Guide to Security Patterns

Draft 1, 5 April 2002

for restricted peer review

[image: image26.wmf]Secure Communication

Protected

System

Protected

System

THREATS

Protection

Proxy (PP)

PP

PP

PP

Protection

Proxy (PP)

Sec Assoc

Sec Assoc

© April 2002, The Open Group
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owners.

Open Group Publication
Guide to Security Patterns

ISBN: x-xxxxx-xxx-x
Document Number: xxxx

Comments relating to the material contained in this draft document should be submitted by email to i.dobson@opengroup.org
Contents

Chapter 1: Introduction

Chapter 2: The Nature of Patterns

Chapter 3: Patterns Template

Chapter 4: The System of Security Patterns

Chapter 5: Security Patterns Catalog

Chapter 6: Glossary

1. Introduction
Why Security Patterns?
There are many Security Architecture documents around. They have variously appeared and rapidly become out of date for different reasons but mostly because either they do not allow a sufficiently flexible architectural model to keep up with the evolving needs of a business's information technology, or they limit the scope of what the business needs in other ways.
We see the need these days is to provide software architects and designers with a way to design their own architectures. As the proverb says: “It’s better to teach a man how to fish than to give him fish”. In this context it is better to explain how to use a proven methodology – design patterns – to design security architectures than to offer architectures that can then be used to fit a need.
What are Patterns?
A "pattern" may be defined as a named nugget of instructive information that captures the essential structure and insight of a successful family of proven solutions to a recurring problem that arises within a certain context and system of forces.

This intensive definition embraces all the essential features that architectural patterns represent.

Design patterns are about how to construct a design, given a statement of a problem and a set of forces that act upon it. In the information technology environment, they give programming architects and systems designers a method for defining reusable solutions to design problems without ever having to talk about or write program code - i.e. tghey are truly program-language independent.

Origins of Design Patterns Technique
The design patterns approach is generally acknowledged to have been established as a valuable architectural design technique by Christopher Alexander. He was a buildings architect, who devised this approach in his design work, and described it in his 1979 book "The Timeless Way of Building", Oxford University Press, 1979. ISBN 0-19-502402-8. This book provides an introduction to the ideas behind the use of patterns, and Alexander followed it with two further books (A Pattern Language, and The Oregon Experiment) in which he expanded on his description of the features and benefits of a patterns approach to architecture.

As befits all good techniques, it was not long after Alexander's book first appeared that software architects and system designers saw many parallels between architectural issues in buildings and in software, so it was natural tghat they should adopt the same design patterns approach.
Many scientific papers and books have been published on design patterns since Alexander's 1979 book first appeared. One book that is perhaps regarded as a landmark for software architects is "Design Patterns: Elements of Reusable Object-Oriented Software", by Erich Gamma, Richard Helm, Ralph Johnson & John Vlissides, published by Addison Wesley in October 1994. These authors are affectionately known by their more politically-oriented disciples as the "Gang of Four". Their book describes simple and elegant solutions to specific problems in object-oriented software design. It further established design patterns as a proven method for doing software architecture.
Mature software design patterns, like patterns in any other discipline, capture solutions that have developed and evolved over time. Hence they are not the designs that people tend to generate initially. They reflect many iterations of untold redesign and recoding, as developers have struggled for greater reuse and flexibility in their software. Design patterns capture these solutions in a succinct and easily applied form.

The purpose of using patterns is to create a re-usable product. Each pattern is useful in and of itself. The combination of patterns assists those responsible for implementing security to produce sound, consistent designs that include all the operations required, and so assure that the resulting implementations can be completed efficiently and will perform effectively.

Writing good design patterns is hard. Or putting it another way, no-one has yet been known to write a good design pattern without it taking them significant effort to get right. We recommend reading the "gang of four" book to gain an appreciation of just how much expertise and skill is required to do it well. Equally, the flaws in inadequate patterns become evident when they are put to real use; unfortunately there is no such thing as a self-checking facility for a design pattern.
Today, the design patterns technique for designing software architecture to suit any organization's business needs is firmly established, and many design patterns for software components have been published. The good ones have been proven as "good" because they have stood the test of time through repeated flaw-free use.
Objectives of this Book
While many software design patterns have been written and published, very few exist that are specifically targeted for use in information security architecture. This Guide to Security Patterns (GSP) presents a set of security patterns which fill this space.

The aim of this book is to provide a sufficient set of security patterns as will enable software architects and system designers, or systems software designers or architects working in the security domain, who

· have a specific problem in a specific context,
and

· want to develop a security architecture for themselves,
and

· would like to know how The Open Group's security experts would approach (but not solve) their task,

to produce security architecture results that are sound.

There is a huge installed base of computing systems throughout the world. Business increasingly depends on the secure operation of their computing systems, without which they could not continue. It is the task of information security architects and systems designers to design and upgrade computer systems to incorporate increasingly more sophisticated security mechanisms, so as to provide the increasing levels of protection that business needs. In a world of diverse computing systems, security architects and systems designers need sound guidance rather than prescribed language-dependent solutions, which they can adapt to work out their own solutions that will optimize integration within their existing systems, as well as provide a framework for continued evolution to match the changing needs of their business.

What is a Secure System?
It is useful to remind ourselves of what a secure system is, to emphasise the often conflicting forces that need to be resolved in providing one.

A secure system is a protected system in which access to specific features and information within that system is available to all those who have been given permission to gain access, and is refused to all those not having permission. Access is controlled by a process of authorization.

Key features of a protected system are encapsulated in the following diagrams:

Diagram 1: Basic Elements of a Protected System

· A protected system is an Isolated System with a Guard.

· It has an Inside and an Outside, with an Interface separating them.

· The system's Resources are all Inside

· The Requestors wanting to access the Resources are all Outside

· A Guard provides a Protection Mechanism that allows only authorized Requestors to access the system's Resources

· There is only one way into the protected system, and that is through the Guard

· That Guard enforces an Access Policy to decide if a Requestor is authorized, and allows or denies access accordingly.

Diagram 2: Essential Components in a Guard

Looking at the role of the Guard more closely:

· Requestors present their credentials to a Protection Mechanism

· The system has on the Inside a repository defining Policy for what credentials should allow access

· A Policy Decision Point decides whether the Requestor's credentials satisfy the system's Policy credentials

· A Policy Enforcement Point enforces the decision, either allowing access or denying access.

Diagram 3: More than One Guard

If there is more than one Guard in the protected system, each enforcing their protection at different levels, then they must co-operate consistently to ensure:

· that Guard-1 enforces an access Policy that is acceptable to Guard-2, so that Guard-2 can enforce its access Policy based on credentials it can trust are passed uncorrupted from Guard-1

· that no Requestor inappropriately bypasses Guard-1 to reach Guard-2

· that neither Guard divulges the Requestor's credentials or other authentication information beyond their own function boundary.

Techniques for handling these issues include trusted proxies, delegation, and authorization proxies. Requestors - naturally - want to present their credentials (sign on) only once. It is clear that no single solution provides all the answers to the issues that arise, and some solutions produce opposing effects. This is especially true at the Customer (Requestor) and Supplier (Protected System) level, where modern business requires protection systems to facilitate - not obstruct and delay - access by authorized users, yet still deny them visibility of what they are not authorized to see.

In this situation, the forces that operate on the problem space need to be resolved at an architectural level into a set of consistent solutions, where the trade-offs and decisions are clearly identified.

2. The Nature of Patterns
A comprehensive source for information about patterns, and a bibliography of reference publications, is available on the World Wide Web at http://hillside.net/patterns/

2.1 Minimal Definition for a Pattern
Having defined (in Chapter 1) a "pattern" as

a named nugget of instructive information that captures the essential structure and insight of a successful family of proven solutions to a recurring problem that arises within a certain context and system of forces,

we can construct the essential content and features of a pattern definition.

Minimally, it must contain:

· Pattern Name
This provides a memorable and descriptive way to refer to the pattern
This formal process to name and describe a pattern captures the key elements of knowledge about it that will remind programmers who will use it of its intent, and attaches a label to it that makes it easy to recognize.

· The problem
A description of the contexts and situations in which the pattern is useful.
This is essentially the design rationale, describing under what conditions this pattern should be used

· The solution
A specific but flexible approach to solving the problem.
This provides the program structure for the pattern, and also serves as a language-independent description of a typical implementation.

· Consequences
Implementing the solution described in the pattern will require making specific trade-offs among competing forces. These trade-offs and their consequences are described here.

2.2 How to Recognize you have Identified a Pattern
Bob Blakley recommends the following reality-check:

· It is a solution to a problem in a context

· You can tell the problem solver what to do in order to solve the problem

· It is a mature, proven solution

· It is something you did not invent yourself

· The solution builds on the insight of the problem solver, and can be implemented many times without ever being the same twice

· The solution cannot be formalized or automated; if it can be formalized or automated, then do that instead of writing it as a pattern

· It has a dense set of interacting forces that are independent of the forces in other patterns

· Writing it down is hard work. If it is easy to write, it may not be a pattern, or you have not thought hard enough about the forces that bear down on the situation.

2.3 How to Check you have Defined a Good Pattern

Doug Lea
 has identified the following checklist for verifying that you have written a good pattern.

· Describes a single kind of problem.

· Describes the context in which the problem occurs.

· Describes the solution as a constructable software entity.

· Describes design steps or rules for constructing the solution.

· Describes the forces leading to the solution.

· Describes evidence that the solution optimally resolves forces.

· Describes details that are allowed to vary, and those that are not.

· Describes at least one actual instance of use.

· Describes evidence of generality across different instances.

· Describes or refers to variants and subpatterns.

· Describes or refers to other patterns that it relies upon.

· Describes or refers to other patterns that rely upon this pattern.

· Relates to other patterns with similar contexts, problems, or solutions.

Above all, a good pattern is one that has been proven to be effective by repeated use, with experiences of usage resulting in appropriate refinements to its definition, within the context of the problem it addresses.

3. Patterns Template
The following template is used for the Patterns defined in the Security Patterns Catalog in this Guide

It is similar to the template defined by the "Gang of Four" authors of the reference publication [GoF94].

Pattern Name (Scope, Purpose)[***]
The pattern's name conveys the essence of the pattern succinctly. A good name is vital, because it will become part of your design vocabulary. Stars are used as in "A Pattern Language" to characterize the level of confidence in the quality of the pattern definition.
Intent

A short statement that answers the following questions:

· What does the design pattern do?

· What is its rationale and intent?

· What particular design issue or problem does it address?

Also Known As

Other well-known names for the pattern, if any.

Motivation

A scenario that illustrates a design problem and how the structures in the pattern solve the problem. The scenario will help understanding of the more abstract description of the pattern that follows.

Applicability

· What are the situations in which the design pattern can be applied?

· What are examples of design problems that the pattern can address?

· How can you recognize these situations?

· What forces must be reconciled when solving the problem?

An applicable situation should be included in the description.

Structure

A diagram illustrating the structure of the solution.

Participants

The entities participating in the design pattern, and their responsibilities.

· Participant Name
Responsibility for what

Collaborations

How the participants collaborate to carry out their responsibilities.

· [Collaboration]
Consequences

· How does the pattern support its objectives?

· What are the trade-offs and results of using the pattern?

· What aspect of system structure does it let you vary independently?

· A consequence bullet.
Description of consequence

Implementation

What pitfalls, hints, or techniques should you be aware of when implementing the pattern? Are there language-specific issues?

· An implementation Bullet.
Description of Bullet

Known Uses

Examples of the pattern found in real systems. We include at least two examples from different domains.

Related Patterns

· What design patterns are closely related to this one?

· What are the important differences?

· With which other patterns should this one be used?

4. The System of Security Patterns
The Patterns Catalog in this Guide provides a coherent set of Security Pattern definitions that can be used to provide a security framework for building a secure system.

	Pattern Name
	Included in this draft

	Entity Patterns:
	

	Protected System
	yes

	Policy Enforcement Point
	yes

	Resource
	

	Subject Descriptor
	yes

	Authority
	

	Structural Patterns:
	

	Policy
	

	Load Balancer
	

	Trusted Proxy
	

	Authenticating Impersonator
	

	Identity-Asserting Impersonator
	

	Delegate
	

	Authorizing Proxy
	

	Login Tunnel
	

	Interaction Patterns:
	

	Secure Communication
	yes

	Secure Association
	yes

	Secure Session
	

	Security Negotiation
	

	Key Token Exchange
	

	Security Context
	yes

	Behavioral Patterns:
	

	Deter
	

	Delay
	

	Detect
	

	Prevent
	

	Available System Patterns:
	

	Recoverable Component
	yes

	Checkpointed System
	yes

	Cold Standby
	yes

	Comparator-Checked Fault Tolerant System
	yes

	Journaled Component
	yes

	Hot Standby
	yes

	External Storage
	yes

	Replicated System
	yes

	Error Detection/Correction
	yes

5. Security Patterns Catalog
The template used for the Information Security design patterns in this catalog is similar to that defined by the "Gang of Four" authors in their referenced publication [GoF94], as described in Chapter 3.

The design patterns presented in this draft are known to be incomplete in many cases, particularly in the Collaboration and Known uses sections. They include writer’s comments to highlight where significant revision is anticipated will be needed. However, they are considered as providing sufficient information for initial peer review by selected design patterns experts.

