
Tutorial on the Semantic Web

Ken Baclawski
Northeastern University

Versatile Information
Systems

Outline

I.I. Ontology LanguagesOntology Languages
A.A. From flat files to hierarchies and XMLFrom flat files to hierarchies and XML
B.B. Rule based systemsRule based systems
C.C. Resource Description FrameworkResource Description Framework
D.D. Web Ontology LanguageWeb Ontology Language

II. Ontology Applications
A. Ontology based information retrieval
B. Transformation languages and tools
C. Bayesian Web: Combining logic and probability
D. Situation Awareness

III. Ontology Design

Flat File Records

Consider the following records in flat file:

011500 18.66 0 0 62 46.271020111 25.220010
011500 26.93 0 1 63 68.951521001 32.651010
020100 33.95 1 0 65 92.532041101 18.930110
020100 17.38 0 0 67 50.351111100 42.160001

What do they mean?

Metadata

NAME LENGTH FORMAT LABEL
instudy 6 MMDDYY Date of randomization into study
bmi 8 Num Body Mass Index.
obesity 3 0=No 1=Yes Obesity (30.0 <= BMI)
ovrwt 8 0=No 1=Yes Overweight (25 <= BMI < 30)
Height 3 Num Height (inches)
Wtkgs 8 Num Weight (kilograms)
Weight 3 Num Weight (pounds)

The explanation of what data means is called
metadata or “data about data.”
For a flat file or database the metadata is
called the schema.

Record Structures

A flat file is a collection of records.
A record consists of fields.
Each record in a flat file has the same number
and kinds of fields as any other record in the
same file.
The schema of a flat file describes the
structure (i.e., the kinds of fields) of each
record.
A schema is an example of an ontology.

Self-Describing Data

<Interview RandomizationDate="2000-01-15" BMI="18.66" Height="62"... />
<Interview RandomizationDate="2000-01-15" BMI="26.93" Height="63"... />
<Interview RandomizationDate="2000-02-01" BMI="33.95" Height="65"... />
<Interview RandomizationDate="2000-02-01" BMI="17.38" Height="67"... />

<ATTLIST Interview
RandomizationDate CDATA #REQUIRED
BMI CDATA #IMPLIED
Height CDATA #REQUIRED

>

The eXtensible Markup Language

XML is a format for representing data.
XML goes beyond flat files by allowing
elements to contain other elements, forming
a hierarchy.

SchemaDTD
FieldAttribute
RecordElement
Flat FilesXML

<bioml>
<organism name="Homo sapiens (human)">

<chromosome name="Chromosome 11" number="11">
<locus name="HUMINS locus">

<reference name="Sequence databases">
<db_entry name="Genbank sequence" entry="v00565“

format="GENBANK"/>
<db_entry name="EMBL sequence" format="EMBL" entry="V00565"/>

</reference>
<gene name="Insulin gene">

<dna name="Complete HUMINS sequence" start="1" end="4992">
1 ctcgaggggc ctagacattg ccctccagag agagcaccca acaccctcca ggcttgaccg

...
</dna>
<ddomain name="flanking domain" start="1" end="2185"/>
<ddomain name="polymorphic domain" start="1340" end="1823"/>
<ddomain name="Signal peptide" start="2424" end="2495"/>
...
<exon name="Exon 1" start="2186" end="2227"/>
<intron name="Intron 1" start="2228" end="2406"/>

. . .
</gene>

</locus>
</chromosome>

</organism>
</bioml>

Element
Hierarchy

XML
Element
Hierarchy

Specifying XML Hierarchies

A DTD can specify the kinds of element that
can be contained in an element.

<ELEMENT locus (reference|gene)*>
<ELEMENT reference (db_entry)*>
<ELEMENT gene (dna,ddomain*,(exon|intron)*)>

A locus element can contain any number of reference and gene elements.
A reference element can contain any number of db_entry elements.
A gene element must contain a dna element, followed by any number of
ddomain elements, followed by any number of exon and intron elements.

