
Technical Standard

Service-Oriented Architecture Ontology

Copyright © 2009, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the
copyright owner.

It is fair use of this specification for implementers to use the names, labels, etc. contained within the
specification. The intent of publication of the specification is to encourage implementations of the
specification.

This specification has not been verified for avoidance of possible third-party proprietary rights. In
implementing this specification, usual procedures to ensure the respect of possible third-party intellectual
property rights should be followed.

Technical Standard

Service-Oriented Architecture Ontology

ISBN: TBA

Document Number: TBA

Published by The Open Group, Month 2010.

Comments relating to the material contained in this document may be submitted to:

The Open Group
Thames Tower
37-45 Station Road
Reading
Berkshire, RG1 1LX
United Kingdom

or by electronic mail to:

ogspecs@opengroup.org

Contents
1 Introduction...9

1.1 Objective...9
1.2 Overview...9
1.3 Applications ..11
1.4 Conformance...11
1.5 Terminology..12
1.6 Typographical Conventions ..12
1.7 Future Directions ..12

2 System and Element..13
2.1 Introduction...13
2.2 The Element Class ..13
2.3 The uses and usedBy Properties..14
2.4 Element - Organizational example..15
2.5 The System Class ..15
2.6 System - Examples..17

2.6.1 Organizational example...17
2.6.2 Service composition example..17
2.6.3 Car wash example ...17

2.7 The represents and representedBy Properties.....................................17
2.8 Examples...19

2.8.1 Organizational example...19
2.8.2 Car wash example ...19

3 HumanActor and Task ..21
3.1 Introduction...21
3.2 The HumanActor class..21
3.3 HumanActor - Examples ..22

3.3.1 The uses and usedBy properties applied to
HumanActor..22
3.3.2 The represents and representedBy properties applied to
HumanActor..22
3.3.3 Organizational example...23
3.3.4 Car wash example ...23

3.4 The Task class...23
3.5 The does and doneBy Properties ...24
3.6 Task - Examples..25

3.6.1 The uses and usedBy properties applied to Task.................25
3.6.2 The represents and representedBy properties applied to
Task 25
3.6.3 Organizational example...26
3.6.4 Car wash example ...26

4 Service, ServiceContract and ServiceInterface ...27
4.1 Introduction...27
4.2 The Service Class..28
4.3 The performs and performedBy Properties ...29

4.3.1 Service consumers and service providers............................30
4.4 Service - Examples ...30

4.4.1 The uses and usedBy properties applied to Service30
4.4.2 The represents and representedBy properties applied to
Service 31
4.4.3 Exemplifying the difference between doing a task and
performing a service ...31
4.4.4 Car wash example ...31

4.5 The ServiceContract Class..32
4.5.1 The interactionAspect and legalAspect Datatype
Properties ..33

4.6 The hasContract and isContractFor Properties..................................34
4.7 The involvesParty and isPartyTo Properties.......................................35
4.8 The Effect Class ..36
4.9 The specifies and isSpecifiedBy Properties ...37
4.10 ServiceContract - Examples..39

4.10.1 Service Level Agreements...39
4.10.2 Service sourcing ..39
4.10.3 Car wash example ...39

4.11 The ServiceInterface Class ...40
4.11.1 The Constraints Datatype Property41

4.12 The hasInterface and isInterfaceOf Properties42
4.13 The InformationType Class...43
4.14 The hasInput and isInputAt Properties..43
4.15 The hasOutput and isOutputAt Properties ..44
4.16 Examples...45

4.16.1 Interaction sequencing...45
4.16.2 Car wash example ...45

5 Composition and its subclasses...46
5.1 Introduction...46
5.2 The Composition Class ...46

5.2.1 The compositionPattern Datatype Property47
5.3 The orchestrates and orchestratedBy Properties49
5.4 The ServiceComposition Class ...51
5.5 The Process Class...52
5.6 Service Composition and Process examples.......................................53

5.6.1 Simple service composition example53
5.6.2 Process example ..54
5.6.3 Process and service composition example54
5.6.4 Car wash example ...54

6 Policy ..55
6.1 Introduction...55

6.2 The Policy Class ...55
6.3 The appliesTo for and isSubjectTo Properties57
6.4 The setsPolicy and isSetBy Properties ..57
6.5 Examples...58

6.5.1 Car wash example ...58

7 Event ...59
7.1 Introduction...59
7.2 The Event Class ..59
7.3 The generates and generatedBy Properties...60
7.4 The respondsTo and respondedToBy Properties.................................61

8 Complete car wash example..62
8.1 The organizational aspect ...62
8.2 The washing services ..63

8.2.1 The interfaces to the washing services65
8.3 The washing processes..65
8.4 The washing policies ..66

9 Internet purchase example...68

A The OWL Definition of the Ontology...70

B Class Relationship matrix ...87

C Relationship to other SOA standards ..88

Preface

The Open Group

The Open Group is a vendor-neutral and technology-neutral consortium, whose vision of
Boundaryless Information Flow™ will enable access to integrated information within and
between enterprises based on open standards and global interoperability. The Open Group works
with customers, suppliers, consortia, and other standards bodies. Its role is to capture,
understand, and address current and emerging requirements, establish policies, and share best
practices; to facilitate interoperability, develop consensus, and evolve and integrate
specifications and Open Source technologies; to offer a comprehensive set of services to
enhance the operational efficiency of consortia; and to operate the industry's premier
certification service, including UNIX® certification.

Further information on The Open Group is available at www.opengroup.org.

The Open Group has over 15 years' experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of test
suites used to validate conformance to an open standard or specification.

More information is available at www.opengroup.org/certification.

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business titles.
Full details and a catalog are available at www.opengroup.org/bookstore.

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards-compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it
replaces the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained
in the previous publication of that title, and there may also be additions/extensions. As
such, both previous and new documents are maintained as current publications.

Readers should note that updates – in the form of Corrigenda – may apply to any publication.
This information is published at www.opengroup.org/corrigenda.

This Document

This document is the Technical Standard for Service-Oriented Architecture Ontology. It has
been developed by The Open Group.

Trademarks
Boundaryless Information Flow™ and TOGAF™ are trademarks and Making Standards Work®,
The Open Group®, UNIX®, and the “X” device are registered trademarks of The Open Group in
the United States and other countries.

The Open Group acknowledges that there may be other brand, company, and product names
used in this document that may be covered by trademark protection and advises the reader to
verify them independently.

Referenced Documents
The following documents are referenced in this Technical Standard:

[BPMN] Business Process Modeling Notation, Version 1.1, Object Management Group;
available from www.omg.org

[OASIS RM] OASIS Reference Model for Service-Oriented Architecture, Version 1.0,
Organization for the Advancement of Structured Information Standards;
available from www.oasis-open.org

 [OWL] OWL Web Ontology Language Reference, W3C Recommendation, 10 February
2004, World-Wide Web Consortium; available from www.w3.org/TR/owl-ref

 [SoaML] Service-Oriented Architecture Modeling Language, Object Management Group;
available from www.omg.org

[TOGAF] The Open Group Architecture Framework, The Open Group; available from
www.opengroup.org

1 Introduction

1.1 Objective

The purpose of this Technical Standard is to contribute to The Open Group mission of
Boundaryless Information Flow, by developing and fostering common understanding of Service-
Oriented Architecture (SOA) in order to improve alignment between the business and
information technology communities, and facilitate SOA adoption.

It does this in two specific ways:

1. It defines the concepts, terminology, and semantics of SOA in both business and technical
terms, in order to:

— Create a foundation for further work in domain-specific areas

— Enable communications between business and technical people

— Enhance the understanding of SOA concepts in the business and technical communities

— Provide a means to state problems and opportunities clearly and unambiguously to
promote mutual understanding

2. It potentially contributes to model-driven SOA implementation.

The ontology is designed for use by:

• Business people, to give them a deeper understanding of SOA concepts and how they are
used in the enterprise and its environment

• Architects, as metadata for architectural artifacts

• Architecture methodologists, as a component of SOA meta models

• System and software designers for guidance in terminology and structure

1.2 Overview

This Technical Standard defines a formal ontology for Service-Oriented Architecture. Service-
Oriented Architecture (SOA) is an architectural style that supports service orientation.1

The ontology is represented in the Web Ontology Language (OWL) defined by the World-Wide
Web Consortium (see [OWL]). OWL has three increasingly expressive sub-languages: OWL-

1 This is the official definition of SOA as defined by The Open Group SOA workgroup. For full details see
http://www.opengroup.org/soa/soa/def.htm#_Definition_of_SOA

Lite, OWL-DL, and OWL-Full2. This ontology uses OWL-DL, the sub-language that provides
the greatest expressiveness possible while retaining computational completeness and
decidability.

The ontology contains classes and properties corresponding to the core concepts of SOA. The
formal OWL definitions are supplemented by natural language descriptions of the concepts, with
graphic illustrations of the relations between them, and with examples of their use. For purposes
of exposition, the ontology also includes UML diagrams that graphically illustrate its classes and
properties of the ontology. The natural language and OWL definitions contained in this
specification constitute the authoritative definition of the ontology; the diagrams are for
explanatory purposes only. Some of the natural language terms used to describe the concepts are
not formally represented in the ontology; those terms are meant in their natural language sense. "

This Technical Standard uses examples to illustrate the ontology. One of these, the car-wash
example, is used consistently throughout to illustrate the main concepts.3 Other examples are
used ad hoc in individual sections to illustrate particular points.

A graphically compressed visualization of the entire ontology is included in the figure below:

The concepts illustrated in the diagram above are described in the body of this document. The
remainder of the document is structured as follows:

• This chapter provides an introduction to the whole document.

• Chapters 2 through 7 provide the formal definitions (OWL and natural language both) of
the terms and concepts included in the ontology

2 See http://www.w3.org/2004/OWL/ for definition os these three dialects of OWL
3 See Chapter 8 for the complete example.

• Chapter 8 contains the complete car wash example that is used as a common example
throughout the document

• Chapter 9 contains an additional elaborate example utilizing most of the classes in the
ontology

• Appendix A contains the formal OWL definitions of the ontology, collected together.

• Appendix C describes the relation of this ontology to other work.

1.3 Applications

The SOA ontology specification was developed in order to aid understanding, and potentially be
a basis for model-driven implementation.

To aid understanding, this specification can simply be read. To be a basis for model-driven
implementation, it should be applied to particular usage domains and application to example
usage domains will aid understanding.

The ontology is applied to a particular usage domain by adding SOA OWL class instances of
things in that domain. This is sometimes referred to as “populating the ontology”. In addition, an
application can add definitions of new classes and properties, can import other ontologies, and
can import the ontology OWL representation into other ontologies.

The ontology defines the relations between terms, but does not prescribe exactly how they
should be applied.4 The examples provided in this Technical Standard are describing one way in
which the ontology could be applied in practical situations. Different applications of the
ontology to the same situations would nevertheless be possible. The precise instantiation of the
ontology in particular practical situations is a matter for users of the ontology; as long as the
concepts and constraints defined by the ontology are correctly applied, the instantiation is valid.

