
Open Group SOA Case Study http://www.opengroup.org

SOA Case Study: Agility in Practice

As boundaries within and between enterprises become increasingly permeable, there is a
greater need for information flow. This is inhibited by the "information silos" formed by
traditional software applications. Service oriented architecture (SOA) replaces these silos
with loosely-coupled services, enabling information to flow as needed, and delivering
enterprise agility.

This is a case study from ING Card, a division of the ING Group, member of the Jericho
Forum of The Open Group. It describes the first phase of their SOA implementation, with
services that are hard-wired rather than dynamically discoverable. It illustrates how even this
stage of SOA can deliver real business agility, and contains some interesting lessons for SOA
implementation.

The case study was written by Alcedo Coenen. Alcedo has built his experience in IT since
1987, although he originally graduated in musicology in 1986. He has been working as
programmer, information analyst, and since 1997 as (information) architect for ING and
other companies in the Netherlands. Within ING Alcedo has been working on multi-channel
architecture, a global SOA for ING Europe, a credit card system and on knowledge systems.
Recently he has established a working group on the Business Rules Approach, producing
articles and presentations for several architecture conferences and meetings.

Open Group SOA Case Study

SOA agility in practice 2/11 © Alcedo Coenen, Amsterdam 2006

SOA Agility in Practice

 Service orientation within one application1

Alcedo Coenen
alcedo.coenen@gmail.com

ING Card2 built an application for its customer base that enables it to link to new websites,
implement new product features, and maintain credit scoring rules, easily and quickly. It
achieved this by applying three construction principles, one of which was service orientation.
This article describes the application, and explains how SOA helped to meet the business
needs of a credit card issuer with particular challenges.

Challenges
A credit card business combines two financial services: payment and consumer credit.
Payment by plastic is accepted worldwide thanks to a large payment network, mainly
maintained by credit card brands such as Mastercard and VISA. The card issuer usually also
provides a revolving credit facility that allows delayed repayment of the balance. The
complete product is often called revolving credit card in order to stress this.

ING Card was founded as part of the ING Group3 in 2002, with the objective of centralizing
ING’s credit card business and extending it to the European market. ING Card became a
significant player in the role of issuer in the complex credit card value chain (see Figure 1).
ING Card uses two credit card brands, Mastercard and VISA, that own worldwide payment
networks and provide millions of merchants (shops, hotels, restaurants, car renters etc.) with
card reader equipment. The reader contracts are usually handled by acquirers: institutions
(usually banks) that facilitate the settlement between the merchants and the credit card brands.
Another link in the chain is formed by the processors: organizations that execute the actual
transactions, provide the card authorization at the time of sale, and carry out the settlement
between acquirers, credit card brands and issuers. Some institutions combine the role of
acquirer and processor.

1 This article was originally published in Dutch. A shorter version was published as “Wendbaarheid dankzij
SOA” in Informatie november 2005, nr 47/9, page 64-69. The extended version was published in Charles M.
Hendriks & J. Arno Oosterhaven (red.), Architectuur in ontwikkeling. Landelijk Architectuur Congres 2005,
Academic Service Den Haag, 2006, ISBN 9012113199, page 93-105. Translation by the author, assisted by
Chris Harding.
2 See www.ingcard.nl, www.ingcard.be and www.ingcard.de .
3 www.ing.com

Open Group SOA Case Study

SOA agility in practice 3/11 © Alcedo Coenen, Amsterdam 2006

Customer

Merchant

Customer’s
bank

Issuer

Brand

Acquirer

Goods or
service delivery

Order for monthly payment

Credit relationship

Authorisation (per payment)

Payment

Payment

Payment

Payment

Monthly payment

Provides card

Shows plastic

Processor

Figure 1. Roles in the credit card world

From the start, ING Card had some particular challenges that had a major influence on the
choice of IT solution.

The first challenge was to handle customers who did not already have a current account with
ING. Previously, credit cards were only provided to existing customers with an ING-branded
current account, which was used for the monthly payment. Now, new customers could have a
current account at any Dutch bank. All customer systems within ING in the Netherlands were
identified and linked to an ING customer account; but these systems could not now be used
for ING Card. A complete new customer management system was needed.

