
i

The Open Group Base Working Group

New API Extensions (Extended Interfaces
Strawman Draft 7.3)

Work Item # 1.2.3

November 2004

 ii

© Copyright 2004, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission
of the copyright owner.

Boundaryless Information Flow™ is a trademark and UNIX® and The Open Group® are registered
trademarks of The Open Group in the United States and other countries.

The Open Group

Document Number: This draft document is work item 1.2.3 of The Open Group Base Working Group
Work Plan dated 9 June 2004.

Comments relating to the material contained in this document may be submitted in aardvark format to:

The Open Group
Thames Tower
37-45 Station Road
Reading
Berkshire, RG1 1LX
United Kingdom

http://www.opengroup.org/platform/bugreport.html

See http://www.opengroup.org/austin/aardvark/format.html for information on the aardvark comment
format.

Chapter 1

New API Extensions (Extended Interfaces Strawman
draft 7.3)1

2 Note: Except as permitted below, no part of this document may be reproduced, stored in a a retrieval
3 system, or transmitted, in any form or by any means, electronic, mechanical, photocopying ,
4 recording or otherwise, without the prior permission of the copyright holders.

5 This is an unapproved draft documents, subject to change. Permission is granted to Austin
6 Group participants to download and reproduce this document for the purposes of Austin
7 Group standardization activities. Other entities or persons seeking permission to reproduce
8 this documents, or to reproduce portions of the document for any purpose must contact the
9 copyright owner for express written permission. Use of information contained in these
10 unapproved drafts is at your own risk.

11 The purpose of this document is to define a set of New API Extensions to further increase
12 application capture and hence portability for systems built upon version 3 of the Single UNIX
13 Specification .

14 The scope of this set of extensions has been to consider interfaces from existing open source
15 implementations such as the GNU C library.

16 No decision has been made on whether these interfaces will be added to a future technical
17 standard of The Open Group, how these interfaces would announce themselves in the
18 namespace, or whether related interfaces should be merged with existing pages.

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 1

Change History New API Extensions (Extended Interfaces Strawman draft 7.3)

19 1.1 Change History

20 Draft 7.3

21 • Remove endusershell(), getusershell(), memmem(), on_exit(), and setusershell().

22 • Add additional reviewers comments to further pages.

23 Draft 7.2

24 • Remove alloca (), strdupa() and strndupa().

25 • Add additional reviewers comments to pages initially reviewed by the Base Working Group

26 • Fixup on_exit() prototype in frontmatter.

27 Draft 7.1

28 • Reorder the scandir() manual page to list the alphasort () function first.

29 • Update <string.h> so that strdupa() and strndupa() are listed separately.

30 • Update the example in open_memstream().

31 • Update descriptions of stpcpy() and stpncpy() to be closer to strcpy().

32 • Update strdupa() and strndupa() so that it can either be implemented as a function or a
33 macro. This is for consistency with alloca ().

34 Draft 7

35 Minor updates for proposal to have this set as part of an Extended Interfaces Option Group.

36 Draft 6

37 • Numerous updates after comments on draft 5.

38 • Added new functions fmemopen() and open_memstream()

39 Draft 5

40 Key changes in draft 5 are as follows

41 • Removed hcreate_r(), hdestroy_r(), and hsearch_r().

42 • Added EINVAL error to dirfd() and error return of −1.

43 • Added EBADF error to dprintf().

44 • Removed fgetgrent(), fgetgrent_r(), fgetpwent(), and fgetpwent_r().

45 • Merged getdelim() and getline() pages, corrected return types to ssize_t and tidy up error
46 cases.

47 • Corrected DESCRIPTION of mbsnrtowcs() since nmc is the input buffer size in bytes and a
48 general rewrite more in line with mbsrtowcs().

49 • mkdtemp() should have 6 Xs not 7, plus tidy up of the RETURN VALUE section.

50 • Updates to on_exit() to make it clearer the interworking with atexit().

51 • A rewrite of scandir().

2 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) Change History

52 • Tidy up the RETURN VALUE in stpncpy() and wcpncpy().

53 • Remove extraneous ENOMEM errors for strdupa() and strndupa().

54 • Some tidy up to the DESCRIPTION of strnlen() to make it clearer that only maxlen bytes are
55 examined.

56 • Correct the RETURN VALUE in wcpncpy() as per stpncpy().

57 • A tidy up of strsignal().

58 • Make it clear that its the first nwc wide characters for wcsnrtombs().

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 3

XBD Changes New API Extensions (Extended Interfaces Strawman draft 7.3)

59 1.2 XBD Changes
60 It is proposed that these additions comprise a new option group, called the Extended Interfaces
61 option group.

62 1.2.1 1.5.1 Codes

63 Add a new margin marker code "EX Extended Interfaces", with the text

64 "The functionality described is optional. The functionality described is also an extension to the
65 ISO C standard.

66 Where applicable, functions are marked with the EX margin legend in the SYNOPSIS section.
67 Where additional semantics apply to a function, the material is identified by use of the EX
68 margin legend."

69 1.2.2 13. Headers

70 The following header file man pages will need the following additions, margin marked and
71 shaded as part of the EX option group.

72 <dirent.h>

73 The following shall be declared as functions and may also be defined as macros. Function
74 prototypes shall be provided.

75 int alphasort(const struct dirent **, const struct dirent **);
76 int dirfd (DIR *);
77 int scandir (const char *, struct dirent ***,
78 int (*) (const struct dirent *),
79 int (*) (const struct dirent **, const struct dirent **));

80 <signal.h>

81 The following shall be declared as functions and may also be defined as macros. Function
82 prototypes shall be provided.

83 void psignal (int, const char *);

84 <stdio.h>

85 The following shall be declared as functions and may also be defined as macros. Function
86 prototypes shall be provided.

87 int dprintf (int, const char *, ...);
88 FILE *fmemopen(void *,size_t, const char *);
89 ssize_t getdelim (char **, size_t *, int, FILE *);
90 ssize_t getline (char **, size_t *, FILE *);
91 FILE *open_memstream(char **, size_t *);

92 <stdlib.h>

93 The following shall be declared as functions and may also be defined as macros. Function
94 prototypes shall be provided.

95 char *mkdtemp(char *);

96 <string.h>

97 The following shall be declared as functions and may also be defined as macros. Function
98 prototypes shall be provided.

4 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) XBD Changes

99 char *stpcpy (char *, const char *);
100 char *stpncpy (char *, const char *, size_t);
101 char *strndup (const char *, size_t);
102 size_t strnlen (const char *, va_list);
103 char *strsignal(int signum);

104 <wchar.h>

105 The following shall be declared as functions and may also be defined as macros. Function
106 prototypes shall be provided.