1.4 Conformance

There are two kinds of applications that can potentially conform to this ontology. One is other
OWL based ontologies (typically extensions of the SOA ontology). The other is a non-OWL
application such as a meta model or a piece of software.

A conforming OWL application (derived OWL based ontology):

• Must conform to the OWL standard

• Must include (in the OWL sense) the whole of the ontology contained in Appendix A of
this Technical Standard

4 Explanations of what ontologies are and why they are needed can be found at for instance
http://ontology.buffalo.edu/bfo/BeyondConcepts.pdf and http://www-
ksl.stanford.edu/kst/what-is-an-ontology.html

• Can add other OWL constructs, including class and property definitions

• Can import other ontologies in addition to the SOA ontology

A conforming non-OWL application:

• Must include a defined and consistent transform to a non-trivial subset of the ontology
contained in Appendix A of this Technical Standard

• Can add other constructs, including class and property definitions

• Can leverage other ontologies in addition to the SOA ontology

1.5 Terminology

The words and phrases MUST, REQUIRED, SHALL, MUST NOT, SHALL, NOT, SHOULD,
RECOMMENDED, SHOULD NOT, NOT RECOMMENDED and MAY are used in this
Technical Standard with the meanings defined in IETF RFC 2119.

Furthermore the meaning word opaque5 is defined to indicate that any possible internal structure
of something is invisible to an external observer.

1.6 Typographical Conventions

Bold font is used for OWL class, property, and instance names where they appear in section text.
Bold Italic font is used to distinguish them in section headings.

Italic strings are used for emphasis and to identify the first instance of a word requiring
definition.

OWL definitions and syntax are shown in fixed-width font.

An unlabeled arrow in the illustrative UML diagrams means subclass.

1.7 Future Directions

It is anticipated that this will be a living document that will be updated as the industry evolves
and SOA concepts are refined. Future versions of this ontology may include additional core
concepts.

Also, this ontology can be used as a core for domain-specific ontologies that apply to the use of
SOA in particular sectors of commerce and industry. The Open Group does not currently plan to
develop such ontologies, but encourages other organizations to do so to meet their needs.

5 Used in the later definition of the concept Element.

2 System and Element

2.1 Introduction

System and Element are two of the core concepts of this ontology. Both are concepts that are
often used by practitioners, including the notion that systems have elements and that systems can
be hierarchically combined (systems of systems). What differs from domain to domain is the
specific nature of systems and elements, for instance an electrical system has very different
kinds of elements than an SOA system.

In the ontology only elements and systems within the SOA domain are considered. Some SOA
sub-domains use the term component rather than the term element. This is not contradictory, as
any component of an SOA system is also an element of that (composite) system.

This chapter describes the following classes of the ontology:

• Element

• System

In addition it defines the following properties:

• uses and usedBy

• represents and representedBy

2.2 The Element Class

 <owl:Class rdf:about="#Element">
 </owl:Class>

An element is an opaque entity that is indivisible at a given level of abstraction. The element has
a clearly defined boundary. The concept of element is captured by the Element OWL class,
which is illustrated in the figure below.

In the context of the SOA ontology we consider in detail only functional elements that belong to
the SOA domain. There are other kinds of Elements than members of the four named subclasses
(System, HumanActor, Task and Service) described later in this ontology. Examples of such
other kinds of Elements are things like software components or technology components (such as
Enterprise Service Bus implementations etc.)

2.3 The uses and usedBy Properties

 <owl:ObjectProperty rdf:about="#uses">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Element"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="usedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="uses"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

Elements may use other elements in various ways. In general the notion of some element using
another element is applied by practitioners for all of models, executables and physical objects.
What differs from domain to domain is the way in which such use is perceived.

An element uses another element if it interacts with it in some fashion. Interacts here is
interpreted very broadly ranging through for example an element simply being a member of
(used by) some system6, an element interacting with (using) another element7 in an ad hoc
fashion or even a strongly coupled dependency in a composition8. The uses property, and its
inverse usedBy, capture the abstract notion of an element using another. These properties

6 See later for a formal definition of the System class.
7 Such as a service, see later for a formal definition of the Service class.
8 See later for a formal definition of the Composition class.

capture not just transient relations. Instantiations of the property can include “uses at this
instant”, “has used”, and “may in future use”.

For the purposes of this ontology we have chosen not to attempt to enumerate and formally
define the multitude of different possible semantics of a uses relationship. We leave the semantic
interpretations to a particular sub-domain, application or even design approach.

2.4 Element - Organizational example

Using an organizational example, typical instances of Element are organizational units and
people. Whether to perceive a given part of an organization as an organizational unit or as the set
of people within that organizational unit is an important choice of abstraction level:

• Inside the boundary of the organizational unit we want to express the fact that an
organizational unit uses the people that are members of it. Note that the same person can in
fact be a member of (be used by) multiple organizational units.

• Outside the boundary the internal structure of an organizational unit must remain opaque to
an external observer, as the enterprise wants to be able to change the people within the
organizational unit within having to change the definition of the organizational unit itself.

This simple example expresses that some elements have an internal structure. In fact from an
internal perspective they are an organized collection of other simpler things (captured by the
System class defined below).

2.5 The System Class

 <owl:Class rdf:ID="System">
 <owl:disjointWith>
 <owl:Class rdf:ID="Task"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Service"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Element"/>
 </rdfs:subClassOf>
 </owl:Class>

A system is an organized collection of other things. Specifically things in a system collection are
instances of Element, each such instance being used by the system. The concept of system is
captured by the System OWL class, which is illustrated in the figure below.

This definition of System is heavily influenced by IEEE standard 1471: 2000, adopted by
ISO/IEC JTC1/SC7 as ISO/IEC 42010:2007, “Systems and Software Engineering --
Recommended practice for architectural description of software-intensive systems”.9

In the context of the SOA ontology we consider in detail only functional systems that belong to
the SOA domain. Note that a fully described instance of System should have by its nature (as a
collection) a uses relationship to at least one instance of Element.

Since System is a subclass of Element, all systems have a boundary and are opaque to an
external observer (black box view). This excludes from the System class structures that have no
defined boundary. From an SOA perspective this is not really a loss since all interesting SOA
systems do have the characteristic of being possible to perceive from an outside (consumer)
perspective. Furthermore having System as a subclass of Element allows us to naturally express
the notion of systems of systems – the lower level systems are simply elements used by the
higher level system.

At the same time as supporting an external view point (black box view, see above) all systems
must also support an internal view point (white box view) expressing how they are an organized
collection. As an example for the notion of a service this would typically correspond to a service
specification view versus a service realization view10.

It is important to realize that even though systems using elements express an important aspect of
the uses property it is not necessary to “invent” a system just to express that some element uses
another. In fact even for systems we may need to be able to express that they can use elements
outside their own boundary - though this in many cases will preferably be expressed not at the
system level, but rather by an element of the system using that external Element instance.

System is defined as disjoint with the Service and Task classes. Instances of these classes are
considered not to be collections of other things. System is specifically not defined as disjoint
with the HumanActor class since an organization is many cases is in fact just a particular kind of
system11.

9 This standard includes the following definitions:

• Architecture: The fundamental organization of a system embodied in its components, their relationships to each
other, and to the environment, and the principles guiding its design and evolution

• System: A collection of components organized to accomplish a specific function or set of functions. The term
system encompasses individual applications, systems in the traditional sense, subsystems, systems of systems,
product lines, product families, whole enterprises, and other aggregations of interest.

10 Similar to the way that SOAML defines services as having both a black box/specification part and a white
box/realization part.
11 We choose not to define a special intersection class to represent this fact.

2.6 System - Examples

2.6.1 Organizational example

Continuing the organizational example from above, we can now express that an organizational
unit as an instance of system has the people in it as members (and instances of element).

2.6.2 Service composition example

Using a service composition example, services A and B are instances of Element and the
composition of A and B is an instance of System (that uses A and B). It is important to realize
that the act of composing is different the composition as a thing – it is in the latter sense that we
are using the term composition here.

See also below for a formal definition of the concepts of service and service composition (and a
repeat of the example in that more precise context).

2.6.3 Car wash example

Consider a car wash business. The company as a whole is an organizational unit and can be
instantiated in the ontology in the following way:

• CarWashBusiness is an instance of System

• Joe (the owner) is an instance of Element and used by (owner of) CarWashBusiness

• Mary (the secretary) is an instance of Element and used by (employee of)
CarWashBusiness

• John (the pre-wash guy) is an instance of Element and used by (employee of)
CarWashBusiness

• Jack (the washing manager and operator) is an instance of Element and used by
(employee of) CarWashBusiness

2.7 The represents and representedBy Properties

 <owl:ObjectProperty rdf:about="#represents">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Element"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="representedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="represents"/>
 </owl:inverseOf>

 </owl:ObjectProperty>

The environment described by an SOA is intrinsically hierarchically composite12, in other words
the elements of SOA systems can be repeatedly composed to ever higher levels of abstraction.
One aspect of has already been addressed by the uses and usedBy properties in that we can use
these to express the notion of systems of systems. This is still a very concrete relationship
though, and does not express the concept of architectural abstraction. We find the need for
architectural abstraction in various places such as a role representing the people playing that
role, an organizational unit representing the people within it13, an architectural building block
representing an underlying construct14 and an Enterprise Service Bus representing the services
that are accessible through it15. The concept of such an explicitly changing view point, or level
of abstraction, is captured by the represents and representedBy properties illustrated in the figure
below.

It is important to understand the exact nature of the distinction between using an element E1 and
using another element (E2) that represents E1. If E1 changes then anyone using E1 directly
would experience a change but someone using E2 would not experience any change.

When applying the architectural abstraction via the represents property there are three different
architectural choices that can be made:

• An element represents another element in a very literal way, simply by hiding the
existence of that element and any changes to it. There will be a one-to-one relationship
between the instance of Element and the (different) instance of Element that it
represents. A simple real world example is the notion of a broker acting as an
intermediary between a seller (that does not wish to be known) and a buyer.

• An element represents a particular aspect of another element. There will be a many-to-
one relationship between many instances of Element (each of which represents a

12 See also Section 3.2 for a definition of the Composition class.
13 Subtly different from that same organizational unit using the people within it, as the represents relationship indicates
the organizational unit as a substitute interaction point.
14 For instance important to enterprise architects wanting to explicitly distinguish between constructs and building
blocks.
15 For instance relevant when explicitly modeling operational interaction and dependencies.

different aspect), and one (different) instance of Element. A simply real world example
is the notion that the same person can play (be represented by) many different roles.

• An element is an abstraction that can represent many other elements. There will be a one-
to-many relationship between one instance of Element (as an abstraction) and many
other instances of Element. A simple real world example is the notion of an architectural
blueprint representing an abstraction of many different buildings being built according to
that blueprint.

Note that in most cases an instance of Element will represent only one kind of thing16.

