);
 public ArmMetricString32Definition newArmMetricString32Definition(
 ArmApplicationDefinition app,
 String name,
 String units,
 short usage,
 ArmID id);

 /* --- other definitions --- */
 public ArmMetricGroupDefinition newArmMetricGroupDefinition(
 ArmMetricDefinition[] definitions);
 public ArmTransactionWithMetricsDefinition
 newArmTransactionWithMetricsDefinition(
 ArmApplicationDefinition app,
 String name,
 ArmIdentityPropertiesTransaction identityProperties,
 ArmMetricGroupDefinition definition,
 ArmID id);

 /* --- metric instances --- */
 public ArmMetricCounter32 newArmMetricCounter32(
 ArmMetricCounter32Definition definition);
 public ArmMetricCounter64 newArmMetricCounter64(
 ArmMetricCounter64Definition definition);
 public ArmMetricCounterFloat32 newArmMetricCounterFloat32(
 ArmMetricCounterFloat32Definition definition);
 public ArmMetricGauge32 newArmMetricGauge32(
 ArmMetricGauge32Definition definition);
 public ArmMetricGauge64 newArmMetricGauge64(
 ArmMetricGauge64Definition definition);
 public ArmMetricGaugeFloat32 newArmMetricGaugeFloat32(
 ArmMetricGaugeFloat32Definition definition);
 public ArmMetricNumericId32 newArmMetricNumericId32(
 ArmMetricNumericId32Definition definition);
 public ArmMetricNumericId64 newArmMetricNumericId64(
 ArmMetricNumericId64Definition definition);
 public ArmMetricString32 newArmMetricString32(
 ArmMetricString32Definition definition);
 /* --- other interfaces --- */
 public ArmMetricGroup newArmMetricGroup(
 ArmMetricGroupDefinition groupDefinition,
 ArmMetric[] metrics);
 public ArmTranReportWithMetrics newArmTranReportWithMetrics(
 ArmApplication app,
 ArmTransactionWithMetricsDefinition definition,
 ArmMetricGroup group);
 public ArmTransactionWithMetrics newArmTransactionWithMetrics(
 ArmApplication app,
 ArmTransactionWithMetricsDefinition definition,
 ArmMetricGroup group);
 public boolean setErrorCallback(ArmErrorCallback errorCallback);
}

50 Technical Standard (2003)

9.23 org.opengroup.arm40.metric.ArmMetricGauge32

ArmMetricGauge32 implements a 32-bit integer gauge. It is the same as ARM 2.0 metric type=4
(ARM_Gauge32).
public interface ArmMetricGauge32 extends ArmMetric {
// No Public Constructors
// Public Instance Methods
 public int get();
 public int set(int value);
}

9.24 org.opengroup.arm40.metric.ArmMetricGauge32Definition

ArmMetricGauge32Definition is a subclass of ArmMetricDefinition and serves as a marker
interface that binds the metadata in ArmMetricDefinition to the metric data type, and describes an
object interface that can be instantiated (there are no factory methods for objects that implement
only ArmMetricDefinition). No new methods beyond those in ArmMetricDefinition are added.
public interface ArmMetricGauge32Definition extends
 ArmMetricDefinition {
// No Public Constructors
// No new Public Instance Methods.
// All methods are inherited from ArmMetricDefinition.
}

9.25 org.opengroup.arm40.metric.ArmMetricGauge64

ArmMetricGauge64 implements a 64-bit integer gauge. It is the same as ARM 2.0 metric type=5
(ARM_Gauge64).
public interface ArmMetricGauge64 extends ArmMetric {
// No Public Constructors
// Public Instance Methods
 public long get();
 public int set(long value);
}

9.26 org.opengroup.arm40.metric.ArmMetricGauge64Definition

ArmMetricGauge64Definition is a subclass of ArmMetricDefinition and serves as a marker
interface that binds the metadata in ArmMetricDefinition to the metric data type, and describes an
object interface that can be instantiated (there are no factory methods for objects that implement
only ArmMetricDefinition). No new methods beyond those in ArmMetricDefinition are added.
public interface ArmMetricGauge64Definition extends
 ArmMetricDefinition {
// No Public Constructors
// No new Public Instance Methods.
// All methods are inherited from ArmMetricDefinition.
}

ARM Issue 4.0 – Java Binding 51

9.27 org.opengroup.arm40.metric.ArmMetricGaugeFloat32

ArmMetricGaugeFloat32 implements a 32-bit floating-point gauge. It is roughly equivalent to the
ARM 2.0 metric type=6 (ARM_GaugeDivr32). Instead of providing two integer values that can
be divided to produce a floating-point value, which is what was done in the C bindings for ARM
2.0 and ARM 4.0, a floating-point value is provided directly. This was not done with the C
bindings because ARM would have to support multiple floating-point formats, depending on the
programming language and/or machine architecture, and the complexity was not deemed
worthwhile.
public interface ArmMetricGaugeFloat32 extends ArmMetric {
// No Public Constructors
// Public Instance Methods
 public float get();
 public int set(float value);
}

9.28 org.opengroup.arm40.metric.ArmMetricGaugeFloat32Definition

ArmMetricGaugeFloat32Definition is a subclass of ArmMetricDefinition and serves as a marker
interface that binds the metadata in ArmMetricDefinition to the metric data type, and describes an
object interface that can be instantiated (there are no factory methods for objects that implement
only ArmMetricDefinition). No new methods beyond those in ArmMetricDefinition are added.
public interface ArmMetricGaugeFloat32Definition extends
 ArmMetricDefinition {
// No Public Constructors
// No new Public Instance Methods.
// All methods are inherited from ArmMetricDefinition.
}

9.29 org.opengroup.arm40.metric.ArmMetricGroup

ArmMetricGroup is used to bind objects that implement a subclass of ArmMetric to an
ArmTransactionWithMetrics or ArmTranReportWithMetrics object. The binding occurs when the
transaction object is created [using newArmTransactionWithMetrics() or
newArmTransReportWithMetrics()] and is immutable afterwards.

index is the index into the ArmMetric array. It must have a value in the range 0:6. To remain
consistent with ARM 2.0, any ArmMetric subclass except ArmMetricString32 can be assigned to
elements 0:5 and only ArmMetricString32 can be assigned to element 6.

getDefinition()
Returns the metric group definition used to create this object.

getMetric(index)
Returns the metric at the array index. This value may be null.

isMetricValid()
Indicates whether an ArmMetric subclass at this array index is valid.

52 Technical Standard (2003)

setMetricValid()
Indicates whether an ArmMetric subclass at this array index is valid when any of the
following calls are made. If the valid flag is set then the metric value is processed.

ArmTranReportWithMetrics: report()

ArmTransactionWithMetrics: start(), update(), stop()

public interface ArmMetricGroup extends ArmInterface {
// No Public Constructors
// Public Instance Methods
 public ArmMetricGroupDefinition getDefinition();
 public ArmMetric getMetric(int index);
 public boolean isMetricValid(int index);
 public int setMetricValid(int index, boolean value);
}

9.30 org.opengroup.arm40.metric.ArmMetricGroupDefinition

ArmMetricGroupDefinition is used to bind ArmMetricDefinition objects to an
ArmTransactionWithMetricsDefinition or ArmTranReportWithMetricsDefinition object. The
binding occurs when the transaction object is created using
newArmTransactionWithMetricsDefinition() or newArmTranReportWithMetricsDefinition()
and is immutable afterwards.

index is the index into the ArmMetricDefinition array. It must have a value in the range 0:6. To
remain consistent with ARM 2.0, any ArmMetricDefinition subclass except
ArmMetricString32Definition can be assigned to elements 0:5 and only
ArmMetricString32Definition can be assigned to element 6.

get(index) returns the metric at the array index. This value may be null.
public interface ArmMetricGroupDefinition extends ArmInterface {
// No Public Constructors
// Public Instance Methods
 public ArmMetricDefinition getMetricDefinition(int index);
}

9.31 org.opengroup.arm40.metric.ArmMetricNumericId32

ArmMetricNumericId32 implements a 32-bit integer numeric ID. It is the same as ARM 2.0
metric type=7 (ARM_NumericID32).
public interface ArmMetricNumericId32 extends ArmMetric {
// No Public Constructors
// Public Instance Methods
 public int get();
 public int set(int value);
}

ARM Issue 4.0 – Java Binding 53

9.32 org.opengroup.arm40.metric.ArmMetricNumericId32Definition

ArmMetricNumericId32Definition is a subclass of ArmMetricDefinition and serves as a marker
interface that binds the metadata in ArmMetricDefinition to the metric data type, and describes an
object interface that can be instantiated (there are no factory methods for objects that implement
only ArmMetricDefinition). No new methods beyond those in ArmMetricDefinition are added.
public interface ArmMetricNumericId32Definition extends
 ArmMetricDefinition {
// No Public Constructors
// No new Public Instance Methods.
// All methods are inherited from ArmMetricDefinition.
}

9.33 org.opengroup.arm40.metric.ArmMetricNumericId64

ArmMetricNumericId64 implements a 64-bit integer numeric ID. It is the same as ARM 2.0
metric type=8 (ARM_NumericID64).
public interface ArmMetricNumericId64 extends ArmMetric {
// No Public Constructors
// Public Instance Methods
 public long get();
 public int set(long value);
}

9.34 org.opengroup.arm40.metric.ArmMetricNumericId64Definition

ArmMetricNumericId64Definition is a subclass of ArmMetricDefinition and serves as a marker
interface that binds the metadata in ArmMetricDefinition to the metric data type, and describes an
object interface that can be instantiated (there are no factory methods for objects that implement
only ArmMetricDefinition). No new methods beyond those in ArmMetricDefinition are added.
public interface ArmMetricNumericId64Definition extends
 ArmMetricDefinition {
// No Public Constructors
// No new Public Instance Methods.
// All methods are inherited from ArmMetricDefinition.
}

9.35 org.opengroup.arm40.metric.ArmMetricString32

ArmMetricString32 implements a string of 1 to 32 characters. It is similar to the ARM 2.0 metric
type=10 (ARM_String32), with two differences:

• The characters are in the Java standard UCS-2 format.