107 size_t mbsnrtowcs (wchar_t *, const char **, size_t, size_t, mbstate_t *);
108 wchar_t *wcpcpy (wchar_t *, const wchar_t *);
109 wchar_t *wcpncpy (wchar_t *, const wchar_t *, size_t);
110 int wcscasecmp (const wchar_t *, const wchar_t *);
111 wchar_t *wcsdup (const wchar_t *);
112 int wcsncasecmp (const wchar_t *, const wchar_t *, size_t);
113 size_t wcsnlen (const wchar_t *, size_t);
114 size_t wcsnrtombs (char *, const wchar_t **, size_t, size_t, mbstate_t *);

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 5

XSH Manual Pages New API Extensions (Extended Interfaces Strawman draft 7.3)

115 1.3 XSH Manual Pages
116 The man pages follow.

6 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) alphasort()

117 NAME
118 alphasort,scandir — scan a directory

119 SYNOPSIS
120 #include <dirent.h>

121 int alphasort(const struct dirent **d1, const struct dirent **d2);

122 int scandir(const char *dir, struct dirent ***namelist,
123 int (*sel)(const struct dirent *),
124 int (*compar)(const struct dirent **, const struct dirent **));
125

126 DESCRIPTION
127 The alphasort () function can be used as the comparison function for the scandir() function to
128 sort the directory entries into alphabetical order, as if by the strcoll() function. Its parameters
129 are the two directory entries, d1 and d2, to compare.

130 The scandir() function shall scan the directory dir, calling the sel() function on each directory
131 entry. Entries for which sel() returns non-zero shall be stored in strings allocated via malloc (),
132 and sorted using qsort() with the comparison function compar(), and collected in array namelist
133 which shall be allocated via malloc (). If sel() is a null pointer, all entries shall be selected.

134 RETURN VALUE
135 Upon successful completion, alphasort () shall return an integer greater than, equal to, or less
136 than 0, according to whether the directory pointed to by d1 is greater than, equal to, or less than
137 the directory pointed to by d2 when both are interpreted as appropriate to the current locale.
138 There is no return value reserved to indicate an error.

139 Upon successful completion the scandir() function shall return the number of entries in the
140 array and a pointer to the array through the parameter namelist. The scandir() function shall
141 return −1 if the directory cannot be opened for reading or if malloc () cannot allocate enough
142 memory to hold all the data structures.

143 ERRORS
144 The scandir() function shall fail if:

145 [EACCES] Search permission is denied for the component of the path prefix of dir or read
146 permission is denied for dir .

147 [ELOOP] A loop exists in symbolic links encountered during resolution of the dir
148 argument.

149 [ENAMETOOLONG]
150 The length of the dir argument exceeds {PATH_MAX} or a pathname
151 component is longer than {NAME_MAX}.

152 [ENOENT] A component of dir does not name an existing directory or dir is an empty
153 string.

154 [ENOMEM] Insufficient storage space is available.

155 [ENOTDIR] A component of dir is not a directory.

156 The scandir() function may fail if:

157 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
158 resolution of the dir argument.

159 [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 7

alphasort() New API Extensions (Extended Interfaces Strawman draft 7.3)

160 [ENAMETOOLONG]
161 As a result of encountering a symbolic link in resolution of the dir argument,
162 the length of the substituted pathname string exceeded {PATH_MAX}.

163 [ENFILE] Too many files are currently open in the system.

164 EXAMPLES
165 An example that print the files in the current directory:

166 #include <dirent.h>
167 #include <stdio.h>
168 ...
169 struct dirent **namelist;
170 int i,n;

171 n = scandir(".", &namelist, 0, alphasort);
172 if (n < 0)
173 perror("scandir");
174 else {
175 for (i = 0; i < n; i++) {
176 printf("%s\n", namelist[i]->d_name);
177 free(namelist[i]);
178 }
179 free(namelist);
180 ...

181 APPLICATION USAGE
182 These functions are part of the Extended Interfaces option and need not be available on all
183 implementations.

184 RATIONALE
185 None.

186 FUTURE DIRECTIONS
187 None.

188 SEE ALSO
189 the Base Definitions volume of IEEE Std 1003.1-2001, <dirent.h>

CHANGE190 HISTORY
191 First released in Issue X

8 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) dirfd()

192 NAME
193 dirfd — extracts the file descriptor used by a DIR stream

194 SYNOPSIS
195 #include <dirent.h>

196 int dirfd(DIR *dirp);
197

198 DESCRIPTION

199 Notes to Reviewers
200 This section with side shading will not appear in the final copy. - Ed.

201 Commentary on this function:

202 This interface was introduced because glibc does not make public the DIR data structure.
203 Applications tend to use the fchdir() function on the file descriptor returned by this interface,
204 and this has proven useful for security reasons, in particular it is a better technique than others
205 where directory names might change. The working group has some concern that a file
206 descriptor is not required for the DIR data structure in the present standard, so there would be a
207 need either to prefix dirfd(), with text along the lines of "If a file descriptor is used to
208 implement...," or to require an underlying file descriptor. The former would require applications
209 to know about the implementation, and hence applications would not be able to make portable
210 use of this function.

211 Thus the implication would be that to introduce this we would have to mandate an underlying
212 file descriptor for a DIR object for it to be useful for portable applications.

213 So if we take this change it would need a number of other changes to the existing directory
214 related functions.

215 The dirfd() function shall return the file descriptor used by the dirp argument.

216 RETURN VALUE
217 Upon successful completion, the dirfd() function shall return an integer which contains the file
218 descriptor for the stream pointed to by dirp. Otherwise it shall return -1 and may set errno to
219 indicate the error.

220 ERRORS
221 The dirfd() function may fail if:

222 [EINVAL] The dirp argument does not refer to a valid directory stream.

223 EXAMPLES
224 None.

225 APPLICATION USAGE
226 The dirfd() function is part of the Extended Interfaces option and need not be available on all
227 implementations.

228 RATIONALE
229 None.

230 FUTURE DIRECTIONS
231 None.

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 9

dirfd() New API Extensions (Extended Interfaces Strawman draft 7.3)

232 SEE ALSO
233 opendir() the Base Definitions volume of IEEE Std 1003.1-2001, <dirent.h>

CHANGE234 HISTORY
235 First released in Issue X

10 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) dprintf()

236 NAME
237 dprintf — formated output conversion to a file descriptor

238 SYNOPSIS
239 #include <stdio.h>

240 int dprintf(int fildes, const char *format, ...);
241

242 DESCRIPTION

243 Notes to Reviewers
244 This section with side shading will not appear in the final copy. - Ed.

245 Commentary on this function:

246 It is unclear as to what the required buffering behavior is for this function. More information is
247 needed. On the surface this function would appear to be a convenience function more than a
248 necessity. Is this really done frequently enough to justify adding a new function when snprintf()
249 and write() are sufficient to do the job? It was also suggested that fdprintf () would be a better
250 name.