2.8 Examples

2.8.1 Organizational example

Expanding further on the organizational example, assume that a company desires to form a new
organizational unit O1. There are two ways of doing this:

• Define the new organization directly as a collection of people P1, P2, P3 and P4. This
means that the new organization is perceived to be a leaf in the organizational hierarchy,
and that any exchange of personnel means that its definition needs to change

• Define the new organization as a higher level organizational construct, joining together
two existing organizations O3 and O4. Coincidentally O3 and O4 between them may
have the same four people P1, P2, P3 and P4, but the new organization really doesn’t
know, and any member of O3 or O4 can be changed without needing to change the
definition of the new organization. Furthermore, any member of O3 is intrinsically not
working in the same organization as the members of O4 (in fact need not even be aware
of them) – contrary to the first option where P1, P2, P3 and P4 are all colleagues in the
same new organization.

In this way the abstraction aspect of the represents property induces an important difference in
the semantics of the collection defining the new organization. Any instantiation of the ontology
can and should use the represents and representedBy properties to crisply define the implied
semantics and lines of visibility/change.

2.8.2 Car wash example

Joe chooses to organize his business into two organizational units, one for the administration and
one for the actual washing of cars. This can be instantiated in the ontology in the following way:

• CarWashBusiness is an instance of System

• AdministrativeSystem is an instance of System

16 Specifically an instance of Element will typically represent instances of at most one of the classes System, Service,
Actor and Task (with the exception of the case where the same thing is both an instance of System and an instance of
Actor). See later sections for the definitions of Service, Actor and Task.

• Administration is an instance of Element that represents AdministrativeSystem (the
opaque organizational unit aspect, aka ignoring anything else about
AdministrativeSystem)

• CarwashBusiness uses (has organizational unit) Administration

• CarWashSystem is an instance of System

• CarWash is an instance of Element that represents CarWashSystem (the opaque
organizational unit aspect, aka ignoring anything else about CarWashSystem)

• CarWash is a member of CarWashBusiness

• Joe (the owner) is an instance of Element and now used by AdministrationSystem

• Mary (the secretary) is an instance of Element and now used by AdministrationSystem

• John (the pre-wash guy) is an instance of Element and now used by CarWashSystem

• Jack (the wash manager and operator) is an instance of Element and now used by
CarWashSystem

3 HumanActor and Task

3.1 Introduction

People, organizations, and the things they do are important aspects of SOA systems.
HumanActor and Task capture this as another set of core concepts of the ontology. Both are
concepts that are generic and have relevance outside the domain of SOA. For the purposes of
this SOA ontology we have chosen to give them specific scope in that tasks are intrinsically
atomic17 and human actors are restricted to people and organizations.

This chapter describes the following classes of the ontology:

• HumanActor

• Task

In addition if defines the following properties:

• does and doneBy

3.2 The HumanActor class

 <owl:Class rdf:about="#HumanActor">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Element"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:ID="Task"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Service"/>
 </owl:disjointWith>
 </owl:Class>

A human actor is a person or an organization18. The concept of human actor is captured by the
HumanActor OWL class, which is illustrated in the figure below.

17 Corresponding to for instance the BPMN 2.0 definition of Task.
18In principle this classification is not exhaustive as for example an animal might also be an actor. For the purposes of
this ontology only the person or organizations kinds of actors are described.

HumanActor is defined as disjoint with the Service, and Task classes. Instances of these classes
are considered not to be people or organizations. HumanActor is specifically not defined as
disjoint with System since an organization in many cases is in fact just a particular kind of
system19.

3.3 HumanActor - Examples

3.3.1 The uses and usedBy properties applied to HumanActor

In one direction a human actor can itself use things such as services, systems and other human
actors. In the other direction a human actor can for instance be used by another actor or by a
system (as an element within that system such as a human actor in a process)

3.3.2 The represents and representedBy properties applied to HumanActor

As mentioned in the introduction to this section, human actors are intrinsically part of systems
that instantiate service-oriented architectures. Yet in many cases as an element of an SOA
system we talk about not the specific person or organization, rather an abstract representation of
them that participates in processes, provides services etc. In other words we talk about elements
representing human actors.

As examples a broker (instance of HumanActor) may represent a seller (instance of
HumanActor) that wishes to remain anonymous, a role (instance of Element) may represent
(the role aspect of) multiple instances of HumanActor and an organizational unit (instance of
HumanActor) may represent the many people (all instances of HumanActor) that are part of it.

Note that we have chosen not to define a “role class”, as we believe that using Element with the
represents property is a more general approach which does not limit the ability to also define

19 We choose not to define a special intersection class to represent this fact.

role based systems. For all practical purposes there is simply a “role subclass” of Element, a
subclass that we have chosen not to define explicitly.

3.3.3 Organizational example

Continuing the organizational example from above, we can now express that P1 (John), P2
(Jack), P3 (Joe) and P4 (Mary) as instances of Element in fact are (people) instances of
HumanActor. We can also express (if we so choose) that all of O1 (CarWashBusiness), O3
(CarWash) and O4 (Administration) are (organization) human actors from an action perspective
at the same time that they are systems from a collection/composition perspective.

3.3.4 Car wash example

See section 8.1 for the complete organizational aspect of the car wash example.

3.4 The Task class

 <owl:Class rdf:about="#Task">
 <owl:disjointWith>
 <owl:Class rdf:ID="System"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="HumanActor"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Service"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Element"/>
 </rdfs:subClassOf>
 </owl:Class>

A task is an atomic action which accomplishes a defined result. Tasks are done by people or
organizations, specifically by instances of HumanActor20. The concept of task is captured by
the Task OWL class, which is illustrated in the figure below.

20 BPMN 2.0 defines task as follows: “A Task is an atomic Activity within a Process flow. A Task is used when the
work in the Process cannot be broken down to a finer level of detail. Generally, an end-user and/or applications are used
to perform the Task when it is executed.” For the purposes of the ontology we have added precision by formally
separating the notion of doing from the notion of performing. Tasks are (optionally) done by human actors, furthermore
(as instances of Element) tasks can use services that are performed by technology components (see details in the Chapter
4 definition of the Performs property; see also the example in Chapter 9).

Task is defined as disjoint with the System, Service, and HumanActor classes. Instances of these
classes are considered not to be atomic actions.

3.5 The does and doneBy Properties

 <owl:ObjectProperty rdf:about="#doneBy">
 <rdfs:domain rdf:resource="#Task"/>
 <rdfs:range rdf:resource="#HumanActor"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="does">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#doneBy"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:Class rdf:ID="Task">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="doneBy"/>
 </owl:onProperty>
 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >0</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#doneBy"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

Tasks are naturally thought of as being done by people or organizations. If we think of tasks as
being the actual things done, then the natural cardinality is that each instance of Task is done by
at most one instance of HumanActor21. On the other hand the same instance of HumanActor
can (over time) easily do more than one instance of Task. The does property, and its inverse
doneBy, capture the relation between a human actor and the tasks it does.

3.6 Task - Examples

3.6.1 The uses and usedBy properties applied to Task

In one direction the most common case of a task using another element is where an automated
task22 uses a service as its realization. In the other direction a task can for instance be used by a
system (as an element within that system such as a task in a process)

3.6.2 The represents and representedBy properties applied to Task

As mentioned in the introduction to this section, tasks are intrinsically part of SOA systems. Yet
in many cases as an element of an SOA system we talk about not the actual thing being done,
rather an abstract representation of it that is used as an element in systems, processes etc. In
other words we talk about elements representing tasks.

21 Due to the atomic nature of instances of Task we rule out the case where such an instance is done jointly by multiple
instances of Actor. The cardinality can be zero if someone chooses not the instantiate all possible actors.
22 In an orchestrated process, see Section 5 for the definition of process and orchestration

As a simple example an abstract activity in a process model (associated with a role) may
represent a concrete task (done by a person fulfilling that role). Note that due to the atomic
nature of a task it does not make sense to talk about many elements representing different
aspects of it.

3.6.3 Organizational example

Continuing the organizational example from above, we can now express which tasks that are
done by human actors (people) P1, P2, P3 and P4, and how those tasks can be elements in bigger
systems that describe things such as organizational processes. Section 5 will deal formally with
the concept of composition, including properly defining the concept of a process as one
particular kind of composition.

3.6.4 Car wash example

As an important part of the car wash system, John and Jack perform certain manual tasks
required for washing a car properly:

• Jack and John are instances of HumanActor

• WashWindows is an instance of Task and is done by John

• PushWashButton is an instance of Task and is done by Jack

4 Service, ServiceContract and ServiceInterface

4.1 Introduction

Service is another core concept of this ontology. It is a concept that is fundamental to SOA and
always used in practice when describing or engineering SOA systems, yet it is not easy to define
formally. The ontology is based on the following definition of service23:

“A service is a logical representation of a repeatable activity that has a specified outcome. It is
self-contained and is a ‘black box’ to its consumers.”

The word activity is here used in the general English language sense of the word, not in the
process specific sense of that same word (i.e. activities are not necessarily process activities).
The ontology purposefully omits “business” as an intrinsic part of the definition of service. The
reason for this is that the notion of business is relative to a person’s viewpoint – as an example,
one person’s notion of IT is another person’s notion of business (the business of IT). Service as
defined by the ontology is agnostic to whether the concept is applied to the classical notion of a
business domain or the classical notion of an IT domain.

Other current SOA specific definitions of the term service include:

• “A mechanism to enable access to one or more capabilities, where the access is provided
using a prescribed interface and is exercised consistent with constraints and policies as
specified by the service description” (from the [OASIS SOA] Reference Model)

• “A capability offered by one entity or entities to others using well-defined ‘terms and
conditions’ and interfaces” (from the [OMG SoaML] Specification)

Within the normal degree of precision of the English language, these definitions are not
contradictory; they are stressing different aspects of the same concept. All three definitions are
SOA specific though, and represent a particular interpretation of the generic English language
term service.

This chapter describes the following classes of the ontology:

• Service

• ServiceContract

• ServiceInterface

• InformationType

23 Corresponding to the official Open Group definition of the term, see
http://www.opengroup.org/soa/soa/def.htm#_Definition_of_SOA

In addition it defines the following properties:

• performs and performedBy

• hasContract and isContractFor

• involvesParty and isPartyTo

• specifies and isSpecifiedBy

• hasInterface and isInterfaceOf

• hasInput and isInputAt

• hasOutput and isOutputAt

4.2 The Service Class

 <owl:Class rdf:about="#Service">
 <owl:disjointWith>
 <owl:Class rdf:ID="System"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Task"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="HumanActor"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Element"/>
 </rdfs:subClassOf>
 </owl:Class>

A service is a logical representation of a repeatable activity that has a specified outcome. It is
self-contained and is a ‘black box’ to its consumers. The concept of service is captured by the
Service OWL class, which is illustrated in the figure below.

In the context of the SOA ontology we consider only SOA based services. Other domains, such
as Integrated Service Management, can have services that are not SOA based hence are outside
the intended scope of the SOA ontology.

