

Draft Technical Standard

Service-Oriented Architecture Ontology

ii Draft Technical Standard

Copyright © 2007, 2008, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the
copyright owner.

It is fair use of this specification for implementers to use the names, labels, etc. contained within the
specification. The intent of publication of the specification is to encourage implementations of the
specification.

This specification has not been verified for avoidance of possible third-party proprietary rights. In
implementing this specification, usual procedures to ensure the respect of possible third-party intellectual
property rights should be followed.

Service-Oriented Architecture Ontology iii

Contents
1 Introduction...1

1.1 Objective...1
1.2 Overview...1
1.3 Applications ..2
1.4 Conformance...3
1.5 Terminology..3
1.6 Typographic Conventions...4
1.7 Diagrammatic Symbolism ..4

1.7.1 Class ..5
1.7.2 Subclass ...5
1.7.3 Property ...5
1.7.4 Cardinality Constraint ...6

1.8 Future Directions ..7

2 Services – Basic Definitions ...8
2.1 Introduction...8
2.2 Services...8

2.2.1 Overview ...8
2.2.2 Example...9
2.2.3 The Service Class ..9

2.3 Providers and Consumers ...10
2.3.1 Overview ...10
2.3.2 The Actor Class ...10
2.3.3 The provides and is provided by Properties.........................10
2.3.4 The consumes and is consumed by Properties11

2.4 Effects ...11
2.4.1 Overview ...11
2.4.2 The Effect Class...12
2.4.3 The has effect and is effect of Properties12
2.4.4 The Change Class..13
2.4.5 The is change to and is changed by Properties....................13

2.5 Information ...14
2.5.1 Overview ...14
2.5.2 The Information Item Class ...14
2.5.3 The Information Type Class ..15
2.5.4 The has type and is type of Properties15
2.5.5 The Description Class ...16
2.5.6 The describes and is described by Properties17

2.6 Systems and Composition...18
2.6.1 Overview ...18
2.6.2 The System Class ...18
2.6.3 The has component and is component of Properties...........18

iv Draft Technical Standard

2.6.4 The Composition Class..19
2.6.5 The produces and is produced by Properties......................19

3 Services as Business Activities ...21
3.1 Introduction...21
3.2 Activities...21

3.2.1 Overview ...21
3.2.2 Example...22
3.2.3 The Activity Class ..22
3.2.4 The takes part in and has participant Properties................23
3.2.5 The Event Class ...24
3.2.6 The responds to and is responded to by Properties24
3.2.7 The is the occurrence of and occurs as Properties25

3.3 Business Activities..26
3.3.1 Overview ...26
3.3.2 Example...26
3.3.3 The is a business activity of and has business activity
Properties ..26

3.4 Interfaces...27
3.4.1 Overview ...27
3.4.2 Example...27
3.4.3 The Interface Class..28
3.4.4 The is interface of and has interface Properties29
3.4.5 The is event at and includes event Properties29
3.4.6 The is input at, has input information, is output at, and
has output information Properties...29

3.5 Contracts and Policies...30
3.5.1 Overview ...30
3.5.2 Example...31
3.5.3 The Rule Class...32
3.5.4 The applies to and is affected by Properties32
3.5.5 The has condition and is condition of Properties33
3.5.6 The Contract Class ..34
3.5.7 The is contract for and is subject of contract
Properties ..34
3.5.8 The is party to and has party Properties.............................35
3.5.9 The Policy Class ..36
3.5.10 The has policy and is policy of Properties37
3.5.11 The is policy for and is subject of policy Properties37

4 Design and Implementation ..39
4.1 Introduction...39
4.2 Requirements and Solutions ...40

4.2.1 Overview ...40
4.2.2 The Requirement Class..40
4.2.3 The requires and is required by Properties41
4.2.4 The Solution Class...41
4.2.5 The satisfies and is satisfied by Properties42

Service-Oriented Architecture Ontology v

4.2.6 The entails and is entailed by Properties42
4.2.7 The Solution Building Block Class43

4.3 Abstraction and Realization..43
4.3.1 Overview ...43
4.3.2 The Abstraction Class ...44
4.3.3 The Realization Class ..45
4.3.4 The is abstraction of and is realization of Properties..........45

4.4 Design ...46
4.4.1 Overview ...46
4.4.2 Example...46
4.4.3 The Design Class...46
4.4.4 The Design Activity Class..47

4.5 Implementation ...48
4.5.1 Overview ...48
4.5.2 Example...49
4.5.3 The Implementation Class ...49
4.5.4 The Implementation Activity Class50

4.6 Kinds of Actor ..50
4.6.1 Overview ...50
4.6.2 The Human Actor Class...51
4.6.3 The Technology Actor Class..51
4.6.4 The Software Actor Class ..52
4.6.5 The Organization Actor Class ...52
4.6.6 The Enterprise Class ...52

4.7 Software Services ...53
4.7.1 Overview ...53
4.7.2 The Software Service Class ...53

4.8 Service Orchestration and Choreography ...54
4.8.1 Overview ...54
4.8.2 The Orchestration Class..55
4.8.3 The has direction activity and is direction activity of
Properties ..56
4.8.4 The Choreography Class...57

4.9 Messaging ...58
4.9.1 Overview ...58
4.9.2 Example...59
4.9.3 The Message Class ..59
4.9.4 The Message Type Class ...59
4.9.5 The Messaging Service Class ..60
4.9.6 The Messaging Interface Class ...60

4.10 Discovery ..61
4.10.1 Overview ...61
4.10.2 The Registry Class...62
4.10.3 The Registry Entry Class ...62
4.10.4 The contains and is contained in Properties........................63
4.10.5 The registers and is registered in Properties63
4.10.6 The Visibility Class..63
4.10.7 The is in scope of and has in scope Properties64
4.10.8 The has visibility and is visibility of Properties65

vi Draft Technical Standard

4.10.9 The Registry Service Class ..65
4.11 Virtualization ..66

4.11.1 Overview ...66
4.11.2 The Virtual Actor Class ...66
4.11.3 The Virtualized Service Class..67

5 Architecture and Governance..68
5.1 Introduction...68
5.2 Architecture ..68

5.2.1 Overview ...68
5.2.2 Example...69
5.2.3 The Architecture Class ..70
5.2.4 The has architecture and is architecture of Properties.......71
5.2.5 The Architecture Building Block Class72
5.2.6 The has infrastructure and is infrastructure of
Properties ..73
5.2.7 The Architecture Development Activity Class74

5.3 Instantiation ..75
5.3.1 Overview ...75
5.3.2 Example...76
5.3.3 The instantiates and is instantiated by Properties77

5.4 Governance ...77
5.4.1 Overview ...77
5.4.2 Example...78
5.4.3 The Governance Regime Class..79
5.4.4 The governs and is governed by Properties80
5.4.5 The Governance Rule Class ..80
5.4.6 The Governance Activity Class ...81

5.5 Service-Oriented Architecture ..81
5.5.1 Overview ...81
5.5.2 The Service Oriented Architecture Class82

A The OWL Definition of the Ontology...84

Service-Oriented Architecture Ontology vii

Preface

The Open Group

The Open Group is a vendor-neutral and technology-neutral consortium, whose vision of
Boundaryless Information Flow™ will enable access to integrated information within and
between enterprises based on open standards and global interoperability. The Open Group works
with customers, suppliers, consortia, and other standards bodies. Its role is to capture,
understand, and address current and emerging requirements, establish policies, and share best
practices; to facilitate interoperability, develop consensus, and evolve and integrate
specifications and Open Source technologies; to offer a comprehensive set of services to
enhance the operational efficiency of consortia; and to operate the industry's premier
certification service, including UNIX® certification.

Further information on The Open Group is available at www.opengroup.org.

The Open Group has over 15 years' experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of test
suites used to validate conformance to an open standard or specification.

More information is available at www.opengroup.org/certification.

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business titles.
Full details and a catalog are available at www.opengroup.org/bookstore.

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards-compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it
replaces the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained
in the previous publication of that title, and there may also be additions/extensions. As
such, both previous and new documents are maintained as current publications.

Readers should note that updates – in the form of Corrigenda – may apply to any publication.
This information is published at www.opengroup.org/corrigenda.

This Document

This document is the Draft Technical Standard for Service-Oriented Architecture Ontology. It
has been developed by The Open Group.

viii Draft Technical Standard

Trademarks
Boundaryless Information Flow™ and TOGAF™ are trademarks and Making Standards Work®,
The Open Group®, UNIX®, and the “X” device are registered trademarks of The Open Group in
the United States and other countries.

The Open Group acknowledges that there may be other brand, company, and product names
used in this document that may be covered by trademark protection and advises the reader to
verify them independently.

Service-Oriented Architecture Ontology ix

Referenced Documents
The following documents are referenced in this Technical Standard:

• [BPEL] Web Services Business Process Execution Language. The Organization for
the Advancement of Structured Information Standards, available from http://www.oasis-
open.org

• [BPMN] Business Process Modeling Notation. Version 1.1. The Object Management
Group, available from http://www.omg.org

• [COBIT] Control Objectives for Information and related Technology (COBIT)
Version 4.1, The IT Governance Institute, available from http://www.isaca.org

• [IEEE 1471] Recommended Practice for Architectural Description of Software-Intensive
Systems. IEEE Std 1471-2000, the IEEE, http://www.ieee.org

• [OASIS RM]

 OASIS Reference Model for Service-Oriented Architecture Version 1.0, The
Organization for the Advancement of Structured Information Standards, available from
http://www.oasis-open.org

• [OECD] The OECD Corporate Governance Principles 2004, the Organization for
Economic Cooperation and Development, http://www.oecd.org

• [OWL] OWL Web Ontology Language Reference: W3C Recommendation 10 Feb
2004. The World-Wide Web Consortium, http://www.w3.org

• [OWL-S] Semantic Mark-Up for Web Services: W3C Member Submission 22
November 2004. The World-Wide Web Consortium, http://www.w3.org

• [TOGAF] The Open Group Architecture Framework Version 8.1.1, The Open Group,
http://www.opengroup.org

• [WSMO] Web Services Moedeling Ontology. Developed as part of the European
Semantic Systems Initiative. Available from http://www.wsmo.org

Service-Oriented Architecture Ontology 1

1 Introduction

1.1 Objective

The purpose of this Technical Standard is to contribute to the Open Group mission of
Boundaryless Information Flow, by developing and fostering common understanding of SOA in
order to improve alignment between the business and information technology communities, and
facilitate SOA adoption.

It does this in two specific ways.

1. It defines the concepts, terminology and semantics of SOA in both business and technical
terms, in order to:

o Create a foundation for further work in domain-specific areas,

o Enable communications between business and technical people,

o Enhance the understanding of SOA concepts in the business and technical
communities, and

o Provide a means to state problems and opportunities clearly and unambiguously
to promote mutual understanding.

2. It potentially contributes to model-driven SOA implementation.

The ontology is designed for use by:

• Business people, to give them a deeper understanding of SOA, and its use in the
enterprise;

• Architects, as metadata for architectural artifacts; and

• Architecture methodologists, as a component of SOA metamodels.

1.2 Overview

This Technical Standard defines a formal ontology for Service Oriented Architecture.

Service-Oriented Architecture (SOA) is an architectural style that supports service orientation: a
way of thinking in terms of services and service-based development and the outcomes of
services.

The ontology is written in the Web Ontology Language (OWL) defined by the World-Wide Web
Consortium (see [OWL]). It contains classes and properties corresponding to the important

2 Draft Technical Standard

concepts of SOA. The formal OWL definitions are supplemented by textual explanations of the
concepts, with graphic illustrations of the relations between them, and examples of their use.

OWL has three increasingly expressive sublanguages: OWL-Lite, OWL-DL, and OWL-Full.
This ontology uses OWL-DL, the sublanguage that provides the greatest expressiveness possible
while retaining computational completeness and decidability.

This Chapter provides an introduction to the whole document. Chapter 2: Services – Basic
Definitions describes the basic concepts associated with services. Chapter 3: Services as
Business Activities describes the concepts associated with activities, and in particular business
activities, and describes how they relate to services. Chapter 4: Design and Implementation
describes concepts related to the implementation of services, such as choreography, and
orchestration. Chapter 5: Architecture and Governance describes concepts related to the
development and management of service-oriented architectures, and to the governance of their
development, implementation and operation. The Appendix contains the formal OWL
definitions of the ontology, collected together.

1.3 Applications

The ontology was developed in order to aid understanding, and potentially be a basis for model-
driven implementation.

To aid understanding, it can simply be read. To be a basis for model-driven implementation, it
should be applied to particular usage domains. And application to example usage domains will
aid understanding.

The ontology is applied to a particular usage domain by adding to it instances which are things
in that domain. This is sometimes referred to as “populating the ontology”. In addition, an
application can add definitions of new classes and properties, can import other ontologies, and
can import the ontology into other ontologies.

This technical standard uses example applications to illustrate the ontology. One of these, the
car-wash example, is used consistently throughout to illustrate the main concepts. Other
examples are used ad-hoc in individual sections to illustrate particular points.

The ontology defines the relations between terms, but does not prescribe exactly how they
should be applied. The sections of this Technical Standard that use the car-wash example are
describing one way in which the ontology could be applied in a practical situation. Different
applications of it to the same situation would nevertheless be possible. For instance, Joe's bucket
becoming empty is not regarded as an event in the car-wash example as described in this
standard, but it would be quite possible to treat this as an event. The precise interpretation of the
terms of the ontology in particular practical situations is a matter for users of the ontology, and is
not constrained by the ontology definition. The use of a term by an application does not imply
that the term is used accurately or truthfully.

While this Technical Standard does not prescribe exactly how the ontology should be applied, it
does clearly suggest particular ways in which it should be applied to enterprise services and

Service-Oriented Architecture Ontology 3

enterprise IT architecture. This should be regarded as guidance for the user rather than as a
matter of formal conformance.

1.4 Conformance

This Technical Standard does not define what it means for a system to conform to it.

A conforming application:

• Must conform to the OWL standard [OWL];

• Must include the whole of the ontology contained in Appendix A of this Technical
Standard;

• Must add one or more instances from a particular domain or domains;

• Can add other OWL constructs, including class and property definitions;

• Can import other ontologies;

• Must be consistent; and

• Can be imported into other ontologies.

1.5 Terminology

Can Describes a permissible optional feature or behavior available to the user or
application. The feature or behavior is mandatory for an implementation that
conforms to this document. An application can rely on the existence of the feature
or behavior.

Implementation-dependent
(Same meaning as "implementation-defined".) Describes a value or behavior that is
not defined by this document but is selected by an implementer. The value or
behavior may vary among implementations that conform to this document. An
application should not rely on the existence of the value or behavior. An application
that relies on such a value or behavior cannot be assured to be portable across
conforming implementations. The implementer shall document such a value or
behavior so that it can be used correctly by an application.

Legacy Describes a feature or behavior that is being retained for compatibility with older
applications, but which has limitations which make it inappropriate for developing
portable applications. New applications should use alternative means of obtaining
equivalent functionality.

May Describes a feature or behavior that is optional for an implementation that conforms
to this document. An application should not rely on the existence of the feature or
behavior. An application that relies on such a feature or behavior cannot be assured
to be portable across conforming implementations. To avoid ambiguity, the
opposite of "may" is expressed as "need not", instead of "may not".

4 Draft Technical Standard

Must Describes a feature or behavior that is mandatory for an application or user. An
implementation that conforms to this document shall support this feature or
behavior.

Shall Describes a feature or behavior that is mandatory for an implementation that
conforms to this document. An application can rely on the existence of the feature
or behavior.

Should For an implementation that conforms to this document, describes a feature or
behavior that is recommended but not mandatory. An application should not rely on
the existence of the feature or behavior. An application that relies on such a feature
or behavior cannot be assured to be portable across conforming implementations.
For an application, describes a feature or behavior that is recommended
programming practice for optimum portability.

Undefined Describes the nature of a value or behavior not defined by this document that results
from use of an invalid program construct or invalid data input. The value or
behavior may vary among implementations that conform to this document. An
application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be
portable across conforming implementations.

Unspecified Describes the nature of a value or behavior not specified by this document that
results from use of a valid program construct or valid data input. The value or
behavior may vary among implementations that conform to this document. An
application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be
portable across conforming implementations.

Will Same meaning as "shall"; "shall" is the preferred term.

1.6 Typographic Conventions

Bold font is used for OWL class, property, and instance names where they appear in section text.
Bold Italic font is used to distinguish them in section headings.

Italic strings are used for emphasis and to identify the first instance of a word requiring
definition.

OWL definitions and syntax are shown in fixed-width font.

1.7 Diagrammatic Symbolism

This specification describes a formal OWL ontology. For purposes of exposition, it includes
diagrams that illustrate the classes and properties of the ontology. These diagrams use a set of
conventions for representing formal OWL constructs, which are explained in this section.

Service-Oriented Architecture Ontology 5

Note that these diagrams make many simplifications. They omit some classes and properties –
particularly the inverse properties of those shown. The OWL definitions contained in this
specification constitute the authoritative definition of the ontology.

1.7.1 Class

Owl classes are represented by rectangular boxes, labeled with the class names, similar to the
example in Figure 1.

Figure 1: Example Diagrammatic Representation of a Class

Class names are nouns with their first letters in uppercase. Where a class name includes multiple
words, they are shown in the diagrams with the words separated by spaces, for example:
Information Item. The spaces are omitted in the names used in OWL, as in
InformationItem.

The word Anything is used in the diagrams to represent the OWL construct Thing.

1.7.2 Subclass

A subclass relation between classes is shown by nesting the boxes that represent them, as
illustrated in Figure 2, which shows Service as a subclass of Activity.

Figure 2: Example Diagrammatic Representation of Subclass Relationship

1.7.3 Property

A property is represented by an arrow, as illustrated in Figure 3.

6 Draft Technical Standard

Figure 3: Example Diagrammatic Representation of Property

This shows that Activity and Actor are classes and that the is business activity of property
provides a connection between them.

Note that it does not imply that the domain of is business activity of is Activity, or that its range
is Actor. It happens in this case that is business activity of has domain Activity and range
Actor, but the symbolism is used in some other cases to show how a property connects classes
other than its domain and range. For example, Figure 5 shows that the has effect property
provides a connection between the Service and Effect classes, but Service is not the domain of
has effect.

Further, there is no implication that for every instance of Activity there is an instance of Actor
that it is business activity of, or that for every instance of Actor there is an instance of Activity
that is business activity of it.

The diagrammatic representation does not in fact imply any formal statement about the classes
and property that it illustrates. It simply indicates that there are many instances of Activity for
which is business activity of has a value and that its values for those instances are instances of
Actor. Its meaning is intuitively quite clear, although the formal explanation turns out to be
rather complex.

In the diagrams, property names are verbs and are all in lowercase. Where a property name
includes multiple words, they are shown in the diagrams with the words separated by spaces, for
example: is business activity of. The spaces are omitted in the names used in OWL, but the
initial letters of the second and subsequent words are in uppercase, as in
isBusinessActivityOf.

The arrow points from the domain of the property to its range, and the name is chosen such that
the subject of the verb is in the domain of the property and the object of the verb is in its range.
For example, an Activity is business activity of an Actor.

1.7.4 Cardinality Constraint

A cardinality constraint can be indicated by an annotation to an arrow representing a property, as
illustrated in Figure 4.

Service-Oriented Architecture Ontology 7

Figure 4: Example Diagrammatic Representation of a Cardinality Constraint

This indicates that, for every instance of the Service class, there is exactly one instance of the
Actor class that provides that Service. (If the figure 1 had been at the other end of the arrow
then it would indicate that every Actor provides exactly one Service.)