Secondly, sale would be concentrated on direct channels in the first place (Internet, call center
and direct mail), with online account facilities that would provide the customer with
information about all his or her transactions on a daily basis. Moreover the customer would be
able to change the amount of the monthly payment (with restrictions), and ask for a credit-
limit raise, through direct channels also. This marketing strategy meant that:

- A website was needed for online account management by the customer;

- The call center must be able to enter card applications and customer questions;

- All data entry facilities must support all channels, in order to obtain the same
information through all channels; and

Open Group SOA Case Study

SOA agility in practice 4/11 © Alcedo Coenen, Amsterdam 2006

- The customer management processes should be linked to the card processor, which
takes care of the distribution of the card, of the actual account, and of all transactions.

The third challenge was related to one of the core competencies of any issuer: credit scoring,
which is needed to manage risk. The system must evaluate all card applications using
creditworthiness and fraud indicators.

The fourth challenge for IT was to be prepared for some future developments that were clear
from the beginning. ING card planned to roll out in multiple countries and there would be
different card products. The system must be flexible enough to be rolled out in different
countries, with possible changes in processes, products and credit scoring.

The fifth and last challenge for IT arose because ING Card became commercially responsible
for all existing credit card portfolios of ING in the Netherlands (the brands being Postbank
and ING Bank), with more than 1 million customers. This meant that the new system must fit
in with existing processes and organizations. It soon became clear that the credit scoring
should be performed centrally and made available to all other card systems within ING, so
that there would be a single source for the credit business rules.

In summary, the following requirements had to be met:

• Functional:
o Customer administration
o Online facilities for the customer
o Multi-channel support
o Credit scoring
o Support for multiple countries
o Support for multiple products

• System features:
o Agility to different processes
o Agility to changes in product features
o Coupling to other processes, based on the same business logic.

The solution
A decision was made at an early stage to build the system from scratch. A further decision
was that the system should be built on Websphere and Oracle. The solution was given the
name “New Card System” (NCS).

Agility was achieved by using three construction principles:

1. A layered architecture, known as the n-tier architecture.
2. The service concept.
3. Parameterization of some of the business classes.

The traditional three tiers (presentation, business logic, data) were enriched by a service layer
and a business model layer, both within the business logic layer, as the means of introducing
the service concept. Moreover the data layer was enriched by the separation of a data access
layer from the data store layer. The layers are depicted in Figure 2 together with the
techniques used for their implementation.

Open Group SOA Case Study

SOA agility in practice 5/11 © Alcedo Coenen, Amsterdam 2006

Presentation layer

Public access
layer

Internal access
layer

Business layer

Service layer

Business model layer

Data layer

External
data

sources
layer

Data access layer

Data store layer

Struts, JSP

IBM
Websphere

(J2EE)

DAO,
Hibernate

Oracle

Realised with

Realised with

Realised with

Realised with

Figure 2 – The layered architecture of NCS

The presentation layer forms the exterior of the system and consists of a series of screens,
supporting the main processes. NCS currently has the following instances of the presentation
layer:

• Several public websites (www.ingcard.nl and www.ingcard.de) which provide the
screens for applying for a new card. These screens call services from the service
layer that implement the application process.

• A closed and secure web environment that is accessible by the customer. Here the
customer can log in, review transactions and monthly statements, and manage his
or her account. It provides facilities for requesting a credit-limit raise, changing the
amount of the monthly payment, requesting a secondary card, and entering
personal changes such as to the customer’s address.

• A data entry system for the call center with similar functions to those that the
customer has, and with additional functions such as viewing all customer data and
history.

• A data entry system for the back office, supporting its work of dealing with all
card applications.

Open Group SOA Case Study

SOA agility in practice 6/11 © Alcedo Coenen, Amsterdam 2006

In accordance with the layered architecture principle, the business layer is only accessible
through the presentation layer. This enables the screen designs to be independent of the
business logic.

The business model layer is in turn accessible only through the service layer. Services are
functions that are meaningful to the business. Services do not execute these functions
themselves, they are just a shell or facade, behind which the real function is executed by the
business model layer.

An example of a service is findCreditRegistrationPerson, which takes care of finding the right
person at the credit bureau’s system (BKR is the Dutch national credit bureau). See Table 1
for its full definition.