• The limit of 32 in the ARM 2.0 C language interface is a byte limit. The limit in the ARM
4.0 C bindings is a character limit. Because a character may be represented by more than

54 Technical Standard (2003)

one byte (e.g., a character in UTF-8 is represented as 1, 2, or 3 bytes), the ARM 4.0 C
metric may be longer than 32 bytes.

public interface ArmMetricString32 extends ArmMetric {
// No Public Constructors
// Public Instance Methods
 public String get();
 public int set(String s);
}

9.36 org.opengroup.arm40.metric.ArmMetricString32Definition

ArmMetricString32Definition is a subclass of ArmMetricDefinition and serves as a marker interface
that binds the metadata in ArmMetricDefinition to the metric data type, and describes an object
interface that can be instantiated (there are no factory methods for objects that implement only
ArmMetricDefinition). No new methods beyond those in ArmMetricDefinition are added.
public interface ArmMetricString32Definition extends
 ArmMetricDefinition {
// No Public Constructors
// No new Public Instance Methods.
// All methods are inherited from ArmMetricDefinition.
}

9.37 org.opengroup.arm40.tranreport.ArmSystemAddress

ArmSystemAddress encapsulates the network addressing information for a system. It may be
used with ArmTranReport if the reported transaction executed on a different system.

• Address. The system address is the network name or address of the system, as it would be
sent in a data frame across a network in network byte order.

• Format. The format of the system address, such as an SNA address or a hostname.

• ID. An optional 16-byte ID associated with the format and address, if any. The ID value is
bound to a unique combination of the format and address. When provided, the ID may be
used as a concise alias for the unique combination. It may be null.

equals(Object obj), a method inherited from java.lang.Object, returns true if the internal data is
byte-for-byte identical in two objects. For example, a.equals(b) returns true if and only if:

• Both a and b implement ArmSystemAddress.

• The inherited methods a.getBytes() and b.getBytes() would return byte arrays of
identical lengths and contents.

• a.getFormat() and b.getFormat() would return identical values.

getAddress() returns a byte array containing the address. The returned value is the same value
passed to the newArmSystemAddress() method of ArmTranReportFactory.

ARM Issue 4.0 – Java Binding 55

getFormat() returns a short containing the format. The returned value is the same value passed
to the newArmSystemAddress() method of ArmTranReportFactory.

getID() returns the optional 16-byte ID associated with the format and address, if any. The
returned value, which could be null, is the same value passed to the newArmSystemAddress()
method of ArmTranReportFactory.

The fields are set using the newArmSystemAddress() method of ArmTranReportFactory or the
getArmSystemAddress() method of ArmSystem. There are no setter methods for the individual
fields. The object is immutable.
public interface ArmSystemAddress extends ArmToken {
// public constants
 public static final short FORMAT_HOSTNAME;
 public static final short FORMAT_IPV4;
 public static final short FORMAT_IPV4PORT;
 public static final short FORMAT_IPV6;
 public static final short FORMAT_IPV6PORT;
 public static final short FORMAT_SNA;
 public static final short FORMAT_X25;
// No Public Constructors
// Public Instance Methods (in addition to those defined by ArmToken).
// (Implementations should also override equals() and hashCode() from
// java.lang.Object.)
 public byte[] getAddress();
 public short getFormat();
 public ArmID getID();
}

9.38 org.opengroup.arm40.transaction.ArmToken

ArmToken is an abstract interface which is a superclass of ArmCorrelator, ArmSystemAddress
(in the tranreport package), and ArmID, expressing the common part of their interfaces.
ArmToken is abstract in the sense that any ArmToken object returned by any method in this
specification satisfies one of the subclass interfaces. Objects of these identify particular entities.
These objects contain a byte array data token, plus optionally other identifying data, which
together comprise the value of the object. The data token is always immutable. Subclasses of
ArmToken can be thought of as wrappers around the data token.

The methods are as follows:

• copyBytes() is used to copy the token to a byte array that is already allocated. There are
two forms. Both return a boolean. If the return value is true, the operation was successful.
If the return value is false, the operation was not successful and the contents of the target
array are undetermined. The most likely errors are an attempt to copy into a null pointer or
into an array that is not long enough to hold the entire token.

— copyBytes(byte[] dest) copies the token’s byte array into the destination byte array,
which must have a length greater than or equal to the token’s byte array.

56 Technical Standard (2003)

— copyBytes(byte[] dest, int offset) copies the token’s byte array into the destination byte
array at the specified offset. The destination array must be large enough to hold the
byte array value; that is, dest.length-offset >= token.getLength().

• getBytes() returns a newly allocated byte array into which the token is copied. It is
equivalent to creating a byte array of length getLength() and then executing copyBytes()
into the new array. The ARM implementation would typically not keep a reference to the
array, because that would interfere with garbage collection.

• getLength() returns the size of the byte array part of the token.

To make it possible to compare the values of these tokens, and to use these tokens as hashkeys
(so that the user can associate data with a particular token), this specification requires that any
class implementing any of these types override the java.lang.Object methods equals(Object) and
hashCode(). The behavior of these methods must be the following.

a.equals(b) returns true if the ArmToken objects a and b have the same value (internal data is
byte-for-byte identical in two objects). That is, a.equals(b) is true if and only if:

• a and b implement the same interface ArmCorrelator, ArmSystemAddress, or ArmID.

• a.getBytes() and b.getBytes() would return byte arrays of identical lengths and contents.

• If a subclass of ArmToken defines other data values (specifically, ArmSystemAddress
defines a short field named format), these other data values are all identical.

If a.equals(b)==true, a.hashCode() and b.hashCode() will return the same value. The
hashCode() value is implementation-defined. In other words, hashcode values are not
necessarily portable. A hashcode generated on one system by one implementation may not equal
a hashcode value generated on another system by a different implementation, even if
a.equals(b)==true.
public interface ArmToken extends ArmInterface {
// No Public Constructors
// Public Instance Methods
// (Subclasses should also override equals() and hashCode() from
// java.lang.Object.)
 public boolean copyBytes(byte[] dest);
 public boolean copyBytes(byte[] dest, int offset);
 public byte[] getBytes();
 public int getLength();
}

9.39 org.opengroup.arm40.tranreport.ArmTranReport

ArmTranReport is similar to ArmTransaction. Both are used to provide data about executing
transactions. Instances of both are created based on metadata represented by an
ArmTransactionDefinition, which in turn is scoped by an application definition. Both are scoped
by a running application instance, represented by ArmApplication. There are two fundamental
differences:

ARM Issue 4.0 – Java Binding 57

• With ArmTransaction, the response time is measured based on start() and stop() events.
With ArmTranReport, the application measures the response time, and reports it with a
single report() event.

• With ArmTransaction, the transaction always executes on the local system in the same
JVM (Java Virtual Machine). With ArmTranReport, the transaction may execute in the
same JVM, in a different JVM on the same system, or on a different system.

When executing in the same JVM, the ArmTranReport object is created with an ArmApplication.
When executing in a different JVM on the same system or on a different system, the
ArmTranReport object is created with an ArmApplicationRemote (a subclass of ArmApplication).

The two key methods of ArmTranReport are generateCorrelator() and report().

• generateCorrelator() generates a new correlator using the immutable data set in the
factory method and the current property values set by the four setter methods. It is
assumed that generateCorrelator() is executed zero or once per transaction instance. The
practical ramification is that the method implementation will update its internal state to
have a unique identifier for an instance (the equivalent of ArmTransaction’s start handle).
getCorrelator() returns the most recently generated ArmCorrelator or null, if
generateCorrelator() has never been executed.