Service is defined as disjoint with the System, Task and HumanActor classes. Instances of these
classes are considered not to be services themselves, even though they may provide capabilities
that can be offered as services.

4.3 The performs and performedBy Properties

 <owl:ObjectProperty rdf:ID="performs">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Service"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="performedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="performs"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

As a service itself is only a logical representation, any service is performed by something. The
something that performs a service must be opaque to anyone interacting with it, an opaqueness
which is the exact nature of the Element class. This concept is captured by the performs and
performedBy properties as illustrated in the figure above. This also captures the fact that services
can be performed by elements of other types than systems24.

24 This includes elements such as software components, actors and tasks

Note that the same instance of Service can be performed by many different instances of
Element. As long as the service performed is the same an external observer cannot tell the
difference25. Conversely any instance of Element may perform more than one service or none at
all.

4.3.1 Service consumers and service providers

Terminology used in an SOA environment often includes the notions of service providers and
service consumers. There are two challenges with this terminology:

• It does not distinguish between the contractual obligation aspect of consume/provide and
the interaction aspect of consume/provide. A contractual obligation does not necessarily
translate to an interaction dependency, if for no other reason than because the realization
of the contractual obligation may have been sourced to a third party.

• Consuming or providing a service is a statement that only makes sense in context –
either a contractual context or an interaction context. These terms are consequently not
well suited for making statements about elements and services in isolation.

The above are the reasons why the ontology has chosen not to adopt consume and provide as
core concepts, rather instead allows consume or provide terms used with contractual obligations
and/or interaction rules described by service contracts26. In its simplest form, outside the context
of a formal service contract, the interaction aspect of consuming and providing services may
even be expressed simply by saying that some element uses (consumes) a service or that some
element performs (provides) a service; see also the examples below.

4.4 Service - Examples

4.4.1 The uses and usedBy properties applied to Service

In one direction it does not really make sense to talk about a service that uses another element.
While the thing that performs the service might very well include the use of other elements (and
certainly will in the case of Service Composition), the service itself (as a purely logical
representation) does not use other elements.

In the other direction we find the most common of all interactions in an SOA environment, the
notion that some element uses a service by interacting with it. Note that from an operational
perspective this interaction actually reaches somewhat beyond the service itself by involving the
following typical steps:

• Picking the service to interact with27

• Picking an element that performs that service28

25 For contractual obligations, SLA’s etc. see the definition of the ServiceContract class in Section XYZ
26 See the definition of the ServiceContract class later in this chapter.
27 This statement is agnostic to whether this is done dynamically at runtime or statically at design and/or construct time
28 In a typical SOA environment this is most often done “inside” an Enterprise Service Bus

• Interacting with the chosen element (that performs the chosen) service29

4.4.2 The represents and representedBy properties applied to Service

Concepts such as service mediations, service proxies, Enterprise Service Bus’s etc. are natural to
those practitioners that describe and implement the operational aspects of SOA systems. From an
ontology perspective all of these can be captured by some other element representing the service
– a level of indirection that is critical when we do not want to bind operationally to a particular
service endpoint, rather want to preserve loose coupling and the ability to switch embodiments
as needed. Note that by leveraging the represents and representedBy properties in this fashion
we additionally encapsulate the relatively complex operational interaction pattern that was
described in the section above (picking the service, picking an element that performs the service
and interacting with that chosen element).

While a service being represented by something else is quite natural it is harder to imagine what
the service itself might represent. To some degree we have already captured the fact that a
service represents any embodiment of it, only we have chosen the use the performs and
performedBy properties to described this rather than the generic represents and representedBy
properties. As a consequence we do not expect practical applications of the ontology to have
services represent anything.

4.4.3 Exemplifying the difference between doing a task and performing a service

The distinction between a human actor performing a task and an element (technology, human
actor or other) performing a service is important. The human actor doing the task has the
responsibility that it gets done, yet may in fact in many cases leverage some service to achieve
that outcome:

• John is an instance of HumanActor

• WashWindows is an instance of Task and is done by John

• SoapWater is an instance of Service

• WaterTap is an instance of Element

• WaterTap performs SoapWater

• John uses SoapWater (to do WashWindows)

Note how clearly SoapWater does not do WashWindows, nor does WaterTap do WashWindows.

4.4.4 Car wash example

Joe offers two different services to his customers, a basic wash and a gold wash. This can be
instantiated in the ontology in the following way (subset to the part relevant for these two
services):

29 Often also facilitated by an Enterprise Service Bus

• GoldWash is an instance of Service

• BasicWash is an instance of Service

• CarWash performs both BasicWash and GoldWash

• WashManager represents both BasicWash and GoldWash (i.e. is the interaction point
where customers can order services as well as pay for them)

Note the purposeful use of WashManager representing both services. This is due to Joe deciding
that in his car wash customers are not to interact with the washing machinery directly, rather
must instead interact with whomever (human actor) is fulfilling the role of wash manager.

4.5 The ServiceContract Class

 <owl:Class rdf:about="#ServiceContract">
 </owl:Class>

In many cases specific agreements are needed in order to define how to use a service. This can
either be because of a desire to regulate such use or can simply be because the service will not
function properly unless interaction with it is done in a certain sequence. A service contract
defines the terms, conditions and interaction rules that interacting participants must agree to
(directly or indirectly). A service contract is binding on all participants in the interaction,
including the service itself and the element that provides it for the particular interaction in
question. The concept of service contract is captured by the ServiceContract OWL class, which
is illustrated in the figure below.

4.5.1 The interactionAspect and legalAspect Datatype Properties

 <owl:DatatypeProperty
rdf:about="#interactionAspect">
 <rdfs:domain rdf:resource="#ServiceContract"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#legalAspect">
 <rdfs:domain rdf:resource="#ServiceContract"/>
</owl:DatatypeProperty>

 <owl:Class rdf:about="#ServiceContract">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty
rdf:ID="legalAspect"/>
 </owl:onProperty>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:DatatypeProperty
rdf:ID="legalAspect"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>

 <owl:DatatypeProperty
rdf:ID="interactionAspect"/>
 </owl:onProperty>
 <owl:maxCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty
rdf:about="#interactionAspect"/>
 </owl:onProperty>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

Service contracts explicitly regulate both the interaction aspects (see the hasContract and
isContractFor properties) and the legal agreement aspects (see the involvedParty and isPartyTo
properties) of using a service. The two types of aspects are formally captured by defining the
interactionAspect and legalAspect datatype properties on the ServiceContract class. Note that
the second of these attributes, the legal agreement aspects, includes concepts such as Service
Level Agreements.

If desired it is possible as an architectural convention to split the interaction and legal aspects
into two different service contracts. Such choices will be up to any application using this
ontology.

4.6 The hasContract and isContractFor Properties

 <owl:ObjectProperty rdf:about="#isContractFor">
 <rdfs:domain rdf:resource="#ServiceContract"/>
 <rdfs:range rdf:resource="#Service"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasContract">
 <owl:inverseOf>
 <owl:ObjectProperty

rdf:about="#isContractFor"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:Class rdf:about="#ServiceContract">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty

rdf:ID="isContractFor"/>
 </owl:onProperty>
 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

The hasContract property, and its inverse isContractFor, capture the abstract notion of a
service having a service contract. Anyone wanting the use a service must obey the interaction
aspects (as defined in the interactionAspect datatype property) of any service contract applying
to that interaction. In that fashion the interaction aspects of a service contract are context
independent; they capture the defined or intrinsic ways in which a service may be used.

By definition any service contract must be a contract for at least one service. It is possible that
the same service contract can be a contract for more than one service; for instance in cases where
a group of services share the same interaction pattern or where a service contract (legally30)
regulates the providing and consuming multiple services.

4.7 The involvesParty and isPartyTo Properties

 <owl:ObjectProperty rdf:about="#isPartyTo">
 <rdfs:range

rdf:resource="#ServiceContract"/>
 <rdfs:domain rdf:resource="#HumanActor"/>
 </owl:ObjectProperty>

30 See the involvesParty and isPartyTo properties.

 <owl:ObjectProperty rdf:ID="involvesParty">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="isPartyTo"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

In addition to the rules and regulations that intrinsically apply to any interaction with a service
(the interaction aspect of service contracts captured in the interactionAspect datatype property)
there may be additional legal agreements that apply to certain human actors and their use of
services. The involvesParty property, and its inverse isPartyTo, capture the abstract notion of a
service contract specifying legal obligations between human actors in the context of using the
one or more services that the service contract is a contract for.

While the involvesParty and isPartyTo properties define the relationships to human actors
involved in the service contract, the actual legal obligations on each of these human actors is
defined in the legalAspect datatype property on the service contract. This includes the ability to
define who is the provider and who is the consumer from a legal obligation perspective.

There is a many to many relationship between service contracts and human actors. A given
human actor may be party to none, one or many service contracts. Similarly a given service
contract may involve none, one or multiple human actors (none in the case where that particular
service contract only specifies the interactionAspect datatype property. Note that it is important
we allow for sourcing contracts where there is a legal agreement between human actor A and
human actor B (both of which are party to a service contract), yet human actor B has sourced the
performing of the service to human actor C (aka human actor C performs the service in question,
not human actor B).

The involvesParty property together with the legalAspect datatype property on
ServiceContract capture not just transient obligations. They include the ability to express “is
obliged to at this instant”, “was obliged to”, and “may in future be obliged to”.

4.8 The Effect Class

 <owl:Class rdf:about="#Effect">
 <owl:disjointWith>
 <owl:Class rdf:ID="ServiceInterface"/>
 </owl:disjointWith>
 </owl:Class>

Interacting with something performing a service has effects. These comprise the outcome of that
interaction, and are how a service (through the element that performs it) delivers value to its
consumers. The concept of effect is captured by the Effect OWL class, which is illustrated in the
figure below.

Note that the Effect class purely represents how results or value is delivered to someone
interacting with a service. Any possible internal side effects are explicitly not covered by the
Effect class.

Effect is defined as disjoint with the ServiceInterface class31. Interacting with a service through
its service interface can have an outcome or provide a value (an instance of Effect) but the
service interface itself does not constitute that outcome or value.

4.9 The specifies and isSpecifiedBy Properties

 <owl:ObjectProperty rdf:about="#specifies">
 <rdfs:domain rdf:resource="#ServiceContract"/>
 <rdfs:range rdf:resource="#Effect"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#isSpecifiedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#specifies"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:Class rdf:ID="Effect">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

31 The ServiceInterface class is defined later in the document.

 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty

rdf:ID="isSpecifiedBy"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:about="#ServiceContract">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="specifies"/>
 </owl:onProperty>
 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

While a service intrinsically has an effect every time someone interacts with it, in order to trust
the effect to be something in particular, the effect needs to be specified as part of a service
contract. The specifies property, and its inverse isSpecifiedBy, capture the abstract notion of a
service contract specifying a particular effect as part of the agreement for using a service. Note
that the specified effect can apply to both the interactionAspect datatype property (simply
specifying what will happen when interacting with the service according to the service contract)
and the legalAspect datatype property (specifying a contractually promised effect).

