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1. Introduction
This Guide is intended to show the user how to install and effectively use the Conformance Test
Suite (CTS). The CTS tests Units of Conformance (UoCs) and data models that meet a subset of the
requirements in the FACE® Technical Standard, Edition 3.0. All requirements the CTS is required to
test are defined in the Conformance Verification Matrix (CVM), provided by the FACE Consortium.
All types of UoCs may be tested with the CTS, including:

1. Portable Components Segment (PCS) UoCs

2. Platform Specific Services Segment (PSSS) UoCs

3. Transport Services Segment (TSS) UoCs

4. I/O Services Segment (IOSS) UoCs

5. Operating System Segment (OSS) UoCs

Testing procedures for each segment are listed in the sections contained in this user manual.

1.1. Context
Each of edition of the FACE Technical Standard has a corresponding line of CTS applications. The
CTS version identifier follows the pattern 3.X.Y, where X is a number that defines the minor edition
of the Technical Standard, and Y to version of the CTS released to support the given Technical
Standard. For example, CTS 3.1.0 represents supporting the 3.1 edition of the Technical Standard
and is the initial release of the CTS. This document refers to CTS versions in support of FACE
Technical Standard, Editions 3.X and will henceforth be referred to as "the CTS" unless otherwise
delineated.

1.2. Tools Contained in the Test Suite
The CTS’s graphical user interface (GUI) allows for a user-friendly approach for FACE conformance
testing and it is the method in which users of the CTS are expected to use the tool. Additionally, the
CTS is comprised of multiple, separate tools that work together to test software components against
the FACE Technical Standard and produce a conformance test result.

Although the user is expected to interact with CTS through the GUI, it is beneficial to understand
from a high-level the specialized tools the CTS uses and how they work together to test for
conformance. There are four tools contained in the CTS:

1. UsmIDLGenerator/DIG (Data Model to IDL Generator)

◦ The UsmIDLGenerator/DIG generates the IDL (Interface Definition Language) for the
platform data types and views specified by a Unit of Portability (UoP) in a USM (UoP
Supplied Model). Used at CTS runtime, the generated IDL is compiled into source code for
the programming language that the candidate UoC is written.
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NOTE

The term "Unit of Portability" (or UoP) is a general term referring to either a PCS or
PSSS UoC. This document attempts to limit uses of the term "UoP" to references to a
USM and its contents. Any occurrence of the term not meeting this intent can be
assumed to be a synonym for "UoC".

1. Ideal

◦ Ideal is a translator that converts FACE interfaces, defined in IDL, using the programming
language mappings described in the FACE Technical Standard for Ada, Java, C99, and C++03.
Ideal is used by the CTS to generate language specific code from the output of the
UsmIDLGenerator/DIG.

2. DMVT (Data Model Validation Tool)

◦ The DMVT takes the Shared Data Model (SDM) and a UoC’s USM as inputs to test the USM for
adherence to the data architecture specification in the FACE Technical Standard. For UoC’s
that require a USM for testing, the CTS invokes the DMVT first to ensure the USM is meets
the Standard before proceeding with testing. The SDM is available for download on The
Open Group’s website at https://www.opengroup.org/face/docsandtools.

3. FACE Conformance Application

◦ The FACE Conformance Application refers to the software pieces of the CTS for the front-end
GUI, backend processes to test for FACE conformance and the generation of the FACE
conformance report after a UoC is tested.

The overall testing workflow and how the tools are used is summarized in the following section.

1.2.1. Conformance Testing Workflow

The figure below provides details of the high-level workflow on how each of the CTS tools interact
with one another. The figure also details an example for intended UoC development and UoC
conformance testing process.

Specific instructions on how to test a specific UoC is contained within this user manual in the
Project Configuration Files, Toolchain Configuration Files and Testing a UoC sections.
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Figure 1. The workflow of FACE development and conformance testing.

By following the numerical arrows in the figure, the user can see the process of developing a UoC
and passing it through the CTS:

1. The user must create or import a toolchain configuration file for the user’s specific
compiler/linker/archiver tools, either from scratch or basing it off one of the sample toolchains.
The user must also create or import The Project Configuration file by specifying the profile,
segment, interfaces the UoC implements and interfaces it uses, and the USM and corresponding
SDM locations (if appropriate).

2. The user must click on the "Generate GSLs/Interface" button in the toolbar.

3. The USM’s location is taken from the configured project configuration file. The USM is parsed
for TSS Typed interfaces and/or Life Cycle Management (LCM) Stateful interfaces and be sent to
the UsmIDLGen/DIG tool.

4. The UsmIDLGen/DIG tool translates the data structures and typed interfaces based on the USM
to IDL.

5. Ideal generates the IDL into interface headers (C/C++/Ada spec files/Java) files based on the UoC
programming language. These files will be placed into a subfolder of the project folder as the
"Gold Standard" folder (the relative of the subfolder is include/FACE). This process also
generates a text file in this location with all the include paths the user should use to compile
their code for conformance.

6. The user gathers the generated text file

7. Based on the CTS Factory Functions header (the generated text file), the user writes their
implementation code (called Factory Functions) that implements each interface being provided
by the UoC from these generated interfaces created in Step 5.

a. Implement each UoC interface based on the language constraints:

i. For C++ and Java, the implementation is a derived class for each interface being
provided. The base/abstract class is the interface class provided in the Gold Standard
Library subfolder include/FACE as generated by the CTS.

ii. For C and Ada, one must create implementations of the functions/procedures.
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b. Next, for each FACE interface that the UoC is to "use" (access), the user must also implement
the Injectable interface for that interface.

8. The user adds the Factory Functions to the .pcfg file in the Objects/Libraries tab

9. The user compiles their UoC code using the generated headers or spec files or Java files
(depending on language) and the include paths (compiler paths or class paths) provided in the
generated text file.

10. The user adds the object code to the CTS and runs the Conformance test by pressing the "Test
UoC Conformance" button.

11. The FACE Conformance Application invokes the DMVT/DAVT, sending the USM and SDM
location

12. The DMVT validates the USM based on the SDM and sends back the result.

13. The FACE Conformance Application:

a. Tests source files for injectables that are generated.

b. Compiles CTS Factory Functions using the user-provided Factory Functions file.

c. Tests files (generated and CTS-provided) are compiled and linked with the UoC object(s), CTS
Factory Functions, and GSL libraries into a series of executables (that never are run, as the
CTS only tests to see if a UoC correctly links with the test executables) .

d. Link test is performed with limited GSL libraries to test for inter-UoC restricted calls.

14. A PDF conformance report is generated based on the results of step 13. The PDF report contains
all test logs and stack traces to those logs so the user can alter the UoC if there are any failures.

9



2. Installation

2.1. Installation on Linux (CentOS 7/RHEL 7)

2.1.1. User Prerequisites

To successfully install the CTS, the user must have root permission to access network-based
repositories (such as "yum"), package installation privileges, and privileges to change file
permissions (via "chmod").

NOTE
These permissions are necessary, as some dependencies are not installed by default.
It is acknowledged that the CTS installation process is not optimized for installation
on government machines or on machines that restrict installation.

2.1.2. System Requirements

Before installation, check the system requirements below to ensure the test suite will run on the
user’s designated machine. The CTS has been developed and tested on CentOS 7. It is highly
recommended to use this version of Linux for the installation of this version of the CTS, as using
other distributions will have varying results.

Table 1. The minimum requirements to run on a Linux-based system.

Minimum Requirements

Operating System CentOS 7, Red Hat Enterprise Linux (RHEL) 7

HDD/SDD 3 GB

RAM 4 GB

An Internet connection

For setting up under virtual machine, make sure that the allocated drive has at least 15GB. Doing so
will give the VM enough space to install its operating system, all of prerequisites, and the CTS itself.

Table 2. Dependencies that are required to successfully install the CTS on a Linux-
based system.

System Dependency

Python 2.7 installation, with:
→ zlib - a Python compression library
→ setuptools - a package used to help install and uninstall other Python packages

Java 1.8 JDK

Any PDF viewer

2.1.3. Language-Specific Prerequisites

The following section lists dependencies that UoCs written in a specific language require.

Table 3. UoC Testing Dependencies for Linux-based systems.
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Language Language Dependency

C GCC/G++ version 4.8 or higher

C++ GCC/G++ version 4.8 or higher

Ada GNAT for GCC version 4.8 or higher

Java Java JDK 1.8

Java Linux alternatives utility package (if more than 1 version of Java is
installed)

Java Ant 1.9.0 or higher

Java Browser (if not installing on the command line, which is
recommended)

Table 4. UoC Testing Dependencies for Linux-based systemss.

Language Library Language Dependency

Posix libarchive-devel version 3.1.2 or higher

Posix zlib-devel version 1.2.7 or higher

Details on how to install these dependencies are contained in the following sections. It is important
that the user attempt to install the CTS on a machine with at least the minimum specifications as
stated in the Table 1. The following subsections will guide the user on how to install each of these
prerequisites.

GCC/G++ 4.8.5

Install gcc/g++ from yum package:

sudo yum install gcc gcc-c++ gcc-gnat

This is necessary for C/C/Ada projects. This command will also install required dependencies for the
gcc, gcc-c, and gcc-gnat packages.

Python 2.7

Python 2.7.5 is installed by default on CentOS 7/RHEL 7. If it is not already installed then install
python 2.7.

The following python packages are included with CTS. Do not use pip to install them as the pip
installed packages can interfere with the CTS included packages and cause execution errors.
Remove these packages if they were installed previously via pip.

• protobuf-2.6.1-py2.7.egg

• pyparsing-2.0.1-py2.7.egg

• stringtemplate3-3.1-py2.7.egg

Java 8 JDK

The user must install Java 8 JDK. The best way to do this is download via browser, as the user needs
to accept the license agreement before they can download. The user may download from the url:
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https://www.oracle.com/java/technologies/javase/javase8u211-later-archive-downloads.html. It is
recommended to download the "Linux x64" .rpm file of the latest version of Java 8 for a quick
install.

The user must navigate to the directory where they downloaded the rpm and execute the following
commands.

sudo yum install jdk-8uXXX-linux-x64.rpm

Optional note: If the user has different major versions of Java present on their installation system,
the 'alternatives' utility may be used. The utility allows the user to use and manage different
versions of applications in their environment via symbolic links. By default, it is installed in most
Linux distributions. If it is not installed, the user must install it via the normal means for installing
packages for their Linux distribution. Then, the user must initialize both the "java" and "javac" to
the alternatives package. It is important to include both, as "java" is used to execute Java bytecode,
and "javac" is used to compile Java programs.

sudo /usr/sbin/alternatives --install /usr/bin/java java
/usr/java/jdk1.8.0_XXX/bin/java 2000

sudo /usr/sbin/alternatives --install /usr/bin/javac javac
/usr/java/jdk1.8.0_XXX/bin/javac 2000

If the user executes,

sudo alternatives --config java

they should see a selection display that contains the locations of all of the Java programs installed
on the machine, each with a numeric id. The user can select the Java program they want to be
associated with the name "java" by entering the corresponding id.

Figure 2. Configuring Default Java Using "alternatives" Utility

If the user executes,

sudo alternatives --config javac

they should see a selection display that contains the location of all of the Java compilers installed on
the machine. The user can select the Java compiler program they want to be associated with the
name "javac" by entering the corresponding id.
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The user must set 2 environment varibales for java. It is recommended to add this to the user’s
permanent environment or via terminal startup script at ~/.bashrc. "JDK8_HOME" variable is
defined to point to the base directory of the JDK 8 installation. "JAVA_HOME" variable is set to the
"JDK8_HOME" variable.

export JDK8_HOME=/usr/java/jdk1.8.0_XXX
export JAVA_HOME=$JDK8_HOME

Ant 1.9.x

Execute the following command to install Ant:

sudo yum install ant

Note: The default installation version for Ant may be different than 1.9 for the user’s system. Check
the package version in yum before installing. This prerequisite is only required to build sample
UoCs for Java. The user can exclude the Java UoCs when building sample UoCs, if desired.

2.1.4. Installation of CTS

To install the CTS, simply extract the archive file (zip or tar.gz) to a folder somewhere where the
user has read/write/executable access.

Environment Variables

The user must have set the environment variables to correctly hook in with the proper supporting
tools. It is recommended to add environment variables to the user’s permanent environment or via
terminal startup script at ~/.bashrc. It must be defined and exported.

Below is a summary of all the environment variables that must be set using .bashrc as the example.
Please note that the user must source the .bashrc or restart the terminal after making changes.

Open ~/.bashrc using nano or another editor:

export JDK8_HOME=/usr/java/jdk1.8.0_XXX
export JAVA_HOME=$JDK8_HOME

Please note that the JAVA_HOME variable is used to run the CTS GUI. JDK8_HOME should reflect the
version of Java the user is currently using.

Save, exit the terminal, and start a different terminal to let the environment variables take effect in
the new terminal. Alternatively the user can source the .bashrc file in the same terminal.

source .bashrc

The user will now have Java 8 as a dependency. To test if the environment variables were set
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successfully, the user may execute:

echo $<variable name>

This provides the user with what was set to the specified environment variable.

2.1.5. Running CTS

Ensure you are running in an environment that has all of the above environment variable settings
refreshed. If in doubt, start a new terminal window. Ensure that this setup is correct by running:

java -version

Check that this is a Java 8 version, not the OpenJDK1.8 version. Open JDK is not supported as it
does not provide JavaFX, which the CTS GUI uses. If it is the OpenJDK version (or is not Java 8 at all),
execute:

sudo alternatives --config java

When prompted, enter the number corresponding to the JDK 1.8.

Next, ensure that javac is set to use the Java 8 JDK by executing the following commands:

sudo alternatives --config javac

When prompted, enter the number corresponding to the JDK 1.8.

Launching CTS

Navigate to the top-level directory of the CTS installation, and execute the below command in a
terminal:

./run_CTS_GUI.py

To produce a verbose output in the execution terminal:

./run_CTS_GUI.py -v

This will launch the conformance main menu as shown in below figure.
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Figure 3. The CTS home screen.

2.2. Installation Variance for CentOS 8/RHEL 8
The system requirements and prerequisite requirements for running the CTS on CentOS 8 are the
same as CentOS 7.

• GCC/G++ 4.8.5

• Python 2.7

• Java 8 JDK

The installation instructions for prerequisites on CentOS 7 applies to CentOS 8 with the exception of
installating Python 2.7. By default CentOS 8 doesn’t have an unversioned system-wide python
command to avoid locking the users to a specific version of Python. Instead, the user has the option
to install, configure, and run a specific Python version.

The steps to install Python 2.7 are as follows:

sudo dnf install python2
sudo alternatives --set python /usr/bin/python2

Please see installation instructions for all other prerequisites from section Section 2.1.3.

Please see instructions for running and launching CTS from sections Section 2.1.5 and Section
2.1.5.1.

Note that Ada cannot be tested on CentOS 8 due to the lack of GNAT support on CentOS 8.
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2.3. Installation on Windows (Windows 10)

2.3.1. User Prerequisites

To successfully install the CTS, the user must have permissions to save downloaded files to the
filesystem and software installation privileges as well as access to the internet for downloading
prerequisite software.

NOTE
It is acknowledged that the CTS installation process is not optimized for installation
on government machines or on machines that restrict installation.

2.3.2. System Requirements

Before installation, check the system requirements below to ensure the test suite will run on the
user’s designated machine.

Table 5. The minimum requirements to run on Windows.

Minimum Requirements

Operating System Windows 10 64-bit

HDD/SDD 25 GB

RAM 8 GB

An Internet connection

The processor and graphics card are not included in Table 5, as the CTS is not processor or
graphically intensive.

Table 6 represents an overview of the prerequisites needed to install and execute the CTS. Please
carefully follow the instructions in "Detailed Instructions for Installing Prerequisites" for installing
each.

Table 6. The prerequisites needed to install CTS on a Windows system.