1.8 Future Directions

It is anticipated that this will be a living document that will be updated as the industry evolves
and SOA concepts are refined.

Also, this ontology can be used as a core for domain-specific ontologies that apply to the use of
SOA in particular sectors of commerce and industry. The Open Group does not currently plan to
develop such ontologies, but encourages other organizations to do so to meet their needs.

8 Draft Technical Standard

2 Services – Basic Definitions

2.1 Introduction

 Service is the core concept of this ontology. It is a concept that is well-understood in practice,
but is not easy to define. The ontology assumes the following definition, which was developed
by The Open Group’s SOA Work Group.

A service is a logical representation of a repeatable business activity that has a specified
outcome (e.g., check customer credit; provide weather data, consolidate drilling reports). It is
self-contained, may be composed of other services, and is a “black box” to its consumers.

In the ontology:

• The class Service is defined as a subclass of the Activity class;

• Outcomes of services are instances of the class Effect, which is related to Service by the
is effect of property;

• A service composition is an instance of the Composition class;

• A Description can describe a service as a self-contained “black box”;

• A service consumer is an instance of the class Actor, which is related to Service by the
consumes property.

This chapter describes the basic concepts of the ontology:

• Services;

• Providers and Consumers;

• Effects;

• Information; and

• Systems and Composition.

2.2 Services

2.2.1 Overview

Service is the most fundamental concept of this ontology. This section describes the Service
class.

Services are activities. The Activity class and related concepts are described in Chapter 3.

Service-Oriented Architecture Ontology 9

2.2.2 Example

Joe has a one-man business. He stands on a street corner with a sponge, a bucket of water, and a
sign saying "Car Wash $5". A customer drives up to him and asks him to wash the car. Joe asks
the customer for five dollars. The customer gives him five dollars. Joe washes the car, then says,
"That's all done now," and the customer drives away.

Joe carries out a repeatable business activity. He provides a car-wash service. It has an effect that
is a specified outcome: the customer’s car is cleaned, which is a change to the car. It is self-
contained – it is not linked to any other activity. It is a “black box” to its consumers: the
customer does not care whether Joe washes the car by hand or uses a car-wash machine, so long
as the car is cleaned. Joe and the customer are actors. The customer consumes the service.

2.2.3 The Service Class
<owl:Class rdf:ID="Service">
 <rdfs:subClassOf rdf:resource="#Activity"/>
</owl:Class>

A service is a logical representation of a repeatable business activity. The class Service is
defined here as a subclass of the Activity class.

A service has a provider, may have multiple consumers, and produces one or more effects
(which have value to the consumers). The providers and consumers are actors. The classes and
properties corresponding to these concepts are illustrated in Figure 5. The Actor class and the
provides and consumes properties are defined in Section 2.3. The Effect class and the has
effect property are defined in Section 2.4.

Figure 5: Service

10 Draft Technical Standard

2.3 Providers and Consumers

2.3.1 Overview

An idea that is central to the concept of service is that a service has a provider, and may have
multiple consumers. In this ontology, providers and consumers are actors. This section defines
the Actor class and the provides and consumes properties.

2.3.2 The Actor Class
<owl:Class rdf:ID="Actor"/>

An actor is someone or something that does something.

This is a general concept. The ontology includes various kinds of actor other than service
providers and customers.

An actor can be a person or an organization or a piece of technology. (See sections 4.6.2, 4.6.5,
and 4.6.3 for definitions of subclasses for these kinds of actor.)

This classification is not exhaustive. For example, an animal might be an actor. But only these
kinds of actor are described in this ontology.

In modeling, an actor typically represents a role, or class, rather than an individual: for example
“Barber”, rather than “Sweeney Todd”. In this ontology, the Actor class includes actors in both
of these senses – both “Barber” and “Sweeney Todd”.

In the car-wash example, Joe and the customer are actors. “Customer” is a role, while “Joe” is
an individual. The example could have been described entirely in terms of roles, by
characterizing Joe as “car washer”, or it could have been described in terms of individuals, if a
particular customer had been identified by name.

(See section 4.3 for discussion of how an actor that represents a role or class is an abstraction,
and how a real actor such as Joe can be a realization of such an abstraction.)

2.3.3 The provides and is provided by Properties
<owl:ObjectProperty rdf:ID="provides">
 <rdfs:domain rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#isProvidedBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isProvidedBy">
 <rdfs:range rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#provides"/>
</owl:ObjectProperty>

<owl:Class rdf:about="#Service">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isProvidedBy"/>
 <owl:cardinality

Service-Oriented Architecture Ontology 11

 rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

A provider of an activity is an actor that takes responsibility for it being carried out. Every
service has a provider.

The ontology does not include a class for service providers, but focuses on the provides property
and its inverse is provided by. A provider is an instance of the domain of the provides property.

A service has a single provider - hence the cardinality restriction on Service.

 “Provides” is not just a transient relation. It includes “provides at this instant”, “has provided”,
and “may in future provide”.

In the car-wash example, Joe provides the car-wash service.

2.3.4 The consumes and is consumed by Properties
<owl:ObjectProperty rdf:ID="consumes">
 <rdfs:domain rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#isConsumedBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isConsumedBy">
 <rdfs:range rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#consumes"/>
</owl:ObjectProperty>

A consumer of a service (or some other thing) is an actor that uses it. A service can have one or
more consumers.

The ontology does not include a class for service consumers, but focuses on the consumes
property and its inverse is consumed by. A “consumer” is an instance of the domain of the
consumes property.

“Consumes” is not just a transient relation. It includes “consumes at this instant”, “has
consumed”, and “may in future consume”.

In the car-wash example, the customer consumes the car-wash service.

A consumer may pass information items to a service, which may affect its operation. This is
described under Interfaces in Chapter 3.

2.4 Effects

2.4.1 Overview

A service has effects. These comprise the outcome of the service, and are how it delivers value to
its consumers. This section describes the Effect class and the is effect of property. Two kinds of

12 Draft Technical Standard

effect are described by the ontology: changes and events. The Change class and the is change to
property are described in this section. The Event class is described in Section 3.2.5.

2.4.2 The Effect Class
<owl:Class rdf:ID="Effect">
 <owl:disjointWith rdf:resource="#Service"/>
 <owl:disjointWith rdf:resource="#Actor"/>
</owl:Class>

Effects are represented in the ontology by the Effect class.

Neither Change nor Event is a subclass of Effect – there can be changes or events that are not
effects of anything. Also, the ontology does not preclude the possibility of other kinds of effect.
Effect is therefore not defined to be disjoint with Change and Event, but it is defined as being
disjoint with Service and Actor, and it will be defined as being disjoint with other classes as
they are introduced.

In the car-wash example, the car-wash service has the effect of making the customer’s car clean.

2.4.3 The has effect and is effect of Properties
<owl:ObjectProperty rdf:ID="isEffectOf">
 <rdfs:domain rdf:resource="#Effect"/>
 <owl:inverseOf rdf:resource="#hasEffect"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasEffect">
 <rdfs:range rdf:resource="#Effect"/>
 <owl:inverseOf rdf:resource="#isEffectOf"/>
</owl:ObjectProperty>

<owl:Class rdf:about="#Service">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasEffect"/>
 <owl:minCardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

The property has effect and its inverse is effect of capture the relationship between an effect and
whatever it is that produces that effect.

Effects can be produced by many things; they are not necessarily produced by services. The
ontology does not specify the domain of has effect and the range of is effect of.

The cardinality restriction on has effect states that every service has at least one effect. It is an
essential characteristic of services, which this restriction captures, that they have effects that
deliver value to their consumers.

Service-Oriented Architecture Ontology 13

2.4.4 The Change Class
<owl:Class rdf:ID="Change">
 <owl:disjointWith rdf:resource="#Service"/>
 <owl:disjointWith rdf:resource="#Actor"/>
</owl:Class>

A change to some thing conveys the idea that the thing is different beforehand and afterwards
The ontology includes the Change class, corresponding to the change concept, but does not
include classes or properties corresponding to the notions of “before” and “after”. (This is for
conciseness, and because the other concepts represented in the ontology do not depend on these
notions.)

In the car-wash example, the effect of Joe’s car-wash service is that the customer’s car is clean.
This is a change to the car.

The Effect and Change classes, and the is change to property (which is described in the next
section), are illustrated in Figure 6.

Figure 6: Change

2.4.5 The is change to and is changed by Properties
<owl:ObjectProperty rdf:ID="isChangeTo">
 <rdfs:domain rdf:resource="#Change"/>
 <owl:inverseOf rdf:resource="#isChangedBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isChangedBy">
 <rdfs:range rdf:resource="#Change"/>
 <owl:inverseOf rdf:resource="#isChangeTo"/>
</owl:ObjectProperty>

14 Draft Technical Standard

<owl:Class rdf:about="#Change">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isChangeTo"/>
 <owl:cardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

The is change to property, and its inverse is changed by, capture the relation between a change
and the thing that it changes.

In this ontology, as Figure 6 illustrates, a change is a change to exactly one thing. This is
captured by the restriction on Change. Anything can be the subject of a change.

2.5 Information

2.5.1 Overview

This section describes the basic classes and properties relevant to information. These are the
Information Item, Information Type, and Description classes, and the has type and describes
properties.

2.5.2 The Information Item Class
<owl:Class rdf:ID="InformationItem">
 <owl:disjointWith rdf:resource="#Service"/>
 <owl:disjointWith rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
</owl:Class>

The concept of information is a very general one. An information item is a thing that is known
about some other thing. This ontology includes the Information Item class, whose instances are
such pieces of information.

Information Item is disjoint with Service, Actor, Effect and Change; an information item may
be about a service, an actor, an effect or a change, but it is different from all of these things.

This ontology does not cover the general concept of that information being “about” something,
although it does cover the specific cases of information type and description (see sections 2.5.3,
2.5.4, 2.5.5 and 2.5.6 below). Nor does it attempt to differentiate “information” from “data”.

An information item may be simple or it may be composed of other information items.

In the car-wash example, “Car Wash” and “$5” are information items. “Car Wash $5” is also an
information item; it is a more complex item that is composed of the two simple ones.

Service-Oriented Architecture Ontology 15

An information item may have one or more information types. Figure 7 illustrates the
Information Type class and the is type of property, which are described in the following
sections.

Figure 7: Information Type

2.5.3 The Information Type Class
<owl:Class rdf:ID="InformationType">
 <rdfs:subClassOf rdf:resource="#InformationItem"/>
</owl:Class>

A type is the defining characteristic of a class of things. An information type is the defining
characteristic of a class of information items. It is thus an information item about another
information item – what is often called “meta-information” or “metadata”. This concept is
represented by the Information Type class.

Because an information type is a special kind of information item, Information Type is defined
as a subclass of Information Item. (This implies that it is disjoint with all the classes with
which Information Item is disjoint.)

In the car-wash example, $5 is the price of the car-wash service. The information item “$5” has
information type “price”.

2.5.4 The has type and is type of Properties
<owl:ObjectProperty rdf:ID="hasType">
 <owl:inverseOf rdf:resource="#isTypeOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isTypeOf">
 <owl:inverseOf rdf:resource="#hasType"/>
</owl:ObjectProperty>

16 Draft Technical Standard

<owl:Class rdf:about="#InformationItem">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasType"/>
 <owl:allValuesFrom rdf:resource="#InformationType"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Where a class has a defining characteristic, each member of the class has a type that is that
characteristic. The has type property and its inverse is type of correspond to the relation
between a thing and the type (or types) that it has.

In the case of an information item, the type will be an information type. The restriction on the
Information Type class captures this.

In the car-wash example, “5” has type “price”.

2.5.5 The Description Class
<owl:Class rdf:ID="Description">
 <rdfs:subClassOf rdf:resource="#InformationItem"/>
</owl:Class>

A description is an information item that is represented in words, possibly accompanied by
supporting material such as graphics. The Description class corresponds to the concept of a
description as a particular kind of information item that applies to something in particular – the
thing that it describes. It is not just a set of words that could apply to many things.

Anything can have a description.

A description may be expressed in plain text (perhaps with graphics) or may be in a formal
language. OWL may be used as the formal language of a description. An OWL description may
use the constructs of this ontology.

In the car-wash example, the sign saying “Car Wash $5” is a description of Joe’s car-wash
service. It is intended to apply to Joe’s car-wash service, and not to anything else (even though
there may in fact be other car-wash services that charge $5).

The Description class and the describes property (which is described in the next section) are
illustrated in Figure 8.

Service-Oriented Architecture Ontology 17

Figure 8: Description

2.5.6 The describes and is described by Properties
<owl:ObjectProperty rdf:ID="describes">
 <rdfs:domain rdf:resource="#Description"/>
 <owl:inverseOf rdf:resource="#isDescribedBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isDescribedBy">
 <rdfs:range rdf:resource="#Description"/>
 <owl:inverseOf rdf:resource="#describes"/>
</owl:ObjectProperty>

<owl:Class rdf:about="#Description">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#describes"/>
 <owl:cardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

The describes property, and its inverse is described by, capture the relation between a
description and the thing that it describes.

The restriction on the Description class captures the notion that a description describes exactly
one thing.

In the car-wash example, the “Car Wash $5” sign describes Joe’s car-wash service.

18 Draft Technical Standard

2.6 Systems and Composition

2.6.1 Overview

This section describes the basic classes and properties relevant to systems and composition: the
System and Composition classes, and the has component and produces properties.

2.6.2 The System Class
<owl:Class rdf:ID="System">
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
</owl:Class>

A system is an organized collection of other, simpler things. This concept is captured by the
System class, which is illustrated in Figure 9.

has component

System

Anything

has component

System

Anything

Figure 9: Composition

The System class is defined as disjoint with the Effect, Change, and Information Item classes.
Instances of these classes are considered not to be collections of other things, although they can
be composed of other things (see Section 2.6.4).

2.6.3 The has component and is component of Properties
<owl:ObjectProperty rdf:ID="hasComponent">
 <owl:inverseOf rdf:resource="#isComponentOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isComponentOf">
 <owl:inverseOf rdf:resource="#hasComponent"/>
</owl:ObjectProperty>

Service-Oriented Architecture Ontology 19

Each of the things in the organized collection that is a system is a component of that system, and
the system has as a component each of those things. The has component property, and its
inverse is component of, capture the relation between a system and its components.

2.6.4 The Composition Class
<owl:Class rdf:ID="Composition">
 <rdfs:subClassOf rdf:resource="#System"/>
</owl:Class>

A composition is a collection of things that are put together to form a single thing. This concept
is captured by the Composition class.

A composition is a structured collection of things, and is therefore a system, whose components
are the things in the collection. The Composition class is therefore a subclass of the System
class.

A particularly important case of composition is service composition.

Joe has a friend Muhammad who has a business in which he carries out a complete car-valet
service, which is an example of service composition. Muhammad’s business process is a little
more complicated than Joe’s. The customer drives up to Muhammad and ask for his car to be
valeted. Muhammad asks him for $50. The customer gives him $50. Muhammad sends his
friend Lin to the street corner to fetch Joe. Joe washes the car. Muhammad also sends Lin to
fetch two other friends: Masha, who vacuums the car, and Juan, who shampoos the upholstery.
Muhammad then says, "That's all done now," and the customer drives away. This is a
composition of four services: car washing, by Joe; vacuuming, by Masha; shampooing, by Juan;
and direction, by Muhammad.

2.6.5 The produces and is produced by Properties
<owl:FunctionalProperty rdf:ID="produces">
 <owl:inverseOf rdf:resource="#isProducedBy"/>
</owl:FunctionalProperty>

<owl:ObjectProperty rdf:ID="isProducedBy">
 <owl:inverseOf rdf:resource="#produces"/>
</owl:ObjectProperty>

A composition is a collection of things that are put together to form a single thing. Putting
together the things in the composition produces the single thing, and that thing is produced by
the composition. The produces property, and its inverse is produced by, capture the relation
between a composition and the thing that results from combining its components.

A composition results in a unique single thing, and produces is a functional property. Note,
however, that is produced by is not functional. A thing can be formed by composition in more
than one way. In particular, a service is a “black box”; how it is produced is transparent to its
consumers, and it may be produced in several different ways.

20 Draft Technical Standard

The phrase “is composed of” is used as shorthand for “is produced by a composition whose
components are”. (A formal is composed of property is not defined.) .

Muhammad’s car-valet service is produced by a composition whose components are four other
services, as described above. That composition produces the car-valet service. As shorthand, we
say that “The car-valet service is composed of four other services.”

Service-Oriented Architecture Ontology 21

3 Services as Business Activities

3.1 Introduction

Service is originally a business concept. It has been adopted by technologists as a paradigm for
the definition of software modules that support business activities – and it is also used for
software modules that form part of the enterprise infrastructure and do not directly support its
business activities.

This chapter covers the original concept of service as a business activity, and related business
concepts. Because these concepts have been adopted by technologists, the definitions in this
chapter also apply to service-oriented software implementation. This will be covered in Chapter
4.

The chapter first describes what an activity is, and introduces concepts of actors participating in
activities, and of events to which activities respond. It then looks at what distinguishes business
activities from other activities. An important characteristic of services as distinct from other
activities is that they have clearly-understood interfaces; the chapter describes concepts relating
to interfaces and to their associated events and information exchanges. Finally, the chapter
describes the important business concepts related to the ideas of contract and policy.

3.2 Activities

3.2.1 Overview

A service is a kind of activity. Services are distinguished from activities in general because a
service has:

• a simple, well-defined interface, so that it is a self-contained “black box”, and can be used
as a unit from which other services or activities are composed;

• a specified outcome;

• a provider that is responsible for its performance; and

• consumers that use it.

However, many of the properties of the Service class are inherited from its parent Activity class.

The concept of activity described in this ontology is a very broad one – it is that of a system of
actions that are performed by actors in response to events. It is not distinguished from “task” on
the one hand, or “process” on the other. It includes simple activities consisting of single actions,
and complex activities composed of many actions and simpler activities.

22 Draft Technical Standard

This section describes the Activity and Event classes and the responds to property that connects
them, and the is component of, takes part in, and is occurrence of properties that capture
relations between the Activity and Event classes and the Actor, Action, and Change classes
described in Chapter 2.

3.2.2 Example

Joe’s friend Muhammad is an amateur boxer in his spare time. Boxing is an activity in which
Muhammad takes part. (Joe takes part also; he sits in Muhammad’s corner, with his sponge.) It
consists of actions performed in response to events. For example, when the bell rings at the start
of the fight, Muhammad responds by leaving his corner. (Following which, the actions and
events get very physical!)

Boxing is not a service: it does not have a well-defined interface; it does not have a specified
outcome; it does not have a provider; it does not have consumers. There are activities related to
boxing that are services. For example, putting on a boxing match is a service: there is a provider
(the promoter), consumers (the paying customers), a well-defined interface (the customer buys a
ticket and gets to watch), and a specified outcome (the boxer that does best according to the rules
is declared the winner). But the activity of boxing in general is not a service.

3.2.3 The Activity Class
<owl:Class rdf:ID="Activity">
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
 <owl:disjointWith rdf:resource="#Actor"/>
</owl:Class>

The Activity class corresponds to the concept of activity described above.

Activities are distinct from effects, changes, information items, and actors. The Activity class is
disjoint from the Effect, Change, Information Item and Actor classes.

It was stated in Chapter 2 that a service can have effects. Any activity can have effects. If an
effect is an effect of an action, and the action is a component of an Activity, then the effect is
also an effect of the Activity

Joe’s car-wash service, described in Chapter 2, is one example of an activity. Boxing, as
described above, is another example.