• report() is used to provide measurements about a completed transaction. There are two
forms. Both provide the status (one of the STATUS_* constants in ArmConstants) and the
response time. One also provides a stop time in the form of milliseconds since January 1,
1970, which is the same format returned by java.lang.System.currentTimeMillis(). If a
stop time is not provided, or a stop time of –1 (USE_CURRENT_TIME) is provided, the
ARM implementation substitutes the current time; that is, the time when the report()
method executes. The optional form that takes a string is a way for an application to
provide additional diagnostic details when the status is something other than
STATUS_GOOD.

As noted above, generateCorrelator() updates the internal state for a new transaction instance.
The first time report() executes after generateCorrelator(), report() will not update the internal
state for a new transaction instance; it will use the instance identifier from the
generateCorrelator(). If report() executes twice in succession, or if generateCorrelator() has
never been executed, report() will update the internal state for a new transaction instance.
Summarizing, there are two patterns:

• If correlators for the current transaction are not requested, generateCorrelator() is not
used. report() is executed after each instance completes, and each time it generates a new
instance identifier, like a start handle.

• If correlators for the current transaction are requested, generateCorrelator() and report()
are used in pairs. First generateCorrelator() establishes the transaction instance
identifiers, as well as creating a correlator. This correlator is sent to downstream
transactions. After the downstream transactions complete, and the current instance
completes, report() provides the measurements. In this case report() does not update the
transaction instance identifier.

58 Technical Standard (2003)

In addition to the identity properties from ArmApplication and ArmTransactionDefinition, there
are four optional setter methods to establish additional instance-level context. They can be used
at any time to update the attribute within the object. The only time the properties are meaningful
is when generateCorrelator() or report() executes. At the moment either method executes, the
current values are used, any or all of which may be null.

• setContextURIValue() sets the URI context value. getContextURIValue() returns the
value.

• setContextValue() sets one of the maximum 20 context properties that may change for
each transaction instance. getContextValue() returns the value, whether null or not. The
context property name at the specified array index must have been set to a non-null value
when the ArmTransactionDefinition object was created. If the name is null, the value will
be set to null.

• setParentCorrelator() sets the correlator of the parent transaction. getParentCorrelator()
returns the value, whether null or not.

• setUser() associates a user, represented by an instance of ArmUser, to the ArmTranReport
instance. This user is assumed to be the user for all start()/stop() pairs until the
association is changed or cleared. setUser(null) clears any existing association to an
ArmUser. getArmUser() returns the current value, whether null or not.

There are two methods that return the data used in the factory method to create this instance of
ArmTranReport: getApplication() and getDefinition().
public interface ArmTranReport extends ArmInterface {
// No Public Constructors
// Public Instance Methods
 public ArmCorrelator generateCorrelator();
 public ArmApplication getApplication();
 public String getContextURIValue();
 public String getContextValue(int index);
 public ArmCorrelator getCorrelator();
 public ArmCorrelator getParentCorrelator();
 public long getResponseTime();
 public int getStatus();
 public ArmTransactionDefinition getDefinition();
 public ArmUser getUser();
 public int report(int status, long respTime);
 public int report(int status, long respTime, long stopTime);
 public int report(int status, long respTime, String
 diagnosticDetail);
 public int report(int status, long respTime, long stopTime, String
 diagnosticDetail);
 public int setContextURIValue(String value);
 public int setContextValue(int index, String value);
 public int setParentCorrelator(ArmCorrelator parent);
 public int setUser(ArmUser user);
}

ARM Issue 4.0 – Java Binding 59

9.40 org.opengroup.arm40.tranreport.ArmTranReportFactory

ArmTranReportFactory provides methods to create instances of the classes in the
org.opengroup.arm40.tranreport package.

newArmApplicationRemote()
Creates an ArmApplicationRemote. See the ArmApplicationRemote description for
details about the parameters. If systemAddress is null, the addressing information
for the local system is used.

newArmSystemAddress()
Creates an ArmSystemAddress from the specified format and the input byte array.
See the ArmSystemAddress description for details about the parameters.

newArmTranReport()
Creates an object that represents an instance of a transaction. The metadata is
supplied in an ArmTransactionDefinition object. It is scoped by an application
instance, represented by ArmApplication (or its subclass, ArmApplicationRemote).

Error Handling Philosophy

If an invalid set of parameters is passed to any method, such as an offset that extends beyond the
end of an array, an object is returned that may contain dummy data. For example, a null byte[]
addressBytes parameter might result in creating an object with an address of all zeros. Different
ARM implementations may handle the situation in different ways, but in all cases, they will
return an object that is syntactically correct; that is, any of its methods can be invoked without
causing an exception, even if the data may be at least partially meaningless. The getErrorCode()
method of each object can be used after it is created to test whether errors occurred. Refer to
Chapter 7 for a more complete explanation.

ArmTranReportFactory also serves as the anchor point for an application-registered callback
function. setErrorCallback() is used to register a callback that will be called if any method of an
object created by this factory object sets the error code to a negative value. The error code is
retrieved using getErrorCode(), defined in ArmInterface, the root for most interfaces in the
ARM specification. The boolean returned by setErrorCallback() indicates whether the
registration is accepted. If an ARM implementation does not support the callback function, it
will return false. setErrorCallback(null) unregisters any previously registered callback. Note
that due to timing conditions or specifics of the ARM implementation, a previously registered
callback may continue to be called for an indeterminate length of time after
setErrorCallback(null) is executed. For a broader discussion of error handling, refer to Chapter
7.
public interface ArmTranReportFactory extends ArmInterface {
// Public Constants
 public static final String propertyKey;
// Public Instance Methods
 public ArmApplicationRemote newArmApplicationRemote(
 ArmApplicationDefinition definition,
 String group, String instance,
 String[] contextValues,
 ArmSystemAddress systemAddress);

60 Technical Standard (2003)

 public ArmSystemAddress newArmSystemAddress(
 short format,
 byte[] addressBytes,
 ArmID id);
 public ArmSystemAddress newArmSystemAddress(
 short format,
 byte[] addressBytes,
 int offset,
 ArmID id);
 public ArmSystemAddress newArmSystemAddress(
 short format,
 byte[] addressBytes,
 int offset,
 int length,
 ArmID id);
 public ArmTranReport newArmTranReport(
 ArmApplication app,
 ArmTransactionDefinition definition);
 public boolean setErrorCallback(ArmErrorCallback errorCallback);
}

9.41 org.opengroup.arm40.metric.ArmTranReportWithMetrics

ArmTranReportWithMetrics is a subclass of ArmTranReport that is used if the application wishes
to use metrics. All the ArmTranReport semantics for using report() apply to
ArmTranReportWithMetrics.

It extends ArmTranReport by adding methods to manipulate metrics. The ArmMetric subclass
objects are bound to an ArmTranReportWithMetrics object when the ArmTranReportWithMetrics
is created. This is done by specifying ArmMetricGroup in the newArmTranReportWithMetrics()
method of ArmMetricFactory.

getTransactionWithMetricsDefinition()
Returns the ArmTransactionWithMetricsDefinition object that contains the metadata
describing this transaction, including the metric definitions.

getMetricGroup()
Returns the ArmMetricGroup object that was bound when
ArmTransactionWithMetrics is created. The returned value may be null.

public interface ArmTranReportWithMetrics extends ArmTranReport {
// No Public Constructors
// Public Instance Methods
 public ArmTransactionWithMetricsDefinition
 getTransactionWithMetricsDefinition();
 public ArmMetricGroup getMetricGroup();
}

ARM Issue 4.0 – Java Binding 61

9.42 org.opengroup.arm40.transaction.ArmTransaction

For most applications, ArmTransaction is the most important of all the ARM classes, and the
most frequently used. Many applications operate only on ArmTransaction objects after some
initialization (using ArmTransactionFactory, ArmApplicationDefinition, ArmApplication, and
ArmTransactionDefinition). Instances of ArmTransaction represent transactions when they
execute. A “transaction” is any unit of work that has a clearly understood beginning and ending
point, and which begins and ends in the same operating system process. Examples include a
remote procedure call, a database transaction, and a batch job. It is not necessary that an ARM
transaction implement robust functions such as commit and rollback.

The application creates as many instances as it needs. This will typically be at least as many as
the number of transactions that can be executing simultaneously. An application may create a
pool of ArmTransaction objects, take one from the pool to use when a transaction starts, and put
it back in the pool after the transaction ends for later reuse. Another strategy is to create one
instance of each type per thread, which eliminates the need to manage the pool, handle
synchronization if the pool is depleted, etc.

ArmTransaction is created with the newArmTransaction() method of ArmTransactionFactory.
The metadata common to all instances is contained in the ArmTransactionDefinition used to
create the object. Each transaction is scoped by an application instance, represented by
ArmApplication.

The most frequently (and often the only) used methods are start(), getCorrelator(), and stop().
A typical sequence is as follows:

• Just prior to executing a transaction, such as a remote procedure call, call start() to signal
to ARM that the measurable transaction is beginning. start() causes ARM to capture the
current time. If a correlation token was received when your program was invoked, pass it
as a parameter on the start().

