
Motif 2.1—Programmer’s Reference

Desktop Product Documentation

The Open Group

Copyright © The Open Group, 1997.

All Rights Reserved

The information contained within this document is subject to change without notice.

This documentation and the software to which it relates are derived in part from copyrighted materials supplied by Digital Equipment
Corporation, Hewlett-Packard Company, International Business Machines, Massachusetts Institute of Technology, Microsoft Corporation, Sun
Microsystems Inc., and The Santa Cruz Operation Inc.

THE OPEN GROUP MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The Open Group shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in
connection with the furnishing, performance, or use of this material.

Desktop Product Documentation:

Motif 2.1—Programmer’s Reference, Volume 1
ISBN 1-85912-119-5
Document Number M214A

Motif 2.1—Programmer’s Reference, Volume 2
ISBN 1-85912-124-1
Document Number M214B

Motif 2.1—Programmer’s Reference, Volume 3
ISBN 1-85912-164-0
Document Number M214C

Published in the U.K. by The Open Group, 1997

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:
OGPubs@opengroup.org

OTHER NOTICES

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE
COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH THE OPEN GROUP
OR ITS LICENSORS.

Certain portions of CDE known as "PBMPlus" are copyrighted © 1989, 1991 by Jef Poskanzer. Permission to use, copy, modify, and distribute
this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appears in all
copies and that both the copyright notice and this permission notice appears in supporting documentation. This software is provided "as is"
without express or implied warranty.

The code and documentation for the DtComboBox and DtSpinBox widgets were contributed by Interleaf, Inc. Copyright © 1993, Interleaf,
Inc.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE:Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software, the rights of
the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS Computer Software-Restricted
Rights clause.

RESTRICTED RIGHTS NOTICE:Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND:Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B)
of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is submitted with "restricted rights."
Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79 (April 1985) "Commercial Computer
Software-Restricted Rights (April 1985)." If the contract contains the Clause at 18-52.227-74 "Rights in Data General" then the "Alternate
III" clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.

Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

Contents

Preface . xvii

The Open Group xvii

The Development of Product Standards. xviii

Open Group Publications xix

Versions and Issues of Specifications. xxi

Corrigenda. xxi

Ordering Information xxi

This Book xxii

Audience xxii

Applicability xxii

Purpose. xxii

Organization xxii
Reference Page Format xxiii

Related Documents. xxiv

Typographic and Keying Conventions. xxv
DocBook SGML Conventions. xxvi
Terminology Conventions. xxvi
Keyboard Conventions. xxvi
Mouse Conventions xxvii

Problem Reporting. xxvii

Trademarks. xxvii

Chapter 1. Programs. 1
mwm 2
uil 37
xmbind 39

i

Motif 2.1—Programmer’s Reference

Chapter 2. Xt Widget Classes. 41
ApplicationShell 42
Composite. 47
Constraint. 51
Core 54
Object. 59
OverrideShell 61
RectObj 64
Shell 67
TopLevelShell. 71
TransientShell. 76
VendorShell 81
WMShell 94

Chapter 3. Xm Widget Classes. 103
XmArrowButton 104
XmArrowButtonGadget 111
XmBulletinBoard 117
XmCascadeButton. 128
XmCascadeButtonGadget. 139
XmComboBox. 147
XmCommand. 161
XmContainer 171
XmDialogShell 213
XmDisplay 219
XmDragContext 230
XmDragIcon 252
XmDrawingArea 257
XmDrawnButton 268
XmDropTransfer 277
XmFileSelectionBox 281
XmForm 303
XmFrame. 319
XmGadget. 325
XmIconGadget. 333
XmLabel 340
XmLabelGadget 356
XmList 371
XmMainWindow 406
XmManager 413
XmMenuShell. 428
XmMessageBox 434
XmNotebook 444

ii

Contents

XmPanedWindow. 460
XmPrimitive 470
XmPushButton. 486
XmPushButtonGadget. 498
XmRendition 508
XmRowColumn 512
XmScale 540
XmScreen. 558
XmScrollBar 567
XmScrolledWindow 583
XmSelectionBox 595
XmSeparator 608
XmSeparatorGadget 613
XmText 618
XmTextField 673
XmToggleButton 709
XmToggleButtonGadget 725

Chapter 4. Translations. 739
VirtualBindings 740

Chapter 5. Xm Data Types. 747
XmDirection 748
XmFontList 751
XmParseMapping. 754
XmParseTable. 759
XmRenderTable 760
XmString 763
XmStringDirection. 766
XmStringTable. 767
XmTab 768
XmTabList. 769
XmTextPosition 771

Chapter 6. Xm Functions. 773
XmActivateProtocol 774
XmActivateWMProtocol 776
XmAddProtocolCallback 777
XmAddProtocols 779
XmAddTabGroup. 780
XmAddToPostFromList 781
XmAddWMProtocolCallback 783
XmAddWMProtocols 784

iii

Motif 2.1—Programmer’s Reference

XmCascadeButtonGadgetHighlight. 785
XmCascadeButtonHighlight 786
XmChangeColor 787
XmClipboardCancelCopy. 788
XmClipboardCopy. 790
XmClipboardCopyByName 793
XmClipboardEndCopy. 795
XmClipboardEndRetrieve. 797
XmClipboardInquireCount. 799
XmClipboardInquireFormat 801
XmClipboardInquireLength 803
XmClipboardInquirePendingItems. 805
XmClipboardLock. 807
XmClipboardRegisterFormat 809
XmClipboardRetrieve. 811
XmClipboardStartCopy 814
XmClipboardStartRetrieve. 817
XmClipboardUndoCopy 819
XmClipboardUnlock 821
XmClipboardWithdrawFormat. 823
XmComboBoxAddItem 825
XmComboBoxDeletePos. 827
XmComboBoxSelectItem. 828
XmComboBoxSetItem. 829
XmComboBoxUpdate. 830
XmCommandAppendValue. 831
XmCommandError. 832
XmCommandGetChild. 833
XmCommandSetValue. 835
XmContainerCopy. 836
XmContainerCopyLink. 837
XmContainerCut 839
XmContainerGetItemChildren. 841
XmContainerPaste. 843
XmContainerPasteLink. 844
XmContainerRelayout. 845
XmContainerReorder. 846
XmConvertStringToUnits 847
XmConvertUnits 850
XmCreateArrowButton. 853
XmCreateArrowButtonGadget. 854
XmCreateBulletinBoard 855
XmCreateBulletinBoardDialog. 856
XmCreateCascadeButton. 858

iv

Contents

XmCreateCascadeButtonGadget. 860
XmCreateComboBox. 862
XmCreateCommand 863
XmCreateContainer 864
XmCreateDialogShell. 865
XmCreateDragIcon 866
XmCreateDrawingArea 868
XmCreateDrawnButton 869
XmCreateDropDownComboBox 870
XmCreateDropDownList 872
XmCreateErrorDialog. 873
XmCreateFileSelectionBox. 875
XmCreateFileSelectionDialog. 877
XmCreateForm 879
XmCreateFormDialog. 880
XmCreateFrame 882
XmCreateIconGadget. 883
XmCreateInformationDialog 884
XmCreateLabel 886
XmCreateLabelGadget. 887
XmCreateList 888
XmCreateMainWindow 889
XmCreateMenuBar 890
XmCreateMenuShell 892
XmCreateMessageBox. 893
XmCreateMessageDialog. 895
XmCreateNotebook 897
XmCreateOptionMenu. 898
XmCreatePanedWindow 901
XmCreatePopupMenu. 902
XmCreatePromptDialog 904
XmCreatePulldownMenu. 906
XmCreatePushButton. 909
XmCreatePushButtonGadget. 910
XmCreateQuestionDialog. 911
XmCreateRadioBox 913
XmCreateRowColumn. 915
XmCreateScale 917
XmCreateScrollBar 918
XmCreateScrolledList. 919
XmCreateScrolledText. 921
XmCreateScrolledWindow. 923
XmCreateSelectionBox. 924
XmCreateSelectionDialog. 926

v

Motif 2.1—Programmer’s Reference

XmCreateSeparator 928
XmCreateSeparatorGadget. 929
XmCreateSimpleCheckBox 930
XmCreateSimpleMenuBar. 932
XmCreateSimpleOptionMenu. 934
XmCreateSimplePopupMenu. 936
XmCreateSimplePulldownMenu 938
XmCreateSimpleRadioBox. 940
XmCreateSimpleSpinBox. 942
XmCreateSpinBox. 943
XmCreateTemplateDialog. 945
XmCreateText. 947
XmCreateTextField 948
XmCreateToggleButton 949
XmCreateToggleButtonGadget. 950
XmCreateWarningDialog 951
XmCreateWorkArea 953
XmCreateWorkingDialog 955
XmCvtByteStreamToXmString. 957
XmCvtCTToXmString. 958
XmCvtStringToUnitType 959
XmCvtTextPropertyToXmStringTable. 960
XmCvtXmStringTableToTextProperty. 962
XmCvtXmStringToByteStream. 964
XmCvtXmStringToCT. 966
XmDeactivateProtocol. 968
XmDeactivateWMProtocol. 970
XmDestroyPixmap. 971
XmDirectionMatch. 972
XmDirectionMatchPartial 974
XmDirectionToStringDirection. 975
XmDragCancel 977
XmDragStart 978
XmDropSite 980
XmDropSiteConfigureStackingOrder. 990
XmDropSiteEndUpdate 992
XmDropSiteQueryStackingOrder. 993
XmDropSiteRegister 995
XmDropSiteRegistered. 997
XmDropSiteRetrieve 998
XmDropSiteStartUpdate 999
XmDropSiteUnregister. 1000
XmDropSiteUpdate 1001
XmDropTransferAdd 1002

vi

Contents

XmDropTransferStart. 1003
XmFileSelectionBoxGetChild. 1005
XmFileSelectionDoSearch. 1007
XmFontListAdd 1008
XmFontListAppendEntry 1010
XmFontListCopy 1011
XmFontListCreate. 1012
XmFontListEntryCreate 1014
XmFontListEntryFree. 1016
XmFontListEntryGetFont 1017
XmFontListEntryGetTag 1018
XmFontListEntryLoad. 1019
XmFontListFree 1021
XmFontListFreeFontContext 1022
XmFontListGetNextFont 1023
XmFontListInitFontContext 1025
XmFontListNextEntry. 1026
XmFontListRemoveEntry. 1027
XmGetAtomName. 1029
XmGetColorCalculation 1030
XmGetColors 1031
XmGetDestination. 1033
XmGetDragContext 1034
XmGetFocusWidget 1036
XmGetMenuCursor 1037
XmGetPixmap. 1038
XmGetPixmapByDepth 1042
XmGetPostedFromWidget. 1048
XmGetSecondaryResourceData. 1049
XmGetTabGroup 1051
XmGetTearOffControl. 1052
XmGetVisibility 1054
XmGetXmDisplay. 1056
XmGetXmScreen. 1057
XmImCloseXIM 1058
XmImFreeXIC. 1059
XmImGetXIC 1060
XmImGetXIM 1062
XmImMbLookupString 1063
XmImMbResetIC 1066
XmImRegister. 1067
XmImSetFocusValues. 1068
XmImSetValues 1070
XmImSetXIC 1073

vii

Motif 2.1—Programmer’s Reference

XmImUnregister 1074
XmImUnsetFocus. 1075
XmImVaSetFocusValues 1076
XmImVaSetValues. 1078
XmInstallImage 1079
XmInternAtom. 1081
XmIsMotifWMRunning 1082
XmIsTraversable 1083
XmListAddItem 1085
XmListAddItemUnselected. 1086
XmListAddItems 1087
XmListAddItemsUnselected 1088
XmListDeleteAllItems. 1089
XmListDeleteItem. 1090
XmListDeleteItems 1091
XmListDeleteItemsPos. 1092
XmListDeletePos 1093
XmListDeletePositions. 1094
XmListDeselectAllItems 1095
XmListDeselectItem 1096
XmListDeselectPos 1097
XmListGetKbdItemPos. 1098
XmListGetMatchPos 1099
XmListGetSelectedPos. 1101
XmListItemExists 1103
XmListItemPos 1104
XmListPosSelected 1105
XmListPosToBounds 1106
XmListReplaceItems 1108
XmListReplaceItemsPos 1110
XmListReplaceItemsPosUnselected. 1112
XmListReplaceItemsUnselected 1114
XmListReplacePositions 1116
XmListSelectItem. 1118
XmListSelectPos 1119
XmListSetAddMode 1120
XmListSetBottomItem. 1121
XmListSetBottomPos. 1122
XmListSetHorizPos 1123
XmListSetItem. 1124
XmListSetKbdItemPos. 1125
XmListSetPos. 1126
XmListUpdateSelectedList. 1127
XmListYToPos 1128

viii

Contents

XmMainWindowSep1. 1129
XmMainWindowSep2. 1130
XmMainWindowSep3. 1131
XmMainWindowSetAreas. 1132
XmMapSegmentEncoding. 1134
XmMenuPosition 1135
XmMessageBoxGetChild. 1136
XmNotebookGetPageInfo. 1138
XmObjectAtPoint 1141
XmOptionButtonGadget 1143
XmOptionLabelGadget. 1145
XmParseMappingCreate 1147
XmParseMappingFree. 1148
XmParseMappingGetValues 1149
XmParseMappingSetValues 1150
XmParseTableFree. 1151
XmGetScaledPixmap. 1152
XmPrintPopupPDM 1154
XmPrintSetup. 1157
XmPrintShell 1160
XmPrintToFile. 1166
XmProcessTraversal 1169
XmRedisplayWidget 1175
XmRegisterSegmentEncoding. 1179
XmRemoveFromPostFromList. 1181
XmRemoveProtocolCallback. 1183
XmRemoveProtocols 1185
XmRemoveTabGroup. 1187
XmRemoveWMProtocolCallback. 1188
XmRemoveWMProtocols. 1189
XmRenderTableAddRenditions. 1190
XmRenderTableCopy. 1192
XmRenderTableCvtFromProp. 1193
XmRenderTableCvtToProp. 1194
XmRenderTableFree 1195
XmRenderTableGetRendition. 1196
XmRenderTableGetRenditions. 1197
XmRenderTableGetTags 1199
XmRenderTableRemoveRenditions. 1200
XmRenditionCreate 1202
XmRenditionFree. 1204
XmRenditionRetrieve. 1205
XmRenditionUpdate 1206
XmRepTypeAddReverse 1207

ix

Motif 2.1—Programmer’s Reference

XmRepTypeGetId. 1208
XmRepTypeGetNameList. 1209
XmRepTypeGetRecord. 1210
XmRepTypeGetRegistered. 1212
XmRepTypeInstallTearOffModelConverter. . . . 1214
XmRepTypeRegister 1215
XmRepTypeValidValue. 1217
XmResolveAllPartOffsets. 1218
XmResolvePartOffsets. 1222
XmScaleGetValue. 1225
XmScaleSetTicks. 1226
XmScaleSetValue. 1228
XmScrollBarGetValues. 1229
XmScrollBarSetValues. 1231
XmScrollVisible 1233
XmScrolledWindowSetAreas. 1235
XmSelectionBoxGetChild. 1237
XmSetColorCalculation 1239
XmSetFontUnit 1241
XmSetFontUnits 1242
XmSetMenuCursor. 1244
XmSetProtocolHooks. 1245
XmSetWMProtocolHooks. 1247
XmSpinBox 1249
XmSimpleSpinBoxAddItem 1269
XmSimpleSpinBoxDeletePos. 1270
XmSimpleSpinBoxSetItem. 1271
XmSpinBoxValidatePosition 1272
XmSimpleSpinBox. 1276
XmStringBaseline. 1285
XmStringByteCompare. 1286
XmStringByteStreamLength 1288
XmStringCompare. 1289
XmStringComponentCreate 1290
XmStringComponentType. 1292
XmStringConcat 1295
XmStringConcatAndFree. 1296
XmStringCopy. 1298
XmStringCreate 1299
XmStringCreateLocalized. 1301
XmStringCreateLtoR 1302
XmStringCreateSimple. 1304
XmStringDirectionCreate. 1306
XmStringDirectionToDirection. 1307

x

Contents

XmStringDraw. 1308
XmStringDrawImage 1310
XmStringDrawUnderline 1312
XmStringEmpty 1314
XmStringExtent 1315
XmStringFree. 1316
XmStringFreeContext. 1317
XmStringGenerate. 1318
XmStringGetLtoR. 1320
XmStringGetNextComponent. 1322
XmStringGetNextSegment. 1325
XmStringGetNextTriple 1327
XmStringHasSubstring. 1329
XmStringHeight 1330
XmStringInitContext 1331
XmStringIsVoid 1332
XmStringLength 1333
XmStringLineCount 1334
XmStringNConcat. 1335
XmStringNCopy 1337
XmStringParseText. 1338
XmStringPeekNextComponent. 1341
XmStringPeekNextTriple 1342
XmStringPutRendition. 1343
XmStringSegmentCreate. 1345
XmStringSeparatorCreate. 1347
XmStringTableParseStringArray 1348
XmStringTableProposeTablist. 1350
XmStringTableToXmString. 1352
XmStringTableUnparse. 1354
XmStringToXmStringTable. 1356
XmStringUnparse. 1358
XmStringWidth 1361
XmTabCreate. 1362
XmTabFree 1364
XmTabGetValues 1365
XmTabListCopy 1367
XmTabListFree 1369
XmTabListGetTab. 1370
XmTabListInsertTabs. 1371
XmTabListRemoveTabs 1373
XmTabListReplacePositions 1375
XmTabListTabCount 1377
XmTabSetValue 1378

xi

Motif 2.1—Programmer’s Reference

XmTargetsAreCompatible. 1379
XmTextClearSelection. 1381
XmTextCopy 1382
XmTextCopyLink 1384
XmTextCut 1386
XmTextDisableRedisplay. 1388
XmTextEnableRedisplay 1389
XmTextFieldClearSelection 1390
XmTextFieldCopy. 1391
XmTextFieldCopyLink. 1392
XmTextFieldCut 1394
XmTextFieldGetBaseline 1396
XmTextFieldGetEditable 1397
XmTextFieldGetInsertionPosition. 1398
XmTextFieldGetLastPosition 1399
XmTextFieldGetMaxLength 1400
XmTextFieldGetSelection. 1401
XmTextFieldGetSelectionPosition. 1402
XmTextFieldGetSelectionWcs. 1404
XmTextFieldGetString. 1405
XmTextFieldGetStringWcs. 1406
XmTextFieldGetSubstring. 1407
XmTextFieldGetSubstringWcs. 1409
XmTextFieldInsert. 1411
XmTextFieldInsertWcs. 1413
XmTextFieldPaste. 1415
XmTextFieldPasteLink. 1417
XmTextFieldPosToXY. 1418
XmTextFieldRemove 1420
XmTextFieldReplace 1421
XmTextFieldReplaceWcs. 1423
XmTextFieldSetAddMode. 1425
XmTextFieldSetEditable 1426
XmTextFieldSetHighlight 1427
XmTextFieldSetInsertionPosition. 1429
XmTextFieldSetMaxLength 1430
XmTextFieldSetSelection. 1431
XmTextFieldSetString. 1432
XmTextFieldSetStringWcs. 1433
XmTextFieldShowPosition. 1434
XmTextFieldXYToPos. 1435
XmTextFindString. 1436
XmTextFindStringWcs. 1438
XmTextGetBaseline 1440

xii

Contents

XmTextGetCenterline. 1441
XmTextGetEditable 1442
XmTextGetInsertionPosition 1443
XmTextGetLastPosition 1444
XmTextGetMaxLength. 1445
XmTextGetSelection 1446
XmTextGetSelectionPosition 1447
XmTextGetSelectionWcs. 1449
XmTextGetSource. 1450
XmTextGetString 1451
XmTextGetStringWcs. 1452
XmTextGetSubstring 1453
XmTextGetSubstringWcs. 1455
XmTextGetTopCharacter 1457
XmTextInsert 1458
XmTextInsertWcs. 1460
XmTextPaste 1462
XmTextPasteLink. 1464
XmTextPosToXY 1465
XmTextRemove 1467
XmTextReplace 1468
XmTextReplaceWcs 1470
XmTextScroll 1472
XmTextSetAddMode 1473
XmTextSetEditable 1474
XmTextSetHighlight 1475
XmTextSetInsertionPosition 1477
XmTextSetMaxLength. 1478
XmTextSetSelection 1479
XmTextSetSource. 1480
XmTextSetString 1482
XmTextSetStringWcs. 1483
XmTextSetTopCharacter 1484
XmTextShowPosition. 1485
XmTextXYToPos 1486
XmToggleButtonGadgetGetState. 1488
XmToggleButtonGadgetSetState. 1489
XmToggleButtonGetState. 1491
XmToggleButtonSetState. 1492
XmToggleButtonSetValue. 1493
XmTrackingEvent. 1494
XmTrackingLocate. 1496
XmTransferDone 1498
XmTransferSendRequest. 1501

xiii

Motif 2.1—Programmer’s Reference

XmTransferSetParameters. 1502
XmTransferStartRequest. 1504
XmTransferValue 1505
XmTranslateKey 1508
XmUninstallImage. 1510
XmUpdateDisplay. 1511
XmVaCreateSimpleCheckBox. 1512
XmVaCreateSimpleMenuBar. 1515
XmVaCreateSimpleOptionMenu 1517
XmVaCreateSimplePopupMenu 1521
XmVaCreateSimplePulldownMenu. 1525
XmVaCreateSimpleRadioBox. 1529
XmWidgetGetBaselines 1532
XmWidgetGetDisplayRect. 1534

Chapter 7. Mrm Functions. 1537
MrmCloseHierarchy 1538
MrmFetchBitmapLiteral 1539
MrmFetchColorLiteral. 1541
MrmFetchIconLiteral 1543
MrmFetchLiteral 1545
MrmFetchSetValues 1547
MrmFetchWidget 1549
MrmFetchWidgetOverride. 1551
MrmInitialize 1553
MrmOpenHierarchy 1554
MrmOpenHierarchyFromBuffer 1558
MrmOpenHierarchyPerDisplay. 1560
MrmRegisterClass. 1565
MrmRegisterNames 1567
MrmRegisterNamesInHierarchy 1569

Chapter 8. Uil Functions 1571
Uil 1572
UilDumpSymbolTable. 1578

Chapter 9. File Formats 1581
mwmrc 1582
Traits 1597
UIL 1606
WML 1642

Appendix A. Constraint Arguments and Automatically Created Children. . . . 1653

xiv

Contents

Appendix B. UIL Built-In Tables. 1659

Appendix C. UIL Arguments. 1755

Appendix D. UIL Diagnostic Messages. 1773

xv

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers
and suppliers of technology. Its mission is to cause the development of a viable global
information infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the
telephone. The essential functionality embedded in this infrastructure is what we term
the IT DialTone. The Open Group creates an environment where all elements involved
in technology development can cooperate to deliver less costly and more flexible IT
solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the
Open Software Foundation (founded in 1988), The Open Group is supported by most
of the world’s largest user organizations, information systems vendors, and software
suppliers. By combining the strengths of open systems specifications and a proven
branding scheme with collaborative technology development and advanced research,
The Open Group is well positioned to meet its new mission, as well as to assist
user organizations, vendors, and suppliers in the development and implementation
of products supporting the adoption and proliferation of systems which conform to
standard specifications.

xvii

Preface

With more than 200 member companies, The Open Group helps the IT industry to
advance technologically while managing the change caused by innovation. It does this
by:

• consolidating, prioritizing, and communicating customer requirements to vendors

• conducting research and development with industry, academia, and government
agencies to deliver innovation and economy through projects associated with its
Research Institute

• managing cost-effective development efforts that accelerate consistent multi-
vendor deployment of technology in response to customer requirements

• adopting, integrating, and publishing industry standard specifications that provide
an essential set of blueprints for building open information systems and integrating
new technology as it becomes available

• licensing and promoting the Open Brand, represented by the ‘‘X’’ mark, that
designates vendor products which conform to Open Group Product Standards

• promoting the benefits of open systems to customers, vendors, and the public.

The Open Group operates in all phases of the open systems technology lifecycle
including innovation, market adoption, product development, and proliferation.
Presently, it focuses on seven strategic areas: open systems application platform
development, architecture, distributed systems management, interoperability,
distributed computing environment, security, and the information superhighway. The
Open Group is also responsible for the management of the UNIX trademark on
behalf of the industry.

The Development of Product Standards

This process includes the identification of requirements for open systems and, now, the
IT DialTone, development of CAE and Preliminary Specifications through an industry
consensus review and adoption procedure (in parallel with formal standards work),
and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to
which a vendor may register a product. There are currently two forms of Product

xviii

Preface

Standard, namely the Profile Definition and the Component Definition, although these
will eventually be merged into one.

The ‘‘X’’ mark is used by vendors to demonstrate that their products conform to
the relevant Product Standard. By use of the Open Brand they guarantee, through
the X/Open Trade Mark Licence Agreement (TMLA), to maintain their products in
conformance with the Product Standard so that the product works, will continue to
work, and that any problems will be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part
of which is focused on specification development and product documentation, but
which also includes Guides, Snapshots, Technical Studies, Branding and Testing
documentation, industry surveys, and business titles.

There are several types of specification:

CAE Specifications
CAE (Common Applications Environment) Specifications are the stable
specifications that form the basis for our Product Standards, which
are used to develop X/Open branded systems. These specifications are
intended to be used widely within the industry for product development
and procurement purposes.

Anyone developing products that implement a CAE Specification can
enjoy the benefits of a single, widely supported industry standard.
Where appropriate, they can demonstrate product compliance through
the Open Brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of
conformant products without delay.

Preliminary Specifications
Preliminary Specifications usually address an emerging area of
technology and consequently are not yet supported by multiple
sources of stable conformant implementations. They are published
for the purpose of validation through implementation of products. A
Preliminary Specification is not a draft specification; rather, it is as

xix

Preface

stable as can be achieved, through applying The Open Group’s rigorous
development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued
by formal standards organizations, and developers are encouraged to
develop products on the basis of them. However, experience through
implementation work may result in significant (possibly upwardly
incompatible) changes before its progression to becoming a CAE
Specification. While the intent is to progress Preliminary Specifications
to corresponding CAE Specifications, the ability to do so depends on
consensus among Open Group members.

Consortium and Technology Specifications
The Open Group publishes specifications on behalf of industry consortia.
For example, it publishes the NMF SPIRIT procurement specifications
on behalf of the Network Management Forum. It also publishes
Technology Specifications relating to OSF/1, DCE, OSF/Motif, and
CDE.

Technology Specifications (formerly AES Specifications) are often
candidates for consensus review, and may be adopted as CAE
Specifications, in which case the relevant Technology Specification is
superseded by a CAE Specification.

In addition, The Open Group publishes:

Product Documentation
This includes product documentation—programmer’s guides, user
manuals, and so on—relating to the Prestructured Technology Projects
(PSTs), such as DCE and CDE. It also includes the Single UNIX
Documentation, designed for use as common product documentation
for the whole industry.

Guides These provide information that is useful in the evaluation, procurement,
development, or management of open systems, particularly those that
relate to the CAE Specifications. The Open Group Guides are advisory,
not normative, and should not be referenced for purposes of specifying
or claiming conformance to a Product Standard.

Technical Studies
Technical Studies present results of analyses performed on subjects of
interest in areas relevant to The Open Group’s Technical Program. They
are intended to communicate the findings to the outside world so as

xx

Preface

to stimulate discussion and activity in other bodies and the industry in
general.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new
developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained
in the previous publication of that title, but additions/extensions are included. As
such, it replaces the previous publication.

• A new Issue indicates there is substantive change to the definitive information
contained in the previous publication of that title, and there may also be additions/
extensions. As such, both previous and new documents are maintained as current
publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda
information is published on the World-Wide Web athttp://www.opengroup.org/public/
pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available
on the World-Wide Web athttp://www.opengroup.org/public/pubs.

xxi

Preface

This Book

The Motif 2.1—Programmer’s Referencecontains the reference pages for all Motif
programs, Xt widget classes, Xm widget classes, translations, Xm data types and
functions, Mrm functions, Uil functions, and file formats.

Audience

This document is written for programmers who want to write applications by using
Motif interfaces.

This document assumes that the reader is familiar with the American National
Standards Institute (ANSI) C programming language. It also assumes that the reader
has a general understanding of the X Window System, the Xlib library, and the X
Toolkit Intrinsics (Xt).

Applicability

This is revision 2.1 of this document. It applies to Version 2.1 of the Motif software
system.

Purpose

The purpose of this guide is to provide detailed information about all Motif 2.1
programs, widget classes, translations, data types, functions, and file formats for the
application developer.

Organization

This document is organized into nine chapter and four appendixes:

xxii

Preface

• Chapter 1 contains the reference pages for Motif programs.

• Chapter 2 contains the reference pages for Xt widget classes.

• Chapter 3 contains the reference pages for Xm widget classes.

• Chapter 4 contains the reference pages for Motif translations.

• Chapter 5 contains the reference pages for Xm data types.

• Chapter 6 contains the reference pages for Xm functions.

• Chapter 7 contains the reference pages for Mrm functions.

• Chapter 8 contains the reference pages for Uil functions.

• Chapter 9 contains the reference pages for Motif file formats.

• Appendix A contains a list of the constraint arguments and automatically created
children for widgets available within UIL (User Interface Language).

• Appendix B contains a list of the reasons and controls, or children, that UIL
supports for each Motif Toolkit object.

• Appendix C contains a list of the UIL arguments and their data types.

• Appendix D contains a list of the UIL compiler diagnostics messages.

Reference Page Format

The reference pages in this volume use the following format:

Purpose This section gives a short description of the interface.

Synopsis This section describes the appropriate syntax for using the interface.

Description This section describes the behavior of the interface. On widget reference
pages there are tables of resource values in the descriptions. These tables
have the following headings:

Name Contains the name of the resource. Each new resource is
described following the new resources table.

Class Contains the class of the resource.

Type Contains the type of the resource.

Default Contains the default value of the resource.

xxiii

Preface

Access Contains the access permissions for the resource. AC
in this column means the resource can be set at widget
creation time. AnSmeans the resource can be set anytime.
A G means the resource’s value can be retrieved.

Examples This section gives practical examples for using the interface.

Return Values
This section lists the values returned by function interfaces.

Errors/Warnings
This section describes the error conditions associated with using this
interface.

Related Information
This section provides cross-references to related interfaces and header
files described within this document.