System Requirements

Python 2.7 with zlib and setuptools support

Java 1.8 SDK

Any PDF viewer

2.3.3. Language-specific Prerequisites

The following section lists dependencies that UoCs written in a specific language require. The
installation of each dependency will be detailed in the "Detailed Instructions for Installing
Prerequisites" for the user’s operating system, contained in this document.

Table 7. UoC Testing Dependencies for Windows 10.
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Language Language Dependency msys2.0 package

C/C++/Ada msys 2.0 mingw-w64-x86_64-toolchain

C/C++/Ada msys 2.0 base-devel

C/C++/Ada msys 2.0 msys2-devel

C/C++/Ada msys 2.0 make

Java Java JDK 1.8

Java Ant 1.9.0 or higher

The language dependency for C/C++/Ada requires msys2 to install some required software
packages. Msys2 is a software distribution package and building platform for Windows, intended to
provide a POSIX compatibility layer that Windows distributions do not provide. It provides a bash
shell and the ability to build native windows applications using the MinGWw64 toolchains.

2.3.4. Detailed Instructions for Installing Prerequisites

It is recommended to install the CTS on a machine with at least the minimum specifications stated
in Table 5. The user must have permission to install and run programs on the machine.

Python 2.7

The CTS backend (conformance tests, logic, etc.) runs Python 2.7, and thus must be installed by the
user.

Download and install Python 2.7.x 64 bit for Windows by going to
https://www.python.org/downloads/release/python-2715/ . It is recommended to download the
installer, rather than install manually.

Navigate to the "Environment Variables" menu, as done for the Java 8 installation. The user must
add the Python installation folder to their SYSTEM environment path variable at the top of the list
(ex C:\Python27).

IMPORTANT
The CTS uses Python 2.7 and will not function correctly using Python 3.
Python 2.7 must appear before all other directories providing Python (e.g.,
MSYS2).
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Figure 4. They Python 2.7 environment variable near the top of the list, with the variable is outlined in red.

The following python packages are included with CTS. Do not use pip to install them as the pip
installed packages can interfere with the CTS included packages and cause execution errors.
Remove these packages if they were installed previously via pip.

• protobuf-2.6.1-py2.7.egg

• pyparsing-2.0.1-py2.7.egg

• stringtemplate3-3.1-py2.7.egg

Java JDK 8

The following subsections detail how to install Java 8 to the user’s system.

Download or acquire JDK 8 from Oracle for Windows 64 bit and install:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html . The best
way to do this is via a browser, as you need to accept the license agreement.

Next, create a SYSTEM-level environment variable JDK8_HOME set to the folder where you installed
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JDK8. To do this, the user must press the start button on their keyboard and type "environment
variables." Select "Edit the system environment variables." When the GUI pops up, the user must
select "Environment Variables" near the bottom of the GUI.

Figure 5. The system properties interface.

The environment variables button is located after the startup and recovery section. In the
Environment Variables interface, add a "System variable" at the lower half. Select "new".
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Figure 6. The environment variables interface.

The user must select the "New" button in the System Variables section in order to add a new system
variable.

Finally, the user must set the variable name to 'JDK8_HOME' and the variable value to the folder
where the user installed JDK 8 (example: C:\Program Files\Java\jdk1.8.0_151). The user must name
the Java variable, "JDK8_HOME." The variable value is wherever the user installed Java 8.

Figure 7. The new system variable interface.
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Using multiple versions of Java

JDK 8 is required to launch the CTS. As there might be multiple installations of different versions of
Java on a user’s system, it is in the user’s best interest to set an interchangeable environment
variable on their machine. The manipulation of the environment variable allows multiple versions
of Java to exist together and the user to switch between them. The user must name the variable,
"JAVA_HOME." The variable references another system variable. In this case, Java 8.

Create a SYSTEM level environment variable JAVA_HOME set to the value: %JDK8_HOME%.

Figure 8. The environment variables dialogue.

The user must add "%JAVA_HOME%\bin" to the path and move it to the top of the list. The result is
shown in below figure, and outlined in red.
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Figure 9. The PATH variable dialogue, with the JAVA_HOME environment variable outlined in red.

MSYS2 (for C/C++/Ada samples only)

MSYS2 is a development environment that provides better interoperability between Unix-like
installations with native Windows software. The CTS depends on POSIX to process C/C++/Ada
applications, and Windows does not include POSIX. Thus, MSYS2 is required for the CTS to run on a
Windows operating system.

If the user is operating a 32-bit architecture, download MSYS2 from https://www.msys2.org/ .
Download the "msys2-i686" executable. If the user is operating a 64-bit architecture and would like
to install from the official website rather than the CTS-provided installers, download the "msys-
x86_64" executable.

After obtaining the executable, run the executable. Follow the prompts. The installation directory
must be "C:\msys64," which is the path the CTS looks for when executed.

After installing, open a MSYS2 MINGW 64-bit terminal (or 32-bit, depending on the user’s machine)
by pressing the start key and searching for "mingw." The application should be at the top of the
start menu.
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In the terminal, update the package database and core system packages.

pacman -Syu

If needed, close the terminal and launch the terminal again. The user can finish updating the
package database and core system packages by executing:

pacman -Su

If there are additional problems with the initial MSYS2 installation, it is recommended to consult
the MSYS2 detailed installation guide at https://github.com/msys2/msys2/wiki/MSYS2-installation.

Install several additional required packages via pacman:

pacman -S mingw-w64-x86_64-toolchain base-devel msys2-devel make

The user will be prompted to select configuration for the packages that pacman was asked to install.
Select "default - install all," and confirm with "Y".

Open file "C:\msys64\msys2_shell.cmd" and edit line "rem set MSYS2_PATH_TYPE=inherit" by
removing 'rem', which will look like the following when done:

set MSYS2_PATH_TYPE=inherit

The same way that an environment variable was added to the path in Java 8, and Python 2.7
installations, the user must add MSYS2 to their environment’s path. MSYS2’s environment variable
also must be near the top. The user must set both "C:\msys64\mingw64\bin" and "C:\msys64\usr\bin"
as environment variables.

IMPORTANT
For the CTS to work correctly, MSYS2 directories should NOT be listed before
Python 2.7 directories in the environment path.
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Figure 10. The msys64 path declarations, with variables are outlined in red.

Lastly, the user needs to remove the libdep.a from their MSYS2 installation directory to avoid ar.exe
error 0xc000012f caused by libdep.a.

Figure 11. Error 0xc000012f
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The command to remove libdep.a is:

rm C:\msys64\mingw64\lib\bfd-plugins\libdep.a

Ant 1.9.x

Download the Ant binary distribution zip file from https://ant.apache.org/bindownload.cgi. Extract
the "apache-ant-1.9.9-bin.zip" file to "C:\Program Files\". Ant is precompiled so no installer needs to
be run to have Ant properly work.

Next, the user must create a SYSTEM level environment variable ANT_HOME set to the folder where
the user installed Ant 1.9.9 (example: C:\Program Files\apache-ant-1.9.9).

Figure 12. Ant environment variable.
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Figure 13. Pointing the system path to the relevant Ant directories, with the variables are outlined in red.

Finally, the user must add "%ANT_HOME%" and "%ANT_HOME\bin% to their SYSTEM-level PATH
variable, near the top.

Enable Long Paths in Windows 10

The maximum length for a path on Windows is MAX_PATH which is defined as 260 characters.
Starting in Windows 10 version 1607, changing a registry key or using the Group Policy tool is used
to remove the limit.

NOTE
For more information on the long path limitation in Windows, see
https://learn.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-
limitation.

To change registry key:

1. From the start menu launch "regedit".

2. Navigate to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem.

3. Set the registry key LongPathsEnabled (Type: REG_DWORD) to 1.
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To use the Group Policy too:

1. Open Group Policy Editor (Press Windows Key and type gpedit.msc and hit Enter key.

2. Navigate to the following directory: Local Computer Policy > Computer Configuration >
Administrative Templates > System > Filesystem > NTFS.

3. Click Enable NTFS long paths option and enable it.

2.3.5. Installation of CTS

To install the CTS, simply extract the archive file (zip or tar.gz) to a folder where the user has
read/write/executable access.

NOTE

It is recommended to extract CTS close to the root of a drive such as
"C:/FACEConformanceTestSuite_x.x.x" or "D:/FACEConformanceTestSuite_x.x.x" in
order to minimize the folder path length. This will help reduce runtime failures
resulting from path length and cmd.exe command character length limitations on
Windows.

Installation Variance for Windows Cygwin/GCC Toolchains

To test an Operating System Segment UoC that provides a Cygwin GCC C/C++ toolchain hosted on
Windows for conformance please use the installation variance as described below.

1. Remove MSYS2 from the PATH environment variable.

◦ C:\msys64\mingw64\bin

◦ C:\msys64\usr\bin

2. Add Cygwin as bundled in the product to the PATH environment variable.

%CYGHOME%\bin, where %CYGHOME% is the full path to the root Cygwin directory.

Start CTS from the command line, rather than the installed desktop icon that invokes an MSYS2
shell script. The instructions are documented in Test Suite Command Line Options section of this
document.

2.3.6. Running CTS

The user can start the CTS by running the run_CTS_GUI.py script in the root directory of their CTS
installation using Windows Command Prompt. Please note that CTS cannot run successfully on
powershell or a MSYS2 MINGW terminal.

python run_CTS_GUI.py

This will launch the conformance main menu as shown in below figure.
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Figure 14. The CTS home screen.
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3. Theory of Operation
For C, C++, and Ada code, conformance is determined by integrating targeted testing code with
corresponding conformant test code. User applications will be linked with FACE test interfaces.
Customer interface libraries will be linked against by FACE test applications. The test interfaces
provide all possible function calls, data types, and constants available to the customer code. The test
applications utilize all possible function calls, data types, and constants that should exist in the
customer code. The test applications are compiled using the customer’s header files or spec files
(for C/C++/Ada) and then linked against both the customer’s code and the test libraries that contain
the function calls, data types, and constants allowed by the FACE Technical Standard for a given OS
Profile. If the compile and link pass, the customer code is conformant with respect to the
requirements tested. If the compile or link fail, the customer code is not conformant. Errors are
included in the test output.

Figure 15. Linked source code interfaces matching and not matching the FACE Technical Standard.

The test only determines conformance with respect to function signature. The test neither proves
nor disproves correctness of functionality. Additionally, for testing the existence of abstract
interfaces, the test does not determine if the customer code implements the interface, only that the
abstract interface is defined correctly in the customer’s headers or spec files. For testing existence
of non-abstract interfaces, the test determines if the interface is defined in the customer code. For
testing use of non-abstract interfaces, the test determines if the interface used by the supplier’s
code is an allowed interface. It will only pass if that interface is allowed either as an interface
defined by the FACE Technical Standard, or allowed per the FACE OS Profile.

3.1. Introduction to Methodology
Two methods of performing the link test exist. One uses the target linker. The other uses the host
linker. The target linker is the linker used to produce an executable targeting the embedded system.
The host linker is the linker used to produce an executable targeting the development system
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where the CTS runs. Each method has its own advantages.

The target linker method is advantageous in that a project’s existing build infrastructure can be
reused during conformance testing. Additionally, any conditionally compiled code based on
hardware architecture which is reflected in the compiler and linker will be included in the
conformance testing. The disadvantage is that conformance testing authority must know the details
of the target linker.

The host linker is advantageous in that its usage details are preselected in the conformance tool. Its
disadvantage is that conditionally compiled code based on hardware architecture which is reflected
in the compiler and linker may not be included in conformance testing. Additionally, the project’s
build infrastructure would need to be modified to make use of the host compiler and linker.

Figure 16. The target linker GUI, found in the Toolchain Configuration Builder’s Tools tab.

3.2. Target Linker Method
If the user chooses the target linker method, they must provide the conformance tool details about
their build tools. The user must provide the path to and name of the compiler, linker, and archiver
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for their build tools. Additionally, the user must provide compiler flags, linker flags, and archiver
flags to provide correct behavior.

3.3. Host Linker Method
If the user chooses the host linker method, they must alter their project’s build system to use the
host’s build tools and recompile. The user must be mindful of any conditionally compiled code
based on architecture or compiler.

3.4. Additional Methodology Information
When the user builds their project, they must alter their compiler flags to include the conformance
tool’s Gold Standard Libraries (GSL) directory for IOSS, TSS, and OSS headers. Details on how to
achieve this is described above in the Target Linker Method section.

3.4.1. OSS Testing Methodology

Unlike the other segments, to test the OSS using CTS, the system libraries and include files will need
to be used.

The user will want to specify the language standard, but they will not want to disable the headers
and built in functions and libraries. The user will also need to specify the location of include files
and libraries to be used in the system test, either by compiler and linker option flags, or by selecting
include paths and libraries via the configuration GUI as described in the Testing an Operating
System (OSS) Segment section below.

3.4.2. Java Testing Methodology

The Java testing methodology differs greatly from the methodology for C, C++, and Ada. This is due
to the standardized data format of Java’s .class files allowing these files to be universally queried
for information.

PCS and PSS segment class files are queried for their dependencies such as any classes, methods, or
fields necessary to execute. These dependencies are compared against a white list as defined by the
standard. Violations are reported as errors.

OSS, TSS, and IOSS segment class files are queried for their capabilities such as classes, methods,
and fields as well as attributes for each. These are compared against a minimum list as defined by
the standard. Any omissions or incorrect definitions are reported as errors. Additionally, native
methods are flagged as warnings to inspect.
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4. Toolchain Configuration File

4.1. Introduction
A toolchain configuration file (TCFG, .tcfg, toolchain file, toolchain) contains information to
configure and compile CTStest objects. A toolchain configuration file also contains information
about how to link with a user supplied UoC, given the UoC target environment. This information
provides an environment where the CTS can configure the correct environment to use information
stored in the Project Configuration file. The toolchain configuration file ending is .tcfg.

Toolchain configuration files are generated with string template (http://www.stringtemplate.org/), a
freely available template library for generating source code.

4.2. Toolchain Files List
The Toolchain Files List can be accessed by selecting the File > Toolchains option from the
navigation bar.

Figure 17. The Toolchain Files List.

The following options are available either by default or when the user selects a toolchain from the
list view:

• New - Opens the toolchain editor for creation of a new toolchain from scratch.

• Import - Provides a file browser dialog to allow the user to find and select one or more existing
toolchain file(s) and allow it to be copied to the "Toolchain Files Directory" displayed above the
list view. (Note that this option is different from the Project Files List’s Import function because
the user is making a copy of an existing toolchain from another location to the working

32

http://www.stringtemplate.org/


directory location. If the user intends on modifying a toolchain that is not located in the
working toolchain directory, then it is best to change the working toolchain directory to be that
of the directory from which the toolchain resides in.)

• Open - Opens the currently selected toolchain from the list view into the toolchain editor.

• Remove - Removes the currently selected toolchain from the list view. (Note that this option
does not delete the toolchain, but removes it from the list view only.)

• Clone - Creates a copy of the currently selected toolchain and saves it to the "Toolchain Files
Directory".

• Change - This opens a directory browser dialog to allow the user to change the directory to
search for and display all available toolchains in this toolchain list view.

Further, the user may define a "Toolchain Files Directory", a directory for the CTS to detect TCFG
files to automatically import into the toolchain file list.

4.3. Building a Toolchain Configuration File
The subsequent sections detail how to build a toolchain file and what each toolchain option means.
To begin, the user must click the "Create a Toolchain Configuration" button on the home page of the
GUI.

Figure 18. The Toolchain Configuration Builder with the General tab selected.

4.3.1. General Tab

The user must select the programming language the UoCs this toolchain are targeted towards. The
language must be the same as the candidate UoC('s) language it was programmed in.
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Next, the user must select the type of segment that the toolchain utilized by. The user must select
either "IOSS/PCS/PSSS/TSS" or "OSS", as the process for testing for conformance for OSS segments
are different.

The user must then define the OSS profile(s) that the candidate UoC(s) satisfy. There may be more
than one profile that is supported by a UoC, and the user must select all that are applicable.

The "PATH addition" section allows the user to include any libraries a UoC may need while being
built or archived. The user may add file paths that include these library locations. For example, on
Linux-based systems if the user has installed gcc, including "/usr/bin", it is required to allow the
toolchain to recognize the path of the compiler.