Hierarchical Organization

XML elements are hierarchical: each element
can contain other elements, that in turn can
contain other elements, and so on.
The relationship between an element and a
contained element (child element), is implicit.
In the example, a child element could be:
– Physically contained (ddomain, exon, intron,…)
– Stored in (db_entry)
– Sequence of (dna)

The Meaning of a Hierarchy

Hierarchies can be based on many
principles: subclass (subset), instance
(member), or more complex relationships.
Hierarchies to be based on several principles
at the same time.
XML hierarchies cannot represent these
more general forms of hierarchy.

Taxonomy

Subclass Hierarchy

Mixed Hierarchy

Non-Hierarchical Relationships

Hierarchical relationships
are represented by one
element contained inside
another one.
Non-hierarchical
relationships are
represented using
reference attributes, such
as the two arrows in the
diagram.
Containment and reference
are very different in XML.

Data Semantics

Attributes generally contain a specific kind of
data such as numbers, dates and codes.
XML does not include any capability for
specifying kinds of data like these.
XML Schema (XSD) allows one to specify data
structures and data types.
The syntax for XSD differs from that for DTDs,
but it is easy to convert from DTD to XSD using
the dtd2xsd.pl Perl script.

XSD Basic Types

string Arbitrary text without embedded elements.
decimal A decimal number of any length and precision.
integer An integer of any length. This is a special case of decimal.

There are many special cases of integer, such as positiveInteger
and nonNegativeInteger.

date A Gregorian calendar date.
time An instant of time during the day, for example, 10:00.
dateTime A date and a time instance during that date.
duration A duration of time.
gYear A Gregorian year.
gYearMonth A Gregorian year and month in that year.
boolean Either true or false.
anyURI A web resource.

Specifying New Data Types

One can introduce additional data types in
three ways:

Restriction. Restrict another data type using:
– Upper and lower bounds
– Patterns
– Enumeration (e.g., standard codes)

Union. Combine the values of several data
types. Useful for adding special cases.
List. A sequence of values.

The DNA Data Type

<xsd:simpleType name="DNAbase">
<xsd:restriction base="xsd:string">
<xsd:pattern value="[ACGT]"/>

</xsd:restriction>
</xsd:simpleType>
<simpleType name="DNASequence">

<list itemType="DNABase"/>
</simpleType>

A single DNA base is specified by restricting the string
data type. A sequence is specified as a list of bases.

Formal Semantics

Semantics is primarily concerned with
sameness. It determines that two entities are
the same in spite of appearing to be different.
Number semantics: 5.1, 5.10 and 05.1 are all
the same number.
DNA sequence semantics: cctggacct is the
same as CCTGGACCT.
XML document semantics is defined by
infosets.

XML infoset for
carbon monoxide

<molecule id="m1" title=“carbon monoxide">
<atomArray>
<atom id=“c1" elementType=“C"/>
<atom id=“o1" elementType=“O"/>

</atomArray>
<bondArray>

<bond atomRefs=“c1 o1"/>
</bondArray>

</molecule>

root

molecule

atomArray bondArray

bond

atom

atom

o1

carbon monoxide

c1 o1

m1

c1
O

C

id

title

atomRefs

id

id

elementType

elementType

XML Semantics

The infoset contains two kinds of relationship:
– Unlabeled hierarchical relationship link
– Labeled attribute link

The order of attributes does not matter. The
infoset is the same no matter how they are
arranged.
The order of hierarchical links does matter. The
infoset is different if the elements are in a
different order.

Rule-Based Systems

Rule-based programming is a distinct style
from the more common procedural
programming style.
Rule engines logically infer facts from other
facts, and so are a form of automated
reasoning system.
There are many other kinds of reasoning
system such as theorem provers, constraint
solvers, and business rule systems.