In addition, we believe there are at least 1 and perhaps several more patterns required to complete an initial set for this information security design patterns catalog.

Entity Patterns

Protected System

Intent

Structure a system so that all access by clients to resources is mediated by a guard which enforces a security policy.

Also Known As

Reference Monitor, Enclave

Motivation

It is often desirable or imperative to protect system resources against unauthorized access. In order to do this it is necessary to evaluate requests to determine whether or not they are permitted by a policy. All requests must be evaluated against the policy; otherwise, unchecked requests might violate the policy.

To Assure that all access requests are evaluated against the system’s policy, a policy enforcement mechanism with the following properties must exist:

· The mechanism must be invoked on every access request.

· The mechanism must not be bypassable.

· The mechanism must correctly evaluate the policy.

· The mechanism’s correct functioning must not be corruptible.

· The previous four properties must be verifiable to some stated level of confidence.

This pattern includes three elements:

· an “outside”, from which all access requests originate

· an “inside”, in which all resources are located

· a correct, verifiable, incorruptible, non-bypassable “guard”, which enforces policy on all requests from “outside” for resources “inside”

This system decomposition is illustrated below:

[image: image1.wmf]resources

guard

clients

Applicability

Use this pattern whenever access to resources must be granted selectively based on a policy. When designing secure systems by refinement, Protected System should be considered a candidate for the starting point of the refinement.

Structure

[image: image2.wmf]Client

ResourceMgr

request(resource)

Guard

Proxy

PEP

Participants

· Client

· submits access requests to guard

· Guard

· mediates all requests to access protected resources

· evaluates each access request against a policy; grants requests which are permitted by the policy denies requests which are forbidden by the policy

· cannot be bypassed (no direct access by Clients to ResourceMgr is possible)

· ResourceMgr

· services requests for access to protected resources

Collaborations

· Clients submit access requests to the Protected System’s Guard.

· The Guard determines whether access requests should be granted or denied.

· If the Guard determines that an access request should be denied, it discards the request and returns. If the Guard determines that the access request should be granted, it passes the request on to the Resource Manager for fulfillment and returns the response to the Client.

[image: image3.wmf]Client

Guard

ResourceMgr

request

denied

response

request

response

check system

policy

Consequences

Use of the Protected System pattern:

Isolates resources: The system’s resources are isolated by the guard from any accesses which do not conform to the security policy enforced by the guard.

Loosens coupling between security policy and Resource Manager implementation: Resource Manager implementations do not need to be aware of security policy and do not have to be modified when security policy changes, since the policy is enforced by the Guard.

Improves system assurability: Only the Guard implementation needs to be evaluated for correctness in order to ensure that the system correctly enforces its security policy.

Degrades performance: In almost all implementations, interposing a Guard between the client and the Resource Manager imposes a performance penalty; this penalty may be significant. In operating system kernel implementations, the performance cost to cross the kernel boundary is often much higher than the cost to make a procedure call when the caller and the called routine are both in “user space” or both in “system space”. In network configurations, Guards are usually network proxies (e.g. routers) and their use requires an extra network message for each resource access.

Implementation

Several issues need to be considered when implementing the “Protected System” pattern:

Isolation: In order to provide complete isolation of resources, the Guard must non-bypassable.

A firewall is a good example of a guard which may be bypassable; if modems permit intermittent dial-up access to machines “inside”, but access to the modems does not go through the firewall, then it will be possible to bypass the firewall.

Many microprocessor designs do not support complete address-space isolation between programs running in “system state” and programs running in “user state”. It is difficult or impossible to design operating system kernels which are not bypassable to run on such microprocessors.

Virtual machine architectures also suffer from failures of address-space isolation; several versions of the Java Virtual Machine, for example, shared public static variables between thread address spaces, which violated the thread isolation property assumed by the Java security model.

Guard self-protection: In order to protect resources, the Guard must function correctly. Among other things, this means that the Guard must be incorruptible.

Corruptibility is often a consequence of a failure to validate input data.

Many systems (including many Internet servers) are vulnerable to buffer-overflow attacks. Buffer overflow attacks result from the Guard’s failure to check the size of input parameters provided by the client. A buffer overflow attack causes the Guard to execute malicious code provided by the client.

Some systems are vulnerable to data-poisoning attacks. Data poisoning attacks which result from the Guard’s designers failing to define error responses for all possible invalid input data values. Data poisoning attacks exploit the Guard’s unanticipated response to an “improper” input value.

Assurance: It must be possible to demonstrate that the Guard functions correctly, and that the Guard is non-bypassable and incorruptible.

Assurance is very difficult, and its difficulty scales super-linearly with increasing system size. The Protected System pattern contributes to assurability by minimizing the amount of code which must be assured, and by modularizing it to the Guard.

Typical assurance activities include disciplined design processes; documentation of all aspects of system design, implementation, production, delivery, and operation; assurance inspections; rigorous testing; and formal correctness verification.

Known Uses

A very large number of secure system designs are instances of this pattern.

The Anderson Report first defined the structure described in this pattern. It refers to the Guard together with the Resource Managers it protects as a “Reference Monitor”, and to the Guard itself as a “Reference Mediation Mechanism”. In an operating system whose kernel is a reference monitor, the guard is the operating system kernel (syscall) boundary, and the protected resources are files, pipes, and other operating system objects.

A firewall is a Protected System whose guard is a router and whose resources are IP addresses and ports of systems “inside” the firewall.

A bank vault is a Protected System whose guard is the walls and vault door and whose resources are cash and gold bars.

Related Patterns

The Guard of a Protected System is a Proxy (GoF), because it must mediate access by clients to Resource Managers. GoF refers to a proxy used for this purpose as a “Protection Proxy”.

The Guard of a Protected System is a PEP (TOGSP) because it must enforce a security policy. As a PEP, the Guard of a Protected System will normally use a PDP (TOGSP) to make security policy decisions.

Policy Enforcement Point (PEP)

Intent

Isolate policy enforcement to a discrete component of an information system; ensure that policy enforcement activities are performed in the proper sequence.

Also Known As

Access Enforcement Function (ISO 10181-3)

Motivation

Many systems (and components of systems) need to enforce policy. In such systems, the policy enforcement functions must be invoked, in the correct sequence, every time access is attempted to a resource which is subject to the policy.

If policy-enforcement code is intermingled with code which services resource requests, it may be difficult to verify that the policy enforcement functions are always invoked when necessary and that they are correctly implemented. It may therefore be desirable to isolate policy-enforcement code from other code in order to simplify verification of the correctness of the policy-enforcement code.

It may be desirable to use the same policy-enforcement code to protect more than one system component.

It may also be desirable to support changes in the code which makes policy decisions without requiring changes to code which enforces policy decisions.

Applicability

Use this pattern when

· it is desirable to decouple security policy enforcement from Resource Manager implementation

· it is desirable to isolate policy-enforcement code to a minimum number of simple modules to simplify verification of correctness

· it is desirable to isolate policy-enforcement code from policy decision evaluation code

Do not use this pattern if

· it is infeasible to make policy decisions outside the context of the Resource Manager which responds to requests

Structure

[image: image4.wmf]Client

ResourceMgr

request(resource)

get_client_attrs()

authenticate()

authn_result()

get_…_attrs()

PEP

Mediator

PDP

request_allowed()

AA

get_attributes()

AS

authenticate()

Resource

Participants

· Client

· represents any subject governed by the system’s policy

· operates on resources by submitting access requests to PEP

· authenticates itself to PEP upon request

· PEP (Policy Enforcement Point)

· collects client, request, target, and context attributes needed to make policy decisions

· requests policy decisions from PDP

· rejects requests which do not conform to policy

· sequences operations related to policy enforcement

· may cache client identity and attribute information to optimize performance in cases where a single client submits multiple requests

· AS (TOGSP)

· authenticates clients

· is an optional component (the PEP may authenticate clients itself)

· AA

· provides client attributes to PEP

· PDP

· makes decisions to grant or deny access to resources based on client attributes, request attributes, target attributes, context attributes, and policy

· ResourceMgr

· services requests for access to resources

· Resource

Collaborations

· A Client submits an access request to the PEP.

· The PEP retrieves the Client’s attributes.

· If the current Client’s attributes have not previously been retrieved and cached, the PEP needs to collect them. This will often require authenticating the Client. The PEP may authenticate the client using its own code (first-party authentication), or it may consult a third-party authentication service (AS). The result of authenticating the Client will be one or more attributes.

· The PEP may pass the result of authenticating the client to an Attribute Authority (AA), which will look up additional Client attributes based on the authentication result.

· The PEP determines the request, target, and context attributes

· The PEP requests a policy decision (passing in the Client, request, target, and context attributes) from the PDP. If the decision indicates that the request should be denied, the PEP passes a failure notification to the Client.

· If the policy decision indicated that the request should be granted, the PEP passes the request for fulfillment to the Resource Manager and relays the response to the Client.

The figure below illustrates these collaborations

[image: image5.wmf]Client

PEP

PDP

ResourceMgr

request

denied

response

request

response

request_allowed

grant/deny

AA

AS

get client attrs

authenticate

pass / fail

get_attributes

client attrs

authn challenge

authn result

get request, context, target attrs

authenticate

Consequences

Use of the PEP pattern:

Loosens coupling between policy enforcement and Resource Manager implementation. The use of the PEP pattern permits Resource Managers to be built with no awareness of authentication, attribute collection, policy evaluation, and policy enforcement.

Ensures that security policy is checked before client requests for resources are fulfilled. The use of the PEP pattern sequences security policy checks and resource request fulfillment. This sequencing can be used to ensure that policy checks are always performed in the correct order, and that they are always performed before resource requests are fulfilled.

Localizes control of policy-related activities in the PEP. The PEP serves as a container for all security policy operations. Localizing policy-related activities improves assurability of the system by limiting the amount of system code which needs to be examined during assurance activities.

Localizing policy-related operations may also create a single point of failure or attack; designers should take care to address these problems by hardening the PEP component and by addressing availability of the PEP (perhaps by use of the “Redundant System” pattern).

Requires matching of PDP interface parameter signature with Resource namespace and operation signature. The policy which the PDP enforces needs to “speak the same language” as the clients use when they submit requests for access to resources.

Adding new resources or new operations to a system without changing the PDP’s policy language and enforcement capability can weaken the protection provided by the PEP.

For example, adding relational queries to a system whose PDP recognizes and protects only the files in which the relational tables are stored will leave the system vulnerable to unauthorized disclosures of information through inference.

Imposes performance overhead. Separating policy enforcement from resource request fulfillment will usually introduce additional procedure call or network overhead.

Implementation

Proxy vs. Imbedded PEP: PEPs can be imbedded in Resource Managers, or they can be implemented as proxies, which mediate access by clients to Resource Managers. Proxy PEPs are easier to assure (because policy enforcement functionality is strongly separated from operational functionality), but they impose a larger performance penalty, because of the requirement for additional procedure calls or network messages to communicate requests and responses between the PEP and the Resource Manager.

Time-of-check vs. time-of-use: Many policies are time-sensitive. Security authorization policies, for example, are sensitive to the status of a user’s account.

In a system which uses the PEP pattern to separate policy enforcement from resource access request fulfillment, there will be a delay between evaluation of policy and fulfillment of requests. If this delay is long, there will be a possibility that the user’s authorization status will have changed after the policy is evaluated but before the request is fullfilled (for example, the user’s account may have been suspended or revoked).

Designers using the PEP pattern should take care to minimize the interval between the time the PEP makes a policy decision and the time the resource request is fulfilled.

PDP interface design: Designing PDPs which can be extended to support new types of resources and new operations on existing resources (so that it’s not necessary to replace the system’s PDP whenever a new type or version of Resource Manager is added to the system) is difficult. Very broadly extensible PDPs are also very hard to assure, because of the difficulty of analyzing the policy which the PDP supports.

Feasibility of Externalizing Policy Enforcement: In some systems, business rules are strongly integrated with policy enforcement, or policy is strongly dependent on the specific details of a resource request or of the resources to which access is being requested. In such systems, it may be very difficult or very inefficient to separate policy enforcement from processing of resource access requests.

For example, if the desired policy depends on the specific values of all parameters of a resource access request, moving policy enforcement from the Resource Manager to a PEP may require essentially total duplication of the Resource Manager’s request processing code (and thus will impose substantial performance overhead without any corresponding gain in assurability of the policy enforcement code).

· Third-party vs. first-party authentication: PEPs can be designed with integrated user authentication functionality, or they can be designed to rely upon third-party authentication services. First-party authentication services are typically more efficient, but they have a variety of disadvantages:It is difficult to design first-party authentication services which can be shared securely by several PEPs.

· It is difficult to manage systems which contain multiple authentication services, as each authentication service typically implements its own user registration process and its own user account repository; users who enroll in different parts of the system often need to register with each authentication service individually.

Known Uses

Firewall Routing Filter

Content Scanner

Reference Monitor

Credit Authorization

Related Patterns

Protected System (TOGSP): The Protected System pattern uses a PEP as its “Guard”.