Related Documents

For information on Motif and CDE style, refer to the following documents:

CDE 2.1/Motif 2.1—Style Guide and Glossary
Document Number M027 ISBN 1-85912-104-7

CDE 2.1/Motif 2.1—Style Guide Certification Checklist
Document Number M028 ISBN 1-85912-109-8

CDE 2.1/Motif 2.1—Style Guide Reference
Document Number M029 ISBN 1-85912-114-4

For additional information about Motif and CDE, refer to the following Desktop
Documentation:

CDE 2.1/Motif 2.1—User’s Guide
Document Number M021 ISBN 1-85912-173-X

CDE 2.1—System Manager’s Guide
Document Number M022 ISBN 1-85912-178-0

xxiv

Preface

CDE 2.1—Programmer’s Overview and Guide
Document Number M023 ISBN 1-85912-183-7

CDE 2.1—Programmer’s Reference, Volume 1
Document Number M024A ISBN 1-85912-188-8

CDE 2.1—Programmer’s Reference, Volume 2
Document Number M024B ISBN 1-85912-193-4

CDE 2.1—Programmer’s Reference, Volume 3
Document Number M024C ISBN 1-85912-174-8

CDE 2.1—Application Developer’s Guide
Document Number M026 ISBN 1-85912-198-5

Motif 2.1—Programmer’s Guide
Document Number M213 ISBN 1-85912-134-9

Motif 2.1—Widget Writer’s Guide
Document Number M216 ISBN 1-85912-129-2

For additional information about Xlib and Xt, refer to the following X Window System
documents:

Xlib—C Language X Interface

X Toolkit Intrinsics—C Language Interface

Typographic and Keying Conventions

This book uses the following conventions.

xxv

Preface

DocBook SGML Conventions

This book is written in the Structured Generalized Markup Language (SGML) using
the DocBook Document Type Definition (DTD). The following table describes the
DocBook markup used for various semantic elements.

Markup
Appearance Semantic Element(s) Example

AaBbCc123 The names of commands. Use thels command to list files.

AaBbCc123 The names of command options.Use ls −a to list all files.

AaBbCc123 Command-line placeholder:
replace with a real name or
value.

To delete a file, typerm filename.

AaBbCc123 The names of files and
directories.

Edit your .login file.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized.

Read Chapter 6 inUser’s Guide.
These are calledclass options.
You mustbe root to do this.

Terminology Conventions

Components of the user interface are represented by uppercase letters for each major
word in the name of the component, such as PushButton. In addition, this book uses
the termprimitive to mean any subclass ofXmPrimitive and the termmanagerto
mean any subclass ofXmManager. Note that both of these terms are in lowercase.

Keyboard Conventions

Because not all keyboards are the same, it is difficult to specify keys that are correct
for every manufacturer’s keyboard. To solve this problem, this guide describes keys
that use avirtual keymechanism. The termvirtual implies that the keys as described
do not necessarily correspond to a fixed set of actual keys. Instead, virtual keys are

xxvi

Preface

linked to actual keys by means ofvirtual bindings. A given virtual key may be bound
to different physical keys for different keyboards.

See Chapter 13 of theMotif 2.1—Programmer’s Guidefor information on
the mechanism for binding virtual keys to actual keys. For details, see the
VirtualBindings (3) reference page in this manual.

Mouse Conventions

Mouse buttons are described in this reference by using avirtual button mechanism to
better describe behavior independent from the number of buttons on the mouse. This
guide assumes a 3-button mouse. On a 3-button mouse, the leftmost mouse button is
usually defined asBSelect, the middle mouse button is usually defined asBTransfer,
and the rightmost mouse button is usually defined asBMenu. For details about how
virtual mouse buttons are usually defined, see theVirtualBindings (3) reference page
in this document.

Problem Reporting

If you have any problems with the software or vendor-supplied documentation, contact
your software vendor’s customer service department. Comments relating to this Open
Group document, however, should be sent to the addresses provided on the copyright
page.

Trademarks

Motif ® OSF/1®, and UNIX® are registered trademarks and the IT DialTone
TM

, The
Open Group

TM

, and the ‘‘X Device’’
TM

are trademarks of The Open Group.

AIX is a trademark of International Business Machines Corp.

HP/UX is a trademark of Hewlett Packard Company.

Solaris is a trademark of Sun Microsystems, Inc.

xxvii

Preface

UnixWare is a trademark of Novell, Inc.

Microsoft Windows is a trademark of Microsoft.

OS/2 is a trademark of International Business Machines Corp.

X Window System is a trademark of X Consortium, Inc.

xxviii

Chapter 7
Mrm Functions

1537

Motif 2.1—Programmer’s Reference

MrmCloseHierarchy(library call)

MrmCloseHierarchy

Purpose Closes a UID hierarchy

Synopsis #include <Mrm/MrmPublic.h>

Cardinal MrmCloseHierarchy(
MrmHierarchy hierarchy_id);

Description

The MrmCloseHierarchy function closes a UID hierarchy previously opened by
MrmOpenHierarchyPerDisplay . All files associated with the hierarchy are closed
by the Motif Resource Manager (MRM) and all associated memory is returned.

hierarchy_id Specifies the ID of a previously opened UID hierarchy. Thehierarchy_id
was returned in a previous call toMrmOpenHierarchyPerDisplay .

Return Values

This function returns one of the following status return constants:

MrmSUCCESS
The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmFAILURE
The function failed.

Related Information

MrmOpenHierarchyPerDisplay (3).

1538

Mrm Functions

MrmFetchBitmapLiteral(library call)

MrmFetchBitmapLiteral

Purpose Fetches a bitmap literal from a hierarchy

Synopsis #include <Mrm/MrmPublic.h>

Cardinal MrmFetchBitmapLiteral(
MrmHierarchy hierarchy_id,
String index,
Screen *screen,
Display *display,
Pixmap *pixmap_return,
Dimension *width,
Dimension *height);

Description

The MrmFetchBitmapLiteral function fetches a bitmap literal from an MRM
hierarchy, and converts the bitmap literal to an X pixmap of depth 1. The function
returns this pixmap and its width and height.

hierarchy_id Specifies the ID of the UID hierarchy that contains the specified icon
literal. The value ofhierarchy_id was returned in a previous call to
MrmOpenHierarchyPerDisplay .

index Specifies the UIL name of the bitmap literal to fetch.

screen Specifies the screen used for the pixmap. Thescreenargument specifies
a pointer to the Xlib structureScreenwhich contains the information
about that screen and is linked to theDisplay structure. For more
information on theDisplay andScreenstructures, see the Xlib function
XOpenDisplay and the associated screen information macros.

display Specifies the display used for the pixmap. Thedisplayargument specifies
the connection to the X server. For more information on theDisplay
structure, see the Xlib functionXOpenDisplay.

1539

Motif 2.1—Programmer’s Reference

MrmFetchBitmapLiteral(library call)

pixmap_return
Returns the resulting X pixmap value. The function allocates space for
this pixmap. The application is responsible for managing the allocated
space. The application can recover the allocated space by calling
XmDestroyPixmap.

width Specifies a pointer to the width of the pixmap.

height Specifies a pointer to the height of the pixmap.

Return Values

This function returns one of the following status return constants:

MrmSUCCESS
The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmNOT_FOUND
The bitmap literal was not found in the hierarchy.

MrmWRONG_TYPE
The caller tried to fetch a literal of a type not supported by this function.

MrmFAILURE
The function failed.

Related Information

MrmFetchIconLiteral (3), MrmFetchLiteral (3), andXOpenDisplay(3).

1540

Mrm Functions

MrmFetchColorLiteral(library call)

MrmFetchColorLiteral

Purpose Fetches a named color literal from a UID file

Synopsis #include <Mrm/MrmPublic.h>

Cardinal MrmFetchColorLiteral(
MrmHierarchy hierarchy_id,
String index,
Display *display,
Colormap colormap_id,
Pixel *pixel);

Description

The MrmFetchColorLiteral function fetches a named color literal from a UID file,
and converts the color literal to a pixel color value.

hierarchy_id Specifies the ID of the UID hierarchy that contains the specified
literal. The value ofhierarchy_id was returned in a previous call to
MrmOpenHierarchyPerDisplay .

index Specifies the UIL name of the color literal to fetch. You must define
this name in UIL as an exported value.

display Specifies the display used for the pixmap. Thedisplayargument specifies
the connection to the X server. For more information on theDisplay
structure, see the Xlib functionXOpenDisplay.

colormap_id Specifies the ID of the color map. Ifcolormap_idis NULL, the default
color map is used.

pixel Returns the ID of the color literal.

1541

Motif 2.1—Programmer’s Reference

MrmFetchColorLiteral(library call)

Return Values

This function returns one of the following status return constants:

MrmSUCCESS
The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmNOT_FOUND
The color literal was not found in the UIL file.

MrmWRONG_TYPE
The caller tried to fetch a literal of a type not supported by this function.

MrmFAILURE
The function failed.

Related Information

MrmFetchBitmapLiteral (3), MrmOpenHierarchyPerDisplay (3),
MrmFetchIconLiteral (3), MrmFetchLiteral (3), andXOpenDisplay(3).

1542

Mrm Functions

MrmFetchIconLiteral(library call)

MrmFetchIconLiteral

Purpose Fetches an icon literal from a hierarchy

Synopsis #include <Mrm/MrmPublic.h>

Cardinal MrmFetchIconLiteral(
MrmHierarchy hierarchy_id,
String index,
Screen *screen,
Display *display,
Pixel fgpix,
Pixel bgpix,
Pixmap *pixmap);

Description

The MrmFetchIconLiteral function fetches an icon literal from an MRM hierarchy
and converts the icon literal to an X pixmap.

hierarchy_id Specifies the ID of the UID hierarchy that contains the specified
icon literal. The hierarchy_id was returned in a previous call to
MrmOpenHierarchyPerDisplay .

index Specifies the UIL name of the icon literal to fetch.

screen Specifies the screen used for the pixmap. Thescreenargument specifies
a pointer to the Xlib structureScreen, which contains the information
about that screen and is linked to theDisplay structure. For more
information on theDisplay andScreenstructures, see the Xlib function
XOpenDisplay and the associated screen information macros.

display Specifies the display used for the pixmap. Thedisplayargument specifies
the connection to the X server. For more information on theDisplay
structure, see the Xlib functionXOpenDisplay.

fgpix Specifies the foreground color for the pixmap.

1543

Motif 2.1—Programmer’s Reference

MrmFetchIconLiteral(library call)

bgpix Specifies the background color for the pixmap.

pixmap Returns the resulting X pixmap value. The function allocates space for
this pixmap. The application is responsible for managing the allocated
space. The application can recover the allocated space by calling
XmDestroyPixmap.

Return Values

This function returns one of the following status return constants:

MrmSUCCESS
The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmNOT_FOUND
The icon literal was not found in the hierarchy.

MrmWRONG_TYPE
The caller tried to fetch a literal of a type not supported by this function.

MrmFAILURE
The function failed.

Related Information

MrmFetchBitmapLiteral (3), MrmOpenHierarchyPerDisplay (3),
MrmFetchLiteral (3), MrmFetchColorLiteral (3), andXOpenDisplay(3).

1544

Mrm Functions

MrmFetchLiteral(library call)

MrmFetchLiteral

Purpose Fetches a literal from a UID file

Synopsis #include <Mrm/MrmPublic.h>

Cardinal MrmFetchLiteral(
MrmHierarchy hierarchy_id,
String index,
Display *display,
XtPointer * value,
MrmCode * type);

Description

The MrmFetchLiteral function reads and returns the value and type of a literal
(named value) that is stored as a public resource in a single UID file. This function
returns a pointer to the value of the literal. For example, an integer is always returned
as a pointer to an integer, and a string is always returned as a pointer to a string.

Applications should not useMrmFetchLiteral for fetching icon or color literals. If
this is attempted,MrmFetchLiteral returns an error.

hierarchy_id Specifies the ID of the UID hierarchy that contains the specified
literal. The value ofhierarchy_id was returned in a previous call to
MrmOpenHierarchyPerDisplay .

index Specifies the UIL name of the literal (pixmap) to fetch. You must define
this name in UIL as an exported value.

display Specifies the display used for the pixmap. Thedisplayargument specifies
the connection to the X server. For more information on theDisplay
structure, see the Xlib functionXOpenDisplay.

value Returns the ID of the named literal’s value. The function allocates space
for the returned value. The application is responsible for managing the
allocated space by calling the appropriate deallocation function. For

1545

Motif 2.1—Programmer’s Reference

MrmFetchLiteral(library call)

example, if the returned ID symbolizes a pixmap, then the application
can recover the allocated space by callingXmDestroyPixmap.

type Returns the named literal’s data type. Types are defined in the include
file Mrm/MrmPublic.h .

Return Values

This function returns one of the following status return constants:

MrmSUCCESS
The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmNOT_FOUND
The literal was not found in the UIL file.

MrmWRONG_TYPE
The caller tried to fetch a literal of a type not supported by this function.

MrmFAILURE
The function failed.

Related Information

MrmFetchBitmapLiteral (3), MrmOpenHierarchyPerDisplay (3),
MrmFetchIconLiteral (3), MrmFetchColorLiteral (3), andXOpenDisplay(3).

1546

Mrm Functions

MrmFetchSetValues(library call)

MrmFetchSetValues

Purpose Fetches the values to be set from literals stored in UID files

Synopsis #include <Mrm/MrmPublic.h>

Cardinal MrmFetchSetValues(
MrmHierarchy hierarchy_id,
Widget widget,
ArgList args,
Cardinal num_args);

Description

The MrmFetchSetValues function is similar toXtSetValues, except that the values
to be set are defined by the UIL named values that are stored in the UID hierarchy.
MrmFetchSetValues fetches the values to be set from literals stored in UID files.

hierarchy_id Specifies the ID of the UID hierarchy that contains the specified
literal. The value ofhierarchy_id was returned in a previous call to
MrmOpenHierarchyPerDisplay .

widget Specifies the widget that is modified.

args Specifies an argument list that identifies the widget arguments to
be modified as well as the index (UIL name) of the literal that
defines the value for that argument. The name part of each argument
(args[n].name) must begin with the stringXmN followed by the name
that uniquely identifies this attribute tag. For example,XmNwidth is
the attribute name associated with the core argumentwidth. The value
part (args[n].value) must be a string that gives the index (UIL name) of
the literal. You must define all literals in UIL as exported values.

num_args Specifies the number of entries inargs.

This function sets the values on a widget, evaluating the values as public literal
resource references resolvable from a UID hierarchy. Each literal is fetched from the

1547

Motif 2.1—Programmer’s Reference

MrmFetchSetValues(library call)

hierarchy, and its value is modified and converted as required. This value is then
placed in the argument list and used as the actual value for anXtSetValues call.
MrmFetchSetValues allows a widget to be modified after creation using UID file
values the same way creation values are used inMrmFetchWidget .

As in MrmFetchWidget , each argument whose value can be evaluated from the UID
hierarchy is set in the widget. Values that are not found or values in which conversion
errors occur are not modified.

Each entry in the argument list identifies an argument to be modified in the widget.
The name part identifies the tag, which begins withXmN. The value part must be a
string whose value is the index of the literal. Thus, the following code would modify
the label resource of the widget to have the value of the literal accessed by the index
OK_button_label in the hierarchy:

args[n].name = XmNlabel;

args[n].value = "OK_button_label";

Return Values

This function returns one of the following status return constants:

MrmSUCCESS
The function executed successfully.

MrmPARTIAL_SUCCESS
At least one literal was successfully fetched.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmFAILURE
The function failed.

Related Information

MrmOpenHierarchyPerDisplay (3), XtSetValues(3).

1548

Mrm Functions

MrmFetchWidget(library call)

MrmFetchWidget

Purpose Fetches and creates an indexed (UIL named) application widget and its children

Synopsis #include <Mrm/MrmPublic.h>

Cardinal MrmFetchWidget(
MrmHierarchy hierarchy_id,
String index,
Widget parent_widget,
Widget *widget,
MrmType * class);

Description

TheMrmFetchWidget function fetches and creates an indexed application widget and
its children. The indexed application widget is any widget that is named in UIL. In
fetch operations, the fetched widget’s subtree is also fetched and created. This widget
must not appear as the child of a widget within its own subtree.MrmFetchWidget
does not executeXtManageChild for the newly created widget.

All widgets fetched by a call toMrmFetchWidget are not managed at the time of
their creation callbacks.

hierarchy_id Specifies the ID of theUID hierarchy that contains the interface
definition. The value ofhierarchy_id was returned in a previous call
to MrmOpenHierarchyPerDisplay .

index Specifies the UIL name of the widget to fetch.

parent_widget
Specifies the parent widget ID.

widget Returns the widget ID of the created widget.

class This argument must be set to an actual pointer; it cannot be a NULL
pointer. MrmFetchWidget sets this argument to an implementation
dependent value.

1549

Motif 2.1—Programmer’s Reference

MrmFetchWidget(library call)

An application can fetch any named widget in theUID hierarchy using
MrmFetchWidget . MrmFetchWidget can be called at any time to fetch a widget
that was not fetched at application startup.MrmFetchWidget can be used to defer
fetching pop-up widgets until they are first referenced (presumably in a callback),
and then used to fetch them once.

MrmFetchWidget can also create multiple instances of a widget (and its subtree).
In this case, theUID definition functions as a template; a widget definition can be
fetched any number of times. An application can use this template to make multiple
instances of a widget, for example, in a dialog box box or menu.

The index (UIL name) that identifies the widget must be known to the application.

Return Values

This function returns one of the following status return constants:

MrmSUCCESS
The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmNOT_FOUND
The widget was not found in UID hierarchy.

MrmFAILURE
The function failed.

Related Information

MrmOpenHierarchyPerDisplay (3), MrmFetchWidgetOverride (3).

1550

Mrm Functions

MrmFetchWidgetOverride(library call)

MrmFetchWidgetOverride

Purpose Fetches any indexed (UIL named) application widget. It overrides the arguments
specified for this application widget in UIL

Synopsis #include <Mrm/MrmPublic.h>

Cardinal MrmFetchWidgetOverride(
MrmHierarchy hierarchy_id,
String index,
Widget parent_widget,
String override_name,
ArgList override_args,
Cardinal override_num_args,
Widget *widget,
MrmType * class);

Description

The MrmFetchWidgetOverride function is the extended version of
MrmFetchWidget . It is identical to MrmFetchWidget , except that it allows
the caller to override the widget’s name and any arguments thatMrmFetchWidget
would otherwise retrieve from the UID file or one of the defaulting mechanisms.
That is, the override argument list is not limited to those arguments in the UID file.

The override arguments apply only to the widget fetched and returned by this function.
Its children (subtree) do not receive any override parameters.

hierarchy_id Specifies the ID of the UID hierarchy that contains the interface
definition. The value ofhierarchy_id was returned in a previous call
to MrmOpenHierarchyPerDisplay .

index Specifies the UIL name of the widget to fetch.

parent_widget
Specifies the parent widget ID.

1551

Motif 2.1—Programmer’s Reference

MrmFetchWidgetOverride(library call)

override_name
Specifies the name to override the widget name. Use a NULL value if
you do not want to override the widget name.

override_args
Specifies the override argument list, exactly as given toXtCreateWidget
(conversion complete and so forth). Use a NULL value if you do not
want to override the argument list.

override_num_args
Specifies the number of arguments inoverride_args.

widget Returns the widget ID of the created widget.

class Returns the class code identifying MRM’s widget class. Literals
identifying MRM widget class codes are defined in the include file
Mrm/MrmPublic.h .

Return Values

This function returns one of the following status return constants:

MrmSUCCESS
The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmNOT_FOUND
The widget was not found in UID hierarchy.

MrmFAILURE
The function failed.

Related Information

MrmOpenHierarchyPerDisplay (3), MrmFetchWidget (3).

1552

Mrm Functions

MrmInitialize(library call)

MrmInitialize

Purpose Prepares an application to use MRM widget-fetching facilities

Synopsis void MrmInitialize(
Void);

Description

The MrmInitialize function must be called to prepare an application to use MRM
widget-fetching facilities. You must call this function prior to fetching a widget.
However, it is good programming practice to callMrmInitialize prior to performing
any MRM operations.

MrmInitialize initializes the internal data structures that MRM needs to successfully
perform type conversion on arguments and to successfully access widget creation
facilities. An application must callMrmInitialize before it uses other MRM functions.

1553

Motif 2.1—Programmer’s Reference

MrmOpenHierarchy(library call)

MrmOpenHierarchy

Purpose Allocates a hierarchy ID and opens all the UID files in the hierarchy

Synopsis #include <Mrm/MrmPublic.h>

Cardinal MrmOpenHierarchy(
MrmCount num_files,
String file_names_list[],
MrmOsOpenParamPtr * ancillary_structures_list,
MrmHierarchy * hierarchy_id);

Description

This routine is obsolete and exists for compatibility with previous releases. It is
replaced byMrmOpenHierarchyPerDisplay . MrmOpenHierarchy is identical to
MrmOpenHierarchyPerDisplay except thatMrmOpenHierarchy does not take a
displayargument.

num_files Specifies the number of files in the name list.

file_names_list
Specifies an array of character strings that identify the UID files.

ancillary_structures_list
A list of operating-system-dependent ancillary structures corresponding
to items such as filenames, clobber flags, and so forth. This argument
should be NULL for most operations. If you need to reference
this structure, see the definition ofMrmOsOpenParamPtr in the
MrmPublic.h header file for more information.

hierarchy_id Returns the search hierarchy ID. The search hierarchy ID identifies
the list of UID files that MRM searches (in order) when performing
subsequent fetch calls.

Each UID file string infile_names_listcan specify either a full pathname or a filename.
If a UID file string has a leading slash (/), it specifies a full pathname, and MRM opens

1554

Mrm Functions

MrmOpenHierarchy(library call)

the file as specified. Otherwise, the UID file string specifies a filename. In this case,
MRM looks for the file along a search path specified by theUIDPATH environment
variable or by a default search path, which varies depending on whether or not the
XAPPLRESDIR environment variable is set.

The UIDPATH environment variable specifies a search path and naming conventions
associated with UID files. It can contain the substitution field%U , where the UID
file string from the file_names_listargument toMrmOpenHierarchyPerDisplay
is substituted for%U . It can also contain the substitution fields accepted by
XtResolvePathname. The substitution field%T is always mapped touid. The entire
path is first searched with%S mapped to.uid. If no file is found, it is searched again
with %S mapped to NULL.

If no display is set prior to calling this function, the result of this function’s call to
XtResolvePathnameis undefined.

For example, the followingUIDPATH value andMrmOpenHierarchy call cause
MRM to open two separate UID files:

UIDPATH=/uidlib/%L/%U.uid:/uidlib/%U/%L

static char *uid_files[] = {"/usr/users/me/test.uid", "test2"};

MrmHierarchy *Hierarchy_id;

MrmOpenHierarchy((MrmCount)2,uid_files, NULL, Hierarchy_id)

MRM opens the first file,/usr/users/me/test.uid, as specified in thefile_names_list
argument toMrmOpenHierarchy , because the UID file string in thefile_names_list
argument specifies a full pathname. MRM looks for the second file,test2, first as /
uidlib/%L/test2.uid and second as/uidlib/test2/%L , where the display’s language
string is substituted for%L .

After MrmOpenHierarchy opens the UID hierarchy, you should not delete or modify
the UID files until you close the UID hierarchy by callingMrmCloseHierarchy .

If UIDPATH is not set but the environment variableXAPPLRESDIR is set, MRM
searches the following pathnames:

• %U%S

• $XAPPLRESDIR/%L/uid/%N/%U%S

• $XAPPLRESDIR/%l/uid/%N/%U%S

• $XAPPLRESDIR/uid/%N/%U%S

• $XAPPLRESDIR/%L/uid/%U%S

1555

Motif 2.1—Programmer’s Reference

MrmOpenHierarchy(library call)

• $XAPPLRESDIR/%l/uid/%U%S

• $XAPPLRESDIR/uid/%U%S

• $HOME/uid/%U%S

• $HOME/%U%S

• /usr/lib/X11/%L/uid/%N/%U%S

• /usr/lib/X11/%l/uid/%N/%U%S

• /usr/lib/X11/uid/%N/%U%S

• /usr/lib/X11/%L/uid/%U%S

• /usr/lib/X11/%l/uid/%U%S

• /usr/lib/X11/uid/%U%S

• /usr/include/X11/uid/%U%S

If neither UIDPATH nor XAPPLRESDIR is set, MRM searches the following
pathnames:

• %U%S

• HOME/%L/uid/%N/%U%S

• HOME/%l/uid/%N/%U%S

• $HOME/uid/%N/%U%S

• $HOME/%L/uid/%U%S

• $HOME/%l/uid/%U%S

• $HOME/uid/%U%S

• $HOME/%U%S

• /usr/lib/X11/%L/uid/%N/%U%S

• /usr/lib/X11/%l/uid/%N/%U%S

• /usr/lib/X11/uid/%N/%U%S

• /usr/lib/X11/%L/uid/%U%S

• /usr/lib/X11/%l/uid/%U%S

• /usr/lib/X11/uid/%U%S

1556

Mrm Functions

MrmOpenHierarchy(library call)

• /usr/include/X11/uid/%U%S

These paths are defaults that vendors may change. For example, a vendor may use
different directories for/usr/lib/X11 and /usr/include/X11.

The following substitutions are used in these paths:

%U The UID file string, from thefile_names_listargument.

%N The class name of the application.

%L The display’s language string. This string is influenced by
XtSetLanguageProc. The default string is determined by calling
setlocale(LC_ALL, NULL).

%l The language component of the display’s language string.

%S The suffix to the filename. The entire path is first searched with a suffix
of .uid. If no file is found, it is searched again with a NULL suffix.

Return Values

This function returns one of the following status return constants:

MrmSUCCESS
The function executed successfully.

MrmNOT_FOUND
File not found.

MrmFAILURE
The function failed.

Related Information

MrmOpenHierarchyPerDisplay (3) andMrmCloseHierarchy (3).

1557

Motif 2.1—Programmer’s Reference

MrmOpenHierarchyFromBuffer(library call)

MrmOpenHierarchyFromBuffer

Purpose Allocates a hierarchy ID and opens a buffer containing a memory image of a UID file

Synopsis #include <Mrm/MrmPublic.h>

Cardinal MrmOpenHierarchyFromBuffer(
unsigned charuid_buffer,
MrmHierarchy * hierarchy_id);

Description

MrmOpenHierarchyFromBuffer allows you to specify a buffer containing
information from UID files that MRM searches in subsequent fetch operations. This
function also allocates a hierarchy ID and initializes the optimized search lists in the
hierarchy.

buffer Specifies a stream of bytes containing information from UID files

hierarchy_id Returns the search hierarchy ID. The search hierarchy ID identifies the
buffer that MRM searches when performing subsequent fetch calls.

Return Values

This function returns one of the following status return constants:

MrmSUCCESS
The function executed successfully.

MrmFAILURE
The function failed.

1558

Mrm Functions

MrmOpenHierarchyFromBuffer(library call)

Related Information

MrmCloseHierarchy (3) andMrmOpenHierarchyPerDisplay (3).

1559

Motif 2.1—Programmer’s Reference

MrmOpenHierarchyPerDisplay(library call)

MrmOpenHierarchyPerDisplay

Purpose Allocates a hierarchy ID and opens all the UID files in the hierarchy

Synopsis #include <Mrm/MrmPublic.h>

Cardinal MrmOpenHierarchyPerDisplay(
Display *display,
MrmCount num_files,
String file_names_list[],
MrmOsOpenParamPtr * ancillary_structures_list,
MrmHierarchy * hierarchy_id);

Description

MrmOpenHierarchyPerDisplay allows you to specify the list of UID files that MRM
searches in subsequent fetch operations. All subsequent fetch operations return the first
occurrence of the named item encountered while traversing the UID hierarchy from
the first list element (UID file specification) to the last list element. This function also
allocates a hierarchy ID and opens all the UID files in the hierarchy. It initializes the
optimized search lists in the hierarchy. IfMrmOpenHierarchyPerDisplay encounters
any errors during its execution, any files that were opened are closed.

The application must call XtAppInitialize before calling
MrmOpenHierarchyPerDisplay .

display Specifies the connection to the X server and the value to pass to
XtResolvePathname. For more information on theDisplay structure,
see the Xlib functionXOpenDisplay.

num_files Specifies the number of files in the name list.

file_names_list
Specifies an array of character strings that identify the UID files.

1560

Mrm Functions

MrmOpenHierarchyPerDisplay(library call)

ancillary_structures_list
A list of operating-system-dependent ancillary structures corresponding
to items such as filenames, clobber flags, and so forth. This argument
should be NULL for most operations. If you need to reference
this structure, see the definition ofMrmOsOpenParamPtr in the
MrmPublic.h header file for more information.

hierarchy_id Returns the search hierarchy ID. The search hierarchy ID identifies
the list of UID files that MRM searches (in order) when performing
subsequent fetch calls.

Each UID file string infile_names_listcan specify either a full pathname or a filename.
If a UID file string has a leading / (slash), it specifies a full pathname, and MRM opens
the file as specified. Otherwise, the UID file string specifies a filename. In this case
MRM looks for the file along a search path specified by theUIDPATH environment
variable or by a default search path, which varies depending on whether or not the
XAPPLRESDIR environment variable is set.

The UIDPATH environment variable specifies a search path and naming conventions
associated with UID files. It can contain the substitution field%U , where the UID
file string from the file_names_listargument toMrmOpenHierarchyPerDisplay
is substituted for%U . It can also contain the substitution fields accepted by
XtResolvePathname. The substitution field%T is always mapped touid. The entire
path is searched first with%S mapped to.uid. If no file is found, it is searched
again with%S mapped to NULL. For example, the followingUIDPATH value and
MrmOpenHierarchyPerDisplay call cause MRM to open two separate UID files:

UIDPATH=/uidlib/%L/%U.uid:/uidlib/%U/%L

static char *uid_files[] = {"/usr/users/me/test.uid", "test2"};

MrmHierarchy *Hierarchy_id;

MrmOpenHierarchyPerDisplay((MrmCount)2,uid_files, NULL, Hierarchy_id)

MRM opens the first file,/usr/users/me/test.uid, as specified in thefile_names_list
argument toMrmOpenHierarchyPerDisplay , because the UID file string in the
file_names_listargument specifies a full pathname. MRM looks for the second
file, test2, first as /uidlib/%L/test2.uid and second as/uidlib/test2/%L , where the
display’s language string is substituted for%L .

After MrmOpenHierarchyPerDisplay opens the UID hierarchy, you should not
delete or modify the UID files until you close the UID hierarchy by calling
MrmCloseHierarchy .

1561

Motif 2.1—Programmer’s Reference

MrmOpenHierarchyPerDisplay(library call)

If UIDPATH is not set, but the environment variableXAPPLRESDIR is set, MRM
searches the following pathnames:

• %U%S

• $XAPPLRESDIR/%L/uid/%N/%U%S

• $XAPPLRESDIR/%l/uid/%N/%U%S

• $XAPPLRESDIR/uid/%N/%U%S

• $XAPPLRESDIR/%L/uid/%U%S

• $XAPPLRESDIR/%l/uid/%U%S

• $XAPPLRESDIR/uid/%U%S

• $HOME/uid/%U%S

• $HOME/%U%S

• /usr/lib/X11/%L/uid/%N/%U%S

• /usr/lib/X11/%l/uid/%N/%U%S

• /usr/lib/X11/uid/%N/%U%S

• /usr/lib/X11/%L/uid/%U%S

• /usr/lib/X11/%l/uid/%U%S

• /usr/lib/X11/uid/%U%S

• /usr/include/X11/uid/%U%S

If neither UIDPATH nor XAPPLRESDIR is set, MRM searches the following
pathnames:

• %U%S

• $HOME/%L/uid/%N/%U%S

• $HOME/%l/uid/%N/%U%S

• $HOME/uid/%N/%U%S

• $HOME/%L/uid/%U%S

• $HOME/%l/uid/%U%S

• $HOME/uid/%U%S

1562

Mrm Functions

MrmOpenHierarchyPerDisplay(library call)

• $HOME/%U%S

• /usr/lib/X11/%L/uid/%N/%U%S

• /usr/lib/X11/%l/uid/%N/%U%S

• /usr/lib/X11/uid/%N/%U%S

• /usr/lib/X11/%L/uid/%U%S

• /usr/lib/X11/%l/uid/%U%S

• /usr/lib/X11/uid/%U%S

• /usr/include/X11/uid/%U%S

These paths are defaults that vendors may change. For example, a vendor may use
different directories for/usr/lib/X11 and /usr/include/X11.

