
Safer Scripting Through Precompilation

Ben Laurie
(ben@algroup.co.uk)

July 19, 2005

1 Introduction

One of the challenges in modern systems is the conflict between the desire to
run software from a wide variety of untrusted sources and the need to prevent
malicious activity by those scripts.

The current standard practice is to attempt to achieve this through permissions,
but this has been shown repeatedly to fail in a variety of ways. If permissions are
made too granular, they become impossible to configure and so tend to become
useless. If they are less granular, loopholes appear through which malicious
scripts can wriggle. In either case, providing useful defaults whilst still providing
security has proved to be a daunting (or, perhaps, judging on the evidence,
impossible) task.

Capabilities (in the object-capabilities sense[1]) allow authorisation through des-
ignation, a paradigm that permits fine-grained security without the need for
tedious configuration. For historical reasons they have largely been ignored for
the last few decades, meaning that there are few platforms that support them,
none in wide use1.

It has long seemed to me that the best way to introduce capabilities into ex-
isting environments is through modified versions of widely used programming
languages, for two reasons – firstly, programmers are already familiar with the
language, so the learning curve is shallow, and secondly because it is then pos-
sible to leverage the large body of existing code, through the process known as
“taming”.

I’d made several attempts at this, with little success – until I realised that the
thing to do was to compile a modified version of the language into the unmodified
base language, and introduce capabilities that way.

This paper outlines an experimental implementation of this idea for Perl, called
CaPerl. It assumes familiarity with Perl.

2 Overview

There are many different ways to express capabilities, but perhaps the simplest
and most easily understood is to implement them as standard objects in an
object-oriented language. Of course, they are not capabilities unless some of the
standard behaviour of O-O languages is eliminated. It should not be possible to
“look inside” an object. There must be a distinction between public and private
methods. Global variables should be avoided.

It is also necessary to create the capabilities in the first place, either externally
to the system or through the use of “trusted” code.

Perl sounds like a fantastically unsuitable language to use as a basis for this,
since there are so many ways to bend the rules in Perl. Interestingly, though,
the use of a precompiler can quite easily enforce these rules precisely because
Perl is so flexible.

1Although the AS/400 is allegedly a capability system, this is not exposed to applications,
sadly.

1

The approach is to use Perl’s introspection in the compiled code to ensure that
each package can only access its own data, to add restrictions to what can be
written by only accepting a subset of Perl, and to add slight extensions to the
language to enable public and private methods to be created, and to differentiate
between trusted and untrusted code.

The result is surprisingly useable, even with only a subset of the compiler im-
plemented.

3 Objects

Perl isn’t really object oriented, instead it uses the concept of blessing to link
objects to code (via their package). This makes restricting access to objects
quite easy. Every time CaPerl code attempts to dereference a blessed object,
using the -> operator, the code emitted first checks the dereferenced object using
the built-in ref function to see whether it “belongs” to the current package. If
not, then the code croaks.

4 Public and Private Methods

In fact, because there is also the need to distinguish between trusted and un-
trusted code, CaPerl introduces the concept of a “trusted” method, as well as
public and private ones. These are flagged with a keyword in the sub declara-
tion, for example:

trusted sub some sub { ... }
These are checked with the built-in caller function. A private method can only
be called from the package it is defined in, a trusted method can only be called
from trusted code and a public method can, of course, be called from anywhere.

Note that because the called routine checks the caller, CaPerl makes no restric-
tions on calling methods on objects in untrusted code. In fact, such calls are
the only thing of interest untrusted code can do with an object not its own.

5 Trusted and Untrusted Code

Trusted code is needed both to create the environment for untrusted code and
to “tame” existing plain Perl code. The two are distinguished by a compile-
time flag. Trusted code is allowed to do things untrusted code cannot: it can
load modules written in Perl rather than CaPerl, it can call trusted methods in
CaPerl code and it can use certain dangerous built-in Perl functions.

When compiled CaPerl code wants to check whether its caller is trusted or
untrusted it does so simply by checking for a global variable in the package,
which is introduced by the compiler.

2

6 Global Variables

Untrusted code should not be allowed access to globals. This is accomplished
by the trivial expedient of prohibiting the use of :: in variable names!