An activity represents a particular, described, pattern of behavior, such as “car wash”, not an
instance, such as “the washing of my car yesterday”. Different patterns of behavior can be
different activities or the same activity, at the discretion of whoever is populating the ontology.
For example, “car wash” could include both “with wheel-scrub” and “without wheel-scrub”
behavior patterns, or “car wash with wheel-scrub” and “car wash without wheel-scrub”could be
separate activities – perhaps instances of a Car Wash subclass of Activity.

An activity includes actions and responds to events. The actions are performed by actors, and
these actors take part in the activity. An action has effects (see Chapter 2), and a change can be
one kind of effect. Another kind of effect can be an event (to which this or, more probably,

Service-Oriented Architecture Ontology 23

another activity might respond). One kind of event is the occurrence of a change. The relevant
classes and properties are illustrated in Figure 10. Those that have not been covered already are
described in the following subsections.

Figure 10: Activity

Note that the has component property, defined in section 2.6.5, captures the relation between an
activity and an action of that activity.

Joe’s car-wash activity has a number of component actions. Joe asks the customer for $5. He
washes the car. He tells the customer that the job is finished. Washing the car might, at the
discretion of whoever is populating the ontology, be regarded as a single action or as a collection
of actions such as filling the bucket with water, adding detergent, sponging the car, re-filling the
bucket with clean water, and rinsing the car.

3.2.4 The takes part in and has participant Properties
<owl:ObjectProperty rdf:ID="takesPartIn">
 <rdfs:domain rdf:resource="#Actor"/>
 <rdfs:range rdf:resource="#Activity"/>
 <owl:inverseOf rdf:resource="#hasParticipant"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasParticipant">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#takesPartIn"/>
</owl:ObjectProperty>

Actions are performed by actors. The has participant property and its inverse takes part in
capture the relation between an activity and an actor that performs an action that is a component
of that activity.

24 Draft Technical Standard

Muhammad takes part in the activity of boxing. Joe takes part in that activity, and also in his
car-wash activity.

3.2.5 The Event Class
<owl:Class rdf:ID="Event">
 <owl:disjointWith rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
 <owl:disjointWith rdf:resource="#System"/>
 <owl:disjointWith rdf:resource="#Activity"/>
</owl:Class>

An event is something that happens, to which an activity may respond.

An event is not necessarily associated with any particular activity or activities.

As described in 3.2.7 below, the occurrence of a change may be an event, but the concept of
change is distinct from that of event, and the Event and Change classes are disjoint. Event is
also disjoint from Actor, Information Item, System, and Activity (and therefore from Service).
However, an event can be an effect of an action; the Event and Effect classes are not disjoint.

In the car-wash example, the arrival of a customer who asks Joe to wash his car is an event.
Other events in that example are the customer giving Joe the money, and Joe saying “That’s all
done, now.”

3.2.6 The responds to and is responded to by Properties
<owl:ObjectProperty rdf:ID="respondsTo">
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Activity"/>
 <owl:Class rdf:about="#Actor"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range rdf:resource="#Event"/>
 <owl:inverseOf rdf:resource="#isRespondedToBy"/>
</owl:ObjectProperty>

Service-Oriented Architecture Ontology 25

<owl:ObjectProperty rdf:ID="isRespondedToBy">
 <rdfs:domain rdf:resource="#Event"/>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Activity"/>
 <owl:Class rdf:about="#Actor"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 <owl:inverseOf rdf:resource="#respondsTo"/>
</owl:ObjectProperty>

When an actor taking part in an activity takes action because an event occurs, the actor and the
activity respond to the event. The responds to property and its inverse is responded to by
capture the relation between an activity and the events to which it responds.

When an activity responds to an event, it is a particular actor taking part in the activity that
responds. This is captured by including Actor, as well as Activity, in the domain of responds to
and the range of is responded to by.

More than one activity (or actor) can respond to the same event, and an activity (or actor) can
respond to more than one event.

In the car-wash example, Joe responds to the customer arrival event by asking for $5. This is
another event, to which the customer responds by giving Joe $5. Joe responds to this by
performing the actions necessary to wash the car. He then says “That’s all done, now,” which is
another event to which the customer responds by driving away. The car-wash activity, as well as
the actor Joe, is said to respond to the arrival and payment events.

3.2.7 The is the occurrence of and occurs as Properties
<owl:ObjectProperty rdf:ID="isTheOccurrenceOf">
 <rdfs:domain rdf:resource="#Change"/>
 <rdfs:range rdf:resource="#Event"/>
 <owl:inverseOf rdf:resource="#occursAs"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="occursAs">
 <rdfs:domain rdf:resource="#Event"/>
 <rdfs:range rdf:resource="#Change"/>
 <owl:inverseOf rdf:resource="#isTheOccurrenceOf"/>
</owl:ObjectProperty>

A change to something occurs at a point or over a period of time. There are many activities in
which action is taken when a change occurs. For example, in a process control activity, a process
parameter may be monitored, and corrective action may be taken when it exceeds a limit – that
is, when a change in the parameter value occurs. In this ontology, a change is not an event, but
the occurrence of a change can be an event. This concept is captured by the is the occurrence of
property and its inverse occurs as.

26 Draft Technical Standard

In the car-wash example, Joe stops work at 5 o’clock sharp. The event that prompts him to finish
is the occurrence of a change in the time of day.

3.3 Business Activities

3.3.1 Overview

Service is a business concept that has been adopted as a technical paradigm. But what is a
business service or, more generally, a business activity? What is it that distinguishes such
activities from technical activities, or activities of other kinds?

There is no fundamental characteristic that distinguishes a business activity. An activity that is a
business activity for one person or organization may not be a business activity for others. A
business activity for a technical services provider may be a technical activity for its customers.

Because of this, the ontology does not include a class corresponding to business activity, but it
includes the is a business activity of property corresponding to the relation between an actor
and an activity that is a business activity for that actor.

3.3.2 Example

Joe’s car-wash service is a business activity of Joe. Boxing was a business activity of World
champion Muhammad Ali. However, Joe’s friend Muhammad takes part in boxing, but this is
not a business activity as far as he is concerned, it is a leisure activity.

3.3.3 The is a business activity of and has business activity Properties
<owl:ObjectProperty rdf:ID="isBusinessActivityOf">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#hasBusinessActivity"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasBusinessActivity">
 <rdfs:domain rdf:resource="#Actor"/>
 <rdfs:range rdf:resource="#Activity"/>
 <owl:inverseOf rdf:resource="#isBusinessActivityOf"/>
</owl:ObjectProperty>

The is a business activity of property illustrated in Figure 11, and its inverse has business
activity, capture the relation between an actor and an activity in that the actor provides or takes
part in and that is related to the actor’s business mission.

Service-Oriented Architecture Ontology 27

Figure 11: Business Activity

3.4 Interfaces

3.4.1 Overview

An important characteristic of services is that they have simple, well-defined interfaces. This
makes it easy to interact with them, and enables other activities to use them as components.

This is a principle that applies to the business concept of service, and translates naturally to the
technical service paradigm. As software can support any degree of complexity, SOA puts an
emphasis on interface simplicity, with the insistence that services must be “loosely-coupled”.

This section describes the Interface class, the is interface of property that relates it to activities,
the is event at property that relates it to events, and two properties that relate it to exchanged
information, is input at and is output at.

3.4.2 Example

The interface to Joe’s car-wash service is simple and informal. The customer asks Joe to wash
the car. There may be an exchange of additional information, such as the customer asking
whether this includes scrubbing the wheels, and Joe saying, “That’s $2 extra.” The customer
then gives Joe the money.

With an automated car wash, the interface is typically a little more formal. The customer selects
from a set range of differently-priced options, and purchases a token, which is then inserted into
the car-wash machine.

Some non-technical interfaces can be very formal. When Joe applies to the city for a permit to
trade on the public highway, he has to visit the city offices and fill in some very extensive and
complicated forms.

28 Draft Technical Standard

3.4.3 The Interface Class
<owl:Class rdf:ID="Interface">
 <owl:disjointWith rdf:resource="#Activity"/>
 <owl:disjointWith rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
 <owl:disjointWith rdf:resource="#System"/>
 <owl:disjointWith rdf:resource="#Event"/>
</owl:Class>

An interface is a protocol by which actors can interact with and exchange information with an
activity. This concept is captured by the Interface class of the ontology. An activity may have
any number of interfaces.

This concept is distinct from all those described earlier, and the Interface class is therefore
disjoint with all classes defined earlier.

An interface can be composed of other interfaces. The initiation interface to Joe’s car-wash
service can be considered as being composed of two simpler interfaces: request for service, and
payment.

As illustrated in Figure 12, an interface of an activity enables actors to interact with the activity
by means of events, and to input information to the activity and receive information that is
output by the activity. The classes and properties related to these concepts are described in the
following subsections.

Figure 12: Interface

Service-Oriented Architecture Ontology 29

3.4.4 The is interface of and has interface Properties
<owl:ObjectProperty rdf:ID="isInterfaceOf">
 <rdfs:domain rdf:resource="#Interface"/>
 <rdfs:range rdf:resource="#Activity"/>
 <owl:inverseOf rdf:resource="#hasInterface"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasInterface">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range rdf:resource="#Interface"/>
 <owl:inverseOf rdf:resource="#isInterfaceOf"/>
</owl:ObjectProperty>

The is interface of property and its inverse has interface capture the relation between an
interface and the activity that it enables actors to interact with.

3.4.5 The is event at and includes event Properties
<owl:ObjectProperty rdf:ID="isEventAt">
 <rdfs:domain rdf:resource="#Event"/>
 <rdfs:range rdf:resource="#Interface"/>
 <owl:inverseOf rdf:resource="#includesEvent"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="includesEvent">
 <rdfs:domain rdf:resource="#Interface"/>
 <rdfs:range rdf:resource="#Event"/>
 <owl:inverseOf rdf:resource="#isEventAt"/>
</owl:ObjectProperty>

An interface of an activity has associated with it (but does not consist of) a set of events which
the activity generates or to which it responds. The relation between an interface and such events
is captured by the is event at property and its inverse includes event.

In the car-wash example, the arrival of a customer who asks Joe to wash his car is an event at the
initiation interface, as is the customer giving Joe the money.

3.4.6 The is input at, has input information, is output at, and has output
information Properties
<owl:ObjectProperty rdf:ID="isInputAt">
 <rdfs:domain rdf:resource="#InformationType"/>
 <rdfs:range rdf:resource="#Interface"/>
 <owl:inverseOf rdf:resource="#hasInputInformation"/>
</owl:ObjectProperty>

30 Draft Technical Standard

<owl:ObjectProperty rdf:ID="hasInputInformation">
 <rdfs:domain rdf:resource="#Interface"/>
 <rdfs:range rdf:resource="#InformationType"/>
 <owl:inverseOf rdf:resource="#isInputAt"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isOutputAt">
 <rdfs:domain rdf:resource="#InformationType"/>
 <rdfs:range rdf:resource="#Interface"/>
 <owl:inverseOf rdf:resource="#hasOutputInformation"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasOutputInformation">
 <rdfs:domain rdf:resource="#Interface"/>
 <rdfs:range rdf:resource="#InformationType"/>
 <owl:inverseOf rdf:resource="#isOutputAt"/>
</owl:ObjectProperty>

An interface can enable an actor to give information to or receive information from an activity.
The relation between an interface and the types of information that an actor can give the activity
via that interface is captured by the is input at property and its inverse has input information.
The relation between an interface and the types of information that an actor can receive from the
activity via that interface is captured by the is output at property and its inverse has output
information.

Note that the range of is input at – and of is output at – is Information Type rather than
Information Item. The values of these properties are types of information, not specific
information items.

In the car-wash example, when the customer asks Joe whether wheel scrub is included, and Joe
tells him that it is included for an extra $2, the $2 is price information that is output at the
initiation interface. When the customer says that he would like wheel scrub, this is option
request information that is input at the interface.

3.5 Contracts and Policies

3.5.1 Overview

Contract and policy are two important business concepts that are part of the SOA technical
paradigm. This section describes the constructs of the ontology that capture those concepts.
These are the Contract, Policy and Rule classes, and the applies to, has condition, is contract
for, is party to, has policy, and is policy for properties.

Following the OASIS SOA reference model [OASIS RM], this ontology makes the distinction
that a contract is agreed between two or more parties, while a policy is owned by a single party.

Contracts and policies have conditions. These are rules. A rule can apply to anything. The
corresponding classes and properties are illustrated in Figure 13.

Service-Oriented Architecture Ontology 31

Figure 13: Contract and Policy

In particular, a rule can apply to a service. The cases where a contract or policy has conditions
that apply to a service are of particular interest to this ontology.

3.5.2 Example

When a customer asks Joe to clean his car, and Joe takes his money, there is a contract made
between Joe and the customer. In this case, the contract is unwritten and implicit. In other cases,
a contract may be explicitly recognized as such, and captured in writing. For example, when Joe
bought his house, he and the seller signed a written contract that was drawn up by lawyers.

Joe has a cash up-front policy. He does not give credit. He will not clean a car until the customer
has paid him the $5. This is not something that he agrees with his customers, it is simply a
course of action that he always follows when performing his service.

A contract for the sale of a house can be quite complex. For example, it may stipulate that1:

• The buyer pays 10% of the price to a neutral deposit holder when the contract is signed;

• The buyer pays the remaining 90% to the seller and the stakeholder gives the 10% to the
seller on the agreed sale date provided that the seller then gives the house to the buyer;

• If the buyer does not give the remaining 90% to the seller on the agreed date then the
deposit holder gives the 10% to the seller and the seller does not have to give the house to
the buyer;

• If the seller does not give the house to the buyer on the agreed date then the deposit holder
gives the 10% back to the buyer and the seller pays a penalty charge to the buyer.

1 This is a simplified description of the procedure that is normally followed in England. In other countries, sale contracts
will typically have different conditions.

32 Draft Technical Standard

These are rules that apply to the sale of the house and are conditions of the contract.

Joe’s cash up-front policy has a single condition. This is the rule that the customer pays the
money before Joe washes the car.

3.5.3 The Rule Class
<owl:Class rdf:ID="Rule">
 <owl:disjointWith rdf:resource="#Activity"/>
 <owl:disjointWith rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
 <owl:disjointWith rdf:resource="#System"/>
 <owl:disjointWith rdf:resource="#Event"/>
 <owl:disjointWith rdf:resource="#Interface"/>
</owl:Class>

A rule is a statement describing how something should be. This concept is captured by the Rule
class.

A rule may specify what should be done, for example, “Drive on the right,” or what should not
be done, for example, “No smoking.”

This concept is distinct from all those described earlier, and the Rule class is therefore disjoint
with all classes defined earlier.

In particular, it is disjoint with the Information Item class. A rule states what should be, not
what is. Rules are sometimes broken.

3.5.4 The applies to and is affected by Properties
<owl:ObjectProperty rdf:ID="appliesTo">
 <rdfs:domain rdf:resource="#Rule"/>
 <owl:inverseOf rdf:resource="#isAffectedBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isAffectedBy">
 <rdfs:range rdf:resource="#Rule"/>
 <owl:inverseOf rdf:resource="#appliesTo"/>
</owl:ObjectProperty>

A rule is a statement of how something should be. The applies to property, and its inverse is
affected by, capture the relation between the rule and that something.

A rule can apply to anything. In particular, it can apply to:

• A service; or

• An effect of a service.

Service-Oriented Architecture Ontology 33

Joe’s rule that his customers must give him the money before he cleans their cars applies to his
car-wash service.

The implicit contract between Joe and his customers includes the condition that the car is clean
when Joe has washed it. This is a rule that applies to an effect of Joe’s service.

3.5.5 The has condition and is condition of Properties
<owl:ObjectProperty rdf:ID="hasCondition">
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Contract"/>
 <owl:Class rdf:about="#Policy"/>
 </owl:unionOf>
 </owl:Class>
</rdfs:domain>
<rdfs:range rdf:resource="#Rule"/>

 <owl:inverseOf rdf:resource="#isConditionOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isConditionOf">
 <rdfs:domain rdf:resource="#Rule"/>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Contract"/>
 <owl:Class rdf:about="#Policy"/>
 </owl:unionOf>
 </owl:Class>
</rdfs:range>

 <owl:inverseOf rdf:resource="#hasCondition"/>
</owl:ObjectProperty>

The statements of how things should be according to a contract or policy are the conditions of
that contract or policy. The has condition property, and its inverse is condition of, capture the
relation between a contract or property and a rule that is a condition of it.

The domain of the has condition property, and the range of the is condition of property, is the
union of the Contract and Policy classes. These classes are defined in Sections 3.5.6 and 3.5.9.

“The buyer pays 10% of the price to a neutral deposit holder when the contract is signed” is a
rule that is a condition of a contract for the sale of a house. “The customer pays the money
before I wash the car” is rule that is a condition of Joe’s cash up-front policy, and also of the
implicit contract that he has with his customers.

34 Draft Technical Standard

3.5.6 The Contract Class
<owl:Class rdf:ID="Contract">
 <owl:disjointWith rdf:resource="#Activity"/>
 <owl:disjointWith rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
 <owl:disjointWith rdf:resource="#System"/>
 <owl:disjointWith rdf:resource="#Event"/>
 <owl:disjointWith rdf:resource="#Interface"/>
 <owl:disjointWith rdf:resource="#Rule"/>
</owl:Class>

A contract is an agreement between two or more actors - the parties to the contract. The term is
most commonly used for a written agreement, or one that is enforceable at law, but it can be
applied more widely. The Contract class captures this concept.

This concept is distinct from all those described earlier, and the Contract class is therefore
disjoint with all classes defined earlier.

In the car-wash example, there is an implicit contract between Joe and each customer that Joe
will clean the customer’s car in exchange for $5.

This is an example of a situation of particular interest for this ontology, that where there is a
contract between a service provider and its consumers for the performance of that service. The
relevant classes and properties are illustrated in Figure 14. The is contract for and is party to
properties are described in sections 3.5.7 and 3.5.8.

Figure 14: Contract for a Service

3.5.7 The is contract for and is subject of contract Properties
<owl:ObjectProperty rdf:ID="isContractFor">
<rdfs:domain rdf:resource="#Contract"/>

 <owl:inverseOf rdf:resource="#isSubjectOfContract"/>
</owl:ObjectProperty>

<owl:FunctionalProperty rdf:about="#isContractFor" />

Service-Oriented Architecture Ontology 35

<owl:ObjectProperty rdf:ID="isSubjectOfContract">
 <rdfs:range rdf:resource="#Contract"/>
 <owl:inverseOf rdf:resource="#isContractFor"/>
</owl:ObjectProperty>

A contract is generally an agreement about some particular thing – its subject. This concept is
captured by the is contract for property and its inverse is subject of.

In this ontology, a contract has only one subject. This is captured by is contract for being a
functional property.

When Joe buys his house, the contract between him and the seller is a contract for the sale of the
house.

The particular case of interest for this ontology is that of a contract between the provider and
consumers of a service for the performance of that service. The implicit contract between Joe
and his customers for the car-wash service falls into this category.

3.5.8 The is party to and has party Properties
<owl:ObjectProperty rdf:ID="isPartyTo">
 <rdfs:domain rdf:resource="#Actor"/>
 <rdfs:range rdf:resource="#Contract"/>
 <owl:inverseOf rdf:resource="#hasParty"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasParty">
 <rdfs:domain rdf:resource="#Contract"/>
 <rdfs:range rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#isPartyTo"/>
</owl:ObjectProperty>

The relation between an actor and a contract to which that actor is a party is captured by the is
party to property and its inverse has party.

Each of Joe’s customers is party to the contract for Joe’s car-wash service, and so is Joe himself.
Although there is no written agreement, once Joe has accepted the $5, he is obliged to clean the
car, and the customer can take legal action for breach of contract if he does not do so.