The following substitutions are used in these paths:

%U The UID file string, from thefile_names_listargument.

%N The class name of the application.

%L The display’s language string. This string is influenced by
XtSetLanguageProc. The default string is determined by calling
setlocale(LC_ALL, NULL).

%l The language component of the display’s language string.

%S The suffix to the filename. The entire path is first searched with a suffix
of .uid. If no file is found, it is searched again with a NULL suffix.

Return Values

This function returns one of the following status return constants:

MrmSUCCESS
The function executed successfully.

MrmNOT_FOUND
File not found.

MrmFAILURE
The function failed.

1563

Motif 2.1—Programmer’s Reference

MrmOpenHierarchyPerDisplay(library call)

Related Information

MrmCloseHierarchy (3).

1564

Mrm Functions

MrmRegisterClass(library call)

MrmRegisterClass

Purpose Saves the information needed for MRM to access the widget creation function for
user-defined widgets

Synopsis #include <Mrm/MrmPublic.h>

Cardinal MrmRegisterClass(
MrmType class_code,
String class_name,
String create_name,
Widget (*create_proc) (),
WidgetClassclass_record);

Description

The MrmRegisterClass function allows MRM to access user-defined widget classes.
This function registers the necessary information for MRM to create widgets of this
class. You must callMrmRegisterClass prior to fetching any user-defined class
widget.

MrmRegisterClass saves the information needed to access the widget creation
function and to do type conversion of argument lists by using the information in
MRM databases.

class_code This argument is ignored; it is present for compatibility with previous
releases.

class_name This argument is ignored; it is present for compatibility with previous
releases.

create_nameSpecifies the case-sensitive name of the low-level widget creation
function for the class. An example from the Motif Toolkit is
XmCreateLabel. Arguments areparent_widget, name, override_arglist,
andoverride_argcount.

1565

Motif 2.1—Programmer’s Reference

MrmRegisterClass(library call)

For user-defined widgets,create_nameis the creation procedure in the
UIL that defines this widget.

create_proc Specifies the address of the creation function that you named in
create_name.

class_record Specifies a pointer to the class record.

Return Values

This function returns one of the following status return constants:

MrmSUCCESS
The function executed successfully.

MrmFAILURE
The function failed.

1566

Mrm Functions

MrmRegisterNames(library call)

MrmRegisterNames

Purpose Registers the values associated with the names referenced in UIL (for example, UIL
callback function names or UIL identifier names)

Synopsis #include <Mrm/MrmPublic.h>

Cardinal MrmRegisterNames(
MrmRegisterArglist register_list,
MrmCount register_count);

Description

The MrmRegisterNames function registers a vector of names and associated values
for access in MRM. The values can be callback functions, pointers to user-defined data,
or any other values. The information provided is used to resolve symbolic references
occurring in UID files to their run-time values. For callbacks, this information provides
the procedure address required by the Motif Toolkit. For names used as identifiers in
UIL, this information provides any run-time mapping the application needs.

This function is similar toMrmRegisterNamesInHierarchy, except that the scope
of the names registered byMrmRegisterNamesInHierarchy is limited to the
hierarchy specified in the call to that function, whereas the names registered by
MrmRegisterNames have global scope. When MRM looks up a name, it first tries
to find the name among those registered for the given hierarchy. If that lookup fails,
it tries to find the name among those registered globally.

register_list Specifies a list of name/value pairs for the names to be registered. Each
name is a case-sensitive, NULL-terminated ASCII string. Each value is
a 32-bit quantity, interpreted as a procedure address if the name is a
callback function, and uninterpreted otherwise.

register_count
Specifies the number of entries inregister_list.

The names in the list are case-sensitive. The list can be either ordered or unordered.

1567

Motif 2.1—Programmer’s Reference

MrmRegisterNames(library call)

Callback functions registered throughMrmRegisterNames can be either regular or
creation callbacks. Regular callbacks have declarations determined by Motif Toolkit
and user requirements. Creation callbacks have the same format as any other callback:

void CallBackProc(
Widget *widget_id,
Opaque tag,
XmAnyCallbackStruct * callback_data);

widget_id Specifies the widget ID associated with the widget performing the
callback (as in any callback function).

tag Specifies the tag value (as in any callback function).

callback_data
Specifies a widget-specific data structure. This data structure has a
minimum of two members: event and reason. The reason member is
always set toMrmCR_CREATE .

Note that the widget name and parent are available from the widget record accessible
throughwidget_id.

Return Values

This function returns one of the following status return constants:

MrmSUCCESS
The function executed successfully.

MrmFAILURE
The function failed.

1568

Mrm Functions

MrmRegisterNamesInHierarchy(library call)

MrmRegisterNamesInHierarchy

Purpose Registers the values associated with the names referenced in UIL within a single
hierarchy (for example, UIL callback function names or UIL identifier names)

Synopsis #include <Mrm/MrmPublic.h>

Cardinal MrmRegisterNamesInHierarchy(
MrmHierarchy hierarchy_id,
MrmRegisterArglist register_list,
MrmCount register_count);

Description

The MrmRegisterNamesInHierarchy function registers a vector of names and
associated values for access in MRM. The values can be callback functions, pointers
to user-defined data, or any other values. The information provided is used to resolve
symbolic references occurring in UID files to their run-time values. For callbacks,
this information provides the procedure address required by the Motif Toolkit. For
names used as identifiers in UIL, this information provides any run-time mapping the
application needs.

This function is similar toMrmRegisterNames, except that the scope of the names
registered byMrmRegisterNamesInHierarchy is limited to the hierarchy specified
by hierarchy_id, whereas the names registered byMrmRegisterNames have global
scope. When MRM looks up a name, it first tries to find the name among those
registered for the given hierarchy. If that lookup fails, it tries to find the name among
those registered globally.

hierarchy_id Specifies the hierarchy with which the names are to be associated.

register_list Specifies a list of name/value pairs for the names to be registered. Each
name is a case-sensitive, NULL-terminated ASCII string. Each value is
a 32-bit quantity, interpreted as a procedure address if the name is a
callback function, and uninterpreted otherwise.

1569

Motif 2.1—Programmer’s Reference

MrmRegisterNamesInHierarchy(library call)

register_count
Specifies the number of entries inregister_list.

The names in the list are case-sensitive. The list can be either ordered or unordered.

Callback functions registered throughMrmRegisterNamesInHierarchy can be either
regular or creation callbacks. Regular callbacks have declarations determined by Motif
Toolkit and user requirements. Creation callbacks have the same format as any other
callback:

void CallBackProc(
Widget *widget_id,
Opaque tag,
XmAnyCallbackStruct * callback_data);

widget_id Specifies the widget ID associated with the widget performing the
callback (as in any callback function).

tag Specifies the tag value (as in any callback function).

callback_data
Specifies a widget-specific data structure. This data structure has a
minimum of two members: event and reason. The reason member is
always set toMrmCR_CREATE .

Note that the widget name and parent are available from the widget record accessible
throughwidget_id.

Return Values

This function returns one of the following status return constants:

MrmSUCCESS
The function executed successfully.

MrmFAILURE
The function failed.

1570

Chapter 8
Uil Functions

1571

Motif 2.1—Programmer’s Reference

Uil(library call)

Uil

Purpose Invokes the UIL compiler from within an application

Synopsis #include <uil/UilDef.h>

Uil_status_type Uil(
Uil_command_type *command_desc,
Uil_compile_desc_type **compile_desc,
Uil_continue_type (*message_cb) (),
char *message_data,
Uil_continue_type (*status_cb) (),
char *status_data);

Description

TheUil function provides a callable entry point for the UIL compiler. TheUil callable
interface can be used to process a UIL source file and to generate UID files, as well
as return a detailed description of the UIL source module in the form of a symbol
table (parse tree).

command_desc
Specifies theuil command line.

compile_desc
Returns the results of the compilation.

message_cbSpecifies a callback function that is called when the compiler encounters
errors in the UIL source.

message_data
Specifies user data that is passed to the message callback function
(message_cb). Note that this argument is not interpreted by UIL, and is
used exclusively by the calling application.

1572

Uil Functions

Uil(library call)

status_cb Specifies a callback function that is called to allow X applications to
service X events such as updating the screen. This function is called
at various check points, which have been hard coded into the UIL
compiler. Thestatus_update_delayargument incommand_descspecifies
the number of check points to be passed before thestatus_cbfunction
is invoked.

status_data Specifies user data that is passed to the status callback function
(status_cb).Note that this argument is not interpreted by the UIL
compiler and is used exclusively by the calling application.

Following are the data structuresUil_command_typeandUil_compile_desc_type:

typedef struct Uil_command_type {

char *source_file;

/* single source to compile */

char *resource_file; /* name of output file */

char *listing_file; /* name of listing file */

unsigned int *include_dir_count;

/* number of dirs. in include_dir */

char *((*include_dir) []);

/* dir. to search for include files */

unsigned listing_file_flag: 1;

/* produce a listing */

unsigned resource_file_flag: 1;

/* generate UID output */

unsigned machine_code_flag: 1;

/* generate machine code */

unsigned report_info_msg_flag: 1;

/* report info messages */

unsigned report_warn_msg_flag: 1;

/* report warnings */

unsigned parse_tree_flag: 1;

/* generate parse tree */

unsigned int status_update_delay;

/* number of times a status point is */

/* passed before calling status_cb */

/* function 0 means called every time */

char *database;

/* name of database file */

unsigned database_flag: 1;

1573

Motif 2.1—Programmer’s Reference

Uil(library call)

/* read a new database file */

unsigned use_setlocale_flag: 1;

/* enable calls to setlocale */

};

typedef struct Uil_compile_desc_type {

unsigned int compiler_version;

/* version number of compiler */

unsigned int data_version;

/* version number of structures */

char *parse_tree_root; /* parse tree output */

unsigned int message_count [Uil_k_max_status+1];

/* array of severity counts */

};

Following is a description of the message callback function specified bymessage_cb:

Uil_continue_type (*message_cb) (message_data, message_number, severity, msg_buffer,
src_buffer, ptr_buffer, loc_buffer, message_count)

char*message_data;
int message_number;
int severity;
char*msg_buffer, *src_buffer;
char*ptr_buffer, *loc_buffer;
int message_count[];

This function specifies a callback function that UIL invokes instead of printing an
error message when the compiler encounters an error in the UIL source. The callback
should return one of the following values:

Uil_k_terminate
Terminate processing of the source file

Uil_k_continue
Continue processing the source file

The arguments are

message_data
Data supplied by the application as themessage_dataargument to the
Uil function. UIL does not interpret this data in any way; it just passes
it to the callback.

1574

Uil Functions

Uil(library call)

message_number
An index into a table of error messages and severities for internal use
by UIL.

severity An integer that indicates the severity of the error. The possible values
are the status constants returned by theUil function. SeeReturn Value
for more information.

msg_buffer A string that describes the error.

src_buffer A string consisting of the source line where the error occurred. This
string is not always available. In this case, the argument is NULL.

ptr_buffer A string consisting of whitespace and a printing character in the
character position corresponding to the column of the source line where
the error occurred. This string may be printed beneath the source line
to provide a visual indication of the column where the error occurred.
This string is not always available. In this case, the argument is NULL.

loc_buffer A string identifying the line number and file of the source line where
the error occurred. This is not always available; the argument is then
NULL.

message_count
An array of integers containing the number of diagnostic messages
issued thus far for each severity level. To find the number of messages
issued for the current severity level, use theseverityargument as the
index into this array.

Following is a description of the status callback function specified bystatus_cb:

Uil_continue_type (*status_cb) (status_data, percent_complete,
lines_processed, current_file, message_count)
char*status_data;
int percent_complete;
int lines_processed;
char*current_file;
int message_count[];

This function specifies a callback function that is invoked to allow X applications to
service X events such as updating the screen. The callback should return one of the
following values:

1575

Motif 2.1—Programmer’s Reference

Uil(library call)

Uil_k_terminate
Terminate processing of the source file

Uil_k_continue
Continue processing the source file

The arguments are

status_data Data supplied by the application as thestatus_dataargument to theUil
function. UIL does not interpret this data in any way; it just passes it to
the callback.

percent_complete
An integer indicating what percentage of the current source file has been
processed so far.

lines_processed
An integer indicating how many lines of the current source file have
been read so far.

current_file A string containing the pathname of the current source file.

message_count
An array of integers containing the number of diagnostic messages
issued thus far for each severity level. To find the number of messages
issued for a given severity level, use the severity level as the index into
this array. The possible severity levels are the status constants returned
by theUil function. SeeReturn Value for more information.

Return Values

This function returns one of the following status return constants:

Uil_k_success_status
The operation succeeded.

Uil_k_info_status
The operation succeeded. An informational message is returned.

Uil_k_warning_status
The operation succeeded. A warning message is returned.

Uil_k_error_status
The operation failed due to an error.

1576

Uil Functions

Uil(library call)

Uil_k_severe_status
The operation failed due to an error.

Related Information

UilDumpSymbolTable(3) anduil (1).

1577

Motif 2.1—Programmer’s Reference

UilDumpSymbolTable(library call)

UilDumpSymbolTable

Purpose Dumps the contents of a named UIL symbol table to standard output

Synopsis #include <uil/UilDef.h>

void UilDumpSymbolTable(
sym_entry_type *root_ptr);

Description

TheUilDumpSymbolTable function dumps the contents of a UIL symbol table pointer
to standard output.

root_ptr Specifies a pointer to the the symbol table root entry. This value can
be taken from theparse_tree_rootpart of theUil_compile_desc_type
data structure returned byUil .

By following the link from the root entry, you can traverse the entire parse tree.
Symbol table entries are in the following format:

hex.address symbol.type symbol.data prev.source.position source.position
modification.record

where:

hex.address Specifies the hexadecimal address of this entry in the symbol table.

symbol.type Specifies the type of this symbol table entry. Some possible types are
root, module, value, procedure, andwidget.

symbol.data Specifies data for the symbol table entry. The data varies with the type
of the entry. Often it contains pointers to other symbol table entries, or
the actual data for the data type.

prev.source.position
Specifies the end point in the source code for the previous source item.

1578

Uil Functions

UilDumpSymbolTable(library call)

source.position
Specifies the range of positions in the source code for this symbol.

The exact data structures for each symbol type are defined in the include file
UilSymDef.h. Note that this file is automatically included when an application includes
the file UilDef.h.

Related Information

Uil (3)

1579

Chapter 9
File Formats

1581

Motif 2.1—Programmer’s Reference

mwmrc(special file)

mwmrc

Purpose the mwm Window Manager Resource Description File

Description

The mwmrc window manager is a supplementary resource file that controls much
of the behavior of the CDE window managermwm. It contains descriptions of
resources that cannot easily be written using standard X Window System, Version
11 resource syntax. The resource description file contains entries that are referred
to by X resources in defaults files (for example,/usr/mwm/app-defaults/$LANG/
mwm) or in theRESOURCE_MANAGERproperty on the root window. For example,
the resource description file enables you to specify different types of window menus;
however, an X resource is used to specify which of these window menus themwm
should use for a particular window. The specifications of the resource description file
supported by the mwm workspace manager are a strict superset of the specifications
supported by the OSF Motif Window Manager (mwm 1.2.4). In other words, the
system.mwmrc or $HOME/.mwmrc file that you’ve used formwm is easily made
usable bymwm.

Location

The workspace manager searches for one of the following resource description files,
where$LANG is the value of the language environment on a per-user basis:

$HOME/$LANG/.mwmrc

$HOME/.mwmrc

/usr/lib/X11/$LANG/system.mwmrc

/usr/lib/X11/system.mwmrc

The first file found is the first used. If no file is found, a set of built-in specifications
is used. A particular resource description file can be selected using theconfigFile
resource. The following shows how a different resource description file can be specified
from the command line:

/usr/mwm/bin/mwm -xrm "mwm*configFile: mymwmrc"

1582

File Formats

mwmrc(special file)

Resource Types

The following types of resources can be described in the mwm resource description
file:

Buttons Workspace manager functions can be bound (associated) with button
events.

Keys Workspace manager functions can be bound (associated) with key press
events.

Menus Menu panes can be used for the window menu and other menus posted
with key bindings and button bindings.

MWM Resource Description File Syntax

The mwm resource description file is a standard text file that contains items of
information separated by blanks, tabs, and new lines characters. Blank lines are
ignored. Items or characters can be quoted to avoid special interpretation (for example,
the comment character can be quoted to prevent it from being interpreted as the
comment character). A quoted item can be contained in double quotes (" "). Single
characters can be quoted by preceding them by the back-slash character (\), except
for workspace names, which may contain no back-slash characters. If a line ends with
a back-slash, the next line is considered a continuation of that line. All text from an
unquoted# to the end of the line is regarded as a comment and is not interpreted as
part of a resource description. If! is the first character in a line, the line is regarded
as a comment.

Workspace Manager Functions

Workspace manager functions can be accessed with button and key bindings, and
with workspace manager menus. Functions are indicated as part of the specifications
for button and key binding sets, and menu panes. The function specification has the
following syntax:

function = function_name [function_args]

function_name = workspace manager function

function_args = { quoted_item | unquoted_item}

The following functions are supported. If a function is specified that isn’t one of the
supported functions then it is interpreted bymwm as f.nop.

f.beep This function causes a beep.

1583

Motif 2.1—Programmer’s Reference

mwmrc(special file)

f.circle_down [icon | window]
This function causes the window or icon that is on the top of the window
stack to be put on the bottom of the window stack (so that it is no
longer obscuring any other window or icon). This function affects only
those windows and icons that are obscuring other windows and icons,
or that are obscured by other windows and icons. Secondary windows
(that is, transient windows) are restacked with their associated primary
window. Secondary windows always stay on top of the associated
primary window and there can be no other primary windows between
the secondary windows and their primary window. If anicon function
argument is specified, then the function applies only to icons. If a
window function argument is specified then the function applies only
to windows.

f.circle_up [icon | window]
This function raises the window or icon on the bottom of the window
stack (so that it is not obscured by any other windows). This function
affects only those windows and icons that are obscuring other windows
and icons, or that are obscured by other windows and icons. Secondary
windows (that is, transient windows) are restacked with their associated
primary window. If an icon function argument is specified then the
function applies only to icons. If anwindow function argument is
specified then the function applies only to windows.

f.exec command(or ! command)
This function causescommandto be executed (using the value of the
$MWMSHELLor $SHELLenvironment variable if set; otherwise,/usr/
bin/sh). The ! notation can be used in place of thef.exec function
name.

f.focus_color
This function sets the colormap focus to a client window. If this function
is done in a root context, then the default colormap (setup by the X
Window System for the screen wheremwm is running) is installed
and there is no specific client window colormap focus. This function is
treated asf.nop if colormapFocusPolicyis not explicit.

f.focus_key This function sets the keyboard input focus to a client window or icon.
This function is treated asf.nop if keyboardFocusPolicyis not explicit
or the function is executed in a root context.

1584

File Formats

mwmrc(special file)

f.kill This function is used to close application windows. The actual
processing that occurs depends on the protocols that the application
observes. The application lists the protocols it observes in the
WM_PROTOCOLS property on its top level window. If the application
observes the WM_DELETE_WINDOW protocol, it is sent a message
that requests the window be deleted. If the application observes both
WM_DELETE_WINDOW and WM_SAVE_YOURSELF, it is sent
one message requesting the window be deleted and another message
advising it to save its state. If the application observes only the
WM_SAVE_YOURSELFprotocol, it is sent a message advising it to
save its state. After a delay (specified by the resourcequitTimeout), the
application’s connection to the X server is terminated. If the application
observes neither of these protocols, its connection to the X server is
terminated.

f.lower [− client | within | freeFamily]
This function lowers a primary window to the bottom of the global
window stack (where it obscures no other window) and lowers the
secondary window (transient window or dialog box) within the client
family. The arguments to this function are mutually exclusive. The
client argument indicates the name or class of a client to lower. The
name or class of a client appears in the WM_CLASS property on the
client’s top-level window. If theclient argument is not specified, the
context that the function was invoked in indicates the window or icon to
lower. Specifyingwithin lowers the secondary window within the family
(staying above the parent) but does not lower the client family in the
global window stack. SpecifyingfreeFamily lowers the window to the
bottom of the global windows stack from its local family stack.

f.maximize This function causes a client window to be displayed with its maximum
size. Refer to themaximumClientSize, maximumMaximumSize, and
limitResizeresources inmwm(1).

f.menu menu_name
This function associates a cascading (pull-right) menu with a menu pane
entry or a menu with a button or key binding. Themenu_namefunction
argument identifies the menu to be used.

f.minimize This function causes a client window to be minimized (iconified).
When a window is minimized with no icon box in use, and if the
lowerOnIconifyresource has the value True (the default), the icon is
placed on the bottom of the window stack (such that it obscures no other

1585

Motif 2.1—Programmer’s Reference

mwmrc(special file)

window). If an icon box is used, then the client’s icon changes to its
iconified form inside the icon box. Secondary windows (that is, transient
windows) are minimized with their associated primary window. There
is only one icon for a primary window and all its secondary windows.

f.move This function initiates an interactive move of a client window.

f.next_cmap This function installs the next colormap in the list of colormaps for the
window with the colormap focus.

f.next_key [icon | window | transient]
This function sets the keyboard input focus to the next window/icon
in the set of windows/icons managed by the workspace manager (the
ordering of this set is based on the stacking of windows on the screen).
This function is treated asf.nop if keyboardFocusPolicyis not explicit.
The keyboard input focus is only moved to windows that do not have an
associated secondary window that is application modal. If thetransient
argument is specified, then transient (secondary) windows are traversed
(otherwise, if onlywindowis specified, traversal is done only to the last
focused window in a transient group). If anicon function argument is
specified, then the function applies only to icons. If awindow function
argument is specified, then the function applies only to windows.

f.nop This function does nothing.

f.normalize This function causes a client window to be displayed with its normal
size. Secondary windows (that is, transient windows) are placed in their
normal state along with their associated primary window.

f.normalize_and_raise
This function causes a client window to be displayed with its normal
size and raised to the top of the window stack. Secondary windows (that
is, transient windows) are placed in their normal state along with their
associated primary window.

f.pack_icons
This function is used to relayout icons (based on the layout policy being
used) on the root window or in the icon box. In general this causes icons
to be "packed" into the icon grid.

f.pass_keys This function is used to enable/disable (toggle) processing of key
bindings for workspace manager functions. When it disables key binding
processing all keys are passed on to the window with the keyboard
input focus and no workspace manager functions are invoked. If the

1586

File Formats

mwmrc(special file)

f.pass_keysfunction is invoked with a key binding to disable key
binding processing the same key binding can be used to enable key
binding processing.

f.post_wmenu
This function is used to post the window menu. If a key is used to post
the window menu and a window menu button is present, the window
menu is automatically placed with its top-left corner at the bottom-left
corner of the window menu button for the client window. If no window
menu button is present, the window menu is placed at the top-left corner
of the client window.

f.prev_cmap
This function installs the previous colormap in the list of colormaps for
the window with the colormap focus.

f.prev_key [icon | window | transient]
This function sets the keyboard input focus to the previous window/icon
in the set of windows/icons managed by the workspace manager (the
ordering of this set is based on the stacking of windows on the screen).
This function is treated asf.nop if keyboardFocusPolicyis not explicit.
The keyboard input focus is only moved to windows that do not have an
associated secondary window that is application modal. If thetransient
argument is specified, then transient (secondary) windows are traversed
(otherwise, if onlywindowis specified, traversal is done only to the last
focused window in a transient group). If anicon function argument is
specified then the function applies only to icons. If anwindow function
argument is specified then the function applies only to windows.

f.quit_mwm
This function terminates mwm (but NOT the X window system).

f.raise [−client | within | freeFamily]
This function raises a primary window to the top of the global window
stack (where it is obscured by no other window) and raises the secondary
window (transient window or dialog box) within the client family. The
arguments to this function are mutually exclusive. Theclient argument
indicates the name or class of a client to lower. If theclient is not
specified, the context that the function was invoked in indicates the
window or icon to lower. Specifyingwithin raises the secondary window
within the family but does not raise the client family in the global
window stack. SpecifyingfreeFamilyraises the window to the top of its

1587

Motif 2.1—Programmer’s Reference

mwmrc(special file)

local family stack and raises the family to the top of the global window
stack.

f.raise_lower [within | freeFamily]
This function raises a primary window to the top of the global window
stack if it is partially obscured by another window; otherwise, it lowers
the window to the bottom of the window stack. The arguments to this
function are mutually exclusive. Specifyingwithin raises a secondary
window within the family (staying above the parent window), if it
is partially obscured by another window in the application’s family;
otherwise, it lowers the window to the bottom of the family stack. It has
no effect on the global window stacking order. SpecifyingfreeFamily
raises the window to the top of its local family stack, if obscured by
another window, and raises the family to the top of the global window
stack; otherwise, it lowers the window to the bottom of its local family
stack and lowers the family to the bottom of the global window stack.

f.refresh
This function causes all windows to be redrawn.

f.refresh_win
This function causes a client window to be redrawn.

f.resize This function initiates an interactive resize of a client window.

f.restore
This function restores the previous state of an icon’s associated window.
If a maximized window is iconified, thenf.restore restores it to its
maximized state. If a normal window is iconified, thenf.restore restores
it to its normalized state.

f.restore_and_raise
This function restores the previous state of an icon’s associated
window and raises the window to the top of the window stack. If a
maximized window is iconified, thenf.restore_and_raiserestores it to
its maximized state and raises it to the top of the window stack. If a
normal window is iconified, thenf.restore_and_raiserestores it to its
normalized state and raises it to the top of the window stack.

2f.restart This function causes mwm to be restarted (effectively terminated and
re-executed). Restart is necessary formwm to incorporate changes in
both themwmrc file and X resources.

1588

File Formats

mwmrc(special file)

f.screen [next | prev | back | screen_number]
This function causes the pointer to be warp to a specific screen number or
to thenext, previous, or last visited (back) screen. The arguments to this
function are mutually exclusive. Thescreen_numberargument indicates
the screen number that the pointer is to be warped. Screens are numbered
starting from screen 0. Specifyingnextcause the pointer to warp to the
next managed screen (skipping over any unmanaged screens). Specifying
prevcause the pointer to warp to the previous managed screen (skipping
over any unmanaged screens). Specifyingbackcause the pointer to warp
to the last visited screen.

f.send_msgmessage_number
This function sends an XClientMessageEvent of type
_MOTIF_WM_MESSAGES withmessage_typeset tomessage_number.
The client message is sent only ifmessage_numberis included in the
client’s _MOTIF_WM_MESSAGES property. A menu item label is
grayed out if the menu item is used to dof.send_msgof a message that
is not included in the client’s _MOTIF_WM_MESSAGES property.

f.separator This function causes a menu separator to be put in the menu pane at the
specified location (the label is ignored).

f.set_behavior
This function causes the workspace manager to restart with the default
behavior (if a custom behavior is configured) or a custom behavior
(if a default behavior is configured). By default this is bound to
Shift Ctrl Alt <Key>!.

f.title This function inserts a title in the menu pane at the specified location.

f.version This function causes the workspace manager to display its release
version in a dialog box.

Function Constraints

Each function may be constrained as to which resource types can specify the function
(for example, menu pane) and also what context the function can be used in (for
example, the function is done to the selected client window). Function contexts are:

root No client window or icon has been selected as an object for the function.

window A client window has been selected as an object for the function.
This includes the window’s title bar and frame. Some functions are

1589

Motif 2.1—Programmer’s Reference

mwmrc(special file)

applied only when the window is in its normalized state (for example,
f.maximize) or its maximized state (for example,f.normalize).

icon An icon has been selected as an object for the function.

If a function is specified in a type of resource where it is not supported or is invoked
in a context that does not apply then the function is treated asf.nop. The following
table indicates the resource types and function contexts in which workspace manager
functions apply.

Function Contexts Resources

f.beep root,icon,window button,key,menu

f.circle_down root,icon,window button,key,menu

f.circle_up root,icon,window button,key,menu

f.exec root,icon,window button,key,menu

f.focus_color root,icon,window button,key,menu

f.focus_key root,icon,window button,key,menu

f.kill icon,window button,key,menu

f.lower root,icon,window button,key,menu

f.maximize icon,window(normal) button,key,menu

f.menu root,icon,window button,key,menu

f.minimize window button,key,menu

f.move icon,window button,key,menu

f.next_cmap root,icon,window button,key,menu

f.next_key root,icon,window button,key,menu

f.nop root,icon,window button,key,menu

f.normalize icon,window(maximized) button,key,menu

f.normalize_and_raise icon,window button,key,menu

f.pack_icons root,icon,window button,key,menu

f.pass_keys root,icon,window button,key,menu

f.post_wmenu root,icon,window button,key

f.prev_cmap root,icon,window button,key,menu

f.prev_key root,icon,window button,key,menu

1590

File Formats

mwmrc(special file)

f.quit_mwm root button,key,menu (root only)

f.raise root,icon,window button,key,menu

f.raise_lower icon,window button,key,menu

f.refresh root,icon,window button,key,menu

f.refresh_win window button,key,menu

f.resize window button,key,menu

f.restart root button,key,menu (root only)

f.restore icon,window button,key,menu

f.restore_and_raise icon,window button,key,menu

f.screen root,icon,window button,key,menu

f.send_msg icon,window button,key,menu

f.separator root,icon,window menu

f.set_behavior root,icon,window button,key,menu

f.title root,icon,window menu

f.version root,icon,window button,key,menu

Workspace Manager Event Specification

Events are indicated as part of the specifications for button and key binding sets, and
menu panes. Button events have the following syntax:

button =~[modifier_list] <button_event_name >

modifier_list =~modifier_name { modifier_name}

The following table indicates the values that can be used formodifier_name. Note
that [Alt] and [Meta] can be used interchangably on some hardware.

Modifier Description

Ctrl Control Key

Shift Shift Key

Alt Alt Key

Meta Meta Key

Mod1 Modifier1

1591

Motif 2.1—Programmer’s Reference

mwmrc(special file)

Mod2 Modifier2

Mod3 Modifier3

Mod4 Modifier4

Mod5 Modifier5

Locking modifiers are ignored when processing button and key bindings. The following
table lists keys that are interpreted as locking modifiers. The X server may map
some of these symbols to the Mod1 - Mod5 modifier keys. These keys may or may
not be available on your hardware: Key Symbol Caps Lock Shift Lock Kana Lock
Num Lock Scroll Lock The following table indicates the values that can be used for
button_event_name.

