AMRDEC Mission

Deliver collaborative and innovative aviation and missile capabilities for responsive and cost-effective research, development and life cycle engineering solutions.
Who is AMRDEC?

~9,211
FY17 Strength

2,945
Civilian

16
Military

6,250
Contractor

907 / 5343
SETA Non-SETA

Core Competencies

- Life Cycle Engineering
- Research, Technology Development and Demonstration
- Design and Modification
- Software Engineering
- Systems Integration
- Test and Evaluation
- Qualification
- Aerodynamics/Aeromechanics
- Structures
- Propulsion
- Guidance/Navigation
- Autonomy and Teaming
- Radio Frequency (RF) Technology
- Fire Control Radar Technology
- Image Processing
- Models and Simulation
- Cyber Security

FY17
$2,904M

6%
Aviation S&T

7%
Missile S&T

63%
Army

24%
Other

AMRDEC HQ
Redstone Arsenal, AL

Colorado Springs, CO

Joint Base Langley - Eustis, VA

NASA Ames - Moffett Field, CA

Corpus Christi, TX
#1: Readiness

Provide aviation and missile systems solutions to ensure victory on the battlefield today.

#2: Future Force

Develop and mature Science and Technology to provide technical capability to our Army’s (and nation’s) aviation and missile systems.

#3: Soldiers and People

Develop the engineering talent to support both Science and Technology and the aviation and missile materiel enterprise.
• What is the Rapid Integration Framework
 – Why is it important
 – Origins in FACE and CMS
 – Relationship to a Comprehensive Architecture Strategy
• What are we demonstrating
 – CMS and four alternative platforms
 – Alternative hardware and Software, Rehosting, New Capabilities, Interoperability,
 – Integration without recompile
• What have we learned
 – Lessons learned on the SDK
 – Rapid development
 – Positive feedback
• A DoD wide Need for Open Systems Architecture
• FACE Consortium
• CMS
• Multiple Platform/Multiple Use Interests
The Technical and Business Drivers for FACE are closely aligned to these goals.
RIF Objectives

• Support PEO AVN Strategic Goal of Achieving an Interoperable Combat Aviation Brigade through Open Systems Architecture

• Provide a Government Controlled Open Systems Architecture

• Provide a common objective architecture for use across multiple programs

• Enable faster fielding to the Warfighter

• Decrease cost and complexity

• Break vendor lock and increase competition

• Address obsolescence issues by decreasing downtime and cost
The Crew Mission Station (CMS) was initiated by the UH-60 PO to:
- Add SA for the Crew Chief on the UH-60 Blackhawk
- Provide a means to deploy new capabilities as rapidly as possible
- Produce a government owned open systems architecture
- Promote independence for the system integrator
The successes of the CMS lead to:

- Placement of CMS into a Limited User Evaluation (LUE)
- Continued funding to assess a production version
- Projects for variations of CMS while maintaining a common code base
- Use of CMS as an integration platform for testing

For each use of CMS there are different goals, these goals can manifest in variations in capabilities, hardware selection, and interfaces.

The CMS Objective Architecture can:

- Provide a repository of common architecture and system elements
- Evolve to cover variations in the resulting system
The Rapid Integration Framework:
• Based on the Objective Architecture for CMS
• Defines an Open Systems Architecture for a Core System
• Includes Hosted Capability definitions as extensions to the architecture

A Rapid Integration Platform:
• Includes the Systems Architecture as well as the resulting system for a specific implementation of the RIF
• CMS is a Rapid Integration Platform
Rapsid Integration Framework

Reference Architecture
- U.S. Army Common Operating Environment
- DoD and Army Regulations
 - MOSA
 - FACE
 - BBP

Objective Architecture
- Rapid Integration Framework
 - Business and technical objectives of the RIF
 - Core Assets of a Product Line
 - Technology Independent Architecture

System Architecture
- Rapid Integration Platform
 - Extending the OA to meet system objectives
 - Technological decisions needed to procure components

Army Aviation
- PEO AVN
- PM Utility
- TCM Lift
- PMO FVL

Community of Interest
- RIF COI
 - RIF Architecture Control Working Group
 - Develops the Rapid Integration Framework Requirements
 - Works to identify and document common needs (commodities) for each product line
 - RIF Repository
 - Maintains the Product Lines (HW/SW) supporting the RIF
 - Provides common components for RIFs
Demonstration Objectives

- Rapidly integrate new hardware and software to support technology refresh, i.e. replace suppliers’ products
- Provide government managed architecture for Industry to extend and show integration and interoperability of new/innovative capabilities
- Enable Industry to port and reuse software and artifacts across platforms
- Enable learning and outreach for PEO AVN
“The Rapid Integration Framework provides a path for rapid integration of new capabilities.”

