
Jericho Challenge Architecture
By Gunnar Peterson, CTO, Arctec Group

“We have no future because our present is too volatile. We have only risk management.
The spinning of the given moment's scenarios. Pattern recognition...”
-William Gibson “Pattern Recognition”

Problem Statement
The primary security mechanisms deployed today rely on notions of perimeters and
centralized security models, however the nature of business is moving rapidly towards
decentralized “intertwingled-ness” (non-hierarchical connectivity). Malicious attackers
exploit the gaps left between the existing security mechanisms deployed based on
outmoded assumptions and the reality of the threats to the connected systems on the
ground.

Solution
In keeping with current state of the art in the software development world around Service
Oriented Architecture (SOA), the proposed solution includes viewing security as service
that is decoupled and composeable. In keeping with Jericho’s principles, Service
Oriented Security architecture does not focus on perimeters, but rather provides a
framework to analyze and design for key information security concerns around risk
management, identity, data, and so on.

Service Oriented Security Architecture Overview
In software architecture, the word “security” can often do more harm than good.
Frequently, stakeholders have differing, conflicting, and overloaded definitions of the
term. In order to build a coherent system, the architects must provide specific guidance to
the development and operational teams. Service Oriented Security (SOS) Architecture
provides a set of software architecture viewpoints that allow security architects to
construct a holistic system design based on a set of views. Since security is not a zero
sum game, the views provide a framework to conduct security architecture tradeoff
analysis and to convey design decisions to development and operational staff. As
Kruchten observed [Kruchten95], views enable the software architect to separate
concerns in a complex system. The views in Service Oriented Security consist of the
following:

* Identity View: deals with the claims made about an identity, the identity itself,
federated identity, and identity management and services

* Service View: deals with the threats and countermeasures for the service, methods and
component parts

* Message View: deals with threats and countermeasures for the persistent data/service's

message payload

* Deployment View: deals with “classic” information security concerns such as the
logical and physical administrative and runtime deployment environments

* Transaction Use Case Lifecycle View: deals with the key behavioral flows and
relationships in a system and its actors from an end-to-end perspective

Figure 1 – Service Oriented Security Views

Each of the individual views is composed of domain specific elements, constraints,
threats, and countermeasures. Each view also includes a set of key architectural patterns
and principles. By partitioning concerns security designers are able to first decouple
concerns to analyze security domains and analyze tradeoffs and dependencies among the
domains. The resultant architecture takes the concerns from each domain into account
and provides holistic solution based on the risk management of digital assets like
identities and data. The following sections examine each SOS viewpoint in more detail
and provide an example usage.

Identity View
Using Kim Cameron’s definition we will examine identity as “a set of claims made by
one digital subject about itself or another digital subject." [Cameron05]. This definition
rewards careful study because it reveals that identity is not a passive entity, but rather the
result of an active set of processes that can be judged against a dynamic set of criteria.
Key constituents of the Identity View include:

• Authentication mechanisms, events, and principals including Kerberos tickets,
X.509, Windows sessions, and web server sessions

• Identity Federations including the portable, strong identities like SAML, Liberty,
and WS-Federation identities

• Monitoring and audit systems: provide traceability of identity-related events like
authentication

Identity View Pattern: Federated Identity

• Context: Manufacturer and supplier want to integrate disparate systems with unique
policies and management

• Problem: User credentials must be securely ported across domains and security
information must be recognizable to both parties

• Solution: Use federated identity for SSO. Client logs onto local system,
receives/sends encrypted SAML token to the Web Service. Web Service validates
assertions for authentication and authorization.

Figure 2: Using Identity Federation

Service View
The Service View is concerned with the security around the service and the service’s
ability to broker information flows with requisite confidentiality and integrity. Services
require access control protection and may consume federated identities from other
security domains using cryptographic protocols for verification. From a detection and
response standpoint, services require logging mechanisms to vouch for the health of the
system. Standard technology specific service hardening and security guidelines apply in
the services view, such as the OWASP guidelines for Web Applications.

Service View Pattern: Security Pipeline Interface

• Context: host must mediate activity between remote client system and back end
resources

• Problem: host system cannot trust incoming requests and data
• Solution: Use Security Pipeline Interface (SPI) [Hoffman90] to enforce the

principle of Separation of Privilege [Saltzer75] and reduce risk of data integrity
threats. Run SPI in separate physical, process and memory space from business
logic aware services. Execute logging of access control and related security event
at the SPI.

Figure 3: Security Pipeline Interface provides data integrity and logging

Message View
Information security is concerned with protecting valuable digital assets, in many cases
the most valuable assets from a risk management perspective is not network access, but
rather the company’s data. As distributed systems continue to evolve and become more
connected to each other in ways not foreseen by their original designers, such as decades
old legacy systems being connected to the web, data and messages emerge in ways not
intended when their protection mechanisms were implemented. The net result of this
evolution is to move security mechanisms closer to the asset level, in this case the data
elements. Encryption and related technology standards are used to constrain access to
persistent data while it is at rest and ensure integrity and auditability over its lifecycle.

Message View Pattern: WS-Security

• Context: data is increasingly shared across technological and policy boundaries
• Problem: message must be protected beyond the span of control of the service and

systems, since it can traverse multiple domains. How does the principle of
complete mediation [Saltzer75] apply in a “fire and forget” service oriented
world?