Button Description

Btn1Down Button 1 Press

Btn1Up Button 1 Release

Btn1Click Button 1 Press and Release

Btn1Click2 Button 1 Double Click

Btn2Down Button 2 Press

Btn2Up Button 2 Release

Btn2Click Button 2 Press and Release

Btn2Click2 Button 2 Double Click

Btn3Down Button 3 Press

Btn3Up Button 3 Release

Btn3Click Button 3 Press and Release

Btn3Click2 Button 3 Double Click

Btn4Down Button 4 Press

Btn4Up Button 4 Release

Btn4Click Button 4 Press and Release

Btn4Click2 Button 4 Double Click

Btn5Down Button 5 Press

1592

File Formats

mwmrc(special file)

Btn5Up Button 5 Release

Btn5Click Button 5 Press and Release

Btn5Click2 Button 5 Double Click

Key events that are used by the workspace manager for menu mnemonics and for
binding to workspace manager functions are single key presses; key releases are
ignored. Key events have the following syntax:

key =~[modifier_list] Keykey_name

modifier_list =~modifier_name { modifier_name}

All modifiers specified are interpreted as being exclusive (this means that only the
specified modifiers can be present when the key event occurs). Modifiers for keys
are the same as those that apply to buttons. Thekey_nameis an X11 keysym name.
Keysym names can be found in thekeysymdef.hfile (remove theXK_ prefix).

Button Bindings

The buttonBindings resource value is the name of a set of button bindings that are
used to configure workspace manager behavior. A workspace manager function can
be done when a button press occurs with the pointer over a framed client window, an
icon or the root window. The context for indicating where the button press applies is
also the context for invoking the workspace manager function when the button press
is done (significant for functions that are context sensitive). The button binding syntax
is

Buttons bindings_set_name

{

button context function

button context function

...

button context function

}

The syntax for thecontext specification is:context = object[| context] object = root |
icon | window| title | frame| border | appThe context specification indicates where the
pointer must be for the button binding to be effective. For example, a context ofwindow
indicates that the pointer must be over a client window or window management frame
for the button binding to be effective. Theframecontext is for the window management
frame around a client window (including the border and titlebar), theborder context

1593

Motif 2.1—Programmer’s Reference

mwmrc(special file)

is for the border part of the window management frame (not including the titlebar),
the title context is for the title area of the window management frame, and theapp
context is for the application window (not including the window management frame).
If an f.nop function is specified for a button binding, the button binding is not done.

Key Bindings

The keyBindings resource value is the name of a set of key bindings that are used
to configure workspace manager behavior. A window manager function can be done
when a particular key is pressed. The context in which the key binding applies is
indicated in the key binding specification. The valid contexts are the same as those
that apply to button bindings. The key binding syntax is:

Keys bindings_set_name

{

key context function

key context function

...

key context function

}

If an f.nop function is specified for a key binding, the key binding is not done. If
an f.post_wmenu or f.menu function is bound to a key,mwm automatically uses
the same key for removing the menu from the screen after it has been popped up.
The context specification syntax is the same as for button bindings with one addition.
The contextifkey may be specified for binding keys that may not be available on all
displays. If the key is not available and ififkey is in the context, then reporting of the
error message to the error log is suppressed. This feature is useful for networked,
heterogeneous environments. For key bindings, theframe, title, border, and app
contexts are equivalent to thewindow context. The context for a key event is the
window or icon that has the keyboard input focus (root if no window or icon has the
keyboard input focus).

Menu Panes

Menus can be popped up using thef.post_wmenu and f.menu workspace manager
functions. The context for workspace manager functions that are done from a menu is
root, icon or windowdepending on how the menu was popped up. In the case of the
window menu or menus popped up with a key binding, the location of the keyboard
input focus indicates the context. For menus popped up using a button binding, the
context of the button binding is the context of the menu. The menu pane specification
syntax is:

1594

File Formats

mwmrc(special file)

Menu menu_name

{

label [mnemonic] [accelerator] function

label [mnemonic] [accelerator] function

...

label [mnemonic] [accelerator] function

}

Each line in theMenuspecification identifies the label for a menu item and the function
to be done if the menu item is selected. Optionally a menu button mnemonic and a
menu button keyboard accelerator may be specified. Mnemonics are functional only
when the menu is posted and keyboard traversal applies. Thelabel may be a string
or a bitmap file. The label specification has the following syntax:

label = text | bitmap_file

bitmap_file = @file_name

text = quoted_item | unquoted_item

The string encoding for labels must be compatible with the menu font that is used.
Labels are greyed out for menu items that do thef.nop function or an invalid function
or a function that doesn’t apply in the current context. Amnemonic specification has
the following syntax:

mnemonic = _ character

The first matchingcharacter in the label is underlined. If there is no matching
character in the label, no mnemonic is registered with the workspace manager for
that label. Although thecharacter must exactly match a character in the label, the
mnemonic does not execute if any modifier (such as Shift) is pressed with the character
key. Theaccelerator specification is a key event specification with the same syntax
as is used for key bindings to workspace manager functions.

Including Files

You may include other files into your mwmrc file by using theincludeconstruct. For
example,

INCLUDE

{

/usr/local/shared/mwm.menus

/home/kmt/personal/my.bindings}

1595

Motif 2.1—Programmer’s Reference

mwmrc(special file)

causes the files named to be read in and interpreted in order as an additional part of
the mwmrc file.Include is a top-level construct. It cannot be nested inside another
construct.

WARNINGS

Errors that occur during the processing of the resource description file are recorded
in: $HOME/.mwm/errorlog . Be sure to check this file if the appearance or behavior
of mwm is not what you expect.

Files

$HOME/$LANG/.mwmrc $HOME/.mwmrc /usr/lib/X11/$LANG/system.mwmrc
/usr/lib/X11/system.mwmrc $HOME/.mwm/errorlog

Related Information

mwm(1), mwm(1X), X(1).

1596

File Formats

Traits(file formats)

Traits

Purpose Lists the traits used by the Motif Toolkit.

Description

A trait is a characteristic of a widget. A widget holding a particular trait is announcing
a particular ability to other widgets. The following table summarizes the standard Motif
traits.

Purpose of Each Trait

Trait Name A Widget Holding This Trait Can Do
The Following:

XmQTaccessTextual Display one primary text parcel.

XmQTactivatable Become a command button in a dialog
box.

XmQTcareParentVisual Borrow its parent’s visual information.

XmQTcontainer Manage container item children.

XmQTcontainerItem Become a child of a container widget.

XmQTdialogShellSavvy Become a child of a DialogShell.

XmQTjoinSide Attach itself to one side of a suitable
parent.

XmQTmenuSavvy Become a menu child.

XmQTmenuSystem Manage a menu system.

XmQTnavigator Act as a navigator to a scrollable
widget.

XmQTscrollFrame Handle one or more navigator widgets.

XmQTspecifyRenderTable Supply the names of its default render
tables.

1597

Motif 2.1—Programmer’s Reference

Traits(file formats)

XmQTtakesDefault Change its appearance to show that it is
the default button.

XmQTtransfer Transfer data to other widgets and/or
receive data from other widgets

Traits are not often used in Motif application programs. However, traits are very
important to widget writers. For complete details on traits, see theMotif 2.1—Widget
Writer’s Guide.

The following table lists the names of all widgets and gadgets in the standard Motif
widget set that hold a particular trait. For example, the following table shows that the
XmQTcontainerItemtrait is held by theXmIconGadget. As the table suggests, some
traits are held by many of the standard Motif widgets.

Trait Installation in Standard Widget Set

Trait Name Is Installed on The Following
Widgets:

XmQTaccessTextual XmLabeland all its subclasses;
XmLabelGadget and all its subclasses;
XmText; XmTextField

XmQTactivatable XmArrowButton;
XmArrowButtonGadget;
XmDrawnButton; XmPushButton;
XmPushButtonGadget

XmQTcareParentVisual All the subclasses ofXmGadget (but
not XmGadget itself); XmPrimitive
and all its subclasses

XmQTcontainer XmContainer

XmQTcontainerItem XmIconGadget

XmQTdialogShellSavvy XmBulletinBoard

XmQTjoinSide No widgets install this trait

1598

File Formats

Traits(file formats)

XmQTmenuSavvy XmLabel; XmDrawnButton;
XmCascadeButton; XmPushButton;
XmToggleButton; XmLabelGadget;
XmCascadeButtonGadget;
XmPushButtonGadget;
XmToggleButtonGadget

XmQTmenuSystem XmRowColumn

XmQTnavigator XmScrollBar; XmSpinBox

XmQTscrollFrame XmNotebook; XmScrolledWindow

XmQTspecifyRenderTable XmBulletinBoard and all its
subclasses;XmMenuShell;
XmVendorShell

XmQTtakesDefault XmPushButton; XmPushButtonGadget

XmQTtransfer XmContainer; XmLabeland all its
subclasses;XmLabelGadget and all its
subclasses;XmList; XmScale; XmText;
XmTextField

The following table lists the traits installed on each widget. For example, the following
table indicates that theXmArrowButton widget holds both theXmQTactivatableand
XmQTcareParentVisualtraits.

Trait Use by Widget

Widget Name Installs These Traits

XmArrowButton XmQTactivatable,
XmQTcareParentVisual

XmArrowButtonGadget XmQTactivatable,
XmQTcareParentVisual

XmBulletinBoard XmQTdialogShellSavvy,
XmQTspecifyRenderTable

XmCascadeButton XmQTaccessTextual,
XmQTcareParentVisual,
XmQTmenuSavvy, XmQTtransfer

1599

Motif 2.1—Programmer’s Reference

Traits(file formats)

XmCascadeButtonGadget XmQTaccessTextual,
XmQTcareParentVisual,
XmQTmenuSavvy, XmQTtransfer
XmComboBox

XmCommand XmQTspecifyRenderTable

XmContainer XmQTcontainer, XmQTtransfer

XmDialogShell None

XmDisplay None

XmDragContext None

XmDragIcon None

XmDrawingArea None

XmDrawnButton XmQTaccessTextual, XmQTactivatable,
XmQTcareParentVisual,
XmQTmenuSavvy, XmQTtransfer

XmDropTransfer None

XmFileSelectionBox XmQTspecifyRenderTable

XmForm XmQTspecifyRenderTable

XmFrame None

XmGadget None

XmIconGadget XmQTcareParentVisual,
XmQTcontainerItem

XmLabel XmQTaccessTextual,
XmQTcareParentVisual,
XmQTmenuSavvy, XmQTtransfer

XmLabelGadget XmQTaccessTextual,
XmQTcareParentVisual,
XmQTmenuSavvy, XmQTtransfer

XmList XmQTcareParentVisual, XmQTtransfer

XmMainWindow

XmManager

1600

File Formats

Traits(file formats)

XmMenuShell XmQTspecifyRenderTable

XmMessageBox XmQTspecifyRenderTable

XmNotebook XmQTscrollFrame

XmPanedWindow

XmPrimitive XmQTcareParentVisual

XmPushButton XmQTaccessTextual, XmQTactivatable,
XmQTcareParentVisual,
XmQTmenuSavvy, XmQTtakesDefault,
XmQTtransfer

XmPushButtonGadget XmQTaccessTextual, XmQTactivatable,
XmQTcareParentVisual,
XmQTmenuSavvy, XmQTtakesDefault,
XmQTtransfer

XmRowColumn XmQTmenuSystem

XmScale XmQTtransfer

XmScreen

XmScrollbar XmQTcareParentVisual,
XmQTnavigator

XmScrolledWindow XmQTscrollFrame

XmSelectionBox XmQTspecifyRenderTable

XmSeparator XmQTcareParentVisual

XmSeparatorGadget XmQTcareParentVisual

XmSpinBox XmQTnavigator

XmText XmQTaccessTextual,
XmQTcareParentVisual, XmQTtransfer

XmTextField XmQTaccessTextual,
XmQTcareParentVisual, XmQTtransfer

XmToggleButton XmQTaccessTextual,
XmQTcareParentVisual, XmQTtransfer

1601

Motif 2.1—Programmer’s Reference

Traits(file formats)

XmToggleButtonGadget XmQTaccessTextual,
XmQTcareParentVisual, XmQTtransfer

VendorShell XmQTspecifyRenderTable

The following table summarizes how the standard Motif widgets access traits. There
are two general ways for a widget to access the traits of another widget.

One way is for a widget to ask another widget if it holds a particular trait. For example,
XmBulletinBoard asks each of its children widgets if they hold theXmQTtakesDefault
trait. XmBulletinBoard calls none of the trait methods ofXmQTtakesDefault.

Another kind of access is when one widget calls another widget’s trait method(s).
For example,XmBulletinBoard calls the getRenderTable trait method of the
XmQTspecifyRenderTabletrait.

Trait Access By Widget

Widget Accesses These Traits: Calls These Trait Methods:

XmArrowButton None None

XmArrowButtonGadget None None

XmBulletinBoard XmQTtakesDefault None

XmBulletinBoard XmQTspecifyRenderTable getRenderTable

XmCascadeButton XmQTmenuSystem Many

XmCascadeButton XmQTspecifyRenderTable getRenderTable

XmCascadeButtonGadget XmQTmenuSystem Many

XmCascadeButtonGadget XmQTspecifyRenderTable getRenderTable

XmComboBox XmQTaccessTextual getValue, setValue

XmCommand None None

XmContainer XmQTcontainerItem getValues, setValues

XmContainer XmQTscrollFrame getInfo

XmDialogShell XmQTdialogShellSavvy callMapUnmapCB

XmDisplay None None

XmDragContext None None

XmDragIcon None None

XmDrawingArea None None

1602

File Formats

Traits(file formats)

XmDrawnButton XmQTmenuSystem Many

XmDrawnButton XmQTspecifyRenderTable getRenderTable

XmDropTransfer None None

XmFileSelectionBox XmQTactivatable None

XmForm None None

XmFrame None None

XmGadget None None

XmIconGadget XmQTcontainer getValues

XmIconGadget XmQTspecifyRenderTable getRenderTable

XmLabel XmQTmenuSystem various methods

XmLabel XmQTspecifyRenderTable getRenderTable

XmLabelGadget XmQTmenuSystem various methods

XmLabelGadget XmQTspecifyRenderTable getRenderTable

XmList XmQTnavigator getValues

XmList XmQTscrollFrame getInfo, init

XmList XmQTspecifyRenderTable getRenderTable

XmMainWindow XmQTmenuSystem various methods

XmManager None None

XmMenuShell XmQTmenuSystem various methods

XmMenuShell XmQTspecifyRenderTable getRenderTable

XmMessageBox XmQTactivatable None

XmNotebook XmQTscrollFrame init, addNavigator,

removeNavigator

XmNotebook XmQTnavigator getValue

XmNotebook XmQTactivatable changeCB

XmNotebook XmQTaccessTextual None

XmPanedWindow None None

XmPrimitive None None

XmPushButton XmQTmenuSystem various methods

XmPushButton XmQTspecifyRenderTable getRenderTable

1603

Motif 2.1—Programmer’s Reference

Traits(file formats)

XmPushButtonGadget XmQTmenuSystem various methods

XmPushButtonGadget XmQTspecifyRenderTable getRenderTable

XmRowColumn XmQTmenuSavvy getAccelerator, getMnemonic,

getActivateCBName

XmRowColumn XmQTmenuSystem various methods

XmScale XmQTspecifyRenderTable getRenderTable

XmScreen None None

XmScrollbar None None

XmScrolledWindow XmQTnavigator getValue

XmScrolledWindow XmQTscrollFrame init, addNavigator

XmSelectionBox XmQTaccessTextual setValue;

XmSelectionBox XmQTactivatable None

XmSeparator None None

XmSeparatorGadget None None

XmSpinBox XmQTaccessTextual setValue

XmText XmQTaccessTextual getValue, setValue

XmText XmQTnavigator getValue

XmText XmQTscrollFrame getInfo, init

XmText XmQTspecifyRenderTable getRenderTable

XmTextField XmQTspecifyRenderTable getRenderTable

XmToggleButton XmQTmenuSystem various methods

XmToggleButton XmQTspecifyRenderTable getRenderTable

XmToggleButtonGadget XmQTmenuSystem various methods

XmToggleButtonGadget XmQTspecifyRenderTable getRenderTable

VendorShell XmQTspecifyRenderTable getRenderTable

Related Information

The following reference pages are documented in theMotif 2.1—Widget Writer’s
Guide: XmeTraitSet(3), XmeTraitGet (3), XmQTaccessTextual(3),
XmQTactivatable(3), XmQTcareParentVisual(3), XmQTcontainer(3),

1604

File Formats

Traits(file formats)

XmQTcontainerItem (3), XmQTdialogShellSavvy(3), XmQTjoinSide(3),
XmQTmenuSavvy(3), XmQTmenuSystem(3), XmQTnavigator (3),
XmQTscrollFrame(3), XmQTspecifyRenderTable(3), andXmQTtakesDefault(3).

1605

Motif 2.1—Programmer’s Reference

UIL(file formats)

UIL

Purpose The user interface language file format

Synopsis MODULE module_name
[NAMES = CASE_INSENSITIVE | CASE_SENSITIVE]
[CHARACTER_SET = character_set]
[OBJECTS = { widget_name= GADGET | WIDGET; [...] }]
{ [
[value_section] |
[procedure_section] |
[list_section] |
[object_section] |
[identifier_section]
[...]
] }
END MODULE;

Description

The UIL language is used for describing the initial state of a user interface for a widget
based application. UIL describes the widgets used in the interface, the resources of
those widgets, and the callbacks of those widgets. The UIL file is compiled into a
UID file using the commanduil or by the callable compilerUil() . The contents of the
compiled UID file can then be accessed by the various Motif Resource Management
(MRM) functions from within an application program.

The UID file is independent of the platform on which the Motif program will eventually
be run. In other words, the same UID file can be used on any system that can run
Motif.

File

A UIL file consists of a single complete module, described in the syntax description
above, or, if the file is to be included in a larger UIL file, one complete "section,"

1606

File Formats

UIL(file formats)

as described below. UIL uses five different kinds of sections: value, procedure, list,
object, and identifier.

UIL is a free-form language. This means that high-level constructs such as object and
value declarations do not need to begin in any particular column and can span any
number of lines. Low-level constructs such as keywords and punctuation characters
can also begin in any column; however, except for string literals and comments, they
cannot span lines.

The UIL compiler accepts input lines up to 132 characters in length.

MODULE module_name
The name by which the UIL module is known in the UID file. This
name is stored in the UID file for later use in the retrieval of resources
by the MRM. This name is always stored in uppercase in the UID file.

NAMES = CASE_INSENSITIVE| CASE_SENSITIVE
Indicates whether names should be treated as case sensitive or case
insensitive. The default is case sensitive. The case-sensitivity clause
should be the first clause in the module header, and in any case must
precede any statement that contains a name. If names are case sensitive
in a UIL module, UIL keywords in that module must be in lowercase.
Each name is stored in the UIL file in the same case as it appears in
the UIL module. If names are case insensitive, then keywords can be
in uppercase, lowercase, or mixed case, and the uppercase equivalent of
each name is stored in the UID file.

CHARACTER_SET= character_set
Specifies the default character set for string literals in the module that
do not explicitly set their character set. The default character set, in
the absence of this clause is the codeset component of theLANG
environment variable, or the value ofXmFALLBACK_CHARSET
if LANG is not set or has no codeset component. The value of
XmFALLBACK_CHARSET is defined by the UIL supplier, but is
usually ISO8859-1 (equivalent to ISO_LATIN1). Use of this clause turns
off all localized string literal processing turned on by the compiler flag
-s or theUil_command_typedata structure elementuse_setlocale_flag.

OBJECTS = { widget_name= GADGET| WIDGET; }
Indicates whether the widget or gadget form of the control specified
by widget_nameis used by default. By default the widget form
is used, so the gadget keyword is usually the only one used. The
specified control should be one that has both a widget and gadget

1607

Motif 2.1—Programmer’s Reference

UIL(file formats)

version: XmCascadeButton, XmLabel, XmPushButton, XmSeparator,
and XmToggleButton. The form of more than one control can be
specified by delimiting them with semicolons. The gadget or widget
form of an instance of a control can be specified with theGADGETand
WIDGETkeywords in a particular object declaration.

value_section
Provides a way to name a value expression or literal. The value name
can then be referred to by declarations that occur elsewhere in the
UIL module in any context where a value can be used. Values can
be forward referenced. Value sections are described in more detail later
in the reference page.

procedure_section
Defines the callback routines used by a widget and the creation routines
for user-defined widgets. These definitions are used for error checking.
Procedure sections are described in more detail later in the reference
page.

list_section Provides a way to group together a set of arguments, controls (children),
callbacks, or procedures for later use in the UIL module. Lists can
contain other lists, so that you can set up a hierarchy to clearly show
which arguments, controls, callbacks, and procedures are common to
which widgets. List sections are described in more detail later in the
reference page.

object_section
Defines the objects that make up the user interface of the application.
You can reference the object names in declarations that occur elsewhere
in the UIL module in any context where an object name can be used
(for example, in a controls list, as a symbolic reference to a widget ID,
or as thetag_valueargument for a callback procedure). Objects can be
forward referenced. Object sections are described in more detail later in
the reference page.

identifier_section
Defines a run-time binding of data to names that appear in the UIL
module. Identifier sections are described in more detail later in the
reference page.

The UIL file can also contain comments and include directives, which are described
along with the main elements of the UIL file format in the following sections.

1608

File Formats

UIL(file formats)

Comments

Comments can take one of two forms, as follows:

• The comment is introduced with the sequence/* followed by the text of the
comment and terminated with the sequence*/ . This form of comment can span
multiple source lines.

• The comment is introduced with an ! (exclamation point), followed by the text of
the comment and terminated by the end of the source line.

Neither form of comment can be nested.

Value sections

A value section consists of the keywordVALUE followed by a sequence of value
declarations. It has the following syntax:

VALUE value_name: [EXPORTED| PRIVATE]value_expression| IMPORTED
value_type;

Wherevalue_expressionis assigned tovalue_nameor a value_typeis assigned to an
imported value name. A value declaration provides a way to name a value expression
or literal. The value name can be referred to by declarations that occur later in the UIL
module in any context where a value can be used. Values can be forward referenced.

EXPORTED A value that you define as exported is stored in the UID file as a named
resource, and therefore can be referenced by name in other UID files.
When you define a value as exported, MRM looks outside the module
in which the exported value is declared to get its value at run time.

PRIVATE A private value is a value that is not imported or exported. A value that
you define as private is not stored as a distinct resource in the UID file.
You can reference a private value only in the UIL module containing
the value declaration. The value or object is directly incorporated into
anything in the UIL module that references the declaration.

IMPORTED A value that you define as imported is one that is defined as a
named resource in a UID file. MRM resolves this declaration with the
corresponding exported declaration at application run time.

By default, values and objects are private. The following is a list of the supported
value types in UIL:

• ANY

• ARGUMENT

1609

Motif 2.1—Programmer’s Reference

UIL(file formats)

• BOOLEAN

• COLOR

• COLOR_TABLE

• COMPOUND_STRING

• FLOAT

• FONT

• FONT_TABLE

• FONTSET

• ICON

• INTEGER

• INTEGER_TABLE

• KEYSYM

• REASON

• SINGLE_FLOAT

• STRING

• STRING_TABLE

• TRANSLATION_TABLE

• WIDE_CHARACTER

• WIDGET

Procedure sections

A procedure section consists of the keywordPROCEDUREfollowed by a sequence
of procedure declarations. It has the following syntax:

PROCEDURE
procedure_name[([value_type])];

Use a procedure declaration to declare

• A routine that can be used as a callback routine for a widget

• The creation function for a user-defined widget

1610

File Formats

UIL(file formats)

You can reference a procedure name in declarations that occur later in the UIL module
in any context where a procedure can be used. Procedures can be forward referenced.
You cannot use a name you used in another context as a procedure name.

In a procedure declaration, you have the option of specifying that a parameter will
be passed to the corresponding callback routine at run time. This parameter is called
the callback tag. You can specify the data type of the callback tag by putting the data
type in parentheses following the procedure name. When you compile the module, the
UIL compiler checks that the argument you specify in references to the procedure is
of this type. Note that the data type of the callback tag must be one of the valid UIL
data types. You can use a widget as a callback tag, as long as the widget is defined in
the same widget hierarchy as the callback, that is they have a common ancestor that
is in the same UIL hierarchy.

The following list summarizes how the UIL compiler checks argument type and
argument count, depending on the procedure declaration.

No parameters
No argument type or argument count checking occurs. You can supply
either 0 or one arguments in the procedure reference.

() Checks that the argument count is 0 (zero).

(ANY) Checks that the argument count is 1. Does not check the argument type.
Use theANY type to prevent type checking on procedure tags.

(type) Checks for one argument of the specified type.

(class_name)
Checks for one widget argument of the specified widget class.

While it is possible to use any UIL data type to specify the type of a tag in a procedure
declaration, you must be able to represent that data type in the programming language
you are using. Some data types (such as integer, Boolean, and string) are common
data types recognized by most programming languages. Other UIL data types (such
as string tables) are more complicated and may require that you set up an appropriate
corresponding data structure in the application in order to pass a tag of that type to a
callback routine.

You can also use a procedure declaration to specify the creation function for a user-
defined widget. In this case, you specify no formal parameters. The procedure is
invoked with the standard three arguments passed to all widget creation functions.
(See the Motif Toolkit documentation for more information about widget creation
functions.)

1611

Motif 2.1—Programmer’s Reference

UIL(file formats)

List sections

A list section consists of the keywordLISTfollowed by a sequence of list declarations.
It has the following syntax:

LIST
list_name: { list_item; [...] }
[...]

You can also use list sections to group together a set of arguments, controls (children),
callbacks, or procedures for later use in the UIL module. Lists can contain other lists,
so that you can set up a hierarchy to clearly show which arguments, controls, callbacks,
and procedures are common to which widgets. You cannot mix the different types of
lists; a list of a particular type cannot contain entries of a different list type or reference
the name of a different list type. A list name is always private to the UIL module in
which you declare the list and cannot be stored as a named resource in a UID file.

The additional list types are described in the following sections.

Arguments List Structure

An arguments list defines which arguments are to be specified in the arguments list
parameter when the creation routine for a particular object is called at run time. An
arguments list also specifies the values for those arguments. Argument lists have the
following syntax:

LIST
list_name: ARGUMENTS {

argument_name= value_expression;
[...] }

[...]

The argument name must be either a built-in argument name or a user-defined argument
name that is specified with theARGUMENTfunction.

If you use a built-in argument name as an arguments list entry in an object definition,
the UIL compiler checks the argument name to be sure that it is supported by the type
of object that you are defining. If the same argument name appears more than once
in a given arguments list, the last entry that uses that argument name supersedes all
previous entries with that name, and the compiler issues a message.

Some arguments, such asXmNitems and XmNitemCount, are coupled by the UIL
compiler. When you specify one of the arguments, the compiler also sets the other.
The coupled argument is not available to you.

1612

File Formats

UIL(file formats)

The Motif Toolkit and the X Toolkit (intrinsics) support constraint arguments. A
constraint argument is one that is passed to children of an object, beyond those
arguments normally available. For example, the Form widget grants a set of constraint
arguments to its children. These arguments control the position of the children within
the Form.

Unlike the arguments used to define the attributes of a particular widget, constraint
arguments are used exclusively to define additional attributes of the children of a
particular widget. These attributes affect the behavior of the children within their
parent. To supply constraint arguments to the children, you include the arguments in
the arguments list for the child.

See Appendix B for information about which arguments are supported by which
widgets. SeeAppendix C for information about what the valid value type is for each
built-in argument.

Callbacks List Structure

Use a callbacks list to define which callback reasons are to be processed by a particular
widget at run time. Callback lists have the following syntax:

LIST list_name: CALLBACKS { reason_name= PROCEDURE procedure_name[
([value_expression])]; | reason_name= procedure_list; [...] } [...]

For Motif Toolkit widgets, the reason name must be a built-in reason name. For a
user-defined widget, you can use a reason name that you previously specified using
the REASONfunction. If you use a built-in reason in an object definition, the UIL
compiler ensures that reason is supported by the type of object you are defining.
Appendix B shows which reasons each object supports.

If the same reason appears more than once in a callbacks list, the last entry referring to
that name supersedes all previous entries using the same reason, and the UIL compiler
issues a diagnostic message.

If you specify a named value for the procedure argument (callback tag), the data type
of the value must match the type specified for the callback tag in the corresponding
procedure declaration. When specifying a widget name as a procedure value expression
you must also specify the type of the widget and a space before the name of the widget.

Because the UIL compiler produces a UID file rather than an object module (.o),
the binding of the UIL name to the address of the entry point to the procedure
is not done by the loader, but is established at run time with the MRM function
MrmRegisterNames. You call this function before fetching any objects, giving it
both the UIL names and the procedure addresses of each callback. The name you

1613

Motif 2.1—Programmer’s Reference

UIL(file formats)

register with MRM in the application program must match the name you specified for
the procedure in the UIL module.

Each callback procedure receives three arguments. The first two arguments have the
same form for each callback. The form of the third argument varies from object to
object.

The first argument is the address of the data structure maintained by the Motif Toolkit
for this object instance. This address is called the widget ID for this object.

The second argument is the address of the value you specified in the callbacks list for
this procedure. If you do not specify an argument, the address is NULL. Note that, in
the case where the value you specified is a string or anXmString , the value specified
in the callbacks list already represents an address rather than an actual value. In the
case of a simple string, for example, the value is the address of the first character of
that string. In these cases, UIL does not add a level of indirection, and the second
argument to the callback procedure is simply the value as specified in the callbacks
list.

The third argument is the reason name you specified in the callbacks list.

Controls List Structure

A controls list defines which objects are children of, or controlled by, a particular
object. Each entry in a controls list has the following syntax:

LIST
list_name: CONTROLS {

[child_name:] [MANAGED | UNMANAGED] object_definition;
[...] }

[...]

If you specify the keywordMANAGEDat run time, the object is created and managed;
if you specify UNMANAGEDat run time, the object is only created. Objects are
managed by default.

You can usechild_nameto specify resources for the automatically created children of a
particular control. Names for automatically created children are formed by appending
Xm_ to the name of the child widget. This name is specified in the documentation
for the parent widget.

Unlike the arguments list and the callbacks list, a controls list entry that is identical
to a previous entry does not supersede the previous entry. At run time, each controls
list entry causes a child to be created when the parent is created. If the same object

1614

File Formats

UIL(file formats)

definition is used for multiple children, multiple instances of the child are created at
run time. SeeAppendix B for a list of which widget types can be controlled by which
other widget types.

Procedures List Structure

You can specify multiple procedures for a callback reason in UIL by defining a
procedures list. Just as with other list types, procedures lists can be defined in-line or
in a list section and referenced by name.

If you define a reason more than once (for example, when the reason is defined
both in a referenced procedures list and in the callbacks list for the object), previous
definitions are overridden by the latest definition. The syntax for a procedures list is
as follows:

LIST
list_name: PROCEDURES {

procedure_name[([value_expression])];
[...] }

[...]

When specifying a widget name as a procedure value expression you must also specify
the type of the widget and a space before the name of the widget.

Object Sections

An object section consists of the keywordOBJECTfollowed by a sequence of object
declarations. It has the following syntax:

OBJECTobject_name:
[EXPORTED | PRIVATE | IMPORTED]object_type

[PROCEDUREcreation_function]
[object_name[WIDGET | GADGET] | {list_definitions}]

Use an object declaration to define the objects that are to be stored in the UID file. You
can reference the object name in declarations that occur elsewhere in the UIL module
in any context where an object name can be used (for example, in a controls list,
as a symbolic reference to a widget ID, or as thetag_valueargument for a callback
procedure). Objects can be forward referenced; that is, you can declare an object name
after you reference it. All references to an object name must be consistent with the
type of the object, as specified in the object declaration. You can specify an object as
exported, imported, or private.