Mediator (GOF): The PEP is a GOF Mediator; it encapsulates the interactions between the Client, AS, AA, PDP, and ResourceMgr in order to ensure that they are performed in the correct order every time.

Redundant System (TOGSP): Introducing a PEP may, if done carelessly, create a single point of failure in a system which otherwise would not have one. Use of the Redundant System pattern is recommended to avoid this happening.

Subject Descriptor

Intent

Provide access to security-relevant attributes of an entity on whose behalf operations are to be performed.

Also Known As

Subject Attributes. The entity described may be referred to as a subject or principal.

Motivation

There are many security-relevant attributes which may be associated with a subject, that is an entity (human or program). Attributes may include properties of, and assertions about, the subject, as well as security-related possessions such as encryption keys. Control of access by the subject to different resources may depend on various attributes of the subject. Some attributes may themselves embody sensitive information requiring controlled access.

A single interface providing access to subject attributes facilitates management of the protection of those attributes, as well as providing a convenient abstraction for conveying attributes between subsystems. For example, an authentication subsystem could establish subject attributes including an assertion of a user’s identity which may then be used by a separate authorization subsystem.

Having a single interface to the collection of subject attributes also facilitates operations such as filtering the collection for the purpose of least privilege (see glossary), or delegating a subset of the subject's credentials.

Applicability

Use the Subject Descriptor pattern when:

· A subsystem responsible for checking rights or credentials is independent of the subsystem which establishes those rights or credentials, or

· Several subsystems establish rights or credentials applying to the same subject, or

· Different types or sets of subject attributes may be used in different contexts, or

· Selective control of access to particular attributes is required, or

· Multiple subject identities should be manipulated in a single operation.

Structure

[image: image6.png]
... This is a subject descriptor, it changes over time as things happen, like authentication ...

The Subject pattern allows a caller to specify a subset of the attributes to which it requires access, by specifying an AttributeType.

[How to get a reference to the currently effective subject attributes? JAAS uses java.security.AccessController.getContext(), CORBASEC uses SecurityLevel1::Current]

[How to specify AttributeType? JAAS uses class, CORBASEC uses extensible type families]

[How to trust attribute - simple declaration (out of band verification), signature from origin, ...]

...

Participants

[Iterator is a GoF pattern]

Participants should be added to structure diagram.
e.g. Asserting authorities, policy enforcement (PEP retrieves, passes to PDP), ...

Participant Name

· Responsibility for what

Collaborations

Authenticators? Policy Decision Point?

Descriptor factory ...

· [Collaboration]

Consequences

How does the pattern support its objectives? What are the trade-offs and results of using the pattern? What aspect of system structure does it let you vary independently?

1. A consequence bullet. Description of consequence

Implementation

What pitfalls, hints, or techniques should you be aware of when implementing the pattern? Are there language-specific issues?

1. An implementation Bullet. Description of Bullet

Known Uses

JAAS javax.security.Subject

[image: image7.png]
JAAS divides the subject attributes into three collections - principals, public credentials and private credentials. Principals (which might be better called identities, but the class name "Identity" was already taken) are used to represent user identities and also groups and roles. There is a defined interface to Principal objects, allowing a name to be retrieved without requiring the specific implementing class to be known. Public and private credentials, on the other hand, are arbitrary Java objects and have no defined interface.

Principals and public credentials may be retrieved by any caller which has a reference to the Subject object. Private credentials require a permission to be granted in order to access them, which may be specified down to the granularity of a particular credential object class within Subjects having a particular Principal class with a particular name.

The JAAS Subject class includes methods for performing arbitrary actions within an access control context derived from the attributes of a specified Subject object.

Illustrate by example how each of the applicability clauses are handled in this implementation.
CORBASecurity SecurityLevel2::CredentialsList

[image: image8.png]
[Distinguishes between OwnCredentials, ReceivedCredentials and TargetCredentials...]

...

Related Patterns

Policy Enforcement Point, Authority, Authenticator (may be factory referred to above)

Context Propagation?

[Could specify further patterns for specific attribute types, e.g. Identity, Certificate, Key?...]

Interaction Patterns

Secure Communication (SC)

Intent

Ensure that mutual security policy objectives are met when there is a need for two parties to communicate in the presence of threats.

Also Known As

Private Communication

Motivation

[Describes why pattern exists, why it is structured the way it is, what problems and forces that create and constrain the conceptual area]

A communication channel between two protected systems may be subject to threats such as eavesdropping, impersonation, and tampering, and consequently there may need to have communication across the channel secured in line with security policy objectives applicable to the protected systems that wish to communicate. This need results in certain measures taking place that achieve secure communications through the identification of applicable security services and their underlying enabling mechanisms that together meet policy needs and thereby defeat applicable threats to correct operational behaviour. This can be shown diagrammatically as follows;

[image: image9.wmf]Protected

System

(Receiver)

Protected

System

(Sender)

Secure Communication Channel

THREATS

Example applicable threats may include

· Unauthorized Disclosure (e.g. Eavesdropping)

· Masquerade or Impersonation (where a party to the communication claims a false identity)

· Unauthorized Modification to Communication Traffic

· Diversion or interdiction

These threats are countered by the following common security services being utilized in the context of negotiated policy objectives between the communicating parties

· Data Origin Authentication and Peer Entity Authentication (these services enable verification of identity or source of communication, which can be one way or mutual)

· Data Integrity (this service detects unauthorized modification, insertion, deletion or replay of data content or data communication. Commonly, modification is applicable to the entire content of a message, although other types are identified such as selective data content (i.e. part of a message) integrity). Although implicit within the Data Integrity Service the following Data Communication Integrity services are sometimes mentioned explicitly;

· Replay Detection (the ability to detect that some unauthorized party that captured a sequence of communication exchanges subsequently tried to replay that exchange)

· Sequence Ordering (the ability to detect missing or reordered elements of a communication)

· Data Confidentiality (this service provides for the protection of data from unauthorized disclosure, typically on a per message basis (most common), per communication session basis (e.g. including traffic padding considerations, where one guards against the presence of a message communication pattern being revealed rather than the specific contents of individual messages), or, on a selective data field within a message.

These services will be enabled through a set of underlying mechanisms that will be mobilized by the parties, or their security responsible proxies, engaged in the communication.

These mechanisms may include

· Cryptography (including an underlying key management infrastructure, enabling the use of materials in support of such facilities as digital signatures, encipherment and decipherment, message digest, and random number generation)

· Secure Protocol Handshake Exchanges (maybe involving an authentication exchange (to ensure that claimed identities of the parties involved are verifiable), maybe involving some exchanges to establish part of the underlying key management infrastructure, for example the use of Key Token exchanges)

Applicability

[When should one apply this pattern?]

Use this pattern when

· It is desirable to defeat threats to communication channels

· It is desirable to identify security services that are appropriate and suitable underlying mechanisms in support of the services, for example;

· Authenticity, in order to perform subsequent Access Control and Accountability

· Integrity, in order to ensure that unauthorized changes do not take place

· Confidentiality, in order to ensure that snooping is ineffective

Do not use this pattern if

· There is no need to protect the communication channel in question (for example, it has been physically secured against the threats or is in an area of presumed trust)

Structure

[Illustrative, uml diagram syntax]
[image: image10.wmf]Sender

Communication

Channel

Communication

Protection

Proxy

Receiver

Communication

Protection

Proxy

Participants

 [List of entities participating in the pattern, what they do, their characteristics within the pattern]

· Sender

· Sends messages over a communication channel

· Communication Channel

· The communication channel over which exchanges take place between a message sender and receiver

· Receiver

· The recipient of communication messages

· Communication Protection Proxy

· This entity is responsible for applying the policy driven security services and their enabling mechanisms in the context of communication

Collaborations

[How entities work together to achieve the goals of the pattern]

· A Sender submits a message (e.g. operation, text message) that is intended to traverse a communication channel to arrive at the intended recipient

· The Communication Protection Proxy applies security services and mechanisms as appropriate to the type of communication within the context of mutual, to the sender and receiver, security policy objectives

[…Going beyond the general case, there are a couple of key follow on patterns in this area, which we may wish to consider…]

Firstly, using synchronous (AKA Session based) messaging, a Communication Protection Proxy may establish Security Associations ([ref to SA pattern]) to achieve security policy objectives enabling the communication to take place (i) with the authenticated target, (ii) which may want to authenticate the sender of the data or source of communication (which may be the same), (iii) to communicate in a confidential manner, (iv) to provide integrity of communication between the sender and the receiver. The Security Association will maintain state at both ends of the communication channel in establishing the required security services and underlying mechanisms that are suitable to meet the policy needs. Negotiation of security mechanisms may involve dialogue across the communication channel (to setup aspects of a key management infrastructure [(ref to KMI pattern, we have a key token exchange pattern identified)] or may have happened out of band (e.g. pre-existing key management infrastructure elements in place prior to initiating communication)

Secondly, in the asynchronous (AKA store and forward) messaging case a Communication Protection Proxy will apply a Security Association through applying one or more of the following security services to the content. A Signed or Authenticated Data facility can enable Data Origin Authentication and Integrity Services. An Enveloped Data facility can enable a Confidentiality Service applicable to data for an intended recipient only. Both the preceding facilities can be combined to produce a Signed and Enveloped facility. A Digested Data facility providing a simple Integrity Service is also typically available

· The Communication channel accepts messages from a sender and delivers them to a receiver

· The Receiver obtains messages sent over the communication channel

The figure below illustrates these collaborations

[image: image11.wmf]Originator

CP Proxy

Target

request

Channel

Apply Secure Association

request

CP Proxy

response

Please note that the response (if there is one) shown above would become just another example of a request as far as the modeling above is concerned (ie an appropriate secure association would be formed prior to the response being sent back)

Consequences

[What happens when you employ this pattern?]

Use of the Secure Communication pattern:

Ensures that data communicated over a potentially insecure communication channel is protected against a known set of threats. Ensures that security services and their underlying mechanisms are applied to the communication in line with security policy objectives applicable.

When implementing this pattern the system designer will be making a set if trade offs in underlying mechanism selection between various behavioural characteristics, e.g. security and acceptable performance degradation.

It is the nature of secure communications that this may need to be done by crossing international borders, and sometimes cryptography may well be employed as an underlying mechanism. Under these circumstances government regulation may well affecting the solutions possible.

In addition, when cryptography is used to secure communication between two parties on an end-to-end basis, it may well hinder the ability of management systems to monitor and interpret communication taking place (for example, content scanners would become ineffective).

Implementation

[Identify the kinds of decisions that are made when implementing this pattern]

For the data content that is to be passed across a communication channel the pattern implementor will need to identify

1. The security services and mechanisms that need to be applied in the context of a security policy appropriate to use of the communication channel, for example, what aspects of the mechanism type is appropriate to achieving the security policy objectives, such as the consequential strength of the mechanism that is appropriate to the communication (e.g. cover time needs dictate strength of cryptographic symmetric key used for confidentiality),

2. Decide between security services applied to a single message (suitable for asynchronous messaging between two parties) or session security services to be applied to use of a specific communication channel. In the case of session security services decide on the placement of security services and enabling mechanisms (i.e. data link layer, network layer or above transport),

3. An important part of this pattern is identifying the make up of the enabling key management infrastructure, if this is part of the mechanism provision, in support of secure data communications

Known Uses

[This pattern is found in the following cases]

In General;

Browsers and Secure Web Server interactions

Secure Mail

Secure Client / Server Modeling

Specifically;

This pattern is compatible with the following major approaches

Security Architecture for Open Systems Interconnection for CCITT Applications [X.800 or ISO 7498-2]

Synchronous Messaging Services, link to link

Generalized Security Service (GSS-API) [IETF RFC 1508 and others]

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) [IETF RFC 2246 and others]

Internet Protocol Security [IETF RFC 2401 and others]

IEEE Standard for Interoperable LAN/MAN (SILS), IEEE Std 802.10-1998

Asynchronous Messaging Services, end to end, store and forward

Secure Multipurpose Internet Mail Extensions [IETF RFC2311]

Cryptographic Message Syntax (IETF RFC2630)

Related Patterns

Protected System Pattern (TOGSP)

Secure Association Pattern (TOGSP)

Key Token Exchange Pattern (TOGSP)

Security Session (TOGSP)

Security Negotiation (TOGSP)

Authority (TOGSP)

Secure Association (SA)

Intent

The intent of this pattern is to establish and maintain a security relationship, between two entities that wish to communicate securely, in line with mutual security policy objectives, across a communication link that is subject to a well-known set of communication related threats.

Also Known As

Motivation

[Describes why pattern exists, why it is structured the way it is, what problems and forces that create and constrain the conceptual area]

The Secure Association pattern can be seen as a pattern that captures the need to manage the lifecycle of state containing the details of a security relationship between two entities, where the entities need to engage in some joint activity. So, in a context where secure communication needs to take place between the entities these details would cover policy driven objectives in relation to security services such as data origin and peer entity authentication, data and traffic (including replay detection and sequence ordering checking) integrity and data confidentiality services designed to mitigate threats such as eavesdropping, impersonation, and tampering.

 [we may wish to go further in describing…other services eg delegation and propogation, the need to maintain security assertions across intermediaries, maintenance of evidence of actions taken in a context between the two entities, eg non-repudiable actions…..to be continued….]