Name findCreditRegistrationPerson

Service Group NewAccountController

Release 2.0
Usage Finds persons in the BKR system

Input creditRegistrationPerson

Output Collection of creditRegistrationPersons

Precondition The creditRegistrationPerson must have agreed on checking BKR

Postcondition NA

Actions 1. determine the necessary data
2. sends the data to BKR
3. receives the results from BKR
4. return the information

Business classes
involved

creditRegistrationPerson

Table 1- example of a service definition

The presentation layer could say to the business layer, “Find this person at BKR, here are the
data that you need for it”. The presentation layer can then rely on the execution of this request
and on obtaining an answer. This design has three advantages:

1. The presentation layer does not need to be aware of technical considerations (for
example, it does not need to know that conversion of some data is needed before it
can be used).

2. The sequence in which services are called can be changed easily without any
change in the business logic layer.

3. The service call does not need to be changed when its implementation is changed,
for example, findCreditRegistrationPerson need not be changed when the
implementation of the CreditRegistrationPerson class is changed.

The independence of presentation from business logic is improved, compared to the
traditional 3-tier architecture. The order of tasks can be changed, or another website can be
added, for example with a limited selection of services just to show the customer information.

Open Group SOA Case Study

SOA agility in practice 7/11 © Alcedo Coenen, Amsterdam 2006

There is no need to modify the business logic layer for such changes. When ING Card is
launched in another country, the findCreditRegistrationPerson service will have another
technical implementation for another credit bureau. The dialogue in the presentation layer
does not need to be changed for that, because the name and call of the service remain the
same.

The third construction principle of class parameterization was applied within the business
model layer. This layer contains the real business logic, implemented as operators on classes
that represent the Business Object Model (BOM). The BOM determines the “language” and
consists of a set of classes with their interrelationships, implemented in the form of java
classes. In Figure 3 the main classes and their interrelationships are shown. Some of the
classes are parameterized, which makes them more powerful.

RequestRule Party

NewCardRequest MaintenanceRequest Person Organisation

Address

PartyRole

Reference

ContactMoment

Product Account Card

Feature

1 *

1

*

**

1*

Figure 3 – Extract from the Business Object Model (UML class notation)

While the classes Account, Party and Card are straightforward. (they just represent account,
customer and card), the classes Request, Rule and Product have a much more parameterized
structure to give the flexibility that is needed. When a variation of a product is launched in a
marketing campaign, only the configuration of the Product class need be changed, not the

Open Group SOA Case Study

SOA agility in practice 8/11 © Alcedo Coenen, Amsterdam 2006

structure of the class itself. That is made possible by defining a generic attribute called
Feature, which can contain any possible feature for a product, which makes the Product class
configurable as required. A feature such as “one year for free” can be added easily without
having to reprogram; the actual implementation of such a feature is not implemented in NCS
but is executed by the card processor; NCS only needs to forward the right features to the
processor. The Request and Rule classes are defined in a similar way. For the Rule class,
there is a separate rule engine that enables flexible configuration of credit rules.

In short, the business layer provides services to the presentation layer and takes care of
transactions in the business model layer in a way that reflects the language of the credit card
administration. The business model layer is set up with simple and parameterized classes; the
parameterized classes enable changes in product features, credit scoring rules and request
items without impact on the overall system.

The result
NCS has become the system that takes care of the management of customers, as it was meant
to be. Moreover NCS has become the system that executes all services that customers are
offered through the website, such as making address changes or requesting a credit limit raise.
Finally NCS has also become the system that does the assessment of card applications and
offers the opportunity to manage all kinds of credit and fraud risks.

The three construction principles of layered architecture, service orientation and class
parameterization have each contributed to the meeting the requirements, in particular the
requirements for agility (see Table 2).

realized in
requirements

Layered
architecture

Services
concept

Class
parameterization

Online facilities
Multi-channel
Credit scoring
Multi-product
Multi-country
Agility of processes
Agility of product definitions
Possibility to link to other processes

Table 2 – which requirements are satisfied by which principle

The layered architecture is needed to deliver multi-channel support. If the same information,
and partly the same functionality, is to be presented to the customer via Internet, call center
and the back office employee, then a separation between presentation and business layer is
essential to avoid duplicate implementation of functions.

Class parameterization is needed to deliver the required time-to-market for the introduction of
new products, and for adapting credit scoring and fraud detection rules.