1615

Motif 2.1—Programmer’s Reference

UIL(file formats)

The object definition can contain a sequence of lists that define the arguments,
hierarchy, and callbacks for the widget. You can specify only one list of each type for
an object. When you declare a user-defined widget, you must include a reference to
the widget creation function for the user-defined widget.

Note: Several widgets in the Motif Toolkit actually consist of two linked widgets. For
example,XmScrolledTextand XmScrolledListeach consist of childrenXmText and
XmList widgets under aXmScrolledWindow widget. When such a widget is created,
its resources are available to both of the underlying widgets. This can occasionally
cause problems, as when the programmer wants aXmNdestroyCallback routine
named to act when the widget is destroyed. In this case, the callback resource will be
available to both sub-widgets, and will cause an error when the widget is destroyed.
To avoid these problems, the programmer should separately create the parent and child
widgets, rather than relying on these linked widgets.

Use theGADGET or WIDGET keyword to specify the object type or to override
the default variant for this object type. You can use the Motif Toolkit name of an
object type that has a gadget variant (for example,XmLabelGadget) as an attribute
of an object declaration. Theobject_typecan be any object type, including gadgets.
You need to specify theGADGET or WIDGET keyword only in the declaration of
an object, not when you reference the object. You cannot specify theGADGET or
WIDGETkeyword for a user-defined object; user-defined objects are always widgets.

Identifier sections

The identifier section allows you to define an identifier, a mechanism that achieves
run-time binding of data to names that appear in a UIL module. The identifier section
consists of the reserved keywordIDENTIFIER, followed by a list of names, each
name followed by a semicolon.

IDENTIFIER identifier_name; [...;]

You can later use these names in the UIL module as either the value of an argument
to a widget or the tag value to a callback procedure. At run time, you use the
MRM functionsMrmRegisterNamesandMrmRegisterNamesInHierarchy to bind
the identifier name with the data (or, in the case of callbacks, with the address of the
data) associated with the identifier.

Each UIL module has a single name space; therefore, you cannot use a name you
used for a value, object, or procedure as an identifier name in the same module.

The UIL compiler does not do any type checking on the use of identifiers in a UIL
module. Unlike a UIL value, an identifier does not have a UIL type associated with

1616

File Formats

UIL(file formats)

it. Regardless of what particular type a widget argument or callback procedure tag
is defined to be, you can use an identifier in that context instead of a value of the
corresponding type.

To reference these identifier names in a UIL module, you use the name of the identifier
wherever you want its value to be used.

Include directives

The include directive incorporates the contents of a specified file into a UIL module.
This mechanism allows several UIL modules to share common definitions. The syntax
for the include directive is as follows:

INCLUDE FILE file_name;

The UIL compiler replaces the include directive with the contents of the include file
and processes it as if these contents had appeared in the current UIL source file.

You can nest include files; that is, an include file can contain include directives. The
UIL compiler can process up to 100 references (including the file containing the UIL
module). Therefore, you can include up to 99 files in a single UIL module, including
nested files. Each time a file is opened counts as a reference, so including the same
file twice counts as two references.

Thefile_nameis a simple string containing a file specification that identifies the file to
be included. The rules for finding the specified file are similar to the rules for finding
header, or.h files using the include directive,#include, with a quoted string in C. The
UIL uses the--I option for specifying a search directory for include files.

• If you do not supply a directory, the UIL compiler searches for the include file in
the directory of the main source file.

• If the compiler does not find the include file there, the compiler looks in the same
directory as the source file.

• If you supply a directory, the UIL compiler searches only that directory for the
file.

Names and Strings

Names can consist of any of the characters A to Z, a to z, 0 to 9, $ (dollar sign), and
_ (underscore). Names cannot begin with a digit (0 to 9). The maximum length of a
name is 31 characters.

UIL gives you a choice of either case-sensitive or case-insensitive names through a
clause in theMODULE header. For example, if names are case sensitive, the names

1617

Motif 2.1—Programmer’s Reference

UIL(file formats)

"sample" and "Sample" are distinct from each other. If names are case insensitive, these
names are treated as the same name and can be used interchangeably. By default, UIL
assumes names are case sensitive.

In CASE-INSENSITIVE mode, the compiler outputs all names in the UID file in
uppercase form. InCASE-SENSITIVE mode, names appear in the UIL file exactly
as they appear in the source.

The following table lists the reserved keywords, which are not available for defining
programmer defined names.

Reserved Keywords

ARGUMENTS CALLBACKS CONTROLS END

EXPORTED FALSE GADGET IDENTIFIER

INCLUDE LIST MODULE OFF

ON OBJECT PRIVATE PROCEDURE

PROCEDURES TRUE VALUE WIDGET

The UIL unreserved keywords are described in the following list and table. These
keywords can be used as programmer defined names, however, if you use any keyword
as a name, you cannot use the UIL-supplied usage of that keyword.

• Built-in argument names (for example,XmNx, XmNheight)

• Built-in reason names (for example,XmNactivateCallback, XmNhelpCallback)

• Character set names (for example,ISO_LATIN1, ISO_HEBREW_LR)

• Constant value names (for example, XmMENU_OPTION ,
XmBROWSE_SELECT)

• Object types (for example,XmPushButton, XmBulletinBoard)

Unreserved Keywords

ANY ARGUMENT ASCIZ_STRING_TABLE

ASCIZ_TABLE BACKGROUND BOOLEAN

CASE_INSENSITIVE CASE_SENSITIVE CHARACTER_SET

COLOR COLOR_TABLE COMPOUND_STRING

1618

File Formats

UIL(file formats)

COMPOUND_STRING_-

COMPONENT

COMPOUND_STRING_TABLE FILE

FLOAT FONT FONT_TABLE

FONTSET FOREGROUND ICON

IMPORTED INTEGER INTEGER_TABLE

KEYSYM MANAGED NAMES

OBJECTS REASON RGB

RIGHT_TO_LEFT SINGLE_FLOAT STRING

STRING_TABLE TRANSLATION_TABLE UNMANAGED

USER_DEFINED VERSION WIDE_CHARACTER

WIDGET XBITMAPFILE

String literals can be composed of the uppercase and lowercase letters, digits, and
punctuation characters. Spaces, tabs, and comments are special elements in the
language. They are a means of delimiting other elements, such as two names. One or
more of these elements can appear before or after any other element in the language.
However, spaces, tabs, and comments that appear in string literals are treated as
character sequences rather than delimiters.

Data Types

UIL provides literals for several of the value types it supports. Some of the value
types are not supported as literals (for example, pixmaps and string tables). You can
specify values for these types by using functions described in theFunctionssection.
UIL directly supports the following literal types:

• String literal

• Integer literal

• Boolean literal

• Floating-point literal

UIL also includes the data typeANY, which is used to turn off compile time checking
of data types.

String Literals

A string literal is a sequence of zero or more 8-bit or 16-bit characters or a combination
delimited by ’ (single quotation marks) or" (double quotation marks). String literals

1619

Motif 2.1—Programmer’s Reference

UIL(file formats)

can also contain multibyte characters delimited with double quotation marks. String
literals can be no more than 2000 characters long.

A single-quoted string literal can span multiple source lines. To continue a single-
quoted string literal, terminate the continued line with a\ (backslash). The literal
continues with the first character on the next line.

Double-quoted string literals cannot span multiple source lines. (Because double-
quoted strings can contain escape sequences and other special characters, you cannot
use the backslash character to designate continuation of the string.) To build a string
value that must span multiple source lines, use the concatenation operator described
later in this section.

The syntax of a string literal is one of the following:

’[character_string]’
[#char_set]"[character_string]"

Both string forms associate a character set with a string value. UIL uses the following
rules to determine the character set and storage format for string literals:

• A string declared as’string’ is equivalent to #cur_charset" string" , where
cur_charsetwill be the codeset portion of the value of theLANG environment
variable if it is set or the value ofXmFALLBACK_CHARSET if LANG is
not set or has no codeset component. By default,XmFALLBACK_CHARSET
is ISO8859-1 (equivalent toISO_LATIN1), but vendors may define a different
default.

• A string declared as" string" is equivalent to#char_set" string" if you specified
char_setas the default character set for the module. If no default character set
has been specified for the module, then if the-s option is provided to theuil
command or theuse_setlocale_flagis set for the callable compiler,Uil() , the
string will be interpreted to be a string in the current locale. This means that
the string is parsed in the locale of the user by callingsetlocale, its charset
is XmFONTLIST_DEFAULT_TAG , and that if the string is converted to a
compound string, it is stored as a locale encoded text segment. Otherwise,
" string" is equivalent to#cur_charset" string" , wherecur_charsetis interpreted
as described for single quoted strings.

• A string of the form" string" or #char_set" string" is stored as a null-terminated
string.

If the char_set in a string specified in the form above is not a built-in charset,
and is not a user-defined charset, the charset of the string will be set to

1620

File Formats

UIL(file formats)

XmFONTLIST_DEFAULT_TAG , and an informational message will be issued to
the user to note that this substitution has been made.

The following table lists the character sets supported by the UIL compiler for string
literals. Note that several UIL names map to the same character set. In some cases,
the UIL name influences how string literals are read. For example, strings identified
by a UIL character set name ending in_LR are read left-to-right. Names that end in a
different number reflect different fonts (for example, ISO_LATIN1 or ISO_LATIN6).
All character sets in this table are represented by 8 bits.

Supported Character Sets

UIL Name Description

ISO_LATIN1 GL: ASCII, GR: Latin-1 Supplement

ISO_LATIN2 GL: ASCII, GR: Latin-2 Supplement

ISO_ARABIC GL: ASCII, GR: Latin-Arabic
Supplement

ISO_LATIN6 GL: ASCII, GR: Latin-Arabic
Supplement

ISO_GREEK GL: ASCII, GR: Latin-Greek
Supplement

ISO_LATIN7 GL: ASCII, GR: Latin-Greek
Supplement

ISO_HEBREW GL: ASCII, GR: Latin-Hebrew
Supplement

ISO_LATIN8 GL: ASCII, GR: Latin-Hebrew
Supplement

ISO_HEBREW_LR GL: ASCII, GR: Latin-Hebrew
Supplement

ISO_LATIN8_LR GL: ASCII, GR: Latin-Hebrew
Supplement

JIS_KATAKANA GL: JIS Roman, GR: JIS Katakana

Following are the parsing rules for each of the character sets:

1621

Motif 2.1—Programmer’s Reference

UIL(file formats)

All character sets
Character codes in the range 00...1F, 7F, and 80...9F are control
characters including both bytes of 16-bit characters. The compiler flags
these as illegal characters.

ISO_LATIN1 ISO_LATIN2 ISO_LATIN3 ISO_GREEK ISO_LATIN4
These sets are parsed from left to right. The escape sequences for null-
terminated strings are also supported by these character sets.

ISO_HEBREW ISO_ARABIC ISO_LATIN8
These sets are parsed from right to left. For example, the string
#ISO_HEBREW"012345" will generate a primitive string of "543210"
with character setISO_HEBREW. The string direction for such a string
would be right-to-left, so when rendered, the string will appear as
"012345." The escape sequences for null-terminated strings are also
supported by these character sets, and the characters that compose the
escape sequences are in left-to-right order. For example, you would enter
\n, not n\.

ISO_HEBREW_LR ISO_ARABIC_LR ISO_LATIN8_LR
These sets are parsed from left to right. For example, the string
#ISO_HEBREW_LR"012345" generates a primitive string "012345"
with character setISO_HEBREW. The string direction for such a string
would still be right-to-left, however, so when rendered, it will appear
as "543210." In other words, the characters were originally typed in the
same orderin which they would have been typed in Hebrew (although
in Hebrew, the typist would have been using a text editor that went from
right to left). The escape sequences for null-terminated strings are also
supported by these character sets.

JIS_KATAKANA
This set is parsed from left to right. The escape sequences for null-
terminated strings are also supported by this character set. Note that the
\ (backslash) may be displayed as a yen symbol.

In addition to designating parsing rules for strings, character set information remains
an attribute of a compound string. If the string is included in a string consisting of
several concatenated segments, the character set information is included with that
string segment. This gives the Motif Toolkit the information it needs to decipher the
compound string and choose a font to display the string.

1622

File Formats

UIL(file formats)

For an application interface displayed only in English, UIL lets you ignore the
distinctions between the two uses of strings. The compiler recognizes by context
when a string must be passed as a null-terminated string or as a compound string.

The UIL compiler recognizes enough about the various character sets to correctly
parse string literals. The compiler also issues errors if you use a compound string in
a context that supports only null-terminated strings.

Since the character set names are keywords, you must put them in lowercase if case-
sensitive names are in force. If names are case insensitive, character set names can be
uppercase, lowercase, or mixed case.

In addition to the built-in character sets recognized by UIL, you can define
your own character sets with theCHARACTER_SETfunction. You can use the
CHARACTER_SETfunction anywhere a character set can be specified.

String literals can contain characters with the eighth (high-order) bit set. You cannot
type control characters (00-1F, 7F, and 80-9F) directly in a single-quoted string literal.
However, you can represent these characters with escape sequences. The following
list shows the escape sequences for special characters.

\b Backspace

\f Form-feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\’ Single quotation mark

\"" Double quotation mark

\\ Backslash

\integer\ Character whose internal representation is given byinteger(in the range
0 to 255 decimal)

Note that escape sequences are processed literally in strings that are parsed in the
current locale (localized strings).

The UIL compiler does not process newline characters in compound strings. The effect
of a newline character in a compound string depends only on the character set of the
string, and the result is not guaranteed to be a multiline string.

1623

Motif 2.1—Programmer’s Reference

UIL(file formats)

Compound String Literals

A compound string consists of a string of 8-bit, 16-bit, or multibyte characters, a
named character set, and a writing direction. Its UIL data type iscompound_string.

The writing direction of a compound string is implied by the character set specified
for the string. You can explicitly set the writing direction for a compound string by
using theCOMPOUND_STRINGfunction.

A compound string can consist of a sequence of concatenated compound strings, null-
terminated strings, or a combination of both, each of which can have a different
character set property and writing direction. Use the concatenation operator &
(ampersand) to create a sequence of compound strings.

Each string in the sequence is stored, including the character set and writing direction
information.

Generally, a string literal is stored in the UID file as a compound string when the literal
consists of concatenated strings having different character sets or writing directions, or
when you use the string to specify a value for an argument that requires a compound
string value. If you want to guarantee that a string literal is stored as a compound
string, you must use theCOMPOUND_STRINGfunction.

Data Storage Consumption for String Literals

The way a string literal is stored in the UID file depends on how you declare and
use the string. The UIL compiler automatically converts a null-terminated string to
a compound string if you use the string to specify the value of an argument that
requires a compound string. However, this conversion is costly in terms of storage
consumption.

PRIVATE, EXPORTED, and IMPORTED string literals require storage for a single
allocation when the literal is declared; thereafter, storage is required for each reference
to the literal. Literals declared in-line require storage for both an allocation and a
reference.

The following table summarizes data storage consumption for string literals. The
storage requirement for an allocation consists of a fixed portion and a variable portion.
The fixed portion of an allocation is roughly the same as the storage requirement for a
reference (a few bytes). The storage consumed by the variable portion depends on the
size of the literal value (that is, the length of the string). To conserve storage space,
avoid making string literal declarations that result in an allocation per use.

1624

File Formats

UIL(file formats)

Data Storage Consumption for String Literals

Declaration Data Type Used As Storage
Requirements
Per Use

In-line Null-terminated Null-terminated An allocation and
a reference (within
the module)

Private Null-terminated Null-terminated A reference
(within the
module)

Exported Null-terminated Null-terminated A reference
(within the UID
hierarchy)

Imported Null-terminated Null-terminated A reference
(within the UID
hierarchy)

In-line Null-terminated Compound An allocation and
a reference (within
the module)

Private Null-terminated Compound An allocation and
a reference (within
the module)

Exported Null-terminated Compound A reference
(within the UID
hierarchy)

Imported Null-terminated Compound A reference
(within the UID
hierarchy)

In-line Compound Compound An allocation and
a reference (within
the module)

Private Compound Compound A reference
(within the
module)

1625

Motif 2.1—Programmer’s Reference

UIL(file formats)

Exported Compound Compound A reference
(within the UID
hierarchy)

Imported Compound Compound A reference
(within the UID
hierarchy)

Integer Literals

An integer literal represents the value of a whole number. Integer literals have the
form of an optional sign followed by one or more decimal digits. An integer literal
must not contain embedded spaces or commas.

Integer literals are stored in the UID file as 32-bit integers. Exported and imported
integer literals require a single allocation when the literal is declared; thereafter, a few
bytes of storage are required for each reference to the literal. Private integer literals
and those declared in-line require allocation and reference storage per use. To conserve
storage space, avoid making integer literal declarations that result in an allocation per
use.

The following table shows data storage consumption for integer literals.

Data Storage Consumption for Integer Literals

Declaration Storage Requirements Per Use

In-line An allocation and a reference (within
the module)

Private An allocation and a reference (within
the module)

Exported A reference (within the UID hierarchy)

Imported A reference (within the UID hierarchy)

Boolean Literal

A Boolean literal represents the value True (reserved keywordTRUE or On) or False
(reserved keywordFALSE or Off). These keywords are subject to case-sensitivity
rules.

In a UID file, TRUE is represented by the integer value 1 andFALSE is represented
by the integer value 0 (zero).

1626

File Formats

UIL(file formats)

Data storage consumption for Boolean literals is the same as that for integer literals.

Floating-Point Literal

A floating-point literal represents the value of a real (or float) number. Floating-point
literals have the following form:

[+|-][integer].integer[E|e[+|-]exponent]

For maximum portability, a floating-point literal can represent values in the range
1.0E-37 to 1.0E+37 with at least 6 significant digits. On many machines this range
will be wider, with more significant digits. A floating-point literal must not contain
embedded spaces or commas.

Floating-point literals are stored in the UID file as double-precision, floating-point
numbers. The following table gives examples of valid and invalid floating-point
notation for the UIL compiler.

Floating Point Literals

Valid Floating-Point Literals Invalid Floating-Point Literals

1.0 1e1 (no decimal point)

3.1415E−2 (equals .031415) 2.87 e6 (embedded blanks)

−6.29e7 (equals−62900000) 2.0e100 (out of range)

Data storage consumption for floating-point literals is the same as that for integer
literals.

The purpose of theANYdata type is to shut off the data-type checking feature of the
UIL compiler. You can use theANYdata type for the following:

• Specifying the type of a callback procedure tag

• Specifying the type of a user-defined argument

You can use theANY data type when you need to use a type not supported by the
UIL compiler or when you want the data-type restrictions imposed by the compiler to
be relaxed. For example, you might want to define a widget having an argument that
can accept different types of values, depending on run-time circumstances.

If you specify that an argument takes anANYvalue, the compiler does not check the
type of the value specified for that argument; therefore, you need to take care when
specifying a value for an argument of typeANY. You could get unexpected results at

1627

Motif 2.1—Programmer’s Reference

UIL(file formats)

run time if you pass a value having a data type that the widget does not support for
that argument.

Expressions

UIL includes compile-time value expressions. These expressions can contain
references to other UIL values, but cannot be forward referenced.

The following table lists the set of operators in UIL that allow you to create integer,
real, and Boolean values based on other values defined with the UIL module. In the
table, a precedence of 1 is the highest.

Valid Operators

Operator Operand Types Meaning Precedence

~ Boolean NOT 1

integer One’s complement

- float Negate 1

integer Negate

+ float NOP 1

integer NOP

* float,float Multiply 2

integer,integer Multiply

/ float,float Divide 2

integer,integer Divide

+ float,float Add 3

integer,integer Add

− float,float Subtract 3

integer,integer Subtract

>> integer,integer Shift right 4

<< integer,integer Shift left 4

& Boolean,Boolean AND 5

integer,integer Bitwise AND

1628

File Formats

UIL(file formats)

string,string Concatenate

| Boolean,Boolean OR 6

integer,integer Bitwise OR

^ Boolean,Boolean XOR 6

integer,integer Bitwise XOR

A string can be either a single compound string or a sequence of compound strings.
If the two concatenated strings have different properties (such as writing direction or
character set), the result of the concatenation is a multisegment compound string.

The string resulting from the concatenation is a null-terminated string unless one or
more of the following conditions exists:

• One of the operands is a compound string

• The operands have different character set properties

• The operands have different writing directions

Then the resulting string is a compound string. You cannot use imported or exported
values as operands of the concatenation operator.

The result of each operator has the same type as its operands. You cannot mix types
in an expression without using conversion routines.

You can use parentheses to override the normal precedence of operators. In a sequence
of unary operators, the operations are performed in right-to-left order. For example,
− + −A is equivalent to−(+(−A)). In a sequence of binary operators of the same
precedence, the operations are performed in left-to-right order. For example,A*B/
C*D is equivalent to((A*B)/C)*D .

A value declaration gives a value a name. You cannot redefine the value of that name in
a subsequent value declaration. You can use a value containing operators and functions
anywhere you can use a value in a UIL module. You cannot use imported values as
operands in expressions.

Several of the binary operators are defined for multiple data types. For example, the
operator for multiplication (*) is defined for both floating-point and integer operands.

For the UIL compiler to perform these binary operations, both operands must be
of the same type. If you supply operands of different data types, the UIL compiler
automatically converts one of the operands to the type of the other according to the
following conversions rules:

1629

Motif 2.1—Programmer’s Reference

UIL(file formats)

• If the operands are an integer and a Boolean, the Boolean is converted to an
integer.

• If the operands are an integer and a floating-point, the integer is converted to an
floating-point.

• If the operands are a floating-point and a Boolean, the Boolean is converted to a
floating-point.

You can also explicitly convert the data type of a value by using one of the conversion
functionsINTEGER, FLOAT or SINGLE_FLOAT.

Functions

UIL provides functions to generate the following types of values:

• Character sets

• Keysyms

• Colors

• Pixmaps

• Single-precision, floating-point numbers

• Double-precision, floating-point numbers

• Fonts

• Fontsets

• Font tables

• Compound strings

• Compound string tables

• ASCIZ (null-terminated) string tables

• Wide character strings

• Widget class names

• Integer tables

• Arguments

• Reasons

• Translation tables

1630

File Formats

UIL(file formats)

Remember that all examples in the following sections assume case-insensitive mode.
Keywords are shown in uppercase letters to distinguish them from user-specified
names, which are shown in lowercase letters. This use of uppercase letters is not
required in case-insensitive mode. In case-sensitive mode, keywords must be in
lowercase letters.

CHARACTER_SET(string_expression[, property[, ...]])
You can define your own character sets with theCHARACTER_SET
function. You can use theCHARACTER_SETfunction anywhere a
character set can be specified.

The result of theCHARACTER_SETfunction is a character set
with the name string_expression and the properties you specify.
string_expressionmust be a null-terminated string. You can optionally
include one or both of the following clauses to specify properties for
the resulting character set:

RIGHT_TO_LEFT =boolean_expression
SIXTEEN_BIT = boolean_expression

The RIGHT_TO_LEFTclause sets the default writing direction of the
string from right to left if boolean_expressionis True, and right to left
otherwise.

The SIXTEEN_BIT clause allows the strings associated with this
character set to be interpreted as 16-bit characters ifboolean_expression
is True, and 8-bit characters otherwise.

KEYSYM(string_literal)
The KEYSYMfunction is used to specify a keysym for a mnemonic
resource.string_literal must contain a validKeySym name. (See
XStringToKeysym(3 X11) for more information.)

COLOR(string_expression[,FOREGROUND|BACKGROUND])
The COLOR function supports the definition of colors. Using the
COLOR function, you can designate a value to specify a color and
then use that value for arguments requiring a color value. The string
expression names the color you want to define; the optional keywords
FOREGROUNDand BACKGROUNDidentify how the color is to be
displayed on a monochrome device when the color is used in the
definition of a color table.

1631

Motif 2.1—Programmer’s Reference

UIL(file formats)

The UIL compiler does not have built-in color names. Colors are a
server-dependent attribute of an object. Colors are defined on each server
and may have different red-green-blue (RGB) values on each server.
The string you specify as the color argument must be recognized by the
server on which your application runs.

In a UID file, UIL represents a color as a character string. MRM calls X
translation routines that convert a color string to the device-specific pixel
value. If you are running on a monochrome server, all colors translate
to black or white. If you are on a color server, the color names translate
to their proper colors if the following conditions are met:

• The color is defined.

• The color map is not yet full.

If the color map is full, even valid colors translate to black or white
(foreground or background).

Interfaces do not, in general, specify colors for widgets, so that the
selection of colors can be controlled by the user through the.Xdefaults
file.

To write an application that runs on both monochrome and color devices,
you need to specify which colors in a color table (defined with the
COLOR_TABLEfunction) map to the background and which colors map
to the foreground. UIL lets you use theCOLOR function to designate
this mapping in the definition of the color. The following example shows
how to use theCOLORfunction to map the color red to the background
color on a monochrome device:

VALUE c: COLOR (’red’,BACKGROUND);

The mapping comes into play only when the MRM is given a color and
the application is to be displayed on a monochrome device. In this case,
each color is considered to be in one of the following three categories:

• The color is mapped to the background color on the monochrome
device.

• The color is mapped to the foreground color on the monochrome
device.

• Monochrome mapping is undefined for this color.

1632

File Formats

UIL(file formats)

If the color is mapped to the foreground or background color, MRM
substitutes the foreground or background color, respectively. If you do
not specify the monochrome mapping for a color, MRM passes the color
string to the Motif Toolkit for mapping to the foreground or background
color.

RGB(red_integer, green_integer, blue_integer)
The three integers define the values for the red, green, and blue
components of the color, in that order. The values of these components
can range from 0 to 65,535, inclusive. The values may be represented
as integer expressions.

In a UID file, UIL represents anRGB value as three integers. MRM
calls X translation routines that convert the integers to the device-
specific pixel value. If you are running on a monochrome server, all
colors translate to black or white. If you are on a color server,RGB
values translate to their proper colors if the colormap is not yet full. If
the colormap is full, values translate to black or white (foreground or
background).

COLOR_TABLE(color_expression=’character’ [,...])
The color expression is a previously defined color, a color defined in
line with theCOLORfunction, or the phraseBACKGROUND COLOR
or FOREGROUND COLOR . The character can be any valid UIL
character.

The COLOR_TABLEfunction provides a device-independent way to
specify a set of colors. TheCOLOR_TABLEfunction accepts either
previously defined UIL color names or in line color definitions (using
theCOLORfunction). A color table must be private because its contents
must be known by the UIL compiler to construct an icon. The colors
within a color table, however, can be imported, exported, or private.

The single letter associated with each color is the character you use to
represent that color when creating an icon. Each letter used to represent
a color must be unique within the color table.

ICON([COLOR_TABLE= color_table_name,] row[,...)
color-table-namemust refer to a previously defined color table, androw
is a character expression giving one row of the icon.

The ICON function describes a rectangular icon that is x pixels wide and
y pixels high. The strings surrounded by single quotation marks describe

1633

Motif 2.1—Programmer’s Reference

UIL(file formats)

the icon. Each string represents a row in the icon; each character in the
string represents a pixel.

The first row in an icon definition determines the width of the icon.
All rows must have the same number of characters as the first row. The
height of the icon is dictated by the number of rows. The maximum
number of rows is 999.

The first argument of theICON function (the color table specification) is
optional and identifies the colors that are available in this icon. By using
the single letter associated with each color, you can specify the color
of each pixel in the icon. The icon must be constructed of characters
defined in the specified color table.

A default color table is used if you omit the argument specifying the
color table. To make use of the default color table, the rows of your
icon must contain only spaces and asterisks. The default color table is
defined as follows:

COLOR_TABLE(BACKGROUND COLOR = ’ ’, FOREGROUND COLOR = ’*’)

You can define other characters to represent the background color
and foreground color by replacing the space and asterisk in the
BACKGROUND COLOR and FOREGROUND COLOR clauses
shown in the previous statement. You can specify icons as private,
imported, or exported. Use the MRM functionMrmFetchIconLiteral
to retrieve an exported icon at run time.

XBITMAPFILE(string_expression)
The XBITMAPFILE function is similar to theICON function in that
both describe a rectangular icon that is x pixels wide and y pixels
high. However,XBITMAPFILE allows you to specify an external file
containing the definition of an X bitmap, whereas allICON function
definitions must be coded directly within UIL. X bitmap files can
be generated by many different X applications. UIL reads these files
through theXBITMAPFILE function, but does not support creation
of these files. The X bitmap file specified as the argument to the
XBITMAPFILE function is read at application run time by MRM.

The XBITMAPFILEfunction returns a value of typepixmapand can be
used anywhere a pixmap data type is expected.

1634

File Formats

UIL(file formats)

SINGLE_FLOAT(real_number_literal)
The SINGLE_FLOATfunction lets you store floating-point literals in
UIL files as single-precision, floating-point numbers. Single-precision
floating-point numbers can often be stored using less memory than
double-precision, floating-point numbers. Thereal_number_literalcan
be either an integer literal or a floating-point literal.

FLOAT(real_number_literal)
The FLOAT function lets you store floating-point literals in UIL files as
double-precision, floating-point numbers. Thereal_number_literalcan
be either an integer literal or a floating-point literal.

FONT(string_expression[, CHARACTER_SET=char_set])
You define fonts with theFONTfunction. Using theFONTfunction, you
designate a value to specify a font and then use that value for arguments
that require a font value. The UIL compiler has no built-in fonts.

Each font makes sense only in the context of a character set. TheFONT
function has an additional parameter to let you specify the character
set for the font. This parameter is optional; if you omit it, the default
character set depends on the value of theLANG environment variable
if it is set, or on the value ofXmFALLBACK_CHARSET if LANG is
not set.

string_expression specifies the name of the font and the clause
CHARACTER_SET= char_setspecifies the character set for the font.
The string expression used in theFONT function cannot be a compound
string.

FONTSET(string_expression[,...][, CHARACTER_SET=charset])
You define fontsets with theFONTSETfunction. Using theFONTSET
function, you designate a set of values to specify fonts and then use
those values for arguments that require a fontset. The UIL compiler has
no built-in fonts.

Each font makes sense only in the context of a character set. The
FONTSETfunction has an additional parameter to let you specify the
character set for the font. This parameter is optional; if you omit it, the
default character set depends on the value of theLANG environment
variable if it is set, or on the value ofXmFALLBACK_CHARSET if
LANG is not set.

1635

Motif 2.1—Programmer’s Reference

UIL(file formats)

The string expression specifies the name of the font and the clause
CHARACTER_SET= char_setspecifies the character set for the font.
The string expression used in theFONTSET function cannot be a
compound string.

FONT_TABLE(font_expression[,...])
A font table is a sequence of pairs of fonts and character sets. At run
time, when an object needs to display a string, the object scans the font
table for the character set that matches the character set of the string
to be displayed. UIL provides theFONT_TABLEfunction to let you
supply such an argument.font_expressionis created with theFONTand
FONTSETfunctions.

If you specify a single font value to specify an argument that requires
a font table, the UIL compiler automatically converts a font value to a
font table.

COMPOUND_STRING(string_expression[,property[,...]])
Use theCOMPOUND_STRINGfunction to set properties of a null-
terminated string and to convert it into a compound string. The properties
you can set are the writing direction and separator.