36 Draft Technical Standard

3.5.9 The Policy Class
<owl:Class rdf:ID="Policy">
 <owl:disjointWith rdf:resource="#Activity"/>
 <owl:disjointWith rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
 <owl:disjointWith rdf:resource="#System"/>
 <owl:disjointWith rdf:resource="#Event"/>
 <owl:disjointWith rdf:resource="#Interface"/>
 <owl:disjointWith rdf:resource="#Rule"/>
 <owl:disjointWith rdf:resource="#Contract"/>
</owl:Class>

A policy is a course of action that an actor may intend to follow or may intend that another actor
should follow. This concept is captured by the Policy class.

This concept is distinct from all those described earlier, and the Policy class is therefore disjoint
with all classes defined earlier.

Joe’s cash up-front policy consists of waiting until he has been paid $5 before washing a
customer’s car. This is a course of action that he intends to follow. When he goes to city hall to
collect his street trading permit, he is constrained by the city’s “no smoking” policy: the city
authority intends that Joe, and other visitors to city hall, should follow the course of action of not
smoking while on their premises.

A situation of particular interest for this ontology is that where a service provider has a policy
for the service. The relevant classes and properties are illustrated in Figure 15. The is policy of
and is policy for properties are described in sections 3.5.10 and 3.5.11.

Figure 15: Policy

Service-Oriented Architecture Ontology 37

3.5.10 The has policy and is policy of Properties
<owl:ObjectProperty rdf:ID="hasPolicy">
 <rdfs:domain rdf:resource="#Actor"/>
 <rdfs:range rdf:resource="#Policy"/>
 <owl:inverseOf rdf:resource="#isPolicyOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isPolicyOf">
 <rdfs:domain rdf:resource="#Policy"/>
 <rdfs:range rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#hasPolicy"/>
</owl:ObjectProperty>

<owl:FunctionalProperty rdf:about="#isPolicyOf" />

The has policy property, and its inverse is policy of, capture the relation between an actor and a
policy that the actor intends should be followed.

Joe has policy “cash up-front”, and the city authority has policy “no smoking”.

In this ontology, a policy is the policy of a single actor; if different actors have similar policies,
then they are regarded as distinct policies. (So, if Squaresville and Plainsville both have no-
smoking policies, they are regarded as separate policies – the Squaresville no-smoking policy,
and the Plainsville no-smoking policy.) This is captured by is policy of being a functional
property.

A particular case of interest for this ontology is that where the conditions of a policy apply to a
service or other activity. This is described in Section 3.5.11.

The conditions of a policy can apply to things other than activities. Another case of interest is
that where a policy has conditions that apply to a contract. For example, a company may have an
equal pay policy whose conditions apply to the contracts that it has with its employees.

The implicit contract for Joe’s car-wash service is affected by the rule that is the condition of his
cash up-front policy. If Joe were to offer a written contract for his service, it might include terms
such as “The customer shall pay all money due before washing of the car commences.”

3.5.11 The is policy for and is subject of policy Properties
<owl:ObjectProperty rdf:ID="isPolicyFor">
 <rdfs:domain rdf:resource="#Policy"/>
 <rdfs:range rdf:resource="#Activity"/>
 <owl:inverseOf rdf:resource="#isSubjectOfPolicy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isSubjectOfPolicy">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range rdf:resource="#Policy"/>
 <owl:inverseOf rdf:resource="#isPolicyFor"/>
</owl:ObjectProperty>

38 Draft Technical Standard

A policy that has conditions that apply to a service or other activity implies that the activity is
performed in a particular way. The is policy for property and its inverse is subject of policy
capture the relationship between such a policy and activity.

Joe’s cash up-front policy is a policy for his car-wash service. The city no-smoking policy is a
policy for all activities that take place in city hall.

While a particular case of interest for this ontology is that where the provider of a service has a
policy for the service, a policy for a service is not necessarily owned by the provider of that
service, or by a consumer. For example, government food and hygiene regulations (a policy that
is law) cover restaurant services. In an enterprise, corporate policy may cover services provided
by divisions or departments.

Service-Oriented Architecture Ontology 39

4 Design and Implementation

4.1 Introduction

Service is originally a business concept, and Chapter 3 describes services as business activities.
But the concept of service has been adopted in the world of information technology, resulting in
the software services that are the fundamental components of service-oriented solutions.

This chapter describes concepts related to how services and service-based systems are built, and
defines the corresponding classes and properties of the ontology.

It does this by first describing some general concepts related to design and implementation, then
describing the kinds of actor that take part in services, and finally describing some specific ways
in which the concepts apply to the design and implementation of services in a service-oriented
architecture.

The general concepts build on the basic service concepts and the concepts of services as business
activities that were introduced in previous chapters. They do not assume an information
technology context. They relate to:

• Requirements and solutions;

• Abstraction and Realization;

• Design; and

• Implementation.

The actors that take part in services in a service-oriented architecture include human actors,
technology actors, and organization actors. It is at the point where the concept of technology
actor is described that ideas that specifically relate to information technology and software are
introduced.

The third part of the chapter generally assumes an information technology context, although
some of its concepts are more general. The specific service design and implementation patterns
that are described are:

• Software Services;

• Choreography; and Orchestration;

• Messaging;

• Discovery; and

• Virtualization.

40 Draft Technical Standard

4.2 Requirements and Solutions

4.2.1 Overview

The idea of designing solutions to satisfy requirements is fundamental to the creation of services
to meet the business needs of an enterprise. It is an important part of architecture although, as
will be seen in Chapter 5, architecture is more than just design.

This section describes classes and properties related to requirements and solutions. These are the
Requirement, Solution, and Solution Building Block classes, and the requires, satisfies, and
entails properties. They are illustrated in Figure 16.

Figure 16: Requirements and Solutions

4.2.2 The Requirement Class
<owl:Class rdf:ID="Requirement">
 <owl:disjointWith rdf:resource="#Activity"/>
 <owl:disjointWith rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
 <owl:disjointWith rdf:resource="#System"/>
 <owl:disjointWith rdf:resource="#Event"/>
 <owl:disjointWith rdf:resource="#Interface"/>
 <owl:disjointWith rdf:resource="#Rule"/>
 <owl:disjointWith rdf:resource="#Contract"/>
 <owl:disjointWith rdf:resource="#Policy"/>
</owl:Class>

A requirement is a desire that an actor has for something to have some particular characteristic
or characteristics. This concept is captured by the Requirement class.

Service-Oriented Architecture Ontology 41

A requirement may be simple, or it may be complex, composed of other requirements.

A requirement is different from all the concepts that have been introduced so far, and the
Requirement class is disjoint with the classes that correspond to those concepts. (Note that,
although Requirement is disjoint with System, a requirement can be produced from a
composition that is a system of simpler requirements.)

Joe has a requirement. He is tired of washing cars all day. It makes his arms ache. He wants
something – his way of earning a living – to have some particular characteristic – it should be
less tiring.

4.2.3 The requires and is required by Properties
<owl:ObjectProperty rdf:ID="requires">
 <rdfs:domain rdf:resource="#Actor"/>
 <rdfs:range rdf:resource="#Requirement"/>
 <owl:inverseOf rdf:resource="#isRequiredBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isRequiredBy">
 <rdfs:domain rdf:resource="#Requirement"/>
 <rdfs:range rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#requires"/>
</owl:ObjectProperty>

The requires property, and its inverse is required by, capture the relation between the actor that
has the desire for something to have some particular characteristic or characteristics and the
requirement that is that desire.

Joe requires a way of making a living that involves less physical effort than washing cars by
hand.

4.2.4 The Solution Class
<owl:Class rdf:ID="Solution">
</owl:Class>

A requirement is a desire for something to have particular characteristics. A solution is
something that would give that thing those characteristics. Such a solution satisfies the
requirement

Anything can satisfy a requirement of some kind. The Solution class is not disjoint with any of
the other classes defined in this ontology.

Joe can think of two solutions that would satisfy his requirement for an easier way of making a
living. One is to persuade his nephew Billy to do all the hard work of washing the cars, while he
talks to the customers and takes the money. The other is to buy an automatic car-wash machine.
Either of these solutions would mean he was less tired at the end of the day. They have different
advantages and disadvantages. Persuading Billy would not cost anything, but it would only be a

42 Draft Technical Standard

short-term solution, as his nephew would soon realize that he could do better to set up on his
own. Joe feels that the car-wash machine is the better long-term solution.

4.2.5 The satisfies and is satisfied by Properties
<owl:ObjectProperty rdf:ID="satisfies">
 <rdfs:domain rdf:resource="#Solution"/>
 <rdfs:range rdf:resource="#Requirement"/>
 <owl:inverseOf rdf:resource="#isSatisfiedBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isSatisfiedBy">
 <rdfs:domain rdf:resource="#Requirement"/>
 <rdfs:range rdf:resource="#Solution"/>
 <owl:inverseOf rdf:resource="#satisfies"/>
</owl:ObjectProperty>

The satisfies property, and its inverse is satisfied by, capture the relation between a requirement
and a solution that satisfies that requirement.

An automatic car wash is a solution that satisfies Joe’s requirement for a less tiring way of
making a living.

4.2.6 The entails and is entailed by Properties
<owl:ObjectProperty rdf:ID="entails">
 <rdfs:domain rdf:resource="#Solution"/>
 <rdfs:range rdf:resource="#Change"/>
 <owl:inverseOf rdf:resource="#isEntailedBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isEntailedBy">
 <rdfs:domain rdf:resource="#Change"/>
 <rdfs:range rdf:resource="#Solution"/>
 <owl:inverseOf rdf:resource="#entails"/>
</owl:ObjectProperty>

Putting a solution in place generally means changing something, and often means changing a
number of things: it entails changes to those things. The relation between solutions and changes
that are made to put them in place is captured by the entails property and its inverse is entailed
by.

Joe’s automatic car-wash solution entails a change to his car-wash service, in which a car-wash
machine replaces him as the car washer.

Service-Oriented Architecture Ontology 43

4.2.7 The Solution Building Block Class
<owl:Class rdf:ID="SolutionBuildingBlock">
 <rdfs:subClassOf rdf:resource="#Abstraction" />
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isComponentOf" />
 <owl:someValuesFrom rdf:resource="#Solution" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

A solution building block is an abstraction that is a component of a solution. There are many
cases where a solution that satisfies a requirement or set of requirements is designed as a system.
The components of that system are solution building blocks. Those building blocks, and the
relations between them, are refined as the design proceeds.

This concept is captured by the Solution Building Block class, which is defined as a subclass of
the Abstraction class, with a restriction on the is component of property that ensures that each
solution building block is a component of some solution. (The Abstraction class is defined in
Section 4.3.2.)

Almost anything can be a solution building block, including activities, actors, effects, changes,
information items, compositions, events, interfaces, contracts, and policies. The Solution
Building Block class is not defined as disjoint with any other class of this ontology.

In particular, a solution building block can have component solution building blocks; the
Solution Building Block class is not disjoint with the System class.

A solution building block generally has to satisfy requirements that are derived from
requirements for the overall solution. A solution building block is thus generally also a solution.
The Solution Building Block and Solution classes are not disjoint.

4.3 Abstraction and Realization

4.3.1 Overview

This section describes concepts associated with the implementation of an abstract idea as a real
thing. They are represented by the Abstraction and Realization classes, and the is abstraction
of and is realization of properties. These classes andproperties are illustrated in Figure 17.

44 Draft Technical Standard

Figure 17: Abstraction and Realization

An abstraction is an idea of a class of things. Those things are realizations of the abstraction.
The central idea captured in this ontology is that of something abstract being realized. The
ontology does not divide the world into two categories: real and abstract. It describes
abstractions that can be realized, and things that are realizations of those abstractions. But it also
allows for the possibility that there are things that are not abstractions and that are not
realizations of abstractions.

The ontology does not allow for abstractions of abstractions; such things may be possible, but
they are not of sufficient practical use to be included.

The instances of many of the other concepts of this ontology can be abstractions or realizations.
In particular, an actor can be an abstraction. The kind of actor that is a role or class used in
modeling is an abstraction. Such an actor can be realized by an actor that is a real person,
organization, or piece of technology.

An activity, and in particular a service, can also be an abstraction or a realization. Where the
actors that take part in a service are abstractions, the service is also an abstraction. A service in
which realizations of the abstract actors take part would be a realization of the abstract service.

4.3.2 The Abstraction Class
<owl:Class rdf:ID="Abstraction">
 <owl:disjointWith rdf:resource="#Requirement"/>
</owl:Class>

The concept of an abstraction is captured by the Abstraction OWL class. Note that the instances
of Abstraction are ideas, not the classes that those ideas represent: making the instances of
Abstraction classes would require OWL-FULL

Although requirement is an abstract concept, a requirement is not an abstraction of anything, and
the Requirement and Abstraction classes are disjoint.

Instances of any of the other classes introduced so far can be abstractions. The Abstraction class
is not defined as being disjoint with any of these classes.

Service-Oriented Architecture Ontology 45

When Joe thinks of his car-wash service in the abstract, the service itself, the car washer and the
customer are all abstractions.

4.3.3 The Realization Class
<owl:Class rdf:ID="Realization">
 <owl:disjointWith rdf:resource="#Abstraction"/>
 <owl:disjointWith rdf:resource="#Requirement"/>
</owl:Class>

The Realization class captures the concept of something that is a realization of an abstraction.

This class is disjoint with Abstraction (the ontology does not include the idea of an abstraction
of an abstraction).

It is also disjoint with the Requirement class: just as a requirement is not an abstraction of
anything, neither is it a realization of anything.

Instances of any of the other classes introduced so far can be realizations, however, and the
Realization class is not defined as being disjoint with any of these classes.

When Joe thinks of his actual car-wash service, the service, Joe himself, and the people who are
his customers are all realizations.

4.3.4 The is abstraction of and is realization of Properties
<owl:ObjectProperty rdf:ID="isAbstractionOf">
 <rdfs:domain rdf:resource="#Abstraction"/>
 <rdfs:range rdf:resource="#Realization"/>
 <owl:inverseOf rdf:resource="#isRealizationOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isRealizationOf">
 <rdfs:domain rdf:resource="#Realization"/>
 <rdfs:range rdf:resource="#Abstraction"/>
 <owl:inverseOf rdf:resource="#isAbstractionOf"/>
</owl:ObjectProperty>

The is realization of property, and its inverse is abstraction of, capture the relation between a
real thing and an idea that is an abstraction of it.

Joe is a realization of the car-washer abstraction, and car washer is an abstraction of Joe. The
car-wash machine that Joe wishes to buy is also a realization of the car-washer abstraction, and
car washer is also an abstraction of this machine.

46 Draft Technical Standard

4.4 Design

4.4.1 Overview

Design is the process of creating an abstract solution, and such a solution is called “a design”.
These concepts are captured by the Design and Design Activity classes that are described in this
section.

4.4.2 Example

Joe’s uncle dies and leaves him a legacy, which will enable him to realize his dream of owning
an automatic car wash. But Joe does not go out and buy the first vacant lot he sees and order the
first car-wash machine in the catalog. If he did this, he might find that the machine would not fit
on the lot, or that he could not give it water and power supplies, or that there were many other
kinds of problem. Joe sets out to design his car-wash system.

“Automatic car wash” may be a solution that satisfies his initial statement of requirements but,
as he thinks about it, he finds that he has further, more detailed, requirements for that solution.

Joe decides that his solution must have a number of components, including the car-wash
machine itself, and the site to put it on. These components are his solution building blocks. His
requirements for the solution imply requirements for each of the building blocks.

Joe starts by writing down descriptions of these requirements. Then he thinks about them and
refines them. His first description of the requirement for a site for his car wash might simply be
“place to put the car-wash machine”. He might add, on further thought, “must have easy street
access”, “must have electricity and water supplies available”, “must be at least 50 feet square”,
and so on. Similarly, he might add to the description of the requirement for the car-wash
machine clauses about the features that he wants; “must do wheel-scrub”, and so on. He might
also draw site plans, showing such things as the entry and exit points, the on-site roads, the car-
wash machine, and a kiosk for an operator.

At the end of the design process, he has a complete abstract car-wash solution that he is ready to
implement.

4.4.3 The Design Class
<owl:Class rdf:ID="Design">
 <rdfs:subClassOf rdf:resource="#Abstraction"/>
 <rdfs:subClassOf rdf:resource="#Solution"/>
</owl:Class>

A design is an abstraction that meets a requirement – which means that it is an abstraction that is
a solution. This concept is captured by the Design class, which is defined as a subclass of the
Abstraction and Solution classes. (It is not defined as the intersection of those classes, allowing
for the possibility of a solution that is an abstraction but is not a design.)

The corresponding classes and properties are illustrated in Figure 18.

Service-Oriented Architecture Ontology 47

Figure 18: Design

Joe’s abstract car-wash solution is a design.

4.4.4 The Design Activity Class
<owl:Class rdf:ID="DesignActivity">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Activity" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasEffect" />
 <owl:someValuesFrom>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isChangeTo" />
 <owl:someValuesFrom rdf:resource="#Design" />
 </owl:Restriction>
 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

A design activity is an activity that creates or modifies a design. This concept is captured by the
Design Activity class, which is defined as the intersection of the Activity class with the class of
things that have effects that are changes to designs. The relevant classes and properties are
illustrated in Figure 19.

48 Draft Technical Standard

Figure 19: Design Activity

The process that Joe goes through to create his abstract car-wash solution is a design activity.
The creation of the design is an effect of that activity, and creation is a kind of change.

4.5 Implementation

4.5.1 Overview

The process of realizing an abstract solution – a design – is referred to as “implementation”, and
the result of that process is called “an implementation”. These concepts are captured by the
Implementation Activity and Implementation classes, described in this section and illustrated
in Figure 20.

Service-Oriented Architecture Ontology 49

Figure 20: Implementation

4.5.2 Example

Once Joe is satisfied with his design, he purchases the site and the car-wash machine, and has
the machine installed on the site in accordance with the plans. The site and the machine are
realizations of his site and car-wash machine solution building blocks, and the complete installed
system is a realization of his overall automatic car-wash system design.

4.5.3 The Implementation Class
<owl:Class rdf:ID="Implementation">
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isRealizationOf" />
 <owl:someValuesFrom rdf:resource="#Design" />
 </owl:Restriction>
 </owl:equivalentClass>
</owl:Class>

An implementation is a realization of a design. This concept is captured by the Implementation
class, which is defined as the class of things that are realizations of designs.

The automatic car-wash system that Joe creates is an implementation. It is a realization of his
automatic car-wash design.

50 Draft Technical Standard

4.5.4 The Implementation Activity Class
<owl:Class rdf:ID="ImplementationActivity">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Activity" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasEffect" />
 <owl:someValuesFrom>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isChangeTo" />
 <owl:someValuesFrom rdf:resource="#Implementation" />
 </owl:Restriction>
 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

The Implementation Activity class captures the concept of implementation as a process that
realizes a design. It is defined as the intersection of the Activity class with the class of things
that have effects that are changes to implementations.

The building and installation of Joe’s new automatic car-wash system is an implementation
activity.

4.6 Kinds of Actor

4.6.1 Overview

The Actor class was introduced in section 2.3. In that section, it was stated that an actor can be a
person or an organization or a piece of technology. This section describes classes for those kinds
of actor. These are the Human Actor, Organization Actor, and Technology Actor subclasses
of the Actor class. This section also describes Software Actor, an important subclass of
Technology Actor, and Enterprise, an important subclass of Organization Actor. These
classes are illustrated in Figure 21.