The service concept turns out to be the most important of all three principles. Offering this
facade of business logic makes it possible to roll out NCS relatively easily in other countries,
enables optimization of processes without having to change the system, and facilitates linking
with other processes or other systems.

Open Group SOA Case Study

SOA agility in practice 9/11 © Alcedo Coenen, Amsterdam 2006

The best example of the power of the service layer is in international roll out. It is now
relatively easy for ING Card to use NCS in any other country, even when there are some
major differences. Checking the national credit bureau, for example, needs a different
implementation in each country. The work of building the interfaces remains, but the service
that is called to execute the check does not need any change. Another example is the ability of
a call center to use its own preferred system that supports more than just the credit card
product; this preferred system only needs to call the appropriate NCS services when a call
center agent is handling a credit card request, using the screens and dialogues of its own
system; there is no need for a deep integration between the systems. There are many situations
where the independence of the service layer shows its value, some of which are illustrated in
Figure 4.

NCS service layer

Website in
another

language

Workflow
layer

Portal Other
application

customer employee employee

Other
applications

TCP-IP / HTTPS

NCS business layer

Figure 4 – Several possibilities for the use of services

Not all aspects of SOA have been realized in NCS. The NCS layers communicate via J2EE
objects, not messages. Therefore there is no message bus and the web protocols SOAP,
WSDL and UDDI are not used. The services have been published in a Word document, and
management and definition of services are manual operations. In this respect the solution

Open Group SOA Case Study

SOA agility in practice 10/11 © Alcedo Coenen, Amsterdam 2006

appears little different from a traditional one based on APIs. There is a significant difference,
however. Services are empty, they do nothing themselves, except calling the appropriate
business functions in the right order. This makes services much more independent than the
functions of an API design.

The SOA implementation of NCS was designed to be realized in phases. In the first phase,
NCS is a simple system with a limited number of presentation layers; that is why the services
need not be published and can be invoked without using standardized protocols. But as soon
as NCS services need to be called from other applications, it is necessary to invoke them in a
standardized way and provide standardized mechanisms for publishing and finding them.
NCS has the potential to participate in a network of multiple systems, which contributes to the
agility needed by the business. NCS is a form of agile SOA.

Lessons learned
Although many architectural principles were settled before development started on NCS,
many issues requiring new principles emerged during the development process. Some
interesting lessons were learned.

• Application management must be prepared for a new role of guardian of the
service catalogue. SOA needs active management of the collection of services (the
so-called catalogue). When a project implements new functionality, the danger of
duplication of services must be avoided. Application management must be
prepared for this new task.

• All parties must be familiar with the service concept; and this includes business
stakeholders as well as application managers and software developers. When one
of these parties is forgotten there is a major chance for misunderstandings and bad
decisions. For instance, when a business stakeholder does not understand that a
service can be used by an additional system, the service could be rebuilt in that
system. When a traditionally-educated designer only knows about object
orientation, there is a danger that he will make the service too tightly-coupled to
the actual function.

• The granularity issue (how much functionality does a service cover?) should be
resolved during the design, not beforehand. Discussions about granularity can
become unmanageable and meaningless if not related to the actual analysis of
functions.

• It should be a rule that the business model layer can only be accessed via the
service layer and not directly from the presentation layer. It is tempting to call
business class operators directly from the presentation layer, especially when the
system is still isolated and not yet connected to other applications or presentation
layers; the service layer seems redundant, and the project may have strict deadlines
that impel the programmer to take shortcut solutions. Such shortcuts, however,
have a disastrous effect on the time to market of future developments.

• All workflow-related functions should be kept out of the service layer. When the
order of a series of functions depends on external knowledge that is not available
in the system, it is advisable to put its control into a separate workflow layer.

• The use of tools that force consistency between (UML) models is highly
recommended. In the NCS development project, using a single tool for class,
activity and sequence diagrams proved to be a significant time-saver.

Open Group SOA Case Study

SOA agility in practice 11/11 © Alcedo Coenen, Amsterdam 2006

Conclusion
Service orientation is a construction method more than a technology. Therefore SOA can be
applied to just one system, particularly when this system needs to offer functions to other
systems or presentation layers. Service orientation is the next step after component based
development, because the services provide a shell or facade that is meaningful to the business
and hides the technical components.

Applying service orientation can help the business to create the flexibility and agility that it
needs, as was proven in this case of ING Card.