The result of theCOMPOUND_STRINGfunction is a compound string
with the string expression as its value. You can optionally include one
or more of the following clauses to specify properties for the resulting
compound string:

RIGHT_TO_LEFT = boolean_expression SEPARATE =
boolean_expression

The RIGHT_TO_LEFTclause sets the writing direction of the string
from right to left if boolean_expressionis True, and left to right
otherwise. Specifying this argument does not cause the value of
the string expression to change. If you omit theRIGHT_TO_LEFT
argument, the resulting string has the same writing direction as
string_expression.

The SEPARATEclause appends a separator to the end of the compound
string if boolean_expressionis True. If you omit theSEPARATEclause,
the resulting string does not have a separator.

You cannot use imported or exported values as the operands of the
COMPOUND_STRINGfunction.

1636

File Formats

UIL(file formats)

COMPOUND_STRING_COMPONENT(component_type[, { string | enumval}])
Use the COMPOUND_STRING_COMPONENTfunction to create
compound strings in UIL consisting of single components. This
function is analagous to XmStringComponentCreate. This
function lets you create simple compound strings containing
components such as XmSTRING_COMPONENT_TAB and
XmSTRING_COMPONENT_RENDITION_BEGIN which are not
produced by theCOMPOUND_STRINGfunction. These components
can then be concatenated to other compound strings to build more
complex compound strings.

The first argument must be anXmStringComponentType enumerated
constant. The type and interpretation of the second argument depends
on the first argument. For example, if you specify any of the following
enumerated constants for the first argument, then you should not specify
a second argument:XmSTRING_COMPONENT_SEPARATOR ,
XmSTRING_COMPONENT_LAYOUT_POP ,
XmSTRING_COMPONENT_TAB , and
XmSTRING_COMPONENT_LOCALE . However, if
you specify an enumerated constant from the following
group, then you must supply astring as the second
argument: XmSTRING_COMPONENT_CHARSET ,
XmSTRING_COMPONENT_TEXT ,
XmSTRING_COMPONENT_LOCALE_TEXT ,
XmSTRING_COMPONENT_WIDECHAR_TEXT ,
XmSTRING_COMPONENT_RENDITION_BEGIN , and
XmSTRING_COMPONENT_RENDITION_END . If you
specify XmSTRING_COMPONENT_DIRECTION as the
first argument, then you must specify anXmStringDirection
enumerated constant as the second argument. Finally, if you specify
XmSTRING_COMPONENT_LAYOUT_PUSH as the first argument,
then you must specify anXmDirection enumerated constant as the
second argument.

The compound string components
XmSTRING_COMPONENT_RENDITION_BEGIN , and
XmSTRING_COMPONENT_RENDITION_END take, for their
argument, the "tag," or name, of a rendition from the current render
table. See the following section for more information about how to
specify a render table.

1637

Motif 2.1—Programmer’s Reference

UIL(file formats)

COMPOUND_STRING_TABLE(string_expression[,...])
A compound string table is an array of compound strings. Objects
requiring a list of string values, such as theXmNitems and
XmNselectedItems arguments for the list widget, use string
table values. TheCOMPOUND_STRING_TABLEfunction builds
the values for these two arguments of the list widget. The
COMPOUND_STRING_TABLE function generates a value of
type string_table. The name STRING_TABLEis a synonym for
COMPOUND_STRING_TABLE.

The strings inside the string table must be simple strings, which the UIL
compiler automatically converts to compound strings.

ASCIZ_STRING_TABLE(string_expression[,...])
An ASCIZ string table is an array of ASCIZ (null-terminated) string
values separated by commas. This function allows you to pass more than
one ASCIZ string as a callback tag value. TheASCIZ_STRING_TABLE
function generates a value of typeasciz_table. The nameASCIZ_TABLE
is a synonym forASCIZ_STRING_TABLE.

WIDE_CHARACTER(string_expression)
Use theWIDE_CHARACTERfunction to generate a wide character
string from null-terminated string in the current locale.

CLASS_REC_NAME(string_expression)
Use theCLASS_REC_NAMEfunction to generate a widget class name.
For a widget class defined by the toolkit, the string argument is the name
of the class. For a user-defined widget, the string argument is the name
of the creation routine for the widget.

INTEGER_TABLE(integer_expression[,...])
An integer table is an array of integer values separated by commas. This
function allows you to pass more than one integer per callback tag value.
TheINTEGER_TABLEfunction generates a value of typeinteger_table.

ARGUMENT(string_expression[, argument_type])
The ARGUMENT function defines the arguments to a user-defined
widget. Each of the objects that can be described by UIL permits a
set of arguments, listed in Appendix B. For example,XmNheight is
an argument to most objects and has an integer data type. To specify
height for a user-defined widget, you can use the built-in argument name
XmNheight, and specify an integer value when you declare the user-

1638

File Formats

UIL(file formats)

defined widget. You do not use theARGUMENTfunction to specify
arguments that are built into the UIL compiler.

The string_expressionname is the name the UIL compiler uses for the
argument in the UID file.argument_typeis the type of value that can
be associated with the argument. If you omit the second argument, the
default type isANYand no value type checking occurs. Use one of the
following keywords to specify the argument type:

• ANY

• ASCIZ_TABLE

• BOOLEAN

• COLOR

• COMPOUND_STRING

• FLOAT

• FONT

• FONT_TABLE

• FONTSET

• ICON

• INTEGER

• INTEGER_TABLE

• KEYSYM

• PIXMAP

• REASON

• SINGLE_FLOAT

• STRING

• STRING_TABLE

• TRANSLATION_TABLE

• WIDE_CHARACTER

• WIDGET

1639

Motif 2.1—Programmer’s Reference

UIL(file formats)

You can use theARGUMENTfunction to allow the UIL compiler to
recognize extensions to the Motif Toolkit. For example, an existing
widget may accept a new argument. Using theARGUMENTfunction,
you can make this new argument available to the UIL compiler before
the updated version of the compiler is released.

REASON(string_expression)
The REASONfunction is useful for defining new reasons for user-
defined widgets.

Each of the objects in the Motif Toolkit defines a set of conditions
under which it calls a user-defined function. These conditions are known
as callback reasons. The user-defined functions are termed callback
procedures. In a UIL module, you use a callbacks list to specify which
user-defined functions are to be called for which reasons.

Appendix B lists the callback reasons supported by the Motif Toolkit
objects.

When you declare a user-defined widget, you can define callback reasons
for that widget using theREASONfunction. The string expression
specifies the argument name stored in the UID file for the reason. This
reason name is supplied to the widget creation routine at run time.

TRANSLATION_TABLE(string_expression [,...])
Each of the Motif Toolkit widgets has a translation table that maps X
events (for example, mouse button 1 being pressed) to a sequence of
actions. Through widget arguments, such as the common translations
argument, you can specify an alternate set of events or actions for
a particular widget. TheTRANSLATION_TABLEfunction creates a
translation table that can be used as the value of an argument that is of
the data typetranslation_table.

You can use one of the following translation table directives with the
TRANSLATION_TABLEfunction: #override, #augment, or #replace.
The default is#replace. If you specify one of these directives, it must
be the first entry in the translation table.

The #override directive causes any duplicate translations to be ignored.
For example, if a translation for <Btn1Down> is already defined
in the current translations for a PushButton, the translation defined
by new_translationsoverrides the current definition. If the#augment
directive is specified, the current definition takes precedence. The

1640

File Formats

UIL(file formats)

#replace directive replaces all current translations with those specified
in the XmNtranslations resource.

Renditions and Render Tables

In addition to the string direction, each compound string carries a great deal of
information about how its text is to be rendered. Each compound string contains a
"tag," identifying the "rendition" to be used to draw that string. The rendition contains
such information as the font, the size, the color, whether the text is to be underlined or
crossed out, and the position and style of any tab stops. Many renditions are combined
into a "render table," which is specified to any widget with theXmNrenderTable
resource, and in the widget’scontrols list.

UIL implements render tables, renditions, tab lists, and tab stops as a special class
of objects, in a form similar to the widget class. These objects are not themselves
widgets or gadgets, but the format used by UIL to specify widget resources provides
a convenient way to specify the qualities and dependencies of these objects.

For example, a render table, included in some widget’scontrols list, must also have a
controls list in its specification, containing the names of its member renditions. Each
rendition, in its specification, will contain anargumentslist specifying such qualities
as the font, the color, and whether the text is to be underlined. Any of the renditions
may also control a tablist, which will itself control one or more tab stops.

Please refer to theMotif 2.1—Programmer’s Guidefor a complete description of
renditions and render tables, and for an example of how to use them in UIL.

Related Information

uil (1), Uil (3)

1641

Motif 2.1—Programmer’s Reference

WML(file formats)

WML

Purpose The widget meta-language file format for creating uil compilers

Description

The widget meta-language facility (WML) is used to generate the components of the
user interface language (UIL) compiler that can change depending on the widget set.
Using WML you can add support in UIL for new widgets to the Motif widget set or
for a totally new widget set.

File

WML files are ASCII files that you can modify with any standard text editor. They
are accessed in thetools/wml directory by WML. By convention WML files have the
suffix .wml. The Motif widget set is described in themotif.wml file. This is also the
default WML file when using the WML facility.

When adding new widgets or changing widget characteristics, you should start with
a copy of themotif.wml file. If you are creating a new widget set for use with UIL,
you should start from scratch. In either case themotif.wml file is a good example
of WML syntax, and you should familiarize yourself with it before writing your own
WML file.

WML files have a simple syntax, similar in structure to UIL. It is made up of the
following elements:

• Comments

• Data Type Definitions

• Character Set Definitions

• Enumeration Set Definitions

• Control List Definitions

• Class Definitions

• Child Definitions

• Resource Definitions

1642

File Formats

WML(file formats)

You can use space, tabs, or newlines anywhere in the syntax, as long as you do not
split up keywords or strings, except that comments end at a newline. The order of
elements is not important to the syntax.

This description uses the following additional conventions to describe the syntax of
the widget meta-language:

[] Indicates optional elements.

... Indicates where an element of syntax can be repeated.

| Indicates a choice among multiple items.

Comments

You can include comments in the WML file. Comments have the following syntax:

[any.element]!any.comment

Comments begin with an exclamation point and extend to the end of the line. A
comment can begin on a line by itself or follow any part of another element. A
comment does not change the meaning of any other element. For example:

!This is a comment

! that spans two lines.

DataType !This is a comment following code.

Data Type Definitions

Data type definitions register all the resource data types used in the file. You must
register all the data types used in your WML file. Data type definitions have the
following syntax:

DataType
any.datatype [{ InternalLiteral = internal.name |

DocName = "string"; [...]}];
[...]

A data type definition begins with the keywordDataType. Following theDataType
keyword is a list of data types that can be further modified with

InternalLiteral
This forces the value of the internal symbol table literal definition of the
data type name. This modifier is only used to get around symbol table
definitions hard coded into the UIL compiler. It should rarely be used.

1643

Motif 2.1—Programmer’s Reference

WML(file formats)

DocName This gives an arbitrary string for use in the documentation. This string
is meant to supply a different name for the data type for use in the
documentation, or a single name for the data type if the data type has
aliases.

For example:

DataType OddNumber {DocName="OddNumber";};

NewString;

Character Set Definitions

Character set definitions register the Motif Toolkit name and other information for the
character set names used in UIL. Character set definitions have the following syntax:

CharacterSet
any.character.set

{ [FontListElementTag | XmStringCharsetName] = "string";
[Alias = "string" ...; |
Direction = [LeftToRight | RightToLeft]; |
ParseDirection = [LeftToRight | RightToLeft]; |
CharacterSize = [OneByte | TwoByte];]
[...] };

[...]

A character set definition begins with the keywordCharacterSet. Following the
CharacterSet keyword is a list of character sets that can be further modified with

FontListElementTag | XmStringCharsetName
Specifies the name of the character set, which will become the character
set component of a compound string segment created using this character
set. This modifier is required.

Alias Specifies one or more aliases for the character set name. Each alias can
be used within UIL to refer to the same character set.

Direction Specifies the direction of a compound string segment created using this
character set. The default isLeftToRight .

ParseDirection
Specifies the direction in which an input string is parsed when a
compound string segment is created using this character set. The default
is whateverDirection is specified.

1644

File Formats

WML(file formats)

CharacterSize
Specifies the number of bytes in each character of a compound string
segment created using this character set. The default isOneByte.

For example:

CharacterSet

iso_latin1

{ XmStringCharsetName = "ISO8859-1";

Alias = "ISOLatin1"; };

iso_hebrew_lr

{ XmStringCharsetName = "ISO8859-8";

Alias = "iso_latin8_lr";

Direction = RightToLeft;

ParseDirection = LeftToRight; };

ksc_korean

{ XmStringCharsetName = "KSC5601.1987-0";

CharacterSize = TwoByte; };

Enumeration Set Definitions

Enumeration set definitions register the named constants used in the Motif Toolkit to
specify some resource values. Enumeration set definitions have the following syntax:

EnumerationSet
resource.name: resource.type

{ enum.value.name; [...] };

An enumeration set definition begins with the keywordEnumerationSet. For each
enumeration set defined, the name and type of the resource are listed. The resource
name is the Motif Toolkit resource name, with the beginningXmN removed and
with the initial letter capitalized. For example, the name of the Motif Toolkit resource
XmNrowColumnType is RowColumnType. The resource type is the data type for
the resource; for most resources, this isinteger. Following the resource name and type
is a list of names of enumeration values that can be used as settings for the resource.
These names are the same as those in the Motif Toolkit.

For example:

EnumerationSet

RowColumnType: integer

{ XmWORK_AREA; XmMENU_BAR; XmMENU_POPUP;

1645

Motif 2.1—Programmer’s Reference

WML(file formats)

XmMENU_PULLDOWN; XmMENU_OPTION; };

Enumeration sets also support Boolean values.

Control List Definitions

Control list definitions assign a name to groups of controls. You can use these control
lists later in class definitions to simplify the structure of your WML file. Control list
definitions have the following syntax:

ControlList
any.control.list [{ any.control; [...]}];

A control list definition starts with theControlList keyword. Following the
ControlList keyword are any number of control list definitions. Control list
definitions are made up of a control list name followed by the set of controls it
represents. For example:

ControlList

Buttons {PushButton;

RadioButton;

CascadeButton;

NewCascadebutton;};

Each control specified in the control list must be defined as a class in the file.

Class Definitions

Class definitions describe a particular widget class including its position in the class
hierarchy, toolkit convenience function, resources, and controls. There should be one
class definition for each widget or gadget in the widget set you want to support in
UIL. Class definitions have the following syntax:

Class class.name: MetaClass | Widget | Gadget
[{[
SuperClass = class.name; |
ParentClass = parent.class.name; |
InternalLiteral = internal.name; |
Alias = alias; |
ConvenienceFunction = convenience.function; |
WidgetClass = widget.class; |
DocName = "string"; |
DialogClass = True | False; |

1646

File Formats

WML(file formats)

Resources { any.resource.name [{
Default = new.default.value; |
Exclude = True |
False;
[...]}];

[...]}; |
Controls { any.control.name; [...]};
Children { any.child.name; [...] };
[...]
]}];

Class definitions start with theClass keyword. For each class defined, the name of
the class and whether the class is a metaclass, widget, or gadget is listed. Each class
definition can be further modified with the keywords described in the following list.

SuperClass This indicates the name of the parent class. Only the root of the hierarchy
does not specify a SuperClass.

ParentClass This indicates the name of the widget’s automatically created parent
class if one exists. This allows resources for that automatically
created class to be used in instances of this class. For example,
XmBulletinBoardDialogcreates both anXmBulletinBoard and an
XmDialogShell. To access the resources of theXmDialogShell parent
class it must be specified here.

InternalLiteral
This forces the value of the internal symbol table literal definition of
the class name. This modifier is only used to get around symbol table
definitions hard coded into the UIL compiler. It should rarely be used.

Alias This indicates alternate names for the class for use in a UIL specification.

ConvenienceFunction
This indicates the name of the creation convenience function for this
class. All widget and gadget classes must have aConvenienceFunction.

WidgetClass
This indicates the associated widget class of gadget type classes.
Presently, nothing is done with this value.

DocName This defines an arbitrary string for use in the documentation. Presently,
nothing is done with this value.

1647

Motif 2.1—Programmer’s Reference

WML(file formats)

DialogClass This indicates whether the class is a dialog class. Presently, nothing is
done with this value.

Resources This lists the resources of the widget class. This keyword can be further
modified with

Default This specifies a new default value for this resource.
Resource default values are usually set in the resource
definition. If an inherited resource’s default value is
changed by the class, the new default value should be
noted here.

Exclude This specifies whether an inherited resource should be
excluded from the resource list of the class.Exclude is
False by default.

Children This lists the names of the automatically created children of this class,
so that those children can be accessed in the UIL file.

Controls This lists the controls that the widget class allows. The controls can be
other classes or a control list from the control list definition.

The following example uses the examples from the data type definitions and control
list definitions above.

Class

TopLevelWidget: MetaClass

{

Resources

{

XtbNfirstResource;

XtbNsecondResource;

};

};

NewWidget: Widget

{

SuperClass = TopLevelWidget;

ConvenienceFunction =

XtbCreateNewWidget;

Resources

{

XtbNnewResource;

XtbNfirstResource

1648

File Formats

WML(file formats)

{Default="XtbNEW_VALUE";};

XtbNsecondResource

{Exclude=True;};

};

Controls

{

NewWidget;

Buttons;

};

};

Child Definitions

Child definitions register the classes of automatically created children. Automatically
created children are referenced elsewhere in auil file using theChildren keyword
within a class definition. Child definitions have the following syntax:

Child child.name : class.name;[...]

Wherechild.name is the name of the automatically created child andclass.nameis
the name of the class of that child.

Resource Definitions

Resource definitions describe a particular resource including its type, and default value.
There should be a resource definition for each new resource referenced in the class
definitions. Resource definitions have the following syntax:

Resource
resource.name: Argument | Reason | Constraint | SubResource

[{[
Type = type;
[ResourceLiteral = resource.literal;]
[InternalLiteral = internal.name;]
[Alias = alias;]
[Related =related;]
[Default = default;]
[DocName = doc.name;]
[...]}]

[...]

1649

Motif 2.1—Programmer’s Reference

WML(file formats)

Resource definitions start with theResourcekeyword. For each resource definition,
the name of the resource and whether the resource is an argument, reason, constraint
or subresource is listed.

Argument Indicates a standard resource

Reason Indicates a callback resource

Constraint Indicates a constraint resource

SubResource
Presently, nothing is done with this value

The resource definition can be further modified with the following keywords:

Type This indicates the data type of the resource. It must be listed in the data
type definition.

ResourceLiteral
This indicates the keyword used in the UIL file to reference the resource.
In Motif, the resource name is the same as theResourceLiteral.

InternalLiteral
This forces the value of the internal symbol table literal definition of the
resource name. This modifier is only used to get around symbol table
definitions hard coded into the UIL compiler. It should rarely be used.

Alias This indicates alternate names for the resource for use in a UIL
specification.

Related This is a special purpose field that allows resources that act as a counter
for the current resources to be related to the resource. UIL automatically
sets the value of this related resource to the number of items in the
compiled instance of typeresource.name.

Default This indicates the default value of the resource.

DocName This defines an arbitrary string for use in the documentation. Presently,
nothing is done with this value.

The following example uses the examples from the data type definitions, control list
definitions and class definitions above.

Resource

XtbNfirstResource: Argument

{ Type = OddNumber;

1650

File Formats

WML(file formats)

Default = "XtbOLD_VALUE";};

XtbNsecondResource: Argument

{ Type = NewString;

Default = "XtbNEW_STRING"; };

XtbNnewResource: Argument

{ Type = OddNumber;

Default = "XtbODD_NUMBER"; };

1651

Appendix A
Constraint Arguments and
Automatically Created Children

The following tables list the constraint arguments and automatically created children
for widgets available within UIL. The constraints are available for children of the
listed widget. For more information about constraint arguments see theMotif 2.1—
Programmer’s Guide.

XmForm and XmFormDialog Constraint Arguments

XmNbottomAttachment XmNrightAttachment

XmNbottomOffset XmNrightOffset

XmNbottomPosition XmNrightPosition

XmNbottomWidget XmNrightWidget

XmNleftAttachment XmNtopAttachment

XmNleftOffset XmNtopOffset

XmNleftPosition XmNtopPosition

1653

Motif 2.1—Programmer’s Reference

XmNleftWidget XmNtopWidget

XmNresizable

XmFrame Constraint Arguments

XmNchildHorizontalAlignment XmNframechildType

XmNchildHorizontalSpacing XmNchildVerticalAlignment

XmPanedWindow Constraint Arguments

XmNallowResize XmNpositionIndex

XmNpaneMaximum XmNskipAdjust

XmNpaneMinimum

XmRowColumn Constraint Arguments

XmNpositionIndex

XmScrolledWindow Constraint Arguments

XmNscrolledWindowChildType

XmSelectionBox Constraint Arguments

XmNchildPlacement

XmCommand Automatically Created Children

XmCommand inherits its automatically created children from

XmSelectionBox

XmFileSelectionBox Automatically Created Children

Name Class

Xm_Items XmLabelGadget

Xm_ItemsList XmScrolledList

1654

Constraint Arguments and Automatically Created Children

Xm_Separator XmSeparatorGadget

Xm_OK XmPushButtonGadget

Xm_Cancel XmPushButtonGadget

Xm_Help XmPushButtonGadget

Xm_FilterLabel XmLabelGadget

Xm_FilterText XmText

Xm_DirList XmScrolledList

Xm_Dir XmLabelGadget

Xm_Filter XmPushButtonGadget

XmFileSelectionBoxalso inherits its automatically created

children fromXmSelectionBox

XmMainWindow Automatically Created Children

Name Class

Xm_Separator1 XmSeparatorGadget

Xm_Separator2 XmSeparatorGadget

Xm_Separator3 XmSeparatorGadget

XmMainWindow also inherits its automatically created children

from XmScrolledWindow

XmMessageBox Automatically Created Children

Name Class

Xm_Symbol XmLabelGadget

Xm_Separator XmSeparatorGadget

Xm_Message XmLabelGadget

Xm_OK XmPushButtonGadget

Xm_Cancel XmPushButtonGadget

Xm_Help XmPushButtonGadget

1655

Motif 2.1—Programmer’s Reference

XmOptionMenu Automatically Created Children

Name Class

Xm_OptionLabel XmLabelGadget

Xm_OptionButton XmCascadeButtonGadget

XmPanedWindow Automatically Created Children

Name Class

Xm_Sash undocumented subclass of XmPrimitive

Xm_Separator XmSeparatorGadget

XmPopup and XmPulldownMenu Automatically Created Children

Name Class

Xm_TearOffControl undocumented subclass of
XmPushButton

XmScale Automatically Created Children

Name Class

Xm_Scrollbar XmScrollBar

Xm_Title XmLabelGadget

XmScrolledWindow Automatically Created Children

Name Class

Xm_ClipWindow XmClipWindow

Xm_VertScrollBar XmScrollBar

Xm_HorScrollBar XmScrollBar

XmSelectionBox Automatically Created Children

Name Class

Xm_Items XmLabelGadget

1656

Constraint Arguments and Automatically Created Children

Xm_ItemsList XmScrolledList

Xm_Selection XmLabelGadget

Xm_Text XmText

Xm_Separator XmSeparatorGadget

Xm_OK XmPushButtonGadget

Xm_Cancel XmPushButtonGadget

Xm_Help XmPushButtonGadget

Xm_Apply XmPushButtonGadget

1657

Appendix B
UIL Built-In Tables

This appendix contains a listing of part of the UIL built-in tables used during
compilation to check that your UIL specification is consistent with the Motif Toolkit.

For each object in the Motif Toolkit, this appendix contains a table that lists the reasons
and controls (children) supported by UIL for that object. The arguments supported
by UIL for each object are the same as the Motif Toolkit resources for that object.
Appendix C lists the name and UIL data type of each UIL argument. For information
on which arguments are supported for which objects and for the default values of
arguments, see the widget reference pages.