• Just after executing start(), and just prior to executing the transaction, call getCorrelator()
to get a correlation token that can be sent along with the other transaction parameters to
the receiver. Not all programs use correlators, but their use is highly recommended,
because without them, it is usually impossible to drill down to understand the components
of a transaction, where they executed, what resources they used, etc.

• Execute the transaction (e.g., make the remote procedure call).

• As soon as it ends, call stop(), passing a status to indicate whether the transaction
succeeded. stop() causes ARM to capture the current time. The response time is
determined by calculating the duration between the start() and stop() events.

Following are details about each method. All methods that return an int are returning an error
code that the application may but need not test. Refer to Chapter 7 for more information about
handling errors.

• start() indicates when a transaction begins. Because the response time depends on when
start() executes, it should execute as close to the actual start time as possible. After start()
executes, it should not be executed again until reset() or stop() is executed. If start()
executes consecutively, the behavior is undefined.

62 Technical Standard (2003)

There are four versions of start(), depending on whether a parent correlator is provided,
and if one is provided, the format of the input data. The length of the correlator is in the
first two bytes of the correlator byte array, with the bytes in network byte order. When the
input is a byte array, the length of the array does not matter, as long as it is at least long
enough to hold the correlator, based on the two-byte length field.

• After a start() there can be any number of update() calls until a stop(). If it is executed at
any other time, it is ignored. The behavior of update() issued at any other time is
undefined. update() is used for two purposes:

— It serves as a heartbeat to show that a transaction is still executing. This is especially
useful if the transaction is a long-running job.

— When used with ArmTransactionWithMetrics, a subclass of ArmTransaction (in the
org.opengroup.arm4.metrics package), any of the metric values can be provided with
an update().

• stop() indicates when a transaction ends and what the status of the transaction was.
Because the response time depends on when stop() executes, it should execute as close to
the actual stop time as possible. If stop() is erroneously issued when there is no
transaction active [start() issued without a matching stop()], it is ignored. The status must
be one of STATUS_ABORT, STATUS_FAILED, STATUS_GOOD, or
STATUS_UNKNOWN (all defined in ArmConstants). The optional form that takes a
string is a way for an application to provide additional diagnostic details when the status is
something other than STATUS_GOOD.

• reset() can be executed at any time. If a transaction is currently executing [start()
executed without a matching stop()], the current transaction is discarded and treated as if
the start() never executed. If no transaction is currently executing, the state of the object is
unchanged. If there is any doubt about the state of an object, reset() gets the object into a
known state in which a start() may be executed. reset() clears the arrival time and the
current correlator; it does not change traceRequested or any of the context URI, context
values, or user.

• getCorrelator() returns a reference to the correlator for the current transaction. It may be a
newly created object. It can be executed anytime after start() is executed. Each time it is
executed, it will return the same value until the next stop() or reset() is executed. If it is
executed at any other time, it will return an ArmCorrelator object, but the data within the
ArmCorrelator object is undefined and should not be used.

• setTraceRequested() is used to suggest or withdraw a suggestion from an application
that a transaction be traced. isTraceRequested() is used to query the current trace request
state. The initial state is false. Once set, it remains in that state until set to a different state.

• bindThread() and unbindThread() can be called from any thread to indicate that the
thread is executing on behalf of the transaction instance. This is useful when multiple
threads execute the same logical (ARM) transaction, because instrumentation of resource
consumption at the thread level can be more precise. The thread remains bound to this
transaction until unbindThread() is executed in this thread or stop() or reset() is
executed.

ARM Issue 4.0 – Java Binding 63

• block() is used to indicate that the transaction instance is blocked waiting on an external
transaction (which may or may not be instrumented with ARM) or some other event to
complete. It has been found useful to separate out this “blocked” time from the elapsed
time between the start() and stop(). unblock() indicates when the blocking condition has
ended. A transaction may be blocked by multiple conditions simultaneously. A “block
handle” returned by block() is the input parameter to unblock() to indicate which
blocking condition has ended.

• setArrivalTime() can be used in situations in which the context of a transaction is not
known when the transaction begins to execute, and for which there is a non-trivial delay
before the context is known. ARM requires that the full context of a transaction be known
when start() is executed (because the correlator is generated at this time). In ARM 2.0 and
3.0 there is no way to capture any time spent processing the transaction before the context
is known. ARM 4.0 introduces the concept of an “arrival time”. The “arrival time” is
when processing of the transaction commenced. By default it is the moment in time when
start() executes. If the delay between the start of processing and the execution of start() is
significant, the application can capture the arrival time by invoking setArrivalTime().
This establishes a timestamp that will be used at the next start(), after which the value will
be reset within the ArmTransaction object. The reset() and stop() methods also clear the
value.

• setContextURIValue() sets the URI context value. getContextURIValue() returns the
value. In most scenarios, a URI would be used as a transaction identity property or a
context property, but not both. The only allowed exception is when the base part of the
URI is used as an identity property, and the full URI (e.g., with the parameters) is used as
a context property. Any other use of URIs as both identity and context properties is
invalid.

• setContextValue() sets one of the maximum 20 context properties that may change for
each transaction instance. getContextValue() returns the value. The context property
name at the specified array index must have been set to a non-null value when the
ArmTransactionDefinition object was created. If the name is null, the value will be set to
null.

• setUser() associates a user, represented by an instance of ArmUser, to the ArmTransaction
instance. This user is assumed to be the user for all start()/stop() pairs until the
association is changed or cleared. setUser(null) clears any existing association to an
ArmUser. getUser() returns the last value that was set.

• getParentCorrelator() returns the last value set on a start() method. If no value was set
on the start() method, or if start() has never executed, it returns null.

• getStatus() returns the last value set on a stop() method. If stop() has never executed, it
returns null.

• getApplication() returns the value passed to the newArmTransaction() method of
ArmTransactionFactory.

• getDefinition() returns the value passed to the newArmTransaction() method of
ArmTransactionFactory.

64 Technical Standard (2003)

Note that there are some changes from ARM 3.0:

• Descriptive metadata has been moved from ArmTransaction to ArmApplicationDefinition
and ArmTransactionDefinition.

• Three methods that were in ARM 3.0 are removed. These methods were almost never
used. They also placed restrictions on implementations that could be unacceptable because
they required an ARM implementation to return a value that had not been provided by the
application. They can be contrasted with other getter methods that return data previously
set by the application using ARM: getRespTime(), getStopTime(), and
getTranHandle().

• The return type for stop() is changed from long to int. The long returned in ARM 3.0 was
the response time, and the requirement to return it is considered unacceptable. The int
return value is an error indicator (if it’s negative).

public interface ArmTransaction extends ArmInterface {
// No Public Constructors
// Public Instance Methods
 public int bindThread();
 public long block();
 public ArmApplication getApplication();
 public String getContextURIValue();
 public String getContextValue(int index);
 public ArmCorrelator getCorrelator();
 public ArmCorrelator getParentCorrelator();
 public int getStatus();
 public ArmTransactionDefinition getDefinition();
 public ArmUser getUser();
 public boolean isTraceRequested();
 public int reset();
 public int setArrivalTime();
 public int setContextURIValue(String value);
 public int setContextValue(int index, String value);
 public int setTraceRequested(boolean traceState);
 public int setUser(ArmUser user);
 public int start();
 public int start(byte[] parentCorr);
 public int start(byte[] parentCorr, int offset);
 public int start(ArmCorrelator parentCorr);
 public int stop(int status);
 public int stop(int status, String diagnosticDetail);
 public int unbindThread();
 public int unblock(long blockHandle);
 public int update();
}

9.43 org.opengroup.arm40.transaction.ArmTransactionDefinition

ArmTransactionDefinition contains the metadata that is the same for all instances of a transaction
type (represented by ArmTransaction or ArmTranReport). It is created with the
newArmTransactionDefinition() method of ArmTransactionFactory. ArmTransactionDefinition
has the following attributes, all of which are immutable:

ARM Issue 4.0 – Java Binding 65

• The definition of the application that contains the transaction. It must not be null.

• The name of the transaction (maximum 127 characters).

• (optional) Identity property names and values, and context property names. They may be
null.