251 The dprintf() function shall be equivalent to the printf() function, producing output according to
252 the contents of format, with the exception that instead of the output going to stdout , the output of
253 dprintf() is directed to the file descriptor fildes.

254 RETURN VALUE
255 Upon successful completion, the dprintf() function shall return the number of bytes transmitted.
256 If an output error was encountered, it shall return a negative value.

257 ERRORS
258 Refer to fprintf ().

259 In addition, the dprintf() function may fail if:

260 [EBADF] The fildes argument is not a valid file descriptor.

261 EXAMPLES
262 None.

263 APPLICATION USAGE
264 The dprintf() function is part of the Extended Interfaces option and need not be available on all
265 implementations.

266 RATIONALE
267 None.

268 FUTURE DIRECTIONS
269 None.

270 SEE ALSO
271 printf() the Base Definitions volume of IEEE Std 1003.1-2001, <stdio.h>

CHANGE272 HISTORY
273 First released in Issue X

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 11

fmemopen() New API Extensions (Extended Interfaces Strawman draft 7.3)

274 NAME
275 fmemopen — open a memory buffer stream

276 SYNOPSIS
277 #include <stdio.h>

278 FILE *fmemopen(void *restrict buf, size_t size, const char *restrict mode);
279

280 DESCRIPTION

281 Notes to Reviewers
282 This section with side shading will not appear in the final copy. - Ed.

283 Commentary on this function:

284 This interface has been introduced to eliminate many of the errors encountered in the
285 construction of strings, notably overflowing of strings. This interface prevents overflow. A wide
286 character version has not yet been proposed. It was proposed that fmemopen() should leave the
287 results unoriented.

288 There appears to be a need to modify other related stdio pages that talk about handling FILE
289 objects; how would they behave if a memory stream is underlying the stream? If writes on a
290 stream with an underlying memory buffer, would overflow the memory buffer, the behavior is
291 as the same as filesystem full, that is [ENOSPC].

292 Further work would be needed to cleanup this page, and other pages.

293 The fmemopen() function shall associate the buffer given by the buf and size arguments with a
294 stream. The buf argument shall be either a null pointer or point to a buffer that is at least size
295 bytes long.

296 The mode argument is a character string having one of the following values:

297 r or rb Open the stream for reading.

298 w or wb Open the stream for writing.

299 a or ab Append; open the stream for writing at the first null byte.

300 r+ or rb+ or r+b Open the stream for update (reading and writing).

301 w+ or wb+ or w+b Open the stream for update (reading and writing). Truncate the buffer
302 contents.

303 a+ or ab+ or a+b Append; open the stream for update (reading and writing); the initial
304 position is at the first null byte.

305 The character ’b’ shall have no effect, but is allowed for ISO C standard conformance.

306 If a null pointer is specified as the buf argument, memopen() shall use malloc () to allocate a buffer
307 that is size bytes long. This buffer shall be automatically freed when the stream is closed. Because
308 this feature is only useful when the stream is opened for updating (because there is no way to
309 get a pointer to the buffer) the fmemopen() call may fail if the mode argument does not include a
310 ’+’.

311 The stream maintains a current position in the buffer. This position is initially set to either the
312 begin of the buffer (for r and w modes) or to the first null byte in the buffer (for a modes). If no
313 null byte is found in append mode, the initial position is set to one byte after the end of the

12 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) fmemopen()

314 buffer.

315 The stream also maintains the size of the current buffer contents. For modes r and r+ the size is
316 set to the value given by the size argument. For modes w and w+ the initial size is zero and for
317 modes a and a+ the initial size is either the position of the first null byte in the buffer or the value
318 of the size argument if no null byte is found.

319 A read operation on the stream cannot advance the current buffer position behind the current
320 buffer size. Reaching the buffer size in a read operation counts as "end of file". Null bytes in the
321 buffer have no special meaning for reads. The write operation starts at the current buffer
322 position of the stream.

323 A write operation starts either at the current position of the stream (if mode has not specified a
324 as the first character) or at the current size of the stream (if mode had a as the first character). If
325 the current position at the end of the write is larger than the current buffer size, the current
326 buffer size is set to the current position. A write operation on the stream cannot advance the
327 current buffer size behind the size given in the size argument.

328 When a stream open for writing is flushed or closed, a null byte is written at the end of the buffer
329 if it fits. If a stream open for update is flushed or closed and the last write has advanced the
330 current buffer size, a null byte is written at the end of the buffer if it fits.

331 An attempt to seek a memory buffer stream to a negative position or to a position larger than the
332 buffer size given in the size argument shall fail.

333 RETURN VALUE
334 Upon successful completion, fmemopen() shall return a pointer to the object controlling the
335 stream. Otherwise, a null pointer shall be returned, and errno shall be set to indicate the error.

336 ERRORS
337 The fmemopen() function shall fail if:

338 [EINVAL] The size argument specifies a buffer size of zero.

339 The fmemopen() function may fail if:

340 [EINVAL] The value of the mode argument is not valid.

341 [EINVAL] The buf argument is a null pointer and the mode argument does not include a
342 ’+’ character.

343 [ENOMEM] The buf argument is a null pointer and the allocation of a buffer of length size
344 has failed.

345 [EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

346 EXAMPLES

347 #include <stdio.h>

348 static char buffer[] = "foobar";

349 int
350 main (void)
351 {
352 int ch;
353 FILE *stream;

354 stream = fmemopen(buffer, strlen (buffer), "r");
355 if (stream == NULL)

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 13

fmemopen() New API Extensions (Extended Interfaces Strawman draft 7.3)

356 /* handle error */;

357 while ((ch = fgetc(stream)) != EOF)
358 printf("Got %c\n", ch);

359 fclose(stream);
360 return (0);
361 }

362 This program produces the following output:

363 Got f
364 Got o
365 Got o
366 Got b
367 Got a
368 Got r

369 APPLICATION USAGE
370 The fmemopen() function is part of the Extended Interfaces option and need not be available on
371 all implementations.