The "Environment Variables Additions" section allows the user to define an environment variable
name and value. In the sample projects that are generated by the CTS, the environment variables
are "dummy" and "hello" with values "123" and " world," respectively.

4.3.2. File Extensions Tab

Figure 19. The Toolchain Configuration Builder with the File Extensions tab selected.

The user must define each of the file extensions that their UoC(s) use:

• Choose the extension of the header/source files. o The extension should be the extension used
by the programming language that the segment uses.

• The user may choose the extension used for object files and libraries by the compiler

The user may choose to include the extension used for executable files by the compiler. (Leave
blank for no extension.)
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4.3.3. Tools Tab

Figure 20. The Toolchain Configuration Builder: Compiler Options on the Tools tab.

The user has a choice on which compiler they want to use to test their UoC(s), which must be
defined in the toolchain configuration file.

The "Compiler" section allows for the user to define the compiler executable needed to invoke the
compiler to build, execute, and archive. As described in the Theory of Operation, the user has the
option of testing a UoC using a target or host toolchain. According to their choice, the user might
define the toolchain configuration file differently.

The user must first define the compiler executable in the "Executable" field. It is recommended to
specify the exact compiler, not the compiler collection if possible (i.e. g over gcc, if constructing a
toolchain for C). Further, the user may click the ellipsis button on the right of the Executable field to
provide an absolute path to the compiler.

There are also fields to define processor-specific flags, and an output flags that a UoC might need to
successfully compile, link, and archive located below the "Executable" field as shown in the above
figure. The flags must instruct the tools to ignore any system included code such as standard
headers and libraries. The flags must also select the correct target language standard. Table 8, Table
9, and Table 10 provide the minimum set of equivalences the user must provide. These should be
added when using the target linker method.

Table 8 contains flags that are used to let the compiler know what language to compile.
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IMPORTANT
Due to the nature of how the CTS operates, compiler optimizations should
not be used (e.g., -O0 for gcc) when compiling and linking. Otherwise, false
results could be reported.

Table 8. Language standard that the CTS supports for a specific language.

Language ISO Language Standard GNU Tools Example

C99 ISO C 1999 -std=c99

C++03 ISO C++ 2003 -std=c++03 (or c++0x on some compilers)

Ada ISO Ada 1995 -std=-gnat95

Ada ISO Ada 2012 -std=-gnat12

Table 9. Compiler flags for Non-OSS tests.

Purpose Flag

disable bundled headers -nostdinc (or -nostdinc++)

disable built-in functions -fno-builtin

Table 10. Linker flags for Non-OSS tests.

Purpose Flag

disable Built-in Libraries -nodefaultlibs -nostartfiles

NOTE For Ada segments, the user can choose a binder to use during the build procedure.

If the user is using a sample NonOSS toolchain for C and C++, the appropriate macro symbol should
be defined for the profile chosen as shown in Table 11. This symbol is used by the sample compiler
specific "allowed definitions" code and must be set for the associated toolchain files to operate. See
Allowed Definitions for more information about "allowed definitions".

Table 11. The C and C++ Profile Macro Symbols for Sample Allowed Definition.

Profile Macro Symbol

General Purpose  -DFACE_GENERAL_PURPOSE_PROFILE

Safety Extended  -DFACE_SAFETY_EXTENDED_PROFILE

Safety Base  -DFACE_SAFETY_BASE_PROFILE

Security  -DFACE_SECURITY_PROFILE

As a part of the compilation process, UoCs may have external libraries linked to it. The "Linker"
section provides an area where the user may use the "Executable" field to produce the linking
executable or use the ellipsis button to define an absolute path. The CTS also provides a field to
define processor specific flags, an output flag, and specific library paths to be included in the
linking process.
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Figure 21. The Toolchain Configuration Builder: Linker Options on the Tools tab.

The "Archiver" section allows the user to define an archiver executable to create, modify, or extract
code from archives. The CTS provides fields to provide flags to customize exactly how the user’s
UoC will be archived, as shown in the above figure.

Finally, the user must add a toolchain template file (with file extension .stg) by clicking the ellipsis
button. The toolchain template files contain templates that are used to format toolchain-related
commands for compilers.

After selecting the template and defining the various toolchain commands/flags above, the user
may click the refresh button next to the "Template Output" header in the below figure to show the
example commands the CTS will use based on the commands the user has configured and the
selected template.

NOTE
Without the toolchain template file, the toolchain will be invalid. Toolchain
templates for each FACE supported language can be found in the
datafiles/stringtemplate folder of the CTS.
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Figure 22. The Toolchain Configuration Builder: Toolchain Template on Tools Template tab.

4.3.4. Compiler Specific Tab

Compiler Specific Functionality

There is compiler specific information that will be needed to conduct conformance tests. The
"Compiler Specific" tab allows the user to further define compiler parameters needed to
successfully test a UoC within the CTS. This information is stored in the compilerSpecific
subdirectory.

In particular, the mapping between standard types in C/C++ and their exact definitions for a given
compiler will need to be specified. There may also be compiler specific built-in functions/methods
that cause linker errors even when compiler and linking against the OS gold standard libraries (i.e.
main, stack_chk_fail). There may be valid graphics related calls that are not called out specifically in
the standard.

You may add allowed functions to the conformance test by editing the "CompilerSpecific" source
file. This file can be edited in the Compiler Specific section of the toolchain configuration builder.
You only need to add a function stub, since these conformance test objects are never actually
executed. The compiler specific source file is included in the conformance report to show any
functions that were used.

To specify the language mappings, the exact types need to be added to the toolchain file.

Compiler specific methods must be reported to the Verification Authority (VA) (and are included in
the Test Suite results).
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Configuration

Exact Types:

For C and C++ testing, the exact size types must be configured according to the user’s target OS. This
is done through the Compiler Specific tab. The user must consult their compiler’s system definitions
to get the operating system’s defined intrinsic types. The user must then add the intrinsic types in
their respective fields to create a typedef mapping between the intrinsic type and FACE exact type
needed for testing.

Note: Mapping exact types is not required if the toolchain is intended for Ada or Java.

Figure 23. The Toolchain Configuration Builder, with the Compiler Specific tab selected.

Table 12. The list of intrinsic types that map to FACE’s exact types.

Exact Type Description

FACE_int8_t 8-bit signed integer

FACE_int16_t 16-bit signed integer

FACE_int32_t 32-bit signed integer

FACE_int64_t 64-bit signed integer

FACE_uint8_t 8-bit unsigned integer

FACE_uint16_t 16-bit unsigned integer

FACE_uint32_t 32-bit unsigned integer

FACE_uint64_t 64-bit unsigned integer

FACE_size_t Unsigned integer type of the result of sizeof()
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Null Definition:

In the "NULL Definition" section, the user must define what NULL means for their target operating
system, as compilers may define NULL differently. The NULL type must be configured according to
the system-defined value for "NULL". This may be done by entering the null TYPES in the null
definition, shown in below figure.

Figure 24. The Toolchain Configuration Builder with the Compiler Specific tab selected.

The user may add allowed definitions in the "Allowed Definitions" section, shown in the below
figure. By adding an allowed definition, the user lets the compiler know what the UoC uses outside
of the OSS’s boundaries. By default, an allowed definition must define an entry point. For example,
if the UoC the toolchain is intended for is an IOSS or TSS, the user must define device driver calls as
an allowed definition. Furthermore, there may also be compiler specific built-in functions/methods
that cause linker errors even when compiling and linking against the OS GSL (i.e. main,
stack_chk_fail) that the user must add as an allowed definition. When a UoC is compiled and linked,
the allowed definitions must be included.

Allowed Definitions:

To write an allowed definition, the user needs to add a function stub and a simple function body,
since these conformance test objects are never actually executed. This allows for the link test to
return with errors. An example of an allowed definition is shown in the below figure. The compiler
specific source file is also included in the conformance report to show any functions that were
used. Compiler specific methods must be reported to the Verification Authority (VA) (and are
included in the CTS results).

There may be valid graphics related calls that are not called out specifically in the Technical
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Standard. If the user is creating a UoC with a graphical component, the user must utilize the
"OpenGL Definition" section by checking the "OpenGL" checkbox. Then, the user must select what
version(s) of OpenGL they are using and link the EGL API, GL2 API, and KHR API platform header
files. These headers define specific function declarations and type definitions for the CTS’s use for
testing graphical interfaces within the UoC(s).

To add an allowed definition, the user must click the "" button on the left of the allowed definitions
pane. When the "" is pressed, the user can write definitions directly within the CTS. The user must
add the code to the header and source tabs by editing the text area.

Figure 25. The Allowed Definition editor.

4.3.5. Notes Tab

The user has the ability, if needed, to take unique notes on a certain toolchain. This allows the user
to quickly notate specific functionality that the toolchain contains and is shown to the user on the
main "Toolchain File List" interface, in the far-right column.
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Figure 26. The Project Configuration Builder with the Notes tab selected.
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5. Project Configuration File

5.1. Introduction
The project configuration file contains all UoC object paths, dependencies, and settings in order to
accurately test a UoC for conformance within the CTS. By defining a project configuration file
within the CTS, a .pcfg file is created with the user’s selected options. This .pcfg file is used by other
tools contained in the CTS to test a UoC for conformance.

5.2. Project Files List
The Project Files List can be accessed by selecting the File from the navigation bar, and "Projects"
from the dropdown.

Figure 27. The Project Files List.

This view represents a working sandbox view of project files that have been created or recently
edited. Selecting a project from this list view will provide access to the following options:

• New - Opens a new file dialog to create an empty project from scratch.

• Import - Provides a file browser dialog to allow the user to find an existing project file and
allow it to be added to the list view.

• Open - Opens the currently selected project from the list view.

• Remove - Removes the currently selected project from the list view. (Note that this option does
not delete the project but removes it from the list view only)
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• Clone - Creates a copy of the currently selected project and saves it at the same location as the
original

• Test Project - Executes the test procedure on the currently selected project.

5.3. Building a Project Configuration File
The following subsections detail each option available to the user in the Project Configuration
builder. Sections 7.2 and 7.3 explain how to set the project configuration file for a specific UoC type
(PCS, PSSS, TSS, IOSS, and OSS) through the CTS. Unlike toolchain configuration files, one project
configuration file is defined for every FACE UoC.

Upon opening a project configuration file within the CTS, the user will see the Project Configuration
Builder interface.

5.3.1. General Tab

Figure 28. The Project Configuration Builder with the General tab selected.

For project configuration files to construct file paths, the user must define a base directory in the
"Base Directory" field. All files that are then selected within the project configuration file containing
a relative path to the absolute file, based on this base directory. For example, if the user declared
their base directory to be "/home/user/CTS," and decided wanted to select a toolchain file located at
/home/user/CTS/test-toolchain.tcfg, the toolchain path will be just "test-toolchain.tcfg."

The user must then select the FACE UoC segment the UoC is (PCS, PSS, TSS, IOS, OSS), the language
the UoC is programmed in, and OSS profile that the UoC reflects.
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In FACE UoC development, the operating environment must be defined. The user must select the
environment for which the UoC is targeted to operate. There are options for POSIX, ARINC653, and
POSIX ARINC653.

• ARINC 653: For an OSS UoC providing ARINC 653 APIs, this indicates the UoC provides all the
required ARINC 653 APIs for the selected profile in the FACE Technical Standard 3.0 (further
inputs are required in the Objects/Libraries tab as described later). For all other UoCs, this
indicates the UoC may use any of those ARINC 653 APIs provided by another OSS UoC as
required by the standard.

• POSIX: For an OSS UoC providing POSIX APIs, this indicates the UoC provides all the required
POSIX APIs for the selected profile in the FACE Technical Standard 3.0 (further inputs are
required in the Objects/Libraries tab as described later). For all other UoCs, this indicates the
UoC may use any of those POSIX APIs provided by another OSS UoC as required by the standard.

• POSIX ARINC 653: For an OSS UoC providing POSIX and ARINC 653 APIs, this indicates the UoC
provides all the required POSIX APIs for the selected profile in the FACE Technical Standard 3.0,
and the subset of required ARINC 653 APIs that an OSS UoC in a POSIX environment can provide
as defined in the FACE Technical Standard, Edition 3.0 (further inputs are required in the
Objects/Libraries tab as described later). For all other UoCs, this indicates the UoC may use any
of those POSIX APIs or the subset of ARINC 653 APIs provided by another OSS UoC in a POSIX
environment as required by the standard.

For an OSS UoC the POSIX Multi Process APIs can all be tested per the FACE Technical Standard 3.0
if the Use Multi Process APIs checkbox is selected. For other segments this Use Multi Process APIs
checkbox, if checked, will indicate that the UoC may use these APIs.

If the user has selected ARINC653 or POSIX ARINC653 as their target operating environment, the
"ARINC653 Part 1 Version" options will be available for selection. This defines which ARINC 653
version the UoC is targeted towards.

The user has the option to select what OpenGL APIs the UoC uses, if at all.

The user must input the toolchain configuration file the candidate UoC must be compiled with.
Toolchain Configuration Files contain more information about toolchain configuration files. The
user may either use an existing or sample toolchain file, or create a new toolchain configuration by
following the procedure from the Toolchain Configurations Files section.

Finally a UoP name must be set and this name must match the name given to it in the data model
they will be using for PCS and PSSS UoCs.

5.3.2. Data Model Tab
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Figure 29. The Project Configuration Builder with the Data Model tab selected.

The Data Model tab allows the user to provide the location of the SDM and USM. The ellipses
buttons at the right of each input field allows the user to provide an absolute path via file dialogue.

In case the user decided to define every entity as unique in their USM, they must check "Entity
Uniqueness" under the USM field. If the user decided to define every observable as unique in the
USM, they must check "Observable Uniqueness" under the USM field.

Finally, the user may select which PCS or PSSS UoC model element corresponds to the UoC under
test. The dropdown list will be automatically populated when a valid USM is entered in the USM
field. Once a model element is selected, the "Associated Connections" text box will automatically
populate with the relevant views for that UoC.

5.3.3. Gold Standard Libraries Tab

The GSL tab allows the user to specify the location the GSLs will be generated.
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Figure 30. The Project Configuration Builder with the Gold Standard Libraries tab selected.

The user must use the ellipses button on the right of the "GSL Directory" field to select a path for the
GSLs to be generated.

5.3.4. Objects/Libraries Tab

The Object/Libraries tab allows the user to define a UoC’s dependencies, either object file or source
code location, and select the FACE Interfaces that a candidate UoC uses/provides.
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Figure 31. The Project Configuration Builder with the Objects/Libraries tab selected.

The CTS has no knowledge of how the object files 'include' a header, so the user must define all
locations that an invoked header is used from. In the VA process, the user must supply these
headers to the VA along with the respective file structure as defined in the project configuration
file.

The user must supply both the paths of the directories and the absolute path of the files that must
be included for the UoC.
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Figure 32. The Project Configuration Builder with the Objects/Libraries tab selected.

As per Target Linker MethodThe user may provide object files for conformance testing. In the
"Provide Segment Objects/Libraries" section of the user interface, the user may select the object
files for the UoC under test. This section of the Objects/Libraries interface is shown in the above
figure. Alternately, the user may choose to provide source files to generate Objects/Libraries from
source as explained in Host Linker Method. The section that allows the user to define the location of
their source files is show in the below figure.
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Figure 33. The Project Configuration Builder with the Objects/Libraries tab selected.

The user must specify the absolute path of their concrete implementation of Factory Functions for
their UoC. More information about Factory Functions and how the user creates a Factory Functions
for specific UoC types can be found in Sections 7.2.1.3 and 7.3.2.1.2.

The user must select any interfaces used in the candidate UoC. It is important to note that there is a
difference between a "provided" interface and a "used" interface. If the user provides a "used"
interface, the user must supply an injectable for that interface.
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Figure 34. The Project Configuration Builder with the Objects/Libraries tab selected.