• (optional) ID. An optional 16-byte ID may be associated with the identity of a transaction
definition. The returned value, which could be null, is the same value passed to the
newArmTransactionDefinition() method of ArmTransactionFactory. The ID value is
bound to a unique combination of the application identity (represented by
ArmApplicationDefinition), transaction name, any URI identity property, any identity
property names and values, and any context property names. When provided, the ID may
be used as a concise alias for the unique combination. It may be null.

public interface ArmTransactionDefinition extends ArmInterface {
// No Public Constructors
// Public Instance Methods
 public ArmApplicationDefinition getApplicationDefinition();
 public ArmID getID();
 public ArmIdentityPropertiesTransaction getIdentityProperties();
 public String getName();
}

9.44 org.opengroup.arm40.transaction.ArmTransactionFactory

The class that implements the ArmTransactionFactory interface is used to create all objects that
implement interfaces in the org.opengroup.arm40.transaction package. Refer to the interface
descriptions for an explanation of the parameters.

newArmApplication()
Creates the ArmApplication object to which transaction instances are related.
definition is the only required non-null parameter.

newArmApplicationDefinition()
Creates the ArmApplicationDefinition object that describes the metadata about an
application; that is, the descriptive data that is the same for all instances of the same
application. name is the only required non-null parameter.

newArmCorrelator()
Creates a correlator from a byte array in the correct format. No length field is
passed to newArmCorrelator() because ARM requires that the length of the
correlator be found in the first two bytes (in network byte order) of the byte array
(either at corrBytes or corrBytes+offset). The correlator must be no longer than the
return value from the getCorrelatorMaxLength() method. If the correlator is longer
than the ARM implementation supports, an ArmCorrelator object will be created,
but it may contain dummy data, at the discretion of the ARM implementation.

newArmIdentityProperties()
Creates an object that contains an immutable set of identity property names and
values, and an immutable set of context property names. These properties describe

66 Technical Standard (2003)

identity properties that are common to all instances of an application or transaction.
The names and values are provided in arrays of strings.

There can be up to twenty elements in each of the name and value arrays. The
identity property name and value arrays should contain the same number of
elements; for each non-null name or value, there should be a corresponding non-
null value or name, respectively. For any array index, if either the name or the value
is null or a zero-length string, both the name and the value are treated as being null.
It is permissible to have null elements in the middle of the array. For example, it is
permissible for the elements at indices 0 and 19 to be non-null, and all the elements
from indices 1 to 18 to be null.

newArmTransaction()
Creates an object that represents an instance of a transaction.

newArmTransactionDefinition()
Creates an object that represents the metadata about a transaction.

newArmUser()
Creates an ArmUser object that represents the user who invoked (directly or
indirectly) the transaction.

newArmID()
Creates the objects that contain an immutable 16-byte ID. Having 16-byte IDs
accommodates some widely used IDs, such as the UUID (universally unique
identifier) defined in the DCE and IETF standards.

Error Handling Philosophy

If an invalid set of parameters is passed to any method, such as an offset that extends beyond the
end of an array, an object is returned that may contain dummy data. For example, a null byte[]
addressBytes parameter might result in creating an object with an address of all zeros. Different
ARM implementations may handle the situation in different ways, but in all cases, they will
return an object that is syntactically correct; that is, any of its methods can be invoked without
causing an exception, even if the data may be at least partially meaningless. The getErrorCode()
method of each object can be used after it is created to test whether errors occurred. Refer to
Chapter 7 for a more complete explanation.

ArmTransactionFactory also serves as the anchor point for an application-registered callback
function. setErrorCallback() is used to register a callback that will be called if any method of an
object created by this factory object sets the error code to a negative value. The error code is
retrieved using getErrorCode(), defined in ArmInterface, the root for most interfaces in the
ARM specification. The boolean returned by setErrorCallback() indicates whether the
registration is accepted. If an ARM implementation does not support the callback function, it
will return false. setErrorCallback(null) unregisters any previously registered callback. Note
that due to timing conditions or specifics of the ARM implementation, a previously registered
callback may continue to be called for an indeterminate length of time after
setErrorCallback(null) is executed. For a broader discussion of error handling, refer to Chapter
7.

ARM Issue 4.0 – Java Binding 67

public interface ArmTransactionFactory extends ArmInterface {
// Public Constants
 public static final String propertyKey;
// Public Instance Methods
 public ArmApplication newArmApplication(
 ArmApplicationDefinition definition,
 String group,
 String instance,
 String[] contextValues);
 public ArmApplicationDefinition newArmApplicationDefinition(
 String name,
 ArmIdentityProperties identityProperties,
 ArmID id);
 public ArmCorrelator newArmCorrelator(
 byte[] corrBytes);
 public ArmCorrelator newArmCorrelator(
 byte[] corrBytes,
 int offset);
 public ArmID newArmID(
 byte[] idBytes);
 public ArmID newArmID(
 byte[] idBytes,
 int offset);
 public ArmIdentityProperties newArmIdentityProperties(
 String[] identityNames,
 String[] identityValues,
 String[] contextNames);
 public ArmIdentityPropertiesTransaction
 newArmIdentityPropertiesTransaction(
 String[] identityNames,
 String[] identityValues,
 String[] contextNames,
 String uriValue);
 public ArmTransaction newArmTransaction(
 ArmApplication app,
 ArmTransactionDefinition definition);
 public ArmTransactionDefinition newArmTransactionDefinition(
 ArmApplicationDefinition app,
 String name,
 ArmIdentityPropertiesTransaction identityProperties,
 ArmID id);
 public ArmUser newArmUser(
 String name,
 ArmID id);
 public boolean setErrorCallback(ArmErrorCallback errorCallback);
}

9.45 org.opengroup.arm40.metric.ArmTransactionWithMetrics

ArmTransactionWithMetrics is a subclass of ArmTransaction which is used if the application
wishes to use metrics. All the ArmTransaction rules for using start(), stop(), etc., apply to
ArmTransactionWithMetrics.

68 Technical Standard (2003)

ArmTransactionWithMetrics extends ArmTransaction by adding methods to manipulate metrics.
The ArmMetric subclass objects are bound to an ArmTransactionWithMetrics object when the
ArmTransactionWithMetrics is created. This is done by specifying ArmMetricGroup in the
newArmTransactionWithMetrics() method of ArmMetricFactory.

getTransactionWithMetricsDefinition()
Returns the ArmTransactionWithMetricsDefinition object that contains the metadata
describing this transaction, including the metric definitions.

getMetricGroup()
Returns the ArmMetricGroup object that was bound when
ArmTransactionWithMetrics is created. The returned value may be null.

public interface ArmTransactionWithMetrics extends ArmTransaction {
// No Public Constructors
// Public Instance Methods
 public ArmTransactionWithMetricsDefinition
 getTransactionWithMetricsDefinition();
 public ArmMetricGroup getMetricGroup();
}

9.46 org.opengroup.arm40.metric.ArmTransactionWithMetricsDefinition

ArmTransactionWithMetricsDefinition subclasses ArmTransactionDefinition to add a binding with
an ArmMetricGroupDefinition. It contains the metadata that is the same for all
ArmTransactionWithMetrics (or ArmTranReportWithMetrics) instances with the same identity.

The properties that are accessible via this interface are the same as ArmTransactionDefinition,
plus the following:

• The metric group definition through which the metric definitions are known. The metric
definitions contain the metadata about the metrics.

public interface ArmTransactionWithMetricsDefinition extends
 ArmTransactionDefinition {
// No Public Constructors
// Public Instance Methods (in addition to several inherited from
// ArmTranscationDefinition)
 public ArmMetricGroupDefinition getMetricGroupDefinition();
}

9.47 org.opengroup.arm40.transaction.ArmUser

ArmUser represents a user on behalf of whom a transaction is executed. It is created with the
newArmUser() method of ArmTransactionFactory. It has the following attributes, all of which
are immutable:

• Name: The maximum length is 127 characters (CIM allows 256 but ARM 2.0 allows 128
bytes, including the null-termination character, so 127 is used). The name must not be null
or zero length.

ARM Issue 4.0 – Java Binding 69

• (optional) A 16-byte ID is optionally associated with each ArmUser. It is provided by the
application. If the value is null, no ID was provided.

public interface ArmUser extends ArmInterface {
// No Public Constructors
// Public Instance Methods
 public ArmID getID();
 public String getName();
}

70 Technical Standard (2003)

A Application Instrumentation Sample

/* --- */
/* ------- ARM4 Java API Example: Automated Teller Machine ------- */
/* --- */

/* --- */
/* Example: ARMed Automated Teller Machine simulation */
/* */
/* Description: */
/* */
/* This ATM example demonstrates a more complex ARMed application */
/* using the new ARM4 Java API. It uses ARM correlators, ARM user, */
/* ARM metrics, diagnostic detail for error reporing, and the */
/* arrival time feature. */
/* */
/* 1. Instantiate ARM factory objects, then create ARM definition */
/* objects for applications, transactions, or metrics using */
/* ARM factory methods. */
/* 2. Create ARM object instaces using the definitions and */
/* factories. */
/* 3. Start and stop any transaction using the start() and stop() */
/* methods of the ArmTransactionWithMetrics object. */
/* 4. Stop the ARM application instance using its end() method. */
/* --- */

import org.opengroup.arm40.transaction.*;
import org.opengroup.arm40.metric.*;

public class Atm implements ArmErrorCallback {

/* --- */
/* -------------- ATM inner classes and constants ---------------- */
/* --- */

class AtmCustomer {
 public int no;
 public String name;
 public int pin;
 public double balance;
 public String currency;

 public AtmCustomer(int no, String name, int pin, double balance,
 String currency) {
 this.no = no;
 this.name = name;
 this.pin = pin;
 this.balance = balance;
 this.currency = currency;