- Envisioned 6 months ago
- Kicked off 3 months ago
- New products rapidly integrated following the framework architecture

“The architecture is flexible to meet the needs of a variety of platforms.”

- Hardware Variations
- I/O Variations
- Integration variations
- Software ported to multiple target hardware and operating systems

“This architecture and these components are not bound to any single vendor or product”

- 19 participating suppliers
- All core components procured for CMS are demonstrated with alternative Hardware and Software
The Demonstrations

NOTE: The appearance of any commercial logos or links to web sites do not convey or imply that the United States Army or the Department of Defense or any agency of the Government directly or indirectly endorses any product or service provided, or to be provided, by the commercial entity, its successors, assignees, or licensees. Furthermore, the United States Army, the Department of Defense or any agency of the Government does not warranty any services that may be provided by the commercial organization listed.
• CMS
 – CMS LUE Version
 – Government Owned Architecture
 – Designed for Rapid Deployment of New Capabilities
 – Utilizes the FACE Technical Standard to provide access to FACE Conformant software developed for other platforms
 – Logically Separates the Core System from the Hosted Capabilities
 – Features Smart Displays for expandability to additional stations
 – Features I/O distributed through Ethernet to reduce wiring and equipment costs

• LDRA
 – Guide, and manage adherence to the FACE Technical Standard
 – Manage artifacts across a distributed set of suppliers
Partitioned for fielding Safety of Flight applications while providing a lower DAL area for rapid fielding

VxWorks 653 MultiCore Operating System with a VxWorks 7 Guest OS and a CentOS Guest OS

Guide, and manage adherence to the FACE Technical Standards across a distributed set of suppliers with the LDRA tool suite

TBmanager
TBvision

The Army booth contains the equipment and software that will be deployed to active duty personnel as part of a limited user evaluation.

The Army booth contains the equipment and software that will be deployed to active duty personnel as part of a limited user evaluation.

CoreAVI’s ArgusCore® OpenGL® SC 1.0.1

EGL_EXT_Compositor for compositing graphics to FACE Technical Standard 3.0
Green Platform Description

- Features an enhancement to the map showcasing a 3D virtualization along with other features not selected for the initial LUE (includes planned additions to CMS).
- ANSYS SCADE Replacement CDS Graphics Server replaces one of the core software components.
- Features a mission computer from NAI that integrates I/O functions to reduce SWaP.
- PSSS Device Services run in the mission computer, with the I/O processing to reduce redundant processing.
- DDC-I’s Deos RTOS with ARINC 653 and POSIX (provided by RTEMS) APIs shows redeployment of components on another Operating System.
- Use of Synchro demonstrates ease of expanding the platform to accommodate new sensors/effectors without impacting other components.
The Harris FliteScene map was an initial requirement for the CMS map capability and is used by pilots on UH-60M as well as other Army aircraft. It is shown in most of the platforms demonstrated today.

Map UA based on the FACE Conformant Harris FliteScene

ANSYS SCADE CDS
- Model-Based,
- Certifiable,
- Extensible,
- Platform-Portable
ARINC 661 Solution

DDC-I’s Deos RTOS: DO-178C DAL A certifiable real-time operating system (RTOS)

FACE Aligned (safety base) Deos+RTEMS supports ARINC653 and POSIX APIs.

Scalable, Reconfigurable LRU supporting I/O and application processing.

Quad Core T2080 With Integrated I/O

COTS standards, MIL qualified, DO-254 & DO-178

NAI SIU33

NAI NIU-1A (Simulation Input)

ARINC 429 Synchro

AVALEX 3105

Ethernet

Switch

COTS Graphics Server:
- Model-Based,
- Certifiable,
- Extensible,
- Platform-Portable

ANSYS FliteScene

The Harris FliteScene map was an initial requirement for the CMS map capability and is used by pilots on UH-60M as well as other Army aircraft. It is shown in most of the platforms demonstrated today.