The section to define Life Cycle Management (LCM) interface implementations are shown in the
above figure if the user supplies an LCM Stateful interface.

• For PCS/PSSS UoCs, the associated datatypes must be modeled in the USM. The CTS will pull
those in order to generate the Stateful interface.

• For TSS and IOSS UoCs, since USM is not required, the user must give the CTS information on the
LCM Stateful interface via the "Reported Type Name" field, "Reported Type Data Model Name"
field, "Request Type Name" field, and the "Request Type Data Model Name" field. Each of the
Stateful interfaces provides a mechanism to transition a UoC between states. However, the
Reported and Requested types are typically a different list of potential states, thus resulting in
two different enumerated datatypes.

◦ The Reported state includes all potential states that a UoC can be in.

◦ The Requested state includes the states that an external agent can request a state change to.

The section to define used FACE Interfaces is shown in the below figure. For used Stateful
interfaces, the user must provide the interfaces that the UoC is going to use to transition another
UoC.
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Figure 35. The Project Configuration Builder with the Objects/Libraries tab selected.

The section to define used LCM Stateful interfaces is shown in below figure. Here, the user must
provide the interfaces that the UoC is going to use to transition another UoC.

Figure 36. The Project Configuration Builder with the Objects/Libraries tab selected.
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5.3.5. Notes Tab

The user may add notes to uniquely identify a certain project configuration. Anything the user
writes will show in the Project File List for quick selection.

Figure 37. The Project Configuration Builder with the Notes tab selected.

5.3.6. Project Info Tab
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Figure 38. The Project Configuration Builder with the Project Info tab selected.

The Project Info tab provides information about the project configuration file that has been defined
in other sections of the Project Configuration Builder. The user cannot edit any of these sections,
rather, they may edit other sections. Changes in other sections are reflected in the overall project.
The above figure shows the Project Info tab for the Project Configuration Builder that does not have
any options selected, and thus does not have any project information except the detected OS
version.
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6. Sample Project and Toolchain
Configuration Files
Optionally, the user may generate CTS-provided sample projects and generate toolchain files using
an included python script. These must be generated using the testUtility.py script, found in the [root
directory of CTS]/sample directory.

Sample projects and toolchains are provided for each FACE segment.

• For TSS segments, the UoC name is assumed to be "UOPName."

• For IOSS segments, the UoC name is assumed to be "UOPName."

• For PCS, the UoP name is taken from the sample data model and is set to "UoP1"

• For PSSS, the UoP name is "UoP2" (also per the sample data model).

Folders under the 'sample' directory are as follows:

• projects - contains sample projects for all languages.

• toolchains - sample toolchains.

• datamodels - sample data model used by sample projects.

6.1. Build Flags
Generating all samples at once may not be feasible for the user. Luckily, the testUtility.py script
allows for flags that delimit sample generation based on language, profile, FACE segment, and
others.

To avoid longer build times, it is recommended that the user may want to set their build flags to
build one language at a time ("-c", "-p", "-a", and "-j").

Table 13. A list of all possible flags in executing the testUtility.py script.

Flag Usage

-h, --help Shows the help message and lists all possible flags.

-w, --windows Running this script on Windows

-a, --ada Enables Ada

-c, --c Enable C99

-p, --cpp Enable C++03

-j, --java Enable Java

-y, --pcs Generate PCS Test

-s, --psss Generate PSSS Test

-t, --tss Generate TSS Test

-i, --ios Generate IOSS Test

-o, --oss Generate OSS Test

--general Generate General Purpose OS Segment Profile
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Flag Usage

--safety_base Generate Safety Base OS Segment Profile

--safety_ext Generate Safety Extended OS Segment Profile

--security Generate Security OS Segment Profile

-e, --projects Generate project (PCFG) files from all PCFG templates found in each language directory

-l, --toolchains Generate toolchain files and generate toolchain-related files from all TCFG templates
found in each language directory

-g, --build_gsls Build all GSLs (Gold Standard Libraries) for each enabled language into build_GSL
subdir of tests/uops/[lang] (only necessary for running OSS project files which
reference the GSLs in this directory)

-u, --build_uocs Build UoPs/UoCs for each enabled language

-r, --run Run all project (PCFG) files in each language directory

-q, --quick Run steps --projects, --build_uocs, and --run for enabled languages

-n, --gen_only Runs steps --projects, --toolchains, --build_gsls, and --build_uocs for enabled languages

These flags may be mixed and matched. For example, if the user chooses to generate C and C++ for
profiles General and Security, the user can use the below command to build C/C++ samples and
generated files for the profiles General/Security samples:

python testUtility.py --gen_only -cp --general --security

6.2. Linux Generation
Navigate to the top-level directory of CTS. Then, navigate to the "sample" subdirectory:

cd sample

If the user chooses to generate sample tests for all provided languages (C, C++, Ada, and Java) they
can use the below command to generate all samples project configuration files, toolchain
configuration files, gold standard libraries, and build the generated UoCs:

python testUtility.py --gen_only

NOTE
Users should expect longer time to generate all the possible project & toolchain
configurations.

6.3. Windows Generation
Set the JAVA_HOME variable to JDK 8 in order to be able to build the Java sample projects.

export JAVA_HOME=$JDK8_HOME
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(This is not required if only the C/C++/Ada samples will be generated).

IMPORTANT: Open a Windows command prompt. All sample generation must be in the Windows
command prompt.

Navigate to the top-level directory of CTS. Then, navigate to the "sample" subdirectory:

cd C:\CTS\conformancetestsuite\sample

If the user chooses to generate sample tests for all provided languages (C, C++, Ada, and Java) they
can use this command to build all samples and generated files for the samples:

python testUtility.py --gen_only

WARNING: Generating all sample project and toolchain configurations will take a long time (about
2.5 hours). The user should use at their own discretion.

A successful generation of the samples will result in no errors from the generation logs and
populated folders under the 'sample' directory:

• projects - contains sample projects for all languages. Source code for C/C++/Ada is stored
alongside the project.

• toolchains - sample toolchains.

• datamodels - sample data model used by sample projects.

NOTE

The testUtility.py script generates project files for the CTS (files with extension .pcfg)
from templates. These templates are not native CTS projects. They are used only for
the sample projects, since the project file requires an absolute path as the base
directory for the project. The testUtility.py script generates the project files using the
user’s system’s path to the CTS. The template files (files with extension
.pcfgtemplate) are not complete CTS files and cannot be opened with the CTS GUI.

The samples provided are configured for a GCC / GNAT based toolchain. In order to use a different
toolchain, modify toolchain configuration template file (files with extension .tcfgtemplate) for the
desired language with a text editor. Then, rerun testUtility.py with "-e -l" flags to regenerate the
toolchain configurations:

On Windows:

python testUtility.py --gen_only -e -l

On Linux:

python testUtility.py --gen_only -e -l
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There are some sample OSS projects that are included with Linux but are not included with the
Windows distribution. This difference is some of the sample OSS projects (C and C++) for Windows
fails due to MINGW not being FACE conformant.

6.3.1. Regarding Failing Test Results and Shared Data Model

Part of the full conformance test is a test of the data model provided by the project, where
applicable. Part of the data model test involves testing of the SDM, which is not included in the CTS
distribution. Therefore, for all sample projects, the USM is used for both the USM and SDM. Because
of this, the SDM portion of the data model test will fail. Since the data model test fails, the overall
test result is marked as failed in the test report and the CTS. However, if the user examines the
report, they can that see the rest of the test results are shown separately as PASS.

For the sample projects, the expected result is PASS for all sample projects except for the
C_OSS_POSIX.pcfg and

CPP_OSS_CPP03.pcfg tests on Linux and all the C and C++ OSS tests on Windows. (This is because
both Linux and Windows are not FACE Conformant).
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7. Testing a UoC

7.1. Overview
A high-level overview of the steps a user will follow to test a UoC is as follows:

1. Create the data model (USM) for your UoC (if your UoC uses or provides any type-specific
interface - the TSS Type Specific or Life Cycle Management (LCM) Stateful interfaces).

2. Create a toolchain for your specific compiler/linker/archiver tools, either from scratch or basing
it off one of the sample toolchains. The sample toolchains can also be used directly if desired.
The toolchain information is saved in a toolchain configuration file (.tcfg).

3. Create a basic project by specifying the profile, segment, interfaces the UoC implementation and
interfaces it uses, and the data model (if appropriate). The projection information is saved in a
project configuration file (.pfcg).

4. Run the "Generate GSLs/Interface" button in the toolbar. This will generate all the interface
headers (C/C++) / Ada spec files / Java files for the interface that UoC can access or will
implement. These files will be placed into a subfolder of the folder specified in the project as the
"Gold Standard" folder (the relative path of the subfolder is include/FACE). This process also
generates a text file in this location with all the include paths the user should use to compile
their code for conformance.

5. The user writes their implementation code that implements each interface being provided by
the UoC from these generated interfaces created in the previous step. For example, for C++ and
Java, the implementation is a derived class for each interface being provided. The base/abstract
class is the interface class provided in the Gold Standard subfolder include/FACE as generated
by the CTS. For C and Ada, one must create implementations of the functions/procedures. Next,
for each FACE interface that the UoC is to "use" (access), the user must also implement the
Injectable interface for that interface.

6. User compiles their UoC code using the generated headers or spec files or Java files (depending
on language) and the include paths (compiler paths or class paths) provided in the generated
text file. Alternatively, source files can be provided, and the CTS will build them into object or
class files using the toolchain configuration.

7. User completes their CTS project configuration by pointing it to the implementation object files
(or classes for Java) and runs the CTS.

7.2. Testing a Portable Components Segment (PCS) UoC
The following subsections details instructions to successfully generate a valid project configuration
file for a PCS UoC and how to run a test using the Conformance Test Suite. More information about
each projection configuration option can be found in the subsections of Project Configuration Files.

7.2.1. What the User Must Provide

The user must provide the following inputs to the CTS:
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• The project’s object files (C/C++/Ada) or class/jar files (Java). Alternatively, source files can be
provided, and the CTS will build them into object or class files using the toolchain configuration.

• The project’s header files (C/C++) or spec files (Ada).

• The project’s USM.

• The project’s toolchain file.

7.2.2. Test Procedures

Providing Project Context

1. Successfully install the CTS.

2. Start the conformance test suite by running the run_CTS_GUI.py script in the main test suite
directory from the command line.

Figure 39. Conformance Test Suite main menu

3. Import or create a new Project Configuration file by clicking "Create a Project Configuration".
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Figure 40. Create New Project Configuration

4. Fill in Project Name and Project Location then press Ok to launch the project configuration
builder.

5. Navigate to the project configuration builder.

Figure 41. Project Configuration Builder General tab

6. Fill in all options on the General tab for

a. Base Directory

b. Select "PCS" as segment

c. The Language the candidate UoC was written in

d. The OSS profile the candidate UoC was intended
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e. The intended operating environment of the UoC

i. Enable POSIX multi process APIs if required

ii. If ARINC653 or POSIX ARINC653 was selected as the operating environment, select what
ARINC653 version is required

f. If the UoC contains graphics API calls, select from the OpenGL dropdown

g. Add the targeted toolchain path

h. Set the UoC name

7. Select the Data Model tab to display the data model information below.

a. Set the path to the SDM and USM. This directory is relative to the base directory set in the
General tab.

Figure 42. Data Model tab

8. Select the Gold Standard Libraries tab to display the options below.

a. Set the directory where the gold standard libraries will be generated and stored for the test.

NOTE This directory is relative to the base directory set in the General tab.
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Figure 43. Gold Standard Libraries tab

9. Select the Objects/Libraries tab to display the portable components options shown below. If a
UoC requires one or more of its client connections to be tested using the TS Type-Extended
TypedTS interface, check "Uses" the TypedTS Extended. When "Uses" is enabled, each
connection checked will generate a TS Type-Extended TypedTS interface in the Gold Standard
Library. Otherwise, a separate TypedTS interface will be generated for the given types for each
client connection.

10. For C/C++ projects, use the list boxes to add the include files and include paths (if applicable) for
the concrete interface implementations provided by the UoC. All 'include files' must exist in one
of the 'include paths'. Any files included by the concrete implementation of Factory Functions
must exist in one of the Include Paths specified. More details about Factory Functions are found
in Section 7.2.2.3. More information about all options in the Object/Libraries tab are detailed in
Project Configuration Files Obb/Lib tab.

a. If the user is providing object files for their UoC, before providing the user’s object or library
files, they must build them against the Gold Standard Library headers. The CTS will generate
the FACE headers for any interface the UoC uses so that the user can build their source code
against those. Skip selecting the UoC’s object files until the user has generated the GSLs and
FACE headers and has built their UoC code against these headers. Therefore, skip the section
on selecting object files for now.
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Figure 44. Include Paths and Files

11. Scroll down and select any of the FACE Interfaces the UoC implements. If the Life Cycle
Management (LCM) Stateful interface is implemented, the datatypes are defined by the
architecture model selected.

Figure 45. Life Cycle Management
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12. Scroll down and select the FACE Interfaces that are used by the UoC. The UoC must provide an
Injectable interface for each FACE Interface it uses. By specifying the candidate UoC "uses" a
given interface, it indicates that it implements an Injectable Interface for that interface, and this
will be tested by the CTS.

Figure 46. FACE Interfaces Used

13. Scroll down and enter the information regarding any FACE Life Cycle Management Stateful
interfaces that are used by the UoC. If none are used, leave this section blank. Multiple Life
Cycle Management Stateful interfaces may be used by a UoC. The required information for each
Stateful interface are:

i. the data model and datatype name of the reported datatype

ii. the data model and datatype name of the request datatype
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Figure 47. Life Cycle Management Interfaces Used

Generating the Gold Standard Libraries

In order to build the user’s source code, the user will need FACE interface headers for any
interfaces the UoC uses. For a PCS the user will need any TSS headers the UoC code uses, as
standardized in the FACE Technical Standard. The CTS will generate these headers for the user.
Click the Generate GSLs Button in the upper left corner of the window as shown below to generate
the FACE headers as well as the GSL.

Figure 48. The GSL generation button.

If providing objects for the user’s UoC, the user may now build their objects using the FACE headers
generated into the GSL directory’s 'include/FACE' subdirectory. Examine the contents of this
directory to see the standardized header names of all non-OSS FACE Interfaces. Note that for C/C++
all FACE headers should be included with the relative path starting from the FACE directory, for
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example: "FACE/IOSS/Analog.hpp" The include directories to be used are described in a generated
README file in the GSL directory. OSS include directories are listed and are in specific subfolders of
the CTS folder goldStandardLibraries. When the user builds their object code for a UoC, the user
will need to include these subfolders and include any FACE headers as "FACE/[name of header file]".
(Note that the headers in this subdirectory are deleted each time the test is run, so do not store any
project files in this directory.)

The GSL libraries will be generated into the GSL Directory. The user may wish to use the GSLs
during development to check that their code builds against them, but there is no need to include
them in their CTS project. The CTS will rebuild the appropriate GSLs when the user runs the
conformance test and links them as part of the test.

In the "Provide Segment Objects/Libraries" section of the Objects/Libraries tab, the user must enter
the full pathnames of the project’s object and/or library files. The user may add each object file. The
user may also choose the directory where object files are located. All object files in the directory
specified as well as object files in subdirectories will be chosen. A combination of directories and
object/library files may be specified.

Figure 49. The Project Configuration Builder, with the Objects/Libraries tab selected.

Factory Functions

FACE Interfaces, including Injectable Interfaces, are empty declarations. In order to properly test
the user’s code against the FACE CTS, the user must provide a file that contains a concrete
implementation for each interface needed for the UoC provided. This is called a "Factory Function."
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NOTE

Once the user creates their Factory Function declaration and the user runs the
conformance test, a test file declares a pointer to a FACE interface. Then, the CTS
instantiates it by calling the Factory Function implementation that the user
provided. Once instantiation is complete, it calls each method defined in the
interface to ensure complete adherence to the interface.

Generation

To determine which factory functions are necessary, the user must generate the GSL for their
project. After generation, the user must find a generated header/spec file named,
"CTS_Factory_Functions" in the generated subfolder 'build/GSL/include', which will contain
required interfaces.