Anyone wanting a guaranteed effect of the interaction with a given service must ensure that the
desired effect is specified in a service contract applying to that interaction. By definition any
service contract must specify at least one effect. In the other direction an effect must be an effect
of at least one service contract; this represents that fact that we have chosen only to formalize
those effects that are specified by service contracts (and not all intrinsic effects of all services).

4.10 ServiceContract - Examples

4.10.1 Service Level Agreements

A service level agreement on a service has been agreed upon by organizations A and B32. This
can be represented in the ontology as follows:

• A and B are instances of HumanActor

• Service is an instance of Service

• ServiceContract is an instance of ServiceContract

• ServiceContract isContractFor Service

• ServiceContract involvesParty A

• ServiceContract involvesParty B

• The legalAspect datatype property on ServiceContract describes the Service Level
Agreement

4.10.2 Service sourcing

Organizations A and B have agreed on B providing certain services for A, yet B wants to source
the actual delivery of those services to third party C. This can be represented in the ontology as
follows:

• A, B and C are instances of HumanActor

• Service is an instance of Service

• C provides Service

• ServiceContract is an instance of ServiceContract

• ServiceContract isContractFor Service

• ServiceContract involvesParty A

• ServiceContract involvesParty B

• The legalAspect datatype property on ServiceContract describes the legal obligation of
B to provide Service for A

4.10.3 Car wash example

See section 8.2 for the complete Service and ServiceContract aspects of the car wash example.

32 It is important to realize that a Service Level Agreement always has a context of the parties that have agreed to it,
involving at a minimum one legal “consumer” and one legal “provider”

4.11 The ServiceInterface Class

 <owl:Class rdf:about="#ServiceInterface">
 <owl:disjointWith>
 <owl:Class rdf:ID="Service"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="ServiceContract"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Effect"/>
 </owl:disjointWith>
 </owl:Class>

An important characteristic of services is that they have simple, well-defined interfaces. This
makes it easy to interact with them, and enables other elements to use them in a structured
manner. A service interface defines the way in which other elements can interact and exchange
information with a service. This concept is captured by the ServiceInterface, class which is
illustrated in the figure below.

The concept of an interface is in general well understood by practitioners, including the notion
that interfaces define the parameters for information going in and out of them when invoked.
What differs from domain to domain is the specific nature of how an interface is invoked and
how information is passed back and forth. Service interface are typically, but not necessarily,
message based (to support loose coupling). Furthermore service interfaces are always defined
independently from any service implementing them (to support loose coupling and service
mediation).

From a design perspective interfaces may have more granular operations or may be composed of
other interface. We have chosen to stay at the concept level and not include such design aspects
in the ontology.

ServiceInterface is defined as disjoint with the Service, ServiceContract and Effect classes.
Instances of these classes are considered not to define (by themselves) the way in which other
elements can interact and exchange information with a service. Note that that there is a natural
synergy between ServiceInterface and the interactionAspect datatype property on
ServiceContract as the latter defines any multi-interaction and/or sequencing constraints on
how to use a service through interaction with its service interfaces.

4.11.1 The Constraints Datatype Property

 <owl:DatatypeProperty rdf:about="#constraints">
 <rdfs:domain
rdf:resource="#ServiceInterface"/>
</owl:DatatypeProperty>

 <owl:Class rdf:about="#ServiceInterface">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty

rdf:ID="constraints"/>
 </owl:onProperty>
 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty

rdf:about="#constraints"/>
 </owl:onProperty>
 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

The Constraints datatype property on ServiceInterface captures that notion that there can be
constraints on the allowed interaction such as only certain value ranges allowed on given

parameters. Depending on the nature of the service and the service interface in question these
constraints may be defined either formally or informally33.

4.12 The hasInterface and isInterfaceOf Properties

 <owl:ObjectProperty rdf:about="#hasInterface">
 <rdfs:domain rdf:resource="#Service"/>
 <rdfs:range rdf:resource="#ServiceInterface"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isInterfaceOf">
 <owl:inverseOf>
 <owl:ObjectProperty

rdf:about="#hasInterface"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:Class rdf:about="#Service">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty

rdf:ID="hasInterface"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

The hasInterface property, and its inverse isInterfaceOf, capture the abstract notion of a
service having a particular service interface.

In one direction any service must have at least one service interface; anything else would be
contrary to the definition of a service as a representation of a repeatable activity that has a
specified outcome and is a ‘black box’ to its consumers. In the other direction there can be
service interfaces that are not yet interfaces of any defined services. Also the same service
interface can be an interface of multiple services. The latter does not mean that these services or

33 The information case being relevant at a minimum for certain types of real world services.

the same, nor even that they have the same effect, it only means that it is possible to interact with
all these services in the manner defined by the service interface in question.

4.13 The InformationType Class

<owl:Class rdf:ID="InformationType">
 </owl:Class>

A service interface can enable another element to give information to or receive information
from a service (when it uses that service); specifically the types of information given or received.
The concept of information type is captured by the InformationType OWL class, which is
illustrated in the figure below.

In any concrete interaction through a service interface the information types on that interface are
instantiated by information items, yet for the service interface itself it is the types that are
important. Note that the constraints datatype property on ServiceInterface, if necessary, can be
used to express constraints on allowed values for certain information types.

4.14 The hasInput and isInputAt Properties

 <owl:ObjectProperty rdf:ID="hasInput">
 <rdfs:domain
rdf:resource="#ServiceInterface"/>
 <rdfs:range rdf:resource="#InformationType"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isInputAt">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="hasInput"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

The hasInput property, and its inverse isInputAt, capture the abstract notion of a particular type
of information being given when interacting with a service through a service interface.

Note that there is a many to many relationship between service interfaces and input information
types. A given information type may be input at many service interfaces or none at all. Similarly
a given service interface may have many information types as input or none at all. It is important
to realize that some services may have only inputs (triggering an asynchronous action without a
defined response) and other services may have only outputs (elements performing these services
execute independently yet may provide output that is used by other elements).

4.15 The hasOutput and isOutputAt Properties

 <owl:ObjectProperty rdf:ID="hasOutput">
 <rdfs:domain
rdf:resource="#ServiceInterface"/>
 <rdfs:range rdf:resource="#InformationType"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isOutputAt">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="hasOutput"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

The hasOutput property, and its inverse isOutputAt, capture the abstract notion of a particular
type of information being received when interacting with a service through a service interface.

Note that there is a many to many relationship between service interfaces and output information
types. A given information type may be output at many service interfaces or none at all.
Similarly a given service interface may have many information types as output or none at all. It
is important to realize that some services may have only inputs (triggering an asynchronous
action without a defined response) and other services may have only outputs (elements
performing these services execute independently yet may provide output that is used by other
elements).

4.16 Examples

4.16.1 Interaction sequencing

A service contract on a service expresses that the services interfaces on that services must be
used in a certain order:

• Service is an instance of Service

• ServiceContract is an instance of ServiceContract

• ServiceContract isContractFor Service

• X is an instance of ServiceInterface

• X isInterfaceOf Service

• Y is an instance of ServiceInterface

• Y isInterfaceOf Service

• The interactionAspect datatype property on ServiceContract describes that X must be
used before Y may be used.

4.16.2 Car wash example

See section 8.2 for the complete ServiceInterface aspect of the car wash example.

5 Composition and its subclasses

5.1 Introduction

The notion of Composition is a core concept of SOA. Services can be composed of other
services. Processes are composed of human actors, tasks and possibly services. Experienced
SOA practitioners intuitively apply composition as an integral part of architecting, designing and
realizing SOA systems, in fact any well structured SOA environment is intrinsically composite
in the way services and processes support business capabilities. What differs from practitioner to
practitioner is the exact nature of the composition, the composition pattern being applied.

This chapter describes the following classes of the ontology:

• Composition (as a subclass of System)

• ServiceComposition (as a subclass of Composition)

• Process (as a subclass of Composition)

In addition if defines the following datatype property:

• compositionPattern

5.2 The Composition Class

 <owl:Class rdf:about="#Composition">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="System"/>
 </rdfs:subClassOf>
 </owl:Class>

A composition is the result of assembling a collection of things for a particular purpose. Note in
particular that we have purposefully distinguished between the act of composing and the
resulting composition as a thing, and that it is in the latter sense we are using the concept of
composition here. The concept of composition is captured by the Composition OWL class,
which is illustrated in the figure below.

Being intrinsically (also) an organized collection of other, simpler things, the Composition class
is a subclass of the System class. While a composition is always also a system, a system is not
necessarily a composition in that it is not necessarily a result of anything – note here the
difference between a system producing a result and the system itself being a result. A perhaps
more tangible difference between a system and a composition is that the latter must have
associated with it a specific composition pattern that renders the composition (as a whole) as the
result when that composition pattern is applied to the elements used in the composition. One
implication of this is that there is not a single member of a composition that represents (as an
element) that composition as a whole, in other words the composition itself is not one of the
things being assembled. On the other hand composition is in fact a recursive concept (as are all
subclasses of System) – being a system, a composition is also an element which means that it
can be used by a higher level composition.

In the context of the SOA ontology we consider in detail only functional compositions that
belong to the SOA domain. Note that a fully described instance of Composition must have by
its nature a uses relationship to at least one instance of Element34. Again (as for System) it is
important to realize that a composition can use elements outside its own boundary.

Since Composition is a subclass of Element, all compositions have a boundary and are opaque
to an external observer (black box view). The composition pattern in turn is the internal view
point (white box view) of a composition. As an example for the notion of a service composition
this would correspond to the difference between seeing the service composition as an element
providing a (higher level) service or seeing the service composition as a composite structure of
(lower level) services.

5.2.1 The compositionPattern Datatype Property

 <owl:DatatypeProperty
rdf:about="#compositionPattern">
 <rdfs:domain rdf:resource="#Composition"/>
 </owl:DatatypeProperty>

34 It need not necessarily have more than one as the composition pattern applied may be for instance simply a
transformation.

 <owl:Class rdf:about="#Composition">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:DatatypeProperty
rdf:ID="compositionPattern"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty
rdf:ID="compositionPattern"/>
 </owl:onProperty>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

As discussed above any composition must have associated with it a specific composition pattern,
that pattern describing the way in which a collection of elements is assembled to a result. The
concept of a composition pattern is captured by the compositionPattern datatype property. Note
that even though certain kinds of composition patterns are of special interest within SOA (see
below), the compositionPattern data type property may take any value as long as that value
describes how to assemble the elements used by the composition that it is associated with.

5.2.1.1 The Orchestration composition pattern

One kind of composition pattern that has special interest within SOA is an Orchestration. In an
orchestration (a composition whose composition pattern is an orchestration), there is one
particular element used by the composition that oversees and directs the other elements. Note
that the element that directs an orchestration by definition is different than the orchestration
(Composition instance) itself.

Think of an orchestrated executable workflow as an example of an orchestration. The workflow
construct itself is one of the elements being used in the composition, yet is different from the
composition itself – the composition itself is the result of applying (executing) the workflow on
the processes, human actors, services etc. that are orchestrated by the workflow construct.