In the case of wishing to achieve end to end secure communications it may be necessary to apply security services in the context of a varying communications infrastructure that may exist in between the communicating parties. A common approach taken to this is through the use of secure associations. The term embodies a need to agree security policy objectives to be met between two ends of a communication link, to ensure that security services and their underlying enabling mechanisms are effective in meeting mutual policy needs for the lifetime of protected communication using the link.

The security services will be enabled through a set of underlying mechanisms that will be selected and mobilized by a Protection Proxy acting on behalf of each entity. Each entity is a user of a communication link and the protection proxy manages security policy objectives on behalf of the entity and is an agent of system policy in that context. Once mutually acceptable (to each entity) security policy needs have been established the security services delivered in support of those objectives will achieve what is commonly referred to as Qualities of Protection on the communication link using the established security relationship.

This can be shown diagrammatically as follows;

[image: image27.png]
In the diagram above, a number of examples of secure association are shown. Firstly, a secure association may be realized through security services enabled within the content of secure messages, which are destined to traverse a communication link, using locally available information relevant to the mutual sender and receiver policy objectives. Secondly, there may be a secure association enabled directly between two protected systems at an application level (for example above a network layer using IETF SSL/TLS). Thirdly, there may be multiple secure associations enabled in series upon a communication path between two protected systems (examples may include secure associations managed at a traditional layer 2 level (i.e. bridging or station to station level) e.g. IEEE 802.10 or at a traditional layer 3 network level between routers, e.g. VPNs/IPSEC). In this case the secure associations are instantiated in components within the network fabric.

It is common within the pattern to have separation of function in order to achieve (i) the management of a secure association and (ii) the actual use of the secure association being managed.

The management of a secure association is developed through each entities protection proxy. The security service context defines state that includes the set of security services, the underlying mechanisms and related material (such as initial keys) that are to be used for future protection needs between the two entities. It is during security service context setup that security services are negotiated. The secure association may have been established out of band (e.g. IEEE 802.10) or may be setup through secure protocol exchanges (e.g. IETF SSL/TLS handshake) in band (i.e. over the communication link that is to be used for further secure communication). In the case where locally available materials do not fulfill objectives an in band secure protocol will be used to communicate security materials, suitably packaged in mechanism dependent tokens, between the entities protection proxies.

The security service context forms part of a broader service context that may include additional behavioural characteristics (such as the algorithm to be used for compression, a performance enhancing characteristic) and the protection proxy therefore is a participant within a broader system policy proxy.

It is common to have logical separation (e.g. interface boundary) of (i) the security service being delivered from (ii) the enabling underlying mechanism used to deliver that service.

Secure Associations can be implemented at a specific layer of the network fabric (e.g. network layer / IPSEC [ref]) and thereby provide security services to all users of that layer, transparently, or can be used selectively in securing a higher level existing protocol (e.g. using GSS-API techniques[ref]).

In the case of underpinning cryptographic mechanisms that may be used to meet a set of security service objectives, these are addressed in negotiation through the selection of profiles of suitable cryptographic algorithms (e.g. ciphersuites).

Typical facilities available to the protection proxy’s use of secure associations include the ability to sign and verify messages (for data authentication and integrity purposes) and seal/unseal or envelope (for confidentiality purposes).

[There may be a case for expressing additional aspects of SA… delegation, anonymous support,…]

Applicability

[When should one apply this pattern?]

Use this pattern when

· [proposal - It is necessary to maintain a stateful security relationship between entities that intend to cooperate in a secure manner]

· It is desirable to protect communicated information from threats associated with a communication link

· [proposal(additional categories beyond a comms link) - It is desirable to protect communicated information from threats associated with a number of communication links ie on an end to end service basis]

· [proposal – It is desirable to assure the Identity, and any associated attributes, of communicating parties]

· It is desirable to facilitate the operation of supplemental security services (e.g. access control, accountability) upon information transferred across a communication link

· There is a need to negotiate aspects of the protection infrastructure to be used (e.g. policy, security services and mechanisms, key material) that is applicable to both communicating entities policy needs

· [rewrite here ??, something like, There is a need to add security services to a protocol that does not natively support them, …..lets decide what we prefer] There is a need to protect, transparently, all communication across a given link (e.g. within a network fabric) or there is a need to selectively apply protection to an existing application protocol where security becomes an issue

Do not use this pattern if

· There is no need for a security relationship to exist between entities that intend to cooperate over a communication link

Structure

[Illustrative, uml diagram syntax]
[image: image12.wmf]Security Context

Security Context

Protection Proxy

Protection Proxy

Secure Association

Protection Policy

Protection Policy

Secure Association Structure

[Some proposed notes for the above –

The above diagram represents the secure association structure as it is during the negotiation and setup of a secure association and is not intended to represent its use

Also proposed something like….There is persistant state at the sender which the receiver reconstitutes….]

Participants

 [List of entities participating in the pattern, what they do, their characteristics within the pattern]

· Protection Proxy
–Creates Secure Associations

–Sends and receives secure communications

· Security Context

–Held by Protection Proxy

–Contains information which authenticates the entity it represents

· Protection Policy

–Describes what threats Protection Proxy is able to defend against

–Describes what threats Protection Proxy requires defense against

· Secure Association

–Created by two collaborating Protection Proxies after they negotiate a mutually acceptable Protection Policy

–Provides basis for Secure Communication between Protection Proxies on behalf of the entities their Security Contexts represent

Collaborations

[How entities work together to achieve the goals of the pattern]

· The Protection Proxy manages the secure association in response to an outbound request (intended or actual) interpreted in the context of overall system security policy.

· As part of this management role, a secure association is setup, because a security session does not exist that meets the needs (user and/or policy), or, an existing security association is reused, because a security session exists that meets the needs (user and/or policy). The security association is established by negotiating security policy obligations at both ends of the communication link. This negotiation may take place using materials that are transferred in band or out of band to the communication link being used for the secure association. Based upon negotiated policy needs appropriate security services and their underlying enabling mechanisms are selected, and may be initialized ready to perform their duties. Typically, prior to negotiating a secure association the following needs to be known by a protection proxy;

· List of Policy Expressions supported

· List of Security Services supported by Policy

· List of Mechanisms enabling Services

There may be a need for the protection proxy to initiate secure associations through in band negotiation of services and mechanisms in order to achieve security policy objectives enabling the communication to take place (i) with the authenticated target, (ii) which may want to authenticate the sender of the data or source of communication (which may be the same), (iii) to communicate in a confidential manner, (iv) to provide integrity of communication between the sender and the receiver. State will be built up and maintained by the protection proxy at both ends of the communication link in establishing the required security services and underlying mechanisms that are suitable to meet the policy needs.

In setting up a secure association between the communicating parties using in band protocol exchanges, the initiating protection proxy may, for example, propose a set of acceptable security services and mechanisms from which a responding protection proxy will make a selection of the services that are to be used. This may then be communicated back to the initiator enabling the selection of security services that are applicable to negotiated security service policy objectives. Alternatively, the initiator may propose a selection that is mutually acceptable negating the need for further recipient communication is setting up the secure association.

It is possible that the negotiated materials may be explicit on mechanisms alone thereby implying certain security services and hence policy objectives that are to be met as a result of negotiation.

The protection proxy will be responsible for reusing secure associations where they already exist (session reuse) and managing them such that when a secure association is due to expire the protection proxy will create another that can be used to provide the same services as the one due to expire.

A secure association has a lifetime that is chosen so that the effectiveness of the enabling mechanisms to meet policy objectives is achieved (e.g. time needed for brute force attack). Typically, the lifetime of an SA can be established in terms of a fixed time or maximum volume of data to flow over a communication channel that is related to the SA. When thresholds such as these are reached the SA expires, forcing a renegotiation of the SA. Individual materials utilized by an underlying mechanism may also have life cycles associated with them which may also cause an SA to end prematurely. Examples may include identity certificates which as well as having a given lifetime may also have been revoked by their issuing authority causing a premature end to assertions made in a given SA. In addition, if there is an event occurring that affects the entities baseline state implied in the secure association, then the secure association may also become invalid. For example, if a user entity was no longer able to operate on the system because a system decision was made to no longer accept the liability of hosting that user activity, then it would be expected that all secure associations established on behalf of that user would become invalid.

· Once the negotiation of security services and mechanisms has taken place there may be further dialogue across the communication link to setup further aspects of a key management infrastructure (e.g. [ref key token exchange pattern]) using selected security services. This also may have happened out of band (e.g. pre-existing key management infrastructure elements in place prior to initiating communication).

· Once a secure association has been setup it is likely that there will be some form of session identifier for the association to facilitate reuse, security services to be used will be known, along with mechanisms to be used and an initial set of shared keys.

· It may be that there is no need to negotiate security services through in band secure protocols. This may be the case because the initiating protection proxy has the necessary information needed to decide upon appropriate security policy objectives, security services and mechanisms relevant to the recipient’s environment. This may have happened as a result of out of band activity that established a partial relationship.

In the case of Store and Forward messaging, for instance, this may result in reduced security service availability. For example, without a causal relationship between messages, traffic integrity services may not be available.

· The Communication Link will then be used to relay protected messages between two end points within an established secure association context.

The figure below illustrates these collaborations

[image: image13.wmf]Prot_Proxy_2

Prot_Proxy_1

Sec_Context_1

Sec_Context_2

get protection policy

Requester

talk to target

get requester context

get requester info

set up association with target

get protection policy

get target context

get target info

Sec_Assn

create

return new association

Secure Association Collaborations

Consequences

[What happens when you employ this pattern?]

Use of the Secure Association pattern:

A Stateful Security Relationship is enabled between cooperating entities

Secure communications can take place as a result of negotiated security policy, services and mechanism details

There is likely to be a performance overhead as a result of the use of cryptography (a common underpinning mechanism). This performance overhead increases if in band negotiation takes place. There is also likely to be a management overhead in managing aspects of the key management infrastructure when using cryptography.

This pattern enables the maintenance to security session state which upon reuse can reduce the amount of network traffic that would otherwise be needed

Intermediaries between cooperating entities may be unable to interpret communicated information as a result of applying security services (such as data confidentiality)

General points

It is the nature of secure communications that this may need to be done by crossing international borders, and sometimes cryptography may well be employed as an underlying mechanism. Under these circumstances government regulation may well affecting the solutions possible.

In addition, when cryptography is used to secure communication between two parties on an end-to-end basis, it may well hinder the ability of management systems to monitor and interpret communication taking place (for example, content scanners would become ineffective).

Implementation

[Identify the kinds of decisions that are made when implementing this pattern]

4. A decision may need to be made on the placement of security services and mechanisms in relation to the communications stack. This will decide the type of secure association needed. It will impact upon implementation decisions in the area of a key management infrastructure in support of secure sessions. What elements of the KMI are to be negotiated in band and what are subject to out of band setup?

5. The security services and mechanisms that need to be applied in the context of a security policy appropriate to use of the communication link, for example, what aspects of the mechanism type is appropriate to achieving the security policy objectives, such as the consequential strength of the mechanism that is appropriate to the communication (e.g. cover time needs dictate strength of cryptographic symmetric key used for confidentiality), what authorities are being used as part of the protection infrastructure and what liabilities are being accepted.

Known Uses

[This pattern is found in the following cases]

In General;

Session Oriented (aka symmetric messaging)

Browsers and Secure Web Server interactions

Secure Client / Server Modeling

Secure Networking

Store and Forward (aka asymmetric messaging)

Secure Mail

Specifically;

This pattern is compatible with the following major approaches

Security Architecture for Open Systems Interconnection for CCITT Applications [X.800 or ISO 7498-2]

Session Oriented, Synchronous Messaging Services, link to link

Generalized Security Service (GSS-API) [IETF RFC 1508 and others]

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) [IETF RFC 2246 and others]

Internet Protocol Security [IETF RFC 2401 and others]

IEEE Standard for Interoperable LAN/MAN (SILS), IEEE Std 802.10-1998

Store and Forward, Asynchronous Messaging Services, end to end

Secure Multipurpose Internet Mail Extensions [IETF RFC2311]

Cryptographic Message Syntax (IETF RFC2630)

Independent Data Unit Protection Generic Security Service Application Program Interface (IDUP-GSS-API – IETF RFC 2479)

[to be developed, more implementation specific cases, eg Corba Security Classes…)]

Related Patterns

Protected System Pattern (TOGSP)

Secure Communication Pattern (TOGSP)

Key Token Exchange Pattern (TOGSP)

Security Session (TOGSP)

Security Context (TOGSP)

Security Context

Intent

Provide a container for, and mediate access to, security attributes and data relating to a particular process, operation or action.

Also Known As

Motivation

[Chris to contribute text relating to ISO/IEC 10181-3 (ITU-T X.812) model.]

There are many contextual properties which may influence the behaviour of security-related functions such as access control, auditing, message protection and so on. Often access to such properties is implemented in an ad hoc way in security-enforcing code, with the consequence that the caller of such code will not be aware of precisely what properties may be checked.