Providing a Factory Function Implementation

The user must take note of the "CTS_Factory_Functions" file that was generated by the GSLs. The
user must provide a file that implements each of these functions. The following paragraphs detail
what the user must do per each language the user’s UoC implements.

For C/C++, this file (CTS_Factory_Functions .h or .hpp) will contain the declarations of all expected
factory functions that the CTS requires for testing the user’s UoC. The implementation for each
function must instantiate the corresponding concrete class and return a pointer to that object (the
return type will be a pointer to the FACE 'abstract' class). Returning a null pointer is not acceptable.
This source file must be provided with the user’s project and will be reviewed to ensure it
instantiates the user’s UoC’s concrete class for that interface.

For Ada, this will generate a spec file (.ads) cts_factory_functions.ads which has the procedures the
user must implement in the source file. The source file for Ada must be named
"cts_factory_functions.adb" and implement each of these procedures, returning a concrete version
of each type as an access type. In the text field labeled "Source file with factory functions for
interfaces provided (C/C++/Ada only)", use the '…' button to the right to browse for the source file.
Any header files included by the source file must exist in one of the Include Paths specified
above.

For Java, a source file named CTS_Factory_Functions.java will be generated in the factory/ subfolder
(package subfolder). The user must fill in the implementation of each function, add any imports,
and add this to the user’s project in the CTS in this file field. Note that this file will NOT be
overwritten so if the interfaces the UoC uses have changed, the user must delete their file in order
to regenerate a new one with the new set of functions to implement.

Validating and Testing a Project

1. Select  to verify that the Project Configuration File is valid.

2. Click the  button at the top of the screen to test the segment. (This may take a few
minutes). The results will be written to a PDF file. The directory of the results file will be in the
directory of the project configuration file. This directory path will be listed in the "Output File
Location" of the Conformance Test Results page.
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7.3. Testing a Platform Specific Services Segment
(PSSS) UoC
The following subsections details instructions to successfully generate a valid project configuration
file for a PSSS UoC and how to run a test using the Conformance Test Suite. More information about
each projection configuration option can be found in the subsections of Project Configuration Files.

7.3.1. What the User Must Provide

The user must provide the following inputs to the CTS:

• The project’s object files (C/C++/Ada) or class/jar files (Java). Alternatively, source files can be
provided, and the CTS will build them into object or class files using the toolchain configuration.

• The project’s header files (C/C++) or spec files (Ada).

• The project’s USM.

• The project’s toolchain file.

7.3.2. Test Procedures

Providing Project Context

1. Successfully install the CTS.

2. Start the conformance test suite by running the run_CTS_GUI.py script in the main test suite
directory from the command line.

Figure 50. Conformance Test Suite main menu
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3. Import or create a new Project Configuration file by clicking "Create a Project Configuration".

Figure 51. Create New Project Configuration

4. Fill in Project Name and Project Location then press Ok to launch the project configuration
builder.

5. Navigate to the project configuration builder.

Figure 52. Project Configuration Builder General tab

6. Fill in all options on the General tab for

a. Base Directory

b. Select "PSS" as segment

c. The Language the candidate UoC was written in

d. The OSS profile the candidate UoC was intended
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e. The intended operating environment of the UoC

i. Enable POSIX multi process APIs if required

ii. If ARINC653 or POSIX ARINC653 was selected as the operating environment, select what
ARINC653 version is required

f. If the UoC contains graphics API calls, select from the OpenGL dropdown

g. Add the targeted toolchain path

h. Set the UoC name

7. Select the Data Model tab to display the data model information below.

a. Set the path to the SDM and USM. This directory is relative to the base directory set in the
General tab.

Figure 53. Data Model tab

8. Select the Gold Standard Libraries tab to display the options below.

a. Set the directory where the gold standard libraries will be generated and stored for the test.

NOTE This directory is relative to the base directory set in the General tab.
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Figure 54. Gold Standard Libraries tab

9. Select the Objects/Libraries tab to display the portable components options shown below. If a
UoC requires one or more of its client connections to be tested using the TS Type-Extended
TypedTS interface, check "Uses" the TypedTS Extended. When "Uses" is enabled, each
connection checked will generate a TS Type-Extended TypedTS interface in the Gold Standard
Library. Otherwise, a separate TypedTS interface will be generated for the given types for each
client connection.

10. For C/C++ projects, use the list boxes to add the include files and include paths (if applicable) for
the concrete interface implementations provided by the UoC. All 'include files' must exist in one
of the 'include paths'. Any files included by the concrete implementation of Factory Functions
must exist in one of the Include Paths specified. More details about Factory Functions are found
in Section 7.3.2.3. More information about all options in the Object/Libraries tab are detailed in
Project Configuration Obj/Lib tab.

a. If the user is providing object files for their UoC, before providing the user’s object or library
files, they must build them against the Gold Standard Library headers. The CTS will generate
the FACE headers for any interface the UoC uses so that the user can build their source code
against those. Skip selecting the UoC’s object files until the user has generated the GSLs and
FACE headers and has built their UoC code against these headers. Therefore, skip the section
on selecting object files for now.
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Figure 55. Include Paths and Files

11. Scroll down and select any of the FACE Interfaces the UoC implements. If the Life Cycle
Management (LCM) Stateful interface is implemented, the datatypes are defined by the
architecture model selected.

Figure 56. Life Cycle Management
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12. Scroll down and select the FACE Interfaces that are used by the UoC. The UoC must provide an
Injectable interface for each FACE Interface it uses. By specifying the candidate UoC "uses" a
given interface, it indicates that it implements an Injectable Interface for that interface, and this
will be tested by the CTS.

Figure 57. FACE Interfaces Used

13. Scroll down and enter the information regarding any FACE Life Cycle Management Stateful
interfaces that are used by the UoC. If none are used, leave this section blank. Multiple Life
Cycle Management Stateful interfaces may be used by a UoC. The required information for each
Stateful interface are:

i. the data model and datatype name of the reported datatype

ii. the data model and datatype name of the request datatype
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Figure 58. Life Cycle Management Interfaces Used

Generating the Gold Standard Libraries

In order to build the user’s source code, the user will need FACE interface headers for any
interfaces the UoC uses. For example, for a PCS the user will need any TSS headers the UoC code
uses, as standardized in the FACE Technical Standard. The CTS will generate these headers for the
user. Click the Generate GSLs Button in the upper left corner of the window as shown below to
generate the FACE headers as well as the GSL.

Figure 59. The GSL generation button.

If providing objects for the user’s UoC, the user may now build their objects using the FACE headers
generated into the GSL directory’s 'include/FACE' subdirectory. Examine the contents of this
directory to see the standardized header names of all non-OSS FACE Interfaces. Note that for C/C++
all FACE headers should be included with the relative path starting from the FACE directory, for
example: "FACE/IOSS/Analog.hpp" The include directories to be used are described in a generated
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README file in the GSL directory. OSS include directories are listed and are in specific subfolders of
the CTS folder goldStandardLibraries. When the user builds their object code for a UoC, the user
will need to include these subfolders and include any FACE headers as "FACE/[name of header file]".
(Note that the headers in this subdirectory are deleted each time the test is run, so do not store any
project files in this directory.)

The GSL libraries will be generated into the GSL Directory. The user may wish to use the GSLs
during development to check that their code builds against them, but there is no need to include
them in their CTS project. The CTS will rebuild the appropriate GSLs when the user runs the
conformance test and links them as part of the test.

In the "Provide Segment Objects/Libraries" section of the Objects/Libraries tab, the user must enter
the full pathnames of the project’s object and/or library files. The user may add each object file. The
user may also choose the directory where object files are located. All object files in the directory
specified as well as object files in subdirectories will be chosen. A combination of directories and
object/library files may be specified.

Figure 60. The Project Configuration Builder, with the Objects/Libraries tab selected.

Factory Functions

FACE Interfaces, including Injectable Interfaces, are empty declarations. In order to properly test
the user’s code against the FACE CTS, the user must provide a file that contains a concrete
implementation for each interface needed for the UoC provided. This is called a "Factory Function."
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NOTE

Once the user creates their Factory Function declaration and the user runs the
conformance test, a test file declares a pointer to a FACE interface. Then, the CTS
instantiates it by calling the Factory Function implementation that the user
provided. Once instantiation is complete, it calls each method defined in the
interface to ensure complete adherence to the interface.

Generation

To determine which factory functions are necessary, the user must generate the GSL for their
project. After generation, the user must find a generated header/spec file named,
"CTS_Factory_Functions" in the generated subfolder 'build/GSL/include', which will contain
required interfaces.

Providing a Factory Function Implementation

The user must take note of the "CTS_Factory_Functions" file that was generated by the GSLs. The
user must provide a file that implements each of these functions. The following paragraphs detail
what the user must do per each language the user’s UoC implements.

For C/C++, this file (CTS_Factory_Functions .h or .hpp) will contain the declarations of all expected
factory functions that the CTS requires for testing the user’s UoC. The implementation for each
function must instantiate the corresponding concrete class and return a pointer to that object (the
return type will be a pointer to the FACE 'abstract' class). Returning a null pointer is not acceptable.
This source file must be provided with the user’s project and will be reviewed to ensure it
instantiates the user’s UoC’s concrete class for that interface.

For Ada, this will generate a spec file (.ads) cts_factory_functions.ads which has the procedures the
user must implement in the source file. The source file for Ada must be named
"cts_factory_functions.adb" and implement each of these procedures, returning a concrete version
of each type as an access type. In the text field labeled "Source file with factory functions for
interfaces provided (C/C++/Ada only)", use the '…' button to the right to browse for the source file.
Any header files included by the source file must exist in one of the Include Paths specified
above.

For Java, a source file named CTS_Factory_Functions.java will be generated in the factory/ subfolder
(package subfolder). The user must fill in the implementation of each function, add any imports,
and add this to the user’s project in the CTS in this file field. Note that this file will NOT be
overwritten so if the interfaces the UoC uses have changed, the user must delete their file in order
to regenerate a new one with the new set of functions to implement.

Validating and Testing a Project

1. Select  to verify that the Project Configuration File is valid.

2. Click the  button at the top of the screen to test the segment. (This may take a few
minutes). The results will be written to a PDF file. The directory of the results file will be in the
directory of the project configuration file. This directory path will be listed in the "Output File
Location" of the Conformance Test Results page.
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7.4. Testing a Transport Services Segment (TSS) UoC
The following subsections details instructions to successfully generate a valid project configuration
file for a TSS UoC and how to run a test using the Conformance Test Suite. More information about
each projection configuration option can be found in the subsections of Project Configuration Files.

7.4.1. What the User Must Provide

The user must provide the following inputs to the CTS:

• The project’s object files (C/C++/Ada) or class/jar files (Java). Alternatively, source files can be
provided, and the CTS will build them into object or class files using the toolchain configuration.

• The project’s header files (C/C++) or spec files (Ada).

• The project’s USM.

• The project’s toolchain file.

7.4.2. Test Procedures

Providing Project Context

1. Successfully install the CTS.

2. Start the conformance test suite by running the run_CTS_GUI.py script in the main test suite
directory from the command line.

Figure 61. Conformance Test Suite main menu

3. Import or create a new Project Configuration file by clicking "Create a Project Configuration".
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Figure 62. Create New Project Configuration

4. Fill in Project Name and Project Location then press Ok to launch the project configuration
builder.

5. Navigate to the project configuration builder.

Figure 63. Project Configuration Builder General tab

6. Fill in all options on the General tab for

a. Base Directory

b. Select "TSS" as segment

c. The Language the candidate UoC was written in

d. The OSS profile the candidate UoC was intended

e. The intended operating environment of the UoC

i. Enable POSIX multi process APIs if required
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ii. If ARINC653 or POSIX ARINC653 was selected as the operating environment, select what
ARINC653 version is required

f. Add the targeted toolchain path

g. Set the UoC name

7. Select the Data Model tab to display the data model information below.

a. Set the path to the SDM and USM. This directory is relative to the base directory set in the
General tab.

Figure 64. Data Model tab

8. Select the Gold Standard Libraries tab to display the options below.

a. Set the directory where the gold standard libraries will be generated and stored for the test.

NOTE This directory is relative to the base directory set in the General tab.
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Figure 65. Gold Standard Libraries tab

9. Select the Objects/Libraries tab to display the transport components options shown below. For
C/C++ projects, use the list boxes to add the include files and include paths (if applicable) for the
concrete interface implementations provided by the UoC. All 'include files' must exist in one of
the 'include paths'. Any files included by the concrete implementation of Factory Functions
must exist in one of the Include Paths specified. More details about Factory Functions are found
in Section 7.4.2.3. More information about all options in the Object/Libraries tab are detailed in
Project Configuration Files Obj/Lib tab.

a. Select the TSS UoP Type.

b. Select the Intra-segment APIs if used.

c. If the user is providing object files for their UoC, before providing the user’s object or library
files, they must build them against the Gold Standard Library headers. The CTS will generate
the FACE headers for any interface the UoC uses so that the user can build their source code
against those. Skip selecting the UoC’s object files until the user has generated the GSLs and
FACE headers and has built their UoC code against these headers. Therefore, skip the section
on selecting object files for now.
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Figure 66. Include Paths and Files

10. Scroll down and select any of the FACE Interfaces the UoC implements. If the Life Cycle
Management (LCM) Stateful interface is implemented, enter the datamodel name and datatype
name of the reported and request datatype.

Figure 67. Life Cycle Management
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11. Scroll down and select the FACE Interfaces that are used by the UoC. The UoC must provide an
Injectable interface for each FACE Interface it uses. By specifying the candidate UoC "uses" a
given interface, it indicates that it implements an Injectable Interface for that interface, and this
will be tested by the CTS.

Figure 68. FACE Interfaces Used

12. Scroll down and enter the information regarding any FACE Life Cycle Management Stateful
interfaces that are used by the UoC. If none are used, leave this section blank. Multiple Life
Cycle Management Stateful interfaces may be used by a UoC. The required information for each
Stateful interface are:

i. the data model and datatype name of the reported datatype

ii. the data model and datatype name of the request datatype
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Figure 69. Life Cycle Management Interfaces Used

Note: For TSS UoCs implementing either the TPM or CSP capabilities that need to access device
drivers, please ensure that the device driver code is included/added to the compiler specific code
section within the toolchain configuration as calling driver code from TSS TPM or CSPs will need to
be inspected.

Generating the Gold Standard Libraries

In order to build the user’s source code, the user will need FACE interface headers for any
interfaces the UoC uses. For example, for a PCS the user will need any TSS headers the UoC code
uses, as standardized in the FACE Technical Standard. The CTS will generate these headers for the
user. Click the Generate GSLs Button in the upper left corner of the window as shown below to
generate the FACE headers as well as the GSL.

Figure 70. The GSL generation button.

If providing objects for the user’s UoC, the user may now build their objects using the FACE headers

84



generated into the GSL directory’s 'include/FACE' subdirectory. Examine the contents of this
directory to see the standardized header names of all non-OSS FACE Interfaces. Note that for C/C++
all FACE headers should be included with the relative path starting from the FACE directory, for
example: "FACE/IOSS/Analog.hpp" The include directories to be used are described in a generated
README file in the GSL directory. OSS include directories are listed and are in specific subfolders of
the CTS folder goldStandardLibraries. When the user builds their object code for a UoC, the user
will need to include these subfolders and include any FACE headers as "FACE/[name of header file]".
(Note that the headers in this subdirectory are deleted each time the test is run, so do not store any
project files in this directory.)

The GSL libraries will be generated into the GSL Directory. The user may wish to use the GSLs
during development to check that their code builds against them, but there is no need to include
them in their CTS project. The CTS will rebuild the appropriate GSLs when the user runs the
conformance test and links them as part of the test.

In the "Provide Segment Objects/Libraries" section of the Objects/Libraries tab, the user must enter
the full pathnames of the project’s object and/or library files. The user may add each object file. The
user may also choose the directory where object files are located. All object files in the directory
specified as well as object files in subdirectories will be chosen. A combination of directories and
object/library files may be specified.