A non IT example is the foreman of a road repair crew. If the foreman chooses to exert direct
control over the tasks done by his crew than the resulting composition becomes an orchestration
(with the foreman as the director and provider of the composition pattern). Note that under other
circumstances, with a different team composition model, a road repair crew can also act as a
collaboration or a choreography35.

As the last example clearly shows, using an orchestration composition pattern is not a guarantee
that “nothing can go wrong”. That would in fact depend on the orchestration director’s ability to
handle exceptions.

5.2.1.2 The Choreography composition pattern

Another kind of composition pattern that has special interest within SOA is a Choreography. In
a choreography (a composition whose composition pattern is a choreography) the elements used
by the composition interact in a non-directed fashion, yet with each autonomous member
knowing and following a pre-defined pattern of behavior for the entire composition.

Think of a process model as an example of a choreography. The process model does not direct
the elements within it, yet does provide a predefined pattern of behavior that each such element
is expected to conform to when “executing”.

5.2.1.3 The Collaboration composition pattern

A third kind of composition pattern that has special interest within SOA is a Collaboration. In a
collaboration (a composition whose composition pattern is a collaboration) the elements used by
the composition interact in a non-directed fashion, each according to their own plans and
purposes without a pre-defined pattern of behavior. Each element simply knows what it has to do
and does it independently, initiating interaction with the other members of the composition as
applicable on its own initiative. This means that there is no overall pre-defined “flow” of the
collaboration, though there may be a run time “observed flow of interactions”.

A good example of a collaboration is a work meeting. There is no script for how the meeting
will unfold and only after the meeting has concluded can we describe the sequence of
interactions that actually occurred.

5.3 The orchestrates and orchestratedBy Properties

 <owl:ObjectProperty
rdf:about="#orchestratedBy">
 <rdfs:domain rdf:resource="#Composition"/>
 <rdfs:range rdf:resource="#Element"/>

35 See below for definitions of collaboration and choreography.

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#orchestrates">
 <owl:inverseOf>
 <owl:ObjectProperty

rdf:ID="orchestratedBy"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:Class rdf:about="#Composition">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:ObjectProperty

rdf:ID="orchestratedBy"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >0</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty

rdf:ID="orchestratedBy"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:about="#Element">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >0</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty

rdf:ID="orchestrates"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:ObjectProperty

rdf:about="#orchestrates"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

As defined above an orchestration has one particular element that oversees and directs the other
elements used by the composition. This type of relationship is important enough that we have
chosen to capture the abstract notion in the orchestrates property and its inverse
orchestratedBy.

In one direction a composition has at most one element that orchestrates it, and the cardinality
can only be 1 if in fact the composition pattern of that composition is an orchestration. In the
other direction an element can orchestrate at most one composition which then must have an
orchestration as its composition pattern.

5.4 The ServiceComposition Class

 <owl:Class rdf:ID="ServiceComposition">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Composition"/>
 </rdfs:subClassOf>
 </owl:Class>

A key SOA concept is the notion of service composition, the result of assembling a collection of
services in order to perform a new higher level service. The concept of service composition is
captured by the ServiceComposition OWL class, which is illustrated in the figure below.

As a service composition is the result of assembling a collection of services,
ServiceComposition is naturally a subclass of Composition.

A service composition may, and typically will, add logic (or even “code”) via the composition
pattern. Note that a service composition is not the new higher level service itself36, rather
performs (as an element) that higher level service.

5.5 The Process Class

 <owl:Class rdf:ID="Process">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Composition"/>
 </rdfs:subClassOf>
 </owl:Class>

Another key SOA concept is the notion of process. A process is a composition whose elements
are composed into a sequence or flow of activities and interactions with the objective of carrying
out certain work.37 The concept of process is captured by the Process OWL class, which is
illustrated in the figure below.

36 Due to the System and Service classes being disjoint
37 This definition is consistent with for instance the BPMN 2.0 definition of what a process is.

Elements in process compositions can be things like human actors, tasks, services, other
processes etc. A process always adds logic via the composition pattern, the result is more than
the parts. According to their collaboration pattern, processes can be:

• Orchestrated: When a process is orchestrated in a Business Process Management System
then the resulting IT artifact is in fact an orchestration, i.e. has an orchestration collaboration
pattern. This type of process is often called a “Process Orchestration”.

• Choreographed: E.g. a process model representing a defined pattern of behavior. This type
of process is often called a “Process Choreography”.

• Collaborative: No (pre)defined pattern of behavior (model), the process represents observed
(executed) behavior

5.6 Service Composition and Process examples

5.6.1 Simple service composition example

Using a service composition example, services A and B are instances of Service and the
composition of A and B is an instance of ServiceComposition (that uses A and B):

• A and B are instances of Service

• X is an instance of ServiceComposition

• X uses both A and B (composes them according to its service composition pattern)

Note that there are various ways in which the service composition pattern can compose A and B,
all of which are relevant in one situation or another. For example interfaces of X may or may not
include some subset of the interfaces of A and B. Furthermore the interfaces of A and B may or
may not be also be (directly) invocable without going through X – that is a matter of the service
contracts and/or access policies apply to the A and B. Finally X may also use other elements that
are not services at all (examples are composition code, adaptors etc.).

5.6.2 Process example

Using a process example, tasks T1 and T2 are instances of Task, roles R1 and R2 are instances
of Element and the composition of T1, T2, R1 and R2 is an instance of Process (that uses T1,
T2, R1 and R2):

• T1 and T2 are instances of Task

• R1 and R2 are instances of Element

• Y is an instance of Process

• Y uses all of T1, T2, R1 and R2 (composes them according to its process composition
pattern)

5.6.3 Process and service composition example

Elaborating on the process example above, if T1 is done using service S then:

• S is an instance of Service

• T1 uses S

Note that depending on the particular design approach chosen (and the resulting composition
pattern), Y may or may not use S directly. This depends on whether Y carries the binding
between T1 and S or whether that binding is encapsulated in T1.

5.6.4 Car wash example

See section 8.3 for the Process aspect of the car wash example.

6 Policy

6.1 Introduction

Policies, the human actors defining them and the things that they apply to are important aspects
of any system, certainly also SOA systems with their many different interacting elements.
Policies can apply to any element in a system. The concept of Policy is captured by the Policy
class and its relationships to the HumanActor and Thing classes.

This chapter describes the following classes of the ontology:

• Policy

In addition it defines the following properties:

• appliesTo and isSubjectTo

• setsPolicy and isSetBy

6.2 The Policy Class

 <owl:Class rdf:about="#Policy">
 <owl:disjointWith>
 <owl:Class rdf:ID="InformationType"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="ServiceInterface"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Element"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Effect"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Event"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="ServiceContract"/>

 </owl:disjointWith>
 </owl:Class>

A policy is a statement of direction that a human actor may intend to follow or may intend that
another human actor should follow. Knowing the policies that apply to something makes it
easier and more transparent to interact with that something. The concept of policy captured by
the Policy OWL class, which is illustrated in the figure below.

Policy as a concept is generic and has relevance outside the domain of SOA. For the purposes of
this SOA ontology it has not been necessary or relevant to restrict the generic nature of the
Policy class itself. The relationships between Policy and HumanActor are of course bound by
the SOA specific restrictions that have been applied on the definition of HumanActor.

From a design perspective policies may have more granular parts or may be expressed and made
operational through specific rules. We have chosen to stay at the concept level and not include
such design aspects in the ontology.

Policy is distinct from all other concepts in this ontology hence the Policy class is defined as
disjoint with all other defined classes. In particular Policy is disjoint with ServiceContract.

While policies may apply to service contracts38, or conversely be referred to by service contracts
as part of the terms, conditions and interaction rules that interacting participants must agree to,
service contracts are themselves not policies as they do not describe an intended course of
action.

6.3 The appliesTo for and isSubjectTo Properties

 <owl:ObjectProperty rdf:ID="appliesTo">
 <rdfs:domain rdf:resource="#Policy"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isSubjectTo">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="appliesTo"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

Policies can apply to other things than elements; in fact policies can apply to anything at all,
including other policies39. The appliesTo property, and its inverse isSubjectTo, capture the
abstract notion that a policy can apply to any instance of Thing. Note specifically that Element
is a subclass of Thing, hence policies by inference can apply to any instance of Element.

In one direction a policy can apply to zero40, one or more instances of Thing. Note that having a
policy apply to multiple things does not mean that these things are the same, only that they are
(partly) regulated by the same intent. In the other direction an instance of Thing may be subject
to zero, one or more policies. Note that where multiple policies apply to the same instance of
Thing this is often because the multiple policies are from multiple different policy domains
(such as security and governance).

The SOA ontology does not attempt to enumerate different policy domains; such policy focused
details are deemed more appropriate for a policy ontology. It is worth pointing out that a
particular policy ontology may also restrict (if desired) the kinds of things that policies can apply
to.

6.4 The setsPolicy and isSetBy Properties

 <owl:ObjectProperty rdf:about="#setsPolicy">
 <rdfs:domain rdf:resource="#HumanActor"/>
 <rdfs:range rdf:resource="#Policy"/>
 </owl:ObjectProperty>

38 Such as security policies on who may change a given service contract.
39 For instance a security policy might specify which actors that have the authority to change some other policy.
40 In the case where a policy has been formulated but not yet explicitly applied to anything.

 <owl:ObjectProperty rdf:ID="isSetBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="setsPolicy"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

The setsPolicy property, and its inverse isSetBy, capture the abstract notion that a policy can be
set by one or more human actors.

In one direction a policy can be set by zero41, one or more human actors. Note specifically that
some policies are set by multiple human actors in conjunction, meaning that all these human
actors need to discuss and agree on the policy before it can take effect42. In the other direction a
human actor may potentially set (or be part of setting) multiple policies.

The SOA ontology purposefully separates the setting of the policy itself and the application of
the policy to one or more instances of Thing. In some cases these two acts may be inseparable
bound together, yet in other cases they are definitely not43.

Also while a particular case of interest for this ontology is that where the provider of a service
has a policy for the service, a policy for a service is not necessarily owned by the provider. For
example, government food and hygiene regulations (a policy that is law) cover restaurant
services independently of anything desired or defined by the restaurant owner.

6.5 Examples

6.5.1 Car wash example

See section 8.4 for the Policy aspect of the car wash example.

41 In the case where actors setting the policy by choice are not defined or captured.
42 A real world example would be two parents in conjunction setting policies for acceptable child behavior.
43 One such example is an overall compliance policy that is formulated at the corporate level yet applied by the
compliance officer in each line of business.

7 Event

7.1 Introduction

Events and the elements that generate or respond to them are important aspects of any event
emitting system. SOA systems are in fact often event emitting, hence event is defined as a
concept in the SOA ontology.