Service-Oriented Architecture Ontology 51

Figure 21: Kinds of Actor

The human, technology and organization kinds of actor are mutually exclusive. An actor can not
be both a human and a piece of technology, both a human and an organization, or both an
organization and a piece of technology. But the classification is not exhaustive. There could be
other kinds of actor, for example animals, for which the ontology does not have classes.

Section 2.3 also stated that the term “actor” can be used to describe a real individual or a role –
an abstraction of an individual. This distinction is explored in more depth in section 4.3.

4.6.2 The Human Actor Class
<owl:Class rdf:ID="HumanActor">
 <rdfs:subClassOf rdf:resource="#Actor"/>
</owl:Class>

A human actor is an actor that is a human being. The Human Actor class is defined as a
subclass of the Actor class.

Joe is a human actor, for example.

4.6.3 The Technology Actor Class
<owl:Class rdf:ID="TechnologyActor">
 <rdfs:subClassOf rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#HumanActor"/>
</owl:Class>

A technology actor is an actor that is a machine or other piece of technology. It could be
hardware, software, or both. The Technology Actor class is defined as a subclass of the Actor
class.

52 Draft Technical Standard

An actor can not be both a human being and a piece of technology. The Technology Actor and
Human Actor classes are therefore disjoint.

Joe’s car-wash machine is a technology actor.

A technology actor can be composed of other technology actors. (By contrast, a human actor
would not normally be regarded as being composed of other actors, of any kind.) For example, a
car-wash machine might be composed of brushes, motors, etc, each of which could be regarded
as being an actor in its own right.

4.6.4 The Software Actor Class
<owl:Class rdf:ID="SoftwareActor">
 <rdfs:subClassOf rdf:resource="#TechnologyActor"/>
</owl:Class>

A software actor is an executing software program. This is a particular kind of technology actor.
The Software Actor class is defined, as a subclass of Technology Actor, to capture this
concept.

Most car-wash machines are controlled by software. A running car-wash machine control
program would be a Software Actor.

4.6.5 The Organization Actor Class
<owl:Class rdf:ID="OrganizationActor">
 <rdfs:subClassOf rdf:resource="#Actor"/>
 <rdfs:subClassOf rdf:resource="#System"/>
 <owl:disjointWith rdf:resource="#HumanActor"/>
 <owl:disjointWith rdf:resource="#TechnologyActor"/>
</owl:Class>

An organization actor is a system whose components can be people, technology items, and other
things, and that is regarded as a single actor. This concept is captured by the Organization
Actor class, which is defined as a subclass of Actor, and also of System.

An organization is not actually a person or a piece of technology. The Organization Actor,
Technology Actor, and Human Actor classes are disjoint.

The city authority that issues Joe’s street trading permit is an organization actor. It is a complex
organization that includes computer systems, clerks, elected representatives, committees, and a
mayor. But it can be regarded as a single actor. (For some legal purposes, it even counts as a
kind of person, although the ontology does not include this idea.)

4.6.6 The Enterprise Class
<owl:Class rdf:ID="Enterprise">
 <rdfs:subClassOf rdf:resource="#OrganizationActor"/>
</owl:Class>

Service-Oriented Architecture Ontology 53

The bodies that have service-oriented architectures are typically enterprises. An enterprise is a
definable collection of human and asset resources that provide products or services for use or
consumption by outside entities. Enterprises include commercial, industrial and government
organizations. The Enterprise class is defined, as a subclass of Organization Actor, to capture
this concept.

The city authority that issues Joe’s permit is an enterprise – it performs local government
services for its citizens.

4.7 Software Services

4.7.1 Overview

Software services are the most important solution building blocks in a service-oriented software
architecture. They are represented in the ontology by instances of the Software Service class.

4.7.2 The Software Service Class
<owl:Class rdf:ID="SoftwareService">
 <rdfs:subClassOf rdf:resource="#Service"/>
<rdfs:subClassOf>
 <owl:Restriction>

 <owl:onProperty rdf:resource="#hasParticipant" />
 <owl:someValuesFrom rdf:resource="#SoftwareActor" />
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasParticipant" />
 <owl:allValuesFrom rdf:resource="#SoftwareActor" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

A software service is a service that is performed by software programs. This concept is captured
by the Software Service class, which is defined as the class of services in which

• At least one software actor takes part, and

• All the actors that take part are software actors.

Many software programs perform services. In software architectures that are not classed as
service-oriented, the fact that a program performs a service is not stressed, the provider of the
service is often not identified, and the contract between the provider and the consumers of the
service is usually implicit. In a service-oriented architecture, software services and their
providers are clearly identified, and the services and the contracts for providing them are often
formally described.

54 Draft Technical Standard

In addition, a service-oriented software architecture often incorporates some or all of the
concepts that are introduced in the following subsections. These concepts relate to activities and
services in general, and their application to software services is an important facet of SOA.

4.8 Service Orchestration and Choreography

4.8.1 Overview

Loosely-coupled services can easily be combined in different ways to do different things. Such a
combination constitutes a composition of the constituent services. The activity produced by this
composition is often itself a service.

In the context of a service-oriented architecture, solutions often consist of compositions of
services: that is, of orchestrations and choreographies.

This section describes those two styles of service composition. Both styles define subclasses of
the Composition class, as illustrated in Figure 22.

Figure 22: Orchestration and Choreography

Both of these subclasses consist of compositions of activities that produce other activities. The
difference between these two styles is that:

• In an orchestration, there is one particular component activity of the composition that
oversees and directs the other component activities; and

• In a choreography, the component activities of the composition are autonomous but
have a defined pattern of behavior with respect to each other.

The Orchestration and Choreography subclasses of the Composition class, and the has
direction activity property that is associated with the Orchestration class, are defined in the
following subsections.

Service-Oriented Architecture Ontology 55

4.8.2 The Orchestration Class
< owl:Class rdf:ID="Orchestration">
 <rdfs:subClassOf rdf:resource="#Composition"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasComponent" />
 <owl:allValuesFrom rdf:resource="#Activity" />
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#produces" />
 <owl:allValuesFrom rdf:resource="#Activity" />
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasDirectionActivity" />
 <owl:cardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class >

An orchestration is a composition of activities that includes a direction activity that oversees and
directs the others. This concept is captured by the Orchestration class, which is defined as a
subclass of the Composition class, with a restriction on the has component property that
ensures that all the components of an orchestration are activities, a restriction on the produces
property that ensures that the thing produced by the composition is an activity, and a restriction
on the has direction activity property that ensures that each orchestration includes a direction
activity. (The has direction activity property is defined in Section 4.8.3.)

An orchestration has one and only one direction activity. The cardinality constraint on has
direction activity ensures that this is the case.

Muhammad’s car-valet service, described in Section 2.6.2, is produced by an orchestration.
Muhammad performs its direction activity, and his friends Joe, Masha and Juan perform the
other component services of the composition: car washing, vacuuming, and shampooing.

Note that this list of component services does not include the messaging service performed by
Lin. A common design technique is to identify a set of components as being “infrastructure”.
These infrastructure components can be assumed to be used by solutions, without being included
in them. Lin’s messaging service is here assumed to be part of the infrastructure, and is not
included in the orchestration solution. What constitutes “infrastructure” is usually an
architectural decision. The relevant concepts are described in Section 5.2.6.

In a service-oriented software solution, the component services of an orchestration are software
services performed by software programs. For example, a service-oriented car-wash software
solution might be composed of the following software services: customer welcome; car-wash

56 Draft Technical Standard

program selection; payment; car-wash execution; and a control service that schedules the other
four.

4.8.3 The has direction activity and is direction activity of Properties
<owl:ObjectProperty rdf:ID="hasDirectionActivity">
 <rdfs:subPropertyOf rdf:resource="#hasComponent"/>
 <rdfs:domain rdf:resource="#Orchestration"/>
 <rdfs:range rdf:resource="#Activity"/>
 <owl:inverseOf rdf:resource="#isDirectionActivityOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isDirectionActivityOf">
 <rdfs:subPropertyOf rdf:resource="#isComponentOf"/>
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range rdf:resource="#Orchestration"/>
 <rdfs:domain rdf:resource="#Orchestration"/>
 <rdfs:range rdf:resource="#Activity"/>
 <owl:inverseOf rdf:resource="#hasDirectionActivity"/>
</owl:ObjectProperty>

The has direction activity property, and its inverse is direction activity of, capture the relation
between an orchestration and its component activity that oversees and directs its other
component activities.

The has direction activity property is defined as a subproperty of the has component property,
and its inverse is direction activity of is defined as a subproperty of is component of, because
the direction activity of an orchestration is one of its component activities.

Muhammad’s car-valet service orchestration is directed by his direction activity. The service-
oriented car-wash software orchestration is directed by its control service.

Service-Oriented Architecture Ontology 57

4.8.4 The Choreography Class
< owl:Class rdf:ID="Choreography">
 <rdfs:subClassOf rdf:resource="#Composition"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasComponent" />
 <owl:allValuesFrom rdf:resource="#Activity" />
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#produces" />
 <owl:allValuesFrom rdf:resource="#Activity" />
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasDirectionActivity" />
 <owl:cardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >0</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class >

A choreography is a set of autonomous activities that have a defined pattern of behavior with
respect to each other. This concept is captured by the Choreography class, which is defined as a
subclass of the Composition class, with a restriction on the has component property that
ensures that all the components of a choreography are activities, a restriction on the produces
property that ensures that the thing produced by the composition is an activity, and a restriction
on the has direction activity property that ensures that an orchestration does not have a
direction activity. (This last restriction implies that a choreography can not also be an
orchestration.)

There is no single activity that directs the other activities in a choreography. A choreography
distributes the control and relies on the ability of its component activities to understand and
respond to events.

Muhammad’s car-valet business expands. He buys premises and engages staff, training them as
washers, vacuumers, and shampooers. He no longer directs operations. Now, when a car comes
in to be valeted, the first available washer, the first available vacuumer, and the first available
shampooer go to work on it. His car-valet service is now produced by a choreography of
services, rather than an orchestration.

It would be possible to design a car-wash solution without a control program. The customer
welcome service might generate a customer welcomed event; the car-wash program selection
service could respond to this and generate a program selected event; the payment service could
respond to this and generate a payment made event; and the car-wash execution service might
respond to this event and execute the car wash. This solution would be a choreography.

58 Draft Technical Standard

4.9 Messaging

4.9.1 Overview

Loosely-coupled services can interact conveniently by exchanging messages, rather than by
invoking each other directly. This approach has a number of advantages, and is often used in
service-oriented architecture.

Web services often exchange messages using the Simple Object Access Protocol and the
Hypertext Transfer Protocol . This is a prime example of the messaging approach.

Another example is the use of an Enterprise Service Bus (ESB) to carry messages between
services. This enables centralized monitoring, control and transformation of the information
passing between the services, and can be a basis for solutions that satisfy requirements for
semantic interoperability, management, and security. In this case, the ESB is a technology actor.
It performs a messaging service, whose consumers are the actors taking part in the services that
exchange the messages.

The concept of interface is described in Section 3.4. A messaging service can be a way by which
interfaces are implemented within a system. The relevant classes and properties are illustrated in
Figure 23.

Figure 23: Messaging Interface

An activity can have an interface, and particular information types can be input at and output at
that interface. Messages composed of those information items are information items that have
message type information types. They are input at and output at a messaging interface, which is
also an interface of the activity, distinct from the first interface. The messaging interface is an
interface of the activity, and is also an interface of a messaging service, which conveys the
messages.

Service-Oriented Architecture Ontology 59

4.9.2 Example

In Muhammad’s car valet service, described in Section 2.6.2, Lin performs a messaging service.
She takes messages from Muhammad to Joe, Masha, and Juan. Joe, Masha, Juan, and
Muhammad are the consumers of this service.

For messaging between software services, there are a number of Enterprise Service Bus (ESB)
products that perform messaging services and can be bought “off-the-shelf”.

4.9.3 The Message Class
<owl:Class rdf:ID="Message">
 <rdfs:subClassOf rdf:resource="#InformationItem"/>
</owl:Class>

A message is an information item that is sent by an actor to one or more other actors (the
recipients of the message). In addition to information to be processed by the recipients (the
message body), a message may include other information, for example to identify the recipients
or the sender, or to describe characteristics of the message such as its priority.

This concept is captured by the Message class, which is defined as a subclass of the
Information Item class.

In the case of Muhammad’s car-valet service, the messages exchanged are verbal and informal.
For example, Muhammad asks Lin to tell Joe that a customer has brought in a car that needs
washing. In the case of software services, the software actors that take part in the services
exchange messages that have formal definitions.

4.9.4 The Message Type Class
<owl:Class rdf:ID="MessageType">
 <rdfs:subClassOf rdf:resource="#InformationType"/>
</owl:Class>

<owl:Class rdf:about="#Message">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasType"/>
 <owl:someValuesFrom rdf:resource="#MessageType" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

A message type identifies a particular class of messages. This concept is captured by the
Message Type class, which is a subclass of the Information Type class.

The restriction on the Message class ensures that each message has an information type that is
an instance of the Message Type class.

60 Draft Technical Standard

An application of the ontology might define only a single instance of the Message Type class
(for example, message), or it might define multiple instances (for example, business message,
personal message, and infrastructure-generated message).

4.9.5 The Messaging Service Class
<owl:Class rdf:ID="MessagingService">
 <rdfs:subClassOf rdf:resource="#Service"/>
</owl:Class>

A messaging service is a service that carries messages between actors. This concept is captured
by the Messaging Service subclass of the Service class.

Lin provides a messaging service that is consumed by Muhammad and his friends when
Muhammad directs his car-valet service.

4.9.6 The Messaging Interface Class
<owl:Class rdf:ID="MessagingInterface">
 <rdfs:subClassOf rdf:resource="#Interface"/>
 <rdfs:subClassOf>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasInputInformation"/>
 <owl:someValuesFrom rdf:resource="#MessageType" />
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasOutputInformation"/>
 <owl:someValuesFrom rdf:resource="#MessageType" />
 </owl:Restriction>
 </owl:unionOf>
 </owl:Class>
 </rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:about="#MessagingService">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasInterface"/>
 <owl:someValuesFrom rdf:resource="#MessagingInterface" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

A messaging interface is an interface by which messages are passed to or received from a
messaging service. This concept is captured by the Messaging Interface class, which is defined
to be a subclass of the class of interfaces at which messages are input or output.

The restriction on the Messaging Service class ensures that every messaging service has at least
one messaging interface.

Service-Oriented Architecture Ontology 61

The messaging interface to Lin’s messaging service is informal; Muhammad simply asks him to
take the messages to Joe and his other friends. Where software actors exchange messages using a
messaging service performed by a service bus, the messaging interfaces are formally defined in
the relevant software programming languages.

4.10 Discovery

4.10.1 Overview

In the world of business, services are advertised by their providers in many ways, and it is by
this means that consumers learn of the existence of services and are able to make choices
between competing services. The concept has been taken into the technical paradigm of service
orientation, leading to the definition of technical standards for service descriptions and service
discovery.

This section describes the ontology constructs corresponding to the business concepts that are
related to service advertisement, and that apply also to service discovery in SOA. These are the
classes Registry, Registry Entry, Visibility, and Registry Service, and the properties is
contained in, is registered in, is in scope of, and has visibility. They are illustrated in Figure
24 (except for the Registry Service class, which is described in Section 4.10.9).

Figure 24: Registries and Visibility

Services are described by registry entries, which are contained in registries. Registries are
regarded as information items that are composed of these entries. A registry entry that describes
a service has a particular visibility. This determines which potential consumers can find out
about the service through the registry. These actors are in the scope of that visibility.

Comment [CJH1]: Figure
replaced to correct a typo: is
contained in arrow wrong way up.

62 Draft Technical Standard

4.10.2 The Registry Class
<owl:Class rdf:ID="Registry">
 <rdfs:subClassOf rdf:resource="#InformationItem"/>
</owl:Class>

A registry is an organized set of descriptions of services that are visible to potential consumers.

A registry is a collection of information. Registry is therefore defined as a subclass of
Information Item.

Service registry is a technical concept of SOA. A service registry is a set of descriptions of
services in a machine-readable form, for example, written in the Web Services Description
Language (WSDL). But the concept of a registry for businesses and their activities, including
services, is a general business concept.

A “Yellow Pages” telephone directory is an example of such a registry. Joe’s friend
Muhammad’s car valet service has an entry in his local “Yellow Pages”. There are many other
common examples of registries, including business directories, lists of members published by
trade associations, and so on.

There are a number of commercially-available products that are used to manage service
registries for software services.

4.10.3 The Registry Entry Class
<owl:Class rdf:ID="RegistryEntry">
 <rdfs:subClassOf rdf:resource="#Description"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isContainedIn"/>
 <owl:cardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

A registry entry is a description of a service that is contained in a registry. This concept is
captured by the Registry Entry class. This class is defined as a subclass of Description, with a
restriction on the is contained in property that ensures that each registry entry is contained in
exactly one registry

It is quite common for a policy for a service to require that its registry entries should take a
particular form, or have a particular visibility. A registry entry can thus be affected by rules that
are the conditions of a policy.

The Yellow Pages description of Muhammad’s car-valet service is an example of a registry
entry. This is an informal textual description. The descriptions of software services in a software
service registry are examples also. These are generally formal descriptions; for example, they
may be expressed in the Web Services Description Language [WSDL].

Service-Oriented Architecture Ontology 63

4.10.4 The contains and is contained in Properties
<owl:ObjectProperty rdf:ID="contains">
 <rdfs:domain rdf:resource="#Registry"/>
 <rdfs:range rdf:resource="#RegistryEntry"/>
 <owl:inverseOf rdf:resource="#isContainedIn"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isContainedIn">
 <rdfs:domain rdf:resource="#RegistryEntry"/>
 <rdfs:range rdf:resource="#Registry"/>
 <owl:inverseOf rdf:resource="#contains"/>
</owl:ObjectProperty>

The contains property, and its inverse is contained in, capture the relation between a registry
and the descriptions that are included in it.

Registries are regarded as information items that are composed of registry entries. A registry
entry is contained in a registry if and only if it is a component of the composition of information
items that produces the registry. (This fact is not captured by the OWL definitions.)

Muhammad’s local “Yellow Pages” contains the description of his car-valet service. Software
service registries contain formal descriptions of software services.

4.10.5 The registers and is registered in Properties
<owl:ObjectProperty rdf:ID="registers">
 <rdfs:domain rdf:resource="#Registry"/>
 <rdfs:range rdf:resource="#Service"/>
 <owl:inverseOf rdf:resource="#isRegisteredIn"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isRegisteredIn">
 <rdfs:domain rdf:resource="#Service"/>
 <rdfs:range rdf:resource="#Registry"/>
 <owl:inverseOf rdf:resource="#register"/>
</owl:ObjectProperty>

The registers property, and its inverse is registered in, capture the relation between a registry
and the services whose descriptions it contains.

Muhammad’s car-valet service is registered in the local “Yellow Pages”. Software services are
registered in software service registries.

4.10.6 The Visibility Class
<owl:Class rdf:ID="Visibility">
 <rdfs:subClassOf rdf:resource="#InformationType"/>
</owl:Class>

64 Draft Technical Standard

An instance of the Visibility class defines a set of actors that can see (or read) an information
item. One such instance might be public visibility, defining the set of all actors. Another might
be top secret defining, in the context of a particular organization, a particular, small set of
individuals.

The visibility of an information item is information about that item. It is meta-information.
Visibility is therefore defined as a subclass of Information Type.

The ontology does not define any specific instances of the class Visibility. Public and top secret
are examples of instances of this class that users of the ontology might define. How they define
such instances is a matter for them, the ontology imposes no conditions on such definitions.