ARM Issue 4.0 – Java Binding 71

 }
 }

AtmCustomer[] customers = new AtmCustomer[] {
 new AtmCustomer(1, "Mueller", 1234, 150.0, "EUR"),
 new AtmCustomer(2, "Miller", 5678, 100.0, "GBP"),
 new AtmCustomer(3, "Meyer", 4711, 200.0, "USD")
};

static final int ATM_ERR_NONE = 0;
static final int ATM_ERR_INVALID_NO = 1;
static final int ATM_ERR_INVALID_PIN = 2;
static final int ATM_ERR_OVERDRAWN = 3;
static final int ATM_ERR_MAX = 4;

static final String[] errors = new String[] {
 "no error",
 "invalid customer number",
 "invalid pin number",
 "account overdrawn"
};

/* -- */
/* ---------------------- ARM objects --------------------------- */
/* -- */

// factories
ArmTransactionFactory tranFactory;
ArmMetricFactory metricFactory;

// application definitions
ArmApplicationDefinition appDef;

// transaction definitions
ArmTransactionDefinition atmTranDef;
ArmTransactionWithMetricsDefinition checkCustomerTranDef;
ArmTransactionWithMetricsDefinition withdrawTranDef;

// identity properties
ArmIdentityPropertiesTransaction withdrawIdProperties;

// metric definitions
ArmMetricNumericId32Definition customerNoMetDef;
ArmMetricNumericId32Definition customerPinMetDef;
ArmMetricGroupDefinition checkCustomerMetGroupDef;

ArmMetricCounter32Definition amountMetDef;
ArmMetricGauge32Definition oldBalanceMetDef;
ArmMetricGauge32Definition newBalanceMetDef;
ArmMetricGroupDefinition withdrawMetGroupDef;

// application instance
ArmApplication app;

72 Technical Standard (2003)

// transaction instances
ArmTransaction atmTran;
ArmTransactionWithMetrics checkCustomerTran;
ArmTransactionWithMetrics withdrawTran;

// metric objects
ArmMetricNumericId32 customerNoMet;
ArmMetricNumericId32 customerPinMet;
ArmMetricGroup checkCustomerMetGroup;

ArmMetricCounter32 amountMet;
ArmMetricGauge32 oldBalanceMet;
ArmMetricGauge32 newBalanceMet;
ArmMetricGroup withdrawMetGroup;

// correlators for parent transactions */
ArmCorrelator atmCorr;
ArmCorrelator checkCustomerCorr;

java.io.BufferedReader inputReader = new java.io.BufferedReader(
 new java.io.InputStreamReader(System.in));

/* -- */
/* -------------------- ARM initialization ---------------------- */
/* -- */

void initPropertiesForARMSdk() {
 java.util.Properties p = System.getProperties();

 p.setProperty(ArmTransactionFactory.propertyKey,
 "org.opengroup.arm40.sdk.ArmTransactionFactoryImpl");

 p.setProperty(ArmMetricFactory.propertyKey,
 "org.opengroup.arm40.sdk.ArmMetricFactoryImpl");
}

ArmTransactionFactory getTranFactory() {
 java.util.Properties p = System.getProperties();
 String tranFactoryName =
 p.getProperty(ArmTransactionFactory.propertyKey);
 if (tranFactoryName == null) {
 System.err.println("Could't getProperty " +
 ArmTransactionFactory.propertyKey);
 return null;
 }

 Class tranFactoryClass;
 ArmTransactionFactory tranFactory;

 try {
 tranFactoryClass = Class.forName(tranFactoryName);
 }
 catch (ClassNotFoundException e) {
 System.err.println("Could't find class " + tranFactoryName);

ARM Issue 4.0 – Java Binding 73

 return null;
 }

 try {
 tranFactory =
 (ArmTransactionFactory)tranFactoryClass.newInstance();
 }
 catch (Exception e) {
 System.err.println("Couldn't instantiate " +
 tranFactoryName + ":\n" + e.getMessage());
 return null;
 }

 tranFactory.setErrorCallback(this);

 return tranFactory;
}

ArmMetricFactory getMetricFactory() {
 java.util.Properties p = System.getProperties();
 String metFactoryName =
 p.getProperty(ArmMetricFactory.propertyKey);

 if (metFactoryName == null) {
 System.err.println("Could't getProperty " +
 ArmMetricFactory.propertyKey);
 return null;
 }

 Class metFactoryClass;
 ArmMetricFactory metFactory;

 try {
 metFactoryClass = Class.forName(metFactoryName);
 }
 catch (ClassNotFoundException e) {
 System.err.println("Could't find class " + metFactoryName);
 return null;
 }

 try {
 metFactory = (ArmMetricFactory) metFactoryClass.newInstance();
 }
 catch (Exception e) {
 System.err.println("Couldn't instantiate " +
 metFactoryName + ":\n" + e.getMessage());
 return null;
 }

 metFactory.setErrorCallback(this);

 return metFactory;
}

74 Technical Standard (2003)

void initFactories() throws Exception {
 tranFactory = getTranFactory();
 metricFactory = getMetricFactory();
}

void armInit() {
 // create application definition
 appDef = tranFactory.newArmApplicationDefinition(
 "ATM - Automated Teller Machine", null, null);

 // create metric definitions
 customerNoMetDef = metricFactory.newArmMetricNumericId32Definition(
 appDef, "Customer-No.", "ID",
 ArmMetricDefinition.METRIC_USE_GENERAL, null);
 customerPinMetDef =
 metricFactory.newArmMetricNumericId32Definition(
 appDef, "Customer-Pin", "ID",
 ArmMetricDefinition.METRIC_USE_GENERAL, null);

 checkCustomerMetGroupDef =
 metricFactory.newArmMetricGroupDefinition(
 new ArmMetricDefinition[]
 {customerNoMetDef,customerPinMetDef});

 amountMetDef = metricFactory.newArmMetricCounter32Definition(
 appDef, "Amount", "money",
 ArmMetricDefinition.METRIC_USE_GENERAL, null);
 oldBalanceMetDef = metricFactory.newArmMetricGauge32Definition(
 appDef, "Old Balance", "money",
 ArmMetricDefinition.METRIC_USE_GENERAL, null);
 newBalanceMetDef = metricFactory.newArmMetricGauge32Definition(
 appDef, "New Balance", "money",
 ArmMetricDefinition.METRIC_USE_GENERAL, null);

 withdrawMetGroupDef = metricFactory.newArmMetricGroupDefinition(
 new ArmMetricDefinition[] {amountMetDef,oldBalanceMetDef,
 newBalanceMetDef});

 // create transaction definitions
 atmTranDef = tranFactory.newArmTransactionDefinition(
 appDef, "ATMTran", null, null);

 checkCustomerTranDef = metricFactory.
 newArmTransactionWithMetricsDefinition(
 appDef, "Check Customer", null,
 checkCustomerMetGroupDef, null);

// The withdraw transaction uses a "Currency" context value, so we
// need to set up a properties object.
 withdrawIdProperties =
 tranFactory.newArmIdentityPropertiesTransaction(
 null, null, new String[] {"Currency"}, null);

ARM Issue 4.0 – Java Binding 75

 withdrawTranDef =
 metricFactory.newArmTransactionWithMetricsDefinition(
 appDef, "Withdraw", withdrawIdProperties,
 withdrawMetGroupDef, null);

// Create the application instance object.
 app = tranFactory.newArmApplication(appDef, "Examples",
 null, null);

// Create transaction instance objects.
 atmTran = tranFactory.newArmTransaction(app, atmTranDef);

// For transaction instance objects with metrics, metric instances
// and groups must be created in advance.
 customerNoMet =
 metricFactory.newArmMetricNumericId32(customerNoMetDef);
 customerPinMet =
 metricFactory.newArmMetricNumericId32(customerPinMetDef);
 checkCustomerMetGroup = metricFactory.newArmMetricGroup(
 checkCustomerMetGroupDef, new ArmMetric[] {
 customerNoMet, customerPinMet});

 checkCustomerTran = metricFactory.newArmTransactionWithMetrics(
 app, checkCustomerTranDef, checkCustomerMetGroup);

 amountMet = metricFactory.newArmMetricCounter32(amountMetDef);
 oldBalanceMet =
 metricFactory.newArmMetricGauge32(oldBalanceMetDef);
 newBalanceMet =
 metricFactory.newArmMetricGauge32(newBalanceMetDef);
 withdrawMetGroup = metricFactory.newArmMetricGroup(
 withdrawMetGroupDef, new ArmMetric[] {
 amountMet, oldBalanceMet, newBalanceMet});

 withdrawTran = metricFactory.newArmTransactionWithMetrics(
 app, withdrawTranDef, withdrawMetGroup);
}

void free() {
 // Stop the application instance.
 app.end();