This chapter describes the following classes of the ontology:

• Event

In addition it defines the following properties:

• generates and generatedBy

• respondsTo and respondedToBy

7.2 The Event Class

 <owl:Class rdf:about="#Event">
 </owl:Class>

An event is something that happens, to which an element may choose to respond. Events can be
responded to be any element. Similarly events may be generated (emitted) by any element.
Knowing the events generated or responded to by an element makes it easier and more
transparent to interact with that element. Note that some events may occur whether generated or
responded to by an element or not. The concept of event captured by the Event OWL class,
which is illustrated in the figure below.

Event as a concept is generic and has relevance to the domain of SOA as well as many other
domains. For the purposes of this ontology, Event is used in its generic sense.

From a design perspective events may have more granular parts or may be expressed and made
operational through specific syntax or semantics. We have chosen to stay at the concept level
and not include such design aspects in the ontology.

7.3 The generates and generatedBy Properties

 <owl:ObjectProperty rdf:ID="generates">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Event"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="generatedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="generates"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

Events can, but need not necessarily, be generated by elements. The generates property, and its
inverse generatedBy, capture the abstract notion that an element generates an event.

Note that the same event may be generated by many different elements. Similarly the same
element may generate many different events.

7.4 The respondsTo and respondedToBy Properties

 <owl:ObjectProperty rdf:ID="respondsTo">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Event"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="respondedToBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="respondsTo"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

Events can, but need not necessarily, be responded to by elements. The respondsTo property,
and its inverse respondedToBy, capture the abstract notion that an element responds to an
event.

Note that the same event may be responded to by many different elements. Similarly the same
element may respond to many different events.

8 Complete car wash example

This chapter contains the complete car wash example that has been used in parts throughout the
definitional chapters of the ontology.

8.1 The organizational aspect

Joe the owner chooses to organize his business into two organizational units, Administration and
CarWash:

• CarWashBusiness is an instance of both HumanActor and System

• Administration is an instance of HumanActor (organizational unit)

• CarWash is an instance of HumanActor (organizational unit)

• CarWashBusiness uses (has organizational units) Administration and CarWash

• AdministrativeSystem is an instance of System

• Administration represents AdministrativeSystem

• CarWashSystem is an instance of System

• CarWash represents CarWashSystem

And using well defined roles within each organization:

• Owner (role) is an instance of Element and is used by AdministrativeSystem

• Joe is an instance of HumanActor and is represented by (has role) Owner

• Secretary (role) is an instance of Element and is used by AdministrativeSystem

• Mary is an instance of HumanActor and is represented by (has role) Secretary

• PreWashGuy (role) is an instance of Element and is used by CarWashSystem

• John is an instance of HumanActor and is represented by (has role) PreWashGuy

• WashManager (role) is an instance of Element and is used by CarWashSystem

• WashOperator (role) is an instance of Element and is used by CarWashSystem

• Jack is an instance of HumanActor and is represented by (has roles) both
WashManager and WashOperator

8.2 The washing services

Joe offers two different services to his customers, a basic wash and a gold wash:

• GoldWash is an instance of Service

• BasicWash is an instance of Service

• CarWash performs both BasicWash and GoldWash

• WashManager represents both BasicWash and GoldWash (i.e. is the interaction point
where customers can order services as well as pay for them)

In return for payment, Joe’s BasicWash service cleans the car of customer Judy:

• Judy is an instance of HumanActor (the customer)

• BasicWashContract is an instance of ServiceContract

• BasicWash has contract BasicWashContract

• CleanCar is an instance of Effect

• BasicWashContract specifies CleanCar as its effect

• BasicWashContract involves parties CarWashBusiness and Judy and specifies that Judy
(as the legal consumer) pays CarWashBusiness (as the legal provider) $10 for the one
consumption of BasicWash with the effect of (one) CleanCar. Note that BasicWash is
actually performed by CarWash and not by the legal provider CarWashBusiness – in
this particular example CarWash happens to be a member of CarWashBusiness but
such need not always be the case, CarWash could have been some 3rd party provider.

• Judy uses WashManager (in order to invoke the BasicWash service)

Note that in this example Judy does not interact with the (abstract) BasicWash service directly,
rather she interacts with the WashManager that represents the service. This is due to Joe
deciding that in his car wash customers are not to interact with the washing machinery directly.

8.2.1 The interfaces to the washing services

The way to interact with the car wash services is simple for the customer; he or she simply gives
money to the wash manager and asks to have to the car washed using one of the two available
wash services. Due to the fact that Joe has decided to interpose the wash manager between the
customer and the washing machine, the customer actually never interacts with the wash services
themselves. We could have chosen to formally define a proxy service provided by the wash
manager but have omitted that level of formally in this real world example.

The wash manager in turn does interact with the wash services through their interfaces defined
as follows:

• WashingMachineInterface is an instance of ServiceInterface

• TypeOfWash is an instance of InformationType

• WashingMachineInterface has input TypeOfWash

• BasicWash has interface WashingMachineInterface

• GoldWash has interface WashingMachineInterface

Note how both washing service in fact have the same service interface. Even though Joe has
chosen to offer basic wash and gold wash as two different services, both are in effect done by the
same washing machine (one simply has to choose the type of wash when initializing the washing
machine).

8.3 The washing processes

An important part of the car wash system is the car washing process itself:

• AutomatedCarWashProcess is an instance of both Process and Orchestration

• Wash is an instance of Task and is used by AutomatedCarWashProcess

• Dry is an instance of Task and is used by AutomatedCarWashProcess

• AutomatedCarWash is an instance of Element (the automated washing machine) and
represents AutomatedCarWashProcess (encapsulates the process) as well as directs
AutomatedCarWashProcess

• CarWashProcess is an instance of Process and is used by (part of) CarWashSystem (no
need to create an explicit opaque building block)

• AutomatedCarWash is used by CarWashProcess (automated activity in the process)

• WashWindows is an instance of Task and is done by John

• PreWash is an instance of Element, represents WashWindows and is used by
CarWashProcess (logical activity in the process)

• PrewashGuy is a member of CarWashProcess (role in the process)

• PushWashButton is an instance of Task and is done by Jack

• InitiateAutomatedWash is an instance of Element, represents PushWashButton and is
used by CarWashProcess (logical activity in the process)

• WashOperator is a member of CarWashProcess (role in the process)

8.4 The washing policies

Joe sets a payment up-front policy for the washing services:

• PaymentUpFront is an instance of both Policy

• PaymentUpFront is set by Joe

• PaymentUpFront applies to both GoldWash and BasicWash

Note how the PaymentUpFront policy enhances the service contract BasicWashContract. While
BasicWashContract only specifies that Judy has to pay $10 for one consumption of the
BasicWash service, the PaymentUpFront policy makes it specific that payment has to happen
up front. One of the advantages of separating policy from service contract is that the payment
policy can be changed independently of the service contract. For instance at some later point in
time Joe may decide that recurring customer need not pay up-front, and can institute this change
in policy without changing anything else related to CarWashBusiness.

9 Internet purchase example

Jill is purchasing a new TV on the internet through on online sales site:

• Jill is an instance of Actor (person)

• PurchaseTV is an instance of Task

• Jill does PurchaseTV

• BuyTVOnline is an instance of Service

• PurchaseTV uses BuyTVOnline

OnlineTVSales is the company that is selling TV’s:

• OnlineTVSales is an instance of Actor (organization)

• BuyTVOnlineContract is an instance of ServiceContract (and describes how to interact
with BuyTVOnline as well as the legal contract between TV buyer and OnlineTVSales)

• BuyTVOnline has contract BuyTVOnlineContract

• OnlineTVSales is party to BuyTVOnlineContract

• Jill is party to BuyTVOnlineContract

The online site is implemented using web site software:

• OnlineSalesComponent is an instance of Element

• OnlineSalesComponent performs OnlineTVSales

• SelectWhatToBuyComponent is an instance of Element

• SelectWhatToBuyService is an instance of Service

• SelectWhatToBuyComponent performs SelectWhatToBuyService

• PayComponent is an instance of Element

• PayService is an instance of Service

• PayComponent performs PayService

• OnlineSalesComponent is also an instance of ServiceComposition

• OnlineSalesComponent uses SelectWhatToBuyService and PayService

To complete the purchase transaction, Jill needs to pay for the purchase and then the TV will
be delivered:

• PayForTV is an instance of Task

• Jill does PayForTV

• PayForTV uses BuyTVOnline

• DeliverTV is an instance of Task

• OnlineTVSales does DeliverTV

• OnlineTVSalesProcess is an instance of Process

• OnlineTVSalesProcess uses Jill, OnlineTVSales, PurchaseTV, PayForTV and
DeliverTV

A The OWL Definition of the Ontology

The ontology is available online at:

NEED LOCATION FOR PUBLISHED VERSION OF OWL DEFINITION – TO BE
COMPLETED AS PART OF THE EDITING PROCESS

and is reproduced below.

<?xml version="1.0"?>

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-
schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns="http://www.semanticweb.org/ontologies/2010/
01/core-soa.owl#"

xml:base="http://www.semanticweb.org/ontologies/20
10/01/core-soa.owl"
>

 <!-- ontology -->

 <owl:Ontology rdf:about=""/>

 <!-- classes -->

 <owl:Class rdf:ID="Event">

 <owl:disjointWith>
 <owl:Class rdf:ID="Policy"/>
 </owl:disjointWith>
 </owl:Class>

 <owl:Class rdf:ID="InformationType">
 <owl:disjointWith>
 <owl:Class rdf:about="#Policy"/>
 </owl:disjointWith>
 </owl:Class>

 <owl:Class rdf:ID="ServiceCompostion">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Composition"/>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:ID="Effect">
 <owl:disjointWith>
 <owl:Class rdf:about="#Policy"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="ServiceInterface"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty
rdf:ID="isSpecifiedBy"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Task">
 <owl:disjointWith>
 <owl:Class rdf:ID="Policy"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="System"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="HumanActor"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Service"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Element"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="doneBy"/>
 </owl:onProperty>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >0</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:ObjectProperty
rdf:about="#doneBy"/>

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:about="#System">
 <owl:disjointWith>
 <owl:Class rdf:ID="Task"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Service"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Element"/>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:about="#Service">
 <owl:disjointWith>
 <owl:Class rdf:ID="System"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Task"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="HumanActor"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="ServiceInterface"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Element"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>

 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty
rdf:ID="hasInterface"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:about="#Policy">
 <owl:disjointWith>
 <owl:Class rdf:ID="InformationType"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="ServiceInterface"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Element"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Effect"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Event"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="ServiceContract"/>
 </owl:disjointWith>
 </owl:Class>

 <owl:Class rdf:about="#HumanActor">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Element"/>
 </rdfs:subClassOf>

 <owl:disjointWith>
 <owl:Class rdf:ID="Task"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Service"/>
 </owl:disjointWith>
 </owl:Class>

 <owl:Class rdf:about="#Composition">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="System"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:DatatypeProperty
rdf:ID="compositionPattern"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty
rdf:ID="compositionPattern"/>
 </owl:onProperty>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>