Kinds of Rule Engine

Both forward- and backward-chaining rule engines
require a set of rules and an initial knowledge base
of facts.
Forward-chaining rule engines apply rules which
cause more facts to be asserted until no more rules
apply. One can then query the knowledge base.
The best known example is Jess.
Backward-chaining rule engines begin with a query
and attempt to satisfy it, proceeding backward from
the query to the knowledge base. Prolog is the best
known example of this style of rule engine.

RuleML

The standard language for XML based rules.
RuleML is supported by over 40 rule engines.
See www.ruleml.org/#Participants-Systems.
A rule has two parts:
– The antecedent or body of the rule.
– The consequent or head of the rule.

When the antecedent is satisfied, the
consequent is invoked (fired).
The assertion of a new fact by the consequent
is called logical inference.

PAK proteins serve as targets for the small GTP binding
proteins Cdc42 and Rac.

<Implies>
<head>

<Atom>
<opr><Rel>targets</Rel></opr>
<Var>protein</Var>
<Var>target</Var>

</Atom>
</head>
<body>

<And>
<Atom>

<opr><Rel>type</Rel></opr>
<Var>target</Var>
<Var>PAK1</Var>

</Atom>

<Or>
<Atom>

<opr><Rel>type</Rel></opr>
<Var>protein</Var>
<Var>Cdc42</Var>

</Atom>
<Atom>

<opr><Rel>type</Rel></opr>
<Var>protein</Var>
<Var>Rac</Var>

</Atom>
</Or>

</And>
</body>

</Implies>

The Resource Description Framework

RDF is a language for representing
information about resources in the web.
While RDF is expressed in XML, it has
different semantics.
Many tools exist for RDF, but it does not yet
have the same level of support as XML.

XSD vs. RDF

XML semantics based
on infosets
Easy to convert from
DTD to XSD
Support for data
structures and types
Element order is part of
the semantics

Different semantics
based on RDF graphs
Cannot easily convert
from DTD to RDF
Uses only XSD basic
data types
Ordering must be
explicitly specified
using a collection
construct

XML vs. RDF Terminology

ObjectPropertyReference attribute
PropertyContainment

DatatypePropertyData attribute

ResourceElement Instance

ClassElement Type

RDFXML

RDF Semantics

All relationships are explicit and labeled with
a property resource.
The distinction in XML between attribute and
containment is dropped, but the containment
relationship must be labeled on a separate
level. This is called striping.

m1 carbon monoxide

Molecule

c1

o1

Atom

C O

Bond

atom
atom

rdf:type
rdf:type

rdf:type

title

rdf:type

bond

rdfs:subClassOf
rdfs:subClassOf

<Molecule rdf:id=“m1”
title=“carbon monoxide”>

<atom>
<C rdf:id=“c1"/>
<O rdf:id=“o1“/>
</atom>
<bond>
<Bond>
<atomRef rdf:resource=“c1”/>
<atomRef rdf:resource=“o1”/>
</Bond
</bond>
</Molecule>

atomRef

atomRef

RDF graph for
carbon monoxide

RDF Triples

RDF graphs consist of edges called triples because they
have three components: subject, predicate and object.
The semantics of RDF is determined by the set of triples
that are explicitly asserted or inferred.
In the chemical example, some of the triples are:

– (m1, rdf:type, cml:Molecule)
– (m1, cml:title, “carbon monoxide”)
– (m1, cml:atom, c1)
– (m1, cml:atom, o1)

Notice that properties are many-to-many relationships.

Notes on RDF Semantics

There is no easy way to convert from XML to RDF
because RDF makes explicit many relationships that are
implicit in XML.
In the chemical example, the element types are classes in
RDF but have no special meaning to XML.
The fact that n1 is an atom can be inferred from the fact
that N is a subclass of Atom.
The ordering of atoms in a molecule is significant in XML
but not in RDF. RDF is therefore closer to the correct
semantics.