372 RATIONALE
373 None.

374 FUTURE DIRECTIONS
375 None.

376 SEE ALSO
377 fdopen(), fopen(), freopen(), the Base Definitions volume of IEEE Std 1003.1-2001, <stdio.h>

CHANGE378 HISTORY
379 First released in Issue X

14 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) getdelim()

380 NAME
381 getdelim — reads a delimited record from stream.

382 SYNOPSIS
383 #include <stdio.h>

384 ssize_t getdelim(char **lineptr, size_t *n, int delimiter,
385 FILE *stream);

386 ssize_t getline(char **lineptr, size_t *n, FILE *stream);
387

388 DESCRIPTION

389 Notes to Reviewers
390 This section with side shading will not appear in the final copy. - Ed.

391 Commentary on this function:

392 These functions are widely used to solve the problem that the fgets() function has with long
393 lines. The functions automatically enlarge the target buffers if needed. These are especially
394 useful since they reduce code needed for applications.

395 More words needed on the description, need to clean up bytes vs characters to be compatible
396 with the standard

397 The getdelim() function shall read from stream until it encounters a byte matching the delimiter
398 character. The argument delimiter (when converted to a char) shall specify the character that
399 terminates the read process.

400 The delimiter argument is an int, the value of which the application shall ensure is a character
401 representable as an unsigned char or equal value to the macro EOF. If the delimiter argument
402 has any other value, the behavior is undefined.

403 The application shall ensure that *lineptr is a valid argument that could be passed to the free()
404 function. If *n is nonzero, the application shall ensure that *lineptr points to an object containing
405 at least *n bytes.

406 The size of the object pointed to by *lineptr shall be increased to fit the incoming line, if it isn’t
407 already large enough. The bytes read shall be stored in the string pointed to by the argument
408 lineptr .

409 The getline() function shall be equivalent to the getdelim() function with the delimiter character
410 equal to the newline character.

411 RETURN VALUE
412 Upon successful completion the getdelim() function shall return the number of bytes written into
413 the buffer, including the delimiter character if one was encountered before EOF. Otherwise it
414 shall return −1 and set errno to indicate the error.

415 ERRORS
416 The getdelim() and getline() functions shall fail if:

417 [EINVAL] When lineptr or n are a null pointer.

418 The getdelim() and getline() functions may fail if:

419 [EINVAL] stream is not a valid file descriptor.

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 15

getdelim() New API Extensions (Extended Interfaces Strawman draft 7.3)

420 [EOVERFLOW] More than SSIZE_MAX bytes were read without encountering the delimiter
421 character.

422 EXAMPLES

A423 PPLICATION USAGE
424 The getdelim() and getline() functions are part of the Extended Interfaces option and need not be
425 available on all implementations.

426 Setting *lineptr to a null pointer and *n to zero are allowed and a recommended way to start
427 parsing a file.

428 RATIONALE
429 These functions have been explicitly designed to enlarge the buffer if necessary.

430 FUTURE DIRECTIONS
431 None.

432 SEE ALSO
433 the Base Definitions volume of IEEE Std 1003.1-2001, <stdio.h>

CHANGE434 HISTORY
435 First released in Issue X

16 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) mbsnrtowcs()

436 NAME
437 mbsnrtowcs — converts a multi-byte string to a wide character string.

438 SYNOPSIS
439 #include <wchar.h>

440 size_t mbsnrtowcs(wchar_t *restrict dst, const char **restrict src,
441 size_t nmc, size_t len, mbstate_t *restrict ps);
442

443 DESCRIPTION
444 The mbsnrtowcs() function works like the mbsrtowcs() function, except that the conversion of
445 characters pointed to by src is limited to at most nmc bytes (the size of the input buffer).

446 If dst is not a null pointer, then mbsnrtowcs() shall attempt to convert nmc bytes from the multi
447 byte string pointed to by src into a wide character string starting at dst. No more than len wide
448 characters shall be written to dst. The shift state, pointed at by ps is updated by the conversion.
449 Each conversion shall take place, as if by repeated calls to mbrtowc(dest, *src, n, ps) where n is a
450 positive number. As long as this call succeeds, it is repeated, each time incrementing dst by one
451 and *src by the number of bytes converted.

452 Conversion shall stop early if any of the following cases occurs:

453 1. An invalid sequence of bytes was encountered in the src buffer. Under these conditions *src is
454 left pointing to the bytes which caused the conversion to halt. −1 is returned, and errno is set to
455 EILSEQ.

456 2. Either the nmc limit has been reached, or len non-null wide characters have already been
457 stored in dst. Here, *src is left to point to the next multi byte sequence that has not been
458 converted, and the total number of wide characters written to dst is returned.

459 3. The conversion of the multi byte buffer pointed to by src has been completed by encountering
460 a null byte. In this case *src is set to a null pointer, *ps is returned to its initial state, and the
461 number of wide characters written to dst, excluding the terminating null character, is returned.

462 When dst is a null pointer, the conversion proceeds as above, except that no wide characters are
463 written to memory, and the len argument is ignored, so no destination length limit is imposed.

464 In either case, if ps is a null pointer, mbsnrtowcs() shall use its own internal mbstate_t object,
465 which is initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t
466 object pointed to by ps shall be used to completely describe the current conversion state of the
467 associated character sequence.

468 It is the responsibility of the calling program to ensure that dst is large enough to hold at least len
469 wide characters.

470 RETURN VALUE
471 The mbsnrtowcs() function shall return the number of characters successfully converted, not
472 including the terminating null (if any). If an error occurs, mbsnrtowcs() shall return −1 and may
473 set errno.

474 ERRORS
475 The mbsnrtowcs() function may fail if:

476 [EILSEQ] An invalid multi byte sequence was encountered.

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 17

mbsnrtowcs() New API Extensions (Extended Interfaces Strawman draft 7.3)

477 EXAMPLES
478 None.

479 APPLICATION USAGE
480 The mbsnrtowcs() function is part of the Extended Interfaces option and need not be available on
481 all implementations.

482 RATIONALE
483 None.

484 FUTURE DIRECTIONS
485 None.

486 SEE ALSO
487 mbsrtowcs(), iconv(), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE488 HISTORY
489 First released in Issue X

18 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) mkdtemp()

490 NAME
491 mkdtemp — create a unique directory

492 SYNOPSIS
493 #include <stdlib.h>

494 char *mkdtemp(char *template);
495

496 DESCRIPTION
497 The mkdtemp() function uses the contents of template to construct a unique directory name. The
498 string provided in template shall be a filename ending with six trailing ’X’s. The mkdtemp()
499 function shall replace each ’X’ with a character from the portable filename character set. The
500 characters are chosen such that the resulting name does not duplicate the name of an existing
501 file at the time of a call to mkdtemp(). The unique directory name is used to attempt to create the
502 directory using mode 0700 as modified by the file creation mask.