Map UA based on the FACE Conformant Harris FliteScene

ANSYS SCADE CDS
- Model-Based,
- Certifiable,
- Extensible,
- Platform-Portable
ARINC 661 Solution

DDC-I’s Deos RTOS: DO-178C DAL A certifiable real-time operating system (RTOS)

FACE Aligned (safety base) Deos+RTEMS supports ARINC653 and POSIX APIs.

Scalable, Reconfigurable LRU supporting I/O and application processing.

Quad Core T2080 With Integrated I/O

COTS standards, MIL qualified, DO-254 & DO-178

NAI SIU33

NAI NIU-1A (Simulation Input)

ARINC 429 Synchro

AVALEX 3105

Ethernet

Switch
• Features applications running on a Panasonic Toughpad as an alternative display.
• Utilizes an Ultra-Wideband wireless network capability provided by SNC to reduce the need for wires within the cabin
• Shows the applications running on the DornerWorks Virtuosity FACE Conformant OS.
• Shows an implementation of MUM-T LOI2 through a Rover6 radio.
• Shows an integration with components developed to the FACE 3.0 Technical Standard interoperating with components developed to the 2.1 Technical Standard. This is achieved through a common TSS provided by RTI.
• Shows an integration of CMS and BALSA.
Integration in Army UH-60 helicopters

Minimal integration time because of Open Systems Architecture framework

Rapid integration means new capabilities to the fleet in shortest timeframe possible

Secure, wireless network communications

Minimal integration time to install Virtuosity FACE Conformant OS

Face Conformant Virtuosity Operating System

RTI Administration Console for System Insight & Visualization

See RTI TSS bridge FACE 2.1.1 & 3.0 components.

RTI Administration Console for System Insight & Visualization

RTI Administration Console for System Insight & Visualization

UC3 for Rover Radio Control

MUM-T LOI 2

TESseract

SNC UWB-NET

Ethernet

Switch

Ethernet

Switch
Yellow FACE View
• Features an alternative map in the GEMS product from Boeing.
• Features a new capability in OpenMap from GE Aviation.
• Shows an additional display in a larger format for a crew member serving in a mission specialist role.
• Processing for this larger display is performed on the mission computer in a separate CentOS guest showing further flexibility in display solutions.
• Alternative Mission Computer with a next generation processor from the one used in CMS.
• The Mission Computer is running LynxSecure, a multicore separation kernel / hypervisor.
• A LynxOS 178 RTOS guest on the mission computer runs the PSSS components, including the IVHMU, the FMS, and the DCU.
The PRESAGIS CDS has been an integral part of the CMS project from the start and is being demonstrated in most of the other display platforms.

Boeing GEMS Map

Avalex 3105

Avalex AVM4178

Parvus DuraCor 8042

Mission Computer

Integration with a “Standard” Display

GE Aviation's OpenMap provides a 3D virtualization

Relevant future applications:
- DVE & Synthetic Vision
- Interactive route planning
- Tactical mission displays

LynxSecure separation kernel

Lynx Software that allows dedicated hardware resources to be assigned to various guests OS's

LynxOS-178 RTOS

For Higher DAL applications

CentOS Guest

For rapid deployment of lower DAL capabilities

VAPS XT 661, model-based development tool

Integration with a “Standard” Display

GE Aviation’s OpenMap provides a 3D virtualization

Relevant future applications:
- DVE & Synthetic Vision
- Interactive route planning
- Tactical mission displays

LynxSecure separation kernel

Lynx Software that allows dedicated hardware resources to be assigned to various guests OS’s

LynxOS-178 RTOS

For Higher DAL applications

CentOS Guest

For rapid deployment of lower DAL capabilities
Blue FACE View

FACE Boundary

Portable Components Segment
- Camera
- Mark Points
- E-Reader
- Configuration

Recipes Map
- Flight Plan
- Roadblocks
- Fuel Calc
- ECAS
- SW Keyboard
- Menu

Transport Services Segment
- Transport Services Capability
- Data Distribution Service (DDS)
- Configuration Capability
- Quality of Service (QoS)

Platform Specific Services Segment
- Platform Device Services
 - FMS PDS
 - IVHMI PDS
 - Encoder/Joystick PDS
- Platform Common Services
 - Streaming Media Service (Video)
- Graphics Services
 - ARINC-661 CDS

