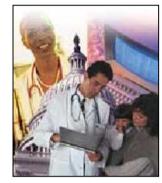

The Convergence of Semantic Naming and Identification Technologies Conference

RFID / Wireless Coordination and Collaboration Across MHS

27 April 2006

Garry Duvall, DMLSS Deployment Manager



Wireless Technologies

- ▶ RFID
- Wireless LAN (802.11 a/b/g)
- WIMAX
- Commercial Wireless Services
- Bluetooth
- RTLS (Real Time Locations Services)
- ▶ LMR (Land Mobile Radio)

Wireless Applications

- Drug Counterfeit solutions
- ▶ Cold Chain Management
- Point-of-Care applications -Accessing electronic medical records at patients' bedsides
- Telemedicine
- Autonomous Supply Chains
- Patient Safety (e.g. medication administration
- Asset / Personnel Tracking
- Inventory management
- Voice Communications

This is best evident from the proliferation of wireless systems and applications in the medical community

TRICARE Management Activity

IDC found that more than 80% of health care organizations polled said they have deployed wireless LANs or plan to deploy one in the next

US Navy, Fleet Hospital Three, Iraq – Using RFID to track wounded soldiers, refugees and POWs MHS – MTFs are using Wireless LANs in receiving gates, enabling mobile workers untethered access to the DMLSS application VA – BCMA (Barcode Medication Administration) uses wireless laptops and PDAs to improve patient care

Boston, MA Beth Israel Deaconess Medical Center– wireless asset tracking

Ft. Bragg – Employed active RFID to track medical equipment

Charlotte, NC – passive RFID infant tracking security system

Houston, St. Luke – RFID to improve bed management

George Washington University Hospital – wireless throughout new facility, even elevator shafts: tracks patients moving between floors

Yale, New Haven – RFID used to improve equipment management and flow of patients and medical staff

Ingalls Family
Care Centers –
provide wireless
access to doctors
for reviewing
medical imaging
output, patient
records, and
virtual discussion
groups

2005 HIMSS survey showed that 79% of 253 health care executives said they will use wireless information systems this year while 54 percent said they will use handheld devices.

DoD is attempting to standardize and optimize implementation by publishing directives such as RFID

- Passive RFID Policy applied to cases, pallets of materiel:
 - January 2005: Operational Rations, Clothing, Tools, Personal Demand Items, Weapon System Repair Parts & Tools shipped to two DLA warehouses
 - January 2006: Comfort Items, Petroleum, Lubricants, Oil, Chemicals, Additives, Barrier Material, Ammunition, Pharmaceutical and Medical Materiel shipped to specific locations
 - January 2007: All classes of materiel shipped to all DoD locations must have passive RFID tags whether shipped vendor to DoD or DoD to DoD

- Active RFID Policy (Updated July 30th 2004)
 - Applied to all freight containers, consolidated air pallets and large engine containers shipped to/from overseas DoD receiving points (includes all war reserve materiel in MILVAN, SEAVAN or air pallets)

AIS Integration

 Beginning in FY 2007 – logistics automated information systems (AISs) involved in receiving shipping and inventory management will use RFID to perform business transactions

Despite policy directives, significant challenges exists

 The need to efficiently leverage existing / same infrastructure for multiple mobility solutions across diverse installations

Security

- Systems may be vulnerable to security threats that can affect mission resilience beyond those traditionally associated with IT systems (e.g., tag destruction)
- Retrofitting RFID and wireless security measures could be costly and alter business case ROI
- HIPAA compliance in the wireless and mobility environment will require specific consolidations
- Inherent Interfere issues that can affect operations
- Changing Technology- Investments may be made in architecture and products that are not sustainable in the long run (e.g. EPC vs. ISO, or EPC Gen 1 vs. EPC Gen2)
- ▶ Lack of common policy and strategy can yield to the development of stovepipe systems that are not interoperable
 - Difficulty in extracting maximum value from RFID (and AIT) generated data
 - Inability to broadly share relevant information
 - Difficulty in fusing data from various sources
 - Service parochialism

Overabundance of data

- Potential to overwhelm existing legacy systems, data repositories and enterprise networks
- May cause inefficient bandwidth utilization

- DMLSS Program has to adhere to the RFID directive
 - How to leverage existing wireless infrastructure at loading docks...
 - Which RFID technology to use in each situation
 - Logistics: EPC gen1 vs. gen2
 - Asset tracking active, passive, hybrid
 - What security safeguards if any should they plan for
 - How should they exchange lessons learned with other services
- TMIP Program will provide POC application to medics in the tactical field
 - Which air-interface protocols should be used
 - What handheld device should be utilized that is also compatible with a broader set of applications – e.g. logistics
- Selecting a wireless communications technology within MTFs
 - VOIP & WIFI, Cellular, simple cordless phones, pager

Many technology initiatives have had mixed track records

16% delivered on time/on budget

- Clear statement of requirements
- Stakeholder involvement
- ▶ Executive Management Support
- Proper training

31% cancelled before completion

- Business case invalid
- Funding
- Prioritization

53% late, over budget and/or delivered less than requirement

- ▶ Incomplete requirements
- Lack of stakeholder involvement
- Lack of resources
- Unrealistic expectations
- Lack of senior support

Source: Standish Group International

With proper planning wireless initiatives can avoid similar pitfalls

A comprehensive approach for a successful wireless implementation includes.....

Planning

- Look at strategic needs of organizations and consider how wireless solutions align with those strategies
- POM process to fund all aspects of technology insertion (hardware, software, site survey, installation, etc.,). Will technology be funded centrally or through operating budgets?
- Consider impact of Enterprise Architecture on desired solution

Policy

- Create clear, targeted policies to provide guidance on implementation and security considerations
- Consider BPA contracts for hardware, software and services to ease implementation of comprehensive solutions across multiple locations / services

▶ R&D

Understand the technologies, how they may best be used and their limitations

Communication

Educate personnel on policies and technologies

Feedback

Solicit feedback from end users via working groups

What are the benefits of a comprehensive approach?

Mission Effectiveness

- Enhanced support to the war fighter (just in-time healthcare / logistics, etc.)
- Increased Patient Safety

Efficiencies

- A consistent solution means lower learning curves as personnel move from location to location
- Solutions to issues at one location can quickly be disseminated throughout the network
- Increased ability to accommodate new technologies and initiatives
- Reduce errors and streamline the supply-chain to ensure the right product arrives at the right locations at the right time
- A consistent approach to implementing wireless & mobility solutions that keep costs low
- Added data allows for better activity measurement leading to more opportunities for improvement

DMLSS will act as the Center of Excellence for RFID and wireless technologies across MHS

TRICARE Management Activity

- Spearhead the development and coordination of a Wireless Working Group to include the relevant MHS stakeholders.
- Wireless working group to:
 - Coordinate needs of MHS and introduce best practices for wireless technologies
 - Provide assistance for developing guiding principles and policies that will shape application development and use as well as anticipate marketplace and standards evolution
 - Provide guidance for the introduction, implementation, and operation of mobility technologies across MHS

Short Term

- Conduct a Mobility Maturity Readiness Assessment
- Participate in Service AIT meetings (USAF, USA, USN)
- Centrally research technologies and opportunities

Mid Term

- Conduct a follow on pilot at Wright Patterson AFB
- Consolidate lessons learned and best practices
- Assist in the development of guidance document in the use of wireless technologies

Long-Term

- Assist in plans for future implementations (POM, AIS changes, cross service coordination)
- Ensure emerging standards and policies do not overlook medical specific requirements

QUESTIONS