503 RETURN VALUE
504 Upon successful completion the mkdtemp() function shall return a pointer to the string
505 containing the directory name if it was created. Otherwise it shall return a null pointer and set
506 errno.

507 ERRORS
508 The mkdtemp() function shall fail if:

509 [EACCES] Search permission is denied on a component of the path prefix, or write
510 permission is denied on the parent directory of the directory to be created.

511 [EINVAL] The string pointed to by template does not end in ’XXXXXX’.

512 [ELOOP] A loop exists in symbolic links encountered during resolution of the path of
513 the directory to be created.

514 [EMLINK] The link count of the parent directory would exceed {LINK_MAX}.

515 [ENAMETOOLONG] The length of the template argument exceeds {PATH_MAX} or a
516 pathname component is longer than {NAME_MAX}.

517 [ENOENT] A component of the path prefix specified by the template argument does not
518 name an existing directory or path is an empty string.

519 [ENOSPC] The file system does not contain enough space to hold the contents of the new
520 directory or to extend the parent directory of the new directory.

521 [ENOTDIR] A component of the path prefix is not a directory.

522 [EROFS] The parent directory resides on a read-only file system.

523 The mkdtemp() function may fail if:

524 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
525 resolution of the path of the directory to be created.

526 [ENAMETOOLONG] As a result of encountering a symbolic link in resolution of the path of the
527 directory to be created, the length of the substituted pathname string
528 exceeded {PATH_MAX}.

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 19

mkdtemp() New API Extensions (Extended Interfaces Strawman draft 7.3)

529 EXAMPLES
530 None.

531 APPLICATION USAGE
532 The mkdtemp() function is part of the Extended Interfaces option and need not be available on all
533 implementations.

534 RATIONALE
535 None.

536 FUTURE DIRECTIONS
537 None.

538 SEE ALSO
539 mkdir(), the Base Definitions volume of IEEE Std 1003.1-2001, <stdlib.h>

CHANGE540 HISTORY
541 First released in Issue X

20 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) open_memstream()

542 NAME
543 open_memstream — open a dynamic memory buffer stream

544 SYNOPSIS
545 #include <stdio.h>

546 FILE *open_memstream(char **bufp, size_t *sizep);
547

548 DESCRIPTION

549 Notes to Reviewers
550 This section with side shading will not appear in the final copy. - Ed.

551 Commentary on this function:

552 This function is similar to fmem_open() except that the memory is allocated dynamically by the
553 function. This would need a wide version open_wmemstream(). This interface does not have a
554 mode parameter since it can only be written to.

555 It was agreed that further cleanup is needed on the wording.

556 The open_memstream() function shall create a stream that is associated with a dynamically
557 allocated buffer. The buffer is obtained by calls to malloc () and realloc () and expanded as
558 necessary. It must be freed by the caller after closing the stream. The stream is opened for
559 writing and shall be seekable.

560 The stream maintains a current position in the allocated buffer and a current buffer length. The
561 position is initially set to zero (the begin of the buffer). Each write starts at the current position
562 and moves this position by the number of successfully written bytes. The length is initially set
563 to zero. If a write moves the position to a value larger than the current length, the current length
564 is set to this position. In this case a null byte is appended to the current buffer (but not accounted
565 for in the buffer length).

566 The maximum value of the buffer length and position is given by the smaller of {SIZE_MAX}
567 and the maximum allowed file offset {OFF_MAX}.

568 After a successful fflush() or fclose() the locations pointed to by bufp and sizep contain the
569 address of the buffer and the current buffer length and the buffer is guaranteed to be terminated
570 by a null byte (which is not accounted for in the length).

571 An attempt to seek a dynamic buffer stream to a negative position or to a position larger than
572 the minimum of {SIZE_MAX} and {OFF_MAX} shall return an error.

573 RETURN VALUE
574 Upon successful completion, open_memstream() shall return a pointer to the object controlling
575 the stream. Otherwise, a null pointer shall be returned, and errno shall be set to indicate the
576 error.

577 ERRORS
578 The open_memstream() function may fail if:

579 [EINVAL] bufp or sizep are NULL.

580 [EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

581 [ENOMEM] Memory for the stream or the buffer could not be allocated.

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 21

open_memstream() New API Extensions (Extended Interfaces Strawman draft 7.3)

582 EXAMPLES

583 #include <stdio.h>
584 int main (void)
585 {

586 FILE *stream;
587 char *buf;
588 size_t len;

589 stream = fmemopen(&buf, &len);

590 if (stream == NULL)
591 /* handle error */;

592 fprintf(stream, "hello my world");
593 fflush(stream);
594 printf("buf=%s, len=%zu\n", buf, len);
595 fseeko(stream, 0, SEEK_SET);
596 fprintf(stream, "good-bye");
597 fclose(stream);
598 printf("buf=%s, len=%zu\n", buf, len);
599 free(buf);
600 return 0;
601 }

602 This program produces the following output:

603 buf=hello my world, len=14
604 buf=good-bye world, len=14

605 APPLICATION USAGE
606 The open_memstream() function is part of the Extended Interfaces option and need not be
607 available on all implementations.

608 RATIONALE
609 None.

610 FUTURE DIRECTIONS
611 None.

612 SEE ALSO
613 fdopen(), fopen(), fmemopen(), freopen(), the Base Definitions volume of IEEE Std 1003.1-2001,
614 <stdio.h>

CHANGE615 HISTORY
616 First released in Issue X

22 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) psignal()

617 NAME
618 psignal — print signal information to standard error

619 SYNOPSIS
620 #include <signal.h>

621 void psignal(int signum, const char *message);
622

623 DESCRIPTION

624 Notes to Reviewers
625 This section with side shading will not appear in the final copy. - Ed.

626 Commentary on this function:

627 System V historically has psignal () and psiginfo () in <siginfo.h>.

628 It was agreed during the preliminary review that there should be an additional psiginfo ()
629 function added since we have the type siginfo_t within the standard.

630 The issue of which header the function(s) occur in needs to be resolved.

631 The psignal () function shall print a message out on stderr associated with a signal number. If
632 message is not null and is not the empty string, then the string pointed to by the message
633 argument shall be printed first, followed by a colon, a space, and the signal description string
634 indicated by signum. If the message argument is null or points to an empty string, then only the
635 signal description shall be printed. If signum is not a valid signal number, the behavior is
636 implementation-defined.

637 RETURN VALUE
638 The psignal () function shall not return a value.

639 ERRORS
640 No errors are defined.

641 EXAMPLES
642 None.

643 APPLICATION USAGE
644 The psignal () function is part of the Extended Interfaces option and need not be available on all
645 implementations.