Anyone can walk down the street and see Joe’s placard. But only local telephone service
subscribers, who receive copies of the Yellow Pages, are likely to see the entry for Muhammad’s
car valet service. It would be reasonable to define public and local subscribers instances of the
Visibility class, as appropriate visibilities for these two service descriptions.

In the case of software services, a solution often involves the definition of specific instances of
the Visibility class. Public, subscribers, managers, and system administrators are typical
examples.

4.10.7 The is in scope of and has in scope Properties
<owl:ObjectProperty rdf:ID="isInScopeOf">
 <rdfs:domain rdf:resource="#Actor"/>
 <rdfs:range rdf:resource="#Visibility"/>
 <owl:inverseOf rdf:resource="#hasInScope"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasInScope">
 <rdfs:domain rdf:resource="#Visibility"/>
 <rdfs:range rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#isInScopeOf"/>
</owl:ObjectProperty>

The is in scope of property, and its inverse has in scope, capture the relation between a member
of the set of actors defined by a visibility and that visibility.

With typical definitions, all actors would be in scope of public visibility, and those actors that
are subscribers to the local telephone service would be in scope of local subscribers visibility.

If public, subscribers, managers, and system administrators are visibilities defined for a
particular software services solution, the corresponding classes of actors would typically be all
system users, customers that have paid to use certain services, management staff of the
enterprise providing the services, and system administrator staff of that enterprise.

Service-Oriented Architecture Ontology 65

4.10.8 The has visibility and is visibility of Properties
<owl:ObjectProperty rdf:ID="hasVisibility">
 <rdfs:subPropertyOf rdf:resource="#hasType"/>
 <rdfs:domain rdf:resource="#RegistryEntry"/>
 <rdfs:range rdf:resource="#Visibility"/>
 <owl:inverseOf rdf:resource="#isVisibilityOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isVisibilityOf">
 <rdfs:subPropertyOf rdf:resource="#isTypeOf"/>
 <rdfs:domain rdf:resource="#Visibility"/>
 <rdfs:range rdf:resource="#RegistryEntry"/>
 <owl:inverseOf rdf:resource="#hasVisibility"/>
</owl:ObjectProperty>

The has visibility property and its inverse is visibility of capture the relation between a registry
entry and a visibility defining a set of actors that can see it.

Has visibility is a sub-property of has type, and is visibility of is a sub-property of is type of.

With the visibility definitions suggested in section 4.10.6, Muhammad’s Yellow Pages entry has
visibility local subscribers.

A company that charges for the provision of software services often arranges matters so that the
descriptions of those services have visibility subscribers. Descriptions of system configuration
services often have visibility system administrator.

Note that visibility of description is distinct from accessibility of service. It may be possible for
an actor to see a description of a service but not to consume that service, and it may be possible
for an actor to consume a service without being in then scope of visibility of a description of it.
The reasons for giving a service description a particular visibility are often linked to those for
restricting access to the service, but the concepts should not be confused.

4.10.9 The Registry Service Class
<owl:Class rdf:ID="RegistryService">
 <rdfs:subClassOf rdf:resource="#Service"/>
</owl:Class>

A registry service is a service that maintains a registry, storing descriptions of services and
making them available to potential consumers. This concept is captured by the Registry Service
class.

The term “registry” is often used in common speech to mean an actor that performs a registry
service. In this ontology, the term is not used in this sense; it is used only to mean the collection
of information maintained by a registry service.

Commercial “registry” products are technology actors that perform registry services.

66 Draft Technical Standard

4.11 Virtualization

4.11.1 Overview

A service has a well-defined interface, and its function and performance are assured by contract,
but how it is implemented is transparent to the consumer. This means that the service provider
can employ different resources on different occasions when the service is used. This can enable
the service to be provided consistently when resources are not consistently available, or when
there is variable demand for the service.

This technique is commonly employed in business operations. For example, “24/7” support
capability can be provided by call centers in different time zones, each of which operates for 8
hours of the 24. The caller is switched to whichever call center is working at the time of the call.
In a further application of the principle of virtualization, the call can be taken by any of the
support personnel in that center, and will be routed to the first one to become free.

The technique is also used in service-oriented software solutions. When used at the infrastructure
level, it can provide a form of grid computing.

The Virtual Actor and Virtualized Service classes that are described in the following
subsections capture two of the essential concepts of virtualization as used in service-oriented
software solutions.

4.11.2 The Virtual Actor Class
<owl:Class rdf:ID="VirtualActor">
 <rdfs:subClassOf rdf:resource="#Actor"/>
 <rdfs:subClassOf rdf:resource="#System"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasComponent"/>
 <owl:allValuesFrom rdf:resource="#Actor"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasComponent"/>
 <owl:allValuesFrom rdf:resource="#Realization"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

A virtual actor is an abstract actor that can be realized by multiple real actors. This concept is
captured by the Virtual Actor class, which is a subclass of the Actor class and also of the
Abstraction class.

The realization of a virtual actor is a system of real actors that all perform the same function.
This is captured by the first restriction on the has component property.

Service-Oriented Architecture Ontology 67

Each of the individual real actors is also a realization of the virtual actor. The second restriction
captures the idea that they are realizations, but the idea that they are realizations of the original
virtual actor can not readily be captured in OWL.

Juan tells Muhammad that he is taking a part-time job with a carpet-cleaning company, and will
only be available to do shampooing in Muhammad’s car-valet service on Tuesdays and
Thursdays. Muhammad has another friend, Samir, who agrees to take Juan’s place on the other
days of the week. Muhammad then has a “shampooer” virtual actor. The combination of Samir
and Juan is a realization of this actor. Samir and Juan are also realizations of it individually.

In Joe’s expanding automatic car-wash operation, Joe decides to install multiple automatic car-
wash machines on the most popular sites. The customer pays for the car-wash, then uses the first
machine to become free. There is a car-wash machine virtual actor, which is realized by a set of
actual car-wash machines, each of which is individually a realization of the virtual car-wash
machine.

4.11.3 The Virtualized Service Class
<owl:Class rdf:ID="VirtualizedService">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Service" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasParticipant" />
 <owl:someValuesFrom rdf:resource="#VirtualActor" />
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

A virtualized service is a service in which a virtual actor takes part. This concept is captured by
the Virtualized Service class, which is defined as the intersection of the Service class with the
class of activities that have virtual actors as participants.

The ontology does not distinguish between a fully virtualized service, in which all the
participants are virtual, and a partially virtualized service, in which only some of them are.

Muhammad’s car-valet service, and Joe’s car-wash service, as described in Section 4.11.1, are
both (partially) virtualized services.

68 Draft Technical Standard

5 Architecture and Governance

5.1 Introduction

This chapter builds on the general concepts relating to design that were described in the first part
of Chapter 4 to introduce concepts relating to architecture and governance, and finally to
describe the concept of a service-oriented architecture, which may use the design pattern
concepts described in the last part of Chapter 4.

Although many of the concepts related to architecture and governance are more general in
nature, this chapter is intended to address enterprise architectures that include significant
information technology components, and particularly to address architectures based on the use of
software services.

This chapter first describes concepts related to architecture and architecture development. It then
addresses the idea of solutions instantiating an architecture. Governance is a crucial aspect of the
use of service-oriented architectures, and the ideas of governance of activities related to
architecture development and system implementation and operation are described. Finally, the
chapter describes the concept of service-oriented architecture, and how it relates to the other
concepts of the ontology.

5.2 Architecture

5.2.1 Overview

An architecture is the fundamental organization of a system embodied in its components, their
relationships to each other and the environment, and the principles guiding its design and
evolution. (See [IEEE 1471].)

The clause "and the principles guiding its design and evolution" is an important part of this
definition, and this is particularly the case for SOA. A system typically evolves through the
creation of new solutions – as abstractions which are then realized by implementation. Where
the abstract solutions follow the architecture's fundamental organization and are created in
accordance with its principles, they are instantiations of the architecture.

Systems – even very complex ones – can develop by chance. (Darwin’s theory of natural
selection provides the ultimate illustration of this.) But the commercial and technical systems of
enterprises today are usually formed through deliberate choices. Architects are employed to
develop architectures for these systems, which are instantiated by solutions, which are then
implemented. When developing an architecture for a system, an architect thinks in terms of
architecture building blocks, which are abstractions of the components of the system.

The evolution of systems by chance is time-consuming, error-prone, and expensive. The use of
architecture saves time, avoids mistakes, and cuts costs.

Service-Oriented Architecture Ontology 69

This section describes the concepts of architecture, architecture building block, and architecture
development activity. It defines the Architecture, Architecture Building Block and
Architecture Development Activity classes, and the is architecture of and has infrastructure
properties. The concepts associated with instantiation are described in Section 5.3.

5.2.2 Example

The design of Joe’s first car-wash system might possibly be described as architecture, of a very
trivial kind, applying as it does only to one particular system with no plans for evolution. But
Joe’s business prospers and, as his operations expand, he increasingly sees the need for real
architecture, including the establishment of principles that will help his business to evolve and
grow.

This applies first of all in the business domain. Should he borrow to buy more sites? Or should
he start a franchise operation? Should he set up to provide car-wash implants at gas stations and
supermarkets? Or should he start selling gas and groceries at his own locations? As he takes
these decisions, he establishes principles that are the foundation of his business architecture.

He needs to establish principles in the technical domain too. Buying whichever model of car-
wash machine happens to be cheapest for each new site may save money in the short term, but
Joe realizes that it will leave him with a collection of equipment that will be a nightmare to
operate and maintain. He lays down standards for what kinds of machines he will purchase. This
is the beginning of his technical architecture.

When he has just one or two stand-alone sites, he is not very concerned about information
technology. As he acquires further sites, and partners with grocery stores who ask him to
integrate with their point-of sale systems, he finds himself thinking about IT more and more. But
it is when he decides to buy a central computer system and network all his car-wash locations to
it that he really comes to understand the need for an enterprise IT architecture. He hires a Chief
Architect.

The new Chief Architect, Kimi, talks to Joe to find out what he wants. Joe has a grand vision. He
wants the central system first of all to collect accounting information, prevent fraud, provide
usage statistics, and handle some on-line diagnostics. Then, it must interface to his grocery store
partners, and other future partners as yet unspecified, and to his suppliers, and be able to be
rapidly reconfigured to support new marketing initiatives. Finally, Joe wants to start a loyalty
program, and to provide a web service through which its members can book their washes in
advance, so that they don’t have to wait in line on Sunday mornings.

Kimi nods her head, and recommends SOA.

70 Draft Technical Standard

5.2.3 The Architecture Class
<owl:Class rdf:ID="Architecture">
 <owl:disjointWith rdf:resource="#Activity"/>
 <owl:disjointWith rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
 <owl:disjointWith rdf:resource="#Composition"/>
 <owl:disjointWith rdf:resource="#Event"/>
 <owl:disjointWith rdf:resource="#Interface"/>
 <owl:disjointWith rdf:resource="#Rule"/>
 <owl:disjointWith rdf:resource="#Contract"/>
 <owl:disjointWith rdf:resource="#Policy"/>
 <owl:disjointWith rdf:resource="#Abstraction"/>
 <owl:disjointWith rdf:resource="#Realization"/>
</owl:Class>

The concept of architecture is captured by the Architecture class.

An architecture can have component architecture building blocks. An architecture can therefore
be a system. The Architecture class is not disjoint with the System class.

The concept of architecture is distinct from the concepts other than system that have been
introduced so far, and the Architecture class is defined to be disjoint with the classes
corresponding to these concepts.

In particular, although architecture is an abstract concept, an architecture is not an abstraction of
anything. A different term, is architecture of, is used to describe the relation between an
architecture and a system that has that architecture. The Architecture class is disjoint with the
Abstraction class.

Also, an architecture can be composed of other architectures, but that composition of
architectures is not itself an architecture. The Architecture class is disjoint with the
Composition class.

The concepts of architecture and architecture building block, and their relation to the concepts of
system and abstraction, are illustrated in Figure 25.

Service-Oriented Architecture Ontology 71

Architecture System

Architecture
Building

Block
Anything

is
architecture
of

has component

is
abstraction
of

has component

Architecture System

Architecture
Building

Block
Anything

is
architecture
of

has component

is
abstraction
of

has component

Figure 25: Architecture

Kimi forms an architecture team. Starting from the idea of a service-oriented architecture, they
debate a number of questions. “What are the business operations?” “What is the business
information that the system must deal with?” “What kinds of software service are needed to
support the business operations?” “What kinds of contract and policy should apply to them?”
“How should the services be described, and where should the descriptions be kept?” “How
should the services interface to each other and exchange information?” “How should services be
composed of other services?” “What infrastructure – registry, service bus, etc. – is needed to
support the services?” “What operating systems and hardware should it run on?” As they answer
these questions, they are defining a service-oriented architecture for Joe’s car-wash operations.

5.2.4 The has architecture and is architecture of Properties
<owl:ObjectProperty rdf:ID="hasArchitecture">
 <rdfs:domain rdf:resource="#System"/>
 <rdfs:range rdf:resource="#Architecture"/>
 <owl:inverseOf rdf:resource="#isArchitectureOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isArchitectureOf">
 <rdfs:domain rdf:resource="#Architecture"/>
 <rdfs:range rdf:resource="#System"/>
 <owl:inverseOf rdf:resource="#hasArchitecture"/>
</owl:ObjectProperty>

The has architecture property, and its inverse is architecture of, capture the relation between
systems and their architectures.

Note that “has architecture” has a broad meaning. It includes “has had architecture in past” and
“may have architecture in future”, as well as “has architecture at this precise moment.”

The architecture created by Joe’s team is an architecture of the system comprising his car-wash
operations. It embodies the organization of the components of that system when his new central
computer has just become operational. It does not embody the components of that system at the
time when it is being created, but it is nevertheless referred to as an architecture of the system at
that time.

72 Draft Technical Standard

5.2.5 The Architecture Building Block Class
<owl:Class rdf:ID="ArchitectureBuildingBlock">
 <rdfs:subClassOf rdf:resource="#Abstraction"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isComponentOf" />
 <owl:someValuesFrom rdf:resource="#Architecture" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

An architecture building block is an abstraction that is a component of an architecture. This
concept is captured by the Architecture Building Block class, which is defined as a subclass of
the Abstraction class, with a restriction on the is component of property that ensures that every
architecture building block is a component of an architecture.

Almost anything can be an architecture building block, including activities, actors, effects,
changes, information items, compositions, events, interfaces, contracts, and policies. The
Architecture Building Block class is not defined as disjoint with any of the other classes of this
ontology.

In particular, an architecture building block can have component architecture building blocks.
The Architecture Building Block class is therefore not defined as disjoint with the System
class.

Joe’s architecture team identifies a number of architecture building blocks. At the top level are
building blocks such as car-wash machine, point-of-sale system, and central computer
system. These have lower-level component building blocks, such as car-wash services,
payment services, and services bus, and these may be in turn have component building blocks
at even lower levels.

There is no clear definition of exactly what should constitute an architecture building block.
What constitutes a building block in any particular architecture is determined by the judgment of
the architects concerned. It would be possible to define service as a building block, and not
define separate building blocks such as car-wash services and payment services for services of
different kinds. Equally, it would be possible to define individual services such as accept money
payment as building blocks.

As explained in Section 1.3, the ontology defines the relations between terms, but does not
prescribe exactly how they should be applied, and different applications of the ontology to the
same situation are perfectly possible. The ability of architects to use the term “architecture
building block” in different ways is a good example of this.

Service-Oriented Architecture Ontology 73

5.2.6 The has infrastructure and is infrastructure of Properties
<owl:ObjectProperty rdf:ID="hasInfrastructure">
 <rdfs:subPropertyOf rdf:resource="#hasComponent"/>
 <rdfs:domain rdf:resource="#Architecture"/>
 <rdfs:range rdf:resource="#ArchitectureBuildingBlock"/>
 <owl:inverseOf rdf:resource="#isInfrastructureOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isInfrastructureOf">
 <rdfs:subPropertyOf rdf:resource="#isComponentOf"/>
 <rdfs:domain rdf:resource="#ArchitectureBuildingBlock"/>
 <rdfs:range rdf:resource="#Architecture"/>
 <owl:inverseOf rdf:resource="#hasInfrastructure"/>
</owl:ObjectProperty>

In Section 4.8.2 it was noted that a common design technique is to identify a set of components
as being “infrastructure”. These infrastructure components can be assumed to be used by
solutions, without being explicitly included in them. An architecture can identify common
infrastructure components for the solutions that instantiate it. These are represented in the
architecture by architecture building blocks. The instantiations of these architecture building
blocks are solution building blocks that are the design components.

The relation between an architecture and its architecture building blocks that represent common
infrastructure components is captured by the has infrastructure property and its inverse is
infrastructure of. These building blocks are components of the architecture. The has
infrastructure property is therefore a subproperty of has component, and is infrastructure of
is a subproperty of is component of.

Almost anything can be an architecture building block, and any of these things can be
infrastructure of the architecture. Activities that form part of system operation, such as
messaging activities, and the actors that perform them, such as ESBs, are commonly identified
as infrastructure of an architecture. Infrastructure can also include technology actors that take
part in development activities: programming language compilers, for example. A service-
oriented architecture that has service orchestration as a principle might include a “BPEL engine”
building block in its infrastructure. (This would be a technology actor taking part in operational
or development activities, depending on whether it was an interpreter or compiler.)

Joe’s car-wash system uses an enterprise service bus. His car-wash architecture includes a
service bus architecture building block, which is infrastructure of his architecture.

74 Draft Technical Standard

5.2.7 The Architecture Development Activity Class
<owl:Class rdf:ID="ArchitectureDevelopmentActivity">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Activity" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasEffect" />
 <owl:someValuesFrom>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isChangeTo" />
 <owl:someValuesFrom rdf:resource="#Architecture" />
 </owl:Restriction>
 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

The Architecture Development Activity class captures the concept of an activity that develops
an architecture. It is defined as the intersection of the Activity class with the class of things that
have effects that are changes to instances of the Architecture class. This is illustrated in Figure
26.

Figure 26: Architecture Development

Note that an instance of the Architecture Development Activity class may change more than
one architecture, will often make more than one change to the architectures that it changes, and
will generally also have other effects, including changes to architecture building blocks that are
components of those architectures.

Joe’s business continues to grow. His operations expand, nation-wide and internationally. To
support this, he decides to have regional computing centers to perform most of the functions of
his single central system, with that system now performing only a few functions, such as

Service-Oriented Architecture Ontology 75

corporate accounting. This requires a substantial change to the architecture, including the
introduction of a new regional system building block, and changes to the way that the building
blocks are made up (although the basic architectural principles remain unaltered).

The development of Joe’s car-wash system architecture is an architecture development activity,
in which the members of the architecture team take part. Note, again, that this Technical
Standard does not prescribe exactly how the terms of the ontology are applied. It is possible to
regard the initial creation and the subsequent change to include regional centers as separate
activities. Equally, it is possible to regard them as part of a single, ongoing, architecture
development activity. (And, since an activity can be composed of other activities, the single
ongoing development and the separate developments of which it is composed can all be regarded
as activities.)

5.3 Instantiation

5.3.1 Overview

An instantiation of an architecture is a solution that changes a system that has the architecture in
accordance with the architecture’s fundamental organization and principles. The relevant classes
and properties are illustrated in Figure 27.

Figure 27: Architecture Instantiation

An architecture is typically a system of architecture building blocks. A solution may relate to
one or more particular architecture building blocks. A solution that instantiates an architecture
and relates to a particular architecture building block is also said to instantiate that building
block. The corresponding classes and properties are illustrated in Figure 28.