RDF Rules

Subclass rule. If a resource r has type A
which is a subclass of B, then r has type B.
Subproperty rule. Analogous to the subclass
rule but for properties.
Domain rule. If a property p has a domain D
and s is the subject of a triple with property p,
then s has type D.
Range rule. If a property p has a range R
and o is the object of a triple with property p,
then o has type R.

RDF Rules

While RDF has built-in rules, it has no
mechanism for adding new rules.
RuleML is the rule language for RDF.
Many of the rule engines that support
RuleML also support RDF. See
www.ruleml.org.

Web Ontology Language

OWL is based on RDF and has three
increasingly general levels: OWL Lite,
OWL-DL, and OWL Full.
OWL adds many new features to RDF:
– Functional properties
– Inverse functional properties (database keys)
– Local domain and range constraints
– General cardinality constraints
– Inverse properties
– Symmetric and transitive properties

Class Constructors

OWL classes can be constructed from other
classes in a variety of ways:
– Intersection (Boolean AND)
– Union (Boolean OR)
– Complement (Boolean NOT)
– Restriction

Class construction is the basis for description
logic.

Description Logic Example

Concepts are generally defined in terms of other
concepts. For example:

The iridocorneal endothelial syndrome (ICE) is a
disease characterized by corneal endothelium
proliferation and migration, iris atrophy, corneal oedema
and/or pigmentary iris nevi.

ICE-Syndrome class is the intersection of:
– The set of all diseases
– The set of things that have at least one of the four symptoms

<owl:Class rdf:ID="ICE-Syndrome">
<owl:intersectionOf parseType="Collection">
<owl:Class rdf:about="#Disease"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#has-symptom"/>
<owl:someValuesFrom>
<owl:Class rdf:ID="ICE-Symptoms">
<owl:oneOf parseType="Collection">
<Symptom name="corneal endothelium proliferation and migration"/>
<Symptom name="iris atrophy"/>
<Symptom name="corneal oedema"/>
<Symptom name="pigmentary iris nevi"/>

</owl:oneOf>
</owl:Class>

</owl:someValuesFrom>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

Example of Description Logic

OWL Semantics

An OWL ontology defines a theory of the world.
States of the world that are consistent with the
theory are called interpretations of the theory.
A fact that is true in every model is said to be
entailed by the theory. Logical inference in
OWL is defined by entailment.
Entailment can be counter-intuitive, especially
when it entails that two resources are the same.

OWL Semantics

OWL semantics is defined by entailment, not
by constraints as in databases.
Another way to understand this distinction is
that OWL assumes an open world, while
databases assume a closed world.
The next two slides show some examples of
the distinction between these two.

A locus is a place on a chromosome where a gene is located.

Consider this definition:

The fact that a locus is on a chromosome leads to this OWL specification:

<rdfs:Class rdf:ID=“Locus”>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID=“locatedOn”>
<rdfs:range rdf:resource=“Chromosome”/>

</owl:ObjectProperty>
</owl:onProperty>
<owl:cardinality rdf:datatype=“xsd:integer”>1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
</rdfs:Class>

This says that a locus is located on exactly one chromosome.
Now suppose that a locus is accidentally placed on two chromosomes:

<Locus rdf:ID=“HUMINS”>
<locatedOn rdf:resource=“Chromosome11”/>
<locatedOn rdf:resource=“Chromo11”/>
</Locus>

<Chromosome rdf:about=“Chromosome11”>
<owl:sameAs rdf:resource=“Chromo11”/>
</Chromosome>

Then these two chromosomes must be the same:

Most other systems would have signaled a constraint violation.

Now suppose that a locus is not placed on any chromosome.
Then the locus is placed on a blank (anonymous) chromosome:

<Locus rdf:ID=“HUMINS”>
<locatedOn>
<Chromosome/>

</locatedOn>
</Locus>

Most other systems would have signaled a constraint violation.