This pattern serves to encapsulate a collection of these properties, providing:

1. A uniform interface to contextual properties in security-enforcing code.

2. A means to save and restore the security context en masse.

3. A means for appropriately privileged callers to construct a new security context.

Note that there are still some factors, or “environmental properties”, which may influence the behaviour of security-related functions but are not within the scope of this pattern, such as time of day. Such factors are excluded from this pattern because it is not sensible to restore or set them when constructing a new security context.

Applicability

What are the situations in which the design pattern can be applied? What are examples of design problems that the pattern can address? How can you recognize these situations? ? What forces must be reconciled when solving the problem?

· An applicable situation

Structure

TBD - A picture illustrating the structure of the solution.

[So far, the known uses split into two camps – “process context” (u area, AccessControlContext) and “communication end-point context” (GSSContext and CORBA SecurityContext). Open question: Would it make more sense to have two separate patterns for these, or maybe subclasses (subpatterns?)]

Participants

Principal

· The human user, or other external entity initiating the process or operation. This entity is represented by a Subject Descriptor. [The user may be exercising some delegated authority from another principal – is this sufficiently covered by the Subject Descriptor’s potentially including more than one identity, should there be specific mention of delegation in the Subject Descriptor pattern, or should this pattern address it somehow?] [Clearance is presumably a property of the principal – need to make sure this is covered in Subject Descriptor. Ditto for e.g. personal key pairs…]

Execution Context

· Represents the process, class [or service? or is that a Principal] which is invoking the function which will refer to the properties encapsulated in the Security Context. [Should this be a separate pattern, for consistency with Subject Descriptor and Security Association?] [Will include things like ulimit, sensitivity level, effective privileges…]
Communicating Peer

· A process with which a communication session has been established. This entity is represented by a Secure Association. Zero or more communicating peers may participate. [I’m guessing e.g. session keys are encapsulated in the Secure Association, so there is no need for this pattern to define a superclass/superpattern to include them?] [Do we need to be able to represent something like clearance and/or sensitivity level for communicating peers? Should probably be in Secure Association…]

Collaborations

How the participants collaborate to carry out their responsibilities.

· [Collaboration]

Consequences

How does the pattern support its objectives? What are the trade-offs and results of using the pattern? What aspect of system structure does it let you vary independently?

2. Description of consequence.

Implementation

What pitfalls, hints, or techniques should you be aware of when implementing the pattern? Are there language-specific issues?

2. Description of implementation issue.

Known Uses

UNIX® - per-Process User Information (“u area”)

Attributes:

· Effective user ID

· Real user ID

· Saved user ID

· Effective group ID

· Real group ID

· Saved group ID

· Supplemental group IDs

· File creation permission mask

Operations:

· setuid(), seteuid(), setreuid(), getuid(), geteuid()

· setgid(), setegid(), setregid(), getgid(), getegid()

· setgroups(), getgroups()

· umask()

Some implementations also hold resource consumption limits in the u area, so the ulimit() system call can also be considered an operation on this object. The exec() system call modifies fields in the u area, although it is not strictly an operation on it.

There is no explicit execution context information held in the u area, although initial field values are inherited from the parent process, and are then modified by file attributes (“suid” and “sgid” properties) of new binary images when executed.

The u area has little relevance to the behaviour of communication end-points (apart from privilege checks relating to socket port numbers), and no information is held regarding communicating peers.

JavaTM 2 Standard Edition - java.security.AccessControlContext

[image: image14.png]
[Descriptive text coming soon…]

GSS-API - org.ietf.jgss.GSSContext

[image: image15.png]
CORBA - SecurityReplaceable::SecurityContext

[Comment from Chris – c.f. CSIv2]

[image: image16.png]
[Would SecurityLevel2::Current actually be a better fit for this pattern? Note – SecurityLevel2::Current’s received_credentials field represents delegated credentials? Verify…]

Related Patterns

Subject Descriptor

[discussion TBD]

Secure Association

[discussion TBD]

[Where would object (e.g. file) labels go? Related issue to sensitivity label ranges for network interfaces, which might be enforced by device labels.]

Available System Patterns

Recoverable Component

Intent

Structure a component so that its state can be recovered and restored in case the component fails.

Also Known As

Motivation

A component failure can result in loss or corruption of state information maintained by the failed component. Systems which rely on retained state for correct operation must be able to recover from loss or corruption of state information.

Applicability

Use Recoverable Component when:

· Operations on a component update its state.

· Correctness of the component’s operation depends on correctness of its state.

· Component failures could cause loss or corruption of the component’s state.

Structure

A Recoverable Component consists of a Stateful Component and a Site Integrity Decorator [Decorator: GoF] whose State Save facility periodically saves a recoverable version of the component’s state as a Memento [GoF], and whose State Recovery facility uses the Memento to restore the component’s state when required.

[image: image17.wmf]Stateful

Component

State Recovery

State Integrity

Decorator

Recoverable

Component

Operation()

Operation()

Operation()

RecoverableComponent

->

Operation()

StateIntegrityDecorator

->

Operation()

Operation()

SetMemento

()

State Save

Operation()

CreateMemento

()

Memento

SetState

()

GetState

()

State

Participants

· Stateful Component

· Performs operations; maintains state required for operations

· State Integrity Decorator.

· Periodically saves component state to support later recovery operations. Restores component state when required.

· Memento [GoF]

· The externalized recoverable component state

Collaborations

To be added.

Consequences

Use of the Recoverable Component pattern:

· Improves component fault tolerance.

· Improves component error recovery.

· Increases system resource consumption (extra resources are required for the Memento).

· Increases system cost per unit of functionality.

Implementation

A wide variety of implementation approaches are possible. Examples include:

· A wide variety of configurations that provide the ability to “restart” the system from a known valid state, either on the same platform or different platforms.

Known Uses

Related Patterns

Checkpointed System [TOGSP] is a type of Recoverable Component.

Cold Standby [TOGSP] is a pair of Recoverable Components sharing a single Memento.

Comparator-Checked Fault-Tolerant System [TOGSP] is a cluster of Recoverable Components with a comparator which checks consistency of Mementos from different components to detect integrity errors.

Checkpointed System

Intent

Structure a system which can be “rolled back” to a known valid state.

Also Known As

Snapshot. Undo.

Motivation

In many systems, component failures, errors in processing, data entry errors, or operator errors can cause the system state to become corrupt, erroneous, or otherwise defective. In these cases, an acceptable recovery mechanism is to return the system to a previous state that is known to be valid.

Applicability

Use Checkpointed System when

· Component failures or improperly formed transactions may corrupt the system state.

· Correct functioning of the system depends on correctness of the system state.

· Transactions which occurred between the time the last snapshot was taken and the time the system is rolled back to that previous state are irrelevant or inconsequential, or can be recovered and reapplied.

Structure

A checkpointed system consists of a Stateful Component and a State Integrity Decorator [Decorator: GoF]. The State Integrity Decorator adds State Save and State Recovery functionality to the Stateful Component to facilitate recovery from loss of state data or loss of state integrity. The State Integrity Decorator externalizes state recovery information as a Memento [GoF].

[image: image18.wmf]Stateful

Component

State Recovery

State Integrity

Decorator

Recoverable

Component

Operation()

Operation()

Operation()

Operation()

SetMemento

()

State Save

Operation()

CreateMemento

()

Memento

SetState

()

GetState

()

State

Participants

· Stateful Component

· Performs operations on behalf of clients

· State Integrity Decorator

· Saves and Retrieves state recovery information; restores state when required.

· Memento

· Is the externalized form of state recovery information.

Collaborations

Consequences

Use of the Checkpointed System pattern:

· Improves the ability of the system to resume (restore) operation after its state becomes corrupt.

· Increases system complexity. Creating the Memento may require the creation of work queues or other transaction management constructs to ensure consistency of the state data stored in the Memento.

· May impair system latency or throughput if creation of a checkpoint requires processing to pause or stop.

Implementation

A wide variety of implementation approaches are possible. Examples include:

Known Uses

Related Patterns

A Checkpointed System consists of one or more Recoverable Components [TOGSP] which externalize their Mementos [GoF].

Cold Standby

Intent

Structure a system so that the service provided by one component can be resumed from a different component.

Also Known As

Disaster Recovery

Motivation

In many system implementations it is only cost effective to implement a single, coarse recovery mechanism that will suffice for all forms of fault or failure, up to and including the complete destruction of a component (as by fire or other environmental failure).

Applicability

Use Cold Standby when

· The transactions that occurred between the time the last snapshot was taken and the time the system is rolled back to that previous state are irrelevant or inconsequential, or can be recovered and reapplied.

· It is anticipated that a failed component may not be recoverable, but a similar or identical backup component is available.

· Operational procedures call for a service to be periodically relocated from one platform or site to another, and brief pauses in processing for the purpose of relocation are acceptable. (Relocation might be desired to match the point of provision of the service to the locality of the offered load, or when the service may need to be relocated to more a capable (“larger”) platform to meet peak load demands.)

Structure

The Cold Standby pattern consists of one active Recoverable Component and at least one standby Recoverable Component. When the standby is activated, the Memento (or Mementos) of the active component are consumed by the State Recovery facility of the standby component, which “restores” the state of the standby component and activates it.

[image: image19.wmf]Stateful

Component1

State Recovery

State Integrity

Decorator

Recoverable

Component1

Operation()

Operation()

Operation()

Operation()

SetMemento

()

State Save

Operation()

CreateMemento

()

Memento

SetState

()

GetState

()

State

Stateful

Component2

State Integrity

Decorator

Recoverable

Component2

Operation()

Operation()

Operation()

Participants

· Active Recoverable Component

Performs operations on behalf of clients. Periodically saves state to Memento

· Standby Recoverable Component

Waits for failure of active component. Upon failure, restores state from Memento and activates.

· Memento

Encapsulates the state of the active component. Used by the standby component to restore the system’s state and resume operations.

Collaborations

Consequences

Use of Cold Standby:

· Improves system resistance to component failures.

· May introduce a substantial delay between component failure and standby activation.

· May require substantial resources for storage of Memento information.

· Increases system cost by requiring at least one non-operational component.

Implementation

A wide variety of implementation approaches are possible. Examples include:

· Offsite backup

Known Uses

Related Patterns

Cold Standby is a Checkpointed System [TOGSP] with an identical spare component. Both the active component and the standby component are Recoverable Components [TOGSP].

Cold Standby uses a Memento [GoF] to communicate state information from the active component to the standby component when recovery is required.

Comparator-Checked Fault-Tolerant System

Intent

Structure a system so that an independent failure of one component will be detected.

Also Known As

Tandem system

Motivation

It is sometimes very important to detect component faults quickly, or to detect component faults at a specific point during processing, to prevent component faults from causing system failures. Inspection of the output of a component may not directly reveal whether a fault has occurred or not. Some mechanism is required to support detection of faults which have not yet caused a failure.

Applicability

Use Comparator-Checked Fault-Tolerant System when:

· Faults in one component are not expected to be strongly correlated with similar or identical faults in another component (this will usually be the case when faults are caused by factors external to components; it will often not be the case when faults are caused by component design or implementation errors).

· It is feasible to compare the outputs or internal states of components.

· Component faults must be detected soon after they occur, or at specific points during processing, but in any case before they lead to a failure.

Structure

A Comparator-Checked Fault-Tolerant System consists of an even number of Recoverable Components [TOGSP], (often four or more) organized as sets of pairs, together with a Comparator for each pair. Each comparator examines Mementos [GoF] produced by each member of its pair to determine whether they match. If the mementos do not match, the Comparator concludes that a fault has occurred in one of the components and takes corrective action. (Note: we need a pattern for odd-number voting systems; perhaps this would be called “Quorum System”?)

[image: image20.wmf]Stateful

Component1

Comparator

State Integrity

Decorator

Recoverable

Component1

Operation()

Operation()

Operation()

S.I.D.1->Operation();

S.I.D.2->Operation();

Memento1->

GetState

();

Memento2->

GetState

();

if state1 not= state2

then HALT

Operation()

State Save

Operation()

CreateMemento

()

Memento1

SetState

()

GetState

()

State

Stateful

Component2

State Integrity

Decorator

Operation()

Operation()

State Save

Operation()

CreateMemento

()

Memento2

SetState

()

GetState

()

State

Recoverable

Component2

Operation()

Participants

· Recoverable Components

Perform operations on behalf of clients. Each Recoverable Component is a member of a pair.

· Comparator

Checks Mementos created by the two members of its pair of Recoverable Components. If the Mementos do not match, the Comparator concludes that a fault has occurred in one of its Recoverable Components and initiates corrective action. In systems consisting of two or more pairs, the usual corrective action is to take the faulted pair offline.

Collaborations

To be added.

Consequences

Use of the Comparator-Checked Fault-Tolerant System pattern:

· Improves system tolerance of component faults.

· Substantially increases component costs.

· Increases system complexity through requirement to externalize state to Mementos and requirement to build Memento comparator.

Implementation

· The error checking mechanisms of each pair of EAS’s work by comparing the state of two EAS’s. If the state comparison shows any difference, the EAS pair is taken “off line.” In some implementations, the “failed” pair continues processing inputs but presents no outputs. Continued processing allows the next collaboration.