 // Destroy all registered metadata.
 appDef.destroy();
}

/* -- */
/* - method implementation satisfying interface ArmErrorCallback -- */
/* -- */

public void errorCodeSet(ArmInterface errorObject,
 String interfaceName, String methodName) {
 System.err.println("*** Error callback: ***");
 System.err.println(" Class: " +

76 Technical Standard (2003)

 errorObject.getClass().getName());
 System.err.println(" Interface: " + interfaceName);
 System.err.println(" Method: " + methodName);
 System.err.println(" Description: " +
 errorObject.getErrorMessage(errorObject.getErrorCode()) +
 " (" + errorObject.getErrorCode() + ")");
 System.err.println("***********************");
}

void printError(int err) {
 if (err < errors.length)
 System.err.println("\nerror: " + errors[err]);
 else
 System.err.println("\nnknown nerror");
}

/* -- */
/* ------------ The actual ATM worker methods --------------------- */
/* -- */

void checkCustomer() {
 long arrivalTime;

 int idx=-1;
 int no;
 int pin;

 int err = ATM_ERR_INVALID_NO;

 /* The real check_customer transaction starts here. But currently
 /* we don't know the customer (arm user) so get a time stamp from
 /* ARM and set it as actual arrival time that is used for the
 /* call of the start() method later on. */
 checkCustomerTran.setArrivalTime();

 try {
 System.out.print("enter your customer no.: ");
 no = Integer.parseInt(inputReader.readLine());

 System.out.print("enter your pin no.: ");
 pin = Integer.parseInt(inputReader.readLine());
 }
 catch (Exception e) {
 System.out.println("an error occured during entry: " +
 e.getMessage());
 return ;
 }

 for(int i=0; i<customers.length; ++i) {
 if(customers[i].no == no) {
 if(customers[i].pin == pin) {
 idx = i;
 err = ATM_ERR_NONE;
 }

ARM Issue 4.0 – Java Binding 77

 else err = ATM_ERR_INVALID_PIN;

 break;
 }
 }

 if(idx >= 0) {
 ArmUser currentUser =
 tranFactory.newArmUser(customers[idx].name, null);
 checkCustomerTran.setUser(currentUser);
 }

 customerNoMet.set(no);
 customerPinMet.set(pin);

 // Now start the check_customer transaction.
 checkCustomerTran.start(atmCorr);

 checkCustomerCorr = checkCustomerTran.getCorrelator();

 if(idx >= 0)
 withdraw(idx);

 if(err > ATM_ERR_NONE) {
 checkCustomerTran.stop(ArmConstants.STATUS_FAILED,
 errors[err]);
 printError(err);
 }
 else
 checkCustomerTran.stop(ArmConstants.STATUS_GOOD);
}

void withdraw(int idx) {
 int err = ATM_ERR_NONE;
 double amount = 0.0;
 double newBalance;
 double oldBalance;
 String currency;

 oldBalance = newBalance = customers[idx].balance;

 // We want the metric values to appear only at stop time,
 // so disable them for now.
 withdrawMetGroup.setMetricValid(0, false);
 withdrawMetGroup.setMetricValid(1, false);
 withdrawMetGroup.setMetricValid(2, false);

 withdrawTran.setContextValue(0, customers[idx].currency);

 withdrawTran.start(checkCustomerCorr);

 System.out.println(" Hello Mr./Mrs./Miss " + customers[idx].name);
 System.out.println(" your balance is " + customers[idx].balance +
 " " + customers[idx].currency);

78 Technical Standard (2003)

 try {
 System.out.print(" enter amount to withdraw in " +
 customers[idx].currency + " :");
 amount = Double.parseDouble(inputReader.readLine());

 if(amount > oldBalance)
 err = ATM_ERR_OVERDRAWN;
 else
 newBalance = oldBalance - amount;

 amountMet.set((int)(amount * 100.0));
 oldBalanceMet.set((int)(oldBalance * 100.0));
 newBalanceMet.set((int)(newBalance * 100.0));
 }
 catch (Exception e) {
 System.out.println("an error occured during entry: " +
 e.getMessage());
 amount = 0.0;
 currency = "none";
 }

 amountMet.set((int)(amount * 100.0));
 oldBalanceMet.set((int)(oldBalance * 100.0));
 newBalanceMet.set((int)(newBalance * 100.0));

 // Re-enable the recording of the metric values.
 withdrawMetGroup.setMetricValid(0, true);
 withdrawMetGroup.setMetricValid(1, true);
 withdrawMetGroup.setMetricValid(2, true);

 if(err > ATM_ERR_NONE) {
 withdrawTran.stop(ArmConstants.STATUS_FAILED, errors[err]);
 printError(err);
 }
 else {
 System.out.println(" your new balance is " + newBalance);
 withdrawTran.stop(ArmConstants.STATUS_GOOD);
 }
}

void run() {
 // Now start the transaction.
 atmTran.start();
 atmCorr = atmTran.getCorrelator();

 System.out.println("atm:");
 System.out.println("----");

 checkCustomer();

 System.out.println("bye.");

 // Stop the measurement for the atm transaction and commit

ARM Issue 4.0 – Java Binding 79

 // it to ARM.
 atmTran.stop(ArmConstants.STATUS_GOOD);
}

public static void main(String args[]) {
 Atm atm = new Atm();

 atm.initPropertiesForARMSdk();
 try {
 atm.initFactories();
 }
 catch (Exception e) {
 System.err.println("Exception during factory init");
 System.err.println("This should not happen with "+
 "a well-behaved ARM implementation");
 System.exit(-1);
 }

 atm.armInit();

 atm.run();

 atm.free();
}
}

80 Technical Standard (2003)

B Information for Implementers

This appendix contains information useful to creators of ARM implementations, and analysis
and reporting programs that process ARM data. Applications using ARM to measure
transactions do not use any of this information.

Byte Ordering in Correlators

Correlators are passed from application to application. The transfer may occur within a single
system or a single JVM (Java Virtual Machine), or it may occur across a network. The recipient
and sender of a correlator may run on different machines with different architectures, and the
conventions for ordering bytes in data fields, such as integers and arrays, may be different.

If all the programs that touch a correlator are written in Java, the JVM would ensure that the
same ordering conventions are followed and no order would need to be specified. However,
correlators are meant to be passed between applications using any version of ARM (both C and
Java) and running on any platform, including both big-endian and little-endian platforms.
Because big-endian and little-endian platforms order bytes differently, the specification needs to
explicitly state the required ordering, in order to make the correlators interchangeable.

Recognizing this fact, ARM is designed expressly to permit correlators to be exchanged between
any application using ARM and any ARM implementation, regardless of how it is written. For
example, an application using ARM 4.0 Java Bindings may receive a (parent) correlator from an
application using ARM 2.0 (for C programs), and it may send its correlator to an application
using ARM 3.0 for Java programs. To permit these types of exchanges, ARM specifies the
ordering of bytes within the correlator.

All correlator fields, and the correlator itself, are sent in network byte order. Network byte order
is a standard described as follows. The most significant bit is the first bit sent, and the least
significant bit is the last bit sent. For example, a 32-bit integer field would be sent with the most
significant byte first, and the least significant byte would be the fourth byte sent.

Byte 0 Byte 1 Byte 2 Byte 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bit 0 is the most
significant bit

 Bit 31 is the least
significant bit

Limits on Interoperability between ARM Implementations

There is one limit on interoperability. In ARM 2.0 and 3.0, the maximum length of a correlator
is 168 bytes. ARM 4.0 has changed the maximum to 512 bytes. If ARM 4.0 implementations
restrict themselves to correlators of no more than 168 bytes, then the correlators are fully
interchangeable with any other version of ARM. If an ARM 4.0 implementation uses a correlator

ARM Issue 4.0 – Java Binding 81

that is more than 168 bytes long, it can only be successfully interchanged with another ARM 4.0
implementation.

Correlator Formats

ARM specifies formatting constraints that all correlators must adhere to. These are described in
the following section. In addition, different versions of ARM have defined three specific
correlator formats. ARM 4.0 has not defined any formats, and, in general, has taken the approach
of making correlators as opaque as possible.

ARM Correlator Format Constraints

These constraints apply to all formats.

Table 1: ARM Correlator Format Constraints

Position Length Contents

Bytes 0:1 2 bytes Length of the correlator, including these two bytes.
Valid lengths are 4 <= length <= 512. Lengths shorter than four bytes are
not permitted because all correlators must have the four bytes defined in
this table.
Note that a correlator that is longer than 168 bytes could not be passed to
and used by an application using ARM 2.0 or ARM 3.0, because the
maximum size in those versions was 168 bytes.
Some correlator formats impose shorter length restrictions. In particular,
formats 1, 2, and 127 have a maximum of 168 bytes.