Open World vs. Closed World

The advantage of the open world assumption
is that it is more compatible with the web
where one need not know all of the facts,
and new facts are continually being added.
The disadvantage is that operations (such as
queries) are much more computationally
complex.
Another disadvantage is that one cannot
have defaults or any inference based on the
lack of information.

Computational Complexity

The various languages are progressively more complex.
Operations (such as queries) in XML and RDF require
polynomial time in the worst case.
OWL Lite operations are much more difficult, requiring
exponential time in the worst case.
OWL-DL is even more difficult than OWL Lite. One can
only show that an operation can be completed in a finite
amount of time.
OWL Full is the most difficult of all. An operation need
not finish at all.

Phase Transitions

In spite of these negative results, OWL is
quite reasonable in practice.
The reason for this phenomenon is that the
hard cases are not randomly distributed, but
rather concentrated in a small region of the
problem space.
The transition from problems that are easy to
ones that are hard is known as a phase
transition.

Outline

I.I. Ontology LanguagesOntology Languages
A.A. From flat files to hierarchies and XMLFrom flat files to hierarchies and XML
B.B. Rule based systemsRule based systems
C.C. Resource Description FrameworkResource Description Framework
D.D. Web Ontology LanguageWeb Ontology Language

II. Ontology Applications
A. Ontology based information retrieval
B. Transformation languages and tools
C. Bayesian Web: Combining logic and probability
D. Situation Awareness

III. Ontology Design

Ontologies for Information Retrieval

Source of terminology
RDF graph matching
Queries based on formal logic

Using Ontologies for Formulating
Queries

Ontologies are an important source of terminology
that can be used to formulate queries.
Biological and medical ontologies can be so large
and complex that specialized browsing and retrieval
tools are necessary.
Several browsers are now available for the UMLS:
MeSH, Know-ME, Apelon DTS, SKIP, etc.
One can use ontologies as a means of query
modification when a query does not return
satisfactory results.

RDF Graph Matching

Graph matching is analogous to sequence
matching, such as in BLAST.
Translating natural language text to an RDF
graph that captures meaning remains an
unsolved problem, but reasonably good tools
are available.
Systems that use RDF graph matching are
available. Such a system allows one to
query a corpus such as PubMed using
natural language.

Proposed Web Query Languages

Requires a description logic
theorem prover

OWL-QLOWL

Similar to SQL, specialized to
the case of a 3-column table

RDQLRDF

Combines document
navigation with an SQL-like
query language

XQueryXML DTD
and XSD

RemarksQuery
Language

Ontology
language

XML Navigation Using XPath

XPath is a language for navigating the hierarchical
structure of an XML document.
Navigation uses paths that are similar to the ones
used to find files in a directory hierarchy.
Navigation consists of steps, each of which specifies
how to go from one node to the next. One can
specify the direction in which to go (axis), the type of
node desired (node test), and the particular node or
nodes when there are several of the same type
(selection).

XPath Features

An axis can specify directions such as: down one
level (child), down any number of levels
(descendant), up one level (parent), up any number
of levels (ancestor), and the top of the hierarchy
(root).
Node tests include: elements, attributes
(distinguished using an at-sign) and text.
One can select nodes using a variety of criteria
which can be combined using Boolean operators.

Querying XML Using XQuery

XQuery is the standard query language for
processing XML documents.
Every XPath expression is a valid query.
A general query is made of four kinds of clause:
– A for clause scans the result of an XPath expression,

one node at a time.
– A where clause selects which of the nodes scanned

by the for clauses are to be used.
– A return clause specifies the output of the query.
– A let clause sets a variable to an intermediate result.

for $citation in document("pubmed.xml")//MedlineCitation
where exists
(for $heading in $citation//MeshHeading
where $heading/DescriptorName/@MajorTopicYN="Y"
and $heading/DescriptorName="Glutethimide"
and $heading/QualifierName="therapeutic use"
return $heading)

return $citation

In the PubMed database, find all citations dealing with
the therapeutic use of glutethimide. More precisely,
find the citations that have"glutethimide" as a major
topic descriptor, qualified by "therapeutic use."