76 Draft Technical Standard

Figure 28: Building Block Instantiation

5.3.2 Example

When Joe’s first (central system) architecture has been defined, and the system is in place, one
of his grocery store partners wants to give a free car wash to each customer spending over $100
on groceries, and Joe agrees to support this. His car-wash software includes a payment
orchestration that has a number of component services, including payment method selection,
cash payment, and credit card payment. All that is needed is to change the payment method
selection service, add a new partner promotion payment service, and re-orchestrate. This is
the basis of a new solution that satisfies the requirement and entails a change to the system in
accordance with the architecture’s fundamental organization and principles. It does not entail a
change to the architecture. It is an instantiation of the architecture.

The architecture includes a payment architecture building block. The old and new payment
orchestrations are both solutions that instantiate it. (They are not only solutions in their own
right – payment solutions – they are also solution building blocks of an overall promotions
solution that includes changes to other parts of the system, such as accounts processing.)

The situation is different when Joe decides to introduce regional centers to satisfy his
requirement to expand the business nation-wide and internationally. This is a solution that entails
changes to the architecture as well as to the system. Joe commissions an architecture
development activity, which makes the changes to the architecture. The regional-center solution
is then further developed, to the point where it can be implemented. This solution, too, is an
instantiation of the car-wash system architecture, as it is in accordance with the changed
architecture’s fundamental organization and principles. This seems rather confusing.

To avoid confusion, Kimi introduces formal version control, and labels the central system
architecture as “Car-Wash Architecture Version 1”, and the regional-centre architecture as “Car-
Wash Architecture Version 2”. He can now refer to three architectures: “Car-Wash
Architecture”, “Car-Wash Architecture Version 1”, and “Car-Wash Architecture Version 2”.
This is a valid way of applying the ontology that is useful in many situations. The regional center
solution is an instantiation of Car-Wash Architecture and Car-Wash Architecture Version 2, but
not of Car-Wash Architecture Version 1.

Service-Oriented Architecture Ontology 77

5.3.3 The instantiates and is instantiated by Properties
<owl:ObjectProperty rdf:ID="instantiates">
 <rdfs:domain rdf:resource="#Solution"/>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Architecture"/>
 <owl:Class rdf:about="#ArchitectureBuildingBlock"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 <owl:inverseOf rdf:resource="#isInstantiatedBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isInstantiatedBy">
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Architecture"/>
 <owl:Class rdf:about="#ArchitectureBuildingBlock"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range rdf:resource="#Solution"/>
 <owl:inverseOf rdf:resource="#instantiates"/>
</owl:ObjectProperty>

The instantiates property, and its inverse is instantiation of, capture the relation between a
solution that instantiates an architecture or architecture building block and that architecture or
architecture building block.

All the solutions described in Section 5.3.2 are instantiations of the Car-Wash Architecture. The
central system solution and the grocery promotion solutions are instantiations of Car-Wash
Architecture Version 1. The regional centre solution is an instantiation of Car-Wash
Architecture Version 2.

The grocery promotions payments solution and the previous payments solution are both
instantiations of the payment architecture building block, as described in Section 5.3.2.

5.4 Governance

5.4.1 Overview

The term “governance” is originally from political theory, where it refers to a system by which a
political unit is controlled, and to the exercise of that control. The term is now also used in
relation to enterprises, where it applies to all aspects of enterprise operation, including
architecture development and implementation. Good governance is widely recognized as being
crucial for successful deployment of SOA.

78 Draft Technical Standard

In the context of an enterprise, governance refers to the control of the conduct of an activity of
the enterprise. This activity may be the entire operation of the enterprise (“Enterprise
Governance”) or a particular activity in which the enterprise is engaged. The “political unit” here
is the set of people that take part in the activity, and the control that is exercised over them is
restricted to their participation in it.

A system that controls the conduct of an activity is a governance regime. Its components include
rules for how the activity is conducted, and governance activities that develop and interpret the
rules and ensure that they are followed. The corresponding classes and properties are illustrated
in Figure 29.

Figure 29: Governance

This section describes the Governance Regime, Governance Rule, and Governance Activity
classes, and the governs property.

5.4.2 Example

As Joe’s business activities expand, he finds an increasing need for governance within his car-
wash enterprise. Even in the early stages, he has to make it clear who can purchase supplies, and
on what terms. As his team grows, he must make it clear who can take which decisions. As he
obtains more and more information technology, he needs to control activities that include
procurement, development and operation of IT: he must set up a regime of IT governance.

When Joe’s architecture team starts work on Version 1 of the Car-Wash architecture, it agrees
governance procedures for the architecture development itself at an early stage. A later stage of
the architecture development includes the definition of governance procedures for the
implementation of solutions that are instantiations of the architecture.

As the business grows, it becomes increasingly reliant on the effectiveness of these procedures.
At a typical moment when Joe is expanding internationally, he has proceeding at the same time:

• An Architecture Development project for Version 3 of the architecture, to incorporate
country centers in addition to regional centers within each country;

Service-Oriented Architecture Ontology 79

• A project to document the architecture of a rival car-wash operation that Joe has just taken
over, and to recommend a solution for integrating it with Joe’s operation;

• A dozen solution development and implementation projects to meet a large number of
varied requirements, some of which may lead to architecture development work to
produce minor version updates (the architecture is currently at Version 2.3);

• A large number of implementation projects to upgrade to the current version some sites
that still assume earlier versions of the architecture (many sites are at Version 2.1 or 2.2,
and some are still at Version 1);

• A problem management process in which a team is working its way through a list of bug
reports, to which new reports are constantly added (there are currently 152 unresolved
bugs listed).

This makes the architecture development and implementation a very complex process indeed. In
general, a project affects multiple systems, and a system is affected by several projects. At any
given time, each person or team is usually working on multiple projects. And a service must
often be designed to meet the needs of multiple projects. Without good governance, the situation
would quickly degenerate into chaos.

5.4.3 The Governance Regime Class
<owl:Class rdf:ID="GovernanceRegime">
 <rdfs:subClassOf rdf:resource="#System"/>
 <owl:disjointWith rdf:resource="#Activity"/>
 <owl:disjointWith rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
 <owl:disjointWith rdf:resource="#Event"/>
 <owl:disjointWith rdf:resource="#Interface"/>
 <owl:disjointWith rdf:resource="#Rule"/>
 <owl:disjointWith rdf:resource="#Contract"/>
 <owl:disjointWith rdf:resource="#Policy"/>
 <owl:disjointWith rdf:resource="#Abstraction"/>
 <owl:disjointWith rdf:resource="#Realization"/>
 <owl:disjointWith rdf:resource="#Architecture"/>
</owl:Class>

A governance regime is a system that controls the conduct of an activity. This concept is
captured by the Governance Regime class.

A governance regime has components that are rules and activities. The Governance Regime
class is a subclass of the System class. A governance regime can be a solution (satisfying
requirements for governance) and can be an abstraction or a realization. The Governance
Regime class is not disjoint with the Solution, Abstraction and Realization classes, but is
disjoint with the other top-level classes defined in this ontology.

Control of the conduct of an activity can include constraining the actions performed by the
actors that take part in it, and limiting the effects of those actions and of the activity.

80 Draft Technical Standard

Kimi ensures that there is a governance regime that controls all of the activities concerned with
architecture development, solution design, solution implementation, and system operation. This
regime includes rules about labelling the things produced by these activities, keeping track of
versions, providing traceability between solutions and requirements, and performing quality
checks. It also includes activities that check that the rules are followed, such as authorization
procedures for activities, sign-off procedures for deliverables, and quality review procedures.
And it includes an Architecture Board that monitors these activities, interprets the rules and, if
necessary, changes them. It is a complex system, but necessary to the successful conduct of Joe’s
business.

5.4.4 The governs and is governed by Properties
<owl:ObjectProperty rdf:ID="governs">
 <rdfs:domain rdf:resource="#GovernanceRegime"/>
 <rdfs:range rdf:resource="#Activity"/>
 <owl:inverseOf rdf:resource="#isGovernedBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isGovernedBy">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range rdf:resource="#GovernanceRegime"/>
 <owl:inverseOf rdf:resource="#governs"/>
</owl:ObjectProperty>

The governs property, and its inverse is governed by, capture the relationship between a
governance regime that controls how an activity is carried out and that activity.

The governance regime instituted by Kimi governs the architecture development, solution
design, solution implementation, and system operation activities of Joe’s car-wash enterprise.

5.4.5 The Governance Rule Class
<owl:Class rdf:ID="GovernanceRule">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Rule" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isComponentOf" />
 <owl:someValuesFrom rdf:resource="#GovernanceRegime" />
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

A governance rule is a rule that is part of a governance regime. This concept is captured by the
Governance Rule class, which is defined as the class of rules that are components of
governance regimes.

Joe’s governance regime includes governance rules such as “No architecture development
activity takes place until it is approved by the Architecture Board”, and “Installation of a system
is signed off by the site manager”.

Service-Oriented Architecture Ontology 81

5.4.6 The Governance Activity Class
<owl:Class rdf:ID="GovernanceActivity">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Activity" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isComponentOf" />
 <owl:someValuesFrom rdf:resource="#GovernanceRegime" />
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

A governance activity is an activity that is part of a governance regime. This concept is captured
by the Governance Activity class, which is defined as the class of activities that are components
of governance regimes.

The authorization, sign-off and quality review procedures of Joe’s governance regime, and the
activities of his Architecture Board, are all governance activities.

5.5 Service-Oriented Architecture

5.5.1 Overview

Service-Oriented Architecture (SOA) is an architectural style that supports service orientation.

Service orientation is a way of thinking in terms of services and service-based development and
the outcomes of services.

An architectural style is the combination of distinctive features in which architecture is
performed or expressed.

The SOA architectural style has the following distinctive features:

• It is based on the design of the services – which mirror real-world business activities –
comprising the enterprise (or inter-enterprise) business processes.

• Service representation utilizes business descriptions to provide context (i.e., business
process, goal, rule, policy, service interface, and service component) and implements
services using service orchestration.

• It places unique requirements on the infrastructure – it is recommended that
implementations use open standards to realize interoperability and location transparency.

• Implementations are environment-specific – they are constrained or enabled by context
and must be described within that context.

• It requires strong governance of service representation and implementation.

• It requires a “Litmus Test", which determines a “good service”.

82 Draft Technical Standard

This section describes the Service Oriented Architecture class. The instances of this class are
architectures in the service-oriented style.

The SOA architectural style is based on the design of services that mirror real-world business
activities. The concept of service was introduced in Section 2.2.3. This is a concept that comes
from the world of business and is used also in the world of IT. The Service class can have
instances that are real-world business activities and can also have instances that are software
services that mirror those activities. The concept of an activity being a business activity for an
enterprise (or other actor) is described in Section 3.3.

Service representation utilizes business descriptions to provide context. The concept of
description is described in Section 2.5.5 and the concept of a description that is a registry entry
for a service is described in Section 4.10.3. A formal description could use the terms of this
ontology, such as business activity (Section 3.3.3), Rule (Section 3.5.3), Policy (Section 3.5.9),
Interface (Section 3.4.3), and component (Section 2.6.5).

Service-based solutions can be implemented using orchestration (Section 4.8.2), and also using
choreography (Section 4.8.4), messaging (Section 4.9), discovery (Section 4.10), and
virtualization (Section 4.11).

SOA places unique requirements on the infrastructure. The concept of an architecture’s
infrastructure is described in Section 5.2.6. The building blocks that are the infrastructure of a
service-oriented architecture are likely to include messaging services (Section 4.9.5), registry
services (Section 4.10.9), and other activities that are fundamental to the development and
operation of the architecture’s systems. It is also likely to include technology actors (Section
4.6.3) that take part in development and operation activities.

Implementations (Section 4.5) are constrained or enabled by context. They are realizations
(Section 4.3.3) of solutions (Section 4.2.4) that satisfy requirements (Section 4.2.2) that are
defined by the context.

SOA requires strong governance of service representation and implementation. Governance is
provided by governance rules (Section 5.4.5) and governance activities that enforce those rules
(Section 5.4.6) within the context of a governance regime (Section 5.4.3).

SOA requires a “Litmus Test", which determines a “good service”. This ontology does not help
architects and designers to determine what makes a “good service”. This is a crucial aspect of
service-oriented architecture, but it is beyond the scope of usefulness of a formal ontology.

This section introduces just one formal definition, that of the Service Oriented Architecture
class, which captures the concept of a service-oriented architecture.

5.5.2 The Service Oriented Architecture Class
<owl:Class rdf:ID="ServiceOrientedArchitecture">
 <rdfs:subClassOf rdf:resource="#Architecture"/>
</owl:Class>

Service-Oriented Architecture Ontology 83

A service-oriented architecture is an architecture that is based on the principle of service
orientation. This concept is captured by the Service Oriented Architecture class, which is
defined as a subclass of the Architecture class.

Joe’s car-wash architecture is a service-oriented architecture.

An architecture is the fundamental organization of a system embodied in its components, their
relationships to each other and the environment, and the principles guiding its design and
evolution. (See [IEEE 1471].)

The principles guiding the design and evolution of Joe’s car-wash architecture include some
basic SOA principles:

• It is based on the design of services – which mirror real-world business activities –
comprising the enterprise (or inter-enterprise) business processes;

• The services are loosely-coupled with simple interfaces that are formally described;

• Service composition is used to define solutions to meet requirements;

• Service virtualization is used to optimize use of resources.

(In this example, dynamic discovery is not a principle of the architecture. The architecture team
has not identified it as being useful in the context of Joe’s business. SOA is not a “one size fits
all” approach: different sets of SOA principles are appropriate for different enterprises.)

The components of Joe’s car-wash architecture are architecture building blocks, which include:

• Building blocks of his business architecture, such as car-wash services, loyalty program,
partner relations, and accounts;

• Information system architecture building blocks, such as car-wash operation, which has
components like car-wash control, car-wash booking, and payment services;

• Technology architecture building blocks such as car-wash machine, and services bus.

The architecture description shows how these building blocks relate to each other and to the
environment.

A number of building blocks, such as the car-wash machine and services bus technology
architecture building blocks, are identified as infrastructure of the architecture.

Solutions that meet Joe’s business requirements are designed and implemented as instantiations
of this architecture.

84 Draft Technical Standard

A The OWL Definition of the Ontology

The ontology is available online at
http://www.opengroup.org/projects/soa-ontology/uploads/40/16940/draft200.owl and is reproduced
below.
<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://www.opengroup.org/soa/v01.owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xml:base="http://www.opengroup.org/projects/soa-
ontology/uploads/40/16940/draft200.owl">
 <owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="Service">
 <rdfs:subClassOf rdf:resource="#Activity"/>
</owl:Class>

<owl:Class rdf:ID="Actor"/>

<owl:ObjectProperty rdf:ID="provides">
 <rdfs:domain rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#isProvidedBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isProvidedBy">
 <rdfs:range rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#provides"/>
</owl:ObjectProperty>

<owl:Class rdf:about="#Service">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isProvidedBy"/>
 <owl:cardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<owl:ObjectProperty rdf:ID="consumes">
 <rdfs:domain rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#isConsumedBy"/>
</owl:ObjectProperty>

Service-Oriented Architecture Ontology 85

<owl:ObjectProperty rdf:ID="isConsumedBy">
 <rdfs:range rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#consumes"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="Effect">
 <owl:disjointWith rdf:resource="#Service"/>
 <owl:disjointWith rdf:resource="#Actor"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="isEffectOf">
 <rdfs:domain rdf:resource="#Effect"/>
 <owl:inverseOf rdf:resource="#hasEffect"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasEffect">
 <rdfs:range rdf:resource="#Effect"/>
 <owl:inverseOf rdf:resource="#isEffectOf"/>
</owl:ObjectProperty>

<owl:Class rdf:about="#Service">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasEffect"/>
 <owl:minCardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="Change">
 <owl:disjointWith rdf:resource="#Service"/>
 <owl:disjointWith rdf:resource="#Actor"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="isChangeTo">
 <rdfs:domain rdf:resource="#Change"/>
 <owl:inverseOf rdf:resource="#isChangedBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isChangedBy">
 <rdfs:range rdf:resource="#Change"/>
 <owl:inverseOf rdf:resource="#isChangeTo"/>
</owl:ObjectProperty>

<owl:Class rdf:about="#Change">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isChangeTo"/>
 <owl:cardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>

86 Draft Technical Standard

 </rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="InformationItem">
 <owl:disjointWith rdf:resource="#Service"/>
 <owl:disjointWith rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
</owl:Class>

<owl:Class rdf:ID="InformationType">
 <rdfs:subClassOf rdf:resource="#InformationItem"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="hasType">
 <owl:inverseOf rdf:resource="#isTypeOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isTypeOf">
 <owl:inverseOf rdf:resource="#hasType"/>
</owl:ObjectProperty>

<owl:Class rdf:about="#InformationItem">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasType"/>
 <owl:allValuesFrom rdf:resource="#InformationType"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="Description">
 <rdfs:subClassOf rdf:resource="#InformationItem"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="describes">
 <rdfs:domain rdf:resource="#Description"/>
 <owl:inverseOf rdf:resource="#isDescribedBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isDescribedBy">
 <rdfs:range rdf:resource="#Description"/>
 <owl:inverseOf rdf:resource="#describes"/>
</owl:ObjectProperty>

<owl:Class rdf:about="#Description">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#describes"/>
 <owl:cardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>

Service-Oriented Architecture Ontology 87

</owl:Class>

<owl:Class rdf:ID="System">
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="hasComponent">
 <owl:inverseOf rdf:resource="#isComponentOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isComponentOf">
 <owl:inverseOf rdf:resource="#hasComponent"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="Composition">
 <rdfs:subClassOf rdf:resource="#System"/>
</owl:Class>

<owl:FunctionalProperty rdf:ID="produces">
 <owl:inverseOf rdf:resource="#isProducedBy"/>
</owl:FunctionalProperty>

<owl:ObjectProperty rdf:ID="isProducedBy">
 <owl:inverseOf rdf:resource="#produces"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="Activity">
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
 <owl:disjointWith rdf:resource="#Actor"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="takesPartIn">
 <rdfs:domain rdf:resource="#Actor"/>
 <rdfs:range rdf:resource="#Activity"/>
 <owl:inverseOf rdf:resource="#hasParticipant"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasParticipant">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#takesPartIn"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="Event">
 <owl:disjointWith rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
 <owl:disjointWith rdf:resource="#System"/>
 <owl:disjointWith rdf:resource="#Activity"/>
</owl:Class>

88 Draft Technical Standard

<owl:ObjectProperty rdf:ID="respondsTo">
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Activity"/>
 <owl:Class rdf:about="#Actor"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range rdf:resource="#Event"/>
 <owl:inverseOf rdf:resource="#isRespondedToBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isRespondedToBy">
 <rdfs:domain rdf:resource="#Event"/>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Activity"/>
 <owl:Class rdf:about="#Actor"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 <owl:inverseOf rdf:resource="#respondsTo"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isTheOccurrenceOf">
 <rdfs:domain rdf:resource="#Change"/>
 <rdfs:range rdf:resource="#Event"/>
 <owl:inverseOf rdf:resource="#occursAs"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="occursAs">
 <rdfs:domain rdf:resource="#Event"/>
 <rdfs:range rdf:resource="#Change"/>
 <owl:inverseOf rdf:resource="#isTheOccurrenceOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isBusinessActivityOf">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#hasBusinessActivity"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasBusinessActivity">
 <rdfs:domain rdf:resource="#Actor"/>
 <rdfs:range rdf:resource="#Activity"/>
 <owl:inverseOf rdf:resource="#isBusinessActivityOf"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="Interface">
 <owl:disjointWith rdf:resource="#Activity"/>
 <owl:disjointWith rdf:resource="#Actor"/>