7 Built-in Functions

Perl has a large number of dangerous built-in functions, so untrusted code is
only permitted to run a subset. This is achieved by prohibiting function calls
(as opposed to calling methods on objects), and then permitting a few selected
functions, for example shift.

“Dangerous” from a capabilities perspective does include functions that would
normally be considered quite harmless, such as print or fileno, so these can
only be called by trusted code.

8 Taming

Existing Perl code is not, of course, written with capability discipline in mind,
so it cannot be exposed directly to untrusted CaPerl code. The process of
“capability-ising” such code is known in some circles as taming. What this
generally consists of is writing a very thin wrapper around the desired module
in CaPerl. This is perhaps best illustrated by an example, a partial wrapper for
Term::ReadLine.

package Wrap::Term::ReadLine;

use untrusted Term::ReadLine;

trusted sub new {
my $class=shift;

my $self={};
bless $self,$class;

$self->{readline}=new Term::ReadLine();

return $self;
}

public sub readline {
my $self=shift;
my $prompt=shift;

croak if ref($prompt) ne ’’;
return $self->{readline}->readline($prompt);

}

3

1;

Taming can also be used to produce safer versions of built-in functions, such as
opendir or read.

9 Departures From Perl

Of course, the extra keywords used are changes from Perl, but there were also
syntax restrictions introduced, partly to reduce the complexity of the compiler2

and partly to reduce the risk that cleverly written code would somehow circum-
vent CaPerl’s security.

One of the major changes was to remove the ability to call functions with-
out parentheses. This turns out to be surprisingly hard to support, particu-
larly since, for example, f g(a),b is ambiguous: it could mean f(g(a),b) or
f(g((a),b)) . It may be that a future version will reintroduce this, since it
was surprising how often experienced Perl authors use this facility.

Currently, string interpolation is also omitted from the language. This doesn’t
restrict what can be written, but does make some things rather more verbose
than in standard Perl. It isn’t particlarly hard to get this back, by parsing
interpolated strings into a series of concatenations of the contents (in fact, this
is what standard Perl does anyway).

Because Perl packages can introduce global functions, and access to built-ins
must be restricted, the ability to use functions which are not object methods has
been completely removed for untrusted code. This is not really a great handicap
– at worst, the occasional function will have an unused extra parameter.

It is not currently clear how to support inheritance, so CaPerl currently doesn’t.

10 An Example of CaPerl’s Use

There are clearly many environments in which a restricted language such as
CaPerl could be used. The “real world” I have been using in testing is CGI
scripts. The idea is that a webserver could be run which permits arbitrary users
to upload CaPerl scripts, which are then run in a restricted environment.

The version I have been running passes these scripts just two capabilities. One
is a capability which can be used to write HTML back to the HTTP client3

and the other gives each script access to a subdirectory of its own – it can list
the directory (that is, get the functionality normally provided by opendir and
readdir), and open (for read or write) or create any file in that directory. It
cannot, however, move outside its own directory – the code implementing the
capability prevents that.

2Perl’s lexer, parser and compiler are rather horribly intertwined in order to permit some
of Perl’s shorthands and grammatical ambiguities.

3Although I currently use a version of this which gives the script a very free hand to
write what it wants on the returned page, it would be quite easy to make a version that only
permitted a subset of HTML to be used, for example.

4

Why is this useful? Even this trivial example has at least one quite profound use
– imagine two mutually untrusting parties want to enter into a contract – they
want to exchange two binary objects. But since they do not trust each other,
each cannot be sure that the other will release his object once his own has been
released. The usual answer is to use a trusted intermediary, but now we have an
automated solution. The two write a simple script that takes the two objects
and stores them, but won’t release them until they are both present. They
upload this to a trusted machine which runs it in the environment described
above. They can then execute their transaction without any further help, and
the owner of the trusted machine can be sure that their script can do nothing
bad, even though he has no control over its content at all.

11 Future Directions

Support Perl more completely.

Figure out how to manage inheritance.

Apply the approach to other scripting languages, such as Python.

References

[1] Mark Miller, Ka-Ping Yee, and Jonathan Shapiro. Capability myths demol-
ished. http://zesty.ca/capmyths/, 2003.

5