646 RATIONALE
647 None.

648 FUTURE DIRECTIONS
649 None.

650 SEE ALSO
651 perror(), strsignal(), the Base Definitions volume of IEEE Std 1003.1-2001, <signal.h>

CHANGE652 HISTORY
653 First released in Issue X

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 23

stpcpy() New API Extensions (Extended Interfaces Strawman draft 7.3)

654 NAME
655 stpcpy — copy a string and return a pointer to the end of the result

656 SYNOPSIS
657 #include <string.h>

658 char *stpcpy(char *restrict dst, const char *restrict src);
659

660 DESCRIPTION
661 The stpcpy() function shall be equivalent to strcpy(), copying the string pointed to by src into the
662 array pointed to by dst, with the exception that stpcpy() shall return a pointer to the terminating
663 null byte in dst, rather than the beginning of this array, allowing succeeding calls to add
664 additional text to the dst array.

665 If copying takes place between objects that overlap, the behavior is undefined.

666 RETURN VALUE
667 The stpcpy() function shall return a pointer to the terminating null byte at the end of the dst
668 buffer. No return values are reserved to indicate an error.

669 ERRORS
670 No errors are defined.

671 EXAMPLES
672 The following example demonstrates the construction of a multi part message in a single buffer.

673 #include <string.h>
674 #include <stdio.h>

675 int
676 main (void)
677 {
678 char buffer [10];
679 chsr *name = buffer;
680 name = stpcpy (stpcpy (stpcpy (name, "ice"),"-"), "cream");
681 puts (buffer);
682 return 0;
683 }

684 APPLICATION USAGE
685 The stpcpy() function is part of the Extended Interfaces option and need not be available on all
686 implementations.

687 RATIONALE
688 None.

689 FUTURE DIRECTIONS
690 None.

691 SEE ALSO
692 strcpy(), the Base Definitions volume of IEEE Std 1003.1-2001, <string.h>

CHANGE693 HISTORY
694 First released in Issue X

24 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) stpncpy()

695 NAME
696 stpncpy — copy fixed length string, returning a pointer to the array end

697 SYNOPSIS
698 #include <string.h>

699 char *stpncpy(char *restrict dst, const char *restrict src, size_t size);
700

701 DESCRIPTION

702 Notes to Reviewers
703 This section with side shading will not appear in the final copy. - Ed.

704 Commentary on this function:

705 The 2nd paragraph of the DESCRIPTION is ambiguous (length of the string is usually
706 equivalent to strlen(string), but it is off by 1 in this case) and needs to be fixed up.

707 The stpncpy() function shall be equivalent to the stpcpy() function, with the added restriction
708 that it shall copy at most size bytes from src into dst.

709 If size is smaller than the length of the string pointed to by src then no termination null byte shall
710 be inserted into the dst array after the size bytes have been copied.

711 If size is larger than the length of the string pointed to by src then all of the bytes in src are copied
712 into the dst array. As many terminating null bytes are inserted as are needed to bring the total
713 bytes transferred equal to size.

714 If copying takes place between objects that overlap, the behavior is undefined.

715 RETURN VALUE
716 If a null byte is written to the destination, the stpncpy() function shall return the address of the
717 first such null byte. Otherwise it shall return src[size]. No return values are reserved to indicate
718 an error.

719 ERRORS
720 No errors are defined.

721 EXAMPLES

A722 PPLICATION USAGE
723 The stpncpy() function is part of the Extended Interfaces option and need not be available on all
724 implementations.

725 Applications must provide the space in dst for the size bytes to be transferred, as well as ensure
726 that the src and dst array do not overlap.

727 RATIONALE
728 None.

729 FUTURE DIRECTIONS
730 None.

731 SEE ALSO
732 strncpy(), stpcpy(), the Base Definitions volume of IEEE Std 1003.1-2001, <string.h>

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 25

stpncpy() New API Extensions (Extended Interfaces Strawman draft 7.3)

733 CHANGE HISTORY
734 First released in Issue X

26 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) strndup()

735 NAME
736 strndup — duplicate a specific number of bytes from a string

737 SYNOPSIS
738 #include <string.h>

739 char *strndup(const char *string, size_t size);
740

741 DESCRIPTION
742 The strndup() function shall be equivalent to the strdup() function, duplicating the provided
743 string in a new block of memory allocated using malloc (), with the exception being that strndup()
744 copies at most size plus one bytes into the newly allocated memory, terminating the new string
745 with a null byte.

746 If the length of string is larger than size, only size bytes shall be duplicated. If size is larger than
747 the length of string, all bytes in string shall be copied into the new memory buffer, including the
748 terminating null byte. The newly created string shall always be properly terminated.

749 RETURN VALUE
750 Upon successful completion the strndup() function shall return a pointer to the newly allocated
751 memory containing the duplicated string. Otherwise it shall return a null pointer and set errno to
752 indicate the error.

753 ERRORS
754 The strndup() function shall fail if:

755 [ENOMEM] insufficient memory available for the target string.

756 EXAMPLES

A757 PPLICATION USAGE
758 The strndup() function is part of the Extended Interfaces option and need not be available on all
759 implementations.

760 RATIONALE
761 None.

762 FUTURE DIRECTIONS
763 None.

764 SEE ALSO
765 strdup(), the Base Definitions volume of IEEE Std 1003.1-2001, <string.h>

CHANGE766 HISTORY
767 First released in Issue X

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 27

strnlen() New API Extensions (Extended Interfaces Strawman draft 7.3)

768 NAME
769 strnlen — determine length of fixed size string

770 SYNOPSIS
771 #include <string.h>

772 size_t strnlen(const char *s, size_t maxlen);
773

774 DESCRIPTION

775 Notes to Reviewers
776 This section with side shading will not appear in the final copy. - Ed.

777 Commentary on this function:

778 The RETURN VALUE section wording is ambiguous. (How is "size of the string" related to
779 string length?) Do we assume that the return value is strlen (s) or maxlen whichever is smaller?

780 The strnlen() function shall compute the smaller of the number of bytes in the string to which s
781 points not including the terminating null byte, or the value of the maxlen argument. The
782 strnlen() function shall never examine more than maxlen bytes of the string pointed to by s.

783 RETURN VALUE
784 The strnlen() function shall return an integer containing the smaller of either the size of the
785 string pointed to by s or maxlen.

786 ERRORS
787 No errors are defined.

788 EXAMPLES

A789 PPLICATION USAGE
790 The strnlen() function is part of the Extended Interfaces option and need not be available on all
791 implementations.