Example of an PubMed query using XQuery

Transformation Languages and Tools

Any programming language can be used for
transformation. Perl is especially well suited for
transformation to and from XML.
The XSLT language is a rule-based language
specifically designed for transformation from XML to
XML.
A series of databases and tools can be linked together
in a data flow. The myGrid project has developed a
workbench for specifying such data flows which has a
large library of transformation modules.

Changing the Point of View

Transformation is the means by which information in
one format and for one purpose is adapted to another
format for another purpose.
Information transformation is also called repackaging or
repurposing.
A transformation step is performed using one of three
main approaches:

– Event-based parsing
– Tree-based processing
– Rule-based transformation

Processing XML Elements

One way to process XML documents is to parse the document
one element at a time. This is called the handlers style.
In the handlers style, one specifies procedures that are invoked
by the parser. Most commonly one specifies procedures to be
invoked at the start of each element, for the text content of the
element, and at the end of the element.
A common way to design procedures is for the parameters to
be in pairs: a parameter name and a parameter value. To
make this easier to read, one should separate the parameter
name from the parameter value with the -> symbol.
The handlers style for parsing XML documents is efficient and
fast but is only appropriate when the processing to be done is
relatively simple.

The Document Object Model

The whole document style of XML processing reads
the entire document into a single Perl data structure.
DOM methods are used to extract information from
an XML document.
The entities that occur in an XML document are
represented by DOM nodes.
DOM lists are used for holding a collection of DOM
nodes.

Producing XML

To convert non-XML data to the XML format, one
can use the same techniques that apply to any kind
of processing of text data. The XML document is
just another kind of output format.
The Perl Template Toolkit simplifies the production
of XML documents by using a WYSIWIG style.
The Perl Template Toolkit has its own language for
iteration and selecting an item of a hash or array.
The Template Toolkit language is much simpler than
Perl because it has fewer features.

XSLT Templates

An XSLT program consists of templates.
A template either matches a specific kind of element
or attribute or it uses a wild card to match many
kinds of elements and attributes.
A template performs an action on the matching
elements and attributes.
After transforming the matching element or attribute,
a template can apply other templates to continue the
transformation.

Programming in XSLT

A transformation action occurs in a context:
the element or attribute being transformed.
The context is normally chosen in the same
order in which the elements or attributes
appear in the document, but which can be
changed by using a sort command.
The context is changed by using either an
apply-templates (rule-based) command or a
for-each (traditional iteration) command.

Experimental and Statistical Methods
as Transformations

Biology experiments and statistical analyses
are transformation processes.
– A biology experiment transforms biological and

chemical materials into quantitative
measurements.

– A statistical analysis transforms survey
information into statistical measurements.

Information transformation is performed in a
series of steps to reduce the overall effort.

Presentation of Information

Transformation is an effective means for
controlling how data are presented.
Information transformation is performed in a
series of steps to reduce the overall effort
and to separate concerns.
Different individuals and groups of individuals
are concerned with each step of the
transformation process.

Automating Transformations

Reconciling differing terminology has many names
depending on the particular context where it is done,
such as: ontology mediation, schema integration,
data warehousing, virtual data integration, query
discovery, and schema matching.
Automated ontology mediation systems attempt to
reduce manual effort, but they rarely provide a net
gain.
Most automated ontology mediation systems are still
research prototypes.

The myGrid Project

Taverna workbench supports the scientific
process for in silico experiments.
– Management
– Sharing and reusing results
– Recording their provenance and the methods

used to generate results
Workflows link together third party and local
resources using database queries and web
service protocols.

MyGrid Workflow

The Semantic Web and Uncertainty

There are many sources of uncertainty, such as
measurements, unmodeled variables, and
subjectivity.
The Semantic Web is based on formal logic for
which one can only assert facts that are
unambiguously certain.
The Bayesian Web is a proposal to add
reasoning about certainty to the Semantic Web.
The basis for the Bayesian Web is the concept
of a Bayesian network.