XmArrowButton

Controls Reasons

XmPopupMenu MrmNcreateCallback

XmNactivateCallback

XmNarmCallback

XmNconvertCallback

1659

Motif 2.1—Programmer’s Reference

XmArrowButton

Controls Reasons

XmNdestroyCallback

XmNdisarmCallback

XmNhelpCallback

XmNpopupHandlerCallback

XmArrowButtonGadget

Controls Reasons

No children are supported MrmNcreateCallback

XmNactivateCallback

XmNarmCallback

XmNdestroyCallback

XmNdisarmCallback

XmNhelpCallback

XmBulletinBoard

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNdestroyCallback

XmBulletinBoard XmNfocusCallback

XmBulletinBoardDialog XmNhelpCallback

XmCascadeButton XmNmapCallback

XmCascadeButtonGadget XmNpopupHandlerCallback

XmCheckBox XmNunmapCallback

XmComboBox XmNlosingFocusCallback

XmCommand

XmCommandDialog

1660

UIL Built-In Tables

XmBulletinBoard

Controls Reasons

XmContainer

XmDialogShell

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

1661

Motif 2.1—Programmer’s Reference

XmBulletinBoard

Controls Reasons

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

1662

UIL Built-In Tables

XmBulletinBoard

Controls Reasons

XmWorkingDialog

user_defined

XmBulletinBoardDialog

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNdestroyCallback

XmBulletinBoard XmNfocusCallback

XmBulletinBoardDialog XmNfocusMovedCallback

XmCascadeButton XmNlosingFocusCallback

XmCascadeButtonGadget XmNmapCallback

XmCheckBox XmNpopdownCallback

XmComboBox XmNpopupCallback

XmCommand XmNpopupHandlerCallback

XmCommandDialog XmNrealizeCallback

XmContainer XmNunmapCallback

XmDialogShell XmNhelpCallback

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

1663

Motif 2.1—Programmer’s Reference

XmBulletinBoardDialog

Controls Reasons

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

1664

UIL Built-In Tables

XmBulletinBoardDialog

Controls Reasons

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmCascadeButton

Controls Reasons

XmPopupMenu MrmNcreateCallback

XmPulldownMenu XmNactivateCallback

XmNcascadingCallback

XmNconvertCallback

XmNdestroyCallback

XmNhelpCallback

XmNpopupHandlerCallback

1665

Motif 2.1—Programmer’s Reference

XmCascadeButtonGadget

Controls Reasons

XmPulldownMenu MrmNcreateCallback

XmNactivateCallback

XmNcascadingCallback

XmNdestroyCallback

XmNhelpCallback

XmCheckBox

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNdestroyCallback

XmBulletinBoard XmNentryCallback

XmBulletinBoardDialog XmNhelpCallback

XmCascadeButton XmNpopupHandlerCallback

XmCascadeButtonGadget XmNsimpleCallback

XmCheckBox XmNtearOffMenuActivateCallback

XmComboBox XmNtearOffMenuDeactivateCallback

XmCommand XmNunmapCallback

XmCommandDialog XmNmapCallback

XmContainer

XmDialogShell

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

1666

UIL Built-In Tables

XmCheckBox

Controls Reasons

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

1667

Motif 2.1—Programmer’s Reference

XmCheckBox

Controls Reasons

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmComboBox

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNdestroyCallback

XmBulletinBoard XmNhelpCallback

XmBulletinBoardDialog XmNpopupHandlerCallback

XmCascadeButton XmNselectionCallback

1668

UIL Built-In Tables

XmComboBox

Controls Reasons

XmCascadeButtonGadget

XmCheckBox

XmComboBox

XmCommand

XmCommandDialog

XmContainer

XmDialogShell

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

1669

Motif 2.1—Programmer’s Reference

XmComboBox

Controls Reasons

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

1670

UIL Built-In Tables

XmComboBox

Controls Reasons

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmCommand

Controls Reasons

XmPopupMenu MrmNcreateCallback

XmNcommandChangedCallback

XmNcommandEnteredCallback

XmNdestroyCallback

XmNfocusCallback

XmNhelpCallback

XmNlosingFocusCallback

XmNmapCallback

XmNpopupHandlerCallback

XmNunmapCallback

XmCommandDialog

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNcommandChangedCallback

XmBulletinBoard XmNcommandEnteredCallback

XmBulletinBoardDialog XmNdestroyCallback

1671

Motif 2.1—Programmer’s Reference

XmCommandDialog

Controls Reasons

XmCascadeButton XmNfocusMovedCallback

XmCascadeButtonGadget XmNhelpCallback

XmCheckBox XmNlosingFocusCallback

XmComboBox XmNmapCallback

XmCommand XmNpopdownCallback

XmCommandDialog XmNpopupCallback

XmContainer XmNpopupHandlerCallback

XmDialogShell XmNrealizeCallback

XmDrawingArea XmNunmapCallback

XmDrawnButton XmNfocusCallback

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

1672

UIL Built-In Tables

XmCommandDialog

Controls Reasons

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

1673

Motif 2.1—Programmer’s Reference

XmCommandDialog

Controls Reasons

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmContainer

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNconvertCallback

XmBulletinBoard XmNdefaultActionCallback

XmBulletinBoardDialog XmNdestinationCallback

XmCascadeButton XmNhelpCallback

XmCascadeButtonGadget XmNoutlineChangedCallback

XmCheckBox XmNpopupHandlerCallback

XmComboBox XmNselectionCallback

XmCommand XmNdestroyCallback

XmCommandDialog

XmContainer

XmDialogShell

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

1674

UIL Built-In Tables

XmContainer

Controls Reasons

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

1675

Motif 2.1—Programmer’s Reference

XmContainer

Controls Reasons

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmDialogShell

Controls Reasons

XmBulletinBoard MrmNcreateCallback

XmCheckBox XmNdestroyCallback

XmComboBox XmNfocusMovedCallback

1676

UIL Built-In Tables

XmDialogShell

Controls Reasons

XmContainer XmNpopdownCallback

XmDrawingArea XmNpopupCallback

XmFileSelectionBox XmNrealizeCallback

XmForm

XmFrame

XmMessageBox

XmNotebook

XmPanedWindow

XmRadioBox

XmRowColumn

XmScale

XmScrolledWindow

XmSelectionBox

XmSpinBox

XmWorkArea

XmDrawingArea

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNconvertCallback

XmBulletinBoard XmNdestinationCallback

XmBulletinBoardDialog XmNdestroyCallback

XmCascadeButton XmNhelpCallback

XmCascadeButtonGadget XmNinputCallback

XmCheckBox XmNpopupHandlerCallback

XmComboBox XmNresizeCallback

1677

Motif 2.1—Programmer’s Reference

XmDrawingArea

Controls Reasons

XmCommand XmNexposeCallback

XmCommandDialog

XmContainer

XmDialogShell

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

1678

UIL Built-In Tables

XmDrawingArea

Controls Reasons

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

1679

Motif 2.1—Programmer’s Reference

XmDrawingArea

Controls Reasons

XmWorkArea

XmWorkingDialog

user_defined

XmDrawnButton

Controls Reasons

XmPopupMenu MrmNcreateCallback

XmNactivateCallback

XmNarmCallback

XmNconvertCallback

XmNdestroyCallback

XmNdisarmCallback

XmNexposeCallback

XmNhelpCallback

XmNpopupHandlerCallback

XmNresizeCallback

XmErrorDialog

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNcancelCallback

XmBulletinBoard XmNdestroyCallback

XmBulletinBoardDialog XmNfocusCallback

XmCascadeButton XmNhelpCallback

XmCascadeButtonGadget XmNlosingFocusCallback

XmCheckBox XmNmapCallback

1680

UIL Built-In Tables

XmErrorDialog

Controls Reasons

XmComboBox XmNokCallback

XmCommand XmNpopdownCallback

XmCommandDialog XmNpopupCallback

XmContainer XmNpopupHandlerCallback

XmDialogShell XmNrealizeCallback

XmDrawingArea XmNunmapCallback

XmDrawnButton XmNfocusMovedCallback

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

1681

Motif 2.1—Programmer’s Reference

XmErrorDialog

Controls Reasons

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

ScrolledList

XmXmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

1682

UIL Built-In Tables

XmErrorDialog

Controls Reasons

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmFileSelectionBox

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNapplyCallback

XmBulletinBoard XmNcancelCallback

XmBulletinBoardDialog XmNdestroyCallback

XmCascadeButton XmNhelpCallback

XmCascadeButtonGadget XmNlosingFocusCallback

XmCheckBox XmNmapCallback

XmComboBox XmNnoMatchCallback

XmCommand XmNokCallback

XmCommandDialog XmNpopupHandlerCallback

XmContainer XmNunmapCallback

XmDialogShell XmNfocusCallback

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

1683

Motif 2.1—Programmer’s Reference

XmFileSelectionBox

Controls Reasons

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

1684

UIL Built-In Tables

XmFileSelectionBox

Controls Reasons

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmFileSelectionDialog

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNapplyCallback

XmBulletinBoard XmNcancelCallback

XmBulletinBoardDialog XmNdestroyCallback

XmCascadeButton XmNfocusMovedCallback

XmCascadeButtonGadget XmNhelpCallback

1685

Motif 2.1—Programmer’s Reference

XmFileSelectionDialog

Controls Reasons

XmCheckBox XmNlosingFocusCallback

XmComboBox XmNmapCallback

XmCommand XmNnoMatchCallback

XmCommandDialog XmNokCallback

XmContainer XmNpopdownCallback

XmDialogShell XmNpopupCallback

XmDrawingArea XmNpopupHandlerCallback

XmDrawnButton XmNrealizeCallback

XmErrorDialog XmNunmapCallback

XmFileSelectionBox XmNfocusCallback

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

1686

UIL Built-In Tables

XmFileSelectionDialog

Controls Reasons

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

1687

Motif 2.1—Programmer’s Reference

XmFileSelectionDialog

Controls Reasons

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmForm

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNdestroyCallback

XmBulletinBoard XmNfocusCallback

XmBulletinBoardDialog XmNhelpCallback

XmCascadeButton XmNmapCallback

XmCascadeButtonGadget XmNpopupHandlerCallback

XmCheckBox XmNunmapCallback

XmComboBox XmNlosingFocusCallback

XmCommand

XmCommandDialog

XmContainer

XmDialogShell

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

1688

UIL Built-In Tables

XmForm

Controls Reasons

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

1689

Motif 2.1—Programmer’s Reference

XmForm

Controls Reasons

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmFormDialog

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNdestroyCallback

XmBulletinBoard XmNfocusCallback

XmBulletinBoardDialog XmNfocusMovedCallback

XmCascadeButton XmNlosingFocusCallback

1690

UIL Built-In Tables

XmFormDialog

Controls Reasons

XmCascadeButtonGadget XmNmapCallback

XmCheckBox XmNpopdownCallback

XmComboBox XmNpopupCallback

XmCommand XmNpopupHandlerCallback

XmCommandDialog XmNrealizeCallback

XmContainer XmNunmapCallback

XmDialogShell XmNhelpCallback

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

1691

Motif 2.1—Programmer’s Reference

XmFormDialog

Controls Reasons

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

1692

UIL Built-In Tables

XmFormDialog

Controls Reasons

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmFrame

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNdestroyCallback

XmBulletinBoard XmNhelpCallback

XmBulletinBoardDialog XmNpopupHandlerCallback

XmCascadeButton

XmCascadeButtonGadget

XmCheckBox

XmComboBox

XmCommand

XmCommandDialog

XmContainer

XmDialogShell

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

1693

Motif 2.1—Programmer’s Reference

XmFrame

Controls Reasons

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

1694

UIL Built-In Tables

XmFrame

Controls Reasons

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmIconGadget

Controls Reasons

XmRenderTable MrmNcreateCallback

XmNdestroyCallback

XmNhelpCallback

1695

Motif 2.1—Programmer’s Reference

XmInformationDialog

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNcancelCallback

XmBulletinBoard XmNdestroyCallback

XmBulletinBoardDialog XmNfocusCallback

XmCascadeButton XmNhelpCallback

XmCascadeButtonGadget XmNlosingFocusCallback

XmCheckBox XmNmapCallback

XmComboBox XmNokCallback

XmCommand XmNpopdownCallback

XmCommandDialog XmNpopupCallback

XmContainer XmNpopupHandlerCallback

XmDialogShell XmNrealizeCallback

XmDrawingArea XmNunmapCallback

XmDrawnButton XmNfocusMovedCallback

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

1696

UIL Built-In Tables

XmInformationDialog

Controls Reasons

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

1697

Motif 2.1—Programmer’s Reference

XmInformationDialog

Controls Reasons

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmLabel

Controls Reasons

XmPopupMenu MrmNcreateCallback

XmRenderTable XmNconvertCallback

XmNdestroyCallback

XmNhelpCallback

XmNpopupHandlerCallback

XmLabelGadget

Controls Reasons

XmRenderTable MrmNcreateCallback

XmNdestroyCallback

XmNhelpCallback

1698

UIL Built-In Tables

XmList

Controls Reasons

XmPopupMenu MrmNcreateCallback

XmRenderTable XmNbrowseSelectionCallback

XmNconvertCallback

XmNdefaultActionCallback

XmNdestinationCallback

XmNdestroyCallback

XmNextendedSelectionCallback

XmNhelpCallback

XmNmultipleSelectionCallback

XmNpopupHandlerCallback

XmNsingleSelectionCallback

XmMainWindow

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNdestroyCallback

XmBulletinBoard XmNhelpCallback

XmBulletinBoardDialog XmNpopupHandlerCallback

XmCascadeButton XmNtraverseObscuredCallback

XmCascadeButtonGadget

XmCheckBox

XmComboBox

XmCommand

XmCommandDialog

XmContainer

XmDialogShell

1699

Motif 2.1—Programmer’s Reference

XmMainWindow

Controls Reasons

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

1700

UIL Built-In Tables

XmMainWindow

Controls Reasons

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

1701

Motif 2.1—Programmer’s Reference

XmMenuBar

Controls Reasons

XmCascadeButton MrmNcreateCallback

XmCascadeButtonGadget XmNdestroyCallback

XmDrawnButton XmNentryCallback

XmLabel XmNhelpCallback

XmLabelGadget XmNmapCallback

XmPopupMenu XmNpopupHandlerCallback

XmPulldownMenu XmNtearOffMenuActivateCallback

XmPushButton XmNtearOffMenuDeactivateCallback

XmPushButtonGadget XmNunmapCallback

XmSeparator

XmSeparatorGadget

XmToggleButton

XmToggleButtonGadget

user_defined

XmMenuShell

Controls Reasons

XmRenderTable MrmNcreateCallback

XmRowColumn XmNdestroyCallback

XmNpopdownCallback

XmNpopupCallback

XmMessageBox

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNcancelCallback

1702

UIL Built-In Tables

XmMessageBox

Controls Reasons

XmBulletinBoard XmNdestroyCallback

XmBulletinBoardDialog XmNfocusCallback

XmCascadeButton XmNlosingFocusCallback

XmCascadeButtonGadget XmNmapCallback

XmCheckBox XmNokCallback

XmComboBox XmNpopupHandlerCallback

XmCommand XmNunmapCallback

XmCommandDialog XmNhelpCallback

XmContainer

XmDialogShell

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

1703

Motif 2.1—Programmer’s Reference

XmMessageBox

Controls Reasons

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

1704

UIL Built-In Tables

XmMessageBox

Controls Reasons

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmMessageDialog

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNcancelCallback

XmBulletinBoard XmNdestroyCallback

XmBulletinBoardDialog XmNfocusCallback

XmCascadeButton XmNhelpCallback

XmCascadeButtonGadget XmNlosingFocusCallback

XmCheckBox XmNmapCallback

XmComboBox XmNokCallback

XmCommand XmNpopdownCallback

XmCommandDialog XmNpopupCallback

XmContainer XmNpopupHandlerCallback

XmDialogShell XmNrealizeCallback

XmDrawingArea XmNunmapCallback

XmDrawnButton XmNfocusMovedCallback

1705

Motif 2.1—Programmer’s Reference

XmMessageDialog

Controls Reasons

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

1706

UIL Built-In Tables

XmMessageDialog

Controls Reasons

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

1707

Motif 2.1—Programmer’s Reference

XmNotebook

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNdestroyCallback

XmBulletinBoard XmNhelpCallback

XmBulletinBoardDialog XmNpageChangedCallback

XmCascadeButton XmNpopupHandlerCallback

XmCascadeButtonGadget

XmCheckBox

XmComboBox

XmCommand

XmCommandDialog

XmContainer

XmDialogShell

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

1708

UIL Built-In Tables

XmNotebook

Controls Reasons

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

1709

Motif 2.1—Programmer’s Reference

XmNotebook

Controls Reasons

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmOptionMenu

Controls Reasons

XmPulldownMenu MrmNcreateCallback

XmNdestroyCallback

XmNentryCallback

XmNhelpCallback

XmNmapCallback

XmNpopupHandlerCallback

XmNtearOffMenuActivateCallback

XmNtearOffMenuDeactivateCallback

XmNunmapCallback

1710

UIL Built-In Tables

XmPanedWindow

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNdestroyCallback

XmBulletinBoard XmNhelpCallback

XmBulletinBoardDialog XmNpopupHandlerCallback

XmCascadeButton

XmCascadeButtonGadget

XmCheckBox

XmComboBox

XmCommand

XmCommandDialog

XmContainer

XmDialogShell

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

1711

Motif 2.1—Programmer’s Reference

XmPanedWindow

Controls Reasons

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

1712

UIL Built-In Tables

XmPanedWindow

Controls Reasons

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmPopupMenu

Controls Reasons

XmCascadeButton MrmNcreateCallback

XmCascadeButtonGadget XmNdestroyCallback

XmDrawnButton XmNentryCallback

XmLabel XmNhelpCallback

XmLabelGadget XmNmapCallback

XmPushButton XmNpopdownCallback

XmPushButtonGadget XmNpopupCallback

XmSeparator XmNpopupHandlerCallback

XmSeparatorGadget XmNtearOffMenuActivateCallback

XmToggleButton XmNtearOffMenuDeactivateCallback

XmToggleButtonGadget XmNunmapCallback

user_defined

1713

Motif 2.1—Programmer’s Reference

XmPromptDialog

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNapplyCallback

XmBulletinBoard XmNcancelCallback

XmBulletinBoardDialog XmNdestroyCallback

XmCascadeButton XmNfocusMovedCallback

XmCascadeButtonGadget XmNhelpCallback

XmCheckBox XmNlosingFocusCallback

XmComboBox XmNmapCallback

XmCommand XmNnoMatchCallback

XmCommandDialog XmNokCallback

XmContainer XmNpopdownCallback

XmDialogShell XmNpopupCallback

XmDrawingArea XmNpopupHandlerCallback

XmDrawnButton XmNrealizeCallback

XmErrorDialog XmNunmapCallback

XmFileSelectionBox XmNfocusCallback

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

1714

UIL Built-In Tables

XmPromptDialog

Controls Reasons

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

1715

Motif 2.1—Programmer’s Reference

XmPromptDialog

Controls Reasons

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmPulldownMenu

Controls Reasons

XmCascadeButton MrmNcreateCallback

XmCascadeButtonGadget XmNdestroyCallback

XmDrawnButton XmNentryCallback

XmLabel XmNhelpCallback

XmLabelGadget XmNmapCallback

XmPushButton XmNpopdownCallback

XmPushButtonGadget XmNpopupCallback

XmSeparator XmNpopupHandlerCallback

XmSeparatorGadget XmNtearOffMenuActivateCallback

XmToggleButton XmNtearOffMenuDeactivateCallback

XmToggleButtonGadget XmNunmapCallback

user_defined

1716

UIL Built-In Tables

XmPushButton

Controls Reasons

XmPopupMenu MrmNcreateCallback

XmNactivateCallback

XmNarmCallback

XmNconvertCallback

XmNdestroyCallback

XmNdisarmCallback

XmNhelpCallback

XmNpopupHandlerCallback

XmPushButtonGadget

Controls Reasons

No children are supported MrmNcreateCallback

XmNactivateCallback

XmNarmCallback

XmNdestroyCallback

XmNdisarmCallback

XmNhelpCallback

XmQuestionDialog

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNcancelCallback

XmBulletinBoard XmNdestroyCallback

XmBulletinBoardDialog XmNfocusCallback

XmCascadeButton XmNhelpCallback

XmCascadeButtonGadget XmNlosingFocusCallback

1717

Motif 2.1—Programmer’s Reference

XmQuestionDialog

Controls Reasons

XmCheckBox XmNmapCallback

XmComboBox XmNokCallback

XmCommand XmNpopdownCallback

XmCommandDialog XmNpopupCallback

XmContainer XmNpopupHandlerCallback

XmDialogShell XmNrealizeCallback

XmDrawingArea XmNunmapCallback

XmDrawnButton XmNfocusMovedCallback

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

1718

UIL Built-In Tables

XmQuestionDialog

Controls Reasons

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

1719

Motif 2.1—Programmer’s Reference

XmQuestionDialog

Controls Reasons

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmRadioBox

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNdestroyCallback

XmBulletinBoard XmNentryCallback

XmBulletinBoardDialog XmNhelpCallback

XmCascadeButton XmNpopupHandlerCallback

XmCascadeButtonGadget XmNtearOffMenuActivateCallback

XmCheckBox XmNtearOffMenuDeactivateCallback

XmComboBox XmNunmapCallback

XmCommand XmNmapCallback

XmCommandDialog

XmContainer

XmDialogShell

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

1720

UIL Built-In Tables

XmRadioBox

Controls Reasons

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

1721

Motif 2.1—Programmer’s Reference

XmRadioBox

Controls Reasons

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmRenderTable

Controls Reasons

XmRendition MrmNcreateCallback

XmNdestroyCallback

1722

UIL Built-In Tables

XmRendition

Controls Reasons

XmTabList MrmNcreateCallback

XmNdestroyCallback

XmRowColumn

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNdestroyCallback

XmBulletinBoard XmNentryCallback

XmBulletinBoardDialog XmNhelpCallback

XmCascadeButton XmNpopupHandlerCallback

XmCascadeButtonGadget XmNtearOffMenuActivateCallback

XmCheckBox XmNtearOffMenuDeactivateCallback

XmComboBox XmNunmapCallback

XmCommand XmNmapCallback

XmCommandDialog

XmContainer

XmDialogShell

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

1723

Motif 2.1—Programmer’s Reference

XmRowColumn

Controls Reasons

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

1724

UIL Built-In Tables

XmRowColumn

Controls Reasons

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmScale

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNconvertCallback

XmBulletinBoard XmNdestroyCallback

XmBulletinBoardDialog XmNdragCallback

XmCascadeButton XmNpopupHandlerCallback

XmCascadeButtonGadget XmNvalueChangedCallback

XmCheckBox XmNhelpCallback

XmComboBox

1725

Motif 2.1—Programmer’s Reference

XmScale

Controls Reasons

XmCommand

XmCommandDialog

XmContainer

XmDialogShell

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

1726

UIL Built-In Tables

XmScale

Controls Reasons

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

1727

Motif 2.1—Programmer’s Reference

XmScale

Controls Reasons

XmWorkArea

XmWorkingDialog

user_defined

XmScrollBar

Controls Reasons

XmPopupMenu MrmNcreateCallback

XmNconvertCallback

XmNdecrementCallback

XmNdestroyCallback

XmNdragCallback

XmNhelpCallback

XmNincrementCallback

XmNpageDecrementCallback

XmNpageIncrementCallback

XmNpopupHandlerCallback

XmNtoBottomCallback

XmNtoTopCallback

XmNvalueChangedCallback

XmScrolledList

Controls Reasons

XmPopupMenu MrmNcreateCallback

XmNbrowseSelectionCallback

XmNconvertCallback

XmNdefaultActionCallback

1728

UIL Built-In Tables

XmScrolledList

Controls Reasons

XmNdestinationCallback

XmNdestroyCallback

XmNextendedSelectionCallback

XmNhelpCallback

XmNmultipleSelectionCallback

XmNpopupHandlerCallback

XmNsingleSelectionCallback

XmNtraverseObscuredCallback

XmScrolledText

Controls Reasons

XmPopupMenu MrmNcreateCallback

XmNactivateCallback

XmNconvertCallback

XmNdestinationCallback

XmNdestroyCallback

XmNfocusCallback

XmNgainPrimaryCallback

XmNhelpCallback

XmNlosePrimaryCallback

XmNlosingFocusCallback

XmNmodifyVerifyCallback

XmNmodifyVerifyCallbackWcs

XmNmotionVerifyCallback

XmNpopupHandlerCallback

1729

Motif 2.1—Programmer’s Reference

XmScrolledText

Controls Reasons

XmNtraverseObscuredCallback

XmNvalueChangedCallback

XmScrolledWindow

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNdestroyCallback

XmBulletinBoard XmNhelpCallback

XmBulletinBoardDialog XmNpopupHandlerCallback

XmCascadeButton XmNtraverseObscuredCallback

XmCascadeButtonGadget

XmCheckBox

XmComboBox

XmCommand

XmCommandDialog

XmContainer

XmDialogShell

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

1730

UIL Built-In Tables

XmScrolledWindow

Controls Reasons

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

1731

Motif 2.1—Programmer’s Reference

XmScrolledWindow

Controls Reasons

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmSelectionBox

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNapplyCallback

XmBulletinBoard XmNcancelCallback

XmBulletinBoardDialog XmNdestroyCallback

XmCascadeButton XmNhelpCallback

XmCascadeButtonGadget XmNlosingFocusCallback

XmCheckBox XmNmapCallback

XmComboBox XmNnoMatchCallback

1732

UIL Built-In Tables

XmSelectionBox

Controls Reasons

XmCommand XmNokCallback

XmCommandDialog XmNpopupHandlerCallback

XmContainer XmNunmapCallback

XmDialogShell XmNfocusCallback

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

1733

Motif 2.1—Programmer’s Reference

XmSelectionBox

Controls Reasons

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

1734

UIL Built-In Tables

XmSelectionBox

Controls Reasons

XmWorkArea

XmWorkingDialog

user_defined

XmSelectionDialog

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNapplyCallback

XmBulletinBoard XmNcancelCallback

XmBulletinBoardDialog XmNdestroyCallback

XmCascadeButton XmNfocusMovedCallback

XmCascadeButtonGadget XmNhelpCallback

XmCheckBox XmNlosingFocusCallback

XmComboBox XmNmapCallback

XmCommand XmNnoMatchCallback

XmCommandDialog XmNokCallback

XmContainer XmNpopdownCallback

XmDialogShell XmNpopupCallback

XmDrawingArea XmNpopupHandlerCallback

XmDrawnButton XmNrealizeCallback

XmErrorDialog XmNunmapCallback

XmFileSelectionBox XmNfocusCallback

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

1735

Motif 2.1—Programmer’s Reference

XmSelectionDialog

Controls Reasons

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

1736

UIL Built-In Tables

XmSelectionDialog

Controls Reasons

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmSeparator

Controls Reasons

XmPopupMenu MrmNcreateCallback

XmNconvertCallback

XmNdestroyCallback

XmNhelpCallback

XmNpopupHandlerCallback

1737

Motif 2.1—Programmer’s Reference

XmSeparatorGadget

Controls Reasons

No children are supported MrmNcreateCallback

XmNdestroyCallback

XmNhelpCallback

XmSimpleSpinBox

Controls Reasons

XmCascadeButton MrmNcreateCallback

XmCascadeButtonGadget XmNactivateCallback

XmDrawnButton XmNdestroyCallback

XmLabel XmNhelpCallback

XmLabelGadget XmNmodifyVerifyCallback

XmPushButton XmNpopupHandlerCallback

XmPushButtonGadget XmNvalueChangedCallback

XmSeparator XmNlosingFocusCallback

XmSeparatorGadget

XmToggleButton

XmToggleButtonGadget

user_defined

XmSpinBox

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNactivateCallback

XmBulletinBoard XmNdestroyCallback

XmBulletinBoardDialog XmNhelpCallback

XmCascadeButton XmNmodifyVerifyCallback

1738

UIL Built-In Tables

XmSpinBox

Controls Reasons

XmCascadeButtonGadget XmNpopupHandlerCallback

XmCheckBox XmNvalueChangedCallback

XmComboBox XmNlosingFocusCallback

XmCommand

XmCommandDialog

XmContainer

XmDialogShell

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

1739

Motif 2.1—Programmer’s Reference

XmSpinBox

Controls Reasons

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

1740

UIL Built-In Tables

XmSpinBox

Controls Reasons

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmTab

Controls Reasons

No children are supported MrmNcreateCallback

XmNdestroyCallback

XmTabList

Controls Reasons

XmTab MrmNcreateCallback

XmNdestroyCallback

XmTearOffButton

Controls Reasons

XmPopupMenu MrmNcreateCallback

XmNactivateCallback

XmNarmCallback

XmNconvertCallback

XmNdestroyCallback

XmNdisarmCallback

1741

Motif 2.1—Programmer’s Reference

XmTearOffButton

Controls Reasons

XmNhelpCallback

XmNpopupHandlerCallback

XmTemplateDialog

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNcancelCallback

XmBulletinBoard XmNdestroyCallback

XmBulletinBoardDialog XmNfocusCallback

XmCascadeButton XmNhelpCallback

XmCascadeButtonGadget XmNlosingFocusCallback

XmCheckBox XmNmapCallback

XmComboBox XmNokCallback

XmCommand XmNpopdownCallback

XmCommandDialog XmNpopupCallback

XmContainer XmNpopupHandlerCallback

XmDialogShell XmNrealizeCallback

XmDrawingArea XmNunmapCallback

XmDrawnButton XmNfocusMovedCallback

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

1742

UIL Built-In Tables

XmTemplateDialog

Controls Reasons

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

1743

Motif 2.1—Programmer’s Reference

XmTemplateDialog

Controls Reasons

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmText

Controls Reasons

XmPopupMenu MrmNcreateCallback

XmRenderTable XmNactivateCallback

XmNconvertCallback

XmNdestinationCallback

XmNdestroyCallback

XmNfocusCallback

XmNgainPrimaryCallback

XmNhelpCallback

1744

UIL Built-In Tables

XmText

Controls Reasons

XmNlosePrimaryCallback

XmNlosingFocusCallback

XmNmodifyVerifyCallback

XmNmodifyVerifyCallbackWcs

XmNmotionVerifyCallback

XmNpopupHandlerCallback

XmNvalueChangedCallback

XmTextField

Controls Reasons

XmPopupMenu MrmNcreateCallback

XmRenderTable XmNactivateCallback

XmNconvertCallback

XmNdestinationCallback

XmNdestroyCallback

XmNfocusCallback

XmNgainPrimaryCallback

XmNhelpCallback

XmNlosePrimaryCallback

XmNlosingFocusCallback

XmNmodifyVerifyCallback

XmNmodifyVerifyCallbackWcs

XmNmotionVerifyCallback

XmNpopupHandlerCallback

XmNvalueChangedCallback

1745

Motif 2.1—Programmer’s Reference

XmToggleButton

Controls Reasons

XmPopupMenu MrmNcreateCallback

XmNarmCallback

XmNconvertCallback

XmNdestroyCallback

XmNdisarmCallback

XmNhelpCallback

XmNpopupHandlerCallback

XmNvalueChangedCallback

XmToggleButtonGadget

Controls Reasons

No children are supported MrmNcreateCallback

XmNarmCallback

XmNdestroyCallback

XmNdisarmCallback

XmNhelpCallback

XmNvalueChangedCallback

XmWarningDialog

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNcancelCallback

XmBulletinBoard XmNdestroyCallback

XmBulletinBoardDialog XmNfocusCallback

XmCascadeButton XmNhelpCallback

XmCascadeButtonGadget XmNlosingFocusCallback

1746

UIL Built-In Tables

XmWarningDialog

Controls Reasons

XmCheckBox XmNmapCallback

XmComboBox XmNokCallback

XmCommand XmNpopdownCallback

XmCommandDialog XmNpopupCallback

XmContainer XmNpopupHandlerCallback

XmDialogShell XmNrealizeCallback

XmDrawingArea XmNunmapCallback

XmDrawnButton XmNfocusMovedCallback

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

1747

Motif 2.1—Programmer’s Reference

XmWarningDialog

Controls Reasons

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

1748

UIL Built-In Tables

XmWarningDialog

Controls Reasons

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmWorkArea

Controls Reasons

XmArrowButton MrmNcreateCallback

XmArrowButtonGadget XmNdestroyCallback

XmBulletinBoard XmNentryCallback

XmBulletinBoardDialog XmNhelpCallback

XmCascadeButton XmNpopupHandlerCallback

XmCascadeButtonGadget XmNtearOffMenuActivateCallback

XmCheckBox XmNtearOffMenuDeactivateCallback

XmComboBox XmNunmapCallback

XmCommand XmNmapCallback

XmCommandDialog

XmContainer

XmDialogShell

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

1749

Motif 2.1—Programmer’s Reference

XmWorkArea

Controls Reasons

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

1750

UIL Built-In Tables

XmWorkArea

Controls Reasons

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

XmWorkingDialog

Controls Reasons

XmArrowButton

XmArrowButtonGadget

XmBulletinBoard

XmBulletinBoardDialog

XmCascadeButton

1751

Motif 2.1—Programmer’s Reference

XmWorkingDialog

Controls Reasons

XmCascadeButtonGadget

XmCheckBox

XmComboBox

XmCommand

XmCommandDialog

XmContainer

XmDialogShell

XmDrawingArea

XmDrawnButton

XmErrorDialog

XmFileSelectionBox

XmFileSelectionDialog

XmForm

XmFormDialog

XmFrame

XmIconGadget

XmInformationDialog

XmLabel

XmLabelGadget

XmList

XmMainWindow

XmMenuBar

XmMenuShell

XmMessageBox

XmMessageDialog

1752

UIL Built-In Tables

XmWorkingDialog

Controls Reasons

XmNotebook

XmOptionMenu

XmPanedWindow

XmPopupMenu

XmPromptDialog

XmPulldownMenu

XmPushButton

XmPushButtonGadget

XmQuestionDialog

XmRadioBox

XmRenderTable

XmRowColumn

XmScale

XmScrollBar

XmScrolledList

XmScrolledText

XmScrolledWindow

XmSelectionBox

XmSelectionDialog

XmSeparator

XmSeparatorGadget

XmSpinBox

XmTemplateDialog

XmText

XmTextField

1753

Motif 2.1—Programmer’s Reference

XmWorkingDialog

Controls Reasons

XmToggleButton

XmToggleButtonGadget

XmWarningDialog

XmWorkArea

XmWorkingDialog

user_defined

1754

Appendix C
UIL Arguments

This appendix provides an alphabetical listing of the UIL arguments and their data
types. Each argument name is the same as the corresponding Motif Toolkit resource
name. For information on which arguments are supported for which objects and for
the default values of arguments, see the widget reference pages.