792 RATIONALE
793 None.

794 FUTURE DIRECTIONS
795 None.

796 SEE ALSO
797 strlen(), the Base Definitions volume of IEEE Std 1003.1-2001, <string.h>

CHANGE798 HISTORY
799 First released in Issue X

28 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) strsignal()

800 NAME
801 strsignal — get name of signal

802 SYNOPSIS
803 #include <string.h>

804 char *strsignal(int signum);
805

806 DESCRIPTION

807 Notes to Reviewers
808 This section with side shading will not appear in the final copy. - Ed.

809 Commentary on this function:

810 Some implementations return NULL rather than unknown, so need to decide whether its worth
811 picking one, perhaps unspecified is the best we can do for this interface.

812 The strsignal() function shall map the signal number in signum to a implementation-defined
813 string and shall return a pointer to it. It shall use the same set of messages as the psignal ()
814 function.

815 The string pointed to shall not be modified by the application, but may be overwritten by a
816 subsequent call to strsignal() or setlocale ().

817 The contents of the message strings returned by strsignal() should be determined by the setting
818 of the LC_MESSAGES category in the current locale.

819 The implementation shall behave as if no function defined in this standard calls strsignal().

820 Since no return value is reserved to indicate an error, an application wishing to check for error
821 situations should set errno to 0, then call strsignal(), then check errno.

822 The strsignal() function need not be reentrant. A function that is not required to be reentrant is
823 not required to be thread-safe.

824 RETURN VALUE
825 Upon successful completion, strsignal() shall return a pointer to a string. Otherwise if signum is
826 not a valid signal number, the strsignal() function shall return a pointer to a string containing an
827 unspecified message denoting an unknown signal.

828 ERRORS
829 No errors are defined.

830 EXAMPLES
831 None.

832 APPLICATION USAGE
833 The strsignal() function is part of the Extended Interfaces option and need not be available on all
834 implementations.

835 RATIONALE
836 None.

837 FUTURE DIRECTIONS
838 None.

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 29

strsignal() New API Extensions (Extended Interfaces Strawman draft 7.3)

839 SEE ALSO
840 perror(), psignal (), the Base Definitions volume of IEEE Std 1003.1-2001, <string.h>

CHANGE841 HISTORY
842 First released in Issue X

30 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) wcpcpy()

843 NAME
844 wcpcpy — copy a wide character string, returning a pointer to its end

845 SYNOPSIS
846 #include <wchar.h>

847 wchar_t *wcpcpy(wchar_t *restrict dst, const wchar_t *restrict src);
848

849 DESCRIPTION
850 The wcpcpy() function is the wide character equivalent of the stpcpy() function. It shall copy the
851 wide character string pointed to by src, including the terminating null wide-character code, into
852 the array pointed to by dst.

853 The application shall ensure that there is room for at least wcslen(src)+1 wide characters in the
854 dst array, and that the src and dst arrays do not overlap.

855 RETURN VALUE
856 The wcpcpy() function shall return a pointer to the last wide character written into the dst array,
857 that is a pointer to the terminating null wide-character code. No return value is reserved to
858 indicate an error.

859 ERRORS
860 No errors are defined.

861 EXAMPLES
862 None.

863 APPLICATION USAGE
864 The wcpcpy() function is part of the Extended Interfaces option and need not be available on all
865 implementations.

866 RATIONALE
867 None.

868 FUTURE DIRECTIONS
869 None.

870 SEE ALSO
871 strcpy(), wcscpy(), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE872 HISTORY

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 31

wcpncpy() New API Extensions (Extended Interfaces Strawman draft 7.3)

873 NAME
874 wcpncpy — copy a fixed-size wide character string, returning a pointer to its end

875 SYNOPSIS
876 #include <wchar.h>

877 wchar_t *wcpncpy(wchar_t restrict* dst, const wchar_t *restrict src,
878 size_t n);
879

880 DESCRIPTION

881 Notes to Reviewers
882 This section with side shading will not appear in the final copy. - Ed.

883 Commentary on this function:

884 This page needs further work to improve the language to match the standard and also to tidy up
885 some points (the current description makes it impossible to implement this function if n == 0).

886 The wcpncpy() function is the wide character equivalent of the stpncpy() function. It shall copy
887 at most n wide characters from the string pointed to by src, including the terminating null wide-
888 character code, into the array pointed to by dst. Exactly n wide characters shall be written into
889 dst. If the length of src is smaller than n remaining characters for dst are filled in using the
890 terminating null wide-character code. If the src array length is greater than, or equal to n then n
891 characters from src shall be copied to dst with no terminating null wide-character code in the dst
892 array.

893 The application shall ensure that there is room for at least n wide characters in the dst array, and
894 that the src and dst arrays do not overlap.

895 RETURN VALUE
896 The wcpncpy() function shall return a pointer to the first null wide character that was written
897 into the dst array, whatever the relation between size and the length of src. No return values are
898 reserved to indicate an error.

899 ERRORS
900 No errors are defined.

901 EXAMPLES
902 None.

903 APPLICATION USAGE
904 The wcpncpy() function is part of the Extended Interfaces option and need not be available on all
905 implementations.

906 RATIONALE
907 None.

908 FUTURE DIRECTIONS
909 None.

910 SEE ALSO
911 stpncpy(), wcpcpy(), wcsncpy(), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

32 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) wcpncpy()

912 CHANGE HISTORY
913 First released in Issue X

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 33

wcscasecmp() New API Extensions (Extended Interfaces Strawman draft 7.3)

914 NAME
915 wcscasecmp — compare two wide character strings, ignoring case

916 SYNOPSIS
917 #include <wchar.h>

918 int wcscasecmp(const wchar_t *st1, const wchar_t *st2);
919

920 DESCRIPTION

921 Notes to Reviewers
922 This section with side shading will not appear in the final copy. - Ed.

923 Commentary on this function:

924 Some issues with this man page. The return value section doesn’t match the description.
925 Language referring to st1 and st2, needs to be clear that its the the first wide character pointed to
926 by st1 and st2

927 The wcscasecmp() function is the wide character equivalent of the strcasecmp() function. It shall
928 compare the wide character string in st1 with that found in st2. This comparison shall ignore
929 case differences between the two strings.

930 RETURN VALUE
931 The wcscasecmp() function shall return an integer containing the value 0 when the two strings
932 are equal (ignoring case differences). The returned integer shall be positive when st1 is greater
933 than st2, ignoring case. The returned integer shall be negative when st1 is smaller than st2,
934 ignoring case. No return value is reserved to indicate an error.

935 ERRORS
936 No errors are defined.

937 EXAMPLES
938 None.

939 APPLICATION USAGE
940 The wcscasecmp() function is part of the Extended Interfaces option and need not be available on
941 all implementations.