The Bayesian Network Formalism

A BN is a graphical mechanism for specifying
joint probability distributions (JPDs).
The nodes of a BN are random variables.
The edges of a BN represent stochastic
dependencies.
The graph of a BN must not have any directed
cycles.
Each node of a BN has an associated CPD.
The JPD is the product of the CPDs.

Bayesian Network Specification

Discrete RV

Continuous RV

CPDs:
1. Perceives Fever given Flu and/or Cold.
2. Temperature given Flu and/or Cold.
3. Probability of Flu (unconditional).
4. Probability of Cold (unconditional).

Stochastic Inference

Stochastic inference.
– The main use of BNs.
– Analogous to the process of logical inference and querying

performed by rule engines.
– Based on Bayes' law.

Evidence
– Can be either hard observations with no uncertainty or uncertain

observations specified by a probability distribution.
– Can be given for any nodes, and any nodes can be queried.

Nodes can be continuous random variables, but
inference in this case is more complicated.
BNs can be augmented with other kinds of nodes, and
used for making decisions based on stochastic inference.

Bayesian Network Inference

Temperature

Flu

Cold

Perceives Fever
Evidence

(Observed RV)

Query
(Inferred RV)

Inference is performed by observing some RVs (evidence) and
computing the distribution of the RVs of interest (query).
The evidence can be a value or a probability distribution.
The BN combines the evidence probability distributions even when
there are probabilistic dependencies.

Flu

Cold

Perceives
Fever

Temperature

Flu

Cold

Perceives
Fever

Temperature

Flu

Cold

Perceives
Fever

Temperature

Diagnostic
Inference

Causal
Inference

Mixed
Inference

Evidence Evidence

Evidence

Evidence

Query

Query Query

Query

Bayesian Network Inference

BN Design Patterns

One methodology for designing BNs is to use
design patterns or idioms.
Many BN design patterns have been identified,
but most are only informally specified.

The noisy OR-gate design pattern

Bayesian Web facilities

Common interchange format
Ability to refer to common variables (diseases, drugs, ...)
Context specification
Authentication and trust
Open hierarchy of probability distribution types
Component based construction of BNs
BN inference engines
Meta-analysis services

Bayesian Web Capabilities

Use a BN developed by another group as
easily as navigating from one Web page to
another.
Perform stochastic inference using information
from one source and a BN from another.
Combine BNs from the same or different
sources.
Reconcile and validate BNs.

Example of Combining Information

Consider the the problem of disease diagnosis
when the possibilities are known to be one of
these following: concussion, meningitis and
tumor.
Two independent assessments are made:
How should these be combined?

Information Fusion

If two measurements A and B of the same phenomenon are
independent and consistent then the combination (fusion) of
the two measurements C has the distribution

Pr(C=x) = k Pr(A=x)Pr(B=x)

where k is chosen so that the probabilities add to 1.

Decision Fusion

PD 1 PD 2

Obs 1 Obs 2

P-Test 1 P-Test 2PD

Combined Study

Obs 1 Obs 2

P-Test

PD 1 PD 2

Obs 1 Obs 2

Combined PD

Combined TestP-Test

Decision fusion is the process of combining decisions
rather than probability distributions. Fusion can be done
at many levels.

The various levels where fusion can be
performed has been standardized by
the Joint Defense Laboratories (JDL) model.

Situation Awareness

Situation awareness (SAW) is “knowing what
is going on around oneself.”
– More precisely, SAW is the perception of the

elements in the environment within a volume of
time and space, the comprehension of their
meaning, and the projection of their status in the
near future (Endsley & Garland).

SAW occurs at level 2 of the JDL model.