· The error checking mechanisms of the EAS’s of a failed pair may collaborate with the error checking mechanisms of the surviving pair to identify which EAS of the failed pair has actually failed. This function can be used to guide manual or automatic intervention, correction and restart.

· The EAS’s may collaborate in maintaining consistent externalized images of the “correct” state. This can be used to enable the restart of a failed element.

Known Uses

· Tandem Nonstop

Related Patterns

Each member of a Comparator-Checked Fault-Tolerant System component pair is a Recoverable System [TOGSP].

Journaled Component

Intent

Record changes to a component’s state so that the state can be restored using incremental updates to a previous version of the state if necessary.

Also Known As

Motivation

Systems which provide services based on a system state are vulnerable to failures which corrupt state information. Often the extent of state corruption is limited, and recovery can be accomplished without requiring restoration of a complete copy of the system state.

Applicability

Use Journaled Component when implementing components with the following properties:

· The component’s correct operation is dependent on correctness of state data it maintains.

· The component is susceptible to failures which might corrupt its state.

· State corruption is likely to be limited to a small number of state elements, so that recovery from state corruption can be accomplished by reversing or repeating a limited number of state changes rather than requiring restoration of the component’s entire state.

· The component’s state changes frequently.

· Checkpointing the entire state of the component each time a change is made is complicated or expensive.

Structure

Important note: Should this be a special case of Recoverable Component in which the Memento is a record of an individual update?

A Journaled Component consists of a Stateful Component together with a State Update Proxy which ensures that state changes are written to a State Journal. The structure diagram below shows that Journaled Component is a special case of Proxy [GoF].

[image: image21.wmf]State Update

Proxy

Client

Stateful

Component

Journaled

Component

Update()

Update()

Update()

StatefulComponent

->

Update();

StateJournal

->

AddEntry

()

StateJournal

AddEntry

()

Participants

· Stateful Component

· The component whose state needs to be protected against corruption.

· State Update Proxy

· Ensures that all changes to the state maintained by Stateful Component are recorded.

· State Journal

· Maintains the history of changes to the state maintained by Stateful Component.

Collaborations

· To be added

Consequences

Use of the Journaled Component pattern:

· Improves fault tolerance.

· Improves efficiency of recovery from limited state corruption.

· Increases system complexity (data synchronization and load management can be complex operations on dynamic systems).

· Increases system cost of a single component.

· May reduce the cost of highly available units of work, or units of work delivered under adverse or critical circumstances.

Implementation

Known Uses

· Journaled File System; CICS

· Incremental Backup

· Version Control Systems

Related Patterns

Hot Standby [TOGSP] uses Journaled Components to implement a replicated system which can recover from failures of a single component.

Hot Standby

Intent

Structure a system which permits state updates to originate from multiple components, preserves the state of the overall system and of each transaction in the face of failures, and guards against loss of integrity due to incomplete application of transactions or changes.

Also Known As

Synchronized Distributed System, Replicated Transaction.

Motivation

Multi-component transactional systems are often susceptible to state corruption because of failure of communication links, communication protocols, storage media, or other system elements. Nevertheless, it is often important to ensure that the completion state of each transaction is known, and to ensure that the system’s state accurately reflect the effect of each completed transaction. Furthermore, transactional systems with high transaction rates or long lifetimes often generate a very large amount of state information, making it impractical or impossible to checkpoint and/or restore the entire state of the system.

Applicability

Use Hot Standby when:

· A system’s state is updated via a series of individual transactions.

· The completion state and result of each transaction must be accurately reflected in the system state.

· The system is vulnerable to failures which may corrupt system state elements which record the results of completed transactions.

· The size and/or complexity of the system state makes it impractical or impossible to checkpoint and restore the entire state.

· Equivalent services must be provided simultaneously from multiple "points of presence", each of which must rely on and consistently update the same system state.

· Each point of presence needs to have its own copy of the system state.

Structure

A Hot Standby system comprises two or more Journaled Components [TOGSP] which share a single State Update Proxy and a single State Journal.

[image: image22.wmf]State Update

Proxy

Stateful

Component1

Journaled

Component1

Update()

Update()

Update()

StateJournal

AddEntry

()

Stateful

Component2

Journaled

Component2

Update()

Update()

CheckConsistency

;

S.C.1->Update();

S.C.2->Update();

StateJournal

->

AddEntry

()

Participants

· Journaled Components

· Accept transaction requests from clients, process the requests, and update their local system states to reflect the results of completed transactions.

· State Update Proxy

· Ensures that system state updates performed by individual components are consistent. Ensures that the system state accurately reflects results of all completed transactions.

· May keep a history of transaction information which still needs to be updated at one or more components.

· State Journal

· Contains the history of changes to the overall system state resulting from completed transactions.

Collaborations

To be added

Consequences

Use of the Hot Standby System pattern:

· Improves fault tolerance; component failures can be tolerated by re-routing client requests from failed components to components which are still in operation.

· Permits the system to continue to operate in the presence of link and component failures.

· Ensures that results of transactions are accurately reflected in system state.

· Increases system complexity.

· May impose substantial transaction commitment overhead if transactions executed at different components often operate on the same information.

· Can increase probability of service unavailability due to administrative or operational error. (This needs more discussion; I need an example to understand what’s meant here)
Implementation

A wide variety of implementation approaches are possible. Examples include:

· Use of a Transaction Monitor (CICS, Encina) as the shared State Update Proxy

· Use of a Shared File System (AFS, DFS, NFS) together with write-locks as the shared State Update Proxy.

Known Uses

· Banking (need more specific example)

Related Patterns

The Components of a Hot Standby system are Journaled Components [TOGSP].

External Storage

Intent

Structure a system which isolates processing from state management, so that system state is kept in a single high-integrity repository regardless of the number of processing elements or points of presence included in the system.

Also Known As

Redundant Stateless Components

Motivation

Transactional systems often susceptible to outages because of failure of communication links, communication protocols, or other system elements. Nevertheless, it is important to assure availability of transaction services in the face of such failures.

Applicability

Use External Storage when:

· Equivalent services must be provided simultaneously from multiple Components (“points of presence”), each of which must rely on and consistently update the same system state.

· Components may fail independently.

· Links providing Client connectivity to Components may fail independently.

· Services must be available even in the event of Component or link failures.

· Each Component can be provided with reliable access to a master copy of the system state.

Structure

External Storage consists of two or more Stateless Components, which are mutually redundant (and may be identical), together with a State Manager, which manages access and updates to a State Store which is separate from and used by all Stateless Components. The State Manager assures the integrity of the data in the State Store in the face of update requests originating from multiple Stateless Components.

[image: image23.wmf]Stateless

Component1

GetState

()

SetState

()

Stateless

Component2

GetState

()

SetState

()

StateManager

SetState

()

GetState

()

StateStore

->Lock();

StateStore

->

SetState

();

StateStore

->Unlock()

StateManager

->

GetState

()

StateManager

->

SetState

()

StateStore

Lock()

Unlock()

SetState

()

GetState

()

Participants

· Stateless Component

· Implements operations

· StateManager

· Manages Component access to system state information; preserves system state information integrity in the face of update requests from multiple Components.

· StateStore

· Stores system state information

Collaborations

To be added

Consequences

Use of the External Storage pattern:

· Improves system tolerance to component failures.

· Improves system ability to handle distributed load and link failures.

· Makes the State Manager a single point of failure.

· May make the State Store a single point of failure.

· Imposes performance overhead due to persistent store locking.

Implementation

To be added.

Known Uses

Related Patterns

Replicated System

Intent

Structure a system which allows provision of service from multiple points of presence, and recovery in case of failure of one or more components or links.

Also Known As

Redundant Components

Motivation

Transactional systems often susceptible to outages because of failure of communication links, communication protocols, or other system elements. Nevertheless, it is important to assure availability of transaction services in the face of such failures.

Applicability

Use Replicated System when:

· A system’s state is updated via a series of individual transactions

· The completion state and result of each transaction must be accurately reflected in the system state.

· Equivalent services must be provided simultaneously from multiple “points of presence”, each of which must rely on and consistently update the same system state.

· Service must continue to be provided in the face of component or link failures.

· Each point of presence can be provided with reliable access to a master copy of the system state.

Structure

Replicated System consists of two or more Components and a Workload Management Proxy which distributes work among the components. The components must all be capable of performing the same work. The components may be stateless or stateful. If they are stateful, they may be allowed to be inconsistent. If the components are stateful and must be kept consistent, the Hot Standby pattern or the External State pattern may be used to ensure consistency of state across components. As the diagram below indicates, Replicated system is an instance of Proxy [GoF].

[image: image24.wmf]Workload

Management

Proxy

Client

Component1

Replicated

System

Operation()

Operation()

Operation()

Select Component x;

Component.x->

Operation()

Component2

Operation()

Participants

· Stateless Component

· Implements operations; all components in a replicated system must support the same set of operations.

· Workload Management Proxy

· Dispatches operations to components based on workload scheduling algorithm.

Collaborations

To be added

Consequences

Use of the Replicated System pattern:

· Improves system tolerance to component failures.

· Improves system ability to handle distributed load and link failures.

· Makes the Workload Management Proxy a single point of failure; may make the persistent data store a single point of failure.

Implementation

To be added.

Known Uses

Related Patterns

Replicated System may use External Storage [TOGSP] or Hot Standby [TOGSP] to ensure consistency of state among its components if this is required.

Replicated System is a Proxy [GoF]

Error Detection/Correction

Intent

Add redundancy to data to facilitate later detection of and recovery from errors.

Also Known As

Motivation

Data residing on storage media or in transit across communication links is often susceptible to small, local errors.

Applicability

Use Error Detection/Correction when:

· Storage media or communication links are susceptible to undetected or uncorrected errors.

· The format of data stored on media or communicated across a link can be modified to incorporate redundant error-control information.

· Some data expansion is acceptable.

· Data corruption is likely to be limited to a known number of errors per bit of data, and the distribution of errors is likely to be predictable in advance.

Structure

Error Detection/Correction consists of. The structure diagram below shows that Error Detection/Correction is a special case of Proxy [GoF].

[image: image25.wmf]Error Control

Proxy

Client

Media/Link

Error

Detection/

Correction

Get()

Put

Get()

Put()

Get()

Put()

Media/Link->Get()

CheckRedundancy()

AddRedundancy();

Media/Link->Put()

Participants

· Media/Link

· The storage medium or communications link to which data will be written or from which data will be read.

· Error Control Proxy

· Adds redundancy to data written to a storage medium or communications link; uses redundant information to check integrity of (and, if possible, repair integrity of) data read from a storage medium or communications link.

Collaborations

· To be added

Consequences

Use of the Error Detection/Correction pattern:

· Protects against loss of data integrity by detecting and, in some cases, correcting errors.

· Expands data by a known factor.

· Introduces a startup delay into data storage/transmission and retrieval/reception operations.

Implementation

· Error-Control Code (for example, Cyclic Redundancy Check - CRC), Cryptographic Hash, Digital Signature.

· Note that you can reduce performance overhead to a constant startup latency by using streaming and parallelism.

Known Uses

· RAID array, Disk storage CRC

Related Patterns

Error Detection/Correction is a Proxy [GoF].

6. Glossary

"access control"
The prevention of unauthorised use of a resource including the prevention of
use of a resource in an unauthorised manner. See ISO/IEC 7498-2.

"access control certificate"
ADI in the form of a security certificate. See ISO/IEC 10081-3

"access control decision function"
(ADF) - a specialised function that makes access control decisions
by applying access control policy rules to a requested action,
ACI (of initiators, targets, actions, or that retained from prior
actions), and the context in which the request is made. See ISO/IEC 10081-3

"access control decision information"
(ADI) - the portion (possibly all) of the ACI made available to
the ADF in making a particular access control decision. See ISO/IEC 10081-3

"access control enforcement function"
(AEF) - a specialised function that is part of the access path
between an initiator and a target on each access that enforces the
decisions made by the ADF. See ISO/IEC 10081-3

"access control information"
(ACI) - any information used for access control purposes, including
contextual information. See ISO/IEC 10081-3.

"access control list"
A list of entities, together with their access rights which are authorised to
have access to a resource. See ISO/IEC 10081-3.

"access control policy"
The set of rules that define the conditions under which an access may take
place. See ISO/IEC 10081-3.

"accountability"
The property that ensures that the actions of an entity may be traced to that
entity. See ISO/IEC 7498-2.

ACI
Access control information.

ACL
Access control list.

"action"
The operations and operands that form part of an attempted access.
See ISO/IEC 10081-3.

"action ADI"
Action decision information associated with the action. See ISO/IEC 10081-3.

"active threat"
The threat of a deliberate unauthorised change to the state of the system.
See also "threat".

ADF
Access control decision function.

ADI
Access control decision information.

"administrative security information"
Persistent information associated with entities; it is conceptually stored
in the Security Management Information Base. Examples are:
- security attributes associated with users and set up on user account
installation, which is used to configure the user's identity and privileges
within the system
- information configuring a secure interaction policy between one entity and
another entity, which is used as the basis for the establishment of
operational associations between those two entities.

AEF
Access control enforcement function.

"alarm collector function"
A function that collects the security alarm messages, translates them into
security alarm records, and writes them to the security alarm log.
See ISO/IEC 10081-7.