I/O Services Segment
- Serial Service
- ARINC-429 Service

Serial Interface Hardware
- Display Bezel
- Display Encoder & Joystick
- IVHMI
- FMS
- DCU

Video I/O Converter
- RS-170/NTSC Interface Hardware

Data I/O Converter
- ARINC-429, MIL-STD-1553 Interface Hardware

Mission Computer
- LynxOS-178
- LynxSecure
- C++ Language Runtime

Displays
- Curtiss-Wright
- PICOS VAPS XT
- PRELAGIS
- AVALEx Technologies

Technology Driven. Warfighter Focused.
Red Platform
Tighter Integration, Chinook Variations
Red Platform Description

• Features an Army led CMS integration effort onto a civil certifiable multicore mission computer that provides more computing with less SWAP
• Mission computer shows separation of safety critical and mission processing for hosting applications at different DAL levels lowering the recertification impact of incremental software upgrades
• Demonstrates integration with a Chinook system and access to the avionics LAN to increase connectivity between FACE™ applications
• The system utilizes an alternative to the TSS used on CMS, giving additional proof of RIF open architecture portability
• Shows graphical applications running on the Mission Computer to reduce processing needs on the individual displays
• Shows use of CH-47F native ARINC 661 user applications to remotely render graphics on CMS displays without the need to recode
Integrated with Avionics:
- Removes the need for PSSS DS
- More information to RIP
- Better synchronization

CH-47F Simulation Environment
- ARINC-429, Mil-Std-1553, Ethernet, etc.

CH-47F Portable SIL

Face™ Conformant Avoidance Re-router

Harris Map and Rockwell SVS for Total SA

I/O fully integrated with avionics
No separate Data concentrator

CMS applications as Guest on PSM

Ethernet

PPC – T2080 Multicore Processor
Multi-DAL, Multi-guest OS

CH-47F EICAS ARINC 661
UA Renders Directly to CMS Display

Alternate Rockwell Collins TSS

Avalex 3105
• Performs rapid integration of legacy application with CMS utilizing model-based engineering and semantic data model merging
• Integrates legacy STANAG 4586 vehicle simulator with RIF SDK without modification to existing source code
• Performs *on-demand, live integration* of exemplar user application into RIF through model content updates
• Automatically generates executable PCS application and TSS mediation code to bridge between transport services.

Skayl Booth

• Features Skayl’s PHENOM™
• Includes Certified DSDM, including traceability to FACE™ SDMs
• Enables multi-model import, merge, manipulation, and maintenance
• Facilitates alignment of interfaces between data models and systems
• Automatically generates executable integration code - no need for hand-coding
The Results
• Envisioned at the February FACE-to-FACE meeting (6 months ago)
• Kicked off at the July FACE-to-FACE meeting (3 months ago)
• First draft of the SDK provided July 30th
• Most of the engineering/integration work completed in 6 weeks
Lessons Learned

• Early and often iterations of the SDK enable participants to get started sooner and flush out challenges quicker
• Need better Transport/Integration documentation
 – Earlier understanding/establishment of supporting project tools & infrastructure capabilities & limitations (for example, Webex).
 – Include Connext DDS Micro in the SDK to enable use of TSS for non-standard Connext DDS Pro platforms.
 – Reach out for TSS integration early to help address issues (i.e. not every platform supports multicast)
• The preliminary nature of the SDK and source code comments mean the code is virtually undocumented.
 – Having functional descriptions of major classes would be nice.
 – It would also be nice to have an understand of the control flow of the software.
• Included files are not modular enough.
Rapid Integration Framework
Demonstrations

Completed all efforts in less than 3 months with 19 vendors and multiple government organizations.

Vendors completed project in less than 280 hours on average.

The configurability of the CDS made integration with new display hardware/drivers a breeze.

Once CMS/sample application was setup and running, integration for our map to render to the display took < 2 days!

Identified valuable lessons learned for future RIF enhancements.

Early and often iteration of SDK enabled rapid resolution of challenges.
AMRDEC Web Site
www.amrdec.army.mil

Facebook
www.facebook.com/rdecom.amrdec

YouTube
www.youtube.com/user/AMRDEC

Twitter
@usarmyamrdec

Public Affairs
AMRDEC-PAO@amrdec.army.mil