Figure 71. The Project Configuration Builder, with the Objects/Libraries tab selected.

Factory Functions

FACE Interfaces, including Injectable Interfaces, are empty declarations. In order to properly test
the user’s code against the FACE CTS, the user must provide a file that contains a concrete
implementation for each interface needed for the UoC provided. This is called a "Factory Function."
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NOTE

Once the user creates their Factory Function declaration and the user runs the
conformance test, a test file declares a pointer to a FACE interface. Then, the CTS
instantiates it by calling the Factory Function implementation that the user
provided. Once instantiation is complete, it calls each method defined in the
interface to ensure complete adherence to the interface.

Generation

To determine which factory functions are necessary, the user must generate the GSL for their
project. After generation, the user must find a generated header/spec file named,
"CTS_Factory_Functions" in the generated subfolder 'build/GSL/include', which will contain
required interfaces.

Providing a Factory Function Implementation

The user must take note of the "CTS_Factory_Functions" file that was generated by the GSLs. The
user must provide a file that implements each of these functions. The following paragraphs detail
what the user must do per each language the user’s UoC implements.

For C/C++, this file (CTS_Factory_Functions .h or .hpp) will contain the declarations of all expected
factory functions that the CTS requires for testing the user’s UoC. The implementation for each
function must instantiate the corresponding concrete class and return a pointer to that object (the
return type will be a pointer to the FACE 'abstract' class). Returning a null pointer is not acceptable.
This source file must be provided with the user’s project and will be reviewed to ensure it
instantiates the user’s UoC’s concrete class for that interface.

For Ada, this will generate a spec file (.ads) cts_factory_functions.ads which has the procedures the
user must implement in the source file. The source file for Ada must be named
"cts_factory_functions.adb" and implement each of these procedures, returning a concrete version
of each type as an access type. In the text field labeled "Source file with factory functions for
interfaces provided (C/C++/Ada only)", use the '…' button to the right to browse for the source file.
Any header files included by the source file must exist in one of the Include Paths specified
above.

For Java, a source file named CTS_Factory_Functions.java will be generated in the factory/ subfolder
(package subfolder). The user must fill in the implementation of each function, add any imports,
and add this to the user’s project in the CTS in this file field. Note that this file will NOT be
overwritten so if the interfaces the UoC uses have changed, the user must delete their file in order
to regenerate a new one with the new set of functions to implement.

Validating and Testing a Project

1. Select  to verify that the Project Configuration File is valid.

2. Click the  button at the top of the screen to test the segment. (This may take a few
minutes). The results will be written to a PDF file. The directory of the results file will be in the
directory of the project configuration file. This directory path will be listed in the "Output File
Location" of the Conformance Test Results page.
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Special Verification Cases

TSTA Adapter UoC Using and Providing TS Base

CR 564 allows a TSTA Adapter UoC to use the TS Base interface via the injectable interface. In
addition, CR 585 allows a TSTA Adapter UoC to provide the TS Base interface to PCS and PSSS UoCs.
Therefore, a TSTA Adapter UoC is allowed to use as well as provide the TS Base interface. Two
conformance tests need to be performed to verify such a TSS UoC, one test to verify the using aspect
of the TS Base interface and a second test to verify the providing aspect of the TS Base interface.
Each conformance test shall use separate project file (pcfg) with the respective tss_base and
uses_tss_base options set to true as well as separate CTS_Factory implementations with definition
for retrieving either the implementation of the TS Base injectable or the TS Base.

7.5. Testing an I/O Services Segment (IOS) UoC
The following subsections details instructions to successfully generate a valid project configuration
file for an IOS UoC and how to run a test using the Conformance Test Suite. More information about
each projection configuration option can be found in the subsections of Project Configuration Files.

7.5.1. What the User Must Provide

The user must provide the following inputs to the CTS:

• The project’s object files (C/C++/Ada) or class/jar files (Java). Alternatively, source files can be
provided, and the CTS will build them into object or class files using the toolchain configuration.

• The project’s header files (C/C++) or spec files (Ada).

• The project’s USM.

• The project’s toolchain file.

7.5.2. Test Procedures

Providing Project Context

1. Successfully install the CTS.

2. Start the conformance test suite by running the run_CTS_GUI.py script in the main test suite
directory from the command line.
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Figure 72. Conformance Test Suite main menu

3. Import or create a new Project Configuration file by clicking "Create a Project Configuration".

Figure 73. Create New Project Configuration

4. Fill in Project Name and Project Location then press Ok to launch the project configuration
builder.

5. Navigate to the project configuration builder.
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Figure 74. Project Configuration Builder General tab

6. Fill in all options on the General tab for

a. Base Directory

b. Select "IOS" as segment

c. The Language the candidate UoC was written in

d. The OSS profile the candidate UoC was intended

e. The intended operating environment of the UoC

i. Enable POSIX multi process APIs if required

ii. If ARINC653 or POSIX ARINC653 was selected as the operating environment, select what
ARINC653 version is required

f. Add the targeted toolchain path

g. Set the UoC name

7. Select the Data Model tab to display the data model information below.

a. Set the path to the SDM and USM. This directory is relative to the base directory set in the
General tab.
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Figure 75. Data Model tab

8. Select the Gold Standard Libraries tab to display the options below.

a. Set the directory where the gold standard libraries will be generated and stored for the test.

NOTE This directory is relative to the base directory set in the General tab.
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Figure 76. Gold Standard Libraries tab

9. Select the Objects/Libraries tab to display the IOS components options shown below. For C/C++
projects, use the list boxes to add the include files and include paths (if applicable) for the
concrete interface implementations provided by the UoC. All 'include files' must exist in one of
the 'include paths'. Any files included by the concrete implementation of Factory Functions
must exist in one of the Include Paths specified. More details about Factory Functions are found
in Section 7.5.2.3. More information about all options in the Object/Libraries tab are detailed in
Project Configuration Obj/Lib tab.

a. If the user is providing object files for their UoC, before providing the user’s object or library
files, they must build them against the Gold Standard Library headers. The CTS will generate
the FACE headers for any interface the UoC uses so that the user can build their source code
against those. Skip selecting the UoC’s object files until the user has generated the GSLs and
FACE headers and has built their UoC code against these headers. Therefore, skip the section
on selecting object files for now.
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Figure 77. Include Paths and Files

10. Scroll down and select any of the FACE Interfaces the UoC implements. If the Life Cycle
Management (LCM) Stateful interface is implemented, enter the datamodel name and datatype
name of the reported and request datatype.

Figure 78. Life Cycle Management
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11. Scroll down and select the FACE Interfaces that are used by the UoC. The UoC must provide an
Injectable interface for each FACE Interface it uses. By specifying the candidate UoC "uses" a
given interface, it indicates that it implements an Injectable Interface for that interface, and this
will be tested by the CTS.

Figure 79. FACE Interfaces Used

12. Scroll down and enter the information regarding any FACE Life Cycle Management Stateful
interfaces that are used by the UoC. If none are used, leave this section blank. Multiple Life
Cycle Management Stateful interfaces may be used by a UoC. The required information for each
Stateful interface are:

i. the data model and datatype name of the reported datatype

ii. the data model and datatype name of the request datatype
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Figure 80. Life Cycle Management Interfaces Used

Generating the Gold Standard Libraries

In order to build the user’s source code, the user will need FACE interface headers for any
interfaces the UoC uses. For example, for a PCS the user will need any TSS headers the UoC code
uses, as standardized in the FACE Technical Standard. The CTS will generate these headers for the
user. Click the Generate GSLs Button in the upper left corner of the window as shown below to
generate the FACE headers as well as the GSL.

Figure 81. The GSL generation button.

If providing objects for the user’s UoC, the user may now build their objects using the FACE headers
generated into the GSL directory’s 'include/FACE' subdirectory. Examine the contents of this
directory to see the standardized header names of all non-OSS FACE Interfaces. Note that for C/C++
all FACE headers should be included with the relative path starting from the FACE directory, for
example: "FACE/IOSS/Analog.hpp" The include directories to be used are described in a generated
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README file in the GSL directory. OSS include directories are listed and are in specific subfolders of
the CTS folder goldStandardLibraries. When the user builds their object code for a UoC, the user
will need to include these subfolders and include any FACE headers as "FACE/[name of header file]".
(Note that the headers in this subdirectory are deleted each time the test is run, so do not store any
project files in this directory.)

The GSL libraries will be generated into the GSL Directory. The user may wish to use the GSLs
during development to check that their code builds against them, but there is no need to include
them in their CTS project. The CTS will rebuild the appropriate GSLs when the user runs the
conformance test and links them as part of the test.

In the "Provide Segment Objects/Libraries" section of the Objects/Libraries tab, the user must enter
the full pathnames of the project’s object and/or library files. The user may add each object file. The
user may also choose the directory where object files are located. All object files in the directory
specified as well as object files in subdirectories will be chosen. A combination of directories and
object/library files may be specified.

Figure 82. The Project Configuration Builder, with the Objects/Libraries tab selected.

Factory Functions

FACE Interfaces, including Injectable Interfaces, are empty declarations. In order to properly test
the user’s code against the FACE CTS, the user must provide a file that contains a concrete
implementation for each interface needed for the UoC provided. This is called a "Factory Function."
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NOTE

Once the user creates their Factory Function declaration and the user runs the
conformance test, a test file declares a pointer to a FACE interface. Then, the CTS
instantiates it by calling the Factory Function implementation that the user
provided. Once instantiation is complete, it calls each method defined in the
interface to ensure complete adherence to the interface.

Generation

To determine which factory functions are necessary, the user must generate the GSL for their
project. After generation, the user must find a generated header/spec file named,
"CTS_Factory_Functions" in the generated subfolder 'build/GSL/include', which will contain
required interfaces.

Providing a Factory Function Implementation

The user must take note of the "CTS_Factory_Functions" file that was generated by the GSLs. The
user must provide a file that implements each of these functions. The following paragraphs detail
what the user must do per each language the user’s UoC implements.

For C/C++, this file (CTS_Factory_Functions .h or .hpp) will contain the declarations of all expected
factory functions that the CTS requires for testing the user’s UoC. The implementation for each
function must instantiate the corresponding concrete class and return a pointer to that object (the
return type will be a pointer to the FACE 'abstract' class). Returning a null pointer is not acceptable.
This source file must be provided with the user’s project and will be reviewed to ensure it
instantiates the user’s UoC’s concrete class for that interface.

For Ada, this will generate a spec file (.ads) cts_factory_functions.ads which has the procedures the
user must implement in the source file. The source file for Ada must be named
"cts_factory_functions.adb" and implement each of these procedures, returning a concrete version
of each type as an access type. In the text field labeled "Source file with factory functions for
interfaces provided (C/C++/Ada only)", use the '…' button to the right to browse for the source file.
Any header files included by the source file must exist in one of the Include Paths specified
above.

For Java, a source file named CTS_Factory_Functions.java will be generated in the factory/ subfolder
(package subfolder). The user must fill in the implementation of each function, add any imports,
and add this to the user’s project in the CTS in this file field. Note that this file will NOT be
overwritten so if the interfaces the UoC uses have changed, the user must delete their file in order
to regenerate a new one with the new set of functions to implement.

Validating and Testing a Project

1. Select  to verify that the Project Configuration File is valid.

2. Click the  button at the top of the screen to test the segment. (This may take a few
minutes). The results will be written to a PDF file. The directory of the results file will be in the
directory of the project configuration file. This directory path will be listed in the "Output File
Location" of the Conformance Test Results page.
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7.6. Testing an Operating System Segment (OSS) UoC
The following subsections details instructions to successfully generate a valid project configuration
file for an OSS UoC and how to run a test using the Conformance Test Suite. More information
about each projection configuration option can be found in Project Configuration Files.

7.6.1. What the User Must Provide

The user must provide the following inputs to the CTS:

• The OS’s include path.

• The target OS object files.

7.6.2. Test Procedures

Providing Project Context

1. Successfully install the CTS.

2. Start the conformance test suite by running the run_CTS_GUI.py script in the main test suite
directory from the command line.

Figure 83. Conformance Test Suite main menu

3. Import or create a new Project Configuration file by clicking "Create a Project Configuration".
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Figure 84. Create New Project Configuration

4. Fill in Project Name and Project Location then press Ok to launch the project configuration
builder.

5. Navigate to the project configuration builder.

Figure 85. Project Configuration General tab

6. Fill in all options on the General tab.

7. Select the Gold Standard Libraries tab to display the options below.
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Figure 86. The Project Configuration Builder with the Gold Standard Libraries tab selected.

8. Set the directory where the GSL will be generated and stored for the test. This directory is
relative to the base directory set in the General tab.

9. Select the Objects/Libraries tab.

a. The user must check each OS API they wish to test. Notice their options are now editable.

b. For each OS API under test, place any specific compiler flags that are needed. General
compiler flags can be specified under the Build tab. These flags should be unique to the OS
API under test.

c. For each OS API under test, place any specific linker flags that are needed. General linker
flags can be specified under the Build tab. These flags should be unique to the OS API under
test.

d. For each OS API under test, enter any directories that should be in the include path for each
OS API interface.

e. For each OS API under test, enter the full pathnames to any header files associated with the
interface. These files must be in one of the directories specified under 'compiler paths'
(include paths). Any files included by the Factory Functions (see next few steps) must exist in
one of the Include Paths specified.
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Figure 87. The Project Configuration Builder with the Objects/Libraries tab selected.

Table 14. OSS Tests based on language and profile.

Languag
e/ Profile

ARINC
653

C Std Lib C++ Std
Lib

HMFM Java Khronos
Group

EGL 1.4

OpenGL
ES 2.0

OpenGL
SC 2.0

POSIX Config
uration

LCM

C/GP X X X X X X X X

C/SB,
C/SE

X X X X X X X

C/S X X X X X X

C++/All X X X X

Ada/All X X X X

Java/GP X X X

"Language/Profile" column acronyms in Table 14 are defined as:

• GP: General Purpose

• SB: Safety Base

• SE: Safety Extended

• S: Security

• All: All profiles
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Generating Gold Standard Libraries

In order to build the user’s source code, the user will need FACE interface headers for any
interfaces the UoC uses. For example, for a PCS the user will need any TSS headers the UoC code
uses, as standardized in the FACE Technical Standard. The CTS will generate these headers for the
user. Click the Generate GSLs Button in the upper left corner of the window as shown below to
generate the FACE headers as well as the GSL.

Figure 88. The GSL generation button.

If providing objects for the user’s UoC, the user may now build their objects using the FACE headers
generated into the GSL directory’s 'include/FACE' subdirectory. Examine the contents of this
directory to see the standardized header names of all non-OSS FACE Interfaces. Note that for C/C++
all FACE headers should be included with the relative path starting from the FACE directory, for
example: "FACE/IOSS/Analog.hpp" The include directories to be used are described in a generated
README file in the GSL directory. OSS include directories are listed and are in specific subfolders of
the CTS folder goldStandardLibraries. When the user builds their object code for a UoC, the user
will need to include these subfolders and include any FACE headers as "FACE/[name of header file]".
Note that the headers in this subdirectory are deleted each time the test is run, so do not store any
project files in this directory.

The GSL libraries will be generated into the GSL Directory. The user may wish to use the GSLs
during development to check that their code builds against them, but there is no need to include
them in their CTS project. The CTS will rebuild the appropriate GSLs when the user runs the
conformance test and links them as part of the test.

In the "Provide Segment Objects/Libraries" section of the Objects/Libraries tab, the user must enter
the full pathnames of the project’s object and/or library files. The user may add each object file. The
user may also choose the directory where object files are located. All object files in the directory
specified as well as object files in subdirectories will be chosen. A combination of directories and
object/library files may be specified.

Factory Functions

FACE Interfaces, including Injectable Interfaces, are empty declarations. In order to properly test
the user’s code for FACE Conformance, the user must provide a file that contains a concrete
implementation for each interface needed for the UoC provided. This is called a "Factory Function."