• Solution: Use WS-Security standard to sign and encrypt persistent XML
documents. WS-Security uses XML Encryption and XML Signature, and can
accept tokens such as SAML, Kerberos, and X.509 to provide assurance through
authentication, authorization, and validation

Deployment Environment View
The Deployment Environment view is focused on the classic information security
considerations such as:

• Firewalls
• Host based and network intrusion detection systems
• Directory services

The Deployment Environment View articulates these concerns and their relationships to
the rest of the Information Security picture.

Deployment Environment View Anti-Patterns: Trusted Versus Untrusted Considered
Harmful

• Do not architect using dualistic concepts like “trusted versus untrusted”
deperimeterization renders these definitions meaningless. Instead focus on
verification based on available protection, detection, and response mechanisms.

• Use Honeypots for understanding the actual threat profile on the ground of each
domain to vet trust zone assumptions. Develop metrics and reporting to feed
forward into future security designs.

Transaction Use Case Lifecycle View
Use Cases are used to show the end-to-end view of the system. Use cases provide a
synthetic model that correlates requirements from different domains' concerns into a
coherent model and flow. Use Case models contain many properties that are critical to
secure system design:

• Stakeholders: In Information Security, it pays to find allies who have a vested
interest in system security. Stakeholders who may be concerned about security
implications in the system that is being built include not just the core development
staff, but also the legal staff, business owners, domain experts, operational staff,
customers, shareholders, and users.

• Pre and Post Conditions: Pre and post conditions describe the set conditions that
must be satisfied for the Use Case to execute (Pre-conditions) and the set of states
that the system can be in after it has completed (Post-conditions). Pre-conditions
allow the Information Security team to articulate the security conditions, such as
authentication and authorization processes that must be completed before
accessing the Use Case functionality so that developers have a consistent spec to
build from.

• Exceptional and Alternate Flows: A fundamental principle in security design is to
design for failure. Development projects are mainly focused on base flows of the
system since these implement business valuable features. However from a
security standpoint, exceptional and alternate flows highlight paths that often
become attack vectors. These flows are worth examination by Information
Security to ensure that the system is designed to deal with these exceptions and
has deployed security mechanisms such as audit logs and IDS tools to catch
security exceptions when they occur.

• Actors: Actors can include computer systems, users, and other resources like
schedulers. By analyzing the actors involved in the Use Case model, the
Information Security team can begin to build a picture of the access control
structures such as roles and groups that may be required for design as the system
is built. Where delegation or impersonation is used, actors can identify where this
is accomplished and what actors are mapped onto other actors at runtime.

• Relationships: Much of the power in the Use Case model comes from its
simplicity. Use Case models feature two types of relationships: includes and

extends. These have direct security implications, in the includes relationship
outcome changes the base flow of the Use Case. In the case of including an access
control Use Case like Authenticate User, the outcome of this (usually boolean
pass/fail) directly changes the behaviors of the related use case. The extends
relationship does not alter behavior of the preceding use case, so if a use case
extends to a monitor event use case and that monitor server is down, it may not
make sense to alter the flow of the preceding Use Case.

• Mapping Use Cases to Threat Models: Security cannot only focus on functional
requirements, but must also consider the attacker viewpoint. Threat modeling and
abuse cases are techniques used in the development lifecycle to map possible
threats, vulnerabilities, and impacts onto the system so that appropriate security
countermeasures can be built into the system. The Use Case model allows the
Threat Model to refer to functions in a context-sensitive manner.

Architecture Issues
The SOS views describe a way of seeing security architecture across a complex system to
make and convey security design decisions. The software security space contains issues
that are still being worked to achieve optimal effectiveness.

XML Security
Research has shown various flaws with XML Security [Gutmann05] related to its
reliance on XML for encryption and signature as well as replicating a number of
problems in legacy technologies. Since a large number of emerging security solutions,
particularly WS-* rely on XML security mechanisms it is worth revisting this
dependency to see if XMPP or other technology can remedy these issues.

Emerging toolsets and standards
The software security space is evolving at a rapid pace, investment paths are not clear in
a long term sense. Deploying resources based on today’s assumptions about standards,
for example SAML vs. WS-*, implementation, and threat models inserts a higher degree
of variability into the system’s longevity based on the outcomes of the technical and
standards challenges.

Changing Threat Landscape: Attacker Co-evolution
As with any security design, the opponent is homo sapiens meaning that the opponent is
ever adaptable and resourceful. As security designs become more robust, then business
deploy more resources and transactions to the online world, thus attracting more
attackers.

References

Cameron05 “What is a digital identity?”, Kim Cameron,
http://www.identityblog.com/2005/03/07.html#a152, 2005

Gutmann05 “Why XML Security is Broken”, Peter Gutmann,
http://www.cs.auckland.ac.nz/~pgut001/pubs/xmlsec.txt, 2005

Hoffman90 “Security Pipeline Interface”, Hoffman and Davis, Proceedings of
the Sixth Annual Computer Security Applications Conference, 1990

Kruchten95 “Architectural Blueprints – The “4+1” View Model of Software
Architecture, Philippe Kruchten, IEEE Software, 1995

Saltzer75 “The Protection of Information in Computer Systems”, Saltzer and
Schroeder, Proceedings of the IEEE, 1975)