"alarm examiner function"
A function that interfaces with a security alarm administrator.
See ISO/IEC 10081-3.

API
Application Programming Interface.
.P
The interface between the application software and the application platform,
across which all services are provided.
.P
The application programming interface is primarily in support of application
portability, but system and application interoperability are also supported
by a communication API. See IEEE Std 1003.0/D15, June 1992, Draft Standard
for Information Technology - Portable Operating System Interface (POSIX) -
Part 0.

"assertion"
Explicit statement in a system security policy that security measures in one
security domain constitute an adequate basis for security measures (or lack
of them) in another. See CESG Memorandum No.1 Issue 1.2 Oct 1992,
Glossary of Security Terminology.

"association-security-state"
The collection of information that is relevant to the control of
communications security for a particular application-association.
See ISO/IEC 10745.

"audit"
See Security Audit. See IISO/IEC 7498-2.

"audit authority"
The manager responsible for defining those aspects of a security policy
applicable to maintaining a security audit. See ISO/IEC 10081-7.

"audit event detector function"
A function that detects the occurrence of security-relevant events.
This function is normally an inherent part of the functionality
implementing the event. See ISO/IEC 10081-7.

"audit recorder function"
A function that records the security-relevant messages in a security audit
trail. See ISO/IEC 10081-7.

"audit trail"
See Security Audit Trail. See ISO/IEC 7498-2.

"audit trail analyser function"
A function that checks a security audit trail in order to produce, if
appropriate, security alarm messages. See ISO/IEC 10081-7.

"audit trail archiver function"
A function that archives a part of the security audit trail.
See ISO/IEC 10081-7.

"audit trail collector function"
A function that collects individual audit trail records into a security audit
trail. SeeISO/IEC 10081-7.

"audit trail examiner function"
A function that builds security reports out of one or more security audit
trails. See ISO/IEC 10081-7.

"audit trail provider function"
A function that provides security audit trails according to some
criteria. See ISO/IEC 10081-7.

"authenticated identity"
An identity of a principal that has been assured through authenticationx
See ISO/IEC 10081-2.

"authentication"
Verify claimed identity;
see data origin authentication, and peer entity authentication:
ISO/IEC 10081-2

"authentication certificate"
Authentication information in the form of a security certificate which may be
used to assure the identity of an entity guaranteed by an authentication
authority. See ISO/IEC 10081-2.

"authentication exchange"
A sequence of one or more transfers of exchange authentication information
(AI) for the purposes of performing an authentication. See ISO/IEC 10081-2.

"authentication information (AI)"
Information used to establish the validity of a claimed identity.
See ISO/IEC 7498-2.

"authentication initiator"
The entity which starts an authentication exchange. See ISO/IEC 10081-2.

"authentication method"
.xR 11 authentication_method
Method for demonstrating knowledge of a secret. The quality of the
authentication method, its strength is determined by the cryptographic
basis of the key distribution service on which it is based.
A symmetric key based method, in which both entities share common
authentication information, is considered to be a weaker method
than an asymmetric key based method, in which not all the
authentication information is shared by both entities.

"authorisation"
The granting of rights, which includes the granting of access based on access
rights. See ISO/IEC 7498-2.

"authorisation policy"
A set of rules, part of an access control policy, by which access by security
subjects to security objects is granted or denied. An authorisation policy may
be defined in terms of access control lists, capabilities or attributes
assigned to security subjects, security objects, or both. See ECMA TR/46 -
Security in Open Systems, A Security Framework, July 1988, European
Computer Manufacturers Association.

"availability"
The property of being accessible and usable upon demand by an authorised
entity. See ISO/IEC 7498-2.

"capability"
A token used as an identifier for a resource such that possession of the token
confers access rights for the resource. See ISO/IEC 7498-2.

"ciphertext"
Data produced through the use of encipherment. The semantic content of the
resulting data is not available. See ISO/IEC 7498-2.

Note that ciphertext may itself be input to encipherment, such that
super-enciphered output is produced.

"claim authentication information"
(Claim AI) - information used by a claimant to generate exchange AI
needed to authenticate a principal. See ISO/IEC 10081-2.

"claimant"
An entity which is or represents a principal for the purposes of
authentication. A claimant includes the functions necessary for engaging in
authentication exchanges on behalf of a principal. See ISO/IEC 10081-2.

"clear text"
Intelligible data, the semantic content of which is available.
See ISO/IEC 7498-2.

"client-server"
These operations occur between a pair of communicating independent peer
processes. The peer process initiating a service request is termed the
client. The peer process responding to a service request is termed the
server. A process may act as both client and server in the context of a set
of transactions.

The peer processes may reside on the same or different processors.
The configuration most commonly envisaged as client-server is that of a
workstation hosting client processors servicing a single user communicating
with server processes on a host processor servicing multiple workstation
clients.

"confidentiality"
The property that information is not made available or disclosed to
unauthorised individuals, entities, or processes. See ISO/IEC 7498-2.

"contextual information"
Information derived from the context in which an access is made (for
example, time of day). See ISO/IEC 10081-3.

"corporate security policy"
The set of laws, rules and practices that regulate how assets including
sensitive information are managed, protected and distributed within a user
organisation. See ITSEC - Information Technology Security Evaluation Criteria,
Provisional Harmonised Criteria, June 1991, Version 1.2, published by
the Commission of the European Communities.

"countermeasure"
The deployment of a set of security services to protect against a security
threat.

"credentials"
Data that is transferred to establish the claimed identity of an entity.
See ISO/IEC 7498-2.

"cryptanalysis"
The analysis of a cryptographic system and its inputs and outputs to derive
confidential variables and/or sensitive data including clear text.
See ISO/IEC 7498-2.

"cryptographic algorithm"
A method of performing a cryptographic transformation (see
cryptography) on a data unit. Cryptographic algorithms may be
based on symmetric key methods (the same key is used for both encipher
and decipher transformations) or on asymmetric keys (different keys
are used for encipher and decipher transformations).

"cryptographic checkvalue"
Information that is derived by performing a cryptographic transformation (see
cryptography) on a data unit. See ISO/IEC 7498-2.

Note that the derivation of the checkvalue may be performed in one
or more steps and is a result of a mathematical function of the key
and data unit. It is usually used to check the integrity of a data unit.

"cryptography"
The discipline that embodies principles, means, and the methods for the
transformation of data in order to hide its information content, prevent its
undetected modification and/or prevent its unauthorised use.
See ISO/IEC 7498-2.

Note that the choice of cryptography mechanism determines the methods used in
encipherment and decipherment. An attack on a cryptographic principle,
means, or methods, is cryptanalysis.

"data integrity"
The property that data has not been altered or destroyed in an unauthorised
manner. See ISO/IEC 7498-2.

"data origin authentication"
The corroboration that the entity responsible for the creation of a set
of data is the one claimed.

"decipherment"
The reversal of a corresponding reversible encipherment.
See ISO/IEC 7498-2.

"decryption"
See decipherment. See ISO/IEC 7498-2.

"denial of service"
The unauthorised prevention of authorised access to resources or the
delaying of time-critical operations. See ISO/IEC 7498-2.

"digital fingerprint"
A characteristic of a data item, such as a cryptographic checkvalue or the
result of performing a one-way hash function on the data, that is sufficiently
peculiar to the data item that it is computationally infeasible to find
another data item that possesses the same
characteristics. See ISO/IEC 10081-1.

"digital signature"
Data appended to, or a cryptographic transformation (see cryptography) of, a
data unit that allows a recipient of the data unit to prove the source and
integrity of the data unit and protect against forgery for example, by the
recipient. See ISO/IEC 7498-2.

"discretionary access control"
A discretionary authorisation scheme is one under which any principal using
the domain services may be authorised to assign or modify ACI such that he
may modify the authorisations of other principals under the scheme. A
typical example is an ACL scheme which is often referred to as
Discretionary Access Control (DAC).

"distinguishing identifier"
Data that unambiguously distinguishes an entity in the authentication
process. Such an identifier shall be unambiguous at least within a security
domain. See ISO/IEC 10081-2.

"distributed application"
A set of information processing resources distributed over one or more open
systems which provides a well-defined set of functionality to (human) users,
to assist a given (office) task. See ECMA TR/46 - Security in Open Systems,
A Security Framework, July 1988, European Computer Manufacturers Association.

"encapsulated subsystem"
A collection of procedures and data objects that is protected in a domain of
its own so that the internal structure of a data object is accessible only to
the procedures of the encapsulated subsystem and that those procedures may
be called only at designated domain entry points. Encapsulated subsystem,
protected subsystem and protected mechanisms of the TCB are all terms that
may be used interchangeably. See Federal Criteria Version 1.0 Dec 1992,
Federal Criteria for Information Technology Security.

"encipherment"
The cryptographic transformation of data (see cryptography) to produce
ciphertext. See ISO/IEC 7498-2.

Note that encipherment may be irreversible, in which case the corresponding
decipherment process cannot feasibly be performed. Such encipherment
may be called a one-way-function or cryptochecksum.

"encryption"
See encipherment. See ISO/IEC 7498-2.

"end-to-end encipherment"
Encipherment of data within or at the source end system, with the
corresponding decipherment occurring only within or at the destination end
system. See ISO/IEC 7498-2.

"exchange authentication information"
(Exchange AI) - information exchanged between a claimant and a verifier
during the process of authenticating a principal. See ISO/IEC 10081-2.

"identification"
The assignment of a name by which an entity can be referenced.
The entity may be high level (such as a user) or low level (such as a
process or communication channel.

"identity-based security policy"
A security policy based on the identities or attributes of users, a group
of users, or entities acting on behalf of the users and the resources
or targets being accessed. See ISO/IEC 7498-2.

"initiator"
An entity (for example, human user or computer based entity) that attempts
to access other entities. See ISO/IEC 10081-3.

"initiator access control decision information"
(Initiator ADI) - ADI associated with the initiator. See ISO/IEC 10081-3.

"initiator access control information"
(Initiator ACI) - access control information relating to the initiator.
See ISO/IEC 10081-3.

"integrity"
See Data Integrity. See ISO/IEC 7498-2.

"key"
A sequence of symbols that controls the operations of encipherment and
decipherment. See ISO/IEC 7498-2.

"key management"
The generation, storage, distribution, deletion, archiving and application of
keys in accordance with a security policy. See ISO/IEC 7498-2.

"masquerade"
The unauthorised pretence by an entity to be a different entity.
See ISO/IEC 7498-2.

"messaging application"
An application based on a store and forward paradigm; it requires an
appropriate security context to be bound with the message itself.

"non-discretionary access control"
A non-discretionary authorisation scheme is one under which only the
recognised security authority of the security domain may assign or modify
the ACI for the authorisation scheme such that the authorisations of
principals under the scheme are modified.

"off-line authentication certificate"
A particular form of authentication information binding an entity to a
cryptographic key, certified by a trusted authority, which may be used for
authentication without directly interacting
with the authority. See ISO/IEC 10081-2.

"on-line authentication certificate"
A particular form of authentication information, certified by a trusted
authority, which may be used for authentication following direct interaction
with the authority. See ISO/IEC 10081-2.

"operational security information"
Transient information related to a single operation or set of operations
within the context of an operational association, for example, a user
session.
Operational security information represents the current security context of
the operations and may be passed as parameters to the operational primitives
or retrieved from the operations environment as defaults.

"organisational security policy"
Set of laws, rules, and practices that regulates how an organisation manages,
protects, and distributes sensitive information. See Federal Criteria Version 1.0 Dec 1992, Federal Criteria for Information Technology Security.

"password"
Confidential authentication information, usually composed of a string of
characters. See ISO/IEC 7498-2.

"peer-entity authentication"
The corroboration that a peer entity in an association is the one
claimed. See ISO/IEC 7498-2.

"physical security"
The measures used to provide physical protection of resources against
deliberate and accidental threats. See ISO/IEC 7498-2.

"platform domain"
A security domain encompassing the operating system, the entities
and operations it supports and its security policy.

"policy"
See security policy. See ISO/IEC 7498-2.

"primary service"
An independent category of service such as operating system services,
communication services and data management services.
Each primary service provides a discrete set of functionality.
Each primary service inherently includes generic qualities such as
usability, manageability and security.
.P
Security services are therefore not primary services but are invoked as part
of the provision of primary services by the primary service provider.

"principal"
An entity whose identity can be authenticated. See ISO/IEC 10081-2.

"privacy"
The right of individuals to control or influence what information related to
them may be collected and stored and by whom and to whom that information may
be disclosed.

Note that because this term relates to the right of individuals, it cannot be
very precise and its use should be avoided except as a motivation for
requiring security. See ISO/IEC 7498-2.

"private key"
A key used in an asymmetric algorithm. Possession of this key is restricted,
usually to only one entity. See ISO/IEC 10081-1.

"public key"
The key, used in an asymmetric algorithm, that is publicly available.
See ISO/IEC 10081-1.

"quality of protection"
A label that implies methods of security protection under a security
policy. This normally includes a combination of integrity and
confidentiality requirements and is typically implemented in a
communications environment by a combination of cryptographic
mechanisms.

"repudiation"
Denial by one of the entities involved in a communication of having
participated in all or part of the communication. See ISO/IEC 7498-2.