Once the user creates their Factory Function declaration and the user runs conformance test within
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the CTS, a test file declares a pointer to a FACE interface. Then, the CTS instantiates it by calling the
Factory Function implementation that the user provided. Once that is complete, it calls the methods
defined in the interface to ensure complete adherence to the interface.

Generation

To determine which factory functions are necessary, the user must generate the GSL for their
project. After generation, the user must find a generated header/spec file named,
"CTS_Factory_Functions" in the generated subfolder 'build/GSL/include', which will contain
required interfaces.

Providing a Factory Function Implementation

The user must take note of the "CTS_Factory_Functions" file that was generated by the GSLs. The
user must provide a file that implements each of these functions. The following paragraphs detail
what the user must do per each language the user’s UoC implements.

For C/C++, this file will contain the declarations of all expected factory functions that the CTS
requires for testing the user’s UoC. The user must provide a source file that implements each of
these functions. The implementation for each function must instantiate the corresponding concrete
class and return a pointer to that object (the return type will be a pointer to the FACE base class).
Returning a null pointer is not acceptable. This source file must be provided with the user’s project
and will be reviewed to ensure it instantiates the UoC’s concrete class for that interface.

For Ada, this will generate a spec file (.ads) cts_factory_functions.ads which has the procedures the
user must implement in the source file. The source file for Ada must be named
"cts_factory_functions.adb" and implement each of these procedures, returning a concrete version
of each type as an access type. In the text field labeled "Source file with factory functions for
interfaces provided (C/C/Ada only)", use the '...' button to the right to browse for the source file. *Any
header files included by the source file must exist in one of the Include Paths specified above.* An
example for a C project is shown below.

For Java, a source file named CTS_Factory_Functions.java will be generated in the factory/ subfolder
(package subfolder). The user must fill in the implementation of each function, add any imports,
and add this to the user’s project in the CTS in this file field. Note that this file will NOT be
overwritten so if the interfaces the UoC uses have changed, the user must delete their file in order
to regenerate a new one with the new set of functions to implement.
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Figure 89. The Project Configuration Builder with the Objects/Library tab selected, within the Configuration
subtab.

Validating and Testing a Project

1. Select  to verify that the Project Configuration File is valid.

2. Click the  button at the top of the screen to test the segment. (This may take a few
minutes). The results will be written to a PDF file. The directory of the results file will be in the
directory of the project configuration file. This directory path will be listed in the "Output File
Location" of the Conformance Test Results page.

3. The result will be pass or fail if the OS supplies the necessary calls based on the profile.

7.7. Testing a Data Model
The following sections detail how to test a USM with the conformance test suite.

7.7.1. What the User Must Provide

The user must provide the following inputs to the CTS:

• The UoC data model file.

7.7.2. Test Procedures

1. Successfully install the CTS.
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2. Start the conformance test suite by running the run_CTS_GUI.py script in the main test suite
directory from the command line.

Figure 90. Conformance Test Suite main menu

3. Import or create a new Project Configuration file by clicking "Create a Project Configuration".

Figure 91. Create New Project Configuration

4. Fill in Project Name and Project Location then press Ok to launch the project configuration
builder.

5. Navigate to the project configuration builder.

6. Assure that the PCS/PSS/TSS is selected in the Segment dropdown of the General tab of the
Project Configuration Builder.
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Figure 92. Select PCS in the General Tab of the Project Configuration Builder

7. Select the Data Model tab to display the options below.

Figure 93. Projection Configuration Builder Data Model tab
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8. Select the shared data model (SDM) file associated with the segment under test.

9. Optionally select the conditional Object Constraint Language (OCL) constraints governing USM
and DSDM content.

◦ Select the Entity Uniqueness checkbox to define that the Entity is unique in a Conceptual
Data Model.

NOTE
An Entity is unique if the set of its Characteristics is different from other
Entities' in terms of type, lowerBound, upperBound, and path (for
Participants).

◦ Select the Observable Uniqueness checkbox to define that the Entity does not compose the
same Observable more than once.

10. Select the UoP Supplied Model file associated with the segment under test. The test suite will
analyze the USM file, determining its validity and the Units of Portability found in the data
model file.

11. You may see data types associated with a UoP by clicking on the properties button.

12. Select the Units of Portability to use with the segment under test.

13.
Click the Test Data Model button. 

14. The results will be written to a PDF file. The directory of the PDF results will be located in the
directory of the project configuration file. This directory path will be listed in the "Output File
Location" of the Conformance Test Results page.

7.8. Considerations for Testing an Ada Segment
Testing an Ada segment requires a small variation in the testing procedures from C and C++.
According to the standard, Ada Runtime Libraries are allowed, but if the Runtime Library is
packaged with the UoC, it must only use standard POSIX calls allowed according to the profile and
operating environment. If the Ada Runtime Libraries are part of the logical OSS, the use of the Ada
Runtime Libraries is verified via Inspection. In order to perform the link test for a packaged Ada
Runtime Library, you must include the Ada Runtime Library as part of your object/library files.
Additionally, you must compile the correct Gold Standard POSIX library to include as part of your
object library files. Since the test suite only supports compilation for one language at a time, you
must build the POSIX libraries before proceeding with Ada testing. This can be done by changing
your configuration from Ada to C, with the correct C compiler options, and generate the gold
standard libraries as described below. Once the libraries have been built, change the configuration
back to Ada, add the POSIX and Runtime libraries to your segment configuration and proceed with
the test. The test suite does generate Ada gold standard HMFM and ARINC 653 libraries.

7.9. Considerations for Testing a Java Segment
Testing a Java segment is very different from testing procedures from other languages. Since Java is
inspected directly instead of using a link test, there is not an option to generate gold libraries in
Java. For each test, Java Class Paths are used instead of object/library files. Include paths are not
used under Java tests. Under most systems, javac should be used as the compiler and jar should be
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used as the archiver. The object file extension should be set to class in the project’s toolchain file.

7.10. Viewing Test Suite Results
Once the run Conformance test button is pressed, the test suite will conduct the conformance test
and the results will be stored in PDF format. The file will be named
FACEConformanceTest_Name_of_PCFG.pdf in the same directory as the pcfg file tested. All log files
generated in the test will also be found in the log directory, although the same log files are found
inside the PDF report. An example of a passable OSS component is given in the figure below:

Figure 94. A successful conformance test message.

The output of the CTS is written to a PDF report. The path of the PDF report will be displayed in the
Output File Location section.
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Figure 95. An example conformance test report.

The PDF report will detail toolchain and project configuration information along with source code
and/or log results associated with a test. Examples of the conformance test results can be seen
below.

Figure 96. A conformance test report scrolled to show report contents.

The source of the non-conformance for a failed conformance test can be determined by examining
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the test source code and resulting log files.
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Appendix B: Using the CTS Via Command
Line Interface (CLI):
There are a number of options you can use when running the test suite start-up python script
(conformance_test.py).

If the test suite is launched with a configuration file listed, the test suite will run without the GUI
and save the results to the log directory listed in the configuration. The test suite will exit with a
return code of 0 if the segment(s) under test passes verification and a non-zero value otherwise as
defined in Table 16. These can be useful for automated testing of segments without user interaction.

Multiple configuration files can be passed to run by test suite, but it is important to have different
log directories in each configuration file, otherwise the test results would be overwritten by
subsequent tests. When running multiple configuration files, the log files will be overwritten with
each subsequent run. Additionally, the script will exit on the first non-zero exit code from the series
of configuration files.

The user must be in the root directory of their CTS installation. Then, point to the
face_conformance_app file:

cd face_conformance_app
python conformance_test.py [options] [config_file1] [config_file2] ...

The usage options from the start-up script is shown below.

Table 15. Command Line Options

Switch Definition

-h, --help Show this help message and exit.

-p PORT_VALUE, --port=PORT_VALUE Used in coordination with the CTS_GUI. Port used to
communicate with GUI supplied socket server.

-t, --time_stamp Generates a time stamp to be added to the report filename
(assuring unique test run names).

-r REPORT_FILENAME, --report_filename=REPORT_FILENAME Full path to the conformance test report PDF file. Default
filename is
FACEConformanceTest_SEGMENT_PROJECT_NAME.pdf in the
same directory as the segment project file.

-v, --verify Verifies that a project configuration is valid for running
conformance tests. Return code is 0 if valid, and non-zero if
invalid. Saves a log(PROJECT_CONFIG_NAME.ver_log) to the
same directory as the configuration file, and sends the results to
stdout.

-f, --disable_pdf Disables PDF writer.

-g, --gold Build GSLs for given project.

-d, --datamodel Test only data model. Return code is 0 if valid, and non-zero if
invalid.

-a DESTINATION_DIR, --allgold=DESTINATION_DIR Build all GSLs to specified directory
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Switch Definition

-o FACE_PROFILE, --profile=FACE_PROFILE Profile of GSLs to build specified directory, only important with
-a. If not given, all profiles used.

Acceptable values: general, safetyExt, safetyBase, security

-i, --interfaces Create folder of interfaces only (C/C++ only as of this version -
these are the header files for the project)

The error codes returned from the command line usage are defined below.

Table 16. Command Line Return Codes

Error Code Definition

0 The segment under test passed verification (or terminates as expected if no verification tests are run).

1 A catch-all for a fatal error or exception that occurred.

2 Invalid command line options

3 Invalid toolchain configuration (.tcfg) file

4 Invalid project configuration (.pcfg) file

5 The segment under test did not pass verification.

6 The data model was invalid.

7 A test result requires the user to examine the log file to determine success or failure.

8 A non-critical test fails, such as a file is missing that was expected but not required.

9 An issue occurred that prevented the tests from being performed.
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Appendix C: Glossary
Acronym Acronym Meaning

API Application Programming Interface

CR Change Request

CSP Component State Persistence

CTS Conformance Test Suite

CVM Conformance Verification Matrix

DSDM Domain-Specific Data Model

FACE Future Airborne Capability Environment

GSL Gold Standard Library

GTRI Georgia Tech Research Institute

GUI Graphical User Interface

IDL Interactive Data Language

IOSS I/O Services Segment

ISIS Institute for Software Integrated Systems

JDK Java Development Kit

LCM Life Cycle Management

NAVAIR Naval Air Systems Command

OCL Object Constraint Language

OSS Operating System Segment

PCS Portable Components Segment

PEO Program Executive Office

PR Problem Report

PSSS Platform Specific Services Segment

SDM Shared Data Model

TPM Transport Protocol Mediation

TSS Transport Services Segment

UDDL Open Universal Domain Description Language

UoC Unit of Conformance

UoP Unit of Portability

USM UoP Supplied Model

VA Verification Authorities
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Appendix D: Constraints
POSIX and ARINC interface testing is performed on functions only. Data types and constants are not
tested comprehensively. A POSIX or ARINC conformance test should be used to fully test those
aspects.
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Appendix E: Known Issues

NOTE
Any issue found concerning the CTS should be reported to
https://ticketing.facesoftware.org.

NOTE
The Configuration file structure has changed greatly from version 2.0 of the
conformance test suite and cannot be ported into 3.0 conformance tests.

Known Issues in this CTS Release

1. A Failed test result sometimes generates an "Inspection Required" overall test report result.

2. Some windows in the CTS GUI may not be sized correctly to fit all of their contents.

3. CTS Java sample projects and datamodel need to be updated. Sample projects that rely on the
sample project datamodel are disabled.

4. Extracting CTS toolsuite to a long folder path on Windows can cause problems with the
sample projects due to path length limitations and command string limitations on Windows.

◦ Compiling sample UoCs may fail.

◦ Running conformance test on sample UoCs may be unsuccessful.

5. Configuring a toolchain to use compiler optimizations will result in false positives. DO NOT
USE COMPILER OPTIMIZATIONS WITH THE CTS.

6. Archive command (ar) is unable to create gold standard libraries on Windows for some of
the sample C and C++ projects using relative path when CTS is extracted to a long folder path.
Absolute paths is currently being used since it executes as expected with absolute paths.

7. In the sample directory, the testUtility.py script always regenerates .tcfgtemplate files
before it creates .tcfg files when the --toolchains option is used.

8. The IDL to Ada compiler does not generate compilable code for IDL consisting of a
sequence/array of struct or union in some cases. (FACE PR/CR Ticket 1045 has been filed to
address the issue in the Technical Standard.)

9. In the Documentation view, collapsing the root element (Welcome) can introduce bogus
siblings to the root element.

10. OpenGL combobox on project configuration page allows selecting values for TSS and IOSS
UoCs, which is not allowable by the Technical Standard.
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Appendix F: Acknowledgments
The test suite utilizes the following freely distributable software packages:

Software Package Details

stringtemplate 3.1 http://www.stringtemplate.org/

Author: Benjamin Niemann

License: BSD

Protocol Buffers - Google’s data interchange format http://code.google.com/p/protobuf/

Copyright 2008 Google Inc. All rights reserved.

License: New BSD
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Appendix G: Approved Corrections to
Technical Standard by CTS Version
Each release of the Conformance Test Suite incorporates a list of published Approved Corrections to
the FACE Technical Standard. The list of published Approved Corrections incorporated grows with
each release.

Using the CTS to test a UoC may apply some of those Approved Corrections to the test outcome. In
effect, the Software Supplier adopts those Approved Corrections corresponding to their UoC when
using the CTS. The Software Supplier is encouraged to use the list to identify the Approved
Corrections corresponding to their UoC. The identified Approved Corrections should be listed on
the Statement of Conformance submitted to the FACE VA and on the Statement of Verification from
the FACE VA.

The following table lists which Technical Standard Approved Corrections were addressed in a CTS
version. The table should be read as being additive. For a given CTS version, the CTS incorporates
the Approved Corrections for listed for its version and all previous versions of the CTS.

NOTE
Not all Approved Corrections in the table apply to all UoCs. A Software Supplier
should work with the Verification Authority to determine the appropriate subset of
Approved Corrections.