Byte 2 1 byte Correlator format
The range 0:127 (unsigned) is reserved by the ARM specification. Six
values have been assigned:
1 – Defined in ARM 2.0
2 – Defined in ARM 3.0
28 – Reserved for Hewlett-Packard
103 – Reserved for IBM
122 – Reserved for tang-IT
127 – Defined in ARM 3.0
The range 128:255 (unsigned) is available for use by ARM implementers.
Known used values include:
128 – Hewlett-Packard
203 – IBM
204 – IBM

Byte 3 1 byte Flags
All eight-bit flags are reserved by the ARM specification. Two flags are
defined in positions 0:1 (the highest order bits), as in ab000000, where a
and b are bit flags.

82 Technical Standard (2003)

Position Length Contents
a = 1 if a trace of this transaction is requested by the agent that generated
the correlator. This is transparent to the applications.
b = 1 if the application indicates that this transaction is of particular
importance, such as a test transaction, and therefore worthy of being traced.
There are no requirements for how these flags are handled, if at all. By
convention, if the flags are turned on in a correlator, the setting is copied
into the correlators for child transactions. However, local policy or the
ARM implementation may override this convention.
The usage scenario that led to their creation was to enable a trace of
selected transactions throughout an enterprise. A selective trace would
yield much useful information without being a significant burden on the
systems processing the transaction.
For example, a client could be experiencing response time problems. The
agent on the client could turn on the trace flag (bit 0) in the correlators that
it generates. When this correlator is passed, as the parent correlator, to the
ARM implementation on the server, the ARM implementation could turn
on the trace flag in the correlators that it generates. The process could
continue recursively. What has resulted is a trace of all the transactions
associated with the client experiencing the response time problem, but only
those transactions. If there are 1,000 clients in the enterprise running this
application, 0.1% of all transactions are traced, which is a minimal load on
the systems. The value of a surgical trace like this was considered great
enough to justify including it in the ARM specification.

ARM Issue 4.0 – Java Binding 83

Index
applet ..24
application instrumentation70
ARM

compatibility between versions....4
evolution of3
usage of ..1

ARM 4.0
new capabilities............................3

ARM objects20, 21, 24
arm.properties.................................24
ArmApplication..........................29, 35
ArmApplicationDefinition29, 36
ArmApplicationRemote...................37
ArmConstants37
ArmCorrelator38
ArmErrorCallback39
ArmID..40
ArmIdentityProperties40
ArmInterface42
ArmMetric42
ArmMetricCounter32..........................43
ArmMetricCounter32Definition43
ArmMetricCounter6443
ArmMetricCounter64Definition44
ArmMetricCounterFloat3244
ArmMetricCounterFloat32Definition44
ArmMetricDefinition44
ArmMetricFactory45
ArmMetricGauge3250
ArmMetricGauge32Definition50
ArmMetricGauge6450
ArmMetricGauge64Definition50
ArmMetricGaugeFloat3251
ArmMetricGaugeFloat32Definition .51
ArmMetricGroup51
ArmMetricGroupDefinition52
ArmMetricNumericId32...................52
ArmMetricNumericId32Definition....53
ArmMetricNumericId64...................53
ArmMetricNumericId64Definition....53
ArmMetricString3253
ArmMetricString32Definition...........54

ArmSystemAddress........................ 54
ArmToken 55
ArmTranReport..................... 6, 31, 56
ArmTranReportFactory................... 59
ArmTranReportWithMetrics.... 17, 60
ArmTransaction 6, 8, 29, 61
ArmTransactionDefinition 29, 64
ArmTransactionFactory 65
ArmTransactionWithMetrics ... 16, 67
ArmTransactionWithMetricsDefinition

... 68
ArmUser ... 68
calling hierarchy............................. 13
class loaders 23
context properties 40
convenience methods 23
correlator .. 12

byte ordering.............................. 80
correlator formats 81

constraints.................................. 81
counters .. 15
data categories................................ 14
data model 29
distributed transaction 11
error handling................................. 26
factory class.................................... 22
factory interfaces............................ 22
gauges .. 15

conventions................................ 18
heartbeat ... 8
identification information 14
identity properties 40
interoperability limits 80
Java Binding..................................... 6
Java Bindings 4
Java interfaces 20
Java packages................................... 4
java.lang.System 22
java.util.Properties.......................... 22
JNI.. 23
JVM.......................... 4, 10, 22, 57, 80
management agent............................ 2

84 Technical Standard (2003)

Management Agent4
measure transactions.........................8
measurement information...............14
method

naming conventions34
metrics14, 29

multiple values17
numeric IDs15
org.opengroup.arm40.* packages...32

programming options 8
property keys.................................. 22
propertyKey 22
response time.................................. 14
status .. 14
stop time... 14
strings ... 16
transaction measurement.................. 2
transaction relationships................. 11

	Introduction
	What is ARM?
	How is ARM Used?
	Selecting Transactions to Measure
	The Evolution of ARM
	Compatibility between ARM Versions
	ARM 4.0 Java Bindings Overview
	Terminology

	Using the ARM 4.0 Java Binding
	Example

	Programming Options
	ARM Measures Transactions
	Application Measures Transactions
	Selecting which Option to Use

	Understanding the Relationships between Transactions
	A Typical Distributed Transaction

	Additional Data About a Transaction
	Data Categories
	Counters
	Gauges
	Numeric IDs
	Strings

	How to Provide the Additional Data
	Using ArmTransactionWithMetrics
	Using ArmTranReportWithMetrics

	Processing Multiple Values of the Same Metric
	Counters
	Gauges
	Numeric IDs
	Strings

	Creating ARM Objects
	Overview of Java Interfaces
	Creating ARM Objects in an Application
	Convenience Methods

	Creating ARM Objects in an Applet

	Error Handling Philosophy
	Errors the Application Should Test For
	Errors the Application Does Not Need to Test For
	How an Application Tests for Errors
	Testing a Method Return Code
	Testing an Object Error Code
	Registering a Callback

	The ARM 4.0 Data Model
	Data Model Using ArmTransaction
	Data Model Using ArmTranReport

	The org.opengroup.arm40.* Packages
	Interface List (by Java Package)
	Interface List (in Alphabetical Order)
	Method Naming Conventions
	org.opengroup.arm40.transaction.ArmApplication
	org.opengroup.arm40.transaction.ArmApplicationDefinition
	org.opengroup.arm40.tranreport.ArmApplicationRemote
	org.opengroup.arm40.transaction.ArmConstants
	org.opengroup.arm40.transaction.ArmCorrelator
	org.opengroup.arm40.transaction.ArmErrorCallback
	org.opengroup.arm40.transaction.ArmID
	org.opengroup.arm40.transaction.ArmIdentityProperties
	org.opengroup.arm40.transaction.ArmIdentityPropertiesTransaction
	org.opengroup.arm40.transaction.ArmInterface
	org.opengroup.arm40.metric.ArmMetric
	org.opengroup.arm40.metric.ArmMetricCounter32
	org.opengroup.arm40.metric.ArmMetricCounter32Definition
	org.opengroup.arm40.metric.ArmMetricCounter64
	org.opengroup.arm40.metric.ArmMetricCounter64Definition
	org.opengroup.arm40.metric.ArmMetricCounterFloat32
	org.opengroup.arm40.metric.ArmMetricCounterFloat32Definition
	org.opengroup.arm40.metric.ArmMetricDefinition
	org.opengroup.arm40.metric.ArmMetricFactory
	org.opengroup.arm40.metric.ArmMetricGauge32
	org.opengroup.arm40.metric.ArmMetricGauge32Definition
	org.opengroup.arm40.metric.ArmMetricGauge64
	org.opengroup.arm40.metric.ArmMetricGauge64Definition
	org.opengroup.arm40.metric.ArmMetricGaugeFloat32
	org.opengroup.arm40.metric.ArmMetricGaugeFloat32Definition
	org.opengroup.arm40.metric.ArmMetricGroup
	org.opengroup.arm40.metric.ArmMetricGroupDefinition
	org.opengroup.arm40.metric.ArmMetricNumericId32
	org.opengroup.arm40.metric.ArmMetricNumericId32Definition
	org.opengroup.arm40.metric.ArmMetricNumericId64
	org.opengroup.arm40.metric.ArmMetricNumericId64Definition
	org.opengroup.arm40.metric.ArmMetricString32
	org.opengroup.arm40.metric.ArmMetricString32Definition
	org.opengroup.arm40.tranreport.ArmSystemAddress
	org.opengroup.arm40.transaction.ArmToken
	org.opengroup.arm40.tranreport.ArmTranReport
	org.opengroup.arm40.tranreport.ArmTranReportFactory
	org.opengroup.arm40.metric.ArmTranReportWithMetrics
	org.opengroup.arm40.transaction.ArmTransaction
	org.opengroup.arm40.transaction.ArmTransactionDefinition
	org.opengroup.arm40.transaction.ArmTransactionFactory
	org.opengroup.arm40.metric.ArmTransactionWithMetrics
	org.opengroup.arm40.metric.ArmTransactionWithMetricsDefinition
	org.opengroup.arm40.transaction.ArmUser

	Application Instrumentation Sample
	Information for Implementers