"rule-based security policy"
A security policy based on global rules imposed for all users. These rules
usually rely on a comparison of the sensitivity of the resources being
accessed and the possession of corresponding attributes of users, a group of
users, or entities acting on behalf of users. See ISO/IEC 7498-2.

"seal"
A cryptographic checkvalue that supports integrity but does not protect
against forgery by the recipient (that is, it does not support
non-repudiation). When a seal is associated with a data element, that data
element is sealed. See ISO/IEC 10081-1.

"secondary discretionary disclosure"
An example of the misuse of access rights. It occurs when a principal
authorised to access some information copies that information and authorises
access to the copy by a second principal who is not authorised to access the
original information.

"secret key"
In a symmetric cryptographic algorithm the key shared between two
entities. See ISO/IEC 10081-1.

"secure association"
An instance of secure communication (using communication in the broad sense
of space and/or time) which makes use of a secure context.

"secure context"
The existence of the necessary information for the correct operation of the
security mechanisms at the appropriate place and time.

"secure interaction policy"
The common aspects of the security policies in effect at each of the
communicating application processes.
See CESG Memorandum No.1 Issue 1.2 Oct 1992, Glossary of Security Terminology.

"security architecture"
A high level description of the structure of a system, with security
functions assigned to components within this structure.
See CESG Memorandum No.1 Issue 1.2 Oct 1992, Glossary of Security Terminology.

"security attribute"
A security attribute is a piece of security information which is associated
with an entity.

"security audit"
An independent review and examination of system records and operations in
order to test for adequacy of system controls, to ensure compliance with
established policy and operational procedures, to detect breaches in security
and to recommend any indicated changes in control, policy and procedures.
See ISO/IEC 7498-2.

"security audit message"
A message generated following the occurrence of an auditable security-related
event. See ISO/IEC 10081-7.

"security audit record"
A single record in a security audit trail corresponding to a single
security-related event. See ISO/IEC 10081-7.

"security audit trail"
Data collected and potentially used to facilitate a security audit.
See ISO/IEC 7498-2.

"security auditor"
An individual or a process allowed to have access to the security audit trail
and to build audit reports. See ISO/IEC 10081-7.

"security aware"
The caller of an API that is aware of the security functionality and
parameters which may be provided by an API.

"security certificate"
A set of security-relevant data from an issuing security authority
that is protected by integrity and data origin authentication, and
includes an indication of a time period of validity. See ISO/IEC 10081-1.

Note that all certificates are deemed to be security certificates (see the
relevant definitions in ISO/IEC 7498-2, adopted in order to avoid terminology
conflicts with ISO/IEC 10081-2 - that is the directory authentication standard).

"security domain"
A set of elements, a security policy, a security authority and a set of
security-relevant operations in which the set of elements are subject to the
security policy, administered by the security authority, for the specified
operations. See ISO/IEC 10081-1.

"security event manager"
An individual or process allowed to specify and manage the events which may
generate a security message and to establish the action or actions to
be taken for each security message type. See ISO/IEC 10081-7.

"security label"
The marking bound to a resource (which may be a data unit) that names or
designates the security attributes of that resource.
See ISO/IEC 7498-2. Note that the marking may be explicit or implicit.

"security policy"
The set of criteria for the provision of security services (see also
identity-based and rule-based security policy).

"security service"
A service which may be invoked directly or indirectly by functions
within a system that ensures adequate security of the system or of
data transfers between components of the system or with other systems.

"security state"
State information that is held in an open system and which is required
for the provision of security services.

"security token"
A set of security-relevant data that is protected by integrity and data
origin authentication from a source that is not considered a security
authority. See ISO/IEC 10081-1.

"security unaware"
The caller of an API that is unaware of the security functionality and
parameters which may be provided by an API.

"security vulnerabilities"
The weaknesses in the construction, capability and operation of
information systems that expose them to the accidental or intentional
realisation of security threats.

"sensitivity"
The characteristic of a resource that implies its value or importance, and
may include its vulnerability. See ISO/IEC 7498-2.

"separation"
The concept of keeping information of different security classes apart in a
system. See CESG Memorandum No.1 Issue 1.2 Oct 1992, Glossary of
Security Terminology.

Note that separation may be implemented by temporal, physical, logical or
cryptographic techniques.

"service domain"
A security domain encompassing an application, the entities and
operations it supports and its security policy.

"signature"
See digital signature. See ISO/IEC 7498-2.

"strength of mechanism"
An aspect of the assessment of the effectiveness of a security mechanism,
namely the ability of the security mechanism to withstand direct attack
against deficiencies in its underlying algorithms, principles and
properties. See ITSEC _ Information Technology Security Evaluation Criteria,
Provisional Harmonised Criteria, June 1991, Version 1.2, published by
the Commission of the European Communities.

"system security function"
A capability of an open system to perform security-related processing.
See CESG Memorandum No.1 Issue 1.2 Oct 1992, Glossary of Security Terminology.

"target"
An entity to which access may be attempted. See ISO/IEC 10081-3.

"target ADI"
ADI associated with the target. See ISO/IEC 10081-3.

"target ACI"
Access control information relating to the target. See ISO/IEC 10081-3.

"threat"
A potential violation of security - see ISO/IEC 7498-2.
An action or event that might prejudice security - see ITSEC - Information
Technology Security Evaluation Criteria, Provisional Harmonised Criteria,
June 1991, Version 1.2, published by the Commission of the European Communities.

Security threats include unauthorised disclosure, unauthorised use
of resources, denial of service, and repudiation. These threats
represent security vulnerabilities. They are often evaluated
by considering the methods of attack that each involves.

"traffic analysis"
The inference of information from observation of traffic flows (presence,
absence, amount, direction and frequency). See ISO/IEC 7498-2.

"traffic flow confidentiality"
A confidentiality service to protect against traffic analysis.
See ISO/IEC 7498-2.

"traffic padding"
The generation of spurious instances of communication, spurious data units
or spurious data within data units. See ISO/IEC 7498-2.

"trap door"
A hidden software or hardware mechanism that permits system protection
mechanisms to be circumvented. It is activated in some non-apparent manner
(for example, special "random" key sequence at a terminal).
See TCSEC - Trusted Computer System Evaluation Criteria, U.S. Department
of Defense (DOD), 1985, DOD 5200.28-STD, National Computer Security Center,
Fort Meade, Md.

"trojan horse"
Computer program containing an apparent or actual useful function that
contains additional (hidden) functions that allow unauthorised collection,
falsification or destruction of data. See Federal Criteria Version 1.0
Dec 1992, Federal Criteria for Information Technology Security.

"trust"
A relationship between two elements, a set of operations and a security policy
in which element X trusts element Y if and only if X has confidence that Y
behaves in a well defined way (with respect to the operations) that does
not violate the given security policy. See ISO/IEC 10081-1.

"trusted computing base (TCB)"
The totality of protection mechanisms within an IT system, including
hardware, firmware, software and data, the combination of which is
responsible for enforcing the security policy.

"trusted functionality"
That which is perceived to be correct with respect to some criteria, for
example, as established by a security policy. See ISO/IEC 7498-2.

"trusted path"
Mechanism by which a person using a terminal can communicate directly with
the TCB. See Federal Criteria Version 1.0 Dec 1992, Federal Criteria for
Information Technology Security.

Note that trusted path can only be activated by the person or the TCB and
cannot be imitated by untrusted software.

"trusted third party"
A security authority or its agent, trusted by other entities with respect to
security-related operations. See ISO/IEC 7498-2.

"verification AI"
Information used by a verifier to verify an identity claimed through
exchange AI. See ISO/IEC 10081-2.

"verifier"
An entity which is or represents the entity requiring an authenticated
identity. A verifier includes the functions necessary for engaging in
authentication exchanges. See ISO/IEC 10081-2.

"virus"
Self replicating, malicious program segment that attaches itself to an
application or other executable system component and leaves no external signs
of its presence. See Federal Criteria Version 1.0 Dec 1992, Federal
Criteria for Information Technology Security.

"vulnerability"
Weakness in an information system or components (for example, system security
procedures, hardware design, internal controls) that could be exploited to
produce an information-related misfortune. See Federal Criteria Version 1.0
Dec 1992, Federal Criteria for Information Technology Security.

� EMBED PowerPoint.Show.8 ���

[image: image28.wmf]Secure Communication

Protected

System

Protected

System

THREATS

Protection

Proxy (PP)

PP

PP

PP

Protection

Proxy (PP)

Sec Assoc

Sec Assoc

_1061358472.ppt

Security Context

Security Context

Protection Proxy

Protection Proxy

Secure Association

Protection Policy

Protection Policy

Secure Association Structure

_1078579461.ppt

Stateful

Component1

Comparator

State Integrity

Decorator

Recoverable

Component1

Operation()

Operation()

Operation()

S.I.D.1->Operation();

S.I.D.2->Operation();

Memento1->GetState();

Memento2->GetState();

if state1 not= state2

then HALT

Operation()

State Save

Operation()

CreateMemento()

Memento1

SetState()

GetState()

State

Stateful

Component2

State Integrity

Decorator

Operation()

Operation()

State Save

Operation()

CreateMemento()

Memento2

SetState()

GetState()

State

Recoverable

Component2

Operation()

_1078660680.ppt

Workload

Management

Proxy

Client

Component1

Replicated

System

Operation()

Operation()

Operation()

Select Component x;

Component.x->

Operation()

Component2

Operation()

_1078662488.ppt

Stateful

Component

State Recovery

State Integrity

Decorator

Recoverable

Component

Operation()

Operation()

Operation()

RecoverableComponent->

Operation()

StateIntegrityDecorator->

Operation()

Operation()

SetMemento()

State Save

Operation()

CreateMemento()

Memento

SetState()

GetState()

State

_1078659919.ppt

Stateless

Component1

GetState()

SetState()

Stateless

Component2

GetState()

SetState()

StateManager

SetState()

GetState()

StateStore->Lock();

StateStore->SetState();

StateStore->Unlock()

StateManager->

GetState()

StateManager->

SetState()

StateStore

Lock()

Unlock()

SetState()

GetState()

_1078650666.ppt

Error Control

Proxy

Client

Media/Link

Error

Detection/

Correction

Get()

Put

Get()

Put()

Get()

Put()

Media/Link->Get()

CheckRedundancy()

AddRedundancy();

Media/Link->Put()

_1078579150.ppt

Stateful

Component

State Recovery

State Integrity

Decorator

Recoverable

Component

Operation()

Operation()

Operation()

Operation()

SetMemento()

State Save

Operation()

CreateMemento()

Memento

SetState()

GetState()

State

_1078579253.ppt

Stateful

Component1

State Recovery

State Integrity

Decorator

Recoverable

Component1

Operation()

Operation()

Operation()

Operation()

SetMemento()

State Save

Operation()

CreateMemento()

Memento

SetState()

GetState()

State

Stateful

Component2

State Integrity

Decorator

Recoverable

Component2

Operation()

Operation()

Operation()

_1078578662.ppt

State Update

Proxy

Stateful

Component1

Journaled

Component1

Update()

Update()

Update()

StateJournal

AddEntry()

Stateful

Component2

Journaled

Component2

Update()

Update()

CheckConsistency;

S.C.1->Update();

S.C.2->Update();

StateJournal->

AddEntry()

_1078578721.ppt

State Update

Proxy

Client

Stateful

Component

Journaled

Component

Update()

Update()

Update()

StatefulComponent->

Update();

StateJournal->

AddEntry()

StateJournal

AddEntry()

_1061358913.ppt

Prot_Proxy_2

Prot_Proxy_1

Sec_Context_1

Sec_Context_2

get protection policy

Requester

talk to target

get requester context

get requester info

set up association with target

get protection policy

get target context

get target info

Sec_Assn

create

return new association

Secure Association Collaborations

_1062848131.ppt

Secure Communication

Protected

System

Protected

System

THREATS

Protection

Proxy (PP)

PP

PP

PP

Protection

Proxy (PP)

Sec Assoc

Sec Assoc

_1056224647.ppt

ResourceMgr

request

denied

response

request

response

request_allowed

grant/deny

AA

AS

get client attrs

authenticate

pass / fail

get_attributes

client attrs

authn challenge

authn result

get request, context, target attrs

authenticate

Client

PEP

PDP

_1059804991.ppt

Protected

System

(Receiver)

Protected

System

(Sender)

Secure Communication Channel

THREATS

_1059805541.ppt

Sender

Communication

 Channel

Communication

Protection

 Proxy

Receiver

Communication

Protection

 Proxy

_1056232925.ppt

Client

ResourceMgr

request(resource)

get_client_attrs()

authenticate()

authn_result()

get_…_attrs()

PEP

Mediator

PDP

request_allowed()

AA

get_attributes()

AS

authenticate()

Resource

_1059802659.ppt

Target

request

Channel

Apply Secure Association

request

CP Proxy

response

Originator

CP Proxy

_1056213203.ppt

Client

ResourceMgr

request(resource)

Guard

Proxy

PEP

_1056218951.ppt

request

denied

response

request

response

check system

policy

Client

Guard

ResourceMgr

_1056049730.ppt

resources

guard

clients