Service-Oriented Architecture Ontology 89

 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
 <owl:disjointWith rdf:resource="#System"/>
 <owl:disjointWith rdf:resource="#Event"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="isInterfaceOf">
 <rdfs:domain rdf:resource="#Interface"/>
 <rdfs:range rdf:resource="#Activity"/>
 <owl:inverseOf rdf:resource="#hasInterface"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasInterface">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range rdf:resource="#Interface"/>
 <owl:inverseOf rdf:resource="#isInterfaceOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isEventAt">
 <rdfs:domain rdf:resource="#Event"/>
 <rdfs:range rdf:resource="#Interface"/>
 <owl:inverseOf rdf:resource="#includesEvent"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="includesEvent">
 <rdfs:domain rdf:resource="#Interface"/>
 <rdfs:range rdf:resource="#Event"/>
 <owl:inverseOf rdf:resource="#isEventAt"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isInputAt">
 <rdfs:domain rdf:resource="#InformationType"/>
 <rdfs:range rdf:resource="#Interface"/>
 <owl:inverseOf rdf:resource="#hasInputInformation"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasInputInformation">
 <rdfs:domain rdf:resource="#Interface"/>
 <rdfs:range rdf:resource="#InformationType"/>
 <owl:inverseOf rdf:resource="#isInputAt"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isOutputAt">
 <rdfs:domain rdf:resource="#InformationType"/>
 <rdfs:range rdf:resource="#Interface"/>
 <owl:inverseOf rdf:resource="#hasOutputInformation"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasOutputInformation">
 <rdfs:domain rdf:resource="#Interface"/>
 <rdfs:range rdf:resource="#InformationType"/>
 <owl:inverseOf rdf:resource="#isOutputAt"/>
</owl:ObjectProperty>

90 Draft Technical Standard

<owl:Class rdf:ID="Rule">
 <owl:disjointWith rdf:resource="#Activity"/>
 <owl:disjointWith rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
 <owl:disjointWith rdf:resource="#System"/>
 <owl:disjointWith rdf:resource="#Event"/>
 <owl:disjointWith rdf:resource="#Interface"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="appliesTo">
 <rdfs:domain rdf:resource="#Rule"/>
 <owl:inverseOf rdf:resource="#isAffectedBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isAffectedBy">
 <rdfs:range rdf:resource="#Rule"/>
 <owl:inverseOf rdf:resource="#appliesTo"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasCondition">
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Contract"/>
 <owl:Class rdf:about="#Policy"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range rdf:resource="#Rule"/>
 <owl:inverseOf rdf:resource="#isConditionOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isConditionOf">
 <rdfs:domain rdf:resource="#Rule"/>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Contract"/>
 <owl:Class rdf:about="#Policy"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 <owl:inverseOf rdf:resource="#hasCondition"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="Contract">
 <owl:disjointWith rdf:resource="#Activity"/>
 <owl:disjointWith rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>

Service-Oriented Architecture Ontology 91

 <owl:disjointWith rdf:resource="#System"/>
 <owl:disjointWith rdf:resource="#Event"/>
 <owl:disjointWith rdf:resource="#Interface"/>
 <owl:disjointWith rdf:resource="#Rule"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="isContractFor">
 <rdfs:domain rdf:resource="#Contract"/>
 <owl:inverseOf rdf:resource="#isSubjectOfContract"/>
</owl:ObjectProperty>

<owl:FunctionalProperty rdf:about="#isContractFor" />

<owl:ObjectProperty rdf:ID="isSubjectOfContract">
 <rdfs:range rdf:resource="#Contract"/>
 <owl:inverseOf rdf:resource="#isContractFor"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isPartyTo">
 <rdfs:domain rdf:resource="#Actor"/>
 <rdfs:range rdf:resource="#Contract"/>
 <owl:inverseOf rdf:resource="#hasParty"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasParty">
 <rdfs:domain rdf:resource="#Contract"/>
 <rdfs:range rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#isPartyTo"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="Policy">
 <owl:disjointWith rdf:resource="#Activity"/>
 <owl:disjointWith rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
 <owl:disjointWith rdf:resource="#System"/>
 <owl:disjointWith rdf:resource="#Event"/>
 <owl:disjointWith rdf:resource="#Interface"/>
 <owl:disjointWith rdf:resource="#Rule"/>
 <owl:disjointWith rdf:resource="#Contract"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="hasPolicy">
 <rdfs:domain rdf:resource="#Actor"/>
 <rdfs:range rdf:resource="#Policy"/>
 <owl:inverseOf rdf:resource="#isPolicyOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isPolicyOf">
 <rdfs:domain rdf:resource="#Policy"/>
 <rdfs:range rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#hasPolicy"/>
</owl:ObjectProperty>

92 Draft Technical Standard

<owl:FunctionalProperty rdf:about="#isPolicyOf" />

<owl:ObjectProperty rdf:ID="isPolicyFor">
 <rdfs:domain rdf:resource="#Policy"/>
 <rdfs:range rdf:resource="#Activity"/>
 <owl:inverseOf rdf:resource="#isSubjectOfPolicy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isSubjectOfPolicy">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range rdf:resource="#Policy"/>
 <owl:inverseOf rdf:resource="#isPolicyFor"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="Requirement">
 <owl:disjointWith rdf:resource="#Activity"/>
 <owl:disjointWith rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
 <owl:disjointWith rdf:resource="#System"/>
 <owl:disjointWith rdf:resource="#Event"/>
 <owl:disjointWith rdf:resource="#Interface"/>
 <owl:disjointWith rdf:resource="#Rule"/>
 <owl:disjointWith rdf:resource="#Contract"/>
 <owl:disjointWith rdf:resource="#Policy"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="requires">
 <rdfs:domain rdf:resource="#Actor"/>
 <rdfs:range rdf:resource="#Requirement"/>
 <owl:inverseOf rdf:resource="#isRequiredBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isRequiredBy">
 <rdfs:domain rdf:resource="#Requirement"/>
 <rdfs:range rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#requires"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="Solution">
</owl:Class>

<owl:ObjectProperty rdf:ID="satisfies">
 <rdfs:domain rdf:resource="#Solution"/>
 <rdfs:range rdf:resource="#Requirement"/>
 <owl:inverseOf rdf:resource="#isSatisfiedBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isSatisfiedBy">
 <rdfs:domain rdf:resource="#Requirement"/>
 <rdfs:range rdf:resource="#Solution"/>
 <owl:inverseOf rdf:resource="#satisfies"/>

Service-Oriented Architecture Ontology 93

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="entails">
 <rdfs:domain rdf:resource="#Solution"/>
 <rdfs:range rdf:resource="#Change"/>
 <owl:inverseOf rdf:resource="#isEntailedBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isEntailedBy">
 <rdfs:domain rdf:resource="#Change"/>
 <rdfs:range rdf:resource="#Solution"/>
 <owl:inverseOf rdf:resource="#entails"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="SolutionBuildingBlock">
 <rdfs:subClassOf rdf:resource="#Abstraction" />
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isComponentOf" />
 <owl:someValuesFrom rdf:resource="#Solution" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="Abstraction">
 <owl:disjointWith rdf:resource="#Requirement"/>
</owl:Class>

<owl:Class rdf:ID="Realization">
 <owl:disjointWith rdf:resource="#Abstraction"/>
 <owl:disjointWith rdf:resource="#Requirement"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="isAbstractionOf">
 <rdfs:domain rdf:resource="#Abstraction"/>
 <rdfs:range rdf:resource="#Realization"/>
 <owl:inverseOf rdf:resource="#isRealizationOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isRealizationOf">
 <rdfs:domain rdf:resource="#Realization"/>
 <rdfs:range rdf:resource="#Abstraction"/>
 <owl:inverseOf rdf:resource="#isAbstractionOf"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="Design">
 <rdfs:subClassOf rdf:resource="#Abstraction"/>
 <rdfs:subClassOf rdf:resource="#Solution"/>
</owl:Class>

<owl:Class rdf:ID="DesignActivity">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Activity" />
 <owl:Restriction>

94 Draft Technical Standard

 <owl:onProperty rdf:resource="#hasEffect" />
 <owl:someValuesFrom>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isChangeTo" />
 <owl:someValuesFrom rdf:resource="#Design" />
 </owl:Restriction>
 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

<owl:Class rdf:ID="Implementation">
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isRealizationOf" />
 <owl:someValuesFrom rdf:resource="#Design" />
 </owl:Restriction>
 </owl:equivalentClass>
</owl:Class>

<owl:Class rdf:ID="ImplementationActivity">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Activity" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasEffect" />
 <owl:someValuesFrom>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isChangeTo" />
 <owl:someValuesFrom rdf:resource="#Implementation" />
 </owl:Restriction>
 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

<owl:Class rdf:ID="HumanActor">
 <rdfs:subClassOf rdf:resource="#Actor"/>
</owl:Class>

<owl:Class rdf:ID="TechnologyActor">
 <rdfs:subClassOf rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#HumanActor"/>
</owl:Class>

<owl:Class rdf:ID="SoftwareActor">
 <rdfs:subClassOf rdf:resource="#TechnologyActor"/>
</owl:Class>

<owl:Class rdf:ID="OrganizationActor">
 <rdfs:subClassOf rdf:resource="#Actor"/>
 <rdfs:subClassOf rdf:resource="#System"/>
 <owl:disjointWith rdf:resource="#HumanActor"/>
 <owl:disjointWith rdf:resource="#TechnologyActor"/>
</owl:Class>

Service-Oriented Architecture Ontology 95

<owl:Class rdf:ID="Enterprise">
 <rdfs:subClassOf rdf:resource="#OrganizationActor"/>
</owl:Class>

<owl:Class rdf:ID="SoftwareService">
 <rdfs:subClassOf rdf:resource="#Service"/>
<rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasParticipant" />
 <owl:someValuesFrom rdf:resource="#SoftwareActor" />
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasParticipant" />
 <owl:allValuesFrom rdf:resource="#SoftwareActor" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="Orchestration">
 <rdfs:subClassOf rdf:resource="#Composition"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasComponent" />
 <owl:allValuesFrom rdf:resource="#Activity" />
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#produces" />
 <owl:allValuesFrom rdf:resource="#Activity" />
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasDirectionActivity" />
 <owl:cardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<owl:ObjectProperty rdf:ID="hasDirectionActivity">
 <rdfs:subPropertyOf rdf:resource="#hasComponent"/>
 <rdfs:domain rdf:resource="#Orchestration"/>
 <rdfs:range rdf:resource="#Activity"/>
 <owl:inverseOf rdf:resource="#isDirectionActivityOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isDirectionActivityOf">
 <rdfs:subPropertyOf rdf:resource="#isComponentOf"/>

96 Draft Technical Standard

 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range rdf:resource="#Orchestration"/>
 <rdfs:domain rdf:resource="#Orchestration"/>
 <rdfs:range rdf:resource="#Activity"/>
 <owl:inverseOf rdf:resource="#hasDirectionActivity"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="Choreography">
 <rdfs:subClassOf rdf:resource="#Composition"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasComponent" />
 <owl:allValuesFrom rdf:resource="#Activity" />
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#produces" />
 <owl:allValuesFrom rdf:resource="#Activity" />
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasDirectionActivity" />
 <owl:cardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >0</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="Message">
 <rdfs:subClassOf rdf:resource="#InformationItem"/>
</owl:Class>

<owl:Class rdf:ID="MessageType">
 <rdfs:subClassOf rdf:resource="#InformationType"/>
</owl:Class>

<owl:Class rdf:about="#Message">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasType"/>
 <owl:someValuesFrom rdf:resource="#MessageType" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="MessagingService">
 <rdfs:subClassOf rdf:resource="#Service"/>
</owl:Class>

<owl:Class rdf:ID="MessagingInterface">
 <rdfs:subClassOf rdf:resource="#Interface"/>

Service-Oriented Architecture Ontology 97

 <rdfs:subClassOf>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasInputInformation"/>
 <owl:someValuesFrom rdf:resource="#MessageType" />
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasOutputInformation"/>
 <owl:someValuesFrom rdf:resource="#MessageType" />
 </owl:Restriction>
 </owl:unionOf>
 </owl:Class>
 </rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:about="#MessagingService">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasInterface"/>
 <owl:someValuesFrom rdf:resource="#MessagingInterface" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="Registry">
 <rdfs:subClassOf rdf:resource="#InformationItem"/>
</owl:Class>

<owl:Class rdf:ID="RegistryEntry">
 <rdfs:subClassOf rdf:resource="#Description"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isContainedIn"/>
 <owl:cardinality
 rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<owl:ObjectProperty rdf:ID="contains">
 <rdfs:domain rdf:resource="#Registry"/>
 <rdfs:range rdf:resource="#RegistryEntry"/>
 <owl:inverseOf rdf:resource="#isContainedIn"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isContainedIn">
 <rdfs:domain rdf:resource="#RegistryEntry"/>
 <rdfs:range rdf:resource="#Registry"/>
 <owl:inverseOf rdf:resource="#contains"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="registers">

98 Draft Technical Standard

 <rdfs:domain rdf:resource="#Registry"/>
 <rdfs:range rdf:resource="#Service"/>
 <owl:inverseOf rdf:resource="#isRegisteredIn"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isRegisteredIn">
 <rdfs:domain rdf:resource="#Service"/>
 <rdfs:range rdf:resource="#Registry"/>
 <owl:inverseOf rdf:resource="#register"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="Visibility">
 <rdfs:subClassOf rdf:resource="#InformationType"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="isInScopeOf">
 <rdfs:domain rdf:resource="#Actor"/>
 <rdfs:range rdf:resource="#Visibility"/>
 <owl:inverseOf rdf:resource="#hasInScope"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasInScope">
 <rdfs:domain rdf:resource="#Visibility"/>
 <rdfs:range rdf:resource="#Actor"/>
 <owl:inverseOf rdf:resource="#isInScopeOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasVisibility">
 <rdfs:subPropertyOf rdf:resource="#hasType"/>
 <rdfs:domain rdf:resource="#RegistryEntry"/>
 <rdfs:range rdf:resource="#Visibility"/>
 <owl:inverseOf rdf:resource="#isVisibilityOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isVisibilityOf">
 <rdfs:subPropertyOf rdf:resource="#isTypeOf"/>
 <rdfs:domain rdf:resource="#Visibility"/>
 <rdfs:range rdf:resource="#RegistryEntry"/>
 <owl:inverseOf rdf:resource="#hasVisibility"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="RegistryService">
 <rdfs:subClassOf rdf:resource="#Service"/>
</owl:Class>

<owl:Class rdf:ID="VirtualActor">
 <rdfs:subClassOf rdf:resource="#Actor"/>
 <rdfs:subClassOf rdf:resource="#System"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasComponent"/>
 <owl:allValuesFrom rdf:resource="#Actor"/>
 </owl:Restriction>
 </rdfs:subClassOf>

Service-Oriented Architecture Ontology 99

 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasComponent"/>
 <owl:allValuesFrom rdf:resource="#Realization"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="VirtualizedService">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Service" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasParticipant" />
 <owl:someValuesFrom rdf:resource="#VirtualActor" />
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

<owl:Class rdf:ID="Architecture">
 <owl:disjointWith rdf:resource="#Activity"/>
 <owl:disjointWith rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
 <owl:disjointWith rdf:resource="#Composition"/>
 <owl:disjointWith rdf:resource="#Event"/>
 <owl:disjointWith rdf:resource="#Interface"/>
 <owl:disjointWith rdf:resource="#Rule"/>
 <owl:disjointWith rdf:resource="#Contract"/>
 <owl:disjointWith rdf:resource="#Policy"/>
 <owl:disjointWith rdf:resource="#Abstraction"/>
 <owl:disjointWith rdf:resource="#Realization"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="hasArchitecture">
 <rdfs:domain rdf:resource="#System"/>
 <rdfs:range rdf:resource="#Architecture"/>
 <owl:inverseOf rdf:resource="#isArchitectureOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isArchitectureOf">
 <rdfs:domain rdf:resource="#Architecture"/>
 <rdfs:range rdf:resource="#System"/>
 <owl:inverseOf rdf:resource="#hasArchitecture"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="ArchitectureBuildingBlock">
 <rdfs:subClassOf rdf:resource="#Abstraction"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isComponentOf" />
 <owl:someValuesFrom rdf:resource="#Architecture" />
 </owl:Restriction>
 </rdfs:subClassOf>

100 Draft Technical Standard

</owl:Class>

<owl:ObjectProperty rdf:ID="hasInfrastructure">
 <rdfs:subPropertyOf rdf:resource="#hasComponent"/>
 <rdfs:domain rdf:resource="#Architecture"/>
 <rdfs:range rdf:resource="#ArchitectureBuildingBlock"/>
 <owl:inverseOf rdf:resource="#isInfrastructureOf"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isInfrastructureOf">
 <rdfs:subPropertyOf rdf:resource="#isComponentOf"/>
 <rdfs:domain rdf:resource="#ArchitectureBuildingBlock"/>
 <rdfs:range rdf:resource="#Architecture"/>
 <owl:inverseOf rdf:resource="#hasInfrastructure"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="ArchitectureDevelopmentActivity">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Activity" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasEffect" />
 <owl:someValuesFrom>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isChangeTo" />
 <owl:someValuesFrom rdf:resource="#Architecture" />
 </owl:Restriction>
 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

<owl:ObjectProperty rdf:ID="instantiates">
 <rdfs:domain rdf:resource="#Solution"/>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Architecture"/>
 <owl:Class rdf:about="#ArchitectureBuildingBlock"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 <owl:inverseOf rdf:resource="#isInstantiatedBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isInstantiatedBy">
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Architecture"/>
 <owl:Class rdf:about="#ArchitectureBuildingBlock"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>

Service-Oriented Architecture Ontology 101

 <rdfs:range rdf:resource="#Solution"/>
 <owl:inverseOf rdf:resource="#instantiates"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="GovernanceRegime">
 <rdfs:subClassOf rdf:resource="#System"/>
 <owl:disjointWith rdf:resource="#Activity"/>
 <owl:disjointWith rdf:resource="#Actor"/>
 <owl:disjointWith rdf:resource="#Effect"/>
 <owl:disjointWith rdf:resource="#Change"/>
 <owl:disjointWith rdf:resource="#InformationItem"/>
 <owl:disjointWith rdf:resource="#Event"/>
 <owl:disjointWith rdf:resource="#Interface"/>
 <owl:disjointWith rdf:resource="#Rule"/>
 <owl:disjointWith rdf:resource="#Contract"/>
 <owl:disjointWith rdf:resource="#Policy"/>
 <owl:disjointWith rdf:resource="#Abstraction"/>
 <owl:disjointWith rdf:resource="#Realization"/>
 <owl:disjointWith rdf:resource="#Architecture"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="governs">
 <rdfs:domain rdf:resource="#GovernanceRegime"/>
 <rdfs:range rdf:resource="#Activity"/>
 <owl:inverseOf rdf:resource="#isGovernedBy"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isGovernedBy">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range rdf:resource="#GovernanceRegime"/>
 <owl:inverseOf rdf:resource="#governs"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="GovernanceRule">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Rule" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isComponentOf" />
 <owl:someValuesFrom rdf:resource="#GovernanceRegime" />
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

<owl:Class rdf:ID="GovernanceActivity">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Activity" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isComponentOf" />
 <owl:someValuesFrom rdf:resource="#GovernanceRegime" />
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

<owl:Class rdf:ID="ServiceOrientedArchitecture">

102 Draft Technical Standard

 <rdfs:subClassOf rdf:resource="#Architecture"/>
</owl:Class>

</rdf:RDF>