942 RATIONALE
943 None.

944 FUTURE DIRECTIONS
945 None.

946 SEE ALSO
947 strcasecmp(), wcscmp(), wcsncasecmp(), the Base Definitions volume of IEEE Std 1003.1-2001,
948 <wchar.h>

CHANGE949 HISTORY
950 First released in Issue X

34 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) wcsdup()

951 NAME
952 wcsdup — duplicate a wide character string

953 SYNOPSIS
954 #include <wchar.h>

955 wchar_t *wcsdup(const wchar_t *string);
956

957 DESCRIPTION

958 Notes to Reviewers
959 This section with side shading will not appear in the final copy. - Ed.

960 Commentary on this function:

961 Some issues with this man page. The description and return value sections do not actually state
962 that the wide characters in the string argument are actually copied into the memory pointed to
963 by the return value.

964 The wcsdup() function is the wide character equivalent of the strdup() function. It shall allocate
965 memory for a wide character string duplicate of that passed in string.

966 The memory is allocated using malloc (), and should be freed using free().

967 RETURN VALUE
968 Upon successful completion the wcsdup() function shall return a pointer to the newly allocated
969 wide character string. Otherwise it shall return a null pointer and set errno to indicate the error.

970 ERRORS
971 The wcsdup() function shall fail if:

972 [ENOMEM] memory large enough for the duplicate string could not be allocated.

973 EXAMPLES
974 None.

975 APPLICATION USAGE
976 The wcsdup() function is part of the Extended Interfaces option and need not be available on all
977 implementations.

978 RATIONALE
979 None.

980 FUTURE DIRECTIONS
981 None.

982 SEE ALSO
983 strdup(), wcscpy(), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE984 HISTORY
985 First released in Issue X

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 35

wcsncasecmp() New API Extensions (Extended Interfaces Strawman draft 7.3)

986 NAME
987 wcsncasecmp — compare two fixed-size wide character strings, ignoring case

988 SYNOPSIS
989 #include <wchar.h>

990 int wcsncasecmp(const wchar_t *st2, const wchar_t *st2, size_t n);
991

992 DESCRIPTION

993 Notes to Reviewers
994 This section with side shading will not appear in the final copy. - Ed.

995 Commentary on this function:

996 Some issues with this man page. The return value section doesn’t match the description. Phrases
997 such as "truncated st1" need to be "the wide character string pointed to by st1".

998 The wcsncasecmp() function is the wide character equivalent of the strncasecmp() function. It
999 shall compare at most n wide characters in st1 to their counterparts in st2, ignoring case
1000 differences.

1001 RETURN VALUE
1002 The wcsncasecmp() function shall return an integer containing the value 0 when at most n wide
1003 characters compare equal, ignoring case. This integer shall be a positive value when the
1004 truncated st1 is greater than the truncated st2, ignoring case. It shall be a negative value when
1005 the truncated st1 is less than the truncated st2, ignoring case. No return value is reserved to
1006 indicate an error.

1007 ERRORS
1008 No errors are defined.

1009 EXAMPLES
1010 None.

1011 APPLICATION USAGE
1012 The wcsncasecmp() function is part of the Extended Interfaces option and need not be available
1013 on all implementations.

1014 RATIONALE
1015 None.

1016 FUTURE DIRECTIONS
1017 None.

1018 SEE ALSO
1019 strncasecmp(), wcscasecmp(), wcsncmp(), the Base Definitions volume of IEEE Std 1003.1-2001,
1020 <wchar.h>

CHANGE1021 HISTORY
1022 First released in Issue X

36 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

New API Extensions (Extended Interfaces Strawman draft 7.3) wcsnlen()

1023 NAME
1024 wcsnlen — determine the length of a fixed-sized wide character string

1025 SYNOPSIS
1026 #include <wchar.h>

1027 size_t wcsnlen(const wchar_t *wcs, size_t maxlen);
1028

1029 DESCRIPTION

1030 Notes to Reviewers
1031 This section with side shading will not appear in the final copy. - Ed.

1032 Commentary on this function:

1033 Some issues with this man page. The description and return value sections use non-standard
1034 terms ("termination character", "size" of a wide character string). Uses of phrases such as "size of"
1035 need to be updated to "length of a string"

1036 The wcsnlen() function is the wide character equivalent of the strnlen() function. It shall scan the
1037 wide character string pointed to by the wcs argument up to at most maxlen wide characters,
1038 looking for a termination character.

1039 RETURN VALUE
1040 The wcsnlen() function shall return an integer containing the smaller of either the size of the
1041 wide character string pointed to by wcs or maxlen. No return value is reserved to indicate an
1042 error.

1043 ERRORS
1044 No errors are defined.

1045 EXAMPLES
1046 None.

1047 APPLICATION USAGE
1048 The wcsnlen() function is part of the Extended Interfaces option and need not be available on all
1049 implementations.

1050 RATIONALE
1051 None.

1052 FUTURE DIRECTIONS
1053 None.

1054 SEE ALSO
1055 strnlen(), wcslen(), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE1056 HISTORY
1057 First released in Issue X

Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved. 37

wcsnrtombs() New API Extensions (Extended Interfaces Strawman draft 7.3)

1058 NAME
1059 wcsnrtombs — convert wide-character string to multi-byte string

1060 SYNOPSIS
1061 #include <wchar.h>

1062 size_t wcsnrtombs(char *dst, const wchar_t **src, size_t nwc,
1063 size_t len, mbstate_t *ps);
1064

1065 DESCRIPTION

1066 Notes to Reviewers
1067 This section with side shading will not appear in the final copy. - Ed.

1068 Commentary on this function:

1069 The man page for this interface is incomplete and the references to wcsrtombs() are not
1070 sufficient to understand how this is supposed to work in the general case. Need a much better
1071 description

1072 The wcsnrtombs() function shall be equivalent to the wcsrtombs() function, except that the
1073 conversion is limited to the first nwc wide characters.

1074 RETURN VALUE
1075 Refer to wcsrtombs()

1076 ERRORS
1077 Refer to wcsrtombs()

1078 EXAMPLES
1079 None.

1080 APPLICATION USAGE
1081 The wcsnrtombs() function is part of the Extended Interfaces option and need not be available on
1082 all implementations.

1083 RATIONALE
1084 None.

1085 FUTURE DIRECTIONS
1086 None.

1087 SEE ALSO
1088 wcsrtombs(), the Base Definitions volume of IEEE Std 1003.1-2001, <wchar.h>

CHANGE1089 HISTORY
1090 First released in Issue X

38 Strawman7.3 New API Extensions — Copyright  2001-2004, The Open Group. All rights reserved.

	warning: Unapproved Draft, Subject to Change