UIL Argument Name Argument Type

XmNaccelerator string

XmNacceleratorText compound_string

XmNaccelerators translation_table

XmNadjustLast boolean

XmNadjustMargin boolean

XmNalignment unsigned char

XmNallowOverlap boolean

XmNallowResize boolean

XmNallowShellResize boolean

1755

Motif 2.1—Programmer’s Reference

UIL Argument Name Argument Type

XmNancestorSensitive boolean

XmNapplyLabelString compound_string

XmNarmColor color

XmNarmPixmap pixmap

XmNarrowDirection integer

XmNarrowLayout unsigned char

XmNarrowOrientation unsigned char

XmNarrowSensitivity integer

XmNarrowSize horizontal_float

XmNarrowSpacing horizontal_float

XmNaudibleWarning integer

XmNautoDragModel integer

XmNautoShowCursorPosition boolean

XmNautoUnmanage boolean

XmNautomaticSelection boolean

XmNbackPageBackground color

XmNbackPageForeground color

XmNbackPageNumber integer

XmNbackPagePlacement integer

XmNbackPageSize horizontal_float

XmNbackground color

XmNbackgroundPixmap pixmap

XmNbaseHeight vertical_float

XmNbaseWidth horizontal_float

XmNbindingPixmap pixmap

XmNbindingType integer

1756

UIL Arguments

UIL Argument Name Argument Type

XmNbindingWidth horizontal_float

XmNblinkRate integer

XmNborderColor color

XmNborderPixmap pixmap

XmNborderWidth horizontal_float

XmNbottomAttachment integer

XmNbottomOffset vertical_float

XmNbottomPosition integer

XmNbottomShadowColor color

XmNbottomShadowPixmap pixmap

XmNbottomWidget widget_ref

XmNbuttonCount integer

XmNbuttonFontList font_table

XmNbuttonRenderTable widget_ref

XmNbuttons string_table

XmNcancelButton widget_ref

XmNcancelLabelString compound_string

XmNcascadePixmap pixmap

XmNchildHorizontalAlignment integer

XmNchildHorizontalSpacing horizontal_float

XmNchildPlacement integer

XmNchildType integer

XmNchildVerticalAlignment integer

XmNcollapsedStatePixmap pixmap

XmNcolormap identifier

XmNcolumns short

1757

Motif 2.1—Programmer’s Reference

UIL Argument Name Argument Type

XmNcomboBoxType integer

XmNcommand compound_string

XmNcommandWindow widget_ref

XmNcommandWindowLocation integer

XmNcreatePopupChildProc any

XmNcurrentPageNumber integer

XmNcursorPosition integer

XmNcursorPositionVisible boolean

XmNdarkThreshold integer

XmNdecimal string

XmNdecimalPoints integer

XmNdefaultArrowSensitivity integer

XmNdefaultButton widget_ref

XmNdefaultButtonShadowThickness horizontal_float

XmNdefaultButtonType integer

XmNdefaultFontList font_table

XmNdefaultPixmapResolution unsigned short

XmNdefaultPosition boolean

XmNdeleteResponse integer

XmNdepth identifier

XmNdetail string_table

XmNdetailColumnHeading string_table

XmNdetailColumnHeadingCount integer

XmNdetailCount integer

XmNdetailOrder integer_table

XmNdetailOrderCount integer

1758

UIL Arguments

UIL Argument Name Argument Type

XmNdetailTabList widget_ref

XmNdialogStyle integer

XmNdialogTitle compound_string

XmNdialogType integer

XmNdirListItemCount integer

XmNdirListItems string_table

XmNdirListLabelString compound_string

XmNdirMask compound_string

XmNdirSearchProc any

XmNdirSpec compound_string

XmNdirectory compound_string

XmNdirectoryValid boolean

XmNdoubleClickInterval integer

XmNeditMode integer

XmNeditable boolean

XmNeditingPath integer

XmNenableThinThickness boolean

XmNendJobCallback XtCallbackList

XmNentryAlignment integer

XmNentryBorder horizontal_float

XmNentryClass class_rec_name

XmNentryParent widget_ref

XmNentryVerticalAlignment integer

XmNentryViewType integer

XmNexpandedStatePixmap pixmap

XmNfileListItemCount integer

1759

Motif 2.1—Programmer’s Reference

UIL Argument Name Argument Type

XmNfileListItems XmStringTable

XmNfileListLabelString compound_string

XmNfileSearchProc any

XmNfileTypeMask integer

XmNfillOnArm boolean

XmNfillOnSelect boolean

XmNfilterLabelString compound_string

XmNfirstPageNumber integer

XmNfont font

XmNfontList font_table

XmNfontName string

XmNfontType integer

XmNforeground color

XmNforegroundThreshold integer

XmNfractionBase integer

XmNframeBackground color

XmNframeChildType integer

XmNframeShadowThickness horizontal_float

XmNgeometry string

XmNheight vertical_float

XmNheightInc vertical_float

XmNhelpLabelString compound_string

XmNhighlightColor color

XmNhighlightOnEnter boolean

XmNhighlightPixmap pixmap

XmNhighlightThickness horizontal_float

1760

UIL Arguments

UIL Argument Name Argument Type

XmNhistoryItemCount integer

XmNhistoryItems string_table

XmNhistoryMaxItems integer

XmNhistoryVisibleItemCount integer

XmNhorizontalScrollBar widget_ref

XmNhorizontalSpacing horizontal_float

XmNiconMask pixmap

XmNiconPixmap pixmap

XmNiconWindow any

XmNiconX horizontal_float

XmNiconY vertical_float

XmNincrement integer

XmNincrementValue integer

XmNindeterminatePixmap pixmap

XmNindicatorOn integer

XmNindicatorSize horizontal_float

XmNindicatorType integer

XmNinitialDelay integer

XmNinitialFocus widget_ref

XmNinitialResourcesPersistent boolean

XmNinitialState integer

XmNinput boolean

XmNinputMethod string

XmNinputPolicy integer

XmNinsertPosition identifier

XmNisAligned boolean

1761

Motif 2.1—Programmer’s Reference

UIL Argument Name Argument Type

XmNisHomogeneous boolean

XmNitemCount integer

XmNitems string_table

XmNkeyboardFocusPolicy integer

XmNlabelFontList font_table

XmNlabelInsensitivePixmap pixmap

XmNlabelPixmap pixmap

XmNlabelRenderTable widget_ref

XmNlabelString compound_string

XmNlabelType integer

XmNlargeCellHeight vertical_float

XmNlargeCellWidth horizontal_float

XmNlargeIconMask pixmap

XmNlargeIconPixmap pixmap

XmNlargeIconX horizontal_float

XmNlargeIconY vertical_float

XmNlastPageNumber integer

XmNlayoutDirection integer

XmNlayoutType integer

XmNleftAttachment integer

XmNleftOffset horizontal_float

XmNleftPosition integer

XmNleftWidget widget_ref

XmNlightThreshold integer

XmNlist widget

XmNlistItemCount integer

1762

UIL Arguments

UIL Argument Name Argument Type

XmNlistItems string_table

XmNlistLabelString compound_string

XmNlistMarginHeight vertical_float

XmNlistMarginWidth horizontal_float

XmNlistSizePolicy integer

XmNlistSpacing horizontal_float

XmNlistUpdated boolean

XmNlistVisibleItemCount integer

XmNloadModel integer

XmNmainWindowMarginHeight vertical_float

XmNmainWindowMarginWidth horizontal_float

XmNmajorTabSpacing vertical_float

XmNmappedWhenManaged boolean

XmNmappingDelay integer

XmNmargin horizontal_float

XmNmarginBottom vertical_float

XmNmarginHeight dimension

XmNmarginLeft horizontal_float

XmNmarginRight horizontal_float

XmNmarginTop vertical_float

XmNmarginWidth dimension

XmNmatchBehavior integer

XmNmaxAspectX integer

XmNmaxHeight vertical_float

XmNmaxLength integer

XmNmaxWidth horizontal_float

1763

Motif 2.1—Programmer’s Reference

UIL Argument Name Argument Type

XmNmaximum integer

XmNmaximumValue integer

XmNmenuAccelerator string

XmNmenuBar widget_ref

XmNmenuHelpWidget widget_ref

XmNmenuHistory widget_ref

XmNmenuPost string

XmNmessageAlignment integer

XmNmessageString compound_string

XmNmessageWindow widget_ref

XmNminAspectX integer

XmNminAspectY integer

XmNminHeight vertical_float

XmNminWidth horizontal_float

XmNminimizeButtons boolean

XmNminimum integer

XmNminimumValue integer

XmNminorTabSpacing vertical_float

XmNmnemonic keysym

XmNmnemonic keysym

XmNmnemonicCharSet string

XmNmultiClick integer

XmNmustMatch boolean

XmNmwmDecorations integer

XmNmwmFunctions integer

XmNmwmInputMode integer

1764

UIL Arguments

UIL Argument Name Argument Type

XmNmwmMenu string

XmNnavigationType integer

XmNnavigationType integer

XmNnoMatchString compound_string

XmNnoResize boolean

XmNnotebookChildType integer

XmNnumColumns integer

XmNnumValues integer

XmNoffsetModel integer

XmNokLabelString compound_string

XmNorientation integer

XmNoutlineButtonPolicy integer

XmNoutlineColumnWidth horizontal_float

XmNoutlineIndentation horizontal_float

XmNoutlineLineStyle integer

XmNoutlineState integer

XmNoverrideRedirect boolean

XmNpacking integer

XmNpageIncrement integer

XmNpageNumber integer

XmNpageSetupCallback XtCallbackList

XmNpaneMaximum horizontal_float

XmNpattern compound_string

XmNpdmNotificationCallback XtCallbackList

XmNpendingDelete boolean

XmNpopupEnabled boolean

1765

Motif 2.1—Programmer’s Reference

UIL Argument Name Argument Type

XmNposition integer

XmNpositionIndex integer

XmNpositionMode XtEnum

XmNpositionType unsigned char

XmNpreeditType string

XmNprimaryOwnership integer

XmNprintOrientation string

XmNprintOrientations string

XmNprintResolution unsigned int

XmNprintResolutions unsigned int*

XmNprocessingDirection integer

XmNpromptString compound_string

XmNpushButtonEnabled boolean

XmNqualifySearchDataProc any

XmNradioAlwaysOne boolean

XmNradioBehavior boolean

XmNrecomputeSize boolean

XmNrefigureMode boolean

XmNrenderTable widget_ref

XmNrepeatDelay integer

XmNresizable boolean

XmNresizeHeight boolean

XmNresizePolicy integer

XmNresizeWidth boolean

XmNrightAttachment integer

XmNrightOffset horizontal_float

1766

UIL Arguments

UIL Argument Name Argument Type

XmNrightPosition integer

XmNrightWidget widget_ref

XmNrowColumnType integer

XmNrows short

XmNrubberPositioning boolean

XmNsashHeight horizontal_float

XmNsashIndent horizontal_float

XmNsashShadowThickness horizontal_float

XmNsashWidth horizontal_float

XmNsaveUnder boolean

XmNscaleHeight vertical_float

XmNscaleMultiple integer

XmNscaleWidth horizontal_float

XmNscreen identifier

XmNscrollBarDisplayPolicy integer

XmNscrollBarPlacement integer

XmNscrollHorizontal boolean

XmNscrollLeftSide boolean

XmNscrollTopSide boolean

XmNscrollVertical boolean

XmNscrolledWindowChildType integer

XmNscrolledWindowMarginHeight integer

XmNscrolledWindowMarginWidth integer

XmNscrollingPolicy integer

XmNselectColor color

XmNselectInsensitivePixmap pixmap

1767

Motif 2.1—Programmer’s Reference

UIL Argument Name Argument Type

XmNselectPixmap pixmap

XmNselectThreshold integer

XmNselectedItem compound_string

XmNselectedItemCount integer

XmNselectedItems string_table

XmNselectedPosition integer

XmNselectedPositionCount integer

XmNselectedPositions integer_table

XmNselectionArray integer_table

XmNselectionArrayCount integer

XmNselectionLabelString compound_string

XmNselectionMode integer

XmNselectionPolicy integer

XmNselectionTechnique integer

XmNsensitive boolean

XmNseparatorOn boolean

XmNseparatorType integer

XmNset integer

XmNshadowThickness horizontal_float

XmNshadowType integer

XmNshellUnitType integer

XmNshowArrows integer

XmNshowAsDefault integer

XmNshowSeparator boolean

XmNshowValue integer

XmNskipAdjust boolean

1768

UIL Arguments

UIL Argument Name Argument Type

XmNsliderSize integer

XmNsliderVisual integer

XmNslidingMode integer

XmNsmallCellHeight vertical_float

XmNsmallCellWidth horizontal_float

XmNsmallIconMask pixmap

XmNsmallIconPixmap pixmap

XmNsmallIconX horizontal_float

XmNsmallIconY vertical_float

XmNsnapBackMultiple integer

XmNsource any

XmNspacing dimension

XmNspatialIncludeModel integer

XmNspatialResizeModel integer

XmNspatialSnapModel integer

XmNspatialStyle integer

XmNspinBoxChildType integer

XmNstartJobCallback XtCallbackList

XmNstrikethruType integer

XmNstringDirection integer

XmNsubMenuId widget_ref

XmNsymbolPixmap pixmap

XmNtabValue float

XmNtag string

XmNtearOffModel integer

XmNtearOffTitle string

1769

Motif 2.1—Programmer’s Reference

UIL Argument Name Argument Type

XmNtextAccelerators translation_table

XmNtextColumns integer

XmNtextField widget

XmNtextFontList font_table

XmNtextPath integer

XmNtextRenderTable widget_ref

XmNtextString compound_string

XmNtextTranslations translation_table

XmNtitle string

XmNtitleEncoding any

XmNtitleString compound_string

XmNtoggleMode integer

XmNtopAttachment integer

XmNtopCharacter integer

XmNtopItemPosition integer

XmNtopOffset vertical_float

XmNtopPosition integer

XmNtopShadowColor color

XmNtopShadowPixmap pixmap

XmNtopWidget widget_ref

XmNtotalLines integer

XmNtransient boolean

XmNtransientFor widget_ref

XmNtranslations translation_table

XmNtraversalOn boolean

XmNtroughColor color

1770

UIL Arguments

UIL Argument Name Argument Type

XmNunderlineType integer

XmNunitType integer

XmNunselectColor color

XmNuseAsyncGeometry boolean

XmNuserData any

XmNvalue any

XmNvalueWcs wide_character

XmNvalues string_table

XmNverifyBell boolean

XmNverifyPreedit boolean

XmNverticalScrollBar widget_ref

XmNverticalSpacing vertical_float

XmNviewType integer

XmNvisibleItemCount integer

XmNvisibleWhenOff boolean

XmNvisual any

XmNvisualEmphasis integer

XmNvisualPolicy integer

XmNwaitForWm boolean

XmNwhichButton integer

XmNwidth horizontal_float

XmNwidthInc horizontal_float

XmNwinGravity integer

XmNwindowGroup any

XmNwmTimeout integer

XmNwordWrap boolean

1771

Motif 2.1—Programmer’s Reference

UIL Argument Name Argument Type

XmNworkWindow widget_ref

XmNx horizontal_float

XmNy vertical_float

1772

Appendix D
UIL Diagnostic Messages

This appendix lists the diagnostic messages produced by the UIL compiler. The
severity, a description of the message, and a suggestion for correcting the problem are
listed for each message. The following strings are used to represent data that varies
in the actual message you receive from the UIL compiler:

String Data Represented

%c Character

%d Decimal number

%s String

Messages are listed alphabetically by IDENT code.

add_source additional UIL source file: %s was ignored

Severity: Error More than one source file was specified. Only the first
source file will be compiled.

1773

Motif 2.1—Programmer’s Reference

User Action: Compile additional source files using separate invocations
of the compiler.

arg_count procedure %s was previously declared with %d arguments

Severity: Error The declaration of the marked procedure specified
a different number of arguments than are present in this procedure
reference.

User Action: Check that you are calling the correct function. If you
intend to call the procedure with a varying number of arguments, omit
the argument list in the procedure declaration.

arg_type found %s value - procedure %s argument must be %s value

Severity: Error The declaration of the marked procedure specified a
different type of argument than is present in this procedure reference.

User Action: Check that you are passing the correct argument to
the correct function. If you intend to call the procedure with varying
argument types, declare the procedure specifyingany for the type of the
argument.

backslash_ignored
unknown escape sequence "\%c" - ignored

Severity: Error A backslash was followed by an unknown escape
character. The \ (backslash) is the escape character in UIL. A selected
set of single characters can follow a backslash such as \n for newline or
\\ to insert a backslash. The character following the backslash was not
one of the selected set.

User Action: If you want to add a backslash, use \\. See theUIL(5X)
reference page for a description of the supported escape sequences.

bad_database
error reading binary database

Severity: Severe The compiler encountered an error in reading a binary
widget meta-language description file.

User Action: Check that the file specified to the--wmd command line
argument is a valid widget meta-language description file.

bad_lang_value
$LANG contains an unknown character set

1774

UIL Diagnostic Messages

Severity: Error The character set portion of the locale specified in the
LANG environment variable does not correspond to one of the character
sets known to the UIL compiler.

User Action: See theUIL(5X) reference page for a description of the
supported character sets. Change the value of $LANG to contain one of
the known character sets.

bug_check internal error: %s

Severity: Severe The compiler diagnosed an internal error.

User Action: Submit a software problem report.

cannot_convert
cannot convert %s type to %s type

Severity: Error The compiler could not perform the specified implicit
type conversion.

User Action: Check that the value being specified is what is desired
and that the type of the value being specified can be converted to the
requested type. See theUIL(5X) reference page for a description of
standard type conversions and Appendix C for a list of UIL argument
types.

circular_def widget %s is part of a circular definition

Severity: Error The indicated item contains a reference to the widget
within which it is defined, either within its own definition or within the
definition of one of the objects in the widget tree it controls.

User Action: Change the definition of the indicated item so that it does
not reference the widget within which it is defined.

circular_ref the %s value is circularly defined

Severity: Error The indicated value is referenced either within its own
declaration or recursively within the declaration of one of the values it
depends on.

User Action: Change the declaration of the indicated value so that it
does not depend on itself.

control_char
unprintable character \%d\ ignored

1775

Motif 2.1—Programmer’s Reference

Severity: Error The compiler encountered an illegal control character in
the UIL specification file. The decimal value of the character is given
between the \ (backslash) characters.

User Action: Replace the character with the sequence specified in the
message (for example, \3 if the control character’s internal value is
3). UIL provides several built-in control characters such as \n and \r
for newline and carriage return. See theUIL(5X) reference page for a
complete list of supported escape sequences.

create_proc
creation procedure is not supported by the %s widget

Severity: Error You specified a creation procedure for a Motif Toolkit
widget. You can specify a creation procedure only for a user-defined
widget.

User Action: Remove the procedure clause following the object type.

create_proc_inv
creation procedure is not allowed in a %s widget reference

Severity: Error You specified a creation procedure when referencing an
object. You can specify a creation procedure only when you declare the
object.

User Action: Remove the procedure clause following the object type.

create_proc_req
creation procedure is required in a %s widget declaration

Severity: Error When defining a user-defined widget, you must specify
the name of the creation function for creating an instance of this widget.

User Action: Insert a procedure clause following the widget type in
the widget declaration. You also need to declare the creation procedure
using a procedure declaration. For example:

procedure my_creation_proc();

object list_box:

user_defined procedure

my_creation_proc()

{ arguments ... };

ctx_req context requires a %s - %s was specified

1776

UIL Diagnostic Messages

Severity: Error At the point marked in the specification, one type of
object (such as a widget) is required and your specification supplied a
different type of object (such as value).

User Action: Check for misspelling or that you have referred to the
intended object.

default_charset
%s used as charset name; %s used as charset component

Severity: Informational If UIL encounters a character set that is neither a
built-in character set nor user-defined, the character set of the string will
be set toXmFONTLIST_DEFAULT_TAG . This message is printed for
each unique chararacter that it had to set. In the message, the first string
is the character set name the user used, and the second string is usually
XmFONTLIST_DEFAULT_TAG .

different_units
incompatible unit types for arithmetic operation

Severity: Severe Check for incompatible unit types for the requested
arithmetic operation.

dup_letter color letter used for prior color in this table

Severity: Error Each of the letters used to represent a color in a color
table must be unique. If not, that letter in an icon would represent more
than one color; each pixel can have only one color associated with it at
a time. The letter marked has been assigned to more than one color.

User Action: Choose which color the letter is to represent and remove
any duplicates or assign them a new character.

dup_list %s %s already specified for this %s %s

Severity: Error A widget or gadget declaration can have at most one
arguments list, one callbacks list, and one controls list.

User Action: If you want to specify multiple lists of arguments, controls,
and callbacks, you can do so within one list. For example:

arguments { arguments_list1;

arguments_list2; };

dupl_opt duplicate option \ "%s" \ was ignored

1777

Motif 2.1—Programmer’s Reference

Severity: Warning The same command line option has been repeated
more than once (for example, the "-o" option or the "-v" option)

User Action: Remove duplicate command line option.

future_version
binary database compiled with a future version

Severity: Severe The binary widget meta-language description file was
compiled with a later version of Motif than that used by the UIL
compiler.

User Action: Either get a later version of the UIL compiler or a widget
meta-language description file compiled with an earlier version of Motif.

gadget_not_sup
%s gadget is not supported - %s widget will be used instead

Severity: Warning The indicated object type does not support a gadget
variant; only a widget variant is supported for this object type. The UIL
compiler ignores the gadget indication, and creates widgets of this object
type.

User Action: Specify that this object type is a widget instead of a
gadget.

icon_letter row %d, column %d: letter \"%c"\ not in color table

Severity: Error You have specified a color to be used in an icon that
is not in that icon’s color table. The invalid color is identified in the
message by displaying the letter used to represent that color between
the \ (backslashes). This letter was not defined in the specified color
table.

User Action: Either add the color to the icon’s color table or use a
character representing a color in the color table. The default color table
defines ’’(space) as background and ’*’ (asterisk) as foreground.

icon_width row %d must have same width as row 1

Severity: Error The icons supported by UIL are rectangular (that is, x
pixels wide by y pixels high). As a result, each of the strings used to
represent a row of pixels in an icon must have the same length. The
specified row does not have the same length as the first row.

User Action: Make all the strings in the icon function the same length.

1778

UIL Diagnostic Messages

include_file invalid include file name

Severity: Severe The include file name was not specified as a string
literal.

User Action: Ensure that the include file name is a single or double
quoted string literal and not a concatenated string or a value reference.

inv_module invalid module structure - check UIL module syntax

Severity: Error The structure of the UIL module is incorrect.

User Action: If there are any syntax errors reported, fix them and
recompile. For example, if the error occurs before the first object
declaration (that is, before your value and object declarations), check
the syntax of the module header for unwanted; (semicolons) after the
module clauses. If the error occurs at the end of the module, check that
the module concludes with the keywords "end module;".

invalid_enumval
the %s argument does not support the %s enumerated value

Severity: Warning The indicated enumerated value is not valid for the
indicated argument.

User Action: Check the documentation of the indicated argument to
determine the correct enumerated values it supports.

list_item %s item not allowed in %s %s

Severity: Error The indicated list item is not of the type required by the
list. Arguments lists must contain argument entries, callbacks lists must
contain callback entries, controls lists must contain control entries, and
procedures lists must contain callback entries.

User Action: Check the syntax for the type of list entry that is required
in this context and change the indicated list item.

listing_open
error opening listing file: %s

Severity: Severe The compiler could not create the listing file noted in
the message.

User Action: Check that you have write access to the directory you
specified to hold the listing file.

1779

Motif 2.1—Programmer’s Reference

listing_write
error writing to listing file: %s

Severity: Severe The compiler could not write a line into the listing file
noted in the message.

User Action: Check to see that there is adequate space on the disk
specified to hold the listing file.

miss_opt_arg
%s missing following \ "%s" \ option

Severity: Error You used a command line option that requires an
argument and you did not provide that argument.

User Action: Omit the option or provide the argument.

name_too_long
name exceeds 31 characters - truncated to: %s

Severity: Error The UIL compiler encountered a name longer than
31 characters. The compiler truncated the name to the leftmost 31
characters.

User Action: Shorten the name in the UIL module source.

names place names clause before other module clauses

Severity: Error The case-sensitivity clause, if specified, must be the first
clause following the module’s name. You have inserted another module
clause before this clause.

User Action: Reorder the module clauses so that the case-sensitivity
clause is first.

never_def %s %s was never defined

Severity: Error Certain UIL objects such as gadgets and widgets can be
referred to before they are defined. The marked object is such an object.
However, the compiler never found the object’s declaration.

User Action: Check for misspelling. If the module is case sensitive, the
spellings of names in declarations and in references must match exactly.

no_enumset the %s argument does not support enumerated values

Severity: Warning The indicated argument does not support enumerated
values.

1780

UIL Diagnostic Messages

User Action: Check the documentation of the argument to determine
the correct type of value to provide for it.

no_source no source file specified

Severity: Severe No source file was specified to compile.

User Action: Specify the name of a UIL specification file to compile.

no_uid no UID file was produced

Severity: Informational If the compiler reported error or severe
diagnostics (that is, any of the diagnostic abbreviations starting with
%UIL-E or %UIL-F), a UID file is not created. This diagnostic informs
you that the compiler did not produce a UID file.

User Action: Fix the problems reported by the compiler.

non_pvt value used in this context must be private

Severity: Error A private value is one that is not imported or exported.
In the context marked by the message, only a private value is legal.
Situations where this message is issued include defining one value in
terms of another, and arguments to functions. In general, a value must
be private when the compiler must know the value at compilation time.
Exported values are disallowed in these contexts, even though a value
is present, because that value could be overridden at run time.

User Action: Change the value to be private.

not_impl %s is not implemented yet

Severity: Error You are using a feature of UIL that has not been
implemented.

User Action: Try an alternate technique.

null a NULL character in a string is not supported

Severity: Warning You have created a string that has an embedded null
character. Strings are represented in a UID file and in many Motif Toolkit
data structures as null terminated strings. So, although the embedded
nulls will be placed in the UID file, Motif Toolkit functions may interpret
an embedded null as the terminator for the string.

User Action: Be very careful using embedded nulls.

obj_type found %s %s when expecting %s %s

1781

Motif 2.1—Programmer’s Reference

Severity: Error Most arguments take values of a specific type. The value
specified is not correct for this argument.

User Action: The message indicates the expected type of argument.
Check that you have specified the intended value and that you specified
the correct argument.

operand_type
%s type is not valid for %s

Severity: Error The indicated operand is not of a type that is supported
by this operator.

User Action: Check the definition of the operator and make sure the
type of the operand you specify is supported by the operator.

out_of_memory
compiler ran out of virtual memory

Severity: Severe The compiler ran out of virtual memory.

User Action: Reduce the size of your application.

out_range value of %s is out of range %s

Severity: Error The value specified is outside the legal range of its type.

User Action: Change the UIL module source.

override_builtin
overriding built-in name %s

Severity: Warning The name marked by the message is the same as the
name of a built-in UIL name such as an argument name.

User Action: Be certain that you really want to override the particular
name. If not, change the name being declared.

prev_error compilation terminated - fix previous errors

Severity: Severe Errors encountered during the compilation have caused
the compiler to abort.

User Action: Fix the errors already diagnosed by the compiler and
recompile.

previous_def
name %s previously defined as %s

1782

UIL Diagnostic Messages

Severity: Error The name marked by the message was used in a previous
declaration. UIL requires that the names of all objects declared within
a module be unique.

User Action: Check for a misspelling. If the module is case sensitive,
the spellings of names in declarations and in references must match
exactly.

single_control
%s widget supports only a single control

Severity: Warning The indicated widget maps a single control to
a subtree resource. For example, the pulldown control of a cascade
button is mapped to theXmNsubMenuId resource. However, you have
specified more than one control, resulting in the message.

User Action: Remove the extra children in the controls list.

single_letter color letter string must be a single character

Severity: Error The string associated with each color in a color table
must hold exactly one character. You have specified a string with either
fewer or more characters.

User Action: Use a single character to represent each color in a color
table.

single_occur
%s %s supports only a single %s %s

Severity: Warning You have specified a particular clause more than once
in a context where that clause can occur only once. For example, the
version clause in the module can only occur once.

User Action: Choose the correct clause and delete the others.

src_close error closing source file: %s

Severity: Warning Some error occurred while closing the indicated
source file.

User Action: Check for operating or file system conditions that may
have caused this problem. If the output file was successfully created,
this warning can probably be ignored. If the output file was not created,
attempt the compilation again.

src_limit too many source files open: %s

1783

Motif 2.1—Programmer’s Reference

Severity: Severe The compiler has a fixed limit of 100 for the number
of source and include files that it can process. The file exceeding this
limit is reported in the message.

User Action: Use fewer include files.

src_null_char
source line contains a null character

Severity: Error The specified source line contains a null character. The
compiler ignores any text following the null character.

User Action: Replace each null character with the escape sequence \
(backslash).

src_open error opening source file: %s

Severity: Severe The compiler could not open the UIL specification file
listed in the message.

User Action: Check that the file listed in the message is the one you
want to compile, that it exists, and that you have read access to the file.
If you are using a large number of include files, you may have exceeded
your quota for open files.

src_read error reading next line of source file: %s

Severity: Severe The compiler could not read a line of the UIL
specification file listed in the message.

User Action: In the listing file, this message should appear following
the last line the compiler read successfully. First check that the file you
are compiling is a UIL specification file. If it is, the file most likely
contains corrupted records.

src_truncate
line truncated at %d characters

Severity: Error The compiler encountered a source line greater than 132
characters. Characters beyond the 132 character limit were ignored.

User Action: Break each source line longer than 132 characters into
several source lines. Long string literals can be created using the
concatenation operator.

submit_spr internal error - submit defect report

1784

UIL Diagnostic Messages

Severity: Severe The compiler diagnosed an internal error.

User Action: Get a listing and look where the error is being issued. Try
fixing any faulty syntax in this area. If you are unable to prevent this
error, submit a software problem report.

summary errors: %d warnings: %d informationals: %d

Severity: Informational This message lists a summary of the diagnostics
issued by the compiler, and appears only when diagnostics have been
issued.

User Action: Fix the problems reported. You can use the--w option
qualifier to suppress informational and warning diagnostics that you
have determined to be harmless.

supersede this %s %s supersedes a previous definition in this %s %s

Severity: Informational An argument or callback list has either a
duplicate argument or duplicate reason.

User Action: This is not necessarily an error. The compiler is alerting
you to make sure that you intended to override a prior argument’s value.
This informational message can be suppressed using the--w option
qualifier.

syntax unexpected %s token seen - parsing resumes after \"%c"\

Severity: Error At the point marked in the module, the compiler found
a construct such as a punctuation mark, name, or keyword when it was
expecting a different construct. The compiler continued analyzing the
module at the next occurrence of the construct stated in the message.

User Action: Check the syntax of your UIL module at the point marked
by the compiler. If the module specifies case-sensitive names, check that
your keywords are in lowercase characters.

too_many too many %ss in %s, limit is %d

Severity: Error You exceeded a compiler limit such as the number of
fonts in a font table or the number of strings in a translation table. The
message indicates the limit imposed by the compiler.

User Action: Restructure your UIL module.

too_many_dirs
too many \"%s\" options, limit is %d

1785

Motif 2.1—Programmer’s Reference

Severity: Warning You specified too many include directories using the
--I option. The message indicates the limit imposed by the compiler.

User Action: Reduce the number of include directories specified. If
necessary, consolidate some of your include files into fewer directories.

uid_open error opening UID file: %s

Severity: Severe The compiler could not create the UID file noted in
the message. A UID file holds the compiled user-interface specification.

User Action: Check that you have write access to the directory you
specified to hold the UID file. If you have a large number of source and
include files, check that you have not exceeded your open file quota.

uid_write error writing UID file: %s

Severity: Severe An error occurred when trying to write to the indicated
UID file.

User Action: Check that you have write access to the directory you
specified to hold the UID file and that you have write access to the file,
if it already exists. Also check that you have not run out of space in
your file system.

undefined %s %s must be defined before this reference

Severity: Error The object pointed to in the message was either never
defined or not defined prior to this point in the module. The compiler
requires the object to be defined before you refer to the object.

User Action: Check for a misspelling of the object’s name, a missing
declaration for the object, or declaring the object after its first reference.
If names in the module are case sensitive, the spellings of the name in
the declaration and in the reference must match exactly.

unknown_charset
unknown character set

Severity: Error The message is pointing to a context where a character
set name is required. You have not specified the name of a character set
in that context.

User Action: Check for misspelling. A list of the supported character
sets is given in theUIL(5X) reference page. If you specified case-

1786

UIL Diagnostic Messages

sensitive names in the module, check that the character set name is in
lowercase characters.

unknown_opt
unknown option \ "%s" \ was ignored

Severity: Warning An unknown option has been used in the compiler
command line.

User Action: Check what you typed on the command line.

unknown_seq
unknown sequence \"%s"\ ignored

Severity: Error The compiler detected a sequence of printable characters
it did not understand. The compiler omitted the sequence of characters
listed between the " " (double quotation marks).

User Action: Fix the UIL module source.

unsupp_const
the %s constraint is not supported for the %s %s

Severity: Warning The particular constraint argument you specified is
not supported for the indicated widget or gadget parent.

User Action: See the UIL built-in tables in Appendix A for the
constraints supported for the children of each object. If a widget creation
function accepts a constraint argument that UIL rejects, this does not
necessarily indicate that the UIL compiler is in error. Widget creation
functions ignore arguments that they do not support, without notifying
you that the argument is being ignored.

unsupported
the %s %s is not supported for the %s object

Severity: Warning Each widget or gadget supports a specific set of
arguments, reasons, and children. The particular argument, reason, or
child you specified is not supported for this widget or gadget.

User Action: See the UIL built-in tables in Appendix A and Appendix
B for the arguments, reasons, and children supported for each object.
If a widget creation function accepts an argument that UIL rejects, this
does not necessarily indicate that the UIL compiler is in error. Widget
creation functions ignore arguments that they do not support, without
notifying you that the argument is being ignored.

1787

Motif 2.1—Programmer’s Reference

unterm_seq %s not terminated %s

Severity: Error The compiler detected a sequence that was not properly
terminated, such as a string literal without the closing quotation mark.

User Action: Insert the proper termination characters.

value_too_large
value %s is too large for context buffer

Severity: Severe The compiler could not allocate enough memory to
temporarily store the indicated value.

User Action: Reduce the size of the object being assigned to the
indicated value.

widget_cycle
the %s object’s controls hierarchy contains a reference to itself

Severity: Error The indicated object is referenced as a descendant of
itself, either within its own definition or within the definition of one of
the objects in the widget tree it controls.

User Action: Change the definition of the indicated object so that it is
not a descendant of itself.

wmd_open error opening database file: %s

Severity: Severe The compiler could not open the widget meta-language
description file listed in the message.

User Action: Check that the file listed in the message is the one you
want to use, that it exists, and that you have read access to the file.

wrong_type found %s value when expecting %s value

Severity: Error The indicated value is not of the specific type required
by UIL in this context.

User Action: Check the definition of the function or clause.

1788