Table 17. Approved Corrections to the Technical Standard Addressed by Version of Test Suite

CTS Version CR# Consortium Title

CTS 3.0.7
974 Restrict POSIX FILE SYSTEM S_IS*() functions supported to a more

limited set

CTS 3.0.6

664 C/C++ FACE::Fixed Support Class More Than Container

826 TRANSMISSION_TYPE discrepency with MIL-STD-1553

936 Remove SCHED_SPORADIC from FACE profiles

943 Remove process groups functions from profiles

963 ARINC-429 LABEL_SEQUENCE should be unsigned long elements

990 The requirements for the operator[] override in the C++ header
for String.hpp leads to confusing behavior

1023 pthread_cond_destroy() should not be in the Safety Base profile
(all FACE editions)
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CTS Version CR# Consortium Title

CTS 3.0.5

518 C Library support for ARINC 653 Operational Environments is
Ambiguous

809 Remove pthread_setconcurrency() and pthread_getconcurrency()
from all profiles

902 Remove msync() from All Profiles

905 Remove SOCK_SEQPACKET from all profiles

910 Remove "shutdown" from "Security" and "Safety Base" profiles

911 pipe() Should be Conditional on Multiple Process Support

918 CLOCK_THREAD_CPUTIME_ID Should Not be in any Profile

919 ARINC 653 C Library Should Not Include Timezone Support

921 POSIX Spawn Attribute Flags from Profiles that do not Have
Methods to Manipulate Them

957 mlock/mlockall Included but Associated Constants are Not

970 Add More POSIX setsockopt() Option Values in FACE 3.0 and 3.1

CTS 3.0.4

564 TSS Interfaces Not Assigned to UoC

603 Remove confstr() from FACE Profiles

653 Not all TPMs should be required to provide Primitive_Marshalling

755 Union Accessors

847 Add Support for explicit FACE::Fixed constructor for FACE::Float
in FACE 3.0 and 3.1

848 Remove FACE_INTERFACE_NULL_THIS in FACE 3.0 and 3.1

849 Add Support for FACE String/Sequence reserve() methods in FACE
3.0 and 3.1

CTS 3.0.3

537 Serialize Incorrect Direction on Param

552 Sequence payload boundary initialization

569 Two FACE::TSS Common Types Should Be Unsigned

577 TA Send_Message_Blocking return_data Parameter Should be
inout

580 TA Read_Callback Signature and Buffer Issues

600 TPM Callbacks can’t create typed view

665 Initialization of Fixed Data Types

674 Sentinel Values for transaction_id when Publisher or Subscriber

736 Extend setsockopt to include IPV6_JOIN_GROUP and
IPV6_LEAVE_GROUP option value for General Purpose profile

742 Extend setsockopt to include IPV6_MULTICAST_HOPS option
value for General Purpose profile

743 Constant FACE Strings Behavior is Not Fully Defined

746 Correct Inconsistent Definition of
FACE_HMFM_RETURN_CODE_TYPE

824 Consider calling init() method for C Struct members of struct type

829 init() function for C structs should be "static inline" and not
"extern inline"
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CTS Version CR# Consortium Title

CTS 3.0.2

225 Extend setsockopt API support to allow TCP protocol option for
Safety Extended and General Purpose POSIX OSS Profiles

244 Verified that POSIX API macros identified in the FACE standard
are properly defined

247 Verified that POSIX API function with expanded profiles in the
FACE standard are properly defined

523 Ambiguous Reference to Sequence in OCL Constraint

531 Sequence and String Interface Specifications Too Limited

549 OCL constraints realizedCompositionsHaveDifferentTypes for
Logical and Platform Entity contexts too restrictive

560 C sequence.h and string.h are missing extern C wrapper for use
from C++

566 Describing Model association path of a participant’s characteristic
for more stringent rigor will cause a fail of the OCL

569 Two FACE::TSS Common Types Should Be Unsigned

593 Header Guard Mapping Rules Violate C/C++ Language Standards

605 Process scheduling methods available when multiple processes
are not supported

636 No epoch for time is given in the Technical Standard

637 Missing extern C in header files

705 Add TCP_NODELAY

708 FACE fixed.h has function defined twice

710 Unnecessary comma after last value in enum

711 FACE_FIXED_DIGITS_MAX in C++ conflicts with C macro

761 MIL-STD-1553 MAX_WORD_COUNT incorrect

789 Incorrect method specification for C sequence in Approved
Correction for CR 531

551 Parameter mode problem in Get_Serialization

596 C++ Message Serialization Implementation Unable to Call
Marshalling Methods

119



CTS Version CR# Consortium Title

CTS 3.0.1

233 POSIX API Methods Required to be Macros Not in Appendix A

245 Add Additional POSIX APIs as applicable to Safety Extended
Profile to Improve Alignment with SCA

246 Improve Consistency of General Purpose POSIX Profile in
Appendix A.1

330 Make POSIX Processes Optional in Safety Extended and General
Purpose Profiles

336 Add support of CAN BUS (ARINC 825) to the Technical Standard
3.0

350 Restrict mmap() Use to Shared Memory in Security and Safety
Profiles

351 fork/exec Usage Restriction Lost

352 Appendix A.6 not Referenced in Requirements

353 Restrict posix_devctl() and select() related APIs to Sockets

363 Add fdopen() POSIX APIs to Safety Extended Profile to Improve
Alignment with SCA

366 LCM Does Not Apply to OSS

378 getservbyport() and getservent() should be marked Yes for IPC

379 pselect() is an IPC method but not in IPC restricted (limited) GSL
libraries

380 socketpair() is an IPC method but not in IPC restricted (limited)
GSL libraries

395 Update C and C++ Library Definitions to Include
POSIX_C_LANG_SUPPORT_R functions

397 Clarify IDL module mappings to Ada packages

401 Valid IDL enumerations do not compile in Ada

416 Calling driver code from TSS TPMs

436 gethostname() should not be Inter-UoC restricted call
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CTS Version CR# Consortium Title

CTS 3.0.0

CR# Consortium Title

219 FACE_sequence_return incorrectly defines
FACE_STRING_NULL_THIS

234 Template Instantiation Naming Patterns

236 Define rules for IDL-generated file names

237 IDL for the template module instantiations should have been
provided

240 Interface Class Instances Injected are Const and Cannot be used to
invoke FACE Interfaces

241 Confusing Type Names in FACE::TSS::Typed

242 Ensure Data Model name is restricted or can be mapped into all
programming languages

260 FACE::String Missing Constructor for Constant Strings

263 Initialize(LCM::Initializable) cannot use Configuration Interface

264 C++ Sequence default constructor describes wrong bound

265 C/C++ Mapping for IDL array should not mention slice

268 C++ Mapping for IDL interface should have an inline empty
destructor definition

269 Java mapping for unsigned integer types incorrect

273 Default definitions of C++ new need to be included

324 Directionality of transaction_id argument to
Send_Message_Callback()

327 Directionality of buffer argument to Configuration::Read()

328 Component State Persistence arguments are incorrect

329 Directionality of buffer argument to TSS::CSP::Read()
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Appendix H: CTS Treatment of Default
Values for Element/Composition Attributes
The FACE™ metamodel is defined via Essential Meta-Object Facility (EMOF). EMOF supports
specifying element/composition attribute default values and number of occurrences (i.e.
lower/upper) constraints. The following discussion considers some examples of whether the EMOF
defaults/constraints were applied properly in the CTS application, but the overall focus is to address
how CTS handles default values. The CTS interpretation of the defaults/constraints may differ from
EMOF because the CTS handling of default values is specified by the Java code that was generated
from the EMOF. The generated code is used to read/write (i.e. deserialize/serialize) the .face XMI
file.

The process for generating the Java code from the metamodel EMOF follows:

Using Eclipse:

1. Read the EMOF

2. Convert the EMOF model to an Eclipse Ecore model

3. Generate Java code from the Ecore model

The generated Java code is used by CTS to read (i.e. deserialize) the .face file. Therefore, the default
values in the generated code determine the attribute values for attributes that are not present in
the .face XMI.

Table 18 was built via parsing the generated Java code and extracting the default value fields. The
table demonstrates that some of the corresponding default values align with the EMOF and some do
not. For example, “Element description” in the EMOF and in the table defaults to “”. A contrary case
is “Logical RealRangeConstraint lowerBound”, which has no default value in the EMOF, but does
have a default value of 0.0F in the table.

A discussion of the implication of Java types on default values follows:

• int/float/boolean – int/float/boolean are Java primitive types. In functions, Java requires that
primitive types be initialized before they are used. Class attributes do not have to be initialized
before they are used. Even if a Java primitive type was not initialized, it would have a value (e.g.
type of int would be 0). For the values in Table 18, the Java primitive types were explicitly set in
the code. Relying on default primitive values for unset primitives is not pertinent to the table.
Therefore, even if the EMOF did not define a default value, a default value would exist in the
Java code, which would handle the case where the attribute was not defined in the .face XMI.

• String - The Java String type is a class and not a primitive type like int/float/boolean; therefore,
String types can be null or populated. Before use, Java requires a String type to be defined with
characters or set to null. In Table 18, some String types are set to “” and some to null. For
example, in the EMOF and in the table “Conceptual Characteristic rolename” is set to “”. Another
example is “Conceptual Characteristic description”, which has no default value in the EMOF and
is null in the table.

• enum – A Java enum has behavior similar to a Java String in that it can be null; however, the
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generated code always defines a value. The default value is the first value in the list of literals
defined in the EMOF.

Inheritance influences which attributes apply to a particular element. For example,
ClientServerConnection extends (i.e. inherits from) Connection. This means that the Connection
attributes are applicable to ClientServerConnection. See the “FACE Technical Standard", for a
complete definition of the inheritance relationships.

Table 18. FACE 3.0 Attribute Default Values

Model Element Name Attribute Name Java Type Default Value

N/A Element name String ""

N/A Element description String ""

conceptual Characteristic rolename String ""

conceptual Characteristic lowerBound int 1

conceptual Characteristic upperBound int 1

conceptual Characteristic description String null

conceptual CompositeQuery isUnion boolean false

conceptual Participant sourceLowerBound int 0

conceptual Participant sourceUpperBound int -1

conceptual QueryComposition rolename String ""

conceptual Query specification String null

logical AffineConversion conversionFactor float 0.0F

logical AffineConversion offset float 0.0F

logical Characteristic rolename String ""

logical Characteristic lowerBound int 1

logical Characteristic upperBound int 1

logical Characteristic description String null

logical CompositeQuery isUnion boolean false

logical CoordinateSystem axisRelationshipDescription String null

logical CoordinateSystem angleEquation String null

logical CoordinateSystem distanceEquation String null

logical Enumerated standardReference String null

logical FixedLengthStringConstraint length int 0

logical IntegerRangeConstraint lowerBound int 0

logical IntegerRangeConstraint upperBound int 0

logical MeasurementAttribute rolename String null

logical MeasurementConstraint constraintText String null

logical MeasurementConversion conversionLossDescription String null

logical MeasurementSystemConversion conversionLossDescription String null

logical MeasurementSystem externalStandardReference String null

logical MeasurementSystem orientation String null

logical Participant sourceLowerBound int 0

logical Participant sourceUpperBound int -1
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Model Element Name Attribute Name Java Type Default Value

logical QueryComposition rolename String ""

logical Query specification String null

logical RealRangeConstraint lowerBound float 0.0F

logical RealRangeConstraint upperBound float 0.0F

logical RealRangeConstraint lowerBoundInclusive boolean true

logical RealRangeConstraint upperBoundInclusive boolean true

logical ReferencePointPart value String null

logical RegularExpressionConstraint expression String null

logical StandardMeasurementSystem referenceStandard String null

platform Characteristic rolename String ""

platform Characteristic upperBound int 1

platform Characteristic lowerBound int 1

platform Characteristic description String null

platform CompositeTemplate isUnion boolean false

platform Composition precision float 0.0F

platform Fixed digits int 0

platform Fixed scale int 0

platform IDLArray size int 0

platform IDLBoundedString maxLength int 0

platform IDLCharacterArray length int 0

platform IDLComposition rolename String null

platform IDLComposition precision float 0.0F

platform IDLSequence maxSize int 0

platform Participant sourceLowerBound int 0

platform Participant sourceUpperBound int -1

platform Query specification String null

platform TemplateComposition rolename String ""

platform Template specification String null

integration UoPInstance configurationURI String null

traceability TraceabilityPoint rationale String null

traceability TraceabilityPoint reference String null

uop ClientServerConnection role ClientServerRole Client

uop Connection name String ""

uop Connection description String ""

uop Connection period float 0.0F

uop Connection synchronizationStyle Synchronization
Style

Blocking

uop LifeCycleManagementPort messageExchangeType MessageExchang
eType

InboundMessage

uop PubSubConnection messageExchangeType MessageExchang
eType

InboundMessage

uop QueuingConnection depth int 0
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Model Element Name Attribute Name Java Type Default Value

uop RAMMemoryRequirements heapStackMin int 0

uop RAMMemoryRequirements heapStackMax int 0

uop RAMMemoryRequirements heapStackTypical int 0

uop RAMMemoryRequirements textMax int 0

uop RAMMemoryRequirements roDataMax int 0

uop RAMMemoryRequirements dataMax int 0

uop RAMMemoryRequirements bssMax int 0

uop SupportingComponent version String null

uop Thread period float 0.0F

uop Thread timeCapacity float 0.0F

uop Thread relativePriority int 0

uop Thread relativeCoreAffinity int 0

uop Thread threadType ThreadType Foreground

uop UnitOfPortability transportAPILanguage ProgrammingLa
nguage

C

uop UnitOfPortability designAssuranceLevel DesignAssurance
Level

A

uop UnitOfPortability partitionType PartitionType POSIX

uop UnitOfPortability designAssuranceStandard DesignAssurance
Standard

DO_178B_ED_12
B

uop UnitOfPortability faceProfile FaceProfile GeneralPurpose

125


	CONFORMANCE TEST SUITE USER MANUAL
	Table of Contents
	1. Introduction
	1.1. Context
	1.2. Tools Contained in the Test Suite
	1.2.1. Conformance Testing Workflow


	2. Installation
	2.1. Installation on Linux (CentOS 7/RHEL 7)
	2.1.1. User Prerequisites
	2.1.2. System Requirements
	2.1.3. Language-Specific Prerequisites
	GCC/G++ 4.8.5
	Python 2.7
	Java 8 JDK
	Ant 1.9.x

	2.1.4. Installation of CTS
	Environment Variables

	2.1.5. Running CTS
	Launching CTS


	2.2. Installation Variance for CentOS 8/RHEL 8
	2.3. Installation on Windows (Windows 10)
	2.3.1. User Prerequisites
	2.3.2. System Requirements
	2.3.3. Language-specific Prerequisites
	2.3.4. Detailed Instructions for Installing Prerequisites
	Python 2.7
	Java JDK 8
	MSYS2 (for C/C++/Ada samples only)
	Ant 1.9.x
	Enable Long Paths in Windows 10

	2.3.5. Installation of CTS
	Installation Variance for Windows Cygwin/GCC Toolchains

	2.3.6. Running CTS


	3. Theory of Operation
	3.1. Introduction to Methodology
	3.2. Target Linker Method
	3.3. Host Linker Method
	3.4. Additional Methodology Information
	3.4.1. OSS Testing Methodology
	3.4.2. Java Testing Methodology


	4. Toolchain Configuration File
	4.1. Introduction
	4.2. Toolchain Files List
	4.3. Building a Toolchain Configuration File
	4.3.1. General Tab
	4.3.2. File Extensions Tab
	4.3.3. Tools Tab
	4.3.4. Compiler Specific Tab
	Compiler Specific Functionality
	Configuration

	4.3.5. Notes Tab


	5. Project Configuration File
	5.1. Introduction
	5.2. Project Files List
	5.3. Building a Project Configuration File
	5.3.1. General Tab
	5.3.2. Data Model Tab
	5.3.3. Gold Standard Libraries Tab
	5.3.4. Objects/Libraries Tab
	5.3.5. Notes Tab
	5.3.6. Project Info Tab


	6. Sample Project and Toolchain Configuration Files
	6.1. Build Flags
	6.2. Linux Generation
	6.3. Windows Generation
	6.3.1. Regarding Failing Test Results and Shared Data Model


	7. Testing a UoC
	7.1. Overview
	7.2. Testing a Portable Components Segment (PCS) UoC
	7.2.1. What the User Must Provide
	7.2.2. Test Procedures
	Providing Project Context
	Generating the Gold Standard Libraries
	Factory Functions
	Validating and Testing a Project


	7.3. Testing a Platform Specific Services Segment (PSSS) UoC
	7.3.1. What the User Must Provide
	7.3.2. Test Procedures
	Providing Project Context
	Generating the Gold Standard Libraries
	Factory Functions
	Validating and Testing a Project


	7.4. Testing a Transport Services Segment (TSS) UoC
	7.4.1. What the User Must Provide
	7.4.2. Test Procedures
	Providing Project Context
	Generating the Gold Standard Libraries
	Factory Functions
	Validating and Testing a Project
	Special Verification Cases


	7.5. Testing an I/O Services Segment (IOS) UoC
	7.5.1. What the User Must Provide
	7.5.2. Test Procedures
	Providing Project Context
	Generating the Gold Standard Libraries
	Factory Functions
	Validating and Testing a Project


	7.6. Testing an Operating System Segment (OSS) UoC
	7.6.1. What the User Must Provide
	7.6.2. Test Procedures
	Providing Project Context
	Generating Gold Standard Libraries
	Factory Functions
	Validating and Testing a Project


	7.7. Testing a Data Model
	7.7.1. What the User Must Provide
	7.7.2. Test Procedures

	7.8. Considerations for Testing an Ada Segment
	7.9. Considerations for Testing a Java Segment
	7.10. Viewing Test Suite Results

	Appendix A: References
	Appendix B: Using the CTS Via Command Line Interface (CLI):
	Appendix C: Glossary
	Appendix D: Constraints
	Appendix E: Known Issues
	Appendix F: Acknowledgments
	Appendix G: Approved Corrections to Technical Standard by CTS Version
	Appendix H: CTS Treatment of Default Values for Element/Composition Attributes