 <owl:maxCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:ObjectProperty
rdf:ID="orchestratedBy"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >0</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty
rdf:ID="orchestratedBy"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:about="#ServiceInterface">
 <owl:disjointWith>
 <owl:Class rdf:ID="Service"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="ServiceContract"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Effect"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Policy"/>
 </owl:disjointWith>
 <rdfs:subClassOf>

 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty
rdf:ID="constraints"/>
 </owl:onProperty>
 <owl:maxCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:DatatypeProperty
rdf:about="#constraints"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:about="#Element">
 <owl:disjointWith>
 <owl:Class rdf:ID="Policy"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >0</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty
rdf:ID="orchestrates"/>

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:maxCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:ObjectProperty
rdf:about="#orchestrates"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:about="#ServiceContract">
 <owl:disjointWith>
 <owl:Class rdf:ID="ServiceInterface"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="Policy"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty
rdf:ID="legalAspect"/>
 </owl:onProperty>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>

 <owl:maxCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:maxCardinality>
 <owl:onProperty>
 <owl:DatatypeProperty
rdf:ID="legalAspect"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty
rdf:ID="interactionAspect"/>
 </owl:onProperty>
 <owl:maxCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty
rdf:about="#interactionAspect"/>
 </owl:onProperty>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty
rdf:ID="isContractFor"/>

 </owl:onProperty>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="specifies"/>
 </owl:onProperty>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int
"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:about="#Process">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Composition"/>
 </rdfs:subClassOf>
 </owl:Class>

 <!-- object properties -->

 <owl:ObjectProperty rdf:about="#isPartyTo">
 <rdfs:range rdf:resource="#ServiceContract"/>
 <rdfs:domain rdf:resource="#HumanActor"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="involvesParty">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="isPartyTo"/>

 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#orchestratedBy">
 <rdfs:domain rdf:resource="#Composition"/>
 <rdfs:range rdf:resource="#Element"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#orchestrates">
 <owl:inverseOf>
 <owl:ObjectProperty
rdf:ID="orchestratedBy"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#isContractFor">
 <rdfs:domain rdf:resource="#ServiceContract"/>
 <rdfs:range rdf:resource="#Service"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasContract">
 <owl:inverseOf>
 <owl:ObjectProperty
rdf:about="#isContractFor"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#setsPolicy">
 <rdfs:domain rdf:resource="#HumanActor"/>
 <rdfs:range rdf:resource="#Policy"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isSetBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="setsPolicy"/>
 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="generates">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Event"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="generatedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="generates"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#represents">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Element"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="representedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="represents"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasInput">
 <rdfs:domain
rdf:resource="#ServiceInterface"/>
 <rdfs:range rdf:resource="#InformationType"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isInputAt">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="hasInput"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#doneBy">
 <rdfs:domain rdf:resource="#Task"/>
 <rdfs:range rdf:resource="#HumanActor"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="does">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#doneBy"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#specifies">
 <rdfs:domain rdf:resource="#ServiceContract"/>
 <rdfs:range rdf:resource="#Effect"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#isSpecifiedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#specifies"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="appliesTo">
 <rdfs:domain rdf:resource="#Policy"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isSubjectTo">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="appliesTo"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasInterface">
 <rdfs:domain rdf:resource="#Service"/>
 <rdfs:range rdf:resource="#ServiceInterface"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isInterfaceOf">
 <owl:inverseOf>
 <owl:ObjectProperty
rdf:about="#hasInterface"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="respondsTo">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Event"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="respondedToBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="respondsTo"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="performs">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Service"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="performedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="performs"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#uses">
 <rdfs:domain rdf:resource="#Element"/>
 <rdfs:range rdf:resource="#Element"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="usedBy">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="uses"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasOutput">
 <rdfs:domain
rdf:resource="#ServiceInterface"/>
 <rdfs:range rdf:resource="#InformationType"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isOutputAt">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="hasOutput"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 <!-- datatype properties -->

 <owl:DatatypeProperty rdf:about="#legalAspect">
 <rdfs:domain rdf:resource="#ServiceContract"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#constraints">
 <rdfs:domain
rdf:resource="#ServiceInterface"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty
rdf:about="#compositionPattern">
 <rdfs:domain rdf:resource="#Composition"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty
rdf:about="#interactionAspect">
 <rdfs:domain rdf:resource="#ServiceContract"/>
 </owl:DatatypeProperty>

</rdf:RDF>

B Class Relationship matrix

This appendix contains a class relationship matrix that illustrates the class to class relationships
intrinsic in the OWL definitions of the SOA ontology. Each column X and each row Y
corresponds to an OWL class. A relation appears in cell (X,Y) if and only if class X is part of the
domain and class Y is part of the range of the corresponding OWL property.

THE TABLE BELOW IS A PLACEHOLDER, NEEDS TO BE FILLED OUT (CONTENTS
WILL BE DETERMINISTICALLY DERIVED FROM THE OWL DEFINITIONS)

 System Actor Task Service ServiceCo

ntract
ServiceInt

erface
Compo
sition

Proc
ess

Policy Event Effec
t

Inform
ation
Type

System

Actor

Task

Service

ServiceCo
ntract

ServiceInt
erface

Compositi
on

Process

Policy

Event

Effect

Informati
on Type

C Relationship to other SOA standards

.A joint paper that has been written that positions the SOA Ontology with other architectural
standards. The “Navigating the SOA Open Standards Landscape Around Architecture” joint
white paper from OASIS, OMG, and The Open Group was written to help the SOA
community at large navigate the myriad of overlapping technical products produced by these
organizations with specific emphasis on the “A” in SOA; i.e., Architecture.

This joint white paper explains and positions standards for SOA reference models,
ontologies, reference architectures, maturity models, modeling languages, and standards
work on SOA governance. It outlines where the works are similar, highlights the strengths of
each body of work, and touches on how the work can be used together in complementary
ways.. It is also meant as a guide to users of these specifications for selecting the technical
products most appropriate for their needs, consistent with where they are today and where
they plan to head on their SOA journeys.

While the understanding of SOA and SOA Governance concepts provided by these works is
similar, the evolving standards are written from different perspectives. Each specification
supports a similar range of opportunity, but has provided different depths of detail for the
perspectives on which they focus. Therefore, although the definitions and expressions may
differ somewhat, there is agreement on the fundamental concepts of SOA and SOA
Governance.

The following is a summary of the positioning and guidance on the specifications:

• The OASIS Reference Model for SOA (SOA RM) is the most abstract of the
specifications positioned. It is used for understanding of core SOA concepts

• The Open Group SOA Ontology extends, refines, and formalizes some of the core
concepts of the the SOA RM. It is used for understanding of core SOA concepts and
facilitates a model-driven approach to SOA development.

• The OASIS Reference Architecture for SOA Foundation is an abstract, foundation
reference architecture addressing the ecosystem viewpoint for building and
interacting within the SOA paradigm. It is used for understanding different elements
of SOA, the completeness of SOA architectures and implementations, and
considerations for cross ownership boundaries where there is no single authoritative
entity for SOA and SOA governance. http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-
ra-pr-01.pdf

• The Open Group SOA Reference Architecture is a layered architecture from
consumer and provider perspective with cross cutting concerns describing these
architectural building blocks and principles that support the realizations of SOA. It is
used for understanding the different elements of SOA, deployment of SOA in

enterprise, basis for an industry or organizational reference architecture, implication
of architectural decisions, and positioning of vendor products in SOA context.
http://www.opengroup.org/projects/soa-ref-arch/uploads/40/19713/soa-ra-public-
050609.pdf

• The Open Group SOA Governance Framework is a governance domain reference
model and method. It is for understanding SOA governance in organizations. The
OASIS Reference Architecture for SOA Foundation contains an abstract discussion
of governance principles as applied to SOA with particular application to governance
across boundaries. http://www.opengroup.org/projects/soa-
governance/uploads/40/19263/SOA_Governance_Architecture_v2.4.pdf

• The Open Group SOA Integration Maturity Model (OSIMM) is a means to assess an
organization’s maturity within a broad SOA spectrum and define a roadmap for
incremental adoption. It is used for understanding the level of SOA maturity in an
organization. http://www.opengroup.org/projects/osimm/uploads/40/19756/
OSIMM_v2.1_6-04-09_Review.doc

• The Object Management Group SoaML Specification supports services modeling
UML extensions. It can be seen as an instantiation of a subset of the Open Group RA
used for representing SOA artifacts in UML. http://www.omg.org/cgi-bin/doc?ad/08-11-
01

End‐to‐end

Enterprise
Reference
Architecture
(ERA)

September 2007, v0.1 SOA‐enabled Business Transformation Framework (SBTF) 33

Abstract/ generic/ conceptual

Concrete/ Specific/ physical

Narrow
Architecture
pattern

Comprehen
sive
Full
enterprise
solution
architecture

Generic

Industry

Conceptual

Enterprise

PartialPatterns

MVC
pattern

ESB pattern
implemented
using IBM
WebSphere
stack

ESB pattern

Realised
Enterprise e2e
Solution
Architecture

End‐to‐end

OASIS
SOA RA

The Open Group
SOA Ontology

HTNG SOA

ARTs SOA
Blueprint

OASIS
SOA RM

The Open Group
SOA RA

Architecture Pattern
(MVC, for example)

Narrow
coverage

End-to-end
coverage

Partial Reference Architecture covering
specific subsystem such as presentation,
integration or security

End-to-end Technical
Reference
Architecture covering
only IT aspects of a
solution

End-to-end Reference
Architecture covering
business and IT aspect of a
solution

The Open Group
Governance
Framework

Fortunately, there is a great deal of agreement on the foundational core concepts across the
many independent specifications and standards for SOA. This could be best explained by
broad and common experience of users of SOA and its maturity in the marketplace. It also
provides assurance that investing in SOA-based business and IT transformation initiatives
that incorporate and use these specifications and standards helps to mitigate risks that might
compromise a successful SOA solution.

It is anticipated that future work on SOA standards may consider the positioning in this
paper to reduce inconsistencies, overlaps, and gaps between related standards and to ensure
that they continue to evolve in as consistent and complete a manner as possible.

Glossary
BPMN Business Process Modeling Notation

OWL Web Ontology Language

HTTP Hypertext Transfer Protocol

SOA Service-Oriented Architecture

SoaML Service-Oriented Architecture Modeling Language

Index (NOT COMPLETE - NEEDS UPDATE)
composition12, 19, 43
Composition class..26, 29, 34, 37, 40,

43, 48, 49, 51, 55
OWL...8
OWL-DL ..9
OWL-Full ...9
OWL-Lite ...9
properties

has component13, 16, 20, 22, 23,
27, 28, 32, 33, 34, 39, 41, 46

has policy................................53

is component of ... 13, 16, 20, 22,
23, 27, 28, 30, 32, 33, 34, 38,
39, 41, 44, 45, 46

is policy for................. 53, 56, 57
is policy of.............................. 53

service orientation 8
SOA.. 8
System class 12, 13, 14, 15, 17, 18,

21, 24, 28, 29, 36, 37, 42, 50, 54
systems ... 12