SAW Assistant

The SAW Assistant (SAWA) is an OWL
based tool for obtaining situation awareness
from observed events and lower level data
fusion processes.
SAWA is based on a series of ontologies:
– The SAW Core Ontology
– Ontology for uncertainty
– Domain specific ontologies and rules

SAW Core Ontology

SAWA Demo for a Supply Logistics Scenario

Outline

I.I. Ontology LanguagesOntology Languages
A.A. From flat files to hierarchies and XMLFrom flat files to hierarchies and XML
B.B. Rule based systemsRule based systems
C.C. Resource Description FrameworkResource Description Framework
D.D. Web Ontology LanguageWeb Ontology Language

II. Ontology Applications
A. Ontology based information retrieval
B. Transformation languages and tools
C. Bayesian Web: Combining logic and probability
D. Situation Awareness

III. Ontology Design

Making Choices

What language?
What tools?
Ontology design
Service design
These choices are interrelated.

Classification of Ontology Languages

Basic XML XML Topic Maps Semantic Web

Web Based Ontololgy Languages

XML DTD
XML Schema RDF

OWL Lite

OWL-DL

OWL Full
Combined Approach

Ontology Development Tools

No explicit ontology or tool
Automatic generation of the ontology from
examples
XML editor
RDF editor
OWL editor
CASE tool adapted for ontology development

Building Ontologies

Before developing an ontology, one should
understand its purpose.
The purpose of the ontology should answer
the following questions:
– Why is it being developed?
– What will be covered?
– Who will use it?
– How long will it be used?
– How will it be used?

Acquiring Domain Knowledge

Ontologies are based on domain knowledge.
The main sources of domain knowledge for
ontology development:
– Statement of purpose of the ontology
– Glossaries and dictionaries
– Usage examples

Reusing Existing Ontologies

Reusing existing ontologies can save time and
improve quality.
However, reusing an existing ontology is not
always appropriate. One must balance the risks
against the advantages.
There are three ways to reuse an ontology:
– Copy the ontology
– Include the ontology
– Import the ontology

Designing the Concept Hierarchy

XML hierarchies are concerned with the structure
of the document.
RDF and OWL hierarchies are concerned with the
subclass relationships.
Concept hierarchies can be developed in several
ways:
– From the most general to the most specific (top-down)
– From the most specific to the most general (bottom-up)
– Starting at an intermediate, basic level (middle-out)

Hierarchy Design Techniques

Uniform Hierarchy. Maintain a uniform
structure throughout the hierarchy.
Classes vs. Instances. Carefully distinguish
instances from classes.
Ontological Commitment. Keep the hierarchy
as simple as possible, elaborating concepts
only when necessary.
Strict Taxonomies. Specify whether or not
the hierarchy is strict (nonoverlapping).

Designing the Properties

Classes vs. Property Values
Domain and Range Constraints
Cardinality Constraints
Properties can be classified in several ways:
– Attribute vs. relationship
– Property values are data or resources
– ntrinsic vs. extrinsic

Property Design Techniques

Subclassification and property values can sometimes
be used interchangeably. Choosing between the two
design possibilities can be difficult.
One should specify the domain and range of every
property. They should be neither too general nor too
specific.
Cardinality constraints are important for ensuring the
integrity of the knowledge base.
Depending on the ontology language, one can specify
other constraints, but these are less important.

Other Design Issues

Namespaces
– Select an appropriate domain.
– Partition the ontology.

Rule Language
– RuleML, SWRL or some other language

Rule Engine or Theorem Prover
– Forward chaining or backward chaining
– Description logic or general theorem prover

Coping with computation complexity

Validating and Modifying the Ontology

Ontology validation consists of the following
activities:
– Verify the fulfillment of the purpose.
– Check that all usage examples are expressible.
– Create examples that are consistent with the

ontology, and determine whether they are
meaningful.

– Check that the ontology is formally consistent.
Ontologies evolve over time due to changing
requirements and circumstances.

To Learn More

For more information, see K. Baclawski
and T. Niu, Ontologies for Bioinformatics,
MIT Press, October, 2005.

The website the book is ontobio.org.

